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ABSTRACT 

Finite element (Fli) and finite difference (FD) spatial 

differencing -ehernes for linearly elastic materials are com- 

pared on a common basis.  Conditions are established under 

which the two methods are identical.  features commonly 

associated with IT) methods are combined with a FE spatial 

treatment to obtain an explicit time stepping algorithm suit- 

able for processing 3-D linearly elastic wave calculations on 

the ILLIAC IV system.  Based on projected timing estimates, 

the 11.MAC code should be capable of processing wave calcula- 

tions for a lO'-node grid at the rate of 0.4 sec per time step. 

The algorithm has provisions for irregular 5-D goometries, 

artificial damping for suppressing spurious numerical oscilla- 

tions, and a nonrefleeting boundary condition. 

Test calculations are presented to compare FE and Fl) 

codes at S3.  Comparisons are made for two problems:  A 

spherically symmetric explosion with an exponentially decay- 

ing step pressure and Lamb's problem - an impulse loading ap- 

plied to the free surface of a homogeneous half space.  Plots 

are presented to show the 2-D displacement, velocity, and 

kinetic energy fields at various stages of the FE calculations 

for Lamb's problem.  As predicted from theoretical compari- 

sons, no significant advantages in either scheme became ap- 

parent for the problems tested. 

Test calculations are presented for exploring certain 

features of the 3-1) time stepping algorithm both on S1'a 

Univac 1108 and on the ILLIAC simulator at UCSD.  The algorithm 

has prov«R to be very fast on the Univac, f.itt« stepping at the 

rate of 0.5 sec per time step for a particular 404-node 3-D 

grid.  Sample 3-1) problems are presented to demonstrate the 

use of artificial damping, to illustrate the effectiveness 

of the nonreflecting boundary condition, and to test the 
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abilivy cf the numerical scheme for propagating a step 

velocity  (particle velocity) through 160 elements without 

excessive spreading at the wave front. 

What appears to be a highly efficient algorithm has 

been developed for multiplying a very large sparse matrix 

times a core-contained column vector on the ILLIAC IV.  The 

algorithm is independent of the location of elements in  the 

sparse matrix.  Howe\er, a tedious process is required to 

arrange the nonzero elements of the matrix on the disk storage. 

The algorithm is particularly effective for repetitive multi- 

plies involving the same sparse matrix and, therefore, should 

prove valuable for iterative and time stepping calculations. 
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I.  INTRODUCTION 

During the past decade, the time period when high speed 

digital computers became readily available in the U. S., we 

have seen remarkable progress in our ability to analyze stress 

waves in solids.  Our analysis techniques are no longer restricted 

to linear processes and geometri.^ly simple shapes.  With few 

exceptions, if stresses are indued into an elastic medium that 

can be approximated using one- or two-dimensional geomei.ry, 

then state of the art computer codes can be applied to numeri- 

cally simulate the process. 

If, on the other hand, either the geometry or the source 

of excitation cannot be suitably approximated using only two 

spatial dimensions, then we find severe limitations in our 

ability to predict the resulting motions using existing 

computer codes.  Conventional third-generat.ron computer, are 

heavily burdened by the massive calculations involved in 

simulating 3-D wave propagation. 

The advent of the ILL1AC IV computing system will most 

certainly prove to be a valuable asset for processing the 3-D 

calculations in a parallel mode.  It is our opinion, based on 

six months of designing and programming parallel algorithms 

for processing wave calculations, that the ILLIAC concept is 

well suited for the task.  We anticipate processing 3-D wave 

computations on the ILLIAC IV about 40 times faster than on 

conventional computers, about 10 times faster than on the 

CDC 7600. 

We expect to achieve further savings over existing 3-D 

codes as the result of the algorithm that is being employed 

in the ILLIAC code.  The state-of-the-art in performing 3-D 

wave calculations is not sufficiently well developed to state 

how much savings is to be realized from our algorithm.  It 

-  - 
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is instructive, however, to note thlt the number of multiply 

and add operations per node that arc required to complete one 

time step (250) is competitive with 2-D computer schemes. 

(We have recently formulated a new scheme for performing 

3-D wave calculations in materials with arbitrarily nonlinear 

constitutive properties that requires only about 2000 multiply 

and add operations per element per time step). 

Based on timing estimates for the ILLIAC IV, we have 

gauged the execution speed for performing J-D  linear stress 

wave propagation at 40 usec per node per time step or 0.4 sec 

per time step for a lO^node arbitrarily skewed grid.  There 

are a number of pressing problems in earthquake and explosion 

seismology that require such a 3-D capability.  We note the 

following: 

1. Earthquake ground motions generated by the 

spontaneous rupture of subsurface materials 

along a plane of weakness in a prestressed 

region in the earth's crust. 

2. Explosion-generated stress waves in the elastic 

regime surrounding the inelastic zone of the 

explosion; also the anamolous seismic signal 

that results from the dynamic relaxation that 

takes place as the explosion-induced fracture 

zone is created in a prestressed geologic 

formation. 

3. Ground motion and the influence of the subsurface 

geologic configuration on the amplitude, frequency, 

and duration of the surface motions. 

4. The interaction between propagating seismic waves 

and underground structures. 

The applicability of the 3-D elastic code will, of course, 

extend far beyond the seismic field. 

2 
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II.  NUMERICAL THEORY 

2.1  FINITE ELEMliNT AND FINITE DIFFERENCE METHODS 

Both finite element (FE) and finite difference (ED) 

techniques have been widely used for calculating jtress 

waves in solids.  Considerable experience has been accumulated 

in the use of FD techniques for performing step-by-step cal- 

culations of propagating high intensity stress waves through 

geologic continua; while the major application of the FE 

techniques has been for performing wave calculations in 

geologic continua and civil structures where wave lengths on 

the order of the structural system are of interest. 

The diversity in the application of these techniques 

probably comes much more from their historical development 

and application than from inherent advantages or restrictions 

in the two techniques.  For example, we note that a reference 

to a dynamic FF computer code often carries with it the 

following numerical implications: 

1. Flement configurations that combine structu^-U 

elements (beams, shells, etc.) with continuum 

elements (tetrahedra, hexahedra, etc.) into a 

single problem representation.  No restrictions 

are placed on the location of node points. 

2. Substitution of the constitutive laws into the 

equation of motion prior to discretization. 

The stiffness matrix of the FE displacement 

method combines three operations into one: 

spatial differencing of nodal displacements 

to get strain, constitutive laws to relate 

stress to strain, and spatial differencing of 

the stress field to obtain th? body forces and 



inertial forces.  Stresses and strains are com- 

puted separately from the "main-stream" calculations 

for the purpose of computer output and, in non- 

linear calculations, for the purpose of modifying 

the elastic moduli. 

3. Massive storage requirements due to retaining all 

of the influence coefficients between adjacent 

node points (the stiffness matrix). 

4. Non-explicit time stepping using either modal 

superposition or implicit time stepping. 

These connotations, which apply to most but not all 

FE computer codes, come in addition to our understanding of 

what is meant by the FE method:  "A numerical technique for 

approximating continua by a discrete svstem composed of 

elements.  The behavior of the continua within each element 

is characterized by interpolation functions; the amplitude 

of field variables at isolated node points serve as the 

participation coefficients for the element interpolation 

functions.  Energy principles are used to determine the 

particular combination of interpolation functions that best 

satisfies the governing conservation equations.  Thla 

procedure results in many algebraic equations involving 

nodal values of the field variables." The scheme for 

processing these algebraic equations should not be confused 

with the scheme used for generating the equations. 

FD techniques for computing propagating stress waves 

also carry numerical implications that are independent of 

the basic FD method, which we will describe as:  "A numerical 

technique in which a continuum is characterized at isolated 

node points, i.e., the values of field variables are 

prescribed only at isolated node points.  A derivative of 

a field variable at a node point is approximated by some 

•4. 
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predetermined combination of the values of the field variable 

at neighboring node points.  Using this approach, the governing 

differential equations are approximated point by point through- 

out the continuum to yield a set of algebraic equations 

involving nodal values of the field variables." 

We note some chracteristics shared by many of the 

large FD computer codes: 

1. Zoning by planes that extend completely through 

the continuum so that each zone appears m the 

shape of a skewed rectangle (bricks in 3-D) with 

limited facility for accomodating structural 

appendages. 

2. Explicit time stepping. 

3. Minimal storage requirements due to the repetitious 

calculation of the influence coefficients between 

adjacent node points at each time step. 

4. Separation of the calculations into stages so 

that constitutive laws are applied at an inter- 

mediate stage in each time step loop.  Developing 

stresses from strains explicitly in each time 

step loop is most convenient for accomodating 

nonlinear material response in the numerical 

calculations. 

We note that both the FF and the FD method characterize 

the governing equations for contipua by a set of algebraic 

equations involving nodal values of the field variables. 

The FE method accomplishes this discretization in a particular 

way that involves interpolation functions and energy principles. 

When enumerated in this manner, we are led to conclude that 

the FE method is in fact a scheme for generating difference 

equations and therefore should be categorized as a type of 

FD method.  Even so, there are some features of the FE 
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method that do not generally appear in conventional FD 
procedures: 

1.  Because the FE method is based on energy princi- 

ples, the results of a consistent FE calculation 

provide bounds on certain quantities, e.g.,   strain 

energy and resonant frequencies. 

2. 

3. 

Because the FE method is developed elemont-by- 

element, no special considerations are needed to 

model sharp spatial discontinuities in continuum 

properties; also no special treatment is needed to 

apply tractions to element surfaces, either on 

internal or boundary elements. 

Because the discrete difference equations generated 

using the FE method relate nodal forces and nodal 

displacements, the influence coefficients between 

neighboring node points can be viewed physically 

as spring constants.  This physical insight into 

the numerical scheme allows considerable flexibility 

in joining structural appendages into a numerical 

treatment. 

2•2  FE and FD DIFFERFNCF COEFFICIFNTS 

In order to emphasize the basic similarities between 

the FE and FD methods, we will present the difference co- 

efficients that correspond tc the two most widely used FE 

and FD methods.  In so doing we will be providing a common 

basis from which to compare the two techniques.  Indeed, we 

find that the least elegant FE analysis and the least elegant 

FD analysis are, in fact, identical insofar as the spatial 

discretization of linear isotropic continua using a uniform 

rectalinear grid.  The other FE and FD techniques that are 

investigated in this section differ somewhat, but, when a 
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gross approximation is used in the integration scheme for 

evaluating the element stiffness matrix in the PE method, 

these two techniques also result in identical spatial 

differencing techniques. 

Adopting subscript notation, we substitute the most 

general linear constitutive equation for an inhomoge oous 

anisotropic medium 

üij = ,:ijkl ^1 

3u, 

into the equations of motion 

3a. . 
' ' + f. = pü 3x.     i   —i 

to obtain the equation of motion expressed in terms of dis' 

placement 

^ r^1^)* fi ■ p^i (2.1) 

where 

L . 

a 
1-3 

U 
f. 

is the Cartesian coordinate (i=l,2,3) 

is the particle displacement 

is the stn.in 

is the stress 

is the body force 

p  is the mass density of the material 

^___^__ 



Hijkl  exPresses the various elastic moduli.  For 

Isotropie materials we have 

Eijkl ' W 6ik6jl + ^ ^il^jk + X6ij6kl 

Both FE and FD methods result in discrete representations 

rf the spatial derivatives appearing in Bq, (2.1) of the form 

32u, + 1 + 1 + i 

ax.9x. 
1 J 

Ax • Ax.   21^    2-^   2-r WotßY Uk(aß 
J   a=-l   ß=-l   Y=-1 

Y) 
(2.2) 

for a rectilinear 3-D grid having a uniform grid spacing 

Ax^ Ax2, Ax3, illustrated in Fig. 2.1.  The various numeiical 

schemes are characterized by the values of the 27 difference 

coefficients  w^, a = -1,0,+1; ß = -1,0,+ 1; y ■ -1,0,+ 1. 

The difference coefficients w .   for the most ele- w a 

mentary FD scheme are presented first.  The coefficients for 

the particular mixed partial derivative »-ii—   which 
oXi0X2 

are typical of those for other mixed partial derivatives, 

are j iven by 

W
+1, + 1,0 

= W-1,-1.C = ♦<" 

K 
♦1,-1,0 w 

1,*1,0 (2.3) 

with the remaining 23 coefficients equal to zero.  Th 

elementary FD scheme for approximating 

ference coefficients ax? 
1 

most 

uses the dif- 

W+l,0,0 = 1 

w 0,0,0 (2.4) 

and the remaining 24 coefficients are zero.  This difference 

scheme for mixed partial and straight partial derivatives is 
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hxH 
a«-l   a«0 a- + l 

Fig. 2.1--Uniform rectalinear 3-D grid illustrating the 
concept of neighbor nodes. 
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presented graphically in Fig. 2.2. 

In the most elementary FE scheme, a brick clement 

is formed from two complimentary sets of five tetrahedral ele- 

ments, illustrated in Fig. 2.3.  The corresponding difference 

coefficients using this Fli configuration are found to he 

identical with those presented above and in Fig. 2.2  Hence, 

we are led to conclude that for a uniform rectilin-rr grid 

the most elementary FE and Fi) schemes will yield identical 

results if both schemes use the same time stepping procedure. 

This conclusion assumes the use of a simple lumped mass 

approximation m the FF scheme and comparable treatment of 

boundary conditions aid forcing terms in both schemes. 

U'e now examine a FD scheme, which is generally con- 

sidered to be well suited for performing nonlinear calcula- 
t.on«. based on its uide use in 2-0 shock codes.  It is de- 

veloped in two stages:  first the stresses (involving first 

Partial derivatives of the displacement fiel!) are computed 

at the centroul of the zones, then these stresses Bre dif- 

ferenced to give stress gradients (the second partial der.va- 

tives of displacement appearing in Eq. (2.1]) at the node 

points.  We will refer to this FD procedure as the cell centered- 

stress differencing method.  The difference coefficients for 
the mixed partial derivative »-J  u.\nv   thic ■-. IP 9   using tins scheme become 

x  x 
I    2 

K+l.n, + l 
= K-l.-l. + l = +1/16 

,+l.-l, + l = W-l^l, + l = '1/16 

"♦l^M = u-i.-i,o " +1/8 

W+i.-l.n = u'-l. + l,o 
= -1/8 (2.5) 

K) 
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.a--l 

H-M 

(a)  Difference coefficients for 

3x   3x 

■■|>0 

fb)     Difference  coefficients   for    1 
ix 

Fig.   2.2--Difference  coefficients   f«i   .   t  n 
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Fig. 2.3 -Two complementary configurations for 
forming a brick from five tetrahedral elements. 
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with the remaining 15 influence coefficients equal to zero. 

The tlifference coefficients for — 
3x2 

i 

qua. 

are given by 

w
+l,+l,+l 

= +1/16 

M.n.o  = W+1,0, + 1 
= +1/8 

w
o,+i>+i 

= -1/8 

^1.0,0 = +1/4 

w 0,0>+l 
w 
0,+l,0 

1/4 

w 0,0,0 1/2 (2.6) 

The coefficients for the cell-centered-stress differencing 

scheme are presented graphically in Fig. 2.4. 

The cell-centered-stress differencing method has one 

undesirahle feature that does not appear in any of the other 

methods presented in this report.  The matrix that comprises 

the complete set of difference coefficients for a solid with 

traction-free boundary conditions has eighteen zero eigen- 

values, twelve more than the six zero eigenvalues that corres- 

pond to the six rigid body displacements (three translation 

and three rotation).  This means that a numerical grid can 

undergo deformations other than the six rigid body deforma- 

tions without generating stresses.  In particular, we see that 

all of the second order partial derivatives of Eq. (2.1) are 

identically zero for the twelve special displacement configura- 
tions 

13 
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yO 

Y--1 — 

j9-4-0 a--l 

B-«l 

(a)  Difference coefficients for 

a2 

1   2 

(b)  Difference coefficients for - 
3x: 

a-Y-O —f 0    \ 

a"B"0 
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uk(a3Y) ■ (-l)a+ß 

uk(a3Y) ■ (-l)a+Y 

uk(aßY) = (-l)ß+Y 

uk(aßY) = (-i)«+ß+Y 

with k = 1, 2, 3 when we use the cell-centered-stress dif- 

ferencing scheme. This feature of the cell-centered-stress 

method is sometimes referred to as "hour glass instability". 

The FE scheme used in the 3-D test calculations in 

Sections III and V of this report employs a brick element 

which permits linear vacations in the displacement field 

along the twelve edges of the element, quadratic variations 

along skewed lines on the six faces of the element, and cubic 

variations along skewed lines passing through the element. 

For the case of a rectilinear brick geometry, the displacement 
field is approximated by 

UjW 

p,q,r=0 

C       XPyqyr 
i(pqr)X1

x
2
X3 

Ax Ax Ax 
1   -2 3 

V"    (-i^+ß + Y + l 

a,ß,Y=0 
x +x . >,-2x ,. J 

x +x rft.-2x ,, , 
2   2CßJ     l{'i) x +x .   .-2x ,. , 

3   alYJ     3(!'2) i(aßY) (2.7) 

where 

of the 

XiO)' x
2(ß)' 

X3(Y)  denotes the Cartesian coordinates 

a, ß, Y planes of Fig. 2.1, respectively, and  x.^) 

denotes the element centroid.  The theory behind the develop- 

ment of this trilinear (displacement varies linearly in  x 

x2, and x3) brick element is presented in Appendix A.  The'dif 

ference coefficients for the mixed partial derivative  -^ 
3x 3x 

i 

IS 
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that result from the trilinear brick element are given by 

w+i.+i, + i = w-i.-i,n = +1/24 

^1,-1,.! ' W-l. + l,*l - -1/24 

"♦MM = w-i,-i,o = +1/6 

W
-l,-1.0 = W-l,+1.0 

= "i/6 (2.8) 

with the remaining 15 coefficients equal to zero.  The tri- 

are linear brick element coefficients for — 
Sx2 

i 

V,+l.+l = +1/36 

"♦l.lM = wli,o..i = +1/9 • 

^^i.^i = -1/18 

wa.o.o = +4/9 

**9o$ti =  wo,.i.o = -2/(J 

W
0.0,0 = -3/9 (2.9) 

These coefficients are pvesented graphically in Fig. 2.5. 

We note from Figs. 2.4 and 2.5 that the cell-centered- 

stress FD method does not correspond to the trilinear brick 

FE idealization.  The trilinear FE scheme would be obtained, 

however, from a FD method in which the stresses are calculated 

slightly closer to the node at which the equation of motion 

is being applied, namely at the 1/3 points of the cells. 
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Fig.   2.5--Difference  coefficients using  trilinear brick 
elements   in  the  FE method. 
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Such a FD scheme would be rid of the so-called "hour glass 

instability"; however, it would he excessively cumbersome to 

compute and store eight stress tensors at the eight 1/3 points 

of a brick element. 

We have found that the 3-D Fli brick reduces to the 

cell-centered-stress differencing scheme if strain energy 

density in the Vli  method is assumed to be constant throughout 

the brick element.  This is equivalent to using a 1-point 

Gaussian quadrature integration procedure for evaluating the 

element stiffness matrix.  Nonlinear displacement modes that 

appear in the element displacement field (x x , x x . x x 
12     13     2  3 

xxx of I-q. (2.7)) result in no strain energy using the 

1-point integration scheme.  That is to say, grid displace- 

ments that give rise exclusively to nonlinear interelement 

element displacement modes (hour glass grid deformations) 

result in no restoring forces (stress) in the continuum 

and therefore go unchecked in the numerical calculations. 

It is customary in FE codes to employ 2- or 3-pcint integration 

schemes for each dimension in the strain energy integral. 

Consequently the "hour glass instability" does arise in the 

FE differencing scheme. 

2.3  DESIRABLE FEATURES FOR 3-D WAVE CALCULATIONS 

In order to develop an optimal scheme for computing 

elastic waves in solids, we have selected from both FE and 

FD computing schemes.  The following features, listed approxi 

mately in the order of their importance, have been selected 

to characterize the computing technique for processing 3-D 

elastic waves on the Illiac IV. 

I.  Explicit Time Stepping — A small time step on 

the order of the Courant value (At 
c 

dimension/P-wave velocity) is needed to achieve 

satisfactory accuracy in the propagation of sharp 
18 

(Ax/Vp) = grid 



"~— I ■ "l   •  ■■ ■ ' 

wave fronts (wave length equal to about 10 grid 

dimensions.  This is true even for implicit schemes, 

which may be stable using much greater time steps. 

Numerical experimentation at S3 indicates that a 

three-point (t-At. t, t+At) explicit scheme using a 

time step of 0.5 Atc can match the accuracy of 

the best three-point implicit scheme that uses 

twice this time step; yet the implicit scheme 

requires many tines More operations per time 

step.  From Table I we see that a direct implicit 

scheme, which operates using the two-pass back 

substitution procedure (most commonly used 

procedure in implicit FE codes) at each time 

step, requires nearly thirty times more calculations 

per time step than an explicit scheme for a 20 by 

20 by 20 3-D grid.  Furthermore, the explicit time 

stepping scheme allows much greater flexibility 

for modifying constitutive laws as the calculation 
proceeds, 

2-     F1^ible Grid Configurations — in the zoning of 

3-D solids, care must be exercised to achieve 

something close to an optimal grid configuration. 

Rectilinear grids, for example, would probably 

be inappropriate for modeling a buried explosion 

in 3-D geometry.  The no^ numbering scheme of 

FE, in which the nodes are numbered consecutively 

from one through the total number of nodes in the 

grid, accomodates arbitrary grid configurations 

and therefore has been adopted.  Also, the FE 

state of the art for develcning difference equa- 

tions for complex grid configurations is more 

advanced than that for conventional FD methods 

Curved tetrahedron and hexahedron elements are 

systematically developed in the FE method using 

19 
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isoparametric elem nt techniques, developed in 
Appendix A. 

3.  Quasi-linear Constitutive Laws — In the interest 

of developing a fast computing scheme for treat- 

ing very large grids (\ 105 nodes), the initial 

code configuration assumes no change i-.i the 

elastic const \nts of the material as the time 

stepping proceeds.  However, a restricted class 

of nonlinear behavior can be accommodated in 

the present version of the code.  Less re- 

strictive nonlinear constitutive laws can be 

accommodat-d at some later date.  In the present 

code configuration, mass storage is used effect- 

ively to avoid the repetitive calculation of 

influence coefficients at each time step (see 
Table I). 

2-4  DISCRETE EQUATIONS. TIME STEPPING. AND ARTIFICIAL DAMPINH 

Wave propagation through a spatially discrete linear 

system can be described using matrix notation by the equation 

[MHihct)} ♦ [c^HÜ.Ct)} ♦ [K^Hiyt)} = (F-Ct)}    (2.10) 

where  {^(t)}  is a column listing of the iSfe component of 

displacement of the node points throughout the system, {F.(t)} 

is a column listing of the lUi component of nodal forcing1 

terms, [M] is a diagonal listing of the mass lumped at the 

various node points, [K^] iz  a  sparsely populated banded 

matrix of interaction terms between neighboring node points, 

and  [Ci;j]  is matrix that is introduced for the special 

purpose of damping certain features of the numerical solution. 

The matrix equation above results from spatially differencing 

the wave equation for an elastic continuum, Eq. (2.1). 
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TABLE   I 

3-D ELASTIC  STRESS  WAVE  PROPAGATION 

Number of Multiply 
and Add Operations 
per Time  Step 

Storage  Require- 
ment 

Outstanding 
Advantages 

S*  Numerical 
Wave  Propaga- 
tion Computer 
Codes 

Step-by-Step  Integration  of  the Equations 
of Motion 

Explicit 

Difference Eqs. 
Calc. Initially 
and Stored 

250 N» 

251 N 

1. Very fast 
2. Minimal rout 

ing between 
PE's 

Difference Eqs, 
Calc. at Each 
Tim« Step 

4000 N 

I mp1i c i t 

Difference Eqs. IDifference Eqs, 
Calc. Initially  Calc. at Each 
and Stored     I Time Step 

39 N 

2-D Finite 
Element in 
preparation 

J-D Finite 
Element 
SWIS 

Easily  ex- 
tended to non 
linear be- 
havior 
Minimal  stor- 
age require- 
meats 

ID  Finite  Diff. 
SKIPPER 
RIP 

2-D Finite  Diff. 
CRAM 
HELP 

Direct»« 
(40»18  N2/J)N 

Iterative*«» 
250 NI 

Direct 

Iterative 
251  N 

Direct  Unfeai 
ible 

Iterative 
4000  NI«««« 

Direct 
(45»2N2/J)N 

Jtfrativf 
l!»   N 

Can  use  large   lime  steps; 
static  solutions can be 
computed 
Somewhat better accuracy 
than explicit schemes 

2-D Finite 
Element 
DYNA 

3-0 Finite 
Element 
SAP 3 

• •• 

N    is the number of nodes  in the  3-D grid. 
The ■■trix of  influence coefficlentt It triangularized initially «Ith back 
substitution at each time step. 
An  iterative  schene  is  used to evaluate the advanced diiplacementi. 
I    Is  the number of iterations. 

21 
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The "stiffness" matrix [K..] contains the difference coeffi- 

cients discussed in Section 2.2.  The notation is typical of 

that used in the finite element, literature, Frazier (1972). 

Equation (2.10) is developed in Appendix A. 

The influence that certain special types of damping 

matrices [C^A   have on the resulting calculations can be 

determined for linear systems by transforming Eq. (2.10) into 

modal coordinates, Frazier (1969), also see Appendix B.  In 

so doing, the equations become decoupled (independent from 

one another) for particular forms of the damping matrix.  For 

these special cases the influence of the damping on the tran- 

sient behavior of the discrete system can be predicted.  The 

result is that 

[C^J = ßlK..] (2.11) 

causes the eigenvectors to damp as the square of their 

natural frequencies, i.e., to2  damping; whereas 

[C..] = a ^.[M] 

cause uniform damping of all of the eigenvectors, i.e., fre- 

quency independent damping, as developed in Appendix B.  The 

ß-type damping satisfies the condition of no damping for zero 

strain rate in an element.  The a-type damping has little if 

any utility for wave propagation since this form damps all 

frequencies, even rigid body displacements with no strain. 

The ß-type damping of Eq. (2.11) is substituted into 

Eq. (2.10) and a more compact notation is adopted using 

underscores for the directional component subscripts  i 

and  j  to obtain 

[MHüt) ♦ ß[K]{^t} ♦ [K]{Ut} ■ (Ft) (2.12) 

-) 5 
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for  tlie  collection  of  equations  of motion  at   time     t.     We 

use  a  central  difference  approximation  in  time  to  obtain 

—   ^{W   -   «It   +   ^-At}   +  lit    W%.tt   -   ^-At} 
At2 

wliere 

+   £)%)   ■   {Ft} i2AZ) 

At  1 At
c   "  T- (2.14) 

P 

is   the   time   step,   bounded  by  the  CoMant   time     At   ,   which   is 
equal   to  the  time   it  takes   for  a  P-wave  to  cross  one  grid 
dimension,   Ax. 

We solve for the nodal displacements at the advanced 
time step from Eq. (2.14) to obtain our algorithm for step- 
ping   the  numerical  calculations   through  time 

{^At}   =   U+Pr^IV   -    [l-D]{Ut_At}   ♦   [i-At^-'K]^})    (2.15) 

where 

[D] ■ TT  W)  III 

and 

{Pt} ■ AtMM]"1!^} 

We note that, while the inversion of the diagonal matrix  [M| 

is trivial, the inversion of the nondiagonal matrix Ll+D] 

is very tedious.  However, for the case when 3=0 (no damp- 

ing), this term reduces to an identity matrix.  This leads us 

to believe that perhaps an approximate inverse can be obtained 

by perturbation techniques, since the influence of the damp- 

ing terms should only be to perturb the undamped solution. 

2 3 
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1 
Following this reasoning we approximate the inverse by 

[l+Sr1 = [1-D+D2 ...] 

■ [1-D] 

The geometric expansion converges to the desired iiverse 

provided the highest eigenvalue of [D], X  , is less than 
111 ii A 

unity, i.e., 

(2.16) 

1 > X At 
- max  T~ I H max 

At ft 4(X»2u) 
pAx2 

therefore 

= 2 At 

Ax 
- ß V2 
2      P 

ß < ß  = -^  
" ***        2AtV2 

(2.17) 

where umax    is the highest natural frequency of the discrete 

system, A and y are elastic material constants, p  is the 

mass density, and Vp = ^l£ is the P-wave velocity. 

A technique for predicting an optimum damping coeffi- 

cient has been developed in Appendix B.  Here we find that 

optimal values of ß for removing high frequency oscillations 

from the numerical calculations of a sharp wave front lie 

within the convergence criteria of Eq. (2.17).  This is true 

provided the oscillations can be tolerated for about ten time 

steps following their initiation by rapid changes in the load- 

ing function or the constitutive laws. 
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Using the approximate inverse expressed by Eq. (2.16), 

we obtain our time stepping algorithm, arranged so as to 

minimize the mmber of multiplication and add operations per 
time step, 

%*«' (Pt> " «Ht-M1 + 2(üt} 

AtWlKl L|__Pt St 2t.At * («t' l)». (2.18) 

in which we have dropped terms involving  [K] [K] for the 

purpose of computing economy.  The errors introduced by 

dropping these terms are of the same order as those for 

approximating the inverse in Eq. (2.16); such terms io not 
exist with  ß = 0. 

The suitability of the time stepping algorithm above 

is demonstrated in Section 3.3 by test calculations involving 

sharp wave fronts propagating through a chain of 3-D elements. 

2.5  NON-REFLECTING BOUNDARIES 

Numerical treatments of elastic waves in the earth are 

frequently plagued by waves that reflect from grid boundaries. 

Often, the arrival of these reflected waves is sufficiently 

delayed by simply extending the grided region so as to not 

interfere with calculations in the source region. This pro- 

cedure can be very costly in terms of computer effort, perhaps 

excessively so for many 3-D calculations. 

A more appropriate solution for avoiding these reflected 

waves would be to develop boundary conditions that do not 

reflect incident waves. Many researchers have addressed this 

problem with limited success.  The degree of success of the 

various schemes depends on either the frequency content of 

the incident wave or its angle of incidence with the boundary. 

25 
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We have developed and adopted an extremely simple boundary 

condition that reflects less than 4 percent of the normal 

incident wave energy.  On a practical basis, the elimination 

of normal incident waves is of greatest importance since the 

wavei.: thpt  hit the boundaries at an angle do not reflect 

directly back at their source.  We have not yet tested the 

scheme for non-normal incident waves to determine to what 

extent these waves will be eliminated from the grided region. 

The reflected waves from normal incident plane waves 

at a free surface have the same displacement character as the 

incident waves; they are simply propagating in the opposite 

direction.  The reflected waves from normal incident plane 

waves at a rigid boundary surface also have the same character 

as the incident waves but with the opposite sign.  Therefore 

a numerical solution that is taken as the average of the rigid 

boundary and the free boundary calculations should possess no 

reflected waves.  Denoting the free boundary solution as 

iMf + Atl  ancl t^e rigid boundary solution as    !u^ 
\ ! I —t + AtI ' 
then the non-reflecting solution is given by 

One way to apply this scheme for eliminaiing boundary 

reflections would be to carry out two complete solutions. 
fli        (y} 

{U   }  and  {U  ').  Then from these two solutions, the solu- 

tion with boundary reflections removed could be computed from 

Eq. (2.19).  Such a technique would he excessively tedious. 

A preferable technique for removing boundary reflections is 

to apply Eq. (2.19) over the duration of a single time step 

taking into account the appropriate initial conditions for 

the time step, (1^1  and  (üt.At).  This is the technique 
that is developed below. 

26 
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First we will explain how (U^J is  obtained. Since 

the time stepping algorithm given by Eq. (2.18) applies to 

free boundaries with  {Pt}  zero on the boundaries, the free 

surface solution computed over a single time step comes 

directly from the time stepping algorithm, i.e.,  'u|2| ' = 

i—t+At   for all nodes. 

The rigid boundary solution j üH*t  differs from 

{Ut+At}  as taken directly from Eq. (2.18) only at points 

on the non-reflecting boundary.   For node points along the 

non-reflecting boundary, the rigid boundary nodal displacements 

are given by 

I1 * ^ ft- U 
At -t-At 

This is the term in Eq. (2.18) that allows boundary displace- 

ments to influence internai. points over the duration of a 

single time st.p.  IVe note that, with 3 = 0, this is equiva- 

lent to setting the particle velocity at t + '^At equal to 

zero for those nodes on a rigid boundary. 

Consequently, the advanced displacement, taken as the 

average of the rigid and free advanced displacements, becomes 

I„(3) I U    ' 
-t+At| 

for nodes  not  along  the non-reflecting  boundary  and 

üt*Atj      l/Z{Ht4Atj       l/Z\\1      Ät)Ut  ■  Ät Ut-At (2.20) 

for those nodes along the non-reflecting boundary.  The advance 

displacements  [üjjjj  are then used in Eq. (2.18) at the 

next time step. 
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Test calculations using this technique for eliminating 

boundary reflections from normal incident waves are presented 
in Section 3.3. 

28 
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III.  ELASTIC WAVE CALCULATIONS USING 
NON-PARALLEL PROCESSING 

3.1  SPHERICALLY SYMMETRIC ELASTIC EXPLOSION CALCULATIONS 

As the first problem for performing comparative cal- 

culations using conventional FE and FD techniques, we have 

computed the elastic compression waves that radiate from a 

spherical cavity undergoing an exponentially decaying pres- 

sure step.  The exact solution, Blake (1952), contains a 

discontinuity in the stresses and the particle velocity at 

the wave front and therefore serves as a severe test of 

the numerical techniques for simulating body wave propaga- 
tion. 

The parameters used in the calculation are as follows: 

rcavity = 10 m 

Ar = zone size = 0.1 m 

Vp = P-wave velocity = 5 km/sec 

Vs = S-wave velocity = 2.5 km/sec 

v = Poisson's ratio = 1/3 

p ■ mass density = 2.0 g/cc 

■t io-3 
f(tj = cavity load (kbar) = e' 

Computed particle velocities at 2.06 msec following the ap- 

plication of the pressure loading are presented in Fig. 3.1. 

The FD calculations have been reported on previously. 

Cherry, et al. (1972).  They were performed using the 1-D 

SKIPPER code for spherically symmetric waves with an ex- 

plicit time stepping scheme. 
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The PE calculations were performed for an axisymmetric 

wedge of elements using the 2-1) DYNA code.  The DYNA code, 

which uses an implicit time stepping scheme, was originally 

developed by Wilson (1909).  In this code, Wilson's original 

time stepping scheme has been replaced by an extended form 

of Newmark's ß method, Newmark (1959), see also Goodreau (1970). 

Based on the PE and PD calculations for the pressure- 

loaded cavity, we have made the following observations: 

1. Both techniques result in numerical oscilla- 

tions (similar to the Gibb's phenomena 

associated with a truncated Fourier series) 

following the discontinuous wave front when no 

artificial damping is used in the calculations. 

2. A reduction in At  does not significantly im- 

prove either numerical calculation unless it is 

accompanied by a reduction in the zone size. 

We note that the implicit PE calculations use 

a time step equal to the Courant time step 

(Atc = Ar/Vp), which is twice as large as the 

time step used in the explicit FD calculations. 

3. The maximum particle velocity from the FE cal- 

culation is somewhat higher than the FD peak; 

however, this is probably mainly the result of 

slightly less artificial damping in the FE cal- 

culations . 

4. The displacements that are computed by the two 

codes follow the exact solution equally well 

throughout the calculation with a maximum of 

3 percent deviation from the exact displacement 

at the cavity wall. 

Neither solution deteriorates significantly at 

times much greater than that shown in Fig. 3.1. 
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The spherically symmetric elastic explosion calcula- 

tions were also performed using a two-dimension axisymmetric 

grid over one quadrant in order to test for deviations from 

spherical symmetry.  The FD calculations were performed 

using the 2-D Lagrangian CRAM code.  Five decimal places of 

spherical symmetry were achieved in the FD calculations. 

The FE DYNA calculations displayed about 2 percent variation 

from true spherical symmetry as the result of approximations 

in terms containing 1/r, a consequence of axisymmetric geo- 

metry.  This result has no direct implication on 3-D cal- 

culations, since terms of this type do not appear. 

3.2  LAMB'S PROBLEM 

Certainly one of the most challenging problems for 

testing i:he limitations of a numerical procedure for computing 

elastic waves is L.mb's Problem, Lamb (1904), Ewing, et al.. 

(1957):  An impulse loading applied at a point on the free 

surface of a half-space.  The exact solution involves sharply 

peaked wave configurations.  A significant portion of the 

seismic energy is channeled along the free surface in the 

form of a Rayleigh wave. 

The solutior to a delta function loading in time and 

space applied at the surface of the half-space serves as the 

Green's function for obtaining solutions to problems with 

nonsingular source conditions.  Viecelli (1971) has used 

this approach for obtaining smoothed wave forms for comparison 

with numerical results obtained using the 2-D FD TENSOR code. 

He treated the free surface response to a uniform strip 

loading (of width 2a = 8 cm = 8 grid dimensions) applied 

normal to the free surface with the time history 

P(t) 
2aTTT    [l+(t/T    )2] 

0 0 

(3.1) 
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for -oo < t < +«>, see Fig. 3.2.  The sharpest loading history 

that Viecelli treated was for T  = 5 ysec (At ■ 1 ysec) with 
o 

a total impulse L = 1.97 x lO1* dyne-sec per cm normal to the 

section of plane strain.  Using 25,000 zones in the 2-D 

plane-strain calculation, Viecelli was able to reproduce the 

Rayleigh wave displacements at the free surface quite well. 

Halda and Cherry (1972) employed S3|s 2-D FD CRAM 

code for computing the Rayleigh wave described in Viecelli's 

report.  The following parameters were used in the calcula- 

tion: 

p = mass density = 2.77 g/cm3 

Vp = P-wave velocity = 5.55 x lü5 cm/sec 

Vc = S-wave velocity = 3.145 * 105 cm/sec 

VR = Rayleigh wave velocity = 2.898 x 10' cm/sec 

At = time step = 1 ysec 

Ax = Ay = zone size = 1 cm 

2a = width of strip load = 8 cm 

1.7xl08 

p(t)   =  surface   load  for  t   >  -^0  usec  = 
l+(t/5) 

dyn/cm' 

+o) 

L = total impulse = 2a /  p(t)dt = 1.97 x lO1* dyn-sec/cm 
-20 

Results from the CRAM calculation are compared with Viecelli's 

analytic solution along the free surface at t = 80 ysec in 

Fig. 3.3.  The agreement between the numerical and the 

analytical displacement of the free surface is comparable 

to that achieved by Viecelli using the TENSOR code.  Inci- 

dently, both the CRAM and the TENSOR code use the cell 

centered stress differencing scheme presented in Section 2.2. 

It was our intention to employ a FE code for the 

Rayleigh wave computation above.  However, the DYNA code, 

referred to in the previous section, is restricted to grids 
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Fig.   3.2--Surface   load used   in   the  FE  and   FD 
calculations  for  Lamb's  problem. 
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Fig. 3. .V-Vertical   displacement   of   the   free 
surface   at   t   ■   80   usec. 
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that fit into computer core.  For S3's UNIVAC 1108, this 

corresponds to a grid 18 zones deep and 25 zones along the 

free surface fS3 now has a 2-D, 3-D dynamic FE code that is 

not restricted in this manner).  In order to obtain results 

at 80 pscc, the grid size was increased to Ax = Ay = 1.555 cm, 

and the strip loading was applied as a single pulse at t = 0, 
i.e., 

P(t) = P ry max 

9 I1 "  '—' r I dyn/cm: 

\   2.86x10  / 
= 2.22 x 10 

for -At < t < At, see Fig. 3.2.  The value At = 2.86 psec is 

just slightly greater than the time required for a P-wave to 

cross one grid dimension.  The amplitude of the strip loading 
Pmax * 2-22 x 109 dyn/cm2 is applied over one grid dimension 

to each side of the plane of symmetry (2a = 2Ax = 3.11 cm) to 

give a total impulse 

♦At 

L = 2a y   p(t)dt = 1.97 x 10* dyn-sec/cm 

-At 

The vertical displacement of the free surface that 

results from the FE computations at 80 ysec is also presented 

in Fig. 3.3.  Here we see that the Rayleigh wave displacement 

for the FE calculation has a somewhat sharper wave form and 

higher amplitude peak than the corresponding FD and analytic 

results.  This is a direct result of the difference in the 

two source characters, illustrated in Fig. 3.2. 

The displacements and velocities of points throughout 

the FE grid are illustrated in Figs. 3.4 and 3.5.  Results 

are presented at six points in time:  t = 24.9, 34.3, 45.7 

57.2, 68.6, and 80.0 ysec.  In these plots, we see the de- 

velopment and propagation of the P-wave, the S-wave, and the 

Rayleigh wave.  The various wave phenomena are most effectively 
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Fig. 3.4a--FE displacements generated by impulse 
loading applied to the free surface, 2-D Lamb's 

problem. 
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Fig. 3.4b--FE displacements generated by impulse 
loading applied to the free surface, 2-D Lamb's 

problem. 
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contours generated by impulse loading applied 
to the free surface, 2 11 Lamb's problem. 
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depicted in Fig. 3.5, which contains vectorial plots of the 

velocity field sampled at the node points and contour plots 

of the kinetic energy.  These techniques for presenting wave 

phenomena should prove valuable for depicting waves in 3-D 

geometry. 

3.3  3-ü SWIS CALCULATIONS 

A series of plane wave calculations were performed 

on S3,s UNIVAC 1108 using the SWIS code (Stress Waves In 

Solids).  These serial computer calculations were directed 

toward the following objectives: 

1. To test the utility of the FE technique for per- 

forming 3-D wave calculations, particularly waves 

that propagate a stress jump. 

2. To test the explicit time stepping algorithm and 

the associated artificial damping concept pre- 

sented in Section 2.4 for speed and accuracy. 

3. To test the nonreflecting boundary treatment pre- 

sented in Section 2.5. 

We consider a step planar loading p applied to the 

free surface (x = 0) of a semiinfinite continuum at t = 0. 

Plane waves are generated that propagate in the x direction 
,   ,.    .  . i 

with a discontinuity in particai velocity and stress at the 

wave front.  Using small displacement theory and linear, 

homogeneous, and Isotropie continuum properties, the propagat 

ing wave motion is expressed analytically as 

n ITMT Cct-x^  for « < ct 

u = 

for x > ct 
i 
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■ind 

for x < ct 
1 — 

0      for x > ct 
1 

where  c = Vp (P-wave velocity) and u = u   for normal 

loading (p - 0^), and  c = Vg (S-wave velicityj and  u - u 

for shear loading (p = -a  ) . 2 

12 

The planar waves are modeled numerically using a string 

100 uniform, cubic elements in the x  direction.  To assui 

Li   0 for P-wave motions, the boundary nodes (all nodes 

for this element configuration) are constrained to move only 

in the xi direction.  The following parameters were used in 

the FH calculations: 

Vp = 106 cm/sec 

Vs = 5 x 10 5cm/sec 

P = 2.0 gm/cm3 

v = 1/3 

A+ 2u = 2 x 1012 d>n/cm2 

p ■ 108 dyn/cm2 ■ 100 bars 

Ax  ■ Ax  = Ax  =1 cm 
1     2     3 

At = 0.5 ysec ■ l/2(Ax/Vr
p) 

From this numerical experiment we find that: 

1.  Spurious high frequency (wave length less than 

8 grid dimensions) motions appear in the numeri- 

cal results with a signal to noise ratio just 

behind the wave front of about 3 for particle 

velocity when no artificial duping is used, 

see Fig, 3.6.  The spurious signal does not 
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Fig.   3.6--Undamped  P-wave  at   t   =   60 l^sec . 
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significantly degrade the computed particle 

displacements using At ■ ! «£ , also illustrated 

in Fig. 3.6. P 

2. The discontinuity in particle velocity is 

suitably modeled numerically using a damping co- 

efficient ß/At = 0.2, illustrated in Fig. 3.7. 

Using a damping coefficient B/At = 0.18, the wave 

front is propagated through the grid, which is 

terminated by a fiee surface, and part way back 

to the source, illustrated in Fig, 3.8.  From 

this exercise we note that the steep wave front 

does not appear to experience excessive deterio- 

ration as the wave propagates. 

3. rht expiiciL time stepping algorithm developed 

in Section 2.4 is extremely fast.  Waves were 

propagated through the 404-node chain of 100 

elements at the rate of 1/2 sec of UNIVAC 1108 

CPU time per time step.  Considering the dis- 

proportionately large number of constrained dis- 

placement components in this test problem, we 

estimate that vaves passing through large 3-D 

meshes would be processed at only about 1/5 this 

rate, or 0.006 sec per node per time step.  We 

consider this to be a very good processing rate. 

Altemte boundary conditions were tested at the 

surface Xi = 100 cm.  A rigid boundary results in a reflected 

wave with zero particle velocity behind the reflected wave 

front.  The SWIS calculations resulted in a particle velocity 

in the reflected wave five orders of magnitude below the in- 

coming particle velocity of 50 cm/sec. 

The non-re fleeting boundary condition described in 

Section 2.5 was tested at the boundary surface x ■ 100 cm. 

Following the incidence of the P-wave with the non-reflecting 

boundary, t > 100 ysec, the computed particle velocity remains 
44 
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puted particle velocity. 
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Fig. 3.8--Propagating P wave striking a free 
surface, damping coefficient  3/At =0.18. 



at 50 cm/sec throughout the grid,   Fig. 3.9.  Actually a 

small ripple in the particle velocity (less than 1 cm/sec) 

was reflected from the boundary back into the grid which does 

not show up on the plot. 

Calculations were also performed with the planar 

loading p applied to the surface x = 0 in the direction 
i 

x .  This load configuration generates shear waves propagat- 

ing in the x direction.  Using the same parameters for the 

S-wave calculations as for the P-wave calculations, essen- 

tially the same accuracy and speed is achieved in the S-wave 

calculations as in the P-wave calculations.  The optimum 

damping coefficient (ß/At =0.5) was found to be somewhat 

greater than that for the P-wave calculations. 
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IV.  ILLIAC CODE FOR 3-1) ELASTIC WAVES 

4,1  NUMERICAL PROBLEM DEFINITION AND 3-D GRID nPNlPPATnp 

A considerable quantity of data is necessarily re- 

quired for defining arbitrarily complex 3-D grid systems. 

In order to remove all restrictions from the node configura- 

tion, data must be provided for individually locating each 

node point in the grid.  Since arbitrary node configurations 

lead to nonsystematic numbering of the nodes associated with 

an element, connectivity information is required in addition 

to the node locations.  Also, arbitrarily inhomogeneous 

material properties will need to be specified element by 

element throughout the grid.  In all, a completely arbitrary 

N-node grid will require about 17N data items.  Such a re- 

quirement would make 3-D numerical rflirifiQ^«„o     J- ^ iiumcia.t,ai calculations exceedingly 
tedious to set up. 

The massive data requirements can be reduced to a 

manageable level by generating the grid data in regular 

ordered portions of the grid and providing detailed grid 

specifications in unordered portions of the grid.  The more 

versatile the grid generating capability, the less tedious 
the data preparation. 

In preparation for processing large 3-D grid configura- 

tions on the Illiac. a technique has been developed for auto- 

matic 3-D grid generation.  A grid of skewed hexahedral ele- 

ments is mapped into simple cubic shapes, all elements of 

identical size.  The grid is then generated for the cubic 

geometry and mapped back into the skewed problem geometry 
for processing. 

The versatility of this technique for generating 3-D 

grids depends on the type of mappings that can be systematical- 

ly performed.  At this time we have developed three types 

of mapping:  spherical ~ cartesian, cylindrical - cartesian, 
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and polynomial — cartesian.  In each of these three map- 

pings, the zone size can change at a controlled rate in 

three directions. 

Of the three mappings above, the polynomial mapping 

is the most versatile for generating skewed 3-D grid con- 

figurations.  The coordinates of twenty points around a 

mass of continuum are used to define the mapping, eight of 

the points are to form the exterior corners in the cubic 

element configuration and the remaining twelve points form 

the mid edge points in the cubic configuration.  A curved 

grid is generated when the edge points do not lie along a 

straight line connecting the respective corner points.  The 

grid spacing is reduced in the vicinity of a corner point 

as the adjacent edge points are moved in the direction of the 
ccrner point. 

4.2  Gi-NERATION AND STORAGE OF THE DIFFERENCE EQUATIONS 

At this time the difference equations are being 

generated or. S3's Univac 1108 using the 3-D FE SWIS code. 

The influence coefficients, generated in this manner, be- 

come data for the ILLIAC time stepping code.  This procedure 

restricts the ILLIAC code to computing stress waves in 

materials with linear stress-strain laws, since no provi- 

sion is made for changing the influence coefficients 

during the time stepping calculations.  This procedure of 

supplying the parallel processor code with predetermined 

influence coefficients permits the linear wave propagation 

calculations to be independent of the grid type.  However, 

the transfer of large numbers of influence coefficients to 

the ILLIAC site for parallel processing does not appear to 

be desirable for the final code configuration.  In the coming 

contract year, 1973, code will be developed for generating 

difference equations on the ILLIAC IV computer. 
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While early versions of the SWIS code will require 

that either the grid be fairly regular or else that the co- 

efficients of the difference equations be generated ex- 

ternally on a serial machine, good progiess has been 

made in the development of algorithms foi generating co- 

efficients in the ILLIAC for the rather general types of 

grids that the time stepping algorithm is equipped to handle. 

The big problem is not the generation of the coeffic- 

ients but rather rearranging and storing them where the time- 

stepper expects to find them.  In order to be more specific, 

it is necessary to aave a detailed specification for the 

storage layout for the variables and constants that occur 
in liq. (2.18) . 

Equation (2.18) has the for m 

where 

{^t+At} = {V + W%) (4.1) 

^V=|2ltPt-ft^t*(l^)ut{ 

[A] = - dt*[in"l(r] 
) 

and  {l,t + At}  retains its previously stated significance. 

Equation (4.1) can be written 

ur, = v  +y]  a  w 
-n  -n  ^m -nm -m 

where  u , v. and 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

^m are elements of the vectors  {U   }, 

{Yt}  and  {Wt}  respectively and anm  is an element Of
+the ' 

matrix  [A].  The vector elements  un. vn and w  are dis- 

placement- like vectors (in fact,  ^  is a displacement, that 

of node  n  at time t ♦ At) and they are represented by thr ee 
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floating-point numbers within the computer.  Correspondingly, 

Snm is a 3 x 3 influence matrix that contains information 
about the effect of node m on the displacement of node n 

It takes nine numbers to represent ^   and it takes nine 
PEN words to store those numbers. 

In the first parallel version of the SWIS code, space 
is provided in PEM for the two vectors (V }  and iW }  which 

are calculated at the beginning of each time step.  The matrix 
[A], which does not change from step to step, is stored in 

compressed form on the disk, from which it is read once each 
time step. 

The compression of the A matrix is achieved by omitting 

all the zero elements.  The identity of the non-zero elements 

is established by storing the subscript pair n. m  .long with 

the nine floating point numbers representing ft  , a  strategy 

that adds only two half-words or one full word to^he spa.e 
required. 

To appreciate how much storage is involved, consider a 
problem in which the number of nodes is N = 10.000.  Such a 

value of N may be too small to give a good representation 

of many three-dimensional structures but we are limited to 

such a value of N by the storage requirement for  {V }  and 

{Wt}  which are stored simultaneously in the PEM, and each of 
which consumes 3N words of space. 

In a rectangular grid interior nodes have 26 neighbors, 

not counting themselves, so rows of  [A]  corresponding to 

interior nodes will have only 27 non-zero elements.  Rows 

corresponding to boundary nodes will have even fewer.  Thus, 

in each row the fraction of matrix elements which are non-zero 

is no greater than 27/N - 0.0027.  The total space required 

to hold the compressed A nrtrix is:  (number of nodes) * 

(number of reighbors) *   (number of words of storage for a 
matrix element) = 10^ x 27 x io = 2.7 n   106 words when 
52 
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N = 10\     Thus, it takes 2.7 * 106/li 

to hold  [A]  when N = lO". 
106 = 0.18 of the disk 

In all that follows, if m  is a positive integer, 

let  p(m)  denote the remainder resulting from the division 

of m  by 64.  Thus, 0 < p(m) < 64 and 64 divides  p(m)-m 

evenly.  Further, let  PLp(m)  denote  PBf where r = p(m). 

The notational scheme just defined provides a compact 

method for describing storage arrangements in ILLIAC.  In 

particular, the element w„  of  {Wt}  is stored in PEp(m-l); -m 
i.e., w  is stored in PH , w  in PE , w  in PH  and w 

nc      -ru   «        .    .   0   —2 I   "••* 6 3        -6 5 
in Fb .  The A matrix is stored so that  a    can be read 
." =n,m 
by PEp(m-l), i.e., the PE that holds w , the element to 

be multiplied by an m.  The matrix elements are further 

arranged so that they can be read in increasing sequence on 
the first node number n. 

4.3  SORTING THE A MATRIX 

4.3.1  The Sort Problem 

It would be inefficient to calculate the elements 

=n,m    of the matrix  [A]  defined in Eq. (4.1) in the order 
in which they are required for the time step calculation. 

Therefore, some means must be provided for arranging them on 

the disk in their proper locations.  The content of the 

present section is a method for laying out the A matrix start- 

ing with a file of non-zero matrix elements and their associa- 

ted subscript pairs in arbitrary sequence.  We assume that 

the file is stored on the disk in the following format: 

1. Each page of the file contains 64 16-word records. 

2. Each record contains one matrix element a 
,, =n,m 

consisting of 9 numbers and the indicies n and 
m as well. 
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3.  The records are arranged on the page as if they 

had been written as 16 64-word rows, 4 records 

coming from each row and the 16 words of each 

record coming from 16 consecutive PL's. 

For a problem of N = IG11 nodes, as described in 

Section 4.2, the number of matrix elements will be 27N = 

2.7 x lo5.  The disk will hold (300 pages/band) x (64 records/ 

page) = 15,200 records/band and therefore the whole compressed 

matrix will occupy 2.7 K 105/1.9 M 10" = 14.2 bands.  This is 

more space than was estimated in Section 4.2 because here we 

take 16 words rather than 10 words for each non-zero matrix 
element. 

In the final configuration, the records are to be 

arranged on the pages so that when a page is read as 16 

64-word rows, one record will enter each PE, the 16 words of 

the record falling in 16 consecutive rows.  Record a    will 

enter PI:p(m-l), i.e., PEp will receive columns 64*Jl+p + l of the 

matrix  [A], where 0  <_ i  <_  N/64 and N  is the order of  [A]. 

Finally, the records are to be sorted in row-order, i.e., if 

n < n and p(m ) = p(m ) then a^ m       is located ahead 
i2        i2       =ni,mi 

of -n m '  There are usually 27 non-zero elements per row 

so that a given PE will receive elements from fewer than half 

the rows.  On the other hand, row  n coulu bave non-zero 

elements in columns m and m+64  in which case PEp(m) 

would receive at least two elements of row n. 

4.3.2  Brief Description of the Procedures 

Having completed these preliminaries, we can describe 

the strategy underlying the sorting procedure.  The first 

step is to read the unsorted file, which we denote as F   , 

and rewrite it In four new files  F    where 0 < j < 4  The 
i »J — 

new file  F  .  will contain those elements  a    for which 
i »J ==n, m 

16j < p(m) < 16j + 16,  0 < j < 4.  Step 2 consists in 
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copying each file  P  .  into four shorter files  F     F 

will contain those elements  an m     for which 4i < pfml2' 4i+4 

Step 3 consists of copying each file  F  .  into four still 

where 0 < k < 4 for all  j, 0 < j < 16. shorter files  F 

File  F 
l«P 

p(m) = p. 

3 »^j+k 
will contain all those elements  a    for wh  i =n,m     i»»**.n 

In step 4, each file  F^  from step 3 is read into 

the FBI, sorted on row index n and written out on file  F 

0 1 p < 64.  We assume that all files  F3   have no more than' 

(1024 rows) x (4 matrix elements/row) = 4096 matrix elements. 

Tims, the matrix can have at most 4096 x 64 = 218 non-zero 

elements.  It follows, also, that F    and F    have at 

most 64 pages each so they will each'fit in two'strips. 

The last step, step 5, is unlike the preceding ones. 

It begins by reading the first page of each of the 64 files 

F^p and writing their contents at the first 64 pages of the 

sorted file  F^  Between reading and writing there occurs a 

certain transposition of the data.  Matrix elements from file 
F,,p  fal1 int0 quarter-rows when they are read but they must 

be rearranged so that they occupy 16 consecutive rows of PEp 

when they are written on file  P$,  A way of performing the 

transposition is described in some detail in the paragraphs 

below.  After the first 64 pages of F  are written, the 

second page of each F    is read, for all p, and these 
^ »P r' 

data are transposed and written as pages 64 through 127 of F 

and so on until  F5  contains all non-zero elements of the 

matrix A. 

4«3.3 A Lower Bound on the Time Required 

It is already possible, on the basis of this preliminary 

description, to estimate the I/O time T   required to per- 

form all the data transfers between disk and PHM.  It would be 
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of some interest to have a formula for TI0  in terms of the 

order N of the matrix A and the length L of the input 

file Fo,o  but for the Present we will assume that  F    has 

212 pages and that no file P   will have more than 2°'pages. 

In addition, we assume just one ECU operates at a time so that 

reading and writing cannot be overlapped. 

Under these assumptions, the first three steps each 

require that 212 pages be read and written, so step s will 

take time T = 213T where 1 < s < 3 and T s       p - p 
required to transfer a page. 

For s^-ep 4, assume that each  F 

is the time 

i»P 
can be read in one 

rotation and that  F    can be written'in one rotation. 
**»P 

Then step I  takes T^ = 27Tr where Tr  is the rotation time. 

On st?p 5, assume that it takes one rotation to read 

the k— page of each file F „ and one rotation to write 
.  , th "♦ »P 

the k— segment of F , for 0 < k < 26.  Then T = 27T 

Using T  = 133 ys and Tr = 40 ms, we get 

th 

E T 
s s 3 x 213 Tp + 2 x 27 Tr = 21.9 sec 

The five steps outlined above fall into three phases. 

Phase A consists in separating the records into 64 bins, 

which are the files  F  .  Phase A encompasses steps 1. 2. 

and 3.  The records in each bin are arranged in ascending 

sequence in step 4 which is Phase B.  Then the ordered lines 

are merged in step 5 which is Phase C.  This 3-phase strategy 

has been employed to sort files of mediun. to large sizes on 

serial computers. 

4.3.4  Phase A - Segmenting the File into Bins 

Next, let us turn our attention to the data flow within 

the PE's.  The three steps of Phase A are similar:  The records 

in one file are reclassified into four others. 
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In the procedure for Phase A, the PE's operate in four 

groups of 16. group  g consisting of PECl6g+h) where 0 < h < 16 

and 0 < g < 4.  The buffer area occupies 3 x 64 rows.  This 

space is organized into 12 1-page buffers, 3 in each group 
of Pli's. 

The proposed procedure for separating the records into 

their proper bins is straightforward.  Register |R will, at 

each cycle, hold as many as four records, one in each bin. 

Missing records are replaced by zeros.  At the beginning of a 

cycle, each bin examines the contents of $R to see if the 

record there belongs in that bin.  If so, that record is re- 

placed by one that belongs in another bin, otherwise the 

record is left in $R.  Then the cycle is completed by routing 

$R 16 words to the right.  (If a record is transferred from 

$R to a buffer by some bin we say that the bin received the 

record and if the record was transferred from the buffer to 

$R we say it was sent from the bin.) 

The attentive reader will have thought of some minor 

complications that are glossed over in the paragraph above. 

A few of them are addressed in the following list: 

1. If a bin can receive the record it finds in 

$R but has nothing ready to send, it sends a 

dummy record of all zeros. 

2. If a bin finds zeros in $R and has a record 

to send it simply sends without receiving. 

3. A bin that has filled all its buffers with 

records belonging there just ignores $R until 

one of its buffe's has been transmitted to the 
disk. 

Each step is begun by reading eight pages, two per 

bin, and proceeds to alternate writing and reading until all 

pages of the input file have been read.  After this, there 
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will be about eight pages remaining in the PHM to be binned 

and written out.  The sequence of the data will have to 

determine the order in which the four output files are written. 

We propose to keep a map of the files in which each 

page represented by a bit which is Ü or 1 corresponding to 

whether it is the image of a vacant page or an occupied page. 

When the input map is all zeros, input is complete and when 

output is complete, zeros remaining in the output maps 

correspond to unused pages in the output files. 

We do not have much to say about timing but it is 

possible to estimate some upper bounds.  Note first that the 

rate at which records fall into bins must average at least 4 

per 3 cycles because 4 records are being moved at a time and 

it takes at most 3 cycles for a record to find its way home. 

The fact that $R might have a dummy record means either that 

some record was read into the bin where it belongs or that 

some bin has processed all its buffers.  In the first case, 

a record reaches the output buffer in one cycle and the latter 

case arises only when processing gets ahead of I/O, which is 

of no concern.  Neither case demands that we revise our pes- 

simistic estimate of 3 cycles to process 4 records.  There- 

fore 3/4 x 64 - 48 cycles per page is the upper limit on the 

amount of processing required.  To keep up with I/O, the cycle 

time would have to be (266 ys/page) (16 clocks/ps)/(48 cycles/ 

page) = 88 clocks/cycle or about 40 FIWST instructions since 

no floating point is involved.  It is hard to imagine using 

more than 200 instructions per cycle, which yields an upper 

bound of (3 Steps) *   (2.18 sec for I/O) *   (5 processing time/ 

I/O time) = 60 sec fo^- steps 1, 2, and 3. 
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4.3.5  Phase B - The Internal Sort 

Step 4, which is the only step in Phase B, has 64 

sub-steps, one for each PE.  On su.j-step 4 , file F    is 
P 3.P 

read in its entirety into the PEM's, sorted and written on 

file  F 
>* »P 

The sorting procedure is patterned after an algorithm 

called quicksort (Hoare, 1961).  The procedure begins with 

the choice of a key called the pivot which is selected so 

that it will fall near the middle of the file after it is 

sorted.  In our case, the keys have numeric significance and 

they are fairly uniformly distributed between 0 and the maxi- 

mum so we would simply take one half of the maximum as the 

value of the pivot first key.  Sampling techniques are used 

in more general cases. 

Tn either case, records at the beginning of the file 

with keys that exceed the pivot are interchanged with records 

near the end of the file with keys that do not exceed the 

pivot.  By working from both ends toward the middle, the 

file is subdivided into two subfiles, the first of which 

consists of records with keys that are less than or equal to 

the pivot and the second of which falls behind the first and 

consists of records with keys that are greater than the pivot. 

The same procedure, called partitioning, is applied to 

the first subfile to produce two more subfiles, and then the 

first of those is partitioned, and so forth, until the first sub- 

file consists of just one record, the first.  At this point, there 

will be about log2M subfiles, where M  is the original file 

length.  The next stage is not unlike the preceding ones; 

the first subfile that has length n > 1 is partitioned re- 

peatedly, occasionally producing a one-record subfile at the 

front which is just appended to the ones ahead of it.  The 

strings of records thus produced are in ascending sequence 
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and eventually constitute the entire file at which point the 
sort is complete. 

The proposed method for implementing quicksort on 

ILLIAC IV begins by loading  F^  into the PHM.  Recall that 
F3,p  has at most 2l2 records and  will occupy no more than 210 

rows, or, equivalently, 26 pages.  The four bins of up to 210 

records are first partitioned independently within each bin. 

One might well find it advantageous to use special tricks for 

improving PE utilization, but the method for partitioning in 

each bin could be very similar to that used in serial com- 

puters.  Having the full 20 bit key stored in each word makes 

it possible for the 16 PE•s in each bin to work as a unit. 

Between partitionings, records would be routed between bins 

so that there would be one pivot row in the buffer with the 

property that all records in lower numbered rows would have 

keys less than the pivot key and all records in higher num- 

bered rows would have keys greater than the pivot key.  Re- 

cords on a pivot row could have keys falling on either side 
of the pivot key. 

Having partitioned the file once, the subfile of rows 

numbered lower than the pivot row would be partitioned once 

again.  The first pivot row would be included in the second 

partitioning because it can hold low keys.  The second 

partitioning would again be followed by routing to produce 

a second pivot row.  As in the serial procedure, the first 

subfile, i.e., the one with the lowest keys, would be 

repeatedly partitioned until the first row cf the buffer be- 

comes a pivot row.  The partitioning process is continued 

further until every row in the buffer becomes a pivot row. 

AL every stage, partitioning is performed on the first 

subfile consisting of a set of consecutive rows in the se- 

quence:  pivot row, one or more non-pivot row, pivot row. 

The number of such subfiles at any given point in the piocess 
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will seldom exceed 10 if there are 210 rows in the buffer. 

Thus, little space is required to keep t-ack of the pivot 
rows. 

The file will rarely be in order after being parti- 

tioned as described above but permuted elements will always 

be on consecutive rows so they cannot be separated by more 

than six intervening records.  The remaining unraveling is 

left to step 5 along with the merging.  The pages of file 

F^p  consist of records from 16 consecutive full-length rows. 

4 • 3•6  Phase C - Reassembling the Pages 

Step 5 is started by reading the first page of each of 

the 64 files and rearranging the records so that those coming 
from file F    fall in PF  n ^ r. ^ A/I  C „.p  Idl1 in FLp. U < p < 64.  Supposing that the 
coding for this operation contains 100 instructions for mani- 

pulating one row of information, the time required for the 

rearranging would be (100 instructions/row) *   (1024 rows/ 

buffer load) *   (2 clocks/instruction) I (16 clocks/ys) = 
12.8 x io3 us. 

There still remains a little sorting to do because the 

quicksort of step 4 left some records as much as six positions 

away from their final positions.  A variant of the classical 

binary merge procedure will work well here and only four re- 

cords, 64 rows, of extra storage are required.  The first two 

steps of the binary merge would be carried out exactly as for 

a full sort to produce sorted sequences of 4 records.  The 

variation comes in the third and final step.  It begins 

normally with a merge of the first two strings of 4 to pro- 

duce a string of 8, but then the last 4 records of the string 

of 8 are merged with the third string of 4 to produce another 

string of 8.  The first half of the preceding string of 8 

is stored just behind the first half of the first string of 

8 and the second half is then merged with the next string. 
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The binary merge will take less time than the 13 ms 

it took to get records in theiv proper PE's so the whole 

processing time for step 5 should be less than 25 ms. 

4.4  TIME STEPPING 

4.4.1  Algorithm 

A ^ood design for stepping numerical stress waves 

along in time is most important for the 3-D SWIS code, since 

it is this process that will account for essentially all of 

the execution time.  The time stepping process being described 

is the repeated calculation of Eq. (2.18) taking advantage of 

the parallel processing capabilities of the ILLIAC IV. 

The first three terms of Eq. (2.18) involve column 

vector operations which are relatively minor.  The matrix  [M], 

containing the nodal masses, is diagonal and thus trivial to 

invert.  All these operations are easily adapted to parallel 

processing.  The terms involving  ß  are also easily computed. 

The column vector resulting from this operation is multiplied 

by the very large banded sparse matrix  [A]  (which is defined 

in Eq. (4.4)).  This multiplication by  [A]  will account for 

nearly all the execution time that is required to complete 
one numerical time step. 

The following scheme for banded sparse matrix multi- 

plies was developed by Frazier (1972).  Since the matrix 

is of order 3 x io\ it is necessary to compress it to a 

manageable size.  We note that in a 3-D gridwork of bricks 

most nodes have just 26 immediate neighbors; consequently,' 

for each component (i.j) there will usually be 27 non-zero 

terms in a single row of  [A].  The unnecessary zeros are 

compressed out of the rows of  [A]  to yield a matrix N by 

27 (N being the total number of nodes in the grid).  From th 

node numbering sequence we can deduce the column numbers fo 
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the  non-zero   terms   in  each  row,   i.e., 

1  =  mn, k   '   n  =   1»2'   • • •   N 

k  =   1,2,   ...   a   27 

where n and m are the row and column numbers of  [K], 

respectively, and N is the total number of node points. 

, k = 1,2, . 

(4.6) 

m n,k 
The array of contributing column numbers 

* 27  are simply the node numbers adjacent tc'node n. 

Only the non-zero multiplications are performed in 

the sparse matrix multiplication which is expressed by 

s27 

^n = E in,k Hmny V (4.7) 
k=l 

for n = 1,2, ... N with 

=n, k  »=n, m 
n,k 

A.t2 M"  K 
n ^n^ n,k 

(4.8) 

The sparse matrix multiplication is -jerformed at each 

time step with the sparse matrix remaining unchanged for the 

special case of linear wave simulation; consequently con- 

siderable effort can be devoted to arranging the non-zero terms 

of the sparse matrix on the mass storage unit in an optimal 

fashion for processing.  The compressed matrix  [A]  should be 

arranged on the disk so that each term arrives in the proces- 

sor containing the nodal displacement fo1 which it is to be 

multiplied, Eq. (4.7).  Thus,  an k should arrive in the 

PHM containing a (tj     without'requiring additional shift 

operations.  The re6rdering of  [A]  is done on a serial 
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machine independent of the ILLIAC IV in the first implementa- 

tion of SWIS.  For larger problems, the previous section de- 

scribes how the reordering can be performed by the ILLIAC IV. 

The following discussion defines the sparse matrix multiply 

process and the flow of information from disk memory to the 
array in detail. 

The nodal displacements  um  are vectors of three com- 

ponents and require three numbers for their representation. 

Let  uim be the component of u^     along the  x,  axis, 

i = 1,2,3.  Correspondingly,  i^  it a 3 » 3 matrix that 

requires nine numbers in its representation.  Let ä. 

denote the  ij  element of this matrix.  Then Lq. (4.5} c«n 
be written 

m 

= 27   3 

^—^  ^-^ in,jk Ujm  . 
k=l  j=l n.k 

(4.7') 

where  b 
in is tue component of b along the x.  axis 

The nodal displacements at  ta are arranged on the 

disk to flow inco the PEM's (denoted p) by PL rows (denoted 

r) so that  u  ^p=0,r=0; u  >p=0,r li11^P 
= 0,r = 0; u 

ui3 - p = 0. r = 2; u  -> p = 1, r2= Ü; ... u,  . 
r - 2' H(65)3 - P = 0, r = 3; etc. 

In general we have 

i; 

63, 

Uj 
jm 

r = 3 

P(m-l) = (m-1) 

n-l 
ST j-l 

where m-1 
FT 

64 m-1 

(4.9) 

mainder of 

^denotes fixed point division and p(m) is   th 

ST 
e re- 

as in Section 4.2.  This storage configura- 
tion in the PL's is achieved by loading u- (t ), m . 1,2, 

Ht   on the disk in the sequential order 0° S = 1,2, ... 3N 
where 
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S = m + 128  Jji  ♦ 64(j-1)  > 

J ■ 1,2,3  . 

(4.10) 

The condition for i^ JJ,  to arrive in the processor 
containing  u-    (t ) 

^"n.k a       ls   expressed, using Eq. .4.9), as 

ain,jk * P tmnXl) (4.11) 

The PE row number  r  to be occupied by the various non- 

zero terms of the sparse matrix is somewhat more difficult to 

express because of the arbitrariness of the node numbering 

scheme.  The node numbers  n should increase monotonically 

(but not necessarily sequentially) with increasing row number 

r  in each Pli so that the row number n of the sparse matrix 

can be processed in ascending order.  However, in general, no 

more than 27 of the 64 Pb's will contain a  u.    (t ) for which 
—      • J n k  ^ ain,jk  ls non-zero for any particular matrix row number n. 

That is, only about one-third of the PE's will contain nodal 

displacements that are adjacent to node number n  in the 

spatially zoned continuum.  Furthermore, a single PE may, in 

some instances, contain more than one neighbor nodal displace- 
ment but rarely more than nine. 

When performing the multiplications that contribute to 

matrix row number n, there is no need to make the noncontri- 

buting PE's inoperative.  Each nonccntributing PE can simul- 

taneously perform multiplications for the next higher matrix 

row number for which the PE will have a contribution.  If the 

compressed matrix  [A]  is loaded into the PE's in the proper 

sequence, this work-ahead scheme can be carried out by perform- 

ing multiplications in each PE in the sequence that the  [A] 

terms are loaded from mass storage.  This desired storage con- 

in»jk; 
figuration in the various PE's is achieved by loading ä 
n  ■L»'i» ••• N; k = 1,2 ... x27,   on the disk in the sequential 
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order ls, S = 1,2, ... ^ 10 x 27 x N where 

S = 64r + (p-tl) + 64(3i + j-4) , 

i  and j  =1,2,3  , 

(4.12) 

in which r = 0, 1,2 ... = 10 x 27 x N/64  and p = 0, 1,2 ... 63 

are the row and PE number, respectively.  The PE number is 

^Vk"1^  The row number for each PE is expressed by summing 
all previous entries in the particular PE, i.e.. the row num- 
ber for PEp is expressed in terms of n and k by 

r = 10 
k-1 n-1   =27 

Ey*  6  . + 10 
^   PP       — 

n^l  a'-l k'=l  ' i 
2^ ^„^ (4.13) 

where  5 ,  = 0  for p ^ p' and 5  * • 1  for p = p PP pp r  r 
where, just as in Eq. (4.11) 

and 

'' = p(mn',k'"1)  ' (4.14) 

Every 10th term in the array äg  starting with S = 1 is used 

to store tWL index numbers: m = mn ^ 
t0 identify the nodal 

displacement that is to be multiplied and n to identify the 

matrix row to which the multiplication contributes, Eq. (4.7). 

Using the storage schemes defined above, i.e., starting 

from a point in the computations in which  {U (t )} and  [A] 

appear in their prescribed sequences on the disk, the sparse 

matrix multiplication of Eq. (4.7)  proceeds as follows: 

!•  ^U tt ))  is loaded into core by PE rows using a 
single access. 

2.  The serially arranged version of  [A], defined 

Eqs. (4.11) - (4,14), is accessed and its loading 

is initiated.  The terms flow into core LV PE 

rows starting with row 0.  After 30 rows are 
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3. 

4. 

filled the loading is continued, uninterrupted, 

back at row 0 overwriting the previously loaded 

terms.  The computations and manipulations of the 

following steps are carried out before the matrix 

terms are overwritten. 

Initialize  ro = -10; ^ = 0; br = 0  for 

r - 0, 1,2, ... 99;  n  =1. 
o 

Throe sets of three multiplications and product 

summation are performed simultaneously in all 
processors. 

3 

r2 + i r2 ̂  s u 
jTJ  o+j+3i-3   i+j-1' I = 1,2,3 

where 

r  = (r +10) /1-6    j 
o    o   '   \       2o,r I 

m-1 
5T 

I r , if n = b 
12'        r 

I r +4, if n > b. 

n = ar  (first 32 bits) 

m = I   (second 32 bits) 
o 

Also, store matrix row number of the product contribu- 
tion 

b  = n r 
2 

Set n  =n  + 1 
o    o 

^7 
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5.   Check for the completion of matrix row number n 

6. 

If no = MIN(n) return to step (4); otherwise, 

i.e., n^ < MIN(n)) continue on to step (6). 

MIN(n) is the minimum b 
o 

Perform a row sum on b^ i = 1,2,3 among those 

among all 64 PE's. 

PE's for which b  = n 
o     I 

shift the result to  b 
r + 

i 

P = P(n -1) 
o 

m -1 
o  

With only PEp operative, 

£_j > i ■ 1,2,3 where 

Operating only those PE's for which b n set 
b  = b  , 

i    r+4 for r = 0, 1, 99 

7.   If the next ten PE rows of the [A] matrix have 

been loaded, return to stop (4); otherwise return 

to step (5) . 

The computations and manipulations of steps (4) - (7) 
are displayed in Table II. 

The time pepping scheme without the damping terms in- 

volving  ß  has been implemented in GLYPNIR and tested on 

the B6700 simulator.  Chapter V contains a description of the 

test problem and results.  The following section discusses 

schemes for outputting and representing the results from the 
Illiac SWIS code. 

4.4.2  Ideal Timing 

Since the sparse matrix multiply used in the time 

stepping scheme is time consuming, some consideration is 

given o performance of the SWIS code with parts of the logic 
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TABLE II 

COMPUTATIONS AND MANIPULATIONS OF STEPS (4) - (7) 

"ji/V'  * = 1'2*i'     ■ " 1,2,3 ... N 

u' pr' P " 0,1,2, ... 63 

= (S-l) - 64 S-l 
ST" = p(m-l) 

r = R , R +1, R +1, ... R +3 
0     0        o o 

N+63 

= R  + 
o ^1 • V m-1 

64 + i-1 

"s- S = 1,2,3, ... a 3N 

= m+128 m"l I     S A r ■      i ^ ^r     64(1-1) 

i  jm,  (n,m) = 1,2,3, ... N; i = 1,2,3; j = 1,2,3; 

in.jk'  n = 1»2»3 ••• N; 

* 

I 
pr 

k = 1,2,3, ... 27 

m = in  , data n, k 

r • R., R,*l. R.+2, ... . R + in x 27 x 
1    1 

n-1    z27 

N 

n' = l 

P = 0,1,2 ... 63 

k-1 

n' = l  k'-l        k'- = l 
A^/      PP 

- P0an>k-1) 

P' ■ P(mn%k.-1) 

ic  S = 1,2,3, ... a 

64r + (p+1) + o4(3i+j-4) 
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which have been coded in ASK.  A preferable manner to imple- 

ment SWIS would be to code the outer parts of the program in 

GLYPNIR for ease in maintenance or modification.  The critical 

parts of the sparse matrix multiply in the time stepping 

section would be coded in ASK to speed up program execution. 

This discussion will compare estimated timings of various 

logical section- of SWIS written in ASK with the simulator 

generated timing for the same section coded in GLYPNIR. 

GLYPNIR timing for three logical steps in the code were 

given in Section 5.2.  The only logical step which consumed 

a non-trivial quantity of time was step 3, involving the 

partial matrix sums and rowsumming. 

The time through step i-a in GLYPNIR was 44 ps.  The 

time estimate for the same logic in ASK is roughly 11 Us, 

giving a factor 4 advantage.  The GLYPNIR time for a rowsum 

was 92 MS, while the estimate for the ASK version is 40 ys. 

following the computations given in Section 5.2 for a lO" node 
problem: 

1. Partial sum time 

3 x 11 ys/block = 33 ps/block 

2. 7 nodes/block *  40 ys/node = 280 ys/block 

3. Total: 

(33ys-t-280Ms)/block x lO^odes 
7 nodesTFTock—  = 0-44 sec/time step 

Thus it appears possible to roughly double the execution speed 

of the code by programming in ASK. 

4.5  COMPUTLR RESULTS 

If we are to take full advantage of each seismic cal- 

culation, large quantities of digital results must be stored 

for post ILLIAC processing and displaying.  Again alluding 
70 



—-■ ■-■——■■ 

to our reierence problem involving a 10^ node grid> we note 

that five time intervals of full grid output> nodal displace. 

ments and velocities, involves 3 *  105 words of digital data 

or about 10' storage bits.  Transporting these quantities of 

data through the ARPA net at 5 * 10^ bits/sec, assuming 100 

percent occupancy of the net without interrupts, would require 

about 5 minutes.  Jf course, the ARPA net communication system 

would be more effectively used to interrogate the computed 

output.  If the computed results actually need to be shipped 

out of the Illiac site for post processing and displaying 

magnetic tapes would better serve the purpose. 

Grid sizes considerably greater than 10^ nodes are 

anticipated.  Also, stress time histories will be computed 

in addition to the displacement and velocity fields  Con- 

sequently, the more data reduction that can be accomplished 

at the Illiac site, the better.  It appears to us that the 

UNICON mass storage device has considerable potential as a 

Plot device due to the high resolution that is achieved in 

writing on the film strips.  Optical techniques could be 

easily employed to enlarge and print the film plots after 

they left the Illiac site.  Such a plot capability would 

prove an asset to many of the Illiac users. 
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V.  TEST CALCULATIONS USING 3-D ILLIAC CODE 

5.1  PROBLEM SET UP AND RESULTS 

For the purpose of debugging and testing GLYPNIR 

coding on the UCSD simulator, a simple rectangular rod is 

analyzed.  A step load is applied axially at one end of 

the rod as pictured in Fig. 5.1, and the resulting stress 

vave is allowed to propagate to the end of the rod.  This 

problem is modeled as a four element grid with 20 nodes as 

shown in Fig. 5.2.  The Fortran version of SWIS (run on 

S3,s UNIVAC 1108) performs the explicit time stepping de- 

veloped in Section II, Eq. (2.18).  With the damping co- 

efficient  6 set to zero we obtain: 

{U(t+At)} = +At
2 [M]"1{F(t)} - rU(t-At)) 

♦ 2{u(t)} ♦ [A]{U(t)} (5.1) 

where 

[A] = - ltMü)"l[U (5.2) 

which has been programmed for operation on the ILLIAC IV. 

In addition, the Fortran code also arranges the nonzero terms 

of the  [A]  matrix according to their desired location in 

the ILLIAC processors in preparation for the sparse-matrix 

multiply  [A]{U(t)}  (Eq. 5.1).  The arranged terms are then 

transferred from the UNIVAC 1108 to the UCSD simulator where 

parallel time stepping computations are performed. 

The first simulations ran only one time step to test 

the sparse-matrix multiply algorithm.  Two node numbering 

schemes were used to confirm the generality of the code. 

The number of operative processors was reduced to eight 

for this test problem in order to generate a nontrivial 

Preceding page blank 
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Traction Pree h1(H I  km   ' 

Uniform I;nd Load Applied 
as a Step Function in Time 

P-wave Velocity ■ 10.0 km/sec 

S-wave Velocity = 5.0 km/sec 

Density ■ 2.0 g/cm3 

Fig. 5.1--Test Problem 1:  Uniaxial wave propagation 
in a rectangular rod. 
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(a)     Node  Numbering Scheme  A 
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(b)  Node Numbering Scheme B 

Fig. 5.2--Two node numbsring schemes for Test Problem 1- 
umaxial wave propagation in a rectangular rod. 
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Simulation with more than one nodal displacement associated 

with each processor. 

As depicted in Table 5.1, the two node numbering 

schemes result in a markedly different arrangement of the 

nonzero terms of the  [A]  matrix in the eight processors; 

however, we note that matrix row numbers (n) increase mono- 

tonically within each processor.  This is to assure the 

completion of lowest uncompleted row of the sparse matrix 

multiplication at the earliest sequential step possible 

within the constraints of the node numbering scheme. 

In node numbering scheme A, we note that each of 

the eight processors contributes to row one of the sparse 

matrix multiplication, and the processor rowsum for matrix 

row one is performed directly following the first set of 

parallel multiplications and accumulations.  Whereas for 

scheme B, only the first three processors contribute to 

matrix row one.  This causes the processor rowsum for 

matrix row one to be delayed a few steps.  However, this 

results in no loss of efficiency since the remaining five 

processors are working ahead on matrix row numbers 5, 4, 5 

and 6.  A loss of efficiency does occur near the completion 

of the matrix multiplication since some of the processors 

have finished while other processors are still computing. 

This effect would be negligible for large problems. 

The simulation of the full time stepping process 

was performed with node numbering scheme B in Table 5.1 

on a subset of the problem described above.  The simulation 

was initialized with the wave part way down the rod and run 

for four time steps. 

The results of this run are depicted in Fig. 5.3. 

Solid lines on the graph indicate the four time steps run 

on the simulator.  The numerical results of the simulation 

were in exact agreement with the results from the UNIVAC run 
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TABLE 5.1 

ARRANGEMENT OF SPARSE MATRIX INFLUENCE COEFFICIENTS 
FOR TEST PROBLEM 1 IN AN EIGHT-PROCESSOR SIMULATION 

Node Numbering Scheme A 

I'roccsso r 
Niiinlicr l.ovel 1 ■> 3 4 5 6 7 8 

Displ iKcnu-nt ll 1 2 3 4 5 6 7 9 
NoJc  No.   m 1 1 10 11 12 13 14 IS 16 «J 7 i 17 18 19 21) 

Influence 0 1,1 1,2 1.3 1.4 1.5 1.6 1 .7 1   8 
Coefficient 1 2,1 2,2 2.3 2.4 2.5 2.6 2,7 2   8 
Node Nos.n.m 2 J,l 3,2 3.3 3.4 3.5 3.6 3.7 3.8 
^-n.J 3 «,l 4.2 4,3 4,4 4,5 4.6 4.7 4,8 

4 5,1 5.2 5.3 5,4 5.5 5,6 5.7 5.8 
5 5,9 5.10 5.11 5,12 6,5 6.6 6.7 6.8 
6 6,1 6,2 6,3 6,4 7.5 7.6 7.7 7.8 
7 6,9 6,10 6,U 6,12 8,5 8.6 8.7 8,8 
8 M 7.2 7,3 7,4 9.5 9.6 9.7 9.8 
9 7.9 7,10 7,11 7,12 9.15 9.14 9,IS 9.16 

10 8,1 8,2 8,3 8,4 10.5 10,6 10,7 10,8 
11 8,9 8,10 8,11 8,12 10,13 10,14 10,IS 10,16 
12 9,9 9,10 9.11 9,12 11,5 11,6 U.7 11,8 
13 10,9 10,10 10,11 10,12 11,13 11,14 11,15 11.16 
14 11,9 11 ,10 11.11 11,12 12.5 12.6 '2,7 12,8 
IS 12,9 12,10 12.11 12,12 12,13 12,14 12,15 12,16 
16 13,9 13,10 13,11 .'3,12 15.K 13,14 13,15 13,16 
17 13,17 13,18 13,19 15,20 14.13 14,14 14,15 14,16 
18 14,9 14,10 14,11 14,12 15.13 15,14 15,15 15,16 
19 14,17 14,18 14,19 14,20 16.13 16,14 16,15 16,16 
20 15,9 15,10 15,11 15,12 17,13 17,14 17,IS 17,16 
21 15,17 15,18 15,19 15.20 18,13 13,14 18,15 18,16 
22 16,5 16,10 16,11 16.12 19,13 19,14 19.15 19,16 
23 16,17 16,18 16,19 16,20 20,13 20,14 20.15 20,16 
24 17,17 17,18 17,19 17,20 
25 18,17 18,18 18,19 18,20 
26 19,17 19.18 19,19 19,20 
27 20,17 20,18 20,19 20,20 
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Node  Numbering  Scheme  B 

Processor 
Number Level 1 2 3 4 5 6 7 8 

Displaccicnt 0 1 2 3 4 5 6 7 8 
Node  No.   ■ 1 5 10 11 12 13 14 15 lb 

CS.3 2 17 18 19 20 

Inf 1 uencc 0 1,1 1 ,2 1,3 3,4 4,5 4,6 5,7 5 ,8 
Coefficient 1 I,« 1 ,10 1 ,11 3,12 4,13 4,14 5,15 5,16 
Node  Nos.n.m 2 1 ,17 1,18 2,3 3,20 5,5 5,6 6,7 6,8 

(W J 2.1 2.2 2.11 4,4 5,13 5,14 6,15 6,16 
4 2 ,9 2,10 3,3 4,12 6,5 6,6 7.7 7,8 
5 2,17 2,18 3,11 4,20 6,13 6,14 7,15 7,16 
6 3,1 3,2 3,19 S,4 7,5 7,6 8,7 8,8 
7 3,9 3,10 ■^.3 5,12 7,13 7,14 8,15 8,16 
8 3,17 3,18 4,11 5,20 8,5 8,6 13,7 13,8 
9 9,9 4,10 4,19 6,4 8,13 8,14 13,15 13,10 

10 9,1 4.18 S,19 6,12 12,5 12,0 14,7 14,8 
U 9,17 «.2 6,19 6,20 12,13 12,14 14,15 14,11, 
12 10,1 9,10 9,3 1      4 13,13 13,6 1 .T , 1 5 15,8 
13 10,9 9,18 Ml 10,12 13,5 13,14 15,7 15,15 
14 10,17 10,10 10,3 10,20 14,5 14,14 16,7 16,16 
IS 11,1 10.2 10,11 11,4 14,13 14,6 16,15 16,8 
16 11 ,9 10,18 10,19 11,12 15,5 15,6 
17 11,17 11 ,2 11 ,11 11,20 15,13 15.14 
18 17,17 11 ,10 11 ,3 12,12 16,5 16.6 
19 17,1 11,18 11 ,19 12.4 16,13 16,14 
20 17,9 12,10 12,3 12,20 19,5 19,6 

21 18,1 12,18 12,11 13,4 19,15 19,14 
22 18,9 17,2 12,19 13,12 20,5 20,6 
23 18,17 17,1« 13,19 13,20 2 0,13 20,14 
24 17,18 14,10 14,4 

II 18,18 17,3 14,12 

26 18,2 17,11 14,20 
27 18,10 18,3 18,4 

28 19,10 18,11 18,12 

29 19,18 18,19 18,20 

30 20,10 19,19 19,4 

31 20,18 19,3 19,12 

32 19,11 19,20 

33 20,3 20,20 

34 20,11 20,4 

35 20,19 20,12 

_ 
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4.0 r- 

ILL1AC Simulation 

UNIVAC Comparison Run 

4.0 

LX      10/      19/^     j7      Z^/ 

Fig. 5.3--Plot of nodal displacements in Z direction for 
test problem. The nodes plotted are indicated 
on the solid. 
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for the same times.  Thus, the curves from the comparison 

^-un exactly superimpose the curves of the simulation. 

5.2  TIMING RESULTS 

Timing information for the GLYPNIR version of SWIS 

was provided by the simulations on the UCSD B6700.  As the 

sparse-matrix multiply accounts for over 97 percent of the 

time spent per time step, the timing of the matrix multiply 

is analyzed in some detail.  All times are ILLIAG IV execu- 

tion times as given by the simulator.  The computations for 

one time step can be broken into three logical sections. 

1. Time for loop control and bookkeeping: 

% 0.05 ms 

2. lime for adding terms of Eq. (5.1) not involv- 

ing the sparse-matrix multiply: 

0.14 ms 

3. Matrix multiply time: 

a. Time to perform the partial sum consisting 

of a 3 x 3 submatrix of  [A]  times three 

components of  {U(t)}: 

44 \is 

b. Time to rowsum the partial sums for a com- 

pleted row of  [A] x {U(t)}: 

92 us 

The sparse-matrix multiply performed in the GLYPNIR 

simulation does a 10 row simulated ILLIAG disk read for each 

time through step 3-a.  The 10 rows contain one 3x3 sub- 

matrix of  [A]  for each PEM.  Since the minimum read avail- 

able on the ILLIAG disk is 16 rows (1 pagel, a simple ex- 

tension of the code will be used on the ILLIAG in which 

two pages are read at one time.  One block of two pages 

(32 rows) just contains the 30 rows necessary for three 
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3x3 submatrices per PB1.  This will allow three partial 

sums (step 3-a) for each disk read.  The times given for 

the partial sums in the matrix multiply may simply be 

multiplied by three to give the computation time for a 

two page read. 

These figures can now indicate the overall machine 

time for a typical problem run on the GLYPNIR code.  Consider 

a grid containing 10"  nodes.  This is a large problem for 

common serial machines, but is small enough to contain all 

nodal displacements  {U(t) }  and  {U(t + At)}  in the FBI's 

(6 nodal displacements/node). 

The influence coefficients  [A]  for seven nodes 

will fit into a two page block read from disk: 

(64 PH's) * (5 3x3 matrices/biock/PH)   64 x 3 
(27 neighbors/node;       = '2T     '' 

T'ie total sparse-matrix multiply time for a lO1* node problem 

for one time step is then: 

1. Partial sum time: 

3 x 44 ys/block ■ 132 ps/block 

2. Time for summing partial sums: 

7 nodes/block *   92 ys/node = 644 ys/block 

3. Total: 

(132 ps ♦ 644 us)/block x IQ" nodes   . . 
7 nodes/block = 1-1 sec/time step 

(the execution time for other equation terms and 

o erhead are negligible) 

The time given is for GLYPNIR implementation of the 

code without consideration of the time taken for I/O.  Using 

a double buffering scheme, the only extra time consumed would 

be execution of ^de for I/O control and bookkeeping.  The 

additional code should not increase the estimated time beyond 
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two seconds/time step for the 101* node problem.  It is also 

possible to speed up the code by implementing the inner loop 

of the matrix multiply in ASK. 
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VI.  SUMMARY AND CONCLUSIONS 

A long-standing controversy between FE and FD methods 

has been partially resolved.  Both test calculations and 

theoretical comparisons bear evidence that the two numerical 

methods are very similar in nature.  The spatial difference 

coefficients for the simplest FD scheme are identical to those 

of the FE method using tetrahedral elements in a uniform 

rectalinear grid.  The difference coefficients obtained using 

trilinear FE bricks are considered to be superior to those 

obtained from the cell-centered-stress FD meti.od because of 

an instability that exists in this FD scheme.  The difference 

coefficients for the FE brick reduce to those for the cell- 

centered-stress FD method when a one-point integration procedure 

(implying uniform strain energy density within an element) is 

employed in evaluating the element stiffness matrix for the 

FE brick.  And, conversely, a FD method is described that 

results in the difterence coefficients for the FE brick using 

exact integration for the element stiffness matrix. 

The major difference in conventional FE and FD computer 

codes is in the processing of the numerical difference 

equations.  We are adopting an explicit time stepping procedure, 

which is generally associated with FD -odes and a type of 

artificial damping, which is almost ex:lusively associated 

with FE codes.  Also, we have developed and tested a simple 

non-reflecting boundary condition which is equally applicable 

to both FE and FD codes. 

Test calculations have been performed on S3's UNIVAC 

1108 co compare existing FE and FD codes.  Comparisons were 

made for two problems:  a spherically symmetric explosion 

with an exponentially decaying step pressure and Lamb's 

problem--an impulse loading applied to the free surface of 
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a homogeneous half space.  Neither method displayed note- 

worthy superiority on the two problems presented.  Further 

comparisons may uncover advantages of one method over the 

other for special problem conditions. 

Several machine computations have also been performed 

using the SWIS code to test certain aspects of the 3-D time 

stepping algorithm such as accuracy, artificial damping, 

computing ecoiomy, and the nonreflecting boundary condition. 

Very satisfactory results were obtained for the case of a 

step loading applied to a chain of 100 brick elements. 

A parallel processing time stepping algorithm for 

propagating elastic waves has been developed and tested on 

the UCSJ simulator.  A stress wave generated by a step loading 

applied to a four-element chain of brick elements was 

propagated part way down the element chain using S3's UNIVAC 

computer.  At an intermediate point in the serial machine 

calculations, the stress wave calculations were transferred 

ta  the parallel processing algorithm where four time steps were 

performed.  The results from the parallel algorithm were compared 

with the serial machine results to verify the 6LYPNIR code. 

Other major accomplishments that were completed during 

the period April 1972 through December 1972 and reported on 

in this report include:  the development of a 3-D grid generator 

the preliminary development of 3-D plot capability, and'the 

development of sparse matrix multiply and sort algorithms 

for processing on the ILLIAC computer. 

The adaptation of the ILLIAC JV system for processing 

elastic wave calculations is just beginning.  Based on timing 

estimates, the ILLIAC code is expected to be extremely fast, 

requiring about 0.4 seconds per time step for a 10"-node grid. 

In addition, there are virtually no geometric restrictions of 

the type that wo-ld preclude local mesh refinements or the 

treatment of odd-shaped solids. 
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Further development is needed to extend the elastic 

stress wave code for treating nonlinear materials.  Also, 

imaginative graphical techniques need to be employed for 

displaying results from stress wave calculations. 
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APPENDIX A 

FINITE BLBMENT FORMULATION 

A.l  VIRTUAL WORK 

Conservation of momentum for an arbitrarily nonlinear 

material is expressed at an instant in time by the virtual 
work expression 

fi    d^i 3<5u-       \ r 
ds = 0 

(A.l) 

,  is a specified in which 6u.  is a virtual displacement, T 

body force, and ?.  is a specified traction applied to the 

surface So.  This is the energy principle used to develop 

nonlinear procedures by the FL displacement method.  If we 

restrict ourselves to the small displacement theory of linear 

elasticity, the virtual expression reduces to 

/(pVui ♦ E. 
ikjl 

8u. 96u. 

Jx,  3x, - Fj öu.jdv - y T. 6U. ds = 0 

(A.2) 
where  E ;ikjl contains the elastic modulii.  For Isotropie 
materials, we have 

Eikjl = M «ij^ki + M 6il6k. ♦ X 6,,.6 
ik jl 

A.2  FINITE ELEMENT SPATIAL REDUCTION 

A single approximation is employed in conventional finite 

element procedures regarding the behavior of the dependent 

variable within the region of each element.  In this develop- 

ment we approximate the displacement field in an element by a 
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strains, 

•!,(;.«• K% (;)>|"IH ti<MT(x,>|uj(t,| (A.8, 

and stresses, 

ijkl —J^-   K^l  •      (A.9) 

Virtual fields are also expressed in ter-us of the polynomial 

interpolation field.  For example, the virtual displacement 

field appearing in Eq. (A.2} is simp.y denoted 

«UjOt^t) =<>e(x)> |«üj(t)j  .        CA.10) 

In order to assure continuity in the displacement field 

across the interface of adjacent elements, the interpolation 

functions must satisfy the condition that displacements along 

that portion of an element boundary common to an adjacent 

element only depend on the nodal displacements located on 

that boundary.  That is, a nodal displacement must have no 

influence on the surface lisplacements at the opposite end of 

the element.  When this requirement is fulfilled the displace- 

ment field on an element surface, as deduced from Eq. (A.4), 

becomes 

Nb 

UjCx.t) = £ ♦SW v\n(t) (A.11) 
n=l 

or in matrix form 

u^^t) = <(Ax)> \v\(t)\ (A.12) 

for x on element boundary b.  The following section, "Iso- 

parametric Elements", describes how this requirement is ful- 

filled, ever when using curved elements. 
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The polynomial approximation to the element displace- 

ment field is incorporated into the governing virtual work 

equation, Eq. (A.2), to yield 

E 

e = l       Ve 

e=l /.<♦•> 
r. dv 

e = l 
l"1!! /. 

< 34) 
e. 

3x. 
j 

ijkl 9X. 
dV U kl 

b = l 

T 
T. dS 
i 

(A.13) 

in which volume integrals are carried out element by element, 

E denoting the total number of elements, and similarly the 

surface integral is carried out surface by surface,  B de- 

noting the total number of element surfoces on S . 

The elements are now assembled by joining the noder 

common to various elements.  Symbolically this can be accom- 

plished by expressing element and boundary nod<s, in terms of 

the global system, i.e.. 

Kl ■ tT6] luJ (A.14) 

where  U.   is a column listing of all of the nodal displace- 

ments that appear in the entire continuum.  Each row of  [T ] 

has just one nonzero term which is unity.  The term is located 

to pick out the node from the global system that corresponds 

to the element node associated with that row.  Similarly, the 
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transformation from the global numbering scheme to the surface 

numbering scheme is expressed 

|Ui| - I^lKI CA.15) 

Equation (A.13) is then expressed globally using Bqs. (A.14) 

and (A.15) to obtain 

where 

!Ui!TH"i| + '"u'hl-l'il) 

E 

[ 
e = l 

[N]   ■    J^   [Te]T[Me][Te] 

(A.16) 

[Me]   ■   /   <*e>TD<^e> dV (A.17) 

[«ijl   ■    J}    [Te]T[K^][Te dV 
e = l 

[K 

ve 
<3(j)e> E. d<t>e> 

5x7   ikjl  3x. dV (A.18) 

E 

[ 
e = l 

F,) ■  r IT«^ /(O'r dV 

vv 

b=i    v 
dS (A.19) 

Since the virtual displacements are arbitrary, the discre- 

tized version of the virtual work expression, Eq. (A.16) 

93 

■ ■'  —- ■•- 



-^—" PVI   Hill 

reduces  to 

[MJJU^DJ    ♦   [K-.JjU.Ct)!    =   iF.Ct)! (A.20) 

from which we obtain Bq, (2.10) in Section 2.4. 

A considerable reduction in tiie computing effort can 

be achieved by d:agonalizing the mass matrix [M], i.e., by 

lumping the element masses at the- node points.  One way ol 

diagonalizitti  LM]  is to set each diagonal term equal to 

the sum terms in the corresponding row.  Many studies have 

been conducted to examine the effects that lumping the masses 

at the nodes has on the resulting calculations.  The general 

concensus is that little if any advantage is gained by carry- 

ing the nondiagonal mass matrix, and considerable computa- 

tional advantage is gained by diagonalizing  [M]. 

A.3  ISOPARAMHTRIC ELEMENTS 

Numerical refinement and computational efficiency is 

ol" the utmost importance in treating stress waves in three- 

diMiensional solids.  For this reason, highly sophisticated 

three-dimensional elements are being considered.  Figure A.l 

illustrates the basic tetrahedral clement that is presently 

coded into STATIC, one of S3ts static finite element analyzers. 

The element is of comparable accuracy to a low order differenc- 

ing scheme, with properties similar to the basic trian^uia. 

element used for two-dimensional analysis.  Th« tetraheJr?i 

shape is ideal for simulating irregula- geometries as has 

been demonstrated by Frazier (1969). 

Both two- and three-dimensional isoparametric elements 

are presently being coded into STATIC.  The remaining portion 

of this section briefly describes how these higher order 

elements are being developed in three-dimensional space. 
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As indicated by Figs. A.2 and A.3, a skewed hexahedron 

representing a typical finite element is mapped into a two- 

unit cube.  This mapping, which is not necessarily conformal, 

is defined by the expression 

xi ■ <*et5'> Wj (A.21) 

I e i 
in which  [Xij  is a column listing of the coordinates of the 

node points associated with element  e  expressed in the global 

Cartesian system  i^ and ^(n)^ is a row listing of spatial 

interpolating functions expressed in the local coordinate sys- 

tem n..  Specifically, the spatial interpolation functions 

for the linear isoparametric element of Fig. A.2 are given by 

(t)e(n) ■ (l + n ) (1 + n ) (l + n )/8 
1  ~ 1 2 3 

<|)e(n) = (1-n ) (l + n ) (i + n )/8 
2 ~ 1 2 3 

4)e(n) = (l + n ) (l-n ) (i + n )/8 
3 ~ 1 2 3 

ith similar expressions for (|)e(n) ... <()e(n) , 
8  - 

(A.221 

and the spatial interpolation functions for the quadratic iso 

parametric element of Fig. A.3 are given by 

te(n) ■ (l+n ) (i+n ) (l+n ) (n +n +n - 2)/8 
1 "' 1 2 3      12   3 

I (ril = (l-n ) (l + n ) (l + n ' (-n +n +n - 2)/8 
2 ~ ' 2 i        12   3 

with similar expressions for <pe(n) ...  4>e(n) 
3  ~ 8  ~ 
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(x^, xO. iß) 

(a)    Clobal  coordinatei of the 
nsscmhlcil   solid. ft)     Local   natural   coordinate's 

of   the   c leiiifi.t . 

Inner-clcmenf  DisplaceMntc  (linear): 

l      i      i 

- <*(n)>,
|iii| 

Fig. A,2--Basic isoparametric hexahedron element that 
permits linear displacements within the region of the 
element and gives continuous displacements across 
element boundaries. 
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CD 

X  ,11 

' f © 
©     ©    © 

X  ,11 
I  I 

(a)  Global coordinates of the 
assembled solid. 

(b)  Local natural toordinates 
of the clement. 

Inncr-elencnt displacements (quadratic) 

•»•^ n'1 n6 nY 
I   2   1 

98 

'<♦(>))> fllJ 

Fig. A.3--Curved isoparametric element that permit: 
quadratic displacements within the region of the 
element and gives continuous displacements across 
element boundaries. 
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♦   (n)   ■   fi-n  )2(l+n  )   (l+n  )/4 
9     - 1 2 3 

4>     (n)   =   [1-n  )2(l-ri  )   (l + n   )/4 
It    - 1 2 3 

with  similar  expressions   for     cj)6   (n)   ...   <t>e   (n) (A.23) 

Thus liq. (A. 21) yields, point by point, the global 

coordinate value  x.  corresponding to each local coordinate 

value  n. .  When r\.     is equal to an element node point 

(I1»li»+1). x.  will take on the value of the corresponding node 

point in the global system.  The same requirement is placed 

on the displacement field:  When the displacement field is 

evaluated at an element node point, the corresponding nodal 

displacement is obtained.  Consequently, the same spatial 

interpolation functions are used for the displacement fiel» . 

ui(n3 =O
e(n)> jujj (A.24) 

Spatial derivatives with respect to the global Carte- 

sian coordinates are expressed in terms local coordinate 

derivatives using the chain rule for differentiation, 

3£ 
3X, (n) 

\ 
i  * 

9n in 
3X, 

21 
3P 

(n) 
m 

(A.25) 

We note that  3rim/
äx

k  is not known explicitly, but its in- 

verse, dx-K/
d^m>   is computed directly from  bq. (A.21), 

äoc, 

an m 
ii. 
9n (n) 

m 
(A.26) 

The volumo integration that is involved in defining 

element properties, bqs. (A.17), (A.18), and fA.l»), is carried 

o\t   in the local coordinate system ov^r the two-unit cube using 
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the property 

dx  dx  dx  = J(n)dri  dn  dn 
12    3       ~    i    z    3 

(A.27) 

where the transformation Jacobian .J  is simply the determinate 

of  3x,/3ri   of I:q. (A. 26), i.e., 

.J(n) ■ Det %('j>) 'x! (A.28) 

Using the appropriate spatial interpolation functions given by 

Lqs. (A.22) or fA.23), the element mass matrix, as defined in 

Hq. (A.17), is given by 

+1   +1    +1 

[M6] iff (f*^) p i^^yj dri
1
dn

2
dri3rA-29^ 

and the element stiffness matrix, as defined by Hq. (A.18), 

is given by 

+1 +1 +1 

[Ke.] 1   iJ /. /, /. R) 
ax^-./^e 

an (n) >      l-;, 
34) 

n ikjl<v3nn 
in) h 

J dn    dn    dn 
1 2 3 

rA.30) 

The actual integration is carried out numerically using the 

Gaussian quadrature integration scheme. 
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APPENDIX B 

ARTIFICIAL DAMPING 

B.1  CAUSES OF NUMHRICAL OSCILLATIONS 

In the absence of numeiical damping, computer calcula- 

tions for the propagation of discontinuous wave forms contain 

oscillations that die out away from the propagating discon- 

tinuity, as illustrated in Figs. 3.« and 3.7.  These nuisance 

oscillations are the result of two phenomena.  One is not re- 

lated to tiie propagating nature cf the wave but is simply 

due to the truncation error of approximating a discontinuous 

function by piecewise polynomials of low order.  The result 

is quite analogous to the CUbb's phenomena of Fourier Analy- 

sis - oscillations in the vicinity of discontinuities.  Just 

as with the oscillations from a truncated Fourie • series, a 

nonoscillating signal can be obtained by suppressing the 

participation of the higher wave numbers (short wave length) 

in a transitional manner so that the highest wave number is 

suppressed the most. 

The other source of the numerical oscillations resuUs 

from numerical dispersion - the higher wave numbers tend to 

propagate at a velocity slightly different from the low wave 

numbers which propagate at the velocity of the medium.  When 

the consistent mass matrix of the FF method is employed, the 

higher wave numbers propagate at a higher velocity than that 

of the medium.  This fact is the direct result of the eigen- 

values (natural frequencies) of the discrete system being 

bounded from below according to the Rayleigh quotient, 

IVashizu (1968).   The result of the high wave numbers' 

propatating at a slightly higher velocity is seen in work by 
Goudreau (1970). 

The dispersion from the lumped-mass approximation of 

FE, whici: is equivalent to the FD method, i; not entirely 
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one-sided. The eigenvalues obtained by using the lumped 

mass approximation can lie both above and below the correspond- 

ing eigenvalues for the bounded continuum.  The preponderance 

of dispersion, however, is of the type where the higher wave 

numbers propagate at a slightly lower velocity than the velo- 

city for the medium. 

The elimination of the dispersion-induced oscillations is 

similar to that for the nondynamic oscillations - suppress 

the higher wave numbers in a transitional manner.  The suppres- 

sion of the higher modes needs to be more pronounced as time 

increases in the calculations, because numerical dispersion 

causes the higher modes to become out of phase with the wave front 

by an ever-increasing amount.  Therefore, a steep wave front 

will necessarily deteriorate somewhat at late times.  In 

Fig. 3.8, we observe that a velocity step (particle velocli^j 

spreads over about 10 zones after propagating through 160 
zones. 

It is appropriate to note that earth materials display 

damping properties.  Low amplitude seismic waves are attenua- 

ted in a frequency dependent manner - high frequency waves 

(short wave lengths) are attenuated more rapidly than low 

frequency waves (long wave lergths).  Also, high amplitude 

waves passing through a small block of material trace out 

a hysteresis loop when stress is plotted against strain.  The 

area of the loop gives the energy density that is lost in the 

nonlinear dynamic process.  The type of artificial damping 

that is developed below to remove numerical oscillations also 

results in a hysteresis loop, which is an ellipse.  The 

numerical viscous damping parameter can be adjusted to 

cause the area of the elliptical hysteresis loop to be equal 

to the area that results from the nonlinear earth material 

so that the energy loss of the linear system becomes equal 

to the energy loss from the nonlinear material.  Care must 

be exercised in this procedure to assure the two systems are 
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made equivalent at the predominant frequency of the propagat- 

ing waves, because the energy that is dissipated per cycle of 

ground motion may have a different frequency dependence for 
the two systems. 

B.2  MATHEMATICAL ANALYSIS OF ARTIFICIAL DAMPING 

In this development we will treat three types of arti- 

ficial damping; each has a different frequency dependence. 

The damping matrix of Section 2.4 is set to 

ig]   ■ a[M] + 2t[m]h  + 3[K] (B.l) 

where  [M] = 6^ [M] .  The matrix square root  [KMp  is de- 

fined in terms of the eigenvectors (mode shapes)  {$}  and 

eigenvalues (natural frequencies)  i^, m = 1,2, ... 3N for 

the discrete system 
3N 

where the 3N eigenvalues and corresponding eigenvectors are 
computed from the equation 

[^]{i}
m  = "»IfMlUL, ,  m = 1,2, ... SN — m (B.3) 

and  Mm is the normalization constant for scaling the m— 

eigenvector.  Orthogonality between the various eigenvectors 
is expressed 

{.il'lMlU}  = M 6 
nl J — m   m nm 

The eigenvalues are conveniently arranged in ascending order. 
i.e., w < u 

m - m+1 
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The expression for the artificial damping matrix above, 

Eq. (1,1), is substituted into the linearized discrete equa- 

tion of motion, Eq. (2.10), to obtain 

[M]{U(t)} + [aM ♦ 2c/p + ßK]{U(t)} ♦ [K]{U(t)} = (F(t)) 

(B.4) 

For the purpose of conciseness, we will not develop 

modal decomposition for systems in which nodal displacements 

are specified;  we will restrict our development to systems 

in which surface tractions are specified on the boundaries. 

For the case involving no specified nodal displacements, the 

eigenvectors form a complete set of basic functions for ex- 

pressing the nodal displacements at an instant in time.  That 

is, the nodal displacements can be expressed as a time vary- 

ing linear combination of the eigenvectors for the discrete 

system 
3N 

(ü(t)) = F Tk(t ) (4) fB.5) 

k=l 

where Tk(t)  is the time varying participation coefficient 

for the k— eigenvector. 

The above eigenvector expansion for the nodal displace' 

ments is substituted into Eq. (B.4).  The resulting simul- 

taneous equacions, expressed in matrix form, are then de- 

coupled by premultiplying through by M" {$}T    to obtain 

The more general case involvi 
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wlicre 

and 

Tn^^ + 2cnTn(^ + *PnW   -  <*»<*> 

C, = a/2 + c-ü  + ß/2a)? 
n n      n 

Qn(t) = ^i^l  (P(t)) 

(B.6) 

In obtaining the decoupled equation above, we have used the 

substitution 
3N 

,1      T 1 

M r'u^LKMr T tk(t){i}k . .ntn(t) 
3 = 1 

from Bq. (B.2).  Also, we have substituted 

3N 

M^U^K] J2   \^{*-h  =  »iVt] 
k = l 

using Eq, (B.3) 

th The general solution for the n— participation co- 

efficient is now expressed using a convolution integral in 

time 

-c t 
T (t) = e n  cot«, t T (0) nv ^ un  n^ -^ 

-c t 

4e  "   (■i■<(0, * W«) •1»-.tot 

— f 
an       n 

-C«(t-T) n 
sinu)dn(t-T)Qn(T)dT (B.7) 
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where 

wj = \u2   -   c2 
dn  ' n  ^'n  • 

Tn(ü) = Mn
1{i}J[M]{U(0)} 

and 

t (0) «i^l^MJ (0(0)) 

(U(0)}  and  {U(0)}  being the initial conditions for the 

nodal displacements and velocities, respectively. 

From Eq. (B.7), we can see how the various types of 

damping influence the dynamic response to a linear system. 

First, we see that the natural frequencies are reduced hy 

the factorVl - c2/^ < 1 which may result in additional 

dispersion, particularly in the higher nodes where c is 

the greatest. More importantly, however, we find that the 

free vibrations that result from excitation at t = 0 are 
damped by the factor 

-c t 
e n  = e n e     e 2 n 

(B.8) 

Thus, we have shown that the term a damps all eigenvectors 

equally,  5 damps eigenvectors an amount proportional to 

their respective natural frequencies, and  ß damps as the 

square of the natural frequencies.  Incidentally, the  ß 

damping, which has been incorporated into the ILLIAC lime 

stepping algorithm, results in imping only in elements 

undergoing a strain rate; those elements experiencing rigid 

body deformations experience no damping. 
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B.3  ESTIMATING AN OPTIMUM DAMPING COEFFICIENT 

The ß-type damping is most appropriate for the numeri- 

cal calculations and is used in the -.ime stepping algorithm 

of Section 2.4.  We will n^.w develop a technique for pre- 

dicting values of  ß  for use in numerical calculations. 

Equation (B.8) permits us to set  ß  to damp a specified 

eigenvector any desired amount.  First, let us relate eigen- 

vectors, eigenvalues, and wave lengths.  For 1-D geometry (or 

plane waves), an eigenvector, chiracterized by a wave length 

X , has an associated eigenfrequency given by 

n 2TT (B.9) 
n 

V for where c = V  for propagating  P waves and c 

propagating  S waves.  We note that this expression is used 

only to estimate the natural frequencies of the discrete sys- 

tem.  Our estimate for  üJn  is substituted into (B.S) with 

a = ;; = 0  to obtain a damping factor 

c t    -27r2c2ß t/X2 n _ „ n 

Thus, to select an optimum  ß  for a particular calculation 

we must establish three quantities: 

1. The wave length of the spurious oscillations 

that are to be damped.  From Fig. 3.6, we find 

spurious oscillations with wave lengths up to 

about six grid dimensions, i.e., X  = 6AX. 

2. The time at which the oscillations should dis- 

appear.  This presupposes that we are willing 

to tolerate some oscillations in the very early 

stages of the calculations.  Let us consider 

the case where At = sL-    and the oscillations 
P 

(B.10) 
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ave to he removed by the time a  P  wave 

crosses 50 grids, i.e., 

100 At = 50 AX 

A damping factor 

-c t    - | »«t 
e    = e e"2 ■ 0.135 

is sufficient to remove the oscillations. 

The optimum value of  ß  for the job is then calculated 

from Bq. (B.10) 

-2TTC
2
B t/X2 

n -2 
e = e (B.ll) 

so that 

ß /At =   0.15 

for P waves.  Similarly, we compute an optimum  ß  for 

eliminating spurious oscillations after S waves have 

traversed 50 grid dimensions to obtain  ß  = 3ß   for 

V /V  = /T-.  It is interesting to note that the test cal- 
p  s b 

culations presented in Section 3.3. Fig. 3.7, indicate 

0.1 < ß/At < 0.2 for the P-wave calculations.  for propagat- 

ing  S  waves we got ß/At = 0.5. 

(B.12) 
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