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PRtFACE 

Thi. report has been prepared with the aid of an on-line graphic! 

text editor deficient In it. lack of underlining. UPPER CASE is uaec 

throughout in pUce of underlining. We hope that this causes no 

confusion. 

References in the text are cited by author na,ne(s) and year, ..nd are 

given in Chapter 8.  References cited with an "A2" instead of the year 

refer to system descriptions contained in Appendix 2.  For example, 

"(Wensley 72)" refer« to a reference provided in Chapter 8, while 

"(Wensley A2)" refers to the description of a particular system found 

in Appendix 2.  Further references are also found in each of the 

appendices. 

In the light of the existence of several extremely comprehensive 

bibliographies in the area of fault tolerant computirg (cited at the 

beginning of Chapter 8), we have chosen to be selective in our 

references. Where a multiplicity of reference, is relevant, we have 

sometimes cho.tn to cite only the most recent ones, so that the 

interested reader can pursue earlier references by indirection. 
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A STUDY Or FAL'LT-TOLLRANT CnKPUTING: FINAL TECHNICAL RLPORT 

Peter G. Neumann, Jack Goldberg, Karl N. Levitt and John V,  Wensley 

Computer Science Group, Stanford Research Institute, Menlo Park, CA 

CHAPTER 1,  SUMMARY OF THIS REPORT 

This report presents the results of a study of the state of the art of 

designing fault-tolerant computing systems. This chapter provides a 

summary of the technical problem, the technical results, the relevance 

of the study to the Department of Defense, to users and to vendors, and 

Implications for future research and development. 

1.1.  THE TECHNICAL PROBLEM 

The purpose of this study Is 

* To survey and evaluate existing systems, system concepts, and relevant 

existing theory. In order to assess the art of designing effective and 

economical fault-tolerant systems. 

* To define and evaluate new approaches to the design of computing 

systems with Improved fault tolerance. 

The system goals of Interest Include the attainment of: 

* CORRECTNESS— High degrees of correct operation despite the occurrence 

of faults in hardware. 

* AVAILABILITY— Very high systcn availability (i.e., very little 

down-time), with little or no emergency maintenance and possibly very 

little maintenance at all. 

* RECOVERY— Rapid recovery from faults not immediately tolerated, with 

llilted but known (and usually recoverable) losses. 

- - 
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* ECONOMY— Low redundancy relative to system replication, and low cost 

of fault tolerance relative to the total environment in which the 

computer system exists. 

System goals are considered that might require massive equipa«nt 

redundancy (e.g., for extremely high correctness, or very long 

zero-mrintenance lifetime, or extremely fast recovery), but these goals 

are not of primary interest here. 

1.2. TECHNICAL RESULTS 

The basic conclusion of this study is that substantial fault toletonce 

can be achieved at surp-lsingly low cost (in both hardware and software) 

under a wide range of operating requirements. The fault tolerance 

attainable with the present state of the art is much greater than in 

present systems, and satisfies many present demands.  Further 

improvtments are also possible that would allow design of still more 

powerful systems. This basic conclusion is especially applicable to 

large systems with flexible real-time requirements.  Such systems 

include general-purpose systems, message store-and-forward systems, 

communications processors, and networks. 

In Chapters 3, A, and 5 of this report, we review many techniques for 

fault tolerance. These techniques facilitate the detection. Isolation, 

location, and removal of errors, and the recovery from the effects of 

these errors,  in Section 3.J, system architecture» are considered, 

includlnc a variety of simpltx and multiprocessor configuraMons.  In 

Chapter 6, the techniques for fault tolerance are appli«d to these 

architectures. Quantitative measures of system correctness, 

availability, recovery, and cost are given for each of these 

architectures. 

We find no fundimental guya  in the state of the hardware design Wj; 

preventing the attainment of high degrees of fault tolerance at loh cr>at 

relative to the overall system — except for questions of recovary speed 

and very long unattended life discusse«* bexow. On the one hand, there 
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are appHcations In which the computer systenis represent only a sntall 

portion of the total costs, e.g., in special-purpose control 

applications.  In these cases, the extrer.e solution of replication of 

computer equipment with comparison or voting may be economical overall. 

In mobt existing systems and system designs for such applications, which 

provide guaranteed fault tolerance for essentially all single faults, 

anywhere from 60 to 8U percent of the hardware is typically devoted to 

fault tolerance.  On the other hand, we find in general that 10 to 40 

percent of the hardware devoted to fault tolerance is sufficient to 

achieve adequate correctness and availability for many systems, except 

when all system results have highly critical real-time requirements on 

correct performance.  Such low redundancy can be achieved by a 

rcnblnatlon of techniques (both existing and newly developing), and by 

c. reful use of structure in the system, buch structure facilitates 

taking advantage of the nonuniformity of internal system requirements, 

and permits various fault-tolerance techniques to be used when and where 

they a^e most effective, rather than uniformly.  The resulting 

partitioning makes complete single-fault tolerance necessary only within 

certain critical partitions,  it also facilitates speedy recovery when 

essential.  Such structure also facilitates graceful degradation of 

performance. 

We do find fundamental gaps in the art of designing and implementing 

software to support hardware facilities for fault tolerance. This art 

is notably weak in the areas of specifying and verifying system designs 

and implementations in a way that unifies hardware and software with 

proper consideration of operational needs.  This weakness is especially 

evident with respe ct to the poor state of operating systems, and in the 

adequate coverage and resolution of system diagnostics. As noted above, 

present systems and the present design art are seriously deficient in 

the speed of recovery following faults.  Solutions to this problem 

require advances in hardware and software for improved diagnosability, 

and in total hardware- software integration. The art is also weak in 

maintaining smoothly degradable performance l.t a low-maintenance 

environment. 



In modern computer design, boundaries between hardware and software are 

becoming increasingly diffuse.    There  is  a real need to upgrade the 

fault-tolerance  design art  so that  it  can become a standard  facet of 

computer design.     Significant effort  is  required in system software and 

system operations  to assure that good hardware development is not 

compromised.    We emphasize the critical importance of developing 

balanced system designs well suited  to particular system needs.     It  is 

helpful if system poals can be integrated  from the beginning,  rather 

t'.ian  retrofitting  favl;.  tolerance  into a system not  designed with  it  in 

mind.    To  this end,  the concept of system structure is useful in all  the 

stages  of  system development,  including  the design,  implementation, 

verification,   use,  operation, and evolution of the system.    Structured 

design and  implementation hold great  promise  for improving the art,  not 

just  for  fault  tolerance, but for computer system design in general. 

In many  cases,  high  availability  cannot  be  achieved without a secure 

system  (employing protection mechanisms  in  the hardware and operating 

system to assure  that it is relatively  crash-proof).     In turn, such 

security  cannot  be achieved without high  reliability,  especially  in  the 

portion of  the system that affects security.    System structure can also 

be helpful  in achieving  the goals of security. 

Our conclusions  also include implications  of system design on  the 

operational  and human aspects, which play a critical role in keeping a 

system highly  available.     These  include not only considerations 

affecting  coi-ectness,  continued system availability, and rapid 

recovery,  but  a.1 so those  lessening  the  critical dependence on 

aoministrators,  skilled operators,  and maintenance  personnel. 

V.e conclude   that  the attainment  of a  sufficiently  fault-tolerant system 

is possible  for various particular applications at relatively low cost. 

However,   considerable care  and comnon  sense  are  still  required in system 

implementation.     Our survey of existing systems  shows  that seemingly 

obvious measures  for  fault  avoidance  are often ignored.     If the  reader 

occasionally   finHs  a statement  that  seems  obvious,  it may be Included 

here for completeness, or because it serves as a basis  for subsequent 



discussion, or because there are hidden difficulties in implementation. 

We pose the challenge to practitioners and theoreticians of fault 

tolerance to find structures and theories that move these "obvious" 

desipn decisions from the domain of food judpnent to that of systematic 

practice. 

Many of the techniques discussed in this report are useful with 

present-day technologies. Others are particularly suited to emergii.p 

technologies such as LSI, which can have a significant effect on system 

fault tolerance, e.g., due to compactness, low heat generation, and low 

cost. These latter technologies will permit the use of techniques not 

previously practical. However, the trend to high-density systems using 

advanced technologies (for memory as well as processing) will not 

obviate the ne^d for architectural measures to achieve fault tolerance. 

It is true that the unit reliability of new LSI devices is not much less 

than IC and MSI devices, while the devices are significantly more 

powerful.  Thus, a given function may .ie realized in LSI with higher 

reliability due to the use of fewer devices.  However, while the numoer 

of devices per function decreases, there is a strong tendency for large 

general-purpose systems to grow, up to the limits of cost.  For example, 

there is a trend toward increasingly powerful hardware in order to 

simplify programming. 

An additional factor is the limit on reliability imposed by the hign 

cost of testing a device to an assured level of reliability. While a 

device may be extremely reliable, the system designer can assume only 

that reliability that can be demonstrated.  The current practical limit 
— 6      —7 

on testable failure rates for a device ranges from 1U  to 10  failures 

per hour. This implies that, for very large systems, the projected 

system failure rate would be 10~  to lo"2 lailures per hour.  This tlearly 

requires system-level fault-tolerance measures. 

The work reported here is novel in several respects.  It represents both 

theoretical and practica: approaches to economical fault tolerance, 

rather than the use of missive redundancy.  It provides a framework for 

a unified hardware/softtare approach to system design for fault 

_ _ _ 



tolerance. It afcempts to show explicit cost figures for fault tolerance 

over a wide range of architectures.  It also includes several new 

theroretical results on reconfiguraM.e memories and on coding for 

arithmetic. 

1.3.  RELEVANCE 01- THIS STUDY 

This work is applicable to many kinds of computing systems. These 

include systems with general-purpose and/or special-purpose capability, 

and network control computers such as the interfac-f message processors 

(IMPa) in the ARPA network. 

1.3.1.  RELEVANCE TO THü DEPARTMENT OF DEFENSE 

Specific conclusions of our study affecting the Departrent of Defense 

include the following. 

* Significantly better fault tolerance (e.g., correct behavior, high 

availability, rapid recovery, and high system security) can be obtained, 

even in the presence of malfunctions. 

* Significantly more economical fault tolerance can ,e achieved, with 

more efficient use of redundancy, more remote diagnosis and maintenanca, 

more automatic self-maintenance (e.p., the use of spares, with automatic 

reconfiguration), and less emerpency maintenance. More automatic 

operation will result in reducing the unnecessary reliance on 

potentially unreliable people in critical positions. 

* While the primary scope of this report involves the design of large 

peneral-purpose systems, there is considerable potential for 

applicability to tactical and other real-time control systems. 

* Significant effort must be expended to ausure overall system 

reliability, e.g., effort concerning good software design and 

implementation, reliable operations personnel, and other system support. 

■■M _M 



Otherwise, good hardware desipn nay be wasted.  In addition, history 

shows that computer manufacturers have been slow to respond to customer 

needs that have not been clearly and forcefully enunciated. We feel 

that If ÜOD wishes to have systems with economical fault tolerance, :'t 

must stimulate manufacturers to develop such systems by defining and 

enforcing fault-tolerance requirements in term of realizable 

specifications. 

1.3.2. RELEVANCE TO USER COMMUNITIES 

The recomnendations here generally make most of the mechanisms for 

achieving high reliability and high availability invisible to system 

users during system operation. However, user coranunlties will have to 

exhibit greater awareness of what can be achieved and what they might 

require. They should clearly define their needs, and exhibit 

considerable unity in presenting these needs to the vendors. 

1.3.3. RELEVANCE TO THE VENDORS 

In recent years several commercial vendors have undertaken serJjus 

et fort toward achieving fault tolerance in computer systems, primarily 

in the light f aerospace needs. Several useful steps forward have also 

been taker in some recent commercial systems, such as „he use of 

error-correcting codes and instruction retry, and the use of 

hierarchical recovery strategies. It is hoped that this report will be • 

helpful to all system development efforts in focusing attention on fault 

tolerance as an integral part of system development, tspecially since 

much can be done at low cost. Some of the techniques herein can be 

retrofitted onto existing systems. However, it is most cost-effective 

to integrate fault tolerance into the overall design. 

1.4.  IMPLICATIONS FOR FUTURE RESEARCH AND DEVELOPMENT 

While our basic finding is that the present art provides the basis for 

reliable systems at reasonable costs, there exist limitations which, if 

overcome, could result in further significant improvements (e.g., by 



reducing recovery tine, by reducing the residual error rate, and by 

further reducing the cost).  In Chapter 7, we sunmerize some 

recoaaendation« for achieving such improvemer s. 'hese include better 

techniques for error detection and fault diagnosis, novel architectures 

specifically suited to fsult tolerance, and significantly improved 

techniques for the analysis of fault-tolerant systems. 
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CHAPTER 2. 1NTRÜUUCTI0N 

As used here, the tern "fault tolerance" is used broadly Co »ean the 

ability of a system to withstand various cinds of hardware malfunctions 

and mishaps. There are varying degrees of fault tolerance, including 

continued correct performance for some portion of the system, and 

continued availability of some portion of the system, although possibly 

with degraded capacity. There are increasingly many applications 

requiring much better fault tolerance than is currently available. 

Those of interest here include general-purpose rystems with both batch 

and interactive capabilities, as well as various special-purpose systems 

such as message switching systems. Our emphasis is on economical fault 

tolerance for applications with varying real-time cnticalities. The 

work is also relevant to various aerospace applications that are 

currently approached with massive redundancy. 

We are concerned primarily with system-level techniq les for increasing 

fault tolerance, rather than with techniques for improving the 

reliability of various technologies. Thus, we focus largely on system 

architecture. This chapter provides an introduction te the report. 

Chapter 3 gives a guide to the techniques for fault tolerance useful at 

various system levels, and illustrates their applicability to system and 

network architecture.  Included are simplex systems and multiprocessors 

(with widely varying degrees of parallelism, independence, and common 

information access).  The chapter also discusses the role of structure 

in the attainment of econcnical fault tolerance. Chapters A and !> 

present some advances in architectural techniques for fault tolerance. 

Chapter 4 considering memory, ani Chapter 3 considering arithmetic, 

logic, and control.  Chapter 6 considers different application fields 

(special-purpose, aerospace, communications, etc.) and presents "he 

special requirements for fault tolerance in each field. From these 

special requirements, appropriate techniques and architectures are 

derived, and their effectiveness considered. Ctiapter 7 provides the 

conclusions of our study, along with specific recommendations for future 

research. 

■   e^n MaMMt 
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Several ippcndlccs are Included. Appendix 1 provides a census of fsult 

tolerant, systems. Appendix 2 provides s detailed survey of various 

representative systems. Appendix 3 gives substantially greater detail 

to support the memory organizations of Chapter 4. Finally, Appendix 4 

presents some new results on byte coding for arithmetic. 

2.1.  BASIC DEFINITIONS AND ASSUMPTIONS 

In this section WP present definitions of the basic terns associated 

with faul'.-tolerant systems.  In addition, we present a few assumptions 

that v^/e guided us in the design tpproaches considered here. 

FAUL-   ERRORS AND FAIL'JRES 

The terns "fault" and "error" are defined with respect to the interface 

of a hardware or software mechanism, e.g., a component or a subsystem, 

whose output is observable at least to some other mechanism. An ERROR 

io a disparity between the actual output at such an interface and .he 

value expected under normal operation. Examples are an incorrect result 

from an arithmetic unit, an incorrect word in a memory unit, and an 

incorrect word involving an input-output device.  Errors may be SINGLE 

or MULTIPLE, depending on their nature. I -»r example, an additive error 

in a single bit position of an adder could affect several bit positions 

(with csrries), and would appear to be a multiple error in memory. 

Errors may be DETECTED or UNDETECTED at a particular interface. For 

example, single memory errors are detected by timple parity checking in 

memory, but double errors (or quadruple enors, etc.) are not. Errors 

not detected at one interface may be subsequently detected at another 

(higher-level) interface, e.g., vi.a consistency checks. 

A FAULT is ^n internal malfunction within a mechanism. It may or may 

not result Jn an observable error. This depends on the data that are 

actually ev.cered to the mechanism, whether or not the faulty part is 

redundant, and whether or not the mecanism has internal fault-tolerance 

capability.  Faults may be transient, intermittent, or permanent. A 

10 
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TRANSItNT fault is one that occuis once, leaving f.ie hardware in a 

fault-free condition, but with poss ble effects on the software and on 

system operation. An INT£RhITTLNl fault is one tnat recurs, with 

intervening fault-free periods. A PLRMANLNT fault is one that persists 

steadily without interruption.  In hardware a transient fault may become 

intermittent, and an intermittent fault may become permanent.  (The 

terms "transient" and "intermittent" are often merged.)  A transient 

fault might be caused, for example, by interference on a bus. A 

permanent fault might be due to a shorted transistor, shorted wires, an 

open connection, or a power supply fl-ictuation, for example. 

Faults are hardware phenomena, and ua potential sources of system 

errors. Other sources of systw errors also exist, e.g., mistakes in 

design, or misuse. Examples of potential sources of errors are found in 

Table 2.1,  (See also Vourdon 72.) 

The mechsnisms of trai.sient faults are not so well understood as, for 

example, permanent faults, but several observations are relevant here. 

* In many technologies, transient and Intermittent faults seem to 

dominate permanent faults by at least an order of magnitude.  Ihis 

dominance is partly because the nonpermanent faults are harder to find, 

and thus are usually not found oefore they can recur. If they degenerate 

to permanent faults, they usually become more readily identifiable. 

• A major cause of errors is poor design, e.g., in not prop.-rly handling 

the occurrences of exceptional cases (e.g., electrical disturbances). 

Examples of such cases are undesirable circuit coupling that is data 

dependent, unusual timing dependencies, and marginally designed power 

suppliies. 

INDEPENÜKNCE. An important property of multiple faults and multiple 

errors is their relative INDEPENDENCE or DEPENDENCE.  In the case of an 

LSI realization, a fault within a chip can result in multiple 

(dependent) errors f om that chip. Faults in different chips should be 

considered as independent if adequate protection exists at cuip 
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interfaces. For conventional core memories, core and line .- iver faults 

seem to occur independently of one another. Thus, f«r each »ut^yste« 

there is a primitive element or a set of primitive elements to which 

faults can be ascribed. 

The events following a fault are summarized in Figure 2.1.  When a fault 

is detected (e.g., via coding or duplication, or implicitly by fault 

masking), a recovery strategy is invoked, however, as long as a fault 

remains undetected, the effects of the fault may propagate.  It may even 

be compounded by further (dependent or independent) faults or by being a 

RtPtATtD-LSt fault (Avizienis 72).  In many cases fai Ity behavior is 

ultir-itely detected (although in extreme cases perhaps only by 

complaints following a system crash), at which point recovery is 

attempted. 

The possible effects of undetected errors sie (,uite varied. There is a 

wide range of effects of faults on system bdhavior. There are many 

forms of "crashes", gradual or sudden, impairing in varying degrees 

correctness, availability, performance and security. However, it is not 

necessary that all errors be detected in all situations.  For example, 

in a time-sharing environment most users are willing to accept 

occasional errors due to hardware faults, provided either they or the 

system can detect the errors, and provided adequate recovery and file 

integrity are available.  Users are normally not willing to accept 

frequent crashes, long outages, or loss of on-line files maintained by a 

system whose intent is to eliminate the need for private backup.  In 

ub.ge here, a FAILURE is an error whose effect is in some sense 

critical. Vtrious senses of "critical" are discussed in Section 3.2.2.. 

RELIABILITY, CORRECTNESS, AVAILABILITY, AND FAULT TOLERANCE. 

FAULT TOLERANCE is (roughly speaking) the ability of a system to 

withstand faults. The significant effects under consideration here are 

LOSS OF CORRECTNESS (e.g., as the result of errors in processing and in 

storage — the latter including damage to stored programs) and LOSS OF 

AVAILABILITY (e.g., the loss of computing capacity or storage capacity, 

12 
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Table 2.1 

üOiaE  SOURCES OF SYSTt:: LKkORS 

SOLRCES OF UABDWAXE FAULTS 

Physical bonds  and  loose  connectors 
Wear in novinf parts 
Material aginp 
Insulation breakdown 
l.nvlronmental effects   (e.g.,   temperature,, humidity, 

vibrations, electrical and electromagnetic disturbances) 
human-induced bi^akape 

OTHER SOURCES   (HARD,   SOFT,   OPERATIONAL) 

Inadequate  Jesign and implementation: 
Lack of checking and validation in interfaces, 
especially in  response  to unanticipated conditions 
Sensitivity  to  timing variations 
Data dependency effects 
Usage-induced hardware damage 
Inadequate system security 

Inadequate system verification 
Acts of God  (lightning,  floods, etc.) 
People problems  (e.g.,  adr ..Istration, maintenance, 

concurrent  development, operators, documentation) 
Power sources,  local and public utilities 
Support  functions  (e.g.,  air conditioning) 

DETECTION 
(ERRORS! 

(ISOLATION 
LOCATION 

RECONFIGURATION 
RECOVERY 

NONCRITICAL 
ERRORS 

PROPAGATION 

CRITICAL 
ERRORS 

FIGURE 2.1       MODEL OF FAULTY BEHAVIOR 
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or of response tine). A violation of system security may lead to loss 

of both correctness end  availability, as well as loss of other aspects. 

The absence of an expected output may also lead to the loss o* 

availability or correctness or both, depending on the application. 

AVAILABILITY is thus a measure of hsving operative resources thst r.an be 

called upon to handle a task. CORRECTNESS is a measure of how 

error-free a result is at some interface of interest. The term 

"RELIABILITY" is little used in this report in Its standard meaning of 

the probability of correct behavior at a specific time. The term 

"RELIABLE" is used in a qualitative sense to denote correctness and/or 

availability. 

As s means for evaluating a given system, it is desirable to derive 

quantitative measures cf correctness and aveiilability. The classical 

measures "mean rime to failure" and "mean time to repair" are not by 

themselves adequate measures for most complex systems.  Better measures 

are probabilities as a function of time that certain resouxces sre 

available and that certain data are correct. 

It is readily seen that a wide range of effects is possible. For a 

given fault (or combination of faults), these effects may range widely 

in their fault tolerance between two extremes — from complete fault 

tolerance (with no incorrect results visible externally) to a total 

collapse of the system.  In the latter extreme there may be extensive 

loss of correctness and availability for a protracted time during and 

after the collapse, and lengthy delays until correct performance and 

adequate capacity are agax available. Between these extremes are 

various forms of partial collapse, with varying degrees of 

recoverability. The early detection of faults iu also important to 

prevent potential security violations that may result from faulty 

behavior. Upon detection, diagnostic procedures can be used to assess 

the scope of the error propagation, and appropriate recovery procedures 

initiated. 

i 

There are two ways of using the concepts, of availability and correctness 

to design a system. First, for many applications one design goal is to 
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eliminate down-time entirely or at least to reduce it to a negligible 

amount.  "Negligible" might mean seconds in the case of a telephone 

utility, or minutes In the case of a time-shared facility, but in ary 

event the intent is to keep the machine running despite faults, pending 

maintenance.  For such applications it is usually sufficient to provide 

single-fault tolerance for such critical functions as file handlers, 

memory managers, and restart and recovery procedures, plus sufficient 

redundant hardware so that a working system can be configured after the 

occurrence of each fault.  Second, for applications where the computer 

is so remote as to preclude mair.tenar.ee, the important issues are: 

(a) the probability that the computer has sufficient resources left 

after a period of time, and (b) the probability that correct answers are 

produced for certain critical functions.  The aerospace environment is 

perhaps the main current example of this approach, although some 

transportation systems, electric power systems, financial systems tnc. 

secure systems have also been beneficiaries of fault-tolerance 

techniques.  J.n any event it night be necessary for a computer in such 

an environment to tolerate many faults. 

R'lDLNDANtY.  An important measure of the effectiveness of any 

fault-tolerant system is its REDUNDANCY.  Let "k" be the cost of 

hardware needed in the absence of any fault-tolerant requirement, and 

let "r" be the cost of extra hardware needed to achieve fault-tolerann 

behavior.  Then the relative redundancy "R" is R - r/(k+r) - r/n, as a 

fraction of the total cost "n" of the system.  (This measure !■ used 

more or less exclusively throughout this report, rather than the 

alternative approach of citing the percentage increase over a comparable 

intolerant machine, e.g., 2U0 percent for triplication.) This 

definition is consistent with the coding theory concept of redundancy, 

in which k, r, and n are measured in bits.  Except in relatively trivial 

system configurations, it is a difficult chore to estimate the 

redundancy.  For a system that just employs triplication of certain 

hardware blocks together with appropriate voters, the redundancy is 

(2+v)/(3+v), where "v" is the cost of the hardware voters relative to 

the functional block. The evaluation of redundancy is more difficult In 

a situation where, for example, a multiprocessor is used solely to 
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achieve fault tolerance. That la, if fault tolerance were not a 

requirement, then a conventional uniprocessor might suffice. Here "r" 

must include numerous items, for example, 

* Storage area to hold reconfiguration programs 

* Extra processing power to overcome the multiprocessor penalty 

* Redundant busses 

* Cache memcries to overcome bus traffic delays 

* Switches to s.coupliih reconfigurations 

* Storage areas to hold rollback Jcatus. 

Similar measures are meaningful for software costs and execution time. 

The priorities among the system goals may have major effects on the 

resulting systems, and may call for widely differing architectures.  In 

our consideration of various architectures in this report, ve attempt to 

evaluate the redundancy required, at least with sufficient accuracy that 

a gross estimate of system cost is possible.  Included are both 

low-redundancy design approaches for single-fault tolerance and 

higher-redundancy approaches for multiple-fault tolerance. 

2.2.  SEVERAL ILLUSTRATIONS OF FAULTY SYSTEM BEHAVIOR 

Several recent examples of failures in contemporary systems are 

instructive. The first provides a perspective overview, and concerns 

Multics (Saltzer A2), a system with little hardware redundancy but with 

file availability attained through software.  Here outages fall into 

three roughly equal categories: hardware, software, and operations. To 

make matters more complicated, system development typically has gone on 

concurrently with the operation of the production system, either 

simultaneously on the iame (two-processor) system or separately with the 

two processors partitioned. The hardware problems are fairly 

traditional (e.g., processor problems, memory errors, etc.), although 

the Multics software is tolerant of many input-output and secondary 

storage errors in terms of providing continued availability. The 

software problems are due mostly to new bugs introduced by the 

concurrence of the development effort, with new system versions being 
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installed as often as once a week.  (This Is In contrast to Ob/360( in 

which it appears that even the occasional new "debugged" release had 

some large number of bugs — the const int "1Ü0U" is popularly cited.) 

Similarly in operations, at least half of the problems are the direct 

result of the development process, arising through manual 

reconfiguration (due to a hardware design not intended for dynamic 

self-reconfiguration), or through changes in operating procedure. The 

remaining operational problems are typical, e.g., power outages.  Thus, 

about half of the problems are attributable to the coexistence of the 

development effort. The pattern of roughly equal distribution of 

failures due to hardware, software, and operations is found in many 

systems. The frequency of failures seems to diminish greatly if 

experiment-.itioi  lows down and production is stressed. 

I 

The second example involves the outage of a No. 1 LSS (Ulrich A2) office 

in lashville (at night), involving total outage of a few hours, with 

partial outage for ten hours.  This was preceded by accumulated errors 

in the call store combined with inadequate responses of the operating 

and maintenance staff, eventually triggered by malfunctions in both 

halves of the system. 

The third example concerns the Market üata System MÜS1 of the New York 

Stock Exchange, operating with dual systems.  After satisfactory system 

validation prior to the opening for business on Fe.. 2A, 1972, system A 

experienced a crash four minutes into the market session. Automatic 

recovery was successfully invoked within a few seconds by switching to 

system B, and correct operation continued with no loss. After off-line 

maintenance of system A, the contents of drum B were copied onto drum A, 

and both drums were again on-line. Unfortunately, during the time since 

the morning validation, drum B had developed a faulty master record, 

which was subsequently accessed.  This caused system B to halt.  Control 

was automatically switched to system A, whereupon system A also halted 

on the copy of that record. Manual recovery was lengthy, and the total 

outage lasted 29 minutes, the worst in seven years of operation.  (The 

HOT York Stock Exchange has since cut over to MDS2, with three 360/50» 

and a duplicated large core storage for files.) 
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The fourth example is that of a telephone system in Kuala Lumpur which 

collapsed twice in two years, with significant hardware damage. 

Subsequent analysis finally determined that each of these events 

occurred Just a few minutes before post time on the day of the annual 

horse race, damaging part of an exchange serving a community noted for 

its gambling spirit.  Unfortunately, the operations personnel were all 

at the track at the time, and could not notice the sudden overload in 

attempted calls. 

The first example illustrates problems that can be overcome by 

administrative control and by further isolating a development effort 

from production.  It also illustrates the enormous difficulty of 

discriminating among hardware-induced and software-induced errors. 

Multics and CP-67 provide environments in which noncritical development 

of software can be debugged on-line within a production system. 

Nevertheless, final debugging of critical system software is not easy 

without a separate system, including real users in a real environment. 

This problem is often very difficult, as in the case of the development 

for the Interface Message Processors (IKFs) in the ARPA Network. 

The second example illustrates the typical overdependence on the need 

for good field engineers.  In some cases high quality maintenance is 

possible (e.g., in the FAA air traffic control system, where the number 

of centers is small).  In the ESS case, wl ere many systems are involved, 

the problem becomes critical.  If a skilled engineer is required at all 

times at each installation, the system is poorly engineered.  If he is 

required only rarely, but then urgently, it is difficult to staff all 

centers with sufficiently skilled and motivated personnel.  The need for 

systems not requiring emergency maintenance is thus very great, 

especially when many systems exist at distributed locations, each with 

strict availability requirements. 

The third example illustrates the fact that software is usually never 

debugged an.  ver finished, as demonstrated by an unanticipated 

situation which hau never arisen in seven years' operation.  There are 
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many other tales of systems in which long-standlnr. hardware and/or 

soft/are bugs (in this case the lack of validation during copying) were 

discovered only after years of rperation.  In some of these cases, 

considerable reexamination of the correctness of earlier results was 

required.  Nevertheless, the MDSl system was quite remarkable in that it 

used off-the-shelf equipment and recorded a highly successful record of 

availability in its lifetime. 

The fourth example illustrates the danger in taking advantage of an 

apparently reasonable design assumption.  In this case it was clearly 

unwise to assume that traffic consisted of essentially independent 

random calls. 

Chapter 3 which follows discusses techniques for fault tolerance, the 

effects of faulty behavior and the recovery from it. 
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CHAPTLR 3. TtCHNIQUtS FOR FAULT TOLERANCE 

This chapter reviews basic principles and techniques in the present art 

of design for fault tolerance, and demonstrates their use in realizing 

economical system architectures. Section 3.1 reviews existing and 

proposed design techniques for fault tolerarce (applicable in hardware 

and in software). These include techniques for error detection, error 

confinement, fault location, reconfiguration, and recovery. 

Section 3.2 exan.i. «s the developing art of applying structure to system 

design and implementation, including the role of explicit structural 

levels in partitioning the hardware,, the software, and the microware. 

Concepts of criticality are discussed. The use -»f time-space tradeoffs 

useful in facilitating economical fault tolerance is investigated. Also 

considered is the rolr of system structure in achieving rapid recovery 

from faults not completely tolerated. 

Section 3.3. examines the application of these techniques to the 

realization of economical systems and networks. Various architectural 

types are considered.  Their relevance to specific applications is 

discussed in Chapter 6. 

Detailed techniques for memory, r.nd for aritbmetic and logic, are 

discussed in Chapters A and 5, respectively. 

We assume here the ise of intrinsically reliable technologies and of 

sound engineering practice (e.g., good component engineering and careful 

quality control). We recommend, but do not discuss in detail, the use 

of techniques for system modeling, reliability analysis, and the formal 

verification of design properties.  We assume the existence of good 

system development practice (including the use of suitable development 

tools, e.g., languages, debuggers, and test environments) and good 

operating practice (e.g., avoidance of simultaneous system development 

except under highly controlled circumstances).  These techniques are 

particularly important in the attainment of good fault tolerance. 

Preceding page blink 21 
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We also recomend, but do not consider In detail, techniques for the 

achievement of a stable physical operating envlronnent. These Include 

the use of highly distributed reliable power supplies to minimize 

outage. For continuous availability, the use of standby batteries and 

generators is desirable. 

3.1  DESIGN TECHNIQUES FOR 'ALLT-TOLLKANT SYSTEMS 

In this section, we clascify and evaluate techniques for designing 

fault-tolerant computer system. Tie basic techniques are summarized in 

Table 3.x. These techniques Include novel techniques discussed in 

detail here and well-known techniques which are fiven for completeness. 

The following operstions are basic to the attainment of fault tolerance. 

ERROR DETECTION. An error is detected when a discrepancy signal is 

received by some subsystem that can take action to circumvent the error. 

ERROR CONFINEMENT. Errors should be confined as much as possible within 

particular interfaces until some correction mechanisms can be invoked. 

FAULT L »CATION. A ffult (faults) must be pinpointed to some unit. 

RECONFIGURATION. A faulty unit must be removed, replaced, or worked 

around. 

RECOVERY. In the case of error propagation, it may be necessary to 

restart some processes at some error-free state in order to perform lost 

computation and restore lost files. It may also be necessary to restore 

the system itself to a viable state. 

Most of the techniques discussed here are fairly well known and well 

understood. We give special attention to some of the cases where more 

research is required. It is clear that a system can be designed to 
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tolerate faults occurring independently. The challenge is to achieve a 

design that is not too costly in terms of hardware, and that can 

tolerate realistic faults — including certain dependent faults. 

However, the design should also be modifiable as reliability and 

availability needs change, 

SELECTIVE AND DYNAMIC USAGE OF FAULT-TOLEKAiJCE TECHNIQUES.  The 

techniques of Table 3.1 may be used in different ways with respect to 

space and tine.  In space (e.g., within a memory or a processor), a 

technique may be used UNIFORMLY (one approach throughout) or SELECTIVELY 

(applied only in certain places).  In time, it may be used STATICALLY or 

DYNAMICALLY.  STATIC usage concerns actions with no changes over time in 

the operating environment or in the flow of control (e.g., fault-masking 

via coding, fixed replication with voting).  DYNAMIC usage concerns 

fundamental variations in tht control (e.g., in the sequencing or in the 

configuration), such as in detection followed by diagnosis, rollback, 

and replacement, or as in the use of replication configured only on 

demand of the software. As seen below, there are significant advantages 

(e.g., cost savings) that result from selective and dynamic usage. 

Examples of these modes of usage are given ii> Section 3.2. 

Numerous specific aspects of each of these five operations are discussed 

below.  For the present discussion, however, we wish to emphasize the 

following points: 

* In relatively trivial fault-tolerant systems, not all of the five 

operations are distinctly identifiable.  In a system that employs just 

triplication with voting, for example, the error confinement process 

embodies the other four operations. 

* These operations can be carried out by varying combinations of 

hardware, software, and microcode.  Fault tolerance, therefore, is a 

distributed function which may be implemented at various computational 

levels. 
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Table 3.1. 
SUMMARY OF MAJOR DESIGN TECHNIQUES FOR FAULT TOLERANCE 

i 

DETECTION 

Coding: error detection 
Double-rail encoding for logic 
Duplication in space or time and comparison (hard ov soft), 
Consistency checks (e.g., algorithmic checks, read after write, back 

substitution, partial Floyd assertions) 
Probabilistic detection 
Deferred detection 
Detection ss a byproduct of diagnosis, periodic or otherwise 

PREVENTION OF ERROR PROPAGATION, AND LOCAL CORRECTION 

Oelaying the results until validated 
Coding: error correction (Hamming, burst, byte) 
Replication with voting 
Isolation, e.g., via powering off, reconfiguration and fail-safe 
switching, fall-safe structural design (esp. Involving protection 
and Interrupts), use of read-only neaorles, asynchronous decoupling 
clock independence 

LOCATION OF FAULTS OR ERRORS 

Coding: error location (also implicit in error correction) 
Triplication (implicitly error locating) 
Diagnosis, possibly with reconfiguration for testing 

RECONFIGURATION AROUND FAULTY UNITS 

Removal (deconflguration) with degradation 
Reconfiguration around a fault contextually (without Its elimination) 
Replacement by switching of standby spares 
Replacement physically 

RECOVERY 

Single-instruction retry with buffered operands 
Rollback, to a program checkpoint, with manual or automatic 

checkpointing 
Audit trails to facilitate subsequent recovery 
Interpretive recovery (e.g., unwinding, salvaging, selective file 

retrieval) 
bootstrap recovery from fixed point (with side effects) 
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* In effectively uaing the fault-toleran-ie techniques selectively and 

dynamically, there are fairly well-defined trade-otfs among the time 

required to carry out one of these operations, ..he hardware redundancy 

required, and the probability of successfully carrying out the 

operation.  For example, deferred detection and/or correction of 

arbitrary logic may produce significant cost savings. 

3.1.1. ERROR DETECTION 

One of the main problems in achievinf low-cost fault tolerance is the 

problem of achieving economical error detection. Aside from 

well-structured situations such as core memories, parallel adders, tape 

memories and bus transfers, error detection with less than 50% 

redundancy (duplication) has remained unsolved. 

When a system falls, its failui'i is often obvious to a human. A 

terminal may appear dead (e.g., because of a system crash or a loop in 

his program), or his results ray appear to be wrong.  Internally, n.any 

harmful errors are similarly vast, e.g., involvinp alteration in the 

flow of control. The reasons for wide discrepancies between expected 

results and actual results include the following: 

* A faulty logic circuit is sometimes used repeatedly in the absence of 

internal error detection, thus increasing the chance of a readily 

discernible error. 

* Many simple hardware faults (permanent or transient) have a arastic 

affect on program control, ^.g., directing control to an Incorrect 

instruction or addressing the wrong memory location. Other faults may 

not affect control. Also, many computations do not allow simple 

consistency checks. Thus more general and problem-independent error 

detection mechanisms are essential. 
t;        . 

In spite of the ease of some error detection to a human, error detection 

can be a costly operation when carried out automatically. An 

arbitrarily structured processor using known error detection techniques 
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seems to require at least 50Z redundancy to permit Immediate detection 

of all possible processor errors. Fortunately, this cost does not carry 

over to total s stem cost for error detection, for various reaaons. For 

example, the processor may be a small part of the total system; much 

more palatable detection «ehernes exist for memories, channels, etc. 

Similarly, there is no need to detect all possible errors, and also 

ipnnediate error detection is not needed.  The basic methods are outlined 

below, leaving to later sections the detailed discussions and 

evaluations. 

It is clear that errors can be detected with any desired degree of 

completeness, and vlth any desired degree of immediacy.  The challenge 

is to achieve such detection with low redundancy. 

3.1.1.1  ERROR-DETECTING CODES 

Error-detecting codes make it possible to detect the first occurrence of 

an error at some particular interface, e.g., memory, channels, an 

arithmetic logic unit, a processor, or the entire computer. Section 

3.1.1.3 below discusses the possibilities ot deferred error detection. 

Codes with a single parity bit for each memory word are widely used for 

error detection in memory.  Such codes, with negligible redundancy, are 

useful for detecting single core errors or sense amplifier failures, or 

any channel failure that results in a single bit being in error. TMs 

concept extends to the detection of a fault within an arithmetic unit. 

For example, if an error is additively Incorrect by a power of two, a 

residue code is useful, e.g., where the redurdant digits represent the 

residue of the word uodulo 3. 

This approach also generalizes to the case where a fault produces an 

error In a single b-bit byte of memory or a channel, or In a b-blt byte 

of an arithmetic processor.  In memory, b bits of redundancy suffice to 

detect errors In a single byte for words of arbitrary length. In 

arithmetic, similar redundancy Is required (see section 5,1). The 

arithmetic codes may also be used in memory. The byte error situation 
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is a natural consequence of a byte-sliced memory or arithmetic unit, 

wherein each byte is realized as a single LSI chip. 

Unfortunately, codes for detecting errors in a single bit or byte are 

not effectively extendable to arbitrary logic.  (An exception is a 

function realized exclusively with linear logic.) One can, in 

principle, design a logic unit such that at every interface the vector 

of signals is an error-detecting code word in the absence of a fault, or 

not a code word in the presence of a fault. Given n independently 

realized output functions, the simplest way to do this is to provide a 

circuit with an output which is functionally the modulo two sum (parity 

check) of the n outputs (Lofgren 5C).  Thus faults producinp an odd 

number of errors are detectable. However, this simple approach is not 

practical for the following reasons. 

* For most practical functions, the semi-empirical results of Fierce 

(65) indicate that the cost of realizing the redundant function output 

may approach the combined cost of realizing the functions themselves. 

Thus, on a component count basis, this approach may be as bad as 

duplication. 

* For nonindependent realizations of the n outputs, a single gate fault 

is likely to corrupt more than one output (e.g., an even number of 

outputs), especially in an LSI environment.  Recent work by Ko (73) 

suggests possible circuit augmentations that ensure the corruption of 

only an odd number of outputs.  This work indicates that some functions 

exist for which the total component count is less than that of 

duplication, but these functions tend to be exceptional, besides, the 

relative saving seems to be insignificant in practice. 

* Favorable results seem to rely upon the model of a single faulty gate 

with just one stuck-at-fault, which is, jf course, not a reasonable 

assumption for MSI/LSI circuits. 

* Finally, this approach is intended for multiple-output functions with 

the same set of inputs.  For a single output, it reduces to duplication. 
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In general the nonapplicabillty of coding techniques for logic tends to 

reinforce the early pessimistic results of Ellas (58) derived for a 

serial logic unit, showing; the necessity of duplication for error 

detection In a single AND gate. The only exceptions to the apparent 502 

redundancy are specialized functions.  For example, a single gate in 

error in a tree-realized memory decoder results in either the selection 

of no word at alx, or the selection of multiple words.  If it is assumed 

that the accessed words are ANDed together (or ORed together) In 

corresponding bit positions, then a comparatively economical code can be 

used for error detection.  Each n-bit word is encoded so that half of 

the bits positions contain a "1" and half contain a "0", e.g., the "n/2 

out of n" codes. The redundancy is quite low (e.g., about 10% for 

32-bit words, less for longer words).  The encoding and decoding cost is 

small relative to the total memory cost, although it is higher than that 

for single error correction (Anderson and Metze 73). This code can 

detect arbitrarily many multiple errors it they are all of the same type 

(e.g., either all 0 to 1, or al1. 1 to 0). 

One other coding scheme has been suggested for possible use in the PRIME 

-.,-;•■ (Borgerson A2), to detect address decoder failures or memory 

oit-line failures.  If a single error occurs in the address decoder, 

then a word will be accessed whose address is addlMvely incorrect by 

some power of two. 3y noting the similarity with the effect of 

arithmetic errors, it is clear that this type of address decoder fault 

can be handled by appending to each memory word the modulo 3 residue rf 

the address.  Thus, this scheme detects any single error in memory or .n 

the address decoder. 

3.1.1.2.  DUPLICATION 

The essence of duplication is simple and straightforward. Results are 

Independently computed twice, and the results compared.  If the results 

are binary-valued, a disagreement indicates that one of the computations 

is in error.  (If the results are multiple-valued, both may be in 

error.) The identitication of the erroneous computation is deferred to 
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a more elaborate diagnosis.  (A coding purist would contend that 

duplication really Involves a trivial error detecting code, however, 

since there are Interesting engineering details concerning the 

application of duplication1 at vax4.ous system levels. It Is worthwhile to 

discuss this apart from any  codii| theory Implications.) 

Although duplication Is In principle applicable to any subsystem, it has 

primary application where less costly techniques are Inadequate. That 

is, duplication is used for error detection where better techniques do 

not wovk. Generally, duplication may be used in conjunction with 

arbitrary logic in processors, 1/0 control units, special control 

circuits, .nd some memory functions. There is clearly little need to 

use duplication in conjunction with storage in main memory, except 

possibly in certain critical applications. 

Duplication may be employed in SPACL (using two identical units) or in 

TIME.  In TIME DUPLICATION, only one unit is used to perform the same 

computation twice (but perhaps internally reconfigured or shifted) 

before the computation is accepted as error free.  Time duplication is 

less credible in that it depends on the equlpmeit being exercised in 

different modes in order that the two computatiens do not agree because 

of identical or compensating errors. Variations and combinations of 

space and time duplication are also known.  For e.'ample, two supposedly 

complementary versions of a result may be generated.  For processors 

with an iterative structure, output data ray be computed twice, but with 

permuted assignment over the iö«ntlcal modules. 

The most obvious and connon practice of duplication is to make a 

comparison on every machine cycle. Cn the other hand, if the comrarison 

can be deferred, there may be an advantage to performing it in software. 

However, a software Implementation requires the careful Isolation of 

uncompared results to prevent error propagation. A software 

implementation also requires separate working memories for the pair of 

processors to hold intermediate (i.e., uncompared) results. Most fault 

tolerant systems employ hardware duplication to avoid the error 

propagation problem, but it is our opinion that careful attention to 
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recovery issues can lead to a feasible software implementation, at a 

substantial saving in hardware cost. 

Another important engineering detail is the LEVEL OF PARTITIONING. The 

issue here is the identification of the interfaces at which comparisons 

are to be made. ¥rc  exrmple, the comparison interfaces can feasibly be 

at the system lewl (e.g., comparing the results of subroutines or 

procedure calls on exit), at the processor level (e.g., comparing two 

processors nominally executing identical instructions), and at the 

subprocessor level (e.g., comparing the outputs of byte slices of an 

arithmetic unit). 

In most fault-tolerant systems, the error detection interfaces define 

the units to be removed in combatting faults.  That is, if the 

arithmetic unit is a replaceable unit, then there usually exists some 

mechanism for detecting possible errors in the signals emerging from 

that unit.  In ury event, systems proposed for high-reliability, 

long-life applications typically employ a partitioning for error 

detection at a low system level. On the other hand, for most 

applications of concern here, detection at the processor level or memory 

unit level probably suffices. The roles of various levels in a 

fault-tolerant system are discussed in more detail in Section 3.2. 

3.1.1.3.  ÜEFERREÜ DETECTION 

It is often not essential to detect a fault or an error as soon as it 

occurs.  If the detection of a faul., or error can be DEFERRED, it is 

possible to reduce the redundancy requirement for detection. Deferred 

detection may be performed COMPLETELY (determlnistically) subsequent to 

the occurrence of a fault, e.g., on exit from a computational block.  It 

msy also be performed PROBABILISTICALLY, if over some period of time, 

there is s probability p that the error is detectable (e.g., in terms of 

a syndrome or other discrepancy). Three application areas of deferred 

detection are relevant. 
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HÖH  UNIFORM DETECTION.  In many fault tolerant systems, error detection 

facilities are applied uniformly to all processes.  In many cases, 

errors can be allowed to occur without serious consequences, i.e., the 

errors are non-critical. We see a possibility for some economies in 

fault-tolerant equipment by apply?^5 error detection on tne basis of 

criticality. 

INCIDENTAL DETECTION.  In some cases it is simply hoped that sooner or 

later (hopefully sooner) errors will be detectable without the use of 

much extra redundancy. This may be acceptable in low-cost units, or in 

cases in which the input state sequence is highly predictable. 

UNFLEXED DETECTION.  An output which changes only rarely from its 

nominal state needs special detection. A pertinent example here is a 

fault in the decoder for an error-detecting code that results in a 

constant "no-error" condition being emitted, even in the presence of 

errors.  Similarly, certain system functions  that are executed 

extremely rarely also require special detection.  A latent fault in such 

a rarely used function could remain undetected and eventually result in 

a system failure. This problem is called the UwFLEXED-FUNCTION 

DETECTION problem.  In general faults in such functions need not be 

detected as soon as they occur, e.g., because another hardware fault 

must occur before this function is required.  Hence the detection of 

such faults can be deferred, i.e., carried out probabilistically. 

An elegant theory has been developed to handle the third area (e.g.. 

Carter et al. 72a, Anderson and Metze 72).  For example, a conventional 

error-detection circuit might emit a "0" if there is no error, and a "1" 

if there is an error.  Obviously, any fault that leads to a permanent 

enlssion of "0" will remain undetected.  In order Lo alleviate this 

difficulty, two or inore output lines are provided for the decoder.  In 

the case of two output lines, a "0" might correspond to ÜÜ or 11, and a 

"1" to 01 or 10.  The decoder is designed such that when there is no 

error^ the decoder on its two output lines emits 00 and 11 with equal 

probability. The decoder is designed such that any single stuck-at 

fault within it causes the output 01 or 10 for at least some code word 
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being presented at the input. This latter property has led this type of 

structure being called SELF-TESTINC. The important positive conclusions 

from this work are the following. 

* There exist fault-detection techniques that require less than 

duplication in inplecentation, although for incomplete detection.  For 

the case of the decoder for a single-error correcting (Hanning) code, 

the redundancy is about 25% (Carter et al. 7üa). 

A There is an alternative to periodic diagnosis in detecting faults in 

unflexed circuits. 

The negative conclusions are these: 

* The redundancy requirements are low only for well-structured 

functions, e.g., decoders for error-correcting codes.  For other 

unflexed circuits, duplication nay be as good. 

* The unflexed circuits represent a low proportion of total system cost. 

Thus, the incrcmeucal cost of using replication may be negligible. 

* The fault model for the circuits is still concerned with single 

st.uck.-at faults.  For more realistic faults, it is likely that 

duplication is close to optimal. 

* Self-testing circuits appear to be a good solution for certain 

functions associated with the unflexed function problem.  However, it is 

generally not clear that all such unflexed functions are attracr.ive 

candidates for self-testing logic, when compared with periodic diagnosis 

and brute-force replication. 

3.1.1.4  ERROR DETECTION VIA DIAGNOSIS 

An approach to error detection that is potentially quite efficient 

involves periodic diagnosis of the fault-prone systea blocks. A 

CHECKING SEQUENCE is imposed on the inputs of the blocks in question 
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such that If any fault is present an output value will eventually emerpe 

that differs from the expected value.  In order for the diagnosis 

approach to L-» effective, as compared with say duplication, the 

following features must be given consideration: 

FAULT COVERAGE.  Clearly the checking sequence must be capable of 

revealing an extremely large fraction of the likely fault patterns. 

Most research in fault diagnosis has been concerned with networks in 

Which faults are manifested as a single gate being stuck-at-zero (SAU) 

or stuck-at-one (SA1).  In an LSI implementation the single stuck-at 

assumption is not valid. An imperfection in an LSI chip tends to 

propagate outward from some source point.  Thus it is likely that gates 

within a region will be suspect.  It is likely that a checking sequence 

that handles all SAO and SA1 faults will handle a large class of other 

fault patterns, although there is little formal work to substantiate 

this conjecture. With regard to non-formal work in this area computer 

manufacturers have developed checking sequences to help detect failures 

within their CPUs.  Typically, these sequences are generated by ad hoc 

techniques and reveal only about 90 percent of the likely fault 

patterns.  The conclusion here is that at present the fault coverage is 

not adequate for the error detection function. However, we feel that if 

the research effort is devoted to realistic fault models, and is coupled 

with simulation techniques this situation could be alleviated. 

PERIODICITY OF CHECKING.  The checking sequence must be applied often 

enough so that the probability of two faults occurring during the 

intervening period is low. Also since the faulty equipment might be 

unavailable during the inter diagnosing period this period must be 

shorter than the maximum tolerable unavailable time. For all but the 

critical real-time applicadons neither of these constraints is 

limiting.  It is unlikely that a diagnosis of any system block needs to 

be carried out with a period shorter than 10-100 seconds. 

DIAGNOSIS OVERHEAD.  The important overhead measures of diagnosis are 

the amount of cpj effort devoted to diagnosis and the amount of high 

speed memory needed to store the checking sequences.  Concerning the cpu 
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overhead the typical length of a checking sequence for arbitrary logic 

is one-tenth the number of gates.  (This is our experience for the 

single stuck at model, but fcr more realistic models the length should 

not increase by more than a  factor of two or three.)  Thus a 10,000 gate 

processor can be checked with a sequence of length 1,000. Assuming 2 

per test the total diagnosing time is 2 msec.  The cpu overhead is thus 

negligible for an inter checking period of 10 seconds.  For this inter 

checking- period it is likely that the test itself can be stored on disk 

thus precluding the need for high speed storage. 

ERROR CONFINEMENT DURING INTER CHECKING PERIOD.  All computed results 

are suspect until the processor is diagnosed.  Thus it is necessary to 

prevent possibly faulty results from propaga«-. ng.  In the PRIME system, 

which utilizes diagnosis as a primary error detection mechanism error 

propagation is not a problem because of in»-£r processor isolation.  In 

other systems the error confinement techniques of Sect. 3.1.2 must be 

considered. 

FALLIBILITY OF DIAGNOSING SYSTEM.  A paramount problem in diagnosis 

relates to the problem of faulty behavior in the system carrying out the 

diagnosis.  In a system consisting of a single processor the best 

approach involves bootstrapping. Here a small system, assumed to be 

infallible carries out a diagnosis to verify the integrity of a larger 

system. This larger system then acts to produce a still larger verified 

system and so on.  The initial small system can be made error detecting 

by duplication techniques.  In a multiprocessor the conmonly conceived 

approach is to have one processor diagnose another.  If the diagnosing 

processor reports an error it is not decidable which processor is 

fai-lty.  (If no error is reported it can be assumed that the diagnosed 

rrocessor is operative, provided no more than one processor is assumed 

co be faulty.)  If three or more processors are available, various 

strategies can be invoked to resolve the ambiguity. 

(Präparate et al. 69) have presented one such strategy baaed upon a 

circular configuration of diagnosing processors. 

In conclusion periodic diagnosis is potentially the most efficient 
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approach toward error detection. The only foreseeable liadtatlon Is the 

inapplicability to transient faults.  For permanent faults additional 

work is needed to improve the fault coverage obtainable with checking 

sequences, particularly related to a fault model that is realistic in an 

LSI environment. 

3.1.2. ERROR CORRECTION 

The state of the art of coding for error correction and efficient (fast, 

cheap) decoding is well developed (e.g., Peterson and Weldon 72, 

lierlekamp 68).  Error-correcting codes exist for use in memory and in 

arithmetic, for various types of errors. Such types include correction 

of single errors, independent multiple errors, and correlated errors 

(e.g., arbitrary errors within a byte, or confined to a burst of 

consecutive digits). Memory and arithmetic are covered in Sections A.l 

and 5.1, respectively.  For error correction in processors and arbitrary 

logic, triplication and voting is the traditional technique. Many of 

the comments in Section 3.1.1 for error detection are also extendable to 

error correction. 

3.1.3. RECONFIGURATION AND RECOVERY 

Table 3.1 includes several items on reconfiguration and recovery which 

are fairly self-explanatory. As seen in Section 3.2, dynamically 

alterable strategies are needed, including instruction retry and 

recovery from a parity errrr in memory (depending on what word was in 

error, and what it was being used for). Reconfiguration of memory is 

discussed in detail in Section A.2 and in Appendix 3.  Recovery is 

discussed in Section 3.2.5. 
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3.2. STRUCTURED DESIGNS FOR FAULT TOLERANCE 

Most computer system designs seen to evolve in an ad hoc fashion, 

reflecting both the structure of the organization(s) to which the 

designers belong (Conway's Law) and the lack of a holistic design view. 

Here we examine the role of structure in system design, and how it can 

facilitate the effective use of the above techniques for fault 

tolerance.  (This section is inspired by Simon 62, Dijkstra 65, 6tt, 69, 

and Neumann 69, 72, 73. Also relevant is the work of Homing and 

Randall 73, and Pamas 72.) Well-conceived system structure can 

contribute significantly to the design, implementation, debugging, 

verification, testing, diagnosis, maintenance and operation of 

fault-tolerant systems.  As employed here, such structure permits a wide 

range of techniques to be applied selectively and/or dynamically, when 

and where they are most effective in terms of cost and reliability. Low 

cost can be achieved by taking advantage of nonunifovrm constraints and 

various time-space tradeoffs. This is in contrast to many existing 

systems which employ (statically) primarily low-level techniques for 

fault tolerance.  A well chosen system compartmentalization helps limit 

error propagation, improves autonomous maintenance, and enables the 

persistence of system security in spite of faults; it also facilitates 

long-term evolutionary growth of the system, responsive to new 

applications needs, new hardware, and new software. 

Hierarchical aspects of such structure permit a hierarchical recovery 

strategy directly reflecting the structure of the design and the needs 

for recovery,  liuch a strategy can be relatively efficient, in that it' 

can be dynamically tailored to the actual fault(s).  Recovery varies 

widely in complexity, depending on the nature of the faulty behavior. 

It mcy be quite simple, as in the case of a detectable transient error 

in arithmetic (with buffered instruction retry) or in a memory with 

error-correcting coding, or it may be quite complicated, e.g., after a 

total collapse of the system.  In general, the recovery strategy should 

assure recovery of the most critical parts of the system first. 

Structured recovery strategies are found to some extent in the Plessey 

System 250 (Willian» A2) and in Multics (Saltzer A2). 
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The system design should inteprate the needs for fault tolerance and for 

effective recovery with the other system needs of security, efficiency, 

capability, etc. (the PRINCIPLE OF GLOBAL DESIGN).  Successful 

integration is greatly facilitated by a highly structured design that 

deals with architectural concepts irrespective of whether they are 

implemented in hardware, in microprogram, or in software, and which 

evolves in a roughly "top-down" or goal-driven fashion. Since software 

capability of one generation is frequently found in the hardware of the 

next generation, this view is highly appropriate. 

3.2.1. STRUCTURAL LEVELS OF INVISIBILITY 

The structure of a system can have considerable impact on ehe fault 

tolerance of the system, as well as on the system devel-r.ment as a 

whole. Although this subsection considers the role of such structure in 

general, it provides a basis for fault tolerance throughout this report. 

Of interest in this subseccion are the interrelations that form the 

structure among the various system mechanisms.  At the interface to each 

system mechanism, various implementation details ^ay be hidden from the 

invocation of that interface. When an Interface to a mechanisn makes 

such implementation details invisible, that mechanism is said to be a 
ft 
virtual mechanisiii (see below).  The interface provides a level of 

invisibility between its invocation and its implementation. 

There are many different structural views of the mechanisms within a 

computing syptem, both system-oriented and user-oriented. The 

techniques for fault tolerance may be applied at various levels with 

respect to any of several such views. Consider first several 

systent-oriented views. With respect to hardware dependence, levels of 

structure vary from components to subunits to functional units to a raw 

machine to a microprogrammed machine through various levels of software 

support to a network of systems.  Corresponding levels of language 

capability (above the circuitry levels) range from microprogram 

instructions to '-.»chine language instructions to macro-assembly and 

compiler statements through various levels of block structure, 
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subroutine, and operating system callst to system commands and network 

conman'iS.  A command itself may be substructured, with various levels of 

subrequests and requests within it. In units of time, levels of 

responsiveness range over a wide spectrum of response requirements, with 

different mechanisms requiring responses of picoseconds to nanoseconds 

to microseconds to billiseconds (e.g., for peripherals) to seconds 

(e.g., for human i.^'erection), ec. Within a sya*.eM, different sets of 

levels exist with respect to processors, memories, input-output, 

cuü'^rol, and intercommunication. In memories, for example, such levels 

range from storage for a bit of information to storage for (encoded) 

representations of words to blocks to memory modules to a hierarchy of 

diverse typrs of memdries, e.g., managed (in hardware and software) as a 

single level of 5».oory and organized into a directory structure (e.g., 

as directories of directories of files). In comnunicatii>n, levels range 

from intraprocessor comnunication to interproceasor, intersystem, and 

even internetwork comnunication. Other levels that are more or less 

orthogonal to the above levels are also distinguishable, e.g., the 

levels of reliability and protection discussed in Section 3.2.2. 

A system in execution is controlled in hardware and in software by Its 

OPERATING SYSTEM, and may be viewed overall as a collection of 

PROCESSES.  Each process is a single locus of sequential control, 

relative to some address space. A process may invoke or create othMT 

processes, but in itself may not have multiple simultaneous "threads" of 

execution. Thus a process is the basic unit of asynchronous processing. 

Each process may be thought of as using a VIRTUAL PROCESSOR, i.e., a 

processor exclusive to that process. The address space of each process 

is its VIRTUAL MEMORY, with just that information (stored in a portion 

of actual memory) which is directly accessible to the process. The 

virtual memory provides a (simplified) interface to the real memory, and 

makes the management of actual memory largely invisible. The operating 

system may be thought of as multiplexing the various processes onto the 

actual system, and multiplexing the corresponding virtual memories onto 

the apparent single level of memory. At this level the mechanisms of 

MULTIPROGRAMMING (i.e., the concurrent use of main memory by several 

processes) are invisible. The operating system may itself be executing 
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in a MULTIPROCESSING mode, i.e., if it is able to run on multiple 

processor^ simultaneously.  Some of the operating system processes may 

be allocated dynamically to special-purpose processors, while others may 

be permanently dedicated to specific hardware. 

Each process also has facilities for input-output. Here levels range 

fron data representations on devices and on media to data structures 

(e.g., bytes, characters, records, files) to various forms of VIRTUAL 

INPUT-OUTPUT (with invisibility of many details of device dependence, of 

multiprocessing and of multiprograiming, e.g., via virtual devices with 

invisible formatting and symbolic device attachments).  The system is 

responsible for multiplexing the actual input-output devices and media. 

There are various levels of prccess structure, from protection domains 

within processes, to processes within a system, to intrasystem and 

intersystem process families.  From the view of a single "user" (whether 

he is a casual turn-key user, a systems program developer, or an 

environment being controlled by or controlling the computer system), he 

may sec a single process.  He may also wish to distribute a job among 

several asynchronous processes within a FAMILY OF PROCESSES.  In the 

presence of multiple processors, this leads to multiprocessing at the 

user level. His process family makes many process mechanisms invisible. 

Each ustr has his own view of the actual system, which may be thought of 

as his VIRTUAL SYSTEM.  (In some systems the process family view and the 

virtual system view may be identical.) Apart from inter-user 

communication and file sharin i  a virtual system appears to each user as 

his own private system, and may be different (in part) from the virtual 

system of other users. A user may wish to invoke several virtu.il 

systems, either on one actual system or on several systems in a network. 

The simultaneous use by one user of different systems within a network 

leads to the concept of a VIRTUAL NETWORK, in which many details of 

system multiplexing are invisible. 

Another user view arises with binding. BINDING refers to the act of 

reducing the indefiniteness of an incompletely specified entity (e.g, by 

assigning it a resource).  Levels of binding specificity typically range 
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fro« program specification to program generation to compilation to 

object code generation to linking, loading, and execution. Linking and 

loading may each be partially static (In advance of execution) and 

partially dynamic (being Invoked during execution with respect to other 

executing programs). At each successive (lower) level of binding, more 

machine-dependen: detail is added to a program or collection of 

programs. This ietall is normally not visible to the higher levels of 

binding. 

A conceptually simple bat highly powerful linear structuring of system 

levels Is discussed by Dijkstra (68,69). Internal details of 

implementation at a given level are normally made invisible to higher 

levels.  Functional capability at that level is dfeiendent on the 

capability of the next lower level, and is precisely that provided by 

the lower-level Interface languages. (That functional capability may in 

fact represent a loss of power compared vlth the next lower levul.) The 

levels are referred to as LEVELS OF INVISIBILITY.  Successively higher 

levels correspond to larger units of time.  (In the sense that an 

interface creates a higher-level concept, it provides a LEVEL OF 

ABSTRACTION.) 

More generally, a VIRTUAL mechanism is one that provides a layer of 

invisibility between the interface to that mechanism and the details 

internal to the implementation of the mechanism. Independent of the 

structure among the various mechanisms.  It may in some cases also 

reduce the power of that mechtmism available at the given interface, but 

can  in no way incre«se it.  (Note that even a gate appears as a virtual 

mechanism to a logic circuit using it.) This does not mean that all 

details of the use of such a mechanism are Invisible.  In fact, 

efficiency considerations may dictate that some controls on the use of 

the mechanism must be accessible at the virtual interface (although not 

normally required).  Similarly, it may sometimes be desirable (e.g., for 

efficiency) to use directly a mechanism at a more detailed level, rather 

than passing through many levels of interfaces.  In some sense, most 

mechanisms can be viewed as virtual mechanisms. However, the PRINCIPLE 

OF LEAST VISIBILITY dictates that imp lament i.. ion detail should be 
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visible only where necessary. It is desirable that this principle have 

a strong Influence on the structure of the system. 

For any given set of virtual mechanisms, there Is an Interconnection 

structure among them by virtue of the use of their Interfaces. 

Dijkstra's linear structuring of levels Is not always realistic. In a 

complex •ystem, the partial ordering among virtual mechanisms may be an 

arbltary directed graph, rather than a linear ordering. Nevertheless, 

there may be local regions In which It Is linear or tree structured. In 

general. It Is highly desirable to have a tree structure If not a linear 

structure. In some cases It may also be desirable to lump a collection 

of mechanisms Into linear levels (e.g., for descriptive purpose« or for 

Implementation simplicity), even though these mechanisms are not 

properly linear. However, the extremes of excessively simple structure 

and excessively compartmentalized structure should both be avoided. It 

is extremely helpful to keep these types of levels conceptually distinct 

while designing a system, even if they are blurred in the resulting 

implementation, e.g., to achieve adequate performance. 

3.2.2. LEVELS OF CRITICALITY 

Given a structure among mechanisms dictated by the principle of least 

visibility, additional constraints arise In terms of implicit or 

explicit levels of criticality, e.g., sensitivity to fault-induced 

errors. The lowest (or innermost) levels (of highest sensitivity) are 

often referred to  as the "hard-core" or the "kernel" of a system. It is 

worth noting, however, that usage and definitions of such terms are far 

from standard. Refer, for example, to Appendix 2. The term "hard-core" 

is used in at least three nonequlvalent but overlapping fault-tolerance 

senses, (a) survival, (b) coverage, and (c) exposure. Consider 

respective illustratljns rf these three senses: (a) "that which must 

survive" (Wensley A2) or "that whose malfunction could crash the 

system" (Ulrich A2, and implicitly Saltter A2); (b)t "that which is 

covered by redundancy" (Avizlenis A2); and (c), "that hardware which is 

irredundant" (Hopkins A2), or "that hardware (redundant or not) whose 

failure will produce undetected errors" (Carter A2). Note that (b) and 
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(c) «re roughly complementary views. Also note the view La PRIME 

(Borgerson A2) that there is NO ha?d-core (undefined), because the 

supervisor can float from one processor to another. An earlier usage is 

"that which must function correctly"(Forbes et al, 65). 

A functional sense of criticality is also fouml.  For example, the 

"hard-core" paging software in a paged envircnment usually contains some 

programs (e.g., certain buffers and programs supporting paging its«If) 

which themselves cannot be paged out. There is also software whose 

frequency of use dictates that it should remain in main memory for 

efficiency reasons. 

In addition ..iany levels of criticality with respect to system security 

are relevant here, including the integrity of the system itself and of 

resident files. The kernel for security may be thought of as that part 

of the system whose correct functioning is most critical to the 

uncompromised serurity of the system. A related concept is that of a 

SECURITY PERIMETER, i.e., a set of functions (programs, processes, etc.) 

within which system security may in some way be compromised, either by 

misuse or by malfunction. The security perimeter in the absence of 

faults seems to be significantly larger than is generally recognl -ed. 

In the presence of faults, it may be very large unless the system is 

carefully partitioned.  Guarantees of system security are desirable, at 

least in a probabilistic sense, both in the absence of faults (but in 

the presence of possible misuse) and in the presence of faults. 

Unfortunately, the kernels fcr reliability, for availability, and for 

security are not conceptually identical, even though most systems tend 

to lump them together. 

3.2.3.  SYSTEM STRUCTURE FOR FAULT TOLERANCE 

Structured system design and structured implementation are developing 

arts that have Immediate use in the design and implementation of systems 

with economical fault tolerance. Although further work is needed to 

make such stru:ture an integral part of the design, rather than just 

good practice, the benefits are already considerable.  Recent efforts in 
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this direction are found la structuring software implementations, e.g., 

structured programming (e.g., Dljkstra 69). 

The notions of invisibility and criticality impose various constraints 

on the structure among system mechanisms. For the purpose of designing 

and implement'.ag fault-tolerant systems, the most critical mechanisms 

should be carefully identified, and separated from similar out less 

critical mechanisms, however, the various views of "criticality" should 

be Integrated. As noted above, the interactions among correctness, 

availability, and security are particularly strong. There are also 

strong interactions with critical mechanisms for reconfiguration, 

recovery, and restart following detected faults (or detected security 

violations), for Interrupt handling and abnormal condition handling, and 

for on-line Interactive maintenance. These critical mechanisn» also cut 

across hardware-software boundaries. Table 3.2 provides an illustration 

of such critical elements affecting fault tolerance. The multiprocessor 

architecture of Section 3.3.3 illustrates an economical system using 

selective and dynamic redundancy for these elements. 

Aä a general rule, the mechanisms of greatest criticality themselves 

should be well structured and small enough to verify and control. This 

enhances selective and dynamic usage of various fault-tolerance 

techniques, when and where they are most effective, whether implemented 

in hardware or in software.  It also facilitates controlling system 

operation and recovery, and can further enhance the verification of 

correctne^c of the system design and its implementation, especially with 

respect to fault tolerance and security. In this way it is also possible 

to anticipate the effect of faults on system behavior (including secu- 

rity) and to tailor the design and the recovery strategy to the possible 

faults, their likelihoods, and their possible effects. Such design is 

particularly Important if security is to be maintained despite faults 

Structure among virtual interf ices enters naturally into system design 

as follows, as a result of the above considerations. It is desirable 

that this design be driven more or less from the top down, although it 

is usually necessary to iterate up and down in order to assure that the 
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Table 3.2 
CRITICAL ELEMENTS FOR FAULT TOLERANCE 

MEMORY MANAGEMENT 

Memory maps, e.g., page tables, device maps, associative memory maps 
Memory contents, including critical data, contents of sone registers, 

input-output buffers, channel control words and interrupt cells 
Memory allocation mechanisms 
Memory bootstrap recovery and reconfiguration 

PROCESSOR MANAGEMENT 

Memory fetches and address formation, including page relocationr and 
generation and validation of protection information 

Receipt and Interpretation of interrupts 
Critical microcode, including interpretation and protection 
Process creation, dispatching, and deletion 
Interprocessor communication 
Some exception handling 

Prltitive reconfiguration control, configuration sensing and setting 
Primitive accounting and measurement facilities 

INPUT-OUTPUT MANAGEMENT 

Channel control, especially of shared channels 
Certain media contents 
Some exception handling 
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design converges to a suitable system. 

(a) Various system partitions are established explicitly in the design, 

identifying virtual mechanisms and levels of criticality, responsive to 

the various overall system goals of correctness, availability, security, 

functional capability, capacity, performance, efficiency, etc. 

Effective modularization involves careful control of communication among 

mechanisms to help limit error propagation.  Useful mechanisms are known 

for this purpose, both to avoid conflicts and to permit sharing of 

programs, data and control (e.g., Dijkstra 68, Spier and Urganick 69, 

Holt 72, Baer 73). Except for deadlock avoidance, such mechanisms are 

conceptually clear-cut. 

(b) Associated with these partitions are subpartitions for selective 

use of the techniques of fault tolerance, as well as possible 

configurations of these techniques and possible modes of dynamic 

reconfiguration of these techniques within and among the partitions. 

Successive levels of binding noted above may be useful points at which 

to bind fault-tolerance techniques as well (dynamically or statically). 

(c) Analysis, simulation,, verification, and operating experience should 

be used to study the relative effectiveness of these techniques under 

varying demands and of reliable algorithms for deciding how and when to 

switch among configurations. The suitabilif of the choice of 

partitions should also be evaluated.  The exact boundaries among 

hardware, microprogram, and software should be established as late in 

the design process as possible. Mechanisms with high duty cycles should 

very likely appear in hardware or microprogram. 

The applicability of relevant techniques lor fault tolerance to various 

virtual mechanisms is illustrated by Table 3.3. The first column of the 

table identifies some illustrative Interfaces.  (Higher and less 

machine-dependent levels are toward the bottom of the table.) The 

second column gives examples of concepts invisible at (i.e., outside of) 

each interface. The third column gives examples of the techniques of 

Section 3.1. These techniques can enhance fault tolerance within each 
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Tahl« 3.3 
UlAHfLES OF  TtCHNIQUlS  FOR  FAULT TOLEMNCt 
AFFLICA»U TO A H1EHAHCHY OF  INTERFAttS 

INTERFACES IMVISIkU CONCEFT!» 
(«XUBl««) 

PHYSICAL VIEW (HARDUARE): 

APPLICABLE FAULI-TÜLERA1.CE TECHNIQUES 
(•»•apl») 

chip. 

Sabwtt* 

r»<hnolo(y   dctalU, 
fakrlcatlon wthods 

»m»w4 layouts,  pin 
caMMctlaa«,  ttaln( 

'racaaaar  algorlthaa 
k «raa*. aadaa 
KA-raaa  calculation, 
awalMa aMraaaaa, 
aa'^ctMlu« McnanUaa 
•■• cascrol 

Input-output 
davicaa 

Syataa 

■tiCi 

acna aacnaaiaaa 
latomal  rapraaantatlon 

■atarwal  conf iguratlona 
Da«tca cnaractrrUtln • 
laai«  proportlat, 
•lovlca dapandcnca 

Configurations 

Intrinsically  rallabla  tachnologlca,  good cnglnaarlng, 
quality control, coding and fault-Making, rapllcatlon. 

Conaarvatlve daalgn,  rallabla connactora, anvlronaantal 
control; 'Dlagnoals, coaponant rapllcatlon, aoaa coding, 
doubla-rall   logic,   raplacaaant. 

•Automatic  Instruction ratry;  *Hapllcatlon, codlnf. 
•Logic via arlthswtlc,  doubla-praclaloo half-unlta. 

Bounds checking, daacriptor validation, aawry protactlon, 
coding and replication In addraaa ganaratlon, 
coding and  cross-checking  In asacclatlve «emory. 

•Alternate routes, coding, dagradabla priority »»-hanlaM. 
*Raca-free  fall-operational   Interrupt  design, 
•Hlcrodlagnostlcs, validation of alcrocode; ceding. 

•Autoaiatlc reloading, 
•Coding on memory  contents;   'Read after write at  certain   levels, 
hirduare-checked descriptors  and type Inforaatlon, 

•Reconfiguration around bad memory  (via paging, de-lnterlece). 
lea of  read-only memories   to avoid overwrite and aid  recovery, 

•Coding on contents of  media and  transalKslon. 
•Verification,  checking,   read and compare after write. 

•Configuration  sensing and aelf-reconfIgurstIon,  powering on- 
off   Incl.   spare»),  dlstrlbutIng and  replacing power supplies. 

PROCESS VIEW  (HARDWARE  AMI) SOFIWAREJ: 

Virtual 
proceaaor 

Virtual 

Multiprocessing by  sysrem- 
blndlng of  processes 
to  processors: 
proceaaor dlapatchlng 
Mul 11 programing— 
■ultlplaxlng of processes 
onto the ayataa: 
procaSB   scheduling, 
process Isolation 
Array coaiputlng 
Multiplexing of microcode 

Multiplexing of virtual 
■caorles onto real aemory, 
backup and retrieval, 
directories, device Baps 
protactlon mechanises 

Virtual input- 
output 

Multiplexing of 1-0, 
virtual devicaa 
Exception handling 
Aaynchrony, buffering, 
channel unagaaant 

Codlne, handahaklnc on Interprocessor co«unlcatlon, avoidance 
of intarproctssor interference; •Replication of physical pro- 
cessors a. a single virtual processor, voting as needed. 

•Configuration inaensitlvity via checked table-driving. 
•Explicit measures of permitted degradation per process. 
Safeguards on interprocaaa coaaunlcation (vs. lost interrupts, 
blocked polling), avoidance of Interprocaaa Intarfarance, 
Intraproceas protection (rings, domains, aaster »odes). 

•Reconfiguration and replacement within the array. 
Isolation of system microcode fro» uaer-alterable microcode. 

•Replication of critical data In various places in hiatarchy. 
Including reliable cheap backup store;  SAutomatic rollback. 
Redundant polntera in directory structure and file aaos to 
pamlt fa-it recovery; Acceaa control on tiles (e.g., write 
protection); The use of pure procedure to Inhibit loaa of 
critical data or progress and to aid In automatic rullback. 
Redundancy in Interprocaaa and file protection mechanise». 

Handahaklng to avoid loaa of Information: sstatua information. 
•Device ault'.hibllliy, media rapllcatlon, 
•Coding (e.g.. redundant headers); «Hexlble error handling. 
Race-condltlm and deadlock avoidance. 
1-0 device, media, and data protactlon m-'henlsms. 

USER VIEW (SOFTWARE): 

Proceee   leally 
(Job) 

Virtual  system 

Virtual network 

Algorlthalc parallelism 
Allocation of proceaaaa 
Multiprocessing by uaar 

Multiplexing of virtual 
systema, eherlng of data 
Syete« correctness 
CneMsnd  InterpetsMon 

Multiplexing of coaputer 
syateae and thelt Intar- 
coaawiicatioa 

•Replication of virtual piocessors for a single proceee. 
•Independent   computetlonel   checke   (via possibly  distinct 
proceaaaa) within a procaaa  really;    •Aucoutlc rollback, 

Inter-uaar protactlon (froa the ayataa and each other). 
•Control.ed  sharing   (If  any);   Self-Identifying deecrlptore. 
•Validation, evaluation of effectlvenees and corractnaaa. 
•On-line ajlnt-nence;  Good  coaptlers,   diagnostics,   debugger 

•Coding on intersystea coaaunlcetlon, altaraata pacha. 
Intetsysten protactlon aachaBiaaa, 

•Detailed atatua of  network   control   and network  requeete. 
•Huaan   Intervention   (ae  a   leet   reeort)  with good  Judgaent. 

Aaterlekl  denote   technlquee  particularly 
technlquee are sul'sbls   for aelectlve  use 

eaeneble   to dvnaalc  uae.     «laoat   all 
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interface, although the details of their implementation should be 

largely invisible at the int« rface.  Almost every technique is suitable 

for selective use. Those techniques which also lend themselves to 

dynamic reconfigurability are indicated by an asterisk in the table. 

The dynamic control over reconfiguration of such techniques may be done 

internally at each level, as well as (under controlled circumstances) 

via the appropriate interface language. Reconfigurations within one 

level are often independent of those at other levels. Techniques for 

reconfiguration and recovery from faults are found within most 

partitions. 

The choice of structure among and within virtual mechanisms may depend 

on the particular system specification. For example, simplifying 

assumptions (e.g., no multiprogramming or no multiprocessing) often 

permit simplified structure.  Further, each mechanism of Table 3.3 may 

be scattered among hardware and software. Contemporary hardware 

typically exhibits a superficial modularity at the functional unit 

level, although usually not internally to the extent desired here. 

Multics (Saltzer A2), Project SUE at Toronto (Sevcik et al. 72), and 

Hydra for the C.mmp at Carnegie-Mellon (Siewiorek A2) are systems that 

exhibit good structure in their operating systems. 

3.2.3.1.  EXAMPLE OF A STRUCTURED FAULT-TOLERANT COMPUTER SYSTEM 

As a simple example, consider a multiprocessing system of five 

processors, each normally allocated at any moment to a distinct process. 

At the VIRTUAL SYSTEM interface, each user (or application environment) 

deals with a command language interface to the system running under a 

process or process family.  Each virtual system may in turn employ one 

or more (real) processes, either invisibly on behalf of the operating 

system or visibly on behalf of the user to exploit intrinsic 

parallelism, or to provide redundant (but possibly algorithm!cally 

distinct) computatioas. At the PROCESS Interface, each virtual 

processor, virtual memory, and virtual input-output capability may 

involve fault tolerance techniques. 
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Table 3.4 
EXAMPLES OF VARIOUS MODES OF USAGE 

\Where? 

When? ^v 

Uniform 
(in space) 

Selective 
(in space) 

Static 

(in time) 

VP Triplicated, 
vote on each instruction 

One VP triplicated, 
vote on each instruction 

Others simplex 

Distance d-3 in all Mp, 
SEC throughout 

d-3 for some of Mp, SEC; 
d-2 for the rest of Mp, SED 

Dynamic 

(in time) 

VF Triplicated, 
vote on request 
(e.g., on block exits) 

VP Triplicated on demand, 
vote on request; 

Normally simplex 

d-3 in all Mp, 
SEC on request 
DED otherwise 

d-3 for some of Mp, 
d-2 for the rest; 

SEC or DED on request, 
SED otherwise 

Note: VP-virtual processor (possibly replicated), Mp-primary memory, 
d-Hamning distance; S-single, D-double, EC-error correcting, ED-error 
detecting. 

i 
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At the VIRTUAL PROCESSOR interface, a single process may be executed on 

just one processor or redundantly on different processors, with 

comparison or voting.  However, there appears to be a single processor, 

exclusive to each pucess. The configuration might for varying periods 

of time Include two of the five processors both executing replicas of 

the same process in a comparison mode, or three processors in a voting 

mode, or even in rare cases five in a voting mode.  Internal details of 

such mechanisms should be mostly invisible to each process.  These modes 

may vary selectively (e.g., only certain processors might be usable in a 

replicated mode) and may change dynamically (for example running simplex 

except when certain critical operating system functions are invoked). 

Examples at this interface are found in the upper half of each box in 

Table 3.4.  Examples of systems possibly able to provide such 

flexibility include ARMMS (Martin A2), C.mmp (Siewiorek A2), and SIFT 

(Wensley A2). 

At the VIRTUAL MEMORY interface, device addresses are invisible. There 

is often redundancy in the implementation of a virtual memory system, 

some of which is suitable for recovery and reliability.  In systems in 

which memory files do not directly become a part of a user's virtual 

memory but rather copies are made into the virtual memory (as in 360/67 

TSS), there is the redundancy of the duplicate.  In systems in which 

files (e.g., segments in Multics) directly become a part of a user's 

virtual memory when being actively used, a virtual memory page ray be 

found in various versions and in various r.odes of replication on various 

devices in the memory hierarchy.  For example, in a paged environment, 

various instances of a given page may exist simultaneously in a 

cache-type memory, in primary memory and in secondary memory.  If it is 

part of a procedure that is "pure" (unchanged by execution), then all 

instances are identical (barring errors); if it is data, the instances 

may differ if there is no write-through, or else may be identical. This 

natural temporary proliferation can be used constructively to provide 

checkpoints, thus greatly facilitating automatic rollback.  It is 

especially useful with various instances of critical data. The 

redundancy may of course vary, depending on instantaneous needs.  In any 
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event the recovery and rollback strategies must be carefully Integrated 

with the memory hardware and software. 

At the VIRTUAL INPUT-OUTPUT interface, many details of devices arc 

invisible (e.g., formats, recovery strategies, and asynchrony).  Fault 

tolerance can be increased by extensive ise of table driving, providing 

possibilities for the use of coding in the tables, as well as isolating 

the handling of various devices. 

At the PROCESSOR interface, the structure and the implementation of each 

processor are largely invisible. There may be several levels of 

invisibility inside this interface. As seen by an instruction, for 

example, automatic instruction retry and physical memory addresses are 

typically invisible. Selective replication and replacement are suitable 

for logic and arithmetic, with coding useful for arithmetic in some 

cases.  Especially critical withfn this level is address generation, 

with respect to both security and reliability. Coding and replication 

are useful in assuring that addresses are correctly generated. 

At the MEMORY interface, byte-slicing, coding and reconfiguration 

(discussed in detail in Chapter 4) are examples of fault tolerance 

techniques that are usually invisible to the effective address of an 

instruction. All three can benefit from selective usage.  For example, 

different codes may be used in different portions or types of memory. 

It may even be desirable to have some memory (e.g., for use by critical 

operating system data) with greater redundancy. These techniques also 

may benefit from dynamic usage.  One ?uch approach to coding entails 

different uses of a particular encoding. For example, consider a code 

with Hamming (or arithmetic) distance A for single-error correction and 

double-error detection. When one error is known to b^ permanent, the 

code may actually be used to correct a second error (Slewlorek and Ingle 

73). When the multiple error rate is high, the code mey better be used 

for triple-error detection (accompanied by increasingly loud cries for 

help). Another such example is the use of a byte-error correcting code 

as a multiple-error detecting code when multiple-byte errors are 

suspect. Still another dynamic approach is the use of varying encodings 
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depending on usage, even possibly by changing the word length. For 

exa^le, It might be advantageous to use different encodings for 

different types of Infomatlon, e.g.. for data and for Instructions to 

be executed. This could be aided by a tagged architecture (e.g.. 

Feustel 73. Miller A2). Note that there Is dynamic (but hardware 

supported) dupllcstlon of data In memory In the Intermetrlcs 

Multiprocessor of Miller (A2).  (Typical examples at this Interface are 

found In the lower half of each box In Table 3.4.) 

Similarly at the MODULE Interface, multiple arithmetic or functional 

units tied to a control unit may be used In replication for fault 

tolerance, or in synchronism as In the ILLIAC IV for handling 

parallelism In computation, or Independently. The first of these 

applications substantially Increases reliability, while the others may 

substantially Increase the computational throughput. Degraded but 

continued operation may be achieved with multiple or byte-sliced units. 

e.g., by invoking a multipxrecision mode among reduced precision units. 

Explicit structures of virtual mechanisms are now evident in a few 

recent computing systems, both in hardware and In software.  For 

example, the Multlcs protection mechanism (Schroeder and Sflltzer 72) 

provides successive linear levels of resilience to errors in hardware, 

software, and hunans in its levels of protection. A spectrum of 

criticality exists with respect to faults. Only malfunctions (hard or 

soft) at the lowest software level affect the viability of the system. 

Others have diminishlngly serious effects on the correctness of 

operation as the level increases, e.g.. aborting one user's process, 

aborting one command, or aborting just one request within a command. As 

with hardware, software techniques for fault tolerance may also differ 

from level to level. An example is provided by the SIFT environment 

(Wensley A2). in which a wide range of real-time criticality is found 

among various tasks, and for which redundancy can be suitably configured 

to the task. 
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3.2.A.  IMPLICATIONS OF STRUCTURED DESIGN 

In this section we discuss the numerous benefits of the structured 

design approach. These include enhancements of reliability and 

computational capacity, and reduction of cost. 

SELECTIVE AND DYNAMIC APPLICATION 07 REDUNDANCY. A wide 'ariety of 

techniques for fault tolerance can be applied, each where it is most 

effective and responsive to the needs for fault tolerance and computing 

capacity. Each configuration of fault-tolerance techniques can be 

dynamically altered, on the basis of the current usage of the system. 

(The reconfiguration may affect more than one level at once.) The net 

cost of system fault tolerance can therefore be reduced, especially if 

rarely used fault-tolerance techniques can be performed reliably in 

software. Considerable savings also result if occasional modest 

real-time delays are permitted (e.g., for diagnosis, recovery, and 

reconfiguration), further reducing the need for dedicated hardware. The 

typically nonuniform distribution of costs within a system also permits 

a reduction of the incremental cost of fault tolerance. Memory costs 

(including secondary storage) seem to dominate total hardware costs in a 

well balanced system, even in emerging technologies (see Chapter 6). 

Consequently, the relatively small cost of redundancy in memory (e.g., 

varying logarlthmiclly with word length for single-error or byte-error 

correction throughout memory) may dominate the incremental cost, even 

with replicated processors, but even more so with dynamic and selective 

replication. Dynamic and selective use of coding (e.g.. Table 3.4) 

further reduces the cost of fault tolerance. A tagged architecture may 

be of significant help in this respect. Structured design also 

facilitates checkpoint mechanisms that permit varying degrees of 

rollback at different levels, as needed. On-site maintenance and 

diagnosis are also aided. 

GRACEFUL DEGRADATION. In general, computing capacity not currently 

dedicated to fault tolerance is available for useful computing, assuming 

reasonable system balance.  It is desirable to configure among pools of 

modules, functional units, processors, and systems. The multiplicity of 
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each pool should be Urge enough so that graceful deg radatlon is 

possible (i.e., that the loss of any unit 1. not serious). This 

increases the overall system effectiveness, in terms of both computing 

capacity and fault tolerance. 

SIMPLIFICATION OF THE DESIGN PROCESS. Well-chosen system structure can 

enhance eich stage of system development (Including designing, 

implementing, documenting, debugging, certifying, analyzing, 

maintaining, and modifying the system). At each such stage the notion 

of levels of invisibility permits issues of fault tolerance relevant to 

lower levels to be abstracted and analyzed, aiding in isolating any 

side-effects. Thus the structure serves as a useful model as well. 

ADAPTABILITY TO ADVANCED TECHNOLOGY. Recent technological advances 

(e.g.. LSI) significantly improve the cost-effectiveness of many of the 

techni4ues for fault tolerance. These advances should also stimulate 

new architectural directions, such as multiprocessors with considerable 

multiplicity, and distributed-logic and logic-in-memory designs. The 

latter case involves large arrays of small memory elements, each 

containing processing carabillty. These arrays could be organized into 

subarrays of subarrays, possibly with structures geometrically oriented 

toward the problem to be solved (cf. Kautz and Levitt 72). 

APPLICABILITY TO FAULT-TOLERANT SYSTEMS. The structural approach seems 

particularly effective for large general-purpose systems. It also seems 

useful for many systems with some tight real-time constraints, for which 

selective »redundancy can result in significant cost savings, compared to 

the uniform use of high-order replication. 

Questions of overhead and reliability must be examined carefully.  It 

appears that the overhead due to the use of structure can usually be 

kept small, except when fault-tolerance limits are approached. It is 

obviously desirable that the mechaaisms for controlling reconfiguration 

must themselves be fault tolerant, thrash-resistant. secure, and 

reconfigurable.  Interference problems and interconmunication must also 

b(> handled reliably. 
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In highly structured systems, there Is a basic prokJ 

overhead of multilevel interpretation (i.e., of 

many levels of language). This problem is al'i*viace4 fey 

certain low-level language constructs to be directly (amt 

available from outer levels. Where explicit level ci 

(as in protection mechanisms), the interlevel coanmicatlc 

should bt> simpie. Judicious use of hardware for such nechanisas is 

essential, as in the case of various associative shortcut mechanisms. 

In some cases it is also advantageous to reduce the number of conceptual 

levels Ir the implementation. 

Various questions remain unanswered by this discussion.  Can the 

tradeoffs among fault tolerance, computing capacity, cost, overhead, 

etc., be rigorously characterized? Under what circumstances is it 

desirable to reconfigure? What kind of limiting behavior occurs as 

computing capacity or fault-tolerance capacity is reached? What are the 

penalties associated with having too little or too much structure? What 

happens to the notion of the "weakest link", namely, those mechanisms to 

whose malfunction the system is most vulnerable? Can this notion be 

distributed among less wea': links? How does it shift during 

reconfiguration? 

Our assessment of the structured design approach is that it has the 

potential for providing highly flexible and economicil fault tolerance 

without greatly compromising system cost, system performance, and system 

efficiency.  Some qualities of structure are found in the current art, 

but full realization of this potential requires further develop<nent. 

3.2.5.  STRUCTURED RECOVERY STRATEGIES AND MASSIVE-TRANSIENT RECOVERY 

One useful approach for effective recovery over wide ranges of faulty 

behavior follows the PRINCIPLE OF LEAST EFFORT (Zipf 49). It is 

desirable to structure the system so that subsequent to a fault, the 

availability of the most essential services can be restored as rapidly 

as possible, deferring (or overlapping with restored operating capacity) 
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that which need not be done Immediately. In this way, it la 

for the system to recover by successive iteration, outwa'd fi 

critical mechanisms. (See Carter et al. 71a for a discussion of the 

recovery problem and the control of recovery. See also Williams A2, 

Saltier A2, Stern 73( and Stern and Van VIeck 73.) 

As an example ot a specific problem that can be greatly simplified by 

the adoption of a hierarchical structure and hierarchical recovery 

strategies reflecting that structuret consider the "massive-transient" 

recovery problem: 

A correlated fault source (e.g., a power surge or a bolt of lightning) 

has left all units of the system suspect, perhaps introducing both 

transient and permanent faults. The problem is for the system to 

diagnose and configure Itself back into a working configuration and to 

• lidate Itself for correctress, all under its own control. Note that 

the software as well as the hardware must be considered suspect. 

This problem is essentially a generalized fault-tolerance problem, where 

performance may cease temporarily during and Just after the massive 

transient.  It is also closely related to normal system initialization. 

Design structure and dynamic reconflgurability both aid greatly in 

solving this problem. One solution involves validating a correct 

configuration of hardware and bootstrapping upward from the lowest 

levels, until a satisfactory rudimentary system is obtained. This 

solution is aided by the use of a hard-wired non-volatile read-only 

memory which provides a basis of correct programs for recovery. Further 

help is of:ered if pure-procedure instructions in this memory can be 

executed directly, and if these programs operate only out of local 

memory at first.  By working outward, valid portions of the system begin 

to emerge.  Also useful for providing checkpoints may be cheap 

once-writable memories (possibly asynchronous to the main control). 

(Another approach is to try experiments on various configurations of the 

whole system.) Note that this problem may be intrinsically insoluble 

for a given aystem coofiguratiee. It may also be insoluble for the 

particular massive transicmt, e.g., because not enough operational 
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equipment remains to self-diagnose and configure a valid system, or even 

just tc operate such a system.  (Furthermore, more equiyuent may be 

required for diagnosis than for operation.) 

3.3. ARCHITECTURES FOR FAULT TCLEPANCE 

This section describes some general architectural configurations for 

fault-tolerant computers. Our intention is to show how the variety of 

techniques outlined in Sections 3.1 and 3.2 may be applied to the design 

of complete economical systems with high availability and high degrees 

of correctness as desired. We do not delve deeply into the design of 

particular systems, but rather merely attempt to justify their 

fault-tolerance behavior.  For each system architecture, we indicate an 

estimate of overall redundancy, reliability, and availability measures. 

We also give methods by which error detection and recovery can be 

achieved, and a general assessment of the system. Aplications for these 

architectures are considered in Chapter 6. 

We examine various types of system architectures here. Section 3.3.1 

considers simplex systems, that is, systems with a single instruction 

stream, but possibly with replicated processors.  Section 3.3.2 

considers multicomputers (including networks) and loosely-coupled 

multiprocessor systems.  Section 3.3.3 considers strongly-coupled 

multiprocessors, e.g., with sharing of data in memory among processors. 

Most of the system types form the basis for systems surveyed in 

Appendices 1 and 2, although several types discussed here have not yet 

matured into prototype or even paper designs as yet. 

Where fault tolerance is a design goal, it can easily be incorporated 

into the design.  In general, however, it cannot be retrofitted 

effectively into an existing implementation.  As indicated in Chapter 6, 

suitable architectures for fault tolerance exist for all common 

computational applications.  For these applications, fault tolerance can 

be achieved by the exclusive use of hardware techniques, requiring 

little modification to the operating system.  However, if the degree of 

fault tolerance is to be matched to the application needs, and is to 

56 

_._ 



wmmmmmrm^^^* 

require lees redundancy than that associated with replication,  then much 

more reliance on software is needed.    In particular,  the operating 

system becomes significantly more complex, and perhaps represents a more 

likely source of errors  than faulty hardware. 

The credibility of a particular fault-tolerano   concept is of great 

concern.    In the aerospace environment,  the general practice has been to 

design extremely simple and crudely replicated systems.    This simplicity 

is a consequence of the demand for systems  that  are obviously reliable, 

and perhaps amenable  to human error detection and reconfiguration.    This 

demand has precluded the use of the less  redundant   (although more 

complex)   fault-tolerance  techniques described in this report.    We  feel 

that these better techniques will become more acceptable as  the new 
technologies emerge,  and as operating systems become more reliable. 

Advanced  fault-tolerant systems,  i.e.,  those with high availability, 

fast  recovery,  and low cost, will place high demands on the operating 

system. 

3.3.1.  SIMPLEX SYSTEMS 

In this subsection we view a simplex processor system as one in which 

only a single central processor is present, or in which all central 

processors are intended to operate with identical instruction streams 

and data. The earliest conceptions of fault-tolerant systems were 

simplex systems, employing low-level redundancy techniques (e.g., in 

gates or registers). 

3.3.1.1.  REDUNDANCY ONLY IN MAIN MEMORY 

The cost and unreliability of most contemporary systems are largely 

dominated by the main memory.  (We exclude peripherals from the 

immediate discussion, since their effects can be readily decoupled.) 

Typically, the main memory is 50Z to 75% of the total digital circuitry 

in a medium to large system. The main memory can be made reliable by 

techniques embodying varying combinations of error detection, error 

correction, block, replacement, and chip replacement. The use of these 
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techniques can provide fault-tolerance ranging from a ndninum of error 

detection In memory to completely autonomous error confinement, 

reconfiguration, and recovery in response to memory failures. With the 

use of these techniques, the memory is from 5Z to 35Z redundant, 

depending on the word length, byte length, and the desired degree of 

fault tolerance.  There are two possible deficiencies associated with 

memory coding and blcck replacement. 

*The memory is prone to faults in external equipment, notably power 

supplies. This prob:em can be alleviated by providing a separate power 

supply for each block or for each byte slice of memory. 

* If only the memory is protected by redundancy, the unreliability of 

the system is decreased only by a factor of about 3.  Hence some form of 

processor fault tolerance is sr.ill needed. 

Memory fault protection is rapidJy becoming a common practice. Most 

machines have a parity check option on main memory, and some newer 

machines (e.g., IBM's System/370) Incorporate error correction at the 

bit level or at the byte level. Mo.it machines with relocation hardware 

are capable of reconfiguration around one or more faulty memory blocks. 

This is a primitive form of graceful degradation in that main memory 

functions are either lost or taken over by secondary or paging memories, 

with an accompanying reduction in performance.  However, we know of no 

working machines thftt achieve reconfiguration autonomously, subsequent 

to a detected error.  Such reconfiguration is not difficult to achieve, 

and can extend the up-time of a system enormously. 

3.3.1.2.  REDUNDANCY IN MAIN MEMORY WITH PROCESSOR REPLICATION 

The simplest approach to tolerating faults in processors is to use 

replicated processors and provide some mecl anism for resolving 

discrepancies among their outputs.  In one mode the processors are 

duplicated and the two inntruction streams »re synchronously compared 

before being accepted an  correct. Any discrepancy can trigger a 

single-injtructlon retry in the hope thit the fault causing the 
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discrepancy is transient. If the  retry falls the first time, a more 

complex recovery may be Invoked.  Finally, If all retry attempts fall 

because the fault Is permanent, autonomous or human diagnosis can be 

undertaken to Identify the faulty processor. The system Is then 

reconfigured to use just the good processor. In any event the 

duplicated processor scheme can clearly prevent an Incorrect result due 

to a single faulty processor. With the Inclusion of some diagnostic 

procedures It can provide a system that remains available in the 

presence of one faulty processor.  Such a system, Including the cost of 

memory coding, may have from 33Z to 45% redundancy, depending on the 

dominance of memory In the system.  Besides Its relatively high 

redundancy, this approach has two operational deficiencies. 

* Inadequacies In the current diagnosis practice preclude the use of 

this approach In the most exacting fault-tolerance situations. That Is, 

most diagnostic programs are successful in handling no more than 90% of 

the fault possibilities.  Thus subsequent to a processor failure, the 

system may not be successfully reconfigured as much as 10% of the time. 

* The comparison of processor outputs, if carried out in hardware. 

Introduces a few extra gate delays. In high-speed applications it might 

be possible to pipeline this comparison with other operations at the 

expense of extra circuitry. 

If a higher probability of successful autonomous response to an error is 

required, then a triplicated or higher-order replicated processor can be 

used. The processors can then be operated in a voting mode or a dynamic 

voting mode if there are more than three processors. The processor and 

memory are approximately in balance if the memory operates with 

single-error correction and single block replacement and if the 

processor is triplicated.  In this case the probabilities that the 

memory or processor exhaust their respective resources are roughly 

identical. Recovery in the case of a triplicated processor should still 

Include a single instruction retry, before trying to restart from an 

earlier state, or before discarding the disagreeing processor. The 

major drawback of grossly replicating the processor is cost. 
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Triplication of processors with error-correcting coding in memory can 

have redundancy ac high as 60%, 

3.3.1.3. TRIPLICATED SYSTEMS 

We discuss above the deficiencies due to the use of different redundancy 

techniques for the processor and memory. Another deficiency for certain 

applications is the need to modify the basic computer design.  One 

simple way of avoiding these difficulties is to operate multiple 

computers (including their memory) in a duplicated or triplicated mode. 

The results are compared whenever information leaves a computer, e.g., 

to a channel. The comparison in this case is done at such a low duty 

cycle tl'at software voting may be feasible. When a disagreement is 

detected, the backtrack can be to the beginning of a computation or to 

the last channel Invocation.  In th^s case the need for saving register 

states in order to achieve single instruction retry is avoided.  Of 

course, the main drawback of a uniformly triplicated system is its 

redundancy, whici exceeds 6 7%. 

This single replicated virtual processor concept was used in the Saturn 

V guidance computer.  It is a possible mode of operation in a version of 

SIFT (Wensley A2) which is stripped down to exclude multiprocessing, and 

forms the basis for a flight-coutrol computer under consideration by 

NASA-Langley. 

3.3.1.4. REDUNDANCY  APPLIED OVER PROCESSOR PARTITIONS 

Among the major drawbacks of the  triplicated processor scheme and the 

triplicated system scheue are  the  following. 

* After a single processor failure, all spare processor resources are 

exhausted. 

* The crude redundancy technique does not  take advantage of the u.^ae 

structr.re of particular processor sub-blocks.    Thus  the  redundancy is 

higher than it needs  to be. 
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Under certain circumstances,  an attractive scheme is  to decompose a 

processor into sub-blocks and to apply  redundancy  techniques appropriate 

to each sub-block.     For example in the STAR computer  (Self-Testing and 

Repair, Avizienis A2)  the following sub-blocks are identified: 

arithmetic unit,  logic unit,  and control unit.     For a more powerful 

computer than  the STAR,  one could also include stacks,  expanded register 

sets, and scratch-pad memories,  for example.     The basic fault-tolerance 

method is  to detect  an error at an interface  to one of these sub-blocks, 

and if necessary,  to replace  that sub-block with a spare.     Residue  codes 

are used for error detection in the arithmetic unit  (and in the memory), 

a 2-out-of-4  code  for instructions, and duplication elsewhere.    In all 

approaches  of this  type,  there is  the need  for some overall executive 

within the processor to act as  the ultimate  arbiter of all detected 
errors    In the STAR,  the TARP  (Test and Repair Processor)  serves  this 

function,  and is  itself  triplicated.    Note  that  the TARP really serves 

as  a "smart" bus with all inter-block  transfers passing through it.    - 

The system can be  as  low as  40%  redundant with a spare  for each 

sub-block.    Moreover the up-time can be extended by a factor of  IU, 

because of  the partitioning of the processor.     One of  the most 

compelling advantages  is  that no radical change is needed in the 

functional  partitioning of  the system.     The  major deficiencies of this 

approach  are  the  following. 

* Major Internal processor delays may be encountered due to the TARP,  a 

situtaion that might be alleviated by pipelining its operation with 

other units. 

* In an LSI  implementation  the partitioning might not be appropriate. 

This  is particularly  true if the computational  requirements  can be met 

by a one-or-two-chip computer.    However,  in much larger installations 

MST  is likely  to be used in  the near: future.     With an MSI 

implementation,  a relatively  fine partitioning is  feasible. 

An early version of the SERF computer of Raytheon  (Stiffler 73)  employs 
a partitioning similar to STAR.    However,  the arithmetic-logic unit is 
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decomposed into bytes while external switching can provide a routing 

around faulty bytes.    A partitioning this  fine is appropriate only where 

effectively  zero maintenance is  required for long periods  of time.    The 

MECRA computer  (Uelamare A2)  uses  a variety of coding  techniques within 

the processor.     In addition,  graceful degradation is achieved by program 

modification,  using microprograms  that  remain correct. 

Our conclusion with  regard to partitioned processors  is   that  technology 

advances have  precluded their applicability  for their originally 

intended application,  aerospace.    However,  they appear useful for large 

processor installations, provided  the delay problems  can be solved. 

3.3.1.5.     MirROPROGRAM-ORIEKTED PROCESSORS 

Many small  to rocdiuir size processors achieve a rich instruction set by 

microprogramming.    As  the availability of hlgh-.r,eed memories  increases, 

it is  likely  that microprogramming will appear in all but  the super-fast 

computers.    Microprogramming is used to realize many complex 

instructions  that otherwise would require special hardware.    Thus  the 

instruction unit  can be simplilied and many special  logic boxes  (e.g., 

floating-point hardware, multipliers,  interrupt handlers)   can be 

eliminated.    The net  result  is a total computer in which only about  10% 

of the hardware  is not a memory  function.    Straightforward coding 

techniques  can be  used  for error detection or correction.     In addition, 

with writable  control store,  the microprograms  can be paged and routed 

from a  failed memory block  to an operative on«,  or in an extreme case, 

to a memory block in slower memory.       Crude  redundancy  techniques  can be 

used  for the non-memory hardware,  at  comparatively  little Incremental 
cost. 

3.3.1.6.     PROCESSORS  WITH DEFERRED,   PARTIAL,   OR PROBABILISTIC DETECTION 

Most of the architectures discussed above aim at  corrertness  for all 

computations  and availability in    he presence of single  faults. 

However,  in many applications correctness is essential only for certain 

computations,  such as  those Involving security and  file protection 
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(including address generation).    We describe here a system wherein 

single hardware faults cannot result in a security breach.    It would be 

preferable that the machine halt rather than propagate   in error critical 

to its security.    To achieve  this safeguard,  certain «iq lipment  (notably 

base, mapping, and relocation registers)  must be protected against 

faults.    Error-detecting codes can help here.     In addition,  the 

functions  that read or modify access  rights must be  checked.    This 

requirement can be accomplished by consistency  checks or duplication in 

space or time.    A more  reliable but  less elegant solution is  to provide 

a special replicated hardware unit within the processor that would 

execute primarily  those  functions within the security perimeter.     If 

this unit can be designed so as to consume a small fraction of the 

computational resources  in an integrated non-fault-tolerant 
implementation,  then a replicated minicomputer within a large processor 

might suffice to achieve  fault  tolerance. 

The detection of only  those errors  that are in some sense critical is a 

special case of deferred detection  (Section 3.1.1.3).     Short-of coding 

or duplication, many  features  cm be included in a processor to enhance 

detection.    For example,  the use of a tagged  (or descriptor-based) 

architecture  (e.g.,  Feustel 73,  or the Burroughs  B5500)  can be used as a 

valuable  tool  for detecting hardware errors.    Any error that  leads  to a 

type violation  (e.g.,  execution of data,  or adding a floating-point 

number to a Boolean value,  or an attempt  to manipulate a capability) 

could be detected.    The  central problem with  this  technique is  to 

protect  the hardware  that manipulates  the  tags. 

3.3.1.7.     CONCLUDING  REMARKS ON SIMPLFX PROCESSOR ARCHITECTURES 

As noted in Chapter 6,  simplex architectures are  the most prevalent 

today.    They will probably  remain common in the  future, at  least in 

super-fast systems.     Efficient methods exist for designing 

fault-tolerant simplex systems.    For example,  a system that is 402 to 

50Z  redundant can be  correct and available in the presence of single 

faults.    In a multiprocessor organization,  this  redundancy can be 

reduced by a factor of at  least 2  for applications  in which most 
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computations need not be carried out reliably, provided certain critical 

computations are reliable.  That Is, the multiprocessor organization 

discussed below Is better matched to applyinp redundancy nonunlformly in 

time. 

3.3.2.  LOÜSELY-COUPLEU MULTIPROCbSSOR ORGANIZATIONS 

In this section we describe several multiprocessor architectures that 

exhibit economical fault tolerance. We assume applications for which 

the various tasks run substantially Independent of each other, in 

separate memory blocks.  As noted below, tlte absence of sharing and oi 

strong interprocessor communications greatly simplifies the design of 

such fault-tolerant multiprocessors. Multiprocessors with strong 

dependence among processors (e.^., with shared use of memory) are 

considered in Section 3.3.3. 

It is clear that multiple processors are effective for fault tolerance, 

for at least the following reasons: 

* Processors and memory blocks represent good replacement units. 

* When all resources (processes, memories, etc.) are operative, they are 

all kept busy doing useful work. As resources fail, the operative ones 

take up the slack with a loss in performance.  Thus, the long-standing 

goal of a gracefully degraded system is readily achieved with a 

multiprocessor, except for the detection and diagnosis problems. 

* It is possible, in principle, to achieve redundancy that is variable 

in time and space.  For certain critical computations, several 

processor-memory pairs can operate in a replicated mode. Moreover, this 

replication can be modified dynamically in time. 

We divide multiprocessor organizations into three types: fixed 

multicomputer systems, configurable multi-computer systems, 

multiprocessors with coinnon memory.  (Note again that shared memory is 
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dlscus-ed in Section 3.3.3.)    Included are systems In which there Is an 

active processor ar.d a monitor procersor, and network^ of systems.    We 

discuss fault-tolermce techniques avalidble for these organizations. 

These designs have not generally been suitable for efficient operation 

of a large-scale general-purpose Interactive computing (e.g., a computer 

utility).    Most such designs have been suggested for an aerospace 

environment.    The main reason for the unsultablllty of these designs  to 

such applications Is  that hardware Is not present to support sharing or 

flexible conmunlcatlon between error-prone processes executing In 

different processors or memories.    Several of the designs permit 

Interprocess conmunlcatlon, provided the processors all operate In a 

replicated mode.    In a trivial seme the system then Is protected 
against security breaches  caused by single  faults, but we do not 

consider this to be a satisfactory solution for, say,  a computer 

utility.    A more desirable solution Is outlined below.  In which 

replicas on Is avoided.    The omission In this subsection of hardware to 

support  reliably controlled sharing Is Intentional.     If the mechanisms 

for sharing are nonexistent or severely restricted,   .hen a process going 

awry because of a hardware fault cannot cause da nage outside Its 

restricted domain.    A satisfactory solution to tte sharing problem In 

the presence of hardware  faults does not exist, but  the architectural 

conlflguratlons discussed in Section 3.3.3 seen to be a step In the 
right direction. 

3.3,2.1.     FIXED MULTICOMPUTERS 

The primitive element of a multicomputer is a processor/m-mory 

combination.     In such an architecture,  the system can be protected 

against a processor going awry by enforcing an intercomputer security 

discipline.    Moreover, since the primitive element is essentially a 

self-contained computer system,  there is  limited need for connunlcatlon 

among the computers — except for the pu pose of handling error 

conditions or message handling involving the executive.    An example of a 

fixed multicomputer is  the Pacific Coast Stock Exchange system CJOMEX 

(Wallace A2).    Multicomputer configurations also include computer 
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netMorka  (e.g., the AFPA Network) — see Kuo and Abrairson (73).. The 

desired fault tolerance for networks is highly dependent on the 

corponent systems, on the interconnection network, and on the 

applications. Networks are discussed in Section 6.3. 

With the help of a flexible switching network between I/o devices and 

the set of computers. Jobs can be assigned to an available computer. 

T'.cre is no facility for one computer to write in the memory of another. 

For example, the protection against the erroneous overwriting of a disk 

file is enforced by perrdttinp only an executive to modify the switching 

network.  The executive is run independently in .'each of two corputers so 

tiiat its operations are checked,  errors are detected either by a 

disagreement among executive computers or by any self checks 

incorporated within the Individual computers running, application 

prog.rams.  Any of the self-checks discussed for a simplex processor 

system could suffice here.  The executive operating in a checked mode 

could diagnose a suspected computer. Note that this executive is 

running at an extremely low duty cycle, performing only job scheduling 

and infrequent error control.  Each computer will have a resident 

operating system to perform such operations as loading and subroutine 

linkage. The redundancy of this concept is quite low (not exceeding 

10X)  as measured by the amount of hardware and software devoted to fault 

tolerance. 

A minor augmentation of the technique could provide for the checking of 

the application programs if desired by the user.  In this case the 

application programs are run in two or more computers.  The local 

executive resident in each computer (pertinent for this application 

program) periodically reads the results for this program computed by 

other computers.  Any disagreements can be noted in the memories for 

future disposition by the system executive.  Periodically, the 

processors read from specified locations in the executive computer's 

memory to determine if they should handle new jobs, become an executive 

computer, or possibly disconnect themselves.  The error control protocol 

discussed above is a simplified description of the SIFT system (Wensley 

72). The ARMMS system (Martin A2) is also a multicomputer concept, but 
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Incorporates all executive functions within an especially smart 

interface unit. 

The multicomputer approach is clean, and should find application in 

environments where the computer system is a relatively small portion of 

the total mission cost, and the application program demands are known to 

be near constant.  However, for other applications the notable 

disadvantages of the scheme are: 

* Because there is little intercommunication among processors, each 

disposable unit (processor and memory) must be fairly large in order to 

represent an independently viable computer.  Thus, it represents a large 

unit to be removed upon failure.  The configurable multi-computer 

discussed in Section 3.3.2.2 represents a finer and more realistic 

partitioning. 

* Assuming that the individual computers are larger than mini- 

computers, then multiprogramming within a single computer is desirable 

if the computers are to achieve reasonable efficiency. However, there 

is a problem of maintaining isolation between the processes being 

multiprogrammed.  In the presence of faults, such isolation can be 

achieved only by using the relatively expensive techniques of a 

replicated simplex system discussed in Section 3.3.1. 

* The system is too Inflexible for variable tasks.  For example, there 

is no way to vary the high-speed memory allocated to a job. 

3.3.2.2. CONFIGURABLE MULTI-COMPUTERS 

We consider architectures in which a set of computers can be configured 

out of a collection of processors, memories, and (possibly) I/O 

controllers.  The configuration is accomplished either manually by an 

operator or by an executive (in hardware and/or software).  To 

accomplish such variable interconnections among system units, the system 

requires an interconnection network ^e.g., a cross-bar or restricted 

cross-bar) between a set of memories and a set of processors, and 
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another such network between the I/O controllers and the memories. 

(Some switched communication links will also be required between the 

processor and I/O.)  To inhibit deleterious error propagation from a 

failed processor, the interconnection network is changed only 

infrequently, e,g, when a new job is loaded in, or possibly only when a 

unit fails. 

The fault tolerance procedures for a configurable multicomputer are 

almost equivalent to those of the architectures discussed in Section 

3.3.2.1.  For example, the CLC computer of Bell Laboratories (see 

Kidpway A2) uses a variety of consistency checks to detect errors. The 

PRIME system (borgerson A2) relies on memory parity, periodic diagnosis, 

and user complaints to detect errors.  There is no attempt to perform 

error correction on the above systems, so that the main forte of these 

systems is availability. 

The redundancy is slightly higher than that for a fixed multi-computer 

architecture, mainly because of the need for extra hardware in the 

interconnection networks, and exura software to implement the m^re 

advanced reconfiguration possibilities. However, aside from the cost of 

spare units, the system should not be more than 15% redundant. The 

system is somewhat prone to faults in the switching network. 

Nevertheless, the effects of a single fault in the switelling network can 

be made equivalent to a fault In a processor, memory, or I/O controller 

by distributing the switches among the units.  If there is a need for 

certain computations to run concurrently in two or more computers, such 

an allocation can be effected by the executive. At the conclusion of 

the computation, the executive can gain access to the pertinent memory 

modules to compare the results. 

The performance of a configurable multiprocessor is better than that of 

the fixed multicomputer in several respects. 

* The configurable multicomputer offers longer life for a given numbet 

of spares, because of the fine: partitioning.  That is, when an error is 

discovered, a subsequent diagnoiis can pinpoint the fault to a memoiy or 
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processor unit.    In the fixed multicomputer, an entire processor/memory 

pair Is discarded. 

* The configurable multicomputer offers  the possibility of adjusting the 

main memory requirements  to the needs of a Job. 

* By virtue of the Interconnection networks,  there  Is  the possibility 

for some Interprocessor comnunlcations.    However,  the reliability needs 

dictate  that  this connunlcatlon should be under the strict control of 

the executive. 

Despite  the above advantages,  a configurable multiproceasor with  the 

present state of the art does not meet the requirements of many  computer 

utilities.    This is  true primarily because of the difficulties of 

achieving multiprogrammiMg within each processor, and of achieving 

reliably controlled sharing of memory among processors. 

3.3.2.3.     LOOSELY-COUPLED MULTIPROCESSORS WITH COMMON MEMORY 

For applications in which most of the  computations must be  fault 

tolerant, and in which  there are  real-time constraints on the 

computations,  the several multicomputer architectures discussed above 

are  grossly redundant.     That  is,  the aforementioned multicomputers 

require  that  th-  computation be executed in two or more  full computers. 

This  fault-tolerance procedure does not  take advantage of the  low-cost 

coding techniques  for memory. 

Memory coding techniques  can be used  for both error detection and 

correction, as  follows.    The main memory Is either a large 

block-oriented co.mon memory or a multiport memory  that can communicate 

with other system units by means of an Interconnection network.    Each 

processor unit is a pair of processors  that will operate in a lock-step 

mode.     Processor errors  are defected by a disagreement between the 

processor outputs.    To ensure that erroneous Information does not 

emanate  from the processor pairs,  it is necessary  to suspend the 

operation of the pairs when the error Is detected.    This  can be achieved 
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by some reliable  lopic  (usually triplication)  at  the interfaces  to 

processor pairs and other system blocks.    This approach has been taken 

in  the Hopkins multiprocessor  (Hopkins A2)  and  the  Interne tries 

multiprocessor  (Hiller A2),     Another approach  is  to make  the 

interconnection network  powerful enouph to isolate a processor pair in 

error.    This approach  is pursued in the DUCS system (Wensley et al.  73). 

In either case, a processor pair is discarded if  the  fault  is permanent. 

As mentioned above, system memory can take  the  form of a common memory 

or of a set of memory modules.     In either case   the rerory  information is 

protected uith  coding  that  provides  at  least  sinple-byte error 

correction.    When an error is detected in memory,  the block or modu'e in 

error is kept in service  lonp enouph  to transfer its data to an 

operative section. 

This  concept is  less costly  than the multicomputer structures if 

correctness of results is important.    The actual cost varies with  the 

number of units needed to meet the computational needs, but  typically 

the system will be about 50% redundant with one spare unit of each  type. 

Moreover,  these concepts can be extended to allow process sharing, since 

each  processor's  operation  can be  checked.     However,   this  checking still 

requires duplication of all processors — a cor.t  that is not attractive 

for general use. 

A common use of a multiprocessor configuration is where one processor is 

clieckinp on  the performance  of another or doing background work,  but is 

prepared  to take  over active performance.     Such systems  include ^o.   1 

KSS   (Ulrich A2)   (with  a monitor processor running  diagnostics),  and  the 

New York Stock Exchange Market Data System MÜS-2   (with  two pr cessors 

multiprocessinp and a  third acting as  a monitor). 

3.3.3.     STKONGLY-COUPLEU MULTIPROCtSSüRS 

The multiprocessor systems discussed in 3.3.2 are primarily intended for 

the aerospace enviionment, or an environment in which processes  can 

function independently.     In the latter case,  the multiprocessor 
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structure offers high availability.    Sharing Is possible only If all 

computations can be generated to operate error-free, which In turn 

generally  requires costly  replication  for those multiprocessors. 

However,  In a modem computer utility, controlled sharing Is extremely 

desirable.    Moreover,  It should not be necessary to replicate entire 

processors  in order to achieve  reliably  controlled sharing when the 

programs desiring sharing need not be error-free. 

A useful example is provided by the Multics system. Among the important 

currently implemented features of Multics that bear on sharing and fault 

tolerance are the following: 

* The ring structure (within a process) prevents a program (running in 

some ring) from disturbing a program that runs in some inner ring. In 

particular,  an application program cannot  crash the operating system. 

* The operating system itself is  layered with  the secuilty-dependent 

functions  clustered in the innermost  ring.    At present  that  ring is  too 

large  for our purposes—an issue considered below. 

* The  file system is  fairly immune  to system crashes. 

* Processors  or memory modules,  can be added or deleted while  the system 

is in operation. 

Aside  from the third item,  these  features are also Included in the 

design  for the SUE system (Sevcik et aT.(  72).    Multics does  little to 

support  fault  tolerance  (e.g.,  there is  at present no Instantaneous 

attempt to recover from a parity error in memory), although  there are 

substantial mechanisms  for the integrity of resident storage.    Under 

hiirdware  faults,  the only guarantee is  that  the system can eventually 

recover, with or without operator Intervention. 

The desired characteristics  for a system embodying both sharing and 

advanced  fault  tolerance are  the  following: 
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* Sharing and putection are desirable, in the spirit of Multics. 

* The protection mechanisms should not be violated under single fault 

occurrences. 

* Processes should be able to execute on an unreplicated processor and 

still enable the protection mechanisris to be maintained. 

* If correctness is needed for certain computations, then such 

computations should execute in a replicated mode. 

* The individual processors should be Diultiprogramnable, 

* Availability should be achievable by the inclusion of spare modules. 

The Vlessey 250 system (Williams A2) comes close to meeting the above 

characteristics.  It is a multiprocessor structure with special hardware 

within a processor to support a capability-oriented protection scheme. 

Any process can invoke the operating system, so that the operating 

system as a part of any process on any processor  The detection of 

errors and the prevention of error propagation beyond a processor is 

achieved b' combination of consistency checks and special self-tests 

within a processor.  For example, a process accessing a segment for 

which the capability does not exist would cause an error indication. 

For the most part the Plessey 250 system operates in a benign 

environment, so that the capability checks are present mainly for error 

detection and confinement rather than for bootstrap recovery.  A 

well-designed hierarchical recovery procedure is provided. The system 

is quite economical—less than 25;; rrdundant and the error detection and 

recovery procedures have been evaluated by simulation.  However, the 

system still i Ules primarily on ad hoc error detectic i procedures.  If 

these design techniques are applied to a less predictab'e computing 

environment, there is no assurance that errors will be caught before 

they cause a crash or a security breach, nor is there any assurance that 

the recovery can be carried out autonomously. 
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It is possible  to achieve six of the goals by performing certain 

operating system functions in a replicated mode.    The Carnegie-Mellon 

C.mmp multiprocessor system (Slewiorek A2)   offers some possibility in 

this direction.    Briefly,  the Cnunp is  a multiprocessor in which a set 

of processors  communicate with a set of memory modules via a crossbar 

type network.     Certain interconnections  can be inhibited by manual 

control of  the network. Aside from this manual override  the crossbar is 

•ettable by  a block address generated by a processor.    The contents of a 

set of mapping registers associated with each processor determine  the 

capabilities  of the process  running in  the processor in question.  These 

registers  can be set only by   the operating system. 

The most significant aspect of the operating system is its kernel, 

called Hydra  (Siewiorek A2).    Within its boundaries Hydra contains 

sufficient  routines to enforce various protection and sharing 

disciplines among processes.    Hydra also offers facilities for writing 

an extended operating system.    Any process  can invoke Hydra on its 

behalf.     From a fault tolerance standpoint,  all of the  features 

presently in Hydra should be protected.    That is, hardware faults should 

not induce  any errors in the operation of  t'.e kernel.    In addition  to 

the current  functions of Hydra,  the reliability kernel should contain 

procedures  for recovery,  diagnosis,  and configuration.     Kich of I/O does 

not belong in  the reliability kernel except possibly a disc manager.   It 

is intended that the reliability kernel be run in a checked mode.    The 

most convenient way of achieving this  checking is to run the reliability 

kernel, when it is called, simultaneously on two processors.    If the 

memory  modules  incorporate  their own  fault  tolerance  (probably by means 

of error correcting codes), the two distinct memories are not generally 

required.     However, since  the  temporary storage memory requirements of 

the kernel are small, each replicate of the kernel can run 

simultaneously in its own processor and memory.    Ac a time when the 

kernel can return values, the process calling the kernel can read the 

results simultaneously  from both memories,  and can compare  the results. 

A minor hardware augmentation of C.mmp is  required here.    If this 

comparison and the resultant storage of  the kerne]  results are to be 
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carried out  reliably,  then these operations   tliemselves must be checked. 

One way of achieving this reliable abstraction of the kernel's 

computations is  to expand the capability register set associated with 

each processor into a small duplicated microprocessor.    The register set 

need not be duplicated, but can be protected by a simple parity code. 

This duplicated microprocessor  (distributed among the processors)   can be 

viewed as  a distributed TARP or bus  checker.     It is also necessary  to 

provide  fault   "-olerance within  the interconnection network, e.g., 

trivially by  replicating the network,  or better by distributing the 

network among the interconnected modules.     In this  latter approach 

feedback can be  used to verify  that control  is established correctly. 

In conclusion a multiprocessor structure  like C.mmp or Plessey 25Ü ccn. 

be extended so as  to achieve all of the prescribed design goals at  a 

comparatively  low additional hardware cost.     The addition of the 

duplicated microprocessor and the extra cost of fault  tolerance in the 

interconnection network should be equivalent  to about 20 percent of a 

processor.     There is also the additional overhead of executing the 

reliability kernel  in two processors—a cost  that is presently unknown 

but tho:ld be   low. 
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CHAPTER 4.  MEMORY ORGANIZATION 

This chapter describes the use of redundancy and reconfiguration in 

memory to increase system fault tolerance.  Several of the better known 

schemes are treated, and a new approach is given that offers great 

improvements in availability for large memories. 

In most of the systems of interest here, there is a diversity of memory 

types, from very fast small special-purpose memories (e.g., a cache, or 

associative memory for paging, or a microprorram control store' to fast 

main memories to various slower on-line memories (possibly block 

oriented) to nntmally off-line storage. A virtual memory mechanism is 

very helpful for the management of such a storage hierarchy, and can 

contribute to economical fault tolerance in several ways.  First, by 

isolating real memory addresses from ujer programs, it contributes to 

security, especially if the address manipulations are done reliably. 

Second, it simplifies internal reconfiguration, replacement, and removal 

via page relocation, increasing operational continuity in the presence 

of faults.  Third, it can provide a natural proliferation of different 

versions of data and procedures that can be very helpful in recovery. 

4.1.  ERROR DETECT ION AND ERROR CORRECTION IN ilEMORY 

The coding art is well developed with respect to realistic codes and 

deeding procedures (e.g., herlekamp 68, Peterson and Weldon 72),  Thus 

this section presents various conclusions based on this art, as well as 

summarizing various aspects of byte coding for byte-organized memories. 

As noted in Section 3.2, there is a wide range of criticality among 

various memory usages.  Simple single-error detection or byte-error 

detection may suffice for much of memory. However, certain computations 

for which rollback 1& both difficult and undesirable may require error 

correction.  Further, even where recovery is possible, some more 

reliable memory may be required.  Fortunately, coding in memory xs 

relatively che.ip, even byte-error correction (see below), and especially 
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if used selectively. 

Various special memories have special needs for coding techniques.  For 

example, error correction may be neither desirable (because of decoding 

delay) nor necessary in an associative memory for which there is 

write-through or easy restoration of faulty words. However, capability 

for error detection may be very critical.  For example, an error in the 

associative memory of a paged system can drastically affect both the 

system and its security.  Burst coding (e.g., Elspas and Short 62, 

tlspas et al. 62, Berelekamp 68, Peterson and Ueldon 68) may be 

effective in devices with serial transfer. 

BYTE-ERROR CODING 

Byte coding is hiphly appropriate for byte-per-chip memories, as in an 

LSI chip storing b bits from each of y words (e.g., b-A, y»1024).  Here 

y n-bit memory words are stored in n/b chips.  In some technologies it 

is possible for a fault to result in as many as b bits in a chip being 

in error, and thus byte detection or byte correction may be appropriate 

for the b-bit bytes. 

Detection of a byte in error within a word with k-n-r information digits 

requires exactly r-b redundant bits, i.e., n-k+b, with b interlaced 

parity checks. Almos' complete byte-error detection is achieved with 

the same redundancy using residue codes, which have the advantage that 

they are also useful for detecting errors in arithmetic (see Avizienis 

et al. 71, Parhami and Avizienis 73),  Note that the same redundancy 

(and in fact the same code witli interlaced parity checks) also provides 

BURST-ERROR DETECTION for burst errors, i.e., up to b errors confined to 

b consecutive positions (cyclic or otherwise) (e.g., see Peterson and 

Weldon 72). This is true even though b-bit byte errors are a subclass 

of b-bit burst errors. 

Byte correction can always be achieved with generalized base B Hamming 
b 

codes with B - 2 .  The redundancy (in bits) of these codes is 
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Bib J 

(4.1) 

as long as ri2b; f xl  denotes the smallest integer containing x. 

Fewer redundant bits actually suffice in many cases, with a lower boi 

given by 
•"n b 

r Ä log9 K(2 -D + 1^ and r ^ 2b . 

(4.2) 

Thit follows from the required number of distinct error patterns (each 

requiring a distinct SYNÜROMt, or check pattern) for each of the n/b 

radix B digits.  The best codes known are those of Hong and Patel (72): 

if r is written as r-ib+c, with Os c^ b, and i an integer, then the 

value of k for a particular value of r is given by 

(2r-l) 
b  c 

2  (2 -1) 
+ c 

2° - 1 (4.3) 
These codes are shown to be maximal when c is U or 1 (in the sense that 

no such code with greater k can exist for that r); Hong and Patel 

conjecture that this is true in general.  The redundancy of these codes 

is often identical to the bound in (4.2).  Since b«l corresponds to the 

binary liamming (single bit) error correcting codes, for which 

r = j log2(n+l) j , 

byte correction requires roughly b - lop,, b bits more than (single) bit 

c-trrection.  Note that b-bit (cyclic or non-cyclic) burst error 

correction requires 

b-1 
r a log (n 2   +1) 

bits of redundancy, which is typically at least Ic&jb - 1 bits more than 

byte correction — cf. (4.2). 

Table 4.1 summarizes the redundancy of the Hong-Patel codes for typical 

values of k and small byte length b.  Note that some byte-correcting 

codes with b-2 have the same redundancy as the Hamming codes for b«l, 

e.g., those with k from 28 to 36, for which r-6.  The code with b-2 and 

k-36 is perfect, i.e., every non-zero syndrome corresponds to a distinct 

correctable byte error.  (So are all of the hong Patel codes with c-Ü, 

corresponding to generalized Hamming codes.)  Also noteworthy is the 
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perfect code for b-4, k-60, r-8.  Finally, as a simple Illustration of 

the gap between (4.2) and (4.3), consider Che case of b-2 and k-13. 

Here r-S satisfies (4.2), but r-6 is required for this case.  The values 

of k shown are meant to be illustrative.  If tag bits are included in 

memory words (e.g., Feustel 73) and encoded, the actual value of k (as 

opposed to its virtual value seen by data) may be quite unusual (e.g., 

51 as in the B33UU). 

Table 4.1 
SMALLEST POSSIBLE REDUNDANCY r FOR BYTE-ERROR 
CORRECTION IN MEMORY WITH VARIOUS BYTE SIZES b 

Typical Redi jndancy r for 
length b- 

k 1 2 3   4 5 .. 8 

16 5 6 6   8 10 .. it 
24 5 b 7   8 10 .. 16 
32 6 6 7   8 10 .. 16 
48 6 7 8   8 10 .. 16 
64 7 7 8   9 10 .. 16 
128 8 8 9   9 10 .. 16 

The cost of redundant storage for byte-error correction is thus seen to 

be relatively small for b"2 and 4 (even more so if used selectively), 

The cost in time delny can also be small.  In fact, if automatic 

instruction retry is available, the cost in time can be effecrively 

zero.  This Is possible for systematic codes (for which the inJormation 

digits are directly available in a correct word—as In the case of 

Hamming codes), by overlappln;:, the syndrome generation (i.e., error 

detection and implicit location) with the instruction execution up until 

(but not beyond) the point of no return for instruction retry.  As long 

as syndrome generation completes before that point is reached, there is 

no delay at all due to decoding — assuming no errors.  (This requires 

pipelining the decoder in a pipelined machine.)  If the word from memory 

contains an error resulting in a nonzero syndrome, the instruction 
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execution Is interrupted, the word rewritten (correctly, after error 

correction) in memory, and the retry mechanism is triggered.  Thus there 

is a delay only when an error needs to be corrected. 

Various efforts are devoted to designing fast decoders (e.g.. Lessen 70, 

Hong and Patel 72, Carter et al. 72b).  Speed may also be enhanced by 

the use of read-only memories in decoding (e.g. Laws 72, Mltarai and 

McCluskey 72), both for the syndrome generation and for error 

correction, as well as by performing various manipulations on the parity 

check matrix. 

The reliability of decoding for error correction may be enhanced by a 

technique of Kautz (62), in which redundant syndromes are calculated, 

providing a check on the syndrome generation itself. Such techniques 

are economical, especially since no redundancy is added to memory, and 

since the cost of the dccoder(s) is small with respect to the cost of 

memory. Distributing decoders among memory controllers, or even memory 

modules, may have advantages of continuing availability of the system 

despite malfunction of one decoder.  Such distribution also facilitates 

the selective use of coding, by permitting different encodings for 

different portions if memory. However it means that the busses are not 

checked.  See also Carter et al. (70b) for self-checking decoders. 

4.2.  MLMORY RECONFIGURATION 

number of spare units, or the system now has reduced memory capacity. We 

use the terms as defined in Section 4.1, with the following additions. 

m - total number of memory units (e.g., LSI chips). 

x - number of memory units in a block, i.e., the number discarded 

when a fault occurs. 
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In this subsection we consider schemes for reconfiguring a memory. The 

memory is assumed Co be built from a number of units (for example, LSI 

chips) each having the same memory capacity. When a fault is detected, 

at least one unit Is discarded and is either replaced by a similar 
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y ■ number of words par block. 

w ■ the total number of words in the memory 

w* ■ the number of usable words required (<w). 

We are concerned with two measures of reliability. By PÜ^w'tw], we mean 

the probability that glv«>r> w words originally, there are at least w' 

words remaining at the time of consideration. The second measure used is 

Pif], the probability that f faults can be tolerated.  Schemes for 

memory reconfiguration are assessed by the above two factors, plus a 

measure of the cost of achieving the fault tolerance. We note further 

that the probability Pif] of being able to tolerate f faults is 

irrelevant for some memory structures. Consider, for example, a block 

replacement scheme. All faults can be removed from the memory, although 

with a reduction of memory capacity.  The single measure PT^w'rw] is 

therefore a sufficient measure of reliability for such a scheme.  In 

some other schemes, to be described below, the switching capability is 

restricted and PCf] becomes a meaningful measure of the ability of this 

switching network to remove faulty units. 

Given x memory urits in a block, the probability Pf of failure of a 

block is given by 

Pf - l-(l-p)X (A#A) 

The number of blocks is u - m/x ■ w/y.  The probability P.  that i 

blocks contain faults is given by 

We use the notation LaJ to denote the largest integer contained in a. 

The probability that at least w' words remain, given w words originally 

is given by 

Uw-wVyJ 

P[>w':W]=    I       Pfl 
(A-6> 

1=0 
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A.2.1. MEMORY RECONFIGURATIOf BY BLOCK REPLACEMENT 

Consider a memory in which reconfiguration is carried by discarding the 

block, in which a fault exists. We further assume that the switch 

network, that carries out the reconfiguration can handle all fault 

patterns, ie the ability to reconfigure is not constrained by the switch 

but only by the availability of enough fault-free bloc'ts. The 

reliability of such a scheme is represented by ^ .6) above. 

4.2.2.  THE USE OF CODING WITH BLOCK FEPLACEMEKT 

When coding is used for error detection aiid/or correction, as discussed 

in Section 4.1, it becomes natural to constrain the parametera y and b. 

The number of bits per chip yb is de:ermined by the prevailing 

technology (value- from 256 to 409b are currently coimnon). With too low 

a value of b, the number of data lines to the chip tends to make the 

number of words in a block large, causing discarding of an excessive 

number of words in the event of a fault. Too high a value of b has two 

bad effects.  First, it increases the number of pinr. required for data 

on the chip. Second, if a code is used to detect and/or correct errors 

on a chip, then the coding complexity rises. We therefore have the 

possibility of tradeoff, which is analyzed in detail in Appendix 3. 

Consider a memory constructed using LSI chips, in which coding is used 

to correct errors, and blocks of memory are replaced immediately after a 

fault occurs. The analysis in Appendix 3 assumes that a byte-error 

correcting code is used. The number r of redundant bits is related to k 

(the number of information bits), as discussed in Section 4.1. 

Several detailed design topics are addressed in Appendix 3, particularly 

analyses of the optimum value of b, and the value of P^-w'iw., given the 

pvobability p of chip failure. 

The following conclusions are relevant here. 

* Block replacement strategies for long-life use (i.e., p - .1) require 
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very high redundancy to achieve useful syster. success probability. 

Other fault-tolerance techniques should br-  csed. 

* For values of p < 0.01, the optimum value for b is 4 in almost all 

c#scs. 

* For mission times of the order of a month or less (i.e., p < .0Ü1), 

v«ry high values of F^w'tw] can be achieved with less than 50% 

redundancy. 

* One advantage of block replacement is that the memory chips do not 

need to contain special switching capabilities, as in pome chip 

replacement schemes.  Another advantage is the simplicity of the 

reconfiguration strategy. The disadvantage of block replacemeet is that 

it is very inefficient in its use of spares, in tha'; nonfaulty chips are 

discarded because they are associated in the same block with a faulty 

ciiip.  »e must therefore consider schemes in which the unit of 

reconfiguration is smaller than the block. 

4.2.3.  KtCONFlGUKATXUN bY CHIP RLPLACtMtNT 

A typical problem in a chip-replacement scheme is the coat of the 

switching network required to replace faulty chips with spares. The 

novel scheme presented by example below, and in general in Appendix 3, 

examines the possibility of economical switching for reconfiguration at 

the chip level.  The primitive element in the memory is an LSI chip that 

realizes a section of memory b bits wide by y words long, together with 

an address decoder for the y words. The chips (including spares) are 

connected via a switching network so that the memory can be reconfigured 

effectively in the presence of chip failures. The main results relating 

to the switching network are as follows: 

* The extra cost of the switching network and at   the spare chips is low, 

compared with a nonredundant memory system. 

* There are well-defined tradeoffs among the cost of the switching 
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network, the number t of chip failures be tolerated, the number s of 

spare chips, and the complexity of setting up the switching network. 

* The switching networks can te embedded within the memory chips, so as 

to increase the reliability and increase uniformity. 

A TWO DIMENSIONAL SCHEME 

Consider first a non-reconfigurable If.! memory as shown in Figure 4.1. 

Each LSI chip contains d bits of b words and a decoder for the low order 

bits which are routed to all chips. The high order address bits are 

decoded to provide activation of one control line which selects the rcw 

of chips that contain the desired word.  Data is routed to or from the 

chips via data lines shown vertically in Figure 4.1. 

In the reconfigurable scheu* to be described, the chips -re augmented b> 

the Incorporation cf two switches as shown in Figura A.2. One switch 

enables the chip to be activated by one of three ontrol lines from the 

decoder or to be made inoperative by setting the switch to the null 

position. Similarly the data switch can be set to be connected to either 

•f two data lines or to a null position. As in the non-reconfigurable 

■caory the chip contains a decoder for the low order address bits. The 

csips are assembled into a meraory structure a' illustrated in Figure - 

lAich shows that the control lines are connected to three rows of clips 

and eacn data line is connectable to two columns of chips.  It is 

assumed that wrap-around occurs both vertically and horizontally, le., 

the leftmost data line is also connected to the rightmost chips column, 

and similarly for the top and bottom conf-oi lines. An extra column of 

chips is provided that can be regarded as spares and which we will in 

this discussion regard as being the rightmost column.  Lach spare chip 

is controlled independently. 

In discussing the reconfiguration capabilities of the scheme we 

introduce a notation for lettering chips to indicate the setting of the 

switches. The letter of the alphabet used indicates the control line to 

which the chip is connected by the control swich. The use of upper or 
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Fig.   4.3       An  example chip  reconfigurab]e memory. 
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lower case letters indicates that the chip is connected to the left or 

right data line respectively. An unused chip is indicated by a hyphen 

and a faulty chip is indicated by an asterisk. 

Consider the reconfiguration examples shown in Figure 4.4.  The norml 

setting of the switches is such that the chips serve the data lines to 

their right.  In the third row we show tht case of a single faulty chip 

in the third column. The switches of the ciips to the right of the 

faulty chip are changed so that they serve the data lines to their left 

thereby enabling all data lines to be served.  In this example the 

reconfiguration was carried out within a single row, without having to 

change the setting of the control line switches in »-he chips. More 

extensive fault patterns must in general be handled by using spare chips 

from adjacent rows. The three faulty chips of the fifth row are handled 

by the following switch settings: 

♦Switch all good chips of row f that are on the right of the faulty chip 

so that they serve the data line on their left, thus replacing one of 

the 'aulty chips and leaving two vertical busses still to be served by 

f-driven chips. 

*Use two chips of the next row (labelled F) to replace the two places in 

the f row that have not been handled and switch the g chips to their 

right to serve their left busses. This leaves vertical bus still to be 

served by a g-driven chip. 

*Use one chip from the next row (labelled G) to handle the remaining 

chip position of the g row. 

It can be seen that a fault pattern of n chips in a row can be handled 

within n rows and further that the rows below it or above may be used 

for the reconfiguration.  In general, the pattern employed to accomodate 

a fault is not uniquely determined. The pattern employed may be chosen 

so as to better accomodate other possible nearby faults. 

The thin! example of fault patterns shown at the bottom of Figure 4.4, 
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Illustrates a pattern that cannot be handled by this scheme, because 

there is no chip that can serve row L for data line A. This is the 

smallest pattern of faults that cannot be handled by the scheme. There 

are indeed many fault patterns containing more than b faults that can be 

handled.  For example all chips in two adjacent rows can be faulty and 

successful reconfiguration can take place so long as there are at least 

twice as many rows as columns in the memory. 

Appendix 3 presents detailed aspects of the memory organization, 

includi'u. the use of coding to detect and correct errors, the setting up 

of the switching network, and the relative performance of this 

organization, as compared with block replacement. This organization is 

most attractive for long-life and/or maintenance-free applications. 

Beyond the number of chips required to realize a given memory size, 

spare chipr. are provided to take over the function of failed chips. The 

reconfiguration is achieved with a switching network that enables the 

number of spare chips to be potentially as low as the number of chip 

failures to be tolerated. As demonstrated in Appendix 3, the cost of 

the switching network is surprisingly small.  Further, the switching 

network can be embedded economically within the memory chips. Thus, 

since typically the number of chips in the nonredundant memory is 

comparatively large, the redundancy required to achieve a tolerance to a 

significant number of faulty chips is proportionally quite low. 

This type of memory organization is particularly applicable to those 

situations where a large main memory is required, and unattended 

operation is required for periods so long that many faults may be 

experienced. Appendix 3 discusses: 

* The memory model and a reliability calculation that demonstrates the 

arplicabillty of the organization. 

* Types of switching networks that can realize the reconfiguration. 

* A regular switching network organization that is particularly 
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attractive due to the ease of embedding the switching within each chip. 

* Reliability estinates of the above regular scheme. 

In conclusio we have determined tliat the switch cost for reconfiguring 

the chips of a memory is small when compared with the total memory cost. 

We have also shown that the algorithms for deciding which switches are 

to be set can be simple in certain cases. 

DISCUSSION OF SYSTEM ASPECTS 

The key aspect of the chip replacement organization is the switkhinj 

network that effects the reconfiguration. Appendix 3 gives realizations 

of such networks wherein the switch cost per memory chip is quite 

nominal, and whereby the switching can be embedded entirely within the 

memory chips. It is expected that this organization will find utility 

in applications with varying requirements as to long life, large memory, 

low or nonexistent maintenance, and low spare redundancy. For modest 

requirements for which only one or '•.wo »inhts neee ta  be tshe'itee 

between maintenance operations, conventional approaches such as simple 

memory block replacement probably suffice. In addition, the use of 

low-distance error correcting and detecting codes may be desirable 

whenever rollback strategies are either not permitted or not feasible. 

A few theoretical problems remain, the solution of which might lead to 

more efficient use of this organization: 

* Deriving the minimal switch complexity required as a function of the 

memory size, number of spares, and number of faults to be tolerated. 

* Deriving optimal algorithms for deciding on the appropriate settings 

of switches. It would be desirable to determine tradeoffs between the 

switching network complexity and the set-up algorithms. 

Perhaps of greater practical interest are the overall system aspects of 

including sucli a memory organizatioi within a fault-tolerant system. We 
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consider these issues below, with some indication of the difficulty that 

each aspect introduces. 

FAULT DETECTION. Conventional error detecting and correcting coding 

techniques can be superposed on the reconfiguration.  That is, the 

overall bit length n can include code redundancy. A decoder then checks 

each word on read-out from memory, in which case an immediate indication 

is available of the block, and possibly the byte, in error.  The 

reconfiguration process can them remove the offensive chip and produce a 

new operative block of memory.  The byte-error correcting codes of 

Section 4.1 can be used here. A].o in this organisation son*  crucial 

sections of memory can be given tore protection by reconfiguring certain 

blocks to have more code redundancy than others. 

SWITCHING NETWORK FAILURES. Many switch failures merely disable the chip 

itself and thus can be handled the same way as chip failures.  Two 

exceptions are switch failures that produce a solid signal on a data 

line or that prevent a chip from being disconnected from a given control 

line.  Such failures require the introduction of redundant data lines. 

Coding techniques as described above can correct for these switch 

failures. Also a spare data line can be provided, at slight extra cost 

in switching complexity. The spare line would be activated in place of 

a failed line, in which case the network block that receives the memory 

data (usually the memory data register) extracts the d good data lines 

from the d+1 lines directed to it. 

ADDRESS DECODER FAILURES. The memory organization is clearly sensitive 

to failures in the decoder that drives Oie control lines.  It is likely 

that some of the decoding function can be distributed among the chips, 

up to the availability of pins.  However, for a large memory system, 

most of the decoder will remain external to the chips.  Since the 

decoder consumes perhaps three to four orders of magnitude fewer parts 

than the rest of memory, various fault tolerance techniques can be 

economically applied. 

SWITCH SET-UP. With one extra control line per block the switches for 
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the chips can be set by applying appropriate signals to the data lines 

and the control lines.  In this mode the switches are set one at a time, 

a time penalty that does not appear to be excessive. 

SPAN OF RECONFIGURATION. When the memory Is reconfigured subsequent to a 

failure, a large portion of the memory may have to be reconfigured, 

Including operative blocks. This contrasts with a block replacement 

scheme for which only the affected block need be reconfigured. We have 

not computed bounds on the number of blocks that must be reconfigured In 

the organization considered. However, In many systems (e.g., in a paged 

environment) it is possible to dump the contents of the z-1 operative 

blocks onto a backup, in which case the span of the reconfiguration is 

not a problem. This approach is not feasible in a real-time environment 

where long down-time (e.g., more than 10 msec.) is unacceptable. 

In conclusion we feel that there are no Insurmountable problems in 

incorporating this memory organization into a system.  The cost .<s small 

in a large memory system, and may be justified by the prevalence of 

memory faults ir. such a system. The switching techniques employed in 

this organization are also generally appllcab* i  to homogeneous processor 

arrays. 

4.2.4  RELIABLE SWITCHING CAPABILITY 

Previous sections discuss how the memory function can be reconfigured 

either at the block or chip level. It remains to be shown that a 

switching scheme can be designed that can be fault-tolerant. 

We assume the following: 

* Memory blocks containing y words, each containing its own address 

decoder logic. Typically y will vary from .5K to 4K. 

* Control units which control access to the memory blocks. Each control 

unit is connected to c. memory blocks and each memory block is 
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connected to c  control units.  Some regularity is assumed in the 

connections.  (When c1 = z^  , we use the single parameter c to represent 

both. Under these circumstances the number of memory blocks equals the 

number of control units, and the two units could be constructed as a 

single module.  Possible structures for c -= 3 and 4 are shown in Figures 

A.5 and 4.6.) 

* A data bus structure which connects to all memory blocks, 

* A block address structure which connects to all control units. 

* A page address structure that connect*: to all memory blocks. 

* Control logic. 

In all regular arrays of control units and memory blocks, it is assumed 

that all edge connections are "wrapped around" (i.e., that linear 

structures are mapped onto a ring, two-dimensional structures are mapped 

onto a toroid, and so on). 

The mode of operation is explained in terms of a 'READ' from memory. 

Each control unit contains registers (Block Address Registers, BAR) 

whooa contents are the block addresses of the memory blocks to which it 

is connected. The block address of the required word is transmitted to 

all control units, where a comparison is made with BARs, and if a match 

is found, an enable signal is transmitted to the relevant memory block. 

Under no fault conditions a selected memory block will receive c enable 

signals. The page address (i.e. the low-order bits of the address) is 

transmitted to all memory blocks. The selected memory block reads the 

selected word and places the word on the data bus. The operation is now 

complete. 

It is assumed that each memory block Is tolerant to a number of faults 

(e.g., one) but that a larger number of faults will cause it to be 

inoperative. The primary purpose of the control unit is to allow 

reconfiguration of the memory. This reconfiguration is achieved by 
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changing the contents of the BARs in the control units which are 

connected to the memory blocks whose addressee* aust be changed. A fault 

In a control unit could result in an error in the 'enable' signal sent 

to a memory block. To prevent such a fault from causing errors, a 

voter is used in the memory block.  Note that the voter examines only 

the enable line. The connection of a memory block to the data bus 

structure can also be controlled by the multiple enable signals, thereby 

preventing a faulty memory block from erroneously seizing the bus 

structure. 

Table 4.2 summarizes the fault tolerance of an example of the type of 

memory system described above. We assume that LSI chips will be used 

with AK bits/chip. We consider an example with 32 bit words and 256k 

words, and we ignore the cost of the error correcting encoder/decoder 

circuits. We are concerned with two measures, first, the probability 

that a particular failure mode will occur, and second, what the effect 

of that failure will be. 

REDUNDANCY. 

* Unprotected memory 20A8 chips 

* Memory protected by byte codes « 2560 chips 

(20% redundancy) 

* Memory protected by byte codes 

plus reconfiguration 

- 262A chips 

(23% redundancy) 

HARDCORE. The structure as outlined contains address propagation 

circuits. As shown, these circuits do not possess any reconfiguration 

capabiliry.  In this sense they represent the "hardcore" of the ßystem. 
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Table 4„2 ( w ^ 4K, Total Storage = 256K, c = 4, Word = 32 bits) 

Failure Mode Probability/Kr External Effect 

Single chip failures in a particular 

memory block 
4 X i0"5 None 

Single chip failure in any memory 
block 

2.6 X 10~3 None 

Two chip failures in same block 
before reconfiguration 

3 X lO-11 X T 

(T = time (in sees) 

to reconfigure) 

Loss of block 

plus 

Loss of data 

Control unit fault 6'4 X 10"5 None 

Two adjacent control unit faults 
(adjacent means two control units 

which are connected to a common 

memory block) 

5 X 10"10 Possible loss of 

block; possible 

loss of total 

memory 

VIRTUAL MEMORY. The control units map virtual block addresses to 

physical block addresses. These units can therefore be used, with no 

increase in cost, to i'npleinent virtual addressing and paging, without 

need for any other "paging box" or its equivalent. 

FAULT-TOLERANT DATA LINE STRUCTURES 

A reliable memory system can be built in which the memory chips 

themselves can be reconfigured if a fault occurs. A further potential 

cause of failure of the memory is the failure of the data lines both 

into and from the chips.  Such failures would tend to be less frequent 

because the amount of equipment involved is much less than in the memory 

function itself. Thus, for some applications it is not necessary to 

protect against the failure of these lines, while in more stringent 

applications a means must be provided to carry out some protection. The 

data lines may fail in two ways. First, the equipment in those lines 

may itself become faulty. Second, a failure of one or more of the 
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meniory chips may cause a data line to be subjected to erroneous signals. 

■-■/v 

We can consider two prime ways in which the data lines can be protected 

against faults, by coding or by the use of redundant lines.  In both 

cases equipment must be added, to carry out the encoding and encoding, 

or to switch the redundant lines. The probability of faults in this 

additional equipment may be greater than in the data lines that are to 

be protected, and careful analysis must be carried out to determine if 

such equipment is therefore justified. 

CODING ON THE DATA LINES. The use of a code for single-error correction 

and double-error detection on the lines protects against any single data 

line presenting spurious data.  Such a code is quite economical for all 

reasonable word lengths. 

REDUNDANT DATA LINES. The addition of a single data line car, easily be 

incorporated into some memory schemes such as the chip replacement 

scheme discussed above. 
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CHAPTER 5.  ARITHMETIC AND LOGIC 

While very low redundancy in memory produces significant improvements in 

system fault tolerance, arbitrary logic may require full duplication for 

instantaneous error detection in any one unit, and full triplication for 

instantaneous errov correction in any one unit. Fortunately, there are 

several factors that may help to reduce the cost of redundancy: 

(a) Detection may not be uniformly critical in time and space.  For 

example, partial detection may suffice, detecting only certain faults, 

or detecting a fault within some period of time. Similarly, some faults 

may be more critical than others. Also, within a particular scope of 

computation (e.g., an instruction, a subroutine, a block, a domain 

within a process, or a process), detection may be required only on exit. 

(b) Instantaneous correction may be unnecessary, especially when good 

facilities are available for recovery and retry (with or without 

diagnosis). 

(c) Considerable flexibility arises in the use of reconfiguration of 

units (e.g., through changeable microcode), with tradeoffs among degrees 

of redundancy, performance, and functional completeness. 

(d) Many systems seem to be dominated by the costs of memory. Thus, 

greater relative redundancy in arithmetic, logic, and control may have 

little impact on the overall cost of the system. 

(e) Automatic retry of an instruction during which an error has been 

detected is both powerful and economical.  Its primary requirement is 

that the initial operands (e.g., in registers or memory locations) 

should not be overwritten during instruction execution — or at least 

«should be recoverable from somewhere in memory. 

These factors ar^ found to some extent in existing systems, but usually 

in isolation rather than as part of a systematic methodology for fault 

tolerance. 
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5.1.  DETECTION AND CORRECTION OF ERRORS IN ARITHMETIC 

Arithmetic operations .ay be checked by duplication and comparison, with 

hardware redundancy of about 55%.  Duplication detects all errors in any 

one unit, but fails tc detect identical errors in each of the two units. 

The use of dual-rail logic is also possible, with hardware redundancy 

about 37% and 42% cited in an arithmetic-logic unit for 64-bit and 

32-bit words, respectively (Carter et al. 70). However, the clas« of 

faults covered ir significantly less. The use of residue codes (e.g.. 

Avizienis 71) can be effective, with redundancy in the range between io% 

and 25%. A residue code has the advantage that it is also error 

detecting if used in memory.  For example, in a byte-organized memory 

with b-bit Liytea. the use of the residue 2b - 1 detects all errors in a 

byte except for the error which substitutes the all-zero byte for the 

all-one byte, or vice versa.  The cost in memory is one redundant byte. 

(This cost is the same for complete byte-error detection in memory 

using b interlaced parity checks - which however do not detect errors 

in arithmetic.)  For bit-serial and byte-serial arithmetic, duplication 

is both cheap and effective.  For byte-serial arithmetic, residue codes 

are also of value (e.g.. Avizienis et. al. 71). A would-be problem of 

multiple errors resulting from a single fault can be overcome by the use 

of the (2 - 1)'S complement of the residue.  (See Avizienis 71 for the 

use of inverse residue codes for repeated-use faults.)  For parallel 

arithmetic, residue codes may offer substantial cost advantages over 

duplication, although care must be taken in carry-look-ahead schemes to 

avoid unchecked multiple errors resulting from a single fault (cf. 

Langdon and Tang 70); otherwise duplication may again be preferable. 

Byte-organized processing is advantageous for integrated circuit 

implementations, and is also well suited to carry-look-ahead schemes. 

In a byte-organized arithmetic unit with bytes of length b. multiple 

errors may arise in a single byte slice (e.g. on a single chip). These 

are detectable by residue codes with a residue at least 2b and 

relatively prime to 2 . If the all-zero/all-one substitutions are of 

negligible likelihood, the .esidue 2b - 1 is ideal.  (If they are 

likely, then alternating the physical encoding for a "1" in successive 

96 

^-—■■"■■-"■'-    -■ ^-.^-^ „..■^■.■,;:..M..^^...,i.,,..^ t^^M^^iMibatmmumtituitliämMn  - '"■   ■-■— ■'■in in n ti iii' Kiriii'iiiiiir -'■-——■.---.■'-T finiiiiitin 



■™^p^^ mmmmmimf^m^m^ mmmmmmmmnm^Km*^**7* "•"• mm 

bit positions may be useful.) Note that duplication provides BYTE-ERROR 

LOCATION, since the error is in the lowest-order byte position in which 

a discrepancy exists. However this could result from a fault in either 

of the two units, and then either in the byte or in the carry into the 

erroneous byte, so that duplication is not FAULT LOCATING.  Byte-error 

locating arithmetic codes that are not also byte-error correcting (see 

below) do not otherwise seem to exist (Neumann and Rao 73). 
3 1 

If correction of arithmetic errors is required, triplication is clearly 

one alternative. There is also on extensive theory of error-correcting 

arithmetic codes. Such codes typically require a cost roughly 

equivalent to duplication of the arithmetic unit (Rao 7Ü), instead of 

triplication (plus voting). These codes may also be used for error 

detection, detecting a wide range of multiple errors at much lower 

decoding cost.  For byte-organized arithmetic units, the recent work of 

Neumann and Rao is applicable, providing codes for byte-error correction 

in arithmetic.  See Appendix 4 for an extended version of Neumann and 

Rao 73.  (A notation gap exists between the literature on memory coding 

and that on arithmetic coding, which has regretfully been perpetuated.) 

The suitability of such byte-correcting arithmetic codts is not 

uniformly clear.  It depends on the particular byte sizes and word 

lengths, and on the type of decoding.  The redundancies required for 

various codes are compared in Table 111 of Appendix A.  Included are the 

minimum redundancy byte-correcting codes for memory (Hong and Fatal 72, 

see Table 4.1), denoted by "M" in the table; the AN and gAN codes with 

A " ^2 "^P (denoted by "A"); bi-residue codes with arbitrary residues 

2 - 1 and p ("R"); multi-residue codes with generalized "low-cost" 

residues of the form of expression (11) of Appendix 4 (denoted by "G"); 

and those muUi-residue codes with only low-cost residues, of the form 

2 - 1 and 2 *- 1 (denoted by "L"). 

The byte-correcting arithmetic codes also proviso, byte-error correction 

when used in memory. Some of these codes have redundancy very close to 

the comparable byte-error correcting codes for memory. Such codes thus 

have potential for efficient dual use, both in memory and in arithmetic. 
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Advantages of such dual use are discussed by Avlzlenls et al. (71>, 

particularly with respect to the residue 15 error-detecting code used In 

the JPL-S1AR (Avlzlenls A2). Other codes require substantially more 

redundancy. In which case they are not appropriate for such dual use. 

Nevertheless they remain of interest for byte-organized arithmetic. 

As a favorable example, consider the length k-42, with 2-bit bytes. 

Here 7 bits of redundancy are required for byte correction in memory, 

while 8 bits are needed for several forms of arithmetic byte correction 

(A, R, G).  In particular, the radix A byte-correcting multi-residue 

arithmetic code with low-cost residues 3 and 49 - 7x7 has the remarkable 

property that byte-error detection in arithmetic and memory is obtained 

simply by takinß residues module 7.  Thus byte-error detection alone is 

cheap and fast, with correction available if desired. Other examples 

are cited in Appendix 4. 

There Is also recent work on burst-error correcting arithmetic codes 

(e.g.. Bow 73), although that is probably of Itss  Interest here. 

In general, arithmetic-error detection is highly advantageous. Error 

correction may be needed only rarely, especially if instruction retry is 

possible in the case of intermittent faults, or if alternate means are 

available in the case of permanant faults.  Such alternate means may 

include, for example: 

(a) Switching a spare byte slice to replace a faulty one, e.g., using 

the rippler of Stiffler (73). An extreme example is that of a cyclic 

loop of n+1 stages; when broken by & faulty stage, there are still n 

consecutive correct stages. However, there are problems here in 

switching on read-in and read-out.) 

(b) Removing the faulty byte slice, with either a degradation in 

precision, or the use of multiple-precision operations (possibly in 

microcode). 

(c) In a duplicate-unit environmeut, discarding the faulty dupli 
cated 
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unit, leaving full computational capacity, but no checking capability. 

Whenever the cost of arithmetic units is typically small compared with 

memory costs, the reliability and availability goals can freely 

influence the design.  Nevertheless, the cost of logical (functional) 

duplication need not be physical duplication.  For example, a fast 

parallel arithmetic unit may be checked by a slower byte-serial unit, 

with disagreement triggering an instruction interrupt.  In some cases 

(e.g., if the result is being written into a memory much slower tlun the 

arithmetic unit), simple instruction retry may suffice.  In some cases 

(e.g., in a pipelined environment), some rollback may be required, 

although this can be minimized by judicious use of registers and memory. 

In summary, high availability results from a multiplicity of uaits, or 

multiple-precision modes among degraded-performance units with removed 

byte-slices. High reliability results from the use of error detection 

with retry, rollback, and reconfiguration, and with error correction 

possible in extreme cases. Probabilistic detection may be adequate. 

Periodic interspersed diagnosis provides a useful enhancement when 

detection is not available directly. 

5.2.  ERROR DLTECTION IN LOGIC OPERATIONS 

for logic operations, duplication is necessary for error detection in 

some cases, while coding does not work —■ except for modulo-two linear 

oper-Lions (e.g., exclusive OR). Dual-rail logic (Carter et al. 72) 

seems valuable, with costs potentially less than duplication for error 

checking.  In some cases, consistency checks are available.  In other 

cases, partial detection is acceptable, at relatively low cost (cf. 

Carter et al. 71a).  In such cases, detection is not immediate, but 

occurs in a probabilistic sense within a specified period of time. As 

in the case of arithmetic, where alternate means are available for 

permanent faults, various alternatives are available for logic. These 

Include using spare byte-slices, performing (possibly micro-programmed) 

two-step operations on a half unit, and (in a duplicated mode) 
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discarding a faulty duplicate unit to run simplex. 

Still another alternative is available for logic, using the arithmetic 

unit to perform logic operations (e.g., micro-programed) when a logic 

unit is not available.  If the arithmetic unit is checked, it follows 

that the logic operations are also checked, as seen below.  It is well 

known that all logic operations may be derived arithmetically, given for 

example,  the bit-wise operation x^y, e.g.: 

x v y - (x+y) - (x ^ y) , 

x®y - (x+y) - 2- (x A y) . 

(5.1) 

Here "v" and "(^' denote INCLUSIVE OR and EXCLUSIVE OR, respectively. 

The remaining operations are normal arithmetic addition, subtraction, 

and multiv-lication ("+", "-", ".", respectively). Complementation is 

easily obtained when ONE's or TWO's complement representations are used, 

Monteiro and Rao (72) have examined a realization of logic operations 

using a residue-checked aritht^etic unit and an AND circuit to produce 

checked arithmetic and logic operations. If logic operations are 

relatively infrequent, little performance degradation is required to 

perform checked logic in arithmetic. Since the AND operation x * y can 

be available as a byproduct of the arithmetic unit, e.g., when the sum 

Is obtained as 

z - x+y - (x©y) + 2 -(x - y), (5.2) 

it lis possible to generate all logic operations without the extra AND of 

Monteiro and Rao, although it is of course desirable to augment the 

byproduct AND output with the correct residue check digits. For various 

implementations of (5.2), the incorrectness of x-^y results in the sum 

z - x+y being in error.  If the error is detectable (e.g, via the 

residue check on the result), retry and reconfiguration may be 

initiated, as warranted.  Similarly, an error in arithmetic during the 

formation of a logic operation other than "-" may be detected by the 

arithmetic checks on the successive arithmetic operations. However, 
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arithmetic overflow (one bit) must be covered by the residue code. An 

overflow may arise temporarily during the sequence of operations (e.g., 

in (5.1)), but disappears in the final result. 

This approach is extendable to byte-error detection and correction. 

However, in cases of multiple faults, it is necesssary to assure that 

x -y is correct independently of the correctness of x+y. For example, a 

pair of cancelling (but rare) errors would not be detected by the 

residue checkt on x+y, e.g., +1 in position i+1 of x0y, and -1 in 

position i of x-y in (5.2). 

A final word is appropriate on the impact of technology on the relevance 

of the schemes discussed here. On one hand, selective replication may 

be relatively economical. On the other hand, the trend toward 

increasing the number of functions per device may make the use of 

duplication of gates or busses less profitable if the multiple versions 

of a function are all on a single device.  This is because there tends 

to be a high correlation among faults within single devices. Further 

limitations on some of the techniques described here will be felt 

because of the limitations on the number of pins available per internal 

function in the new technology. 
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CHAPTER 6.  EXAMPLES OF FAULT-TOLERANT COMPUTERS 

In the subsections of this chapter, we discuss fault-tolerance 

requirements for computers used in different applications.  Our 

viewpoint is that the different applications have different requirements 

for reliability, availability, data protection, maintainability, etc., 

and different opportunities for the use of fault-tolerance techniques. 

These different requirements and opportunities result in a variety of 

computer architectures.  In effect we see that a single 'best' 

fault-tolerant computer design is not possible. However, time-sharing 

systems possess nearly all the requirements of fault tolerance of 

computers in general. Therefore, we discuss them first and treat other 

computer types as variants. 

Each subsection deals with a different application class — 

general-purpose time-shared, general-purpose batch, communication, 

super-fast and aerospace. For each application class we discuss the 

most coiranon requirements and the most appropriate architectures to 

satisfy these fault-tolerance requirements. Table 6.1 is a summary, in 

very compact form, of the material of this section. The parameters 

quoted (e.g., speed, memory size) are intended to be the most common 

without implying that examples outside the range cannot occur. The 

techniques that are appropriate for each application class have been 

discussed in detail in the foregoing chapters. Here we attempt for 

specific applications to evaluate some of the architectural types 

discussed in Section 3.3.  In addition Appendix 3 contains detailed 

considerations in the design of fault-tolerant memory systems. 

Certain properties are common to all classes of computers (oi 

applications) of which the following are the most important from the 

standpoint of fault tolerance: 

* Central memory frequently dominates the cost of the system, but is 

also the unit that is most easily and economically protected. Selective 

and dynamic use of coding can be very cost-effective. 
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* The arbitrary logic of central processors is the most difficult to 

protect but often represents a small proportion of the total cost. 

Thus, replication is practical for many applications. Selective 

replication seems practical except when all usage has uniform 

criticelity. 

* Faults in most peripheral equipment (e.g., printers, magnetic tape 

units, modems) are best handled by providing spares and reconfiguring. 

* In most multiprogrammed systems, a vital component is the drum or 

other large storage device that is used for swapping. We therefore . 

consider the effect of faults in that unit for time-sharing 

applications. 

In view of the above common features, it is practical to consider a 

representative computer system and then treat other types as variants 

upon it (from a fault-tolerance standpoint). As such a computer, we 

take one of about the scale of the Unities system (Saltier A2). It is 

recognized that Multics is larger than the  average installation. 

However, it represents a suitable system on which to apply 

fault-tolerance techniques, because the loss of availability or of files 

is significant. In addition, the cost of Multics precludes the use of 

crude replication techniques. Because we are considering future 

computers, we assume that LSI techniques will be used wherever possible. 

Such use of LSI includes electronics associated with peripheral 

equipment having no stringent speed requirements, as well as memory, 

where we can take advantage of the regularity of structure. 

In the central processors it will generally be necessary to use the 

faster MSI logic technology. For a system on the scale of Multics, tfU 

analysis of the use of different fault-tolerance techniques is given in 

detail in Section 6.1. Treating this illustrative computer as in some 

sense typical of computers in general. Table 6.2 illustrates the 

effectiveness of different techniques. The techniques are discussed in 

earlier sections of this report. In examining the probabilities of 

error, nonavailability, etc., we do not quote values lass than lo"8/hr. 
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TABUS 6-2 

tVAI.l'ATION Oh   FAULT-TOLKHANCE  TECHNIQUES 

S t ii Ki- 

Hefer«nGt< 
1 ol syptoiii 
null is re- 
dundant 

Probability  ol 
incorrect Outputs hr. 
(Appl icjl Ion   Pi-o^rams) 

2 O.H 

i B.8 

1 13 

i 13 

6 13 

7 26 

8 35 

9 (.'J cpu's) 13 

(9   cp«'-'. 1 15 

(16  cpu's) 1 5 

1(1 (3  c pu ' b ) :.'i 

(>l   ipu's) L>1 

(lb   CPU'S) ^1 

11 (J   cpu's) ili 

(9 cpu'«) .-'» 
(16  cpu's) 32 

iJ i'J  cpu's) 2;i 

(9  cpu's) TA 

(16 cpu'«) 23 

1.1 (3 cpu's) m 

(9  cpu's) 20 

(16 cpu's) 20 

"   Memory  Ue^ludat inn     ^   Processor Mean  Time 
aller Slnnle Fault DcKradal  on lo tnavalla- 

aller  Si»   .1c blllty   (days) 
Fault 

. 005 

.002 

.002 

.002 

, 902 

.0OOH 
-7 

10 

lo"6 

.0017 

.00025 

,00031 

.002 

,00067 

.00036 

< 4   •  h 

■:.   lo"1" 

<  10 

.0025 

. 0008 

.0005 

.003 

.001 

.0006 

mo 

10(1 

o.:) 

33 

1 1 

33 

II 

7 

33 

11 

7 

33 

11 

7 

(lecnvery Time  lor 
Tolerated  Failures 
(Anpllc.        (System 
Trog.) ProB.) 

100 H.2 NA NA 

100 7.6 Hh \A 

1(10 21 (Sole   1)   (Nole   1) 

100 21. o(2) o'2' 
111(1 1/1 2 n&ec 2 msec 

100 19 o'21 o:2) 

100 13 o,2> o'2' 

100 4 0 0 

33 3 •   10     (Nole3 10 sec 

II > • o5 
Note  -1 3 sec 

3 
10 I   sec 

13 5 0 

:; ur' Nole   1 0 

lo"' 0 

33 S 10  sec 10   BOC 

11 ■> io5 
1   «ec ?      C(M7 

> lo3 
<  1  set- <   Isec 

33 .o4 
10  aec 

11 ^ io5 
Note 4 3 sec 

> io5 
< I  sec 

33 > io5 

io5 

I  sec 

(Note  5) 
11 > Note  4 <   .1  sec 

> ID5 

1.     Recovery   time  Is dependent  on  time  required   lo  reload  from a previous  knonn 
should   suffice. 

correct   state.     Typically a  fc» seconds 

2. This   is  the  recovery   time  for memory  failures.     For detects processor  failures external  maintenance  Is  required. 

3. »e assume   that  a duplexed  multicomputer  Is unavailable when  fewer  than  2 complete units   remain operative. 

4. The application proeram  recovery  time  Is dependent on   the  lime  It   takes   the user  to detect  an error plus  the rc- 
startlng  time. 

5. The  recovery  time  Is  dependent on   the fault  location.     .ne  values  given here are averaged over all  fault possibili- 
ties. 
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This represents such a low probability that the event would be expected 

to occur once every 10,000 years. 

HMa^ttttto 

6.1 GENERAL-PURPOSE TIME-SHARED COMPUTERS 

The most general case is that of general-purpose systems with 

interactive and noninteractive use. Many other systems can be 

considered as special cases of such systems. 

REQUIREMENTS 

With all expensive equipment, there is an economic need for reliability. 

An additional requirement is for the integrity of data. A constraint 

derives from the fact that a time-shared computer may frequently be used 

by many users. A loss of control or data may result in the effective 

loss of several hours work of these users — a severe penalty. Valid 

control and high integrity of data are therefore vital. The manager of 

such a system should be prepared to pay more to protect against faults 

than would the manager of a strictly noninteractive (batch) system. 

Many time-sharing computers are used for long-term information 

processing rather than short-term computing. The long-term protection 

of data is therefore of vital importance.  This is typically achieved by 

recording back-up data and program files on disc or tape at regular 

intervals. Another aspect of the need to protect data files is the 

protection that must be maintained against loss of data because of the 

actions of other users, or an errant operating system, either possibly 

being caused by a hardware fault condition. We see solutions to these 

problems through restricting the physical address spact accessible to 

each component of the system. In terms of the concept of levels in 

Section 3.2, we need to assure by suitable hardware meant that low-level 

software (e.g., that controlling the physical allocation of resources) 

must be very reliable, while higher levels must be constrained to 

operate only in the domain allocated to them by the low level software. 

The protection of the operating system is therefore the most crucial 
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fault-tolerance requirement of the system. The Multlcs syrtem is a 

current example of a system that recognizes the need for protection of 

the innermost levels of the executive against erroneous operation at 

outer levels.  However, the protection in Multics is against software 

errors at outer levels and against malevolent users, not against 

hardware faults. The solution for hardware faults is to provide a 

system in which the redundancy is variable with time so that the 

low-level parts of the operating system can be protected without 

incurring redundancy for users who do not require the protection. 

Consider, as a central example, a system of structure similar to 

\ Multics, initially with the following specifications: 

1 Central processor 

384K Words of memory, each 32 bits 

1 Unit for file storage 

1 Drum or disc for swapping 

We further assume that LSI circuitry is used throughout for all units 

except the central processor, where the faster MSI technology is used. 

We can estimate the chip count for an irredundant realization as 
follows. 

Processor 2000 chips 

Memory   3072 chips 

Disc control ..  20 chips 

Drum control ..  20 chips 

Total ... 5112 chips 

Note that the above estimates are intended only to give the order of 

magnitude of the system components, no greater accuracy being required 

(or intended).  For simplicity, we assume in the following that the 

memory chips are organized as 1024 b3tes each of 4 bits. This 

assumption is not critical, because other configurations of chips would 

yield very similar results in the reliability analysis. To a first 

approximation, we can assume that system error rate will be in direct 

proportion to the number of chips employed, and we assume a failure 
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probability of lü  per chip per hour. We present the various design 

concepts, and the techniques to be applied In a number of stages. The 

result of applying various fault-tolerance techniques Is shown In Table 

602, and Illustrated graphically In Figures 6.1. The method of 

presentation Is to examine a succession of stages of adding redundancy. 

In some cases to Improve the probability of correctness. In others to 

Improve the probability of availability, and In others to decree ;e the 

recovery time after a failure. These stages range from techniques 

applied to a simplex system (Section 3.3.1) to the multiprocessor 

concepts discussed in Sections 3.3.2 and 3.3.3. 

STAGE 1: NO REDUNDANCY 

In a totally unprotected non-reconfigurable mode, we can expect the 

reliability characteristics to be as shown in the top row of Table 6.2. 

STAGE 2: ERROR DETECTION IN MEMORY 

The most obvious first step in applying redundancy for fault tolerance 

is in the memory. The redundancy is in the form of extra bits in the 

words for coding as discussed in Section 4.1. At the lowest level, a 

single byte per word (parity byte) reduces the probability that 

incorrect data is able to corrupt results before being detected. We 

assume no mechanisms exist for reconfiguring around the fault or for 

recovering the lost computation. 

STAGE 3: ERROR DETECTION AND BLOCK RECONFIGURATION IN MEMORY 

Memory:     9 chips per block: 8 Information, 1 check 

384 blocks, reconfiguration around faulty blocks 

3456 chips total 

Processor:  2000 chips, unreplicated. 
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Errors in memory are detected by the error-detecting code. At the time 

of detection, the faulty block is immediately identified. For 

convenience, we assume that the number of words per block corresponds to 

the number of bytes per LSI memory chip, namely 1024. The state of the 

computation affected by the error is essentially lost unless other 

measures were taken earlier to establish a recovery point. 

STAGE A: ERROR CORRECTION IN MEMORY 

Memory:    10 chips per block: 8 Information, 2 check 

Single byte error correction within each block 

No reconfiguration around faulty blocks 

3840 chips total 

Processor: 2000 chips, unreplicated. 

With increased redundancy certain error correcting codes (e.g., Hamming, 

distance four. byte, burst) can be used which have sufficient data to 

enable correction of some faults and the detection of some more 

extensive faults. These codes enable the computer to survive In the 

presence of some memory faults thereby increasing the MTBF, and also 

reduce the probability of incorrect results. The system Anstantly 

recovers from all single faults in memory. 

STAGE 5: CODING AND RECONFIGURATION IN MEMORY 

Memory:    io chips per block: 8 information, 2 check 

Single byte error correction within each block 

Immediate switchover to operative block in response to failure 

3840 chips total 

Processor: 2000 chips unreplicated. 

Given block replacement in memory (see Sections 4.2.1, 4.2.4 and 4.2.5) 

a redundancy of 20Z in the memory reduces the probability of loss of 

data in memory to less than IO-8 /hr. which is negligible with respect 
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to other fault probabilities. The principal advantage of Stage 5 over 

Stage 2 is that for ajout 60 percent of all faults (i.e.B those in 

memory), the recover/ time is essentially zero because the combination 

of coding and reconfiguration allow the system to continue operation 

with only a small loss of memory capacity. A good strategy to follow is 

to transfer the contents of a faulty block to another block or to disc 

jefore another block error recurs. (In Multics this transfer is 

relatively easy, except whin the first block of memory is affected.) 

Clearly, such conditions resulting from chip failures will be 

insignificant compared to faults due to other causes (e.g., connectors, 

printed circuit boards, k/Ower supplies). The number of such components 

will tend! to be roughly proportional to the number of chips used, and 

the decrease, because of the use of LSI, will allow the use of more 

rigorous construction and testing techniques, both of which will reduce 

the fault probability. 

STAGE 6: CODING AND RECONFIGURATION IN 1'^iORY, 

CODING IN THE PROCESSOR 

Memory:     Same as 5 

Processor:  Unreplicated portion—800 chips 

Coded portion: 1200 information chips, 240 check chips 

(Assume all^  single chip errors are detected) 

2240 chips total 

As an alternative development, we may apply coding in the processor 

itself. Clearly there are some parts of the processor in which coding 

ie. more easily applied than in others. We estimate that 60 percent of 

the processor can be checked for single faults by applying coding to the 

following types of units: 

Registers 

Busses 

Adders/subtracters 

Counters 
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We further estimate that ceding in the processor adds 20 percent to the 

chip count of the above unit types. The remaining units are mainly 

concerned with control rather than arithmetic. We take as a 

conservative estimate that any fault in the noncoded 40 percent will 

cause some incorrect results. Because the coding at this level is used 

only for detection, it does not improve the availability but does re-luce 

the probability of incorrect results. It also shortens the recovery 

time in the protected portion of the system, by providing diagnostic 

information. 

STAGE 7: CODING PLUS RECONFIGURATION IN MEMORY, 

CODING OR DUPLICATION IN THE PROCESSOR 

Memory:     Same as 5 

Processor:   Duplicated portion 800 + 800 chips 

Coded portion: same as 6 

3040 chips total. 

For further protection against the posssibility of incorrect results, we 

take Stage 6, with the addition of duplication (and comparison) of those 

parts of the processor that could not be protected by coding. This 

addition drastically decreases the error probability, but with a slight 

reduction in availability. 

STAGE 8: CODING AND REC0NFIGURATI0K IN MEMORY, 

ERROR CORRECTING CODES PLUS TRIPLICATION IN PROCESSORS 

Memory:     Same as 5 

Processor:   Triplicated portion: 3 X 800 chips = 2400 chips 

Coded portion: 1200 information chips, 600 spare chips 

(Assume all single chip errors are masked) 

4200 chips total. 

y 
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In this stage, the repular portion of the processor is protected by 

single-byte error-correcting codes. The extra cost here, including a 

high-sped decoder, amounts to a redundancy of 33 percent. The remaining 

nonregalar portion of the processor is made fault tolerant by 

triplication. The availability, correctness, and recovery time should 

be adequate for practically all time-sharing installations. Thus, this 

stage represents the redundancy required to achive a high degree of 

fault tolerance in a simplex system. 

STAGE 9:  FIXED MULTICOMPUTER, SELECTIVE DUPLICATED REDUNDANCY 

n  individual computer units, n = 3 - 16.interconnected by a 

Communication bus 

Each unit has 1.2/n the power of the simplex units in stages 1 - 8 

No fault tolerance within units. 

/ 

In this stage, the processing load is divided among a number of 

processing units. We assume that the total processing complexity is 

increased by 20 percent, due to the extra cost of the communication bus 

and due to the extra processing power needed to counteract the 

inefficiency of running large jobs in smaller processors.  Note that the 

memory is also divided in a fixed manner so that largo and small jobs 

all get essentially equal portions of main memory.  The critical portion 

of the operating system will run simultaneously in a pair of computer 

,units. The portion that is critical is relatively small - comprising 

^ about 10 percent of the system overhead - as it comprises the job 

dispatching and error control procedures. The recovery time after a 

failure in an operating system unit is dependent on the tine to restart 

the operating system from a checkpoint. The recovery for user programs 

depends on the facilities available, and how they are used. Results are 

tabulated for decomposition into 3, 9, and 16 computers. 
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STAGE 10:  FIXED MULTICOMPUTER, SELECTIVELY TRIPLICATED 

This stage Is the same as Stage 8, except that the critical portion of 

the operating system Is run in a triplicated mode. This can reduce the 

recovery time after a fault occurring in the execution of the operating 

system. 

STAGE 11:  FIXED MULTICOMPUTER, UNIFORM REDUNPANCY 

Here all programs are run simultaneously in two computer units. Thus 

the system Is more than 50 percent redundant, with good availability. 

The recovery time is uniformly low for all programs. This stage is not 

of primary interest here, but is of use in aerospace environments. 

STAGE 12:  RECONFIGURABLE MULTICOMPUTER OR MULTIPROCESSOR, 

DYNAMICALLY USED DUPLICATION FOR THE OPERATING SYSTEM 

Conventional multiprocessor containing n processors and n memories, 

n = 3 - 16 

Each processor is 1.25/n the power of the simplex processor 

No fault tolerance within units 

Pair of processor/memory combinations can be operated in duplicated 

mode for error detection. 

Here a processor/memory combination can be configured out of operative 

processors and memory blocks.  It is also possible for application 

programs to get variable blocks of memory by appropriately configuring 

the switch. The switch here is more complex than the commr^ilcation bus 

of Stages 9, 10 and 11, so that we assume the extra processing 

complexity required is about 25 percent as compared with the simplex 

processor. The critical portion of the operating system again runs in 

two computer units. The critical portion is larger here than in Stage 

9, because the protection mechanism is more sophisticated, and must be 

fault tolerant. ConsequenMy, we assume that about 40K words of main 

memory, and about 30 percent of the processing load, are required for 

the critical portion of the oprating system. The primary advantage of 

this stage over Stage 9 is in its increased availability, because of the 

partitioning into separate processor and memory units. The results for 
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this stage represent the performance expected for the architecture of 

Section 3.3.3. 

STAGE 13: MULTIPROCESSOR WITH DYNAMICALLY USED DUPLICATION, 

FLEXIBLE INTERPROCESSOR COMMUNICATION, SELECTIVE MEMORY CODTNG 

Conventional multiprocessor containing n processors and m memories, 

n, m = 3 - 16, n not necessarily equal to m 

Each processor is 1.3/n the power of the simplex processor 

Dynamically modifiable byte error correction within memory units 

No fault tolerance within processor units 

Pair of processors can V>e ope; ätcd in a duplicated mode for error 

detection. 

This stage differs from Stage 12 In that the switch can Interconnect 

among processors, as well as between processors and memories. This 

added flexibility permits two processors to operate In a duplicated 

mode, without requiring the cost of memory duplication. The memories 

can use coding selectively, as in the case of the processors, only for 

the critical portion of the operating system. Because of the switch 

complexity, we assume that the extra processing power required for this 

stage is 30 percent of the simplex processor. The net effect is to 

Increase the availability as compared with Stage 12. 

6.2  GENERAL-PURPOSE BATCH PROCESSORS 

In general-purpose batch applications, we include both scientifically 

oriented applications and those concerned with  more commercially 

oriented tasks. The fault-tolerance requirements of both differ 

slightly from time-shared systems.  Principal among these differences 

are those stemming from the need to meet deadlines, and the extreme 

Importance in certain cases of the need to protect against the 

possibility of erroneous output. Techniques that are employed with 

success at present include the use of accounting checks in commercial 

operations to detect errors, and the use of checkpoint-restart to 

prevent excessive lost processing in the event of machine breakdown. 
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The most  difficult  criterion  to meet  is  that  on  the  cost  of 

fault-tolerance hardware.     Rarely will a  figure  in  excess of 2U  percent 

be justified  for  the  cost  of such hardware.     This   figure explainb  to a 

certain extent why such  hardware has  been restricted  in existing 

systems,   frequently beinp  limited  to parity in memory  and on  data 

transfers.     However,   recent  computers have extended  the protection  to 

single-error correcting codes  in memory  (e.g.,  IßM  37Ü,  Burroughs  77ÜÜ), 

and even  to the use of  residue codes   (see Section  5.1)   xn  Li.= arithmetic 

unit of  the Burroughs   7700.     Reconfiguration in  the event of  faults has 

also been  introduced,   in such  units  as memory blocks,  I/Ü  channels, 

power supplies  and peripheral equipment. 

The trend of decreasing cost of electronics  (compared with other costs 

such as manpower)  will  continue,  and also the use of such computers  for 

more and more  time-critical calculations.    We can  therefore expect  to 

see a move toward computers with a greater demand for fault-tolerance 

than at present. 

The architectures most suited to general purpose batch operations will 

probably employ  fault-tolerance measures that are relatively close to 

those used in  time-shared computers.     The one area  in which significait 

differences will be  found is  in  the peripheral equipment so essential  to 

batch-operated computers,  particularly  those used  foi  commercial LDP 

operations.     In installations  that  require high  reliability,  present 

practice is  to use  a  large number of each type of peripheral so  that  the 

loss of one unit  causes  only a sfmall decrease in  the  throughput 

capabilities.    This practice is already 'successful in providing the 

necessary high availabilty. 

6.3.     COMMUNICATIONS  PROCESSORS 

In communications  processors, we are concerned with  processors  for three 

main functions: 

* Message switching,  e.g.,   the Bell system ESS 
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* Message store and forward, e.g., the interface message processor (IMP) 

* Fiont-end processing, e.g., the terminal interface processor (TIP). 

These functions are so closely related that a combination of them often 

coexists in one computer. 

REQUIREMENTS 

A communications processor is always part of a much larger system. The 

important requirement is reliability of the system as a whole, and we 

therefore expect that efforts would be made to design the system so that 

faulty processors do not interrupt service within the system,, A fault 

in a processor that was acting as a front-end processor or as a 
connecting point for one of the host computers of the system would 

Isolate either users or some facilities from the system but should not 

cause serious degradation of the remainder of the system. Such a 

front-end processor should be at least as reliable as the host computer 

attached to it. Certainly, one order of magnitude is sufficient for the 

improved reliability over the host, and more stringent requirements are 

unrealistic. 

Another potential reliability requirement is for the protection of data. 

In most communications systems, data protection is not of significance 

in the individual communications processors but should be achieved at 

the system level, e.g., using such techniques as coding applied to the 

messages to detect errors, and retransmission by alternative routes to 

achieve error recovery.  This system emphasis has implications on how 

recovery from faults can be achieved, in that it is not necessary to 

remember the state of the processor at the time of the fault in order to 

restart it after appropriate corrective action has taken place. 

Because retransmission can be used to accomplish recovery from a faulty 

message, it is far more important to design the processors and other 

components of the system to achieve error detection than to provide 

error-correction capabilities. 
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Communicafclons processors are often located at sites with no resident 

maintenance staff. Therefore, the diagnosis and repair of faults should 

(if possible) be carried out from distant points in the network. 

Diagnosis of some fault conditions is possible, but many other 

conditions render the faulty processor incapable of communicating 

anything meaningful to the other parts oi the communication network. 

Therefore these other conditions present a significant problem in 

diagnosis. 

A RELIABLE IMP 

To illustrate the design concepts appropriate for a communications 

processor, consider the IMP currently used on the ARPANET, This 

processor carries out all of the functions mentioned above (switching, 

store and forward, terminal and host-computer interfacing). The IMP 

uses a Honeywell 516 with additional electronics principally to 

interface to the communication equipment and host computers. 

As an approximation the H516 contains about 1600 ICs, each of which 

contains, (on average) about 10 gates. Assuming that chip failures are 

a significant proportion of total hardware failures, and assuming a 
—ß 

failure rate of 10  per chip per hour, we can expect a failure rate of 

0.0016 per H516 per hour, or about 13 p-»r H516 per year. 

As of August 1972 (see BBN's "Network Summary"» Aug 1972), 31.6 IMP 

years had been logged. With the above assumption, we would expect about 

400 chip failures. The number of unscheduled down times over this 

period was 881. In resolving these figures (400 and 881), we point out 

that: 

* The 881 includes software and external power-supply failures. 

* The number 400 excludes many other failures, e.g., of the core 

memory, passive components, and connectors. 

* Marginal conditions corrected during preventive maintenance are not 

included in the 881 unscheduled down times. 
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As a conclusion, we regard lü'6 failures per chip per hour as a 

realistic but perhaps conservative estimate of chip failure probability. 

We now consider the design of a more reliable processor for the IMP 

environment. We consider two possible realizations, MSI—Medium scale 

integration (about 100 gates/chip) with a core memory, and LSI—Large 

scale integration with a semiconductor memory. We reject the possiblity 

of using small scale integration (SSI) in any future development. 

We can expect that with even an MSI realization, the number of chips 

required will be reduced by a ratio of about 10:1 to approximately 160 

chips with an attendant improvement in reliability.  In addition the 

number of connectors will also be reduced. We can expect that failures 
because of active components will be reduced to about 1.5 per year per 

IMP. In an LSI representation the memory would require about 128 chips 

(assuming 4K bits per chip and 32K words of 16 bits), and the processor 

about 16 chips, resulting in approximately the same (1.5) number of 

faults per year in the active circuits. 

Against the above projected failure rates, we must compare failures due 

to non-electronic causes, e.g., city power failures. These latter 

failures will dominate. It is therefore our conclusion that the correct 

design policy is: 

* Use MSI or LSI circuitry whenever possible. 

* Maintain message integrity on a system basis. 

* Maintain system integrity by re-routing on a system basis. 

* Improve overall reliability, e.g., by improving the reliability of 

software, or that of power service. 

We further point out that a failure rate of 1.5 per year for an IMP-like 

processor is expected to be far better than most of the host computers? 

to which they are attached. 
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As  corroboration of the above viewpoint, we note that  the comnunication 

processors used by Tymshare  Inc in their TYHSAT system experience an 

average of 1.5 failures per year. There are 93 such processors in use. 

The processors are Varian 620 computers which is comparable in 

capability with the Honeywell  516 used in the IMP. 
I 

There is a choice of how much fault tolerance to put in the IIIPs. Some 

investment in IMP reliability is worthwhile in light of the expected 

increase in the availability of hosts via the IMPs. 

A RELIABLE HIGH-PERFORMANCE COMMUNICATIONS PROCESSOR 

As seen above, a reasonably reliable IMP can be built without resorting 

to any special fault-tolerance techniques. This possibility ceases to 

exist if a communication processor is to be designed for significantly 

higher performance. 

For the purposes of this subsection, we consider a high-performance 

communications processor that contains an order of magnitude more 

components than the IMP replacement discussed above. Assuming the same 

technology, this greater complexiity would increase the expected number 

of failures per year from 1.5 to 15, an unacceptable increase which must 

be handled by the use of fault-tolerance techniques. 

; 

In addition, we can envisage an increase in traffic on the network. At 

present on the ARPANET, the traffic load is small enough that the 

rerouting of messages can be used as a technique to prevent a faulty IMP 

from affecting other parts of the system. As the traffic load 

increases, this technique becomes less viable, and it becomes necessary 

for the communication processors to be more reliable. 

We are concerned with three aspects — error detection, error 

correction, and processor availability. It is recoranended that error 

detection be carried out by coding on the messages (or packets). The 

overhead associated with the coding bits is very small for packets of 
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the order of a thousand bits. Because of the tendency of line failures 

to produce bursts of errors, a burst detection code should be used. 

Retransndsaion represents the most satisfactory technique for error 

correction, and where possible, this retransmission should be over an 

alternative route. However, it is necessary in a heavily loaded system 

that the number of such retransmissions be kept acceptably low.  This 

constraint implies a requirement for rapid detection, diagnosis, and 

correction of any fault condition in any of the processors. 

The dual requirements of high performance and high availability suggest 

a multiprocessor or multicomputer approach. Two such systems exist in 

the design state: the projected new high-performance IMP design 

(Ornstein A2, and Heart 73), and the PLESSEY 250 (Williane A2).,  In both 

cases, high availability of the processor is to be achieved by switching 

out faulty processors and using other units to take over the workload. 

A problem that can occur in such schemes is that the unit carrying out 

the disconnection must Itself be very reliable so that ono can guarantee 

that a faulty unit cannot corrupt the whole system, i.e., we need to 

achieve a significant degree of fault isolation. 

In the case of the new IMP design, the disconnection is carried out by 

sending a code word to the bus interface of the bad processor. The use 

of a code word rather than a single control signal is intended to 

prevent other processors that are faulty from turning off good 

processes. The use of a code word, and therefore the need to recognize 

the correct code word, will Increase the complexity of the logic that 

carries out the disconnection, thereby tending to make that logic less 

reliable. On the other hand, there is a somewhat better probability 

that a bad processor will not accidentally turn off good processors. 

Other schemes to carry out this operation have been investigated and 

appear to have some merit.  Principal among such schemes is one used in 

the PRIME system at Berkeley (Borgerseh A2).  In that scheme, if a 

processor decides to turn off another processor, it asks a third 

processor to carry out this function. The third processor validates the 

operation before carrying it out. In general, therefore, two processors 
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must be at fault before Incorrect disconnection Is carried out. This 

rule Is not entirely true for all possible fault conditions — fon 

examplet If the third processor was faulty and erroneously believed that 

it had been told to turn off the second processor, then Incorrect * 

disconnection would occur, caused by a fault in only one processor. An 

improved scheme for carrying out disconnection could use the combined 

logic of several processors to turn off any other processor. For 

example;, to turn off processor 4 would require processors 1, 2, and 3 to 

disconnect it. To turn off 5, the logic of 2, 3 and 4 would be used, 

and so on. The disconnect function would Include a voter from the three 

control signals, thereby preventing any single processor at fault from 

being able to turn off any other. Such a scheme would prevent a single 

faulty processor causing erroneous disco'inection. Yet, because the 

voter contains significantly less logic than the code recognizer of the 

IMP scheme, the imnproved scheme would achieve greater system 

reliability. Schemes such as those discussed above are all possible in 

the PLESSEY 250 system, where such actions are carried out by program. 

Even if the new IMP design achieves 100 percent availability, it will 

still suffer from many of the breakdown situations inat occur with the 

present IMP. Significant among these are software bugs, the breakdown 

of lines between IMPs, the loss of power to thr, computer, and occasional 

catastrophes such ^ when the IMP at Lincoln Lab was affected by a 

lightning strike. The operation of a very reliable network must be 

carried out with significant management attention to such matters. In 

the case of modern LSI machines, with their potentially low power drain, 

it is entirely practical to use standby power supplies. In addition, 

the processors can be placed in a protected environment to avoid 

problems due to temperature extremes or other environmental conditions.; 

Software troubles can be removed primarily by increased validation of 

programs before their use. Such validation at present cannot be carried \ 

out fully because the lack of a sufficiently large test facility at Bolt'; 

Beranek and Newman. In the more general case of communication processes 

for other than the research community (such as the present ARPA 

network), we can envisage a much more stable operating environment with 

fewer program changes. In that case, the software troubles should be 
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significantly reduced. Stability of operating environment: is certainly 

the case with more established networks — for example, Tymshare's 

network, where software tro ibles are negligible. 

.-•, 

In examining the ARPA network, we see Wisys in which the network can 

achieve higher availability ty the use of a few'replicated lines. The 

computers on the network are mostly in fairly tight geographical 

clusters, and few IMPs are heavily loaded. We can therefore envisage 

the multiple connection of certain computers to IMPs as "very distant 

hosts". A particular grouping could, for example, be SRI, Stanford 

University, NASA Ames, and Berkeley, which could be multiply connected 

to each other's IMPs. Another such grouping could Include MIT, Harvard, 

Lincoln Lab and BBN. These connections could be accomplished in such a 

way that, if an IMP were lost, the hosts attached to that IMP would 

operate as very distant hosts cf the other IMPs. This hookup would 

prevent the hosts from losing their connection to the netwc.vk. This 

technique is not 100 percent useful, as some computers (e.g.. University 

of Utah) are not geographically close to other IMPs, However, the total 

system reliability could be significantly improved at low cost. 

6.A.  SUPER-FAST COMPUTERS 

Several super-fast computers exist or are in development. Notable 

,* 'examples are the CDC STAR, the Texas Instrument ASC, the ILLIAC 4, and 

the Goodyear STARAN. The structure of these computers differs 

substantially from conventional computers.  In this subsection, we 

examine fault-tolerance techniques that are appropriate to this class of 

computers. 

REQUIREMENTS 

Such computers frequently cost significantly in excess of 10 million 

dollars.  Backup alternative computers seldom exist, principally because 

few models of each computer are produced, and in certain cases there is 

only one In existence. Some of the applications for these computers 

have a demand for high reliability. An example of this case is the 
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control of a ballistic missile defense system. 

The great complexity of these computers plus the very high speed of 

their circuitry tends to make fault diagnosis a very complex process. , 

The great complexity also increases the component count, each added 

component increasing the unreliability of the system, thereby tending to 

make 'the MTBF much worse. In the case of 1LLIAC 4, the MTBF is 

currently approximately five hours. 

TECHNIQUES 

The large memories associated with the super computers tend to enhance 

the system benefit of memory fault-tolerance techniques. Typically, the 

memory will be a very high portion of the total component count withiri 

the system. The techniques of coding and reconfiguration as discussed 

in Chapter 4 and Appendix 3 are applicable to such systems, and for a 

redundancy of the order of 25 percent can provide highly reliable 

memories whtireas by the use of coding alone, the lower redundancy will 

still produce acceptably good reliability. The only drawback to the use 

of such techniques in these machines is the fact that they add a certain 

number of gate delays in the access time to the memories, whereas such 

computers generally are designed to operate the memory as fast as 

possible. The use of look-aside pipeline decoding (Carter et al. 72b) 

prevents the decoding delay from having a serious Impact on the 

processing speed. 

In the case of pipelined arithmetic units such as the ASC and the STAR 

computers, the pipelining of arithmetic checking by residue codes or 

other means can be carried out in parallel with the main processing 

pipe. The result of checking in parallel is a very small delay to the 

arithmetic operations, since the syndrome generation adds only 2 gate 

delays to the length of the pipe. 

Large computers are frequently used on calculations, the correctness of 

which can be verified by what we could call algorithmic checking. This 

is the carrying out of. a subsidiary calculation that will form a check 
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as to the correctness of the first calculation. An obvious example is 

to reinvert a matrix after the original inversion process to see if the 

resul ;ing matrix is the same as the original (within certain bounds, to 

allow for round off error). Many examples of this type of checking 

exist. We cite a few below. 

PARTIAL DIFFERENTIAL EQUATIONS 

Many partial differential equations can be checked by examining the 

validity of the governing equation at each point in the mesh. For 

certain equations, this represents a task equal in size to the original 

solution of tUvi equations. However, for some partial differential 

equations, such as boundary value problems, the checking for correct 

solution is significantly easier than finding the solution. 

MATRIX OPERATIONS 

The reinversion of the matrix as mentioned above provides a check. 

However, this essentially doubles the total worx performed. We can 

instead carry out a related calculation — for example, we can multiply 

the inverse by an arbitrary vector x yielding a vector y. By also 

multiplying thef original vector matrix by y, we should obtain x, the 

original arbitrary vector. Although this method is not 100 percent 

certain most faults in a computer will be detected in this manner. 

The calculation of eigenvectors and eigenvalues can be checked by the 

fundamental relationship that 

A x = X x 

In addition, in certain matrix calculations a check sum or several check 

sums can be carried on along with the calculation. In most methods for 

inverting matrices, it is typical to compute a row sum at each state of 

the pivotal condensation method. The row sums provide a check for the 

remaining calculation. 

In summary, where a regularity in a mathematical sense exists in the 
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calculation, a simple inverse calculation can often be performed which 

provides some capability for checking the original calculation. 

In the case of array computers such as the  Iliac A and the STARAN 

computers, algorithmic checks as discussed above can be carried out by 

adding extra processors that perform this checking at all times in the 

calculation. This would result in a certain redundancy of equipment, 

but would speed up the checking process. 

It must be pointed out that the techniques discussed above are not 

universally applicable. The major reasons that preclude their use are 

lack of storage to retain partial results, lack of bandwidth to place 

partial results on a back-up memory, and the lack of an efficient 

inverse calculation. These considerations make it necessary in such 

cases to use other fault-tolerance techniques. 

Reconfiguration in array computers is complicated by the fact that the 

communication paths between each processing element and its neighbors 

are of very high bandwidth and contain a large number of lines. 

Therefore, if a substitute processor is to be inserted, the switching 

capability has to be very large.  In addition, extra gate delays that 

may be introduced by such switching capability will frequently not be 

tolerable.  In the case of these machines, manual switching of a new 

processing element into a mesh of such elements appears the most 

practical form for rapid reconfiguration in the event of faults in a 

processing element. 

Beyond the special points mentioned above, reliability techniques for 

array processors are effectively similar to those for any other type of 

computer. They are conditioned by the fact that, since the processors 

are so large, the probability of failure is much higher. The switching 

problem in reconfiguration is thus complicated by the large number of 

lines of high bandwidth. However, these disadvantages are of less 

critical importance, because such machines are seldom used in a 

real-time on-line mode, and a few minutes downtime for manual 

reconfiguration is often acceptable. 
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Super-fast computers ds present one problem not always apparent in other 

systems, namely, the difficulty of checkpointing the total state of the 

system so that the computer can be switched back to that state at some 

future time for a calculation to be restarted. Checkpointing can be a 

complex and time consuming operation in a computer thct is very large 

and in which many operations are carried out simultaneously. 

6,5. AEROSPACE COMPUTERS 

Aerospace computer systems have been considered in great detail 

elsewhere (e.g., see several systems in Appendix 2). They are treated 

here partly for historical reasons, partly because experience in such 

systems is relevant to parts of more general systems, and partly because 

their redundancy can be reduced in many cases. 

REQUIREMENTS 

Aerospace computers differ from many other computers in several ways. 

We dlscufis here the differences in the requirements for fault-tolerance. 

For example, we can express one difference in terms of a requirement 

that the  probability of an Incorrect result being generated should be 

less than 1 in ]00 million per hour of use. This is the relevant figure 

for calculations critical to flight safety in a commercial aircraft 

(Wensley et al. 73).  It translates into a MTBF of 10,000 years, a very 

stringent requirement upon reliability. 

In addition, for certain calculations such as stability augmentation or 

flutter control, the recovery time must be exceedingly low. In certain 

cases, it is as little as 10 milliseconds. 

In this application field the computer is a very small proportion of the 

total cost of a system, whether a commercial jet liner or a space 

vehicle. Thus, a level of redundancy may be afforded that in many other 

applications is not economically practical. 
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It is typical In the aerospace field that highly repetitive calculations 

must be performed, and that these are very loosely coupled. Such 

calculations typically might compute the numerical solution of 

differential equations that represent a mathematical analog of a control 

servo. The iterative nature of the calculation can be taken advantage 

of by carrying out the checks at the end of each iteration, rather than 

at the end of every small operation within the iteration. 

In certain aerospace applications, no maintenance is available, 

particularly in the long-life space missions to the outer planets. The 

fault-tolerance procedures must be automatic because in addition to the 

lack of maintenance availability, there may be occasions when such a 

space vehicle could be in a position where comnunlcatlon with the earth 

was either not possible or of very low bandwidth. In addition the life 

expected from computers In such missions may be very high, from five to 

ten years being entirely possible. Such long life means that the 

probabilities of chip failures and other malfunctions become very high, 

to the point t: at over half of the circuits within the computer may have 

failed. 

TECHNIQUES 

The most obvious technique to use for both detection and correction is 

extensive replication, usually triplication. Also, the application Is 

well suited to a multiprocessor organization that can handle many 

independent processes. The output of several identical processing 

elements Is compared and voters attempt to remove the effect of one of 

the processors being in error. Although ending Is also used to assist in 

error detection and correction, coding alone is not sufficient to 

provide adequate reliability for some of the most critical applications. 

As mentioned above, voting may be carried out at the end of each 

iteration of a repetitive task, as in the SIFT system (Wensley A2, 72), 

or it may be carried out upon each transfer of data between processor 

and memory, as in the Hopkins system (Hopkins A2) or in the BUGS system 

(Wensley et al. 73). 
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The reconfiguration of a system is typically accomplished by switching 

out faulty processors and switching in some spare processors or memory 

modules.  In the case of the Hopkins schemef a multiplicity of units is 

switched in and out whenever a fault is detected. Two processes and 

three scratchpad memories are all discarded and the calculation is 

transferred to anothsr module of the same size. 

While the degree of redundancy that is acceptable and needed in 

aerospace applications is very seldom appropriate to large ground based 

systems, the techniques may be very usefully applied to certain small 

critical subsystems within a large system. 

6.6. CONCLUSIONS 

The main conclusions to be drawn from our study of applications and 

architectures lor  fault tolerance are: 

(a) Many existing computer designs already incorporate some 

fault-tolerance techniques which in some application fields provide 

adequate availability and guarantees of correctness.  Prime examples are 

those systems used in financial institutions (banks, stock exchanges 

etc.,) and commercially operated service bureaus, with both batch and 

time-shared modes of operation. 

(b) Computers that are built using the newer technologies (e.g., LSI) 

are intrinsically more reliable,, primarily because of the reduced number 

of components and the attendant reduction in the number of such items as 

connectors and cables. 

(c) Techniques exist to provide adequate fault-tolerance for all 

application fields.  In most cases, these techniques are economical, 

especially when compared to total system costs. 

(d) Different techniques are sometimes necessary for improvement of 
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different fault-tolerance parameters, e.g., correctness, availability or 

recovery.  The proper specification of fault-tolerance must recognise 

these different parameters. 

(e) The use of selective redundancy can be an effective technique to 

provide greater fault-tolerance for critical system functions and 

smaller redundancy for non-critical programs. 

I 
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CHAPTER 7.  CONCLUSIONS AND RECOMMENDATIONS 

7.1.  CONCLUSIONS 

. 

This section summarizes the main conclusions of the report. 

GENERAL CONCLUSIONS (See Chapters 1, 3 and 6) 

* Techniques exist for achieving economical fault tolerance for many 

Important applications, without needing massive redundancy. Significant 

levels of correctness and system availability can be achieved with 

redundancy from 10 to 40 percent. 

* Techniques exist to provide a much higher degree of graceful 

degradation than is currently available. 

* A significant problem in existing systems is the unpredictable and 

unnecessarily long time required to recover after the occurrence of some 

faults. This problem is made worse in most existing systems by poor 

architectural structures and Inadequate diagnostic techniques. 

* The degree of fault tolerance required and the choice of techniques 

needed to achieve it are both strongly dependent on the environment. 

* Software and operational considerations must be carefully integrated 

with the hardware in the design of a fault-tolerant system. The present 

art of computer system design is capable of such integration, if 

properly motivated by managment directives. 

The following discussion concerns some of the specific techniques for 

fault tolerance.  Some of these are readily available, while others are 

capable of beir^ developed. 

ARCHITECTURAL CONSIDERATIONS (See Sections 3.2, 3,3, Chapter b) 

* Simplex systems are adequate in some cases. 
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* Reconfigurable multiprocessors are desirable for high availability and 

graceful degradation. 

* Good system structuring is highly beneficial throughout system 

development. 

* System security is strongly related to fault tolerance. Protection 

mechanisms are critical to some uses of multiprocessor architectures. 

PROCESSOR CONSIDERATIONS (See Chapters 3, 5 and 6) 

* In most systems, dynamically selective replication of critical 

processing capability may be used without greatly affecting the overall 
cost. '   . . ■ 

i 

* Deferred detection, interspersed on-line diagnostics, and automatic 

recovery strategies are useful in reducing redundancy when time is not 

critical. 

* Error detection (or correction) in arithmetic can be achieved with 

codes also achieving error detection (or correction) in memory (see 

below), at almost the same cost as the best codes for memory alone. 

Byte coding is suitable for LSI arithmetic. 

* For certain processing functions, increased dependence on memory 

(e.g., by table driving) is very effective, since it allows economical 

use of redundancy. Distributed logic-in-memory designs are interesting 

in certain cases. 

* The use of read-only memories with coding can be highly effective for 

reliable logic. 

MEMORY CONSIDERATIONS (See Section 3.1 and Chapter A) 

* Fault tolerance is more economical in memory units than in other parts 
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of a computer system. PerfonnlnB functions in memory that are normally 

done in logic (e.g., via table-driving) permits economical fault 

tolerance. 

* Coding, byte slicing, page relocation, and memory reconfiguration are 

appropriate for fault-tolerant memories. 

* Byte slicing and byte coding are particularly appropriate for LSI 

memories that store several bit positions on a chip. Byte coding 

requires only one redundant byte per word for detection of arbitrary 

errors within any byte of the word, and a logarithmically increasing 

cost for byte error correction. The increase In th^ overall cost due to 

encoding and decoding is negligible (except for very small memories). 

* No delay is required for decoding in the absence of errors whenever 

error detection (syndrome generation) can be overlapped with execution 

in an automatic instruction retry environment. 

* Reconfiguration around faulty memory components is simple and highly 

effective.  Reconfiguration at the block level is aided by page 

relocation in hardware. A virtual memory organization in hardware can 

offer further benefits for fault tolerance.  For certain 

high-availability and high-reliability requirements, replacement by 

switching at the chip level is appropriate in combination with byte 

coding. 

TECHNOLOGICAL CONSIDERATIONS (See Chapters 3,4,5,6) 

* Newer technologies permit certain techniques for fault tolerance to be 

practical. However they do not supplant the need for architectural 

fault tolerance. 

* LSI outmodes many of the techniques for handling single faults and 

single-bit errors. Correlated faults must be considered. 
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7.2.  RECOMMENDATIONS FOR FUTURE RESEARCH AND DEVELOPMENT 

Throughout this report are conclusions with implications for future 

research and development. Our recommendations for future research and 

development are summarized here, and are classified according to 

detection and diagnosis, architecture, and analysis. 

DETECTION AND DIAGNOSIS 

Most existing fault-tolerant systems use primitive techniques for error 

detection (e.g., replication of processors, coding within memory). Ue 

remain convinced that more economical methods exist, such as usin» 

probabilistic and deferred error detection, which, for example, take 

advantage of knowledge about existing permanent faults. Feedback error 

detection is also possible. Models are needed that permit a theoretical 

study of the time-space trade-offs in fault-tolerant systems. 

Programmed consistency checks are a powerful error-detection technique 

for certain types of computations ~ notably those involving servo-type 

control or those with a readily computed inverse. We believe that a 

much broader class of programs is suited to such checks. The use of 

run-time assertions (e.g., similar to in nature, but not as complete as, 

Floyd assertions) appeare to be very promising. 

Periodic self-diagnosis is important as a means for fault detection and 

also as a means for reducing needs for preventive maintenance and 

eliminating the need for emergency maintenance. Good algorithms now 

exist for specifying test sequences for combinational networks when the 

faults are simple, e.g., gate outputs being stuck at 0 or 1, but r.ot for 

more realistic faults. The sequential case is not at all well 

understood. Very little has been done on the problem of general methods 

for diagnosing large systems so as to pinpoint a faulty module. We feel 

that these problems are all soluble if specific structures (say, 

distributed two-dimensional networks) are considered, or if redundancy 

is permitted within the logic to enhance diagnosability. 
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: 

A serious weakness in the current art is the absence of a design 

methodology that Integrates hardware and software Into a systems concept 

addressing reliability, availability, security, efficiency, and 

functional capability in a unified way. For example, significant 

benefits can be expected from techniques for structured design and 

Implementation (see Section 3.2)., Such a methodology requires 

significant communication and cooperation among research and development 

people, among hardware and software people, and among university and 

Industrial people.  (The ARPA Network is providing some steps in this 

direction.) 

There is a need to devalop economical architectures for fault tolerance 

in a general-purpose environment. (The aerospace and telecommunications 

applications and specialized minicomputers have received most of the 

attention to date.) In particular, the multiprocessor outlined in 

Section 3.3.3 is an attractive possibility, with selective replication 

in time and space. An operating system for this architecture is also 

worth investigation. There is also a need for an economical solution to 

the protection problem in a large dependent-processor multiprocessor 

system. 

Possibilities for fault tolerance should also be exploited via novel 

architectures, including highly reconfigurable distributed 

micro-processor arrays and networks of larger computers. An important 

direction for future systems is the achievement of smoothly degradable 

economical systems with rapid recovery from faults. The scheme for 

reconfigurable memory arrays of Section 4.2 represents a possible 

starting point for such systems. 

ANALYSIS 

There remains a difficult problem of analyzing the reliability of a 

redundant system or even proving that it is, say, single-fault tolerant. 

The difficulty is greatly reduced by structured design and by proofs 
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that the executive can reconfigure the system as Intended. This Issue 

is no different from proving the correctness of an operating system — a 

process considerably simplified by structured design. However, the 

modeling of complex fault-tolerant systems is also important here — an 

issue frequently studied, but still not adequately resolved. 

An important quantitative measure of a fault-tolerant system is the 

relative cost of fault tolerance, e.g., the redundancy. Except when 

trivial techniques are used, it is difficult to estimate the redundancy 

accurately. In this report we associate the various redundancy 

techniques with different types of architecture. More generally, it 

would be useful to have measures of the total redundancy, e.g., as a 

function of availability, reliability, and down-time. 

In summary, the state of the art leads to considerable hope for the 

development of economical fault-toleranc systems. However, there is 

still much need — and fortunately, much room — for advancement in the 

state of the art. 
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APPENDIX 1 

CENSUS OF FAULT-TOLERANT COMPUTING SYSTEMS 

This is a brief summary of systems and system designs providing 

significant fault-tolerance and/or availability.  Those systems 

indicated by "(A2)" are considered in greater detail In the Survey of 

Fault Tolerant Computing Systems (Appendix 2), where references are 

included. Terse references are given here. Several systems are 

described in what is referred to here as the "Intermetrics Report" (J. 

S, Miller et al., Multiprocessor Computer Study, Final Report, Contract 

NAS 9-9763, Intermetrics, Inc., Cambridge, Mass, March, 1970). 

Abbreviations: P=Processor, M=Memory, (S)E;Ca=(single) error correction, 

(D)EL)= (double) error detection. A measure of the hardware overhead for 

fault tolerance is given as that percent of all hardware dedicated to 

fault-tolerance (on an approximate cost basis). 

A. GENERAL-PURPOSE COMPUTING UTILITIES, generally good availability, 

human users, modest reliability, maintenance permitted. 

1(A2). Multics, MIT (F. J. Corbato) and Honeywell, Cambridge, Mass; 

ARPA-funded development, now Honeywell product.  See E. I, Organick, The 

Multics System, Mil Press 1972. 

* General-purpose computing utility (time-sharing, batch), with high 

availability and file integrity. Four installations currently exist. 

* 1-7 P (Honeywell 618Us), typically 2P, multiprocessed multiprogramming 

uotally reentrant procedure, virtual memory, manual reconfiguration of 

multiple P and M during operation, extensive isolation via the ring 

mechanism for protection and via file system access control, incremental 

file backup, variable-depth system recovery, redundancy in the file 

directory structure.  SEI) in uir'.n memory. Significant security. 

Hardware negligibly redundant.  Software variably redundant, e.g., 20% 

overhead in time for guaranteed 30-minute lag backup. 

Al.l 
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2(A2). PRIME, university of California at Berkeley (H. Ba8kln); ARPA. 

k Reliable, secure, modest computer utility, high availability.  ln 

development, 

* 5 P (design practical for 3 P to 8 P). with highly restricted possible 

connectivity among M, P and disk, strict isolation with no memory 

sharing or multiprogramming, "spontaneous" reconfiguration via a 

reliable self-checking switch. Hardware less than 10% redundant, 

software less than 10% redundant in time. 

3(A2). Carnegie-Mellon University; ARPA. 

* Research system development with applications to ARPA speech 

understanding project; in design. 2x2 version exists. 

* 16 P x 16 M (modified PDP 11s), with reliable crossbar switch. Hard 

and soft reconflgurabllity, with widely varying operating modes. 

Hardware less than 5% redundant. 

4. University of Newcastle-on-Tyne. Engl.; Scientific Research Council. 

* General computing; in design 

* PUP 11s 

~i 

Note. Burroughs B770u and IBM System/370 have significant hardware 

facilities for fault tolerance. Also, various commercial time sharing 

services gain availability (but not necessarily reliability) by having 

multiple P, M and secondary meuory units cross-switchable. 

B. GROUND-BASED SPECIAL PURPOSE SYSTEMS, controlling the environment (or 

vice versa), generally higher reliability and availability, often 

tighter real-time constraints than those above, usually maintainable. 

5(A2). ESS (Electronic Switching Systems), Bell Labs, Naperville 111 

* Telephone switching system; long-term continuous system availability 

with occasional errors supposedly tolerable to customers.  Over 200  ' 

Number 1 ESS in operation, many more Number 2 ESS, TSPS. 

"  2 P (1 functional, 1 standby checking and diagnosis).'automatic 

reconfiguration. Separate nonalterable program store with SEC.  50% of 

Al.2 
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all programs are diagnostics. Millions of hours of experience have 

aided in improving hardware and software reliability. People problems 

still difficult (operations, maintenance). About 50% redundant In 

hardware. Storage for software dre to fault tolerance also significant 

— half of all programs. 

6(A2). PLESSEY System 250, The Plessey Co., Ltd., Taplow England. 

* Telephone and data switching, long-term continuous availability, 

modular expandability. Prototype end of 1971, 

* 1-16 P, 1-30 M, each 16-64K. Multiprocessing, multiprogramming, 

virtual memory, totally reentrant, capability-based protection and 

sharing. Continued operation via reconfigurability with everything 

multiply available. Extensive hardware fault detection, operating 

system consistency checks, background test routines. Hierarchical 

software recovery. Hardware 20-50% redundant, depending on use. 

7(A2), High-speed modular interface message processor (IMP) for the 

ARPANET, Bolt Beranek & Newman, Cambridge, Mass. 

* Store and foreward for interhost message switching. High 

availability. Reliability largely left to hosts. 

* 1-14 P initially, each with 4K. M.  Smoothly degradable, e.g., in 2 P 

units. Distributed power, cooling. 

8(A2). CLC, Bell Labs, Khippany NJ; ABMDA (Safeguard) 

* Safeguard missile defense; continuous availability when (and if) 

required.  In development since mid-60s. 

* Up to 10 P, multiprocessed, on-line sparing, separate program memory 

not writeable; program retry; ED via four-bit check on 6A-bit words. 

9. FAA (Federal Aviation Adm.), IBM.  See IBM Sys J., vol 6, no 2, 1967. 

* Air traffic control, long-term continuous availability. Untolerated 

nontransient errors can be disastrous. About 20 systems at ATC centers 

covering the continental United States. 

* Up to 4 P (IBM 9020), up to 12 M.  Program-controlled error analysis 

and reconfiguration, gracefully deconfigurabie.  5-second battery backup 

power supply. Relies heavily on good available field engineers. 

Al.3 
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10. Flight Plan Processing System. Marconi Radar Systems Ltd., 

Chelmsford, England. 

* Real-time alr-trafflc control. At most one 30-sec Interrupt per year, 

at most one longer Interruption In 5 years, Inmune to power failures, 

fast repair of faulty equipment. 

* 3 P (MYRIAD) 

U. MDS-2 (Market Data System), New York Stock Exchange 

* Stock trading ticker control. Near-continuous availability, no 

transaction losses permitted. Operational Aug^t i972. Precursor MDS-1 

operational for 7 years. 

* 3 P (360/50), 2 multiprocessing with shared ¥.  & LCS (but 1 P basically 

monitoring), 3rd P normally spare (running background jobs), extensive 

program checking. Highly replicated peripherals (I/o, disks, etc.) 

12(A2). COMEX, Pacific Coast Stock Exchange 

* Stock trading message switching; near-continuous availability, no 

transaction losses permitted, small real-time lag permitted. 

Operational since 1969. 

* 2 complete systems (each has 360/50 plus 2 PDP Ss), one in San 

Francisco, one in Los Angeles, capable of running separately or 

cross-switched (interconfigurable). 

13. NASDAQ, National Association of Securites Dealers Automated 

Quotations; See Datamation, March 1972, pp. 42-45. 

* On-line interactive system to facilitate trading of OTC securities; 

high availability; operational since end of 1971. 

* 2 P (1108s), multiprocessing under EXEC 8, capable of running simplex. 

Dual records in file structure, automatic recovery techniques. 

14. Standard Telecommunications lab, Harlow, England. See Electrical 

Review, 6 Feb 1970, pp. 1-3. 

* Real-time control 

* 1 P. SEC/DED in M, in transfers, and in 1-0; duplication of 

punch/reader and of M access switches; triplication of control and of 

function unit. 52% of hardware cue to fault tolerance. 

Al.4 

riininiin"  •iVMinitiii[iirfi[iMiifiiiiiirttti,iiin- iiiailmMiriiMrinimii riiinni*il[i»TiniMiiii-iiiii    1  __.>__ di^iaflMMMUMaMMlifiUjMgHaCMatialMMgl^ 



^mmmmmmmmmmm 1111 ■' " '■•^^mmmmm^mm^mR, 

C. AERO-SPACE SYSTEMS, usually with uJtra-high reliability and 

availability requirements, usually critical real-time contraints, human 

maintenance usually not possible.  At least the first four efforts have 

resulted in prototype systems.  The remaining efforts represent mostly 

designs in various stages of completion. 

16(A2). JPL-STAR, JPL, Pasadena Cal (A. Avizienis); NASA 

* Unmanned outer-space travel computer, long-life availability without 

maintenance. Prototype in operation since 1969. 

* 1 P (uniprocessing), heavy use of coding (residue checking for SED in 

memory and arithmetic, ED In op codes), duplicated logic operations, 

triplicated monitoring and control (TARP = test and repair processor), 

replacement by spares via power switc'iing. User-provided rollback 

points. 60% of hardware due to fault tolerance. 

17(A2). MLCRA, Electronique Marcel Dassault, St. Cloud, France; DRME 

* General-purpose design for special-purpose applications, including 

aerospace. Prototype now working. 

* Duplex arithmetic. Hammin,'? code (7,4) as DED on coded decimal 

representations (with six unused combinations), sparing, 

microprogrammable reconfiguration. About 66% redundant. 

18(A2). ACGN, CERiiERUS, etc., MIT Draper Lab, Cambridge, Mass (A.L. 

Hopkins, Jr.); NASA/MSC. 

* Apol.'o manned space on-board control, very high reliability during the 

mission without maintenance.  Prototype exists. 

* At least 1 processing unit (up to 6), icultiprocessing among processing 

units, replication within each processing unit and within memories 

(without coding).  Two concepts: 

(a) duplexed processing units, triplexed sciratchpad memories, triplexed 

memories and buses, with spares; 

(b) triplexed processing-scratchpad units. 

About 80% redundant. 

Al. 5 
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19(A2). MUC (Modular digital computer), IBM Yorktown Hts, NY,; 

NASA-Huntsville. 

* Modular system, wide range of high-reliability applications; design 

only 

* m P, multiprocessing and replication as well. FO-FO-FS 

(fail-operational on first and second faults, fail-safe on the third) in 

A P fault-tolerant mode, detection mode also possible. M^crodiagnostics, 

b-adjacent multiple errors handled in M, extensive self-checking. 

20(A2). MSC (Modular spacecraft computer), Ultrasystems (Newport Beach 

Ca) and Raytheon (Waltham Ma); SAMSO/SYT (Los Angeles Ca) 

* Reconfigurable guidance and control, space shuttle use; long-life 

reliability. 

* The Raytheon entry in this effort has 1 P, identical subP and subM 

reliably switchable with sparing.  SEC in M plus 3 spare bits reliably 

switchabls via "rippler", burst-error detection in mass Mt triplicated 

control, duplicated configuration control. 

* The Ultrasystems entry is similar to the JPL STAR, 

21(A2). SIFT, Software implemented fault tolerance, SRI (John Wensley); 

NAS A-Langley 

* Airborne control (commercial aviation); availability of correct 

results during flight; some tasks more critical than others, permitting 

slight degradation of less critical tasks. Design only (see 1972 FJCC). 

* Multiprocessing with variable software replication, dependent on 

application program (software reconfigurable). Fault tolerance via 

software can avoid special hardware, permits use of existing designs. 

Connectivity is restricted: P can modify only its own M, can read 

others, limits fault propagation.  Executive uses the same fault- 

tolerance procedures as application programs. About 75% redundant. 

22(A2). ARMMS, Hughes, Fullerton CA (W. L. Martin); NASA-Marshall (MSFC) 

* Spaceborne control; long-life reliability 

* m P, dynamically reconfigurable, e.g., as independent-process 

multiprocessing or as replication with sparing.  20%-80Z redundant 

(variable) 

AIS 
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23(A2). Intermetrics multiprocessor, Cambridge Mass (J. L. Miller), 

outgrowth of EXAM; NASA-ERC (Houston) 

* Manned orbiting space station 

* m P (1 to 8, nominally 3), each P internally duplicated, coding in M 

(ED), capability for dynamic duplication of critical data words, 

buffered instruction retry, save within interrupted instruction. 

2A(A2). Autonetics (N. Am. Rockwell, Anaheim, L. J. Kcczela); NASA-MSC 

* Space shuttle; long-life reliability 

* 4-level redundancy FO-FO-Fb (cf. MDC) 80% redundant; less for lower 

fault tolerance. 

25. SIRU (Strapped-down inertial reference unit), MIT Draper Lab (A. L. 

Hopkins, Jr.).  See Intermetrics Report (reference above). 

* Apollo guidance. Simple prototype built. 

* 2 P (1 as standby), M duplicated. 

26. MULTIPAC, General Telephone and Electr., Vialtham, Mass; NASA-Ames. 

See IEEE Trans. Aerospace and Electronic Sys., Sept. 1971, pp. 974-981. 

* Data handling for deep-space probes. Long life, but arbitrary outages 

can usually be tolerated.  Design only. 

* Up to 5 P, 15 M (A K each), gracefully degradable to 1 P, 1 M. 

Manual reconfiguration of software and hardware via ground-based 

diagnosis, leprogramming, reassembly and transmittal of a new system 

into space. Maintainable despite wide range of problems. 

27. BUGS (bus checker system), SRI (Karl Levitt), NASA-I,angley. 

See SRI Final Report, NAS1-1Ü920, 1973. 

* Aircraft control, as in SIFT 

* 5-10 (local) P & M units, each duplicated internally, byte coding in 

central M, bus checker coordinates restart mechanism, periodic diagnoses 

of M and of unflexed processor functions. Afrout 33% redundant. 

28. TOPS, JPL (Gilley). See IEEE Trans. Astr-Aero, Sept. 1970. 

* Thermo-electric outerplanet space travel 

* Related to JPL-STAR. 

Al.7 

--"■"-■"-"■ -■ '""""- -■,- ■-"-—•-•*■"- -"— -"■"^•'-'■^-"->-^—-^-!-"- •—•- ' *~>-'~   '■'-- ..—^MiaafcMHMahituM toMtammkaämaiiiämititBaiitäämitmmsiämtm 



-   '»^»•mtvmmmmmmmrwmmmmmmmiimmimim**'^^^ wiammmm'**** mmm 

1 

^   : 

29. MFC, Hamilton-Standard; NASA-ERC.    See Intermetrics Report. 

* Modular flight computer 

* 3 Pt 3 M, cross-configurable, TMR or 3 P multiprocessor 

30. ALPHA, CDC. See Intermetrics Report. 

31. AADC, Honeywell; NASA, AADC Naval Air Systems Comnand. See 

Intermetrics Report. 

32. IRAD, Litton. See Intermetrics Repo-'t. 

33. SDC-Burroughs; USAF-Wright-Patterson, Multiprocessor 

34. S-3, Univac 

35. SUMC, RCA Advanced Technology Lab, Camden NJ; NASA Huntsville. 

*Space ultra-reliable modular computer, COSMOS technology. 
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STUDY  PF FAULT-TOLKRANT COMPUTING:   FINAL  REPORT SRI JULY  1973 

APPENDIX 2 
SURVEY OF FAULT-TOLERANT COMPUTING  SYSTEMS 

This appendix presents replies  to a questionglre sent to architects of 
various  fault-tolerant computing systems.     It is hoped that  the 
questlonaire will itself be useful as a descriptive form and that the 
replies will aid in understandinp and comparing the systems  included 
here.    To this end the questlonaire has been designed to permit a 
concise description of each system,  its  goals,  its motivations,  its 
nrinciples,  its structure,  Its  techniques,  and its achievements  to date. 

The replies  given here are included essentially in their entirety 
Several significant efforts are unfortunately not represented here 
e.g. ,   . !ly not represented here, 

IBM s  FAA system,  the New York Stock Exchange System MDS-2,  and a 
system under development at  the University of Newcastle-on-Tyne. 

The  first issue of this survey was distributed informally  to conference 
participants  at  the Second International Svmposium on Fault-Tolerant 
Computing,  Boston, June  19-21,,   1972.     It supported the panel discussion 
Approaches  to the Architecture of Fault-Tolerant Computing",  chaired by 

Jack Goldberg. * J 

The contents  of this appendix are as  follows. 

Questionnaire page A2.2 
RePliea: page A2.pp: 

A. Avizienls,  JPL and UCLA 4_6 
B. R. Borgerson, U. C. Berkeley 8-10 
W. C. Carter, IBM, Yorktown Heights, NY 12-13 
J. L. Delamare, EMD. St.-Cloud, France 6-7 
Capt. L. A. Fry, SAMSO, Los Angeles, CA 10 
A. L. Hopkins, Jr., MIT Draper Lab 14-15 
L, J. Koczela, No^th-Amt-rican Rockwell 3 
W. L. Martin, Hughes Aircr., Fullerton CA 16-17 
J. S. Miller, Ir :ermetrlcs, Cambridge MA 18-19 
S. M. Ornstein, Jolt Beranek & Newman U 
W. C. Ridgway III, Bell Labs, Madison NJ 20-21 
J. H. Saltzer, MIT Project MAC 22-23 
D. Siewiorek, Catiegie-Mellon Univ. 26-27 
W. Ulrich, Bell Labs, ^aperville. 111. 23-25 
D. C. Wallace, SRI for PC Stock Exchange 28-29 
J. H. Wensley, SRI 30-31 
R.  K.  Williams, Plessuy,  England 32-34 

etc. 

System: 
JPL-STAR 
PRIME 
MDC 
MECRA 
MSC 
ACGN, 
(3FT) 
ARMMS 
(mp) 
HSM IMP 
Safeguard 
Multics 
C.mitip 

No. 1 ESS 
COMEX 
SIFT 
System 250 

A2.1 
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SIRVEY  OF  FAIM T-inLLRANT COMHITIM.  SY5TK>:S--<!H STIOSNAIHi 
SRI   rnmputer  Selene* Croup,   June  H72 

1.   IDCNTIFICATION  of   Che  eystcP 
1. 1.  NANF:  '«Tiat   It   ttie  relevant  nAtrw  of  tlie svstcn? 

1,2,   «LSPnNSIhlLirV:  Wh«t   !•   tlie  rupontlM«  o^p■nlratlpn, 

1.1.   Sl'PPnRT:   What  are   the  aourcen  of aupport' 

I.A.   PARTICIPANTS:   Khfi   (and what  orpanliatlona,   If 
relevant)   «te  the principal  participant»? 

1.5, START:  What  waa   the  date  of  conception? 

1.6, COKPLFTION:  Wltat wa«,  or  la expected  to he,   the 
corpletlon date?     (Specify  prototype  acceptance  date,  or 
dealfn  corpl«tlon  (»ate   If  dealFn  only.) 

1.7, BIBMOCRAPtnf:   What  are   the no*t  relevant   reference»? 

:.  MOTIVATION  for  the  ayste« 
2.1.   I'IRPOSt:  ^"hat   la   the  irain  purpr*e  of  the aysteir 
(e.p.,  r'neral-purpoae  corputlnr, rcal-tlne alr-trafflc 
control,  store-and-forvard)? 

:.2.   PHYSICAL BWIROHMEKT:  Where doea  the ayatef operate 
(e.f.,  pround*hated,  airborne, apacehome)? 

:."».   COIfPl'TlNC.  F-SVIROVHtNT:   How doei  the ayate»   relate 
coeiputatlonally  to  Ita  envlronrent   (e.p.,   locally, 
reeiotcly,  via a network.   Interactively,  via peripheral*, 
with human uacra)? 

:.*.  COHPlTlKr  nB.IF.rriVT.S:  What   arc   the apeclflc  corputlnr 
ob)ectlvei,   repardlnr  capability,  capacity,  perfoniance 
ffhrouphput  or  reaponae),   conf 1 puratlon acalcaMlttv, 
eiaxlruie real-time  delay»,  etc.   (as  relevant)"* 

:.^.   RELIABIUTV  OBJECTIVF-S:  What  are   the specific  svater 
reliability objective»,  with  respect   to dealred 
avallabllitv  durlnp what   period,  nlnlpu* cliw  to ayster 
failure,  raxlruir pcralttcd duration of outape, etc.* 

2.6. DYNAMIC VARIABILITY:   How ray  these oblectlvc»  varv 
durlnp operation?     (r.p,,, how ray Performance deprade? 
Nay  rcrfnrrance be exchanped   for  Increased rellabUlty') 

7.7. PENALTIES:    What  are   the  penalties  arlelnp  frov 
faulty onerntlon?     (Poaalble  exavple»  Include   loss  of 
life,  badlv  decreased nerforvoce,  the neceasltv  of nanual 
Intervention,   lo»»  of  revenue,  etc.) 

?.«.   CONSTRAINTS:  What  expllrft  physical  constraints  exist 
(e.p., with respect   to »lie, welpht, power, costK 

2.9.   TKAPECirrSi  What   critical   tradeoffs  exlat  anonp   the 
objective»? 

1.   nESCRIPTIDfi pf   the  »v»ter 
J.I.   ARCHITTrTl'RK 
1.1.1. roNFIOIRATinsS 
1.1.1.1. INTFRCONNFCTniTTT:   What   Is  tt-e basic  conflpura- 
tlon,  and what   restriction« exist  on  Interconnectlvlty'' 
(Ynu mav  choose  to  Include  a block  dlapraK,  a PMS  dlarrar 
a   la  Bell   and \ewell,  or other  useful   reprr<ientatlon.) 

3.1.1.2. RANGE:  What   1»   the  ranpe over which  conflp- 
uratlons  are »en»lble   (nlnlmuv  to raxlrur), e.p.,  how  rany 
processor»,  how manv siemory  rodule»   (of what  sice  and word 
lenpth,  and with what   restrictions   If  any),  etc.' 

3,1.1.1,  CAPABILITY:  What   Is   the effective  cowputlnp  power 
of   the  anallest  »tinslble   confIpuratlon  In   3.1.1.2**     Pleaae 
coi»pare  It  rouphly with  a well-known syscer  (e.p.,   K>0/40, 
b5t   195),  and cite  a ball-park   flpure   for  the nurber of 
additions  per second.     Capability  required  for  fault- 
tolerance »hould not   be   Included. 

1.1.2. FXFCUTUT. and operatlnp »yster 
3.1.2.1. MODES  of-operation:  How doe»  the sy»ter oierate'* 
(E.p.,la  each  procesaor  nultlpropramable?   Is  independent- 
process Kultlproce»»lnp possible1  Is cooperative-process 
rultlpropramed rultlproceseinp possible?) 

3.1.2.2. SOFTWARE orpanlzatlon: Wliat Is the structure of 
the »y»teif »oftware1 How la It distributed with respert 
to  the liardware? 

3.7.2.   FAILTS  NOT TOLF.RATEDI  What   faults   cannot  be 
tolerated  by  the  system,  and what   are  the  correspondlnp 
rffect»'*     Identify  the weakest   links. 

NOTE:   faults  mav  he  charactevlzed   In  rany ways,   Includlnp 
type  (e.r.,  faulty hardware at various  levels such a» a 
chip,  mobile,  bua,  power »upply,   arithmetic  unit, 
processor,  mep'ory;   faulty software  such  as   in   the 
executive,   in  a  compiler,  or  In  an  applications  propratn; 
faulty  usape  and bad  Inputs),  nature   (e.p.,   tlrlnp 
consideration», old ape, varloua physical phenomena), 
duration  and  frequency   (e.p.,  one-shot,   recurrent, 
penranent),   scope   (e,p..   Isolated   faults,  correlated  or 
Independent  milClfTa   'suits,  with  varylnp  deprees  of 
propapatlon),  effect   (random,  predlctabla),   etc. 

3.2,1.   TECHNtQUESl   Wtiac  basic  technique»  are  employed  to 
provide   fault-tolerunt  capability,  and when,  where,  and 
how are  they  u»ed?  Include liardware  and  software 
technique». 

NOTE;  Applicable technique» Include  (noaalbly In 
conMnatlon)  replication (e.p.,  triple-modular redundancy 
at  various   level»,   redundant  computation»  ualnp 
Independent  alporlthns), codlnp (e.p., error-detecting or 
-correctlnp    codes  on a bus.  In remoo'.   In  arithmetic), 
repetition  and  rollback,  reconflpuratlon   (includlnp 
removal without replacement and replacement with »pare»), 
dlapnoatlc»   (e.p.,  stand-alone,  on-line.   Interactive; 
preventive, emerpency;  remote,   local), protection (of 
proce<4»es,  data,  proprama,  etc.),  and outside   Intervention 
(human  or otherviac).     Tlie»*  technique»  nay  be  u»cd 
Ktallcally   (e.p.,   alway»  invoked)   or dynamically   (e.p,, 
conflpured a»  needed);  at   various  module   level»  in 
hardware  and software;   In combination with  certain event» 
and with  certain  other techniques, 

3.1.   NOVELTY:  What  «re  the most  unusual  deaip.n   features? 

l.t.   INFLITNCFS:  What  other effort»   (svatems,   research) 
have  had  an   Influence  on your »ystem tlesipn? 

3.S.   NARD-COREi   If  there  1»  a concept   of  "hard-core"  In 
vour svster, what  1»  it» »ipnificance'*     (Pleaae  define 
your concept.) 

4,   JlSTiriCATinN  for  the »ystem 
4.1,   KFLlABILin  F.VALl'ATION:  How  i»  reliability estimated 
and/or demonatrated (e.p., via analysi«, ilmulation, 
»tlmulatlon of   fault»,   theoretical  arpuiscnta)? 

ft.2,  COfTLETENFSS op EVALUATION:  How complete  la your 
denim  evaluation1 

4.1,   nVEEHEAO:  What  perccntape(s)  of   total  ayatcm 
reaource»  do you attribute  to  the  achievement   of 
fault-tolerance1     (Consider cost     loplc, execution time, 
memory,  etc.,  a«  applicable.) 

4.4.  APPLICABILITY:  What   1»  r'.e  potential   ranpe of applic- 
ability  beyond  that  »tated in sections  Z.l  -  2.4 above? 

4.3,   FXTENDABUITY:   In what ways  could  the  systav dcslpn 
he  advantapeoualy extended, with what   Increase  In  cost, 
and  to what  effect1 

4.b,   CRITICALITIES:  How critically  do  the  design  choice» 
match  the  deslpn  poal»1     (E.p.,   could slifht  chanpe»   in 
poal»  result   in  preat  savinps   in  dealpn,   ImplcMntatlon, 
and/or operatfon?     1»  rultlpropraiwdne or multlproceaalnp 
critical1    I»  the choice of hardware critical?) 

4.7.   IMPLICATIONS:  What  special   requtrementa   (If  any)   does 
the basic  deslpn  impose  (e.p.,  on  the hardware  daslpncra, 
on the software developers, on users and Mlntainers)1 

rj,   CnNfU'SIONS 
5.1. STATI'S:  What   Is   the  current  statua  of   the »ystea? 

5.2. EXPERIENCE: What conclusions can you reach baaed on 
vour experience with the system to date (e.p.. In dealpn, 
Imr.er-ent.'jtlon  and operation)? 

5.1.  FUTmCl What  1» planned for future developsient or uae 
of  the svater? 

5.4. ADVaNO.S: What dcvclopnents  (theoretical or 
practical)  would be desirable  for sipnificantly  advanclnp 
the atate of   the art   In  fault-tolerant   cowputinp1 S, 

3.2.   FAULT TOLERANCE 
3.2.1,   FAULTS  TOLERATED:  What   faults  are  tolerated by   th 
»vstem, with what  reaultlnp effect» on system behavior? 

6, mMTKNTS (Please include any coswnts on your system, 
on this questionnaire, etc. which you woulr* Ilk« to add, 
nplnifrns,  prejudicca and Philosophie»  arc welcomed. 
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SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS 

L. J. Kocxela, North Ameirlcan Rockwell Corp. 
3370 Hiralouui Avenue, Anuhelm, California 92803, Hay 1972 

1.  IDENTIFICATION 
1.1. NAME: A Three Failure Tolerant Computer System 

1.2. RESPONSIBILITY: Electronlca Group, North American 
Rockwell Corp. 

1.3. SUPPORT: Manned Spacecraft Center, NASA 

1.6.  PARTICIPANTS: L. J. Kocsela, J. Jurlson, D. Brosius 
- North American Rockwell; P. Sollock - NASA. 

1.5. START: 1/1/70 

1.6. COMPLETION: 1/1/71 (design concept). 

1.7. BIBLIOGRAPHY:  A Thre« Failure Tolerant Computer 
System, IEEE Trans, on Computers, November 1971 

2.  MOTIVATION 
2.1. PURPOSE: Real-Tlme Central Guidance and Control 
Computer 

2.2. PHYSICAL ENVIRONMENT: Spaceborne 

2.3. COMPUTING ENVIRONMENT: The computer system Interacts 
with avionics subsystem via a multiplexed data bus. 

2.4. COMPUTING OBJECTIVES: 30,000 words of memory; 
500,000 operations/second speed 

2.5. RELIABILITY OBJECTIVES: Must tolerate first two 
failures with no degradation In performance and third 
failure with no degradation in safety. 

2.6. DYNAMIC VARIABILITY: Third failure could have less 
computational capacity, 

2.7. PENALTIES: Would require manual Intervention with 
possible loss of life. 

2.8. CONSTRAINTS: No physical constraints but a relative 
weighting of Importance between physical parameters. 

2.9. TRADEOFFS: Sice, weight and power least Important, 

3.  DESCRIPTION 
3.1. ARCHITECTURE 
3.1.1, CONFIGURATIONS 
3.1.1.1. INTERCONNECTIVITY: Four redundant computers 
Interconnected by four voter swltcnes at their 1/0 
channels, 

3.1.1.2. RANGE: 2-6 CPUs, no restrictions on word 
length. 

3.1.1.3. CAPABILITY: 500,000 operations/second 

3.1.2. EXECUTIVE 
3.1.2.1. MODES:     The  executive may operate  the  redundant 
computers  In many modes of operation:  non-redundant 
independent  computers,  multi-progranmed,  multi-computer, 
and various  combinations  of  redundancy such as comparison, 
voting, etc, 

3.1.2.2. SOFTWARE:   Software  control   Is equally distributed 
among the  redundant  computers - no central  control exists. 

3.2. FAULT TOLERANCE 
3.2.1. FAULTS TOLERATED: Any 3 faults. A fault can range 
from a single circuit element to a complete module such as 
a CPU falling. A failure has no effect on system behavior. 
The system actually tolerate more than three faults of 
many different types but It will tolerate at least any 
three faults. 

3.2.2. FAULTS NOT TOLERATED: Software faults that are not 
caught in debugging. 

3.2.3. TECHNIQUES: The technique used Is replication of 
hardware with quadruple redundancy.  Computations are 
performed redundantly and reconfiguration Is accomplished 
without removal ur replacement after failure detection by 
voting. 

3.3,  NOVELTY: Through the redundant use of adaptlv 
voters operating on the Input/output of redundant 
computers, any three failure can be tolerated. 

3.A.  INFLUENCES: None 

3.5. HARD-CORE: No hard core exists. 

A,  JUSTIPICATIGN 
A.l, RELIABILITY EVALUATION: Extensive fault slmulaclons 
have been successfully performed. 

A.2.  COMPLETENESS OF EVALUATION:  It is Impossible to 
verify a design goal of 100 percc-t confidence. 

A.3. OVERHEAD: For rriplc failure tolerance, about 801, 
less for lower failure tolerance, 

it.lt.    APPLICABILITY: To many critical «al-tiae control 
systems, Industrial, space and defense applications. 

4.5. EXTENDAB1LITY: The design can be extended to 
tolerate different numbers of failures, eg. any two 
failures, any four failures, etc. 

4.6. CRIT1CALXTIES:  Requirement for 100X confidence In 
tolerating any 3 failures is very critical, lowering to 99 
percent or so would reduce complexity and cost, 

4.7. ( IMPLICATIONS:  Hardware designers must Insure 
Independence of failures at computer 1/0 interfaces. 

5.  CONCLUSIONS 
5.1. STATUS: System design concept completed, 
voter-switch detailed design completed, prototype hardware 
of voter-switch currently under development. 

5.2. EXPERIENCE: A very rigid failure tolerance 
requirement can be net assuring that a minimum number of 
failures will be tolerated. 

5.3. FUTURE: Poaslble use on space shuttle progrwa 

5.4. ADVANCES: A significant area that can enhance the 
state of the ar: in designing fault-tolerant computers Is 
analysis of failure modes of components and computer 
subsystems in de^th. Another very Important area Is 
error-free software. 

6. COMMENTS: Much of the work on fault-tolerant 
computers Is dedicated to single failures at the gate and 
circuit level. Unfortunately, In many caves this la not 
applicable to real world failures when considering 
computers mechanized from state of the art LSI. Integrated 
circuits. 
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S1RVEY PF  F^Ul.T  TOLERANT   CW1 TfR   SYSTtHS. 

Ajplrii«»  AvlilenU 

ITL* CmTrnter Science IHpt.,  Los Anrelr», rA and 
Smwcr.ft  foiruter Section,   IPL,   P.ii«d.nii,   (A,  Murcll   H?) 

i.   iracNTinrATioN 
1.1 N«M!) JPL-STAR  (5,lf-T.,tlnI~And-».p.lrlnp)  Innputer 

1.2 RESPPSSlBlI.m:   Sp,cecr,ft  Computer  Section 
Antrlonlc. Illvlnlon of  the   let  Propulsion l.«bor«torv 
Pssadena,  California, 

1.3 SCPPORTl  »ASA - Office  of Advanced  Ueaearcl,  and 
Teclinolopy   (vl» .?P|.) 

1.4 PARTICIPANTS!     A.   Avlzlenl.,   n.   A.   R.nnels.   I.  A. 
Rohr, F.  P.  Hathur, c.  c, Cilley 

1.5 START:   H61 

1.6 COMPi.FTIOS: Operational - Sprinf Iff.»  (laboratory 
wjdel),  BodlflcAtlonH  continue 

1.7.   BIBLIOCRAPHY; 

•A.  Avlzlenl«,  et  al.,   The  STAR   (Seif-Teatlnr  and 
Repairlnr)  Coniputer:  An InveatlpatIon of the  theory and 
practice of  fault-tolerant computer deslpn,  IFEF Trans. 
Corputer, C-2n, pp.   1312-13:1, November  mi. 

*A. Avlrlenls, "Dealpn of  fault-tolerant  computers."    FJCC. 
pp.   733-743,   llbT. 

•A.   Avlilenls,   "An experlr»ntal  self-repalrlnp  computer," 
Information  Processinp,   IFIP,  Vol.   2,  pp.   P72-R77,   19(iR, 

•A.  Avlilenls,  F,  P. «athur,  [).  Rennels, and J.  A.  Rohr, 
Automatic maintenance of aerospace computers and 

spacecraft Information and control systenw," Proc.  AIAA 
Aerosp.  Corput.  Syst.  Conf.,  Paper (■•>-lf,f,I  pp.   i-n 
September 8-10,   19b1). 

•A.  Avlzlenls, "Concurrent  dlapnosis of arithmetic 
processors,"   Dlpest  of  the   1st  Annual   IEEE  Comp.   Conf.,  pp. 
34-57,   19fi7. 

•A.   Avizlenls,   "Arithmetic error codes:   Cost   and 
effectiveness  studies   for application   in  dlpltal   system 
deslpn,"  ILFE  Trans.   Comp,   C-20,,   pp.   1322-133!,  Nov  1471. 

*F.   P.  Hathur  and A,   Avizlenls,  "Keliabllltv  analysis  and 
architecture of a hybrid-redundant  dlplcnl system: 
Cenerallred  triple  modular  redundancy with  self-repair " 
SJCC,  pp.   375-313,   1970, 

•F.  P. Hathur, "On  reliability modellnr and analysis of 
Jltrarellable   fault-tolerant  dlpltal  systems,"   IFEE  Trans. 
Comp.,  C-20,  pp.   137f-nH2,  November   1971, 

*C..   C,  Cilley,   "Automatic  maintenance  of spacecraft  svstems 
for   lonp-llfe,  deep-space  missions,"  Ph.D.   dissertation, 
Pept.  Comput.   Sei.,  ITI-A,  September  I"70. 

•?.   P.  Hathur,   "Reliability estimation  procedures  and CARE: 
Tlie computer aided rellablilty estimation propram,"   let 
Propul.   Lab.  Ouart,  Tech.   Rev.,  Vol   I,  October   1971. 

•A.  Avlrlenis and D.  Eenneis, "Fault-Tolerance Experiments 
with   the   TPI.-STAR Computer,"  Proc.   of  the Sixth  Annual 
International Conference of the  IEEE Computer Society 
(rOMTCOH), San Francisco, California,   1972,  pp.   321-324. 

"A. AvUienis, "Arithmetic Alporithms and Processor Ueslpn 
for Error-Coded Operands," IEEE Transactions on Computers, 
lune   1973. 

•C.  C. Cilley, "A Fault-Tolerant Spacecraft," Dlpest of the 
1972  International Symposium on Fault-Tolerant Computinp, 
Newton, Mass., Tune   19-21,   1972, pp.   105-109. 

•F.  P. Hathur, "Automation of Reliability Evaluation 
Procedures throuph CARE—The Computer-Alded Reliability 
Estimation Propram," AFIPS Conference  Proceedinps  (Fall 
Joint Computer Conference)  Vol.  41, Anaheim, California, 
December  1-7,   1972, 

•J. A.  Rohr,  "System Software  for a Fault-Tolerant  Dlpltal 
Computer," Ph.D,  Thesis, University of Illlnoia,  Department 
of Computer Science, Irbar.o,  Illinois,  February   1973. 

2,     HOTIVATIO-: 
2.1 Pl'RPOSE:  Fxperimenta)   laboratory CP machine; suitable 
for  spacecraft   control 

2.2 PMVSICAL ENVIRONJ-ENT:  Laboratory environment 

2.3 covprilNC ENVIRONHENT:  Local  170 facilities 

2.«    COHPLTIKO OR.IECTIVES:  Capable  of automatlcslly 
maintalnlnp  an  unmanned  spacecraft 

2.5     REUABILm OB.IECTIVES:   100,000 hour survival with 
0.95 reliahllitv;  tolerance of  transient  faults; outspe  for 
recovery below 50 msec, 

2,b    IiYNAHIC VARIABILITY: Maximum computinp power required 
at  end  of  mission 

2,7    PENALTIES:    None  for lab model;  loss of spacecraft  for 
flipht   model 

2.fi    CONSTRAINTS:  None  for  lab model;  for the flipht model 
the welpht  of  the subsystem was  not   to exceed  40  lb,   and 
the power consumption was not  to be preater than 40 v, 

2.9     TRADEOFFS:   None 

3,      DESCRIPTION 
3.1    ARCHITErTORF 
3,1,1     CONFIOPRATIONS 
3.1.1.1 mrRCON'IFCTIVITV:   See   Flpure 

3.1.1.2 RANCE: One processor of each class  (oneratinp);  lb 
memory  modules  of  4096  words  each   (maximum operatlnp 

3,1,1.3    CAPABILIT  :   500 EHr maximur clock  rate and 
byce-serial   operat .on   in   laboratory  model. 

3.1,2    EXtCITIVE 
3.1.2,1    MODES: The entire set of active STAR computer 
modules operates as a sinple,  general-purpose computer. 
The executive  implement«  a  two-partition,   Interrupt-drtven, 
multiproprammlnp environment  on  the machine.     Four modes  of 
operation under the executive are distlnpuished,   (1)    The 
self-repair mode has hipheat  priority and is entered 
Immediately after hardware self-repair.    This mode 
accomplishes self-repair operations delepated to software 
such as memory reconfiFuratlon and propram resumption,     (21 
Tlie interrupt mode  is used to process interrupts,    Uhile in 
this  mode,  all   lower  priority  interrupts  are  inhibited by 
software,     (3)  The problem mode is the normal mode of 
execution  for applications proprars.    All active interrupts 
are  enabled when  runnlnr   In  the problem mode,     (4)  The wall 
mode  Is  similar to the problem mode except  that  orlv 
low-prlorlty,  cyclic proprams are run.    The replsters of 
wait-mode proprama are never saved,  and the propras» can be 
resumed at a standard point, 

3,1,2.2,    SOFTWARE:  The software  for the STAR computer can 
be cateporired into  four efforts:  the proprsmmlnp ayatem, 
the resident executive,  the demonstration appMcatlons 
proprama, and the apscecraft applications propras».    The 
proprammlnp syatem consists of an assert ler,  loader, 
functional simulator,  and proprasninp executive.    The 
proprammlnp system has been implesiented on the UNIVAC HOP, 
It  Is used to penerate proprama  for the STAR computer. 

The  resident executive which has hem deslpncd for the STAR 
computer is called STAREX.    Tlie STAREX -ontines are divided 
into ten categories:    snapshot, self-repair, 
initialliatlon, »chedullnp,  tlmlnp.  Interrupt handllnp, 
library manapenent,  facilities manapenent, input-output 
and service,    Tl.e STAREX self-repair routines augMnt  the 
self-repair hardware  facilities by reconflpurlnp the memory 
and resusdnp applications proprams after self-repair. 
STAREX operates  in  duplicated scennr  modules  and uses  a 
alnple variable to maintain its  rollback point,     (The 
rollback point Is  tlw address  for propram resumption after 
self-repair,)     STAREX also provides  facilities  for 
applications proprama  to establiah rollback points. 

Demonstration application propras« have been developed for 
demonstratlnp the STAR computer laboratory breadboard, 
-hese proprama succeaafully survive transient and simulated 
permanent  faults and properly resume computation after the 
fault  is  removed.    These programs earabliah rollback points 
by calllnp the executive routines. 
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Sp»c9C*»ft appllcatloni pro^rai» have been Invcutlpaccd ai 
part  jf  the prellmlnaty  ttudlaa  of  the TOPS  control 
cowuter aubajrataB which waa eventually  to be tuiud on board 
ttit Grand Tour apaeecraft, 

3,2    FAULT TOLERANCE 
3.2.1 FAULTS TOLERATED: Til* principal poal of the dealpn 
ia to attain fault tolerance for a variety of  faulta: 
tranalent, paraanent,  randon, and cataatrophlc. 

3.2.2 FAULTS NOT TOLERATED:  (a)  Tranalenta at a rate 
higher than allowed by the lenrth of "rollback" sepnents of 
proitraaai  (b) aborted bua wlrea  (laolatora are «nployed) or 
power twitch "on"  fatlurea. 

3.2.3 TECHNIQUES:    All Mchin« worda  (data and inatruc- 
tlona) are encoded In error-detectln|t codea.     Fault 
detection occurs concurrently with propra* execution. 
The coaputcr la divided Into a aat of replaceable 
functional unite  containing  their own  Instruction  decoders 
and sequence peneratora.    Thia decentralization allowa 
ala^le fault-location procedurea and aiapliflea systes 
interfacea. 

* Fault  detection,  recovery,  and  replacement  are  carried 
out by apecial-purpoae hardware. Havory reconflfturation and 
proftraa reaunptior arc accomplished by  the resident 
executive. 

* Transient  faults are identified and their effecta are 
corrected by the repetition of a aepaent of the current 
prograaii pamanent faulta are ellainate'i by the replacevent 
of faulty functional unite. 

* The  replacement   le  ivplcMnted by  power awitchinp:   units 
arc rciBved by tumlnp power off and connected by  tumlnp 
power on.    The inforwtlon llnea of all units «re 
permanently connected to the buses through isolating 
circuits; tsipowered units produce only  loplc "zero1 

outputs. 

* The error-detectlnp codas  are aupplcaented by  lunitnrinp 
circuits which serve to verify the proper synchronization 
and internal operation of the factional units. 

* TTje "hard core" test and repair processor  (TARP)   is 
protected by triplication and rcp1acec«nt of  failed netrbcrs 
of the triplet. 

3.3 NOVELTYi    Power awitchinp, acatua alpnala, eneodinp of 
instructions evphaais on transient-recovery with projtraB 
survival. 

3.4 INFLUENCES:    Theoretical work by Reed and Brl«lcy; 
Kruua and Seshu; Criaswr, Miller and Roth. 

3.5 HARIXORE: The "hard core" Mnitor of the STAR ayatcat 
ia dcalpiated aa TARP  (teat and repair processor)   in the 
Flpure.    The TARP aonitors the operation of the STAR 
corputer by two methods:   (1)  testinp every word sent over 
the two data   busss  for validity of ita code; and  (2) 
chsckijp the status Bessaftea fro« the functional  unite for 
predicted responses. 

Three fully petered copies of the TARP are operated at all 
tiwa toitethcr vith n standby spares  (n • 2  in the present 
desipn).    The outputs of the TARPs are decided by a 
2-out-of-(n+3)   threshold vote.    When one powered TARP 
disaprees with the other two, the recovery «ode la entered 
and an atteept  is Msde  to set  the  internal   state of  the 
dlaapreelTip unit to ststch the other two units.  If this TARP 
rollback atterpt  falls,  t'ie diaapreelnr unit is returned to 
the standby condition and one of the standby units  receives 
power,  poes throuph  the TARP rollback, and Joins  the 
powered triplet.    A standard rollback then occurs and the 
resident executive resustts normal prograis operation. 
Becauae of the three unit rcquircmnt, desipn effort baa 
been concentrated on reduclnp the TARP to the Icaat 
possible cosiplexlty.    Experience with the present model hss 
led to several refinencnts of the desipn. 

The replaceMent of faulty functional  mita  ia cosMnded by 
the TARP vote and is Implemented by power switchlnp.     It 
offers several  advantages over the awitchinp of  Information 
llnea which connect  the units to the bua.    The nuirber of 

switches are reduced to one per unit, power ia conserved, 
end stronp isolation Is provided for catastrophic fallur*». 
Hspnetic power switches have been developed which are part 
of each unit's power supply and are deslftned to open for 
mat  internal  failures.    The threshold function is inherent 
in the control windinps of the switch.    The information 
lines of each unit sre penuncntly connected to the buses 
throuph component-redundsnt  isolation circuits.    The Blpnil 
on s bus is  ths loplc OR of all  inputs  fro« the unfts, and 
unpou—ed units produce only  loplc zero outputs.    The pownr 
switch and  the buses utilize  component   redundancy  for 
protection apainat fatal "ahortlnp"  failures. 

4.     JUSTIFICATION 
4.1 RELIABILITY EVALUATION: The cos^uting operations for 
the analysis was done with  the aid of the cosqmter-aided 
reliability estimation (CARE)  propram, which was developed 
as a desipn tool durlnp the reliability study.    CARE ia a 
software packape developud on the Unlvac 1108,    CARE «ay be 
interactively accessed by a deaiftner fro« a telet/pe 
console to calculate hia reliability eati«ates,    Ths input 
is In the form of a system confifturation deacriptlon 
followed by queries on the various reliability para«etcrs 
of interest and their behavior with  respect  to «lesion 
time,  fault coverape,  failure rate«,  dormancy factors, 
allocated spares, and oartitlonlnp.    The CARE propram ia 
extensible, and it may be updated to incorporate new 
reliability models  as  they become  available,    A second set 
of proprasw, the Reliability Hodelinp Syste« (Rlfi), was 
developed as a tool in the cxperiaental verification of the 
STAR breadboard,    Thia sec of proftrn» co«fiutss the 
reliability of the various aubayste« confipnmioaa uainp 
"coverage" para«eters experlnentally obtained by Insertlnp 
faulta  into the syte«.     RKS   U  sn  Interactive system 
Implemented by APL, 

4.2 COMPLETENESS OF EVALUATION:       Physical  fMlt-foJectla« 
experiments are currently in prepress and «n ejected to 
be  completed  in   1973. 

4.3 OVERHEAD: Depends on the number of span».    »Ith one 
spare for each module, the syetn- 1« abo«t M- redwidaot 
(i.e., about 150 percent extra coat  for fa«lt tolerance). 

4.4    APPLICABILITY:  Various   real-tine  appUcstlo 
require very  fast recovery. 

that 

4.5    KXTFNDAKILITY:    Sparc proceasors could be utilised In 
a multiprocessor node.  Additional buses  and supervisory 
«echanisMS would be required. 
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STAR compuier orßam/aiion. 

COP    Control  processor,  contains  the  location counter and 
index registers. 

LOP    Logic  processor,   (two  copies  are  powered). 
MAP    Main arithmetic processor. 
ROH    READ-ONLY memory,   16,384  permanently  stored words. 
RWM    READ-WRITE memory  unit   (4096 words,   two copies 

powered,  12 units directly addressable.), 
I0P    Input/Output processor,  contains  I/O buffer. 
IRP    Interrupt proceysor, hindies  Interrupt request. 
TARP Test and repair processor,   (three copies powered). 
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4.6 CRITICALITIESi  Tha  dcalfn  goal V»B  • tetter 
underitnndlnf of   rrpUcenent  ayatera.     In  order  to  retain 
contact with tht practice of covpute;  dealftn,  It wea 
decided to design and conitruct en cxpcriMencM, 
generel-purpoaa digital coaputer which would  Incorporate 
dynamic redundancy (I.e.,  fault detection and replacuacnt 
of failad aubayateaa)  aa an integral part of Ita atmcturc. 
The design objectives have been carvied out and the systett, 
called the STAR corputer, began operation in  1969. The 
nodular nature of tha STAR ronputer haa allowed aystcratlc 
expansion and Bodlficationa  that are atill being continued. 

An early objective of the design la to study  the claas of 
prohleaa which are encountered In transfomlnp tlie 
theoretical model of a self-repalrinf syaten Into a working 
cos^uter,    State-of-the art  integrated circuit  and siesiory 
technology was employed in the design.    This objective 
appears to have been attained reasonably well. 

4.7 IMPLICATIONS:     Deslpners  ruit  five   (a)   advance 
attention to audularitatlon and coded operands;   (b)  special 
softwsre features are needed (see 3.1.2.2);  (c)  users aust 
observe "rollback" rules in proprepwinp. 

5.    CONCLUSIONS 
5.1 STATUS: Operating in  laboratory* being extensively 
tested and modified to Improve weaknesaea  that arc 
uncovered. 

5.2 EXPEDIENfF:   Practical   inplementstion  of  replarement 
syjtcns  is   feasible.     Transient   faults  can be 
systematlcslly ellninated without program loaa.     Transient 
tolerance can be specified In term of "duration'' and 
"frequency" parasctera. 

5.3,    FUTURE: The research and development program which 
led to the STAR computer ia continuing in several 
directions.    Anslysis of automatic maintenance  algorithms 
and deaign of a command/data bus  for their implementation 
are under Intensive study.    Other current  Investlgatl  is 
are concerned with the following areas:     (1)  hardware- 
software interaction In a fault-tolerant system with 
recovery, especially  the interaction between the TARP and 
the resident executive;  (2)  tuilng of the resident execu- 
tive to optimite performance with regard to rallback, both 
in the executive and applications programs;   O)  studies of 
advanced recovery techniques,  i.e., post- t.^aatrophlc 
restart, TARP raplacemant schercs, recovery  i 'om siaaaive 
Interference, partial utilisation of failed units;   (4) 
advanced component  technology, especially methods  to sttsln 
bus and power switch  (i.e., hard core)  lunmltv  to faults; 
(5) heuristic studies of  fault  tolerance by  interpretation 
of extensive experlmenta with the STAR breadboard aa  the 
Instrument;  (6)  deaign of a aecend-generatlon STAF-type 
computer with universal nreccasor and storage modules, and 
their implementation by  large-scale Integration;  (7) 
computational utllitatlon of tha apare unite  for 
supplemental tasks in a aultlprocessing mode. 

6.    CO'WENTS: Design,  construction, and testing of 
laboratory models la critically isi>ortant  to advance the 
state of the art and to iiain acceptance among practitioner» 
of deaign In industry. 

The STAR computer breadboard consists of three Read-Write 
memory units, one Read-Only memory unit, one copy of each 
of the proceasing modules, and one TARP (Test and Repair 
Processor). The breadboard provides adequate   facilities  for 
* experimental verification of the fault detection, 
dlagnoala, and recovery algorlthma employed in thia 
construction,  and  for 
* the development of  fault-tolerant software  techniques. 
The devslopment of the breadboard renulted  In a direct 
confrontation with  the technological problem area in 
fault-tolerant  computing,   i.e.  busing.   Isolation,   power 
awltchlng, etc.    This  resulted in a better undcratandlng of 
theae probier« and a set of innovative solutions. 

SURVEY  OF  PAULI-TOLERANT  COMPLTING  SYSTEMS 

Jacques J 
(E.M.D.), 
1972 

ulamare,  Electronlque  Marcel  Dasasult 
,  qual  Cnmot,  92  -  Saint-Cloud France, 

I. IDENTinCATION 
1.1. NAME:     HECRA  (Haquette  Experimentale  de  Calculateur 
a Reconfiguration Automatlque), 

1.2. RESPONSIBILITY:     E.H.D.   (Electronlque Marcel 
DasBault). 

1.3. SUPPORT:     Support has   three  sources: D.G.R.S.T, 
(Delegation  Generale  a  la Recherche  SclentlfIquc)  with 
preliminary  Btudl-J; D.R.M.E.   (Direction  des  Recherciies ei 
des  Moyens  d'Essals)  uUli   realization  of  MECRA project; 
E.M.D.   (Electronlque Marcel   Dassault)   In  each  case. 

1.4. PARTICIPANTS:     Jacques  J.   Delamare,  Gerard Germain, 
Jean-Claude  R.   Charpentler,   all  of  E,H.D,# and  four 
researchers   from "Centre  de Calcul  Numerlque de  Toulouae". 

1.5. START:     May   1Q70 

1.6. COMPLETION:     July   1972,   this  consists  of  a 
demonstration  of   fault   tolerance  .mil   reconfiguration 
capabl11 ties.     Evaluation  of   reliability  performance  is 
expected   to be   In Autuim   1972, 

1.7. BIBLIOGRAPHY;     "The  MECRA:   a Sell   ReccmfIgurable 
Computer   for Highly  Reliable  Process",   IEEE vol C-20 no. 
II, pp.   1382-1388,  Nov.   1971.     A  report  also due end of 
1972. 

2.  MOTIVATION 
2.1,     PURPOSEl     The  system was   conceived  for research   In 
fault-tolerant   computer  architecture,   feasibility,  and 
reliability  evaluation.     The   tde.i   for   further development 
is   a  real-time  iwdi uir-sized  computer   for aircraft. 

2.2.     PHYSICAL  INVIRONMENT: 
laboratories. 

2.3.     COMPUTING  ENVIRONMENT: 
cnmmunlcatlon with  MECRA, 

System operates   in EHD 

A  single  peripheral  allows 

2.4. COMPUTING OBJECTIVES:     Main  objectives  of  the 
project  were not   computing objectives.     However addition 
anc<  multiplication  are  performed with   It   decimal  digits 
plus  sign  operands.     Compleie  addition  needs   less  than   300 
miciosec.     Such  delays   relate   to  the  cycle  time  of 
microprogram memory  (1  mlcrosec), to response time of 
discrete  circuits,   to unused  time   intervals  In each 
ipicrolnstruction cycle,  (allowing hardware modifications), 
and  lastly  by  the  mlcroaoftware  package   (allowing 
reconfiRuration). 

2.5. RELIABILITY  OBJECTIVES:     Practical  experience  and a 
connete  basis   for evaluation  such  as: 
reliability  gain with  different  kinds  of  redundancy, 
hardcore  contribution  In   failure  probabilities, 
hardcore  contribution with  different   architectures, 
reliability  gain with   reconfiguration, 
cost   Increase   In  control  with   reconf igurabl Uty, 
lost   time  due  to  reconfiguration   (during and  afterj, 
hardcore   response   time with   respe-rt   to  computing time. 
Thpse  reliability objectives were onl>  of  interest  for 
hlph  probabilities  of  success   (probabilities higher  than 
.9). 

2.h.     DYNAMIC  VAPIAB1LITY:     Computing speed but not 
accuracy  may  degrade with   reconfiguration   (205:  maxlmuin). 
Performance  cannot  be  exchanged   for  Increased  reliability 
such  as   :     two  processors  each  one  having  Its own  job, 
switched   to parallel   processing on  the  same   Job  and 
checking  one  another. 

2.7. PENALTIES:     Penalties   from  faulty  operation  can be 
of several   kinds;   /loss of   time  due   to   recovery  processes, 
lessened performance after self-reconfiguration,  loss of 
service./    Manual   Interventions  have  not  been 
Investigated,   but will be necessarily   Improved as a 
consequence  of  self-testing  and self-healing capabilities 
of MECRA. 

/SRI note;  The  text enclosed In slashes  Is an SRI 
paraphrase  of   the  original  survey   response./ 

2.8. CONSTRAINTS:     Circuitry  size might  not exceed  four 
times   the  size of  the  equivalent   Irredundant  computer. 
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3.     DESCRIPTION 
1.1     ARCHITECTURE 
3,1.1.     CnNFIGUSATIONS 
3.1.1.1. ISTEKCOSHECT1VITY:     See  lEEt paper.     The basic 
conilguratlon   is   a  mlcropropramirMMj  moiutprocesBor  wl til  a 
bus   arctil tecture.     A  restriction can tie seen here since 
addresses   are binarv   coded,  whereas dat.i are Decimal 
Hamming coded.     Thli?   has  no  Importance   for  the purpose of 
the  project,  but  would not  have been  used on a prototype. 

1.1.1.2. RAMCEl     Control   Unit   Configuration: 

Ma x 1 m i m 

A counters 
3 spare counters 
8   registers 
U   spare   registers 
1 multiplication  processors 
2 addition processom 
H    and   logic processors 
4 or' loglc processors 
^ 'exclusive or' processors 
4 'inverter' blocks 

Minimum 

1 counters 
0 spare counters 
6 registers 
0 spare  registers 
1 mult ipllcat ion processor 
1 addition processor 
3 or 2 
3 or 2 
3 or 2 
3 or 2 

Note:     Any   logic   function   can   fail   rotnpletelv 
reconfigured with   three   other   functions.      In 
a   failed   logic   function can be   reconfigured i 
other function. 
Memory configuration:     Three mercory blocks - 
words.     Each numory  block  has   its own address 
circuits.     At   each  memory   cycle a ^B-blt word 
written;     this word  contains   two  Identical wo 
each,   so  that   anv   one  of   the   three  blocks  ca 
void and   the   computer still   runs   if   the other 
properly.     Efficiency  of  address error detect 
SfU on each  memory  block.     After any  read  res 
each eight-bit  byte   (6 hvtes)   Is  checked and 
or not   on busses.     Then  error detection effii 
with   Instructions  or microinstruction   (If   the 
one  erroneous   hit)   and   lOOX  with data  (If   the 
two  erroneous  bit). 

3. 1.2.     EXECUTIVE 
3.1.2,1.     MOPES:     MECRA   Is  a monoprocessor. 

and can be 
several   cases 
1 th only   two 

4 K   16-bit 
decoder 
Is   read or 

rds  of   24 bin 
be declared 
two  operate 

Ion   reaches 
tore cycle. 
Is  switched 
iency  Is  b0'4 
re   Is  only 
re   is  one or 

There   are  three working modes on the 
,   test-dl .ignosis   mode,   decision  and 

ho   computer executes   the  user 

3.1.2.2.     SOETWARK: 
computer:     user  mode 
reorganization mode. 
a) In   the  USES mode  the 
program. 
b) The  TEST-DIAGNOSIS  mode   is  set   In motion   In   two 
different  ways   to which   two different   programs   correspond. 
The   first   Is  set   In motion by   interrupts when  a   failure 
has   been detected bv  hardware  checkers.     The goal   of   this 
program  Is   to   localize  precisely where the   failure 
occured.     The  second nroRram  Is  cet   In motion periodically 
and   Its   purpose   is   to  tes t   the  computer wl th   the  data 
configurations which   reveal   failures best.     This  program 
allows   detection of   the  errors which  cannot  be  detected bv 
the  hardware   checkers   (i.e.   an erroneous data with  correct 
encoding).     These   two programs   update  a status   table which 
contains   the  status  of   computer components   (failed or not, 
number of   transient   failures).     They  also decide   to stop 
the   computer when  certain  catastrophic   failures  occur or 
to set   in motion   the  decision and reorganization mode, 
c) In   the   DECISION AND  REORGANIZATION mode,   a program 
analyzes   the  status word   (in   the  status   table)   of   the 
component   in which  one of   the   two  test-diagnosis  programs 
has   detected a  permanent   failure and  It   decides either  to 
reconfigure  or  to stop  the   computer. 

3.2.  FAULT TOLERANCE 
3.2.1. FAULTS TOLERATED:     Anv  single  fault   Is   tolerated 
in   memories,   arithmetic  and   logic  units   (since   they are 
mounted   in  a  duplex  schere)   or   in   logic   units   (quadded 
redundancy).   Any  error d-tected on  the busses,  switches 
the  HECRA  to   interrupt   proRrams,  while all writing   in 
memories,   renislers  or  counters   Is   inhibited.     Multiple 
errors  can also be   tolerated   in number of cases.     Multiple 
errors  can   lead  to  repair or  to   loss  of  service as  said 
above   (2,7.). 

1.2.2. FAULTS   NOT  TOLERATED:      Faults  not   tolerated 
Include  errors   In   the  main   <ontrol   circuit, which   leads   to 
a design with  an   increased  degree of microprogramming and 
minimised  control   circuits.     Also    not   tolerated are 
errors  undetected  at   the memory output.     Power supply 
failures  have  not   been   Investigated  In HECRA. 

3.2.3.     lECHNIgUES:     One of   the goals of HECRA   is an 
investigation of as many   fault-tolerrnce  techniques  as 
possible,   such as   triple modular  redundancy,  quadded 
redundancy,   duplex  redundancy at   very   low   level   (clock) 
and higher   level   (mimories  and arithmetic  circuits), 
random  redundancy   (counters^   registers),  error detecting 
cod*>s   (Hamming d  -   3)   and parity bit,   repetition, 
rollback,   reconfiguration with  removal  without 
replacement,   reconfiguration with   replacement,   diagnosis - 
stand-alone,   preventive and emergency,   local   protections 
of process  and  data.   These  techniques are  used statically. 

It   does   not   seem possible  to describe  these  techniques  in 
detail   in   this  paper,  since   it would  require a description 
of  the whole  computer.     Other techniques were also 
Investigated but  not   used on HECRA,   such as stopping  the 
computer during noisy  periods,  and control  of  correct 
microprogram   linking. 

3.3. NOVELTY:     When the project started,   two  Ideas 
unusual   in   the   literature were employed  In MECRA:   address 
decoder  redundancy   In memories so as   to separate address 
errors  and data errors,  single-error-free hard-core. 

3.4. INFLUENCES:     A synthesis of efforts which  came 
almost   exclusively   from the  U.S.A.   -  universities, 
laboratories,   and research   institutes, 

3.^.     HARD-CORE:     This   is  defined as  a circuit, 
interconnecting several   redundant   functions, wtiatever its 
own  redundancy   level   (it   Is  a relative concept). 

Ä.      JUSTIFICATIONS 
4.1.     RELIABILITV  EVALUATION:     Reliability   Is  not 
demonstrated.   It   is   computed,   In  two steps  using    a model. 
The   first   step  concerns  analysis  and drawing a network 
model,   the  second step concerns   random failure assignment 
Into the model.     After a great  number of   trials,   the 
program  furnishes   results   (e.g.   curves,  marginal 
probablII ties. ..). 

Program evaluation Is 4.2. COMPLETENESS OF EVALUATION) 
now being  tcited, 

4.3. OVERHEAD: Approximately 603; to 70X of total system 
resources are devoted to fault tolerance (same percentage 
for   logic,   cost,   and  time). 

4.6. CRIT1CALIT1ES:     Use of decimal   coded characters 
seems  not  well-fitted  to  fault-'olerant   computers.     This 
change  could   result   In great  s?zings   in design.     Other 
points  are not   critical. 

4.7. IMPLICATIONS:     Ttw basic design  assumes   low-level 
integrated  circuits, wtlh a very small   number of different 
clrcuits. 

5,     CONCLUSIONS 
5.1. STATUS:     The system Is now operating and will   be 
delivered   In July   72,  evaluation will   follow during 
October and November. 

5.2. EXPERIENCE:     Everything  Is  possible,  except,  perhaps 
a sufficiently   low cost,   and  reliable  packaging and wiring 
of  components.     Note  that  LSI would put problems   to 
fault-tolerant   computers because  they need more pins   to 
check   redundant   functions before connecting all   together. 
This would probably   lead  to simultaneous  use of  LSI,   MSI 
and small   scale   Integrated circuits.   Component 
manufacturers   have not  yet   taken  Into account 
fault-tolerance  constraints,  but   they will   probably  do so 
soon. 

5.3. FUTURE:     First   prototype   is projected   1976 -   1977, 
Current   computer   is  projected   1980,   Use:     Missiles, 
aircraft,   real-time monoprocessors, 

5.4. ADVANCES;     Different   fault   tolerant   computers  can be 
ro-jg'ily  compared   in   term- of rellaHUt/ verEUs mistiion 
time;   hut   i his will   fall  back to evaluations of  cotipcnents 
and wiring hTBP.     Sjch data,  estimated by  constructDrs,   do 
not   seem to give a sufficient   common basis   for 
evaluations.   Theoretical   and conventional   data or. 
tnT.poncnt   MTIIF seem to be needed   for accurate  comparisons 
among different   fault-tolerant  computers. 
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SI'RVEY iif FALTT-TOLIRANT  COKVl'TINC  SYSTEMS 
Barry R.  Botfenon, Cotiputer Syttew R«ie«rch Project 
I'nlvenlty of CaUfemla, Berkaley, Hay  1972. 

1.     IPEKTIFirATION 
1.1. HAME!     PRIME 

1.2. RESPONSIBILITY:   Conrputer Sy»ttw  Reaearch  Project 
(CSRP),  l'.   C.   Bcrkelev 

1.3. Sl'PPORT:  ARPA -  ContracE  No.   DAHC70   15  C 0724 

1.4. ?ARTIC1PASTS:   Herbert   B.   Baalcln,  Principal 
Invca igator; Rofter Roberta, Principal PropraBwer; Barry 
R.   B' rftemon.  Head,  Hardware  R&D. 

1.5. START:   7/1/70 

1.6. COMPLETION: Flrat prototype to be running about 9/73 

1.7. BIBLIOGRAPHY: 

*H,   B.   Baakln,   B.   R.   Borgerson  and  P.   Roberta, 
"PRIME - An Architecture  for Terminal   oriented  Syr m," 
Proceedlnfta  of   the   1972  SJCC,   AFIPS  Preaa  pp.   431- '37. 

*B.   R.   Borgerson,  "A  Fall-Softly  Syater  for Time 
Sharing Un,"  Dlpeat  of   the   I'W?   International   Fault 
Tolerant  Cowputlnp  SympoaluB. 

•J.  T. luatse,  P.  Gaulene and I),  Dodg^, "The 
External  Acceas  Network  of  a Modular  Coirrputer Syaten," 
Proceeding»  of   the   1972  SJCC,  AFIPS  Preaa,  pp.   7B3-790. 

*R. S, Fabry, "Dynamic Verification of Operating Syate» 
DecUlona," CSPP Document No. P-14.1, I'nlv. California, 
Berkeley,   11/72     (To be  publ.   CACM). 

*B,   R,   Borperaon,   "Spontaneoua  Reconfiguration  in  a 
Fall-Softly  Computer L'tlllty,"  Digest  of  DATAFAIR  73, 
Nottingham England, April   1973. 

B.   R.   «BorBeraon,   Barry  R.,   "Dynamic  Confirmation of Syatem 
Integrltv,"  PJCC  1972,   pp.   B9-9f.. 

2.    MOTIVATION 
2.1. Pl'Rl'OSl : Ceneral-purpoae,  Interactive, multl-accesa 
corputlng. 

2.2. PHYSICAL ENVIRONMENT:   Ground baaed 

2.3. COMPI'TING ENVIRONMENT:   Reirote  access  over  telephone 
lines   and eventually  over  the  Arnanet. 

2.4. COMPUTING OBJECTIVES:   Till»   la  not   the  primary 
motivating  area  In  our ayatem design.     We  anticipate  that 
the original  configuration of PRIME will sunport about   lOO 
users with   a worst   caae  response  time  of   less   than  two 
seconds  'or trivial  Joba. 

2.5. RFLIABILITY  OBJECTIVES:   Because we will  be  able  to 
repair units  as   they become   faulty, we  are  aiming  for 
continuous  .-ivalleblllty.     The  syster performance  should 
never degrade  below   75*  of   Its  peak   capacity. 

2.6. DYNAMIC VARIABLITY:   Performance  cannot  be 
dynamically   traded   for  reliability.     However,  provisions 
may someday be added which will  allow dynamlc&lly trading 
performance   for  Intraproceaa   Integrity   (See  Section 6), 

?.7.     PENALTIES:   The  effects  of  Intraprnceas  data 
contamination  (See  Section   3.3.2)   due   to aystem  failures 
will strongly depend on the nature  and purpose of the 
process.     There  seema   to be  no way   to generalize  about 
this.     If   the  svstem  Itself were   to crash,   this would no 
doubt   lead  to a  loas  of   revenue   if  PRIME were  transferred 
to  s  commercial  environment. 

2.8. CONSTRAINTS:   There  are no specific   constraints  of 
site, welgbt,  and power.    The aelf-lmpoaed constraint on 
cost  Is  to try to build a  fault-tolerant system that  is as 
close In cost as possible to any current syatem with 
comparable  power and  capabilities. 

2.9. TRADEOFFS:   (Too  complicated   to deal with briefly; 
see Sections 4.4,  4.6 and 6.) 

3.     DESCRIPTION 
3,1,     ARrHlTEmiRE 
3.1.1.     CONFIGURATION 
3.1.1.1. INTERCONNECTIVITY!   Figure  1  la  a block  diagram of 
PRIME.     The   Interconnect lot. Network   (IN)   allowa  any pro- 
ccaaor to connect to any disk drive, external davice, or 
other processor.   Each  proceaoor hoa   three auch  Independent 
paths   into  the  IN.     The  IN  connectivity  remains  univer- 
sal over the different syatem sizes.    Universal switching 
between  all  proceasors  and all  memory blocks  Is  not  provi- 
ded.     Instead, each processor alwaya connects to exactly 
64K of memory  regardless of the slie of the system. 

3.1.1.2. RANGE;  The  PRIME architecture will  usefully 
accommodate  from 3 to about  30 processors.    Each processor 
could connect  to from 16K to  126K of primary iscBory. 
Impending on  the type of dlak drivca used,  from  1 to 3 
drives per processor would be reasonable.    The current 
aysten haa been deaigned to operate with  from three to 
eight  proceasors without requiring any additional hardware 
or software design.    Useful memory sites range from 64K to 
about 256K.     Dlak drives range  from about alx to 24.    Each 
processor  to be  used  In  the  Initial  istplementatlon of 
PRIME will  be  a Meta  4   (Digital  Scientific Corp.).     The 
Meta  4  is  a  general-purpoaa,   16-blt,   32-regl8ter,  90ns- 
cycle  time microproccaaor.    The memory Is  33 bits wide, 
about  600 na   cycle,  and made  from 1024-blt M0S  chlpa.     The 
disk  drives are double  (track)  density 2314-cype drives 
that have been modified to transfer information on two 
heads  at  a  time.     The   initial  configuration will have  five 
processors,   104K of memory, and 15 disk drivca. 

3.1.1.3.     CAPABILITY 
known at  this  tine. 

The rapahlllty is not accurately 

3.1.2.     EXECUTIVE 
3.1.2.1. MOPES:  At  any  given  time,  one  proceaaor  Is 
designated  the  Control  Processor  (CP>  while  the  rest 
friction  as  Problem Proceaaora   (PPs).     User prtrMaea  are 
run on the PPs.    Multiprogramming is not used, but 
processes are overlap-swapped.     In order to achieve a very 
high  interprocess  integrity.  It was decided never to let 
two processes share memory; hence, cooperative-process 
multiprocessing  is  not  possible with  PRIME. 

3.1.2.2. SOFTWARE:   The system software  is  divided  into 
three seClons.     There   is   the Central  Control Monitor 
(rCM) which  rima on the Target Machine of the CP;  the 
Extenaion of  tht Control Monitor (ECM) which  resides 
directly  In the microcode of each processor; and the  local 
Monitor   (LB)  which  runs  on   the Target Machine  in  the  PPs. 
The CCH Is responsible   for scheduling processes, allocat- 
ing resource,  and consuRnatlng Interprocess message 
transfers.     The  ECM  Inclrdes   the  disk,   terminal,   and 
communication controller;.,   logic for double-checklnp 
critical  CCM decisions,  bootstrsp  logic,  and some  intelli- 
gence   to  deal  with  reconfiguration.     The  LM contains   the 
file  and worklnp-set  management  systems.     The  CCM does  not 
pet  Involved with a proceaa after It has stsrted the 
process  up.     The procedure   followed by  the CCM is  to 
allocate  the necessary resources,  initiate  the roll  in, 
and  let   the  LM and ECM  take  over  from there.     The CCM will 
not  get   Involved again until  the process either times out 
or blocks   Itself.     The  LM  deals only with  user processes; 
it  is completely  isolated from the rest of the system. 
Because of  this, users will be free to provide their own 
I.M If  they do not  like the standnrd one provided. 

3.2.     FAULT  TOLERANCE 
3.2.1.     FALXTS  TOLERATED:     PRIME will  tolerate  all 
Internal  faults.    That  U,  the system is expected to 
continue  operating even  In  the  presence  of  »ny  arbitrary 
software or hardware  faulta.  The system will  reconfigure 
to run without any piece of hardware that beconca  faulty, 
and  mechanisms  exlat   for  limiting  the effects  of cny 
software  fault,    PRIME has been deaigned to provide 
continuous service  to (almost)  all  terminals.     In most 
cases, a faulty unit will be repaired and returned to 
service before another failure occurs.    However,  the 
system will atill  continue to operat« with a suhatantlal 
part  of  the   resources   removei'  ftom active  use.     The  system 
ahould alnost never degrade to below 75 percent of its 
maximum capacity.     In addition to continuity of some 
minimum service,  interprocess  Integrity vioUtlons arc 
prevented at all  times;  this includes the r-iatlvely 
unstable periods between the onset of a fault and the 
detection and isolation of the  faulty unit. 
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3.2.2..  FAULTS NOT TOLERATED:  Only «RvlronBtntal  f.ulta 
•I» not coUrated bjr PRIME,    tht womt eowmoa of these 
fault» would b« In th« A.C.  power and nlr conditioning. 
Sine« it ll auy to naa how to back thaaa raaourcaa up, no 
affort baa baan uda to Incorporate  fault  tolerance with 
raapact to thaaa unit» wlthlln PRIME,    while PRIME aa a 
ayataa will continue to run In aplta of Internal falluraa, 
Individual proeaaaaa Bay oceaalonally «at clobbered.    That 
la, no specie! provlalons have baan uda In PRIM! to 
guarantee intraprocaaa  Integrity,     ilrnce   transient 
falluraa will frequently causa contaaination of 
Information for aow process.    Also hard falluraa will 
oftan clobber one process before baing datactad.    The moat 
serious disruption will probably occur whan a disk driv 
faila.    Mian thia happens, all of the processors that ware 
using that drive will be suspended until an operator can 
recover their data, either by moving the diak pack to 
another drive, or recovering from tapaa in the unlikely 
event of a head craah.    But even in thia worst-case 
cacutrophy, only a email part of the user» («bout 7 
percent in the initial ayatem) will be affected. 

3.2.3.    TECHNIQUES;  The basic system-wide   technique used 
to achieve fault tolerance ia to allow the ayatem to 
degrade gracefully by reconfiguring to nai without any 
faulty unite.    At the heart of the scheue ia a diatributed 
architecture with a multiplicity of all functional units 
except the IN, which ia designed to fall soltly on ita 
own.    Fault detect!-., ia accomplished by a variety of 
methods that include parity on memory and buses, surveill- 
ance teata on each processor after each job atep, a double 
check on all critical ayatem-vide decisions made by the 
CP, and fault injection in auch areaa aa error detector» 
and the seldom used reconfiguration logic.     After a fault 
ia detected, an initial reconfiguration causes a proceaaor 
not involved in the detection to become the new CP.    Thia 
virtual "hard-core" then initiatea diagnoatic» to locate 
the faulty unit, iaolata it, and    reconfigure the ayatem 
to run aa efficiently aa possible without it.    A amall 
amount of dedicated hardware aaaociated with each 
proceaaor guarantee» that the initial reconfiguration will 
be accomplished properly.    It la poaaible to logically 
iaolata each major unit at ita ayatem bowdariea ao that 
the ayatem can tun fine-maah diagnostic« or exercise the 
hardware to aid In loeitlng the faulty component.    In the 
caae of e failure of the isolation logic, any unit can be 
dynamically powered down to provide guaranteed Isolation 
from the reet of the eye tern. 

3.3.    NOVELTY t The diatributed nature of the ayatem, 
including the diatributed intelligence in the form of the 
EOta, provide« a very powerful atrtwture whereby fault 
tolerance ia achieved without the use of any "reliable" 
hardware.    Very high-performance low-coat disk drives have 
been incorporated in auch a way aa to allow these device« 
to be used a» aecond level atorage, third level atorage, 
and the awapping medium.    By distributing these three 
functions over many identical phyaicsl unite, very high 
availability la achieved at what ia actually a lower coat 
and with higher overall performance than would be poaaible 
with three diatinct typee of unite.    PRIME automatically 
respond« to faulte by reconfiguring to run without the 
feulty unit.    Since there ia a multiplicity of all 
functional unite except the IN, it ia quite eaay to run 
without any particular unit. Rather than make the   IN 
"reliable," a more economical approach waa taken whereby 
carefully controlled failure modes were designed into it. 
Thia reaulta in e failure within the IN manifesting 
itaelf aa a failure of a amall number of port«, which ia 
equivalent to loeing whatever ie attached to thoae port«, 
end the eyatem waa already deaigned to handle that 
eventuality.    The reconfiguration atructure ia also very 
interesting.    Whenevei  a failure ia detected, an initial 
reconfiguration takea place which eatebliahes a new 
proceaaor aa the CP.    The new CP, which ia    one not 
involved in the detection of the feult, ia then used ea 
the iemporaty "hard-core" to initiate diagnostic«, locate 
the fault if indeed one exists, and remove the faulty unit 
from the ayetem.    The distributed Intelligence of PRIME 
'naa been need to provide double checking on all critical 
ayatem function«, which in turn guaranteee that there will 
be no interproceaa interference.    Probably the most 
unuaual general feature of PRIME with respect to fault 
tolerance ia thst it ie eelf-diagnoaing and aelf-repairing 
without incorporating any "hard-core." 

3.4. INFLUENCES: Many previous efforts have, of cou ae, 
influenced us, but no aingle system stands out ae ha- ing 
apecial influence. 

3.5. HARD-CORE: No, there ia no "hard-core" in PRIME. 
Inetead, the concept of a "floating hard-core" exist« 
whereby a working proceaaor ia praaaed into aarvice aa the 
Control Proceaaor whenever a malfunction ie detected. 
Till« ia conaiatent with ehe overall ayatem philoeophy of 
not having any "reliable" hardware anywhere in the eyatem. 

*.     JUSTIFICATION 
«.I.     RELIABILITY EVALUATION:  Reliebillty will be 
demonstrated by stimulation of faulte. 

4.3.    OVERHEAD; The coat of the additional hardware that 
haa been Incorporated in PRIME epecifically for fault 
tolerance ie leea than 10 percent of the total hardware 
coat of the ayatem.    Less  than  10Z of each processor's 
useful time ie devoted to fault-tolerant functions, since 
the surveillance programa are run during what would 
otherwise be idle time while processes are being awapped. 

«.4.    APPLICABILITY: PRIME haa been very carefully 
designed to perform economically in a particular environ- 
ent.    If it waa to be used in another environment, a 
detailed analyela would have to be performed to determine 
what changes would have  to be mede to allow it to perform 
adequately in the new environment.    In particular, many 
other potential environments would require that atepa be 
taken to guarantee intreproceaa integrity. 

♦ .6.    CRITICALITIES: The choice of diak drives ia quite 
critical since a low coat/bit ie necessary aa well aa a 
high bandwidth due to the different function« thaaa drives 
perform.    Since  3330-type drives were not available when 
thia design started, 2314-type drives wen selected and 
modified to transfer at SMRt.    Alao, the IN bed to be 
carefully designed with well-specified failure mndee. 
However, the primary memory end the processor» are ■'i«q)ly 
off the ahalf" Items.    Aa  for goals,  the decision to not 

provide iitraproceaa integrity checks hae been carefully 
exploits:   in the design of PRIME and haa provided a very 
aubatantia]  coat savinga. 

4.7      IMPLICATIONS:    Heavy rellai.je is placed on periodic 
checking of hardware rather than concurrent checking. 
Thua, the ability to inject faulte into the appropriate 
areaa haa bean a difficult requirement placed on ell of 
the hardware designer».    The moat notable softrxre 
requirement imposed by the baaic design ia the clear 
division of the operating ayetem into three part«, one of 
which can be furniahed by a uaer.    The only «igniflcant 
requirement placed on a uaer ia that he muet be eware that 
no intraprocesa integrity checke are made (juat like in 
all current tiw-ehering Systeme). 

rig. i 
■ lack    Di.,r>ni    at    th.     FRIME     t,,laai 

Hffltffiffll 
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5.     roSCLISIONS 
5.1. SIATTS:  Ttie  deiin,  of  mm.  Is  «bout  M percent 
coapleted, and lirlenentetlon has berm on both  the 
h.rdu.re and aoftware.    T!„  tint veralon capable of 
raconftiurlng In the presence of a failure ahould be 
runnln« by Septaafcer,   ^rj. 

5.2. EXPERIENCE: The i *ln conclualon that  the responden 
can sake rerardlnr the  Jealfn of PPIME  la that by sonewhat 
Uniting the goal of the PRIME syiten.  It uai posalble to 
create a syatea that ahould exlilblt excellent  fault- 
tolerant  characterlatlca a: a ruch  louer IncreMntal  coat 
than that of any other  fa. ,t-tolerant iyater known to hi«. 

D'?.^ TVV:'",: V" M,r ' ltu" ""1 "»e devoted to bulldlnp 
PRira. After that, evaltjitlon and tuning will take place 
with connection to the Arpanet very  likely. 

5.4.    ADVANCES;   It aeer«  that  the mat alpnlflcant 
development  that would aid  the PRIME ayaten would be rhe 
availability of a peneral-purpoae, aelf-checklnp 
proceaaor.    Since  100 percent  aelf-checkablllty li 
eatrenely difficult  to dealpn into a proceaaor,  the beat 
courae of action here aaera  to be to wait  for LSI 
procesaora of sufficient  power to be built.    These 
proceasors should be ao Inespenalve, cnapared to the rest 
of the hardware cost,  thst  runnlnp two of ther 
slmiltaneoualy and cosiparlnp outputa should be a very 
attractive procedure econosilcally.     In  fact,  the current 
processlnp alerant  In PRIME could be broken Into several 
subprocessors: one  for coassunlcatlona, one tor the disk 
controller, one  for the  temlnal controller,  two for the 
Tarpet Machine, etc.     Probablv only the Target Machine 
processor would have  to be duplexed because the othera can 
have Independent  checke on the validity of their resulta. 
With  »hla procedure,  Intraproceaa Integrity would be 
possible at an  Insignificant  incremental coat.    For the 
current veralon of PRIME,  the availability of general 
procedures  for automatically generating test programs 
would be extremely valuable. 

6.    COMMENTS:  I have experienced a great  deal of difficulty 
locatlnp any other efforts st designing and building what  I 
cor.alder to he  truly gracefully degrading aelf-repalrlng 
systems.    Most of the effort  In fault-tolerant  computing to 
date seems  to be centered around military system, or even 
moreso, around space exploration systems.  This  typically 
dictates  that  a fixed amount of computing power be made 
available at all  times; hence,  the  lack of action around 
fall-aoftly systems,    of course, by providing fsult 
tolerance through  graceful degradation, very substantial 
cost saving,  can be realised over the "rediaidant" methods. 
In addition to allowing the aystem's performance to degrade 
In  the presence  of  fault»,  we have  chosen not   to gusrsntee 
Intrsprocess  Integrity.    Also,  PRIME uses no "hard-core" to 
Inltltste diagnosis or reconfiguration.    The coi*lnatlon of 
theae three techniques liaa allowed ua  to design s very 
econorlcsl  fault-tolerant   time-shsring system.    There is 
little doubt  that  the snticlpnted degradations will be 
quite acceptable  for a wide range of applications. The Isck 
of intrsprocess-integrlty guarantees, however, will be a 
limiting factor In expanding this architecture Into other 
areas,    of course, hardware provialons could be added to 
guarantee introprocess  integrity,    and the reaultant system 
would still be more economical  then i»Bt other 
fault-tolerant r.yatema.    A more promising approach, and one 
which we will undoubtedly explore in the reaaonablv near 
future,  is to leave the hardware as is and rm critical 
programs twice on  two different processors.    This will 
sllow the system cost  to remain very  low,  and will also 
allow intraproceaa integrity guarantees.    Thua, only  those 
proceaaes thai  that need  this  gusrsntee will hsve to pay 
for this added  feature.    A final aspect of the PRIME 
srehitecture that should be investigated  la whether it csn 
more economlcsll" nrovlde s guaranteed computing power in 
some environments  than can be provided by s "redundsnt" 
system.     It csn be overbuilt by sn amount sufficient  to 
gusrsntee thst  its degraded condition Is powerful enough  to 
hsndle the neceaaary computing, with background power 
available noat of the tie«. 

SPRVEV  ng   FAriT-TOLPKAKT   COMPCTINC  SYSTEMS 

Capt Larrv A.  Fry, Spa.-e and MiaslU Systems Orgsnlcatlo 
(SAMS01     Los Angeles AFS, CA,  Februsry  I<»73t 

1.     inESTIFlCATION 
1.1.    N'AME:    Modular Spacecraft Computer 

RESPONSIBILITY:     SAHSO/PYT,  Loa Angelea AFS, CA. 
SUPPORT:     Sot  available 
PARTICIPANTS: 

1.2. 
1.1. 
1.4. 
Inc., 
1.5. 
1.6, 

true 

Raytheon, Sudbury, HA; Cltraayatem, 
Newport Beach, CA;  Loglcon, San Pedro, CA. 
START;     Protect atarted mld-1971 
COMPLETION;    Loglcon is currently implementing 

interpretative computer slmulationa of the two HSC deaigns 
on the CPC 7600.    The archltectitrea and repertoires are 
being evaluated, along with an intensive study of the 
fault-tolerance  featurea.     Delivery of the ICSa and a atudy 
report are due  in Julv, 
1.7.    BIBLIOORAPIIY:    11.  Hecht and L. A.  Fry, "Fault- 
Tolerance In the Modular Spacecraft Computer," presented at 
the 6th  International Mawali Conference, 9-11 .lanuary  la73, 

2. MOTIVATION 

2.1. PURPOSE: Support of all satellite dsta processing 
requirements 
2.2. PHYSICAL  ENVIRONMENT:     In satellite 
2.3. COMPUTINO ENVIPONMENT:    Hardwired to environment 
2.4. COHPUTINC OBJECTIVES:    About 2n0K operations per sec 
2.5. RELIABILITY OBJECTIVES:    ..ominal nrobability of 
survlvsl at  the end of  five-year life of 0.95;  variability 
achieved by adjusting the number of spares csrrled. 
2.6. DYNAMIC VARIABILITY:    Essentlslly no varlablUtv 
2.7. PENALTIES:    Loss of major aatelllte fmctlons 
2.B.    CONSTRAINTS:    25 pound» and  30 watts 

3. DESCRIPTION 
3.1. ARCIIITECTURr. 
3.1.1. CONFICURATIONS 
3.1.1.1. IHTEPCONNECTIVITY;    Both dealgna are 
bua-orlented.    Raytheon uaes eight general registers; 
Ultrssystems uses s conventional AC/MI design. 
3.1.1.2. RANCE: Single processors. Memory is modulsr In 
4t: increments, up to 65K 32-bit words. 1/0 is vsriable, to 
suit  specific  real-time   application». 
3.1.1.3. CAPABILITY:    Roughly compsrable to a 3t.',;-ü.  500K 
fixed-point ADDs/aeci 200K  flostlng-point ADD«/sec. 
3.1.2. EXECUTIVE 
3.1.2.1. MODES:     Interruptihle but not 
multiprocessor 
3.1.2.2. SOFTWARE: Not yet developed. Ulli have a real- 
time operating system,  including fsult-recoverv routines. 
3.2. FAriT-TOLFRANCE 
3.2.1. FAULTS TOLERATED:    Tranalent and permanent—all 
logic tvpes.  Also can tolerate aome catastrophic fsults. 
3.2.2. FAULTS NOT TOLERATED; Faults reaultlng from malor 
phyalcal  damage. 
3.2.3. TECHNIQUES: Repllcatlonj codlngj repetition and 
rollback; and configuration. Techniques used statically 
snd dynamically. 
3.3. NOVELTY:     Extenalve dynamic redundancv 
3.4. INFLUENCES:    Not available 
1.5. HARP-CORE:    Configuration Control Unit la trlply- 
modular-redundant, controlling all retriea and most 
reconfipurst Ions. 

4. JUSTIFICATION:    Tlie  failure probability of 
non-fault-tolerant computera la  too high to permit their 
use as centrsl dsts processors on Jong-llfe cpsceTaft. 
Conalder a computer using the equivalent of 2500 electronic 
parts, csch of very high  rellshlllty such thst the part 
failure rate 1.   10E-R per hour.    Thn the computer fsllure 
rate Is 25 .  10E-6 per hour.    For sn exponential  failure 
dlatrlbutlon,  the  five-year reliability la 0.37,  the 
reciprocal of e: e to the power -(40,000 x 25 x  10E-6). 

5. CONCLUSIONS 
5.1. STATUS:    reforming Interpretive simulation 
5.2. EXPERIENCE: Architecture very suitable for Intended 
application. 
5.3. FUTURE:    Not available 
5.4. ADVANCKS: Practical deaign under weight and power 
conntralnts. 

6. COHlENTS:    Raytheon began Ita design bv using 
duplication aa a main spproad., MU UUraavstems used 
arithmetic coding.    Neither approach wa.- entirely 
aatlafactory, and It was very enltghtenln» to observe the 
two designs converge In the course of several iterations. 
Currently, both employ a balanced mixture of duplication 
coding, and TMR.    Theae designs studies also demonstrated 
the Impractlcallty of the Reed and Brlmley approach. Both 
contractors Initially broke np the computer Into small 
modules but found that the switching overhead and attendant 
compllcatlona overshadowed the theoretical reliability 
Improvement.    Larger nodules are now used, with the 
computer-on-a-chlp In view.    An .xceptlon waa the sasnry 
module, where a few spare hit  line» aeem useful 
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suiivrr or FAULT -TOURAHT COMPUTING 

SavaraM. Otnattln, Bolt Baranck 1 Navaan. Inc. 
Caahrldg«, Maas 02138, Hay  1973 

1.   IDEHTIFICATION 
1.1. NAJBi lllgli Spaad Modular IMP  (for the ARPANET) 
1.2. USPONSIBILITT: Bolt Baranak (. Nawun 
1.3. SUPPORT: ARPA 
1.4. PAWICIPAHTSi Frank Haart, Savaro Orna..ln, Wlllia» 
Crovthar, Banjaaln Barkar, Anthony Michel, Mlcnael Kraley, 
Martin Thropa, all fron BBN. 
1.5. START: July 1971 
1.6. COMPLETION: Prototype aiuaer 1973 
1.7. »IBLIOCTAPHY: F. E. Heart. A New Hlnlcoaputar/ 
Multlprocaaaor for the ARPA Network, Proceeding» of the 
National Coeput-ir Conference, New Tork, N.T., June 1973. 

2. MOTIVATION 

2JI. PURPOSE: Store i Forward Maeaa|te Proceaaor-Hlah Spaed 
IMP Modular Vanlon 
2.J. ENVIROmCRT: Crowd-baaed.    Reaota dlaanoala,  restart. 
2.3. COMPUTING OBJECTIVES: A variable elted nodal elewnt 
In a nationwide (and aoae oversea«) coaputer network. 
2.4. C0»WTIHC OBJECTIVES: ThrouRhput capability of about 
10 wgabita of traffic.    Computln» power to be 10 tlmn 
that of a ataadard nlnl (auch aa the Honeywell 516). 
2.5. RELIABILITY OBJECTIVES:  Machine Mist substantially 
Irprove on the approxlBately II down tloe of present 
vtulon.    Machine should run 24 hours a day year-round. 
2.6. DTHAMIC VARIABILITY: We hope that the design will 
eabody eoft failures wherein bandwidth capability will 
degrade with failure but no functions will be totally lost. 
2.7. PENALTIES: Reduction in coenmlcatton facilities in a 
net. Multiple failures can cause loss of cosBunication to 
certain nodaa. 
2.8. CONSTRAINTS: No explicit cooatrainta—goal la to have 
a few racks in site and coat of about $100,000. 
2.9. TRADEOFFS: Coat and everything else. 

3. DESCRIPTION 
3.1.1.1. IWTERCONNECTIVITY:  See Figure. 
3.1.1.2. RANGE: Saallast is single processor single bus 
systea with a «Ingle logical aeaory.    M« do not understand 
«•«■«■ site constraint aa a nusfcer of physicsl and 
engineering probleas (power, cooling, rack apace, cabling) 
liait the else before logical bowdarles are reached.    We 
are building a 14 processor prototype and expect that 
,y,t*" of "»lea that alte are not auch harder. 

3.1.1.3. CAPABILITY: That cf a aingle Lockheed SUE (a aaall 
■odea 16 bit sdni) 200,000 Adda/sec 

3.1.2    EXECUTIVE 
3.1.2.1. NODES: Designed for perallel task execution of 
specislly coded real-tias probleas.    Paralleliaa la not 
decided upon in advance but ia provided for.    All proces- 
sors csa perfora ell tssks end adjust to current work losd. 

3.1.2.2. SOFTWARE: Split into tiny  (»0 aicrosecond)  tasks 
which are qneued with the aid of apecial hardware (which 
itself is replicated for reliability).    All processors can 
perfora ell jobs. 

3.2.  FAULT TOLERANCE 
3.2.1. FAULTS TOLERATED: We believe thet, short of systea 
power failure, any one piece of the system ran fail without 
loss of function but with lose of bandwidth capability. 

3.2.2. FAULTS NOT TOLERATED: Malicious manual interference 
systeaic power fsilure, etc.    Little protection sgsinst 
softwsre faulte included since the prograa is a dediceted 
real tiae prograa not subject to the vagaries of "uaera". 

3.2.3. TECHNIQUES: Redundancy of parts  and nonapeciallsa- 
tion of processor*. Parts connected In e network so that 
coamleatlon path« don't force apecialixation, e.g., I/o 
devices connect to two busses—each of which can be reached 
by any of k procaasors.    Power ia diatributed as 110 AC snd 
power aupplles are noduUr—i.e., each unit haa ita own DC 
supply with it—also it» own cooling.    The systea requires 
eech piece to perfora certain tests periodically and one of 
the cask* required of aoaa randoaly aelected free proceasor 
is to check up on how everyone else is doing.    Modules can 
disconnect one another froa the systea if failing operation 
1* detected but protection ia provided to avoid inadvertent 
decoupling of a good unit. 

3.3. NOVELTY: We do not know of a similar systea of a 
collection of task oriented "workera" sharing responsibi- 
lity not only for the routine workloads  (with variallona) 
but also for self teet and, if appropriate, aaputatlon. 

3.4. INFLUENCES: Hacroaodular project at Waahington Univ. 
3.5. HARD-CORE: We have tried to avoid this conceit In our 
systea wherever we ould. We hope that it is in this very 
avoidance that we uy iaprove reliability (aee 3.2.1). 

4.  JUSTIFICATION 
4.1. RELIABILITY EVALUATION: We believe that in a new 
cystea of thia aort it i* difficult if not Impossible to 
■eke meaningful  prognostications  of reliability.    Ua 
believe our overall aystea design is prone to reliability 
if the baaic parte are themselves reasonably reliable. 
Only after the ayatea haa been running for a yaaf or two 
will we begin to understand what ita teal relisbility is. 

4.2. COMPLETENESS OF EVALUATION: Not particularly with 
regard to part failurea; conceptually, we believe it la 
quite coaplete. 

4.3. OVERHEAD: lapoesible to eatiaate since thia w« not a 
primary goal at the outaet.    Hie original goal we* high 
bandwidth and the scheme we chose simply led naturally to 
vhat aeeaed e veiy reliable looking structure.    We have 
added relatively little (10X) apecifically for reliability. 
We could add acre and (hopefully) iaprove the reliability 
more aa our structure is modular and expandable. 

4.4. APPLICABILITY: We have only begun to inveatigate these 
possibilitier. We hope there will be many.    Aaong these we 
see real tiae signal processing and aoae specialised 
aulti-uaer applicationa. 

4.5. ECTENDABILITY:  The eystea is designed to be generally 
extendable.    Thet is one of its aain pointa.    Certain 
boundaries are reached where the next step in expansion i* 
more coatly than prior steps.    We do not know whan hard 
limits will appear.    We believe they will, for aoM tiae, 
be of an "engineering" rather than "logical" nature. 

4.6. CRITICALITIES:  Fairly well matched.    Since goal was 
for variability the question la not too meaningful. 
Multiprocessing was not a goal; it was, for ua, a aeana. 
Hardware choice was for suitability snd convenience. 

4.7. IMPLICATIONS: At present the design is baaed on the 
Lockheed SUE bus structure (slightly modified).    It could 
have been based on some other coaputer, but less cssllly 
and at greater cost.    Until or unless we switch, this wan* 
that all unite In the ayatea follow the SUE bus discipline. 
Hie overall design was conceived for pnbleae that could be 
broken conveniently Into parallel exeeu :able tiny tssks. 
It achieves speed end power by such par illeliaa. 

5.  CONCLUSIONS 
5.1. STATUS:  Prototype nesting complctii n. 
5.2. EXPERIENCE:  It is hard to build suih system. 
5.3. FUTURE: This IMP   will be incorpor ited Into the ARPA 
network in various sized configurations. 

PROCCSWT BJSSESIT) 
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SiRVEV  Of  FAILT-TOLEKAUT  «»TITIHC SYriLVS 

'«'.   C.   Carter 
IBM Thorn«  J.  Uatson  Research  Center 
YorfctOMi  Heiplits  id   10598 

I.   1DENTIF1CAJU*; 
1,1.  NAHEl     I   a«  reporting  mainly  on a   long-term  research 
eifort   In  techniques   lor   fault-tolerant   computer 
arclif tecture.     The   relevant  prior  publications  have  used, 
tor exaaple,   the   ter^-s  "modular  architecture", 
"aelf-repalrinp  computer«",   "dynamic  checking",   "fault 
diagnosis",  "stand-:;'/  sparing"  or "dynamic  recovery"   in 
the  titles  and  the   authors  have  been  some  subset   of   the 
participant»  naiwd   In   1.4.   Vor present   purposes   I  will 
talk  about   a  paper  Modular  Digital  Computer system called 
HT)C whose  principal   properties will  be  specified   later. 
For  reality,  some   requirements  will  be   imposed which  have 
nothing  to  do with   fault   tolerance  per  se.     This  system 
d es  not   really  exist,   and wlU  nut  exist,  but   Is 
Jj-ecifled  to provide  a  focu«   for our  fault   tolerant 
computing  research. 

1.2 RESPONSIOIUTY!     IBM Reseflrch. 

1.3 SCPPCRTl     Support  lias   come  froir.  IBM,   L".   S.   Air  Force 
and NASA. 

1.4 PARTICIPANTSl     W,   C.   Bourlcius,  W.   C.   Carter,  t.   ('. 
Hsieh,  D.   C.   Jessep,  Jr.,   C.   P.   Putzolu,   J.   P.   Roth,   P.   K. 
Schneider,  C.   J.   Tan,  A.   B.   Wadia. 

t.5  STAKT:     Formal   initiation  occurred  In  March,   196ft. 

Ub  COMPLETION    Open  enc^ed.     Ho end   item Is  »cheduled. 

1.7 BIBLIOGRAPHY: 
•Roth,  J.   P.     "Diagnosis  of  automata   failures:   a  calculus 
and  a method",   IBM Journal,vol.   10,   Ut   19(>6, 

•Bourlcius,  W.   c.   Hsleh,  E. p.,   Putzolu,  C.   R.,   Roth, 
J.P.,   Schneider,   P.   R.,   Tan, f.   J.,  "Algorithms   for 
detection  of   faults   In   logic circuits",   IEEE  TC,   Vol 
C-20,  Nov.   1971. 

•Bourlcius,  W.   C,   Carter,  W.   c.   and Schneider,   P.   K., 
"Reliability  aodeling  techniques  and  tradeoff  studies   for 
self-repairing  computers",   ACM National  Conference,   San 
Francisco,  California,  August,   1969, 

•Bourlcius,  V.  r...   Carter,  W.   C*.,   Roth,  J.   P.   and 
Schneider,  P.   R.,   "Investigations   in   the  design  of   an 
automatically   repaired  computer".   Paper Numier f-. * 
Conference  Digest   of   the  Fjrst  Annual   IEEE  Computer 
Conference,  Chicago,   Illinois,  September 6-8,   1968. 

•Carter,  W.   C.   and  Schneider,   P.   R.,   "Design  of 
dynamically  checked  computers",   IFIPS,   Edlnburg,  Scotland, 
August,   1968. 

•Carter, V. C., Jessep, D. C,, Wadla, A 
decoding for failure-tolerant memories" 
Computer Conference, Washington, D. C., 
229-2 39. 

B.,  "Error-tree 
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for MARCS"   {Modular Architecture   for Reliable  Computer 
Systems),  NASA Contract  NA58-24883,  RAI2,   IBM T.   J.   Watson 
Research Center,   Report  Number   70-208-002,   March  26,   1970. 

»Carter,  W.   C.,  Jessep.   I).   C,  Wadia,  A.   B..   Schneider.  P, 
R..   Bourlcius. U.   C..    'Logic  design  for  dynamic  and 
Interactive  recovery",   IEEE  TC,  Vol.   C-20,  Nov.   1971. 

2.   MOTIVATION 
2.1 PURPOSE:     Real   time  control,   data  acquisition  and  data 
mansgeuen''. 

2.2 PHYSICAL ENVIRONMENT: Aerospace applications have 
predominated In specific design decisions. Modularitv 
should ensure wide  applicability. 

2.3 COMPUTING ENVIRONMENT! The MDC is planned to be able 
to run the gamut fmn, being Insulated from human control, 
serving a variety of sensors and effectors, to being able 
to accept   ground-based human  directed  control, 

2.4 COMPUTlNt   OBJECTIVES:     Predicted  configuration 
scaleabllity  primarily  under   Internal   control   Including 
systems  which  are   fault   tolerant  by  masking   redundancy,  by 
stand-by   redundancy,  or by software  checks;  svstems whose 
use  of power   Is  variable   (but  whose   thruput   Is  affected); 
and systems  operating  In parallel.     The  major objective   Is 
to provide means   for meeting various   requirements with  a 
high  degree  of  confidence. 

2.5 RELIABILin  OBJECTIVES:     The  system is   to be  designed 
to meet  varying specific oUt'~-  rellabllltv  objectives 
with  a high  degree  of  certainty.     Examples  are  survival 
for n  years  with  a  probability  p;   "rail  operational,   fall 
operational,   fall  safe",   or  reliability  varlab.e with 
mission   task. 

2.6 DYNAMIC  VARIABUm:     As  stated  above,   dynamic 
variation  of  system parameters  such  as  performance, 
reliability   and  power  consumpt.on with  confidence  In  i..- 
deslgn  as  a major  oblectlve, 

2.7 PENALTIES:     Variable with  mission,   ranging  from  loss 
of  human   life   through  expensive   flight  hardware  to 
abortion  of   flight   objective». 

2,B CONSTRAINTS!     Hardware must  be  designed  to  fit weight, 
power and »Ire   requirements,  yet  able   to have   thruput 
compatible with  mission  requirements  and  to support   the 
software  necessary   for  reasonable  programming effort  per 
mission. 

2.9  TRADEOFFS:     Hardware efficiency  and potential   thruput 
are   traded   for   1)   system reliability  as  defined per 
mission phase;   2)   simplification of   recovery  process  and 
other basic  executive   functions;   3)   high  malfunction 
coverage  and  design  certification;   i.)  ease  of  program 
validation;   5)   convenience of  programming and ease  of 
diagnosis   for  external  equipment;     6)   system  flexibility. 

3. DESCPIFTIO:; 
J.I ARCHITECTURE 
3.1.1. COKPICURATIONS 
3,1.1,1, 1NTEKCONNEC1IV 
configuration consists 
attached to several bus 
attached rough diagram) 
I nit. Bus Control, I/U 
Unit, The bus orientat 
modifled (microprogramm 
system consists of repl 
configuration control g 
Program. A major probl 
the constraints of faul 
modes of operation. Hi' 
!i-nd)acent error correc 
per basic  module. 

ITYl     The  basic  uniprocessor 
of partltionfc-l  computer subunlts 
ses.     The  basic  «»ubunits  are  (see 

ALI,   Scatch  and Trjgram Control 
Processor and Recovery  Control 
Ion  remains,  but   the  units  nay  be 

d)   for varying missions.  The 
leas  of   the  basic  subunlts, with 
ovemed by   the  RCU  and Executive 
em is   the  Interface  design  to neat 
t   tolerance,   long   life,  and varying 
e  memory   Is  encoded with  a 
ting  code  and  spare b wide subunlts 
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3.1.1.2. RAN^ :    Hie  range of  the syoten Is not  frozen in 
the  architectural  concept.     After  four  prucesHors   the   law 
of  dlBlnlahlng  returns  acts   In sharply  and  further 
partitioning nay well  be  a better bet   for   long  life.     The 
meaory will   consist  of modules,  each  nodule  consisting of 
b-wide  units with b-adjaccnt   coding and spare  b-width 
units.     The  upper  Unit  depends  upon  the  hardware 
available,  but  hardware does  not  appear  to be  critical. 

3.1.1.3. CAPABILITY:     Tlie  ordrr of   10E5  to   tOE6  additions 
per second per basic  system with  a mininuffl of  2S6K*S12K   32- 
bit words  of  mtmorv,     I/O will  be handled by  up  to 6   16- 
bit  parallel  channels with   30,(100  transfers  per second 
sinultaneoualy  on one  input  and one output   channel.     The 
I/O processor will handle  the  details  of  I/O control   under 
direction  fro* the  processor Executuve. 

3.1.2 EXECUTIVE:    Tht standard executive  control 
^allocation,  scheduling,   dispatching,   1/0)  will  be 
achieved by   replicated software  routines.     Hiese   tasks 
have not been atudied much. 

3.1.2.1.  MODES  OF OPERATION:     Each  processor  is 
■ultiprograHkablc.     System operation  Includes   fault 
masking, multiprocessing with hardware   fault   detection  and 
multiprocessing with software  analysis.     The  node  of 
operation of moat  concern  is   that  of  recovery  initiation, 
the  interaction of  the  recovery  and  error analysis 
programs  of  the executive  and  the  RCL'.     Recovery  and  audit 
prograns  always  run background whether  the  system is   In 
fault  masking,   fault  detection or software  analysis  nodes. 

3.1.2.2. SOFTVARE ORGANIZATION: Ttie system software will 
be distributed among the processors and analyzed by audit 
routines  for early detection of errors. 

3.2.   FAULT TOLERANCE 
3.2,1   FAULTS  TOLERATED:     In  the  error-nasklng node,  any 
number  of  faults which  affect  only  one  partitioned 
sub-unit  can be  tolerated.     The syatem handles   transient 
faults with   instruction  retry  or permanent   faults with 
hardware controlled reconfiguration.     The cause is 
Irrclevent  as   long as  the   Interface  detects  dlsagreenent. 
The dlsagreenent circuits are self-checking so faults  in 
then are detected.     Initially  the  sane malfunction  In 
three units  is necessary  to defect  the systen.     After 
reconfigurations   two  faulty  units  nay  escape  detection. 
In  the eiror detection node,   faults   causing a  single 
subunlt  to be  In error are  detected.     At   this  point   the 
sane errors  In  two units will  be  undetected.     Diagnosis 
and software  recovery Is necessary  for continuation. 

Faults  detected by software   checks  are  detected  and 
recovery  should  follow  In  the  unchecked nultlprocesslng 
node.     Faulty  software may be  detected by   the  RCU  tine-out 
tests  and system evaluation  procedures. 

3.2,2.  TECHNIQUES:     In hardware  fault   toleij,nt  mode  the 
system should F0 - F0 -  FS   for each  one  of  the  partitions 
of  the system if   four  copies  of   the  basic  computer  are 
used.    Diagnosis can continue the computation with one 
partition unchecked.     Detailed  fault  analysis nust  be 
performed  to  validate such  goals.     In hardware   fault 
detection node  the  systen should  run  at   least  two 
multiprocessor hardware  checked systens.     A  fault  would be 
detected,  and diagnoses  would allow  continuation with  one 
partition  unchecked by  hardware.     Achieving such 
hardware/flmware/dlagnosls  goals  depends  upon   the 
development  of many  tools  of   fault   analysis.   The memory 
encoding  is  b-adjacent  multiple error correcting  and/or 
multiple b-adjacent  error  detecting.     The   codes   used  are 
variants  of  Reed-Solonon  codes with  conhlnatlonal  self- 
checking  translators which  pass  only  correct   code words. 
Standard single   Instruction  retry  is  available. 

Microdiagnostlcs under executive program control with 
program variable  input  patterns will  be  used  for   fault 
analysis.     The executive software will   use   the  standard 
fault   tolerant   techniques  -   two way   lists with  pointer 
verification before  proceeding,  stored data and prograns 
will be  tagged with  redundant   Identification,   read only 
prograns will  allow sinple  updating etc.     Rollback  and 
restart will  be  used  for multi-processing with  hardware or 
software error detection.    The RCU monitors constantly  for 
catastrophic  faults - those not detected by  the hardware 
and software  tests.     The standard  tine-out   tests  and 
system performance evaluation  routines  are  run and 
controlled by   the  RCU.     Power  is  conserved vmder  program 
control by  forcing n  cycles  between memory  accesses, 
imposed by  a  counter with  progran changeable  contents. 

3.3 NOVELTY:     Reconfiguration  under hardware  control   In 
fault  masking mode.     Choice  of  computer  fault  masking, 
Bultiprocesslng with   fault  masking and various   forms  of 
detectU-n,  multiprocesüing wit') hardware  error  detection 
by  comparison,  Bultlproceatting witt   software error 
detection.     Storage  reliability by b-adjacent  Bult'p.e 
error  detecting and  correcting codes.     Self  checking 
nennry   translators,   checking  circuits,  and error-analysis 
clrults.     Use of  power under  pragran control. 

3.4 INFLUENCES:     1.     JPL  Star -   the   total  effort;   :.    SRI, 
Techniques   for  the  Realization  of  Ultra-Relleblc 
Spaci:bume  Computers;   3.  MIT  -Draper Lab.   ior apacubon.e 
nultlprucessort»;   4,   Kapi^ etiergence of  LSI   for  feasibility 
of Buch   redundant  hardware, 

3.5 HAKD-CORE:     Assuming  that  hard  core means  hardware, 
redundant  or not, wliose   failure will  produce  undetected 
erruri,  there  is  no such harduare  In  this  sybtem. 
Hopefully,   the softwart  can  be   vailJated  so   that  e^ual 
claims  can be  made   for  It. 

4.   JUSTIFICATION  FOR THE  SYSTLH 
4.1 RELIABILITY  !■ VALUATION:     Architectural   rellal'l li-.y 
evaluation by  interactive progtam using exponential 
failure  assumption  for the   units,     [^termination ot 
component   failure  rates  by  analysis based upon prev.us 
uata,  experience,  and analysis.     Logic  fault  analysis  of 
circuits In design utage by interactive fault slnulation 
prograns.   Diagnostic  pattern evaluation b>   simulation 
prograns.     Hemory   failure  predictions by  careful 
piobablllstlc   fault  analysis   to predict  error pattern», 
prugranmed  computation of   the  circuit   failure  conätants, 
programued evalutatlon of   reliability.     Programmed 
analysis of  RCU   functions.     Theoretical  analysis  of 
design, with hardware  and software,  in complicated 
situations   (guided by  sinulatirn). 

4.2 COMPLE.'ENCSS 01   EVALUATION:     .iajor  unsolved prübl«m. 

4.3 OVERHEAD:     Variable.     In  the processors  about  a  3  1/2 
:.   logic  count   penalty  it)  paid   (tht  cost  is much  less). 
In  the memory  about  a  3:2  storage  penalty   Is  palJ.     In  the 
softwore  tht*  cost   is  unknown,  but  cons i de tab It:, 

4.4 APPLICAJILI7Y:     The  concepts  can be  imed eliewher*:, 
the  System Is  oriented  cowatd  ..pace  and extreuely high 
reliability applications, 

4,3  EXTENDABILITY:     This  computer  is  too  reliable  to  fit 
into nofit  other systems.     For extension some of  the   fault 
tolerant   techniques   in  the   computer must  be  eased   fcr 
better  total »yatcn ualance. 

4.6  CRITICALITlES:     Multitasking,  aa with  all  Executive- 
controlled  recovery   systeus,   is  critical,  achieved here 
with multlptograuning.     Multiprocessing is  an  imposed 
condition,  but  stiall  system simpllficatlona would result 
it  thlt.  condition were  relaxed.     Design validation  toolu 
are  critical. 

u.7  IMPLICATIONS:     Architects must  perform autumated error 
and recovery  analysis while  doing syatebi specification. 
Hunan analysis  is  loo fallible.    Hardw.'.re dcaigners must 
have and use tools  to do  fault anulysls as they design. 
After the  first  pass  they must do design validation and 
Iterate.     Software  designers must  participate  in  the 
liitlal  decisions,  must produce more  techniques  lor 
producing self-checking prigraos,  and must  produce  the 
tools  for progran validation.    Applications prugram>er-t 
niust  validate   their programs   (top  down  programming 
techniques will help),   ard nubt   follow syitem rules   (not 
so far Knotm). 

3.  CONCLUSIONS 
3.1 STATUS:   Hiis  system  is   the  collection 
ideas   from a  research  project. 

5.2 EXPERIENCE:     None  to  report   to date. 

if  a  grmir of 

3.3 FOTUREi     The aystea will  be pursued only  In  a modified 
Tors, as 3 paper study only. 

3.4 ADVANCES:     The  problems  of  validation - htirdware and 
software - will  provide  many  a bottlenock  for  fault 
tolerant   computing»     The basic problcn of  definition of 
fault  tolerant Computing will be with us - do we consider 
any  algorithm,   proce-.'ure? 

1 
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SUHVET OH FAULT-TOLEFAST COMPUTER SYSTEMS 

Albart  L.  Hopklni,  Jr.. HIT Draper Laboratory 
CaaltrldR*. Mwa.    02139, Fab 1973 

1.     IDEWTIFICATIOH 
1.1. NAKE:  I am reponlnp on a lonp-tem d«vclopaanc 
affort which ha« baan aupponad by dlffarant projacts at 
rflfferent  tlaci.     The  following  title«  have b«an uaad  for 
publlahad report«: 

* "A Fault-Tola rant  Infomatlon Procaaalns Syutca for 
Advanced Control, Culdnea.and Navlpatlon". 

* "Space Transportation Syataa Data Kanapaamf: Syataa". 

In addition, an axpaiiaantnl thraa-procaaaor 
thrac-acratchpad breadboard haa baan «Ivan tha acronyn 
CERBEKUS for tha thraa-haadad dos l" claaalcal «ytholopy. 
Tha  ac.   .»yn enpendered  tha  title:   Controlled Error 

ecovery Behavior E^loying i'edundant Uae of Scratchpad». 
In what followa, I uae "the ayataB" to naan the peneral 
concept, rather than a apeclflc hardware dealgn. 

1.2. RESPONSIBILITY: Thla work la In the Digital 
Devalopaant Group of the Charlea Stark Draper Laboratory, 
a dlvlalon of H.I.T. 

1.3. SUPPORT SOURCES:    So far all support haa COBC  fro* 
the NASA Manned Spacecraft Center. 

1.4. PARTICIPANTS:  MIT and NASA/MSC. 

1.5. START: Work In thla area began in  1966. 

1.6. COMPLETION; Open ended.    No end Iter la acheduled. 

1.7. BIBLIOGRAPHY: 

2.«.    COMPUTING OBJECTIVES  FOR PIE CEKTRAL MULTIPROCESSOR: 
Variable from the order of 10E5  (I.e.,  10 to the S) to the 
order of 10E6 of. vat ions per aeeond, with aaaory 
capacities of fro* 2EU to 2EI7 worda of aaln randc* 
access  eenory.     Input-output bandwidth   10ES useful 
blta/aac on a 1CE6 pulae-per-aacond bus.    Reaction tlaa 
order of 10 Rllllaaconda. 

2.5. RELIABILITY OBJECTIVES: Varloua types of objectives. 
One exerple Is airline sppllcstions where leaa than one 
catastrophic syaten aelfuoctlon in 10E7 flights is »ought. 
Other objectives sre stated In terse of the nuafcer of 
indivldusl ■slfunctlor.s which can be tolerated In a 
flight, auch aa "Fall operational, fell operational, 
failsafe"  (FO-FO-FS).     The aystes Is  generally sasnt  to be 
used in very high reliability applications. 

2.6. DYNAMIC VARIABILITY: Graceful degradation la 
available aa a means of exchenginp perfonsnes for 
relleblllty. 

2.7. PENALTIES: In the Space Shuttle application, as In 
pnailble aircraft applicationa, husun life ia concerned. 
other life-critlcel applications can be eeaily envialoncd. 

2.B.    CONSTRAINTS:  In Space Shuttle and aircraft, 
approxliutely 2    cubic    feet,  120  lb.,  300 wetta. 
(Eatlsate for a central eultlproeessor).    Other 
applications aay be «ere or lese aevcre. 

2.9.    TRADEOFFS: Hardware efficiency la traded for    1) 
ayate« reliability, 2) high Balfunction coverage,  3) ease 
of progras verification,  4)  ayateu flexibility. 

The nusber of £aulta tolerated *M variable through a 
cosblnation ol replication and sparing.    Procceaors and 
Mnories can -e added (deleted)  to Increaaa  (decrease) 
proeeaslng and ■efnory resources. 

* R.  L. Alonso, A. L. Hopkins, Jr., snd H.  A.  Thsler, 
"Dealgn Crltsris for s Spacecraft Cosputer", Spacebornc 
Hultlprocssalng Secfiar, pp. 23-2R, NASA ERC, Boston 
Museua of Science, Oct. 1966. 

* R.  L.   ilonso,  A.  L.  Hopkins,  Jr.,  and H.   A.   Thaler.  "A 
Multiprocssslng Structure", Dlgeat of the First Annual 
IEEE Computer Conf.,  pp.  S6-S9,  Chicago,  Sept.   1967. 

* A.  I. Green et al., "STS Data Manageswnt Syates 
Dealgn", MIT C.S. Draper Laboratory, Cartridge, Mass., 
Report  F.-2529,  June  1970. 

* A.   L.  Hopkins,  Jr.,  "A Fault-Tolerant   Inforstsclon 
Processing Concept for Specs Vehicles", IEEE Trans. 
Cosputera, Vol. C-20, pp.  1394-1403, Nov.  1971. 

2.     MOTIVATION 
2.1. PUKPOSE:  Real  tlwe control,   data sotnlsltlan and 
dsts ■snigensnt. 

2.2. PHYSICAL ENVIRONMENT:   In principle  it  CMM b« er«. 
but siroepsca applications have predoaiasted la 4m\wm 
dscisions. 

2.3. COMPUTING ENVIRONMENT:     Syaccns coMldend &•-* a« 
envlaloned ss largely self-contained lafiiiastlea 
proceaaln.' ays teas serving s vsriety of seaavrs SBH. 
effectors including huasa opsrstors.    Sadi sistsaa mmU 
be dlatributad, hierarchical aad ndaa4aic.    Csa«ra2 
fault-to Is rant aultlprocssaora weald ccaawnicare svar 
serial data buses to local processor CO^UBM asfcadfrd la 
aidisystaas of the totel systea.    A prladpal application 
considered for this approach wss the Spec« Shuttle, where 
the Orblter would have one central aultlprocessor with 
adequate redundancy and «pare hartV'ir« to be operatloasl 
after three aslfiBctions.    Each subsystsa or group of 
idsntl'zsl subsysteas would be served by single or 
redwiaant local procesaora, au appropriate,  to fulfill the 
redwidancy requlreaent for that aubayatca or group. 

The Booster stage of the Space Shuttle would. In this 
concept, contain s systsa slallsr to that of the Orblter, 
cspable of cossiut icatlng with  It by wsy of s  aerial  bus 
cornsctiag the two central aultlproceaaors.    All 
Loasssilr it Ion between s central aultlproceaaor and Ita 
local i rocssaors would be via a aerial data bus. 

3.     DESCRIPTION OF TOE SYSTEM 
3.1.    ARCHITECTURE 
3.1.1. CONFIGURATIONS 
3.1.1.1. INTERCONNECTIVITY:  Tha ayatea aakes  extensive 
use of replication, and consequently conacctlons have a 
high coot.    Serial snd byte-serial buses sre used between 
basic units«    Multlpienrs sre erployed to prevent single 
unit aslfunctlons fro« spreading to all coplaa of a 
redundant bu«.    The canonical Interconnection sdisne is 
shown In Figure  1. 

3.1.1.2. RANGE: No range limits have bean deteradned, but 
the following nuafaera aay be typical for an aerospace 
application.    There are two current coefictltlve 
conccptualliatlona of the systo».    These nuafcers represent 
the newer end less well developed concept. 

* 6* Ninfcer of slaultsneous  job steps in process 
* 3* Dsgree of replication of each processor-scratchpad 
* > Nw.oer of »pare  processor-scratchpad» 
•2> Totel processor scratdipada "6x343 
* 4« Nusfcer of Independent nsaory blocks of 16K 
* > Degree of replication of each block 
* 3- Nusfcer of »pare blocke 
•15" Total  aeaory block nodules  -4x3+3 

The nuifcer of prooessor-scratchpada snd asaory HJocka can 
be Incraaaed up to the practical bandwidth Halt of the 
rrocessor-wmory hue  snd  the  I/O bua. 

3.1.1.3. CAPABILITY: Tha order of IflES to 10E6 additions 
per second and the order of 2E14 words of aenory. Three 
processors would be the saallast "sensible" cusfcer. 

3.1.2. EXECUTIVE 
3.1.2.1. MODES OF OPERATION:  AH   imigi—  arc «egwntcd 
Into job steps which are dispatched by a floating for» of 
executive.    Each  fob step occupies one processor fall tin 
while it rune.    Multiprocessing is the aotaal operating 
■ode.    Hultlprofrasnlng of each processor is not 
envisioned. 

3.1.2.2. SOFTVARF ORCANITATION:  I O proosssing is 
quasi-dedicated to one processor triplet (l.o. It can float 
but does so only when aslfunction nskaa it necessary). 
Executive, aonltor, and reconflgurstlor: progrsas an rm 
on an aa-needed baala by each processor triplet «a It 
finishes s job step. 
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3.2, FAULT TOLERANCE 
3.2.1..   FAULTS TOLERATED:   Individual unit.   (e.g. 
pronuor, mmmorj unit, aultlplnur) cm ulfwictlon one 
•' • '!■■ «Ith no restriction on what th« nature of the 
Mlfunctlon 1*.    Error» an aaakad by tha ayataa until It 
nconflturaa Itaalf to a fault-tolarait atat*. 

3.2.2. FAULTS NOT TOUMTEDl  Certain malfunction pain 
vhlch occur »iBultaneomly or close  topether In tlM can 
produc«  loaa of data and «any require  a progran restart. 
Incorrect specifications or prograa Balftmctlona c«n 
defeat tha systea.    Systenatlc hara»an aalfinctlona In 
vhlch  tha ssae oslfunction occur» In two  redundant  unit» 
can defeat tha systen. 

3.2.3. naOllqUESl  Tuo different  concept». 

Flnt  concept:     all processors an  duplexed  for detection. 
All scratchpads an trlplend for aaakad diap capability. 
Single instruction natart.    Graceful dagradatlon of 
processor-scrstchpad groups.    Triplex aaaory unit» with 
dedicated span».    Triplex huaaa with apana. 
Multlplaxan  isolate buses  froa failed groups of units. 

Second concept:    procaaaor~scratchpad units an organliad 
Into groups of thna under software control.     Each   looks 
for dlssgreepent.    If dlaagnanant occun, contlnua 
naming to and of Job step, than antar nconflguratlon 
prograa.    Graceful degradation of Individual 
processor-scratchpad units  (rathar than groups of thna 
scratchpad» and two processors aa In flrat concept). 
Triplex aeBory units with non-dedlcatcd apana.    Triplex 
buses with apana.    Multiplexer» laolat« buses froa failed 
Individual unite (rathar than group» as In flnt concept). 

In both concepts, softwan configuration control la used, 
which la valid aa long aa a working processor group, 
■aaory group, and bua-aultlpleaar group an available. 
Moltlp.aaan participate In configuration control. 

3.3. IkVELTT:  Single  instruction natart.     Absence of 
Interrupt.« and prograa rollback».    Distributed nonitor and 
neonflguittlon functions.    Use of aultlplaxen to isolste 
hue and unit aalfimctlona.    Fault-tolerant clock. 
Hierarchical systea with feult  tolerance extended Into 
■nt>»yat*aa. 

3.A.    INFLUENCES! Rapid eaargence of LSI aenoriea and 
proceaaon ha» encoureged use of replication and 
partitioning with al^ile. Identical unite.    Apollo 
Guidance Coaputer experience proapted ellalnatlon of 
Intempta and rollback for the sake of prograa 
verification.    Carter and Bourldua for reliability 
aodel».    Aviiiecl»  for concepts of fault  tolerance. 

3.5.    HARD CORE: As»ualng that hard eon aeana 
non-redundant hardwan, then la no hard con In thla 
uyateu.    Configuration control 1» a software  function 
ualng the avrllable hardwan to configure the -/ya'ia. 

».     JUSTIFICATION 
4.1.    RELIABILITY EVALUATION: So far aoatly geared toward 
FO-FO-FS.    Soae ProbabllUtlc snslysis.    No reliability 
projection» a»   jet since hardwan ha» not been eelected 
end failure ratea are thenfon not known. 

«.2.    COMPLETENESS OF EVALUATION: Hardware not »elected, 
hence failure rate not known. 

A.3.    OVERHEAD: About 801 of the eyatea la devoted to the 
achievement of fault tolerance. 

A.A.    APPLICABILITY: Thla concept le applicable to aoet 
digital control envlronaant», depending on the t   nomic» 
of the application r-]ardlag fault tolerance. 

A.S.    EXTENDABILITY:    ExtendabUlty probably does not 
apply, since the ayaten Is etlll loosely rreclfled. 

A.6.    CRITICALITIEJ: The ayatea la aoet cost-effective 
coapared to ojier ayateaa when the nuafcer of faulte to be 
tolerated la high and when ultre-hlgh reliability la 
sought.    Pc    a Ingle-fault tolerance and lea» high 
reliability ,  the eyatea configuration might be changed. 

A.7.     IMPLIi UIONS:  In an ultra-high reliability 
application,  specifications and prograaa aust be proven to 
be correct.    In thle system, applications prograaaan must 
also aegaenf   their prograaa into abort Job steps. 

S.     CONCLUSIOKS 
5.1.1    STATUS: This 1» a research project with a 
bnadboard experlaental unit almost completed. 

5.2. EXPERIENCE: None to report to date. 

5.3. FUTURE: Son parta of the ayatea still need to be 
designed end prototyped. Exaperlaente net be conducted on 
» full-»cale prototype ayetea. 

5.A.    ADVANCES:    The following will be beneficial. 

»Deuonatrated field experience with vatlous feult-tolerent 
concept». 

•Practical techniques for generating cornet prograaa. 

•Practical way» of verifying th»t a prograa la correct. 

6.     COMMENTS 

The questionnaire waa good In the senae of being thorough, 
but In ay heata to respond to It I wonder If I have 
omitted significant aaterlal.    An additional coiMnt about 
thla ayatea la that It haa been configured «round 
Integrated proceeaon and aeaorlea which rcaesule those 
that en available today. Tha hardwan efficiency nuafcer 
given In Section A.3 le very misleading, because the coat 
of the herduan can be the leaat important coat of the 
ayatea. If the hardwan 1» conventional and not overly 
expensive.    Thla ayetea la expected to aave In coat» of 
systen Intgegratlon, prograa verification, and operational 
reliability experience.    These saving» may be far In 
excess of the hardwan coat. 

Aa an additional note,  the replicated approach used hen 
give» coverage of  1.0  for single malfunctions.    Host coded 
approaches generally give lower coverage, difficult to 
quantify, and often lapoealble to verify In the field. 

ifllrfMl 
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P...Processor 
S...Scretchped aaaory 
M...H«s«>ry aodule 
X...Multiplexer 

SSI...Subsystea Interface 
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simvrt or rAiitT-Toi.E«AHT cowun« SYSTEMS 

^L!" "i1"' In"""rtc., Inc., 701 Concord Avenu.. 
OÄrldl««, Muaachuntta 02lja, March  1973, 

I,    IDCRTinCATION 
1.1. NAtCi Iha ayatep la nfarrad to aa althar tha 
Intanatrlea Hnltlprocaaaor, or tha Space Station Co«putar. 

1.2. USTORSIMLrTT: Intarvtrlca, Inc. 

1.3. Surwn: NASA Kanaad Spacacraft Cantar, Houaton, Tai. 

U*.    PARTKIPASTS:    J, 5. Millar, U. H. Vandavar, S.  F. 
Stantan, A. t. Avaklan, and A. L. Koaaala. 

1.5. STA»T! Tha project batan In Juna,   1'169, and contlnuad 
for ten aontha.    Aftar a thtrtaan-Mnth pirlod of 
Inactivity, tha design affort uaa raauMd In :iay,  197!. 

1.6. COMPLETlOMi tha aacond phaaa of tha daalgn vaa 
coaplatad, and a raport publlahad. In Saptarkar,  1972. 

1.7. B1BLICCRAPHY: 
•J. S. Millar. D. J. Uckly, A. I. Koa«ala, and J, A. 
sapontro,    Final » »port—Multlprocaaaor Coa^iutar Syatar 
S^,:,!"""""1"' Inc" "*»"«•• «"■.. M«rch,  1970. 
N A)-4123ö 

•J. S. Millar, w. H. Vandavar, S. F, Stantan, A.  E. 
A»aklar, and A, L. Ko.aala, "Final Eaport- '.nulnaarlna 
study for tha Functional Daalpn of a Multli rocaaaor 

««*'i,^^"1"' ,nc•• c«*"':»«. "»••.. Saptartar, lyti»     N7J-1Ü235 

«J. S. Millar, and W. H. Vandavar, "Daaliin Faatur». rf an 
Aaroapaca Hultlprocaaaor", Intatnatlcmjl Hori<.'-ip on 
Coa^utar Archltectura, Juna 26-2«,  1973. Crjnobla, Franca. 

2.     MOTIVATION 
2.1. PURPOSE:  Tha ayate» la orlrnttd tmrarda tha 
(aural-purooaa coirputatlcnal raqulraaanta of a aamad, 
ortltlng apaca atatlon •    about tha 19» tlw parlod.    Ita 
aqwctad ua«. Includa raa.-tl» atatlon control and data 
acquisition  functlcna, plua Interactive and batch data 
prcca Ja< np opant lona. 

2.2. PHTSICAi ENVIRONHEST:    Tha prlnary ^a.lon for -hlch 
tha ayata« M daalgmd la a apacaborna one.    H»a«r, tha 

II 5 'L    J U. "^W to th" '»«lonal apaclflcatlona, 
and tha phyalcal anaironaant conalderatlona have had Uttla 
Impact on tha conflpnratlcn, 

2.3. C0IWTI1K: EIlVmoiOElT.    A11 ^onnect^d alennta will 
ba aboard tha apaca atatlon.    Co^onj-    „f tha computer 
"111 ba Interconnected by dedicated b aw.    Tandnala 
dlaplaya, and aanaon will ba attach! to tha ayate« by 
«eana of a Bnltlplaaad data bua. 

2.A.    C0MPUT1HC OBJECTIVES: T1.a parfora«nca raqulra»nta 
wara rather aoft.    General objactlvaa choaan for tha ayata. 
ware raal-tlaa raaponaa of 5 ■tlllaaconda or batter, and an 
equivalent procaaalng rate of two dlllon addltlona per 
rt^ilfü * t',r««-;'l"e:"»' configuration.    Conflpuratlon 
ff.Klhllity waa an la^ortant oblactlve of the daalgn. 

2.5.    «EUABILITY OBJECTIVES! Berauae no hardware waa 
daalgnad, no .pacific rallablllt,  raqulrennta ware 
I-poaad.    Tha n« of tha ayatea aa tha central computer for 
tha apace atatlon Ufe-aupport, trajectory, attitude, and 
ITlJüT'iZ?!?^!*"» f,"«1',"■ Pl«"' »■•«'y a^haala upon 
a daalgn which allowa contlnuad operation, even If ct 
reduced parforaance. In the preaance of faulte.    Although 
It la eapacted that brief outage, of the ayate* win be 

!??*!£??; y? •t;rof!' h"* b~I, «"eWI " avoldmca of all alngla-polat fallora nodca, 

U6«!?!!!^1^ VA,,,Ä"LITTl    !*• «Ulplldty of procaaaora 
la utlllaed to continue operation when proceaac      fall 
Fallona of proceaaor. thua reduce the peak pro      alnr 
capacity. Stallarly. a aeaory aultlplaalng ach.K. permlta 
prorra. oad data aoblllty to wort arotaid loaa of aaaory 
^Ua.    lecaaaed «ultlple.ln, activity which followa 
"aaealof mmug »ita fro. aervlce alao degrade, avxlau» 
parfanaaea  Irnala.    Wether failure, came actual 
«erradatiaa la aanrlca depende upon tha aaoiait of exceaa 
capacity that »aa provided. 

I'..:. P?W-T,ES' '"•»tlea fro. faulty operation are 
d fflcult to eaaaa. thi. earl/ In the apic. at«!« 
Planning.    However, loaa of life la conceivably poaalble 
but failara to achieve H ..ion objactlvea la a aorallkaiy 
reault of Mlparfotance. "«aiy 

2.8. COHSTRAIHTSi The conatralnta lapoaed by the apace 
atatlon envlronaent will influence hardware daalgn, but 
have not affected the functional deaipi apptadably. 

^?;-,I^',0rrf,! 1* •***•* «»POMot «nd connection 
reliability will drive dadalona relative to the level of 
eaceaa proceaaor, aaaory, and bua capability to ba provided 
to achieve overall ayatan availability goala. 

3.     DESCmPT'ON 
3.1.    ABCHITiCniRE 
3.1.1.    COM'TCURATIONS 
3.1.1.1. 'NTERCOITOEatvmi The baaic configuration la 
ahown in Figure 1.    The internal configuration of a 
proceaaor unit, .honing duplicated eleml a and 
coaparatora, la given in Figure 2. 

3.1.1.2. RANCEt Three to eight proceaaora with at leait aa 
Mmry aodulea aa procaaaora, and preferably aora to 
dlrtnlah conflict frequency.    Given an envlronaent where 
error dejection waa laportnt but error recovery beyond 
Inatructlon retry waa laaa laportant. aa few aa one of each 
vwdule can for. a ayataa. 

3.1.1.3. CAPkBlUIY: The effective coaputing power of a 
ona-proceaaor ayate. la about 0.6 Mlpa, or the approxlaate 
equivalent of a 360/65. -pp™«»™ia 

3.1.2.    EXECUTIVE 
3.1.2.1. MODES OF OPERATION: Softwate execution ia baaed 
on a three-priority diapatching algorltha; of highest 
priority are the functlona which require real-tl» 
re.pon.a.    Theae fwctiona are kept abort.    Middle priority 
proceaaea m.v ba longer, but are interrupted only by 
real-tlaa proceaaea.    Leg batch-type proceaaea are 
aaalgned love.t priority, and eff.ctively run in a 
backgroiaid aoda. 

3.1.2.2. SOFTVARE ORCANIZATIOH. The ayatea aoftwara can 
r« on any or multiple pneeaaora. Critldal accticna are 
protected by interlocka to avoid disruption, due to 
aultlproceaa interference.    Ewcutive and taw ary aoftwara 
la anred in duplicate, und.-.- the harc^-e-i   ,la»ntad 
Inforaatlon protection aeheie outlined belw.    Thua, alngle 
faulte, even those which disable an entire aaaory ^«le 
cannot prevent access to or operation of tha ayataa. 

3.2.     FAULT TOLERANCE 

l3;2^;. rfS:" I0""*"1" ^preaaly .tt.,.t.d in th. deaign 
c»»« and recovery fro« every alngle feult.    In thi. 
conteat, a aacond fault 1. one which occur, before tha 
ayataa recovery action, have been collated tor th« firat 
fault.    Proceaaora, «aaoriaa, and buaee uy be taaovad fro. 
oper.tlon aa a raault of famta.    P.rfonanc. capability U 
correspondingly reduced. "paaxiity ia 

U^^T^ Nff; T0LE,,"I!D! Synchronlaed doubl, faulte in 
Independent elew.ta are not tolerated.    H.«ry fault, 
which effect infmaetion for which duplicate atorage waa 
Judged unieceaaar, are no, tolerated, although the ei.e of 
thi. aat o>  Inforaatlon ia totally under ua.r con,«!. 
Flaw, 1„ ayate. aoftwara aay not be tolerated, but faulte 
In applicationa aoftwara aay adveraely affect other 
proce.aoa only throuah disruption of data they share 

ni-Sj^uui^T' ''•"«lo" •' Inatructlon loopa, 
aubacriptbounda violation, aaceaaiva proceaaor tiaTuaaga, 
end onrtiae inhibition of interruptiona. 

3.2.3.    TECHNIQUES:    f m detection and recover, are baaed 
on redundency of inforaetion and capability.    Proceaaor 
unite are co^riaed of duplicate el.aanta. who., external 
signal, are coaparad.    Thia Wro.* aaxlalza.  the error 
detection coverage, and adnial.aa the extra deaign needed 

tl.ZrZ'i    A 1"fo~tl■," •h~« I«' cannot b. tol.r.t.d 
U atored In duplicate,    Proceaaor lod storage  (Ml) ia 
all duplexed.    Inforaetion in aaln aawry (M2) 1. 

'lllll??1',.**1."" by "« •I-dfiction.    A novel u.« of 
d..erlptor-b«.d atorage aanageaent allow, .uch duplication 
to be lapleaanied «itlrely within the h.rdwat«.    siftw.I, 
"ay be wrltte. without need for conaideration of the 
detection or recovery probleaa.    Duplicated buaea aupport 
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coBparlaon between Independent copies  for coeprehenelve 
error detection In the cases where dupllrate storege la 
specified, and for error detection of transfers othervlae. 
The lepleaentetlon of duplication In M2 causes coplea to be 
kept In distinct unite, so that even catastrophic failure 
of en entire unit can be tolerated. The neaoty mltlplexlng 
technique  Incorporated to reduce the totsl anomc of H2 
required for a given perforaance level sllows progran and 
data segments  to be Bovcd to new locations when H2 failures 
occur. 

3.3. NOVELTY: With respect to fault-toi^.-ncc, e «Jor 
attenpt has been aade to Isolate application software fron 
the effects of undetected hardware errors (by detecting as 
■sny as feasible), and froa the necessity to devote 
explicit attention to survival following detected error (by 
providing adsquitc hardware support).    With respect to 
architecture, a high-level Instruction ast hss been 
developed, tailored to the needs of high-order language 
coapllers, which are to bs used to prepare ell the software 
executed In the systea.    A novel approach to a 
descriptor-based, tagged-word design has been taken. In 
which the Hultlcs paging strategy has been applied for the 
first tine to varlible-slte pages (Burroughs* segaents), s 
unified stack data for-iat hss been utilised, and tag-bits 
are Incorporated Into ill necessary locations at s cost of 
st most one bit.    Noet words in the systea need not expend 
bits on tags.    Variable-length Instructions are used to 
achieve aexlaua conciseness of progrsa code. 

3.4. INFLUENCES: The aajor Influence on Instructlon- 
foraat and stack-organised processing caae froti ths 
Burroughs B6700.    The eaphasls on hardwsre-laplewnted 
error detection and recovery resulted froa adverse 
experience In atteaptlng to provide these capabilities 
through software In the Apollo on-bosrd guidance coi^uter 
software development. 

3.5. HARD-CORE: The only hard-core element In the systea 
Is the I/O controller.    Because no degraded level of I/O 
capability seeaed tolerable, the I/O controller Is 
lapleaented with high Internal redundancy, so ss to be 
"failure proof*'. 

♦.     JUSTIFICATION 
4.1. RELIABILITY EVALUATION:  Fault-tolerance  le assessed 
by thought experiments, rather then simulations or other 
aechsnical means.    Reliability estiaates cannot be aade 
until hardwure design commences. 

4.2. COMPLETENESS OF EVALUATION: Evaluation consists of 
mental exercises.    More rigorous exploration Bust 
necessarily await hardware design. 

4.3. OVERHEAD: Because the hardware iw.   :aants the bulk of 
the fault-tolerance provisions, very little pries is paid 
for this cr .ability in tsras of perforaance. Segregation of 
processor local storsge in Ml units to allow an alternate 
processor ta r-scue a failed one et any point in the 
execution ot o:i instruction lengthens transit tines 
somewhat.    The hardware coat consists of a factor of two in 
processor costs, plus a bit for cosparison circuits and 
error-control logic.   Hesory costs    are increased by ths 
amount that duplication of selected data requires extra 
storage capacity. 

4.4. APPLICABILITY: Ths systea described is applicable to 
sny application whsre fault-tolerance la important.    The 
eaphsais on real-time capability makes it especially 
suitable for aircraft or process control applications. 

4.5. EXTENDABILITY: Performance can be increaaed by use of 
fester components; memory sisss may be increaaed, etc.    It 
Is not believed that additional emphasis on fault-tolerance 
would be particularly productive. 

4.6. CRITICALITIES: The absence of s rigid sat of 
rr.qulrenents has allowed a reasonable trade-off between 
conflicting factors.    The design has been driven strongly 
oily by the  fault-tolerance requirements. 

4.7. IMPLICATIONS: The systea is del   gned sroind the 
concept thst sll software for the machine will be produced 
by correct compilers, which participate in the 
lapleaentation and enforcement of operating system and 
pregraasdng ground rulee.    Use of high-level language for 
all software development le increasingly recognised sa a 
valuable means of reducing software costs.    However, the 
further advantages which can be achieved by intimate 
connections between compiler code-generation and systsa 
requirements have not been exploited. 

5.  CONCLUSIONS 
5.1. STATUS: The functional design is complete. 

5.2. EXPERIENCE: The design experience hss been completely 
positive to dste; the objectives and the approach continue 
to appear valid. 

5.3. FUTURE: The project is not dormant due to NASA 
emphasis on the space shuttle p.ograa, which haa caused 
space station planning to be * <avily curtailed. Other 
sources for support of desifcn continuation are being 
sought. 

tV"r.lln, Manory Hodul.i 
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SITIVEY OF  FAULT TOLKRANT f.OM'ITINC SYSTEMS 

W,   C.   Rldrw:-y   III,  Bell  Laba,  Mndlsoo MJ,  July   1173 

1.     IDEKTIFICATION 
1.1 NAhtE;     SAFECVARTi Data Proctaaor 

1.2 RF.SPONSIBILin:    Weateni Electric and BTL 

1.3 SI'PPOKT:  I,  S. Arwy 

1.4 PARTICIPA'JTS: kVatem Electric  CPrlm« Contractor), 
Bell Laboratovlea  (reaponalble for:    «ysteBi dealpi,  dealpn 
of «oat dlplf.al eQulpmnt; and deslfned «one  ^vatem 
aoftware), I'nlvac (dealfned centeral processor   -id aoite 
dlapnoatlc proprana),  IBM (dealgncd BOWT syataw ».■•ftware), 
LocWheed  (dcalpned syaten core mcnorlcfi). 

2.5 STATiT:     Dealpi effort   for the ABM Syatetn wan  started 
In   1963. 

1.6 COKPLETIOS:     Hardware  deaipm  la  easentlally  complete; 
Softvt.re la In the final atapea of development. 

1.7 BlbLIOCRAPHY:     (relevant   to  Fault  Tolerance) 
* D.   B.   Antotronp,  "A Deductive Method  for Sliiulatlng 
FauKa  In Loplc tirculta," IEEE Trannactiona on Cowputer«, 
Vol.   C-21,  No.   5P  pp  464-71, May  1972. 

* R,  G,  South, "A Syiter for Siiwilatinp Faulta in Larpe 
Loflc Clrcuita,"  (Talk plven at Lehlph I'nlveraity WorVahop 
on Fault Detection and Dtapnoala  In Dlpltal Systena, 
iX'ceirbcr 8,  1971). 

* J,  R.  Hahn, "A Maintenance Approach  for a Larpe Corputer 
Üyatem,"  (Talk  piven at lehiph Tnlveralty Wort.ahop on Fault 
Detection  and Diapnoaifl   in Dlpital  Syatens,  Decei*er R, 
1971). 

?,     MOTIVATION 
2.1 PURPOSE:     Pjirt  of Misalle  Defense System 

2.2 PHYSICAL  ENVinONMENTl     Croiaid  Rased 

2.3 COKPCTIKC  !NVIRnK?It!:T:     Interactive  -   real   tire  - 
self-contained. 

2.4 COMPL'TISC OBJECTIVKf.!     'o  rirovidf-   real-tliv  ('otectior, 
discrimination,   trackinp,  and  puidance   furctior.»  required 
In  a mlasle  defense system. 

2.5 RELIABILITY  OBJECTIVES:     To be  able   to withstand most 
system faults  and still perform the defense r.lssion. 

2.6 DYNAMIC  VARIABILITY;     Desipn allows   praceful 
depradation. 

2.7 PENALTIES:   Loss  of  defense  capability. 

2,R    CONSTRAINTS!     Must  operate   in  real-titx   in nuclear 
environment   (e.p., hiph nuclear radiation   levels and pround 
.ihock environment). 

2,r-     TRADEOFFS:     l'sed  (N +  1)   redundancy  and on-line 
automatic dlapnoatics  instead of full equipment redundancy. 

3,     SYSTEM DESCPIPTION 
3.I     ARCMITECTURE 
3.1.1 CONFICURATIONS 
3.1.1.1 INTERCONNECTIVITY:     See  Fipure   1. 

3.1.1.2 RANCE:     As  noted  in  Figure   1 
3.1.1.3 CAPABILITY:     Cltfttfltd 

3.1.2 EXECirrlVE 
3.1.2.1    MODES:     Independent nmcpssora «re not multi- 
propramnable; however,  the collective syatem Is 
multlpropramncble and nultlproceaslnp.    There is no 
maatcr-Blave relationship 'jetween proceaaora,  tlierefore no 
hardcore  (i.e., nonredundant critical hardware)  exiats. 
Proprana  are aepnented into taaks which are dlspntdted by a 
scheduler. 

Software Orpanizatlon!    1/0 processing is performed 
asynchronously by a specific attached processor (known aa 
I/O contrcllert).    Executive, nonltori, diagnoatics, and 
other prograaa are run by the central proceaaora aa needed 
once prior tasks arc cnrpleted. 

3.2     FAULT TOLERANCE 
3.2.1 FAULTS  TOLERATED!     The system is  designed  to 
withstand both  trnnsient   and hard  faults  provided  the 
problems in 3.2.2 are not met, 

3.2.2 FAULTS NOT TOLERATED:     The system can meet 
objectives unless either multiple faulta occur 
simultaneously In enough different equipment, so that a 
viable syatem ia not available, or transient  faults  (which 
«re not Isolated)  affect  critical units at an abnormallv 
high race. 

3.2.3 TECHNIQUES:     As shown  in  Figure  1,  multiple  units 
exist  for each major type of equipment  (e.*., memory).  One 
of each  type of these multiple units is included aa a upare 
which iwy be substituted for any faulty unit.     I.e.,  there 

•" wilts of each type, whare "~" Is  the number 
required to perform the tactical mission. 

* System Reconfiguration of faulty units is controlled by 
special   redundant  status  units  described  In Section   3,3. 

* A special maintenance subsystem Is employed which unes a 
separate maintenance path into oil major replaters  (both 
data and control)  In the system (see Figure 2).     This 
subsystem is used to bootstrap the main system for normal 
initialization,  to detect  faults  (via routine diagnostics), 
to Isolate  faults  (using fault dictionaries},  and to 
perform system recovery by detecting any catastrophic 
failure and relnltlalltlnp the systeir. 

* Real-time  diagnostics  «re  periodically  scheduled   to 
detect equipment  failures. 

* Error detection and response festures «re designed Into 
the normal system software.    These features Include 
defensive proprsmmlnp (e.p., data reasonableness  checks), 
device managing  (e.g., to Isolate faulty units),  Initiating 
system rollhack  to a previously determined state,  end 
calling for the maintenance aubsyatem to initiate complete 
system recovery  (I.e.,  rollback  to Initial state) 

* Redundant equipment  1» used (during routine surveillance 
periods)  to play  large scale system exercises against  the 
on-line system^    These exercises are valuable  in uncovering 
errors, as well as malntalninp the skill  level of operators 
(«nd thus mlnimizinp the possibility of manual errors). 

* Parity la used to check data across Interfaces and In 
memories, 

* Errpr-detectlnp codes are used to check the transfer of 
critical data between some subsystems, 

* The system master clock employs triple-modulftr redundancy 
to irnerite all rfl^or clock rates. 

3.3    NOVELTY:    The system has■two significantly unique 
fault-tolerant desipn features as described below. 

'i.3.1    The  first  feature Is the equipment stitus unit   (SI") 
which controls the  total system hardware configuration. 
The SU has the  followlnp characteristics and capabilities. 

* There are two Identicsl SU, either of which nsy be 
designated as  the master unit. 

* All  conmmlcatlon p«th» between equipments  (e.g., 
processor «nd memories)  are controlled by the SU. 

* By enabling (or disabling)  the various comnioilcatlon 
paths,  the SU can split  the system Into two separate 
computers  (e.g.,  one con be used to exercise  the other). 
Individual equipment  can also be Isolated, if necessary,  to 
allow diagnostics to be performed. 

* The error detection circuits In esch equipment nend 
reports to the SU.    These reports are used by aoftware  to 
determine what equipment should have diagnostics perforwd, 
ns well as to make reconfiguration determinations, 

* The SU enables special  test paths In each equipment ao 
that diapnostlcs may he performed as described in  3.3,2, 

3.3,2    The second unique fault-tolerant design  feature 
centers around the maintenance subsystem. The 
chsrscterlstlcs and capabilities of this subsystem arc: 
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SI'RVF.Y OF  rAULT-TOLERAHT  COWt*TIwC SYSTEMS 

Prof.  Jeroine It,  Saltzer 
I-roject  VAC,  >'1T,  CfUlbrld|U,  I'A,,   April   1173 

I. iPE;:TiriCATioN 
1.1, HAKE: Multlce,  for KULTlplamd  [nfomation and 
Coinpucittf!  Servlc*. 

1.2*   RESPDNSIRTLin;  MaiBachuse'ts   InBtltu»-«!  of  Teclmolopy, 
Project  MAC,   Corruter  Syater*  Ke3*«r'-h  ^'.vision.    A«  of 
1/71,   a Honeywell  product, 

1,3. SITPORT: Advanced Keaearch Projects Agency via Office 
o' Naval  researcli. 

I,«,   PAPT1CTPANTS:  KIT  Project  MAC|   Honeywell  Cartirldpe 
Infonnatlon Syatere  laboratory   (formerly   Cltl General 
Itlectrlc  Company  Corputer I'epartment).   Also Bell  Telephone 
Laboratories,   196S-M. 

1.5, START;   Planning  In   l^T-i,   corrplete  proposal   in   llf.S. 

1.6, COMPLETION]   Syster-  first  uaable  In   196R,  available   for 
public use  at  H.I.T.   In   1969,  no«  coirmerclally  available. 
Research continuing, 

1.7, BIBUOCRAPHYt 
•The  Multiplexed  Information  and Computing Service: 
PTopr«I«t!lC^8,   Manual,  H.I.T.   "roject  MAC,  Rev.   13,   1973. 

*F.J.   Corbato,  et  al..  Session **:  A new  remote  accessed 
ran-Mnchlne  svstem,  AFlPS  Conf.   Proc,   27,   (FJCr  1965), 
Spartan  Pooks,  UashlnFton  P.C.,   pp,   1^5-2^7. 

•F,J, Corbato, J.II. Saltier, and C.T, Cllngen, "Multlca -- 
the first seven vears," AFIPS Conf, Proc, iO, (SJCC 1972), 
AFlPS  Preis,  Montvaie,  N.J.,   pp.   571-5R3. 

•R.I, Organlck, Tlie Multics System: an bxaminatlor of Its 
Structure,  Ml   Press,   1972, 

2, MOTIVATION 
2.1. Pl'RPOSE:   Multlcs   is  a prototvpe  of   the  federal-purpose 
computer  utility.     It   Is  Intended  to allow  interactive 
access   to  a  shared  Information baae,  permit  use of  general 
purpose  pTOgrffümlng,  and be  eKpandable  and evolvable, 
PellaMlltv  and  fault   tolerance were  considered  to be  only 
two  of  many  overlapping and  conflictlnr objectives. 

2.2. PHYSICAL  ENVIRONMENT:   HultUs   Is  deslpned  fon use   in  a 
pround-Hased data  proccislnR center. 

2.3. COKPrTINC ENVIRONMENT:  Multlcs   Is  api.roached by 
interactive displays and typewriter terminals.    For 
large-voluae data processing applications, card    printer, 
and magnet! :  ta.ie  peripherals  are  provided,  bui   all   job 
Initiation  la  done  Interactively.     Terminals  are  attached 
directly,  via the  Hial-up  telephone  network,  and via  the 
ARPA network. 

2.4. COMPUTING OBJECTIVES:   Multlcs  nrovldes  a wine  range  of 
software  services,   languages,  and  tools   for constructinp 
profrana  and subsystems.     It   provides   interactive  response 
to small  requests at  the  level of  2 seconds average,  5 
seconds   for 9QT of  requests,     Larper corpute-bound  requests 
are scheduled at a lower nrloritv.    With  initial   (196Ä) 
hardware,   configurations  supporting  fro»  10  to   120 
simultaneous  users  can be  constructc.     Hardware  Installed 
in   fall   1972   Increases   the  potential   limit   to about  400 
users,   and  .ilso  lorprovpf-   response  tine.     Software  design 
range   Is   from  10  to   W00  users, 

2.5. RELIABILITY OBJECTIVES)  The primary reliability 
objective  concerns   Integrity of on-line   file  storage. 
IdenUy,   the  user can  rely  on  the  system to have a  perfect 
memory   'or his   'lies,     A  secondarv  availability  objective 
is   that   the  system operate  continuously,  on  a  24-hour per 
day basis.    Recovery tine  following a failure is permitted 
to have  a wide  variation,  but  an  average  on  the order of  a 
few minutes.    "hjectlveB  such  as   1007,  continued operation 
In  the   'ice of  anv single   failure were  not  attempted. 

2.6, DYNAMIC VARIABILITY:  An   individual   Installation  nay 
choose   the  fraction of  system resources   to be  used   for   file 
backup operation,   thereby  providing, varyin,'  degree«  of 
Traxlrrum aetback   for  its  users   foll»*lng the worst   possible 
kind of  a system crash.     If 205 of  resources   ere  uoed   for 
backup,  a maximum of   y> minutes  of work  can  be   lost  by  a 
system crash.     Smaller quantities  of backup  can  produce 
larper  setbacks.   The  desipn  1» multiprocessor,   to permit 
restart with  a smaller,   lower-performance  conflpuratlon, 
without waltlnp  for hardware  to be  repaired. 

2.7. PENALTIES)   Penalty depends  on  the  ranee  of 
applications   for which   the  svstem  Is belnp  used.     In  the 
M,I,T,  environment,   loss  of  stored  files  or  lack   of  system 
availability  nay  mean  disruption of  administrative   and 
denartrental  operations which  use  the  svater.     For 
rropramming  use,   the penalty   i^  small. 

2,R,   COSSTPAlKTSl  Multlcs   is  intended  to he economlcaUv 
competitive with  other cormerclal   and scientific  d^ta 
processlnp  systems.     No unusual   physical   constraints  exist. 

1.   DESCRIPTION 
3.1.  ARCHITECTURF 
3,1,1.   rONFlOCRATIONS 
3.1.1.1. INTERCONNECTIVIT¥)    The hardware  (Honevwell 
600/(100«)   1«  a multiprocessor,  multimemory  desipn  In which 
each  processor  Is  connected bv  a separate  cable   to each 
memory box,     I/o controllers  are  attached  to  the  nenory 
boxes  In  the  same wav  as  nrocessors, 

3.1.1.2. RAN0E:     Software  perrrlts   l-W  procesfors,   128K  to 
16M  36-bIl words without  change.     Small  chanpea  would 
pen-It  essentially  unlimited   (e.g.,   10F14 words)   memory 
sizes.  Current  hardware  permits   1-7 processor»,   12flK  to 2M 
3h-blt words.     Small   change»   In hardware would permit  up  to 
W'M words. 

3.1.1.3. CAPABILITY:   Honeywell  645  CPU  runs  at   330,000 
Instructions/sec,   about half  the speed  of  a   360/65. 
lioneyweU MfiO  CIT  Is  exacted to run  about   IH 
Instructions/sec,  somewhere between a   370/155  and  a 
370/165, 

3.1.2,  EXECUTIVE 
3.1.2.1. MODES:  System permits user-constructed cooperative 
processes, utUlrlnp multiproce' >orB and multlprognumlnp. 
The multiple processors run Independently and autonomously 
rather than In a master/slave procsssor organization. 

3.1.2.2. SOFTWARE:   The system software  appeare   to each  user 
as  s  private  supervisor  residing within his  personal 
address space.    A small section of the supervisor lo core 
resident;  the rest of the supervisor as well as all user 
proprans and data are paped. All progratm,  includinp the 
core resVi.it supervisor, are In the virtual memory. 

3.2.   FAULT TOLERANCF. 
3.2.1. FAH.TS TOLF-RATEO:  All   forms  of hardware  and software 
failures which are severe enouph to cause a system crash 
result  In a service outage ranging fro» a few minutes  to a 
few hours,   followed bv  availability  of  a  reinitialized 
system.    All files are preserved, but computations in 
progress mjst be restarted from the beginning or from the 
!   it   checkpol it which   the  user has  provided.     If   the 
operations staff haa been well-orpanlied in protecting tape 
copies,  U is possible to completely and outomaticnlly 
recover even  from a  fire which destroys the computer system 
{given enough  tine  to Install  replacement hardware). 

3.2.2. FAULTS  NOT  TOLERATED:   Failures  Involving  physical 
destruction of on-line storage devices  (e.p.,  diak head 
crashes)  are tolerated, but con result  In outage of up to 
several hours while reconstruction of the on-line  files 
from hack  up  coplea  la  performed. 

3.2.3. TECHNIQUES:   Backup  copying:  When  an on-line   file  is 
created, within  a half  an hour,  a backup  copy  la 
automatically made on a journal tape.    Once each day, an 
extra set of  journal  tapes are independently written, 
contalnlnp copies of all  file» created alnce the previous 
day.    Once each week, a logical copy of every on-line  file 
Is made onto tape,  to limit  the nui*er of  journal  tapeo 
which must be scanned to reconstruct  the on-line  files. 
fTh« tlMs of  1/2 hour,   I day and  I week    .re adjustable by 
the Installation to local needs.) 
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•Salvaplnp:     Following ■ system crMh  tor any   reason,  a 
sMvaper progrui inspect! the condition of all on-line 
file» and dlrectoriaa, and reports any uncorrectable 
InconaUtenciee or Irregularities in content and fontat.    A 
small amount  of redundancy la uaed In directory structurea, 
to assist  tbc ealvager. 
*On-line  aalvaplnp:     Whenever an  Inconsistent   directory 
entry ia dlacovered during normal operation, a version of 
the salvairer la iHedlately invoked to correct  the 
situation.    Normally, service ia not interrupted. 
Retrieval:     If the salvager finds it iapoasible to 
reconstruct one or a few fllea, but  the ntartier is enall 
enough   that   the expense  of a complete  file syatec 
reconstruction  fron backup  tape»  is  not warranted,   the  user 
of the  file Is notified, and he iray Initiate    retrieval of 
hla  file  fro» the backup or Journal tapea.    Retrieval of 
older  coplpn  nay alao be  requested by  the user  If he 
accidentally damages or deletes the current on-line copy of 
a file. 
Continuous Operation:     The systeir is  dynamics1'y 
reconfigurshle, which means that proceasors and wmory 
boxes  may be  added or  removed while  the  syster la  running  A 
production load.    This  technique pcrvlt» both hardware and 
software  maintenance  to be performed on detached  uuita. 
Since  in addition  :l<« software syster may be losded onto 
any available cmfl^ration of {.roceaaon and nemory boxes, 
recovery feUoviiil! a  .olid hardware failure can be very 
rapid. 

3.3. NOVF.LTYi The primary novelty of Multlc« in thl» area 
is that  the reliability objectlvea have been integrated 
Into a general-purpoee computer programming eyntem which 
also neeta a wide variety of other objectives.    Aa  far a« 
la known, Hultics Is  the first general nurpose syster to 
permit dynamic reconfiguration of rrocesaors and remory. 

3.4. INFLUENCES:  Experience  in  designing and using  the 
Compatible Time  Sharing System for the  IBM  70^4  nrovided 
the moat obvious Influence*    The nultlproceasnr 
organization waa   Influenced by  the  Burroughs  DB25  cop^uter 
aystem. 

4.     JUSTIFICATION 
4.1. RKLIAB1LITY  EVALUATION:   In  an pper»tloral  environment 
at M.I.T.   for several years,  the rati of  lost  of  files 
because of system failures has been low enougi   to be 
acceptable   to  the uaer  cormunlty, but has not L ?en 
evaluated.    The average time down when a failure c-curs  la 
about  10-15 minutes. 

4.2. OVERHEAD: Hardware neglbly r^uidant.    '.ariablc 
software overhead for backup.     (See 2.6.) 

4.7.     IMPLICATIONS:   For  the  fi\-. backup   procedure  to be 
effective,  it ia essential that the covnuter operating 
staff be highly organized, and that the operations 
mnnagement  thoroughly understand ita responsihllity In 
helping safeguard uaer files stored on-line.     (For example, 
sloppy tap« atorage management cannot be tolerated.) 

5,     CONCLUSIONS 
5.1. STATUS: "Hie system has been operational at M.I.T, for 
4 years and is the primary tine-aharing aystem there. It U 
also In use at   3 other sites, on order at several others. 

5.2. CXPERIENCP: The design seems to be adequate  for the 
quantity of storage currently being managed  (ion million 
worda),  but  maximum reload  til**  are  proportional   to  this 
quantity of on-line storsge and are near the  limit of 
tolerance.    A revised reload atrate^y employing parallel 
procesaes  is expected to provide an order of magnitude 
Increase in the practical storage quantity  llTrit. 

5.3. FUTURE;  Research on many aspects of computer 
operating  systems  otnet  than  reliability  Is  continuing, 
using Multlc»  as a laboratory vehicle. 

SI-KVEY  PF  FAULT  TOLERANT  COMPl'TINf    SYSTFMS 

Werner L'lrlch,  Bell   Labu,   inc. 
NapervIUe,  Ullnola  h5540 June   1972 

1.     IDENTIFICATION 
1.1. NAME:  No,   1  ESS.     A nunber of  electronic awltching, 
systems have been designed by Bell Laboratorlea durii.g the 
past  several years.     Those which have been  described  in  the 
literature  Include  No.   I   ESS,  No.   101  ESS,  No.   2  ESS and 
the TrjiffU Service  Position Systems   (TSFS),   This   response 
vlll  he  concerned exclusively with  No.   1  ESS,  a  large 
telephone  central  office  designed  primarily   for acrvlce 
appUcatlonu 

1.2. KESPONSIBILITY:   The  Indian Hill  Switching Diviaion, 
:.«perville Laboratory of Bell Laboratorlea. 

1.3. SUPPORT:   Developnent  of  the  Syster aupported by 
Western  Electric Company   (WL),   the manufacturing  unit  of 
the  Bell  System. 

1.4. PARTICIPANTS:   The syster. was  designed  and developed 
by Bell Laboratories,  is msr.ufactured und Inatalled by the 
Western Electric Company and Is operated by the various 
Dell Syatem operating companies. 

1.3.     START:  Acclve work  on  the  design of  No.   1  ESS  began 
In late  1959. 

1.ft,     COfTLETION:   "^le  first  svstem was  put   Into aervlce  In 
Succasunna In  19ft4.     both hardware and aoftware 
Inprovere*nt8 have  been made   In  the  system  from that   tie». 

1.7,     BlBLlnnRAPMY:   Thr basic  description  of  No.   1  ESS  is 
In the Septenber,   1964 issue of the Bell System Technlcsl 
Journal.    In addition the following bibliography deals 
specifically with  the problems covered in  this survey, 

* Downing,  R.  V,,  et  si.,  "So  I  ESS  Malntensnce  Plan,"  Bell 
System Technical  Journal,  Vol.   43,  pp.   1961-2020, 
September,  1904. 

* Beuscher, H. J., eb si., "Administration and Maintenance 
Plan of No.   2  ESS."   Bell  System Technical  Journal,  Vol.   48, 
pp.   2765-2R:5,  October,   1969, 

* Oiang, H. Y,  and Thomas    W,, "Methods of Interpreting 
Dlagnoatlc Data for Locating Faults in Digital Machines," 
Bell Syatem Technical Journal, Vol. 46,  pp.  289-318, 
February, 1967, 

* Tsiang, S. H,, Haugk, C. and Seckler, H. N., "Maintenance 
of a Large Electronic Switching System," IEEE Transactions 
on Connunlcatlona Technology, pp.  1-9, February,  1969. 

* Altcheaon,  F.   J.   and Cook,  R,   F.,  "No,   1   ESS  ADF 
Maintenance Plan," Dell System Technical Journal, Vol.  49, 
No.  10, pp. 2831-2856, Decenber,  1970, 

* Nowak, J.  S. and Tuonenoksa, L.  S,, "Memory Mutilation in 
Stored Program Controlled Telephone  Syatem,"   1970  IEEE 
International Conference of Communications, pp. 
4>32-43-45. 

* Chang, li. Y.  and Scanlon, J. M., "Design Principles  for 
Processor Kalntalnabllltv   In  Real-Tlme  Systems." 
Proceedings of Fall Joint Computer Conferences, pp. 
319-32R,   lift«». 

* Nowak,  J.  S,,  "Emergency Action  for No.   1  ESS,"  Bell 
Laboratories  Record,  Vol.   49,  No.  6,  pp.   176-179, 
June/July,   1071. 

* Co/met, J.  R.,  Paatemak, E,  J,  and Wagner,  B, D., 
"Software Defenses  In Re^l-Tln* Control System," Second 
Annual  International Symposium on Fault Tolerant Computing, 
June  19-21,  1972,  Boston, Maasachusctts. 

* Alnqulst, R. T.,  et al, "Software Protection in No,  1 
ESS," 1972  IEEE Conference on Comnnaiications, June,  1972, 

* Ketchledpe, R. W.,  "Service Experience with No.  1 ESS 
Equipment," International Conference on Electronic 
Switching,  1966 Proceedings, Paris, Edition Chiron,  pp. 
712-716. 

* Vaughan, II, E,,  "Experience with the No,   1 ESS," 
International Conference on Electronic Switching,  1966 
Proceedlnga, Paria, Edition Chiron, pp,   704-711, 
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• H«URV, C«f "Early No.  1 ESS Field EKp«rUnc«tt Part  1, 
2-WIT* Sy«t«n for CoBMrdal iHpllcatlnns/' IEEE 
Transactions on COBEUI.. utlons Tschnolofty, Vol. IS, no. 
744-7}0,   Deceiver,   1967. 

• Sacklar. H. HM "Esrly No.  1 ESS Flsld experience. Part 
2,  4-Wlra  Syataa for Govwrrwnt  «nd Mllltsry  IrpUcattona, 
IEEE Transactions on CoMuilcatlons Tedmolopry, Vol.  15. 
pp.   751-754.  Deceober,   1967. 

• Johsnnasm. J.  D.,  "Wo.   1 ESS  Service  Experience  - 
Sofrvsn." IEEE Confsrence on Switching Tachnlques  for 
TalscOMnmlcatlon Network«,  Conference  Publication No.   52. 
pp.  459-462, April, 1969. 

• Statthlar.   R.   E..  "No.   1 ESS  Service  Expsrlsnc« - 
Hardwsrs."  IEEE Conference  on Swltoilnir Technlq.uaa   for 
TclscoMwnlcatlon NotvorVa, Conference Publication No.  32, 
PP.  463-466. April. 1969. 

2.     MOTIVATION 
2.1. PURPOSE:    Control tha sattlng up and disconnection of 
calls between tsltphone custonsra sttachad to the avstcn or 
bctwasn  these   telephone  custotaer»  sod other cultOKrs   in 
distant   central  offlcss, 

2.2. EWIRONMEKT!  Ths systs» Bust  operate  In ths presently 
exlstlng telephone pint and auat coannlcats with 
tslsphone custoasrs sad other ealatlng central offices. 

2.3. COKmiNC ENVIRONHEKli  The •vater does  intsrnsl  dsts 
procssslng relstlog ths slmsls transmitted by cuitowrs 
snd by other central offices to the desired telephone 
connections.  Its Inputs are these slgnsls ss gathered by 
peripheral equlpsmt sssoclsted with the central processing 
wilt and Its outputs or« control stgnsls to s telephone 
switching networt snd output slgnsls which are trananltted 
to distant central offices. 

2.4. COHPITINC OBJECTIVES:  The basic objective of  the 
syste* was to hsndle  100,000 peak busy hour calls.    While 
the orlglnsl version of ths systen did not nest this  gosl, 
softwsn   Inproveaents have  cllousd  this  gosl     o be Mt 
during the psst year. 

2.5. RELIABILITY OBJECTIVES:   Reliability  objective  for  the 
systsa was a down tins of no aore then 2 hours  in 40 years. 
When  the down tloe objectives were originally set. this 
down tlaa was predicted to be due primarily to slnultsneous 
hsrtWsre  failures of duplicated processor units.    As It 
turned out. software failures or human failures leading to 
suuislvc memory nutllstlon have been the prlnary source of 
down  tlas.     In  recent  years,  ths down  tine has been 
approaching ths rangs of  10-15 hours per 40 yssrs snd is 
still going down fro« this point. 

2.6. DYNAMIC VARIABILITY:   Rellsbllltr  In 2.5 above has 
been defined In tet-a of total systen rellsblllty.    Dynsmlc 
variability can be thought of In tens of tht ability to 
hsndle  telephone traffic In die presence of ovekloed 
exceeding  the capability of  . is  svster      A dynamic overload 
response has been built Into the ftyatci« which allows 
additional service requests to t« throttled during periods 
of exceoalve  demand. 

2.7. PENALTIES: Penalties  for total systsa fsllurc aay 
Include the inability to aake s tslsphone csll st s 
critical tlac, with resultant possible loss of life snd/or 
propsrty.     For er-inple.  the inability to csll  the fire 
depsrtasnt can be quite serious.    However, ube penslty Is 
dependent on the tlas of ths occurrence of the fsllure.     In 
asny case» no penslty will result. 

2.8. OFFICE CONSTPAIWTS:   Hie  equipment  ntst bs  Installed 
In a telephone central office.     It Is daslrsble thst It 
operste with normal Bell System nominal 4B-volt battery aa 
the prlaary power source.    Mlnlaua spsee Is desirable but 
not critics! since the coet of specs Is coapsrsble  to the 
normal  cost  of offlco snd  factory  »pace.     Air conditioning 
Is noraslly provided hut  ths systsa aust be able to work 
for moderate perloda of tloe without air conditioning.    The 
cooling systsa consists of nomsl convection ooling 
aufaented by conventional sir conditioning. 

2.9,    TRADEOFFS: System capability and system atorrgc ceata 
are aaong the aaln tradeoffa available In tha aystan.    The 
user of a read-only program aaaoiy aaaaa that all prograa 
storage aust ba p*td for on a petaanent baaia.    Tim r«ipc 
of office slsaa encountered in the Ball Syatea ntanr that a 
change In ayatca capacity will (Ufact the market for a Ho. 
1 ESS. Price was a vary laportant factor since a Ho.  1 ESS 
provides the ssas bsslc type of talaphona servira available 
fron older, efficient, and velatlvaly laaxpaMlva telephone 
syateas.    Price differential aust bs jjctlfied la tana of 
grestsr flexibility for future change» and long term lower 
costs due  to sutoasted manufacturing  technique». 

3,     PESCRIPTION OF THE SYSTEM 
3.1.    ARCHITECTURE 
3.1.1. CONFIGURATIONS 
3.1.1.1. INTERCONNECTIVITY: Ths baalc block dlaeraa of the 
systen Is  presented In the BSTJ  ref»-ence   (first article). 
Basically each central control has inraa bua ayataaat a 
peripheral bus systsa, Including an addressing ayotaa. a 
unit selection syatea, and a respooss bus; a read-write 
store (csll store) bus systsa with addraaalng. data-write, 
and data-read sections; and a read-only asaory  (prograa 
store) bus systen Including sddresslng and response 
infomstlon. Esch of the central controls has full access 
to all busses.    The two central coturol» are Interconnected 
by natch busses  to allow  information In  the  two controls  to 
be mstched.    In the noraal node only one central control 
haa control access  to ths peripheral bua ayataa although 
both central controls  listen to the response bua.    Each of 
the central control» In the noraal mode control» one set of 
s duplicate set of stores.    However, It la possible for one 
central control to control all stores and for the central 
controls to alternate In controlling tha peripheral bua 
systen.    All critical equlpnent which In. lüdes stores, 
centrsl controls, busses and peripheral control unite are 
dupllcstsd. 

For larger systeas, a slgnsl processor If« placed on the 
csll store bus.    This signal prot'eaaor haa accaaa to Ite 
own read-write aeaorles and also haa access  to the 
peripheral bua systen. The signal proceaaor then la usad to 
control Input/output equipment such sa slgrsllng equlpnent 
end the switching network. 

3.1.1.2. RANGE: Only one baalc central processor la use-.' 
In any systsa. defining a central procasaor aa a dupllcstsd 
central control, duplicated signal processors whan 
required, snd dupllcstsd store».    The duplication of the 
aeaory modules Is such thst each aodule la affectively 
divided Into two parts;  therefore, aa odd niofcer of module» 
can exist In the syatea. Ths Halt on tha nuafcar of 
read-only stores Including duplication la  12. each of which 
contains 131.000 44-blt worda (the 44 blta an 37 bita of 
Information and 7 blta of Hasadng code);  th'-. Halt on the 
number of call store nodules la about tan. each containing 
32,000, 24 bits per word,    Tha original ayataa contained 
P.000 word nodules, but this year wa hav« started uaing the 
larger sixes. 

3.1.1.3. CAPABILITY: The best way of Indicating tha 
capacity of processors Is In tana of tha ntadiar of calla 
which can be handled; as indicated earlier ehia figure now 
exceeds  100,000 during the peak busy hour.    Tha baalc cycle 
time of the systen Is 5.5 alcroaaconda during which a 
coaplete addition can be performed,    Prograa and data can 
be read In parallel.    The order structun of tha ayataa is 
sufficiently powerful that the 5.5 alcroaaconda tlna give a 
misleading by low Indication of tha baalc power of the 
procejsor.    In general tana. It night be compared In power 
to an IBM 7094 computer. 

3.1.2. EXECUTIVE AND OPERATING SYSTEMS 
3.1.2.1.    MODES OF OPERATION: The E'.gnal processor operates 
lit4epcnd«otly of the central control. The cantral control 
handles sll    telephone calls In the office on a tiae ahared 
basis working on one call at a tlae but only doing part of 
the work necesaary to process thst call.    Work la tlae 
sliced so thst. In gcnsral, no single  task should exceed 
about 20 millisecond» of proceaaor tlae.     In an office 
without a signal proceaaor, I/O la carried out by an 
Interrupt level prograa which  take* coaaiand of the systca 
every Billiseconds. 
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3.2.     FAULT TOLERANCE 
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3.2.3.    TECmipiIES 

• Delicti«..    All crltlc.1 „«t^«, i. dupllc«..,. 
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3.4.    INaUENCES. Cur«« .wltchln, .y.un h,™ b..n 

•qulpMnt 1. rel.tlvely ,Mn. h,rd core 

4.     JUSTIFICATION 

«ilJl^Tir «"S*"«" »" "-Ic «ILblllty ".[„.tJon of the .y.t.« 1. Md, hy ,„rtnln, A, 
perfora.nM of the •y.tea In th. fl.lj     u^'t 

4.2.    COMPLETENESS OF EVALUATION! S« «bo« 
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4.5.    EICIENDABILIU:    See above 
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SimVETf Or FAUtT-TOURANT  COMPUTING SYSTEMS 

Prof.  Dmltl Slcwlonk,  Corrputer  Seltne« Tfept,  Carneple- 
Mellon lalv«ralty, Pltetburfth, ?m.  15213, April 1973 

1, IW»TiriCATl(W 
i.l.     NAME:     C.^rp   {«tiltl-eüni-procesior) 

1.2. RESPONSIBILITY t     Corputer Seltne« Uapartnnt, 
Ctnwgla-Htllon Unlvtrslty 

1.3. SUPPORT:     ARPA 
1.4. PARTICIPJÜn,,!l     C.C,   B«ll,  B,  Broadley,  E,  Cohtn,  A. 
Jon««.  R.   Uvln,  J.  McCrtdl«,  A.  Newell,  C.  Pltrton,   P. 
Polltck,  K,   Reddy,  W.  Uulf,  and aany other«. 

1.5. START:    Mld-1971 
1.6. COMPLETION:    Mld-1973 fh«r<hi«r», Inltl«! «oftwtr«) 
1.7. BIBLIOGRAPHY: 
* B«ll(  C.C.  U.  Bro«dl«yt  U.  Uulf, A.  Newell,  C.   Plerton, 
K.   Peddy,  «nd S.   Rafn,  "Carp:   The CHU Multl-alnl-procc««oi 
Corputer -  Requlreoent»  «nd Overview of  the  Initial 
D««lgnt" Aupuat,   1971.    C«re«Rl« Mellon Unlvtralty, 
Computer Selene« ^«partMnt R««c«reh Report.   (AI) 739963) 
• U.  Uulf,  "C.mv:     A Multl«lnlproce»ior,"  Corputer Science 
Re«««rch Review,  Cameftle-Mellon Unlverilty,   1971-1972. 
> S.  fuller,  R.  Sw«n, U. Uulf, The InitnflMntatlon of 
C.«^t A MultlMlnlproce««or, COMPCON 73, PP.   17>176,   1973. 

2, HOTIVATION 
2.1. PURPOSE:    Gcner«l-purpo«« «nd real-tine coaputlng 
2.2. PHYSICAL ENVIRONMENT:     Groimd-b«««d 
2.3. COMPUTING ENVIRONMENT:     InltUUy •t«nd-«lone; 
eventually  on  the  ARPANET. 

2.A.    COMPUTING OBJECTIVES:     C.BWP wea d««lpned  to provide 
a real-tine proccealnft and tl«v aharlnit environment, «.F>, 
for veaearch  in apeeeh and vlalon.    Thua apcclal hlprh date 
rate, real-tlae Interfecea are required to acquire «peeeh 
and vlalon data fro« the extern«! environment. Alao, 
real-tl«e proceaaln? for the «peech-iaider«tending tyater 1« 
an ultimate ftoal.    Eseeutlon of up to 3 to IS rllllon 
Inatruetiona/aec achieved throujth  1-16 ■eaory aedulc«  (650 
naec cycle time) with up to 256K word« «ach,   1-16 
proce««CT«   (PDP-U),   16x16   crooabar «witch with  80xlOE6 
worda/eeeond.  capacity. 

2.5. RELIABILITY  OBJECTIVES;     Since  the «yatem Is  Rround 
baaed and ■alntcnancc ia available, the '*Jor reliability 
objective 1« hlfth availability.    With the ability to 
dynavlcally reconfigure the «y«te«,  the ultlnat« go«l 1« 
contlnuoua  availability. 

2.6. DYNAMIC VARIABILITY:    Reliability can be traded for 
performance by  1)  parallel and independent conputatlon» on 
different proceeeon «nd/or by 2)  fr«ceful dcpr«d«tlonl 
po««ibly even on « wllllaecond acale. 

2.7. PFNALTIES: Mutilation of deta in critical «yatem 
t«hla« could cana« a ayata« craah. Lota of experimental 
data or active proftraa« wruld reault. 

2.R.     CONSTRAINTS:     Th« major constraint was   cost.    The 
objective waa  to build a hiph-performance aystem ualnf 
off-the ahelf eoaponents which could out-perform 
convention«! «ystema  for a fraction of th« cost.    The 
presence of multiple copies of varioua cowponenta in the 
«y«ten also provides opportunities for a fault-tolerant, 
highly available ayatem. 

2.9.    TRADEOFFS:    Hardware efficiency (coat per unit work) 
can be traded for performance and/or reliability. 

3,     DESCRIPTION OF THE SYSTEM 
3.1.    ARCHITECTURE 
3,1.1,    CONFICURAT.ONS 
3.1.1.1.     INTERCOLNECTIVITY:  The  configuration  ia basically 
a conventional multiprocessor ayatem, but on a much  larper 
scale than in existing syatea«.    The structure of the 
system ia   given  in  Figure   1. 

There arc two awltehes, Smp and Skp.    Smp allows the 
proceaaor to co—unicate with primary memories.    Skp allows 
the processor to cosmxaileat« with tht various controller» 
(K), which  in  turn manage  the secondary  nemorie»   (■«),  and 
I/o devices  (T).    These «witches are under both computer 
and manual control. 

Each  procesuor «y«t«m 1«  actually  a complete  computer with 
it« own  local primary  memory  and controller«   for «ecoodary 
maanrlaa and davlc««.    E«eh proe«eaor haa a Data Operationa 
comporent, Dmap, for trsnalatlng addraaaca «t th« proc«««or 
into phyaical ■«■ory «ddrease«.    Th« local mmory aarvaa 
both   *ü reduce  th« bandwidth  requirements  to th«   central 
meoory   «nd to allow contpletely  Independent operation nd 
off-line swlnte^anoe.    Below we dajcrih« some of th« 
apecifle components ahown In Figure   t, 

* K.clock:    A central clock, K.clock, allows precise  time 
to be jeuund,    A central time baae ia broadcast  to all 
proceaaor«   for  local  Interval  tlnlng and Intarruption. 

* Smp:     Thl«  «witch handle«  infonnavlon   transfero between 
prlmery neoory, proc«««ora and I/O device«,    Th« «witch haa 
port«  (i.<i.t connection«)  for ti bu«««« for primary sMmorla« 
and p buaaaa  for processor«.    Up to ■in(m,p) slmiltaneou» 
conversation« are possible via the croaa-polnt arrangement, 
Smp can be act under prograsaed control or via manual 
switches on a.i override basis to provide different 
conflguretion«.    The control of Sap can in principle be by 
any of the proe'««or«: one proeeeaor is aaaigned ehe 
control at any    ne  tine by manual reconfiguration. 

* Mpt    The ahar id primary memory, Mp, conalat« of (up to) 
16 modules of 'up to) 6SK 16-blt words.    The initial 
meeorlea belnp u««d hav« th« following relevant parametera; 
(1)  they arc core,  (2) each module ia P-v«y interleaved, 
(3)  acecaa  time la 250 ns and cycle time Is 650 ns, 

* Skp:    Skp allows on« or mor« of k Unlbuaac«  (the CO—on 
bua for memory and I/o on an isolated PDP-11 ayatem) which 
have «everal alow or fast controller«  (Ka or Kf)  to be 
connected to one of p central proc«««ora,    Th« k Unlbu««es 
with  th«  controllers  a-e  connected  to the p proeeeaor 
Unlbu«««« on a fairly  long ter», bwls,    Th« main reason« 
for only allowing a long term, but «wltcheble, connection 
between the k UnlbuAacs and the processor la to avoid the 
problem of having  to decide  dynacically whir'i of  the p 
processor« should oa/isge « particular devlc.     Like Smp, 
Skp «ay b« controlled cither prograv«tlc«lly or manually. 

* Pc     Th«  processing element«,  Pc,  are  «lightly modified 
veraiona of the DEC PDP-11,     (The several models of the 
PDP-U may be Intermixed,) 

* Dmap:    Th« Dmap la a Data Operationa component which 
take«  the addraaaaa generated in the processor end converts 
then to «ddrcsses   to use on the n««Dry  «nd Lnlbusaea 
emanating from th« Dm«p.    There are four «et« of eight 
registers  In  Dmap,  enabling eech of «Ight  8   P2-bvte blocks 
to be relocated In th« large phyaleal eemory.    The «lie of 
th« phy«lc«l Hp 1«  2E2n word«  (2E21  bye««).     Two bits  in 
th« processor together with the addr««B type «re u««d to 
specify which  of  the four «eta of mapping  register«   la   to 
be used. 

3.1.1.2, RANGE:     l-ll  MMCfr modul«« with  up  to 256K words 
each  (core 650 mec cycle tine).  1-16 PDP-11 proceaaers  (Ih 
bits/word),   Ibxlfa   crossbar awltch with   TxinEh worda/second 
capacity.    A twe-proeeasor, tw^-memory prototype haa bean 
built  to teat out concepts of awltch and software design. 

3.1.1.3. CAPABILITY:     The syste* should be  capable  of 
executing 3 to 15xl0Efi instructions per second,  depending 
on the PDP-U processor model.    A Pnp-10 can eaecute 
roughly  3 to  15x101.5  36-blt Instructions per second. 

3,1.2.     EXECIT1VE  AND OPERATING SYSTXH 
3.1.2.1.     MODES,  and  3.1.2.2.     SOPTVARE:     Although  the 
technology of opereting system« haa mad« significant 
progress  in the peat deceds, there are  few aysteea 
constructed specifically for multiprocessor envlrcisvnts. 
In particular, no syateea have been built  to support   the 
variety of process  relation«  (parallel, pipeline, etc.) 
envialmad for C.nap.    Mor«ov«r, there 1« « rcletlve  lack 
of experience In crgeniting computetlona  (or parallel 
execution.     These  feet« have driven the opereting syste* 
design to the following conservative position. 

The operating ayatem will consist of a "ksrnel" and a 
"atandard extension".    The kernel will provide e s*i  of 
Mchanianm  (tool«)   for building an operating ayste», but  no 
policies  (e.g,, no schsduler, no file etructur*. no...). 
The  kernel  wi   ■   support   the   (simultancoua)   execution  of   an 
(almoaO  arbitrary nirter of extensions. 

In considering what sat of mschanlsH (tools)  should b« 
provided by an operating aystam kernel,  two cosmnnlr held 
view« of the essential nature of en operating syste» «re 
relevant: 
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* An operating mytfn ernstes  a "virtual cachlne"   to 
*upport   (ussr)  progrse» by providing resources and 
operations not  present  In the  underlying hardware   («..«., 
"fllaa**,  flla HraadM mf- Nwrlt«" operation», ate). 

* An operatic.? systao la a raaourcc (virtual and phyaU-al) 
Bd allocator. 

4.     JUSTIFICATION 
4.1.     RELIABILITY EVALUATION! 
aatluatad via analysis. 

RcllablllCy will be 

Kot«  the c^>haiiB  In both vlawa on  resources,   their 
creation, ■■nafttaant, and operations on the».  Proa these 
views w« Infar that «a appropriate set of tools  for 
building an operating systea mat  provide   for: 
* The cnatlon of oew virtual resources; 
* The "representation" of a now resource In tana of 
existing ones; 
* The  cnatlon of operations on  resource»  and/or  their 
representstlea; 
* Protection  (against Illegal operation» on a raaourea), 
unlforaly over a class of raaourcaa, as wall aa with regard 
to specific Inatanoaa of a resource. 

3.2.     FAULT TOLERANCE 
3.2.1. P.'.ULTS TOURATEDi     The  ultlaata poal  Is  to be  able 
to toU rate any fault In any unit*    Tha f.yster can ba 
dynamically reconfigured via tha croaapolnt switch 
(disabling specific  crosspolnts)   and via power »witching. 
Tha  detection of and recovering   fioa falluras will ba a 
■ajar objective.     Aa  a  research  vehicle,  C.mmp will allow 
tha study of fault-to la rant hardwara-aoftvarc Intaractlon. 

3.2.2. FAULTS HOT TOLERATEOt    Fault!  (parhaps Multiple) 
that   fo undetected   lone «nough   to »utllete  tha wjorlty of 
tha copiaa uf critical systaaa täblaa nay ultlnataly lead 
to an entire systan crash.    Early dataction and/or 
Prävention of thlc claab of faults will ba cloaaly studied, 
Hultipla   failure»   In  tha crosabar awltch night  alao  lead  to 
systa* failure. 

3.:. 3.     TtaU«IQITS :     The  final  hardwsra/sof tware 
conflfRiratlon for c.aap  1»  far fro« stablliiad,    Howaver 
tha   following  technique»  either  are  incorporatad,  or 
provialona for Incorporation hav« baan nada, or (for 
locraswital coat)  can ba  Incorporated. 

r*»  creaabar awitdi la bit sllcad with provision for s 
■['•»■'.n|   ctvd»  on  tha  data blta.     Spars bit-plan«  switching 
or fautc-aiaablBf radmdancy can be eaployad.    Switch 
failure»   appear  aa althar  a aaaory  or procaaaer  failure. 
Thaaa fallwraa can be telaratad, 

•«aaas  can   f»nctloe  properly «Aaa  a  cos^onant  connacied   Tr 
It  has  p<wr  rawed.     Haanry  Bodula«  ar»  organised  as 
baa*»  »«  •*ai   s Menory   fallar« ala^ly  ra»<ove«  part   of   the 
neaor»   »paca. 

4.2. COMPLETENESS:    Evaluation not yet  finished, 
4.3. OVERHEAD:     To data  the hardware  for fault   tolerance 
Is   certainly   laaa  than  5%.    However  th« design will evolve 
and qulta  probably raise  this  percentage.     Software  coat 
(In exacutlon tine)  la difficult to aatlaata at thla tlw. 

4.4. APPLICABILITY:    Any cultlP croaabar configuration. 
4.5. EXTENDABILITY:    Syatan cannot ba expanded bayoud  16 
neaorlaa and 16 processors without a new croaabar awltch. 

4.6. CRITICALITIES:    Analysis ahowa that tha aalactlon of 
tha  neoory  cycle  tine and nuatcr of  processors  greatly 
affacta ayataa parforaanc« and cost-effectiveness.    Conten- 
tion In tha croaabar switch llalta ultlaata performance. 

4.7. IMPLICATIONS: Prngraiasers rust ensure that their 
syatan la correct, even under conditions of asynchronous 
proccis comunicatlon. 

5.  CONCLUSIONS 
5.1. STATUS: First portion of tha hardware syatan shoulJ 
be coepleted by the and of auaaar 1973. Portions of Hyd.a 
(the oparatlng systca)  are oparabla. 

5.2. EXPERIENCE:    Nona to report yat. 
5.3. FimtRE:     In tha iMedlata future Carp will h- 
brought  up as a research tool for tha Coaputar Sciinca 
nepartaant.     Aa  a  research   tool  it will  aoat   llkaly 
continue   to evolve  In design. 

5.4. ADVANCES:     Off-the-shelf,  plug-coapatlbla   fault- 
tolerant   (or at   lcs»t salf-chacklng)  coaponants would be 
verv   rieslrahle.     KM  hardware bacos«a   cheaper,   the  capacity 
of   nodules  becosv   larger.     And with  LSI   the  Inside»  of  s 
aodule  are not even accaaalbla.    Hanca building fault- 
tolerant aystaaa with off-the-shalf coaponaata without »alf 
chaeklng or faul'   tolerant  faaturas  la vary Inafflciant. 
(nthar than dupl.nation and coa^arlaon, or triplication and 
voting,  little else   LS available to the ayata« designer,) 

Syste« validation  (integrated hardware and aoftwara)  la 
another l«rortant a»ra.    Also daalrable would bo a 
aethodology  for des^enlvi a fault  tolerant systaa.    Which 
fault   tolerant   technlquaa  cva^laaent  aach  other?     Finally, 
»witches  for reconflgt ratl<*i, awltch control, and fault 
tolerant   svltch  dealgr  ere  areas   requiring  further study. 

, 

-•->. f   antf  address   paflty,     Tafc la-4rt**ri  rperatlng  ayata«* 
•-  be vrlttaa wisich  allow fracafal  Asgtadstloa  fro« 

fattafl   '-   a ——ry  or   1»  a praraaaor  «naul»   (rearvlng  a 
fra-utra   *rna »»al la* H i 11 >.   Seftwar«   recalrulat lm)  "T 
'■■,.-.:■•      -;<•• af  •••• crttlcal  »vtte«»  ta^l«» wtn 
•••:.<   feilMr»  tetera««« at racevar?. 

'■•*••• i «•:• ,   rrttlCtl   cear-wtailons  ali^t   fee  perforaai!  >* 
!••■  dtatinct  wmx*K*u wiiMfi a »mgi« profasaof.    MM^aaili 
-f   t»««»   cam  ■•   fm   Jaat   ■••"T«   critical   rear^tatlons   ata 
l«  ••   •■•x'.'t*»:,   at   flavf   laterval»,   -i  alrplv  t^enevar   the 
■f-'•••■ f   ta  «ot        -.-:•■'  »if   .r«t   tatfca. 

).),     MTrflTTi     Tlte /tatrlfcvtad nature of operating avtiana 
all«««   '•»   tevll   teleraac« with*««   ao«atv« atpeadtturea   fef 
.:*•■'-        tf^t-m.       ■,t**t*   ' •'   '•    '■*■:••■  te  ttmttlon 
.:•      .•   '■.f   (Mile.     CfltUal   ralculsttm»   ran  •■•i:-   ba 
r«<alc«lata< fof r;»»»l«i r«rpo«»«.    A  fault* ell   t» 
»aallv   taatatal via   '   ■   emastar «witc*. 

«« «»t*«ate« te tk«  *a<e<t«i rmeaas  for a alngls ami 
■   »f»-t t-i  ^ !/ .•  «rtnr datectlng Kaaalng coda  |a »nab la 
J- j- :•  »rr«r    -rr.   •!•«■  ■ a» baa«  InveetIsatad. 

).*.       MI. i1      "*-,, gravlo«» afferta ■ »v, had Uflaanca 
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|,J,     KXKf<rT*ti     TSer«   1»  ooly  m*  portion  nf   the  »yatai 
•a-lrft   1» ■«(  raplUaca4<Mtia craaabar »wlicti.    Tha switd 

••   ■»■•-   4aelg««<1 ae   that   fallvre«  appear either aa   a 
«•ear«   -»   a protaaaor  failure.     Kit altclng, tiaaalng co4*%, 
•*c   ttmlt  aaafclng   fe4«i4aacT   can  Help  tn  Incraaae   tha 
•wn«*  reltafcllifp. 
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SURVEY OF  FAULT  TOLERANT COMPUTER SYSTEMS 

Donald C.  Wallace 
Stanford  Reaearch   Institute,  Menlo Park Ca,  Juni  72 

1. IDENTIFICATION 
1.1 NAME:COMEX-  Online order handling syaten 

1.2 RESPONSIBILTY:   P.C.Service Corp.   Uubaldlary  Pacific 
Coast   Stock  Exchange) 

1.3 SUPPORT:  Member   fin«  of  PCSE 

1.4 PARTICIPANTS:   Member  firms  of  PCSE 

1.5 START:   Contract   let  -   17 November  1967 

1.6 COMPLETION:   System accepted -  A Hecember   1969 

1.7 BIBLIOGRAPHY:   The  most  acr .rate  desriptlon  of   the 
COHEX  In   the   final   documentaiun delivered with  the  System. 
Documents: 
Specification   for  data processing and conaunlcatlon 
^.juipraenL   for  Pacific  Coast  Stock Exchange PC Service 
Corp.,   1967 
Proposal   for  Real-Tlme  Order Handling System BBN 
#p6B-^E-01,i August   1967 
tontrart   for  Real-Tlme  Order Handling System  for Pacific 
Coast  Stock  Exchange  BBN/PCSE,17 Novecd>er  1967 

2. MOTIVATION 
:.l   PURPOSE)   Real   time  odd-lot  order executior 

2.2 PHYSICAL  ESV1RÜNMENT:   Ground based 

2.3 COMPUTING  ENVIRONMENT:   Tlie  system serves   two  t riding 
floors,   one  in  Los  Angeles,   the  other  in San  Francisco. 

2.4 COMPUTING  OBJECTIVES:   COMEX  is  designed  to handle 
virtually  all   IcM-specd  teletype  speeds,   levels  and  codes. 
It   appears  as   a  node  on each  of  the  connected broker   firms 
.-mEunlcation  networks   and must  conform to  the   line 
protocols   and hardware  constraints of   that  network.     The 
design  objective»  were   (or 6A "nodes"  in LA.   and 64  In 
5P, |   and  for  a  btxlmum nessage-Bwltching  traffic  of  23,000 
orders/transactions  per  day. 

2.3  RELIABILITY   OBJECTIVES:   Hie  system was  designed  to 
provide  991*  uptime  and with  a no "mcasage   lost"  criteria. 

2.6 DYNAMIC  VARIABILITY':   Tt.e  ky*t** is  designed  so  that 
order en:r>   is   perfonned   in   real   time, but   the  order 
execution  process  may   lag  an  arbitrary period of   time.     In 
operation  this   lag  never exceed»  20 minutes   (approx.??). 

2.7 PENALTIES:   COKEX has  various  degrees  of  degradation, 
the   ultimate  being  total  manual  operation and execution  of 
the  orders  by   the  speciailsts  on  the   trading  floors. 
Esoteric  software/hardware maKunctions  could  cause 
extremly   largf  manual   intervention problems  as   the  system 
le   really buying  and  selling stock on  the behalf  of 
members  of   the  exchange. 

2.8 CONSTRAINTS:   The  PCSE  is   really  two exchanges  with   two 
different   trading   floors,  one   in Los  Angeles  and one  In 
San  Francisco.     For  reliability  reasons  the system  is 
fully   redundant.     A  PCSE  constraint  on  the system was  that 
the  system be  equally  split  between  the  two sites. 

3.   DESCRIPTION 
3.1   ARCHITECTURE 
3.1.1  CONFIGURATION 
3.1.1.1 INTERCONNECTIVITY:   See diagram which  shows   the 

■.win  IBM  360  computers  and  the 680 systems each  of which 
Includes  a  DEC  PDP8 computer. 

3.1.1.2 RANGE: The system is really two systena running in 
paraKel. It Is sensible to run them as single units or a 
fully redundant system. Two configurations arc possible:- 
Non-partitloned  trading  floors: 

LA-reootebeO,  SF-local6»0 and SF-360 
SF-remote680,   lA-local6B0 and LA-360 

Partitioned  trading  floors: 
SF-local680  and SF-360 
LA-local6B0  and  LA-360 

3.1.1.3 CAPABILITY:   COMEX consists  of  two  (2)   360/50 
computers  plus   the   front-end  communication«  syatems. 

3.1.2  EXECUTIVE and operating system:  COKEX  runs  under 
IRH/360  DOS with   its   fixed number of multlprogran 
partitions option. 

3.1.2.1 MODES  of  operation:  The  order execution process 
runs  in a high priority partition of DOS while normal 
operation of PC Service Corp.  computer operations are 
being run In other "foreground" and the background 
partitions.     The  con«unlcatlon process   (in  the oSO's)   is 
dedicated an-] allows no  jther functions. 

3.1.2.2 SOFTWARE  orgenation:   Basically  the bBO's  do 
character aascnbly   (bits),   line protocol   Interpretation 
(answer back,  echo,  etc.), message segment   assembly,   I/O 
buffering,   transmission  to  local  and  remcte   360*8.     The 
360*8  do message switching,  code  translation,   message 
decoding (syntax analysis), order queuing,  decoding of 
NYSE and AMKX tickers  (identify trades), execute queued 
order», send confirmations  to broker and specialist. 

3.2  FAULT  TOLERANCE 
3.2.1 FAULTS  TOLERATED:  Essentially  the  system will 
tolerate any or all  failures in a single system (i.e., 
backup or primary). 

3.2.2 FAULTS NOT  TOLERATED:  Any simultaneous   failures   It. 
both the prisiary and backup system causes  loss of 
integritry of  the data files.    This  Is considered a 
catastrophic  event  and some manual  correction  and 
Intervention  for order execution and notification will be 
needed.     (To «y  knowledge  this has only  occured  once  in 
iH* almost three years of operation.) 

3.2.3 TECHNIQUES: 
HARDWARE:  The  COMEX system is  completely   red ndant 

(two of everything),   and both systems   run  in  r*rflllel. 
The  major  desit-n   criteria was   that  nothing sh .uld happen 
in  one  system half  that  coujd adversly  effecf   the  other. 
Ttjis  led  to the system interconnections  (PCU,   being 
unidirectional and step-locked In a "here's a   --ord,  take a 
word"f«hlon.    All IVY connections to the syot m are dual 
dropped and there  is a hardware  interlock  to present both 
680 machines   from outputing to a  line at   the  same   Cine* 

SOFTWARE:  The  software .8 designed  to be  very 
nodular,   and no control   f 1 iw exirta between   functional 
routines.     Control   flow is betv en  the  COMEX  scheduler/ 
executive and each  functional wdule.    Data is passed from 
function  to  function by means  of stacks  and  lists,  and 
standard system global routines are used to accomplish 
this.     Both systems are actually performing the entire 
order execution task in parallel and there is  really no 
comunicatlon between them.    The on)     difference  Is that 
the "backup" system is not outputin- ^action 
confinutions and order receipt notn/i   .ions.    Tlie backup 
system maintains u queue of the  last V nessages  to each 
line In the System.    When switch-over occurs,  these 
ncsaages are output to the spcclallsts/btnkers with a "may 
be duplicate" tag. 

3.1 NOVELTY:,The  interconnection of  the  DEC 6fl0*s  and  the 
S/360,a   is  accomplished without   requln. ? modifications  or 
additions  to the IBM operating system or pii?viding 
"special"  I/O modules.    The 680*s  (two of  then) have a 
S/360  channel  equivalent   (FCU)   that  talks   to  the  IBM 2841 
disk conttoler with the two channel  feature  (8100).    Thi" 
is  the equivalent of having two 360 systems  talking to on; 
disk  Bystcm.   This  is  a standard  IBM configuration 
possibility  (chough not supported by IBM software).     If 
the  user  is willing  to accept  implcBUnting his  own 
read'write   lock aechanlsfiS  there  is nothing  in  the  IBM 
system to preclude this mode of operation.    Given all of 
the above it is now powlble to write a communications 
system strictly at  the use/ level using standard IBM I/O 
software.     Data Just  "appears" on the disk and is  read 
into the  360 and is in turn written on the disk and Just 
"disappears".    Th« data from the 680*s  is written as a 
sequcotia ly ever growing file, capturing an entire day's 
transactions,     rhis alluws "rerunning" a day's 
transactiona  in real time to find obscure bugs. 

3.4 INFLUENCES: After spending several years working on 
modified or bastard 360 Systems and realizing the effort 
level  to maintain these systems given the  frequency of new 
IBM releases,  it seemed insane to design a system that 
relied on any  thing except the most rudimentary  features 
of the  IBM monitor.    The approach described has proven 
very successful in over three years of operation.    To my 
knowledge no problem have been encounters) due  to the 
monitor/ Cosex system interface. 
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SIRVEY OF FAULT-TOLERAKT COKPUTINC  SYSTEMS 

John H. Waniley, Stanford Research  Institute 
tianlo Park, Ca.  94025, May  1972 

1.     IDENTIFICATION 
1.1.  NAME:     SIFT  (Software-Iapleaented  Fault  Tolerance), 
project:    design study of a fault  tolerant digital 
computer 

1.2 RESPONSIBILITY:     SRI 

1.3 SUPPORT:     NASA Langley 

1.4. PARTICIPANTS:     J.  Goldberg,  K.   Levitt,  R,   Ratner.  J. 
Wensley,  H.   Zeidler,  H.   Green 

1.5. START:    August   1971 

1.6. COMPLETION:     Experlnental   version   1973,   final  design 
1974 

3.1.1.3.    CAPABILITY:    The design concept is valid over 
the entire range of processor, memory and bus    apsbility. 

3.1.2.  EXECUTIVE:    Executive control  (allocation, 
scheduling, dispatching,  rc.onfigurstion, etc.)  la 
achieved by replicated softwkre executive routines, 

3.1.2.1. MODES:    The priaary operating neue is on 
repetitive resl-tine calculatims involving m*^y loosely 
connected tasks.    Both multiprocessing and 
multlprograming are Included. 

3.1.2.2. SOFTWARE:     Taeks   ..re multiprograKDed  in each 
processing module.    Each task  for which fault  tolerance is 
demanded Is present in more than one nodule.    A loose 
synchronization of task processing is achieved by the 
system executive  (which itself Is replicated and loosely 
synchronized).    Software  fault detection la carried out 
between each iteration of a task before erroneous results 
are used by the next  iteration or other tasks. 

1.7.   BIBLIOGRAPHY:     Technical  Progress  Narrative»   1-7; 
"SIFT -  Software  Implemented  Fault Tolerance," 

FJCC  1972 

2.     MOTIVATION 
2.1. PURPrSE:    Control processing in an advanced 
technology  transport   (aircraft)   including navigation, 
stsbill'.y augmentation, engine control, instrument blind 
landlrga, etc. 

2.2. PHYSICAL ENVIRONMENT:    Airborne — the system concept 
however  is  applicable  to any  envlronmnt. 

2.3. COMPUTING ENVIRONMENT:     Real-time 

2.4. COMPUTING OBJECTIVES:     Configuration acaleabilit/, 
graceful degradation, tranaportsbility of concept to any 
processor or memory design. 

2.5. RELIABILITY OBJECTIVEf-    Hlnlwm probability of 
< rroneous results, and of loss of computing cspsclty 
luring sircraft  flight. 

2.6. DYNAMIC VARIABILITY:    Variable degrees of fault 
tolerance for tasks of differing criticality.    Ability to 
trsde off b  cveen computing power and fault tolerance. 

2.7. PENALTIES:    Worst case - human lives; intermediate - 
aircraft damage;  least case - need to abort  flight 
objectlvea. 

2.8. CONSTRAINTS:    Hardware must be designed with weight, 
else and power requirements consistent with sircraft 
requirements.     The basic  concept of  the  system Is only 
affected >     the  -.onstraint that malntenace cannot be 
carried out during flight. 

2.9. TRADEOFFS:    Computing capacity vs.   reliability 

3.    DESCRIPTION:    A system architecture in which  fault 
tolerance is achieved with no apeclal  fault-tolerant 

- hardware. 

3.1.  ARCHITECTl'RE:     A multi-computer   (aee   Fig   I) 

3.1.1. CONFIGURATIONS:    No constraints are present on 
piocessor or memory dutft.1.     Fault tolerance is achieved 
by the restricted conn       '       :f processors and memorlea, 
and by  software  control. 

3.1.1.1. IHTERCONNECTIVITY:    Processing modules comprising 
a processor and memory are connected via multiple busses. 
The Interconnection is designed so that processors may 
only read  (and not write)  into the memory of other 
modules.   The busses  are used  as  alternative   routes  rather 
than as multiple slaultsneous transmission paths. 

3.1.1.2, RANGE:    The scale of the aystem is not  frozen In 
the architectural concept.     It is envissged tha; a minimum 
configuration would contain three processing mobiles and 
three busses.    Tht design does not  (at present) place any 
limit on the umxlmua configuration.    Greater fault 
tolerance is achieved with a large number of low- 
capability unite rather than with a email number of high 
capability units. 
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3.2  FAULT TOLERANCE 

3.2.1.   FAULTS TOLERATED:     Tl,«  .y.t»  1.   tolermt   to  faults 
in any unit  (procesaor, bua or meaory).    n» fault, may be 
th« erroneous  reault of an action  (calculation 
trananiaalcn or storage)  or the  failure of a unit to carry 
out any action. ' 

The aystem handles  transient,  and pernanent  fau ts, 
treating long-ten intermittent  faults  as penn* ent.    The 
reconfiguration procedurea can bring back into i ■rvice a 
unit that was at one  tine subject  to faults bu    1 as since 
recovered or been repaired. 

The causa of the fault (electrical, mechanical, etc.) Is 
not of importance, the only conaideration la hether the 
results of actior.a in  replicated units  agree or disagree. 

Independent multiple  faults can be tolerated to any degree 
depending on  the extent of replication of the function. 
Correlated  faults both  In hardware and software are not 
toler-  ei to the same extent as uncorrelated faults.    The 
loose synchronization of taaks assists  In tolerating 
faulta which arc correlated In  time  rather than function. 
One-ahot  faults do not  cauae  removal or reconfiguration of 
units  from the system.    The propagation of a fault  from 
any unit  to another can only occur If both units are 
faulty. 

3.2.2.   FAULTS  NOT  TOLERATED:     Multiple  correlated  faults 
that are not detected by a voting procedure, or by 
repeating the  task, e.g., slmultaneoui identical failure 
of two memory units when threefold replication Is used. 
Passive  faults that  reduce the aystem to a size too small 
to handle   thr  computing  load. 

J.;.3.    TECHNIQUES:     Fault  detection  Is   carried out  by 
re- Ucatlon and voting,    other fault detection methods 
(hardware or software)  are compatible with and can je 
incorporated into the system concept.     Fault  correction 
(or tolerance)  Is achieved by voting after replication In 
most  cases but can be supplemented by other techniques 
auch as repetition or roll-back.     The allocation of 
resources  to tasks can be changed either when faulty units 
are removed or when »he mlaalon deminds different  fault 
to.erance and/or cot   utatlonal power. 

3.3. NOVELTY:     Lack of need for special hardware units  to 
facilitate  fault  tolerance.    Ability  to trade off fault 
tolerance with computing power.    Applicability of the 
system concept  to different memory or processor designs. 

3.4. INFLUEHCES:    The design Is Influenced by the need to 
avoid    special hardware  for fault tolerance,  freezing 
fault  tolerance techniques at design time, oesigns geared 
to particular sire snd speed computers. 

3.5. HARD CORE:     1 don't mean anything by "hard core" In 
the system described.     I  can Imagine other aystem concepta 
In which the  term hu meaning (but little utility). 

4.     JUSTIFICATION 
4.X.    RELIABILITY EVALUAT1 IN:    By analysis,  assuming 
uncorrelated faults of equ 1 probability In each part of 
the  system  (chip,   coni.ectn   ,  cable,  etc.), 

4.2. COMPLETENESS OF EVALUATION:  Incomplete. 

4.3. OVERHEAD:  Variable, typically a 3-1 cost penalty is 
paid for fault tolerance. 

4.4. APPLICABILITY: General; the design Is applicable to 
any environment. 

4.5. EXTENDABILITY:  Unlimited. 

4.6. CR1T1CALITY: Multlproceaaing is critical. 
Multiprogramming Is highly dealrable (see Fig 2). 

4.7. IMPLICATIONS:  There are no Implications or the 

hardware dealgnera of processors and memories. The busses 
are constrained in the way units communicate. The 
applicationa' software must be Implemented so that Input 
data for a program la fetched by calling a general aystem 
routine which carries out fault det.ctlon and correction. 

5.  CONCLUSIONS 

5.1  STATUS; A conceptual design of hardware, software 
and fault tolerance procedures exists. 

5.2. EXPERIENCE: Software design studies show that the 

time and memory rcquirementB of the fault detection and 
correction routines are reaaonable. 

5.3. FUTURE; The projection Is for an experimental 
version of the system to be built. 

5.4. ADVANCES:  I/o units with fault tolerance 
capability. 

Processors 
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SCTVEY OF  FAULT TOLERWIT  cOMPlrTINC SYSTEMS 

Ri*«rt K. Wim»., Unity T«l«cOTMnlc«tlon« Rueirch 
Ltd., Ttplo» Nr. Ktldinhut,  B«rki., U.K., October  1972. 

1.     inENTIFICATION 
1.1. NAME:  Syat» 2S0 

1.2. RESPONSIBILITY:  Tlie PleiMy Co.   Ltd. 

1.3. SUPPORT:  System dcvelopoant  is  jointly supported by 
TTie Pleney Co.  Ltd. er.d the National Reaearch and 
Dcvclopnent Corporation. 

1.4. PAFTICIPANTS:  Tht Pleeaey Co. Ltd. 

1.5. START:  Jenuary  1969 

1.6. COMPLETION: Prototype coaploted end of  1971. 

1.7. BIBLIOGRAPHY:  The  followln« four papen are contained 
In tlie proceedlnita of the International Svlti  log 
Synposlun, H.I.T., Cartirld(e. Maaa., U.S.A., o-9 Jme  1972, 
*I>.  M.  Enftland. Operatlnp S/steii of Syatca 250. 
*J. H. Cotton, The Operational Rcqulreaente for Future 
Conviailcatlon Control Proceaaor«. 
*n.  Helton, Hardware of the Syatee 250  for Comunlcatlon 
Control. 
*W.A.C. Hcaetlnaa, Telephone Switching baaed on Syaten 250. 

The follouln; five papera are contained In the proceedlnM 
of the I.E.R.E. Conf. on Coet>utera- Sriteae and Technology, 
Mlddleae» Hospital Mad.  School, London, U.K.  24-27 Oct  72. 
•R. K. Wim,«., Systep 250 - Daalc Concepts. 
*M, J. Goodler, Systea 250 - Processing Philosophy. 
•P. C. Venton, Syetea 250 - Input/Output. 
•R. J. Leeaan, Systea 250 - Security Phlloaophy. 
•0. Edae, Syatea 250 - Dleftnostlca, 

The followlna four papera appear In the proceedlnga of the 
International Conference on Computer Cowrunlcaelon, 
WaahlnRton D.C., U.S.A., 24-26 October 1972. 
•!>. C. Coasarat, A Capability Oriented Multl-proceaaor 
Syatea for Rcal-Tlae Appllcatlona. 
*K. H. Haaar-Hodftes, Fault Realstsnce and Recovery Within 
Syatea 250. 
•C. S. Repton, Reliability Aaaurance  for Systea 250, A 
Reliable Resl-Tlae Control Systea. 
•J, Croapton, Structure end Internal Comaunlcatlona of a 
Telephone Control Syatea. 

2.     MOTIVATION 
2.1. PURPOSE: Stored prograa control of telephone and data 
switching system. 

2.2. PHYSICAL ENVIRONMENT: Crowd based 
2.3. COMPUTING ENVIRONMENT:    The systea Is designed to 
allow flexible Interaction with Ita envlronnwnt e.g. 
locally, reautely and/or via a nctworH. 

2.4. COMPUTING OBJECTIVES: The computing oblectlvee are not 
well defined In any abaolute aenae.    Syatea performance 
auat be adequate to enable very large telephone exchanges 
to be adequately controlled, yet the coat of the smallest 
secure configuration should be mlnlalred to allow economic 
control of saall exchanges.    The systea architecture should 
allow eaay expansion of in Initial configuration by a 
factor of three or aore whllat the system Is on-line.    Such 
expansion could be In terms of procesalng power and/or 
atorage capacity and/or input/output capacity or Kny 
permutation thereof.     (See alao 2.8.) 

2.5. RELIABILITY OBJECTIVES: The ayatea was ^algned with 
the aim of aactlng the reliability requlreaenta proposed by 
the Brltiah Poat Office for application to telephone 
control equipment.    These requirements were defined on s 
sliiU'.g scsle which relsted duration of a single ayatea 
failure to the maxlliua acceptable nan  frequency of 
occurrence of similar failure!;. 

Fsilurr Duration Max.  acceptable mean frequency 
2nnia 50 per year 
15s 12 per year 
' '^n 1  per year 
5 min 1 per 20 years 
10 mln I per 50 years 

For the purpoaea of the above, a ayatar failure la defined 
aa a fault which affecta more than half of the controlled 
equipment.    /Note:    Average duration 5 aeconda/. 

2.6. DYNAMIC VARIABILITY; Both perforBanca and degree of 
fault tolerance may be varied at will by alaply adding or 
aubtractlng ayatea aodules.    Addition of nodules 
alaultancoualy inctvaaea both  performance and reliability, 
thua the question of trade-off does not arlae. 

2.7. PENALTIES; Faulty operation will obviously degrade 
perfnnaance which any well lead to loss of revenue and in 
extreme clrcuastancea could Involve  loaa of life e.g. if 
emergency telephone cells  fall  to get  through etc, 

2.8. CONSTRAINTS: There are now well defined conatralnta 
on slxc, weight, power, coat etc. In absolute terra. The 
Mm haa been to produce a ayatea which Is vsry competitive 
1« tens of thr above parameters with contemporary ayataaa 
but offers very auch enhanced; 
• Reliability and Security, 
• Ease and Range of Expansion, 
• Fleaibi.lty in ten« of being able to tailor the hardware 
and anftware configuration to closely match particular 
requlreaenta. 

2.9. TRADEOFFS: Computing capacity 4 reliability va.  coat. 

3.    DESCRim'-N 
3.1.    ARCHITEC.TIRE 
3.1.1.  CONFICURAT10NS 
3.1.1.1.    INTERCONSECTIVITY  (See Figure): The basic 
hardwire conatralnta on system interconnectlvlty (aalde 
from any additional constraints  laposed by software)  sre 
deecribed below. 

Each proceaaor unit has its own dedicated coamunlcatlona 
bua for conunlcatlng with store or the input/output 
network.    No processors will be directly connected together 
under normsl clrcuastsnces although this Is slloued (via a 
special Interface)  for fault diagnosis purpoaea only.    Any 
proceaaor can acceaa any atorage location and any part of 
the input/output systea.    Store modules sre connected to 
all proceaaor buses via aultlport acteas unite. 

In ayetaaa which contain more than two proceaaora, acceaa 
to the input/output ayatea ia achieved via two aultlport 
Bua Multiplexors which multiplex three or sure Processor 
Buses onto two Peripheral Cuaaa  (one per aultiplaxor). 
Feat perlpherel devices an connected directly to both 
peripheral buses via tvo port Parallel Interface Unite. 
All data transf-rs between the above units take place in 24 
bit parallel mode. 

Slow apeed and/or low activity peripheral devlcea are 
connected to the ayatea via a aerial coirammlcstions medium 
in which sll data transfers  take place in aerial bit for«. 
The Serial Medium ia interfaced onto the Peripheral Buses 
via ipedaliied Parallel Interface Unite known as 
Serial-Perallel Adeptora.    Eacl. adaptor liaa two ports snd 
is connected to both Peripheral Duaea.    Peripherals sre 
Interfaced onto the Serlel Medium via tvo part Serial 
Interface Unite, each port being connected to a different 
Serial-Parallel Adapator via a network of Datr Switches. 
The pathway between a Serial-Parallel Adaptor and a Serial 
Interface Unit normally pauses  through a 64 port Primary 
Data Swlthch (of which there le one per Serial-Parallel 
Adaptor) and then through a  16-port Secondary Data Switch 
to the appropriate Serial  interfece unit.    Tlie secondary 
Data Switch may sometimes be omitted. 

Lsrge Systeme mey contain aeverel Serial Media each being 
connected onto two Peripheral Buses via two Serial-Parallel 
Adaptors.     If necessary several oalra of Periphe tal Buses 
could alao be provided via aeveral pairs of Multiplexors. 

If there are no more than two proceeaora :.n a aystem, 
Multiplexors are unnecessary «no Feralle'.  Interface Unite 
and Serial-Parallel Adepatora may be connected directly to 
the processor buses. 

3.1.1.2. RANGE: There ere no well defined upper limits on 
the nurtiers of processors  snd/or stores poaaible in a 
system, but preeent estimates  Indicate  that aystem 
containing up to 16 proceaaora and perhaps 20-30 atore 
modules sre feeaible.    Each etore module could contain up 
to 64K of 24 bit worda.    The smallest aenalble aystem 
currently envisaged would contain a aingle processor snd a 
single store module of  16K or 24K capacity, 

3.1.1.3, CAPABILITY: Baaed on a method of power assessment 
which haa been developed specifically  for the telephone 
•"'telling application, a aingle proceaaor ayetea turna out 
to be about one third or one half (depending on the type of 
store used)  aa powerful ea an IBM 360/65.    The maximum 
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ponlble nud.er of flMd point •dlltloni par second  for • 
tlztflt PPJ50 proctuor Ilia batwaan about 500,000 and 
900,000 dapandlnr on the typ« of atora uaad (via.  850na 
eora or MOna plat'id wire) and on uhathar th* additions la 
a atora rafarence or raglater to refilatar op<?r«tlem. 

3.1.2.1.    HODESi    The ayatam la a multi-CPU  lyaten with all 
CP« s being aaynchronom  Identical unite of equal atatus, 

All Operating Syatem nodulee are re-entrant  and thus uy be 
executed by aeveral proceaaors simultaneously and 
Independently.    Hie Operating Syatem will noraially be 
entered by a aubroutlne call but can also be entered aa a 
-eault of a prograx trap or aa the raault of a tla»r 
naturlng within a CPi:, 

The Syste» Is TOltlprograimable with eech pnjceaaor being 
rial on a tlae-sharlng baais. Hultl-proceeelng Is  a standard 
feature of the Syatem and processes can be rial 
Inder „dently from or In controlled co-operstlon with other 

In Systam 250 s process Is  n dynamic entity and la defined 
aa  the execution of program code on a particular set of 
Input data.    Uecauae of the protection afforded by 
Capabllltlea, many processei< can aafely ahare a particular 
block of program code simultaneously, but each will execute 
It on a different sat of date      A process may only be  run 
on one processor at a tl-e but may In general  run on 
sev-ral different proceusora  consecutively. 

Since 1- la data and not code which dlatlngulahes  one 
process from snother, processes are allowed to cross the 
conceptual boundary between Operating Syatem and user 
progran In Just the sine way as they would cross  the 
boundaries between InH'.rldual user progras«.    Tlila presents 
no apeclal dlfflcultlea alnce the hardware Capability 
machanlar which monitors and conatralnta the awltchlng of 
control between prograna, makes no distinction between 
Operating System and uaer programa. 

3.1.2.2.    SOFTWARE:  flie Syatem 250 software organliatlon la 
descrlhad In D..M.  England'a paper presented at  the 
International Switching Symposium, June   1972,     (See  1.7.) 

3.2.     FAIXT TOLERANCE 
3.2.1.    FALTTS TOUERATEUl Hie Sys'en 250 architecture 
allows at  leaat on« redundant module of each  type  to he 
provided In a ayatem.    Thua  the ayateir will  carry  on 
operating In the face of hardware  faulte provided  that at 
leaat one module of each type remains fault-free.   Faulte 
caused by aoftware errora will normally only occur 
(«uaumlng programa have been properly debugged) when rather 
rare coatilnatlons of data and/or timing are encountered. 
The software recovery procedures outlined In 3.2.3 below 
allow the unuaual clrcumatancea aurroundlng the  fault  to be 
avoided by employing Increealngly powerful   (and hence more 
disruptive)  recovery actlona until  the  fault no longer 
manifests Itself, 

It  la  recognised that a iiuime - of obscure software errors 
are always likely to be present  In the ayatem but since the 
clrcumatancea, which cause system fsults  to develop aa a 
reault of theae errora,  are by definition rarely 
encountered,  they will not In general  cause unacceptal.le 
service disruption. 

Hie effect of a hardware or software  fault  on the external 
environment will be  to cause one or more of the  followlnp: 

* If the fault disables a atore or processor, a permanent 
drop In the throughput of the system will  result,  at  least 
until the necessary maintenance action 1« undertaken. 

* If the fault la elaewhere a temporary  fall  In the 
throughput capacity of the Syatem will occur while  test and 
reatart or reload meaaures are undertaken.    The magnitude 
and duration of thla  fall dependa on the type of  fault,  the 
status of the System (I.e. with regard to wori<  load)  and 
the hardware and software configuration of the Syatem. 

* Depending on the nature of the  fault,  it may he  possible 
to restart affected processes at  the point at which  the 
fault waa detected or it svay be necessary to restart 
proceaaea from .he beginning.     In the telecomnunlcatlona 
control application the  former action should cause no loss 
of calls uhareaa the  latter action may mean the  lose of 
some or ell of the call« being handled by the affected 
processes.    In the worst case  the whole system is  reloaded 
from becking Store and all read/write data areaa are 
cleared resulting in the  loaa of all calla being handled by 
the system.    Tills case should be very rarely encountered. 

Faults In Serial or Parallel Intel-face Units will 
naturally diaablu th« perlphsrala  to which they are 
attached.    Theae unite nrc allocated on a one per 
peripheral baala thua a atngle fault will only affect one 
peripheral device.    AH comtsuiicatlm path« between 
proc«aaor and peripheral Interface unite an duplicated 
thua a fault  in on« or more of the units on only one of the 
coowmlcetion path« will „ot affect  «y«tem operetlon. 

3.2.2. FAULTS NOT WLERATED:  It 1, .ntlclp«ted th.t  th. 
only f«ult condition« not tolerated by the System (i.e. 
from which the ayatem i« unable  to recocover eutomatically) 
Involve at  leaat  two «Inultaneou«  fault« which 

• Dl«d,le at   least  two system hardware modules of the same 
type ao that no fault  free modules of this  type remain, or 
• Overlde  th« Capability nechanlam and corrupt ALL copies 
of a vital aoftware area before the fault 1« detected. 

It la believed that  the chances of either of the above 
happening are acceptably remote.  In any apeclflc 
application the cl-incea of auch situations arising can 
alwaya be reduced below any finite  limit by suitably 
increasing redimdancy of hardware and Software module«. 

3.2.3. TECHNIQUES: Id* Syatem 250 architecture allows a 
fault  to he tolerated In any aingle hardware nodule by 
providing redundant modules of each   type In a secure system 
configuratlor       Faulte will noraally be detected either by 
one of an extt.iaive range of hardware fault detection 
mechanisms provided In each PP250 processor unit  (e.g. 
capability checke, parity checke, microprogram checke, 
etc.) or by backgroiaid teat routines or by consistency 
checks written into the Operating Syatem and applications 
aoftware. 

Faulta detected by hardware automatically cause the 
processor concerned to enter a aelf-test  routine with very 
limited access  to ayatem rcaource».    Procecaors which 
«uccesfully emerge  from the self-teat can apply to «Join 
the ayatem,  the application normally being dealt with by 
fault recovery eoftwrre lelnf run on a good processor. 
Processors which have ■ bad history of faults may be 
refuaad penslaslon to .-«Join the system and forced to 
endlessly repeat the ailf-teat procedure until maintenance 
action la undertaken. 

If a hardware  fault la traced to a module other than a 
proceaaor the f«ult recovery software causes thj faulty 
module to be effectively  Isolated  from the ayatem awaiting 
eialntenance action.     If  (as may be  the caae for certain 
intermittent h«rdw«re feulta) the fault cwinot be traced to 
a particular module the recovery aoftware will «a a laat 
resort cause  the ayatem to be reconfigured leaving out 
modnles on a trial baals, until a  fault  free configuration 
Is achieved. 
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Sofcvan r*c<n»rT proMdur»» «r^ arrniaJ In a hUrardilcal 
•tructura atartinf «'.Ji procadur» uhlch atca^t  to clear 
corrupt.d data and raatart fallad praeaaaaa an.l If nacaa- 
aary "nrtln» up throtuti aa*aril atanaa of auccaal«a)y aora 
dlarivtlva racovary aaaauraa aach  Involvlnr raloadln, coda 
and data arraa  fro. coplaa on backing atora.    L».ntua!lv, 
ff all alaa fa»la, thla culnlnata' In claarlap JII coda and 
data araaa  fro« faat atora  (aacapl cartaln anaa  contalnlnr 
rapllcatad coplaa of tha baalc r.covary proiraaa),  claarlnp 
all  raad/vrlta data  froa backlai atora and raloadlnf all 
proaraaa «id raad/only data froa backlnp atora. 

Racovary froa both harduan and aofnara faulta Involva tha 
l^>1,**°'*«lon of a aarlaa    f lnctaaaln|ly dlaruptlva 
actlonr laitll tha fault la claarad.    HIM ona procaaaor In 
a aultl-procaaaor ayatm ba-(Maa faulty and antara tta 
aalf-taat rautlna,  Ita abaanca la aoon notlcad by a Syat»T 
«Miltor procaaa which  tnanacta th. atatua of tha ayata« and 
la achadulad to ran at  rafular Intarvala.    Thla procaaa 
Inltlataa a hlfti priority racovary procaaa which la than 
placad In a  "raady to run'   Hat and In dua couraa la 
achadulad to rial on a pood procaaaor Juat Ilka any othar 
procaaa. 

3.J.    NOVtLTy:  Tha aoat  laiuaual daalpi fcaturaa of tha 
ayatan ara aa  follova: 
• Tha ayataa    aa baan daalfnad to ba fault  tolarnt  to a 
dagraa  hither   .  unheard of  In  cowvrclally available 
confutar ayata«. 
• Syataa parar and atora». nay ba aapaidad Independent Iv 
•li^ly by adding further procaaaora or atorape unit». 
• Additional "radwidant" Procaaaora and »tore» added to a 
ayatan to enhance  ita  reliability, alao parfon uaaful wort 
and thua incraaaa the corputln« capacity of tha ayatan. 
Thaae nndulca ara tharafora not  rediatdant In tha aaac »enaa 
a»  rediaidant aodulea  in nany other ayataaa »hich purely 
parfon a backup  function and do not uaefully contribute to 
ayata* parfonwnoa  In tha abaence of a fault. 
• Syatan h.rdwir» and/or aoftvara aodulea can be inaarted, 
ranovad and/or nodlfiad whllat tha ayatea In on-line with 
no conaequent   loaa of aarvlca. 
• Data and prorraa aacurity ia praaanad by a harduare 
Inplanentad Capability ncchanlaa which not only define»  tht 
araaa of atora or the input/outpul ayata* which ara 
acceaalble by a propre», but alao daflnaa tha type of 
accaaa allovad.    Thla  la a particularly laportant  feature 
whan tha aharinp of atora ia allowed between procaaaaa. 
• Thar* ia no orlvUeped node of procaaaor Operation. 
Oparatinp Syata* proiraaa are »uh)»ct to the aaaa aacurity 
raatrictiona  (-aforcad by Capabilltiaa) aa uaar propre«. 
• In tha event  of a fault bainp datactad in hardware, a 
hierarchy of eutoiatlc racovary pneadurea la entered with, 
if nacaaaary, auccaaaively aore dleruptlve aeaauraa beinp 
taken in order   -o    .cover a wortlnp avataa.    Thla  leada  to 
a trial  raconflpuratlon procedure if all alaa taila, 
• Diagnoaia of a faulty hardware nodule aay be carried out 
on-line with no incneaad riak to tha reat of tha ayataa. 
• n* input/output ayataa ia daelpnad to be very  fleaible 
in ita  conflpjrablHt.  and in particular allowa very larpa 
ni«bera of 1» activity peripheral davlcea to ba 
efficiently dealt with. 
• Ko external  Interrupt»  are allowed Into the proceaaora 
(for aacurity reieon»)  and all Input/output la handled via 
polling procaduraa. 
• Virtual aanory ia lua-t in e real-tine context, 

3.4.     INFUItNCES: Th* uaa of Capabilltiea to atructure and 
protect the Syataa 250 aoftwara haa been alpnificantly 
Influenced by  tha raaaarch woti of Dr.  F. S.  FJ>ry carried 
out at  tha Unlvaraitv of Chicago or "Llat Structured 
Addreaaing" and alao bv the Ideee end advice of Profeeaor 
H.  V.  Ullkaa of the 1'niveralty of Ca»fcrldge. 

J.5,    HA«DCO»E: Th* PP250 procaaaor haa h.en daaigned auch 
that  th* conventional conception of haedcot* (i.e.  that 
aingle portion of the ayataa which ruat work  in order to 
aaka the ayataa work or aaka diagnoaie poea<ble)  haa baan 
avoided.    Papllcation of all vital ayata* hardvar* «id 
anftaara aodulea enaurea that no aingle aodule failure can 
bring tha ayata* down. 

t.      II STIFICATInN 
i.l.     ULIAB1L1TY EVALUATION: Syata* reliability 
calculation» have baan carried out uaing eatiutad 
M.T.B.g'a and H.I.T.H'a of ayatan hardaan aodule».    Theae 
in tun »era calculated fron aeaaund fallun rataa of 
individual hardware  coaponent».    Tha procaaaor aalf-teat 
propren haa baan taatad uaing a logic  level alnulatlon 
pngraa for the procaaaor into which a large nmdier and 
variety of faulta «an iniacted. 

4.:.    COKPUTENESS OF EVALUATION:  Tha daaign eveluetlon ia 
eapacted to continue for »oae conaidarable  tfae  (if Indeed 
It a«*r atopa) eapaclally in tha light of naming Operating 
Syataa iwall under way)  and application» propre«. 

4.3. nvEPKEAD: Thi» depend» very much on th» required 
ayatan powat and tha required level of rallability.    In tha 
■feaiteM    teure configuration in «hid   all ndulea ara 
duplicated ona could argue that aore than SO? tf th» coat 
ia devoted to tha pnvialon of  fault  tolerance, Howvar, 
even in thla caae the extra procaaaor and extra ator- aaka 
real contribution» to ayatan parfonanca and ao cuablon 
ayatan igalnat inataotanaoua paaka.    Sea alao 3,3, itaa 3, 

In large ayateaa tha ratio of eeeentlal  to "rediaidant" 
harden aay be greater than 5 to  1 depending on ayatan 
»laa and the deilred level     f relleblllty. 

The proportion of  faat atoraga devoted to fault  recovery 
aoftvara in a typical talecoaunlcationa applicatlan »ill 
probably be not nor. than 251 and could be a lot  laaa in a 
large eyatan. Probably nora than iOl of batting atoraga 
hoHaver ia pnaent in order to aclil.iv.  fault  tolaraice 
alnce backing atoraga containing copiaa of all ayatan 
aoftvare mmt be duplicated for r.llebinty. 

It ia difficult to aaaae» the coat overhead aaaoclated «ith 
the uaa of capabllitiea alnce their ueefulneaa extende far 
b-yond  luat  fault protection, 

4.4. APPLICABILITY: The ayata. ia appMcafcle to alaoet any 
nal-tia* control application but particularly thoae with e 
pood reliability and expanalon potential. 

4.5. EXTUinABILlni Thla quaation cannot be aatiafartorily 
anav.nd at  thla a age aa It  require» a nuch nor. co^ilete 
evaluation of the i meant ayata* deeign. 

4.6. CPITICALITIES:  Both nult 1-prograHing end 
nultlproceaalnp are  fundemntal to the achiaveaent of the 
ayataa daaign alaa.    The choice of .11 excapt peripheral 
and atorage h»t*..r. ia critical a» »11 other ayataa 
har*ian aodulea have built in feetucaa «hich an cloeely 
notched to the overall ayataa requinaanta.     It la of 
couraa poaalble to uaa aodulae «hich offer the ea« 
facl'.itiaa and interfecea bu. differ intenally in deteiled 
Inpleaentation. 

4.7. IMPLICATIONS: Hala raquinaant on herben ayatan 
dealgnara ia that  daaign ahould not alia« aingle herdw.r. 
fjilurea to generate further failuna «id th« apreed to 
aeveral aodulae.    Sofnan deelgner» en napon-ibU fc 
inaarting conaletancy check», etc., in thair own propre«. 
They ahould alao writ»  routine« which eneble execution of 
their progre« to be reetarted follawiag a detected fault. 
Thla  naponaibility  alao extende  to «ar progreaawr». 
Halntanance action ahould be deeinad auch that  it c« be 
carried out on-line, 

5.     CONCLUSICHS 
5.1.    STATUS i Several pn-productloa aultlpncaaanr ayata« 
working end under evaluation.    Production expected to 
coaaenca in alddla of  1973.    Pint dalinnd production 
ayatan expected to be f lly operational  in Scpte^er  H74. 

5.».    EXPEglEKCE: The baalc ayataa philosophy ia a proven 
•ucceaa.    Planned developnent targeta ara being 
conaia.antly achieved.    Soae nlnor aodlfleet Ion» en beinp 
introduced »» a neult of .valuation of a oiadiar of 
pre-)   oduction eyatev^. 

5.3. FUTURE: Aa a general policy ayataa lnplen.nt.tlon I» 
continually »dar critical review in the light of operatina 
experience and advance» in technolopy.    The ability to 
allow ayataa evolution ia eaaantlal in appllcationa auch  e» 
talecoaunlcationa control when the eyataa la daaigned to 
operate contlnuo«ly for parhapa aeveral dacadaa. 

5.4. ADVANCES:   In reapact  of ayataa archllecture,  ao »any 
novel  feature» an incorporated in the preeent  Syeten 250 
dealpn that thaaaa nquln e aore coagilatc evaluation 
before all of .he laportant i^illcatiana been« appannt. 
It ia therefor, not posabible et thla atage to indicate 
architectural advancaa «hich an obvioiMly deairabla. 

Ohvloualy deairabla adv«ce>  In hardware technology include 
Increaaed reliability of peripharali- and niniaua uaa of 
aovlng part «ebenleal  technique» in particular. 
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PMllbU nxA^r of   flud  point  «ddltlon«  r«'  »«ton«)  for a 
• In»!« rPZV)  procooor  lioa botvom akeut SOO.OOO and 
«00,000 dapandlnp on tha  typa of »tor, aaad  (vli.   «vin. 
con or WOaa placad »Ira) and on »hatlwi  tha addition« la 
a atora  refaranca  or ra|latar to raplatar oparntlon. 

1.1.2.1.     MOTCSt     Hi« ayaiar  la  a aultl-CPl'  tratar »1th all 
CfV I balnf aarnchronoua  Idantlcal  wilta of aqual aiatua. 

All "paratlna  Syatan ■odulaa an ra-antrant  and  tl.ua My ba 
aacwad b»  aavaral   procaaaora  ilnultanaoualv  and 
tndapandantlr.     Äa Onarallnp  Syata» »111  nomally  ba 
antand b>  a aubroutlna call but can alao ba antarad aa a 
raault of a pranraa tray or aa tha raatilt of a tlaar 
■aturlng within a CPT. 

nia Srataa la ■ultiprorraaaabla »1th aach procaaaor balnp 
rial on a tlaa-aharln| baala.  Multl-procnal.r la a «tandard 
faatura of  tha Syataa and proeaaaaa can ba rwi 
Indapandantlv    rna or In caatrollad co-o«aratlon »1th othar 
proc«aaaa. 

In Syatan ;i0  a procaaa  la  h dvnanlr antlty aid la  daflnad 
aa  tha aaaciitlon of propras coda on a partlciilar aat of 
Input  data.     Uacauaa of  tha prstactlon affordad by 
Capabllltlaa, any  proeaaaaa can aafaly ahara a particular 
block of propraa coda ataul   viaoualy, but aach »111 aaacuta 
It  «n a dlffarant  aat of da. ..    A orocaaa My only ha  rial 
on on,  procaaaor  at  a tlaa but «ay  In panaral  nai on 
aavaral  dlffarant  procaaaora  conaacutlaaly. 

Sine*  It  la  data and not  coda which  dlatlnpulahaa oi ■ 
procaaa  fro-   anothar.  proeaaaaa an allowed to croaa    Ha 
concaptual  hoimdary batweon Oparatlnp Syata* and Mar 
prosraaa  In   luat   tha  laar »ay aa  thay »ould croaa  tha 
boiadarlaa  batwaan  Individual uaar proprana.    Hila  praaanta 
no apaclal dlfftcultlaa alnca  tha hardwara Capability 
■achanlap which  aKNiltoro and conatralnta  tha aaltchlnp of 
control batwaan proprana, Makaa no dlatlnctlon batwaan 
"paratlnp Syataa and uaar propraa«. 

J.I.2.J.    SorrVAWi  Ilia Syata» 2S0 aoft»an orpanliatlon  la 
daacrlbad In P.^l.   bnpland'a  napar nnaantad at  tha 
intarnatlonal  Swltdiinp Symoalua,  Jiaia  1*72.     (S«a  1.7.) 

1.2.     PAm TOUKANCE 
3.2.1.     FAITTS  TOLFRATtD:  Ttia Syatan 2VJ  archltactura 
allow»  at   laaat  on/  radiaidant  nodula of aach  typa to ha 
prevldad In a avptaa.    Thua  tha avatar will  carry on 
oparatlnp  In  tha  faca  of hardaara faulta provldad that at 
laaat  ona aodula of aach  typa raaalna  fault-fraa.  Faulta 
cauaad by aoftwara arrora »111 nonaally only  occur 
'aaaunlnp  propraaa  t.ava baan pronarly  dabuppai)  whan   rat bar 
rara coattlnatlona  of data and/or tlalnf an ancountarad. 
Tlia aoftvara  racoaary procaduraa  out]load In  3.2.3 bain» 
allow  tha  imuaual   clrcuMtancaa  aurrotaidlnp tha  fault   to ba 
amldad by »aplovln»  Incraaalnply po»arful   (and hanca aora 
dlamptlva)   racovary acttona until  tha fault no lonpar 
aanlfaata  Itaalf. 

It   la  racopnlaad  that   a nijat>cr of obacun aoftwan arrora 
an  alwaya   lUaly  to ba praaant  In tha ayata» but alnca  tlia 
clrcuMtancaa, which  cauaa ayataa faulta  to davalop aa  a 
raault  of  thaoa arrora,  an by daflnltlon raraly 
ancountend,   thay will  not  lp  panaral  cauaa unaccaptaMa 
aarvlca dlaruptlon. 

Tlia affact  of  a hardwara or aoftwan  fault on  tha axtarnal 
anvlronMnt »111 ba  to cauaa ona or aora of tha  followlnp; 

* If  tha  fault  dlaablaa  a atora or procaaaor,  a paraanant 
drop  In  tha  throughput of  tha ayataa will raault,  at   laaat 
until  tha nccaaaary aalntananca action la undartakan. 

* If tha fault  la alaawhara a tanporary fall In tha 
throughput  capacity of  tha Syataawlll occur »Mia  taat  and 
raatart  or reload aaaauraa an wdartakan.    Tlia napnituda 
and duration of  thia  fall dapanda on tha typa of  fault,  tha 
atatua of  tha Syataai (l.a, »1th rapard to »or«   load)  and 
tha  hardwatp  and aoftwan  configuration of rha Syataa. 

* Dapanding on tha natura of tha fault,  it aay ba poaalbla 
to raatart affectad proeaaaaa at rha point at which tha 
fault »M  Jatactad or ir  aay ba nacaaaary to raatart 
proeaaMa  fro» tha batlnalnp.    In tha talacoaauilcationa 
control application tha  foraar action ahould cauaa no  Inaa 
of call» wharraa tha latter action aay Man the loaa of 
aoM or all of  the  calla being headled ba the effected 
proeaaaaa.     In tha wont   -aaa  tha wfiola ayataa la  reloaded 
fro» backing Store and all raad/»rtta data an« an 
rlaarad  raaultlng in  the  loaa of all calla being handled by 
the wyatai",    TMa caae ahould be »ary ranly encoiaitered. 

• Faulte in Serial or ParelUl Interface Lnlta »ill 
naturally  dlaablc   the parlpharala   to which   thay  an 
attached.     Tliaaa  lailta an allocated on  a  ona par 
paripharal baa'i  thua e elngla  fault »ill only  affect one 
parlpharal  dealca.    All coaaanicatton patha bat»eef. 
procaaaor  and paripharal   interface   u   Ite an  duplicated 
thua  a  fault  In  one or »ore of the  u  ite en only  ona  of  the 
cmiaiicatlan patha »111 not effect ayataa ogaratlon. 

3.2.2.    FAULTS NOT TOLHATCD: It la anticipated that the 
only  fault  condltlona not  tolerated by  the Syetaa (i.e. 
fro» which  the ayataa la  unable  to  racocowar autOMtlcally) 
involve at laaat  two alaaiKanaow faulta which 

• I'adT    at  laaat  two ayataa hardaan Mdulaa of tha aaM 
type eo t 'at no fault  free nodulea of thla typa reMin, or 
• Overlda   tha Capability  MChanla» anr  cornet ALL coplaa 
of a vital aoftvara araa before the fault la detected. 

It  ie belterad that  the chancee of either of the above 
happe-lnp  era  accaptahly  reaote.   In any epaeiflc 
at     Icatlon  tha chancee of auch altuatlona erieing can 
alwava be reduced below My finite Halt by aultably 
ineraaeinp rediaidaney of hardwara and aoftvara MdwlM. 

3.2.1.    TFCMSIOITS;  The Syetea 2W architecture allowa a 
fault   to ne tolerated in My eingle bardware Mdule by 
providing  redundant  nodulea  of each   t/pe  in  a eecure eyetea 
configuration.    Faulte »ill noraally be detected either by 
Me of an eatanaive rMga of hardwara fault detection 
MchMieM provided in each PF7S0 proceaeor Mit  (e.g. 
capability checke, parity checke, alcroprogm checke, 
etc.) or by backgroiaid teat routinae or by conalatancy 
checke written  into the Opereting Syataa and applicatloaa 
aoftvan. 

Fai.ta detected by hardwara autOMtlcally cawe tha 
proceaeor concerned to enter a eelf-teat  routine with vary 
Halted eccaea  to ayataa reaourcea.    Procaaaora which 
aucceafully eaerge  froa the eelf-teat  CM apply  to rejoin 
the ayataa,  the application noraally being dealt with by 
fault   racovary  aoftvan being  run  on  a  good procaaaor. 
Frocaeaora which have e bed hletory of faulte aay ba 
letuaed paraiaaion  to  rejoin  the  avatar and  forced to 
endlaaely repeat the eelf-teat procedure until aalntananca 
action ia  undertaken. 

If e hariktara  fault  la  traced U a Mdule other  than a 
procaaaor the fault recovery aoftvara caiaea the faulty 
aodula to be effectively ieolated froa the avatr- aaaitlng 
aalnt-nenca  action.     If   (aa  My be  the caae  for certain 
inta:     ttent  bardware faulte) tha fault cannot be traced to 
a particular aodula  the  recovery  aoftvara »111  aa a laat 
reeori cauaa  .be ayataa to be raconflgurad leaving out 
aodnlea on a trial baala,  laitil   a fault  free configuration 
1«  achieved. 

EXAMPLE   OF   MEDIUM  INSTALLATION 
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APPENDIX 3 

DETAILED CONSIDERATIONS OF MEMORY RECONFIGURATION 

This appendix considers detailed aspects of reconfiguration of memory 

systems, not only of the memory circuits themselves, but of other 

components such as data busses, address decoders, etc. 

The memory is assumed to be built from a number of units — for example 

LSI chips, each having the same memory capacity. When a fault is 

detected, some of these units are discarded, and either they are 

replaced by a similar number of spare units, or the system now has 

reduced memory capacity. The terms ised are as defined in section 6. 

A3.1.  MEMORY RECONFIGURATION BY BLOCK REPLACEMENT 

We restate the reliability estimates previously given in section 4.2, 

l(w-»')/yJ 

/   ,    V    - -        (Al) 

where 

P[> w  : w] =    ) 

1=0 

/u\  i 
Pfi " (i) Pf(1-Pf) 

C  P 
1  fl 

(u-i) 
(A2) 

and 
u = w/y 

(A3) 

A3.2 THE USE OF CODING WITH BLOCK REPLACEMENT 

The questions addressed in this section are: What is the optimum number 

b of bits per byte? and, given the probability p of chip failure, what 

is the value for P[> W'IW] 

If w* words are required to be still available after t blocks have 

become faulty, then W-(w,+yt). The number of chips required is 

therefore 
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N - (k+rHw'+yOAyb) (A4) 

Let N(b,t) be the number of chips required for varying b and t for the 

case w' - 16k, yb - 4k, n - 32. Then a few important values of N are 

N(l, t) « 152 + 38t 

N(2, t) - 152 + 191 

N(4, t) - 160 + 10t 

N(8. t) - 192 -f 6t. 

There are good reasons for b to be a power of 2, although codes of 

course exist for other values of b (see Section 4.1). The reliability 

can be expressed as 

(w-w )/y 

P[> w  : w] = 
V   /w/y\ „1 

1=0 
(7K«-v (w/y-i) 

where 

whence 

Pf - I-(I-P). 

(A5) 

(A6) 

(w-w )/y 

V   /w/y' 
/ Pr=Pr>w' : w)-    )   (Wy)(l-(l-P)Ck+P)/r,(1.p) 

1=0   ^ 

(k+p)(w/y-i)/b  (A7) 

Figures A3.i(a) to (e) show Ps or Pf -1-Ps, i.e., the probability of 

success or failure for p-io"" , n-1...5, and k-32, b-1,2,4,8 and w-lbk. 

A3.3. RECONFIGURATION BY CHIP REPLACEMENT 

A3.3.I.THE MEMORY MODEL 

The basic model is depicted in Figure A3.2. It consists of a decoder 

(for high-order address hits), an input switching network, an output 

switching network, and a set of memory chips.  Each memory chip acts as 

a y-word by b-bit RAM. The following parameters describe the 

configuration of the main memory: 

A3.2 
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Fig. A3.I  Probability of success (P ) or  failure (P.) as a 
' s f 

function of  number of  chips  for 

(a) p ■ 0.1 

(b) p = 0.01 

(c) p = 0.001 

(d) p =  0.000,1 

(e) p = 0.000,01 
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d ■> nunber of bytes per n-bit word (typically 4 to 16), d-n/b 

z- number of blocks of memory  (typically 4 to 2048), where a block 

consists of y worda 

s - number of spare chips  (typically small relati/e to total memory 

size) 

m »  total number of  chips ■  (zd+s) 

t ■ number of  faulty chips  to be tolerated. 

High 
Order 
Bits 

INPUT 
SWITCHING 
NETWORK 

Low 
Order 
Bits 

ounvr 
SWITCHING 
NETWORK 

.1 
2 

Address 

Fig. A3.2 General model for reconfigurable memory. 

From the standpoint of maximal use of spare chips, s>t is desirable; 

however, as seen below, some benefits accrue from having s>t in terms of 

switching-network regularity and simplicity« and ease of switch set-up. 

In this model, t is the guaranteed fault-tolerance, i.e., the memory can 

be configured into z blocks of d chips in the presence of all 

combinations of t or fewer memory chip failures. In one of the examples 

below, s t. In this case there are sufficient spares to correct more 

than t failures, but switching-network limitations may prevent this 

extended ccrrection. However, an analysis shows that the number of such 

offensive combinations is vanishingly small, and that certain economies 
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in switchlng-netwoxk complexity are attained by keeping the guaranteed 

correction below the number of spares. Thus, in any event the value t 

itself is not sufficient to evaluate the reliability of the memory. 

The memory function is to be configured out of a set of zd operative 

chips. The block selection is accomplished by the decoder, which 

selects one appropriate control line, under control of the log2z higher 

order address bits. The lower-order address bits are delivered to all 

memory chips, with the word selection accomplished by a decoder within 

each chip. The appropriate configuration is achieved by setting up the 

input and output switching-network pairs (SNP). Note that the 

connection established by the SNPs needs to be modified only when the 

meuory is reconfigured. 

Foi TOSt of this section, only single-level incomplete cross-bar arrays 

are considered. Note that in contrast with the telephone cross-bar 

arrays, the switching networks for the memory organization require 

switches at comparatively few cross-points. 

As a better illustration of the role of the SNPs, consider a simple 

example for wiiich z-4, d-3, s-6, m-18, t-S. Figure A3.3 displays one 

possible set-up of the switching networks to accommodate the indicated 

faulty chips. Each utilized chip is Identified according to its place 

in memory; that is, for a chip at (i,j), "i" signifies the block and "j" 

signifies the byte. The activation of a particular block of d chips is 

accomplished by activating the appropriate control line. This 

activation signal is transferred through the input switching network to 

a unique set of d chips. The memory word emerging from the d chips is 

transferred tc a unique set of d output data lines by the output 

switching network. 

As noU'd in the next section, this example illustrates s nonseparable 

switching network-pair that is an 3NP for which the set-up at the input 

and output networks must be accomplished together. For a separable 

network pair the set-"p of one of the two networks can be done first in 

its entirety, independently of the other. 
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Fig. A3.3 An example chip reconfigurable memory. 

Before embarking on the details of the synthesis procedures for these 

SNPs, It is worthwhile to Indicate the possible benefits of this 

organization, as compared with other fault-toleran*. memory 

organizations. Consider a modest-sized memory requirement of 32 

kilowords, each 32 bit long. Such a requirement can be achieved with 16 

blocks, each of which contains 16 2-bit-wide chips, for a total of 256 

chips. Assuming a chip failure probability of 10  per hour, in a 

miesion of five years ten failures might be expected. For the 

organization discussed in this section, a tolerance of 10 failures 

requires a redundancy of 10 chips, or under 4% redundancy. This can be 

contrasted with a memory system wherein an entire block la replaced upon 

the occurrence of any chip failure within the block. For this latter 

system to achieve comparable reliability, a redundancy of abvut  502 is 

required. Two comments are in order hers. First, the lower redundancy 

measure is meaningful only if the switching overhead is small—a 

situation that we will now show to be the case. Second, chip 

replacement becomes more favorable as b is decreased and y increased 
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(with yb held constant). Moreover, If error detecting and correcting 

techniques are used in addition to replaceittent, then the smaller byte 

sizes are preferable from the standpoint of lower code redundracy (and 

simpler decoding circuitry). 

A3.3.2. SWITCHING NETWORK SYNTHESIS TECHNIQUES 

Tn this section we are primarily concerned with establishing conditions 

ifor the existence of suitable single-level cross-bar switching networks. 

The last subsection below deviates from this single-level formulation, 

to indicate a less costly multi-level network that handles large values 

of t. 

It will be convenient to view the input network as described by the z by 

m matrix SI, and the output network, by the d by m matr'-. SO. A "1" in 

a pai icular location (e,f) of the matrix corre^poncs to & switch in row 

e and column f of the network. The following heorein gives necessary 

and sufficient conditions for the matrices SI and SO such that the SNP 

is capable of reconfiguring the memory in thn  ptcs«ince of any t or fewer 

failed memory chips. 

THEOREM 1: For the single-level incomplete cross-bar input and ottput 

switching networks, there exists a jetting of the switches such that in 

the presence of t or fewer memory chip failures, the operative chips can 

be configured into an array of z rows by d columns, as long as the union 

of each combination of i rows of SI, i>l, 2, ..., z, and the union of 

each combination of j rows of SO, j-l, 2, ..., d, overlap in at least 

ij+t places. 

The proof is an extension of the Diversity Theorem (Ore 63), which gives 

necessary and sufficient conditions for the assignment of workers to 

jobs., 

The necessity part is obvious since for some set of i rows of the input 

network and J rows of the output network, there must be ij paths when 

the networks are configured.  Since up to t chip faults are to be 
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toler.tec, wherein each chip failure disables a path, and since *  path 

corresponds to the appearance of I's in a coluan of SI and SC , the 

necessity part Is seen. The sufficiency part will be proven by strong 

induction on l,j, 

(a) The sufficiency part is trivially true for 1-j-l, since an overlap 

of t+1 places between a row of SI and a rev of SO guaran ees  at least 

one good path for t or fewer failures. 

(b) Define an ordered row-pair (a, ß ) as cons^.stii g of row a  of Si 

and row ß of SO. Define a N-l ordered row-pair set (or simply W-l set 

for short) as a set of N-l such ordered row-pairs. The intention here 

la that If ( or, 0) !• in an ordered row-pair set, then there exists a 

path between row a  of the input network and row ß of the output network. 

Now assume that if the conditions of Theorem 1 are satisfied for all N-l 

ordered row-pair sets, then an appropriate setting of the switches can 

be achieved to establish paths ( a, B) for all contained in the set. 

Note that the theorem condition, abstracted for the N-l ordered row-pair 

set, is that 

N 
V(a,ß) 

jontain^d   in M subset 

PaB ^ N-1+t • 

(A8) 

where P^ is  the set of overlap positions between row a  of SI and row B 

of SO. 

ByV(a,B)(OVerlap bet:ween row a  of SI ;lnd ro" B of SO), we mean the 

number of distinct columns for which there is a "1" in position ( <*,% ) 

of SI and ( e.ß) of SO , taken over all ( ^ß ). The "unicn" operation 

signifies that we count a column only once no matter how many times if 

appears because of distinct ( cr,ß). 

(c) As the Induction step, we will show that given condition (b) above 

and the premise of the theorem for all N-l ordered row-pair sets, then 

the theorem is true for all N ordered row-pair sets. There are two 

cases to consider. In the first case assume that for a particular set 

of t or fewer chips, all M subsets JKN of the N ordered row-pair set 
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saclsfy the conditions of the theorem with room to spare. That la: 

luj       P  > M . 
V(a,9)      aB ^9) 

contained in M subset 

Then for any (a,  B) in the N ordered row-pair set, make an arbitrary 

switch setting to establish the path between «and 0. After removing 

(a,  0), what la lift  la an N-l ordered row-pair set, and this set 

satisfies the conditions of the Theorem as in (b) above, thua 

eatabliahing the induction step. In order to aee that the theorem 

conditions are aatisfied after removing (a,  B), note that any N-I 

subset lift will have lost a maximum of "1" from the summation of 

overlaps—namely that corresponding to the column . Thua after 

renovin* the t or fewer columna in error and the column caused by the 

"remo»edN ( o,6 ), we find 

lul   P 
»I.,»,  a62N-1- WO' 

tn N-l subset 

In the second cane, assume that for a particular set of t or fewer chip 

failures, after removing all patha through the failed chips, there is at 

least one subset that savMaflea the theorem conditions exactly, that is: 

|U|   p   = M 

f(M) * (A11) 

in M subset 

If we then aaaigp the appropriate patha for all (o. ß ) contained in the 

M subset, which '/e know we can do by virtue of (b) above, then for the 

( a, B) ordered row-paira in the complement set, we have 

|U|  P  > N-M 

V(a'ß) <Am 
in H-M subset wu*' 

since the entire N aet satisfied the theorem conditions. Thua by 

virtue of (b), path alignments can be made for the N-M subset. The 

theorem la then established for an arbitrary N ordered row-pair set, so 

that it is certainly satisfied for a set composed of bd elements, 

nar-ely, b rows by d rows. 
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In a subsection below we illustrate SNPs that satisfy the conditions of 

this theorem. The one disadvantage of these nonseparable SNPs is that 

the switch-setting algorithm must deal with both the input and output 

network simultaneously. The situation is improved with the separable 

networks defined next. 

DEFINITION:  A switching network pair is SEPARABLE with respect to the 

input network if the switches can be set to achieve the configuration of 

the memory into z rows and d columns, in the presence of t or fewer 

failures, and If the approprif^e settings of the input network can be 

decided without knowledge of the output network. The settings of output 

network switches are thei decided after those of the input network. 

(Separability with respect to the output network can be similarly 

defined, although no advantage seems to be found in such SNPs.) 

The following theorem gives necessary and sufficient conditions on the 

SI and SO matrices for the existence of such a separable network. 

THEOREM 2: An SNP, composed of single-level input and output networks, 

is separable with respect to the input network if and only if (iff) the 

corresponding SI and SO matrices satisfy the following properties: 

(a) The union of all .-,ets of i, i - I, 2 z rows of SI contains at 

least id+t ones. 

(b) The union of all sets of j rows, j - 1, 2 d, of SO overlaps 

each row of SI in at least j+t places, and the symmetric difference of 

each row of SI with the union of all sets of j rows, j » 1, 2, ..., d, 

of SO does not have r.iore than d-j ones. 

We now develop a few general proceduxes for synthesizing single-level 

separable and nonseparable SNPs, as well as algorithms for establishing 

the switch settings. 
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A3.3.3. SEPARABLE SNP SYNTHESIS 

One procedure for synthesizing an FNP that is sepprable with respect to 

the input network is illustrated by means of the example of Figure A3.A, 

with parameters z«6, d«A, 8»t«3. The general form of the input network 

for the case s"t is as follows. The first row contains switches in the 

first d+s positions.  The second and all succeeding rows also contain 

d+s switches with an overlap of s switches with the preceding rows. 

Thus a given row is merely the preceding row shifted d places. It is 

seen that the total number of input switches !• z(d+s). 

0) 0) (DO) (BO)«) 
(HHHHHH) 

^HHHHHH> 
(>^MHHH> 

<HHHHHH) 
^HHH^^H^ 

(^ (HH) <> <HMH) ^HHH> 

U 

<> 

& (HH) O <> <HH) o 
& 

(bCD(t)(D(b 
<> O ^M> <> 

(bcbd) d) *- (beb (bet) 

Fig. A3.4   An example of a separable SNP z = 6, d = 4, s = t = 3. 

This input network bears some resemblance to Stiffler's "rippler" (see 

Stiffler 73). The rippler's function is to transfer data from (say) a 

d-byte register to an arithmetic unit containing d+R byte slices. The 

transfer is such chat the order of the bytes is preserved while avoiding 

faulty byte slices.  A reasonable form of the rippler network is the 

input network of Figure A3.4, where the number of switches per row is 

R+l, and the row overlap is R. 
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An extremely simple algorithm suffices for deciding which switches are 

to be set for the input retwork. 

ALGORITHM 1.  For each row in turn the d leftmost switches are 

considered.  For each of these which corresponds to the position of a 

failed chip, this switch is skipped and the next to the right 

considered. 

Now let us consider the output network as illustrated in Figure A3.4, 

The first d columns consist of a diagonal line of switches followed by a 

solid block of switches in columns d+1, d+2, .... d+s. Thereafter the 

network consists of alternating diagonal lines of switches and 

"inverted" diagonals, with solid blocks of switches superposed on top of 

s consecutive columns every 2d columns.  (The alternation of identity 

arrangements with the inverted identity arrangements provides a nearly 

balanced load on each row.)  The number of switches in each row of the 

output network is bounded from above by z + 8^/21 , yielding a total 

number of switches zs + 2zd + sd^z^l , inclnding the input network; 

"fxl " denotes the smallest integer containing x. 

An algorithm for deciding which switches are to be set in response to a 

pattern set by the input network is quite simple. 

ALGORITHM 2. Consider the first d columns activated by the setting up 

of the input network. Switches are to be set in the output network so 

as to connect each of these d columns to a unique output row.  First set 

the switches in the identity section to handle any of the activated 

columns. Those rows not yet served will be handled by setting 

appropriate switches in the solid block section. Then the second group 

of d columns is handled, and so on, until all groups are acconmodated. 

A3.3.4. NONSEPARABLE SNP SYNTHESIS 

The primary advantage of separable SNP's Ls the simplicity of algorithms 

for deciding switch settings.  One would expect that a price for such 

simplicity would be an increase in the number of required switches, but 
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»e have not yet found a nonseparable SNP that ia more economical than 

the aeparable network conatruction of Figure A3^. However, on^ 

disadvantage of the SNP of Figure A3.4 is the exceaaive switch loading 

on some of the colums of the output network. This is a particularly 

severe problem if the switches are part of the memory chips. We have 

attempted to find separable SNFa wherein all columna in the output 

network contain an equal number of switches. Such networks can be 

found, but they are coatly. This has led us M pursue the synthesis of 

nonseparable SNPs, 

The nonseparable SNP displayed in Figure A3.5. for the parameters z-b. 

d-4. s-6. t-5, alleviates this difficulty by providing a nearly constant 

loading on all columns of the input and output networks. In this 

structure there is effectively one spare chip per control line (s-z). 

The guaranteed correction capability is t-5, independent of the other 

parameters. Each row of the input network contains 3(d+l) switches with 

an overlap of 2(d+l) switches between adjacent rowa. The rows of the 

output network are simple cyclic shifts of a repetitive pattern, 

consisting of two switches followed by d-1 placea with no switches. 

The total switch count for this SNP is approximately 5.(^1), or about 

twice that of the separable SNP 0f Figure A3.4 with t-5. The structure 

of Figure A3.5 can be generalized to one containing t(zd+s) switches, 

which tolerates all patterns of t or fewer chip failures. 

QQOOOOOOOQQOQOO  
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Fig.  A3.5 

O  Switeh in Origiiwl N«two»k 

Ö   Augmntin« Switch to Gtv« 
Corrvction ov  t - 6 

An example of nonseparable SNP for z - 6, d 
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It is possible to increase the correction capability of thie 

nonseparable SNP to t-6 by augmenting the output network with the extra 

switches indicated by Q in Figure A3.5. This augmentation places an 

extra switch in all columns of the output network that previously 

contained only one switch.  It is observed from Theorem 1 that each row 

of the output network must overlap each row of the input network in 7 

places for a fault correction capability of t-6. Since the switches of 

each input row span three groups of output switches and since each such 

output switch group contains two columns of one switch, the augmentation 

technique yields the overlap of 7 only if d <6, 

This latter SNP is of interest from two viewpoints.  First, the input 

and output switch loading is constant on all memory chips, i.e., the SNP 

is CHIP REGULAR. This regularity (or near regularity in the case of the 

nonaugmented version) permits the simple embedding of the input and 

output networks within the uiemory chips. Second, although there are 

some patterns of t+1, t+2, ... chip failures that are not correctable, 

the number of such offensive patterns for large values of z is small. 

In Sections A.3.3.6 and A.3.3.7 we discuss a realization with embedded 

switches and an analysis of the correction capability ot the SNP beyond 

the guaranteed limit. 

A3.3.5. MULTI-LEVEL NETWORKS 

We thus see that there are SNPs ihat handle all combinations of t chip 

failures at a cost of approximately kzdt switches, where k is a constant 

between 0.5 and 1. This is certainly a tolerable ccst for a relatively 

small number of chip failures, e.g., up to 8. However, if a large 

memory employing such reconfiguration techniques is to function 

unattended for a mission of a year or more, it might be necessary to 

handle 20 or more chip failures.  In this case the switch cost can 

become a significant fraction of the total memory cost.  As discusser 

below, the switch cost can in this case be reduced by replacing a 

single-level network by a multi-level network. The discussion below is 

brief, since a previous paper (Goldberg er. al. 68) pursues the 

multi-level case in ;reat detail — although for a different 

application. 
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CONTROL 
LINES 

DATA 
LINES 

Fig. A3.6  A multi-level SNP. 

Figure A3.6 illustrates the »asic form of the SNP. The input network 

illustrated in Figure A3.^ requires only z(d+t) switches, a cost that is 

not excessive for all reasonable values of t. Thus the SNP of Figure 

A3.6 is assumed to have this same input network. However, the costly 

output network of Figure A3.4 cm be avoided. Recall that the setting 

of the switches in the first row of the input network activates d 

columns among the first d+t columns. It is the role of the output 

network switches, corresponding to this set of d+t columns, to funnel 

the activated columns into the set of d output linen.  Similarly, the 

second row of the input network activates d columns in the set 

d+I, d+2, .... 2d+t, and so on for the remaining 2-2 input rows. Hence, 

the output network function can be realized by a set of z 

order-preserving (OP) networks, each of which performs the funneling 

operation as describe'' above.  (Actually, for this memory application, 

the networks need not oe order preserving, since tne order of memory 

chips within a block of memory is not critical. However, if we require 

an efficient network, we have always been able to find an OP network as 

efficient as a comparable non-OP network.) The first OP network has as 
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input columns I, 2,..., d+t, the second d+1, d+2, .... 2d+t, the third 

2d+lt 2d+2, .... 3d+tt and so on.  Ear» OP network yieMs d bytes. The 

ith bytes from each of these z networks are ORed together bytewise 

(e.g., by wired ORs) to form d bytes at the output. 

In Goldberg et al. (68), a procedure is given for synthesizing such an 

OP network as an interconnection of two-input, two-output, two-state 

prirltive cells as shown in Figure A3.7. Depending on the state of the 

cell, the inputs are interchanged or merely directed through the cell. 

We have described a recursive procedure for developing the network, as 

illustrated in Figure A.3.7. At the input. r(d+t-2)/2l cells and at the 

output r(d-2)/2l cells flank two smaller networks. The upper network is 

an OP network of f"(d+t)/2 1 inputs and rd/2l outputs, while the lower is 

an OP network of L(d+t)/^ inputs and Ld/ZJ outputs, where "LxJ " is the 

largest integer contained in x.  Each of these networks is replaced by a 

similar three-layer construction, and so on.  Eventually, there is a 

uegeneratc requirerent for an OV network of p inputs and 1 output. Sucu 

a network io easily realized as £ simple linear array of p-1 cells. 

d + t 
d + t 

d + t 
d + t 
d + t 

Fig. A3.7  Decomposition of the order preserving network. 
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The number of cells required for this OP network is C(d+t)log t, where C 

is approximately one-half. Thus, the number of cells in the output 

network (which still dominates the input network) is Cz(d+t)log t, which 

represents a saving of t/log t, compared with the single-level cross-bar 

realization.  For t> 8, the multilevel version becomes more economical. 

Techniques for setting up the OP network and an approach to 

incorporating fault tolerance within it are discussed in Goldberg et al. 

(6b). 

In conclusion we have determined that the switch cost for reconfipuring 

the chips of a memory is small when compared with the total memory cost. 

In addition, we have shown that the alporithms for decidinf which 

switches are to be set can be simple in certain cases. 

A3.3.6. A .\o:;S|-P^RAr>Li; N'KTVOKK WITH LIIiliEDÜLL) SWITCHES 

As mentioned previously the switches in the nonseparaMe SNP of Figure 

A3.5 can be embedded within the memory chips. In the augmented version 

of Figure A3.5, a piven chip can, by virtue of the input switching 

network, receive an activation signal from one of three control lines, 

or be disconnected fro» all control lines. Similarly, by virtue cf the 

output switching network, the chip can be switched onto one of two data 

lines, or be disconnected from all data lines. The process of embedding 

the switching within the chips can be seen by reference to Figure A3.8. 

Kacii chit has as Inputs three control lines, and as outputs two data 

lines, i.n activation select switcli makes the connection to one of three 

control lines, or to a fourth vacuous input. Similarly a data-line 

select switch makes the connection to one of two data lined or to the  • 

vacuous output. **V> 

Figure A3.9 shows the connections of the array of chips to the control 

and data lines for the same parameters as the SNP of Figure A3.5, 

namely, z-6, d"A, s«6, t«5 or 6. When the dotted line connections to 

the data lines are present, t-6 faults can be handled; otherwise, t-5. 

A3.18 

mil I—11 — --■ - - --^■fc^^*— 
■ - 



— -'■ 

Control Lines 
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Activation  0 

Select 

Memory Contents 
of Chips 

Fig.   A3.8       Memory chip with components  of   input  and  output  switches. 

a 

o 

a 

3 
^ 

'■^ 

r^ 

^ 

H 
r 
5 
B 

£ 

i 
re 

s 
re 

c 
5^ 

m n 
m 
rr 

re 

IJ ^ 

nc 

£ 

ü 

£ 

i 
TT 

B 
rr 

P 
Data Li..es 

Fig.  A3.9      Organization of nonseparable SNP with eabedded 
A3.19 

switches 

- - 



tmmmi^mt^-^ mm —— 

It is convenient to view the last column of chips as spares — i.e., 

with all chips operative, this last column of chips remains 

disconnected. As failurßs occur, the spare chips a.e brought into 

service.  V.e have developed an algorithm that determines the appropriate 

switch settings for any correctable fault pattern.  The aljvrithm is 

more complicated than the alporithn. for the separable case, and may 

require a substantial reorganization of the memory blocks subsequent to 

a failure, including operative blocks.  The span of the reoiganization 

can be sluwn (Goldberc et al. 68) to be related to the clustering of the 

chip failures in the ariay. That is, if the failures are spread out 

over the array, relatively little reorganization is required. 

A3.3.7. ANALYSIS OF CORRÜCTION CAPAblLITY IN RLC.LLAK SNPs 

The organization of the type depicted in Figures A3.5 and A3.9 exhibits 

more spares than the guaranteed fault-correction capability,  however, 

in these organizations a ^arge fraction of the fault patterns containing 

f failures, t+1 <f <s are irdeed correctable,  in this section we 

present some approximate upper and lower bounds on the fraction of such 

faults that are correctable for the case or what we define below to be 

I/O regular SNPs. The derivation of these bounds is given below. 

We define the function c(f) to be the fraction of patterns containing f 

faulty chips that cannot be accommodated by reconfiguration.  In a 

memory organization <.lth z rows each of d bytes, there are p»zd unique 

paths that must be established between the control lines and the data 

lines.  The input and output switching networks must be set so that each 

path contains a (unique) nonfaulty chip. 

In estimating c(f) we define a ROUTt to be the set of paths between a 

given control line and a given data line, and make the assumption that 

each route to be served contains e paths, and that e Is a constant for 

each route.  This Is the definition of an I/O REGULAR SNP.  The 

nonaugmented SNP of Figure A3.5 is I/O regular with e-6, but not chip 

regular. The opposite is true for the augmented version.  (In particular 

some routes in the augmented version contain seven paths while others 

A3.20 
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contain eight.)  Thus, the boiuids derived below are only exact for the 

nonaugnented SNP.  However, thty represent lower bounds for the 

augmented case, provided tne lower applicable value of e is used. 

Clearly, we have the following special cases: r.(f) - Ü for f <^, for 

clearly no route is deprived of all of its paths. On the other hand, if 

we consider the case where all spares are used, then c(f)-l for f >s. 

The developnent of estimates (or bounds) for c(f) reduces to the cases 

between these two extremes. 

A particular fault pattern of f faulty modules will not be tolerated it 

and only if, for all i <f. It contains a sub-pattern such that all but 

(i-1) or Jess modules included in i routes are in the sub-pattern. 

If we denote by c  , the probability of the ith term above, then 

1 _ c(f) . (1 - CjXl - c2) ... (1 - cj   ... 

For small values of c  , a sufficiently close approximation is 

c(f) ^ cl   + c2 + ... (Al 3) 

We introduce th« concept of 'overlap' X  defined by 

vij 
number of modules that serve routes i and j  In common,       (A14) 

and also X =  MAX   (X     ) 
(Alb) 

The value of Cj^    can be computed for r^ular structures  (i.e.,  those  for 

which e is a constant for all routes). 

f 
Given a pattern of  f faults the number of sub-patterns of size e is {J . 

The re exist just p patterns of e faults  that will not be tolerated out 
,m. 

of a total number of patterns of e faults of ( ) ; therefore: 

 Pli_ 
(f-e)! me 

(Alb) 
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For m» e, we have  the approximation 

w 
(Al 7) 

* e 

^"■('■^r) 

Since c2 , C3 .... arc non-nepative, (Al 7) is an approximate lower 

bound of c(f). 

In ol'taining an expression for c 2, we need to consider the size of a 

pattern that will not be tolerated because only one module remains of 

those that are included in two routes. Given two routes i and j, the 

minimum pattern to disable one of theu. because of coinnonality of 

modules to them is L.  , where 

L  = ae-X, -I 
U      iJ (A18) 

For the case where no overlap exists for routes i and j( i.e. Xj. ■ üt 

the disabling is of the type considered under the deriv 'ion of c 

above. We define the parameter L by 

L ■ MIN (L ) = 2e'X-l . (A19v 

uj     J 

Given a pattern of f faults, there exist! L.-jsub-pattems of size Lj.. 

We consider each pair of routes i and j.  For each such pair the fault 

pattern will be tolerated if and only if it does not contain a 

sub-pattern of size L.. included in the set of modules of number I.ij+1 

that serve the two routes i and J.  For these (Ij. +1) modules, there are 

(L..+1) ways of selecting a fatal sub-pattern. Within the whole 

structure there are/£ \sub patterns of size L  , and (Ljjjare 

included in the fault pattern being considered.  The pair of routes will 

survive with a probability Q.. , where 

, (Li/1)(Vi) (A20) 

U 
the approximation teing valid if L «3».  The probability Q of all pairs 

surviving is given by 
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whenre 

■m Q        =   1-C 

■U'W lJ      2 

411 ^ (LM+1)  f!   (M-L     )! 

(f-t   )!■! 

(A21) 

(A22) 

Each term In the double series can be expanded In the form 

(V^M-tS^) (A23) 

As L «L. . ,  the  replacement of Lii    by L In  (A23) will result in fewer 

terns in the product.  We can therefore derive  a.» upper bound for o,  as 

I V  V 
(Ul)  f!   (m-L)! 

--2L    L 2- 2 L.   U (f-D'.m! 

which  for L<<r  yields  the approximation 

■ c. (A2A) 

' 

P(p-l)(Lfl)  f!(m-L)! 
C2   * 9/f-I.^•m! 2(f-L)!m! 

(A25) 

Consider now the expression for c(f)  the probability of non-coverage, 

i.i!.   frow (A13) 
c(f) = c.+c +   ... 

1    " (A26) 

On intuitive grounds, we say that this series is strongly converging, 

for if it were not so, •-.he implication would be that a fault pattern 

would be more probable to be not covered because of interaction among 

(i+l) routes than between i points. Fcr values of i small compared to 

m, this implies that in goinp from i to (i+1) there is a greater 

probability of the new fault being strongly connected than being 

disjoint, which for small i is absurd. We therefore consider only the 

first two term, of the series to obtain 

(A27) 

or 

c(f) « vfc
2 

c < c(f) < c +c 
1 L £. 

(A2e) 

Note: in computing values of ^ and 03 , the ^  is, for reasonable 
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cases, sifnificantly smaller than ^, lending credence tu the Intuitive 

argument above.  The bounds on c(f) are therefore: 

' (f-HU  < c^> < TT-^rö - -^T^12— (A29) K1  e)n (l-e)!me   2 m1- (f-L) ! 

A3.3.8. REGULAR StPARAllLE SWITCHING NETWORKS 

We consider the design of input (SI) and output (SO) switching networks 

which are separable and are also uniform in that the fan-in and/or 

fan-out of each unit of each part of the system (decoder, chip, etc.) is 

the same. 

Define: 

b - number of inputs to SI 

d ■ number of outputs from SO 

s » number of spare chips 

t - number of faulty chips to be toleruted ■ s 

m, ■ numoer or cells in each row of SI 

u      - number of cells in eacli row of SO 
o 

k  ■ number of v-ells in each column >f  SI 

k  ■ number of cells in each column of SO 
o 

m  ■ number of chips total ■ bd+s 

Separable networks have the desirable property that a simple algorithm 

is known for setting the switches in the presence of arbitrary fault 

patterns. Most separable networks known to date have the disadvantage 

that the loading on the parts of the system is nonuniform. We develop u 

set of necessary conditions for a network to be regular separable. 

Using tiiese conditions a number of potentially regular separable 

networks (KSN) have been found, some of which arc Indeed RSN.  No cases 

have been found of a network satisfying all the conditions and not being 

RSN, We conjecture thnt all the cases are RSN. 



COWDITION  1—REGULARITY  OF SI 

The  total number of cells  In SI  is b^   .    The total number of modules is 

m«bd-»-s.     Clearly, 

 1     = k      (an  integer) 
bd-t-s 

By Theorem 1  of Section 4.2,  it  follows  that m .-d+s: 

b(d+s) 

(bd+s) = ki 

or 
s = 

(k -l)bd 

(A30) 

(A31) 

(A32) 

CONDITION 2—REGULARITY OF SO 

The total number of cells in SO is n d.  Clearly, 

m d/(bd+s) = k where 1 < k < d and k  integer    fA33) 

CONDITION 3—SEPARABILITV 

We restate Theorem 2 of Section A.2 on necessary and sufficient 

conditions on SO. 

"Assume a valid SI, then the combination of SI and SO is separable if 

and only if the union of every set of j rows of SO (j-l..,d) overlaps 

each row of SI in at least s+j places." 

Consider any row of SO and apply a test for the case j-1.  The overlap 

with the first row of SI must be at least s+1. Ve must therefore 

allocate at least s+1 colic to those columns where the :irst row of SI 

lias cells.  Call this allocation A^  In making the allocation there are 

ki Avails  in the allocated colurns of ST.  Consider another row of SI, 

choosinr that one that has a minimum number of cells in the columns 

already anocated.  There are (kl-l)A1 rvailaule cells in the allocated 
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columns to be shared over the remaining b-1 rows. Therefore, there 

exists at least one row of I which contains only  L(kl-l)A1/(b-l)J 

cells in the allocated columns. Choose this rowt We must allocate more 

cells of the row of SO to this row of SI. Specifically we must allocate 

at  least (s+l)-L(k -1)A /(b-l)J .  Specifically we must allocate at 

two rows is therefore 

A2 = A1 + <8+1)-L(k1-l)Ai/(b-l)J ^^ 

Usinp the above reasonlnf to successive rows of SI we can develop  the 

general  form 

A = s+1 

A£ = A{Je-i)
+(s+1)"L(A(Je.i)

k - (s+i)^-i))/(b-je+i)J £ * 2...b 

(A3 5) 
The necessary condition on m0 becorc-s  m^ag. Jote  that Condition 3 

is necessary, but to prove sufficiency using Theorem 2 of Section 4.2, 

it is required to consider every set of j rows of SO.  It is, however, 

conjectured that for regular networks. Condition 3 may be sufficient. 

No cases that satisfy Condition 3 that are not regular separable uave 

been found. 

To illustrate the test consider the case b-6, d=4, s«6, k«2, m»lü.  Then 
Al " 7. A2" 13» A3" 17» A4" 2Ü. A5" 21, A g- 21, whence i^ > 21. 

The sehen« used to find RSM« was progranmed and the results of a sm^ll 

run are shown in Tables Al and A2.  Note that the solution m - bd+s 

which is a totally full SO is trivial and is not shown. 

We conclude that regular Separable Network exist, but such networks 

contain a very high proportion of cells in the switch, leading to high 

fan-out and fan-in. However such networks can be designed to enable 

reconfiguration in the presence of a large number of faults. 
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APraNUIX 4. 

ERKOR  CORRECTION   IN   mTE-ORCAM/EÜ  ARITHVETIC   PROCESSORS* 

Peter  G.   NcuRijnn al 
CuMpttlvr  Science dioup 

Slanlord  Rctcirch   Intlitutc 
Monlo Park.  CA 94025 

ABSTRACT 

Thia p.ipci   inmirirr* e«4»i  *iih  r.i'lix  r > 1 vlmli 
ai« capabla of correcting aibilrary arttliaetic error»   In 
any  radtx  r digit.     If  each  radix  r digit  rrprcaenta a 
b>lc of   b binary digits   (e.g..   r «  ri,   these code» cor- 
rect ar.   combination of eiior» occurring  in   the b   binary 
digltr  of  any  »ingle b>le.     A  theoretical  basis  for 
thcae code«   Is  presenti-d,   along *ith  practical consider- 
ations  regarding   their  applicability. 

I       INTROOUCTI0N 

This paper  Is conct inert  alth error detection,   error 

correction ana error  location  for siultlple errors «ithin 
a particular byte of  an  arithmetic unit,   and   Is motivated 
by several  ofservations.     Ftrat,   It   It possible   to ob- 
tain byte error-correcting arithmetic  codes  »ith low code 
redundancy.     Second,   It   1* possible  to jinvide high sys- 
tem availability  ami   relatively maintenance-free opera- 
tion   through autonomous   1^olacement »1th  spares.     For 
certain  applications   it   Is desirable  to  replace not  an 
entire  processor or arithmetic unit,   bat   rather one of 
aaveral  Identical  sub-units.     Thus byte-slicing is at- 
tractive.    Third,   by e-allclng  la also naturally allied 
»Ith fast-carry logic,  e.g.,  carry look-ahead over bytes 
(and  even »ithin  bytes),     fourth,   LSI   technology  Is  suit- 
able for  realisation of a byte of   logl,   on a chip.   Fifth, 
LSI   technologies often  give  rise   to multiple errors on a 
chip resulting  from a  simple  fault.     Thus  higher radix 
(byte)  arithmetic  coding mt,y  be highly  effective:  «1th 
chips  corresponding  to uytes,   multiple errors   in arith- 
aetlc «Ithin a byte may  then be economically corrected. 
Besides,   single-bit error-correcting codes are  inade- 
quate  for the multiple error*  «hlch  nay arise  fron fast- 
carry logic.    Location of   the  faulty byte-slice and 
autonomous  replacement  «1th sparea   la also  facilitated 
by the byte coding. 

In this paper previous  rcaults of Peterson and of Rao 
and Trehan  for perfect  single-error-correcting arithme- 
tic codes  sre  generalized   to higher-radix number systems. 
A single arithmetic error  in a radix  r representation 
is of  the form ±arJ,  0 < a < r.     It  is shown here that 
all  auch errors are correctable by an AN code with gen- 
erator A of   the  form  (r-l)p,   «here p  is a prime greater 
than r satisfying certain specified conditions.    These 
results also apply directly   to corresponding systematic 
code»   (e.g.,   bi-residue codes «ith  residues  r-1  and p, 
and  gAN codea).     Further results are also given for 
other interesting  (bu*  non-perfect) codes. 

The  results of  this  paper are potentially  suitable for 
use  in a byte-organized processor,   e.g.,  using one chip 
for each b-blt byte  (representing a radix r digit) of 
the processor,  «here  r = 2^,   r « 10,  etc.    Thut it It 
possible  to correct any combination of  bit  errors 
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resulting from errors  in any  »ingle byte position,   that 
Is,   any arbitrary single-digit arithmetic error in  the 
higher radix r.    As a consequence,  certain known bit 
correcting codes bre seen  to be byte correcting as «ell. 
Examples are  Included here,  along «Ith a discussion of 
the appllrabtlity of  auch codes  In fault-tolerant com- 
puting systema. ''TO determine the set of all  possible 
errors capable of arising from various  faults,   a careful 
and   thorough analysis   is  required,   such ss   the one con- 
ducted  by Langdon and Tang  fl2|   fer adder.!, employing 
carry look-ahead  between and within bytes.    Their analy- 
sis establishes  that  the errors  in carry look-ahead  ad- 
ders  resulting from single faults are frequently not of 
the  for« ±2J.    Therefore  the binary sl.igle-error-cor- 
recting codes are not  effective  in auch cases,   especially 
in byte-per-chlp realizations.     Here we assume  that   the 
bvte  adders can be designed   In  such a way   that   the 
carry-out   (look-ahead)   logic circuit   Is   Independent  of 
the  rest of   the logic   (namely,   the Internal  carry genera- 
tion,   sum-byte logic,  etc.).    Consequently,  we allow any 
error combination in the aum byte or la  the carry-out 
but not  In both  (unless  that combination  Is equivalent 
to an error  in one or in the other).    Specifically,   the 
byte-crrectlng codes discussed here are capable of cor- 
recting any additive error involving a single digit 
(byte) of  radix r,  of  the form OrJ,  where a  is a positive 
or negative additive error of magnitude a «   |o|,  0<   a < r, 
and where   )   Is  tha position of  the radix r byte processor 
In error,  0 < J < n.     Such errors are characterized  as 
single arithmetic errors  in radl« r by Peterson  (IT)  and 
have arllhir.etlc  (Peterson) weight one.     More precisely. 
In adders ualng radix-complement   (or dlmlntshed-radlx- 
complement)  arithmetic,  a single byte  (arithmetic)  error 
E  Is defined as an error of modular weight one [211,   and 
Is  given by 

-  1   for 

I ■ err    or m - or , 

where 0 <   |or | < r,   0 < J < n,   and m ■  r"  (m 
the diminished  radix complement case). 

II        BYTE-ERROR   DETECTION 

Error detection  techniques arc well  known using "AN" 

codes   («hlch  are nonaysteiu'lc)   [4,5,17]  and   "(N,    |NL)"' 

residue codes   (which are systematic and  separate)   (1,4, 
1«.1»1.     Slngle-byt.e error detection arises whenever  the 
base A  Is an  Integer greater than  r that   Is relstivcly 
prime  to r.     T«o suitable choices are  r ♦   1  and   r2 -  1. 
When r « 2'*,   tne check base r - I  Is alto  Interesting, 
particularly for the almpllclty of  Its  Implementation: 
however.   In  this case not all  tingle b;te errors arc de- 
tected   {e.g.,   an error changing 0 to 1   -  1   leaves  the 
residue unchanged),   althoueh the moit probable errors  (1) 
and a very high percentage of all  single byte errors are 
detected.     Such a residue code  la used   («Ith b • 4)   in 
the JPL STAR computer  (3). 
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in     MAH-PEnrErr D^TE-COBRECTINC CODES 

Stn»le-»rror correction   tn binary  aider«   is attainable 
• tth  the Bon«v«t*iutic  A.S  code«   first  studiert  by  Oro«n 
(5)  anil  Peterson   fl?:,   and »Ith   the  systematic  multi- 
resldue codes  studied   by Aviziems  (I,   2,   4|.   Rao  I I8 

19,   11] and Garcia.     S>stcswtlc   rearranBcnents oi'   the AN 
cod«*,   naoe'y.   the  systesiatic  (AN codes,   have been dls- 
cussed  by Gamer   ('.'|   and  by Rao   |''n|.     Extension of   the 
results of  Bro»n and   Peterson   to higher  radices have 
been discussed  previously by Rao and Trchan   (22),   pn- 
■arlly  tor r • 3.     Her« »e  first charactcrlt* those opti- 
■al  AN codes   In  radix   r shlch «re capable of  correcting 
arbitrary  arithmetic  errors   in a single   (radix  r)  byte. 
These byte-correcting codes  are obtained  by choosing A 
of   the  ton (r-l)p,   »here p  1«  • prim«  greater  than  r 
satisfying certain  specified conditions.     (Theorems of 
Peterson and of  Rao and Trehan   folios  as  special cases 
for r • 2.)     Further  theorems ure developed »hlch aid   in 
deriving suboptimal  codes,   ana  e'xamples  are cited.   These 
results are   Immediately  applicable  to corresponding 
systematic  codes »1th   the  same  r and  p:   bl-resldue codes 
»*,   |NI ...   INL)   in   radix  r »ith residues  r -  1 and p, 
and  gAM codes »ith A ■   (r-l)p,   both of »hlch are  there- 
for« also byte correcting.     interesting byte-correcting 
codes also exist  for  some nonprlmcs p. 

The  reader Is assumed   to be exposed   to  the concepts of 
arithmetic  »eight,   arithmetic distance,   and   lii"ar con- 
gruences used   here;   he  may  »Ish   to  refer  to  Peterso\ 
[17) or  to Massey  and  Garcia   fll|   for background. 
Throughout Sections   III   and   IV,   p denotes a prime greater 
than  r.     The  folloslng are observed   throughout   this pa- 
per:     Cr(p)  denotes   the  cyclic   (multiplicative)  sub- 
group   (rJ(mod  p)],   and  er(p)  denotes   Its order;   er(p)   Is 
also called   the order or exponent of   r  In   the  field 

Iheorcw 2    Given   Mial   -r.   but  not   i.   i> primiuve   in Gt (p) 
an.i   that  condition   (1)   is  »atisfleil.   IIM-II 

r(p-l/2 .   i 
it  (A.3»  •  J .  A .   d-Up. (3) 

Theorems of   Peterson   |17 |  jnü •>!   Il.io .'nd   riehan  (22) 
folio»  by  set I lug  r »   2 and   r •  3.   n-pet lively   in 
Theorem 2.   since condition   (1)   is  valid. 

Corollary  3   (Peterson)       If  -2 but  n..i   I  II   primitive   in 

GF(p).   then 

(4» M?(A,3) • 
2(P-1)'2. l 

A • P 

Corollary I (Rao and Trehan): If -3 but not 3 is prlml 

tlv« in GF(p), then 

M (A,3) • 
3",-l) 2- 1  , A . 2p .      «5» 

The sequence of expressions (4) and (3) extends readily 

to r * 4, 

Theorem S:  If -■• but not 4 is primitive in GF(p). then 
  ,(p-l)/2 . , 

M (A,3) • . A . 3p .       (•) 

For r > 4, however, the simplicity of (4), (J) «nd (6) 

no longer exists.  Condi lion (1) is no longer generally 
satlsflable, and »e must resort to Theorem 2.  (»hen 

condition (1) I« not satisfied. Theorem 7 belo» is use- 

ful.) 

Theorem 2 is thus a generalized form of the Petcison 

Theorem »henever -r but not ♦r Is primitive.  Its con- 
verse is also true.  The full theorems of Peterson and 

of Rao and Trehan also cover the case of »f prim tlv« 

for r = 2 «nd 3, respectively, for »hlch cases p-l 1« 

in C (p): 
(p-U/2 

11 (A,3) 
r 

,  r • 2, 3, (7) 

GF(p): is a nonzero radix r digit, 0 < a < r - I, 
-I I.«., an element of the field; a  Is Its multiplicative 

Inverse, with a«'1 - I (mod p).  With A • (r-l)p, 

Hr(A,3) Is the maximum number of code »ords In the radix 

r byte-correcting AN code («1th arithmetic distance 3). 
The error syndrone of a given presumed »ord In an AM 

code Is the modulo A residue of that »ord, e.g., 0 If 

It It ■ correct code »ord AN, since every code »ord has 
residue zero.  Thus sn error »r', 0 < I»I < r, has the 

syndrome ar' (mod A).  With this background the follo»- 
Ing iheorew Is the basic theorem of this paper. 

If and only If *r  la primitive In GF(p).  Unfortunately, 
(7) does not hold for any r > J, since r-1 cannot divide 

r(p-l)/2 , j (or any pi ^ counterpart of Theorem l ex- 

ist« tn this r«se, hosever, a« folio»«. 

Theorem 6: 

dltlon (1) 

Given that p-l exists In G (p), and that  in- 

Is satisfied, then 
er(p)/2 

U (A,3) = ^ r-^-   ,0r ' eVen'     <,) 

«r(p)/2 
♦ 1 for r odd. (9) 

2p 

Theorem I:  For «ny prime p > r, given that p-l do«« 
not exist tn l.r(p) «nd that the condition 

(a-»!)«' t  C (p) for «11 «, 0 < ■ < r - 1  (1) 

1« satisfied, then • (p) 
r 

«r(A,3) - ^   . (2) 

Proof   Is  found   In  tho Appendix,   «long »1th  proofs of 
other theorems       (As an example,   the  reaoer might try 
r • 8,   p =  19,   a •  2.)    Next »c consider the special 
case «h»i -r  (I.e.,   p-r)   is primitive  (I.e.,   (-r)1 

(mod  p)  generates «11  elements  from I   to p-l  for  1  from 
0 to p-21,  but »hen  r  is not primitive  In GF(p).    We 
kno» fron number  theory   (e.g.,   (19))   that   tn  this 
cssc «.(p) «  (p-l)/2,  while (-r)(',"1)/'2 = -1   (mod p) «nd 
^(p-l)/2      ^   ^^ -nwrefore   (because of  the non- 
prtmtttvtty of r) -1 doe« not exist In G (p), satisfying 
the first part of the hypothesis of Theorem 1. This pro- 
vides us «1th  the  following useful  result. 

Theoren  2 specifies   the existence   (or nonexlstencc)  of 
near-perfect codes  In «hlch all possible nonzero syn- 
dromes   (omitting  r-2 multiples of  p)  are used   to correct 
the possible  byte errors   In each of   the n •   (p-l)/2 
bytes of   the   resulting radix  r AN code.     The codes covered 
by   (7)  and  by  Theorem 2   (and   Its derivatives   (4)-(6))  are 
the only  near-perfect  byte-correcting AN codes.        (Those 
for r B 1  «re perfect.)     The hypotheses  for Corollary  3 
«nd  Theorem 5 are  true  precisely »hen p » 81-1 and  41-1 
are both primes   (cf.   [2:1),   Theorems  38 snd  39).     Such 
codes  therefore exist  for  r > 4  (as    ell as r • 2)  «hen 
p • 7,   23,   47,  71,   79,...   .     As  ful the.- exacple«,   the 
shortest nontrlvial   mar-perfect c    es  for  r =   5,   6,   7, 
8,   9,   «nd   10 have p >  II,   19,  31,   fl     59,   and  31,   re- 
spectively.     The  shortest nontrlvtsl    .oar-perfect  cod« 
for r ■ U has p ■ 503.     (Note  that p  xust be «t  least 
2r-l  for « code  to be perfect.) 
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r»      MHRRnCT BYTE-OWWrCTINC emu «ITU MIME p 
for coapUtmaas,   th« follovtng thaoraa Is  included at 
an axtanaloB of Rao and Trahaii'a I Ml   Ttaaoraa S.     It  li 
soMtlMs balpful  In jraaratlog afdclMt cod«.,  particu- 
larly for r > 4. 

Theor«« 7:     (ban condition   (1)  doet not apply,   lat J  b* 
th« snallaat poaslbl« posttl«a Intafar auch that  rJ ■ « 
(■od p),  whara c »   <a-r*l)a"*   (nod p)  fur soau a la 
0 < • < r-l.    That  ta, c » -a«"1, wtora a - r-l-a.    Than 

1MA.3) - Äd_t_L      . 

A uaaful claaa of nonparfact byu-corractini codaa la 
avallabla aban p la a  (Marianne) prlaa of  the fora ^-l. 
Corraapondlnc rasulta IK nonprinai of  thla fora ara 
ftven la the next section.    Baalduaa of  tbla fora ara 
called  "loa-coat" by Avlztanla   (1)  because of the rela- 
tive simplicity of  laplaaantatlon. 

LeajaJ:    Given r « 2b and prlaa p < 3    - 1,  p > r.   It 
folloas that condition  (1)  la satisfied. 

Theorea 9:    Tor r ■ 1 and  priae p •  2 

llr(A,3) -  r    • l 

- 1,  P > T. 

(10) 

Theorea 8 follows froa Leaona S snd Theorea 1.    The re- 
sultlnc codes correspond  to  the slngle-blt error cor- 
recting btresldua codes   (1,   19] »ith the given residues 
r-l and p  (prime),   which are   thus  seen  to be  byte cor- 
recting as well as bit correcting. 

V       EXTENSION TO NONPRIKES  p 

The foregoing thcorana all aaauaw  that p Is s prlaa. 
However,   byte-correcting codea   in  fact exlat  for many 
Ronprlaea p—although none  Is nesr-perfect.     An exaapla 
la r « •,  p • 11-13,  AI^(A,3) - 260 -  1,  which arises 
froa an extension of  Theorea 1.     For   low-cort  residues, 
Theorea ■  Is generalized below  (with in additional con- 
dition)  to certain nonprlaes p «  2d  - 1.     For this case, 
aontrlvlal codes exist  for every d > 3 other M \n 4  and 
6,   for at least soaa r a 2** .> 4. 

Theorea 10;    «Ith r > 2b and p < 2d  - 1  (d > b,  with p 
not necesssrlly  prime),   with  gcd (r-l,   p) .  1,   and  .Ith 
A •   (r-l)p,   lat f be  the 1. rgaat Integer 1 < f < d  for 

2*   - which 2'  - 1   (alao not naceasarlly  prime)   '. s a divisor 

r-l v 
of p.    Then 

B (A,3) . r 
Iff  r < ~ 

A« s consequence of Theorea 10, some but not all slngle- 
blt error correcting blrcsldue codes with residues 

r-l ■ 2^-1 snd p c 2d-l are In fact also byte correcting, 
above and beyond those covered by Theorea 9.  For p • 

255, for exaaple, the code with r a • !• byte correcting, 
while the codes with r * 32 and 128 are not (unless 

truncated to about half t)ieir length).  For p < 2047 a 
23-89, the codes for all r . 2'>, i < li < u# ,re byt, 

correcting. 

If p Is generalized to 

P > n (2 
la| 

1) liZl fin 

soae additional  simply   Inplenentablc and  more efficient 
byte-correcting code« arise,   with each d    > b.  with palr- 
wiae gcd's^all one among  the d   '& and  b,   where each 
value of   2  '  -  1  sallrfles  r <  (2  '   -  l)/(2  I  -  1) 

where 2 '  -  1   Is  the  largest  such divisor of 2  l  - 1, 

1 5 ',  < O,-     * slaple exsapl« of such a byte-correcting 
coda has r-l • 3,  p • 4« • 7* (a base T  residue cslcula- 
tlon;),   with AM (A,3) ■ flW • 1,    This coda Is close to 
naar-parfact  (cf.   Theorea 42 of  (23J).     (It Is  related 
to  the aore redundant coda with p > 7-127.)    Such codaa 
Include certain of  the aultl-restdue codaa  (1,21],   in- 
cluding not  Just  those with prlaa residues 2^1-1 
(t    • 1),   but also soae with nonprlnaa.    A staple ex- 
aapla of  the latter type has r-l • 7,  p ■ 31-355,   for 
which AM (A,3) • 2la0 1.     (Nets that  the coda with 
r-l - 7,  p - 15-31 has AM (A,3) a 5-2      ♦  1,  although 
the  trlresldua coda has AH (A,3) • 2M - 1 for the ssaa 
A.)    Thus  the  greedy  aigorltha of staply trying nultl- 
'asldue codas does chaw off various Hsrsannsry codes 
that are byta correcting. 

VI SO«  POTENTIALLY USEFUL EXAMPLES 

Arlihmetlc  coding la of   Interest  fo.   words of  length up 
to about 64  (or possibly 12S for apaltcatlona auch as 
double precision snd ■ultlpllcstl'«}.     Tsble I   Illus- 
trates  sos* byta-correcting codas for r • 4,  8 snd 16, 
snd  for r • 10.     Vrlues of p, AM (A,3),   i, p    snd p    sre 
given In  the table,  with the following aesnlng.     The AN 
codes for A a   (r-l)p can be used  to encode up to H (A,3) 
code words:  PA is  the effective bit  redundancy required by 
A.     The  given value of n   Is  such thst  ^',  Is  the  Isrgest 
power of  two contained   In AMr(A,3) ♦   1.    Thus n - p     is 
the effective number of  blnsry  Information digits   In  the 
AN coda. 

"n  the other hand,   the bl-residue codes with residua« 
r-l and p can be used   to encode up to AM (A,3) code 
words;  PB Is  the bit redundancy required by  these code:.. 
The given value of n  Is  thus the effective nurtier of 
blnsry   information digits  In the bl-raslduc cod«.     If 
syndroncs sre computed   In bl-resldue for» In both esses, 
then corresponding byte errors have  Identical  syndromes. 
(Note  that when only one value of p.  and p. Is given,   it 
is  the value of both.)    The results also apply directly 
to  the  systeaatlc  gAN codea  [t.'M],   providing a  permuted 
subcode of  the AN coda with 2n"p* coda words. 

Nesr-perfect  codes  In  the  table  (derived  froa Theorems 
2 and  5) are  Indicated «1th asterisks.    The reaalnlng 
codes  in  the  tsble sre sll derived froa Theorea 7,  with 
the exception of  those with r « 8,  p > 17,  snd with 
r • 16,   p -  31   (which arise froa Theorems 6 and 9,   ra- 
spectlvely),   snd  thst with r > 16,  p • 73  (which srlses 
from Theorea 1,   but which   Is closely  related   to a Theorea 
10 code with p a 511,  p • 13).    Table II  suaaartres a 
few selected codea with p given by  (11.)      Since near- 
perfect codes are aecn  to be fairly aparae for 
r ^   2" > 8 and   reasonable n,   the codes of  the   form of 
(11)    are often competitive  In  terns of  redundancy,   be- 
sides  hsving  laplementatlon advantages. 

p 
Values of n  (or 

r - 4 r - 8 r > 16 

511 IS - 36 

2047 22 33 44 

317-1 34 51 M 

72;7.127 42 " - 
31-127 70 105 140 

Table  II. Examples of  aingle-byte correcting arlthmctlr 
codea with simple syndrome generation. 
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n > 

r .  4 
b . 2 

r • 8 

b . 3 
P AM 

r 
n V0B P AM 

r 
n 

VB 

16 

32 

64 

- 

23* 

47» 
ff 
79« 

1U-1 

Si 
22 

46 
70 
78 

7 

8 

*.9 
«.9 

! 

17 
29 
11 

S3 

71« 

7..7V 
»V2 
5-» «2 

«35-1 

14 
23 
26 

62 

105 

1.» 
8 
9 

9 

9,10 

r > IS 
b • 4 

p AH 
r 

n •/■ 

31 16»-1 
12-16 «3 

16-1 

20 9 

S3 27 10 
73 36 11 

101 Hit10. 1 43 11 
139 10-U17* 5 71 12 
263 1   8-)6J4»7 
m<|    it««.i 

139 
1004 

12,13 
13 

r •  10 

P AM  (A.3) 
r 

n 
VB 

19 2-10^7 14 •»• 

• 
31 io,s-i 49 9 

107 7.10l,+ ? 65 11 

Tabla  I.       Suiaury of  bjrtv-corrcctlng artthact 

vi     tmon uxrATior 

In  practice   thara may  ba no na«l  for arror correcttcn 
(apart   fro»  real-tlna crlttcalltlaa)   II   the faulty  byta 
ffU'tmu  can ba  liaadlataly  locitad and  raplacad by a 

•Vrt.     Altarnatlvely  thu byta procaaaor could be 
raaovad,   mth coaputatloh continuing either «ith de- 
graded  precision or »Ith  multiple praclaton opera- 
tion!.     (Instruction  retry sithout   replacement may  of 
course be  adequate   K   the  fault   la  tr.tinent  or  later* 
■ itt, nt.)     Thu«   the uaa of  error-locating arithmetic 
codas «hlch  specify   the Syte processor  in error might 
appesr   to be  very desliabM.     I'nfortunately   (sith ex- 
capttona noted  bclos)  almost  all   linear byte-error   lo- 
cating codea  are »Iso byte-error corrscting.     This  fol- 
loaa  (rca  the  linearity of   the  syndroma generation  for 
error« «tthtn a  byte  position—«hlch »rror«  there'o'e 
have dlatlnct   «>ndrofnes.     Of  course,  error-correcting 
code« Bay   be used  a« error-lcc«tlng code«.     (Partial 
error  location   t« dt«cu«sed   In  (1,4).) 

Error-locating coda«  that are not error correcting do 
in  fact axlat:     outright duplication and  comparison has 
thir   property  since  the  losest  byte position exhibiting 
a dlacrepancy   1«  the  position   In arror—a««uming  that 
the  arithmetic error »a« confined   to a  single  byte. 
(Mote   that iupllcatlon of  n-bit   sords  can be conal-iered 
a«  an AN code  In «hlch A >   2n* 1. ) 

VIII        MULTIPLE  BVTE-ERPOR   DETECTI0.>   AND CORRECTION 

AS codea   for  r >  2 are  kno»r,   that  arc capable of detect- 
ing double error«  »hlle correcting «ingle  error«   (dis- 
».-»•-e  4,   e.g.,   for A ■   43).   or of correcting Joublc 
adjacent errors   (e.g.,   for A «  4l)--see   (17).     Similar 
code«  also exist   for  r > 2,   along s1th  correspond in- 
multi-residue codes.     As an cxanple,   consider  r • 4, 
p ■   109.     Using  the  residues  3  an I   109 over  2-bit  bytes 
result«  in an AN code sith single-byte  error correction 
plu« double-byte error detection »ith M  (327,4)  ■  9. 

4 
The corresponding bi-residue code  has  up   to AM    r   2943 
code word«,   or at  least  11  bits of   intnrnation »ith 9 
bit« of   redundancy. 

IX       SOME   IMPLEMENTATION   C0NSIUEKAT10NS 

The coder. dikcu«sed  here offer conMderablc   flexibility 
and  effectiveness  in use »ith b>te-sliced  arithmetic 
unlta   (7,24),   pormtting replacement  of   faulty  byte 
procaaaors.     The cost of   reliably  s»itching  th«?  spares 
do«« not   «ecm  to be excessive   (e.g.,   (19)).     llo»cver, 
a  careful   comparison  remains   to be made »ith alternative 
schemes   Involving  replication,   conpanson,   an I  diacnn^is, 
under   various  system assumptions.     In  any  event   the 
total   system  effect   tust   be  considered   in   time  and   In 
equipment  complexity.     Results of  Rao   | 19 )   for  r «  2 

tc coda«  for  variou«   radlcea  and  »mall  prime« p. 

seem  lo  indlc. le  that   about  a  lOO",  Increase  In equipment 
(i.e.,   effect!  ely equivalent   to duplication of   the 
arithmetic unit     suffice«   to provide byte-error 
correct ion. 

Various arguments  concerning  the  Implementation nf 
arithmetic  codes are also  relevant   here   (cf.   (1,2,4,7, 
18-22).     In generri   the effectiveness of  arithmetic 
coding using arblnary  residues p other  than of   the form 
ill)   rests heavily on  the effectiveness of   the   residue 
calculations,   possibly  even using analog  techniques   (6). 
The use of   low-cost   residues  p of   the  for« ^  -  I,   or 
more generally of   the  generalized   low-cost   residues   (11), 
simplifies  syndrome calculation. te however  that 
various   tricks  may  also be useful.     The  residue modulo 49 
1« not needed   In   the code with  r=4 and  p=49 unless an 
error has actually occurred:   alngle-byte errors are 
completely  and   rapidly  detectable by use of   the residue   7 
alone.     For  the code with   r=l6 and  p=73,   residues modulo 
73 may  be derived  frnm  residues modulo Sll,   since 
511=7x73. 

Bvte-correcting arithmetic codes also provide byte-error 
correction when used   In memory,   e.g.,   in a byte-oi'ganized 
memory  (10).     As  seen  below,   some of   these codes  have 
redundancy very close  lo   the Best c »parable byte-error 
correct In« codes  for memory   [11)   given  hy Hong and  Patel. 
Such codes  thus  have potential   for dual  use both  in 
memory   (for error correction)  and   In arithmetic   (for 
error detection at  least.   If  hot   for error correction). 
Advantages  of   such dual use are similar  to  those  In the 
JPL-STAR  (3],   which uses  a   (modified)   residue  IS 
error-detecting code.     See also  116). 

For comparison purposes,   the  redundancies of 
byte-correcting codes of   various   types are summarized  In 
Table  III.     Included  are  the byte-correcting Hong-Patel 
codes  for nemory,   denoted  by "M" in   '-he  table,   and   the 
following arithmetic  codes:   the A"   and   gAN codes   (denoted 
by  "A"),   (nultl-)residue codes with arbitrary  reslduej 
(  R  I,   (multl-)resldue codes with generalized   "low-co«t" 
residues of  the  for«  (11)   (denoted  by  "c"),   and   those 
(multi-)residu<' codes with  low-cost   residues,   of   the for« 
2d  -1   (denoted  by  "L"). 

The near-perfect AN  codes   (when  they exist)  have 
redundancy 

log2  ((r-l)p], 

at most one  bit  more  than   that of   the byte-correcting 
Hong-Patel codes  for memory   (11),   which require a 
redundancy of   at   least   the  larger of  2b and 

AM 
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iof2 t(r-i)(ii/b) «. i] ■ iof2 c<»-i)(i»-i)/a + n. 

(The HoBc-Pmtel   redundancy  li actually equal   to  thl» 
latter nuaber  In aany cases.) 

Ailthawtlc codes need not be near-perfect   to be close  In 
redundancy  to  the Hong-Patel Beaory codea.     Several 
exaaplea of  such potential dual-use arithawtic codes are 
worm noting.     One caae la  that with  rM  and  with  k  fro» 
37   to 42.     Here 7 blta of  redundancy are  required   for 
byte correction  in memory   (M),  while 8  blta aufflce for 
aevera    foran of  arlthavtlc byte correction   (A,   R,   G), 
e.(.,   1 « AM codea with A-:x71  and  with A-3x79,   and   the 
general.zed   low-cost residue code with p>49.      (Note that 
the Haaalng code  tor alngle-blt error correction  requires 
6 blta of  redundancy.)    Other exasyles with  tnls one-bit- 
extra property exist  for t*=3 with k  fro« 45  to 62  (with 8 
bits of   redundancy for H,  9 bits  for A and R);   for t»6 
with k up to 42  (with residues 63 and  127  giving P = 13, 
Inatead of   12 for byte correction  In ■esmry alone);   and 
for b>10 with k up to 110  (with realdues  1023  and  2047 
giving p>21,   Inatead of 20).     In aany  cases,   however,   the 
arlthawtlc code redundancy  Is significantly  greater  than 
the memory code redundancy.     In such cases   the arithaetlc 
codes Bay not  be  suitable for dual  uae,   although  they M) 
atlll  be applicable for arithaetlc alone. 

In paaslng,   It   Is worth noting  two oddities  for ps31   (s 
low-cost   residue  for r=2  ),  naaely  the near-pi>rfect codes 
with  radlcea   r=7 and   r=10.     The code  for Hal  could  be 
quite effective   In a binary-coded declaal aachlne.     It  la 
also  Interesting to obaerve  that,  due  to  Irregularities 
in  the existence of  good codes with  r «t  least  4,   the 
redundancies of   the residue codes are occasionally  less 
than  the coaparable AN codea.     Several such exaaples 
exist   In Table III. 

A source of  coaplexlty arlaes when a  truncated  code   Is 
used,   e.g.,   a code of Theorea 7.     The   lapllclt  truncation 
leads   to  the need for an  Internal  overflow correction, 
requiring soae   Increase  in circuitry. 

The systavatlc aultl-resldue codes  and   the  gAN codes have 
advantagei    >ver  th- AN codes due  to   the visibility of 
their inforaa.   on digits.    The aultl-residue codes have 
the diaadvantage  that   the check digits are not directly 
protected  by  the code as  they are  in  the AN  and  gAN 
codes.     Detailed coaparison of   these approachea   is 
desirable for byte correction.    However,   the   results here 
apply   to all   these  types of arithaetlc codes.     Another 
approach  to error correction of   iterative errors 
resulting froa a single fault  in high-speed  arithaetlc  la 
found   in  [7].     Further discussion of systeas aapects are 
found  in (IS]. 

X      CONCLUSIONS 
I 

The codea presented  here have conrlderable potential   in 
the  realization of coat-effective fault-toleiant 
coaputlng ayateas capable of  high availability.    They 
contribute a new approach  to  the design of  byte-sliced 
ari'bswtlc processors. 
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k H 
1-blt bytes 
ARC L 

a 
24 
32 
48 
64 

S 
ft 
6 
7 

6         7        8 
6 7        8 
7 8        8 
7 8      12 
8 9       12 

10 
12 
12 
14 

k 
2-blt bytes 

MARC L 

■ 
24 
32 
48 
64 

* 
ft 
6 
7 
7 

8        7        ft 
8        8        8 
8        8        8 
8        9       12 
8        9      12 

r 
10 
12 
14 
14 

k H 
4-blt bytaa 
ARC L 

16 
24 
32 
48 
64 

8 
8 
8 
9 

16      4      * 
11       10       11 
11 11      13 
12 12      14 
12       12       14 

T 
11 
13 
16 
16 

Table  III. 
Redundancy   for byt« correcting codes: 
M ■ Meaory error comctlaf 
A - AH,  gAR arithaetlc error correcting 
R - Hultlrealdue arltnavtlc error comctinf 
C - R with genarallMd lav-coat  real lu s only 
I. • R with low-coat realduea only 
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APPWOiX        WOOFS Of  THW RESULTS 

front of Th«or«m 1■    V« prov«  (2) uatng  the coaccpt   that 
•n AM cod«  t'ith arithmetic dulince it   lent 3  In  radt« 
r>   i»  »infle-byte «rror correcting  If distinct «rrora 
have dtitlnc'  ayndftHMS.*    Consider  t»o dlatlnct   byte 
•rrora E    •   >rJ and E    • Sr'.   »ith 0 <   |o| < r, 
0 <   |9|  < r,   for  j and  ( among 0,   I    •r(p)  - 1, 
J rf 1.     Suppose   th«-ir  syndrosws  »re equal,   which  la  to 
bo provrn  lopoaalbta.     (Aasuao J > 1.  artthout loss of 

srallty.)    Than, 

04(p' .     For  the •■■•  rosse«,   (p-l)/3 caanot  b«.      (It  It 
•or«,   than -1 aould bo.)    Thua condition  (I) holds. O 

Proof of Thoora» »:     Tho proof of  ayndroaa uniqueness  Is 
identical   to  that of Theorem 1,   except   that   the  ranges 
of   I,   J «ad  I »re up to a   (p)'2 •  1.     This   Is  to svo«d 
aabigulty  bet.een positively snd  negatively  slgnod errors, 
• lace r*r<p>  " • • I   (ood  p).     Consequently   the  code can 
Include sll code «ords All up to but not  Including 
(r-l)r•r'^,/, •   (r-l)   for even  r,   snd 

or    * Br     (nod 

I.e. 

A). snd ar*'    ' 

B  (Md A), 

B  (■ A), 

for I « J'l, SOBS Integer ssung 1, 

folloes froa (12) that for this I 

or1 • B   (Bod  r-l) 

and or' » B   (aod p). 

er(p) - I. 

.1 

(12) 

It 

(13) 

tut 
r * 1 

(aod  r-l).    There sre t«o esses.     If a snd B have  the 
aase algn,   then they are equal.    When they are of oppo- 
site algn,  choose or   to be positive elt'iout loas of 
generality,  »hence 

o . B ♦   (r-U. (IS) 

When a ■ B,   (ID cannot be sstlsfled  for sny I, 0 < 
1 < er(p),  «hence  the syndroBes of all  such distinct 
error«  Bust be distinct,   ss  Is  to be proved.     When 
Or rf B,   substitute   (IS)   in   (14),   «hence 
Or    • o-(r-l)   (nod  pi.   and  (o-r.1) o 
vhlch  Implies  that  (by- definition) 

(■ P). 

(Qr-r*l) a -1 « Cr(p) 

n  oe distinct.  Finally, If 

r*1" P 5 1 (nod p), the 

This la s contrsdlctlon of the hypothesis (1), Implying 

that the t«o syndromes must 
I 

p-1 Is not In 3 (p), then r '   '     * 1 (nod p 

«nallest positive pow^r of r having this property.  Thus 

the code can Include all code words AN up to (but not 

Including) r r  - 1, «hlch ha« arithmetic »eight t»o. Q 

Proof of Corollary 3: In Theorem 2, aot r « 2, »het.ee 

A • p.  We observe that the open Interval (0,r-l) la 

empty, and therefore (1) la trivially sstlsfled.  Thus 
(4) folloes fron (3) In Theorem 2.Ü 

Set r - 3 in Theorem 2.  la the 

there Is only one Integer snd 

Proof of Corollary 1: 

open Intcrvsl (0, r-l) 

that Is a » 1. For that case (s-r4l)s * ■ -1.  Recall 
that -1 doea not exist In C (p) (because of the non- 

prlBltlvlty of r « 3--see the text preceding Theorem 2). 

Therefore the condition (1) Is Lsltsflcd, snd (S) fol- 

loes from (3) in Theorem 2. Q 

Proof of Theorem 5:  Set r i 4 In Thcore» 2.  In the 

open Interval (0, r-l) exist only s » 1 snd a ■ 2, for 

•hlch (a-r^Da"1 ■ -(3-a)a"1 la -2 and 

(-DC ^ - ^ respectively. Since -1 is not In 

4, aa above). C (p) (because of the nonprlBltlvity of 

and because C4(p) Is Identical to G2(p) In thla caar 
(■hence -2 but not 42 Is primitive), -2 cannot be li 

.  • <P) 2 

<-r>r r-l Jor odd r, 
( 2 ' 

the saalles: nonsero rsdla r rcpreseotstlons of srlthsw- 
tlc ««ight t»o dlvlslbU by (r-l)p. O 

Proof of Leo«« || We observe that since p Is (by defini- 

tion) s prime, d Bust be s prime (Cstaldl-Faraat, e.g., 

see 123), p. 3).  Thus the elements of G (p) sre precisely 

the first d consecutive powers of 2, since C (p) la here 
Identical to C2(p), since gcd (b,d) • 1.  Therefore »e 
need only prove thst a-2 « s-n-l (nod 2d-l) csonot 
occur.  Assume that It can.  Then 

and 
„•2* - 2d 

,2l 

b 
2  - a (BO. 

2b(2d-b -1) ♦ a 
I 2,,-l) 

(aod 2d-l). (16) 

We note  thst on  the nghthand  side of   the congruence  (16) 
»e have an  Integer leaa   than  2-1  »hose binary   repre- 
sentation has  two parts,   the higher order pert of  value 
2d   - 2    and  the loarer order part   (b digits)  of value a. 
Also »a note  the Hamming »eight of  this   Integer  (the 
number of ones   In  the blnsry  representation)  must  be at 
leaat one greater than  the Hamming »eight of a.    On  the 
other iiand,   the Hamming »eight of s  z'   (snd  2d-l)   is  tha 
same ss   the Hanming »eight of  «,   for  the resson   that   the 
Bultlpilcstlon by s poser of 2 modulo 2    -  1   is  1B 

effect s cyclic   .hl't  of  s  by f plsces  and   the  Hamming 
»eight   Is  Invai   snt  under cyclic   shifts.     Therefor« 
the congruence   (16) cinnot  hold. — 

Proof ot  Theor;w 9:     Froa Lemma  I,   condition   (1)  of 
Theorem 1   la  satisfied.     Further,   the elements of G  (p) 
sre of  itie  form 2lc(k • 0,   l,...d-l),   and p-1 clearly  la 
not  In c,(p)      Also,   since  the gcd of b snd d   Is 1,  ve 
have e (2d-l) • d.     Thus  (10)  follows fron Theorea 1. Q 

Proof of Theorem 10:     If  r >    i*     ,   then  this  t»o errors 

rrrr*  * '    ,nd    Tjffr  "   r    hsve  Identlcsl syndtoaea,   vlo- 
Isting error correction.    This folloes slaply  froa 
r'-l s o (nod r-l)  snC   rf-l ■  (2')b-l s 0  l->i j'-l), 

»hence A ■  (r-l)p»  ',~1>p^ •I2t-1), which divides  the 

difference of  the errors, 

_/_.     -   (r -1).     If  r <   &S •   th•" ,h«»« errors cannot 

arise ss single byte errors.     It  Is resdlly seen  thst 
3 -1 cannot divide a(rl-l)   In any other »ay for 1 < 1 < d 
and   thua all  alngla-byte error  syndromes  sre distinct. O 

e  (p) 
«(The error «r r Is naturally excluded.     Massey  |13] 
shoes  that  otherwise,   and  In general   for other  than 
alngle errors.   It Is not necesssry for all syndroaes 
to be distinct for correction of a given set of errors.) 
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