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SUMMARY 

GENERALIZED BAYES MINIMAX ESTIMATORS OF A 

MULTIPLE REGRESSION COEFFICIENT VECTOR 

WITH TOREE OR MORE PREDICTIORS 

by 

Pi-Erh Lin and Erwin P. Bodo 

The Florida State University 

Consider a multiple regression problem in which the dependent 

variable and (3 or more) independent variables heve a Joint normal 

distribution with unknown mean vector and covariance matrix. A family 

of minimax estimators based on the maximum likelihood estimator and 

the sample multiple correlation is obtained for the regression coeffi¬ 

cient vector. It is shown that there are minimax estimators of the 

same form as the ones mentioned above, which are also generalized 

Bayes. The problem of estimating both the intercept and regression 

coefficient vector is also investigated. 
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GENERALIZED 1ÎAYES MINIMAX ESTIMATORS GF A 

MULTIPLE REGRESSION COEFFICIENT VECTOR 

WITH THREE OR M3RE PREDICTORS 

1 O 
Pi-Erh Lin and Erwin P. Bodo¿ 

The Florida State Uni"?r-ii*" 

1. Introduction. 

The problem under consideration is that of estimating the regres¬ 

sion coefficients when the predictors and the dependent variable have 

a Joint normal distribution with unknown mean vector and covariance 

matrix. Stein (i960) showed that the maximum likelihood estimator 

(m.l.e.) of the regression coefficient vector is minimax and inadmis¬ 

sible relative to a reasonable loss function if there are three or more 

predictors. Baranchik (1973) obtained a class of estimators 

of the form 

(l.l) a * X1 
c 

where X*1* are the sample means for the dependent and in¬ 

dependent variables, respectively, B0 is the m.l.e. of the regression 

coefficient vector, R is the sample multiple correlation coefficient, 

and c is a nonnegative real number bounded by 2(p - 2)/(n - p ♦ 2) 

with the number of predictors p 2 3 and sample size n ♦ 1. Each of 
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these estimators has a lower risk than that of the m.l.e.. In this 

paper we extend Baranchik's result to a class of minima* estimators of 

the form 

■ 7(1) 2* v(2) 
■ x - Bt X , ßt = [1 - t(F)/F]ßot 

2 
R ) and t(F) is a nonnegative, nondecreasing 

(1.2) 

where F * R2/(l 

function. Thus Baranchik's estimators form a subclass of (1.2). We 

further exhibit a class of generalized Bayes estimators idiich are of 

the form (1.2) and hence minimax. 

Section 2 consists of the formulation of the problem. A group 

of transformations leaving the problem invariant is introduced in 

Section 3. Sections fc and 5 are devoted to estimating the regression 

coefficient vector 0 alone. The minimaxity of is established 

in Theorem U.U. A family of generalized Bayes rainimax estimators is 

obtained in Theorem 5.1. Section 6 extends the results of Sections U 

and 5 to the case of estimating both the intercept a and the regres, 

sion coefficient vector 0. Some concluding remarks are given in 

Section 7. 

2* Formulation of the ProMpm. 

^ xi» .•. » xn+1 be independently normally distributed (p ♦ 1)- 

dimensional random vectors (p ¡s 3), with conmon mean vector w and 

common covariance matrix E, where both u and E are unknown. The 

U, and E are partitioned as follows: 
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(2.1) Xt *= 

and 

(2.2) z = 

X (1> 
1 

v (2) 

' (1) 
W 

U 
(2) 

, i * 1, ..., n+l, 

"ll • 'is 

£21 '22 

where X^11 <md l/1’ ere v(2) end t21 (• 1^) 

are p * 1, and E ir p x p. The regression of X.^1^ on x/2* 

is given by 

(2.3) 

where 

(2.U) 

and 

(2.5) 

E(Xi(l)|Xi(2)) = « + 0' Xi(2), 

6 3 E22 E21* 

a = - ß’i/2*. 

He are interested in estimating both a and 0 in one case and 

0 alone in the other with loss functions 

(2.6) L[(a, S); (u, E)] 

* {[(a - a) + (0 - 0)*wi2)]2 +(0- 6)'E (0 - 0))/0., _ 

and 

(2.7) L(0; (y, E)] = (0 - 0)*E22(0 - 0)/ou 2, 

A A 

respectively, where a and ß denote any estimators of a and 0, 



U 

and 

(2.8) 
11.2 °11 “ £12 £22 £21‘ 

lose function« (2.6) and (2.7) were first introduced by Stein (I960), 

end subsequently used by Baranchlk (1973). The m.l.e. (Û0. L) 0f 

(a, $) is given by 

(2.9) 

and 

(2.10) 

where 

= A22 A21* 

®o = ^(1) ’ *(2). 

(2.11) X 

and 

j(d 1 

x-<2> 

n+1 

77 ^ V 4 1 i»j. 1 

(2.12) A = 
“n A12 

A21 A22 

n+1 

ï (X. - X)(X. - X)'. 
i=l 1 1 

The partitioning of X and A is similar to that of y and Z. 

3* Iran« fc mat ions Leaving the Problem In vari ant. - 

Stein (I960) showed that the problem defined in Section 2 is 

invariant under the following group of transformations: 

y (D 
*i 

y (2) 
Xi 

iaXi(lî ♦ b»X1(2) + d 

CXi(2) + e 

(3.1) 
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(3.2) 
'p(1) 

I V 
(2) 

r a b» 

. 0 C 

%(1) 

(2) 

d 

e 

■»• b'y^2^ ♦ d 

Cw(2) + e 

(3.3) 
°11 E12 

^21 E22 

a b' 

0 C 

°11 E12 

E21 E22 

a 0' 

b C 

Í a2<,ll * 2ab'£21 + l,’!:22b («I12 ♦ »’VC 

C<r21° * £22b^ CE„C 
22 

(3.U) 

* a 

ß 

^ aâ - ae'C'”^0 + d - b'C^e ’ 

-1- * -S aC* ß + C 

where a (^ 0) and d are real numbers, b and e are p x 1 vectors 

0 isa pxi vector of zeros, and C isa pxp nonsingular matrix 

As in Baranchik (1973), if we restrict our attention to the subgroup 

with b * 0 then the estimators 

(3.5) ; = XU> - ;• ï<2> A , 2 V * 
ß = f(R )0, 

are equivariant; that is, they satisfy (3.4) with b = 0. Here f(R2) 

is a measurable function of the sample multiple correlation coefficient 

R, where 

(3.6) R^ « A _ a“1 A /a 
JL2 a22 21/all* 
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Since every orbit of the subgroup (b = j) passes through the 

parameter point (p, £), the risk of the equivariant estimators given 

by (3.5) may be computed at any convenient parameter point on the 

same orbit as (p, £). If the parameter point is chosen properly, the 

calculation of the risk is usually simplified. For example, Baranchik 

(1973) computed the risk of 8 at the point (p^ £ o )- 
c * 22* 11.27 

(°. Ip* 1), where Ip is the identity matrix of order p. 

**• A Class of Minimax Estimators of 6. 

In this and the following section we will consider the estimation 

of 8 alone. The follovring three lemmas Trill be used in the proof of 

Theorem U.1«. Lemma l*.l can be found in Baranchik (1970) and Lemmas 4.2 

and 4.3 in Stein (1969, pp. 29-32, 6I-62). They are presented here 

without proof«. 

Let Z^N(e, Ip). Let g(T) be a measurable function 

2 P 
of T = Z'Z/Xh* where xn is independent of Z, Then 

11 E[z'Ze2(T,) ' I ^ . 

and 

ii) E[8'Zg(T)] - ÜMÎl'a Eísíx^/xft] , 

p 
where ||e|| = e'e. 

Let A a. W(E, n). Partition A and z as in (2.12) 

and (2.2). Then 
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11 “il.2 5 “il - 'S.a A22 A21 ' “’ll.2 Vp ’ 

“> 4 I a22 ' N'e- “ii./â» • 

iii) A22 -v W(E22, n), and 

iv) g is independent of (A^* A22^* 

LEMMA U.3. Conditional on A22, the distribution of F = ®c)A22®0^all 2 

2 2 2 2 
is that of Xp^jç/x^p. Where X^+2k Xn-p* given A22* are indePendent. 

and K given A22 is distributed as Poisson with parameter SB'A^ß. 

The main result of this section is given by Theorem h,k in which a 

class of minimax estimators for ß is obtained. It is evident that this 
* 

class includes both Baranchik's (1973) estimator ß as well as the 
c 

A 

m.l.e. Bp. 

THEOREM U.U. Let F be as defined in Lemma U.3. Then 

(M) ßt = [1 - t(F)/F]ß0 

is a minimax estimator of ß, relative to the loss function (2.7)» if 

i) t(F) is nondecreasing in F, and 

ii) 0 S t(F) S 2(p - 2)/(n - p + 2). 
A 

PROOF. Let R(ß, ß) denote the risk, or expected loss, incurred 

when estimating ß by ß. Stein (i960) showed that ßQ is minima* 

with risk equal to p/(n - p - l). (Note that our n is Stein's and 
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Baranchik's n - l). The theorem will be proved if we can show that 

(*♦•2) R^t» ß) - R(ß0» ß) s 0 

for all parameter points (p, E). Writing the risk in terms of expecta¬ 

tions, (h.2) is equivalent to 

(M) E{[(et - ß)'E22(ßt - ß) - (ßc . ß)'E22(80 - ß)]/o11>2) s 0. 

Let E* denote the conditional expectation, given Then (U.3) can 

be written as 

(M> EtE*{[(6t-B)T22(St-B) - (80-ß)'E22(B0-ß)]/„u_2 

Thus holds if 

}}s 0. 

(1*.5) E*{[(et - 
8),£22<“t - 81 - <80 - 8',em<80 - 

s 0. 

By the remark made at the end of Section 3 we may evaluate the conditional 

expectation on the LHS of (1..5) at (u<2). = (0. 1). 

Then (4.5) becomes 

0-.6) E.|(5t - 6)'A22(0t - B) . (¿o . b)-A22(50 . B>] i 0. 

Substituting (4.1) into (4.6) we obtain 

0..7) B*[t2(E)6;A22B0/F - 2t(F)i^2e0/P t 2t(F)B¿A2,8/Fj s 0. 

Denote by E** the conditional expectation given K and A22, where K 

given A22 is distributed as Poisson ^ß'A^ß). Then we may write the 

LHS of (4.7) with the use of Lemmas 4.1 and 4.2 as 
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(U.8) E*{E**{t(F)[t(F)x^_p/F - 2x^_p + UK/F]}}. 

Since 0 5 t(F) s 2(p - 2)/(n - p + 2) the inner conditional expecta¬ 

tion of (1».8) is less than or equal to 

E**{t(F)(2(P.S)(x^p)2/[(„.p*2)x^2K] - 2xp_p * 

which in txirn is equal to 

(-.9) =ov..ft(F), 2(p.2Hx=.p)2/[(n-pF2)x^2K] - 2xn2.p * -K^p/X^2K) 

where cov** denotes the conditional covariance given K and It 

remains to show that for all K and (^.9) is less than or equal 

2 
to zero# Conditioning on ^np=s* becomes 

t 

(1*.10) E**{cov*»*{t(x^+2K/s), 2(p-2)s2/[(n-p+2)x^.2K] -2s ♦ UKs/x^.^}} , 

where cov*** denotes the conditional covariance given K, k^ and 

2 2 o 
Xn-p* ßy hypothesis t(Xp+2K/s) is nondecreasing in xL.2K* Further¬ 

more, the quantity 

2(p-2)s2/((n-p»2)x^2K) - 2s * -Ke/^ 

2 
is clearly decreasing in Hence the conditional covariance in 

(U.10) is nonpositive. This completes the proof. 

5- Bayes Minimax Estimators for 8. 

The estimator (U.l) is minimax hut not necessarily admissible. In 

this section we derive a class of generalized Bayes estimators for B 

mm 
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and show that they satisfy the conditions of Theorem and hence are 

minimax. The class of generalized Bayes minimax estimators is of course 

essentially complete. 

For convenience, we write X for (X^ ..., X^), f(u|v) for the 

density function of u, given v, in general, and n(z|e, T) for the 

density function of a normal vector z with mean 0 and covariance 

matrix T in particular. 

In estimating ß, the parameters involved are elements of E, or 

equivalently 0, and E^. Assume that a family of generalized 

prior distributions of ß, and E^ is given by the densities 

T*ß’ aii.2* = 

X gílgg» °íií2) h(X)> dA dX, 

where the region of integration with respect to A is the subspace of 

the p(p+l)/2 - dimensional Euclidean space for which A is positive 

definite, and 

(5.1) Aß|x, ¢) = n(ß|0, ¢), ¢) s (T A ^ 
11.2A22’ 

<5.a) exp(-Wr z-¿ A,,), 

'“1 -~1 \ I- I^P+l) (5.3) g(i:i, a',) - r 
“22’ ^11.2' " 1^221 ail.2’ and 

(5.1*) h(X) «Xa, -00 < a < Vp + 1. 
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Since the sampling distribution of ßoi given is N(ß, 2A22^’ 

the prior of 8 is taken to be a p-variate normal distribution with 

covariance matrix the same as that of ßQ (given k^) multiplied by a 

positive constant. Strawdeman (19^1) and Lin and Tsai (1973) have used 

similar priors in obtaining Bayes estimators for a multivariate normal 

mean. The prior of ß given by (5.1) enables us to write E(ß|x) ■ 

[l - E(X|x) ]ßQ which eventually will reduce to the form of (l».l) and 

hence minimax. Although the covariance matrix of ß does depend on X, 

the prior of ß given by (5.1) should not be confused with the posterior 

distribution of ß, given X. In a similar situation when estimating 

the regression coefficient vectors of m populations Jackson, Novick 

and Thayer (1971, p. lU8) in supporting the use of this prior stated: 

When a regression model is used, the predictor variables are not data 

in the sense of random variables with probability distribution. In 

considering the form of his prior distributions and their mutual inde¬ 

pendence or lack of it, a Bayesian is entitled to make use of any 

information he may have about the predictors, whether this be external 

information about a distribution from which the predictor values may be 

supposed randomly drawn, or internal knowledge of the particular values 

the predictors take in the observations to hand." In view of this argu¬ 

ment A22 is regarded as a parameter matrix and its prior distribution 

given by (5.2) is a natural consequence of Lemma h.2 , 

The priors for E22 and o^^2 given by (5.3) have been used by 

many authors, e.g., Geisser & Cornfield (I963), Lin & Tsai (1973), and 

Tiao & Zellner (196U), among others. Of course (5.3) is not a proper 
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prior. Combining the prior (5-M with 0 < a < 1 and the prior (5.1) 

Strawderman (1971) was able to obtain a family of proper Bayes minimax 

estimators for a multivariate normal mean when the covariance matrix is 

the identity and the dimension p £ 5« Strawdennan credited the use of 

vhese priors to Charles Stein. In (5-^) the condition on a is now 

relaxed to -» < a < *jp + 1. 

The main result of this section is pretented in the following 

theorem where a family of generalized Bayes minimax estimators is obtained. 

THEOREM 5»1. For p > 3 with 

i) n > p - 2, 

ii) -<» < a < ¼p + 1, 

iii) 2(p-2)/(n-p+2) â (p-2a+2)/(n-p+2a-U), 

an estimator of the form 

(5.5) Bg = [1 - s(F)/F]B0 

is generalized Bayes minimax with respect to the priors (5.1) - (5.4) 

and loss function (2.7), where F = 2 and 

p-2a+2 2(1 + T)~^n~2^ 
(5-6) s(F) = --—___ 

n'P*2a-l‘ (n-p.2,-1.) /' X^d . XP)-1” dX 
0 

The theorem will be proved by the following computational lemmas. 
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Nute that (0^2, ß0, A^) is a sufficient statistic of (on 2> 6, T^). 

In the reminder of this section X will denote (a, , ß , A ) when 
i.1 «2 * 0* 22 

there is no confusion. 

LEMMA p.g. E(ß|x) = [1 - E(A|x)]ß0. 

PROOF. The Joint probability density function (jpdf) of ß0 and 

ß, given a11>2, A^, ^ and X is 

f'ß0’ ^all.2’ A22’ all.2’ r22’ 

" f(ß0|P. A22’ ^1.21 E22’ ^ 

* f*ßKl.2’ A22* °11.2’ E22’ A) 

1 - A 
¢) = n(ß0|ß, ¢) X n(ß|o, ^ 

= n(ß0|0, X n[ß|(l - A)ßQ, (1 - A)«], 

where $ is defined in (5-1). This implies that the conditional dis¬ 

tribution of ß, given 
^1.2’ A22’ °11.2’ E22’ A’ 311(1 is 

N[(l - A)ß , (l - A)4>] which does not depend on E 
22 Hi us 

E(ß|X) = E[E(ßl°11>2» ^22’ A’ X)|X] 

= E[(l - A)ß0|X] 

= [1 - E(A|x)]ß0, 

as was to be proven. 
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LEMMA 5.3. The Bayes estimator of ß with respect to the priors 

(5.1) - (5.1*) and loss function (2.7) is given by 

(5.7) 6t = [1 - E(A|x)]ß0. 

PROOF. A Bayes rule minimizes the posterior expected loss 

(5.8) E[(ß - ß)'I22(ß - ß)/oili2| X), 

vhere ß is an estimator of ß. To minimize (5-8) we solve the system 

of equations 

(5.9) —?-E[(ß - ß)'E (ß - ß)/o I X] = 0. 
3ß 22 11.2' 

Passing the differential operator under the integral sign, a solution 

to (5.9) satisfies 

(5.10) E[(St - ß)'E22/on J X] = 0. 

The LHS of (5.10) is equal to 

E<El(èt - E22- x. xllx) 

= - 6)’|«u.2. t22, », X]) £22/„u 2|X) 

- E[Bt.- Ets'lOjj j, I22, X, X)Jx] E(l22/0ll 2|x) 

= [5; - E(fl'|x)j e(£22/o112|x). 

Therefore the Bayes rule is given by ßT = E(ß|x) which together with 

Lemaa 5.2 establishes (5-7). 
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i-iEMMA 5.U, The conditional expectation of X given X is 

(5.11) E(X jx) = 

/o i',p-a+1 (1 . XF)-1® dX 

1 
/o x^-0 (1 -F XF)“*1 dX 

x-Sn 

where F is defined in Lemma ^.3. 

PROOF. With priors (5.1) - (5.10 the Jpdf of R , ß, a , A 
^ vJ -L JL • c~ ¿c. 

°11.2’ ^22’ and X is 

f(ß0, ß, a11>2> A22> o11<2, E22, X) 

- f(V A22’ °11.2’ E22’ 

X f'a11.2’ A22’ °11.2’ E22 ’ 

« X^ |4>| ^ exp(-,iXß^"1ß0) 

X {|(1-X)¢^,5 exp{- [ß-d-xj^l'^ts-d-x^]}} 

(aii.2/oii.2)l’(n’P"2> °n.2 exP(- 2o 
11.2 J 

11.2 

lAppI^" exp(-«jtr e"2 A^) 22' '“22 

*j(p+l) 
22' 

.-a 

°11.2 X * 

After some simplifications and noting $ = 2A”2 this reduces to 

Sp-a |A |4(n-p) 
22' '22 

I-"«"-'’-11 exp(-Str E-l A22) 

x (a )*ï(n-p-2)( )-,j(n-2) 
'11.2' 1 11.2; exp[-*i(aii2+ X8¿A22®0 > /oll. : 
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X n[ß|(l-A)0o, d-A)<P] (271)^5. 

Thus the jpdf of A and X is 

gd, X) = /// 0, g» A22, a“^2, E^, A) dß dE“Í do,-1 
"22 11.2 

<5-12> “ X'P'a <“11.2>‘,(D'P'2> (^.3 * 

From (5.12) we have 

l 
, «ïP-a+l 

e(a|x) = —T 
K X 'a <aU.2 * xi'^22eorlii d> 

/„ A,,P'a (a11.2 * xêiA22ã0r‘,n dX 

/o *'<p-a+1 (1 . IF)-““' dX 

T 

/ Xte-a a . XF)-1» dX 
0 

as was to be proven . 

LEMMA 5.5. E(A|x) = s(F)/F, where s(F) is defined by (5.6). 

PROOF. The desired result can be obtained by means of algebra 

after integrating by parts the numerator of (5.11). 

5^3. Let s(p) be defined by (5*6), then for all F 2 0 

and n > p ~ 2 

i) s(F) is nondecreasing in F, and 

ii) 0 s s(F) s (p - 2a + 2)/(n - p + 2a - L). 
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PROOF. That s(F) is nondecreasing follows immediately from 

Lemma 3.1 of Lin and Tsai (1973) with v » p + 2. From Lemmas 5.1* and 

5«5 it is clear that s(F) is nonnegative. The fact that 

(n-p+2a-M(l + F)^n“2) / (i + AF)_1?n dX a 0 
0 

and (5.6) yields s(F) s (p~2a+2)/(n-p+2a-U). Hence the lemma follows. 

PROOF OF THEOREM 5.1. The assumptions of Theorem U.U are satisfied 

by virtue of Lemma 5.6 along with Condition iii). This establishes the 

A 

minimaxity of ß given by (5.5). Lemmas 5.3 and 5.5 show that ß 
B s 

is also generalized Bayes. 

It should be noted that the estimators (5.5) are generalized Bayes 

for any dimension p. If the estimators are to be minimax, the set of 

values of n, a, and p must satisfy Conditions i) - iii) of Theorem 

5.1. As a result p must be greater than or equal to 3. It is fur¬ 

ther noted that the integral expression in (5.6) may be replaced by an 

incomplete beta function, i.e., 

1 

(5.13) /o (1 ♦ XF)“^ dX 

= F-(Hp-a+l) ^/(1+F> y*5p-a (1 __ y)Mn-p)+a-2 ^ 

= ((1-R2)/R2],3)"a+1 B[Up - a + 1, h(n - p) ♦ a - 1] 

x I rAhp - a + 1, H(n - p) + a - l], 
R 

where B(., .) and 1^(., •) are beta and incomplete beta functions, 

respectively, and R is the sample multiple correlation. 
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6. Bayes Minimax Estimators for a and S. 

In Sections 4 and 5 a class of generalized Bayes minimax estimators 

for B has been obtained. This result will now be extended to a class 

of estimators for both a and 0. The loss function under consideration 

is now (2.6). 

Since X^, ..., are i.i.d. N(w, l)t X is distributed as 

N(u, E). Assume that the prior distribution of y is given by 

(6.1) dH(y) = dy. 

This noninfonnative prior has been used by Geisser and Cornfield (1963) 

and numerous other authors. We also assume the priors (5.1) - (5.4) 

for 0, 0^ 2» and ^22 ^OT remflinder of this section. 

The main result is given in Theorem 5.1 to be followed by two 

computational lemmas which together with Theorem 5.1 and a result of 

Baranchik (1973) will prove the theorem. 

THEOREM 6,1. If Conditions i) - iii) of Theorem 5.1 hold, then 

an estimator of the form 

(6.2) 0a = X(l) - H'g X(2), 03 = [1 - s(F)/F]0o 

is generalized Bayes minimax with respect to the priors (5.1) - (5.4) 

and (6.1) relative to the loss function (2.6) where s(F) is given 

by (5.6). 

Lemma 6.2 derives the distribution of y, given X and E. Its 

proof is straight forward and is omitted. Lemma 6.3 obtains a class 
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of generalized Bayes estimators of a and 0. 

—^ Wlth the Prior (6.1), u given X and E is distri¬ 

buted as N(X, ~ z) 
* n+l 

6-3, With the Priors (5.1) - (5.U) and (6.1) a generalized 

Bayes estimator of a and 0 with respect to loss function (2.6) is 

given by 

(6.3) ; = X<1> - 5' X(2), 

and 

(6.M Bt = [1 - E(a|x)]B0, 

where X denotes (^0» £11#2* 

PROOF. Proceeding as in Lemma 5.3 we seek a solution to the system 

of equations 

(6.5) -±- E{{[(a-a) . (5-6)'u(2))2 . X) = 

and 

(6.6) T- E{{[(a-a) + (0-0)'y^2^2 + (g_g)»¡ 
30 ' i:22(ö-ß)>/aiit2|X, X} 

where a and 0 are any estimators of a 

verify that 

= 0, 

and 0. It is easy to 

(6.7) qt = E(a|X, X). 

and 

(6.6) 0t = E(b(x, X) 
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satisfy (6.5) and (6.6) and hence are generalized Bayes. By the inde¬ 

pendence of A and X we have E(ß|x, X) = E(ß|x). With the aid 

of Lemma 6.2 and Lemma 5.3, the results (6.3) and (6.1») follow directly 

from (6.7) and (6.8), respectively. 

The following lemma of Baranchik (1973) will be used to prove the 

minimaxity of (6.2) in Theorem 6.1. 

LSJMAfiJ.. If an estimator of the fen. f(R2)60 dominates 80 

relative to the loss function (2.7), then the corresponding estimator 

(6.9) = x(1) - X(2), 8f=f(R2)80 

A 

dominates a0 and ßQ relative to the loss funciton (2.6). 

PROOF OF THEOREM 6.1. The minimaxity of (a , ß ) given by (6.2) 
3 S 

follows from Theorem 5.1 and Lemma 6.4. Lemma 6.3 shows that (6.2) is 

also generalized Bayes. 

7• Concluding Remarks. 

Theorem 4.4 is an extension of Baranchik’s (1973) Theorem 1 which 

appears to be incorrect unless the sample size is n + 1 rather than n 

Furthermore, the proofs of Baranchik’s results may be simplified using 

the invariance argument of Section 4. 

It is noted that the modified estimator 

(7.1) s' x'^) = *(F)S0, 

where 

(7.2) f(F) = maxiO, [l - s(F)/F]>, 
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is better than (6,2). Similar result also holds for the estimation of 3 

alone. 

This paper partially answers Stein’s (i960) question on the existence 

of admissible minimax estimators of the form ¢(FT)3^ for 3. While we 

have not shown the admissibility, we have obtained a class of minimax 

estimators of the form $(R )80» and in particular exhibited a subclass 

that is generalized Bayes. The admissibility of these estimators is yet 

to be shown. 
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