AD-766 974

A STUDY OF FAULT-TOLERANT COMPUTING

STANFORD RESEARCH INSTITU1E

PREPARED FOR

OFrice oF NavaL RESEARCH

ADVANCED RESEARCH PROJECTS AGENCY

JuLy 19/3

DISTRIBUTED BY:
Natisaal Technical Information Service
U. S. DEPARTMENT OF COMMERCE

Final Report 31 July 1573

A STUDY OF FAULT-TOLERANT COMPUTING

By: P. G. NEUMANN J. GOLDBERG
K. N. LEVITT J. H. WENSLEY

Prepared for:

DIRECTOR, INFORMATION SYSTEMS PROGRAM
MATHEMATICAL AND INFOR AATION SCIENCES DIVISION
OFFICE OF THE NAVY

800 NORTH QUINCY STREET

ARLINGTON, VIRGINIA 22217

PROJECT MONITOR JOEL TRIMBLE

CONTRACT N00014-72-C-0254
ARPA Order No. 1998
Program Code No. 2P10

SRI Project 1693

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 - U.S.A.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE .

US Depertment of Commerce
Springfield, VA. 22151

228

FESRRw

= R

S L1 S

A STUDY OF FAULT-TOLERANT COMPUTING:
FINAL REPORT

by
Peter G. Neumann
Jack Goldberg
Karl N, Levitt
John H, Wensley
Computer Science Group
Stanford Research Institute
Menlo Yark, California
31 July, 1973

ARPA Order Number Contract Number
1998, 27 December 1971 NO0014-72-C~0254
Program Code Number Principal Investigator
2P10 Peter G. Neumann,
Phone 415-326-6200,
Name of Contractor ext, 2375
Stanford Research Institute
Merlo Park, California 94025 Scientific Officer
Directox, Information
Effective Date of Contract Systems Program
12 January 1972 Mathcmatical and Information
Sciences Division
Contract Expiration Date Office of the Navy
14 May 1973 800 North Quincy Street

Arlington, Virginia 22217
Amount of Contract

$149,700,00 Short Title of Work
FAULT-TOLERANT COMPUTING

Sponsored by and prepared for the
Defense Advanced Research Projects Agency
ARPA Order Number 1998

The views and conclusions contained in this document are those of the
authoiz end should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, ONR, or »f the U, S. Government,

(Form Approved Budget Bureau No. 22-R0293)

Approved: - /7
SR Ko & Peumann,
David R. Brown, Director, Peter G, Neumann,

Information Science Laboratory Principal Investigator

SRI Project 1693

el

Unclassified

Secunty Classification

DOCUMENT CONTROL DATA . R & D 1

Security clasxilication of title, body ol adstract and tndexing annotation niust be entered when the overall report is clessilied)
OHIGINATING ACTIVITY (Corporate auther)

.

24. REFORY SECURITY CLASSIFICATION
i Unclassifird
Stanford Research Institute 2b. GRrOU?

) REPORT TIT_E

A STUDY OF FAULT-TOLERANT COMPUTING: FINAL REPORT

e

4 CESCRIPTIVE NOTES (Type of report and inclusive dates)
Final report covering 12 January 1972 - 15 May 1973

% AUTHORISI (First name, middle initial, last name)

Peter G. Neumann, Jack Goldberg, Karl N. Levitt, John H. Wensley

¢ REPORT DATE

31 July 1973

I 82 CONTRACY OR GRANT NO

N 000 14-72-C-0254 (ONR)

b PROJECT NO

7a. "OTAL NO OF PAGES 7h. ND OF REFS
236 61

9a8. ORIGINATOR'S REPCRT WUMB™RI(S)

OTHER REFORTY NOIS! rAny uther numbers thet may be assigned
this repore)

t CISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

' SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITH

None Defense Advanced Research Projects
Agencv

i ABSTRACT
This report prisents the results of a study of fault-tolerant computing.
Existing and new architectural techniques are evaluated for use in cost-
effective systems attaining desired measures of correctness, availability
~ and recovery. Various architectures and applications ar considered.
Appendices contain a brief census of 35 fault-tolerant systems, and a
concise survey of 17 representative systems, as well as detailed results
on reliable memories and arithmetic.

OD M. 1473 (ace 1 .0 NO. 21856 Unclassified

[} .
s/n 010201 4=6600 ” Security Classift . 1on

TR e, .

Security Classification

1e

XKEY WORDS

LINK A LiINK B

LINKR C

ROLE

wY ROLE wy

ROLE

L= Sa——

DD "2V.1473 (erc)

(PAGE ?)

Faul t-tolerant computing
Computer reliesbility
Computer availability
Architecture

Computer systems

Unclassified

Security Classification

PREFACE

This report has been Prepared with the aid of an on-line graphi:al

text editor deficient ‘n its lack of underlining. UPPLR CASE is usec

th.roughout in plzce of undeflining.

We hope that this causes ro

confusion,

References in the text are cited °v author name(s) and year, and are

given in Chapter 8. References cited with an "A2"

instead of the year

refer to system descriptions contained in Appendix 2, For example,

"(Wensley 72)" refers

to a reference provided in Chapter 3, while

"(Wensley A2)" refa

rs to the description of a particular system found

in Appendix 2,

Further references are also found in each of the

appendices,

In the light of the existence of several extremely comprehensive

bibliographies in the area of fault tolerant computirg (cited at the

beginning of Chapter 8),

we have chosen to be selective in our

references.

Where a multiplicity of references is relevant, we have

sometimes chosen to cite only the most recent ones, so that the

interested reader can pursue earlier re

ferences by indirection.

CONTENTS

CHAPTER 1. SUMMARY C¥ THIS REPORT.
1.1 The Technical Problem.
1.2 Technical Results,
1.3 Relevance of this Study.
CHAPTER 2. INTRODUCTION. . ¢ ¢ & ¢ v v v 6 6 v o e o v v o o v s
2.1 Basic Definitions and Assumptions., 10
2.2 Several Illustrations of Faulty System Behavior. . 16
CHAPTER 3. TECHNIQUES FOR FAULT TOLERANCE. A |
3.1 Design Techniques for Fault-Tolerant Systems . . . 22
3.2 Structured Designs for Fault Tolerance 36

3.3 Architectures for Fault Tolerance. . . .

CHAPTER 4. MEMORY ORGANIZATION

e o+ « o o 06
e e 4« 4 s e s o s e s 1D

4.1 Error Detection and Error Correction in Memory . . 75

4.2 Memory Reconfiguration . . .,

CHAPTER 5. ARITHMETIC AND LOGIC. & ¢ v ¢ v 4« 4 s o o o« o « 95
5.1 Detection and Correction o, Errols in Arithmetic . 96

o’
5.2 Error Detectioe 12 Logic Cnn.rétions. T < I

CHAPTER 6. EXAMPLES OF FAULT-TOLERAYT (Ol TESS. « ¢« . « 103
6.1 General-Purpose Time=-Stared Computers. 107
6.2 General=Purpose Batch Processors . . . o . . « .

6.3

. 115

Communications ProCessors. .« o« o« « « v« o« o o« o « - 116

6.4 Super-Fast Computers «. ¢« « « « « « . . 123

6.5

Aerospuce Computers. « . ¢ o o v © o o « o « « « « 127

6.6 ConClUuSionS. « v v« v v o & o o + o o o o o o o « o 129

CONCLUSIONS AND RECOMMENDATIONS 131
7.1

Conclusions. . . & & v 4 v v ¢ o o o « o o« o« o« « « 131

7.2 Recommendations for Future Research and Develop-
ment . . . e s s e s o e s s s o o e s e s« & o o 134

REFERENCES. ¢ ¢ ¢ v 4 ¢ o o v v o o o o « « . 137

CHAPTER 8.

APPENDIX 1 CENSUS OF FAULT-TOLERANT OOMPUTING SYSTEMS. Al.l
APPENDIX 2

APPENDIX 3

SURVEY OF FAULT-TOLERANT COM™UTING SYSTEMS. AZ2.1
DETAILED CONSIDERATIONE OF M:MORY RECONFIGURATION

ERROR CORRECTION IN BYTE-ORGANIZED ARITHMETIC
PROCESSORS. . & & & ¢ ¢ ¢ ¢ v o o 4 o o s o« o s - « « . Ad4.1

APPENDIX 4

v

Best Available

Copy
for Page Vi

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig,

A3.2
A3.3
A3.4
A3.5

A3.6
A3.7
A3.8
A3.9

ILLUSTRATIONS

Wmaed o¢ famliy behavior. ¢ . . .00 00 0. . 13
wwen®z0oeal LSI memory organization. 84
twmney chip mith components of input and output switches. 84
& ewample chip reconfigurable memory « « . o o« & 85
Seconfiguratlion examples. . . . ¢ ¢ « c ¢ ¢ e e o 4 4 o 85
Probability of success (PS) or failure (Pf) 1s a function
of number of chips. ¢« ¢ ¢ ¢ ¢« . v ¢« « v « « « « A3.3
General model for reconfigurable memory A3.5
An example chip reconfigurable memory A3.7
An example of a separable SNP z = 6, d = 4, s = t =3 . . A3.12
An example of nonsepa:iable SNP for z = 6, d = 4, s = 6,
B=0(6)s - G 2 « B I EP B EBEE M e« kB e e & . A3.14
A multi-level SNP4 4 s A3.16
Decomposition of the order preserving network A3.17
Memory chip with components of input and output switches. A3.19
Organization of nonseparable SNP with embedded switches ., A3.19

Vi

Table
Table

Table
Table

Table

Table

Table
Table

Table

Table

6.2
Al

TABLES

Some sources of System €rrors. o v o o o o s . 13
Summary of major design techniques for fault tolerance . 24
Critical clements for faul: tolerance. 14
Examples of techniques for fault tolerance applicable

to a hierarchy of interfaces Ik 46
Exzmples of various modes of USAEE ¢ &« & ¢ o o o o« o o @ 48
Smllest possible redundancy r for byte-error correction

in memory with various byte sizes b, . ., o . e 78
(w = 4K, Total Storage = 256K, ¢ = 1, Word = 32 bits). . 93
Application classes, their requirements and the most

rfelevant fault-tolerant architectures and techniques . . 104
Evaluation of fault-tolerance techniques 106
Potential RSNs for k1 22 m e B EEER G EER + o « o5 UA3L2T
Potential RSNs for k.1 = e o e e e e 4 s 4 4 eA3.28

A STUDY GF FAULT=-TOLERANT COMPUTING: FINAL TECHNICAL REPORT

Peter G, Neumann, Jack Goldberg, Karl i, Levitt and John i, Weusley

Computcr Science Group, Stanford Research Institute, Menlo Park, CA
CHAPTER 1, SUMMARY OF ThIS RLEPORYT

This report presents the results of a study of the state of the art of
designing fault-tolerant computing systems, This chapter provides a
summary of the technical problem, the technical results, the relevance
of the study to the Department of Defense, to users and to vendors, and

implications for future research and development,

1.1, THE TECHNICAL PROBLEM

The purpose of this study is

* To survey and evaluate existing systems, system concepts, and relevant
existing theory, in order to assess the art of designing effeztive and

economical fault-tolerant systems,

* To define and evaluate new approaches to the dgsign of computing

systems with improved fault tolerance,
The system goals of interest include the attainment of:

* CORRECTNESS-- High degrees of correct operation despite the occurrence

of faults in hardware.

* AVAILABILITY-- Very high syetem availability (i.e., very little
down-time), with little or no ewezrgercy maintenance and possibly very

little maintenance at all.

* RECOVERY-- Rapid recovery from faults not immediately tolerated, with

lirdted but known (and usually recoverable) losses.

i

* ECONOMY-- Low redundancy relative to system reprlication, and low cost

of fault tolerance relative to the total environment in which the

computer system exists,

System goals are considered that might require massive equipment

redundancy (e.g., for extremely high correctness, or very long

zero-mrintenance lifetime, or extremely fast recovery), but these goals

are not of primsry interest here,

1,2, TECHNICAL RESULTS

The basic conclusion of this study is that substantial fault tolercuce
can be achieved at surprisingly low cost (in both hardware and software)

under a wide range of operating requirements. The fault tolerance
attainable with the present state of the art is much greater than in

present systems, and satisfies many present demands, Further
improvements are also possible that would allow design of still more
poverful systems, This basic conclusion is especially asplicable to
large systems with flexible real-time requirements. Such systems
include general-purpose systems, message store-and-forward systems,

communicz2tions processors, and networks,

In Chapters 3, 4, and 5 of Lhis report, we review many techniques for
fault tolerance. These techniques facilitate the detection, isolation,
location, and removal of errors, and the recovery from the effects of
these errors. In Section 3.3, system architectures are considered,

including a variety of simplex and multiprocessor configurarions. In 1

Chapter 6, the techniques for fault tolerance are applied to these
architectures. Quantitative measures of system correctness,

availability, recovery, and cost are given for each of these

architectures,

we find no fuadamental gaps in the state of the hardware design ar:
preventing the attainment of high degrees of fault tolerance at low cost
relative to the overall system -- except for questions of rvecovary speed

and very long unattended life discussed beiow. On the one hand, there

2

are app’ications in which the computer systems represent only a small

portion of the total costs, e.g., in special -purpose control
applications, 1n these cases, the extrere solution of replication of
couputer equipment with comparison or voting may be economical overall,
In most existing systems and system designs for such applications, which
provide guaranteed fault tolerance for essentially all single faults,
anywhere from 60 to 80 percent of the hardware is typically devoted to
fault tolerance. On the other hand, we find in general that 10 to 40
percent of the hardware devoted to fault tolerance is sufficient to
achieve adequate correctness and availability for many systems, except
when all system results have highly critical real-time requirements on
correct performance, Such low redundancy can be achieved by a
combination of techniques (both existing and newly developing), and by
careful use of structure in the system, Such structure facilitates
taking advantage of the nonuniformity of internal system requirements,
and permits various fault-tolerance techniques to be used when and where
they are most effective, rather than uniformly, The resulting
partitioning makes complete single-fault tolerance necessary only within
certain critical partitions., 1t also facilitates speedy recovery when
essential, Such structure also facilitates graceful degradation of

performance,

We do find fundamental gaps in the art of designing and implementing
software to support hardware facilities for fault tolerance, This art
is notably weak in the areas of specifying and verifying system designs
and implementations in a way that unifies hardware end software with
proper consideration of operational needs., 7This weakness is especialiy
evident with respe ct to the poor state of cperating systems, and in the
adequate coverage and resolution of system diagnostics. As noted above,
present systems and the present design art are seriously deficient in
the speed of recovery following faults., Solutions to this problem
require advances in hardware and software for improved diagnosability,
and in total hardware- software integration, The art is also weak in
maintaining smoothly degradable performance ia a low-maintenance

environuent,

In modern computer design, boundaries between hardware and software are
becoming increasingly diffuse, There is a real need to upgrade the
fault-tolerance design art so that it can become a standard facet of
computer design, Significant effort is required in system software and
system operations to assure that good hardware development is not
compromised, We emphasize the critical importance of developing
balanced system designs well suited to particular system needs., It is
helpful if system poals can be integrated from the beginning, rather
tian retrofitting fawlt tolerance into a system not designed with it in
mind. To this end, the concept of system structure is useful in all the
stages of system development, includinge the design, implementation,
verification, use, operation, and evolution of the system, Structured
design and implementation hold great promise for improving the art, not

just for fault tolerance, but for computer system design in general.

In many cases, Ligh availability cannot be achieved without a secure
system (employing protection mechanisms in the hardware and operating
svstem to assure that it is rzlatively crash-prcof). In turn, such
security cannot be achieved without liigh reliability, especialiy in the
portion of the system that affects security. System Structur: can also

be helpful in achievinp the poals of security.

Our conclusions also include implications of system design on the
operational and human aspects, which play a critical role in keeping a
system hiphly available, These include not only considerations
affecting corvectness, continued system availability, and rapid
recovery, but a'so those lessening the critical dependence on

auministrators, skilled operators, and maintenance personnel,

ke conclude that the attainment of a sufficiently fault-tolerant system
is possible for various particular applications at relatively low cost.
llowever, considerable care and common sense are still required in system
implerentation. Our survey of existing systems shows that seemingly
obvious measures for fault avoidance are often ignored., If the reader
occasionally finds a statement that seems obvious, it may be included

here for completeness, or because it serves as a basis for subsequent

4

discussion, or hecause there are hidden difficulties in implementation.
We pose the challenge to practitioners and tlhieoreticians of fault
tolerance to find structures and theories that move these "obvious"
design decisions from the domain of food judgment to that of systematic

practice.

Many of the techniques discussed in this report are useful with
present-day technologies. Others are particularly suited to emerging
technologies such as LSI, which can have a significant effect on system
fault tolerance, e.f., due to compactness, low heat generation, and low
cost, These latter technologies will permit the use of techniques not
previously practical. However, the trend to high-density systems using
advanced technologies (for memory as well as processing) will not
obviate the ne:d for architectural measures to achieve fault tolerance.
It is true that the unit reliability of new LSI devices is not much less
than IC and MSI devices, while the devices are significantly more
powerful, Thus, a given function may e realized in LSI with higher
reliability due to the use of fewer devices. However, while the number
of devices per function decreases, tiere is a strong tendency for large
general-purpose systems to grow, up to the limits of cost. For example,
there is a tread toward increasingly powerful hardware in order to

simplity programming.

An additional factor is the limit on celiability imposed by the high
cost of testing a device to an assured level of reliability., While a

device may be extremely reliable, the system designer can assume cnly

that reliability that can be demonstrated. The current practical limdt
-6 -7

on testable failure rates for a device ranges from 10 to 10 failures

per hour, This implies that, for very large systems, the projected

" -1 -2
system failure rate would be 10 to 10 failures per hour., This clearly

requires system-level fault-~tolerance measures.

The work reported here is novel in several respects. It represents both
theoretical and practica) approaches to economical fault tolerance,

rather than the use of missive redundancy. It provides a framework for

R

a unified hardware/softvare approach tc system desipgn for fault

5

tolerance. It atcempts to show explicit cost figures for fault tolerance
over a wide range of architectures. It also includes several new
theroretical results on reconfigurable memories and on coding for

arithmetic,

1.3, RELEVANCE OF THIS STUDY

This work is applicable to many kinds of computing systems, These
include systems with general-purpose and/or special-purpose capability,
and network control computers such as the interface message processors

(IMP3) in the AKPA network.

1.3.1. RELEVANCE TO THE DEPARTMENT OF DEFENSE

Specific conclusions of our study affecting the Departrent of Defense

include the following.

* Significantly better fault tolerance (e.g., correct behavior, high
avallability, rapid recovery, and high system security) can be obtained,

even in the presence of malfunctions.

* Significantly more economical fault tolerance can e achlieved, with
more efficient use of redundancy, more remote diagnosis and maintenance,
more automatic self-maintenance (e.p., the use of spares, with automatic
reconfiguration), and less emergency maintenance. More automatic
operation will result in reducing the unnecessary reliance on

potentially unreliable people in critical positions,

* While the primary scope of this report involves the design of large
general-purpose systems, there is considerable potential for

applicability to tactical and other real-time control systems,

* Significant effort must be expended to assure overall system
reliability, e.g., effort concerning good software design and

implementation, reliable operations personnel, and other system support,

Otherwise, good hardware design may be wasted. In addition, history
shows that computer manufacturers have bheen slow to respond to customer
needs that have not been clearly and forcefully enunciated, We feel
that if DOD wishes to have systems with economical fault tolerance, 't
must stimulate manufacturers to develop such systems by defining and

enforcing fault-tolerance requirements in terms of realizable
specifications,

1.3.2. RELEVANCE TO USER COMMUNITIES

The recommendations here generally make most of the mechanisms for
achieving high reliability and high availability invisible to system
users during system operation, However, user communities will have to
exhibit greater awareness of what can be achleved and what they might
require, They should clearly define their needs, and exhibit

considerable unity in presenting these needs to the vendors.
1,3.3. RELEVANCE TO THE VENDORS

In recent years several commercial vendors have undertaken serjous
erfort toward achieving fault tolerance in computer systems, primarily
in the light f aerospace needs. Severzl useful steps {orward have also
been taken in some recent commercial systems, such as _he use of
error-correcting codes and instruction retry, and the use of
hierarchical recovery strategies. It is hoped that this report will be-
helpful to all system development efforts in focusing attention on fault
tolerance as an integral part of system development, ¢specially since
much can be done at low cost. Some of the techniques herein can be
retrofitted onto existing systems, However, it is most cost-effective

to integrate fault tolerance into the overall design,

l.4. IMPLICATIONS FOR FUTURE RESEARCH AND DEVELOPMENT

While our basic finding is that the present art provides the bhasis for
reliable systems at reasonable costs, there exist limitations which, 1if

overcome, could r:sult in further significant improvements (e.g., by

7

reducing recovery time, by reducing the residual error rate, and by
further reducing the cost). In Chapter 7, we summarize some
recommendations for achieving such improvemen .s. “hese include better
techniques for error detection and fault diagnosis, novel architectures

specifically suited to fault tolerance, and significantly improved

techniques for the analysis of fault-tolerant systems.

CHAPTER 2, INTRODUCTION

As used here, the term "fault tolerance" is used broadly to mean the
ability of a system to withstand various <inds of hardware malfunctions
and mishaps. There are varying degrees of fault tolerance, including
continued correct performance for scme portion of the system, and
continued availability of some portion of the system, although possibly
with degraded capacity., There are increasingly many applications
requiring much better fault tolerance than is currently available,

Those of interest here include general-purpose systems with both batch
and interactive capahilities, as well as various special-purpose systeme
such as message switching systems, Our emphasis is on economical fault

tolerance for applications with varying real-time criticalities. The
work is also relevant to various aercspace applications that are

currently approached with massive redundancy.

We are concerned primarily with system-level techniqies for increasing

fault tolerance, rather than with techniques for improving the
reliability of various technolog.es. Thus, we focus largely on system
architecture., This chapter provides an introduction te the report.
Chapter 3 givec a guide to the techniques for fault tolerance useful at
various systém levels, and illustrates their applicability to system and
| network architecture., Included are simplex systems and multiprocessors
l (with widely vzcying degrees of parallelism, independence, and common
information access). The chapter also discusses the recle of structure
in the attainment of economical fault tolerance, Chapters 4 and 5
present some advances in architectural techniques for fault tolerance,
Chapter 4 considering memory, and Chapter 5 considering arithmetic,
logic, and control. Chapter 6 considers different application fields
(special-purpose, aerospace, communications, etc.) and presents “he
special requirements for fault tolerance in each field. From these
special requirements, appropriate techniques and architectures are
derived, and their effectiveness considered, Chapter 7 provides the

conclusions of our study, along with specific recommendations for future

research,

AL e AT S TN

Several appendices are included. Appendix 1 provides a census of fault
tolerant systems. Appendix 2 provides a detailed survey of various -

representative systems, Appendix 3 gives substantialiy greater detail
to support the memory organizations of Chapter 4. Finally, Appendix 4

presents some nev results on byte coding for arithmetic,

2.1, BASIC DEFINITIONS AND ASSUMPTIONS

In this section we present definitions of the basic terms associated
with faul:-tolerant systems. In addition, we present a few assumptions

that ‘2ve guided us in the design uspproaches considered here.

FAUL. - ERRORS AND FAILYRES

The terms "fault" and "error" are defined with respect to the interface
of a hardware or software mechanism, e.g., a component or a subsysten,

whose output is observable at least to some other mechanism. An ERROR

is a disparity tetween the actual output at such an interface and ‘he
value expected under normal operation. Examples are an incorrect result
from an arithmetic unit, an incorrect word in a memory unit, and an
incorrect word involving an inrut-output device. Errors may be SINGLE
or MULTIPLE, depending on their nature. !'nr example, an additive error
in a single bit position of an adder could affect several bit positions
(with carries), and would appear to be a multiple error in memory.
Errors may be DETECTED or UNDETECTED at a particular interface. For
example, single memory errors are detected by simple parity checking in
memory, but double errors (or quadruple eiriors, etc.,) are not. Errors
not detected at one interface may be subsequently detected at another

(higher-level) interface, e.g., via consistency checks.

k FAULT is fn internal malfunction within a mechanism. It may or may
not result jn an observable error. This depends on the data that are
actually erviered to the mechanism, whether or rot the faulty part is
redundant, and whether or not the mecanism has internal fault-tolerance

capability. Faults may be transient, interrmittent, or permanent., A

10

TRANSIENT fault is one that occuris once, leaving riue hardware in a
fault-free condition., but with poss:'ble effects on the software and on
system operation, An INTERMITTENI fault is one that recurs, with
intervening fault-free periods. A PLRMANENT fault is one that persists
steadily without interruption. In harcware a transient fault may become
intermittent, and an intermittent fault may become permanent, (The
terms “transient" and "intermittent” are often nerged.) A transient
fault might be caused, for example, by interference on a bus. &
permanent fault might be due to a shorted transistor, shorted wires, an

open connection, or a power supply fluctuation, for example,

Faults are hardware phenomena, and ar: potential sources of system
errors. Other sources of system errors also exist, e.g., mistakes in

design, or misuse. txamples of potential sources of errors are found in
Tatle 2.1, (See also Yourdon 72.)

The mechanisms of transient faults are not so well understood as, for

example, permanent faults, but several observations are relevant here,

* In many technologies, transient and intermittent faults seem to
dominate permanent faults by at least an order of magnitude. This
dominance is partly because the nonpermanent faults are harder to find,
and thus are usually not found before they can recur. If they degenerate

to permanent faults, they usually become more readily identifiable,

* A major cause of errors is poor design, e.g., in not prop:rly handling
the occurrences of exceptional cases (e.g., electrical disturbances).
Examples of such cases are undesirable circuit coupling that is data

dependent, unusual timing dependencies, and marginally designed power
suppliies,

INDEPENDENCE, An important property of multiple faults and multiple
errors is their relative INDEPENDENCE or DEPENDENCE. In the case of an
LS1 realization, a fault within a chip can result in multiple
(dependent) errors I om that chip. Faults in different chirs should be

considered as independent if adequate protection exists at ciip

11

interfaces. For conventional core memories, core and line . ‘iver faults
seem to occur independeutly of one another. Thus, f~rr each sub ystem
there is a primitive element or a set of primitive elements to which

faults can be ascribed,

The events following a fault are summarized in Figure 2.1, When a fault
is detected (e.g., via coding or duplication, or implicitly by fault
masking), a recovery strategy is invoked. liowever, as long as a fault
renains undetected, the effects of the fault may propagate. 1t may even
be compounded by further (depeandent or independent) faults or by being a
REPEATED-USE fault (Avizienis 72). In many cases favlty behavior is
ultirately detected (although in extreme cases perhaps only by

complaints following a system crash), at which point recovery is
attempted,

The possible effects of undetected errors ave quite varied. There is a
wide range of effects of faults on system behavior. There are many
forms of “crashes", gradual or sudden, impairing in varying degrees
correctness, availability, performance and security. However, it is not
necessary that all errors be detected in all situations. For example,
in a time-sharing environment most users are willing to accept
occasional errors due to hardware faults, provided either they or the
system can detect the errors, and provided adequat: recovery and file
integrity are available. Users are normally not willing to accept
frequent crashes, long outages, OT loss ¢f on-line files maintained by a
system whose intent is to eliminate the need for private backup. In

us. ge here, a FAILURE is an error whose effect is ip some sense

critical. Vurious senses of "critical” are discussed in Section 3.2.2..

RELIABILITY, CORRECTNESS, AVAILABILITY, AND FAULT TOLERANCE.

FAULT TOLERANCE is (roughly speaking) the ability of a system to

withstand faults. The significant effects under consideration here are
LOSS OF CORRECTNESS (e.g., as the result of errors in processing and in
storage -- the latter including damage to stored programs) and LOSS OF
AVAILABILITY (e.g., the loss of computing capacity or storage capacity,

12

Table 2,1
SOMNE SOURCES OF SYSTEM LERKORS

SOLRCES OF UARDWARE FAULTS

Physical bonds and loose connectors

Wear in moving parts

Material aging

Insulation breakdown

Lnvironmental effects (e.g., tenmperature, humidity,
vibrations, electrical and electromagnetic disturbances)

Human-induced bicakape

OTHER SOUKCES (HARD, SOI'T, OPERATIONAL)

Inadequate Jdesign and implementation:
Lack of checking and validation in interfaces,
especially in response to unanticipated conditions

Sensitivity to timing variations
Data dependency effects

Usage-induced hardware damage
Inadequate system security
Inadequate system verification
Acts of God (lightning, flcods, etc.)
People problems (e.g., adr ..istration, maintenance,
concurrent development, operatora, documentation)
Power sources, local and public utilities
Support functions (e.p., air conditioning)

l

FAULTIS)

NONDETECTION

DETECTION
(ERRORS)
I

1

ISOLATION

LOCATION PROPAGATION
RECONFIGURATION NONPROPAGATION

RECOVERY

/

NONCRITICAL CRITICAL
ERRORS ERRORS

FIGURE 2.1 MCDEL OF FAULTY BEHAVIOR

13

or of response time). A violation of system security may lead to loss

of both correctness #nd availability, as well as loss of other aspects.
The absence of an expected output may also lead to the loss o<
availability or correctness or both, depending on the application.
AVAILABILITY is thus a measure of having operative resources that can be
called upon to handle a task, CORRECTNESS is a measure of how
error-free a result is &t some interface of interest. The temrm
“RELIABILITY" is little used in this report in its standard meaning of
the probability of correct behavior at a specific time. The term
“RELIABLE" is used in a qualitative sense to denote correctness and/or

availability.

As a means for evaluating a given system, it is decirable to derive
quantitative measures ~f correctness and availability. The classical
measures "mean time to failure" and "mean time to repair” are not by
themselves adequate measures for most complex systems. Better measures
are probabiliries as a function of time that certain resources are

availseble and that certain data are correct,

it is readily seen that a wide range of effects is possible. For a
given fault (or combination of faults), these effects may range widely
in their fault tolerance between two extremes -- from complete fault
tolerance (with no incorrect results visible externally) to a total
collapse of the system, In the latter extreme there may be extensive
loss of correctness and availability for a protracted time during and
after the collapse, and lengthy delays until correct performance and
adequate capacity are agar available. Between these extremes are
various forms of partial collapse, with varying degrees of
recoverability. The early detection of faults is also important to
prevent potential security violations that may result from faulty
behavior, Upon detection, diagnostic procedures can be used to sssess
the scope of the error propagation, and appropriate recovery procedures
initiated.

!

There are two ways of using the concepts of availability and correctness
to design a system, First, for many applications one design goal is to

14

eliminate down-time entirely or at least to reduce it to a negligible
amount. '"Negligible" might mean seconds in the case of a telephone
utility, or minutes in the case of a time-shared facility, but in ary
event the intent is to keep the machine running despite faults, punding
maintenance. For such applications it is usually sufficient to provide
] single-fault tolerance for such critical functions as file handlers,
memory managers, and restart and recovery procedures, plus sufficient
redundant hardware so that a working system can be configured after the
occurrence of each fault., Second, for applications where the computer
is so remote as to preclude maintenarce, the important issues are:

(a) the probability that the computer has sufficient resources left

after a period of time, and (b) the probtability that correct answers are
produced for certain critical functions. The aerospace environment is
perhaps the main current example of this approach, although some
transportation systems, electric power systems, financial systems &nd
secure systems have also been beneficiaries of fault-tolerance
techniques. Jn any event it might be necessary for a computer in such

an environment to tolerate many faults.

RZDUNDANCY. An important measure of tlie effectiveness of any
fault-tolerant system is its REDUNDANCY. Let "k" be the cost of
hardware nceded in the absence of any fault-tolerant requirement, and
let "r" be the cost of extra hardware needed to achieve fault-tolerant
behavior. Then the relative redundancy "R" is R = r/(k+r) = r/n, as a
fraction of the total cost "n" of the system., (This measure is used
more or less exclusively throughout this report, rather than the
alternative approach of citing the percentage increase over a comparable
intolerant machine, e.g., 200 percent for triplication.) This
definition is consistent with the coding theory concept of redundancy,
in which k, r, and n are measured in bits. Except in relatively trivial
system configurations, it is a difficult chore to estimate the
redundancy. For a system that just employs triplication of certain
hardware blocks together with appropriate voters, the redundancy is
(2+v) / (3+v), where "v'" is the cost of the hardware voters relative to
the functional block. The evaluation of redundancy is more difficult in

a situation where, for example, a multiprocessor is used solely to

15

RO

achieve fault tolerance., That is, if fault tolerance were not a

requirement, then a conventionezl uniprocessor might suffice, Here "r"
must include numerous items, for example,

* Storage area to hold reconfiguration programs

* Extra processing power to overcome the multiprocessor penalty

* Redundant busses

* Cache memcries to overcome bus traffic delays

* Switches to a.couplish reconfigurations

* Storage areas to hold rollback status,

Similar measures are meaningful for software costs and execution time,

The priorities among the system goals may have major effects on the
resulting systems, and may call for widely differing architectures. In
our consideration of various architectures in this report, == attempt to
evaluate the redundancy required, at least with sufficient accuracy that
a gross estimate of system cost is possible. Included are both
low-redundancy design approaches for single-fault tolerance and

higher-redundancy approaches for multiple-fault tolerance.

2,2, SEVERAL ILLUSTRATIONS OF FAULTY SYSTEM BEHAVIOR

Several recent examples of failures in contemporary systems are
instructive. The first provides a perspective overview, and concerns
Multics (Saltzer A2), a system with little hardware redundancy but with
file availability attaired through software. Here outages fall into
three roughly equal categories: hardware, software, and operations. To
make matters more complicated, system development typically has gone on
concurrently with the operation of the production system, either
simultaneously on the same (two-processor) system or separately with the
two processors partitioned. The hardware problems are fairly
traditional (e.3., processor problems, memory errors, etc.), although
the Multics software is tolerant of many input-output and secondary
storage errors in terms of providing continued availability. The
software problems are due mostly to new bugs introduced by the

concurrence of the development effort, with new system versions being

16

installied as often as once a week. (This is in contrast to 05/360, in

which it appears that even the occasional new "debugged" release had
g8

some large number of bugs -- the censiant "1000" is popularly cited.)
Similarly in operations, at least half of the problems are the direct
result of the development process, arising through manual
reconfiguration (due to a hardware design not iutended for dynamic
self-reconfiguration), or through changes in operating procedure. The
remaining operational problems are typical, e,g., power outages. Thus,
about half of the problems are attributable to the coexistence of the
development effort. The pattern of roughly equal distribution cf
failures due to hardware, software, and operations is found in many
systems, The frequency of failures seems to diminish greatly if

experimentatiov :lows down and production is stressed,

The second cxample involves the outage of a No. 1 ESS (Ulrich A2) office
in ‘lashville (at night), involving total outage of a few hours, with
rartial outage for ten hours, This was preceded by accumulated errors
ir the call store combined with iradequate responses of the cperating
and maintenance staff, eventually triggered by malfunctions in both

halves of the system,

The third example concerns the Market Data System MDSl of the iew York Y
Stock Exchange, operating with dual systems. After satisfactory system
validation prior to the opening for business on Fe.. 24, 1972, system A
experienced a crash four minutee into the market session. Automatic
recovery was successfully invoked within a few seconds by switching to
system B, and correct operation continued with no loss. After off-line
maintenance of system A, the contents of drum B were copied onto drum A,
and both drums were again on-line. Unfortunately, during the time since
the morning validation, drum B had developed a faulty master record,
whizh was subsequently accessed. This caused system B to halt, Control
was automatically switched to system A, whereupon system A also halted i
on the copy of that re:ord. Manual recovery was lengthy, and the total
outage lasted 29 minutes, the worst in seven years of operation. (The
Wew York Stock Exchange has since cut over to MDS2, with three 360/50s

and a duplicated large core storage for files.)

17

The fourth example is that of a telephone system in Kuala Lumpur which
collapsed twice in two years, with significant hardware damage.
Subsequent analysis finally determined that each of these events
occurred just a few minutes before post time on the day of the annual
horse race, damaging part of an exchange serving a community noted for
its gambling spirit. Unfortunately, the operations personnel wvere all
at the track at the time, and could not notice the sudden overload in

attempted calls,

The first example illustrates problems that can be overcome by
administrative control and by further isolating a development effort
from production., It also illustrates the enormous difficulty of
discriminating among hardware-induced and software-induced errors.
Multics and CP-67 provide environments in which noncritical development
of software can be debugged on-line within a production system,
Nevertheless, final debugging of critical system software is not easy
without a separate system, including real users in a real environment.
This problem is often very difficult, as in the case of the development
for the Interface Message Processors (IMPs) in the ARPA Network.,

The second example illustrates the typical overdependence on the need
for good field engineers, In some cases high quality maintenance is
possible (e.g., in the FAA air traffic control system, where the number
of cernters is small)., In the ESS case, wiere many systems are involved,
the problem becomes critical. If a skilled engineer is required at all
times at each installation, the system is poorly engineered. If he is
required only rarely, but then urgently, it is difficult to staff all
centers with sufficiently skilled and motivated personnel, The need for
systems not requiring emergency maintenance is thus very great,
especially when many systems exist at distributed locations, each with

strict availability requirements.

The third example illustrates the fact that software is usually never
debugged an. ver finished, as demonstrated by an unanticipated

situation which haa never arisen in seven years' operation. There are

18

many other tales of systems in which long-standing hardware and/or
soft7are bugs (in this case the lack of validation during copying) were
discovered only after years of rperation. In some of these cases,
considerable reexamination of the correctness of earlier results was
required, Neverthelese, the MDSl system was quite remarkable in that it
used off-the-shelf equipment and recorded a highly successful record of
availability in its lifetime,

The fourth example illustrates the danger in taking advantage of an
apparently reasonable design assumption. In this case it was clearly
unwise to assume that traffic consisted of essentially independent

random calls.

Chapter 3 which follows discusses techniques for fault tolerance, the

effects of faulty behavior and the recovery from it.

19

CHAPTER 3, TECHNIQUES FOR FAULT TOLERANCE

[his chapter reviews basic principles and techniques in the present art
of design for fault tolerance, and demonstrates their use in realizing
economical system architectures. Section 3.1 reviews existing and
proposed design techniques for fault tolerarce (applicable in hardware
and in software). These include techniques for error detection, error

confinement, fault location, reconfiguration, and recovery.

Section 3.2 examiues the developing art of applying structure to system
design and implementation, including the role of explicit structural
levels in partitioning the hardware, the software, and the microware,

Concepts of criticality are discussed. 1The use »f time-space tradeoffs
useful in facilitating economical fault tolerance is investigated. Also

considered is the rolc of system structure in achieving rapid recovery

from faults not completely tolerated,

Section 3.3. examines the application of these techniques to the
realization of economical systems and networks, Various architectural
types are considered., Their relevance to specific applications is

discussed in Chapter 6,

Detailed techniques for memory, nnd for aritbmetic and logic, are

discussed in Chapters 4 and 5, respectively.

We agsume lhere the :se of intrinsically reliable technologies and of
sound engineering practice (e.g., good component engineering and careful
quality control). We recommend, but do not discuss in detail, the use
of techniques for system riodeling, reliability analysis, and the formal
verification of design properties, We assume the existence of good
system development practice (including the use of suitable development
tools, e.g., languages, debuggers, and test environments) and good
operating practice (e.g., avoidance of simultaneous system development
except under highly controiled circumstances). These techniques are

particularly important in the attainment of good fault tolerance.

Preceding page blank 21

We also recommend, but do not consider in detail, tecﬁniques for the

achievement of a stable physical operating environment. These include
the use of highly distributed reliable power supplies to minimize
outage. For continuous availability, the use of standby batteries and

generators is deasirable.

3.1 DESIGN TECHNIQUES FOR SAULT-TOLERANT SYSTEMS

In this section, we clascify and avzluate techniques for designing
fault-inlerant computer systems. Thie hasic techniques are summarized in
Table 3... These techniques include novel techniques discussed 1in

detail here and well-known teciiniques which are given for completeness.

The following operations are basic to the attainment of fault tolerance,

ERROR DETECTION. An error is detected when a discrepancy signal is

received by some subsystem that can take action to circumvent the error.

ERROR CONFINEMENT. Errors should be confined as much as possible within

particular interfaces until some correction mechanisms can be invoked.

FAULT LUCATION. A feult (faults) must be pinpointed to some unit.

RECONFIGURATION. A faulty unit must be removed, replaced, or worked

around,

RECOVERY. In the case of error propagation, it may be necessary to
restart some processes at some error-free state in order to perform lost
computation and restore lost files. It may also be necessary to restore

the system itself to a viable state.

Most of the techniques discussed here are fairly well known and well
understood. We give special attention to some of the cases where more

research ig required. It is clear that a system can be designed to

tolerate faults occurring independently. The challenge is to achieve a
design that is not too costly in terms of hardware, and that can
tolerate realistic faults -- including certain dependent faults.
However, the design should also be modifiable as reliability and

availability needs change,

SELECTIVE AND DYNAMIC USAGE OF FAULT-TOLERAJCE TECHNIQUES. The
techniques of Table 3.1 may be used in different ways with respect to
space and time. In space (e.p., within a memory or a processor), a
technique may be used UNIFORMLY (one approach throughout) or SELECTIVELY
(applied only in certain places). In time, it may be used STATICALLY or
DYNAMICALLY. STATIC usage concerns actions with no changes over time in
the operating environment or in the flow of control (e.g., fault-masking
via coding, fixed replication with voting). DYNAMIC usage concerns
fundamental variations in the control (e.g., in the sequencing or in the
configuration), such as in detection followed by diagnosis, rollback,
and replacement, or as in the use of replication configured only on
demand of the software. As seen below, there are significant advantages
(e.g., cost savings) that result from selective and dynamic usage.

Examples of these modes of usage are given irn Section 3.2,

Numerous specific aspects of each of these five operations are discussed
below. Far the present discussion, however, we wish to emphasize the

following points:

* In relatively trivial fault-tolerant systems, not all of the five
operations are distinctly identifiable., In a system that employs just
triplication with voting, for example, the error confinement process

embodies the other four operations.

* These operations can be carried out by varying combinations of
hardware, software, and microcode. Fault tolerance, therefoce, is a
distributed function which may be implemented at varinus romputational

levels,

23

Table 3.1,
SUMMARY OF MAJOIt DESIGN TECHNIQUES FOR FAULT TOLERANCE

DETECTION

Coding: error detection

Double-rail encoding for logic

Duplication in space or time and comparison (hard o soft),

Consistency checks (e.g., algorithmic checks, read after write, back
substitution, partial Floyd assertions)

Probabilistic detection

Deferred detecticn

Detection as a byproduct of diagnosis, periodic or otherwise

PREVENTION OF ERROR PROPAGATION, AND LOCAL CORRECTION

Delaying the results until validated

Coding: error correction (Hamming, burst, byte)

Replication with voting

Isolation, e.g., via powering off, reconfiguration and fail-safe
switching, fail-safe structural design (esp. involving protection
and interrupts), use of read-only memories, asynchronous decoupling
clock independence

LOCATION OF FAULTS OR ERRORS

Coding: error location (also implicit in error correction)
Triplication (implicitly error locating)
Diagnosis, possibly with reconfiguration for testing

RECONFIGURATION AROVND FAULTY UNITS

Removal (deconfiguration) with degradation

Reconfiguration around a fault coatextually (without its elimination)
Replacement by switching of standby spares

Replacement physically

RECOVERY

Single-instruction retry with buffered operands

Rollback to a program checkpoint, with manual or automatic
checkpointing

Audit trails to facilitate subsequent recovery

Interpretive recovery (e.g., unwinding, salvaging, selective file
retrieval)

Sootstrap recovery from fixed point (with side effects)

|

24

ey

* In effectively using the fault-tolerarze techniques selectively and

o

dynamically, there are fairly well-defined trade-offs omong the time
required to carry out one of these operations, che hardware redundancy
required, and the probability of successfully carrying out the
operation. For examrle, deferred detection and/or correction of

3 arbitrary logic may produce significant cost savings.
3.1.1, ERROR DETECTION

One of the main problems in achieving low-cost fault tolerance is the
problem of achieving economical error detection, Aside from
well-structured situations such as core memories, parallel adders, tape
memories and bus transfers, error detection with less than 50%

redundancy (duplication) has remained unsolved.

When a system fails, its failuwx= is often obvious to a human. A
terminal may appear dead (e.g., because of a system crash or a loop in
his program), or his results ray appear to be wrong. Internally, nany
harmful errors are similarly vast, e.g., involving alteration in the
flow of control. The reasons for wide discrepancies between expected

results and actual results include the following:

% A faulty logic circuit is sometimes used repeatedly in the absence of
interna! error detection, thus increasing the chance of a readily

discernible error.

* Many simple hardware faults (permanent or transient) have a drastic
affect on program control, 2.8., directing control to an incorrect
instruction or addressing the wrong memory location, Other faults may
not affect control, Also, many corputations do not allow simple
consistency checks. Thus more general and problem-independent error ;

detection mechanisms are essential. 1

In spite of the ease of some error detection to a human, error detection

can be a costly operation when carried out automatically. An

B

. arbitrarily structured processor using known error detection techniques

25

seems to require at least 5071 redundancy to permit immediate detection

of all possible processor errors. Fortunately, this cost does not carry
over to total s stem cost for error detection, for various reasons. For
example, the processor may be a small part of the total system; much
more palatable detection =chemes exist for memories, channels, etc. ; ’
Similarly, there is no need to detect all possible errors, and also
immediate error detection is not needed. The basic methods are outlined
below, leaving to later sections the detailed discussions and

evaluations.

It is clear that errors can be detected with any desired degree of
completeness, and vich any desired degree of immediacy. The challenge

is to achieve such detection with low radundancy.

3.1.1.1 ERROR-DETECTING CODES

Error-detecting codes make it possible to detect the first occurrence of
an error at some particular interface, e.g., memory, channels, an
arithmetic logic unit, a processor, or the entire computer. Section

3.1.1.3 below discusses the possibilities ot deferred error detectiom.

Codes with a single parity bit for each memory word are widely used for
error detection in memory. Such codes, with negligible redundancy, are
useful for detecting single core errors or sense amplifier failures, or
_any channel failure that results in a single bit being in error. T-is
concept extends to the detection of a fault within an arithmetic unit.
For example, if an error is additively incorrect by a power of two, a
;eaidue code is useful, e.g., where the redurdant digits represent the

residue of the word uodulo 3.

This approach also generalizes to the case where a fault produces an

error in a single b-bit byte of memory or a channel, or in a b-bit byte

of an arithmetic processor. In memory, b bits of redundancy suffice to

detect errors in a single byte for words of arbitrary lemgth., In

arithmetic, similar redundancy is required (see section 5.1). The :
arithmetic codes may also be used in memory. The byte error situation

26

is a natural consequence of a byte-sliced memory or arithmetic unit,

wherein each byte is realized as a single LSI chip.

Unfortunately, codes for detecting errors in a single bit or byte are
not effectively extendable to arbitrary logic. (An exception is a
function realized exclusively with linear logic.,) One can, in
principle, design a logic unit such that at every interface the vector
of signals is an error-detecting code word in the absence of a fault, or
not a code word in the presence of a fault, Given n independently
realized output functions, the simplest way to do this is to provide a
circuit with an output which is functionally the modulo two sum (parity
check) of the n outputs (Lofgren 5). Thus faults producing an odd
number of errors are detectable. However, this simple approach is not

practical for the following reasons.

* For most practical functions, the semi-empirical results of Pierce
(65) indicate that the cost of realizing the redundant function output
may approach the combined cost of reaiizing the functions themselves.
Thus, on a component count basis, this approach may be as bad as

duplication.

* For nonindependent realizations of the n outputs, a single gate fault
is likely to corrupt more than one output (e.g., an even number of
outputs), especially in an LSI environment. Recent work by Ko (73)
suggests possible circuit augmentations that ensure the corruption of
only an odd number of outputs. 7This work indicates that some functions
exist for which the total component count is less than that of
duplication, but these functions tend to be exceptional. bLesides, the

relative saving seems to be insignificant in practice.

* Favorable results seem to rely upon the model of a single faulty gate
with just one stuck-at-fault, which is, Jf course, not a reasonable

assumption for MSI/LSI circuits.

* Finally, this approach is intended for multiple-output functions with

the same set of inputs. For a single output, it reduces to duplication.

27

In general the nonapplicability of coding techniques for logic tends to
reinforce the early pessimistic results of Eltas (58) derived for a
serial logic unit, showing the necessity of dup}}cation for error
detection in a single AND gate., The only exceptions to the apparent 50%
redundancy are specialized functions. For example, a single gate in
error in a tree-realized memory decoder results in either the selection
of no word at ali, or the selection of multiple words, If it is assumed
that the accessed words are ANDed together (or ORed together) in
corresponding bit positions, then a comparatively economical code can be
used for error detection. Each n-bit word is encoded so that half of
the bits positions contain a "1" and half contain a "0", e.g., the "n/2
out of n" codes. The redundancy is quite low (e.g., about 10% for
32-bit words, less for longer words). The encoding and decoding cost is
small relative to the total memory cost, although it is higher than that
for single error correction (Anderson and Metze 73). This code can
detect arbitrarily many multiple errors it they are all of the same type
(e.g., either ali 0 to 1, or a1 1 to 0).

One other coding scheme has been suggested for possible use in the PRIME
-sv2*s (Borgerson A2), to detect address decoder failures or memory
bit-liae failures. If a single error occurs in the address decoder,
then a word will be accessed whose address is addirively incorrect by
soke power of two. 3y noting the similarity with the effect of
arithmetic errors, it is clear that this type of address decoder fault
can be handled by appending to each memory word the modulo 3 residue of
the address. Thus, this scheme detects any single error in memory or n

the address decoder.
3.1.1.2. DUPLICATION

The essence of duplication is simple and straightforward. Results are
independently computed twice, and the results compared. If the results
are binary-valued, a disagreement indicates that one of the computations
1s in error. (If the results are multiple-valued, both may be in
error.) The identitication of the erroneous computation is deferred to

28

a more elaborate diagnosis. (A coding purist would contend that
duplication really involves a trivial error detecting code. howcver,
since there are interesting engineering details concerning the
application of duplication'at var‘ous system levels, it is worthwhile to

discuss this apart from any codia; theory implicatioms.)

Although duplication is in principle applicable to any subsystem, it has
primary application where less costly techniques are inadequate. That
is, duplication is used for error detection where better techniques do
not worvk. Generally, duplication may be used in conjunction with
arbitrary logic in processors, I/0 control units, special control
circuits, nnd some memory functions. There is clearly little need to
use duplication in conjunction with storage in main memory, except

possibly in certain critical applications.

Duplication may be employed in SPACE (using two identical units) or in
TIME. In TIME DUPLICATION, only one unit is used to perform the same
computation twice (but perhaps internally reconfigured or shifted)
before the computation is accepted as error tree. Time duplication is
less credible in that it depends on the equipmeat being exercised in
different modes in order that the two computaticns do not agree bacause
of identical or compensating errors. Variations and combinations of
space and time duplication are also known., For e:ample, two supposedly
complementary versions of a result may be generated. For processors
with an iterative structure, output data may be computed twice, but with

permuted assignment over the identical modules,

The most obvious and common practice of duplication is to make a
comparison on every machine cycle., Ca the other hand, if the comparison
can be deferred, there may be an advantage to performing it in software,
However, a software implementation requires the careful isolation of
uncompared results to prevent error propagation, A software
implementation also requires separate working memories for the pair of
processors to hold intermediate (i.e., uncompared) results. Most fault
tolerant systems employ hardware duplication to avoid the error

propagation problem, but it is our opinion that careful attention to

29

recovery issues can lead to a feasible software implementation, at a

substantial saving in hardware cost,

Another important engineering detail is the LEVEL OF PARTITIONING. The
1ssue here is the ideutiflcation of the interfaces at which comparisons
are to be made., Frr exsmple, the comparison interfaces can feasibly be
at the system level (e.g., comparing the results of subroutines or
procedure calls on exit), at the processor level (e.g., comparing two
processors nominally executing identical instructions), and at the
subprocessor level (e.g., comparing the outputs of byte slices of an

arithmetic unit).

In most fault-tolerant systems, the error detection interfaces define
the units to be removed in combatting faults. That is, if the
arithmetic unit is a replaceable unit, then there usually exists some

mechanism for detecting possible errors in the signals emerging from
that unit. In ary event, systems proposed for high-reliability,
long-life applications typically employ a partitioning for error
detection at a low system level. On the other hand, for most
applications of concern here, detection at the processor level or memory

unit level probably suffices. The roles of various levels in a
fault-tolerant system are discussed in more detail in Section 3.2.

3.1.1.3., DEFERRED DETECTION

It is often not essential to detect a fault or an error as soon as it
occurs., If the detection of a fauli or error can be DEFERRED, it is
possible to reduce the redundancy requirement for detection. Deferred
detection may be performed COMPLETELY (deterministically) subsequent to
the occurrence of a fault, e.g., on exit from a computational block., It
may also be performed PROBABILISTICALLY, if over some period of time,
there is a probability p that the error is detectable (e.g., in terms of
a syndrome or other discrepancy). Three application areas of deferred

detection are relevant.

30

NON UNIFORM DETECTION., In many fault tolerant systems, error detection
facilities are applied uniformly to all processes. In muny cases,

errors can be allowed to occur without serious consequences, i.e., the

errors are non-critical. We see a possibility for some economies in

fault-tolerant equipment by applyinc error detection on tne basis of

criticality.

INCIDENTAL DETECTION, In some cases it is simply hoped that sooner or
later (hopefully sooner) errors will be detectable without the use of

much extra redundancy. This may be acceptable in low-cost units, or in

cases in which the input state sequence is highly predictable,

UNFLEXED DETECTION. An output which changes only rarely from its
nominal state needs special detection., A pertinent example here is a
fault in the decoder for an error-detecting code that results in a
constant "no-error' condition being emitted, even in the presence of
errors, Similarly, certain system functions that are executed
extremely rarely also require special detection. A latent fault in such
a rarely used function could remain undetected and eventually result in
a system failure. This problem is called the UNFLEXED=FUNCTION
DETECTION problem, In general faults in such functions need not be
detected as soon as they occur, e.g., because another hardware fault
must occur before this function is required. Hence the detection of

such faults can be deferred, i.e., carried out probabilistically,

An elegant theory has been developed to handle the third area (e,p.,
Carter et al. 72a, Anderson and Metze 72). For example, a conventional
error-detection circuit might emit a "0" if there is no error, and a "1"
if there is an error. Obviously, any fault that leads to a permanent
emission of '"0" will remain undetected. In order to alleviate this
difficulty, two or inore output lines are provided for the decoder. In
the case of two output lines, a "0" might correspond to 00 or 11, and a
“1" to 01 or 10, The decoder is designed such that when there is no

error, the decoder on its two output lines emits 00 and 11 with equal

probability., The decoder is designed such that any single stuck-at

fault within it causes the output 0l or 10 for at least some code word

being presented at the input, This latter property has led this type of
structure being called SELF-TESTING., The important positive conclusions

from this work are the following.

* There exist fault-detection techniques that require less than
duplication in inplerientation, although for incomplete detection., For
tlie case of the decoder for a single-error correcting (Hamming) code,

the redundancy is about 25% (Carter et al., 70a).

* There is an ezlternative to periodic diagnosis in detecting faults in

unflexed circuits.

The nepative conclusions are these:

* The redundancy requirements are low only for well-structured
functions, e.g., decoders for error-correcting codes. For other

unflexed circuits, duplication ‘nay be as good.

* The unflexed circuits represent a low proportion of total system cost.

Thus, the incremewncal cost of using replication may be negligible.

* The fault model for the circuits is still concerned with single
stuck-at faults. For more realistic faults, it is likely that
duplication is close to optimal,

* Self-testing circuits appear to be a good solution for certain
functions associated with the unflexed function problem, However, it is
generally not clear that all such unflexed functions are attractive
candidates for self-testing logic, when compared with periodic diagnosis

and brute-force replication,
3.1.1.4 ERROR DETECTION VIA DIAGNOSIS
An approach to error detecticn that is potentially quite efficient

involves periodic diagnosis of the fault-prone system blocks., A
CHECKING SEQUENCE is imposed on the inputs of the blocks in question

32

such that if any fault is present an output value will eventually emexge

Ehat differs from the expected value, In order for the diagnosis

approach to L~ effective, as compared with say duplication, the

following features must be given consideration:

FAULT COVERAGE., Clearly the checking sequence must be capable of
revealing an extremely large fraction of the likely fault patterns,

Most research in fault diagnosis has been concerned with networks in
éhich faults are manifested as a single pate being stuck-at-zero (5A0)
or stuck-at-one (SAl). In an LSI implementation the single stuck-at
as%umption is not valid., An imperfection in an LSl chip tends to
propagate outward from some source point, Thus it is likely that gates
within a region will be suspect., It is likely that a checking sequence
that handles all SAO and SAl faults will handle a large class of other
fault patterns, although there is little formal work to substantiate
this conjecture. With regard to non-formal work in this area computer
manufacturers have developed checking sequences to help detect failures
within their CPUs. Typically, these sequences are generated by ad hoc
techniques and reveal only about Y0 percent of the likely fault
patterns. The conclusion here is that at present the fault coverage 1s
not adequate for the error detection function. However, we feel that if
the research effort is devoted to realistic fault models, and is coupled

with simulation techniques this situation could be alleviated.

PERIODICITY OF CHECKING. The checking sequence must be applied often
enough so that the probability of two faults occurring during the
Intervening period is low., Also since the faulty equipment might be
unavailable during the inter diagnosing period this period must be
shorter than the maximum tolerable unavailable time. For all but the
critical real-time applicacions neither of these constraints is
limiting, It is unlikely that a diagnosis of any system block needs to

be carried out with a period shorter than 10-100 seconds.

DIAGNOSIS OVERHEAD. The important overhead measures of diagnosis are
the amount of cpu effort devoted to diagnosis and the amount of high

speed memory needed to store the checking sequences. Concerning the cpu

33

overhead the typical length of a checking sequence for arbitrary logic
is one-tenth the number of gates. (This is our experience for the
single stuck at model, but fcr more realistic models the length should
not increase by more than 2 factor of two or three.) Thus a 10,000 gate
processor can be checked with a sequence of length 1,000, Assuming 2
per test the total diagnosing time is 2 msec. The cpu overhead is thus
negligible for an inter checking period of 10 seconds. For this inter
checking period it is likely that the test itself can be stored on disk
thus precluding the need for high speed storage.

ERROR CONFINEMENT DURING INTER CHECKING PERIOD. All computed results
are suspect until the processor is diagnosed, Thus it is necessary to
prevent possibly faulty results from propaga*.ng. In the PRIME system,

which utilizes diagnosis as a primary error detection mechanism errcr
propagation is not a problem because of intcr processor isolation. In

other systems the error confinement techniques of Sect. 3.1.2 must be

considered.

FALLIBILITY OF DIAGNOSING SYSTEM. A paramount problem in diagnosis
relates to the problem of faulty behavior in the system carrying out the
diagnosis, In a system consisting of a single processor the best
approach involves bootstrapping. Here a small system, assumed to be
infallible carries out a diagnosis to verify the integrity of a larger
system, This larger system then acts to produce a still larger verified
system and so on. The initial small system can be made error detecting
by duplication techniques., In a multiprocessor the commonly conceived
approach is to have one processor diagnose another., If the diagnosing
processor reports an error it is not decidable which processor is
farity., (If no error is reported it can be assumed that the diagnosed
Jrocessor is operative, provided no more than one processor is assumed
to be faulty,) If three or more processors are available, various
strategies can be invoked to resolve the ambiguity.

(Preparata et al, 69) have presented one such strategy based upon a

circular configuration of diagnosing processors.

In conclusion periodic diagnosis is potentially the most efficient

approach toward error detection. The only foreseeable limitation is the
inapplicability to transient faults. For permanent faults additional
work is needed to improve the fault coverage obtainable with checking
sequences, particularly related to a fault nodel that is realistic in an

LSI environment,
3.1.2. ERROR CORRECTION

The state of the art of coding for error correction and efficient (fast,
cheap) decoding is well developed (e.g., Peterson and Weldon 72,
Berlekamp 68). Error-correcting codes exist for use in memory and in
arithmetic, for various types of errors. Such types include correction
of single errors, independent multiple errors, and correlated errors
(e.g., arbitrary errors within a byte, or confined to a burst of
consecutive digits). Memory and arithmetic are covered in Sections 4,1
and 5.1, respectively. For error correction in processors and arbitrary
logic, triplication and voting is the traditional technique. Many of
the comments in Section 3.l1.1 for error detection are also extendable to

error correction.
3.1.3. RECONFIGURATION AND RECOVERY

Table 3.] includes several items on reconfiguration and recovery which
are fairly self-explanatory. As seen in Section 3.2, dynamically
alterable strategies are needed, including instruction retry and
recovery from a parity errcr in memory (depending on what word was in ?
error, and what it was being used for). Reconfiguration of memory is
discussed in detail in Section 4.2 and in Appendix 3. Recovery is
discussed in Section 3.2.5.

35

3.2, STRUCTURED DESIGNS FOR FAULT TOLERANCE

Most computer system designs seem to evolve in an ad hoc fashion,
reflecting both the structure of the organization(s) to which the
designers belong (Conway's Law) and the lack of a holistic design view.
Here we examine the role of structure in system design, and how it can
facilitate the effective use of the above techniques for fault
tolerance, (This section i8 inspired by Simon 62, Dijkstra 65, 68, 69,
and Neumann 69, 72, 73, Also relevant is the work of Horning and
Randell 73, and Parnas 72,) Well-conceived system structure can
contribute significantly to the design, implementation, debugging,
verification, testing, diagnosis, maintenance and operation of
fault-tolerant systems. As employed here, such structure permits a wide
range of techniques to be applied selectively and/or dynamically, when
and where they are most effective in terms of cost and reliability. Low
cost can be achieved by taking advantage of nonuniform constraints and
various time-space tradeoffs. This is in contrast to many existing
systems which employ (statically) primarily low-level techniques for
fault tolerance. A well chosen system compartmentalization helps limit
error propagation, improves autonomous maintenance, and enables the
persistence of system security in spite of faults; it also facilitates
long-term evolutionary growth of the system, responsive to new

applications needs, new hardware, and new software,

Hierarchical aspects of such structure permit a hierarchical recovery
strategy directly reflecting the structure of the design and the needs
for recovery. Such a strategy can be relatively efficient, in that it’
can be dynamically tailored to the actual fault(s). Recovery varies
widely in complexity, depending on the nature of the faulty behavior,
It moy be quite simple, as in the case of a detectable transient error
in arithmetic (with buffered instruction retry) or in a memory with
error-correcting coding, or it may be quite complicated, e.g., after a
total collapse of the system., In general, the recovery strategy should
assure recovery of the most critical parts of the svstem first,

Structured recovery strategies are found to some extent in the Plessey
System 250 (Williams A2) and in Multics (Saltzer A2).

36

The system design should integrate the needs for fault tolerance and for

effective recovery with the other system needs of security, efficiency,

capability, etc, (the PRINCIPLE OF GLOBAL DESIGN), Successful

integration is greatly facilitated by a highly structured design that

deals with architectural concepts irrespective of whether they are

implemented in hardware, in microprogram, or in software, and which {‘
evolves in a roughly "top-down" or goal-driven fashion. Since software 3
capability of one generation is frequently found in the hardware of the

next generation, this view is highly appropriate.
3.2,1, STRUCTURAL LEVELS OF INVISIBILITY

The structure of a system can have considerable impact on che fault
tolerance of the system, as well as on the system devel- ment as a

whole. Although this subsection considers the role of such structure in
general, it provides a basis for fault tolerance throughout this report,
Of interest in this subsection are the interrelations that form the
structure among the various system mechanisms., At the interface to each
system mechanism, various implementation details may be hidden from the
invocation of that interface, When an interface tuv a mechanism makes
such implementation details invisible, that mechanism is said to be a
virtual mechanisu (see below). The interface provides a level of

invisibility between its invocation and its implementation.

There are many different structural views of the mechanisms within a
computing system, both system-oriented and user-oriented. The
techniques for fault tolerance may be applied at various levels with
respect to any of several such views, Consider first several
system-oriented views, With respect to hardware dependence, levels of
structure vary from components to subunits to functional units to a raw
machine to a microprogrammed machine through various levels of software
support to a network of systems, Corresponding levels of language
capability (above the circuitry levels) range from microprogram
instructions to machine language instructions to macro-assembly and

compiler statements through various levels of block structure,

37

P

-

subroutine, and operating system calls, to system commands and network
commanis. A command itself may be substructured, with various levels of
subrequests and requests within it, In units of time, levels of
responsiveness range over a wide spectrum of response requirements, with
different mechanisms requiring responses of picoseconds to nanoseconds
to microseconds to m{lliseconds (e.g., for peripherals) to seconds
(e.g., for human .i>'eraction), e.., Within a syetcm, different sets of
levels exist with respect to processors, memories, input-output,
cuicrol, and intercommunication, In memories, for example, such levels
range from storage for a bit of information to storage for (encoded)
representations of words to blocks to memory modules to a hierarchy of
diverse typvs of memdries, e.g., managed (in hardware and software) as a
single level of mewory and organized into a directory structure (e.g.,
as directories of directories of files)., 1In communication, levels range
from intraprocessor communication to interprocessor, intersystem, and
even internetwork ccmmunication., Other levels that are more or less
orthogonal to the above levels are also distinguishable, e.g., the
levels of reliability and protection discussed in Section 3.2.2.

A system in execution is controlled in hardware and in software by 1its
OPERATING SYSTEM, and may be viewed overall as a collection of
PROCESSES. Each process is a single locus of sequential control,
relative to some address space. A process may invoke or creatc other
processes, but in itself may not have multiple simultaneous "thre~ds" of
execution. Thus 2 process is the basic unit of asynchronous processing.
Each process may be tiiought of as using a VIRTUAL PROCESSOR, 1i.,e., a
processor exclusive to that process. The address space of each process
is its VIRTUAL MEMORY, with just that information (stored in a portion
of actual memory) which is directly accessible to the process. The
virtual wemory provides a (simplified) interface to the real memory, and
makes the management of actual memory largely invisible. The operating
system may be thought of as multiplexing the various processes onto the
actual system, and multiplexing the corresponding virtual memories onto
the apparent single level of memory. At this level the mechanisms of
MULTIPROGRAMMING (i.e., the concurrent use of main memory by several
processes) are invisible. The operating system may itself be executing

38

in a MULTIPROCESSING mode, i.e.,, if it is able to run on multiple
processors simultaneously. Some of the operating system processes may
be allocated dynamically to special-purpose processors, while others may

be permanently dedicated to specific hardware,

Each process also has facilities for input-output. Here levels range
from data representations on devices and on media to data structures
(e.g., bytes, characters, records, files) to various forms of VIRTUAL
INPUT=-OUTPIT (with invisibility of many details of device dependence, of
multiprocessing and of multiprogramming, e.g., via virtual devices with
invisible formatting and symbolic device attachments). The system is

responsible for multiplexing tae actual input-output devices and media,

There are various levels of prccess structure, from protection domains
vithin processes, to processes within a system, to intrasystem and
intersystem process families. From the view of a single "user'" (whether
he is a casual turn-key user, a systems program developer, or an
environment being controlled by or controlling the computer system), he
may see a single process. le may also wish to distribute a job among
several asynchronous processes within a FAMILY OF PROCESSES. In the
presence of multiple processors, this leads to multiprocessing at the
user level. liis process family makes many process mechanisms invisible.
Each ustr has his own view of the actual system, which may be thought of
as his VIRTUAL SYSTEM. (In some systems the process family view and the
virtual system view may be identical,) Apart from inter-user
communication and file sharin;, a virtual system appears to each user as
his own private system, and may be different (in part) from the virtual
system of other users. A user may wish to invoke several virtual
systems, either on one actual system or on several systems in a network,
The simultaneous use by one user of different systems within a network
leads to the concept of a VIRTUAL NETWORK, in which many details of

system multiplexing are invisible,

Another user view arises with binding, BINDING refers to the act of
reducing the indefiniteness of an incompletely specified entity (e.g, by
assigning it a resource). Levels of binding specificity typically range

39

from program specification to program generation to compilation to
object code generation to lirnkirg, loading, and execution, Linking and
loading may each be partially static (in advance of execution) and
partially dynamic (being invoked during execution with respect to other
executing programs). At each successive (lower) level of binding, more
machine-depender.: detail is added to a program or collection of
programs. This Jetail is normally not visible to the higher levels of
binding.

A conceptually simple but highly powerful linear structuring of system
levels is discussed by Dijkstra (68,69). Internal details of
implementation at a given level are normally made invisible to higher
levels, Functional capability at that level is devendent oa the
capability of the next lower level, and is precisely that provided by
the lower-level interface languages. (That functional capability may in
fact vepresent a loss of power compared vwith the next lower lev:l,) The
levels are referred to as LEVELS OF INVISIBILITY. Successively higher
levels correspond to larger units of time. (In the sense that an
interface creates a higher-level concept, it provides a LEVEL OF
ABSTRACTION,)

More generally, a VIRTUAL mechanism is one that provides a layer of
invisibility between the interface to that mechanism and the details
internal to the implementation of the mechanism, independent of the
structure among the various mechanisms, It may in some cases also
reduce the power of that mech:snism available at the given intexface, but
can in no way increase it, (Note that even a gate appears as a virtual
mechanism to a logic circuit using it,) This does not mean that all
details of the use of such a mechanism are invisible., In fact,
efficiency considerations may dictate that some controls on the use of
the mechanism must be accessible at the virtual interface (although not
normally required). Similarly, it may sometimes be desirable (e.g., for
efficiency) to use directly a mechanism at a more detailed level, rather
than passing through many levels of interfaces. In some sense, most
mechanisms can be viewed as virtual mechanisms, However, the PRINCIPLE
OF LEAST VISIBILITY dictates that implement:.fon detail should be

40

visible only where necessary., It is desirable that this principle have

a strong influence on the structure of the system,

For any given set of virtual mechanisms, there is an interconnection
structure among them by virtue of the use of their interfaces.
Dijkstra's linear structuring of levels is not always realistic. In a
complex yystem, the partial ordering among virtual mechanisms may be an
arbitary directed graph, rather than a linear ordering. WNevertheless,
there may be local regions in which it is linear or tree structured., In
general, it is highly desirable to have a tree structure if not a linear
structure. In some cases it may also be desirable to lump a collection
of mechanisms into linear levels (e.g., for descriptive purposes or for
implementation simplicity), even though these mechanisms are rot

properly linear, However, the extremes of excessively simpl: structure
and excessively compartmentalized structure should both be avoided., It

is extremely helpful to keep these types of levels conceptually distinct
while designing a system, even if they are blurred in the resulting

implementation, e.g., to achieve adequate performance,

3.2.2, LEVELS OF CRITICALITY

Given a structure among mechanisms dictated by the principle of least
visibility, additional constraints arise in terms of implicit or
explicit levels of criticality, e.g., sensitivity to fault-induced
errors. The lowest (or innermost) levels (of highest sensitivity) are
often referred to as the "hard-core" or the "kernel" of a system, It is
worth noting, however, that usage and definitions of such terms are far
from standard, Refer, for example, tc Appendix 2. The term "hard-core"
is used in at least three nonequivalent but overlapping fault-tolerance
senses, (a) survival, (b) coverage, and (c) exposure. Consider
respective illustrations cf these three senses: (a) "that which must
survive" (Wensley A2). or "that whose malfunction could crash the

system" (Ulrich A2, and implicitly Saltzer A2); (b), 'that which is

covered by redundancy” (Avizienis A2); and (c), "that hardware which is
irredundant” (Hopkins A2), or "that hardware (redundamnt or not) whose
failure will produce undetected errors” (Carter A2). Kote that (b) and

41

il L s

(c) are roughly complementary views, Also note the view iLa PRIME
(Borgerson A2) that there is NO hard-core (undefined), because the

supervisor can float from one processor to another. An earlier usage is

"shat which must function correct.ly"(Forbes et al. 65).

A functional sense of criticality is also found, For example, the

"hard-core" paging software in a paged envircnment usually contains some

programs (e.g., certain buffers and programs supporting paging itself)
which themselves cannot be paged out, There is also software whose

frequency of use dictates that it should remain in main memory for

efficiency reasons.

In addition wmany levels of criticality with respect to system security

are relevant here, including the integrity of the system itself and of

resident files. The kernel for security may be thought of as that part

of the system whose correct functioning is most critical to the

uncompromised security of the system, A related concept is that of a

SECURI.Y PERIMETER, i.e., a set of functions (programs, processes, etc.)

within which system security may in some way be compromised, either by

misuse or by malfunction, The security perimeter in the absence of

faults seems to be significantly larger than is generally recogni red.

In the presence of faults, it may be very large unless the system is

carefully partitioned. Guarcntees of system security are desirable, at

least in a probabilistic sense, both in the absence of faults (but in

the presence of possible misuse) and in the presence of faults,

Unfortunately, the kernels for reliability, for availability, end for

security are not conceptually identical, even though most systems tend

to lump them together.

3.2.3. SYSTEM STRUCTURE FOR FAULT TOLERANCE

Structured system design and structured implementation are developing

arts that have immediate use in the design and implementation of systems
with economical fault tolerance. Although further work is needed to
make such stru:ture an integral part of the design, rather than just

good practice, the benefits are already considersble, Recent efforts in

42

this direction are found in structuring software implementations, e.g.,

structured programming (e.g., Dijkstra 69),

The notions of invisibility and criticality impose various constraints
on the structure among system mechanisms. For the purpose of designing
and implement’.g fault-tolerant systems, the most critical mechanisus
should be carefully identified, and separated from similar but less
critical mechanisms. however, the various views of "criticality" should
be integrated. As noted above, the interactions among correctness,
availability, and security are particularly strong., There are also
strong interactions with critical mechanisms for reconfiguration,
recovery, and restart following detected faults (or detected security
violations), for interrupt handling and abnormal condition handling, and

for on-1line interactive maintenance. 7These critical mechanisms also cut
across hardware-software boundaries. Table 3.2 provides an illustration

of such critical elements affecting fault tolerance. The multiprocessor
architecture of Section 3.3.3 illustrates an economical system using

selective and dynamic redundancy for these elements.

As a general rule, the mechanisms of greatest criticality themselves
should be well structured and small enough to verify and control. This
enhances selective and dynamic usage of various fault-tolerance
techniques, when and where they are most effective, whether implemented
in hardware or in software. It also facilitates controlling system
operation and recovery, and can further enhance the verification of
correctnes< of the system design and its implementation, especially with
respect to fault tolerance and security. In this way it is also possible
to anticipate the effect of faults on system behavior (including secu-
rity) and to tailor the design and the recovery strategy to the possible
faults, their likelihoods, and their possible effects. Such design is
particularly important if security is to be maintained despite faults,

Structure among virtual interfices eaters naturally into system design
as follows, as a result of the above considerations., It is desirable
that this design be driven more or less from the top down, although it

is usually necessary to iterate up and down in order to assure that the

43

Table 3.2
CRITICAL ELEMENTS FOR FAULT TOLERANCE

MEMORY MANAGEMENT

Memory maps, e.g., page tables, device maps, associative memcry maps
Memory contents, including critical data, contents of some registers,

input-output buffers, channel control words and interrunt cells
Memory allocation mechanisms

Memory bootstrap recovery and reconfiguration

PROCESSOR MANAGEMENT

Memory fetches and address formation, including page relocation, and
generation and validation of protection information

Receipt and interpretation of interrupts

Critical microcode, including interpretation and protection

Process creation, dispatching, and deletion

Interprocessor communication

Some exception handling

Pricitive reconfiguration control, configuration sensing and setting

Primitive accounting and measurement facilities

INPUT-OUTPUT MANAGEMENT

Channel control, especially of shared channels
Certain media contents
Some exception handling

14

design converges to a suiteble system,

(a) Various system partitions are established explicitly in the design,
identifying virtual mechanisms and levels of criticality, responsive to
the various overall system goals of correctness, availability, security,
functional capability, capacity, performance, efficiency, etc.

Effective modularization involves careful control of communication among
mechanisms to help limit error propagation. Useful mechanisms are known
for this purpose, both to avoid conflicts and to permit sharing of
programs, data and control (e.g., Dijkstra 68, Spier and Organick 69,
Holt 72, Baer 73). Except for deadlock avoidance, such mechanisms are

conceptually clear-cut,

(b) Associated with these partitions are subpartitions for selective
use of the techniques of fault tolerance, as well as possible
configurations of these techniques and possible modes of dynamic
reconfiguration of these techniques within and among the partitions,
Successive levels of binding noted above may be useful points at which

to bind fault-tolerance techniques as well (dynamically or statically).

(c) Analysis, simulation, verification, and operating experience should
be used to study the relative effectiveness of these techniques under
varying demands and of reliable algorithms for deciding how and when to
switch among configurations, The suitability of the choice of
partitions should also be evaluated. The exact boundaries among
hardware, microprogram, and software should be established as late in
the design process as possible, Mechanisms with high duty cycles should

very likely appear in hardware or microprogram.

The applicability of relevant techniques for fault tolerance to various
virtual mechanisms is illustrated by Table 3.,3. The first column of the
table identifies some illustrative interfaces., (liigher and less
machine-dependent levels are toward the bottom of the table.) The
second column gives examples of concepts invisible at (i.e., outside of)
each interface. The third column give§ examples of the techniques of

Section 3.1. These techniques can enhance fault tolerance within each

45

INTERFACES
(sxamplss)

Tshls 3,3

EXAMPLES OF TECHNiQUES FOR FAULT TOLERANCE
APPLICABLE TO A H1ERARCHY OF INTERFACES

INVISIBLE CONCEPTS
(examples)

APPLICABLE FAULT-TOLERANCE TECHNIQUES
(sxamplss)

PHYSICAL VIEW (MARDWARL):

Componente,
chips

Subunite

mite:
Zrocessors

Input-output
devicse

System

Technnlogy deteils,
fabricetion methode

Board layouts, pin
connectione, timing

“voceseor elgorithme
D graded modee
Adtress calculstion,
ase siute addressss,
as.ociative mechenisme
Bcs control
‘aterrwpts

={crocode

Cache mechanisme
interns] representetion

saternal configurstions
Device cherecteristics
.

Medie propertiss,
device dependence

Configuretions

intrinsicelly rslisbls technologies, good snginssring,
quality control, coding snd fsult-masking, rsplicstion.

Conssrvstive deeign, relisbls connsctors, snvironsentsl
control; *Disgnosis, component replicstioo, some coding,
doubls-rei] logic, replscement,

*Automatic instruction retry; *“aplicstion, coding.

*Logic vie srithmetic, double-precision hslf-units,

Bounds checking, descriptor velidetion, memory protsction,
coding snd replicstion in eddress geasrstion,

coding end croas-chscking in sssccietive Bemory,
*Altsmmste routes, coding, dsgrsdsbls priority me-henisms.
*Rece-frss feil-operetions] intsrrust design.
*Microdisgnoetics, velidstion of microcods; ccding.

*Automstic rslosding.

*Coding on memory contents; *Resd sfter write st certsin levels,
hardwsre-checked descriptors end type information,
*Reconfiguretion sround bsd memory (vie psging, de-interlgce).
Use of resd-only memories to svoid overvrite snd eid recovery.

*Coding on contents of media snd transmimsion.
*Verificetion, chscking, resd and compare sfter write.

*Configurstion seneing end self-reconfigurstion, powering on-
off incl. sperer), distributing snd rsplscing powsr supplies.

PROCLSS VIEW (HARDWARL AND SOFIWARE) :

Virtual
processor

Virtus] memory

Virtus] input-
output

Multiprocsssing by system

binding of processes

to processors:

procsssor dispstching
Multiprogrameing=--
sultiplexing of procesees
onto ths system:

procsss scheduling,
process ieoletion

Arrsy computing
Multiplexing of microcode

Multiplexing of virtusl

memoriss onto res] memory,

beckup snd retrievs],
dirertories, dsvice meps
protsction mechsnisss

Multiplexirg of 1-0,
virtual devices
Excsption hendling
Asynchrony, buffering,
chsnns] managesent

Coding, hsndsheking on interprocessor communicstion, avoidence
of interprocvssor interfersncs; *Replicstion of physicsl pro-
cessors 2. a single virtual proceseor, voting ss needed.
*Configurstion insensitivity vis checked tsble-driving,
*txplicit measures of psrmitted degrsdstion per process,
Ssfsgusrds on interprocess communicetion (vs. lost intsrrupts,
blocked polling), svoldence of intsrprocsss intsrfsrsnce,
intrsprocess protection (rings, domains, mestsr modes).

*Reconfiguretion end replacement within the sTrRY.
1solstion of system microcods from user-eltersble microcode.

*Replicstion of criticsl dste in vsrious plsces in hiersrchy,
including relisble chssp beckup stors; *Automatic rollhsck.
Rsdundsnt pointers in directory structurs snd fils msos to
pernit fest recovsry; Accses control on filss (e.g., writs
protection); The use of pure procedure to inhibit loss of
critics] dsta or progrems end to sid in sutomatic rollbsck.
Redundsncy in interprocsss snd fils protection mechenisms.

Hlendshsking to svoid lose of information: *Ststus information.
*Device swit.hsbility, msdis rsplicstion.

“Coding (s.g., rsdundent hesdsre); *Flexible error hendling.
Racs=condition snd desdlock svoidsncs.

1-0 device, medie, snd dsts protection mechsnisms,

USER VIEW (SOFTWARL) :

Procsss family
(Job)

Virtual eystem

Virtual nstwvork

algorithmic psrsllslisa
Allocstion of procsssse
Multiprocessing by user

Multiplsxing of virtual
syetems, ehsring of dsts
Syetem cocrectnsse
Command interpetetion

Multiplexing of computsr
oystems and their intsr-
comaunicetion

*Rsplication of virtual processors for s eingls procsss,
*indspendsnt computetional checks (vis poseibly distinct
procsssss) within s procsss femily; *Automstic rollbsck.

lnter-user protsction (from the syetem end eech othsr).
*Controllsd shering (1f any); Sslf-identifying deecriptors,
*Vslidstion, svsluation of sffectivsnses end correctness.
*On-11ine miintensnce; Good compilsrs, diegnostice, debuggere.

*Coding on intsrsystem communication, slternete peths,
lntereystsm protsction machaniens.

*Detsiled stotus of nstvork comtrol and network requests,
*Humsn intsrvention (ss a lsst rssort) with good Judgment .

Asterieks denots techniques perticulsrly smenable to dynamic uee.

tschniques ore suizable for eslective uss,

Alwoet all

46

interface, although the details of their implementation should be
largely invisible at the int¢rface. Almost every technique is suitable
for selective use, Those techniques which also lend themselves to
dynamic reconfigurability are indicated by an asterisk in the table.
The dynamic control over reconfiguration of such techniques may be done
internally at each level, as well as (under controlled circumstances)
via the appropriate interface language. Reconfigurations within one
level are often independent of those at other levels. Techniques for
reconfiguration and recovery from faults are found within most

partitions,

The choice of structure among and within virtual mechanisms may depend
on the particular system specification. For example, simplifying

assumptions (e.g., no multiprogramming or no multiprocessing) often
permit simplified structure. Further, each mechanism of Table 3.3 may

be scattered among hardware and software. Contemporary hardware
typically exhibits a superficial modularity at the functional unit
level, although usually not internally to the extent desired here.
Multics (Saltzer A2), Project SUE at Toronto (Sevcik et al. 72), and
Hydra for the C.mmp at Carnegie-Mellon (Siewiorek A2) are systems that
exhibit good structure in their operating systems,

3.2,3.1. EXAMPLE OF A STRUCTURED FAULT-TOLERANT COMPUTER SYSTEM

As a simple example, consider a multiprocessing system of five
processors, each normally allocated at any moment to a distinct process,
At the VIKTUAL SYSTEM interface, each user (or application environment)
deals with a command language interface to the system running under a
process or process family. Each virtual system may in turn employ one
or more (rehl) processes, either invisibly on behalf of the operating
system or visibly on behalf of the user to exploit intrinsic
parallelism, or to provide redundant (but possibly algorithmically
distinct) computatious. At the PROCESS interface, each virtual
processor, virtual memory, and virtual input-output capability may

involve fault tolerance techniques.,

47

Table 3.4
EXAMPLES OF VARIOUS MODES OF USAGE

Where? Uniform Selective
(in space) (in space)
When?
VP Triplicated, One VP tripi‘cated,
vote on each instruction vote on each instruction
Static Others simplex
(in time)
Distance d=3 in all Mp, d=3 for some of Mp, SEC;
SkC throughout d=2 for the rest of Mp, SED
VP Triplicated, VP Triplicated on demand,
vote on request vote on request;
(e.g., on block exits) Normally simplex
bynamic
(in time) d=3 in all Mp, d=3 for some of Mp,
SEC on request d=2 for the rest;
DED otherwise SEC or DED on request,
SED otherwise

Note: VP=virtual processor (possibly replicated), Mp=primary memory,
d=Hamming distance; S=single, D=double, EC=error correcting, ED=error
detecting.

48

At the VIRTUAL PROCESSOR interface, a single process may be executed on
Just one processor or redundantly on different processors, with
comparison or voting, However, there appears to be a single processor,
exclusive to each prucess, The configuration might for varying periods
of time include two of the five processors both executing replicas of
the same process in a comparison mode, or three processors in a voting
mode, or even in rare cases five in a voting mode. Internal details of
such mechanisms should be mostly invisible to each process. These modes
may vary selectively (e.g., only certain processors might be usable in a
replicated mode) and may change dynamically (for example running simplex
except when ccrtain critical operating system functions are invoked).
Examples at this interface are found in the upper half of each box in

Table 3.4. Examples of systems possibly able to provide such
flexibility include ARMMS (Martin A2), C.mmp (Siewiorek A2), and SIFT
(Wensley A2).

At the VIRTUAL MEMORY interface, device addresses are invisible. There
is often redundancy in the implementation of a virtual memory system,
some of which is suitable for recovery and reliability, In systems in
which memory files do not directly become a part of a user's virtual
memory but rather coples are made .into the virtual nemory (as in 360/67
TSS), there is the redundancy of the duplicate., In systems in which
files (e.g., segments in Multics) directly become a part of a user's
virtual memory when being actively used, a virtual memory page may be
found in various versions and in various rodes of replication on various
devices in the memory hierarchy. For example, in a paged envircnment,
various instances of a given page may exist simultaneously in a
cache-type memory, in primary memory and in secondary memory. If it is
part of a procedure that is "pure" (unchanged by execution), then all
instances are identical (barring errors); if it is data, the instances
may differ if there is no write-through, or else may be identical. This
natural temporary proliferation can be used constructively to provide
checkpoints, thus greatly facilitating automatic rollback. It is
especially useful with various instances of critical data, The

redundancy may of course vary, depending on instantaneous needs. In any

49

event the recovery and rollback strategies must be carvfully integrated

with the memory hardware and software.

At the VIRTUAL INPUT-OUTPUT interface, many details of devices arc
invisible (e.g., formats, recovery strategies, and asynchrony). Fault
tolerance can be increased by extensive use of table driving, providing
possibilities for the use of coding in the tables, as wcll as isolating

the handling of various devices.

At the PROCESSOR interface, the structure and the implementation of each
processor are largely invisible. There may be several levels of
invisibility inside this interface. As seen by an instruction, for
example, automatic instruction retry and physical memory addresses are
typically invisible, Selective replication and replacement are suitable
for logic and arithmetic, with coding useful for arithmetic in some
cases, Especially critical within this level is address generation,
with respect to both security and reliability. Coding and replication

are useful in assuring that addresses are correctly generated.

At the MEMORY interface, byte-slicing, coding and reconfiguration
(discussed in detail in Chapter 4) are examples of fault tolerance
techniques that are usually invisible to the effective address of an
instruction., All three can benefit from selective usage. For example,
different codes may be used in different portions or types of memory.
It may even be desirable to have some memory (e.g., for use by critical
operating system data) with greater redundancy. These techniques also
may benefit from dynamic usage. One such approach to coding entails
different uses of a particular encoding. For example, consider a code
with Hamming (or arithmetic) distance 4 for singlc-error correction and
double-error detection, When one error is known to be permanent, the
code may actually be used to correct a second error (Slewiorek and Ingle
73). VWhen the multiple error rate is high, the code msy better be used
for triple-error detection (accompanied by increasingly loud cries for
help). Another such example is the use of a byte-error correcting code
as a multiple-error detecting code when multiple-byte errors are

suspect, Still another dynamic approach is the use of varying encodings

50

depending on usage, even possibly by changing the word length, For
example, it might be advantageous to use different encodings for
different types of information, e.g., for data and for instructions to
be executed, This could be aided by a tagged architecture (e.g.,
Feustel 73, Miller A2). Note that there is dynamic (but hardware
supported) duplication of data in memory in the Intermetrics
Multiprocessor of Miller (A2). (Typical examples at this interface are
found in the lower half of each box in Table 3.4,)

Similarly at the MODULE interface, multiple arithmetic or functional
units tied to a control unit may be used in replication for fault
tolerance, or in synchronism as in the ILLIAC IV for handling

parallelism in computation, or independently, The first of these
applications substantially increases reliability, whkile the others may

substantially increase the computational throughput. Degraded but
continued operation may be achieved with multiple or byte-sliced units,

e.g., by invoking a multiprecision mode among reduced precision units,

Explicit structures of virtual mechanisms are now evident in a few
recent computing systems, both in hardware and in software. For
vxample, the Multics protection mechanism (Schroeder and Saltzer 72)
provides successive linear levels of resilience to errors in hardware,
software, and hurans in its levels of protection. A spectrum of
criticality exists with respect to faults., Only malfunctions (hard or
soft) at the lowest software level affect the viability of the system,
Others have diminishingly serious effects on the correctness of
operation as the level increases, e.g., aborting one user's process,
aborting one command, or aborting just one request within a command. As
with hardware, software techniques for fault tolerance may also differ
from level to level, An example is provided by the SIFT environment
(Wensley A2), in which a wide range of real-time criticality is found

amoug various tasks, and for which redundancy can be suitably configured

to tne task,

3.2,4, IMPLICATIONS OF STRUCTURED DESIGN

In this section we discuss the numerous benefits of the structurzd
design approach. These include enhancements of reliability and

computational capacity, and reduction of cost,

SELECTIVE AND DYNAMIC APPLICATION OF REDUNDANCY. A wide rariety of
techniques for fault tolerance can be applied, each where it is most
effective and responsive to the needs for fault tolerance and computing
capacity. Each configuration of fault-toierance techniques can be
dynamically altered, on the basis of the current usage of the system,
(The reconfiguration may affect more than one level at once,) The net
cost of system fault tolerance can therefore be reduced, especially if
rarely used fault-tolerance techniques can be performed reliably in
software, Considerable savings also result if occasional modest
real-time delays are permitted (e.g., for diagnosis, recovery, and
reconfiguration), further reducing the need for dedicated hardware, The
typically nonuniform distribution of costs within a system also permits
a reduction of the incremental cost of fault tolerance. Memory costs
(including secondary storage) seenm to dominate total hardware costs in a
well balanced system, even in emerginpg technologies (see Chapter 6).
Consequently, the relatively small cost of redundancy in memory (e.g.,
varying logarithmiclly with word length for single-error or byte-error
correction throughout memory) may dominate the incremental cost, even
with replicated processors, but even more so with dynamic and selective
replication. Dynamic and selective use of coding (e.g., Table 3.4)
further reduces the cost of fault tolerance. A tagged architecture may
be of significant help in this respect, Structured design also
facilitates checkpoint mechanisms that permit varying degrees of
rollback at different levels, as needed. On-site maintenance and

diagnosis are also aided.

GRACEFUL DEGRADATION, In general, computing capacity not currently
dedicated to fault tolerance is available for useful computing, assuming
reasonable system balance. It is desirable to configure among pools of

modules, functional units, processors, and systems, The multiplicity of

52

each pool should be large enough so that graceful deg-adation is
vossible (i.e., that the loss of any unit i. not serious)., This
increases the overall system effectiveness, in terms of both computing

capacity and fault tolerance.

SIMPLIFICATION OF THE DESIGN PROCESS, Well-chosen system structure can
enhance esch stage of system development (including designing,
implementing, documenting, debugging, certifying, analyzing,
maintaining, and modifying the system). A(each such stage the notion
of levels of invisibility permits issues of fault tolerance relevant to
lower levels to be abstracted and analyzed, aiding in isolating any

side~effects. Thus the structure serves as a useful model as well,

ADAPTABILLTY TO ADVANCED TECHNOLOGY. Recent technological advances
(e.g., 1.5I) significantly improve the cost-effectiveness of many of the
technijues for fault tolerance, These advances should also stimulate
new architectural directions, such as multiprocessors with considerable
multiplicity, and distributed-logic and logic-in-memory designs., The
latter case involves large arrays of small memory elerents, each
containing processing capability, These arrays could be organized into
subarrays of subarrays, possibly with structures geometrically oriented

toward the problem to be solved (cf, Kautz and Levitt 72).

APPLICABILITY TO FAULT-TOLERANT SYSTEMS, The structural approach seems
particularly effective for large general-purpbse systems. It also seems
useful for many systems with some tight real-time constraints, for which
selective *redundancy can result in significant cost savings, compared to

the uniform use of high-order replication,

Questions of overhead and reliability must be examined carefully, It
appears that the overhead due o the use of structure can usually be
kept small, except when fault-tolerance limits are approached, It is
obviously desirable that the mechauisms for controlling reconfiguration
must themselves be fault tolerant, thrash-resistant, secure, and
reconfigurable. Interference problems and intercommunication must also
be handled reliably,

53

In highly structured systems, there is a basic problem «f ssalng oe
overhead of multilevel interpretation (i.e., of successiwe wills Vurmag
many levels of language). This problem is alisviated v pesmmesiny
certain low-level language constructs to be directly (amé compamiiy
available from outer levels, Where explicit level crossimg is sscsssary
(as in protection mechanisms), the interlevel communication mechamise
should be simpie., Judicious use of hardware for such mechanisms is
essential, as in the case of various associative shortcut mechanisms.

In some cases it is also advantageous to reduce the number of conceptual

levels in the implementation.

Various questions remain unanswered by this discussion. Can the
tradeoffs among fault tolerance, computing capacity, cost, overhead,
etc,, be rigorously characterized? Under what circumstancss is it
desirable to reconfigure? What kind of limiting behavior occurs as
computing capacity or fault-tolerance capacity is reached? What are the
penalties associated with having too little or too much structure? What
happens to the notion of the "weakest link", namely, those mechanisms to
whose malfunction the system is most vulnerable? Can this notion be
distributed among less wea®: links? How does it shift during

reconfiguration?

Our assessment of the structured design approach is that it has the
potential for providing highly flexible and economicil fault tolerance
without greatly compromising system cost, system performance, and system
efficiency. Some qualities of structure ure found in the gurrent art,

but full realization of this potential requires further developament.
3.2.5. STRUCTURED RECOVERY STRATEGIES AND MASSIVE-~TRANSIENT RECOVERY

One useful approach for effective reccvery over wide ranges of faulty
behavior follows the PRINCIPLE OF LEAST EFFORT (Zipf 49). It is
desirable to structure the system so that subsequent to a fault, the
availab# 1ity of the most essential services can be restored as rapidly

as possible, deferring (or overlapping with restored operating capacity)

54

that which need not be done immediately. In this way, it is possible
for the system to recover by successive iteration, outward from the most
critical mechanisms., (See Carter et al. 7la for a discussion of the
recovery problem and the control of recovery. See also Williams A2,

Saltzer A2, Stern 73, and Stern and Van Vleck 73,)

As an example ot a specific problem that can be greatly simplified by
the adoption of a hierarchical structure and hierarchical recovery
strategies reflecting that s~ructure, consider the "massive-transient"

recovery problem:

A correlated fault source (e.g., a power surge or a bolt of lightning)
has ieft all units of the system suspect, perhaps introducing both
transient and permanent faults, The problem is for the system to
diagnose and configure itself back into a working configuration and to
+.lidate itself for correctress, all under its own control, Note that

the software as well as the hardware must be considered suspect.

This problem is essentially a generalized fault-tolerance problem, where
performance may cease temporarily during and just after the massive
transient, It is also closely related to normal system initialization,
Design structure and dynamic reconfigurability both aid greatly in
solving this problem. One solution involves validating a correct
configuration of hardware and bootstrapping upward from the lowest
levels, until a satisfactory rudimentary system is obtained. This
solution is aided by the use of a hard-wired non-volatile read-only
memory which provides a basis of correct programs for recovery. Further
help is of (ered 1f pure-procedure instructions in this memory can be
executed directly, and if these programs operate only out of local
memory at first. By working cutward, valid portions of the system begin
to emerge, Also useful for providing checkpoints may be cheap
once-writable memories (possibly asynchronous to the main control).
(Another approach is to try experiments on various configurations of the
whole system,) Note that this problem may be intrinsically insoluble

for a given system configuration. It may also be insoluble for the
particular massive tramsieat, e.g., because not enoughk operational

35

equipment remains to self-diagnose and configure a valid system, or even
just tc operate such a system. (Furthermore, more equiruent may be

required for diagnosis than for operation.)
3.3. ARCHITECTURES FOR FAULT TOLYEPANCE

This section describes some general architectural configurations for
fault-tolerant computers. Our intention is to show how the variety of
techniques outlined in Sections 3.1 and 3.2 may be applied to the design
of complete economical systems with high availability and high degrees
of correctness as desired, We do not delve deeply into the design of
Particular systems, but rather merely attempt to justify their

fault-tolerance behavior. For each system architecture, we indicate an
estimate of overall redundancy, reliability, and availability measures.

We also give methods by which error detection and recovery can be

achieved, and a general assessment of the system, Aplications for these
architectures are considered in Chapter 6.

We examine various types of system architectures here. Section §.3:1
considers simplex systems, that is, systems with a single instruction
stream, but possibly with reﬁlicated processors, Section 3.3.2
considers multicomputers (including networks) and loosely~-coupled
multiprocessor systems., Section 3,3.3 considers strongly-coupled
multiprocessors, e.g., with sharing of data in memory among processors,
Most of the system types form the basis for systems surveyed in
Appendices ! and 2, although several types discussed here have not yet
matured into prototype or even paper designs as yet,

Where fault tolerance is a design goal, it can easily be incorporated
into the design. In general, however, it cannot be retrofitted
effectively into an existing implementation. As indicated in Chapter 6,
suitable architectures for fault tolerance exist for all common
computational applications. For these applications, fault tolerance can
be achieved by the oxclusive use of hardware techniques, requiring
little modification to the operating system, However, if the degree of
fault tolerance is to be matched to the application needs, and is to

56

require less redundancy than that associated with replication, then much
more reliance on software is needed. In particular, the operating
system becomes significantly more complex, and perhaps represents a more

likely source of errors than faulty hardware.

The credibility of a particular fault-toleranc: concept is of great
concern. In the aerospace environment, the general practice has been to
design extremely simple and crudely replicated systems, This simplicity
is a consequence of the demand for systems that are obviously reliable,
and perhaps amenable to human error detection and reconfiguration. This
demand has precluded the use of the less redundant (although more
complex) fault-tolerance techniques described in this report. We feel

that these better techniques will become more acceptable as the new
technologies emerge, and as operating systems become more reliable,

Advanced fault-tolerant systems, i.,e., those with high availability,
fast recovery, and low cost, will place high demands on the operating

system,
3.3.1, SIMPLEX SYSTEMS

In this subsection we view a simplex processor system as one in which
only a single central processor is present, or in which all central
processors are intended to operate with identical instruction streams
and data, The earliest conceptions of fault-tolerant systems were
simplex systems, employing low-level redundancy techniques (e.g., in

gates or registers).
3.3.1.1, REDUNDANCY ONLY IN MAIN MEMORY

The cost and unreliability of most contemporary systems are largely
dominated by the main memory. (We exclude peripherals from the
immediate discussion, since their effects can be readily decoupled.)
Typically, the main memory is 50% to 75X of the total digital circuitry
in a medium to large system, The main memory can be made reliable by

techniques embodying varying combinations of error detection, error
correction, block replacement, and chip replacement., The use of these

57

techniques can provide fault-tolerance ranging from a minimum of error
detection in memory to completely autonomous error confinement,
reconfiguration, and recovery in response to memory failures. With the
use of these techniques, the merory is from 5% to 35% redundant,
depending on the word length, byte length, and the desired degree of
fault tolerance. There are two possible deficiencies associated with

memory coding and bleck replacement,

*The memory is prone to faults in external equipment, notably power
supplies. This problem can be alleviated by providing a separate power

supply for each block or {or each byte slice of memory,

* If only the memory is protected by redundancy, the unreliability of
the system is decreased only by a factor of about 3. Hence some form of

processor fault tolerance is s=ill needed,

Memory fault protection is rapidly becoming a common practice, Most
machines have a parity check optica on main memory, and some newer
machines (e.g., IBM's System/370) incorporate error correction at the
bit level or at the byte level. Most machines with relocation hardware
are capable of reconfiguration around one or more faulty memory blocks,
This is a primitive form of graceful degradation in that main memory
functions are either lost or taken over by secondary or paging memories,
with an accompanying reduction in performance, However, we know of no
working machines the: achieve reconfiguration autonomously, subsequent
to a detected error. Such reconfiguration is not difficult to achieve,

and can extend the up-time of a system enormously.,
3.3.1.2, REDUNDANCY IN MAIN MEMORY WITH PROCESSOR REPLICATION

The simplest approach to tolerating faults in processors is to use
replicated processors and provide some mechanism for resolving
discrepancies among their outputs. In one mode the processors are

duplicated and the two inntruction streams are synchronously compared
before being accepted as correct. Any discrepancy can trigger a

single-instruction retry in the hope that the fault causing the

58

discrepancy is transient, If the retry fails the first time, a more

complex recovery may be invoked. Finally, if all retry attempts fail
because the fault is permanent, autonomous or human diagnosis can be
undertaken to identify the faulty processor., The system is then
reconfigured to use just the good processor. In any event the
duplicated processor scheme can clearly prevent an incorrect result due
to a single faulty processcr. With the inclusion of some diagnostic
procedures it can provide a system that remains available in the
presence of one faulty processor. Such a system, including the cost of
memory coding, may have from 33% to 45% redundancy, depending on the
dominance of memory in the system, Besides its relatively high

redundancy, this approach has two operational deficiencies.

* Inadequacies in the current diagnosis practice preclude the use of

this approach in the most exacting fault-tolerance situations. That is,
most diagnostic programs are successful in handling no more than 907 of
the fault possibilities. Thus subsequent to a processor failure, the

system may not be successfully reconfigured as much as 10%Z of the time.

* The comparison of processor outputs, if carried out in hardware,
introduces a few extra gate delays. In high-speed applications it might
be possible to pipeline this comparison with other operations at the

expense of extra circuitry.

If a higher probability of successful autonomous response to an error is
required, then a triplicated or higher-order replicated processor can be
used., The processors can then be operated in a voting mode or a dynamic
voting mode if there are more than three processors. The processor and
memory are approximately in balance if the memory operates with
single-error correction and single block replacement and if the
processor is triplicated, In this case the probabilities that the
memory or processor exhaust their respective resources are roughly
identical, Recovery in the case of a triplicated processor should still
include a single instruction retry, before trying to restart from an

earlier state, or before discarding the disagreeing processor., The
major drawback of grossly replicating the processor is cost,

59

Triplication of processors with crror-correcting coding in memozy can

have redundancy ac high as 60%.

3.3.,1.3. TRIPLICATED SYSTEMS

We discuss abcve the deficiencies due to the use of different redundancy
techniques for the processor and memory. Another deficiency for certain
applications is the need to modify the basic computer design. One
simple way of avoiding these difficulties is to operate multiple
computers (including their memory) in a duplicated or triplicated mode.
The results are compared whenever information leaves a computer, €.g.,
to a channel. The comparison in this case is done at such a low duty

cycle that software voting may be feasible. When a disagreement is
detected, the backtrack can be to the beginning of a computation or to

the last channel invocation. In this case the need for saving register
states in order to achieve single instruction retry is avoided. Of
course, the main drawback of a uniformly triplicated system is 1its

redundancy, whici. exceeds €74,

This single replicated virtual processor concept was used in the Saturn
V guidance computer, It is a possible mode of operation in a version of
SIFT (Wensley A2) which is stripped down to exclude multiprocessing, and
forms the basis for a flight-control computer under consideration by
NASA-Langley. '

3.3.1,4, REDUNDANCY APPLIED OVER PROCESSOR PARTITIONS

Among the major drawbacks of the triplicated processor scheme and the

triplicated system scheme are the following.

* After a single processor failure, all spare processor resources are

exhausted,

* The crude redundancy technique does not take advantage of the u-igue
structvre of particular processor sub-blocks, Thus the redundancy 1is
higher than it needs to be,

60

Under certain circumstances, an attractive scheme is to decompose a
Processor into sub-blocks and to apply redundancy techniques appropriate
to each sub-block. For example in the STAR computer (Self-Testing and
Repair, Avizienis A2) the following sub-blocks are identified:
arithmetic unit, logic unit, and control unit. For a more powerful
computer than the STAR, one could also include stacks, expanded register
sets, and scratch-pad memories, for example. The basic fault-tolerance
method is to detect an error at an interface to one of these sub-blocks,
and if necessary, to replace that sub-block with a spare. Residue codes
are used for error detection in the arithmetic unit (and in the memory),
a 2-out-of-4 code for instructions, and duplication elsewhere. In all
approaches of this type, there is the need for some overall exczutive

within the processor to act as the ultimate arbiter of all detected
errors In the STAR, the TARP (Test and Repair Processor) serves this

function, and is itself triplicated. Note that the TARP really serves

as a "smart" bus with all inter-block transfers passing through it.

The system can be as low as 40% redundant with a spare for each
sub-block. Moreover the up~time can be extended by a factor of 10,
because of the partitioning of the processor. One of the most
compelling advantages is that no radical chang: is needed in the
functional partitioning of the system, The major deficiencies of this

approach are the following.

* Major internal processor delays may be encountered due to the TARP, a
situtaion that might be alleviated by pipelining its operation with
other units.

* In an LSI implementation the partitioning might not be appropriate.
This is particularly true if the computational requirements can be met
by a one-or-two-chip computer. However, in much larger installations
MSY is likely to be used in the nearqfuture. With an MSI
implementation, a relatively fine partitioning is feasible.

An early version of the SERF computer of Raytheon (Stiffler 73) employs
a partitioning similar to STAR. However, the arithmetic-logic unit is

61

decomposed into bytes while external switching can provide a routing
around faulty bytes, A partitioning this fine is appropriate only where
effectively zero maintenance is required for long periods of time, The
MECRA computer (Delamare A2) uses a variety of coding techniques within
the processor. In addition, graceful degradation is achieveu by program

modification, using microprograms that remain correct.,

Our conclusion with regard to partitioned processors is that technology
advances have precluded their applicability for their originally
intended application, aerospace, llowever, they appear useful for large

Processor inftallations, provided the delay problems can be solved,
3.3.1.5. MICROPROGRAM-ORIENTED PROCESSORS

tlany small to medium size processors achieve a rich instruction set by
microprogramming., As the availability of high-sneed memories increases,
it is likely that microprogramming will appear in all but the super~fast
Computers. Microprogramming is used tc realize many complex
instructions that otherwise would require special hardware, Thus the
instruction unit can be simplified and many special logic boxes (e.g.,
floating-point hardware, multipliers, interrupt handlers) can be
eliminated, The net result is a total computer in which only about 10%
of the hardware is not a memory function. Straightforward coding
techniques can be used for error detection or correction, In addition,
with writable control store, the microprograms can be paged and routed
from a failed memory block to an operative one, or in an extreme case,
to a memory block in slower memory. Crude redundancy techniques can be
used for the non-memory hardware, at comparatively little incremental

cost.
3.3.1,6., PROCESSORS WITH DEFERRED, PARIIAL, OR PROBABILISTIC DETECTION

Most of the architectures discussed above aim at corrertness for all
computations and availability in ‘he presence of single faults,
However, in many applications correctness is essential enly for certain

computations, such as those involving security and file protection

62

(including address generation)., We describe here a system wherein
single hardware faults cannot result in a security breach. It would be
preferable that the machine halt rather than propagate in error critical
to its security. To achieve this safeguard, certain ¢qupment (notably
base, mappinrg, and relocation registers) must be protecied against
faults. Error-detecting codes can help here. In addition, the
functions that read or modify access rights must be checked., This
requirement can be accomplished by consistency checks or duplication in
space or time, A mofe reliable but less elegant solution is to provide
a special replicated hardware unit within the processor that would
execute primarily those functions within the security perimeter, If
this unit can be designed so as to consume a small fraction of the

computational resources in an integrated non-fault-tolerant
implementation, then a replicated minicomputer within a large processor

might suffice to achieve fault tolerance.

The detection of only those errors that are in some sense critical is a

special case of deferred detection (Section 3,1.1.3). Short-of coding
or duplication, many features cin be included in a processor to enhance
detection. For example, the use of a tagged (or descriptor-based)
architecture (e.g., Feustel 73, or the Burroughs B5500) can be used as a
valuable tool for detecting hardware errors. Any error that leads to a
type violation (e.g., execution of data, or adding a floating-point
number to a Boolean value, or an attempt to manipulate a capability)
could be detected. The central problem with this technique is to
protect the hardware that manipulates the tags.

3.3.1.7. CONCLUDING REMARKS ON SIMPLEX PROCESSOR ARCHITECTURES

As noted in Chapter 6, simplex architectures are the most prevalent
today. They will probably remain common in the future, at least in
super-fast systems, Efficient methods exist for designing
fault-tolerant simplex systems, For example, a system that is 40% to
50%2 redundant can be correct and available in the presence of single
faults, In a multiprocessor organization, this redundancy can be

reduced by a factor of at least 2 for applications in which most

63

computations need not be carried out reliably, provided certain critical
computations are reliable. That is, the multiprocessor organization

discussed below is better matched to applying redundancy nonuniformly in
time,

3.3.2., LOOSELY=-COUPLED MULTIPROCLSSOR ORGANIZATIONS

In this section we describe several multiprocessor architectures that
exhibit economical fault tolerance. We assume applications for which
the various tasks run substantially independent of each other, in
separate memory blocks. As noted below, the 2bsence of sharing and nf
strong interprocessor communications greatly simplifies the design of
such fault-tolerant multiprocessors. Multiprocessors with strong
dependence umong processors (e.c., with shared use of memory) are

considered in Section 3. 3.3.

It is clear that multiple processors are effective for fault tolerance,

for at least the following reasons:
* Processors and memory blocks represent good replacement units,

* When all resources (processes, memories, etc,) are operative, they are
all kept busy doing useful work. As resources fail, the operative ones
take up the slack with a loss in performance. Thus, the long-standing
goal of a gracefully degraded system is readily achieved with a

multiprocessor, except for the detection and diagnosis problems,

* It is possible, in principle, to achieve redundancy that is variable
in time and space. For certain critical computations, several
processor-memory pairs can operate in a replicated mode. Moreover, this

replication can be modified dynamically in time.

We divide multiprocessor organizations into three types: fixed
multicomputer systems, configurable multi-computer systems,

multiprocessors with common memory. (Note again that shared memory is

64

discussed in Section 3.3.3.) Included are systems in which there is an
active processor ard a wonitor procer.sor, and networks of systems, We

discuss fault-tolerance techniques avaiizhle for these organizations.

These designs have not generally been suitable for efficient operation
of a large-scale general-purpose interactive computing (e.g., a computer
utility). Most such designs have been suggested for an aerospace
environment, The main reason for the unsuitability of these designs to
such applications is that hardware is not present to support sharing or
flexible communication between error-prone processes executing in
different processors or memories. Several of the designs permit
interprocess communication, provided the processors all operate in a
replicated mode. In a trivial sense :he system then is protected
against security breaches caused by single faults, but we do not
consider this to be a satisfactory solution for, say, a computer
utility., A more desirable solution is outlined below, in which
replicaifon 1s avoided., The omission in this subsection of hardware to
support reliably controlled sharing is intentional. If the mechanisms
for sharing are nonexistent or severely restrictcd, "hen a process going
avry because of a hardware fault cannot cause demage outside its
restricted domain, A satisfactory solution to the sharing problem in
the presence of hardware faults does not exist, but the architectural
conifigurations discussed in Section 3.3.3 seern to be a step in the
right direction,

3.3.2,1, FIXED MULTICOMPUTERS

The primitive element of a multicomputer is a processor/memory
combination. In such an architecture, the system can be protected
against a processor going awry by enforcing an intercomputer security
discipline. Moreover, since the primitive element ig essentially a
self-contained computer system, there is limited need for communication
among the computers -- except for the pucpose of handling error
conditions or message handling involving the executive., An example of a
fixed multicomputer is the Pacific Coast Stock Exchange system COMLX
(Wallace AZ). lMulticomputer configurations also include computer

65

netvorks (e.g., the ARPA Network) -- see “uo and Abramson (73). The
desired fault tolerance for networks is hiphly dependent on the
component systems, on the interconnection network, and on the

applications, Networks are discussed in Section 6.3.

With the help of a flexible switching network between 1/0 devices and
the set of computers, jobs can be assigned to an available computer.
1T".ere is no facility for one computer to write in the memory of another.
For example, the protection against the erroneous overwriting of a disk
file is enforced by perrmittine only an executive to modify the switchinpg
network. The executive is run independently in cach of twe corputers so
that its operations are checked., &Lrrors are detected either by a
disagreement among executive computers or by any self checks
incorporated within the individual computers running applicatiun
programs, /ny of the self-checks discussed for a simplex processor
system could suffice here, The executive operating in a checked mode
could diagnose a suspected computer, JNote that this executive is
running at an extrermely low duty cycle, performing only job scheduling
and infrequent error control, Each computer will have a resident
operating system to perform such operations as loading and subroutine
linkage., The redundancy of this concept 15 quite low (not exceeding
10%) as measured by the amount of hardware and software devoted to fault

tolerance.

A minor augmentation of the technique conld provide for the checking of
the application programs if desired by the user, In this case the
application programs are run in two or more computers. The local
executive resident in each computer (pertinent for this application
program) periodically reads the results for this program computed by
other computers. Any disagrcements can be noted in the memories for

future disposition by the system executive, Periodically, the

processors read from specified locations in the executive computer's

memory to determine if they should handle new jobs, become an executive
computer, or possibly disconnect themselves., The errox control protocol
discussed above is a simplified description of the SIFT system (Wensley
72). The ARMMS system (Martin A2) is also a multicomputer concept, but

66

incorporates all executive functions within an especially smart

interface unit,

The multicomputer approach is clean, and should find application in

environments where the computer system is a relatively small portion of

the total mission cost, and the application program demands are known to
be near constant., Lowever, for other applications the notable

disadvantages of the scheme are:

* Because there is little intercommunication among processors, each
disposable unit (processor and memory) must be fairly large in order to
represent an independently viable computer. Thus, it represents a large
unit to be removed upon failure. The configurable multi-computer
discussed in Section 3.3.2.2 represents a finer and more realistic

partitioning.

* Assuming that the individual computers are larger than mini-
computers, then multiprogramming within a singzle computer is desirable
if the computers are to achieve reasonable efficiency. However, there
is a problem of maintaining isolation between the processes being
multiprogrammed. In the presence of faults, such isolation can be
achieved only by using the relatively expensive techniques of a
replicated simplex system discussed in Section 3.3.1.

* The system is too inflexible for variable tasks. For example, there

is no way to vary the high-speed memory allocated to a job.

3.3.2.2. CONFIGURABLE MULTI-COMPUTERS

We consider architectures in which a set of computers can be configured
out of a collection of processors, memories, and (possibly) I/0
controllers. The configuration is accomplished either manually by an
operator or by an executive (in hardware and/or software)., To
accomplish such variable interconnections among system units, the system
requires an interconnection network (e.g., a cross-bar or restricted

cross-bar) between a set of memories and a set of prccessors, and

67

another such network between the L/0 controllers and the memories.
(Some switched communication links will also be required between the
pcocessor and 1/0.) To inhibit deleterious error propagation from a
failed processor, the interconnection network is changed only
infrequently, e.g, when a new job is loaded in, or possibly only when a

unit fails,

The fault tolerance prucedures for a configurable multicomputer are
almost equivalent to those of the architectures discussed in Section
3.3.2.1, For example, the CLC computer of Bell Laboratories (see
Ridgway A2) uses a variety of consistency checks to detect errors. The
PRIME syster (Borgerson A2) relies on mewory parity, periodic diagnosis,
and user complaints to detect errcrs. 1lhere is no attempt to perform
error correction on the above systems, so that the main forte of these

systems is availability.

The redundancy is slightly higher than that for a fixed multi-computer
architecture, mainly because of the need for extra hardware in the
interconnection networks, and extra software to implement the more
advanced reconfiguration possibilities. liowever, aside from the cost of
spare units, the system should not be more than 157 redundant. The
system is somewhat prone to faults in the switching network,
Nevertheless, the effects of a single fault in the switching network can
be made equivalent to a fault in a processor, memory, or 1/0 controller
by distributing the switches among the units. If there is a need for
certain computations to run concurrently in two or more computers, such
an allocation can be effected by the executive, At the conclusion of
the computation, the executive can gain access to the pertinent memory

modules to compare the results.

The performance of a configurable multiprocessor is better than that of

the fixed multicomputer in several respects:

* The configurable multicomputer offers longer life for a given number
of spares, because of the finer: partitioning. That is, when an error is

discovered, a subsequent diagnosis can pinpoint the fault to a memory or

68

e |

processor unit. In the fixed multicomputer, an entire processor/memory

pair is discarded,

* The configurable multicowputer offers the possibility of adjusting the

main memory requirements to the needs of a job.

* By virtue of the interconnection networks, there is the possibility
for some interprocessor communications., However, the reliability needs
dictate that this communication should be under the strict control of

the executive,

Despite the above advantages, a configurable multiprocessor with the

present state of the art does not meet the requirements of many computer
utilities. This is true primarily because of the difficulties of

achieving multiprogramming within each processor, and of achieving

reliably controlled sharing of memory among processors.

3.3.2.3, LOOSELY-COUPLED MULTIPROCESSORS WITH COMMON MEMORY

For applications in which most of the computations must be fault
tolerant, and in which there are real-time constraints ou the
computations, the several multicomputer architectures discussed above
are grossly redundant. That is, the aforementioned multicomputers
require that th- computation be executed in two or more full computers,

This fault-tolerance procedure does not take advantage of the low-cost

coding techniques for memory.

Memory coding techniques can be used for both error detection and
correction, as follows. The main memory is either a large
block-oriented coimon memory or a multiport memory that can communicate
with other system units by means of an interconnection network. Each
processor unit is a pair of processors that will operate in a lock-step
mode. Processor errors are de’ected by a disagreement between the
processor outputs., To ensure that erroneous information does not
emanate from the proccssor pairs, it is necessary to suspend the

operation of the pairs when the error is detected, This can be achieved

69

by some reliable logic (usually triplication) at the interfaces to
processor pairs and other system blocks, This approach has been taken
in the Hopkins multiprocessor (Hopkins A2) and the Intermetrics
rultiprocessor (Miller A2), Another approach is to make the
interconnection network powerful enough to isolate a processor pair in
error, This approach is pursued in the LUCS system (Wensley et al. 73).

In either case, a processor pair is discarded if the fault is permanent,

As mentioned above, system memory can take the form of a cormon memory
or of a set of memory modules. In either case the rerorv inforration is
protected vith coding that provides at least sinple-byte error
correction, When an error is detected in memory, the block or modu’e in
error is kept in service long enough to transfer its data to an

operative section,

This concept is less costly than the multicomputer structures if
correctness of results is important. The actual cost varies with the
number of units needed to meet the computational needs, but typically
the system will be about 50% redundant with one spare unit of each type.
!loreover, these concepts can be extended to allow process sharing, since
each processor's operation can be checked. liowever, this checking still
requires duplication of all processors =- a cost that is not attractive

for general use,.

A common use cf a multiprocessor configuration is where one processor is
checking on the performance of another or doing background work, but is
prepared to take over active performance, Such systems include wo. 1
ESS (Ulrich A2) (with a monitor processor running diagnostics), and the
New York Stock Exchanpe Market Data System MDS-2 (with two pricessors

multiprocessing and a third acting as a monitor).
3.3.3. STRONGLY=-COUPLED MULTIPROCESSORS
The multiprocessor systems discussed in 3.3.2 are primarily intended for

the aerospace enviionment, or an environment in which processes can

function independently. In the latter case, the multiprocessor

70

structure offers high availability. Sharing is possible only if all
computations can be generated to operate error-free, which in turn
generally requires costly replication for those multiprocessors.
However, in a modern computer utility, controlled sharing is extremely
desirable. Morzover, it should not be necessary to replicate entire
processors in order to achieve reliably controlled sharing when the

programs desiring sharing need not be error-free.

A useful example is provided by the Multics system. Among the important
currently implemented features of Multics that bear on sharing and fault

tolerance are the following:

* The ring structure (within a process) prevents a program (running in
some ring) from distucrbing a program that runs in some inner ring. In

particalar, an application program cannot crash the operating system,

* The operating system itself is layered with the security-dependent
functions clustered in the innermost ring. At present that ring is too

large for our purposes--an issue considered below,

* The file system is fairly immune to system crashes,

* Processors or memory moduler can be added or deleted while the system

is in operation.

Aside from the thlrd item, these features are also included in the
design for the SUE system (Sevcik et al., 72), Multics does little to
support fault tolerance (e.g., there is at present no instantaneous
attempt to recover from a parity error in memory), although there are
substantial mechanisms for the integrity of resident stcrage. Under
hirdware faults, the only guarantee is that the system can eventually

recover, with or without operator intervention.

The desired characteristics for a system embodying both sharing and

advanced fault tolerance are the following:

* Sharing and pritection are desirable, in the spirit of Multics.

* The protection mechanisms should not be violated under single fault

occurrences,

* Processes should be ablle to execute on an unreplicated processor and

still enable the protection mechanisms to be maintained.

* If correctness is needed for certain computations, then such

computations should execute in a replicated mode.
* The individual processors should be multiprogrammable,
* Availability should be achievable by the inclusion of spare modules.

The Plessey 250 system (Williams A2) comes close to meeting the above
characteristics. It is a multiprocessor structure with special hardware
within a processor to support a capability-oriented protection scheme,
Any process can invoke the operating system, so that the operating
system as a part of any process on any processor. The detection of
errors and the prevention of error propagation beyond a processor is
achieved b combination of consistency checks and special self-tests
within a processor. For example, a process accessing a segment for
which the capability does not exist would cause an error indication.

For the most part the Plessey 250 sys:em operates in a benign
environment, so that the capahility checks are oresent mainly for error
detection and confinement rather than for bootstrap recovery., A
well-designed hierarchical recovery procedure is provided. The system
is quite economical--less than 254 redundant and the error detection and
recovery procedures have been evaluated by simulation, liowever, the
system still - :lies primarily on ad hoc error detecticn procedures, If
these design techniques are applied to a less predictab'e computing
environment, there is no assurance that errors will be caught before

they cause a crash or a security breach, nor is there any assurance that

the recovery can be carried out autonomously,

It is possible to achieve al: of the goals by performing certain
operating system functions in a replicated mode. The Carnegie-Mellon

C.mmp rultiprocessor system (Siewiorek A2) offers some possibility in .
this direction. Briefly, the C.mnp is a multiprocessor in which a set

of processors communicate with a set of memory modules via a crossbhar

type network. Certain interconnections can be inhibited by manual

control of the network, Aside from this manual override the crossbar is
settable by a block address generated by a processor. The contents of a

set of mapping registers associated with eacii processor determine the
capabilities of the process running in the processor in question. These

registers can be set only by the operating system,

The most significant aspect of the operating system is its kernel,
called Hydra (Siewiorek A2), Within its boundaries Hydra contains
sufficient routines to enforce various protection and sharing
disciplines among processes, Hydra also offers facilities for writing
an extended operating system, Any process can invoke Hydra cn its
behalf, From a fault tolerance standpoint, all of the features
prasently in Hydra should be protected, That is, hardware faults should i
not induce any errors in the opevation of t'.e kernel, In addjtion to

the current functions of Hydra, the reliability kernel should contain

procedures for recovery, diagnosis, and configuration. luch of 1/0 does

not belong in the reliability kernel except possibly a disc manager. It

is intended that the reliability kernel be run in a checked mode. The

most convenient way of achieving this checking is to run the reliability

kernel, when it is called, simultaneously on two processors., If the
memor; modules incorporate their own fault tolerance (probably by means
of error correcting codes), the two distinct memories are not generally
required. However, since the temporary storage memory requirements of
the kernel are small, each replicate of the kernel can run
simultaneously in its own processor and memory. At a time when the
kernel can return values, the process calling the kernel can read the

results simultaneously from both memories, and can compare the results,

A minor hardware augmentation of C.mmp is required here, If this

comparison and the resultant storage of the kernel results are to be

T ST s

73

carried out reliably, then these operations themselves must be checked.
One way of achieving this reliable abstraction of the kernel's
computations is to expand the capability register set associated with
each processor into a small duplicated microprocessor. The register set
' need not be duplicated, but can be protected by a simple parity code.
This duplicated microprocessor (distributed among the processors) can be
| viewed as a distributed TARP or bus checker., It is also necessary to
provide fault *olerance within the interconnection network, e.g.,

[trivially by replicating the network, or better by distributing the
network among the interconnected modules. In this latter approach

feedback can be used to verify that control is established correctly.

In conclusion a multiprocessor structure like C.mmp or Plessey 250 can

be extended so as to achieve all of the prescribed design goals at a
comparatively low additional hardware cost., The addition of the

duplicated microprocessor and the extra cost of fault tolerance in the
interconnection network should be equivalent to about 20 percent of a
processor. There is also the additional overhead of executing the
reliability kermel in two processors--a cost that is presently unknown
but slic:1d be low,

_—n S o g

74

CHAPTER 4, MEMORY ORCANIZATION

This chapter describes the use of redundancy and reconfiguration in
memory to increase system fault tolerance. Several of the better known
schemes are treated, and a new approach is given that offers great

improvements in availability for large memories.

In most of the systems of interest here, there is a diversity of memory
types, from very fast small special-purpose memories (e.g., a cache, or
associative memory for paging, or a microprosram control store) to fast
main memories to various slower on-line memories (possibly block
orliented) to ncrmally off-line storage. A virtual memory mechanism is
very helpful for the management of such a storage hierarchy, and can

contribute to economical fault tolerance in several ways, First, by
isolatirg real memory addresses from user programs, it contributes to

security, especially 1f the address manipulations are done reliably.
Second, it simplifies internal reconfiguration, replacement, and removal
via page relocation, increasing operatlonal continuity in the presence
of faults, Third, it can provide a natural proliferation of different

versions of data and procedures that can be very helpful in recovery.

4,1, ERROR DETECTION AND ERROR CORRECTIOUN IN i{EMORY

The coding art is well developed with respect to realistic codes and
deccding procedures (e.g., Berlekamp 68, Peterson and Weldon 72). Thus
this section presents various conclusions based on this art, as well as

summarizing various aspects of byte coding for byte-organized wemories,

As noted in Section 3.2, there is a wide range of criticality among
various memory usages, Simple single-error detection or byte-error
detection may suffice for much of memory. However, certain computations
for which rollbachk is both difficult and undesirable may require error
correction, Further, even where recovery is possib'e, some more
reliable memory may be required., Fortunately, coding in memory ais

relatively cheap, even byte-error correction (see below), and especially

1f used selectively.

Various special memories have special needs for coding techniques., For
example, error correction may be neither desirable (because of decoding
delay) nor necessary in an associative memory for which there is
write-through or easy restoration of faulty words. Lowever, capability
for error detection may be very critical., For example, an error in the
associative memory of a paged system can drastically affect both the
system and its security. Burst coding (e.g., Elspas and Short 62,
klspas et al. 62, Berelekamp 68, Peterson and keldon 68) may be

effective in devices with serial transfer.
BYTE-ERROR CODING

Byte coding is hiphly appropriate for byte-per-chip memories, as in an
LSI chip storing b bits from each of y words (e.g., b=4, y=1024), Here
y n-hit memory words are stored in n/b chips, In some technologies it
is possible for a fault to result in as many as b bits in a chip being

in error, and thus byte detection or byte correction may be appropriate

for tlhie b-bit bytes,

Detection of a byte in error within a word with k=n-r information digits
requires exactly r=b redundant bits, i.e., n=k+b, with b interlaced
parity checks. Almos* complete byte-error detection is achieved with
the same redundancy usinp residue codes, which have the advantage that
they are also useful for detecting errors in arithmetic (see Avizienis
et al, 71, Parhami and Avizienis 73). Note that the same redundancy
(and in fact the same code with interlaced parity checks) also provides
BURST-LRROR DETECTION for burst errors, i.e., up to b errors confinec to
b consecutive positions (cyclic or otherwise) (e.g., see Peterson and
Weldon 72). This is true even though b-bit byte errors are a subclass

of b-bit burst errors.

Byte correction can always be achieved with generalized base B Hamming

b
codes with B = 2, The redundancy (in bits) of these codes is

76

-
r =b log IE(2b-1) + 1}1

! Bib , (4.1)
as long as r 22b; x| denotes the smallest integer containing x.
Fewer redundant bits actually suffice in many cases, with a lower bor
given by

r 2 log fﬂ(zb 1) + 1» d 2 2b
T %'p jEE T =24b.
(4.2)

This follows from the required number of distinct error patterns (each
requiring a distinct SYNDROME, or check pattern) for each of the n/b
radix B digits, The best codes known are those of Hong and Patel (72):
if r is written as r=ib+c, with O< c<b, and 1 an integer, then the

value of k for a particular value of r is given by

r b C
K = b (2 -1) -2 (2 -1) +c-r,

2b - 1 (1‘03)
These codes are shown to be maximal when ¢ is 0 or 1 (in the sense that

no such code with greater k can exist for that r); Hong and Patel
conjecture that this is true in general. The redundancy of these codes
is often identical to the bound in (4.2). Since b=l corresponds to the

binary liamming (single bit) error correcting codes, for which

-

-
= log n+l ,
r l ogz()

byte correction requires roughly b - log, b bits more than (single) bit
correction. Note that b-bit (cyclic or non-cyclic) burst error

correction requires

b-1
r = log2(n 2 + 1)
bits of redundancy, which is typically at least lcgzb - 1 bits more than
byte correction -- cf, (4.2).

Table 4.1 summarizes the redundancy of the Hong-Patel codes for typical
values of k and small byte lenpth b, Note that some byte-correcting
codes with b=2 have the same redundancy as the Hamming codes for b=l,
e.g., those with k from 28 to 36, for which r=6., The code with b=2 and
k=36 is perfect, i.g., every non-zero syndrome corresponds to a distinct
correctable byte error. (So are all of the liong- Patel codes with c=0,

corresponding to generalized Hamming codes.) Also noteworthy is the

77

perfect code for b=4, k=60, r=8, Finally, as a simple illustration of
the gap between (4.2) and (4.3), consider the case of b=2 and k=15,

liere r=5 satisfies (4.2), but r=6 is required for this case. The values
of k shown are meant to be illustrative, If tag bits are included in
memory words (e.g., Feustel 73) and encoded, the actual value of k (as
opposed to its virtual value seen by data) may be quite unusual (e.g.,
51 as in the B5500).

Table 4,1
SMALLEST POSSIBLE REDUNDANCY r FOR BYTE-ERROR
CORRECTION IN MEMORY WITH VARIOUS BYTE SIZES b

Typical Redundancy r for
length b=
k l 2 3 4 5.. 8
16 5 6 6 8 10 .. 16
24 5 6 7 8 10 .. 16
32 6 6 7 8 10 ., 16
48 6 7 8 8 10 .. 16
64 7 7 8 9 10 .. 16
128 8 8 9 9 10 .. 16

The cost of redundant storage for byte-error correction is thus scen to
be relatively small for b=2 and 4 (even more so if used selectively).
The cost in time delay can also be small., In fact, if automatic
instruction retry is available, the cost in time can be effectively
zero. Thils is possible for systematic codes (for which the in ormation
digits are directly available in a correct word--as in the case of
Hamming codes), by overlapping the syndrome generation (i.e., error
detection and implicit location) with the instruction execution up until
(but not beyond) the point of no return for instruction retry. As long
as syndrome generation completes before that point is reached, there is
no delay at all due to decoding -- assuming no errors. (This requires
pipelining the decoder in a pipelined machine.) If the word from memory

contains an error resulting in a nonzero syndrome, the instructioun

78

execution is interrupted, the word rewritten (correctly, after error
correction) in memory, and the retry mechanism is triggered. Thus there

is a delay only when an error needs to be corrected.

Varicus efforts are devoted to designing fast decoders (e.g., Lossen 70,
Hong and Patel 72, Carter et al, 72b). Speed may also be enhanced by
the use of read-only memories in decoding (e.g. Laws 72, Mitarai and
McCluskey 72), both for the syndrome generation and for error
correction, as well as by performing various manipulations on the parity

check matrix,

The reliability of decoding for error correction may be enhanced by a
technique of Kautz (62), in which redundant syndromes are calculated,

providing a check on the syndrome generation itself. Such techniques
are economical, especially since no redundancy is added to memory, and

since the cost of the decoder(s) is small with respect to the cost of
memory, Distributing decoders among memory controllers, or even memory
modules, may have advantages of continuing availability of the system
despite malfuncticn of one decoder. Such distribution also facilitates
the selective use of coding, by permitting different encodings for
different portions »f memory. However it means that the busses are not

checked., See also (arter et al. (70b) for self-checking decoders.
4,2, MEMORY RECONFIGURATION

In this subcection we consider schemes for reconfiguring a memory. The
memory is assumed to be built from a number of units (for example, LSI
chips) each having the same memory capacity. When a fault is detected,
at least one unit is discarded and is either replaced by a similar
number of spare units, or the system now has reduced memory capacity. We

use the terms as defined in Section 4.1, with the following additioms.
m = total number of memory units (e.g., LSI chips).

X = number of memory units in a block, i.e., the number discarded

when a fault occurs,

79

—— s

Yy = number of words par block.

w = the total number of words in the memory

w' = the number of usable words required (<w).

We are concerned with two measures of reliability. By F[Zw':w], we mean
the probability that given w words originally, there are at least w'
words remaining at the time of consideration. The second measure used is
PLf], the probability that f faults can be tolerated. Schemes for
memory reconfiguration are assessed by the above two Sactors, plus a
measure of the cost of achieving the fault tolerance. We note further
tiat the probability P[f] of being able to tolerate f faults is
irrelevant for some memory structures. Consider, for example, a block
replacement scheme., All faults can be removed from the memory, although
with a reduction of memory capacity. The single measure P/>w':w] is
therefore a sufficient measure of reliability for such a scheme., In
some other schemes, to be described below, the switching capability is
restricted and P/ f| becomes a meaningful measure of the ability of this

switching network to remove faulty units.

Given x memory urits in a block, the probability Py of failure of a
block is given by
X
Pe= 1-(1-p) (4.4)
The number of blocks is u = m/x = w/y. The probability P, that i
blocks contain faults is given by
uy i (u-i) (4.5)
= 1-P
Py (1/-Pr(£
We use the notation la) to denote the largest integer contained in a.
The probability that at least w' words remain, given w words originally

is given by

Lew=w")/y)
) < P (4.6)
P2 w :w]s= Z‘ fi
i=0
80

4,2,1, MEMORY RECONFIGURATION BY BLOCK REPLACEMENT

Consider a memory in which reconfiguration is carried by discarding the
block in which a fault exists, We further assume that the switch
network that carries out the reconfiguration can handle all fault
patterns, ie the ability to reconfigure is not constrained by the switch
but only by the availability of enough fault-free blocks, The

reliability of such a scheme is represented by (i,6) above,
4,2.2. THE USE OF CODING WITH BLOCK REPLACEMENT

When coding is used for error detection and/or correction, as discussed

in Section 4.1, it becomes natural to constrain the parameters y and b.
The number of bits per chip yb is de:ermined by the prevailing
technolopy (value- from 256 to 4096 are currently common). With too low

& value of b, the number of data lines to the chip tends to make the
number of words in a block large, causing discarding of an excessive
number of words in the event of a fault. Too high a value of b has two
bad effects. First, it increases the number of pinr required for data
on the chip, Second, if a code is used to detect and/or correct errors
on a chip, then the coding complexity rises. We therefore have the

possibility of tradeoff, which is analyzed in detail in Appendix 3.

Consider a memory constructed using LSI chips, in which cyding is used
to correct errors, and blocks of memory are replaced inmediately after a
fault occurs. The analysis in Appendix 3 assumes that a byte-errov
correcting code is used. The number r of redundant bits is related to k

(the number of information bits), as discussed in Section 4.1,

Several detailed design topics are addressed in Appendix 3, particularly
anslyses of the optimum value of b, and the value of P{'w':w , given the
probability p of chip failure,

The following conclusions are relevant here.

* Block replacement strategies for long-life use (i.e., p = 1) requlire

81

very high redundancy to achieve useful system success probability.

Other fault-tolerance techniques should be used,

* For values of p < 0.01, the optimum value for b is 4 in almost all

ce#ses.,

* For mission times of the order of a month or less (i.e., p < .001),

very high values of {>w':w] can be achieved with less than 50%

redundancy.

* One advantage of block replacement is that the memory chips do not
need to contain special switching capabilities, as in rome chip
replacerent schemes. Another advantage is the simplicity of the
reconfiguration strategy. The disadvantage of block replacemeet is that

it is very inefficient in its use of spares, in tha’: nonfaulty chips are
discarded because they are associated in the same block with a faulty
chip. we must therefore consider schemes in which the unit of

reconfiguration is smaller than the block,

4,2,3, RECONFIGURATION BY CuIP RLPLACEMENT

A typical problem in a chip-replacement scheme is the cost of the
switching network required to replace faulty chips with spares. The
novel sclieme presented by example below, and in general in Appendix 3,
examines the possibility of economical switching for reconfiguration at
the chip level, The primitive element in the memory is an LSl chip that
realizes a section of memory b bits wide by y words long, together with
an address decoder for the y words, The chips (including spares) are
connected via a switching network so that the memory can be reconfigured
effectively in the presence of chip failures., The main results relating

to the switching network are as follows:

* The extra cost of the switching network and ¢r the spare chips is low,

compared with a nonredundant memorv system,
* There are well-defined tradeoffs among the cost of the switching

82

network, the number t of chip failures be tolerated, the number s of

spare chips, and the complexity of setting up the switching network.,

* The switching networks can ve embedded within the memory chips, so as

to increase the reliability and increase uniformity,

] A TWO DIMENSIONAL SCHEME

Consider first a non-reconfigurable LSI memory as shown in Figure 4.1.

f Each LSI chip contains d bits of b words and a decoder for the low order
i bits which are routed to all chips. The high order address bits are
decoded to provide activation of one control line which selects the rcw

of chips that contain the desired word. Data is routed to or from the
chips via data lines shown vertically in Figure 4,1,

In the reconfigurable schewe to be described, the chips -re augmented by

the incorporation cf two switches as shown in Figurz 4,2, One switch
enables the chip to be activated by one of three control lines from the
decoder or to be made inoperative by setting the switch to the null
position. Similarly the data switch can be set to be connected to either
of two data lines or to a null pusition., 45 in the non-reconfigurable
mexory the chip contains a decoder for the low order address bits. The
chips are assembled into a merory structure a- fllustrated in Figure .
which shows that the control lines are connected to three rows of cltips
and eaci data line is connectable to two columns of chips. It is
assumed that wrap-around occurs both vertically and horizontally, ie.,
the leftmost data line is also connected to the rightmost chips column,
and similarly for the top and bottom contzoi lines. An extra column of
chips is provided that can be regarded as spares and which we will in
this discussion regard as being the rightmost column. Each spare chip

is controlled independently,

In discussing the reconfiguration capabilities of the scheme we
introduce a notation for lettering chips to indicate the setting of the
switches, The letter of the alphabet used indicates the control line to

which the chip is connected by the control swich, The use of upper or

83

-

MEMORY

CONTROL LINE CHIP

Thok:
T

DECODER

..
¢ 5 .
LY
PO Y

HIGH ORDER LOW ORDER DATA LINES
ADDRESS BITS ADDRESS BITS

Fig. 4.1 Conventional LSI memory organization.

Control Lings

o) (o)
Activation O
Select
Low Order = Memory Contents
Address Bits —, oi Chips
Data-line
select
? O

Fig., 4.2 Memory chip with components of input and output switches.

84

CONTROL
LINES
° 8| v Q‘v & 1| v & | *°°
d
< c ‘;:):1;1‘ < C c|°**
7
d OM& o;&"'
[] []
[]
[]

FROM
DECODER

c
: d
e

[= 8

(3]

B e N —
DATA LINES

Fig. 4.3 An example chip reconfigurable memory,

B|e|s|s|s|8,8|8]|-
clclcfc|c|c|clc]-
- e G e e cnd e afe e g
oo TaTd Tl aTala] SINGLE
E|E Ele|e]Ee]|- CORRECTABLE
F|F R ERER MULTIPLE |
G|G Fla|gjag]s = |
H|H hlh|hih|hg
&K X T X 2 X I _J
N BRI
J [y Jlafafa]-
ol
J |)l k[Kk|K]|-
L]L * = Lfco|o]- NOT CORRECTABLE
M| m g mm]|m|- !
N[N N N[NM[N] - i
8 1 4 5 6 7 8 1
e =

DATA LINES

Fig. 4.4 Reconfiguration examples. ;
85

lower case letters indicates that the chip is connected to the left or

right data line respectively. An unused chip is indicated by a hyphen

and a faulty chip is indicated by an asterisk.

Consider the reconfiguration examples shown in Figure 4.4, The normal
setting of the switches is such that the chips serve the data lines to
their right, In the third row we show the case of a single faulty chip
in the third column. The switches of the cnips to the right of the
faulty chip are ciianged so that they serve the data lines to their left
thereby enabling all data lines to be served. In this example the
reconfiguration was carried out within a single row, without having to
change the setting of the control line switches in the chips. More
extensive fault patterns must in general be handled by using spare chips
from adjacent rows, The three faulty chips of the fi{ch row are handled

by the following switch settings:

*Switch all good chips of row f that are on the right of the faulty chip
so that they serve the data line on their left, thus replacing one cf
the “aulty chips and leaving two vertical busses still to be served by
f-driven chips.

*Use two chips of the next row (labelled F) to replace the two places in
the f row that have not been handled and switch the g chips to their
right to serve their left busses., This leaves vertical bus still to be

served by a g-driven chip,

*Use one chip from the next row (labelled G) to handle the remaining

chip position of the g row.

It can be seen that a fault pattern of n chips in a row can be handled
within n rows and further that the rows below it or above may be used
for the reconfiguration. 1In general, the pattern employed to accomodate
a fault is not uniquely determined. The pattern employed may be rhosen

so as to better accomodate other possible nearby faults.,

The third example of fault patterns shown at the bottom of Figure 4.4,

86

T AT 3 o =

illustrates a pattern that cannot be handled by this scheme, because
there is no chip that can serve row L for data line 4. This is the
smallest pattern of faults that cannot be handled by the scheme. There
are indeed many fault patterns containing more than 6 faults that can be
handled. For example all chips in two adjacent rows can be faulty and
successful reconfiguration can take place so long as there are at least

twice as many rows as columns in the memory.

Appendix 3 presents detailed aspects of the memory organizationm,
includinr, the use of coding to detect and correct errors, the setting up
of the switching network, and the relative performance of this
organization, as compared with block replacement. This organization is

most attractive for long-life and/or maintenance-free applicationms.

Beyond the number of chips required to realize a given memory size,
spare chipr, are provided to take over the function of failed chips. The
reconfiguration is achieved with a switching network that enables the
number of spare chips to be potentially as low as the number of chip
failures to be tolerated, As demonstrated in Appendix 3, the cost of

the switching network is surprisingly small, Further, the switching

network car be embedded economically within the memory chips. Thus,
since typically the number of chips in the nonredundant memory is
comparatively large, the redundancy required to achieve a tolerance to a

significant number of faulty chips is proportionally quite low,

This type of memory organization is particularly applicable to those
situations where a large main memory is required, and unattended
operation is required for periods so long that many faults may be

experienced, Appendix 3 discusses:

* The memory model and a reliability calculatica that demonstrates the

applicahbility of the organization,

* Types of switching networks that can realize the reconfiguration,

* A regular switchirz network organization that is particularly

87

attractive due to the ease of embedding the switching within each chip.

* Reliability estimates of the above regular scheme,

In conclusio.. we have determined ti:at the switch cost for reconfiguring
the chips of a memory is small when compared with the total memory cost.
We have also shown that the algorithme for deciding which switches are

to be set can be simple in certain cases,

DISCUSSION OF SYSTEM ASPECTS

The key aspect of the chip replacement organization is the switkhini
network that effects the reconfiguration., Appendix 3 gives realizations
of such networks wherein the switch cost per memory chip is quite
nominal, and whereby the switching can be embedded entirely within the
memory chips., It is expected that this organization will find utility
in applications with varying requirements as to long life, large memory,
low or nonexistent maintenance, and low spare redundancy. For modest
requirements for which only one or 'wo =inhts neee ts be tshe'itee
between maintenance operations, conventional approaches such as simple
memory block replacement probably suffice. In addition, the use of
low-distance error correcting and detecting codes may be desirable

vhenever rollback strategies are either not permitted or not feasible.

A few theoretical problems remain, the solution of which might lead to

more efficient use of this organization:

* Deriving the minimal switch complexity required as a function of the

memory size, number of spares, and number of faults to be tolerated.

* Deriving optimal algorithms for deciding on the appropriate settings
of switches. It would be desirable to determine tradeoffs between the

switching network complexity and the set-up algorithms,

Perhaps of greater practical interest are the overall system aspects of

including such a memory organizatio: within a fault-tolerant system, We

88

e —— . Tp— 2

N —

Ll jun e Jn e R gttt Bt it ol

Sl e

P AT v e

consider these issues below, with some indication of the difficulty that

each aspect introduces.

FAULT DETECTION. Conventional error detecting and correcting coding
techniques can be superposed on the reconfiguration. That is, the
overall bit length n can include code redundancy. A decoder then checks
each word on read-out from memory, in which case an immediate indication
is available of the block, and possibly the byte, in error. The
reconfiguration process can them remove the offenzive chip and produce a

new operative block of memory, The byte-error correcting codes of

Section 4.1 can he used here. Al:o in this organization some crucial

sections of memory can be given rorc protection by reconfiguring certain

blocks to have more code redundaricy than others,

SWITCHING NETWORK FAILURES, Many switch failures merely disable the chip
itsclf and thus can be handled the same way as chip failures. Two
exceptions are switch failures that produce a solid signal on a data
line or that prevent a chip from being disconnected from a given control
line. Such failures require the introduction of redundant data lines,
Coding techniques as described abuve can correct for these switch
failures. Also a spare data line can be provided,.at slight extra cost
in switching complexity. The spare line would be activated in place cf
a failed line, in which case the netwecrk block that receives the memory
data (wsually the memory data register) extracts the d good data lines
from the d+l lines directed to it.

ADDRESS DECODER FAILURES. The memory organization is clearly sensitive
to failures in the decoder that drives the control lines. It is likely
that some of the decoding function can be distributed among the chips,
up to the availability of pins. llowever, for a large memory system,
most of the decoder will remain external to the chips. Since the
decoder consumes perhaps three to four orders of magnitude fewer parts
than the rest of memory, various fault tolerance techniques can be

economically applied,

SWITCH SET-UP. With one extra contrcl line per block the switches for

89

L gl b Yab o L e b b o

the chips can be set by applying appropriate signals to the data lines
and the control lines. In this mode the switches are set one at a time,

a time penalty that does not appear to be excessive,

SPAN OF RECONFIGURATION. When the memory is reconfigured subsequent to a
failure, a large portion of the memory may have to be reconfigured,
including operative blocks. This contrasts with a block replacement
scheme for which only the affected block need be reconfigured, We have
not computed bounds on the number of blocks that must be reconfigured in
the organization considered. However, in many systems (e.g., in a paged
environment) it is possible to dump the contents of the z-1 operative
blocks onto a backup, in which case the span of the reconfiguration is
not a problem. This approach is not feasible in a real-time environment

where long down-time (e.g., more than 10 msec.) is unacceptable,

In conclusion we feel that there are no insurmountable problems in
incorporating this memory organization into 2 system. The cost 's small
in a large memory system, and may be justified by the prevalence of
memory faults ir. such a system, The switching techniques employed in

this organization are also generally applicab’ : to homogeneous processor

arrays.

4.2,4 RELIABLE SWITCHING CAPABILITY

Previous sections discuss how the memory function can be reconfigured
either at the block or chip level., It remains to be shown that a
switching scheme can be designed that can be fault-tolerant.

We assume the following:

* Memory blocks containing y words, each containing its own address

decoder logic. Typically y will vary from ,5K to 4K,

* Control units which control access to the memory blocks. Each control

unit is connected to c, memory blocks and each memory block is

920

e b i ol o i Eo

connected to <, control units, Some regularity is assumed in the
connections, (When €] = cg , we use the single parameter c to represent
both, Under these circumstances the number of memory blocks equals the
number of comtrol units, and the two units could be constructed as a

single module. Possible structures for ¢ = 3 and 4 are shown in Figures
4.5 and 4.6,)

* A data bus structure which connects to all memory blocks,

* A block address structure which connects to all control units.
* A page address structure that connect: to all memory blocks.

* Control logic.

In all regular arrzys of control units and memory blocks, it is assumed
that all edge connections are "wrapped around" (i.e., that linear
structures are mapped onto a ring, two-dimensional structures are mapped

onto a toroid, and so on).

The mode of operation is explained in terms of a '"READ' from memory.,
Each control unit contains registers (Block Address Registers, BAR)
whoue contents are the block addresses of the memory blocks to which it
is connected. The block address of the required word is transmitted to
all control units, wliere a comparison is made with BARs, and if a match
is found, an enable signal is transmitted to the relevant memory block.,
Under no fault conditions a selected memory block will receive ¢ enable
signals, The page address (i.e. the low-order bits of the address) is
transmitted (o all memory blocks. The selected memory block reads the
selected word and places the word on the data bus., The operation is now

complete,

It is assumed that each memory block is tolerant to a number of faults
(e.g., one) but that a larger number of faults will cause it to be
inoperative. The primary purpose of the control unit is to allow

reconfiguration of the memory. This reconfiguration is achieved by

91

g

changing the contents of the BARs in the control units which are

. connected to the memory blocks whose addresses must be changed., A fault
: in a control unit could result in an error in the ‘enable' signal sent
to a memory block. To prevent such a fault from causing errors, a
voter is used in the memory block. Note that the voter examines only

E the enable line, The connection of a memcry block to the data bus
structure can also be controlled by the multiple enable signals, thereby
preventing a faulty memory block from erroneously seizing the bus

structure,

Table 4.2 summarizes the fault tolerance of an example of the type of
memory system described above. We assume that LSI chips will be used
with 4K bits/chip. We consider an example 'with 32 bit words and 256k
words, and we ignore the cost of the error‘correcting encoder/decoder
circuits. We are concerned with two measures, first, the probability
that a particular failure mode will occur, and second, what the effect

of that failure will be.

REDUNDANCY.
* Unprotected memory = 2048 chips
* Memory protected by byte codes n 2560 chips

(20% redundancy)

* Memory protected by byte codes J- 2624 chips

plus reconfiguration (23% redundancy)

HARDCORE, The structure as outlined contains address propagation

circuits, As shown, these circuits do not possess any reconfiguration

capability. In this sense they represent the "hardcore" of the system,

oy
Table 4.2 (w = 4K, Total Storage = 256K, ¢ = 4, Word = 32 bits)
Failure Mode Probability/Hr External Effect
; . -
Single chip failures in a particular 4 X i0 None
memory block
Single chip failure in any memory 2.6 X 10'3 None
block
-11
Two chip failures in same block 3 X 10 XT Loss of block A
before reconfigurcztion (T = time (in secs) plus \
to reconfigure) Loss of data 1
Control unit fault 6°4 X 107° None
Two adjacent control vnit faults 5 x 10710 Possible loss of .
(adjacent means two control units block; possible
which are connected to a common loss of total :
memory block) memory 3

VIRTUAL MEMORY. The control units map virtual block addresses to
physical block addresses. These units can therefore be used, with no
increase in cost, to implement virtual addressing and paging, without

need for any other "paging box" or its equivalent.

FAULT-TOLERANT DATA LINE STRUCTURES

i
A reliable memory system can be built in which the memory chips
themselves can be reconfigured if a fault occurs. A further potential
cause of failure of the memory is the failure of the data lines both
into and from the cuips. Such failures would tend to be less frequent
because the amount of equipment involved is much less than in the memory
function itself. Thus, for some applications it is not necessary to
protect against the failure of these lines, while in more stringent
applicatiéns a means must be provided to carry out some protection. The
data lines may fail in two ways. First, the equipment in those lines

may itself become faulty., Second, a failure of one or more of the

93 o ‘.

e R

cal et b o

menory chips may cause a data line to be subjected to erroneous signals,

We can consider two prime ways in which the data lines can be protected
against faults, by coding or by the use of redundant lines. In both
cases equipment must be added, to carry out the encoding and encoding,
or to switch the redundant lines. The probability of faults in this
additional equipment may be greater than in the data lines that are to
be protected, and careful analysis must be carried out to determine if

such equipment is therefore justified.

CODING ON THE DATA LINES. The use of a code for single-error correction
and double-errcr detection on the lines protects against any single data

line presenting spurious data., Such a code is quite economical for all

reasonable word lengths,
REDUNDANT DATA LINES. The addition of a single data line can easily be

incorporated into some memory schemes such as the chip replacement

scheme discussed above.

94

T B Tl T, L\ T L T e i I G R T PERTN] S ME CL M G 0 o0 B A THIE W U MR e =, [¢ Rt o, ot S X e A Ty W T (e i bani®:

CHAPTER 5., ARITHMETIC AND LOGIC

While very low redundancy in memory produces significant improvements in
system fault tolerance, arbit-ary logic may require full duplication for
instantaneous error detection in any one unit, and full triplication for
instantaneous erroi correction in any one unit. Fortunately, there are

several factors that may help to reduce the cost of redundancy:

(a) Detection may not be uniformly critical in time and space, For
example, partial detection may suffice, detecting only certain faults,
or detecting a fault within some period of time, Similarly, some faults
may be more critical than others. Also, within a particular scope of
computation (e.g., an instruction, a subroutine, a block, a domain

within a process, or a process), detection may be required only on exit,

(b) Instantaneous correction may be unnecessary, especially when good
facilities are available for recovery and retry (with or without

diagnosis).

(c) Considerable flexibility arises in the use of reconfigurarion of
units (e.g., through changeable microcode), with tradeoffs among degrees

of redundancy, performance, and functional completeness.

(d) Many systems seem to be dominated by the costs of memory. Thus,
greater relative redundancy in arithmetic, logic, and control may have

little impact on the overall cost of the system,

(e) Automatic retry of an instruction during which an error has been
detected is both powerful and economical., Its primary requirement is
that the initial operands (e.g., in registers or memory locations)

should not be overwritten during instruction execution -- or at least

should be recoverable from somewhere in memory.

These factors are found to some extent in existing systems, but usually

in isolation rather than as part of a systematic methodology for fault

tolerance,

95

-

5.1. DETECTION AND CORRECTION OF ERRORS IN ARITHMETIC

Arithmetic operations may be checked by duplication and coniparison, with
hardware redundancy of about 55%. Duplication detects all errors in any
one unit, but fails tc detect identical errors in each of the two units,
The use of dual-rail logic is also possible, with hardware redundancy
about 37% and 42% cited in an arithmetic~logic unit for 64-bit and
32-bit words, respectively (Carter et al. 70). However, the class of
faults covered ic significantly less. The use of residue codes (e.g.,
Avizieuis 71) can be effective, with redundancy in the range between 10%
and 25%. A residue code has the advantage that it is also error
detecting if used in memory. For example, in a byte~organized memory
with b~bit Lytes, the use of the residue 2b - 1 detects all errors in a
byte except for the error which substitutes the all-zero byte for the
all-onc byte, or vice versa. The cost in memory 1s ore redundant byte,
(This cost is the same for complete byte-~error detection in memory,
using b interlaced parity checks -- which however do not detect errors
in arithmetic.) For bit-serial and byte-serial arithmetic, duplication
is both cheap and effective, For byte-serial arithmetic, residue codes
are also of valuve (e.g., Avizienis et. al, 71). A would-be problem of
multiple errors resulting from a single fault can be overcome by the use
of the (Zb = 1)'s complement of the residue. (See Avizienis 71 for the
use of inverse residue codes for repeated-use faults,) For parallel
arithmetic, residue codes may offer substantial cost advantages over
dupiication, although care must be taken in carry-look-ahead schemes to
avoid unchecked multiple errors resulting from a single fault (cf.

Langdon and Tang 70); otherwise duplication may again be preferable,

Byte-~organized processing is advantageous for integrated circuit
implementations, and is also well suited to carry-look-ahead schemes,
In a byte-organized arithmetic unit with bytes of length b, multiple
errors may arise in a single byte slice (e.g. on a single chip), These
are detectable by residue codes with a residue at least 2b and
relatively prime to Zb. If the all-zero/all-one substitutions are of
negligible likelihood, the .esidue 2b - 1 is ideal, (If they are

likely, then alternating the physical encoding for a "1" in successive

96

bit positions may Le useful.) Note that duplizetion provides BYTE-ERROR
LOCATION, since the error is in the lowest-order byte position in which
a discrepancy exists. However this could result from a fault in elther
of the two units, and then either in the byte or in the carry into the
erroneous byte, so that duplication is not FAULT LOCATING. Byte-error
locating arithmetic codes that are not also byte-error correcting (see

below) do not otherwise seem to exist (Neumann and Rao 73).

If correction of arithmetic errors is required, triplication is clearly
one alternative, There is alsc on extensive theory of error-correcting
arithmetic codes. Such codes typically require a cost roughly
equivalent to duplicaticn of the arithmetic unit (Rao 70), instead of
triplication (plus voting). These codes may also be used for error
detection, detecting & wlde range of multiple errors at much lower
decoding cost. For byte-organized arithmetic units, the recent work of
Neumann and Rao is applicable, providing codes for byte-error correction
in arithmetic. See Appendix 4 for an extended version of Neumann and
Rao 73. (A notation gap exists between the literature on memory coding

and that on arithmetic coding, which has regretfully been perpetuated,)

The suitability of such byte-correcting arichmetic codes is not
uniformly clear, It depends on the particular byte sizes and word
lengths, and on the type of decoding. The redundancies required for
various codes are compared in Table III of Appendix 4. Included are the
minimum redundancy byte-correcting codes for memory (Hong and Patel 72,
see Table 4.1), denoted by "M" in the table; the AN and gAN codeg with
A= (2b ~1)p (denoted by "A"); bi-residue codes with arbitrary residues
2b - 1 and p ("R"); multi-residue codes with generalized "low-cost"
residues of the form of expression (11) of Appendix 4 (denoted by "G");
and those multi-residue codes with only low-cost residues, of the form
2% 1 and 2t- 1 (denoted by "L").

The byte-correcting arithmetic codes also proviZe byte-error correction
when used in memory. Some of these codes have redundancy very close to
the comparable byte-error correcting codes for memory. Such codes thus

have potential for efficient dual use, both in memory and in arithmetic,

97

apicn 1 s,

i BT b L e L e i e LRI AT e e

ol i

Advantages of such dual use are discussed by Avizienis et al., (71},
particularly with respect to the residue 15 error-detecting code used in
the JPL-STAR (Avizienis A2). Other codes require substantially more
redundancy, in which case they are not appropriate for such dual use,
Nevertheless they remain of interest for byte-organized arithmetic,

As a favorable example, consider the length k=42, with 2-bit bytes.

Here 7 bits of redundancy are required for byte correction in memory,
while 8 bits are needed for seversl forms of arithmetic byte correction
(A, R, G). In particular, the radix 4 byte-correcting multi-residue
arithrwetic code with low-cost residues 3 and 49 = 7x7 has the remarkable
property that byte-error detection in arithmetic and memory is obtained
simply by taking residues module 7. Thus byte-error detection alone is

cheap and fast, with correction available if desired. Other examples
are cited in Appendix 4.

There is also recent work on burst-error correchihg arithmetic codes

(e.g., Bow 73), although that is probably of less interest here,

In general, arithmetic-error detection is highly advantageous. Error
correction may be needed only rarely, especially if instruction retry is
possible in the case of intermittent faults, or if alternate means are

available in the case of permanant faults. Such alternate means may
include, for example:

(a) Switching a spare byte slice to replace a faulty one, e.g., using

the rippler of Stiffler (73). An extreme example is that of a cyclic

- loop of n+l stages; when broken by & faulty stage, there are still n

consecutive correct stages., However, there are problems here in
switching on read-in and read-out.)

(b) Removing the faulty byte slice, with either a degradation in
precision, or the uvse of nmultiple-precision operations (possibly in

microcode).

(c) In a duplicate-unit environmeut, discarding the faulty duplicated

98

e s e b i

unit, leaving full computational capacity, but no checking capability.

whenever the cost of arithmetic units is typically small compared with
memory costs, the reliability and availability goals can freely
influence the design. Nevertheless, the cost of logical (functional)
duplication need not be physical duplication. For example, a fast
parallel arithmetic unit may be checked by a slower byte-serial unit,
with disagreement triggering an instruction interrupt, In some cases
(e.g., if the result is being written into a memory much slower than the
arithmetic unit), simple instruction retry may suffice. In some cases
(e.g., in a pipelined environment), some rollback may be required,

although this can be minimized by judicious use of registers and memory.

In summary, high availability results from a multiplicity of units, or
multiple-precision modes among degraded-performance units with removed

byte~slices. High reliability results from the use of error detection

g T

with retry, rollback, and reconfiguration, and with error correction
possible in extreme cases, Probabilistic detection may be adequate,
Periodic interspersed diagnosis provides a useful enhancement when

detection is not available directly.

5.2, ERROR DETECTION IN LOGIC OPERATIONS

For logic operations, duplication is necnssary for error detection in

i s e e o

some cases, while coding does not work --- except fSE modulo-two linear
oper-.ions (e.g., exclusive OR). Dual-rail logic (bqrter et al. 72) {
seems valuable, with costs potentially less than duplication for error
ciiecking. In some cases, consistency checks are available. In other
cases, partial detection is acceptable, at relatively low cost (cf.
Carter et al, 7la). In such cases, detection is not immediate, but
occurs in a probabilistic sense within a specified period of time. As
in the case of arithmetic, where alternate means are available for
permanent faults, various alternatives are available for logic. These
include using spare byte-slices, performing (possibly micro-programmed)
two-step operations on a half unit, and (in a duplicated mode)

99

discarding a faulty cduplicate unit to runm simplex,

Still another alternative is available for logic, using the arithmetic
unit to perfcrm logic operations (e.g., micro-programed) when a logic
unit is not available. If the arithmetic unit is qhecked, it follows
that the logic operations are also checked, as seen below. It is well
known that all logic operations may be derived arithmetically, given for

example, the bit-wise operation x »y, e.g.:

xvy = (xty) - (x.y), (5.1)
X@y = (xty) = 2-(x~y).
Here "." and '%"' denote INCLUSIVE OR and EXCLUSIVE OR, respectively,
The romaining operations are normal arithmetic addition, subtraction,
and multiglication ("+", "-", "." respectively). Complementation is

easily obtained when ONE's or TWO's complement representations are used.

Monteiro and Rao (72) have examined a realization of logic operations
using a residue-checked arithmetic unit and an AND circuit to produce
checked arithmetic and logic operations, If logic operations are
relatively infrequent, little performance degradation is required to
perform checked logic in arithmetic. Since the AND operation X~y can
be available as & hyproduct of the arithmetic unit, e.g., when the sum

is obtained as

z=xty = (x@y) + 2-(x~y), (5.2)

it iz possible to generate all logic operations without the extra AND of
Monteiro and Rao, although it is of course desirable to augment the
byproduct AND output with the correct residue check digits. For various
implementations of (5.2), the incorrectness of x ~y results in the sum

z = xt+y being in error. If the error is detectable (e.g, via the
residue check on the result), retry and reconfiguratiun may be
initiated, as warranted. Similarly, an error in arithmetic during the
formation of a logic operation other than "~" may be detected by the

arithmetic checks on the successive arithmetic operations, However,

100

Bl s

oo

B gk At A

arithmetic overflow (one bit) must be covered by the residue code. An
overflow may arise temporarily during the sequence of operations (e.g.,

in (5.1)), but disappears in the final result.

This approach is extendable to byte-error detection and correction.
However, in cases of multiple faults, it is necesssary to assure that

X ~y is correct independently of the correctness of x+y. For example, a
pair of cancelling (but rare) errors would not be detected by the

residue check on xty, e.g., +1 in position i+l of x®y, and -1 in
position i of x~y in (5.2).

A final word is appropriate on the impact of technology on the relevance
of the schemes discussed here. On one hand, selective replication may
be relatively economical. On the other hand, the trend toward
increasing the number of functions per device may make the use of
duplication of gates or busses less profitable if the multiple versions
of a function are all on a single device. This is because there tends
to be a high correlation among faults within single devices. Further
limitations on some of the techniques described here will be felt

because of the limitations on the number of pins available per internal

function in the new technology.

CHAPTER 6. EXAMPLES OF FAULT-TOLERANT COMPUTERS

In the subsections of this chapter, we discuss fault-tolerance
requirements for computers used in different applications., Our
viewpoint is that the different applications have different requirements
for reliability, availability, data protection, maintainability, etc.,
and different opportunities for the use of fault-tolerance techniques,
These different requirements and opportunities result in a variety of
computer architectures. In effect we see that a single 'best'
fault-tolerant computer design is not poseible, However, time-sharing
systems possess nearly all the requirements of fault tolerance of
computers in general. Therefore, we discuss them first and treat other

computer types as variants.

Each subsection deals with a different application class --
general-purpose time-shared, general-purpose batch, communication,
super-fast and aerospace. For each application class we discuss the
most common requirements and the most appropriate architectures to
satisfy these fault-tolerance requiréments. Table 6.1 is a summary, in
very compact form, of the material of this section, The parameters
quoted (e.g., speed, memory size) are intended to be the most common
without implying that examples outside the range cannot occur. The
techniques that are appropriate for each application class have been
discussed in detail in the foregoing chapters. Here we attempt for
specific applications to evaluate some of the architectural types

discussed in Section 3.3. In addition Appendix 3 contains detailed
considerations in the design of fault-tolerant memory systems,

Certain properties are common to all classes of computers (o
applications) of which the following are the most important from the

standpoint of fault tolerance:

* Central memory frequently dominates the cost of the system, but is
also the unit that is most easily and economically protected., Selective

and dynamic use of coding can be very cost-effective,

Preceding page blank 103

T e

(4D) LINIRIOVIdId dIHO

(¥9) LNIWIOVIdad 3D01™
(q3) "1*a ¥oyyd

(03) "HHOO HOWHI

(W) XYOWIW

(J) NOSIYVdWOD

(S) ONIYvde

(A) DNILOA

(Y4) NOILVOI'Id3d

(L) NOILVOI'IdI®L

] (@) NOILvD1dnd
(V) S3A0D JILINHLIYY

(d) ¥0ss300dd

J19VL HIM0T OL XA3A

LON :VN

FATEVIIVAY ¥

saA X
AHIA A

" ON X
Mot i1

"

LNAWAHINOIY HOIH :H

d78VL ¥3ddN Ol AdA

. il s sk D g 4

ug ¥d ‘ug ud .
yg‘qa‘od:w| ‘qa‘oA:N ‘qa‘oa:nfua‘aa‘oa-w|ya‘aa‘oan
o'A‘H:d ovy:d oVA‘L:d ov‘d:d av'y:d YOSSIO0UA ILTINK
it e B
H:d 3ANIT3d1Id
4803 W
S:d AvVHYEV
49 ‘03 W
- :d HALNANO0O-INIR
ud
‘o3 W ‘qa‘od M
a 'ov :d v :d HOSSTIOUd I NN
SAYNIDALIHIYY LINVATTIH LSOW
o1 - 01 01 - 01 o1 - 01 ot - 01 o1 - 01 (sdow) peads
9 S 8 9 9 S 9 1 9 1
01 - 01 01 - 01 o1 - 01 01 = 01 01 - 01 (spaom) AJowdK
[3 L [9 ¥ L s 9 v
VN/V \4 VYN \4 A asusudIUIBY
2> %02> S> %0%> %H0T> JuUTBIISUOD 350D SOUBIITO} IIned
- X X X X dayaeys eleq
- N X A X AuyIBYS 22INO0SAY
-0 - 0o 1 o1 - 0 o1 - 01 (soas) awyl AI9A009Y
mOH [t vo~ £ Nlo £ ! [1 14 £ v
H 1 HA H 1 A11119811RAY
1 1 HA H/11 H/1 5311NSaI JO §58u3dIIIOY
bt 1 1A 1 1 uoijo@j0xd wexdoad uoyjeoy1ddy
1 1 1A H H uoyjoajoad °s°o
N 1 HA H H uoy3dezoad eBleq
NOILVO 1Svd AdvdS q3I¥VvHS
- INNNNOOD -43dNs -043v awilL HOLlVE SINIWIHINOIY NOWKOO LSOWN

sanbyjuyoay aousaalol IINE}
jueaadlaa jsou ayi pue sjuowaIrjnbal Iyjay; ‘sasseld uoyieoy1diy
1°9 2198L

104

* The arbitrary logic of central processors is the most difficult to

Protect but often represents a small proportion of the total cost.
Thus, replication is practical for many applications. Selective

replication seems practical except when all usage has uniform
criticelity.

* Faults in most peripheral equipment (e.g., printers, magnetic tape

units, modems) are best handled by providing spares and reconfiguring,

* In most multiprogrammed systems, a vital component is the drum or
other large storage device that is used for swapping. We therefore . .

consider the effect of faults in that unit for time-sharing
applications,

In view of the above common features, it is practical to consider a

representative computer system and then treat other types as varlants

upon it (from a fault-tolerance standpoint). As such a computer, we

take one of about the scale of the Multics system (Saltzer A2), It is
recognized that Multics is larger thau tlie average installation,
However, it represents a suitable system on which to apply
fault-tolerance techniques, because the loss of avaiiability or of files
is significant, In addition, the cost of Multics precludes the use of
crude replication techniques. Because we are considering future
computers, we assume that LSI techniques will be used wherever possible,
Such use of LSI includes electronics assoclated with peripheral
equipment having no stringent speed requirements, as well as memory,

where we can take advantage of the regularity of structure.

In the central processors it will generally be nece2ssary to use the
faster MSI logic technology. For a system on the scale of Multics, tﬁé
analysis of the use of different fault-tolerance techniques is given ip
detail in Section 6.1, Treating this illus*rative computer as in some

sense typical of computers in general, Table 6,2 illustrates the

effectiveness of different txchniques. The tecnniques are discussed in

earlier sections of this report., In examining the probabilities of

-8
error, nonavailability, etc., we do not quote values less than 10 /hr,

105

=

e

»

é,#

4

Stage © nl osvstom

Retevence

that 1s re-

TABLE 6-2

EVALUATION OF FAULT-TOLERANCE TECHNIQUES

Probability ot
‘ncorrect Outputs 'hr,

“ Memory Oegradation
after Single Fault

=

© Processor
Oegradat ‘on

Mean Time
to Unavaila-

Recovery Time for
Tolerated Failures

dundant (Application Programs) after Sir le bility (days) (Anplic. (System
Fault Prog.) Prog.)
1 0 005 100 100 8.2 NA NA
2] 6.8 . 002 100 100 7.6 SA NA
3 6.8 002 0.3 100 21 {S¥ote 1) (Note 1)
2
] 13 .002 0 100 21. 0(. 0(2)
3 1 . D02 0.3 100 21 2 msec 2 msec
{2
6 17 . 0008 0 100 19 0(2) 0)
-7 (2 2)
7 26 10 [j] 100 13 1] !]
-6 3
[35 w0® 0 100 2w 0 0
3
4 {3 cpu’s) 15 N7 KK 33 3 v 10 (Noted), 10 sec
9 cpu's) 15 L 00053 n 1 10’ Note 4] 3 sec
(16 cpu’s) 15 L0001 7 G S’ 1 see
3
10 (3 cpu's) 21 .002 a3 3 3.4 10 0
(9 cpu's) 21 . 00067 11 i1 107 Sote 1 v
(16 cpu'sy 2 00038 7 7 S10” 0
11 (3 cpu's) 52 <93 ln-g 33 33 5 x 103 10 sec 10 sec
9 cpu’e) 52 <1071 1 1 > 10 2 cec A car
(16 cpu’s) 52 <1070 7 7 > 10° <1 sec < lsec
. 4
12 (3 cpu’s) 23 .0025 33 34 10 10 sec
5
(9 cpu’s) 23 . 0008 11 11 ~ 10 Note 4 3 sec
5
(16 ¢pu’s) 23 . 0005 7 7 > 10 < 1 sec
5
13 (3 cpu's) 20 .003 33 33 > 10 1 sec
5 (Note 5)
(9 cpu's) 20 .001 11 11 > 10 Note 4} < .1 sec
(16 cpu's) 20 . 0006 7 7 > l05 < .1 sec

1. Recovery time is dependent on

should suffice,

2. This is the recovery tima for memory failuras.

time required to reload from a previous known corrcet state.

3. We assume that a duplexed multicomputer is unavailable when fewer than 2 complete units remain operative.

4. The application program recovery time is dependent on the time it takes the uaer to detect an error plua the re~

starting time.

5. The recovery time is dependant on the fault location,

ties.

106

Typically a few seconds

For detectut processor failures external maintenance is required.

«ne values given here are avaragad over all fault posaibili-

This represents such a low probability that the event would be expected

to occur once every 10,000 years.

6.1 GENERAL-PURPOSE TIME~SHARED COMYUTERS

The most general case is that of general-purpose systems with
interactive and noninteractive use. Many other systems can be

considered as special cases of such systems,
REQUIREMENTS

With all expensive equipment, there is an economic need for reliability.
An additional requirement is for the integrity of data. A constraint
derives from the fact that a time~shared computer may fraquently be used
by many users. A loss of control or data may result in the effective
loss of several hours work of these users -- a severe penalty, Valid
control and high integrity of data are therefore vital. The canager of
such a system should be preparel to pay more to protect against faults

than would the manager of a strictly noninteractive (batch) system.

Many time-sharing computcrs are used for long-term information
processing rather than short-term computing., The long-term protection
of data is therefore of vital importance. This is typically achieved by
recording back-up data and program files on disc or tape at regular
intervals. Another aspect of the need to protect data files is the
protection that must be maintained against loss of data because of the
actions of other users, or an errant operating system, either possibly
being caused by a hardware fault condition. We see sclutions to these
problems through restricting the physical address space accessible to
each component of the system, In terms of the concept of levels in
Section 3.2, we need to assure by suitable hardware means that low-level
software (e.g., that controlling the physical allocation of resources)
must be very reliable, while higher levels must be constrained to
operate only in the domain allocated to them by the low level software,

The protection of the operating system is therefore the most crucial

107

fault-tolerance requirement of the system, The Multics syrtem is a

current example of a system that recognizes the need for protection of
the innermost levels of the executive against erroneous operation at
outer levels. However, the protection in Multics is against software
errors at outer levels and against maievolent users, not against
hardware faults. The solution for hardware faults is to provide a
system in which the redundancy is variable with time so that the
low-level parts of the operating system can be protected without

incurring redundancy for users who do not require the protection.

Consider, as a central example, a system of structure similar to

Multics, initially with the following specificationms:

1 Central processor

384K Words of memory, each 32 bits
1 Unit for file storage
1 Drum or disc for swapping

We further assume that LSI circuitry is used throughout for all units
except the central processor, where the faster MSI technology is used.
We can estimate the chip count for an irredundant realization as
follows,

Processor...... 2000 chips

Memory ssee.ee. 3072 chips

Disc control .. 20 chips

Drum control ., 20 chips

Total XX 5112 Chips

Note that the above estimates are intended only to give the order of

magnitude of the sys

tem components, no greater accuracy being required
(or intended).

For simplicity, we assume in the following that the
memory chips are organized as 1024 bytes each of 4 bits. This
assumption is not critical, because other configurations of chips would

yield very similar results in the reliability analysis,
approximation,

To a first
Weé can assume that system error rate will be in direct

proportion to the number of chips employed, and we assume a failure

108

2 il

PR BT WP T W Y

ot i

e A S A ™ Tl gt o

A A L N e S AN L R e e

-6
probability of 10 per chip per hour. We present the various design

concepts, and the techniques to be applied in a number of stages. The
result of applying various fault-tolerance techniques is shown in Table
6.2, and illustrated graphically in Figures 6.1, The method of
presentation is to examine a succession of stages of adding redundancy,
ir some cases to improve the probability of correctness, in others to
improve the probability of availability, and in others to decrezie the
recovery time after a failure. These stages range from techniques
applied to a simplek system (Section 3.3,1) to the multiprocessor

concepts discussed in Sections 3.3,2 and 3,3.3.

STAGE l: NO REDUNDANCY

In a totally unprotected non-reconfigurable mode, we can expect the

reliability characteristics to be as shown in the top row of Table 6,2,

STAGE 2: ERROR DETECTION IN MEMORY

The most obvious first step in applying redundancy for fault tolerance

oy e g e Y kel b el e e S

is in the membry. The redundancy is in the form of extra bits in the 5
words for coding as discussed in Section 4.1, At the lowest level, a
single byte per word (parity byte) reduces the probability that ;
incorrect data is able to corrupt results before being detected. We
assume no mrchanisms exist for reconfiguring around the fault or for

recovering the lost computation.

STAGE 3: ERROR DETECTION AND BLOCK RECONFIGURATION IN MEMORY

Memory : 9 chips per block: 8 information, 1 check
384 blocks, reconfiguration around faulty blocks

3456 chips total

Processor: 2000 chips, unreplicated.

LA L % T i et simtdon sl < /. LA SR S i

TR SR T e .

Errors in memory are detected by the error-detecting code. At the time
of detection, the faulty block is immediately identified. For
convenience, we assume that the number of words per block corresponds to

the number of bytes per LSI memory chip, namely 1024. The state of the
computation affected by the error is essentially lost unless other

measures were taken earlier to establish a recovery point,

STAGE 4: ERROR CORRECTION IN MEMORY

Memory: 10 chips per block: 8 information, 2 check
Single byte error correction within each block
No reconfiguration around faulty blocks
3840 chips total

% Processor: 2000 chips, unreplicated.

With increased redundancy certain error correcting codes (e.g., Hamming,

distance four, byte, burst) can be used which have sufficient data to.

A e L Ly

enable correction of some faults and the detection of some more

extensive faults. These codes enable the computer to survive in the

presence of some memory faults thereby increasing the MTB)’, and also

reduce the probability of incorrect results. The system nstantly
recovers from all single faults in memory.

STAGE 5: CODING AND RECONFIGURATION IN MEMORY

Memory : 10 chips per block: 8 information, 2 check

Single byte error correction within each block

Immediate switchover to operative block in response to failure
3840 chips total

Processor: 2000 chips unreplicated.

Given block replacement in memory (see Sections 4,2, 1, 4.2.4 and 4,2,5), i
a redundancy cof 20% in the memory reduces the probability of loss of i
data in memory to less than 10 /hr, which is negligible with respect 3

110

to other fault probabjilities. The principal advantage of 3tage 5 over
Stage 2 is that for asout 60 percent of all faults (i.e., those in
memory), the recovery time is essentially zero because the combinztion

of coding and reconfijuration allow the system to continue opzration

VAT R 4 o MR Lo W N T LY My T T W Ay

with only a sumall loss of memory caparity. A good strategy to follow is
to transfer the content: of a faulty block to another block or to disc
vefore another tlock error cccurs. (In Multics this transfer is

: relatively easy, except whzn the first block of memory is affected.)

Clearly, such conditions regsulting from chip failures will be

insignificant comparad to faults due to other causes (e.g., connectors,
printed circuit boards, ,ower supplies). The number of such components
will tend to be roughly proportional to the number of chips used, and

the decrease, because of the use of LSI, will allow the use of more
rigorous construction and testing techniques, both of which will reduce

: the fault probability.

STAGE 6: CODING AND RECONFIGURATION IN }_.0RY,
CODING IN THE PROCESSOR ;

Memory : Same as 5

Processor: Qnreplicated portion--800 chips
Coded portion: 1200 information chips, 240 check chips
(Assume all, single chip errors are detected)

2240 chips total

As an alternative development, we may apply coding in the processor

itself, Clearly there are some parts of the processor in which coding

ir more easily applied than in others, We estimate that 60 percent of
the processor can be checked for single faults by applying coding to the

3o e

following types of units:

Registers
Busses
Adders/subtracters

Counters

111

L g T T T T T TR T PO DI N A = Y -

We further estimate that ccding in the processor adds 20 percent to the

chip count of the above unit types. The remaining units are mainly
concerned with control rather than arithmetic. We take as a
conservative estimate that any fault in the noncoded 40 percent will
cause some incorrect results. Because the coding at this level is used
only for detection, it does not improve the availability but does resuce
the probability of incorrect results. It also shortens the recovery
time in the protected portion of the system, by providing diagnostic

information.

STAGE 7: CODING PLUS RECONFIGURATION IN MEMOKY,
CODING OR DUPLICATION IN THE PROCESSOR

Memory : Same as 5
Processor: Duplicated portion 800 + 800 chips
Coded portion: same as 6

3040 chips total.

For further protection against the posssibility of incorrect results, we
take Stage 6, with the addition of duplication (and comparison) of those
parts of the processor that could not ke protected by coding. This
addition drastically decreases the error prébability, but with a slight
reduction in availability.

STAGE 8: CODING AND RECONFIGURATION IN MEMORY,
ERROR CORRECTING CODES PLUS TRIPLICATION IN PROCESSORS

Memory: Same as 5
Processor: Triplicated portion: 3 X 800 chips = 2400 chips
Coded portion: 1200 information chips, 6G0 spare chips
(Assume all single chip errors are masked)

4200 chips total.

112]

In this stage, the repular portion of the processor is protected by
single-byte error-correcting codes, The extra cost here, including a
high-sped decoder, amounts to a redundancy of 33 percent. The remaining
nonregular portion of the processor is made fault tolerant by
triplication., The availability, correctness, and recovery time should
be adequate for practically all time-sharing installations. Thvs, this
stage represents the redundancy required to achive a high degree of

fault tolerance in a simplex system,

STAGE 9: FIXED MULTICOMPUTER, SELECTIVE DUPLICATED REDUNDANCY

n individual compvter anits, n = 3 - 16,interconnected by a
Communication bus
Each unit has 1.2/n the power of the simplex units in stages 1 - 8

No fault tolerance within units,

In this stage, the processing i;ad is divided among a number of
processing units. We assume that the total processing complexity is
increased by 20 percent, due to the extra cost of the communication bus
and due to the extra processing power needed to counteract the
ineffiéiency of running large jobs in smaller proressors. Note that the
memory is also divided in a fixed manner so that large: and small jobs
all get essentially equal portions of main memory. The critical portion
of the operating system will run Simultaneously in a pair of computer
'pqits. The portion that is critical is relatively small -- comprising
about 10 percent of the system overhead -- as it comprises the job
idispatching and error control procedures, The recovery time after a
failure in an operating system unit is dependent on the time to restart
the operating system from a checkpoint, The recovery for user programs
depends on the facilities available, ard how they are used, Results are

tabulated for decomposition into 3, 9, and 16 computers.,

113

sk s oalaleid i

R i e o e il el i b £ e s 1y

I e

.

STAGE 10: FIXED MULTICOMPUTER, SELECTIVELY TRIPLICATED

»

This stage is the same as Stage 8, except that the critical portion of
the operating system is run in a triplicated mode. This can reduce the

recovery time after a fault occurring in the execution of the operating
system,

STAGE 11: FIXED MULTICOMPUTER, UNIFORM REDUNPANCY

Here all programs are run simultaneously in two computer units. Thus
the system is more than 50 percent redundant, with good availability,
The recovery time is uniformly low for all programs., This stage is not

of primary interest here, but is of use in aerospace environments.

STAGE 12: RECONFIGURABLE MULTICOMPUTER OR MULTIPROCESSOR,
DYNAMICALLY USED DUPLICATION FOR THE OPERATING SYSTEM
Conventional multiprocessor containing n processors and n memories,
n=3-16
Each processor is 1.25/n the power of the simplex processor

No fault tolerance within units

Pair of processor/memory combinations can be operated in duplicated

mnode for error detection.

Here a processor/memory combination can be configured out of operative
processors and memory blocks. It is also possible for application
programs to get variable blocks of memory by appropriately configuring
the switch. The switch here is more complex than the commnication bus
of Stages 9, 10 and 11, so that we assume the extra processing
complexity required is about 25 percent as compared with the simplex
processor. The critical portion of the wperating system again runs in

two computer units, The critical portion is larger here than in Stage

gt b e G

9, because the protection mechanism is more sophisticated, and must be
fault tolerant. Consequenily, we assume that about 40K words of main

memory, and about 30 percert of the processing load, are required for

Sicigiio e Ty

the critical portion of the oprating system, The primary advantage of _
this stage over Stage 9 is in its increased availability, because of the :
partitioning into separate processor and memory units. The results for

114

'%

this stage represent the performance expected for the architecture of 3
Section 3. 30 30

STAGE 13: MULTIPROCESSOR WITH DYNAMICALLY USED DUPLICATION,
FLEXIBLE INTERPROCESSOR COMMUNICATION, SELECTIVE MEMORY CODING

SCAARL fopdinon o b Boh o piio ol sl e el ek b

e

Conventional multiprocessor containing n processors and m memories,
n, m=3 - 16, n not necessarily equal to m
Each processor is 1.3/n the power of the simplex processor §

Dynamically modifiable byte error correction within memory units

No fault tolerance within processor units
E Pair of processors can he ope:atcd in a duplicated mode for error

F detection.

This stage differs from Stage 12 in that the switch can interconnect

among processors, as well as between processors and memories. This

added flexibility permits two processors to operate in a duplicated

T R T

mode, without requiring the cost of memory duplication. The memories

L)

can use coding selectively, as in the case of the processors, only for

the critical portion of the operating system, Because of the switch

complexity, we assume that the extra processing power required for this
stage is 30 percent of the simplex processor. The net effect is to

increase the availability as comparced with Stage 12,

6.2 GENERAL-PURPOSE BATCH PROCESSORS

In general-purpose batch applications, we include both scientifically
oriented applications and those concerned with more commercially
oriented tasks. The fault-tolerance requirements of both differ
slightly from time-shared systems. Principal among these differences
are those stemming from the need to meet deadlines, and the extreme
importance in certain cases of the need to protect against the
possibility of erroneous output. Techniques that are employed with
success at present include the use of accounting checks in commercial
operations to detect errors, and the use of checkpoint-restart to

prevent excessive lost processing in the event of machine breakdown,

S 115

The most difficult criterion to meet is that on the cost of
fault-tolerance hardware., Rarely will a flgure in excess of 20 percent
be justified for tlie cost of such hardware. This figure explains to a
certain extent why such hardware has been restricted in existing
systems, frequertly being limited to parity in memory and on data
transfers. However, recent computers have extended the protection to
single-error correcting codes in memory (e.g., IBM 370, Burroughs 7700),
and even to the use of residue codes (see Section 5.1) 1n tiz arithmetic
unit of the Burroughs 7700, Reconfiguration in the event of faults has
also been introduced, in such urits as memory blocks, I/0 channels,

power supplies and peripheral equipment.

The trend of decreasing cost of electronics (compared with other costs
such as manpower) will continue, and also the use of such computers for
more and more time~critical caliculations. We can therefore expect to
see a move toward computers with a greater demand for fault-tolerance

than at present,

The architectures most suited to general purpose batrh operations will
probably employ fault-tolerance measures that are relatively close to
those used in time-shared computers. The one area in which significant
differences will be found is in the peripheral equinment so essential to
batch-cperated computers, particularly those used for commercial EDP
operations, In installations that require high reliability, present
practice is to use a large number of each type of peripheral so that the
loss of one unit causes only a qm{;% dfsrease in the throughput
capabilities. This practice is already ‘successful in providing the

necessary high availabilty. N

6.3, COMMUNICATIONS PROCESSORS

'
L

l,"‘
In communications processors, we are concerned with processors for three

p
main functions:

* Message switching, e.g., the Bell system ESS

116

* Message store and forward, e.g., the interface message processor (IMP)

* Fiont-end processing, e.g., the terminal interface processor (TIP).

These functions are so closely related that a combination of them often

coexists in one computer,

REQUIREMENTS

A communications processor is always part of a much larger system. The
important requirement is reliability of the system as a whole, and we
therefore expect that efforts would be made to design the system so that
faulty p;ocessors do not interrupt service within the system. A fault

in a processor that was acting as a front-end processqr or as a
connecting point for one of the host computers of the system would

isolate either users or some facilities from the system but should not
cause serious degradation of the remainder of the system., Such a
front-end processor should be at least as reliable as the host computer
attached to it. Certainly, one order of magnitude is sufficient for the
improved reliability over the host, and more stringent requirements are

unrealistic.

Another potential reliability requirement is for the protection of data.
In most communications systems, data protection is not of significance
in the individual communications processors but should be achieved at
the system level, e.g., using such techniques as coding applied to the
messages to detect errors, and retransmission by alternmative routes to
achieve error recovery. This system emphasis has implications on how
recovery from faults can be achieved, in that it is not necessary to
remember the state of the processor at the time of the fault in order to

restart it after appropriate corrective action has taken place,

Because retransmission can be used to accomplish recovery from a faulty
message, it is far more important to design the processors and other
components of the system to achieve error detection than to provide

error-correction capabilities.

117

Communicacions processors are often located at sites with no resident

maintenance staff. Therefore, the diagnosis and repair of faults should ?
(1f possible) be carried out from distant points in the network.

Diagnosis of some fault conditions is possible, but many other

conditions render the faulty processor inczpable of communicating

anything meaningful to the other parts cr the communication network,

Therefore these other conditicas pri:sent a significant problem in

diagnosis.

A RELIABLE IMP

To illustrate the design concepts appropriate for a communications
processor, consider the IMP currently used or the ARPANET, This
processor carries out all of the functions mentioned above (switching,
store and forward, tevminal and host-computer interfacing). The IMP
uses a Honeywell 516 with additional electronics principally to

Ll s b R S

interface to the communication equipment and host computers.

As an approximation the H516 contains about 1600 ICs, each of which

contains, (on average) about 10 gates., Assuming that chip failures are
a significant proportion of total hardware failures, and assuming a
failure rate of 10_6 per chip per hour, we can expect a failure rate of
0.0016 per H516 per hour, or about 13 par H516 per year. }
i As of August 1972 (see BBN's '"Network Summary”, Aug 1972), 31.6 IMP

: years had been logged. With the above‘assumption, we would expect about

400 chip failures. The number of unscheduled down times over this

period was 88l. In resolving these figures (400 and 881), we point out

that:

* The 88l includes software and external power-supply failures,

* The number 400 excludes many other failures, e.g., of the core
memory, passive components, and connectors.,

* Marginal conditions corrected during preventive maintenance are not
included in the 88l unscheduled down times,

; 118

b

e . - 2 5 " G s

As a conclusion, we regard 10—6 failures per chip per hour as a

realistic but perhaps conservative estimate of chip failure probability,

We now consider the design of a more reliable processor for the IMP
environment, We consider two possible realizations, MSI--Medium scale
integration (about 100 gates/chip) with a core memory, and LSI--Large
scale integration with a semiconductor memory., We reject the possiblity

of using small scale integration (SSI) in any future development,

We can expect that with even an MSI realization, the number of chips
required will be reduced by a ratio of about 10:1 to approximately 160 2
chips with an attendant improvement in reliability, In addition the

e B Rl i el S A R e
e g 1 e

number of connectors will also be reduced. We can expect that fzilures
because of active components will be reduced to about 1,5 per year per

M Pt R
ke s

IMP, In an LSI representation the memory would require about 128 chips ?_
(assuming 4K bits per chiip and 32K words of 16 bits), and the processor *-}
about 16 chips, resulting in approximately the same (1.5) number of

faults per year in the active circuits.

Against the above projected failure rates, we must compare failures due
to non-electronic causes, e.g., city power failures. These latter
failures will dominate, It is therefore our conclusion that the correct
design policy is:

* Use MSI or LSI circuitry whenever possible, ;

*

Maintain message integrity on a system basis.

- .

*

Maintain system integrity by re-routing on a system basis,

* Improve overall reliability, e.g., by improving the reliability of i
software, or that of power service.

We further point out that a failure rate of 1,5 pver year for an IMP-like ﬁ%

processor is expected to be far better than most of the host computers
to which they are attached,

119

As corroboration of the above viewpoint, we note thac the communication

processors used by Tymshare Inc in their TYMSAT system experience an
average of 1.5 failures per year. There are 93 such processors in use,
The processors are Varian 620 computers which is comparable in
capability with the lioneywell 516 used in the IMP,

Therz is a choice of how much fault tolerance to nut in the IMPs. Some

investment in IMP reliability is worthwhile in light of the expected
increase in the availability of hosts via the IMPs,

A RELIABLE HIGH~PERFORMANCE COMMUNICATIONS PROCESSOR

As seen above, a reasonably reliable IMP can be built without resorting
to any special fault-tolerance techniques., This pnssibility ceases to

exist if a communication processor is to be designed for significantly
higher performance.

For the purposes of this subsection, we consider a high-performance
communications processor that contains an order of magnitude more
components than the IMP replacement discussed above, Assuming the same
technology, this greater complexiity would increase the expected number
of failures per year from 1.5 to 15, an unacceptable increase which must

be handled by the use of fault-tolerance techniques.

In addition, we can envisage an increase in traffic on the network., At
present on the ARPANET, the traffic load is small enough that the

rerouting of messages can be used as a technique to prevent a faulty IMP
from affecting other parts of the system. As the traffic load ;

increases, this technique becomes less viable, and it becomes necessary

for the communication processors to be more reliable.

We are concerned with three aspects -~ error detection, error

correction, and processor availability. It is recommended that error
detection be carried out by coding on the messages (or packets)., The
overhead associated with the coding bits is very small for packets of

120

the order of a thousand bits. Because of the tendency of line failures

to produce bursts of errors, a burst detection code should be used.,

Retransmission represents the most satisfactory technique for error
correction, and where possible, this retransmission should be over an
alternative route. However, it is necessary in a heavily loaded system
that the number of such retransmissions be kept acceptably low. This
constraint implies a requirement for rapid detection, diagnosis, and
correction of any fault condition in any of the processors.

The dual requirements of high performance and high availability suggest
a multiprocessor or multicomputer approach. Two such systems exist in
the design state: the projected new high-performance IMP design
(Ornstein A2, and Heart 73), and the PLESSEY 250 (Williams A2). In both
cases, high availability of the processor is to be achieved by switching
out faulty processors and using other units to take over the workload,

A problem that can occur in such schemes is that the unit carrying out
the disconnection must itself be very reliable so that onz can guarantee
that a faulty unit cannot corrupt the whole system, i.:., we need to

achieve a significant degree of fault isolationm.

In the case of the new IMP design, the disconnection is carried out by
sending a code word to the bus interface of the bad processor. The use
of a code word rather than a single control signal is intended to
prevent other processors that are faulty from turning off good
processes. The use of a code word, and therefore the need to recognize
the correct code word, will increase the complexity of the logic that
carries out the disconnection, thereby tending to make that logic less
reliable. On the other hand, there is a somewhat better probability
that a bad processor will not accidentally turn off good processors.
Other schem:s to carry out this operation have been investigated and
appear to have some merit. Principal among such schemes is one used in
the PRIME system at Berkeley (Borgersen A2), In that scheme, if a
processor decides to turn off another processor, it asks a third

processor to carry out this function., The third processor validates the

operation before carrying it out. In general, therefore, two processors

121

must be at fau{t before incorrect disconnection is carried out. This

rule is not entirely true for all possible fault conditions -- for; .
example, if the third processor wes faulty and erroneously believe? that
it had been told to turn off the second processor, then incorrect !:
disconnection would occur, caused by a fault in only one processor. An
improved scheme for carrying out disconnection could use the combined

logic of several processors to turn off any other processor. For N

¢

example, to turn off processor 4 would require processors 1, 2, and 3 to
disconnect it. To turn off 5, the logic of 2, 3 and 4 would be used,
and 80 on. The disconnect function would include a voter from the three
control signals, thereby preventing any single processor at fault from
being able to turn off any other. Such a scheme would prevent a single
faulty processor causing erroneous disco'nection, Yet, because the
voter contains significantly less logic than the code recognizer of the
IMP scheme, the immproved scheme would achieve greater system
reliability., Schemes such as.those discussed above are all possible in

the PLESSEY 250 system, where such actions are carried out by program,

Even if the new IMP design achieves 100 percent availability, it will
still suffer from many of the breakdown situations %nat occur with the
present IMP, Significant among these are softwar: bugs, the breakdown
of lines between IMPs, the loss of power to the computer, and occasional
catastrophes such a3 when the IMP at Lincoln Lab was affected by a
lightning strike. The operation of a very reliable network must be
carried out with significant management attention to such matters. In
the case of modern LSI machines, with their potentially low power drain,
it is entirely practical to use standby power supplies. In addition,
the processors can be placed in a protected environment to avoid
problems due to temperature extremes or other environmental conditions{
Software troubles can be removed primarily by increased validation of
progrars before their use, Such validation at present cannot be carriegh'
T
out fully because the lack of a sufficiently large test facility at Bolt’:/
Beranek and Newman. In the more general case of communication processes
for other than the research community (such as the present ARPA
network), we can envisage a much more stable operating environment with
fewer program changes. In that case, the software troubles should be

122

significantly reduced, Stability of operating environment is certainly
the case with more established networks -- for example, Tymshare's

network, where software troubles are negligible.

In examining the ARPA network, we see ways im which the network can
! achieve higher availability .y the use of a few replicated lines. The
¢ computers on the network are mostly in fairly tight geographical
clusters, and few IMPs are heavily loaded, We can therefore envisage
the multiple connection of certain computers to IMPs as "very distant
hosts". A particular grouping could, for example, be SRI, Stanford
University, NASA Ames, and Berkeley, which could be multiply connected
to each other's IMPs. Another such grouping could include MIT, Harvard,
Lincoln Lab and BBN. These connections could be accomplished in such a
way that, if ar IMP were lost, the hosts attached to that IMP would
operat2 as very distant hosts of the other IMPs, This hookup would
prevent the hosts from losing their connection to the netwc:k, This
technique is not 100 percent useful, as some computers (e.g., University
of Utah) are not geographically close to other IMPs, However, the total
system reliability could be signifiicantly improved at low cost.,

6.4, SUPER-FAST COMPUTERS

* Several super-fast computers ex%st or are in development. Notable
_examples are the CDC STAR, the Texas Instrument ASC, the ILLIAC 4, and
the Goodyear STARAN, The structure of these computers differs
sﬁhstantially from conventional computers., In this subsection, we
examine fault-tolerance techniques that are appropriate to this class of

computers,
REQUIREMENTS

Such computers frequently cost significantly in excess of 10 million
dollars. Backup alternative computers seldom exist, principally because
few models of each computer are produced, and in cercain cases there is

only one in existencz. Some of the applications for these computers

have a demand for high reliability. An example of this case is the

123

SRR SRR R geiic g e T

i b obo siti

control of a ballistic missile defense system,

The great complexity of these computers plus the very high speed of
their circuitry tends to make fault diagnosis a very complex process. ,
The great complexity also increases the component count, each added
gnmpénent increasing the unreliability of the system, thereby tending to
mezke the MTBF much worse. In the case of ILLIAC 4, the MTRF is

currently approximately five hours.

)

s T

'rncugs‘_muns’ '

The large memories associated with the super computers tend to enhance
the system benefit of memory fault-tolerance techniques. Typically, the
memory will be a very high portion of the total component count withid
the system. The techniques of coding and reconfiguration as discussed
in Chapter 4 and Appendix 3 are applicable to such systems, and for a
redundancy of the order of 25 percent can provide highly reliable
memories whereas by the use of coding alone, the lower redundancy will
still produce acceptably good reliability. The only drawback to the use
of such techniques in these machines is the fact that they add a certain
number of gate delays in the access time to the memories, whereas such
computers generally are designed to operate the memory as fast as
possible., The use of look~aside pipeline decoding (Carter et al, 72b)
prevents the decoding delay from having a serious impact on the

processing speed. L

In the case of pipelined arithmetic units such as the ASC and the STAR
computers, the pipelining of arithmetic checking by residue codes or
other means can be carried out in parallel with the main processing
pipe. The result of checking in parallel is a very small delay to the
arithmetic operations, since the syndrome generation adds only 2 gate
delays to the length of the pipe.

Large computers are frequently used on calculations, the correctness of
which can be verified by what we could call algorithmic checking. This
is the carrying out of. a subsidiary celaulation that will form a check

124

as to the correctness of the first calculation. An obvious example is
to reinvert a matrix after the original inversion process to see if the
resul .ing matrix is the same as the original (within certain bounds, to
allow for round off error). Many examples of this type of checking
exist, We cite a few below, |

PARTIAL DIFFERENTIAL EQUATIONS

Many partial differential equations can be checked by examining the
validity of the governing equation at each point in the mesh, For
certain equations, this represents a task equal in size to the original
solution of ti.+ equations. However, for scme partial differential

equations, such as boundary value problems, the checking for correct
solution is significantly easier than finding the solution.

MATRIX OPERATIONS

The reinversion of the matrix as mentioned above provides a check,
However, this essentially doubles the total worx performed. We can
instead carry out a related calculation -- for example, we can multiply

the inverse by an arbitrary vector x yielding a vector y. By also :
multiplying the original vector matrix by y, we should obtain x, the ;
original arbftrary vector, Although this method is not 100 percent :

certain most faults in a computer will be detected in this manner.

The calculation of eigenvectors and eigenvalues can be checked by the

e

fundamentai relationship that

Ax=Xx
]

In addition, in ceftain natrix calculations a check sum or several check :
? sums can be carried on along with the calculation, 1In most methods for :
: inverting matrices, it is typical to compute a row sum at each state of

the pivotal condensation methed, The row sums provide a check for the

remaining calculation,

In summary, where a regularity in a mathematical sense exists in the

i et G i B R e 5

B] e

calculation, a simple inverse calculation can often be performed which

provides some capability for checking the original calculation.

In the case of array computers such as the "lliac 4 and the STARAN
computers, algorithmic checks as discussed above can be carried out by
adding extra processors that perform this checking at all times in the
calculation. This would result in a certain redundancy of equipment,

but would speed up the checking process.

It must be pointed out that the techniques discussed above are not
universally applicabie. The major reasons that preclude their use are
lack of storage to retain partial results, lack of bandwidth to place
partial results on a back-up memory, and the lack of an efficient

inverse calculation., These considerations make it necessary in such

cases to use other fault-tolerance techniques.

Reconfiguration in array computers is complicated by the fact that the
communication paths between each processing element and its neighbors
are of very high bandwidth and contain a large number of lines. .
Therefore, if a substitute processor is to be inserted, the switching
capability has to be very large. In addition, extra gate delays that
may be introduced by such switching capability will frequently not be
tolerable, In the case of these machines, manual switching of a new
processing element into a mesh of such elements appears the most
practical form for rapid reconfiguration in the event of faults in a

processing element,

Beyond the special points mentioned above, reliability techniques for
array processors are effectively similar to those for any other type of
computer. They are conditioned by the fact that, since the processors
are so large, the probability of failure is much higher., The switching
problem in reconfiguration is thus complicated by the large number of
lines of high bandwidth, However, these disadvantages are of less
critical importance, because such machines are seldom used in a
real-time on-line mode, and a few minutes downtime for manual

reconfiguration is often acceptable.

126

Super-fast computers ds present one problem not always apparent in other

o

systems, namely, the difficulty of checkpointing the total state of the
system so that the computer can be switched back to that state at some

future time for a calculation to be restarted. Checkpointing can be a

complex and time consuming operation in a computer that is very large

and in which many operations are carried out simultaneously.,

' 6,5, AEROSPACE COMPUTERS

Aerospace computer systems have been considered in great detail
elsewhere (e.g., see several systems in Appendix 2). They are treated
here partly for historical reasons, partly because experience In such
systems is relevant to parts of more general systems, and partly because

4 their redundarnicy can be reduced in many cases,

FEQUIREMENTS

Aerospace computers differ from many other computers in several ways.,

We discuss here the differences in the requirements for fault-tolerance.
For example, we can express one difference in terms of a requirement
that tlie probability of an incorrect result being generated should be
less than 1 in J0O million per hour of use, This is the relevant figure
for calculations critical to flight safety in a commercial aircraft
(Wensley et al, 73)., It translates into a MTBF of 10,000 years, a very
stringent requircment upon reliability.

In addition, for certain calculations such as stability augmentation or
; flutter control, the recovery time must be exceedingly low. In certain]

cases, 1t is as little as 10 milliseconds.

In this application field the computer is a very small proportion of the
total cost of a system, whether a commercial jet liner or a space 5
vehicle, Thus, a level of redundancy may be afforded that in many other 1

applications is not economically practical.

127

AN i T R T R s e

It is typical in the aerospace field that highly repetitive calculations

must be performed, and that these are very loosely coupled. Such
calculations typically might compute the numerical solution of
differential equations that represent a mathematical analog of a control
servo., The iterative nature of the calculation can be taken advantage
of by carrying out the checks at the enq 6f each iteration, rather than

at the end of every small operation within the iteration.

In certain aerospace applications, no maintenance is available,
particularly in the long-life space missioﬁ; to the outer planets, The
fault-tolerance procedures must be automatic because in addition to the
lack of maintenance availability, there may be occasions when such a
space vehicle could be in a position whereécoumunication with the earth
was either not possible or of very low bandwidth. In addition the life
expected from computers in such missions may be very high, from five to
ten years being entirely possible, Such long life means that the
protabilities of chip failures and other malfunctions become very high,
to the point ti.at over half of the circuits within the computer may have

failed,

TECHNIQUES

The most obvious technique to use for both detection and correction is
extensive replication, usually triplication, Also, the application is
well suited to a multiprocessor organization that can handle many
independent processes. The output of several identical processing
elements is compared and voters attempt to remove the effect of one of
the processors being in error. Althoughk coding is also used to assist in
error detection and correction, coding alone is not sufficient to
provide adequate reliability for some of the most critical applications.
As mentioned above, voting may be carried out at the end of each
iteration of a repetitive task, as in the SIFT system (Wensley A2, 72),
or it may be carried out upon each transfer of data between processor
and memory, as in the Hopkins system (Hopkins A2) or in the BUCS system
(Wensley et al. 73).

128

2T .,

The reconfiguration of a system is typically accomplished by switching

out faulty processors and switching in some spare processors or memory
modules. In the case of the Hopkins scheme, a multiplicity of units is
switched in and out whenever a fault is detected, Two processes and
three scratchpad memories are all discarded and the calculation 'is

transferred to anoth2r module of the same size.

While the degree of redundancy that is acceptable and needed in
aerospace applications 1s very seldom appropriate to large ground based -4
systems, the techniques may be very usefully applied to certain small

critical subsystems within a large system,

6.6, CONCLUSIONS

The main conclusions to be drawn from our study of applications and

architectures for fault tolerance are:

{(a) Many existing computer designs already incorporate some
fault-tolerance techniques which in some application fields provide
adequate availability and guarantees of correctness. Prime examples are
those systems used in financial institutions (banks, stock exchanges :
etc.,) and commercially operated service bureaus, with both batch and '

time-shared modes of operation,

(b) Computers that are built using the newer technologies (e.g., LSI)
are intrinsically more reliable, primarily because of the reduced number
of components and the attendant reduction in the number of such items as

connectors and cables,
(c) Techniques exist to provide adequate fault-tolerance for all b
application fields. In most cases, these techniques are economical,

especially when compared to total system costs, :

(d) Different techniques are sometimes necessary for improvement of

129

b
]
i
4

different fault-tolerance parameters, e.g., correctness, availability or
recovery., The proper specification of fault-tolerance must recognise

these different parameters.
(e) The use of selective redundancy can be an effective technique to

provide greater fault-tolerance for critical system functions and

smaller redundancy for non-critical programs,

130

e AN 52 Aty N T B rridat A T AN S e i & St iacy W et et St S ol e

CHAPTER 7, CONCLUSIONS AND RECOMMENDATIONS
7.1, CONCLUSIONS
This section summarizes the main conclusions of the report,
GENERAL CONCLUSIONS (See Chapters 1, 3 and 6)
* Techniques exist for achieving economical fault tolerance for many
: important applications, without needing massive redundancy. Significant

levels of correctness and system availability can be achieved with

redundancy from 10 to 40 percent,

* Techniques exist to provide a much higher degree of graceful

fz degradation than is currently available,

i * A significant problem in existing systems is the unpredictable and
unnecessarily long time required to recover after the occurrence of some
i faults, This problem is made worse in most existing systems by poor

architectural structures and inadequate diagnostic techniques.

* The degree of fault tolerance required and the choice of techniques

needed to achieve it are both strongly dependent on the environment,

* Software and operational considerations must be carefully integrated

with the hardware in the design of a fault-tolerant system. The present
3 art of computer system design is capable of such integration, if

properly motivated by managment directives, Q

e following discussion concerns some of the specific techniques for
fault tolerance. Some of these are readily available, while others are i
capable of being developed,

ARCHITECTURAL CONSIDERATIONS (See Sections 3.2, 3.3, Chapter 6)

* Simplex systems are adequate in some cases.

131

* Reconfigurable multiprocessors are desirable for high availability and
graceful degradation.

* Good system structuring is highly beneficial throughout system

development,

* System security is strongly related to fault tolerance. Protection

mechaaisms are critical to some uses of multiproczssor architectures.

PROCESSOR CONSIDERATIONS (See Chapters 3, 5 and 6)

* In most systems, dynamically selective replication of critical
processing capability may be used without greatly affecting the overall
cost, ! i
i
ity
* Deferred detection, interspersed on-line diagnostics, and automatic

recovery strategies are useful in reducing redundancy when time is not

1

critical.

* Error detection (or correction) in arithmetic can be achieved with
codes also achieving error detection (or correction) in memory (see
below), at almost the same cost as the best codes for memory alone.

Byte coding is suitable for LSI arithmetic.

* For certain processing functions, increased dependence on memory
(e.g., by table driving) is very effective, since it allows economical
use of redundancy. Distributed logic-in-memory designs are interesting

in certain cases.

* The use of read-only memories with coding can be highly effective for

reliable logic.
MEMORY CONSIDERATIONS (See Section 3.1 and Chapter 4)

* Fault tolerance is more economical in memory units than in other parts

132

of a computer system, Performing functions in memory that are normally
done in logic (e.g., via table-driving) permits economical fault

tolerance,

* Coding, byte slicing, page relocation, and memory reconfiguration are

appropriate for fault-tolerant memories,

* Byte slicing and byte coding are particularly appropriate for LSI
memories that store several bit positions on a chip. Byte coding
requires only one redundant byte per word for detection of arbitrary
errors within any byte of the word, and a logarifﬁmically increasing
cost for byte error correction. The increase in thé overall cost due to

encoding and decoding is negligible (except for very small memo:ies).

* No delay is required for decoding in the absence of errors whenever

error detection (syndrome generation) can be overlapped with execution

bl G g

in an automatic instruction retry -environment,

* Reconfiguration around faulty memory comporents is simple and highly
effective. Reconfiguration ai: the block level is aided by page
relocation in hardware. A virtual memory organization in hardware can ;
offer further benefits for fault tolerance. For certain
high-availability and high-reliability requirements, replacement by
switching at the chip level is appropriate in combination with byte
coding.

TECHNOLOGICAL CONSIDERATIONS (See Chapters 3,4,5,6) i

* Newer technologies permit certain techniques for fault tolerance to be

= SACF ST et 5 X7

practical. However they do not supplant the need for architectural

fault tolerance. ’

* LSI outmodes many of the techniques for handling single faults and

single-bit errors. Correlated faults must be considered, :

133

7.2, RECOMMENDATIONS FOR FUTURE RESEARCH AND DEVELOPMENT

Throughout this report are conclusions with implications for future
research and development. Our recommendations for future research and
development are summarized here, and are classified according to

detection and diagnosis, architecture, and analysis.

DETECTION AND DIAGNOSIS

Most existing fault-tolerant systems use primitive techniques for error
detection (e.g., replication of processors, coding within memory). 'le
remain convinced that more economical methods exist, such as using
probabilistic and deferred error detection, which, for example, take

advantage of knowledge about existing permanent faults., Feedback error
detection is also possible, Models are needed that permit a theoretical

study of the time-space trade-offs in fault-tolerant systems,

Programmed consistency checks are a powerful error-detection technique
for certain types of computations -- notably those involving servo-type
control or those with a readily computed inverse, We believe that a
much broader class of programs is suited to such checks. The use of
run-time assertions (e.g., similar to in nature, but not as complete as,

Floyd assertions) appears to be very promising.

Periodic self-diagnosis is important as a means for fault detection and
also as a means for reducing needs for preventive maintenance and
eliminating the need for emergency maintenance, Good algorithms now
exist for specifying test sequences for combinational networks when the
faults are simple, e.g., gate outputs being stuck at 0 or 1, but rot for
more realistic faults. The sequential case is not at all well
understood. Very little has been done on the probiem of general methods
for diagnosing large systems so as to pinpoint a faulty module. We feel
that these problems are ali soluble if specific structures (say,
distributed two-dimensional networks) are considered, or if redundancy

is permitted within the logic to enhance diagnosability.

134 1

— S— —— . ’ oo e e e TR T . T w—

S L i s ik e

ARCHITECTURE

E

g

E

E . A serious weakness in the current art is the absence of a design

E methodology that integrates hardware and software into a systems concept

E addressing reliability, availability, security, efficiency, and

[functional n~apability in a unified way. For example, significunt
benefits can be expected from techniques for structured design and

% implementation (see Section 3.2). Such a methodology requires

significant communication and cooperation among research and development

people, among hardware and software people, and among university and

industrial people. (The ARPA Network is providing some steps in this

direction.)

1 There is a need to devzlop economical architectures for fault tolerance
} in a general-purpose environment. (The aerospace and telecommunications
applications and specialized minicomputers have received most of the

3 attention to date,) In particular, the multiprocessor outlined in

E Section 3.3.3 is an attractive possibility, with selective replication

L in time and space. An operating system for this architecture is also
worth investigation. There is also a need for an economical solution to
the protection protlem in a large dependent~processor multiprocessor

system,

Possibilities for fault tolerance should also be exploited via novel
architectures, including highly reconfigurable distributed 3
micro-processor arrays and networks of larger computers. An important

direction for future systems is the achievement of smoothly degradable

TR PPy

economical systems with rapid recovery from faults. The scheme for
reconfigurable memory arrays of Section. 4,2 represents a possible

1
starting point for such systems,

ANALYSIS ' §

There remains a difficult problem of analyzing the reliability of a
redundant system or even proving that it is, say, single-fault tolerant.

The difficulty is greatly reduced by structured design and by proofs

135

Ll ot s

S e 2 Fam it b i Lol il i S S it e

that the executive can reconfigure the system as intended. This issue
is no different from proving the correctness of an operating system -- a
process considerably simplified by structured design., However, the
modeling of comﬁiex fault-tolerant systems is also important here -~ an

issue frequently étudiéd, but still nct adequately resolved.

ki

An important quaﬂtitative measure of a fault-tolerant system is the
relative cost of fault tolerance, e.g., the redundancy. Except when
trivial techniques are used, it is difficult to estimate the redundancy
accurately. In this report we associate the various redundancy
techniques with different types of architecture. More generally,'it
would be useful to have measures of the total redundanc;, e.g., as a

function of availability, reliability, and down-time,

; In summary, the state of the art leads to considerable hope for the

development of ecomomical fault-toleran: systems, However, there 1is

.

still much need -- and fortunately, much room -- for advancement in the

E state of the art.

CHAPTER 8, REFERENCES

The main references cited in the text are included here. Other references
| are found in the appendices. Several extensive bibliographies are worthy

of special mention, and are listed first,
BIBLIOGRAPHIES

* B, D. Carroll and E, W. Smith, A Bibliography of Fault Tolerant
Computing, Auburn University Technical Report AU-T-22, February 1972 (for
Army Missile Command), AD 739 522. Includes 422 entries. '

Y

G i e

3 * P, Scola, An annotated bibliography of testing and diagnostics,
13 HONEYWELL COMPUTER JOURNAL 6, 2, pp. 97-102, 1972 (with accompanying

microfiche). Includes 1300 entries, annctated.

* R, A. Short, The attainment of reliable digital systems through the use
of redundancy -- a survey, 1ELE COMPUTER GROUP NEWS, pp. 2-17, March 1968.

Includes 347 entriles.

* R, A. Short and .J. Goldberg, A survey of Soviet activities in the design
of fault-tolerant digital machines, COMPUTER, vol. 4, 1, Jan-Feb 19713
also appears as Soviet progress in the design-of fault-tolerant digital
machines, IEEE TRANS. ON COMPUTERS C-20, 11, pp. 1337-1352, November 1971,

T AN T

Includes 714 Soviet entries.
CITED REFERENCES '
;ii (Anderson and Metze 73) D. A. Anderson snd G. Metze, Design of totally

self-checking circuits for m-out-of-n codes, IEEE TRANS. ON COMPUTERS
C-22, pp. 293-269, March 1973,

(Avizienis 72) A. Avizienis, The methodology of fault-tolerant
1 computing, USA-JAPAN CONFERENCE, pp. 405-413, 1972,

g R AR B i
e

137 J

e T e - hat o v I R Y T o

(Avizienis 71)
effectiveness studies for application in digital system aesign, IEEE
TRANS. ON COMPUTERS C-20, pp. 1322-31, November 1971,

A. Avizienis, Arithmetic error codes: cost and

(Avizienis et al., 71) A. Avizienis, G. C. Gilley, F, P, Mathur, D. A.
Rernels, J. A. Robr and D. K. Rubin, The STAR (Self-Testing and Repairing)
compﬁter: an investiyation of the theory and practice of fault-tolerant
computer design, IEEE TRANS., COMP. C-20, pp, 1312-21, Noember 1971,

(Baer 73) J. L. Baer, A survey of some thecretical aspects of
multiprocessing, COMPUTING SURVEYS 5, pp. 31-80, March 1973,

(Berlekamp 68) E. R, Berlekamp, Algebraic Coding Theory, McGraw-Hill,
NY, NY, 1968,

0 (Bossen 70) D. C. Bossen, b-adjacent error-correction, IBM JOURNAL OF
RESEARCH AND DEVELOPMENT 14, 4, pp. 402-409, 1970,

(Bow 73) R, T. Bow, Codes for high speed arithmetic and burst
! correction, Report R-597, Coord. Science Lab,, Univ, Illinois, Jan 1973,

(Carter et al, 70a) W. C. Carter, et al., Design Techniques for Modular
Architecture for Reliable Computer Systems, IBM Report 70-208-0002 under
Contract NAS8-24883, Yorktown Hts, NY, March 26, 1970,

(Carter et al, 70b) W, C. Carter, D, C. Jessep and A. B, Wadia, Errcr-
free decoding for failure-tolerant memories, PROC. IEEE INTL. COMPUTER
GROUP CONF., Washington D, C., pp. 229-239, June 1970,

(Carter et al, 7la) W, C. Carter, D, C. Jessep, A. B, Wadia, P, R,
Schnieder and W. G. Bouricius, Logic Design for Dynamic and Interactive
Recovery, IEEE TRANS. ON COMPUTERS C-20, pp. 1300-05, November 1971,

(Carter et al. 7lb) W, C. Carter, K. A. Duke and D, C, Jessep, A simple
self-testing decoder checking circuit, IEEE TRANS, ON COMPUTERS C-20, pp. %
1413~14, November 1971, . 3

i
8|
p!

(Carter et al, 72a) Ww. C. Carter, A, B, Wadia and D, C. Jessep, Jr.,

Computer error control by testable morphic Boolean funcions - a way of
removing hardcore, DIGEST 1972 INT. Syip. FAULT-TOLERANT COMPUTING, IEEE
Computer ‘Soc., Waltham, Mass, pp. 154-159, June 1972.

;, ' f

4 \
(Carter et‘al. 72b) W. c. Carter, K. A. Duke, and D. C. Jessep, Jr,,

Lookaside techniques for minimum circuit memory translators, IEEE TRANS.
ON COMPUTERS C-22, pp. 283-28Y, March 1973,

(Dijkstra 65) E. W. Dijkstra, Gooperating sequential processes, Report
EWD 123, Math. Dept., Techn. Univ, Eindhoven, The Netherlands, Sep 1965,

Also in: Programming Languages (ed, F, Genuys), Academic Press,

London,
1968,

(Dijkstr. 68) E. W. Dijkstra, The structure of the "THE"

multiprogramming system, COMM. OF THE ACM 11, PP. 341-340, May 1968,

(Dijkstra 69) E. W. Dijkstra, Notes on structured programming, Report

LWD 249, Math. Dept., Techn. Univ, Eindhoven, The Netherlands, August

1969, Also in Structured Programming, 0,-J, Dahl, E. W, Dijkstra, and C.

A. R, Hoare, Academic Press, London and New York, 1972,

(Elias 58) p, Elias, Computaticn in the presence of noise, IBM JQURNAL

OF RESEARCH AND DEVELOPMENT 2, pp. 346-353, October 1958,

(Elspas 62) B, Elspas, Design and Instrumentation of Error-Correcting

Codes, SRI Final Report RADC-TDR-62-511, Contract AF 30(602)-23277,
October 1962 (AD-299 957),

(Elspas and Short 62) B, Elspas and R. A, Short, A note on optimum

burst-error correcting codes, IRE TRANS. ON INFORMATION THEORY IT-

8, pp.
39-42, January 1962,

(Feustel 73) E, A. Feustel, On the advantages of tagged architecture,

IEEE TRANS. ON COMPUTERS C-22, pp. 644-656, July 1973,

139

bl DL TR e S e selod

(Forbes et al 65) R. E. Forbes et al, A self-diagnosable computer, AFIPS
PROC. FALL JOINT COMPUTER CONF., pp. 1073-86, 1965,

(Goldberg et al, 73) J. Goldberg, K. N. Levitt and J. H. Wensley, An
organization for a highly survivable memory, DIGEST 1973 INT. SYMP.
FAULT-TOLERANT COMPUTING, Palo Alto, pp. 59-64, June 20-22, 1973.

(Holt 72) R. C. Holt, Some deadlock properties of computer systems,
COMPUTING SURVEYS 4, pp. 179-196, 1972,

(Heart 73) ,F. E. Heart, A new minicomputer/multiprocessor for the ARPA
Network, PROC. OF THE NATIONAL COMPUTER CONF., New York, NY, June 1973.

(Hong and Patel 72) S. J. Hong and A. M, Patel, A general class of
maximal codes for computer applications, IEEE TRANS., ON COMPUTERS c-21,
pp. 1322-31, December 1972,

(Horning and Randell 73) J. Jo Horning and B. Randell, Process
structuring, COMPUTING SURVEYS 5, pp. 5-30, March 1973,

(Kautz 62) W, H. Kautz, Codes and codmng circuitry for automatic error
correction within digital systems, in Redundancy Techniques for Computing
Systems, ed, Wilcox and Mann, Spartan Books, pp. 152-195, 1962; esp. p.
189,

(Kautz and Levitt 72) K, N, Levitt and W. H. Kautz, Cellular arrays for
the solution of graph problems, COMM., OF THE ACM 15, pp. 789-801,
September 1972,

(Ko 73) D. C.-C. Ko, Self-Checking of Multi-Output Cembinational
Clrcuite Using Forced-Parity Techniques, USCEE Report 451, Univ. Scuthern
Cal., Electronic Sciences Lab,, June 1973.

(Kuo and Abramson 73) F, F. Kuo and N, Abramson, Computer-Conmunication
Networks, Prentice-4all, 1973.

140

gl

A EIR gy o S R VT T O S

" i AT Py

(Langdon and Tang 70) G. G. Langdon and C. K. Tang, Concurrent error
detection for group look-ahead binary adders, IBM JOURNAL OF RESEARCH AND

DEVELOPMENT 14, September 1970,

(Laws 72) B. A, Laws, A ROM decoder for the (15,13) Reed-Solomon Code,

Xerox Research Center, Palo Alto, Ca, 1972,

(Levitt et al. 68) K. N, Levitt, M. W. Green and Jack Goldberg, A study
of the data commutation problems in a self-repairable multiprocessor,
AFIPS PROC., OF THE SPRING .JOINT COMPUTER CONF., pp. 515-527, 1968,

(Lofgren 58) L. Lofgren, Automata of high complexity and methods of
jncreasing their reliability by redundancy, INFORMATION AND CONTROL 1, pp.
126-147, 1958.

(Mitarai and McCluskey 72) H, Mitarai and E. J. McCluskey, Design of a
paraliel encoder/decoder for the Hamming code, using ROM, Tech. Rpt. 36,
Dig. Syst. Lab., Stanford Electr. Labs., Stanford Univ., Ca, June 1972,

(Monteiro and Rao 72) P, Monteiro and T. R. N. Rao, A residue checker
for arithmetic and logical operations, DIGEST 1972 INT. SYMP.
FAULT-TOLERANT COMPUTING, pp. 8-13, June 19-21, 1972,

(Neumann 69) The role of motherhooda in the pop art of system
programming, ACM SECOND SYMP. ON OPERATING SYSTEMS PRINCIPLES, Princeton
NJ, pp. 13-18, October 20-23, 1969,

(Neumann 72) P, G. Neumann, A hierarchical framework for fault-tolerant .
computing systems, DIGEST IEEE COMPUTER SOCIETY CONFERENCE (COMPCON), San i
Francisco, Ca., pp. 337-340, September 12-14, 1972,

(Neumann 73) System design for computer networks, Chapter 2 of 1
Computer-Communication Networks, ed., Kuo and Abramson, Prentice-Hall, pp.
29-81, 1973,

e s

141

(Neumann and Rao 73) P. G. Neumann and T. R. N. Rao, Error correction in
byte-organized arithmetic processors, DIGEST 1973 INT, SYMP.
FAULT-TOLERANT COMPUTING, pp, 53-58, June 20-22, 1973,

(Ore 63) Graphs and Their Uses, Random House, New York, NY, 1973, See p,
44,

(Parhami and Avizienis 73) B. Parhami and A. Avizienis, Application of
arithmetic error codes for checking of mass memories, DIGEST 1973 INT.
SYMP. FAULT-TOLERANT COMPUTING, pp. 47-51, June 20-22, 1973,

(Parnas 72) b, L, Parnas, On the criteria to be used in decomposing
systems into modules, COMM, OF THE ACM 15, pp. 1053-58, December 1972,

(Peterson and Weldon 72) Error-Correcting Codes, 2nd, ed., MIT Press,
Cambridge, Mass, 1972,

(Pierce 65) W, H, Pierce, Failure-Tolerant Computer Design, Academic
Press, New York, NY, 1965,

(Rao 70) T. R, N, Rao, Biresidue error correcting codes for computer
arithmetic, IEEE TRANS. ON COMPUTERS C-19, pp, 398-402, May 1970,

(Rohr 73) Je A. Rohr, STAREX self-repair routines: software recovery in
the JPL-STAR Computer, DIGEST 1973 INT, SYMP. FAULT-TOLERANT COMPPTING,
pp. 11-16, Jun 20-22, 1973, /

(Schroeder and Saltzer 72) M. D. Schroeder and J. H, Saltzer, A hardware
architecture for implementing protection rings, COMM. OF THE ACM 15, pp.
157-170, March 1972,

(Sevcik et al. 72) K. c. Seveik, J, W, Atwood, M, S, Grushcow, R. C,
Holt, J. J, Horning, D, Tsichritzis, Project SUE as a learning experience,

AFIPS PROC. OF THE FALL JOINT COMPUTER CONF, 41, pp. 331-338, 1972,

(Siewiorek and Ingle 73) Private communication,..draft document,

142

(Simon 62) H. A, Simon, The architecture of complexity, PROC. AM. PHlIL,
SOC. 106, pp. 467-482, December 1962, Also in: The Sciences of the
Artificial, MIT Press, Cambridge Mass, Y69,

(Spier and Organick 69) The Multics interprocess cormmunication facility,
AQM SECOND S.MP, ON OPERATING SYSTEMS PRINCIPLES, Princeton NJ, pp. 83=91,
October 20-23, 1969,

(Stern 73) Organization and operation of the Multics backup system,
Multics Checkout Bulletin 1077, MIT Project MAC, March 23, 1973,

(Stern and Van Vleck 73) Proposed improvements to the Multics backup
system, Multics Checkout Bulletin 1076, MIT Proje~t MAC, March 19, 1973,

(Stiffler 73) J. J, Stiffler, The SEKF Fault-Tolerant Computer. Part 1:
Conceptual design, DIGEST 1973 INT, SYMP, FAULT-TOLERANT COMPUTING, pp.
23-26, June 20-22, 1973,

(Turn 72) Re Turn, Air Force Command and Control Information Processing
in the 1980's: Trends in Hardware Technology, RAND Report R-1011-PR,
October 1972,

(Wensley 72) J, H, wensley, SIFT - Software Implemented Fault lolerance,
AFIPS PROC. OF THE FALL JOINT COMPUTER COWF., pp. 243=253, 1972,

(Wensley et al. 73) J, U, Wensley, K. N, Levitt, M. W, Green, P. C.
Neumann, J. Goldberg, Fault Tolerant Archtectures for an Airborne Digital
Computer, Stanford Research Institute, Report of Task‘}, Contract
NAS1-10920, July 24 1972 (Final Report -- preliminary version).

(Yourdon 72) E. Yourdon, Reliability of Real-Time Systems,
Prentice-Hall, 1972,

(Zipf 49) G. K, Zipf, Human Behavior and the Principle of Least Lffort,
Addison-Wesley, Reading, Mass, 1949,

143

STUDY OF FAULT-TOLERANT COMPUTING: FINAL REPORT SRI July 1973

APPENDIX 1
CENSUS OF FAULT-TOLLERANT COMPUTING SYSTEMS

This is a brief summary of systems and system designs providing
significant fault-tolerance and/or availability, Those systems
indicated by "(A2)" are considered in preater detail in the Survey of
Fault Tolerant Computing Systems (Appendix 2), where references are
included, Terse references are given here, Several systems are
described in what is referred to here as the "Intermetrics Report" (J.
S. Miller et al., Multiprocessor Computer Study, Final Report, Contract
NAS 9-9763, Intermetrics, Inc,, Cambridge, Mass, March, 1970).
Abbreviations: P=Processor, M=Memory, (5)EC=(single) error correction,
(D)ED=(double) error detection, A measure of the hardware overhead for
fault tolerance is given as that percent of all hardware dedicated to

fault-tolerance (on an approximate cost basis).

A. GENERAL-PURPOSE COMPUTING UTILITIES, generally good availability,

human users, modest reliability, maintenance permitted,

1(A2), Multics, MIT (¥, J. Corbato) and Honeywell, Cambridge, Mass;
ARPA-funded development, now Honeywell product, See E, I. Organick, The
Multics System, MI1 Press 1972,

* General-purpose computing utility (time-sharing, batch), with high
availability and file integrity. Four installations currently exist,

* 1-7 P (Honeywell 6180s), typically 2P, multiprocessed multiprogramming
totally reentrant procedure, virtual memory, manual reconfiguration of
multiple P and M during operation, extensive isolation via the ring
mechanism for protection and via file system access control, incremental
file backup, variable-depth system recovery, redundancy in the file
directory structure, SED in mr‘n memory, Significant security.
Hardware negligibly redundant. Software variably redundant, e.g., 20%

overhead in time for guaranteed 30-minute lag backup.

Al.1

e

bt e e

g T, o s

2(A2). PRIME, University of Califernia at Berkeley (H. Baskin); ARPA.

* Reliable, secure, modest computer utility, high availability, In
development,

* 5 P (design practical for 3 P to 8 P), with highly restricted possible
connectivity among M, P and disk, strict isolation with no memory
sharing or multiprogramming, "spontaneous" reconfiguration via a
reliable self-checking switch., Hardware less than 107 redundant,

software less than 10% redundant in time.

3(A2). Carnegie-Mellon University; ARPA,

* Research system development with applications to ARPA speech
understanding Project; in design, 2x2 version exists,

* 16 P x 16 M (mwodified PDP l1s), with reliable crossbar switch, Hard
and soft reconfigurability, with videly varying operating modes,
Hardware less than 5% redundant,

4, University of Newcastle-on-Tyne, Engl.; Scientific Research Council,

* General computing; in design
* PDP lls

Note., Burroughs B7700 ang IBM System/370 have significant hardware
facilities for fault tolerance, Also, various commercial time sharing
services gain availability (but not necessarily reliability) by having

multiple P, M and secondary mewory units tross—-switchable,

B. GROUND~-BASED SPECIAL PURPOSE SYSTEMS, controlling the environment (or
vice versa), generally higher reliability and availability, often

tighter real-time constraints than those above, usually maintainable,

5(A2). ESS (Electronic Switching Systems), Bell Labs, Naperville, Ill.
* Telephone switching system; long-term continuous system availabiiity,
with occasional errors supposedly tolerable to customers. Over 200
Number 1 ESS in operation, many more Number 2 ESS, TSPS.

* 2P (1 functional, 1 standby checking and diagnosis), automatic

reconfiguration. Separate nonalterable program store with SEC. 50% of

AT e T

» 5 .
o I) G T o

all programs are diagnostics. Millions of hours of experience have
aided in improving hardware and software reliability., People problems
still difficult (operations, maintenance). About 50% redundant in
hardware. Storage for software dve to fault tolerance also significant

-- half of all programs,

6(A2), PLESSEY System 250, The Plessey Co., Ltd., Taplow England.

* Telephone and data switching, long-term continuous availability,

modular expandability. Prototype end of 197!.

* 1-16 P, 1-30 M, each 16-64K. Multiprocessing, multiprogramming,

virtual memory, totally 1centrant, capability-based protection and

sharing., Centinued operation via reconfigurability with everything
multiply available, Extensive hardware fault detection, operating

system consistency checks, background test routines, Hierarchical

software recovery. Hardware 20-50% redundant, depending on use,

7(A2). High-speed modular interface message processor (IMP) for the
ARPANET, Bolt Beranek & Newman, Cambridge, Mass.

* Store and foreward for interhost message switching. High
availability, Reliability largely left to hosts.

* 1-14 P initially, each with 4K M. Smoothly degradable, e.g., in 2 P

units., Distributed power, cooling.

8(A2). CLC, Bell Labs, Whippany NJ; ABMDA (Safeguard)

* Safeguard missile defense; continuous availability when (and if)
required, Ir development sirnce mid-60s,

* Up to 10 P, multiprocessed, on-line sparing, separate program memory

not writeable; progvam retry; ED via four-bit check on 64-bit words,

9. FAA (Federal Aviation Adm,), IBM. See 1BM Sys J., vol 6, no 2, 1967,
* Air traffic control, long-term continuous availability, Untolerated
rnontransient errors can be disastrous. About 20 systems at ATC centers
covering the continental United States,

* Up to 4 P (IBM 9020), up to 12 M. Programcontrolled error analysis

and reconfiguration, gracefully deconfigurabie. 5-second battery backup

power supply. Relies heavily on good available field engineers.

Al.3

g e e

R

ke |

g

VAR vt oo T Te—

D Sy it At

10, Flight Plan Processing System, Marconi Radar Systems Ltd.,
Chelmsford, England.

* Real-time air-traffic control, At most one 30-sec interrupt per year,
at most one longer interruption in 5 years, immune to power failures,
fast repair of faulty equipment.

* 3 P (MYRIAD)

11, MDS-2 (Market Data System), New York Stock Exchange

* Stock trading ticker control, Near-continuous availability, no
transaction losses permitted, Operational Augnst (Y72, Precursor MDS-1
operational for 7 years,

* 3P (360/50), 2 multiprocessing with shared ¥ & LCS (but 1 P basically
monitoring), 3rd P normally spare (running background jobs), extensive

program checking. Highly replicated peripherals (1/0, disks, etc.)

12(A2). COMEX, Pacific Coast Stock Exchange

* Stock trading message switching; near-continuous availability, no
transaction losses permitted, small real-time lag permitted.
Operational since 1969,

* 2 complete systems (each has 360/50 plus 2 PpP 8s), one in San
Francisco, one in Los Angeles, capable of running separately or
cross-switched (interccnfigurable).

13. NASDAQ, National Association of Securites Dealers Automated
Quotations; See Datamation, March 1972, pp. 42-45,

* On-line interactive system to facilitate trading of OTC securities;
high availability; operational since end of 1971,

* 2 P (1108s), multiprocessing under EXEC 8, capable of running simplex,
Dual records in file Structure, automatic recovery techniques,

14, Standard Telecommunications Lab, Harlow, England, See Electrical
Review, 6 Feb 1970, pp. 1-3,

* Real-time control

* 1 P, SEC/DED in M, in transfers, and in I-0; duplication of
punch/reader and of M access switches; triplication of control and of
function unit. 52% of hardware cue to fault tolerance,

Al.4

o B

15. Foxboro 88, Foxboro Corp. Process control using 2 P (PDP 8)

C. AERO-SPACE SYSTEMS, usually with ultra-high reliability and
availability requirements, usually critical real-time contraints, human
maintenance usually not possible., At least the first four efforts have
resulted in prototype systems. The remaining efforts represent mostly

designs in various stages of completion,

16 (A2). JPL-STAR, JPL, Pasadena Cal (A. Avizienis); NASA

* Unmanned outer-space travel computer, long-life availability without
maintenance. Prototype in operation since 1969,

* 1 P (uniprocessing), heavy use of coding (residue checking for SED in
memory and arithmetic, ED in op codes), duplicated logic operations,
triplicated monitoring and control (TARP = test and repair processor),
replacecent by spares via power switciing. User-provided rollback

points. 60% of hardware due to fault tolerance,

17(A2) . MECRA, Electronique Marcel Dassault, St. Cloud, France; DRME
* General-purpose design for special-purpose applications, including
aerospace., Prototype now working.

* Duplex arithmetic, Hamming code (7,4) as DED on coded decimal
representations (with six unused combinations), sparing,

microprogrammable reconfiguration, About 667 redundant,

18(A2). ACGN, CERBERUS, etc., MIT Draper Lab, Cambridge, Mass (A.L.
Hopkins, Jr,); NASA/MSC. _

* Apollo manned space on-board control, very high reliability during the
mission without maintenance. Prototype exists.

* At least 1 processing unit (up to 6), cultiprocessing among processing
units, replication within each processing unit and within memories
(without codirg). Two concepés:

(a) duplexed processing units, triplexed scratchpad memories, triplexed
memories and buses, with spares;

(b) triplexed processing-scratchpad units,

About 807 redundant,

Al.5

AT i i S el i T e e e g L B o L i, deetl

s L

Sl e

19(A2). MDC (Modular digital conputer), IBH Yorktown Hts, NY,;
NASA-Huntsville, ' '

* Modular system, wide range of high-reliability applications; design
only

* m P, multiprocessing and replication as well, FO-FO-FS
(fail-operational on first and second faults, fail-safe on the third) in
4 P fault-tolerant mode, detection mode also possible, M#crodiagnostics,

b-adjacent multiple errors handled in M, extensive self-checking,

20(A2) . MSC (Modular spacecraft couputer), Ultrasystems (Newport Beach

Ca) and Raytheon (Waltham Ma); SAMSO/SYT (Los Angeles Ca)

* Reconfigurable guidance and control, space shuttle use; long-life

reliability,

* The Raytheon entry in this effort has 1 P, identical subP and subM

reliably switchable with sparing. SEC in M plus 3 spare bits reliably

switchable via "rippler", burst-error detection in mass M, triplicated
@5 control, duplicated configuration control,

* The Ultrasystems entry is similar to the JPL STAR.

21(A2). SIFT, Software implemented fault tolerance, SRI (John Wensley) ;
NASA-Langley

* Airborne control (commercial aviation); availability of corrvect
results during flight; some tasks more critical than others, permitting
slight degradation of less critical tasks. Design only (see 1972 FJCC).
* Multiprocessing with variable software replication, dependent on
application program (software reconfigurable). Fault tolerance via
software can avoid special hardware, permits use of existing designs.
Connectivity is restricted: P can modify only its own M, can read
others, limits fault propagation, Executive uses the same fault-
tolerance procedures as application prozrams, About 75% redundant,
22(A2). ARMS, Hughes, Fullerton CA (W. L. Martin); NASA-Marshall (MSFC) ;
.3 * Spaceborne control; long-life reliability

1 * m P, dynamically reconfigurable, e.g., as independent-process
mul.tiprocessing or as repliﬁation with sparing. 20%-80% redundant
(variable)

Al.5

e R s ot LR o e

23(A2). Intermetrics multiprocessor, Cambridge Mass (J. .. Miller),
outgrowth of EXAM; NASA-ERC (Houston)

* Manned orbiting space station

*mP (1l to 8, nominally 3), each P internally duplicated, coding in M
(ED), capability for dynamic duplication of critical data words,

buffered instruction retry, save within interrupted instruction.

24(A2). Autonetics (N. Am. Rockwell, Anaheim, L. J. Koczela); NASA-MSC
* Space shuttle; long-life reliability
* 4-]level redundancy FO-FO-FS (cf. MDC) 80% redundant; less for lower

fault tolerance.

25, SIRU (Strapped-down inertial reference unit), MIT Draper Lab (A. L.
Hopkins, Jr.). See Intermetrics Report (reference abeve).

* Apollo guidance. Simple prototype built.

* 2 P (1 as standby), M duplicated.

26, MULTIPAC, General Telephone and Electr., Waltham, Mass; NASA-Ames.
See IEEE Trans. Aerospace and Electronic Sys., Sept. 1971, pp. 974-98l.
* Data handling for deep-space probes. Long life, but arbitrary outages
can usually be tolerated. Design only.

* Up to 5 P, 15 M (4 K each), gracefully degradable to 1 P, 1 M,

Manual reconfiguration of software and hardware via ground-based
diagnor.is, reprogramming, reassembly and transmittal of a new system

into space. Maintainable despite wide range of problems.

27. BUCS (bus checker system), SRI (Karl Levitt), NASA-langley.

See SRI Final Report, NAS1-10920, 1973,

* Aircraft control, as in SIFT

* 5-10 (local) P & M units, each duplicated internally, byte coding in
central M, bus checker coordinates restart mechanism, periodic diagnoses

of M and of unflexed processor functions, About 337 redundant,

28, TOPS, JPL (Gilley). See IEEE Trans. Astr-Aero, Sept. 1970,
* Thermo-electric outerplanet space travel
* Related to JPL-STAR.

Al.7

L EE i

FER TR - :
¥ Pl W PRI S - AT B " - T - . e - = o TSI A "’i’“ﬂ@#’”’m ST m;wwe

29, MFC, Hamilton-Standard; NASA-ERC. See Intermetrics Report.

* Modular flight computer
* 3 P, 3 M, cross-configurable, TMR or 3 P multiprocessor

30. ALPHA, CDC. See Intermetrics Report.

T L A

31. AADC, Honeywell; NASA, AADC Naval Air Systems Command., See

Intermetrics Report,
32. IRAD, Litton. See Intermetrics Repo-t.
1 33, SDC-Burroughs; USAF-Wright-Patterson, Multiprocessor

34, S-3, Univac

35. SUMC, RCA Advanced Technology Lab, Camden NJ; NASA Huntsville.

*Space ultra-reliable modular computer, COSMOS technology.

B e St L e e N e LR e b B e

e

STUDY CF FAULT-TOLERANT COMPUTING: FINAL REPORT SRI JULY 1973

APPENDIX 2
SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

This appendix presents replies to a questionaire sent to architects of
various fault-tolerant computing systems, It is hoped that the
questionaire will itself be useful as a descriptive form and that the
replies will aid in understanding and comparing the systems included
here. To this end the questionaire has been desipned to permit a
concise description of each system, its poals, its motivations, its
nrinciples, its structure, its techniques, and its achievements to date.

The replies piven here are included essentially in their entirety,
Several sipnificant efforts are unfortunately not represented here,
e.f., IBM's FAA system, the New York Stock Exchange System MDS-2, and a
system under development at the University of Newcastle-on-Tyne,

The first issue of this survey was distributed informally to conference
participants at the Second International Svmposium on Fault-Tolerant
Computing, Boston, June 19-21, 1972, It supported the panel discussion

"Approaches to the Architecture of Fault-Tolerant Computing", chaired by
Jack Goldberg,

The contents of this appendix are as follows.

Questionnaire page A2,2 .

Replies: page A2,pp: System: A
A. Avizienis, JPL and UCL. 4-6 JPL=-STAR ;
B. R. Borperson, U, C, Berkeley 8-10 PRIME i
W. C. Carter, IBM, Yorktown Heights, NY 12-13 MDC b
Jo L. Delamare, EMD, St,-Cloud, France 6-7 MECRA :
Capt. L. A, Fry, SAMSO, Los Angeles, CA 10 MSC i
A. L. Hopkins, .Ir,, MIT Draper Lab 14-15 ACGN, etc. ‘
L. J. Koczela, No:th-American Rockwell 3 (3FT) b
We L. Martin, Hurhes Aircr., Fullerton CA 16-17 ARMMS]
Jo 5. Miller, In:ermetrics, Cambridpe MA 18-19 (mp) i
S. M, Ornstein, Jolt Beranek & Newman 11 HSM IMP 4
W. C, Ridgway II1I, Bell Labs, Madison NJ 20-21 Safeguard 8
J. H. Saltzer, MIT Project MAC 22-23 Multics 3
D. Siewiorek, Caraepie-Mellon Univ. 26-27 C.mmp 3
W, Ulrich, Bell Labs, Naperville, 111, 23-25 No. 1 ESS f
D. C. Wallace, SRI for PC Stock Exchanpe 28-29 COMEX
J. H. Wensley, SRI 30-31 SIFT
R. K, Williams, Plessey, Fngland 32-34 System 250

A2.1 ;

g A

SO

SURVEY OF FAULT-TNALLRANT COMPUTING SYSTENS==)1§ STIONNAIKL
SR1 Computer Science Group, June 1972

i. IDINTIFICATION of the ayster
{ 1. NAME: What {a the relevant name of the svstes?

1.2, SLSPONSIBALITY: What {a the responsibie nrpanization’
1.3, SUPPORT: What are the aourcen of aupport’

to4, PARTICIPANTS: Who (and what orpanizationa, 1f
relevant) are the principal participanta?

1.5, START: What was the dste of conception?

1.6, CAYPLETINN: What waa, or is expected to he, the
corpletion date? (Specify prototype acceptance date, or
deaign cowpletion date 1f desipn onlv.)

1.7, BIBLICGRAPHY: Whet are the most relevant refereocea?

2, MOTIVATION for the aystem

2,1, PURPOSL: “hat 1a the rain purprise of the syatee
(e.r., reneral-purpoae corputinp, real-tiwe air-traffic
control, atnre-and-forward)”

2.2, PUYSICAL ENVIRONMENT: Where does the aysterm operate
{e.r., pround-haaed, airbotrne, spaceborne)?

243, COIPUTING ENVIRONMENT: flow doea the ayster relate
corputationally to ita eovironwent (e.p., locally,
remotely, via a network, intersceivelv, via peripherals,
wvith human usera)?

2,6, COMPUTLAC OBIECTIVES: WYhat are the apecific cosputios
ohfectivea, reparding capability, canracity, performance
(throuphput or reaponae coofipuration scaleahility,
maxirum real-time delava, etc. (ss relevant)?

2.9, REL{ABILITY OBJLCTIVES: What are the specific svster
reiiability objectivea, with respect to desired
availabilitv durinp vhat period, minieum time to syater
feilure, maxirur permitted duration of outage, etc.’

2,6, DYNAMIC VARIARILITY: llow ray theae objectivea vary
during operation? (F.p., how may performance deprade?
Mav perforrance be exchanped for increased reliabilicy?)

2.7. PENALTIES: What ere the penalties ariaing fror
faulty operation? (Poaaible examples include loss of
Iife, badlv decreased performince, the neceaaity of manual
intervention, loss of reveoue, etc,)

2.R, CNNSTRAINTS: What explicit physical constraints exist
{e.r., with reapect to size, weipht, power, cost)’

2.9, TRADLOTFS: What critical tradeoffs exiat arong the
ohjectivea?

3, DESCRIPTION of the svstee

3.1, ARCHITECTURE

3.1,1, CONFIGURATIONS

J.1.1.4, INTERCONNFCTIVITY: What is cte basic configura-
tion, and what restrictions exist on interconnectivity”
{You mav choosa to include a hlock diapraz, a PMS diarrar
A la Bel]l and Nevell, or other useful representation.)

3.1.4,2, TANGL: What is the ranpe over which confip-
urationa are aensible {minimur to eaxirue), e.p,, how rany
procesaora, how manv memory wodules (of what sire and word
Iensth, and with vhat reatrictions 1f any), etc.”

J.1.4.3, CAPABILITY: What is the effective computing power
of the smallesat senaible confipuration in 3.1,1,2° Pleaae
corpare 1t roughly with a vell-known svster {(e.p., 360/40,
65, 195), and cite a hail-park fifure for the nurber of
additions per aecond, Capability required for fault-
tolerance ahould oot be inciuded.

7.1.2. FXFCUTIVE aod operetior aystem

3.1.2.1, MODES of. operation: How doea the avater onerate?
{E.p.,1s each processor rultipropramsahble? 1s indepeodent~
proceaa tultiproceaaing poasihle? is cooperative-procesa
rultiprorrasmmed rultiproceaaing posaihle?)

3.1.2.2. SOFTWARE orpanirzation: Whst is the atructure of
the syatem aoftware’ How 1a it distributed with resrect
to the hardwvare?

3.2, FAULT TPLERANCE
3.2.1, FAILTS TOLEPATED: What faults are tolerated hv the
svatee, vith vhet reaulting effects on system behevior?

3.7.2, FAULTS NOT TOLLRATED; What faults cannot be
tolerated by the ayntem, and what are the corresponding
rffects” Ideotify the weakest linka.

NOTE: Taulta wav he charactevized in rany ways, including
tvpe (e.r,, faulty harduare at various levels auch aa a
chip, module, hua, power supply, arithmetic unit,
procesaor, merory; faulty aoftware such es i{o the
executive, in s corpiler, or in an applications program;
faulty uaape and bad inputa), nature {e.p., tirinp
considerationa, old ape, various phyaical phenomena),
duration snd frequency (e,f., one-shot, recurreot,
perranent), scnpe (e.p., iaolated faulta, correlated or
independent multifi. “sults, with varving deprees of
pronapation), effect (random, predictsble), etc,

J.2.%. TECHNIQUES: What Laaic techniques are emnloyed to
provide fault-tolernnt capability, and wheo, where, and
how are thev uaed? Include hardware and aoftwvare
techniques,

HWOTE: Applicahle techoiques include (noaaibly in
comhinatioo) replication (e,p,, triple-modular redundancy
at varioua levela, redundant computaticoa using
independent alporithrs), codiny (e.f., error-detectiog or
=correcting codes on a bua, in memosy, 1o sritheetic),
repetition and roilback, reconfipuration (includinp
removal without replacement and replacemeot with aparea),
diapnostics (e.p,, atsnd-alone, on-lioe, interactive;
rreventive, emerpency; remote, local), protectioo (of
procesaea, data, proframe, etc.), aod outaide intervention
{huran or otherviae), Theae techniquea may be uaed
ntazically (e.p., alvsya invoked) or dynamically (e.p.,
confipured aa needed); at various module levela in
hardware and aoftware; in combination with certain events
snd with certaio other techninuen,

3.3, HOVELTY: Yhst are the most unusual deaipn features?

3.4, INFLU F.S: What other efforts (svaters, research)
have had an influence on your syster desipn?

3.5. HARD=CORE: 1f there is a concept uf “hard-core” in
vour avster, vhet ia ita significance’ (Please define
your concept,)

4, JUSTIPICATION for the system

4,1, RFLIABILITY FVALUATION: liow 1a reliability eatimated
and/or demcoatrated (e.r., via anslvais, simulation,
stirularion of faulta, theoretical arpuments)?

4,2, COMPLETENFSS OF EVALUATION: How cowplete ia your
desipn evaluation®

4.3, NVERHEAD: What percentape(a) of total ayatenm
resources do you attribute to the achievement of
fault-tolerance? (Conaider cost lopic, execurfon tiwe,
memary, etc,, as applicable,)

4.4, APPLICABILITY: What ia r'.e potential rsope of applic-
ability bevond that atated in sectiona 2.1 = 2.4 above?

4,5, EXTENDABILITY: In vwhat weva could the ayster deaipn
be advantapeoualy extended, with what increaae in coat,
and to what effect”

4.6, CRITICALITIES: llow criticallv do the deaign choicea
ratch the desipn poals? (E.p., could alight chenpea in
poais reault in preat aavings in deaign, implementatioo,
and/or operatfoo? 1s rultiproprammine or multiproceasing
critical® Ia the choice of herdwere criticel?)

4,7, IMPLICATIONS: What apecial requirereota (1f any) does
the baaic desipn iwrpone (e,p., on the harduare designera,
on the aoftwvare developers, on usera aod maiotaiocers)?

5. CONCLI'S10NS
5.1, STATUS: What {s the curreot stetus of the ayates’

$.2, EXPFRILNCE: What conclusiona can you reach based on
vour experience with the ayater to date {(e.g,, in deaign,
irp.ementition and operation)?

5.3 FUTURF: Whst is planned for future development or use
of the svstee?

5.4, ADVANCES: What developrenta (theoreti.el or
nsTactical) would be deairable for aigniffcaotly advancing
the atate of the art in fault-tolerant cowputing?

6, COM2NTS (Please ioclude &ny comments on your aystee,
on thia queationnaire, etc, vhich you would like to add.
Opinicma, orejudicea and nhiloaophiea are welcomed.

SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

L. J. Koczela, North American Rockwell Corp,
3370 Miraloma Avenue, Ansheim, Celifornia 92803, May 1972

1. IDENT1FICATION
1.1, NAME: A Three Feilure Tolersnt Computer System

1.2, RESPONS1BILITY: Electronica Group, North American
Rockweil Corp.

1.3, SUPPORT: Msnned Spacecraft Center, NASA

1.4, PARTICI1PANTS: L. J. Koczela, J. Jurison, O. Brosius
- North Amerfcan Rockwell; P. Sollock - NASA,

1.5, START: 1/1/70
1.6, COMPLETION: 1/1/71 (design concept) .

1.7. B1BLIOGRAPHY: A Three Failure Tolerant Computer
System, IEEE Trans. on Computers, November 1971

2, MOTIVATION
2,1. PURPOSE: Real-Time Central Guidance and Control
Computer

2,2, PHYSICAL ENVIRONMENT: Spaceborne

2,3, COMPUTING ENVIRONMENT: The computer aystem interacts
with avionics gubsystems via a multiplexed dats bus.

2,4, COMPUTING OBJECTIVES: 30,000 words of memory;
500,000 operations/second speed

2.5, RELIABILITY OBJECTIVES: Must tolerate first two
failures with no degradation in performance and third
failure with no degradation in safety.

2.6, OYNAMIC VARIABIL1TY: Third failure could have less
computational capacity.

2,7, PENALTIES: Would rsquire manual intervention with
possible loas of 1ifs.

2,8, CONSTRAINTS: No physicsl constraints but s relstive
wveighting of importance between phyasical parameters,

2,9, TRADEOFFS: Size, weight and power least important,

3. OESCRIPT1ON

3.1, ARCHITECTURE

3.1.1, CONF1GURATIONS

3.1.1.1. INTERCONNECTIVITY: Four redundant computers
interconnected by four voter switcnes at their 1/0
channels,

3.1.1.2. RANGE: 2 - 6 CPUa, no reatrictions on word
length.

3.1.1.3. CAPABILITY: 500,000 operations/second

3,1.2, EXECUT1VE

3.1,2,1, MODES: The executive may operate the redundant
computers in many modes of operation: non-redundant
independent computers, multi-programmed, multi-computer,
and various combinations of redundancy such as comparison,
voting, etc.

3.1.2,2, SOFTWARE: Software control is equally distributed
among the redundant computers - no central control exists.

3,2, FAULT TOLERANCE

3.2.1, FAULTS TOLERATEO: Any 3 faults. A fault can rsnge
from a single circuit elemsnt to a complste moduls such as
8 CPU failing. A fstilure hsa no effect on system behavior.
The system sctually tolerate more than three faults of
many different types but it will tolerste at least sny
three fsults,

3,2,2. FAULTS NOT TOLERATED: Softwsre fsults thst are not
caught in debugging.

3,2.3, TECHNIQUES: The technique used is replication of
hardware with quedruple radundancy. Computations are
performed redundantly and reconfigurstion i{s sccomplished
without removal ur replacement after failure detection by
voting.

3.3, NOVELTY: Through the redundsnt use of edsptive
voters opersting on the input/output of redundant
computera, any three failure can ba tolersted,

3,4, 1INFLUENCES: None

3.5, HARD-CORE: No hard core existe,

4, JUSTIF1CATION
4.1, REL1ABILITY EVALUATION: Extensive fault simulations
have been aucceaafully psrformed.

4,2, COMPLETENESS OF EVALUATION: It is impossible to
verify a design gosl of 100 percest confidence.

4,3, OVERHEAD: For criple failurs tolerance, sbout 80%,
lesa for lower failure tolerance,

4,4, APPLICABILITY: To many critical real-time control
systems, industrial, space and defense applications,

4.5, EXTENDABILITY: The deaign can be extended to
tolerste different numbers of failures, eg. any two
failures, any four fsilurea, etc,

4,6, CRITICALITIES: Requirement for 1002 confidence in
tolerating any 3 failures ia very criticsl, lowering to 99
percent or so would reduce complexity and cost,

4.7, , IMPLICATIONS: Hardwsre designers must inasure
indepsndence of fsilures at computer 1/0 interfaces,

5. CONCLUSIOKS

5.1, STATUS: System deeign concept completed,
voter-switch deteiled design completed, prototype hsrdware
of voter-switch currently under development,

5.2, EXPERIENCE: A very rigid fsilure tolerance
requirement can be met asauring that a minisum aumber of
failurea will be tolerated.

5.3. FUTURE: Possible use on space shuttle program

5.4, ADVANCES: A significant aree thst can enhance the
atate of the ar: in designing fsult-tolerant computers is
snslysis of fsilure modea of components snd computer
suhsystems in depth. Another very important sres is
error-free aoftware,

6. COMMENTS: Much of the work on fault-tolerant
computera is dedicated to singile failures at the gate and
circuit level. Unfortunstely, in many cases thie is not
applicable to real world failures when considering
computers mechanized from atave of the art LSL integrated
circuits.

i

1] I
T)

Computer satern mechanization.

VCS mechanization.

SURVEY OF FAULT TOLERANT COMPUTER SYSTEMS

Alpirdaa Avizienla
UCLA Corputer Sclence hept,, Los Anpeles, CA and
Snacecraft Computer Sectlon, JPL, Paaadena, A, March 147)

1. IDENTIFICATION
1.1 NAME: JI'L-STAR (Srlf-Ten:lnr-Anﬂ-"epalrlnp) { omputer

1,2 RESPONSIBILATY: Spacecraft Computer hection,
Antrionica Diviaion of the Jet Propulsion lLaboratory,
Paaadena, California,

1.3 SUPPORT: NASA = Office of Advsnced Researcls and
Technnlopy (vie IP1)

1.4 PARTICIPANTS: A, Avizienis, N, A, Rennela, 1. A,
Rohr, F. P, Mathur, G, €, Gilley

1.5 START: 1964

1.6 COMPLFTION: Operational - Sprinp 1969 (laboratory
model), rodificationa continue

1.7, B{BLIOGRAPHY:

*A, Avizienia, et al,, The STAR {Self-Testinp and
Repsirinp) Computer: An investipation of the tlieory and
rrsctice of fault-tolerant computer design, IEEF Trana.
Corputer, C-20, pp, 1312-1321, Novemher 1971.

*A, Avizienis, "Deaipn of fault-tolerant computers,” FJICC,
np. 733=743, 1967,

*A, Avizienis, "an experimental self-repairing comuter,”
{nfermation Proceasing, (1P, Vol, 2, pp. R72-877, 196R,

"A, Avizienia, F, P, Mathur, D, Rennela, and J. A. Rohr,
"Automatic maintensnce of aerospsce corputera and
spacecraft information and control svstems,” Proc. ALAA
Aerosp, Corput, Syst, Conf,, Paper 69-966, pp, 1-11,
Septerber R-10, 1969,

*A. Avizienis, "Concurrent diagnosia of arithretic
processora,” Digest of the st Annual LECE Comp, Coof., pp.
=97, 1967,

*A, Avizienis, "Arithmetic error codea: Cost and
effectlveoesa studies for spplication in dipgital svatem
deaipn,” 1EFE Trans. Comp, C-20,, np, 1322-1331, Nnv 1971,

*F. P, Mathur and A, Avizienia, "Reliabilitv analvaia and
architecture of a hybrid-redundant dipital ayatem:
Ceneralized triple modular redundancy witls self-repair,”
5JCC, pp. 3175-3A3, 1970,

*F, P, Mathur, "On rellabiiity wvodelinp and analyaia of
altrareliable fault-tolerant dipital ayaters " {EFE Trans,
Corp., C-20, pp. 1376-13R2, November 1971,

*G. C, Gillev, "Antowatic raintenance of Spacecraft svatems
for long-11fe, deep-apace risaiona,” Ph,D. diasertation,
Dept. Comput, Sci., UrLA, Septerber 1970,

*¥, P, Mathur, "Relishility estiration procedurea snd CARE:
The corputer aided reliabiiity eatimation program,” .let
Propul. Lah. Ouart, Tech. Rev., Vol 1, Cctober 1971,

*A, Avizienis and D, Fennels, "Fault-Tolerance Experimenta
with the IPL-STAR Corputer,” Proc, of the Sixth Annuel
Intermations] Conference of the iEFE Computer Soclety
(MOMPCON), San Francisco, Callfornia, 1972, pp. 32i-324,

*A. Avizienia, "Arithmetic Algoritbms and Processor Desipn
for Frror-Coded Onerands,” 1EEE Trsnaactions on Comwputera,
June 1971,

*G. C. Gilley, "A Fault-Tolerant Spacecraft,” Dipeat of the
1972 {ntermational Symposium on Fault-Tolerant Corputinp,
Newtcn, Maas,, Juoe 19-21, 1972, pp. 105-109,

*F. P, Mathur, "Automation of Reliahility Evaluation
Procedures through CARE--The Computer-Afded Reliability
Estimation Program,” AFIPS Conference Proceedinga (Fall
Joint Computer Conference) Vol, 41, Anaheim, California,
December 5-7, 1972,

*J, A, Rohr, ''Syetem Software for a Fsult-Tolerant Digital
Computer,” Ph,D, Theale, University of 11linofa, Department
of Computer Science, Urbara, 111inois, Eebruary 1973,

2. MOTIVATLION
2.1 PURPOSE: Fxperimental laboratory GP machine; suitable
for spacecraft controi

2.2 PUYSLCAL TNVIROIMENT: Laboratorv environment

2.3 COMPLTING ENVIRONMENT: Local 1/0 facllitles

2.4 COMPLTING ORIJLCTIVES: Capsble of automatically
maintaininp an unranned spacecraft

2.5 RELIABILATY OBJECTIVES: 100,000 Liour survival with
0.95 reliabtlitv; tolerance of tranaient faults; outage for
recovery below 50 msec,

2.6 DYNAMIC VARLABILITY: Maximum computinp prver required
at end of mission

2.7 PFNALTIES: ‘tone for lah model; loas of spacecraft for
flipht model

2,k CONSTRAINTS: None for lah model; for the flipht rodel
the weipht of the subsystem was not to exceed 40 1b. and
the power consumption waa not to he grester thao 40 ¥,

2.9 TRADENFFS: None

3, DESCRIPTION

3.1 ARCHITECTURE

3.1.1 CONFLGURAT10ONS

3.1.1,1 1STFRCONGECTIVLTY: See Firure

3.1.1.2 RANGF: One processor of each cless {onerating); 1n
memory modulea of 4096 worda each (maximum operatinp
memory)

3.1.1.3 CAPABILAT : 500 KMz maximur clock rate aod
bvte-serial operat.oo in laboratory model,

3.4.2 EXECUTIVE

3.1.2.1 MADES: The entire aet of active STAR corputer
rodulea operatea ss a sinple, Reneral-purpoae comnuter,

The executive implerenta a two-partition, interrupt-driven,
misltipropramming environment on the rachine, Four modea of
opreration under the executive are distinpuiabed, (1) The
self-repair mede has higheat priority and la entered
Irmediately after hardware aelf-repair, Thia rode
accorplishes aelf-repalr operations delepated to softwsre
auch as memory reconfiguration and propram resusmption, ()
The interrupt mode {a uaed to proceaa interrupta, While in
this rode, all lover nriority interrupta ere inlihited by
aoftware. (3) The prohlem mode is the norral mode of
execution for applications proprars, All active interrupta
are enahled when runnlng In the prohlem mode, (4) The walt
rode {8 sirilar to the prohlem mode except that ooly
low-nriority, cyclie PYoRrams are run, The repisters of
vait-mode proprams are never asved, and the nrograms can be
resured at a atandard noint,

1.1.2,2. SOFTWARF: The software for the STAR cooputer can
be cateporized {nto four efforts: the programming ayatem,
the resident executive, the demonatration applicationa
proprams, and the apacecraft applications prograze, The
proprarrinp syater conaista of an asaerbler, loader,
functional simuletor, end programming executive. The
proprsmming ayster lins heen irplesented on the UNIVAC 1108,
1t i{s used to penerate programs for the STAR cosputer,

The reaident executive whicb has been designed for the STAR
computer ia called STAREX. The STAREX *outinea are divided
into ten cateporiea: snapshot, self-repair,
foitialization, acheduling, timing, interrupt handling,
library manapgement, facilitiea wanagement, input-output,
and aervice, The STAREX aelf-repair routines eugment the
aelf-repair hardware facilities by reconfipurinp the memory
and reauminp applications programs after eelf-repair,
STAREX operatea in dupliceted merory modulea end uvaea a
ainple variehle to maintain {ta rollback point, (The
rollback point ia the eddreaa for Program reaumption after
self-repair.) STARLX also provides facilitiea for
applicationa programs to eatablish rollhack pointa,

Demonatration application progrems have heen developed for
demonstrating the STAR computer lahoretory breadboerd,
Theee proprams auccesafully survive tranaient and eimulated
termanent faulta and properly reaume computation efter the
{ault is removed, Theae DroRrams eatablish rollbeck pointa
hy celling the executive routinea.

Spacacraft spplications progrsms have been inveutipstad ss
part of tha prsliminary studias of the TOPS control
cowutar aubsystam which was evantually to be ured on bosrd
+'s Grand Tour spscecrsft,

3.2 FAULT TOLERANCE

3.2,1 FAULTS TOLERATED: Tha principsl gos] of tha dasign
is to attain fault tolarance for s veriety of feults:
transisnt, permanant, random, and cstestrophic.

3,2,2 FAULTS NOT TOLERATED: (s) Transisnts st a rate
highar than allovad by tha lsnpth of "rollbsck’” sagments of
programe; (b) shorted bus wires (isclstore are amployad) or
pover switch "on" fsilures,

3.2,3 TECHNIQUES: All machina vords (data snd instruc-
tions) ara ancodsd in arror-detecting codes. Fsult
dstaction occurs concurrently with program axecution.

Tha cosputar is divided into a eat of raplacasble
functional units containing their own instruction decoders
and saquencs genarators, This decentrsliestion allove
simple fault-location procedures and simplifias systsm
intsrfacss.

* Fsult dataction, racovery, snd raplacement ara csrrisd
out by special-purpoes hardwsre, Msmory raconfipurstion snd
program rasusption sra accowplishsd by the rasidant
executive,

* Transiant fsults ara identified snd their effects are
corractad by the repetition of & svyment of the cufrent
program; parmanent faults are eliminstad by ths replacement
of fsulty functional units.

* Tha replacament is implementad by powsr switching: units
ara rswmoved by turning powar off and connactad by tumning
povar on, Tha information lines of all units are
permansntly connacted to tha buses through {solating
circuits; unpovsrad units produce only lopic "earo®
outpute,

¢ Tha arror-dstecting codes are supplementad by wonitoring
circuites vhich sarva to verify tha proper synchronizstion
and intarns] opsrstion of ths functionsl units,

% The "hard cora” test snd rspsir processor (TARP) {i»
protactad by triplication and replscerent of failed merbers
of the triplat,

3,3 NOVELTY: Povar switchiep, status signsls, encoding of
instructions ewphasis on transcient-recovery with prozrsa
survivsl,

3.4 INFLUENCES: Theoretical work by Reed and Brimley;
Kruus and Seshu; Griesmer, Miller and Roth,

3.5 HARD=-CORE: Tha "hard core” monitor of the STAR systam
is designatad as TARP (test snd repsir processor) in tha
Fipura, Tha TARP monitors the opststion of ths STAR
cosputar by tvo methods: (1) testing avery word sant over
tha two dats busss for vslidity of its code; and (2)
chackiap the ststus messsges from the functions] units for
pradictad rasponsas.

Thrse fully povared copias of ths TARP sre oparstad at sll
timea topethar #ith n standdby spsrss (n = 2 i{n tha presant
design). The outputs of ths TARPs are decided by a
2-out-of=(n+)) threahold vota, Whan ona povared TARP
dissgreas with tha nther twvo, tha recovery mode is antsred
and sn attampt is made to sat tha intarnal stata of the
disagraaing unit to match the other twvo unita. 1f this TARP
rollback attespt feils, tha disapreainp unit 1s returned to
tha standdby condition and ona of tha standby units recaives
povar, goes through tha TARP rollbsck, and joins the
povsred triplat, A standard rollback then occurs and the
rasident axecutive rasumes normal program oparation,
Becausa of ths three unit requirament, desipn effort hss
basn concantratsd on reducing the TARP to the laast
possihle complaxity. Experiance with the present model has
led to saveral rafinements of tha dasipn.

Tha replacament of fsulty functional vnits is commanded by
tha TARP vote snd 1c implementad by povar switching, It
offare saveral sdvantasas over tha switching of information
1inas vhich connact the unlts to the bus. The numbar of

switches sra reducad to ona pst unit, povar is conssrvad,
and strony isolstioe is provided for catastrophic failures.
Msgnatic povar switchas have baan davelopsd vhich are part
of each unit's povar supply end sre designad to open for
wost interns] fsiluras, The thrasheld functicn {s {nharent
in the control windings of the switch., Tha information
1inaa of each unit are permanently connactad to tha busss
through componant-radundsnt isclation circuits, Tha signal
on s bus 18 ths lopic OR of sll tnputs from tha units, and
unpow:red units produca only lepic eero outputs, The pover
switch and the busss utiliea componant radundancy for
protaction agsinst fatsl "shortinp” failures.

4. JUSTIFICATION

4,1 REL1ABILITY EVALUAT1NN: Tha cosputing oparations for
tha snalysis wss dona with the sid of tha cosputar-aided
rolisbility astimation (CARE) progrsm, which was davelopad
as s design tool during the ralisbility study. CARE s &
snftvare peckspa davslopud on tha Univac 1108, CARE may bs
interactivaly accessad by s designer from a talatype
consola to cslculate his relisbility estimatss. Tha input
is in tha form of a systarm confipuration dascription
followsd by querias on the vsrious rslisbility parsmetare
of intarsst snd their bahavior with rsspact to miseion
time, fault coverspa, failurs ratss, dormancy factore,
sllocated sparas, snd osrtitioning. Tha CARE propram ie
extensible, snd it may ba updatad to incorporsts new
relishility modals ss they bacowe availabls. A sscond sat
of proprswms, ths Reliability Modeling System (RMS), was
davaloped 88 a tool in ths ecxperimental verification of tha
STAR brasdbosrd., This sat of programs cosputas tha
ralisbility of tha vsrious subsystam configuratioms usiep
"covarspge" psrametare axperimentslly obtained by insarting
fsults into tha syitem, RMS lz an intarsctive system
implamentad by APL.

4,2 COMPLETENESS OF EVALUATION: Phyaicel fswlt-injaction
axpariments are currently in progrese amd ere awpacted to
ba completad in 1973,

4,3 OVERHEADI Depands on tha nusber of spares. =ith ome
spere for aach modula, tha system is sbout 603 redwmdemt
(1.a., sbout 150 percent axtra cost for famlt tolarsace).

4,4 APPLICABILITY! Various resl-time applicstions that
requira very fast racovery.

4,5 FEXTENDABILITY: Spars proceseors could ba utilissd in
a multiprocassor woda, Additionsl buses snd supervisoery
mechenisms would ba raquirad.

—@—
—L
— (i
—{—
—{H
—{—

§;NI'R? Ilés” -@ --

STAR computer orgami/ation.

COP Control processor, contsins tha locstion counter snd
index ragisters,

LOP Logic processor, (two coples ere povered).

MAP Main erithmetic proceasor.

ROM READ-ONLY memory, 16,384 permsnently stored words,

RWM READ-WRITE memory unit (4096 words, two copies
povered, 12 units directly addresssble,).

10P Input/Output processor, contsins 1/0 buffer,

IRP lnterrupt processor, hindles interrupt request.

TARP Test and repair processor, (three copies powered).

A,
R

4,6 CRITICALITIES: Tha design goal was a battar
undsrstanding of replacament systame, Iln ordsr to retain
contact with tha practica of cowputs: dasign, it vas
decided to deaign and comstruct an sxperimentrl
ganeral-purposa digital computar which would {ncorporats
dynamic radundancy {i.e., fault datection and raplecement
of failsd aubsystame) aa an intapral part of its structurs,
Tha deslgn objactivas have baan carvisd out and the eyatawm,
callad the STAR computsr, bapan operation in 1969. Tha

= modular naturs of tha STAR computar haa allowed aysteratic
expansion and modificationa that ars atill beinp continued.

An asrly objactiva of ths deaipn is to atudy ths cleas of
prohlams which ara ancountared in tranaforming ths
thaoratical wodal of a aslf-rapairinpg syatam into e workinp
computar, Stats-of-the art intapratad circuit end memory
technology was arployed in tha design, This objectiva
appaars to have baen sttainad reascnsbly wall.

4,7 IMPLICATIONS: Designara wust piva (a) advenca
attantion to modularization and coded oparands; (b) special
softvare fasturas ars neadsd (sas 3.1,2,.2); (c) ueara must
ohserva "rollback” rulas in propramming.

S. CONCLUS1ONS

5.1 STATUS: Oparating in laboratory; bainp extanaivaly
tastsd snd modifiad to improva weaknassaa that are
uncoverad,

> 5.2 EXPERIENCF: Practical implementation of replacement

; aystams is fassibla, Transient faults can bs
systamatlcally eliminated without prngram loas, Transient
tolaranca can be spacifiad in terms of "duration” and
"fraquancy” parareters,

S.3. FUTURE: Tha research and development program which
lad to tha STAR computer is continuing i{n ssveral

A directions, Analysis of autosatic msintenance algorithms
and dasigm of e cormand/data bus for thsir isplswentation
ara under intansive atudy, Othar current invastipatl-ns
are concarnad with tha folloving areas: (1) hardwars-
softwera intaraction in a fault-tolerant system with
racovary, espscially tha intaraction batvssn tha TARP and
the raaidant axecutive; (2) tuning of tha rasident axecu~
tiva to optimisa performance with ragard to rallback, both
f in tha sxecutive and zpplications proprams: (3) atudies of
k advanced racovery tachoiquea, i.s., poat- c.cestrophic

A rastart, TAPP rsplacement achsses, Tecovary from wmaaaive
intarfarenca, partial utilisatien of failsd unite; (&)
advancad component tschnology, sspecielly methods to attain
d bus and povar svitch (1.a., hard core) immunity to faults;
i (5) hauriatic studiaa of fault tolarsnce by intarpretation
[of extensive axpsrimente with tha STAR breadboard as the

1 instrument; (6) design of a ascomd-peneration STAR-type

4 computar vith univerael nrocesaor and atorape modulss, and
! thair isplamentation by lerge-scala intspration; (7)
computational utllization of tha spars units for
supplamental tasks in a wultiprocessing mode.

¥ 6., COPMENTS: Design, construction, and tasting of

L laboratory models is critically important to advance tha

1 stata of tha art and to yain accaptance awonp nractitionara
y of deaign in industry.

i The STAR cosputer breadboard consists of thrse Read-Writs

3 memory wnits, ons Read-Only memory unit, ona copy of each

: of tha procassing modulss, and one TARP (Test and Repair

3 Procassor). Ths brsadboard provides adequata facilitisa for

axparimental varification of the fault dstaction,

diagnosis, end recovery alporithms employsd in thie

construction, and for

tha davalopment of fault-tolsrant softwara techniquea.

Tha davalopment of tha breadboard rasultsd In a dirsct

confrontation with ths tachnologicsl problem ersa in

h fault-tolarant cosputing, i.e. businp, isolation, povsr

i svitching, atc, This resulted in a battar undaratanding of
thasa problers snd a aat of innovativa solutiona.

A2.6

SURVEY OF "AULT-TOLERANT COMPUTING SYSTEMS

Jacques J, I'zlamars, Electroniquo Marcel Dassault
(E.M,D.), %3, qual Carnot, 92 - Saint-Cloud France, June
1972

1. IDENT{FICATION

1.1, NAME: MECRA (IH‘qu-tte Experimentale de Caiculateur
8 Reconfiguration Automatique).

1.2, RESPDNSIBILITY: E.M.D. (Electronique Marcel
Dssaault).

1,3, SUPPORT: Support has three aources: D.G.R.5.T,
(belegation Gensrals & la Recherchs Scisntifique) with
preliminary studi:s;D.R.M.E. (Direction dea Rechercaea sc
dea Moyena d’taasis) with realization of MECRA project;
E.M.D, (Electronique Marcs] Dasasult) in sach case.

1,4, PARTICIPANTS: Jacquea J, Delamare, Garard Germain,
Jean-Clsude R, Charpentier, all of E.M.D., and four
researchera from "Centre ds Calcul Numerique de Toulouse",

1.5. START: May 1970

{.6, CDMPLETiON: July 1972, thia conaiata of a
demonstration of fault tolerance and reconfiguration
cspobllities., Evsluation of reljiability performance is
expected to be in Autum 1972,

1.7. BIBLIOGRAPHY: "The MECRA: a Sell Reconfigurable
Computer for Highly Reliable Proceaa', I1EEE vol C=20 no.
11, pp. 1382-1388, Nov, 1971, A report also due end of
1972,

2, MOTIVATION

2.1, PURPDSE: The system was conceived for reasarch in
fault=tolerant computer srchitecture, feaaibillty, and
reliabilltv evalustion. The idea for further development
is a real-time medium-sized computer for aircraft,

2,2, PHYSICAL INVIRONMENT: Svatem operates in EMD
laboratories.

2.3. COMPUTING ENVIRDNMENT: A alngle periphers]l allows
communication with KECRA,

2.4, COMPUTING DBJECTIVES: Main objectivea of the
project were not computing objectives, However addition
and multlplication are performed with 11 decimal digita
plus sign operanda. Complete addition naeds leas than 300
microsec. Such delays relate to the cycle time of
micropropram memory (! microsec), to reaponae time of
diacrete circuits, to unused time intervals in each
mlcroinatruction cycle, (allowing hardware modifications),
and lastly by the microsnftware package (allowing
reconfiguration).

2.5, RELIABILITY OBJECTIVES: Practical experiance and a
conciete baais for evaluation such as:

reflabilicy pain with dlifferent kinds of redundancy,
hardcore contribution in failure probabilitiea,

hardcore contrihution with different architectures,
reliability gain with reconfiguration,

cost increase {n control with reconfipurabillty,

lost time due to reconfiguration (during and after),
hardcore reaponse time with reapect to computing time,
These reliability objectives were only of intereat for

high probahilities of auccesa {(prcbabilities hlglier than
9.

2,6, DYNAMIC VARIABILITY: Computing apeed but not
accurscy may degrade wlth reconfiguration (207 maximum),
Performance cannot be exchanped for {ncreased rellability
auch as : two processors each one having its own job,
awltched to parallel processing on the same job and
checking one snother,

2,7, PENALTIES: Penaltiea from faulty operation can be
of aeveral kinds: /Loss of time due to racovery proceasea,
lessened performance after sslf-reconfiguration, loaa of
service./ Manual i{nterventions have not been
investigated, but will be necesaarily improvad as a
conaequence of self-testing and aself-healing capabilitiea
of MECRA,

/SRI nots: The text encloaed in alashes is an SRI
paraphrase of the original aurvey raaponse,/

2.8, CDNSTRAINT3: Circuitry sizs might not exceed four
tlmea the alzs of the equivalant irredundeant computer.

3, DESCRIPTIUN
3.1 ARCHITECTURE
3.1.1, CONFIGURATIONS

3.1.1.4. INTERCONNECTIVATY: See {EEE paper, The basic
cenfiguration Is 8 microproprammed monoptocessor with a
bus srchitecture, A restriccion csn be seen here since

addresses are binarv coded, whereas dats are Decimal
Hamming coded. This has no {mportsnce for the purpose of
the project, but would not have been used on a prototvpe.

3.1, 1,2, RANGE: Control Unit Configuration:

Maximim Miniocum

4 countets } counters

3 spare counters 0 spare counters

8 registers 6 registers

4 spare registers 0 spsre registers

3 multiplication proceasors I multiplication processor
2 addition processors 1 addition provessor
4 'and ' logic processors Yor2

4 'or' logic processors Jor:

4 'exclusive or' processors Jor?2

4 'inverter' blocks Jor2

Note: Anv logic function csn fall rompletely and can be
reconfigured with three other functions. In several cases
a fsiled logic function can be reconfigured with only two
other function,

Memorv configuration: Three memory blocks = 4 K {6-b{r
words, Each memory block has its own sddress decoder
circuits, At each memory cvcle a 48-bit word is read or
written; this word contains two identical words of 24 bits
esch, 5o that anvy one of the three blocks can be daclared
void and the computer still runs {f the other two operate
properly, Lfficiency of address error detection reaches
50% on each memory block. After any read restore cvcle,
each eight-bit byte (6 Dhvtes) is checked and {s switched
or not on busses, Then error detectinn efficiency is 50%
with instructions or microinstruction (if there is only
one erroneous bit) and 100. with data ({f there {s one or
two erroneous bit),

J.1.2, EXECLTIVE
3.1.2.1. MODES: MECRA is a monoprocessor,

3.1.2,2. SOFIWARE: There are three working modes on the
computer: user mode, test-diagnosis mode, decizion snd
teorganizstion mode.

a) in the USER mode the computer executes the user
program,

b) The TEST-DIAGNOS{S mode is set {n motion in two
different ways to which two different programs correspond,
The first is set in motion by interrupts when a fallure
hss been detected bv hardware checkers, The goal of this
program is to localize precisely where the fsilure
occured, The second nrogram {s set in motion periodically
and {ts purpose is to test the computer with the data
configuratfons which reveal faflures best, This program
sllous detection of the errors which cannot be detected hy
the hardware checkers (i.e, an erroneous data with correct
encoding), These two programs update a status table which
contains the status of computer components {falled or not,
number of transient failures). They also decide to stop
the computer when certain catastrophic faflures occur or
to set in motion the decision and recrpanization mode.

c) in the DECISION AND REORGANIZATION mode, a program
analyzes the status word (in the status tahle) of the
component in which one of the two test-diagnosis programs
has detected a permanent failure and {t decides elther to
reconfigure or to stop the computer,

3.2, FAULT TOLERANCE

3.2.1, FAULTS TOLERATED: Anv single fault is tolerated
in memories, ar{thmetic and logic units (since they are
mounted in a duplex scheme) or {n loglc units (quadded
redundancy). Any errnr dctected on the busses, switches
the MECRA to interrupt programs, while all writing in
memories, reginters or counters {s inhibited., Multiple
errors can also be tolerated in numher of cases, Multiple
errors can lead to repalr or to loss of service as sald
ahove (2.7.),

12,2, FAULTS NOT TOLERATED: Faults not toletated
include errors in the main control circult, which leads to
a deafgn with an increased degree of microprogramming and
minimised control circults, Also not tolerated are
errors undetected at the memory output. Power supply
failures have not been investigsted {n MECRA,

3.2.3, {ECHN{QUES: One of the goals of MECRA is an
investigation of as many fault-tolerrace techniques as
possible, such as triple modular redundancy, quadded
redundancy, duplex redundancy at very low level (clock)
and higher level (mumor{es and arithmetic circuits),
random redundancy (counters, registers), error detecting
codes (Hamming d = 3) and psrity bit, repetition,
rollback, reconfiguration with removal without
replacement, reconfiguration with replacement, disgnosis -
stand-alone, preventive and emergency, local protections
of process and data, These techniques are used atatically,
1t does not seem possible to describe these techniques in
detall in this paper, since {t would require s description
of the whole computer. Other techniques were also
investigated but not used on MECRA, auch as atopping the
computer during noisy periods, and control of correct
microprogram linking,

3.3, NOVELTY: When the project stsrted, two ideas
unusual in the literature were employed in MECRA: address
decoder redundancy in memories 50 as to separate address
ervors and dsta errors, single-error-free hard-core.

3.4, INFLUENCES: A synthesis of efforts which came
almost exclusively from the U,S,A, - universities,
laboratories, and resesrch institutes,

3.5, HARD-CORE: 1h{a {5 defined as a circuit,
interconnecting aeversl redundsot functions, whatever its
own redundancy level (it {s a relstive concept).

4, JUSTIF{GAT{ONS

4.1, RELIABILITY EVALIATION: Reliability is not
demonstrated, it is computed, in two steps using a model,
The first step concerns analvsis and drawing a network
madel, the second step concerns random faflure ss8ignment
into the mndel, After a great numher of trials, the
program furnishes results (e.g, curves, marginal
prohahilitles,,,).

4,2. COMPLETENESS OF EVALUATION: Program evaluation is
now being teated,

4.3, OVERHEAD: Approximately 60% to 702 of total system
resources are devoted to fault tolerance (ssme percentage
for logic, cost, and time).

4.6, CRITICALITIES: Use of ducimal coded characters
seems not well-fitted to fault-iolerant computers, This
change could reault in great szvings in design, Other
points sre not critical.

4.7, IMPLICATIONS: The basic design assumes low-level
integrated circuits, weih a very small number of different
circuits,

5, CONCLUSIONS

5.1, STATUS: The system is now operating and will be
delivered {n July 72, evaluation will follow during
October and November,

5.2, EXPERIENCE: Evervthing Is posaible, except, perhapa
a sufficiently low cost, and reliable packaging and wiring
of components, Note that LSl would put problems to
fault-tolersnt computers because they need more pina to
check redundant functions before connecting all together,
This would nrobably lead to simultsneous use of LS1, MS1
and small scale integrated circuits, Component
manufacturera have not yet taken into account
fsult-tolerance constraints, but they will probably do so
soon,

5.3, FUTURE: First prototvpe is projected 1976 - 1977,
Current computer is projected 1980, Use: Missilea,
afrcraft, real-time monoprocessors,

5.4, ADVANCES: Different fault tolerant computera can be
roug’ily conpared in term~ of relfatility versus mlsszion
time; hut this will fall back to evaluations of conpcnents
and wiring MBI, Sach data, estimated by constructars, do
not seem to give a sufficient common bssis for
evaluations, Theoretical and conventional datu or
component MTUF seem to be needed for accurate comparisona
anong different fault-tolerant computers,

¥
1

SP'RVEY OF FAULT-TOLFRANT COMPUTING SYSTEMS
Bsrry R, Borgereon, Corputer Systewa Resesrch Project
Univereity of Celifornis, Berkeley, Msy 1972,

1, IDENTIFICATION
1.1, NAME: PRIME

1.2, RESPONSIBILITY: Cosputer Systems Resesrch Project
{CSRP}, Us C, Berkelev

1.3, SUPPORT: ARPA - Contrect No. DAHC?D 15 C D724

1.4, PARTICIPANTS: Herbert B. Beskin, Principsl
Inves:ipstor; Roger Roberts, Principsl Proprsmmer; Bsrrv
R. Brrgerson, Hesd, Hsrdwsre R & D,

1.5. START: 7/1/7D
1.6, COMPLETION: First prototype to be running shout 9/73
1.7. BIBLIOGRAPHY:

*H, B, Bsekin, B, R, Borgerson snd F, Rnberte,
“PRIME - An Architecture for Terminsl Nriented Sy'f:rs,”
Proceedings of the 1972 S3CC, AFIPS Prees pp. 431- 437,

#8, R, Borperson, "A Fsi{1-Softlv Syster for Time
Shsrinp Use,” Dipeet of the 1972 Internstionel Fsult
Tolerent Cosmputinp Symposium,

*J, T. Qustse, P, Gsulene snd U, Dodpe, "The
Externel Access Network of e Modulsr Computer System,"
Proceedinps of the 1972 SICC, AFIPS Press, pp. 783190,

*R, S, Fabry, "Dynamic Verificstion of Operetinp System
Decisions,"” CSFP Document No. P=-14,1, Univ, Californis,
Berkeley, 11/72 (To be publ. CACHM).

*B, R, Borperson, "Spontsneous Reconfifurstion in s
Fsi1-Softly Computer Utility,” Dipest of DATAFAIR 73
Nottinphsm England, April 1973,

B, R, *Borgerson, Bsrry R,, “Dynsmic Confirmation of System
Inteprity,” FJCC 1972, pp. B9-96,

2. MOTIVATION
2.1, PURFOSY: Cenersl-purpose, intersctive, multi-scceas
computiny.

2,2, PHYSICAL ENVIRONMENT: Ground bssed

2,3, COMPUTING ENVIRONMENT: Remote sccess over telephone
linee end eventuellv over the Arnenet,

2.4, COMPUTING OBJECTIVES: This is not the primary
motivsting sres in our svatem desipn, We snticipste thst
the origins] confipurstion of PRIME will aupport sbout 10D
users with s worst csse response time of less thsn two
seconds for trivisl jobe.

2,5, RFLIABILITY GBJFCTIVES: Becsuse we will he sble to
repsir units ss they become fsulty, we sre siming for
continuous aveilahility, The ayster performance should
never degrede below 75% of {ts nesk cepscity,

2,6, DYNAMIC VARIABLITY: PFerformance csnnot be
dynsmicslly trsded for relishility, Illowever, provisions
may somedsy he sdded which will sllow dynsmically trsding
performance for intrsprocess integrity (See Section 6).

2.7. PENALTIES: The effects of intrsprocess dste
contsminstion (See Section 3,3,2) due to system fsilures
will strongly depend on the nsture snd purpose of the
process. There seera to be no wey to penerslize sbout
this, If the svstem {tself were to crssh, this would no
doubt leed to e loss of revenue if PRIM: were trsnsferred
to s cormercis] environment,

2,8, CONSTRAINTS: There sre no specific constrsints of
size, wsipht, snd power, The eelf-imposed constrsint on
cost is to try to build s fsult-tolersnt aystem thst Is ss
close in cost ss posaible to sny current system with
compsrsble powsr snd cspsbilities,

2,9. TRADEOFFS: (Too compliceted to deal with briefly;
see Sections 4,4, 4,6 snd 6,)

A2.8

3. DESCRIPTION

3.1, ARCRITFCTURE

3.1.1. CONFIGURATION

3.1,1.1, INTFRCONNECTIV1TY: Figure 1 is s block disprsm of
PRIME, The Interconnection Network (1N} sllows sny pro-
cessor to connsct to sny disk drive, externsl device, or
othst processor, Esch processor has three such indepsndent
peths into the IN. The IN connectivity remains univer-
s3]l over the different system sizes. Universsl switching
between sll procsssors end el]l memory blocks is not provi-
ded, Instesd, esch processor slweys connects to exsctly
64K of memory repsrdlees of the size of the eyetem,

3,1.1.2. RANGE: Ths PRIME srchitecture will usefully
sccommodste from 3 to sbout 30 pr s, Esch pr

could connect to from 16K to 128K of primary memory.
Depending on the type of disk drives used, from] to 5
drives per processor would be ressonsble, The current
eystem hes been designed to operete with from three to
eipght processors without requiring sny sdditionsl hsrdwere
or softwsre desipn, Useful memory sizss rsnge from 64K to
sbout 256K, Disk drives rsnpe from sbout six to 24, Esch
processor to be used in the initisl implementstion of
PRIME will be e Mets 4 (Digitsl Scientific Corp.}. The
Mets 4 is s penersl-purposs, 16-bit, 32-repister, 90ns-
cycle time microprocessor. The memory is 33 bits wide,
sbout 6D0 na cycle, snd made from 1D24-bit MOS chips., The
disk drives sre double (trsck) density 23l4-type drives
that hsve been modified to trsnafer information on two
heeds st s time, The initisl confipurstion will hsve five
proceesors, 104K of memory, end 15 disk drives.

3.1.1,3, CAPABILITY: The cepehility is not sccurstely
known et this time,

3.1,2, EXECUTIVE

3,1,2,1. MODES: At any given time, one processor is
desipneted the Control Processor (CP) while the rest
t.action as Prohlem Proceesors (PPs)., User pructsees sre
run on the PPs, Multiprogrsmming 1s not used, but
processes sre overlep-swspped, In order to schieve s very
high interprocess integrity, it wss decided never to let
tvo processes shsre memory; hence, cooperstive-process
rultiprocessing is not possible with PRIMF,

3,1.2.2. SOFTWARE: The system softwsre is divided into
three sections, There is the Centrsl Control Honitor
(FCM) which runs on the Tsrget 'Mschine of the CP; the
Fxtenelon of the Control Monitor (ECM) which resides
directly in the microcnde of esch procesaor; snd the locel
Monitor (1.}) which runs on the Tsrpet Mschine in ths PPs.
The CCY is responsihle for scheduling processes, sllocat-
ing resource, snd consurmating interprocess messepe
trensfers, The ECH inclvedes the disk, terminsl, end
corrunicstion controllers, lopic fnr double-checking
critical CC¥ decisions, hootstrep lopic, snd some intelli-
pence to des] with reconfipurstion, The LM contsins the
file snd workinp-set mansgsment systems, The CCM does not
ret involved with s process sfter it hss stsrted the
process up, The procedure followed by the CCY is to
sllocete the necessary resources, initiste ths roll in,
end let the LM snd ECM tske over from there, The CCH will
not pet involved sgsin until the prncess either times out
or hlocks itself, The LM desls only with user processes;
it is completelv isolated from the rest of the system,
Becsuse of this, users will be free to provide their own
LM {f they do not like the stsndard one provided.

3.2, FAULT TOLFRANCE

3,2.1, FAULTS TOLERATFD: PRIME will tolerste sll
interns] fsults, Thst is, the system is expected to
continue operating even in the presence of sny srbitrsry
softwsre or hardwsre fsults, The system will reconfigure
to run without eny plece of hsrdwsre thst becomes fsulty,
snd mechsnisms exist for limiting the effects of zny
softwsre fsult, PRIME hss been designed to provide
continuous service to (slmost) sll terminsls, In rost
casea, s feulty unit will be rspaired snd returmned to
service before snother fsilure occurs. Hovever, the
system will still continue to operate with e suhstentisl
part of the reeources remove! from sctive use., The aystem
should elmost never degrede to below 75 percent of its
maximum cepscity. In eddition to continuity of some
minimur service, interprocess integrity violations sre
prevented st 81l times; this includes the roistively
unstsble periods between the onset of s fsult snd the
detection and {solation of the feulty unit,

o A S e b

3.2.2,. FAULTS NOT TOLERATED: Only anvironmentsl faulte
srs not tolarsted by PRIMF. Tha most common of thsse
fsulta would be in the A.C. power snd sir conditioning.
Since it ia easy to rae how to back thesa resourcea up, no
affort hes baan mude to incorporata fault tolerance with
reapect to thasa unita withiin PRIME, While PRIME o3 a
aystam vill continus to run in apita of internal feilures,
individusl proceasss may occasionally get clobbared. Thst
ia, no apecial proviaions hsve baen made in PRIME to
guarantsa intraproceas intagrity. Nance tranaient
failuraa vill frequently causa contamination of
information for aome procesa. Also herd failurss will
oftan clobbar one procasa bafore baing detactad. Tha moat
sarious diaruption will probably occur when s disk driv-
faila, Whan thia happena, all of the procesaors thst vara
using that driva vill ba suspended until an operator can
recovar their dats, aithar by moving the diak pack to
anothar drive, or racovering from tapes in tha unlikely
event of a haad crash, But aven in thia vorst-cessa
cstastrophy, only s amall part of tha users (sbout 7
percaut in tha initial syatam) will be affected.

3.2.3, TECHNIQUES; The basic ayatem-wide tachnique usad
to schiave fault tolarance ia to allow the aystam to
degrada gracefully by raconfiguring to run without any
faulty unita. At tha haart of tha achame ia s diatributad
srchitactura vith a multiplicity of sll functional unita
axcapt tha IN, which ia deaigned to fail aoltly on its
own, Fault detecti... ia accomplishad by s variaty of
methods that include parity on mewory and busea, surveill-
ance taats on aach processor sftar each job atep, s double
chack on all critical aystam—wide decisions made by the
CP, and fault injaction in auch arass as error detactors
and tha saldom usad raconfiguration logic. After a fault
ia detacted, an initial raconfiguration causss a processor
aot involvad in tba detaction to bacome the new CP, This
virtual "hard-cora" then initistes diagnoatica to locata
the faulty unit, iaclate it, end reconfigure tha system
to run as afficiently as poaaible without it, A small
amount of dedicated hardwsre asaociated with each
procassor guarantaes that tha initial reconfiguration will
be accomplishad proparly. It is posaible to logically
isolata aach major unit at ita ayatam boundariea so thst
tha ayatam can run fina-meah diagnostica or axerciaa tha
hsrdvars to aid in locating tha faulty component. In the
casa of a failure of tha isolation logic, any unit can ba
dynamically povarad down to provide guarantaed iaolation
from the reat of tha ayatem,

3.3. NOVELTY: The diatributad nature of the systam,
including tha diatributad intelligence in tha form of the
ECMs, providea a vary powarful atructura vhereby fault
tolarance is achiaved vithout the usa of any "raliable"
hsrdvare. Vary high-performanca low-cost disk drivea have
baan incorporsted in such a way as to allow thasa devices
to he used as sacond level storage, third level storsga,
and tha svspping medium, By distvibuting thasa thraa
functions over many identicel phyaical units, vary high
svailability is arhieved st vhat is ectually s lover coat
and vith highar overall parformance than would ba possible
with threa diatinct typas of unite. PRIME sutomaticslly
rasponds to faulta by raconfiguring to run without the
faulty unit, Sinca there ia a multiplicity of all
functional unita axcept the 1N, it ia quita essy to run
without any particular unit. Rathar than mska tha JN
"ralisbla," s wors aconomicel approsch vas taken vhareby
carafully controllad isilure modes wers daaigned into it.
Thia raaults in s failura vithin the IN mani faating
itaalf ss a failura of s small mumbar of ports, which ia
aquivalant to losing whatevar is attached to those porta,
and the system wvas alresdy designad to handla that
aventuslity, Tha reconfiguration etructura is alao vary
interesting, Wheneve: a failure ia detacted, an initial
reconfiguration takas place which satablishea a new
procaasor as tha CP, The new CP, which ia one not
involvzd in tha detection of the fault, ia than wsad as
tha camporary "hard-core” to initiate diagnoaties, locate
the fault 1f indead ona exiats, and ramove the fsulty unit
from tha ayatam. Tha distributad intalligence of PRIME
has bean usad to provida double chacking on all critical
ayatam functiona, which in turn gusrantasa thst thare will
be no intarprocass interference. Probably the moat
unusual genaral featurs of PRIME with respect to fault
tolerance ia that it ia self-disgnoaing and eelf-repsiring
vithout incorporating any "hard-core,"

A2.9

3.4, INFLUENCES: Many previous afforts hava, of cou sa,
influencad us, but no aingla ayatem stands out as ha ing
special influenca.

3.5, NARD~CORE: No, thare is no "hard-core" in PRIME,
Instaad, the concept of s "floating hsrd-cors" exdata
vhereby s vorking proceasor ia prasaad into sarvice as the
Control Proceasor whenaver s malfunction ia detactad,

This ia conaiatant vith the overall ayatam philosophy of
oot having any "ralisbla" hardvare anywhare in the ayatam.

4., JUSTIFICATION
4,1, RELIABILITY EVALUATION: Reliability will bs
demonstratad by stimulstion of faulta,

4.3, OVERHEAD: Tha cost of tha additional hardvare that
has been incorporatad in PRIME spacifically for fault
toleranca ia lasa than 10 percent of the total hardwsra
cost of tha ayatam, Leas then 102 of aach procassor’s
usaful time is devotad to fault-tolersnt functiona, aince
tha aurveillance programs ara run during vhat would
otherwiaa he idle time whila processes are baing ewapped.

4,4, APPLICABILITY: PRIME has been very carefully
deaigned tu perform aconomically in a particuler anviron-
ant. If it was to ba usad in snothar anvironment, a
datailed snalyaie would have to be parformed to datarmine
vhat changas would heve to ba made to sllow 1t to perforn
adequataly in the nev anviromment. In psrticular, many
othar potential anvircnmente vould raquire thst ateps be
taken to guarantee intraprocasa intagricy,

4.6, CRITICALITIES: The choice of diak drives ia quita
criticsl since s low coat/bit {s nacesasry as vall as a
high bandwidth due to tha diffarent functicns thesa drivea
perform, Since 3330-type drivaa ware not availsbla when
thia deaign atarted, 2314-type drivas vere aalectad and
modified to transfar et 5MHz, Alao, tha IN had to ba
csrefully designad with well-spacifiad failure mndea.
However, tha primary memory and tha proceasors sre ~imply
"off tha ehelf" items., As for goals, tha deciaion to uot
provide iitrsprocess intagrity chacke has been carafully
exploiti/ in the deaign of PRIME sand has providad a very
aubstantis] coat ssvings.

4.7 1MPLICATIONS: Naavy reliance ia placed on periodic
checking of hardvare rather than concurraot checking,
Thus, tha ability to inject faulta into the appropriata
srass has been s difficult raquirament placed on sll of
tha hardvara deaignere. Tha most notable aoftvare
requirament imposad by tha basic deaign is tha clasy
division of tha operating aystam into three parta, one of
vhich can ba furnishad by a user, Tha only aignificant
requirament placad on s usar ia thst he must ba avara that
no intrsprocaea intagrity checks are mada (just lika in
81l current time-sharing eystams).

Fig.1
Blech Diagrem «f 1he PRIME Sptiem

| e |

RACH ST MOCE (MB) CIMNTS OF D b NOBULEE

AT

s

G St

e i B b b e e o S s e i e

3. CONCLISINNS

S.1, STATUS: The deaign of PRIME fa about 95 rercent
completed, and iwplerentation haa berun on both the
hardvare and software. The first version cspable of
raconfiguring {n the presence of a failure ahould be
running by September, !973,

5.2, EXPERIENCE: The vain conclusfon that the reaponden
can maka reparding the Jesign of PRIME {a that by aomewhst
limiting the goal of the PRIME ayatem, it vaa posaible to
create a eystex that ahnuld exhibit excellent fault~
tolarant characteriatica a: a wuch lover incremental coat
than that of any other far i1t-tolerant syatem known to him,

5.3, FUTURE: The near {iture will be devoted to buflding
PRIME, After that, evaliation and tuning vill take place
with connection to the Arpanet very likely.

S.4s ADVANCES: It aeems that the moat aignificant
developrent that would aid the PRI}E syatem vould be the
availability of a reneral-purpose, aelf-checking
proceasor, Since 100 percent aelf-checkahility 1a
extremely difficult to deaipn into a processaor, the beat
courae of action here seers to be to wait for LSI
rrocesaora of sufficient power to be buflt, Theee
prncesaors should be ao inexpenaive, cnmpared to the reat
of the hardware coat, that running tvo of ther
aimrnltanecualy and cowparing outputa should be a very
attractive procedure economicslly, In fact, the cufrent
proceaaing alament in PRIME could be broken into aevers]l
avbproceasora: one for comemmicationa, one for the diak
controller, one for the terminal controller, two for the
Target Machine, etc. Probably only the Terget Nachine
Proceaaor would have to be duplexed hecause the othera can
have independent chiecka on the validity of their reaulta,
With this procedure, {ntraprocesa integrity would be
posaible at an {naipnificant incremental coat, For the
current veraion of PRIME, the availability of general
procedurea for automatically renersting teat programs
would he extremelv valuable,

6, COMMENTS: I have experienced a8 preat deal of difficulty
locating any other efforta at designing snd building what I
cnnaider to he trulv gracefully deprading self-repairing
syatems, Moat of the effort in fault-tolerant corputing to
date aeems to he centered around military ayatems, or even
Toredo, around spsce exnloration svaters, This typically
dictatea that s fixed amount of corputing power be made
available at all timea; hence, the lack of sction around
fail-aoftly ayatems. Of course, by providing fault
tolerance throuph graceful degradation, very subatantial
coat savings can be realized over the 'redundant” methods.
In addition to allowing the syater'a performance to deprade
in the presenca of faulta, we have choaen not to fuarantee
intraprocess inteprity. Alao, PRILE uses no "hard-core” to
inititate diagnoaia or teconfiguration. The cnmbination of
theae three techniquea hiaa allowed us to deaign a very
econorical fault-tolerant time-aharing aystem, There ia
little doubt that the anticipated degradations will be
quite scceptahle for a wide ranpe of applications. The lack
of intraproceaa-integrity ruarantees, however, will be a
limiting factor in expsnding this architecture into other
areas, O0f courae, hardvare prnviaions could be added tn
pusTantee introprocesa inteprity, and the reaultant ayatem
would at{l] be sore economical than wost other
fault-tolerant cyatems. A more proriaing epproach, snd one
vhich ve vill mndoubtedly explore in the Teasonably near
future, 1{a to leave the hardware as ia and run critical
proprams twice on two different proceasors. Thia will
allow the syatem coat to remain very low, and wil}l alao
allow intraproceas inteprity pusrantees. Thua, only those
rroceases thavL thst need thia puarantee will hisve to pay
for thia added feature. A final aspect of the PRIME
architecture that should be inveatirated ia whether it can
more econorically nrovide a guaranteed cnrputing power in
anme environments than can be provided by a “redundant”
Ayater, lt can be overbuilt by an amount sufficient to
puarantee that ita depraded cnndition {s poverful ennugh to
bandle the neceaaary corputing, with backpround power
available rost of the time,

A2.10

PRI TOTR e
e 7

SURVEY OF FAULT-TOLFRANT COMPLUTING SYSTEMS

Capt Larry A. Fry, Spaze and Miasile Syaters Orpanization
(SA¥SO) Loa Anpelee AFS, CA, February 1973,

1, IDENTIFICATION

1.1, HAME: Modular Sracecraft Cemputer

1.2, RESPONSIBILITY: SAMSO/PYT, Loa Angelea AFS, CA,

1,3, SUPPORT: Not available

1,4, PARTICIPANTS: Raytheon, Sudbury, MA; Ultraayaters,
Inc., Newport Beach, CA; Lopicnn, San Pedra, CA,

1.5, START: Profect started mid-1971

1.6, COMPLETION: Lagicon ia currently iepiementing
interpretative computer aimylationa of the two HSC deaipgna
on the CPC 7600, The srchitectures snd repertoires sre
being evsluated, along with sn intenaive atudy of the
fault-tolerance featurea. Delivery of rthe {CSa and a atudy
report are due in Julv,

1.7, BIBLIOGRAPIY: i1, Hecht and L. A. Fry, “Fault-
Tolerance in the Modulsr Spacecraft Computer," preaented at
the 6th {nternatfonal liawai{ Conference, 9-1l January 1973,

2, MOTIVATION

2.1, PURPOSE: Support of all satellite data rroceaaing
requirements

2,2, PHYSICAL ENVIRONMENT: 1n satellite

2.3, COMPUTING ENVIRONMENT: Hardwired to environment ¥
2.4, COMPUTINC OBJECTIVES: About 200K operationa per aec.
2.5, RELIARILITY OBJECTIVES: iominal nrobability of
survival at the end of five-year life of 0.95; variability
schieved by adjuating the number of aparea carried,

2,6, DYNAMIC VAR{ABIL{TY: Easentially no variabilfity
2.7. PENALTIES: Loas of major aatellite functiona

2,8, CONSTRAINTS: 25 pounds snd 30 watta

3. DESCRIPTION

3,1. ARCHITECTURL

3. 1.1, CONF{GURATIONS

J.1.1.,1, {NTEPCONNECTIVITY: Both deaipna are
bua-oriented, Raytheon usea eight general replatera;
Ultraaysters uaes a conventional AG/MQ deeipn,

3.1.1,2. RANCE: Sirple proceasors. Hemory 1a modulsr in
4K increrents, up to 65K 32-bit words, 1/0 ia variable, to
euit apecific real-time spplications,

3.1.1.3. CAPABILITY: Roughly comparable to a 30”,/«0. SO0K
fixed-point ANDs/sec; 200K floating-point ANDa/sec.

3.1.2, EXECUTIVE

3.1.2.1, MODES: {nterruptible but not a true
multiproceassr

3.1.2,2, SOFTWABE: Not vet developed. Will have a real-
tire operating aystem, including fault-recovery routinea,
3.2. FAULT-TOLERANCE

3.2.1, FAULTS TOLERATEO: Transient and rermanent--all
lapic types, Also can tolerate aome cataatrophic faulta,
3.2.2, FAULTS NOT TOLERATEO: Faults reaulting fror major
physical damage.

3.2.3. TECHNIQUES: Replication; coding; repetition and
rollhack; snd confipuration, Techniquas used atatically
and dynaricallyv,

3.3. NOVELTY: Extensive dynamic redundancy

3.4, INITLUENCES: Not available

3.5, IARD-CORF: Configuration Control Unit {s triply-
rodular-redundant, controlling all retries snd moat
reconfipurationa.

&, JUSTIFICATION: The failure probability of
non-fauli~tolerant corputers ia too high to permit their
uae as central data proceasors on lonp-1ife tpacerraft,
Conaider s computer using the equivalent of 2500 electronic
rarts, each of very high reliahility such that the tart
failure rate 1s INE-B per hour. Then the cowputer fatlyre
rate 18 25 x 10E-6 per lhiour. For an exponential failure
diatribution, the five-year Teliability 1a 0,37, the
reciprocal of e: e to the pover ~(40,000 x 25 x V0E-6),

S. CONCLUSIONS

S.1. STATUS: FPeforming interpretive afrulation

5.2, EXPERIENCE: Architecture very asuitable for intended
application,

5.3, FUTURE: Nnt available

Sehs ADVANCES: Dracticsl design under weipht and pover
canstrsints,

6. COMENTS: Raytheon bepan {ts deaign by using
duplication as a main approach, +hil: "ltrasystems used
arithretic coding. Neither approach wa. entirely
satiafactory, and it was very enlightening to observe the
two deaipns converge in the course of aeveral iterationa.
Currently, both employ a balanced mixture of duplication,
coding, and TMR, Theae desipns atudies also demonatrated
the impracticality of the Reed and Brimley approach. Both
contractors initially broke np the computer into small
wodules but found that the switching overhead and attendant
complications overahadowed the theoretical Teliability
improverent, Larfer modules are now used, vith the
computer-on-a~chip in view. An .xception waa the mnory
module, vhere a few apare bit linea aeem useful,

e S

ik

i

SRR

bt

L

SURVEY OF PAULT -TOLERANT COMPUTING

Ssvsro M, Ornstain, Bolt Beranak & Newman, Inc.
Cambridgs, Mass 02138, May 1973

1, 1DENTIPLCATION

1.1, NAME: High Spesd Modular IMP (for the ARPANET)

1.2, RESPONSIBILITY: Bolt Baransk & Newman

1.3, SUPPORT: ARPA

l.&, PARTICIPANTS: Prank Haart, Ssvero Orna.ein, Willism
Crowthar, Beojamin Barksr, Anthony Michal, Micnael Kralay,
Martin Thrope, all from BBN.

1,5, START: July 1971

1,6, COMPLETION: Prototype summer 1973

1.7. BIBLIOGRAPHY: P, E, Neart, A New Minicomputer/
Hultiprocessor for tha ARPA Nstwork, Procsadings of ths
Hational Computar Confsrence, New Tork, N.T,, Juna 1973,

2, MOT1VATION

2,1, PURPOSE: Stors & Forward Heaaage Procesaor—-High Spsad
1MP Modular Vsreion

2.2, ENVIRONMERT: Ground-basad., Remote diagnosia, rsstart,
2.3. COMPUTING OBJECTIVES: A variable aized nodal alament
in a nationvide (and eome overseas) computsr network,

2.4, COMPUTING OBJECT1VES: Throughput capability of about
10 megabits of treffic, Computing powsr to bs 10 times
thet of a standard mini (such as ths Honsywell 516),

2,5, RELIABILITY OBJECTIVES: Machine must aubstantially
improve on ths approximatsly 1% down time of prasant
version, Machine should run 24 hours a day yeer-round.
2.6, DYHAMIC VARIABILITY: Wg hope that tha dsaign will
embody soft failures wherein bandwidth capability will
degrede with failure but no functions will bs totally lost.
2,7. PENALTIES: Reduction in commumication facilitiss 1o a
net, Multipls failurea can cause losa of commmication to
certain nodes.

2.8, CONSTRAINTS: No sxplicit constrainta--goal ia to havs
a few racks in sizs and cost of sbout $100,000,

2.9. TRADEOFFS: Cost and averything slss.

3. DESCRIPTION

3.1.1.1, INTERCONNECTIVITY: Sea Figura.

3.1.1,2, RANCE: Smallest is eingle pracessor aingls bus
systsm vith a singls logical memory, W« do not understand
saximum aizge constraint as a nusbsr of phyaical and
soginesring problems (powsr, cooling, rack apace, cabliog)
limit the aize bsfore logical boundariss are reachsd. Wa
are building a 14 procesaor prototype and axpect that
systsms of twice that aize ere not much harder.

3.1.1.3, CAPABIL1TY: That of a single Lockheed SUE (a amaIl
modem 16 bit mint) 200,000 Adds/sac

3.1.2 EXECUTIVE

3.1.2.1, MODES: Deaignad for parallal task axecution of
spacielly coded rsal-time probleas. Parallgliam ia not
decided upon in advance but ia provided for, All procas-
sors caa perform all tasks and adjust to currsnt work load.

3.1.2.2, SOFIWARE: Split into tiny (300 microsscond) tasks
vhich are queved vith the aid of apecial hardvars (vhich
itself is replicated for relisbility). All procasaors cao
perform all joba,

3.2. FAULT TOLERANCE

3.2.1. PAULTS TOLERATED: Wa bglievs that, short of systsm
povar failurs, any ong pisce of ths system can fail without
loes of function but with loss of bandwidth capability,

3.2,2, FAULTS NOT TOLERATED: Malicious manusl intsrfsrenca,
systsmic powsr failurs, stc. Little protaction againat
softwars faulta included since the program ia a dadicatad
real time propram not subjsct to ths vagariae of "usars”,

3.2,3. TECHNIQUES: Redundancy of perta and nonspecializs-
tion of procsssors. Parts comnsctad in a network so thet
commmication paths don't forca specialization, s.g., 1/0
devicea connsct to two busess——each of which can ba raachsd
by any of k procassors. Powver ia distributsd as 110 AC and
powar suppliss ars modular--1.s,, sach unit has its own DC
supply with it——also its own cooling, The aystem raquirss
sach piece to perform cartaio testa periodically and one of
ths tasks requirsd of some randomly salscted frss proceaeor
is to check up on how everyons slae ia doing, Modulaa can
disconnect ons snothsr from the aystse 1if failing operation
is datectsd but protection is providsd to avoid inadvertsnt
decoupliog of a good umit,

3.3, NOVELTY: Ws do not know of a aimilar ayatam of a
collection of task oriantad "workara" aharing raeponsibi-
lity oot only for the routioe workloads (with variationa)
but also for sslf taat and, if appropriate, awmputation.

A2.11

3.4, INFLUENCES: Macromodular projact at Washington Univ,
3.5, HARD-CORE: We havs trisd to avoid this concejt in our
ayatsm vhersver ws ~ould. Ws hope that it is in thie very
avoidanca that ve tay improve reliability (esa 3.2.1).

4. JUSTIF1CATION

4.1, REL1ABILITY EVALUATION: Wa bsliave that in a new
cystam of thia sort it is difficult 1f not impossibls to
maks magningful prognostications of rsliability, We
balisve our ovsrall eystsm design is prona to relisbility
if the basic parts are themsalves reasonably rslisbls,
Only eftar tha systsm hao bsen runoing for a ysaf or two
vill vs bsgin to understand what its real reliability is.

4.2, COMPLETENESS OF EVALUATION: Not particularly with
ragerd to part failuras; conceptually, ws bsliave it is
quits complgte,

4,3, OVERHEAD: Impresible to astimate since thia wes not a
primary goal at ths outest. The original goal ves high
bandwidth and ths achsme ws chosa aimply lsd naturelly to
shat asamed a very reliabls looking structure, Ws heve
added raletively Iittls (10%) spscifically for reliability,
Ws could add more snd (hopefully) improve the relisbility
BOYa as our structurs is mndular and axpandabls,

4.4, APPLICABILITY: We hava only bsgun to inveatigsts theas
possibilitian. We hope thers will bs many, Among thsaa ws
sea rgal time signal procassiog and some specialized
multi~ussr applicationa, .

4.5, EXTENDABILITY: The syatsm is designed to ba gensrally
sxtendabla, That ia ons of its main pointa, Cartain
boundariaa are raachsd vhers ths naxt etsp in expansion is
mors costly than prior stsps. We do not know vhers hard
Iimita will appsar. Ws bslievs thay will, for some time,
ba of sn "auginssring" rathar than "logical® neture.

4.5, CRITICALITIES: Fairly wsll matched. Sioce goal vas
for variability ths question is not ton meaningful,
Multiprocaasiop was not a goal; it was, for us, a mesns.
Herdware choica was for euitability and convenience.

&.7. IMPLICATIONS: At present ths daaign is bassd on ths
Lockhsed SUE bus atructurs (slightly modified). It could
havs besn basad on aome other computer, but lssa easilly
end at graatar cost. Until or unlees wa switch, this mesns
that all unita in ths aystsm follow the SUE bus yiscipline,
Ths overall deaign was concsived for priblams that could ba
broksn conveniently into parallsl sxecu:sbls tiny tasks,

It achieves speod and powar by such parillslism,

5. CONCLUSIONS

5.1, STATUS: Prototyps nearing completicn.

5.2, EXPERIENCE: It ia herd to build surh systsos,

5.3, FUTURE: This IMP will bs iocorporitad into the ARPA
network in various sizad configurations,

. i Canum0,]
E] Giteote E] il agarazt
.o o w3 couman, ‘;" o mOaL g
ARpITER PROCESION (O lEJ Qaocx
PROCESSOR BUSSES(7)

o CINTRAL 4! - ms cowrLen, "
PROCEISON S wewoar (N0 E] gy

Prototype systes

Voae

i

ot

s ot o

A ATt X % i

it A s e

s £ A

s

SURVEY CF FALLT=TOLRPASNT COMPUTINC SYC4LYS

Wwe (., Carter
{BM Thomas J, Watson Research Center
Yorktown Heights &Y 10598

I, TOENTIFICATION

1.1, NAME: | am reporting mainly on a long-term research
effort in techniques for fault-tolerant computer
architecture, The rvelevant prior publicatfons have used,
for example, the terrs "wtodular architecture”,
“self-repalring computers”, "dynamic checking”, "fault
diagnosis”, “stand-iy sparing” or "dynamic recovery” in
the titles and the autliors have been some subset of the
participants named in l.4. For present purposes 1 will
talk about a paper Modular Olgital Computer system called
MDC whose principal propertiea will be specified later,
For reality, aome requirements will be imposed which have
nothing to do with fauit tolerance per se. This system
d es not really exist, and will not exist, but {s
dpecified to provide a focus for our fault tolerant
computing research.

1.

~

RESPONSIBILITY: IBM Research,

1.3 SUPPCRT: Support has come from I8M, U, S, Alr Force
and SASA,

I.4 PARTICIPANTS: ®. G. Bouricius, W. C. Carter, E, P,
Haleh, D. C, Jessep, Jr., G, P, Putzoly, J. P. Roth, P, R.
Schneider, C. J, Tan, A. B, Wadia,

1.5 START: Formal {nitiation occurred in March, 1966,
I.6 COMPLETION Open ended. No end item is scheduled.

1.7 BIBLIOCRAPHY:
*Roth, J, P, "Diagnosis of automata failures: a calculus
and a method”, IBM Journal,vol. 10, 4, 1966,

*Bouricius, W. C., Hsieh, E. P,, Putzolu, G. R., Roth,
4.P,, Schneider, P, R,, Tan, C. J., "Algorithms for
detection of faults in logic circutts”, 1EEE 1C, Vol,
C=-10, Nov, 971,

*Bouricius, W. C., Carter, W. C, and Schneider, P, 2.,
"Relfiabiiity modeling techniques and tradeoff studlea for
self-repa{ring computera”, ACH National Conference, San
Franci{sco, California, August, 1969,

*Bouricius, W, C., Carter, W. C., Roth, J. P, and
Schneider, P. R., "lnvestigationa {a the design of an
automatically repaired computer”, Paper Numler ¢,4
Conference Digeat of the Firat Annual 1EFE Computer
Conference, Chicago, 1l{inois, September 6-8, 1908,

*Carter, ¥, C. and Schneider, P, R., "Design of
dvnamically checked computers”, IFIPS, Edinburg, Scotland,
August, 1968,

*Carter, ¥. C,, Jessep, U. C,, Wadia, A. B., "Error-free
decoding for failure-tolerant memories”, 1970 IEEE
Computer Conference, Washineton, 0, C,, June, 1970, pp.
229-239.

*Carter, W, C.,Jesses, D, C., Bouricius, W. G., Wadia, A.
B., McCarthy, C. E., Milligan, F, G., "Dealgn techniques
for MARCS" (Modular Architecture for Reliable Computer
Systems), NASA Contract NAS8-24883, RA12, 1BM T, J, Watson
Research Center, Report Number 70-208-002, March 26, 1970,

*Carter, W. C,, Jeasep, D. C., Wadia, A. B., Schneider, P,
R., Bouricius, W. C., ‘Logic design for dynamic and
{nteractive recovery”, IEEF TC, Vol, C-20, Nov, 1971,

2, MOTIVATION

2,1 PURPOSE: PReal time control, data acquisition and data
ranagemenr,

2.2 PHYSICAL ENVIPONMENT: Aerospace applications have
predominated in specific desipgn decialona. Modularitv
should enaure wide applicability,

A2,12

2.3 COMPUTING ENVIRONMENT: The MDC is planned to be able
to run the gamut from being insulated from human control,
serving a variety of sensors and effectors, to being able
to accept ground-based human directed control,

2.4 COMPUTLNG OBJECTIVES: Predicted configuration
scaleability primarily under internal control including
systems which are fault tolerant by masking redundancy, by
stand-by redundancy, or by software checka; svstems whoae
use of power {s variable (but whoae thruput ia affected);
and syatema operating in parallel. The major objective is
to provide means for meeting various requirements with a
high degree of confidence.

2.5 RELYABILITY OBJECTIVES: The aystem ia to be designed
to meet varying specific mis»’'~- reliability objectivea
with a high degree of certainty, «xamples are survival
for n vears with a probability p; "rafl operational, fail
operational, fail safe”, or reliability variab.e with
mission task,

2.6 DYNAMIC VARIABILITY: As stated above, dynamic
variation of syatem parameters such as performance,
reliability and power consumption with confidence in :.~
dealgn as a major objective,

2.7 PENALTIES: Variable with mission, ranging from loss
of human life through expenaive flight hardware tc
abortion of flight objectives,

2.B CONSTRAINTS: llardware must be designed to fit weight,
power and size requirements, yet able to lave thruput
compatible with miasion requirementa and to support the
software necesaary for reasonable propramming effort per
mission,

2.9 TRADEOFFS: Hardware efficiency and potential thruput
are traded for 1) system reliability as defined per
mission phase; 2) simplification of recovery process and
other basic execut{ve functions; 3) high malfunction
coverage and design certification; &) ease of program
validation; 5) convenience of programming and ease of
dlagnosis for external equipment; 6) system flexibility,

3. DESCRIPTION

3.t ARCRI{TECTURE

J.1.1. CONFIGURATIONS

3.1.4, 1. INTERCONKECHIVITY: The basic uniprocessor
configuration consista of partitioncd computer subunits
attached to several busses. The basic subunits are (aee
attached rough diagram): ALU, Scatch and Trogram Control
tnit, Bus Control, {/0 Processor and Recovery Control
Unit. The bus orientation remains, but the units may be
modi fied (microprogrammed) for varying misaions, The
system consists of replicas of the basic subunita, with
configuration control governed by the RCL and Executive
Program, A major problem is the interface design to meet
the constraints of fault tolerance, long life, and varying
modes of operation, The memory is encoded with a
b-adjacent error correcting code and spare b wide subunits
per basic module,

BUS
CcTL
}
MS I CcTL
1
1
liop
sp
PCU
ALU
RCU

3.1.1.2, RANGr: The range of the system is not frozen in
the srchitectural concept, After four processors the law
of diminishing returns aeta in shsrply and further
partitioning may well be s better bet for long life., The
mesmory will consiat of wodules, esch module consisting of
b-wide unita with b-adjacent coding and spare b-width
unita, The upper limit depends vpon the hsrdwsre
svaiiable, but hsrdwsre does not appear to be critical.

3.1.1.3, CAPABILITY: The ordrr of I0E5 to 10E6 additions
per second per basic system with a minimum of 256K~-512K 32-
bit worda of memery. 1/0 will be handled by up to & 16~
bit psrallel channels with 50,000 tranafera per second
sizyltaneously on one input and one output channel, The
1/0 processor will handle the detsila of 1/0 control under
direction from the processor Executuve.

3.1.2 EXECUTIVE: The standard executive control
.sllocstion, scheduling, diapstching, 1/0) will be
schieved by replicsted softwsre routines, These tasks
hsve not been studied much.

3.1.2.1, MOOES OF OPERATION: Esch proceasor is
multiprogrsemable. System operstion includea fsult
masking, multiprocessing with hardwsre fsult detection and
multiprocessing with softvare anelysis. The mode of
operation of most concern is that of recovery initiation,
the interaction of the recovery and ervor analysis
programs of the executive and the RCU. Recovery and audit
prograns always run background whether the system is in
fsult masking, fault detection or aoftware analysis modes,

3.1,2,2, SOFTWARE ORGAN1ZATION: The aystem software will
be distributed smong the procesaors and enalyzed by audit
routines for early detection of errors.

3,2. FAULT TOLERANCE

3,2.1 FAULTS TOLERATEO: In the error-masking mode, any
number of faults which sffect only one partitioned
sub-unit can be tolerated. The syetem hsndles transient
faults with instruction retry or permanent faults with
hardware controlled reconfiguration, The cause is
irrelevent as long ss the interfsce detects diasgreement,
The diasgreement circuits sre self-checking so fsulta in
them sre detected. lnitislly the same malfunction in
three units is necesssry to defect the system, After
reconfigurstions two fsulty units may escspe detection.
In the error detection mode, faults causing e sinzle
subunit to be in error sre detected. At this point the
ssme errors in two units will be undetected, Oisgnosia
and softwsre recovery is neceaasry for continustion,

Faults detected by software checks are detected and
recovery ahould follow in the unchecked multiprocesaing
mode. Fsulty software may be detected by the RCU time-out
tests snd system evslustion procedures.

3,2.2. TECHNIQUES: In hardwsre fault toleiunt mode the
system should FO - FO - FS for each one of the partitions
of the system 1f four copies of the baalc computer are
used. Diegnosis can continue the cowputstion with one
psttition unchecked, Detsiled fsult anslysia must be
performed to validste such goals. In hardware fault
detection mode the syetem should run at least two
multiprocessor hardwsre checked ayatems., A fault would Le
detected, and diagnosea would allow continustion with one
partition unchecked by hsrdwsre. Achieving such
hsrdware/firewsve/diagnosis goals depends upon the
development of msny tools of fsult snslysis. The memory
encoding is b-sdjacent multiple error correcting and/or
multiple b-adjscent errer detecting. The codes used are
vsriants of Reed-Solomon codes with combinational self-
checking trenslators which pass only correct code words,
Standard single instruction retry is avsilable,

Microdisgnostics under executive progrsm control with
program varisble input patterns will be used for fault
snslysis, The executive softwsre will use the standstd
fsult tolersnt techniques - two wsy lists with pointer
verificstion before proceeding, stored data and programs
will be tagged with redundant identification, read only
progrems will allow simple updating etc, Rollback and
restart will be used for multi-procesaing with hardwsre or
softvare error detection, The RCU monitors constantly for
cstastrophic faults - those not detected by the hardware
snd scftwsre tests, The standard time-out tests and
syster performance evslustion routines ate run and
controlled by the RCU, Power is conserved under program
control by forcing n cycles between memory accesaes,
imposed by s counter with program changesble contents.

3.3 NOVELTY: Reconfiguration under hardware control in
fault masking mode, Cholce of computer fault masking,
multiprocesaing with fsult masking and various forms of
detecticn, multiprocessing with hardware error Jetectiorn
by comparlson, multiprocessing with software error
detection, Storage reliability by b-adjacent mu.tip.e
error detecting and correcting codcs, Seif chocking
memory translstors, checking circuits, and error-analysia
ciruits., Use of power under progrsm control,

3.4 1NFLUENCLS: 1, JPL Star - the total efiorr; .., SRI,
‘Techniques jor the Realizarion of Ultra-Rellsolc
Spaccborne computers; 3. MIT -Drsper Lsb, lor spaccburne
multiprocessors; 4, Rapi: evergence of LSI for feasibility
of much redundant hsrdwsre,

3.5 HARD-CORE: Aasuming that hard core means hardware,
redundant nr not, whose fsilura will produce uncetected
errors, there is no such hsrdusre in this system,
Hopefully, the software can be vslilsted smo thst egusl
clsims c¢sn be made for it,

4, JUSTIF{CATION FOK THE SYSTLM

4,1 RELIABILITY EVALUATION: Architectural velialili:cy
evslustion by interactive program using exponcntial
fsilure assumption for the units., Determination of
compornent failure rates hy analyris based upon previus
dsta, experience, and analyais., Logic fault analysis of
circults in design stage by inrursctive feult simulstion
programs, Diagnostic psttern cvsluation by simulstion
programs. riemory faflure predictions by cavreful
probabilistic fault unalysis to predict errvor petterns,
prugrsmmed computation of the circuit failure conatants,
programed evalutation of relisbility, Programmed
snalysis of RCU functions. Theoretical analysis of
design, with hardware and aoftware, in complicated
situstious (guided by simulaticn).

4.2 COMPLETENCSS OF EVALUATLON: Jajor unsolved problem,

4.3 OVERHEAD: Varialle. 1n the processora about a 3 1/2
s} loglc count penalty is paid (the cost is much less).
ln the memory about s 3:2 storsge penslty is psil, 1n tte
software the cost is unknown, but considerable,

4,4 APPLICABILITY: The concepta csn be wused elsevhere,
the system {s oriented toward spsce snd extreuely high
relisbility spplications,

4,5 EATENOABILITY: This computer is too relisbie to fit
into most other syatems. For extension some of the fault
tolerent techniques in the computer must be eesed for
better total system valance,

4,0 CRITICALITICS: Multitasking, as with 81l Executiwe-
controlled recovery systeus, is critical, achieved here
wizh multiprograaming, Multiprocessing is an imposed
condition, but small system simpilificetions would result
1f this condition were relaxed, Design validation tools
are critical,

4,7 IMPLICATIONS: Architects must perform sutumated ervor
and rvecovery anulysis while doing systew specificstion.
Human analysis is too fallible. Hardwire designers must
have and use tools to do fault analysia sa they design.
After the first pass they must do design validation and
iterate. Software designers must participste in the
ia1tial decisions, must produce more techniques lor
producing self-checking prigrsms, snd must produce the
toola for program vsiidation, Applications programmer:
nust vulidste their progrsms (top down programming
techriques will help), ard must follow system rules (not
so far knoen).

' .

3. CONCLUSIONS

5.1 STATLS: Tuis system is the collection of a group of
ideas from a research projecr.

5,2 EXPERIENCE: None to report to date.

3.3 FUTUAZ: The system will be pursued only in s modified
forn as a paper atudy only.

5.4 ADVANCES: The problems of validation - hardware and
software - will provide many a bottleneck for fsult
tolersnt computing. The bssic problem of definition of
fault tolerent compiting will be with us - do we consider
any algorithm, procelure?

A2.13

o

-

SURVEY ON YAULT-TOLEFANT COMPUTER SYSTEMS

Albert L. Hopkins, Jr,, HIT Dreper Laboretory
Caubridge, Mase, 02139, Feb 1973

1. IDENTIFICATION

1,1, NAME: 1 sw reporting on e long-term development
effort which has been eupported by different projecte et
different timee. The following titlee have been used for
publiehed reporte:

% "A Feult-Tolersot Information Proceeeing Syutes for
Advanced Control, Guidence,end Nevigation".

* "Space Traneportetion Syetem Oste Manepesant. Syetes",

In eddition, an axperimental three-proceeeor
three-ecretchpad breedboerd has been piven the ecronym
CERBERUS for tha three-heeded dog in claseical wmythology.
The ecv-aym enpendered the title: Controlled Error
‘ecovery Behevior Employing Redundsnt Uee of Scretchpeds,
i{n vhet followe, I use "the eyeten™ to mean the penerel
concept, rather than e specific herdvere deeign.

1.2, RESPONSIBILITY: Thie work ie in the Oipitel
Development Group of the Cherlee Sterk Oreper Laboretory,
e divieion of M.1.T.

1.3, SUPPORT SOURCES: So fer ell eupport has come from
the NASA Mannad Spececreft Center.

1.4, PARTICIPANTS: MIT end NASAMSC,

1.5, START: Work in thie eree bepen in 1966,

1.6, COMPLETION: Open ended, No and iter ie scheduled.
1.7. BIBLIOGRAPHY:

® R. L. Aloneo, A. L. Hopkine, Jr., end H. A, Theler,
"Deeign Criterie for ¢ Spececraft Computer", Speceborne
Multiproceseiny Sec’ner, pp. 23-28, NASA ERC, Boeton
Huseum of Science, Cet. 1966,

¢ R, L. 1loneo, A, L. Hopkine, Jr., and H. A. Theler, "A
HMultiproceeeing Structure", Digeet of the First Annuel
IEEE Cowmputer Conf., pp. 56-59, Chicepo, Sept. 1967.

* A. I. Creen et al,, "STS Date Menegesant Syetea
Deeign", MIT C.5. Oraper Leboretory, Cembridge, Mase.,
Report E-2529, June 1970,

* A. L. Hopkioe, Jr., "A Yeult-Tolersnt Information
Proceeeing Concept for Spece Vehiclee™, IEEE Trane.
Computers, Vol. C-20, pp. 1354~1403, Nov. 1971,

2. MOTIVATION
2.1, PURPOSE: Reel time control, date acquieition and
dete manapement.

2,2. PHYSICAL ENVIRONMENT: In principle it cowld be amy,
but atrospece epplicetions have pradominsted im desiem
decielone,

2.3, COMPUTING ENVIRONYENT: Systems comsidered te-w are
envieiocoed as larpely eelf-contained informseien
processiny eyetess earving e veriaty of cemsers sme
effectore including humen operators. Swech svstess weumld
be dietributed, hiererchical mnd rsdmedamt. Cestral
feult~tolerant sultiproceseors vould commmicate cver
serial dete busee to locel proceseor complames evbedded in
eubeyetame of the totel eyetem. A orfocipal applicacion
considered for thie epproach vas the Space Shuttle, vhers
the Orbiter would heve one centrel sultiproceseor with
adequata redundancy and epare herdwars to be operstional
after three malfunctione. Each eubeyetem or group of
identizel eubeyetems vould be esrved by eingle or
red.aoant locel proceeeore, as eppropriate, to fulfill the
redundancy requiremant for thet eubeyetem or group.

Tha Booster etege of the Spece Shuttle would, in thie
concept, contain ¢ eyetem eimiler to thet of the Orbiter,
capsbla of commuriceting wvith it by vey of e eeriel bus
cornecting the tvo centrel multiproceeeors. All
communisation between e central sultiproceeeor end ite
local ;roceseore vould be via e eeriel dete bus,

2,4, COMPUTING OBJECTIVES FOR TME CENTRAL MULTIPROCESSOR:
Veriable from the order of 10E5 ({.e., 10 to the 5) to the
order of 10E6 op-retione per eecond, with memory
cepecitiee of from 2E14 to 2E17 words of mein randos
ecceee mewory, Input-output bendvidth 10E5 useful
bite/eec on e ICE6 pulee-par-eecond bus. Rsection tise
order of 10 millieeconds,

2,5, RELIABILITY OBJECTIVES: Verious typee of objectivee.
One example ie eirline epplicetions where leee than one
cetastrophic eyetem malfunction in 10E7 flighta is eought.
Other cbjectivee ere eteted in terss nf the number of
individusl malfunctione which cen be tolerated in a
flight, euch as "Yeil operationel, fail operetional,
feileefe” (FO-FO-FS), The eyetem ie generelly meant to be
used in very high reliability epplicetions.

2.6, DYNAMIC VARIABILITY: Creceful depredstion ie
eveileble as e meane of exchanging psrformence for
relisbility.

2,7, PENALTIES: In the Spece Shuttle epplicetion, ss in
possihle eircreft epplicetione, human Iife 1e concerned.
Other 1ife-criticel opplicetions can be esnily envieioned.

2,8, CONSTRAINTS: In Spece Shutrle and eircreft,
epproximately 2 cubic feet, 120 1b,,)0 wette.
(Estizate for e central sultiproceeeor). Other
epplicetione may be more or leee nevere,

2,9. TRADEOFFS: Herdwere efficiency ie treded for 1I)
eyeter relisbility, 2) hiph malfunction coverege, 3) seee
of progrem verificetion, &) eyeten flexibility.

The nusber of faulte tolereted ‘e verisble through e
cosbinetion of replicetion and epering, Proceseore and
maroriee cen »: edded (deleted) to incresse (decrease)
proceseing end memory reecurcee.

3. DESCPIPTION OY THE SYSTEM

3.1, ARCRITECTURE

3,1,1, CONFICURATIONS

3.1.1.1, INTERCONNECTIVITY: The eyetem makee exteneive
uee of replicetion, end consequently connections have e
high cost. Seriel and byte-eerial busee ars used between
beeic unite. Multipiexere ere ewployed to prevent eingle
unit malfunctione frow ey ding to all copies of ¢
redundant bus. The cenonical intarconnection echeme ie
ehown in Yigure 1.

3.1.1.2, RANGE: No range limite have been detersdoed, but
the following nusbere may be typical for en sarospece
epplicetion. There ere two current competitive
conceptuslizatione of the eyatem, Thase nushere rspreeent
the never and leee well developed concept,

® 6= Nusber of eimultsneous job eteps in proceee

* 3= Degree of replicetion of each proceseor-ecretchped
* 3= Nu'per of epers processor-ecretchpeds

#2]= Totel proceeeor ecratchpeds = 6 x 3 + 3

* &= Number of independent memory blocke of 16K

* 3= Degree of replicetion of eech block

* 3= Nusber of epere blocke

#]5= Totel memory block modulee = 4 x 3 + 3

The nusber of proceesor-ecratchpede and memory blocks cam
be incrsssed up to the precticel bandwidth limit of the
proceeeor-memory bus and the 1/0 bus.

3.1.1.3. CAPABILITY: The order of 10E5 to 10E6 séditions
per second and the order of 2El4 words of memory. Three
proceesore vould be the emallest "eeneibla™ nusber.

3.1.2, EXECUTIVE

3.1.2.1. MNODES OY OPERATION: All progrsms ere segmented
into job eteps vhich are diepatchad by a flosting form of
executive, Each job etep occupiee one procesaor full cims
while it runs. Multiprocseeing ie tha norval operating
mode. Multiprogprasming of eech processor ie not
envieioned,

3.1.2.2, SOFTWARE ORGANIZATION: T /0 procseeing fe
quasi-dediceted to one processor friplet (i.a. it can float
but dose eo only vhen malfunction mekes it necessary),
Exscutive, sonitor, snd reconfiguration prograse are rwmn
on an ss-needed basie by aach proceeeor triplet &3 it
finiehae e {ob etep.

3,2, FAULT TOLERANCE

3.2.1.. FAULTS TOLERATED: lodividusl units (e.g.
proceeeor, memory unit, multiplexer) can malfunction one
at a time vith no reetriction on what ths oature of the
malfunction fe, Errore are maskad by ths eyetem wntil it
Teconfigurea iteelf to a fault-tolerant etata.

3.2,2, TFAULTS NOT TOLERATED: Certain mslfunction paire
vhich occur simultanaously or close together 1o time csn
produce losa of deta and many requira & program reatart.
locorrsct epacifications or progrsm malfunctions can
defsat the ayetem. Syetsmatic hardvare malfunctions 1o
viich the eame malfunction 1o twvo redund uwite
can defeat the eyetem,

3.2.3. TECHNIQUES: Tvo diffarent concepts.

Firet concapt: all proceseore are duplaxed for detsctiom,
All ecratchpads are triplaxed for masked dump capability.
Siogle instruction restert, Graceful dsgradation of
proceesor-scratchpad groups. Triplex memory units with
dedicated eparee, Triplex husae vith eparee,
Hultiplexere 1eolste busee from failsd groups of unita,

Second concept: processor-ecretchpad units sre organixed
ioto groups of thres under softvare control. Each looke
for disag . If dieegr occure, contious
running to end of job etep, than enter reconfiguration
program, Graceful degradstion of lodividual
proceesor-ecratchpsd units (rether than groupe of thraa
ecratchpads and two pr as in first concept).
Triplex memory units with non~dadicatad sparee. Triplex
busae with epares, Multiplsxsre feolate buses from failad
fodividus]l wite (rather thsn groupe as 1o firet concept) .

In both concepte, eoftware configurstion control fe used,
vhich fe valid ss long ss a vworking proceasor group,
memory group, and bus-sultiplsxer group are available.
Hultip. axere participate io configuration comtrol,

3.3, MVELTY: Stiogle instruction restart., Abeeocs of
ioterrupis and program rollbecks. Dietributed monitor and
reconfiguistion functions, Uee of multiplaxere to ieolats
bus and unit malfunctions. Feult-tolerant clock.
Hierarchicai eystem with fault tolerancs extended into
eubsyetens,

3.4, INFLUENCES: Rapid smergence of LSI memoriee and
procaasore has encoureged uss of replication and
partitioniog with eimple, identical unite, Apollo
Guidance Computer experience promptad elimination of
foterrupte and rollback for ths sska of program
verification. Carter and Bouricius for relisbility
wodels. Aviztenie for concepts of feult tolarancs.

3.5. HARD CORE: Aseumfiog that bard core meana

non-redundant hardware, thare is oo hard core in thie
syetsa, Configuration control 1e a eoftware function
veing the aveilabls herdvere to configure the “ys<am.

A, JUSTIFICATION

4.1, RELIABILITY EVALUATION: So far mostly gearsd towvard
FO-FO-FS. Some Probabilistic eoalysie. No relfabilfty
projections ss wmt since herdwsre has not bean selactad
and failure ratee are therefore oot known,

4.2. COMPLETENESS OF EVALUATION: Hardware not eelscted,
hance failure rate not known.

4.3, OVERHEAD: About 80X of the eyetem ie devotad to the
achievement of fsult tolerence.

4.4, APPLICABILITY: This concapt 1s applicabls fo most
digital control environmeote, dependiog on tha e cnomica
of the application r:jerding feult tolerance,

4.5, EXTENDABILITY: Extendability probably dose not
apply, einca tha eysten ie etill loosely rrecifisd.

4.6, CRITICALITIES: The eyatsm ie most cost-effactiva
compared to o.her eyetems when ths ousber of faulte to be
tolerated is high and vhere ultra-high reliabt 1ty e
eooght. Fo. elngle-fault tolerance and lase high
relisbility , ths eyetsm configuretion might ba chenged.

4,7. [IMPL1i ATIONS: In an ultra-high relisbilicy
applicatioo, epecificatione and programs wust be proven to
be correct. 1n thie eyetem, epplications programmere must
aleo segmeot their progreme ioto short job stape.

A2.15

5. CONCLUSIMES
5.1.1 STATUS: This is @ reeearch project with a
breadboerd sxperimental unit almost completed.

5.2. EXPERIENCE: None to report to date.

5.3. FUTURE: Sows parts of the syetem etill need to be
deeigied and prototypad, Exeparimeots must ba conducted on
s full-ecels prototype eyetes.

5.4, ADVANCES: The following will be baneficial,

*Dewonstrated fisld axparience vith varfous fault-tolsrant
concepte.

*Prectical techoiquee for generatiop correct programs.

*Practical wsys of verifying thst a progras ie correct.

6. COMMENTS

The questionnaire was good in ths esnse of betog thorough,
but 1o wy hasts to reepond to it I wonder 1f 1 have
omitted significant material. An additional comment about
this syetam fe that 1t has bean configured around
integroted proceeeores and msmoriee which rcaesble those
that are evailable today. Ths hardware sfficiency ousbsr
givan in Section 4.3 fe very wisleadiog, baceusa ths cost
of the hardvere can bas the lesst important coet of the
eyetem, if ths hardvare 1e conventionsl and not overly
sxpeasiva, Thie eyetsm ie axpectad to save 10 coate of
syetem intgegration, program verification, znd operationsl
Telisbility experience. Thaee eavings may ba far 1o
excese of the hardware coet,

As an additionsl oote, the replicatad approach used hsre
givea coverage of 1,0 for eiogla malfunctione. Most coded
approaches genarally give lower coverage, difficult to
quaatify, snd often t1aposatble to verify in the fiald.

x} [® % qn
1
1
1 18
—t]
1]15] |8
LB
Cam praceiier
. Fxpabubpad
rtup
= T =
4 & Moan
| mamary

&) & 6

O

Cne lreal

brocessor
C-mrltl

bkl
_BYY

P,..Procesecr
S...Scratchpad memory
H,...Hemory modula
X,..Hultiplexor
SSI...Subsyatem intarface

A

%

e s

TR W

e b

rpea

e TS

SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

W. L, Martin, Hughes Aircraft Company
Fullerton, California 92634, May, 1972

1. [IDENTIFICATION
1.1. Name: Automatically Reconfigurable Modular
Meltiprocessor Systems (ARMDMS)

1.2, RESPONSIBILITY: Astrionics Laboratory, Marshall
Space Flight Center, NASA

1.3, SUPPORT: Same as 1.2

1.4. PARTICIPANTS: The participating organizations
include NASA MSFC, Mu (system design), M&S Computing,
Inc. (ive under sub ract to Hughes);
Auburn University (executive control approaches under
contract to NASA). FPrincipal participants by name are as
follows: NASA - Dr, J. B. White, Sherman Jobe; Hughes - W
L. Martin; MéS - T. T. Schansman; Auburn - Dr. David
Irwin.

1.5. START: The date of conception was civca 196f in a
concept documen. written by Dr, White. MSFC has been
developing tech-ology under their Space Ultrareliable
Modular Computer /SIMC) program since shortly thereafter.
The system design effort being performed by Hughes was
solicited ir “ay, 1971 with a contract in October, 1971,

1.6, COMPLETION: The Hughes system definition contract
will be completed in April, 1973. Construction of a
breadboard or prototype may follow with completion date
uncertain,

1.7. BIBLIOGRAPHY: Various planning documents have been
written at NASA, . White may be contacied for these.
The Hughes effort Is divided into three phases, with the
Phase | report reieased on April 15, 1972, It is titled
“Nesign of a Modular Digftal Computer Systea”, DRL &,
Phase | Report, Hughes Aircraft Company FR 72 u-n:o. Two
other papers have been submitted for publication, Their
fate is uncertain as of yet, but intérested parties may
obtain copies from W. L. Martin at Hughes. These are the
following:

#J, L. Bricker, A Unified Method for Analyzing Mission
Profile Reliability for Standby and Multiple Modular
Ry dundant Computing Systems which allows for Degraded
Performance (submitted to the IEEE Transactions on
Reliability Theory).

3. L, Bricker and ¥ L. Martin, Relisbilicy of Modular
Computer Systems with ‘arvirg Configuration and Load
Requirements (submit‘ed to 1972 IEEE Computer Socioty
Conference).

2. MOTIVATION

2.1. PURPOSE: ARMMS is to be applicable through
modularity to diverse tvpes of space missions ranging from
launch vehiclss, to space stations to deep space probes.

2.2, PHYSICAL ENVIRONMENT: Spaceborme
2.3. COMPUTING ENVIRONMENT: See 2.1, 2.2

2.4, COMPUTING OBJECTIVES: The motisating computing
objective is to be able to configur systems which are
fault tolerant through TMR or other redundant modes or to
use the modules in parallel for high computing capacity
and to be able to reconfigure from one type to the other
dmamically. Maximum capacity in a non-redundant mode is
to be "severa! million" additions per second.

2.5. RELIABILITY OBJECTIVES: One specific reliability
objective is that the probability of survival of at least
a simplex computer after 5 years should be at least 0.9%
(with no on-board maintenance). The overall intent,
however, is that the syste= should be able to be
configured to meet specific mission reliability objec.ives
whether they be stated in terms of maximus recovery iime,
number of failures tolerated, etc.

2,6, DYNAMIC VARIABILITY: As noted in 2.4, dynamis
variability of configuration is one of the primary
motivations.

2.7. PENALTIES: See 2,1.

2.8, PHYSICAL CONSTRAINTS: There ire no explicit physical
constraints except those implied by the natur: of the
intended spaceb.rne application. However, ar implicit
physical constraint is the difficulty of comtriving ar
approach to a large (by serospace standards) computing
capability fault-tolerant design within the confines of
weight and power budgets which may prevail for
interplanetary missions.

2.9. TRADEOFFS: At the current stage ¢f the design, there
are many critical tradeoffs yet to be asade.

* For a computer which will be builc after 1975, what
device complexity and failure rates sh. 'd te assumed?
Almost all aspects of the design are critically affected
by this question, Some of the more -rucial ones are the
maximum complexity of any module; the degree to which
processors must be sub-partitioned; the resulting cost in
switching hardware; the maxiaus numsber of replicates of
any one module type which must be accommodated; and the
complexity of the configuration comntrol software.

* The basic ARMMS concept developed by NASA incorporates
a dedicated executive module rather than a floating
executive, Resulting tradeoffs include specific
definition of functions to be performed, specification of
status monitoring and reconfiguration parameters, and a
design apgroach which ylelds suffictently high reliabiailey
for the executive module.

* The system architecture is not yet defined in any
complete sense. Questiors yet to be resolved include

spec .fic definition of .llowed modes of operation;
defiaition of the means of 1 ing the modul
placement and use of voters; use of error-correcting codes
for memory data; maximus nusber of replicates per module
class; specific techniques for memory data protection; and
fault tolerance features within each module class, At
present, we are making tradeoffs based on two major
configuration alternatives. Although few tradeoff
conclusions have been ched, the p inating
evaluation criteria are almost e.r(.lll to be the
following:

* Implementation feasibility - Any design feature which
does not seem to us to be feasible in any major sense
(e.§., pin count, excessive power, design cost) will be
rejected, We are not particularly Interested in
developing new theories or techniques of fault-tolerant
comput ing but are very interested in developing a
much-needed testbed based on the research performed over
the last 5-10 years.

* Syuftability to the multi-mode configuration
requirements - ARMMS is intended to be usable in
configurations ranging from a simplex computer to TMR with
staudby spares. Any feature which imposes excessive
overhead cost for the benefit of one configuration at the
expense of others is suspect, For example, added hardware
per module for internal fault tolerance multiplies the
hardware penz'ty po't in TR mode,

A2.16

PRGN

3. SYSTEM DES'RIPTION: As seen from the tradeoff
lh:-tu m. no firm system description is possible
this ion are

in
u«uuuy brief and lnnhn.

3.1, ARCHITECTURE

3.1.1. CONFIGURATION

3.1.1.1, INTERCONNECTLVITY: All processors, 1/0, and
executive controller may access all of main memory (a
study of the desirability of identifying an addicional
level of memory, cache or task oriented was made, with a
negative conclusion reached;. The most pnlalc scheme is

4.4, APPLICABILITY: Applicability to other than space
applications is questionable.

4.5, EXTENDABILITY: I think that it is more likely that
the system design can usefully contract than that it can
be usefully extended.

4,6, CRITICALITIES: The major difficulty of the design
is the bread*h of the goals, The critical proble= is
therefore to find a set of design choices which complies
reasonably well with all the goals (e.g., ve vant high
:p.d and capability but r.quire low t and power).

a system of replicated buswes with access
by the executive module. The nature of spaceborne 1/0
activity is biasing us toward a direct processor 1/0 data
path which can be used for transmitting short bursts of
data. The executive comtroller will monitor the othsr
system modules 7ia a time-shared bus. This bus ordinarily
polls the modules in sequence but may be interrupted by

P on task on or other time-critical
event. No direct interaction of modules of a given class
{€.g., processor-to-processor) is planned.

3.1.1.2, RANGE: The general approach to achieving the
capacity = Licaed previously is to maximize the
individual procesior performance so that throughput is not
dependent on a large number of parallel instruction
streams. (Three is a desirable upper limit.) The maximum
main memory capacity fs to be large enough (e.g.,
256K-512K words) to support the high-throughput goals,
The word length is to be 32 bits as dictated by the choice
for the HASA SIMC processor. Cumulative 1/0 data rate
capability is to be 10 million bits per second. In all
cases, maximum number of modules per class (aud the memory
module capacity) will be determined primarily by
reliability considerations. A least upper bowed is & for
each class.

3.1.1.3, CAPABILITY: (See 2.4.)

3.2, FAULT TOLERANCE: (The svstem is still too much
conceptual to allow a decent response. All faults are to
be tolerated. None are to be not tolerated. All
techniques will be considered. Ask again in a vear and
let’s see .= it turned out.)

3.3. NOVELTY: On the one hand, there's nothing chat ome
can point cut as being fundamentally novel (this is true
of most machines, | think). On the other hand, there are
pmthn ll.-nltha bmmc—shll)

such a8 is
Dﬂn l_! The choice of a Mlmﬁ executive module
is the only deviatiom at the block diagram lewel from
other multiprecessors (dut this module is a rather clise
parallel of the TARP im STAR).

3.4. INFLUENCES: JPL STAR; NASA ERC Modular Computer:
NASA MSFC SIMC; IBM, "Architectural Study for a
Self-Repairing Computer; SRI, Techniques for the
Realization of Ultra-Reliable Spaceborne Computers.

3.5, HARD-CORE: The executive sodule is hard-core., The
effect is to be minimiged by simpiifying the module as
much as possible and by ioterna! redundancey (which mav
uitisately result in replicatiom).

&, JUSTIFICATION

4.1, BELIABILITY EVALUATIVS: To date, religdilivy has
been evaluated solely by analysis (as descrided in the twe
papers mentiomed in 1.7). Later im the effor:, we expect
to extend the analysis to include coverage and switch
unreliability. We also expect to simulate the logical
performance of the intermodule switches sad to simulate
the injection of faults.

4,2, COMPLETEMESS OF EVALUATION: ['m mot sure that 1
understard the question. But vhatever vou mean by design
evalustion, 1% sure that [wish we had more time and
money to do it begter,

I don't think that siight changes would
crutnuy affect the design. (Also, ar a side
observation, while one is in the midst of a system design,
all cholc.s seem critical, don't they?)

4.7. IMPLICATIONS: (Let me plead that this question
seems too vague. [don't know where to start with a brief
response.) e

5, CONCLUSITNS

5.1.1 STATUS: The status is sufficlently described by the
above comments, I think, In susmation, we are about
one-third of the way through a system definicion phase,

5,2, EXPERIENCE: It appears that component technology is
contributing more to the feasibility of highly relisble
machines than architecture concepts are. As racently as 2
or 3 years sgo, gate failure rate of 10E~7 per hour seemed
optimistic., At present, gate failure rates of 10E-10 per
hour are credible for the space enviromment. On the other
hand, the assumption that dormant failure rates are a
small fraction of active failure rates appears
questionable. For a long-life machine in an unmanned
envi these two f. are of rajor significance
to the system designer.

5.3, FUTIRE: There are two conflicting possible futures
of ARS, Toe pessimistic view is that it will go the way
of 10 on 1D sisdlar paper design efforts and will die with
only & /inal resowt go its The
oprimisvic wiew s thar it will appear sufficlently
promisisg = comce. Shat NASA will continue its
dewelsgawnt and v watvally sttach it to a mission.
Flanning s of urse Seisg Sirected toward the optimistic
alrer arive,

s AJURMES: cammot add asvthing to the lists of
thecTetical prof.cr sreas and seeded aveas of

fmwes igation which SRI described im its reports under
contract %S 12-¥N I= particelar, ! agree that there
have heen oo few case studles which cam be evalusted.

A major practical advemce which {s needed is the
identification and esploitation of specific applications
in which fault-tolecant machines cam be justified
economically. It is significant, 1 think, that the Bell
ESS-1 and Syster-360 FLI's instructiom retry, etc.,
represent the most extensive applicarion of
fault-tolerance and diagnosti- techniques. %oth are in
areas vhere the paveff for high reliabilicy is great.
Although sercspace applicatices have supported much of the
research in fault-tolermat machises, ! am sheptical that
there is a sufficient mgss of momey there to lead to wery
widespread results in flelded svstems. The siteation is
asalogoss Lo that which has existed for associative
processing for 10 vears, im that the glasour, concepes,
and vechnigues are often apparent out cost .-msideratioms
ultimately lead to more conventional choices.

Also, 1 wonder if "fault-tolerant computing” is too narrow
a view and that many of the basic ideas would be
agpiicable to a discipline of "Fault-tolerant systems”,
Perhaps there are other equally fertile, but less ploved,
fields to be conmguered.

&, OWMENTS: (See 5.4)

il

&%, OVENNEAD: Simce the comfigeration is dvammic, the
of d to the

of
fait-talerance also vary with time. Ao wpper limit i
probably $0X; a lower limix is probably 20 (im cost,
logic, emecution time, etc.).

R

s
5
%
o

S

SURVEY DF FAULT-TOLERANT COMPUTER SYSTEMS

Jamsa S, Miller, Interwatrice, Inc., 701 Concord Avenue,
Cesbridge, Massechusetta 02138, March 1973,

1, IDENT1FICATION
1.1, NAME: The ayetem ie referred to as either the
Intermstrice Multiprocessor, or the Space Station Computer,

1.2, RESPONSIBILITY: Iotersetrice, Inc,
1.3. SUP®ORT: NASA Manned Spacecraft Center, Houston, Tee,

1.4, FARTICIPANTS: J, S, Killer, W, H, Vandever, S, F,
Stanten, A, E. Avakisn, and A, L, Kosmala,

1.5, START: Tho project bagen in June, 1969, end continued
for ten montha, After a thirteen-month pariod of
inactivity, the deeign effort was reaumed in day, 1971,

1.6, COMPLET1ON: The aecond phase of the deaign was
complated, and e raport publishad, in Septerber, 1972,

1.7. BIBLIOGRAPHY:

€J. S, Miller, D, J, Lickly, A. L. Koemala, and J. A,
Saponaro, "“Final Riport=~Multiproceasor Computar Syater
Study”, Intermetrirn, Inc., Casbridge, Masa,, March, 1970,
N70~-41238

€J. S, Miller, W, H, Vandever, S, F, Stanten, A, E.
Avekier, and A. L. Koamels, "Final Pepoct-—- Lngineeriog
Study for the Functional Deaipn of @ Multi; rocessor
Syates", lntermetrics, Inc., Casbricge, Mava., Sopterber,
1972. N73-1023S

*J, S, Miller, and W, H, Vandever, "Deaign Features ~f an
Aeroep Muleip ", Internetiondl Worket(p on
Computer Architecture, June 26-2B, 1973. Seumoble, France.

2, MOTIVATION

2.1, PURPOSE: The ayatem ia orirnted tovards the
generel-purpose computational requirementa of e manned,
orbitiog epece atetion . sbout the 1980 time period, Ilte
expected uses include reei-time atstion control and data
acquiaition functions, plue interactive and batch data
proce iniag operetions,

2.2, PHYSICAL ENVIRONMENT: The primary misefon for which
the aystem wme deeigned 1a a apacebome one. However, the
deaign eo fer s 1imdted to the functionel epecificationa,
and the phyaical anvirooment conaiderationa have had little
impact on the configurative,

2.3, COMPUTING EMVIRONMEIT: A1) connect:d elements will
be sboard the apece atatico. Componse: of the computer
will be interconnacted by dedicated b .ea. Terninale,
dieplaya, and aenaore will be attachrJ to the eyatem by
seans of ¢ multiplexad data bus.

2,4, COMPUTING DBJECTIVES: The perforsance requiremente
vere rether aoft, Generel objectivee chosen for the ayetem
were real-time reaponee of 5 milliseconds or bettor, and an
equivelent proceasing rate of two &fllion additione per
Second, for e three-proccasor ecomfiguration. Confipuration
flexibility vas an important objective of the design.

2.5, RELIABILITY DBJECTIVES: Becauee no hardvare was
deaigned, no specific relisbilicy requirementa wore
imposed. The use of tha eyetem as the central computer for
the apece station 11fe-aupport, trajectory, attitude, and
experiment-proceaeing functione placea hesvy emphaeie upon
a deaipn vhich ellows continuved operetion, even if ot
reduced performance, in the preaence of feulte, AIthough
it ia expected that brief outeges of the eyater will be
tolersble, our et forta have been directed et avoidance of
el]l aingle-point feilore modea.

2.6. DYNAMIC VARIABILITY: The wsultiplicity of proceeeora
ia utilised to contirue operetion vhen proceasc fefl.
Failorea of processore thue reduce the peak pro einy
capacity, Similerly, « memory sultiplexing acher. parmita
Program ond detm mobility to work eround Iocsa of memory
wmita. lecrnased multipInaiog activity vhich followe
removal of imery mits from eervice alao degredee wuximum
performmace lemels. Whether feiluree cauee actual
e2gradation im service depende upon the asount of exceae
capacity that ves provided,

A2.18

2.7. PENALTIES: Pemalties from foulty operetion ere
difficult to sssese thie earl; in the apace atetion
planning. Howewer, Iosa of 1ife 1a conceivably poseible,
but failore to echieve wiiaion objectivee 1a ¢ more 1ikely
result of malperformsnca.

2.8, CONSTRAINTS: The conetrainta imposed by the apece
atetion environment will influence herdvore deaign, but
have not affected the functional desipn apprecisbly,

2.9. TRADEDFFS: The expacted component and connection
relisbiIity will drive decfaiona relative to the level of
@aceas procsesor, memory, and bus cepability to be provided
to achieve overall ayatem eveilability goala,

3. DESCRIPT'NN

3.1, ARCHITACTURE

J.1.1. CON"IGURATIONS

3.1.1,1, TNTERCONNECTIVITY: The basic configuration 1a
shown in Figure 1, The internal configurrtion of e
Proceesor unit, showing duplicated elemen! s and
comparetors, ia given in Figure 2,

J.1.1.2. PRANCE: Three to eight proceasore with et least as
memory modulea aa proceasors, end preferably more to
diminish confliet frequency. Civen an environment vhere
error deicction was important but error Tecovery beyond
inatruction retry vas leaa important, as few as one of eech
rodule can form e eyatem,

3.1.1,3, CAPABILITY: The effective computing power of a
One-proceasor ayatem is sbout 0.6 Mipa, or the approximate
equivalent of a 360/6S,

3.1.2. EXECUTIVE

3.1,2.1, MODES OF DPERATIDN: Software exacution ie based
on e three-priority diapatchiog algorithm; of higheat
priority ere the functiona which require real-time

Teapons Theae functiona ere kept ahort, Middle prioricy
Proce oy be Ionger, but ere interrupted only by
real-time processea. Lowp batch=typs processes are
eseignod Ioweat priority, and offectively run in e
background mode.

3.1.2,2, SOFTWARE ORGANIZATION: The syatem aoftware can
Tun on any or multiple proceasore. Criticia. aecticna are
protectod by interlocks to avoid diaruptione due to
multiproceaa interforence, Executive and recrvary esoftware
ia atored in duplicate, under the harovore=1 -slemented
information prutection achere outlined belw. Thus, aingle
faulte, aven those which diasble an entire semory module,
cennot prevent accesa to or operation of the ayetem,

3.2, FAULT TOLERANCE

3.2.1. FAULTS TOLERATED: Expreealy attenpeed in the deaign
ia detection and recovery frow every aingle feult, In thia
conteat, e eacond fault {s one which occure before the
@ystem recovery actiona have been completed for the firet
faule, Proceasors, symoriea, end busea may be removed from
operetion as a reault of faulta. Porformanca capsbility fa
correapondingly reduced.

3.2.2. FAULTS NO'' TOLERATED: Synchronized double faulta 1o
independent elemeita are not tolereted, Memory faulte
vhich effect infoimetion for vhich duplicatm atorege wme
Judped unnecesaary are not tolereted, although the eise of
thia set o {nforaation 1a totelly under wmer coatrol,
Flava in ayetem softvare may not be tolerated, but faulta
in epplicetiona aoftware may advereely affect other
Processaa only through dieruption of dete they ahere,

Thm erdvare supporta detection of instruction loopa,
eubecriptbounda violation, eaccaaive Proceasor time usege,
and overtime inhibition of intarruptiona,

3.2.3, TECHNIQUES: E<vvor detection and recovery ers based
on redundancy of informstion and cepability. Proceasor
unita are comprieed of duplicate elomenta, vhose extermal
aignala are Pered, Thia epproech maxisdaea thm error
detection coverage, and mininmiaes the extra deaign needed
for error-detoction logic, Memoriee are parity checked for
detection, and information vhose lose cannot be tolerated
ie atored in duplicate, Processor local storege (M1) 1a
ell duplexed. Information in main memory (M2) ie
eelectively duplexed by user apecification., A novel use of
deacriptor-based atorage manegement allows auch duplication
to be implemenied entirely within the hardvare. Softvere
may be writte: without need for consideration of the
detection or recovery problems, Dupliceted buees aupport

i

i ke

compsrison betvaan indapendent coples for comprahsnsivs
error detection in the csses vhere duplirate storags is
specified, and for srror detectior of transfare otharviss.
The implementstion of duplication in M2 csuses copies to be
kept 1o distinct units, 80 thst sveo cstastrophic failure
of an entire unit can ba toleratsd. Ths memory multiplexing
techoique incorporated to reduce the totsl amount of M2
required for a given performmoca level sllows progrsm snd
dats segments to ba moved to new locstioos whso M2 failures
oceur,

3.3, NOVELTY: With rsepect to fault-tolasancs, a major
sttezpt has bsen made to {solsts spplicstion softwsre from
the affects of undetected hardwsre srrors (by dstscting ss
many a8 feasibls), and from ths necessity to davote
explicit attsotion to survivel following detectsd arror (by
providing sd:qusts herdware support). With rsspsct to
architscture, s high~level instruction sst has bsen
developed, tsilored to the nesde of high~order languags
compilere, wvhich sre to be ussd to prepsre all tha softwsre
executed in tha system. A novel spproach to s
descriptor-bassd, taggmd-word design has basn taker, in
vhich the Multics paging strategy has been applied for the
first time to varitble-size pages (Burroughs' segments), a
unified stack data forwmat has been utilized, and tag-bits
are incoimorated into 31) necessery ligstiors af a suat of
st most one bit, Most words in ths system nsad not sxpend
bits on tegs. Vsriable-length instructions are usad to
schieve maximum conciseness of progrsa code.

3.4, INFLUENCES: Ths major influeoce on instruction-
fursat and stack-organisad processing came fros the
Burroughs B6700, The emphasis on hardware-implemented
error detection and recovery resulted from adverse
experience in attempting to provide these capabilities
through softvare in the Apollo on-board guidance computer
softvare development,

3.5. HARD-CORE: Ths only hard~core slsment io ths systam
is the 1/0 controller. Becsuse no dagrsded level of 1/0
cspability easmed tolerabls, tha 1/0 controller is
implementsd with high iatsmal redundancy, so as to ba
"fatlure proof",

4, JUSTIFICATION

4,1, RELIABILITY EVALUATION: Fsult-toleranca is asssssad
by thought experiments, rsther than simulstions or other
mechanical means, Raliability estimstss cannot ba made
until hardvare design commencas.

4.2, COMPLETENESS OF EVALUATICN: Evaluation consiste of

ments]l exercises, Mors rigorous axplorstion must
necassarily swait hardwsre dasign.

O, ~reting Merory Modulme

" w2 “ "
|
|
Interprocesear
Comunicetions |
(12c) rue
_L—\—{ :) IL
o
L /0 I
Controller

170 Dete Bus Secondery Storege
Trunk Contral

Sate Sus

Tlguse 1: Besic Conflguretion: Three processcrs (), end four opereting menory rodules
1%2) ere ehown, NI unite conteln locel eterage for mech procesest,

4,3, OVERHEAD: Becsuse the hsrdwsre iw: .:ments the bulk of
the fault-tolerance provisions, very little price is psid
for this cryability in tarms of performsoce. Segregstion of
processor lncsl storsge io M1 units to ellov an eltemnete
procsssor 7o tscue 8 fsiled ons at any point io the
execution ol aa instruction lengthene transit times
somevhet. Ths herdwere cost consists of e fector of two in
processor costs, plus s bit for comperison circuits snd
arror-control logic. Memory costs ere iocreased by the
amount thst duplicstion of selected dste requires extrs
storage cspscity,

4.4, APPLICABILITY: The systsm dascribed is spplicsblv to
sny spplicstion where fsult-tolarance i{s important. The
svphasis on reel-time capability makes it especially
suitable for aircrsft or process control spplicetionme.

4,5, EXTENDABILITY: Performance can bs increased by use of
faster components; memory sizes may be iocreased, etc. 1t
is not bslieved that sdditionsl emphasis on fsult-tolerance
would bs psrticulerly productive,

4.6, CRITICALITIES: The sbsence of a rigid set of
requirements has allowed a reasonable trade-off between
conflicting factors. The design has been driveu strongly
v'ly by e Taulc-toleramce fequlirements.

4,7, IAPLICATIONS: Tha system is de: ‘gned eround tha
concept thst sll eoftwsre for ths machine will be produced
by correct compilere, which perticipete io the
implementstioo and eoforcament of opersting syetem and
prosramming ground rui¢s., Use of nigh-level language for
41l eoftware development is increasingly recognized as a
valusble means of reducing software costs. However, the
further advantages vhich can be achieved by intimate
#omrie Lond Yetwest sompl bes sude Lon wemd
raquirsmeots hsve not beso exploited.

7

5., CONCLUS1O0NS
S5.1. STATUS: Ths functionel dasign ie complste.

5.2. EXPERIENCE: Ths design sxpsriance has been complstely
positive to data; the objactives end tha spprosch continue
to sppaar velid.

5.3, FUTURE: The projsct is non dormsnt due to NASA
amphasie on ths spsce shuttls p.ogram, which has cewsed
epsce ststion planning to ba ' covily curtailad. Other
sources for support of desiga continuation sre bsiog
sought,

efiran Preeering

Ty Ersor

Caneretor
 chacker [F19Med

Simplex

Traskil Fudseaning Simplex
L3

Pigure 21 Internel Configuretion of e Processor Unit {including #1 Locsl Storsgs)

SI'RVEY OF FAULT TOLERANT COMPI'TING SYSTEMS
W, C. Ridpwry 111, Bell Labs, Madison MJ, July 1973

1, 1DENTIFiCAT1ON
1.1 NAME: SAFECUARD Data Processor

1.2 RESPONS18{LITY: Western Electric and BTL
1.3 SUPPORT: U. S. Army

1.4 PARTICIPANTS: Weatern Electric (Prime Contractor),
Bell Lshoratorieas (responsible for: aystewm desipn, design
of moat dipital eguipment; and deaipned some ‘vatem
softvare), I'nivac (desipned centeral processor .‘nd sore
diapnostic proprams), 1BM (deaigpmed some syatem softvare),
Lockheed {(desipned syatem core memorien).

1.5 START: Design effort for the ABM Svatem was started
in 1963,

1.6 COMPLETION: Hardware desipn is essentially complete;
Software ia in the finsl atages of developrent.

1.7 B1BLIOCRAPIY: (relevant to Fault Tolerance)

* D, B, Armstrong, "A Deductive Method for Simulating
Faul<s in Lopic Circuita,”" {EEE Tranaactions on Computers,
Vol, C-21, No. 5, pp 464-71, May 1972,

* R, G, South, "A Syster for Simulating Fsulta in Lsrge
Lopic Circuits,” (Talk piven at Lehigh University Workshop
on Fault Detection snd NMapnosis in Digital Systems,
Docerber B, 1971),

* J, R, flahn, "A Haintenance Approsch for s Larpe Corputer
Syatam," (Talk piven st lehigh University Wori.shop on Fault
Detection and Diapnosis in Dipitsl Systers, December R,
1971).

2. MOTIVATION
2,1 PURPOSF: Part of Missile Defense System

2,2 PHYSLICAL ENVIRONMENT: Cround Based

2,3 COMPUTING TKVIRONMENT: interactive - real time -
self-contained.

2.4 COMPUTING OBJFCTIVIG: “o nrevide real-time cetection,
discrimination, trscking, snd puldsnce functiors required
in a missle defense system,

2.5 RELIABIL1TY OBJECTIVES: To be able to withstsnd most
syster faulta and still perform the defenae risafon.

2.6 DYNAMIC VARIARILITY: Desiyn sllows prsceful
degrsdation.

2.7 PENALTIES: Loss of defense cspsbility.

2,R CONSTRAINTS: Must operste in real-tirc in nuclesr
environment (e.g., high nuclesr radistion levels snd rround
shock environment).

2,5 TRADEOFFS: Used (N + 1) redundancy and on-line
asutomatic diagnoatics inatead of full equipment redundancy.

. SYSTEM DESCRIPTION

1 ARCHITECTURE

1.1 CONFiCURATIONS

1.1,1 INTERCONNECTIVITY: See Fipure 1.

3
3.
3
3

3.1.1.2 RANGE: As ooted in Figure]
3.1.1.3 CAPABILITY: Clasaified

3,1.2 EXECUTIVE

3.1.2,1 MODES: Independent nrocesanrs are not multi-
proprammable; however, the collective syatem is
multiprogrammeble ano multiprocessing. There ia no
maater-alave relationship between processors, therefore no
hardeore (i.e., nonredundsnt critical hardware) exiats.
Programs are sepmented into tasks which are dispatched by s
acheduler.

Softwsre Orpanization: 1/D proceasing is performed
asynchronously by s specific attached proceasor (known as
1/0 contrcilers). Executive, monitora, diagnostica, and
other programs are run by the central nrocessors as needed
once prior taska ars completed.

3,2 FAULT TOLERANCE

3,2.1 FAULTS TOLERATED: The ayatem is designed to
withstand both transient and hard faulta provided the
problems in 3.2,2 are not met.

3.2,2 FAULTS NOT TNLERATED: The ayatem can meet
ohjectives unless either multiple faults occur
sirultaneously in enough different equiprent, so that a
viahle aystem ia not available, or tranaient faults (which
are not isolated) affect criticsl units at an sbnormallv
high rate.

3,2,3 TECHAIQUES: Aa ahown in Fipure 1, multiple units
exist for each major type of equipment (e,n,, memory). One
of esch type of these multiple units is included as a spare
which mey be subatituted for any faulty unit., l.e,, there
are "n + 1" units of each type, whare "n" is the number
requirad to perform the tsctical miasion.

* System Reconfipuration of faulty units ia controlled by
special redundant ststus units described in Section 3.3,

A special maintensnce subsyatem {s ewmployed which uses s
senarate wsintensnce path into all major repiaters (both
dats and control) in the syatem (see Figure 2). This
subaystem is used to bootstrap the main ayatem for normal
initislization, to detect faulta (via routine diagnostica),
to isolate fsults (uainp fsult dictionaries), and to
perform aystem recovery by detecting any catastrophic
fsilure and reinitializing the syatem,

* Real-time disgnostics sre periodically dcheduled to
detect equipment failurea,

* Error detection and response featurea are designed into
the normal syster softvare. These featurea include
defenaive propramminp (e.g., dats resaonsbleness checka),
device manaping (e.p., to isolste faulty units), initiatinp
svstem rollhsck to a previously determined state, znd
calling for the maintenance subayatem to initiate romplete
svster recovery (i.e,, rollback to initial atate)

* Redundant equipment is used (during routine survelillance
periods) to play large scale aystem exercisea spainat the
on-line syatem, These exercisea are vsluable in uncovering
errora, as vell as maintsining the skill level of operators
(snd thus wminimizing the possibility of manual errors).

Parity ia used to check data acrosa interfaces and in
memories.

* Errqr-detecting codes are uaed to check the tranafer of
critical dats between some subsystems,

The aystem master clock erploys triple-rodular redundancy
to jenerite sll rajor clock rates.

3,3 NOVELTY: The aystem has: tvo aignificantiy unique
fault-tolerant design features as described below.

3.3.1 The first feature is the equiprent atatus wunit (SU)
which controls the totsl system hardware configuration,
The S has the following chsracteristics and capabilitiea,

*# There nre two identical SU, either of which may be
desipnated ss the master unit,

* All commnicstion pstha hetween equipments (e.p.,
proceasor and memoriea) are controlled by the StU.

* Ry enabling (or disabling) the various communication
paths, the 50 can split the aystem into tvwo aeparate
computers (e.g., one can be used to exercise the other).
Individual equipment can also be isclated, if necessary, to
sllow diapnostica to be performed,

The error detection circuits in each equipment send
repurts to the S, Theae reporta sra used by software to
determine what equipment should have diapnostica performed,
an vwell as to make reconfipuration determinations.

Tha SU enshles special test paths in each equipment ao
that diapnostica may he performed as dascrihed in 3.3,2.

3,3.,2 The second unique fault-tolarant design feature
centers around tha maintenance subaystem, The
characteriatica and capabilities of this subayater are:

SYRVEY OF FAULT TOLERANT ZOMPITING SYSTEMS
W, C. Mdpwiy 111, Bell Labs, Madison NJ, July 1973

1. IPENTIFICATION
1.1 NANE: SAFECUARD Data Processor

1.2 RESPONSIBILITY: Western Electric and BTL
1.3 SUPPORT: U, S, Army

1.4 PERTICIPANTS: Hnnn Flectric {(Prime Contractor),
Bell La» ble for: sy design, design
of sest digizal n-ip-lu and designed nome system
software), Univac (desipned centeral processor and some
diagnostic programs), IBM (desimmed some systes software),
Lockheed (desipned system core mewories).

1.5 STANT: Desipn effort for the ABM System vas started
in 1963,

1.6 COMPLETION: Hardware desipn is essentially complete;
Softwere is in the final stages of development.

1.7 BIBLIOCRAPHY: (relevant to Fault Tolerance)

* D, 3. Armotrong, "A Deductive Method for Simulsting
Faults in Lopic Circuies,” IEEE Transactions on Computers,
Vol, C-21, No, 5. pp 464=71, Xay 1972,

* R, G. South, "A Systee for Sisulating Faults in Larpe
Logic Circuits,” (Talk piven at Lehigh University Workshep
or Fault Detection and NMagnosis in Digital Systems,
Decesber 8, 1971).

* J. R, fahn, "A Maintenance Approach for a Larpe Computer
System,” (Talk piven at Lehigh University Wori.shop on Fault
Detection and Magnosis in Dipital Systers, December R
¥,

2. MOTIVATION
2.1 PURPOSE: Part of Migsile Defense System
2.2 PHYSICAL ENVIRONMENT: Cround Based

2.3 COMPUTING FXVIRONMENT: Interactive - real time -
self-contained,

2.4 COMPUTING OBJECTIVET: To nravide real-time cetection,
discrimination, tracking, and puidance functions required
in a missle defense system,

2.5 RELIABILITY NBJECTIVES: To be sble to withstand most
syster faults and still perform the defense mission.

2.6 DYNAMIC VARIABILITY: Design allows praceful
depradation.

2.7 PENALTIES: Loss of defense capability.

2,R CONSTRAINTS: Must operate in real-tice in nuclear
environment (e.f., hiph nuclear radiation levels and ground
shock environment).

2.5 TRADEOFFS: Used (N + 1) redundancy and on-line
e di ies 1 d of full 1 .

3. SYSTEM DFSCRIPTION

3.1 ARCRITECTURS

3.1.1 CONFICURATIONS

3.1.1.1 INTERCONNECTIVITY: See Figure 1.

3.1.1.2 RANGE: As noted in Figure 1
3.1.1.3 CAPABILITY: Classified

3.1.2 EXECUTIVE
3.1.2.1 MODES: Independent nrocessors are nor multi-
proprasmable; however, ilig collective system is
rultiprogrammcble and multiprocessing. There is no
master-slave relstionship . » theref, ne
d e, dund; critical h) exists,
Prograss sre segmented into tasks which are dispatched by »
scheduler,

Software Organization: 1/0 processing is performed
asynchronously by a specific sttached processor (known as
1/0 contrcilers). Emecutive, monitors, disgnostics, and
other progiams sre run by the central nrocessors as needed
once prior tasks are completed,

A2.20

3.2 FAULT TOLERANCE

3,2,1 FAULTS TOLERATED: The system is designed to
vithstand both transient and hard faults provided the
osroblems in 3.2.2 are not wet.

3.2,2 FAULTS NOT TOLERATED: The syster can meet
objectives unless either sultiple faults occur
simultaneously in enough different equipment, so that &
vishle svstem is not avsilable, or transient faults (which
are not isolated) affect critical units st an sbnormellv
high rate.

3.2,3 TECHNIQUES: As shown in Figure 1, sultiple units
exist for each major type of equipment (e.=,, memory). One
of each type of these multiple units is included as a spare
which may be substituted for any fauity wnit, IL.e,, there
are "n + 1" units of each type, vhare "n" is the nusber
required to perform the tactical mission.

* System Reconfipuration of faulty units is controlled by
special redundant status units described in “ectiom 3.3.

* A special mai sy is loyed vhich uses a
separate waintensnce path intc all major repisters (both
data and control) in the system (see Figure 2). This
subsyster is used to bootstrap the main syster for normal
initialization, to detect faults (via routine dlagnostics),
to isolate faults (using fault dicticnaries), and to
perfore system recovery by detecting sny catastrophic
failure and reinitializing the systes.

* Real-time diagnostics are periodically scheduled to
detect equipment failures.

* Error d ion and fi are designed into
the srreal syster softwvare, These features include
defensive programming (e.g., data reasounsblenens checks),
device wanaging (e.s., to isolate faulty units), initisting
system rollback to a previcusly determined state, and
calling fer the maintensnce subsystes to inmitiste cowplete
svster recovery (i.e,, rollback to initial state)

* Redundant equipment is used (during routine surveillsnce
periods) to play large scale system exercises apainst the
on=line syster, These exercises are valuable in wncovering
errors, as well ss maintsining the skill level of operators
(and thus minirdzing the possibility of manual errors).

% Parity is vsed to check data across interfaces smd in
memories.

* Errgr-detecting codes are used to check the tramsfer of
critical data betveen some subsystews.

* The syster master clock erploys triple=modular redundancy
tn penerate all rajor clock rates.

3.3 NOVELTY: The system has-two significantiy unique
fault-tolerant design features as described balow.

3.3.,1 The first feature is the equipment status unit (SU)
which contrels the total syster hardware corfiguration,
S has the following characteristics and capabilities,

* There are two identical SU, either of which may be
desipnated as the master unit,

* Al ion paths b (e.p.,
processor and memories) are controlled by the SU.,

* By enabling (or disabling) the various communication
paths, the SU can split the system into two separate
computers (e.g., one can be used to exercise the other).
Individual equipment can also be isolated, if necessary, to
allow diapmostics to be performed

* The error detection circuits in each equipment send
reports to the Si'. These reports are used by software to
determine vhat equipment should have diapnostics performed,
as well a8 to make reconfiguration determinations.

* The SU emables special test paths in each equipment so
that diagnostics may be performed as described in 3,3,2,

3.3.2 The second unique fault-tolerant design feacure
centers around the maintenance subsystew,
characteristics and capabilities of this subsystesr ave:

R e . = PG

* It is a special subsystes consisting of its own small
mor-dmuu -«il-u-lmnumuu

{ faule d and y. This is
done 1n conjunction with the status wnit described in
sectiom 3.3.1.

* A specisl smaintensnce path is designed into all digital
equipssnt, The sole function of this path is to allow
diagnostics; this path, in essence, allows bresking large
sequential blocks of logic imto smaller cosbinational

blocks vhich are essier to diagnose for faults,

cmrmmum&maw!l-mnulh

The di d by a table-driven
logic-path sensitized, l.de sisulator, vhich predicts
wvhen the diagnostics are run
against the simulated hardware.

* The mai b dund.
performs diagnostics on the odnr half,

each hel{

3.4 INFLUENCE: Main system concepts snd architecturs were
developed by numsrous mesbers of staff within Bell Labs,

3.5 HARD-CORE: There is no hard-core in the sense of
non-redundant hardware.

4. SYSTEM JUSTIFICATION

4.1 RELIABILITY EVALUATION: System "relisbility” is
expressed as AR (i.e., svailsbility-relisbility” product),
vhere A*R is defined as "the probability that the system

* will be available (i.e., error free) for full-load
ions vher ded, and

* will continue to mm: without system failure
h the

The total system A*R requirement is budgeted across the
various subsystems. Analysis of hardware reliabilicy
models for each subsystem indicates that the design should
mset the AR requi rements. Diagnostic programs are analvzed

0 STATUS 97T

FIGURE | - COMPUTER MAINYRAWE

A2.21

by the logic simulator (vhich also creates the feult
dictionaries) to determine the of

This information is used in the AR models. In additiom,
ervor control softvare as well as disgnostic prograss are
further tested by inducing ramndomly selected faults inm the
w.m.

4,2 COMPLETENESS OF EVALUATION: Analysis of the systes

been analyzed by the logic simulator. About 151 of
the fault insertion smalysis has been completad.

4.3 OVERHEAD: Por the largest system, sbout i0X of the
hl-u-l!nmmwu. Other
error & 4

and
for p-cﬂh-lﬁ.lnlafﬂ.m-'- Diagnostic
programs and defemsive prograsming techniques are estimated
to account for sbout 25X of the total source instructioms.

4.4 APPLICABILITY: One or more of the fault toleramt
systes features may be used with most digital systems.

4,5 EXTENDABILITY: It would probably be !-uetlul to
extend any of the fault tol pts in the p
systes,

4.6 CRITICALITIES: System cost could be significantly
reduced by a relazation in relisbility. Multiprogramming
and multiprocessing are both required to handle the
required processing tasks in real time,

4.7 IMPLICATIONS: Because of the stringent availgbility
requirements, automstic fault detection, isol~tion and
recovery were of primary comsiderationm,

5, CONCLUSIONS
5.1 STATUS: The prototype system 18 now being integrated.

5.2 EXPERIENCE: Experience to date indicates that the
system should meet its availabilicy/ reliability goals.

5.3 FUTURE: The system is scheduled for installation at
various government facilities in the near future,

COMPUTER
RAIN PRARE
(oF FiGUAE 1)

‘ |
I
|

FISURE 2 - OVERALL DIQITAL SYSTEM STAUCTUAR

MAIRYENANCE /
SUBSYSTER P
4
? 7 1/0 CHANNELS
P T ALL

 FERREELA SUBSTSTEMS
: (NORMAL DATA PATHS)
: -
1
1
]
1
i
I
1
L

SURVEY OF TAULT-TOLERANT COMPUTIVG SYSTEMS

Prof, Jerome li. Saltzer
froject MAC, MIT, Cambrldpe, 1'A., April 1973

1, IDENTIFICATINR
1.1, SAME: Multics, for MULTlplexed Information snd
Computinp Service,

1.2, RESPONSIRILITY: Msssachuse'ts Institure of Technolopy,
Project MAC, Computer Syatems Reseoreh PMlvisfon. As of
1/73, a lloneywell nroduct.

1.3. SUPPORT: Advanced Kesesrch Protects Agency vis Office
of Naval fesesrch,

1.4, PAPTICIPANTS: MIT Project NAC; lloneywell Csmbridge
Information Systems lsborstory (fcrmerly thie Cenersl
Flectric Company Corputer lepartment), Also Bell Telephone
Laborstories, 1965-69,

1.5. START: Plsnning fn 1963-4, complete proposal In 1965,

1,6, COMPLETION: System first ussble in 196R, svailsble for
public use st 1L 1.T. {n 1969, now commercially available,
Resesrch continuing.

1,7, BIBLIOGRAPHY:
#The Multiplexed Information snd Cormputing Service:
Proprammers’ Msnusl, M.I1.T. Project !AC, Rev, 13, 1973,

#F,). Corbato, et sl., Seasion ! A nev rerote sccessed
rau-Machine svster, AFIPS Conf, Proc, 27, (FJCC 1965),
Spsrtsn Books, Wsshinpton P,C., np. 185-247,

#F,J. Corbsto, J.ll. Ssltzer, and C.T. Clingen, "Multics --
the first seven vesrs," AFII'S Conf, Proc. 40, (SJCC 1972),
AFIT'S Preas, liontvsle, H.J., ppr. 571-583,

aE,1, Ovganick, The Multics System: san Examinstion of {ts
Structure, M1T Press, 1972,

2, MOTIVATION

2.1, PURPOSE: Multics is a prototvpe of the genersl-purpose
computer ut{lity, 1t {s intended to allow interactive
sccess to s shared {nformation base, permit use of genersl
purpose progreaoming, snd be exnsndable and evolvable,
Relisb{litv and fault tolerance were considered to be only
two of many overlspping and confllcting objectives,

2.2. PNYSICAL ENVIRONMENT: Multics {s Adesipned fon use in s
pround-hsaed dats processing center.

2.3, COMPUTING ENVIRONMENT: Multics {8 sapprosched by
intersctive displsys and typewriter terminals, For
larpe-volume data processing applicstions, card, printer,
and magnetic tsje peripherals sre provided, hu sll job
initistion 18 dune interactively, Terminals sre sttached
directly, via the flal-up telephone network, snd vis the
ARPA network,

2.4, COMPUTING NBJECTIVES: Multics nprovides s wide rsnpe of
software services, lanpuspes, and tools for constructinp
proprass snd subaysters. 1t provides interactlve response
to small requests st the level of ! Leconds sversge, 5
seconds for 907 of requests, Larper corpute-bound requests
are scheduled st s lower prioritv, With inftisl (1964)
hardvare, configurations supporting fr-om 10 to 120
simultaneoua users can he constructer, lsrdware installed
in fsll 1972 incressea the potential limit to shout 400
users, and also {oproves response time. Softwsre design
range {8 fram 10 to 1000 usara,

2.5, ELIABILITY OBJECTIVES: The primary relfsahility
ohjective concerns integrity of on~line file storsge.
1deallv, the user can rely on the system to have s perfect
remory for hiis files, A secondsry svailsbility objective
is that the syaten operste continuously, on s 24-hour per
dsv hasis. Recovery time following 8 failure ia permitted
to have s widc variarion, but sn sversge on the order of 8
few minutes, ~hjectives such ss 1002 continued operation
in the face of snv sinple fsilure were not sttempted,

A2,22

s

2.6, DYNAMIC VARIABILITY: An individual instsllstion may
choose the fraction of system resources to be used for file
backup nperation, thereby providing vsrviny deprees of
raximpum sethack for its users following the worat possible
kind of s system crash, 1f 207 of reanurces are used for
backup, s maxirum of 3" minutes of work usn be lost Ly 8
system crash, Smaller qusntities of hackup can produce
1arper setbacks, The desipn is rultiprocessor, to rermit
restart with s smaller, lower-perfnrmance confipurstion,
without wsltinp for hardvare to be repsired.

2.7. PINALTILS: Penalty depends on the rsnee of
sppllcstions for which the svater 1s beinp used, 1In the
»,1.T, environment, loss of stored files or lack of svetem
avsilabillty mav mesn distuption of sdministrative and
denartmentsl operstions which use the svater, For
proprarming use, the penalty is small,

2.8, CONSTPAINTS: Multics {s intended to be economicallv
competitive with other cormercisl and scientific drts
processlnp svstems, No unususl phvsical constrsints exist,

7. DESCRIPTION

3.1. ARCHITECTURF

3. 1.1, CORFICURATIONS

3.1.1.1. INTERCONNECTIVITY: The hatdware (llonevwell
6NG/6000) s s smltiprocessor, multimerory desipn in wvhich
each processor {s connected bv s sepsrste csble to esch
merory box, 1/0 controllera are attached to the memory
boxes in the same wsv ss nrocessors.

3,1,1.2, FANCE: Sof{twsre permits 1-10 procesrors, 128K to
16M J6-bit words without chsnge, Small chanpes would
perrit essentisllv unlimited (e.g., 10Fi4 worda) memory
sizes, Current hardware permits 1-7 processors, 128K to 21!
Iw-bit words, Smsll chanpes in hardware would permit up to
16! words,

3.1.1.3, CAFABILITY: loneywell 645 CPU' runs st 330,000
instructions/sec, about hslf the speed of & 360/65,
lioneywell 6180 CPL' s expected to run sbout 1M
{nstructiona/sec, somevhere between a 370/155 snd s
376/165,

3.1.2, FXECUTLVE

3.1.2.1, MNOES: System permits user-consttucted cooperative
processes, ntilizing multiproce' ,ors snd multiproprsmeing,
The multiple processors run independently snd autonomously
rather than in s master/slave procassor orgsnization,

3,1.2,2. SOFTWARE: The syster software sppesre to each user
ss 8 privste supervisor residinp within his peraonal
sddresa space. A small section of the aupervisor ia core
resident; the rest of the supervisor ss well as all user
proprsms and data are paged, All programs, including the
core res‘drat supervisor, sre in the virtusl memory.

3.2, FAELT TOLERANCE

3.2.1, FAI'LTS TOLERATED: All forms of hsrdware and softwsre
fsilures wvhich sre severe enough to cause s syster crash
result in s service outsge ranping from s few minutea to s
few hours, followed bv svailability of s reinitialized
system. All {iles sre preserved, but computstions in
prozreas riat be restarted from the beginning or from the
1.3t checkpof.t which the user hss provided, If the
operations stsff hiss been well-organized in protecting tape
copies, it 1s possfble to completely and sutomatically
recover even from s fire which destroys the computer system
(piven enough time to instsll replacement hardwsre).

3.2.2. FAULTS 0T TOLERATEO: Fallures involving physical
destruction of on-line stotage devices (e.r.,, disk hesd
cranhes) ate tolersted, but can result in outapge of up to
aevers] hours while reconatruction of the on-line files
from back up copies is performed.

3,2.3. TECUNIQUES: Backup copylng: When sn on-line file s
crested, vithin a half an hour, a backup copy is
sutomatically made on a journal tape. nce each day, sn
extrs set of journs]l tspes sre independently written,
contsininf coples of 81l files created since the previous
day. Once esch week, s logical copy of every on-line file
{s made onto tape, to limit the nurber of journal tapes
which must Le scanned to reconstruct the on-line files,
(The times of 1/2 hour, | day and 1 week .re adjustsble hy
the {nstsllation to local needs.)

et Vo L

R

i TOR

3
i

*Salvaging: Following a ayatem crash tor any Teason, a
aslvager program inapecta the condition of all on<line
filea and directoriea, and reporta any uncorrectable
inconsiatenciea or irregularities in content and formet, A
srall amount of redwndancy ia used in directory structurea,
to aasist the aalvager,

*On-line aalvaging: Whenever an ioconaiatent directory
entry ia diacovered duriog normal operation, a version of
the sslvager is immediately invoked to correct the
ajtuation., Normally, service ia not interrupted.,
“Retrievel: 1f the aalvager finds it imposaible to
reconatruct one or a few fllea, but the number 1a small
enough that the expenae of a complete file syatex
reconatruction from backup tapas 1s not warranted, the user
of the file is notified, and he may initiate retrieval of
hia file from the hackup or journal tapes. Retrieval of
older copies may also be rsqueated by the user if he
accidentally damspea or deletea the currsnt on-line copy of
a file,

“Continuous Operation: The syatem 1s dynamice''y
reconfipurehle, vhich means that proceaaors and memory
boxea may be added or removed vhile the ayster ia runninpg a
prroduction load, Thia technique permite both hardware and
software maintenance to be performed on detached wniia,
Since in addition :hie aoftusre ayatem may be lnaded onto
any available confizuration of procesaors and merory boxea,
recovery followior s solid hardvars failure can be very
rapid,

3.3, NOVFLTY: The primary novelty of Multics in this ares
ia that the reliability objectives have been integrated
into a general-purpose computer programming avstem which
slao meets a wide variety of other objectivea, As fsr ss
ia known, Multica ia the first general ourpose avater to
permit dynamic reconfiguration of procesaors anit rerorv,

3.4, INFLUENCES: Experience in desipninp and usinp the
Compatible Time Sharing Syatem for the IBM 7094 nrovided
the moat obvious influence, The rultiprocesanr
orgsnization was {nfluenced by the Burroupha DB25 corputer
aystem,

4, JUSTIFICATINN

4.1, RELIABILITY EVALUATION: ln ao cperatiorsl environment
at ¥,1,T, for several years, the rats of los: of files
because of ayatem failures has heen low enoup to he
acceptable to the user commumnity, but hsa not L~en
evaluated, The average time down vhen a failure v cura fa
shout 10-15 minutes.

4,2, OVERHEAD: Hardwars negibly r«4undant. ‘ariable
aoftvare overhaad for backup. (See 2.6.)

4.7, IMPLICATIONS: For the file backup srocedure to be
effective, it 1s esaential that the cornuter operatiny
staff be highly organized, and that the operationa
management thoroughly understand ita reaponathility in
helping aafepuard user filea atored on-line, (For example,
aloppy tape atorage ranagement cannot be tolzrated.)

5. CONCLUS1ONS

5.1, STATUS: The aystem haa been operational at Y.1,T, for
4 years and ia the primary time-aharing ayatem there, 1t is
alac in uae at) other aites, on order at aeveral others,

5.2, EXPERIENCF: The deaign aeems to Le sdequate for the
quantity of atorage currently beinp managed (100 million
worda), but maximum reload tims ars proportionsl to this
quantity of on-line atorsge and are near the limit of
tolerance. A revised reload atratexy employinp paraliel
proceasea ia expected to provide an order of ragnitude
increase in the practical atorage quantity lirit,

5.3, FUTURE: Resaarch on many aspecta of corputer
operating systems otne: than reliah{lity ia continuinp,
using Multics as a Jshorators vehicle.

A2.23

SI'RVEY ©F FAULT TOLERANT COMPUTIN(. SYSTFMS

Werner Ulrich, Dell Labu, lnc.
tsperville, 11linoia 45540 June 1972

1. IDENTIFICATION

1.1, NAME: No. 1 ESS. A number of electronic awitching
systems hsve buen desipned by Bell Laboratoriea during the
nsat several years. Thoae vhich have been deacribed in the
litersture include No. ! ESS, No, 101 ESS, No, 2 FSS and
the Traffic Service Poaition Svatems (TSPS). Thia reaponae
#{1] he concerned exclusively with lo, 1 ESS, a larpe
telephone centrel office deaipned primarily for aervice
applicstion,

1,2, KESPONSIRIL1TY: The lndian Hill Switching Diviaien,
faperville Laborstory of Bell Laboratoriea.

1.3, SUPPORT: Development of the Syatem aupported by
w“estern Electric Company (WE), the manufacturing unit of
the Lell System,

lo4. PARTICIPANTS: The system wss deaigned and develuped
by Rell Laboratoriea, is marufactured and inatalled by the
western Electric Compsny snd is opersted by the verious
Uell Syatem operatinp cormpanies.

1.5, START: Active work on the design of No. 1 ESS began
in late 1959,

1.6, COMPLETION: The firat avatem waa put loto aervice in
Succasunna in 1964, Loth hardwsre and aoftwere
improvemonts hsve been made in the syatem from that tirwe,

1.7, BIRLINGRAPFY: The Laaic description of No. 1 ESS ia
in the Septesber, 1964 imaue of the Bell Syatem Technicsl
Journal, 1n addition the followins bibliography deals
specifically with the problems covered in thia aurvey.

* Lowning, R. W,, et sl,, "No 1 ESS Msintenance Plen," Bell
Svster Technical Journal, Vol, 43, pe. 1961-2020,
September, 1904,

* Beuscher, H, J., e. al., "Adminiatration and Maintenance
Plan of No. 2 ESS " Rell Syatem Technical Journal, Vol, 48,
Pp. 2765-28.5, October, 1969,

* Chang, H, Y. and Thowas W,, "Methoda of Interpretinz
Diagnostic Data for Locating Faulta in Digital Machines,"
Bell Syatem Technical Journal, Vol, 4G, pp, 289-318,
February, 1967,

4 Teiang, S. H., Maugk, G. end Seckler, H. N., "Maintenance
of a Large Electronic Switching System," 1EFE Tranaactions
on Communicationa Technoiopy, pp. 19, February, 1969.

* Altcheaon, F. J. and Cook, R. F., "No, 1 ESS ADF
Msintensnce Plan," Bell System Technical Journal, Vol, 49,
No. 10, pp, 2831-2856, December, 1970,

* Nowsk, J. S, and Tuomenokaa, L. S., "Memory Mutilation in
Stored Program Controlled Telephone Syatem,” 197D 1EEE
International Confersnce of Communicationa, pp.
43-32-43-45,

* Chanp, l, Y, and Scanlon, J. M., "Deaipn Principles for
Proceaaor Maintainability in Resl-Time Syatems,"
Proceedinpa of ¥all Joint Computer Conferencea, pp.
319-328, 1969,

* Nowak, J. S., "Emerpency Action for lo, 1 ESS," Hell
Latoratories Record, Vol. 49, e, 6, pp. 176-179,
June/.luly, 1971,

4 Coanet, J. R., Paaternak, F. J. and Wagner, R. D.,
"Softvare Nefenses in Real-Time Control Systems,”" Second
Annual Internstional Syrpoaium on Fault Tolerant Computing,
June 19-21, 1972, Boston, liasaachuasetta.

* Almquist, R, T., et al, "Softwars Protection in No, 1
ESS," 1972 1EEE Conference on Cormunicstiona, June, 1972,

* Ketchledpe, R, W,, "Service Experience with No, 1 ESS
Equiprent,” Intermmational Conference on Flectronic
Switching, 1966 Proceedinga, Paria, Edition Chiron, pp.
712-716,

* Vaughan, i, E., "Experience with the No, 1 ESS,"
International Conference on Electronic Switching, 1966
Proceedings, Paria, Edition Chiron, pp. 704-711,

i

S

* Hourk, G., "Esrly No. 1 ESS Field Experiences, Part 1,
2-Wize System for Comwsrcisl lmplicstions,” IEEF
Trsnsections on Commux.. :stions Techmology, Vol. 15, np.
744-750, December, 1967,

* Seckler, H, N,, "Esrly No. 1 ESS Fleld Experience, Part
2, 4=Wire System for Goveroment and Militsry lwplicstions,”
1EEE Transsctions on Communicstions Technology, Vol. 15,
Pp. 751-754, Decesber, 1967,

* Johannesan, J. N, "No. 1 ESS Service Experience -
Softwere,” 1EEE Conference on Switching Techniques for
Telecommmication Netvorks, Confereoce Publicetion No. 52,
Pp. 459-462, April, 1969,

* Steshler, R. E,, "No, 1 ESS Service Experience -
Hardvsre," 1EEE Confersnce on Switciiing Techniques for
Telecommunicetion Netvorks, Conference Publicstion No. 52,
Po. 463-466, April, 1969,

2, MOTLVATION

2.1, PURPOSE: Control the eetting up and disconnection of
cslls between telsphone customers stteched to the system or
betveen these telephone customers and other customere in
distesnt centrel offices.

2,2, ENVIRONMENT: The systes must operste in the presently
existing telephone plant snd must commumicate with
telephone customers and other existing centrsl offices.

2,3, COMPUTING ENVIRONMENT: The svster does interns] dsts
processing relstiop the sipnals transmitted by cuetomers
end by other centrs] offices to the desired telephone
connections, lts inputs sre these eignsls sa psthered by
periphersl equipment associeted with the centrsl procsssing
unit and its outputs sre control signsls to s telephone
svitching netvork end cutput signsls which sre transmitted
to distsnt centrsl offices.

2,4, COMPUTING OBJECTIVES: The basic objective of the
system wss to hesndle 100,000 peak busy hour cells. While
the origiosl vereion of the system did not meet this posl,
softvsre iwprovements hsve tllowed this gos] "o be met
during the past yesr.

2,5, REL]ABILITY OBJECTIVES: Reliability objective for the
systes vas s down time of no more than 2 houre in 40 yeers,
¥hen the down time objectives were originslly set, this
down time was predicted to be due primerily to simulteneocus
hsrdwsre failuree of duplicated processor units. As it
turned out, softvere feilures or humen fsilures lesding to
massive memory mutilstion have been the primsry source of
down time. In recent yesre, the down time has been
spprosching the ranpe of 10-15 hours per 40 yesrs snd is
still poing down frow this point,

2,6, DYNAMIC VAK{ABILITY: Ralimbility in 2,5 above has
been defined in terds of totsl system velisbility, Dynsmic
veriability can be thought of in terms of th: ebility to
hendle telephone trsffic io the presence of oveilosd
exceeding the cepability of . ie sveten. A dynsmic overlosd
response has been bullt into the syat<m which sllows
sdditionsl service requasts to ¢ throttled during periods
of excessive demand.

2.7, PENALTIES: Penalties for tots] system fsilure may
include the insbility to mske s telephone csll st s
critics] time, wvith resultant possible lces of life snd/or
property. For exsmple, the inability to csll the fire
depsrtment can bs quite serious. Nowever, the penslty is
dependent on the time of the occurrence of the fsiluyre., In
many cases no penslty will result.

2,8, OFPICE CONSTPAINTS: The equipment must be instslled
in e telephone centrs]l office. It is desirsble thst it
operste with normal Bell System nominsl 48~vclt bsttery as
the primary power source., Minimum spsce is desirsble but
not criticsl since the cost of spsce is compsrabls to the
normal cost of office and fectory space, Air conditioninp
is normally provided hut the system must be sble to work
for moderste periode of time without eir conditioniop. The
cooling system consists of normal convsction cooling
sugmentsd by conventionsl air conditioning,

A2.24

2,9, TRADEOPFS: Syetem cepability and systes storsge cests
ere smonp the main trsdeoffs availsble in the eystem, The
user of s reed-only program memory means that all progrem
storsge must be patd for on e permanent bmeis, The renpe
of office sises ancountered in the Bell Systes meams that a
change in system cspacity will sifect the market for a Mo,
1 ESS, Price vas s very imporrent factor eimce a No, 1 ESS
provides the sass basic type of telephous service svailasble
from older, efficient, and "elstively inampensive teleshone
systems, Price differentisl must be justifisd im terms of
prester flexibility for future changes and loag term lower
costs due to sutorated manufscturing techoiques.

3. DESCRIPTION OF THE SYSTEM

3.1, ARCHITECTURE

3.1,1, CONFIGURAT1ONS

3. 1.1.1, 1NTERCONNECTIVITY: The basic block diagram of the
systen is presented in the BSTJ refevence (firet erticle).
Basicslly esch centrs] control has iaree bus eysteme: s
periphersl bus systes, including an sddressing eyotem, s
unit selection system, and a response bus; e read-write
store (csll store) bus system with sddressing, deta-write,
snd dsta-resd sections; and s resd-only memory (prozram
store) bus systswm including sddressing snd response
informstion, Esch of the centrsl controls has full access
to ali busses, The two centrsl controls sre interconnected
by match busses to sllovw informstion in the two controls to
be matched, 1n the normal mode only one centrsl control
hss control sccass to the periphers] bus system slthough
both centrsl controls iisten to the response bus, Esch of
the centrsl controls in the normal mode controls one sev. of
e duplicste set of storss. Nowever, it ie possible for one
centrsl control to control all stores and for the centrel
controls to eltemste in controlling the peripheral bus
system, All critics] equipment which in.ludes stores,
centrsl controls, busses and peripherel contrul units sre
duplicated,

For lsrger systems, s signsl procsssor in plsced on the
csll store hus., This signsl processor has access to ite
own resd-vrite memoriss and slso has access to the
periphersl bus system, The signsl processor then is used to
cootrol input/output equipment such as sigraling equipment
snd the svitching network,

3,1.1.2, RANGE: Only one basic centrel processor is uec!
in any systes, defining s centrs] processor as a duplicsted
centrsl control, duplicsted signal processore when
required, and duplicsted stores. The duplicstion of the
semory modules is such thet esch module ie effectively
divided into two perts; therefore, an 0dd number of modules
can exist in the eystem, The limit on the number of
resd-only stores including duplication ie 12, esch of which
conteins 131,000 44-bit words (the 44 bite are 37 bits of
informstion snd 7 bits of Hasming code); th~ limit on the
nusber of call store modules 1z sbout ten, each containing
32,000, 24 bite per word, The originel eystes contained
8,000 word modules, but thie yeer we have eterted using the
lerger sises.

3.1.1.3, CAPABILITY: The best way of indicating the
cepscity of procassors is in terss of the number of calls
which csn be handled; as indicated esrlier this figure nov
exceeds 100,000 during the peak busy hour, The basic cycle
tire of the systew is 5.5 microseconds during which s
complets sddition cza be performed. Progres and dsts csn
be resd in psrsllel, The order structure of the eyeter is
sufficiently powerful that the 5.5 microseconde time pive e
rislesding by lov indicetion of the bs3ic power of the
proceusor, Iln penersl terss, it =might be compared in pover
to an 1B 7094 computer.

3.1.2, EXECUTIVE AND OPERATING SYSTEMS

3.1,2,1, MOOES OF OPERATION: The E’gnel procsssor operstes
indspendently of ths central control, The ceotrnl control
hsndles sll telephone cslls in the office on e time shered
basis vorking on one csll st s time but only doing psrt of
the work necessary to process thst csll, Work is time
sliced so thst, in genersl, no sinple task should excesd
about 20 milliseconde of processor time, In an office
without s signel proceesor, 1/0 is csrried out by an
interrupt level program which takes cossand of the systsm
cvery milliseconds,

'

3.1.2,2, SOFTWARE ORGANIZAT1ON: Tasks ara dispensed by an
azecutive progrsa which checks individual task equest
hoppers to ass 1f the 1/0 prograss heve diacoverad work of
a particular catogory., Task hozpere sre examtned [14
diffarent frequencies, Ay oversll cheack 1s made to insure
thet ei] task hoppire are azamined regularly, Tha main
interections batween the nxecutive and specific hardvare
STe: interrupte vhich are vesd for 1/0 operstions end
trowla detaction and aelyais; and the emergency action
circult which Tecognizes feilure of tha aystem to cycle

aatiefectorily end Automaticelly ceusss s awitch to standby
squipwane,

3.2, FAULT TOLERANCE

3.2.1, PAULTS TOLERATED: Tha iyatam can tolarats faulta 1n
dupliceted equipmeot by oimply awitching to the appropriata
Standby equipment, Becauss of the ful} duplicetion, thia
doea not affgct systam performanca.

3.2.2, FAULTS NOT TOLERATED: Tho aystem {g modersts ly
Senzitive to marging) conditions and intarmittent feulta.
If theso conditions occur sufficiantly fraquently that they
interfere with System parformance but not ao oftan thet
thay are csughe 5y feult check Programs, ayetsm performance
may suffer, Beca.sa of the large circuit sargina which
vere usad in tha des!qn of tho aystam, thie type of
situation hea not occurred too frequentlv, (Note tha very
low down time diacusead above,)

The syatem is, of courss, ssnaftive to faulty noftvare,
Such softvare can, under tha right circumstancas, ceusa
masaive memory Butilation which then Trqui res
reinitialization, Reinitislizetion Is not required of
tolephone calls alresdy up in the System vhoss asaccistad
ReBOry records ara still conais tont. It wust be understood
that 11 che aoftwvere in the ayatem {s atored {n rend-only
®erory snd ia checked thoroughly befora being pleced into
€ervica, Faulty software, thersfora, 1a softwvere whosa
faulte vara not discovered during a very complata syatsm
chackout &1d which oceur only under unususl circumstancesa,
fraquently with the help of s herdwere error, Norwal
Progrem srrore sre cought bsfora they sre instellad in tha
fisld, No Programmer has dirsct sccess to programs
actually in che fisld,

3.2.3. TECHNIQUES
* Duplicetion, All criticel aquipment {s duplicated,

* Matching, The information in dupliceted aquipment 1a
matched, This offera olmoat fwmedista troubla detsct fon,

* Information storsd in the resd-only memory {a storad in
aingle arror correcting double arror detscting Hemiog code
vhich covera data and #ddress information. This meana that
& vord rasd fros an sddresa differant from the addreac
cantral control fa detactabls,

* Fault Check Routine, As S00n a8 a troubls ia detacted a
Program controllad axaminstion ie tade to see vhich of two
duplicata unite has o Potentisl troubla,

* Disgnoatice, Diagnostic Progrems run under the control
of a vorking Procesaor configurstion on a unit which has
bean ewitched out Ly foult check Toutinas or whoss
diagnostic has basn Toquestad by maintarance parsonnal,

* Audite. Chacke sre pericdicelly made on most of tha
Information recordud fo tha resd/vrite atora to look for
consistency, Audita include checks of pointare in tha

System, and chacks of tha completenass and consiatency of
linked 1fets.

* Sofewsra Emargency Action. An oversll softwere chack 1a
made to waka aurs thet tha ayStem 18 cycling through all
tasks properly end st # normal intervel. 1f the taata

foll, Progressivaly strongar initializetion of the aystem
ia used,

* Herdvare Emergency Actfon. If the syatam pete into a
atats such that the software Smergency action programs
cannot cycls Properly, hardvere amergency sction switchas
to standby eculpaeot and trias to find a vorking
configuration consisting of a sound PTOgTam atore, call
Store, and centrsl control for controlling aubssquent
Syatan maintanance programs,

A2.25

3.3. HOVELTY: 1 balfeve the novelty of tha aystem 1iea not
%0 wuch in any of the individuel {tame meotioned above but
in the axtremely rigorows sffort ®made throughout tho systam
to pet a very high degras of relisbility, An attempt was
vada not only to detect sll troubles and sutomaticelly
svitch to atandiy oquipment, but to automatizelly diagnoas
011 troubles. Tha latter function vas laes successful than
tha former althouph o aurprisingly lerga portion of tha
ayatem troublea can bg accurstely disgnosed sutomaticelly,

4. INFLUENCES;: Current switching ayatess heve bsan
influenced by and heve influenced the development of
cosputar aystams,

3.5, HARD COR:: 1 defins herd core as that squipment which
1f ft feila will make it {mposaible for tha systom to
continus operition. Wa have tried very hard to miniwdza
such squipmen: and the fact thet ve have not had s complata
ayctam outeps L0 the presance of o single herd feui* in
such squipment implise thet tho amount of herd cora
aquipment {a relativaly amall.

flard cure squipment 1a dometimes defined in tarms of
disgnoatic ability, Thers fa o queation thet we cennot
diagnoso all solid troubles Sutomatically,

4, JUSTIFICATION

4.1, RELIABILITY EVALUATION: The bastic relisbility
svelustion of tha am 1a made by examiniog the
parformancs of the toes in the fiedd, Ws heve now
sccumulated in axceas of a million houre of aystom
operstinn, Records of s R outages sre kept
automatically boceuss th outegss are printed on tha
teletypevritar output of tha ayatam,

4.2, COMPLETENESS OF EVALUATION: Sae shove,

4,3, OVERIEAD: Conoidering tha fect thet wuch of tha
Aystem ia not duplicated (for oxseple, the svicching
netvork is not dupliceted); thet the cost of duplicatioo ia
frastar than the eimple douwbling of ths cost of e1l1 basic
®quipmeot since the focilities for duplicetion and for
svitching must aleo be included; 1t wight be fair to steta
in overell terns that about 50 percent of tha cost of tha
system {8 fn some vay due to tha requirament thet we must

provida the <hility to continue operation in the presence
of troubls,

4.4, APPLICARILITY : Tha systen 1o deaigned for talsphona
spplicntions. The basic rrinciples con ba used in any
appiicstion in which high relisbility fe important,

4.5, EXTENDABILIAY: Ses above,

4.6, CRITICALITIES: The syatem was custom daaipned to a
very high degras to mest the basic objactives ast at tha
tive systam deaipgn wag Stertad, and taking into account tha
technology of that time,

4.7 IMPLICATIONS: A high degras of custom design places
aubatantiel rastrictiona on the applicetion progremmera if
thay ara to uss the system effactively.

5. CONCLUS 10N

5.1, STATUS: System fa oparational end {a vaining wide
accaptence in the Ball Systam,

5.2, EXPERIENCE: Achfisvament and maintenanca of high
raliability aystam 1a a continuous process requiring
conaidarable sod continuing affore especially 1f tha
applicetiona of tho aystem Lontinue to change and axpand,

Ao inon Gt —_——

Rl e it T s P

SURVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

Prof. Omniel Siewiorsk, Computer Sciancs Dept, Carmepie-
Mellon Vaiversity, Pitteburgh, Pa, 15213, April 1973

1. 1DENTIFICATION
i.l, NAME: C.msp (multi-mini-proceseor)

1.2, RESPONS1BIL1TY: Computer Science Lepartment,
Carnegie-Hellon University

1.3. SUPPORT: ARPA

1.4, PARTICIPARTS: C.G, Bell, B, Broadley, E. Cohan, A.
Jonee, R, Levin, J. McCredie, A. Nevell, C. Pierson, F.
Polleck, R. Reddy, W, Wulf, and meny others.

1.5. START: M1d-1971

1.6, COMPLETION: M1d-1973 (hardvere, initisl softvare)
1.7. B1BLIOGRAPHY:

* Bell, C,G., W, Brosdley, W, Wulf, A. Newell, C. Pierson,
R, Reddy, and S. Rege, "C,wmp: The CMU Multi-mini-proceseor
Cosputer - Requirsments and Overview of tha lnitisl
Deeign,” Aupust, 1971, Cernepie Mellon Univereity,
Comsputer Science Department Resesrch Report. (AD 733963)

* W, Wulf, "C.wmp: A Multiminiprocessor,” Cosputer Science
Resesrch Reviev, Carmegle-Mallon University, 1971-1972,

v S, Fuller, R, Svan, W, Wulf, The Inetrumentstion of
C.amp, A Multiminiproceesor, COMPCON 73, pp. 173~176, 1973,

2. MOTIVATION

2,1, PURPOSE: General-purpose and Tesl-time computing
2,2. PHYSICAL ENVIRONMENT: Cround-based

2,3, COMPUTING ENVIRONMENT: lnitfslly etand-slone;
eventually on the ARPANET,

2.4, COMPUTING OBJECTIVES: C.smp was designad to provide
a real-time proceseing and time ehering envircnment, e.p.,
for rch in epeech and vision. Thue epacial hiph date
rata, Tesl-time interfoces ars rsquired to acquire spesch
and vieion data from the externsl snvironment. Aleo,
real-time procesaing for the speech-understending ayster ie
an ultimate posl, Execution of up to 3 to 15 milliom
inetructions/eac schieved through l-16 memory modulee (650
nsac ¢ycle time) with up to 256K words each, 1-16
proceseors (PDP-11), 16x16 crosebar switch with 80x10E6
wvorde/second. capacity.

2,5. REL1ABILITY OBJECTIVES: Since the systew is ground
baeed and maintenance ie aveilable, the zajor raliability
objactive ie high availabflity, With che sbility to
dynawicslly reconfipurs the syetem, the ultimate gosl ie
continuous availability,

2,6, DYNAMIC VARIABIL1TY: Reliability can be traded for
performance by 1) parsllel snd independent cowputations on
different procassors and/or hy 2) greceful degradetion,
poesibly aven on 8 millieecond ecsla.

2.7, PFNALTIES: Mutilation of date in criticsl eystem
tahlee could cause a system crash, Lose of experirental
dats or sctive prograss wruld rseult.

2.8, CONSTRAINTS: The mejor conetraint was coet, The
objactive wvae to build s high-performance eyetam using
off-the ehelf componente which could out-perform
conventional eystame for s fraction of the coet. The
presance of multiple copias of various cowponents in the
eystem aleo providee opportunitiee for a fault-tolerant,
highly available system,

2.9. TRADEOFFS: Hardware efficiency (cost per unit work)
can be traded for performance and/or reliability,

3. UESCEIPTION OF THE SYSTEM

3.1. ARCHITECTURE

3.1.1. CONF1GURAT' ONS

3.1.1.1, INTERCOLNECTIVITY: The configuration ie basicslly
» conventicnal multiprocessor eystem, but on s much lerger
scale than in exieting eysteme. The structure of tha
eyeter is piven in Figurs 1,

There are two switchee, Swp and Skp, Swp allowe the
proceseor to communicste with primery semoriae. Skp sllove
the processor to comsunicate with the various controllars
(K), which in turn manage tha secondery memorias (me), and
1/0 devices (T). These switchee ste under both computar
and menual control.

A2.26

Each proceseor eystem is sctuslly s complete computer with
ite ovn local primery memory and controllers for secondery
mamories and devicee, Each processor hes s Dasta Operations
component, Dmap, for translsting addrssses st the processor
into physical mewmory addresess. The 1. SeROry Serves
both tu reduce the bandwidth requirsments to the tentral
mamory end to sllov completely ind:pendent opersciom and
off-1ine waintenance. Balov we deucrihe some of the
specific componente ahown in Figure 1,

* K,clock: A centrsl clock, K.clock, sllowe pracise time
to t» aeasured, A centrsl time base is broadcast to all
proceesors for local inte-val timing and interruption.

* Smp: This switch handlee informavion tranefers between
primary memory, processors and 1/0 davices, The ewitch has
porte (1.,a., connections) for m busees for primery mewmories
and p busees for proccesors, Up to min(m,p) simultanaous
conversatione srs poseible vis the crose-point srrangement,
Smp can be set under programmed control or via manual
evitchee on a0 override basie to provide different
configuratione., The control of Swp can in principle be by
any of the procesors; one proceesor {s sseigned the
control at any ‘ne time by menusl reconfigurstion.

* Mp: The shar:d primary memcry, Mp, coneiste of (up to)
16 modulee of (up to) 65K 16-bit words, The initisl
merorias beinp ueed have the following relavant psrameters:
(1) they are cora, (2) esch wmodule ie BF~way interlaaved,
(3) sccees time i¢ 250 ne and cycle time 1o 650 ne,

* Skp: Skp sllows one or more of k Unibussae (the comson
bus for memory and 1/0 on an ieolsted POP-11 system) which
have eeversl slow or fast controllers (Ks or Kf) to be
connected to one of P centrsl processors, The k Unibusess
with the controllers ave d to the p pr

Unihuseee on a fairly long term besie, The main rsasone
for only sllowing a long term, but ewitchable, connection
betwaen the k Unibunsee and the proceseor ie tn avoid the
preblem of having to decide dynamically which of the p
proceseors ehould wmanage s particular devic., Like Sep,
Skp may be controlled either progremmaticslly or manuslly.

® Pc’ The nroceeeing elements, Pc, ars elightly modified
vareions of the DEC PDP-11, (The eeveral modele of the
PDP-11 mey be intermimed,)

* Dmap: The Dmap ie 8 Osts Operatione cowmponent which
takes the sddrasses panersted in the proceseor and converte
them to sddrssses to use on the Mewory and Unibuseas
engnating from the Dmap, Thers ars four eete of eight
ragieters in Dmap, enahling aach of eight R 192~byte blocke
to be ralocated in ths larpe phyaical msewory., The size of
the physicel Mp e 2E20 words (221 bytes), 1Two bite in
the proceesor togethar with the addreee typa are used to
epecify which of tha four eete of mepping regloters ie to
be used.

3.1.1.2, RANCE: 1-1¢ wer~Tv modulae with up to 256X vords
esch (core 650 nsec cvcla time), !=-16 PPP=-11 proceeseors (16
bite/word), lbalé crosebar switch with MIx10k6 words/eecond
capacity., A twC-processor, tvo-memory prototype has been
built to teet out concepte of ewitch and softwers dssigm.

3.1.1.3. CAPABILITY: Tha eyetes should bs capabla of
executing 3 to 15¢10E6 instructions per eecond, dependiny
on the PDP=-11 proceesor model. A ENP-10 can smecute
roughly) to 15x10L5 36-bit inetructions per eecond.

3.1.2, EXECUTIVE ANO OPERATING SYSTEV

3.1.2.1, MODES, and 3,1.2,2, SOFTWARE: Although the
technology of opersting systeme has msde eignificant
rrogrses in the past decade, there are fev syetere
conetructed epecifically for multiprocesent envirenments,.
1n perticular, no evetess hava bean bullt to eupport the
variety of proceee reletions (psrsilal, pipeline, stc,)
anvieioned for C.smp. Moreover, thare is a reletive lack
of experience in crpanising computatione for nerallel
execution, These facts have driven the opereting syeterw
deeign to the following coneervative poeition.

The opereting syetem will coneist of ¢ “kernel” end e
“etandard eatension”. The kernel will provide a eet of
wmechanieme (toole) for building an opersting syetes, but no
policine (e.p., no echeduler, no file structur-, no...}.
The kernel wi ¢ support the (eimultancous) sxscution of en
(almoat) arbitrary nusbsr of eatensions.

1n coneldering vhat set of mechaniems (toole) ehould de
provided by an operaring eyetem kernel, two cosmonly teld
views of the eseentiel nature of an opersting systs» ere
relevant:

8 An operetiog eyetem creetea @ "virtusl machine” to
eupport (user) programs by providing resourcee and
operations oot present in the underlying herdvave (e.x.,
"files", fila "reed" anc "write" operations, atc.).

® An operetiog ayatam is a resource (virtual and physicel)
manager snd ellocetor,

Note tha emphasie in both views on resources, their
creation, manepement, and operetione on them., From thaas
views we fofar thet an approprieta ast of tools for
building an opereting eystem must provide for:

* The creetion of new virtual resources;

* The "repteeentetion” of e nev rascurce in tarms of
axistiog ones;

® The crestion of operetions on resourcas and/or their
representetiony

¢ Protection (egeinst fllegel operations on e resourcs),
uniformly over a clese of reecurces, as wall as with regard
to apecific instancee of & iasource,

3.2. FAULT TOLERANCE

3.2.1, FAULTS TOLEZRATEO: The ultimate goel ia to ba able
to tolurete any feult 1o any unit, The nystem can ba
dynaxicelly reconfigured vis tha crosspoint awitch
(disabliog specific crosspoiots) and vio pover switching.
Tha detaction of and recoveriog ftom fatluras will be a
major objective. As & research vehicle, C.mep will ellow
the study of fsult-tolerant hardvere-softvere interection.

J.2.2. FAULTS NOT TOLERATED: Fsulte (perheps sultipla)
thet go undetectad long enough to mutilate tha majority of
the copias uf criticel systeme tablas may ult’mstely laad
to sn antive aystes cresh, Eerly detection and/or
prevention of thic clase of feults will ba closaly atudied.
Multiple fetluras in tha crossbar awitch might alao leed to
systaw fallure,

3.2.3., TECGHNIQUES: Tha final hardwsre/softvere
configurstion for C.mmp s far from atsbiliged. However
tha followiny techoiquea eithar are incorporated, or
provisions for incorporation heve been made, or (for
incrementsl cost) can ba focorporetad.

Tha croesbar ewitch 18 bit sliced vith proviaion for o
Hammiog code on tha dats bita. Spars bit-plane switching
or feult-sasktoy tadundancy cen ba esployad. Switch
fallures sppeer as either a mevory ot procesaor failure,
Thaea failures can be tolaretsd.

Busses can fwnction properly whea e cosponent comnscted to
1t has power rewoved, Memory modulase ars orgenized es
benbe a0 thet & semory failura simply ramovea pert of the
wanry sprece,

vounry arnd sddrees parity, Tatls-dviven cpersting syeters
cor be wtittas vhich ellow rracaful degradation fros
tellute iz & wemoty Of lo o procesact wodule (femoviny o
reesutce ‘roe svallsbility), Softvere recalculstion on
mltiple covies of theee critical esstemm tablse will
sssist felinte tolstanca or racovery,

Litersottvely, critica)] cosputations might de performed by
twe dlotinrt werhods withie 8 eingle proressor, Disgnostic
Frograws can v twn Jwat Lefere crtticel computstions ete
tn e perforwed, ot fisad totervals, of sirply vienever the
srorvesot 18 mt scurled with other tesbe,

Y.1, MWTLTT: The Zietrtiwted natuta of opetstiop systers
ellswe for foult roleremcs witheut mesaive erpeadituree for
eyarifl: heréwara, ‘toftvers cam bo devise/ to {unction
vithant foulty wnite, Critical calculstions con emelly e
tecalewlated for chachiog purpowes. A faulty il fe
asslly feolata] vie tha ctneebar evitch,

Ae astension 0 the deiodisg procees fof o sinpgle ertor
tevterttng/dovkle artor detecting Femming code to enadle
dowb]a srfor cartoction haa beea investipated,

V.4, INTLLYSCIS: Memy previcw efforte heve hed influence
on tre desige bul thete 1o 0o elople sajor tnuf wence.

1,4, FAFLCOBX: Thete {e only one porftion nf ths erster
it {0 wot replicated-=the crossber evitch, The svitdh
Lae Segn deaigred o0 that fellures appear olther as o
Wty or o protessor fatjure, D2it slicing, Hamming codes,
sad fanlt-sashtng refundancy can help to Incrasse the
switch relledilgty,

A

4. JUSTIFICATION
4.1, RELIABILITY EVALUATION: Reliabflity will ba
earivatod vie analysis,

4,2, COMPLETENESS: Evelwation not yat fiofehed.

4,3, OVERMEAD: To dete tha hardvars for fault tolersnce
is certainly lees then 5. However the design wili evolve
and quite probably raise this percentege. Softvare cost
(1n axscution time) 1s difficult to estimate et this time.

4.4, APPLICABILITY: Any cultiP crossber confipuretion.
4.5, EXTENDABILITY: Syates cannot be expanded bayond 16
resoriss and 16 procsssore without & oew crossber switch.

4.6, CRITICALITIES: Anslysis shows that the selaction of
the memory cycla time and number of processote greatly
affacts syetam performance and cost-effectivensss, Contan-
tion in the crossbor switch limits ultimste performance.

4.7. IMPLICATIONS: Programmers must aneurs thst their
syatem {8 corract, even under conditions of asynchronous
procass corwunication,

5. CONCLUS1ONS

5.1, STATUS: First portion of the hardvare ayatas should
ba completad by tha end of ausmer 1973, Portions of Hyd e
(the operating system) ara opersbla.

5.2, EXPERIENCE: None to Taport yat,

5.3, FUTURE: 1n iomediete future C.mwp will b,
brought up as & rasearch tool for tha Computar Sci¢oce
Department. As a rasasrch tool 1t will most likaly
continue to evolve in dasipn.

5.4, ADVANCES: Off-ths-shalf, plug-compatibla fault-
tolarant (or at lesst self-chacking) components would ba
verv deairshle. As hardvers bacomes cheaper, the capacity
of modules become larger, And vith LS] the insides of a
modula are not even accesaibla. Hence building feuit-
tolarant ayatams vith off-the-shelf cosponeots without salf
checking or feul” tolarant features is very inefficient.
(Othar than dupl.:ation and cospsriaon, or triplicetion and
voting, little elea ia avallgbls to tha syates desipmer.)

Syster validation (intagratad hardvare snd softvars) s
snother isportant ova. Also desirabla would ba o
wethodology for desienirt s :fault tolerant systam, Which
feult tolerent tachniques croplament sach othar! finally,
evitchae for reconfig ration, awitch control, and fault
tolerant ewvitch daeign era ereas requitinp further etudy,

E- H
() -
-— (s -te:g trenspsiar)

[l B
E'B”“ i B.renliguretion H

=h

)

are

[

: [ﬁ”.l’-u #.rall]dus) dupleelreasepotat

Pe/eantrel procesver, tp/prinary smory, /taminsls,
for Teletyps),

Safsentrel Por clech, timer, Interprocesver comunicotion

ll.lh witrh
pregran contrel

ove stotic tonfiguretion contre. | nuel end

Figure 1. Proposed CMU Muitiminiprocessor Computer /C.mmp

SURVEY OF FAULT TOLERANT COMPUTER SYSTEMS

Oonald C. Wsllsce
Stanford Research Instltute, Menlo Park Ca, Junz 72

1. IDENTIFICATION
1.1 NAME:COMEX- tnline order handling aystem

1.2 RESPONSIBILTY: P.C.Servlce Corp. (subsidisry Paciflc
Cosst Stock Exchsnge)

1.3 SUPPORT: Member firms of PCSE

1.4 PARTICIPANTS: Member firms of PCSE

1.5 START: Contract let - 17 November 1967

1.6 COMPLETION: System accepted - 4 Necember 1969

1.7 BIBLIOGRAPHY: The moat acc .rate desriptlon of the

COMEX 1s the final documentsiun deliverad with the zystem,
Oocuments

Specificstlon for data processlnp and communication
rqulpment for Paciflc Coaat Stock Exchsnge PC Service .
Corp., 1967

Proposal for Real-Time Order Handllnp System BBN

#p6R UE-01,4 August 1967

tontract for Real-Time Order Handllnp Syatem for Psciflc
Cosst Stock Exchanpe BBN/PCSE,17 November 1967

2, MOTIVATION
2.1 PURPOSE: Real time odd-lot order executlon

2,2 PHYSICAL ENVIRONMENT: Ground baaed

2.3 COMPUTING ENVIRONMEXT: The system servea two trudlnp
floors, cne In Los Angeles, the other in San Franclsco,

2,4 COMPUTING OBJECTIVES: COMEX 1a deaigned to handle
virtually all low-speed teletype apeeda, lavala and codea,
1t appeara as a node on each of tha connectad broker firme
.rmmunlcatlon networka and must conform to the line
protocola and hardware conatrainta of that natwork, The
desipn objectives were for 64 “nodea" In LA. and 64 in
SF., and for a maxlmum meaaage-switchlng traffic of 25,000
ordera/tranaactions per day.

2.5 RELIABILITY OBJECTIVES: Tha syatem was dealgned to
provide 991+ uptlme and with s no "measage lost" criterla.

2.6 DYNAMIC VARIABILITY: The svsten is deaigned ao that
order entry is performed In rvai time, but the order
execution process may lap an arbltirary period of time, In
operation thiy lap never exceeds 20 minutea (approx.??).

2.7 PENALTIES: COMEX haa varlous degreea of degradationm,
the ultimate belng total manual oparation and execution of
the orders by the apeciaiiata on the trading floora.
Esoteric aoftware/hardware malfunctlons could cauae
extremly large manual Intervention problems aa the ayatenm
is reslly buylng and selllng stock on the behalf of
wembers of the exchsnge,

2,8 CONSTRAINTS: The PCSE 1a really two exchangea with two
different tradlng floors, one In Los Anpelea and one in
San Franclaco, For reliabllity reasona the aystem Is
fully redundant, A PCSE conatraint on the ayatem wss that
the system be equslly aplit between the two aitea.

3. OESCRIPTION

3.1 ARCHITECTURE

3.4.1 CONFIGURATION

3,1,1,1 INTERCONNECTIVITY: See dlsgram whlch shows the
twin IBM 360 computera and the 680 aystems each of which
includes s DEC POPB computer.

3.1,1.2 RANGE: The aystem i{s really two syatems running In
psrallel, It 1s sensible to run them aa aingle units or s
fully redundant system, Two configurations are possible:-
Non-partitloned trading floors:

LA-remote680, SF-local6R0 snd SF-360

SF-remote680, lLA-local680 and LA-360
Partitioned tradinp floors:

SF-locs 1680 snd SF-360

LA-local680 and LA-360

3.1.1.3 CAPABILITY: COMEX consists of two (2) 360/50
computers plus the front-end communications systems,

3.1,2 EXECUTIVE and operating ayatem: COMEX runs under
18M/360 DOS with ita fixed number of multipropram
partitions option.

3.1.2.1 MOOES of operatlon: The order execution proceas
runa in a high priority partltion of DOS while normal
operation of PC Service Corp, computer operationa are
being run in other "forepround" snd the backpround
psrtitiona, The communicatlon process (in the 680's) 1s
dedicated and allowa no sther functiona.

3.1.2,2 SOFTWARE orpe: ization: Basicslly the 680'a do
character asaembly (blta), line protocol interpretstion
(answer back, echo, etc...), messspe aegmant assembly, 1/0
buffering, tranamission to locsl and remcte 360's, The
360's do messape awitchinp, code tranalstion, meaaape
decoding (sayntax anaiysis), order queuinp, decoding of
NYSE and AMEX tickers (ldentify trades), execute queued
orders, send conflrmatlons to broker and specialist,

3,2 FAULT TOLERANCE '

3.2.1 FAULTS TOLERATEO: Essentlally the system will
tolerate sny or all fsilures in a slngle system (l.e,,
backup or primary).

3.2.2 FAULTS NOT TOLERATEO: Any aimultaneous failures iu
both the primsry and bsckup system causes loss of
integritry of the data filese., This is considered s
cstsatrophic event and aome manusl correction and
Intervention for order execution and notificstion will be
needed. (To my knowledpe this hsa only occured once in
\he almoat three years of operstion.)

3.2.3 TECHNIQUES:

HARDWARE: The COMEX syatem ls completely redundsnt
(two of everything), snd both systems run in yarallel.
The major desiun criteris was that nothinp shculd hsppen
In one system half that could sdversly effect the other,
Thia led to the system intarconnectiona (PCU, being
unidirectional snd step-locked i{n & "here's a2 <ord, take s
word"fashion, All T/Y connections to the ayst:m are dus!
dropped and thete ia a hardware interlock to prevent both
680 machinea from outputing to s Iine at the same :lue,

SOFTWARE: The aoftware . a deaigned to be very
sodular, and no control flow exircs between functional
routinea. Control flow ia betv en the COMEX acheduler/
executive and each functional module, Data is paaaed from
function to function by meana of stacks and 1ists, and
atandard ayatem global cvoutines are used to sccompliah
thia. Both ayatems are actually performing the entire
order execution task in parallel and there is really no
communication between them. The on) 4+{€ference ia that
the "backup" syatem la not outputing, uaction
confirmstiona and order receipt notis/u .iona. The backup
ayatem saintaina @ queuve of the last "n" measapes to esch
line in the syatem. when awitch-over occura, theae
meaaagea are output to the apecialiata/btokers with a "may
be duplicate” tag.

3.3 NOVELTY: The interconnectlon of the OEC 680's snd the
$/360'a ia accomplished without requiri~2 modifications or
additiona to the IBM operatinp syscem or providing
"special” 1/0 modulea. The 6B0's (two of them) hsve a
$/360 channel equivalent (FCU) that tslka to the 1BM 2841
diak controler with the two channel fesiure (8100). Thl-
is the equivalent of having two 360 systems tslking to on-
diak ayatem, Thia is a atandsrd 1BM confipurstion
poasibility (though not aupported hy IBM software). If
the user ia willing to scrept implementing his own
read/writa lock mechaniars there ia nothinp in the 1BM
ayatem to praclude thia mode of operation, Given all of
the above it {a .now pouslble to write a communicationa
ayatem atrictly at the uses level using standard 1BM 1/0
aoftware. Osta just “sppears" on the disk and ia read
into the 360 and is {n turn written on the disk snd just
"diaappeara”. The data from the 680'a is written as s
aaqueotia.ly ever growing file, capturing an entire dsy's
transactions. TIhis alluws "rerunninp” a day's
tranaactions in real time to find obacure bups.

3.4 INFLUENCES: After spending several yeara working on
modified or bastard 360 Syatems and reslizing the effort
level to maintain these ayatems given the frequency of new
1BM releasea, it seemed insane to desipn s syatam that
relied on any thing except the most rudimentsry features
of the IBM monitor, The approach described has proven
very aucceaaful in over three years of operation, To my
knowledpe no problems have been encounterzd due to the
monitor/ Comex syatem interfsce.

A2.28

PRSI

g

;
*
¥
&
£

4. JUSTIFICATION
4.1 RELIABILITY EVALUATION: The system has met and
design over the last 2 years of

the
operatfon.

4.3 OVERHEAD: Since the system {s totally redu.dant, at
least half the cost of the communications front end is due

to reliability req The reliability

of the system probab! did mor contribute significantly to
the software design, : 1 probably helped in the checkout
and operational phases)

4.4 APPLICABILITY: The system has general applicsbility
for i and age swi systems wvhere the
base corputer facility must be IBM (for what ever
reasons). It offers significant cost savings when
compared to an equivalent all-1BM equipment configuration.
Its novel interfacing technique allows the users to

on the application program and offers long-
ters savings in effort by not having a modified IBM
operating system, The system has specific applicability
to other small or moderate sized stock exchanges both U.S.
and foreign,

LOS ANGELES

in with of a stock exch
Process may have general spplicability,

4.6 CRITICALITIES: A specific goal in hardvare desigs not
to exceed the "state of the art" was imposed by PCSE to
gain assurance of relisbility, This constraint caused the

lection of hardw that most ly is obsolere by
today's standards (e.g., bit serial TTV interface).
greatly restricting overall 1/0 caspacity (like »- .¢ a
factor of 10),

5. CONCLUSTONS

5.1 STATUS: The system is currently handling 151 of the
age of 25,000 order
transactions per day, It is undergoing significant
modification to handle round-lot traffic, which
potentially will increase load to 501 of capacity wfthin
the next 18 months, are to 1
high-speed 1/0 capability,

5.2 EXPERIENCE: Overall system operation has been highly
satisfactory to the PCSE.

AN FRANCISCO

COMEX SYSTEM — PACIFIC COAST STOCK EXCHANGE

A2.29

WA IO v o P e A o

T

SLRVEY OF FAULT-TOLERANT COMPUTING SYSTEMS

John H. Wensley, Stanford Reseerch Inetitute
1'rolo Park, Ce, 94025, May 1972

1. 1DENTIF1CATION

I.1. NAME: SIFT (Software-Implamentad Fault Tolarancas),
projact: dasign study of a feult tolarant digitel
computer

1.2 RESPONSIBILITY: SRI
1,3 SUPPORT: NASA Langley

1.4, PARTICIPANTS: J. Goldbarg, K. Lavitt, R, Ratner, J,
Wansley, H. Zeidlar, M, Green

1.%, START: August 1971

1.6, COMPLETION: Experimentel verefion 1973, final dasign
1974

1,7, BIBLIOGRAPHY: Tachnicel Progress Nerratives 1-7;
"SIFT - Softwere Implamented Feult Tolerance,"
FiCC 1972

2. MOTLVATION

2.1, PURPCSE: Cootrol procassing in an advanced
tachnology transport (aircraft) locluding nevigation,
stebility augmentatiun, engioe control, instrumeot blind
landirgs, etc.

2,2, PHYS1CAL ENVIRONMENT: Airborna -- the syetam concapt
hovaver {e applicebla to any anviroumant,

2.3. COMPUTING ENVIRONMENT: Real-time

2.4, COMPUTINC OBJECTIVES: Configuretion scelaability,
greceful dagiedation, traneportability of concept to any
proceesor or memory deeign,

2.5, RELIABILITY OBJECTIVES® Minimum probebility of
crronacus results, and of loss of computing cepecity
Juring aircraft flighe.

2.6, DYNAMIC VARIABILITY: Veriabla dagreee of feult
tolersnce for tasks of diffariog criticelity, Ability to
trede off o rwean computing power and feult toleranca,

2,7. PENALT ES: Woret case - human lives; intarmediete -
aircraft demaga; least cesa - oeed to abort flight
objectivee,

2,8, CONSTRAINTS: Hardvare must ba deeigned with weight,
siza and power raquiraments consistant with eircraft
requiremente, The baeic concept of the eyetam {e only
effectad (* the constraint thet maintenaca cannot be
carriad out during flight,

2.9, TRADEOFFS: Cowputing capecity ve. ralsebility

3. DESCRIPTION: A systam erchitacture in which fault
tolaranca is achiavad with no speciel fault-tolarant
herdvere.

3.1. ARCHITECTURE: A multi-computar (saa Fig 1)

3.1.1. CONFIGUHATIDNS: No constreints ara presant on
ptoceesor or mewory dasin.. Fault tolarance {s achiaved
by tha reetricrad conn:c. ' - -f procaesors and memorias,
and by software control.

3.1.1.1, INTERCONNECTIVITY: Proceseing modulae comprising
a procassor and memory are connactad via multiple buseas.
Tha intarconoection ie designad so that procaesors masy
only reed (and not writa) into the wemory of othar
wodulss, The busses ara used as eltarnative routae rathar
than as multiple eimultanacus tranemission peths.

3.1.1.2, RANGE: Tha scele of ths syetem ie not frozsn in
tha erchitactural coocept. It is anvisagad the: ¢ minimum
configuration would contein threa proceeeing mounlas and
thras bueeee, The deaign doea not (et preeent) place any
1imit on tha maximus configuration. Greater feult
tolaranca is achiaved vith e lerge number of low-
cepebility unite rathar then with ¢ small nuaber of high
capebility unite,

3.1,1,3, CAPABILITY: Tha dasign concept is velid over
tha antira ranga of processor, memory and bus cepabiliey,

3.1.2. EXECUTIVE: Exacutiva control (al.ocetion,
echaduling, dispetching, re~onfiguration, ate,) ia
achiaved by replicatad softwatre axecutiva routines,

3.1,2.1, HODES: The primary spereting moue 1s on
repetitive real-time celculetiims involviog mi-y loosaly
connacted tasks, 8oth multiprcessing and
multiprogrameing are includad,

3,1,2,2, SOFTWARE: Taeks ure multiprogrammed in aach
procaeeing module. Eech teek for which feult tolaranca is
damand:d {s present in more than ona module, A looee
synchroolization of task proceeeing is echiaved by tha
systam axecutive (which {tsalf {s repliceted and looeely
eynchronizad). Softwara feult datectioo is carriad out
batwaan aach {taration of a task bafora arronacus rasults
are usad by tha naxt iteration or othar tasks.

.\1‘ === Memory

P‘ === Processor

D‘ === Bus 1/0 System

Filgure 1 System Conttguration

3.2 FAULT TOLERANCE

3.2.1, FAULTS TOLERATED: Tha system ia tolerant to fsuits
in any unit (processor, bua or memory), The faulta may ba
tha erroneous rasult of an action (calculation,
transmissicn or storsge) or tha failure of a wit to carry
out any actfion,

The system handlea tranajient, and parmanent fau ts,
treating long-tarm intermittent faults as permaent, The
reconfiguration proceduraa can bring back into sirvice s
unit that was at one time subject to faults bu- | as sinca
recovered or been rapaired,

The causa of the fault (electrical, wechanical, etc,) is
not of importance, the only consideration is hether the
results of actiors in replicated units agrae or disagree,

Independent wultiple faults can be tolerated to any degrec
depending on the extent of replication of the function,
Correla*ed faults both in hardware and software are not
tolers ed to tha same extent as uncorrelated faults. Tha
loose synchronization of tasks sssists in tolerating
faults which are correfatod in time rather thsn function,
One-ahot faults do not cause removal or reconfiguration of
units from the system, The propagation of a fsult from
any unit to another can oniy occur {f both units are
faulty.

3.2.2. FAULTS NOT TOLERATED: Multiple correlsted faults
that are not detacted by a voting procedure, or by
rapeating the task, e.g., simultaneous identicai failure
of two memory units when threafold replication is used,
Masalve faults that reduce the system to a size too smsll
to handle the computing load,

3.i.). TECHNIQUES: Fsult detection is carried out by
ication and voting. Other fault detection methods
(hardware or softwara) are compatible with and csn ve
locorporated into the system concept. Fault corvection
(or tolarance) is achieved by voting after replication in
®moat cases but can ba supplemented by other techniquas
such as repetition or roll-back. Tha sllocation of
reaources to tasks can be changed efthar when faulty units
are removed or when *ha misaion daminds different fsuit
to.aranca and/or cor utational power,

3.3, NOVELTY: Lack of nead for specisl hardwara units to
facilitate fault tolarance, Ability to trade off fauit
tolerance with computing power. Applicabllity of the
system concept to diffarent memory or processor designs,

Proccssors
Jp— v, ——
1 2 Kl 1 5 6 m .
r v T .
1
A A Xl , X
A Y
' !
8 b
! M g \' X
c X i ¢ i
: i) i
|
1 d ! i
DX oy oox i
S S
'
E by f F T s
Tagrs 1 t :
!
¥ on S VN X
.
G \ N X
'
] \ i iy X
.
1 X [X
. 4
!) X X i X A X X
1

Figure 2 An Example of Task/Processnr Allocation

A2,31

J.4. INFLUENCES: The design is influenced by the nead to
avoid special hardware for fsuit tolerance, freezing
fault tolerance tachniquaa at dasign time, designs geared
to particular size and spead computera,

3.5. HARD CORE: 1 don’t mean anything by “hard core" in
tha aystem described, I csn imagine other system concepts
in vhich the term Lias meaning (but 1ittle utility),

4. JUSTIFICATION

4,1, REL1ABILITY EVALUATI WN: By analysis, asauming
uncorreiated fauits of equsl probab{lity in each part of
the system (chip, conuector, cabla, etc,).

4,2, COMPLETENESS OF EVALUAT{ON: Incompleta,

4.3. OVERHEAD: Variabie, typically a 3-1 cost penalty is
paid for fault tolerance,

4.4, APPLICABILITY: Genersl; the design {3 applicable to
any environment,

4.5, EXTENDABILITY: Unliwited.

4,6, CRITICALITY: Multiprocessing is criticsl.
Multiprogramming {s highly desirabla (see Fig 2),

4,7, IMPLICATiONS: There are no implicstions or tha
hardware designers of processors and memorias, The busaas
are constrained in the wsy units communicate., The
appiicationa’ software must be implemented so that input
dsta for s program is fetched by calling s genersl aystem
routine wvhich csrries out fault det_ction and corraction,

5, CONCLUSIONS
5.1 STATUS; A conceptual design of hardware, softwsre
and fault tolerance procedures exists.

5.2. EXPERIENCE: Software design studies show that the
time and memory requirementa of the fault detection and
correction routines are reasonabla,

5.3, FUTURE: The projection is for en experimental
verajion of tha system to be built,

5.4, ADVANCES: 1/0 units with fault toleranca
capability,

SURVEY OF FAULT TOLERANT COMPUTING SYSTEMS

Rotert K. Willises, Plssssy Tslscommunicstiona Rsaearch
Ltd., Tsplow Nr, Maidenhss¢, Berks., U.K., October 1972,

1. IPENTIF1CATION
1.1, NAME: System 250

1.2, RESPONSIBILITY: The Plsssey Co, Ltd.

1.3, SUPPORT: System dsvelopment ia jointly supported by
The Plsassy Co. Ltd, erd the Nstions] Reassrch and
Devslopment Corporstion.

l.4. PARTICIPANTS: Ths Plessey Co. Ltd.
1.5, START: January 1969
1.6, COMPLETION: Prototyps completed end of 1971,

1.7. BIBLIOGRAPHY: The following four pspers are contsined
in the procsedings of the International Switr-iog
Symposium, M,1.T., Csmbridge, Masa,, L'sS.A., 0=9 June 1972,
*D. M. England, Operating Zystsm of Systsm 250,

*J, M. Cotton, The Oparstions] Requirementa for Future
Commmicstion Control Processors.

D, Halton, Hardwsts of ths Syatsm 250 for Comsunication
Control,

*W,A.C, Hemsdnpa, Telephone Switching bassd on System 250,

The following fivs papsts sre containsd in ths procesdings
of ths I.E.%E, Conf. on Computsrs- Syitems and Technolopy,
MiddIssex Hoepital Med. School, London, U.K. 24-27 0et 72,

*R.
M.
P,
*R,
*G.

K, Willisms, Systsm 250 - Basic Concepts,

Jo Cordier, Syatem 250 - Procesaing Philosophy.
C. Venton, Syatsm 250 - Input/Output.

Jo Leaman, Syatem 250 - Sacurity Philosophy.
Edps, Syatsm 25¢ - Oiagnostics,

Ths following four pspers sppsstr in ths procssdinga of the
Internstional Confsrsncs on Computsr Commmnication,
Washington D.C,, U.S.A., 24=26 October 1972,

*Ne C, Cosserat, A Capability Oriented Multi{-procsaaor
Systsm for Resl-Time Applicationa,

*K. H. Hamer-Hodpea, Fault Rssistance and Recovery Within
Systam 250,

*C. S. Repton, Relisbility Assurance for System 250, A
Rsliable Resl-Time Control Systswm.

*]. Crompton, Structure and Intsmsl Commumications of s
Telephone Control Systes,

2, MOTIVATION
2.1, PURPOSE: Stored progrsm control of tslsphone and dsts
switching aysterms.

2,2, PHYS1CAL ENVIRONMENT: Cround bassd

2,), COMPUTINC ENVIRONMENT: Ths system {a designsd to
allovw flsxible intsrsction with ita environment e,.g.
locslly, remotely and/or via s nstwork.

2.4, COMPUTINC OBJECTIVES: Ths computing obfectives are not
vsll defined {n any absoluts aenss, Systsm performance
must be adequsts to ensble vsry large tslephone sxchanges
to be adequstely controllsd, yet ths cost of the amallsat
ascure configurstion ahould bs minim{zsd to ellow economic
ceatrol of small sxchsngsa. The systsm srchitecturs ahould
sllow saay expansion of an initial configuration by s
factor of thrss or mors whilat the syatsm {s on-line. Such
expanaion could be in tsrms of procesaing power end/or
atorags capacity and/or fnput/output capacity or sny
permutstion thsreof. (Ses slao 2,.8,)

2.5, RELIABILLTY OBJECTIVES: The ayatsm was (esigned with
ths sim of meeting ths rsliability requirements proposed by
ths British Poat Gifice for spplication to ts 1sphone
control equipment. Thsae requirementa were dsfined on s
slidirg acsle which rslated durstion of a aingls aystem
failare to ths maxisum scceptabls mean frsquency of
occurrsncs of aimiler failurer,

Faflure Duration
20ms

15a

? rin

5 min

10 min

squipment. /Note:

Msx, zcceptabls mean frsqusncy
S0 per ysar

12 per yesr

I per yesr

1 psr 20 yssrs

1 per 50 years

For the purpoaes of the sbove, a systs~ failurs ia defined
as a fsult which sffscta mors thsn hsif of the controllsd
Aversge duration S seconds/,

A2.32

2,6, OYNAMIC VARIABILITY: Both performance end dsgrss of
fault tolerencs may be vsrisd at will by aimply sdding or
aubtracting ayatsm modulss. Addition of modulsa
sirultsnsously focreassa both performancs and reliabilfty,
thua the question of trsde-off does not sriss,

2,7, PENALTIES: Fsulty operation will obviously desrsde
perfnrmance vhich may wsll lexd to losa of revenue and {n
extrsmwe circumstancsa could involve losa of life s,g, if
smergency tslsphone calls fail to pst through etc.

2,8, CONSTRAINTS: Thers ars now wsll dsfined conatrsinta
on aize, wsight, power, cost stc. in shaolute tsrsw, The
aim hss bsen to produce s system vhich {s very compstitive
in terms of the sbove parameters with CONtSEpOrsYy ayatsms
but offars very such snhanced:

* Reiisbility end Sscurity,

* Eass end Range of Expansion,

* Flexibi.ity in terms of being sble to tailor ths hsrdwsre
and anftvars configurstion to cloasly match particulsr
rsquirsmenta,

2.9, TRADEOFFS: Computing capscity & reliability va. cost,

3. DESCRIPTI™

3.1, ARCHITEC.VRE

3. 1,1, CONFIGURATIONS

J.1.1.1, INTFRCONNECTIVITY (See Figurs): The basic
hsrdsre conatrainta on system intsrconnectivity (aside
from any sdditional conatrsints imposed by acftwsrs) sre
describsd below,

Esch proceasor unit hss its own dsdicated commmicstions
bus for commmnicating vith atore or the input/output
nstwvork, No proceasors will bs directlv connectsd togsther
under normel circumstancea slthough thia ia sllowsd (vis s
spscisl interfsce) for fsult disgnosia purpoaea only. Any
Procesaor cen scceaa any atorsgs location and any part of
the input/output systsm, Store modulea srs connscted to
811 procssaor busss vis multiport sc:ess unita,

In syatsms which contsin more than two procsssors, scceas
to the input/output aystem is achieved via two multiport
Bus Multiplexors which wultiplex thrss or mors Proceasor
Busea onto two Periphsrs]l Duses (ons psr multiplsxor),

Fsst periphsrsl devicea sts connscted directly to both
periphersl busss via twvo port Psrsllsl Intsrfscs Unita.
All dats tranafara betwsen ths abovs units taks plscs in 24
hit parallsl mode,

Slov speed snd/or low activity pariphsrsl devices sre
connsctsd to ths system via a asrisl commumicstions medium
in which sIl dats tranafsra taks plscs in asrisl bit form.
The Ssrtisl Medfum ia intsrfaced onto ths Psriphsral Buses
via epecializsd Psrsllel Intsrfs-s Units known ss
Serial-Parallel Adaptors. Each sdaptor has two ports snd
ia connectsd to both Psriphsral Buses. Pariphersla sre
intsrfaced onto ths Ssrisl Medium vis two psrt Ssrisl
Intsrface Units, each port being connsctsd to s differsnt
Ssrisl-Psrsllel Adapstor vis a nstwork of Ostsr Switches.
Ths psthwey betvssn s Serisl-Parallel Adaptor and s Serisl
Interface Unit normally passsa through a 64 port Primary
Osts Swithch (of which thers is ons par Serisl-Parallel
Adaptor) and thsn through a l6-port Secondary Oats Switch
to the sppropriats Serial interface unit, The eecondsry
Oata Switch may aometimes bs omitted,

Largs aysters may contsin asvsral Serial Media esch bsing
connsctsd onto two Periphersl Busss via two Ssrisl-Psrallel
Adaptora, 1f nscssssry ssveral psira of Psriphe ts] Buses
could slao be provided vie asvsral pairs of Multiplexors,

If thsre are no mors than two proceasors '.n s aystem,
Multiplsxors srs unnecssasry ana Perslls' Interfacs Units
and Serial-Parallel Adapstors may be connscted directly to
the procsaaor buses,

3.1.1.2, RANCE: There sre no well deffined upper limita on
the nusbsra of procsssors snd/or atorss possibls in 8
syatem, but preaent estimatss indicsts that systems
contsining up to 16 procesaors and perhsps 20-30 store
modules are feasibls, Esch atore module could contain up
to 64K of 24 bit worda, Ths smallsat ssnaible system
currently envissgsd would contain s single procsesor and s
single store moduls of 16K or 24K capacity,

3,1.1.), CAPABILITY: Based on s method of pover asaesament
vhich hsa besn Asveloped spscifically for the telsphons
switching spplicstion, s single proceesor ayatss turns out
to bs sbout one third or ons hsIf (dspsnding on ths type of
atore uasd) as powsrful aa an 1BM 360/65S, The maximum

L e) . G o BT B e

e

s S e

.3

poasible nusber of fixed point ad'itiona par aecond for a
single PP250 proceasor lies between about 500,000 and
900,000 depending on the type of store used (viz, B50na
core or 300na plated wire) and on whethsr the additions s
a atore referanca or regiater to regiater operetion,

3.1.2,1, MODES: The syater ia a multi-CP!! aystem with sl)
CPU’a being #synchronnus idsntical umita of equal status,

All Operating System modules are re-entrant and thus may be
executed by several processors simultameously snd
independently, The Operating Syatem will normally be
entersd by a suhroutine call but can alao be entared as a
reault of a program trap or as the resuit of a timer
maturing within & CPU,

The Systam 1a multiproprammsbie with each procesaor being
T on & tise-sharing basia, Multi-procesainy 1a s atandard
frature of the System and processss can be run
inder:.dsntly from or in controlled co~oparation with other
Fioceases.,

In Syatem 250 a process is a dynamic entity and ia defined
a8 the execution of program code on a particular set of
input dsta. Decausa of tha protection affordad by
Capabilities, many proceaser can aafely share a particuler
block of program code aimult sneously, but each will execute
it on a different aet of data A proceas may only be rum
on one procassor at a tize but may in peneral rum on
saveral different procesaors consacutively,

Since 1 la data and not cods which distinguishes one
procesa from another, processes are alloved to crosa the
conceptusl boundary beiween Operatinp Syatem and user
programs in just the sane way as they would croas the
boundaries between ind!vidual user programs, This preaenta
no apecial difficulties aince the hardware Capability
machanisn which monitora and constrainta the avwitching of
control between programs, makes no distinction between
Operating Syatem and user programs.

3.1.2,2. SOFTWARE: The Syatem 250 softwsre organizstion {s
deacrihed in D.M. England’s napsr presented at the
Internationsl Switching Symposium, Jume 1972, (See 1.7.)

3.2, FAULT TOLERANCE

3.2.1, FALLTS TOLERATED: The System 250 architecture
allovs at least one redundant moduls of each type to he
provided in a aystem. Thus the aystem wiil csrry on
operating in the facs of hardwars faults provided that at
least one rodule of each type remains fault-free. Faults
caused by softvare arrors will normally only occur
(ausuming programs liave besn properly debupged) when rather
rare corbinations of data and/or timing ere encountered.
Ths software recovery procedurea outlined in 3.2,3 below
allow the unusua) circumstancea aurrounding the fauit to he
avoided by employtng increaaingly powerful (and hence more
diaruptive) recovery actions until the fsult no longer
manifests itself,

It is recopnised that s numbe~ of ohacure software errors
are alwayr likely to be prement in the ayvater but since the
circumstances, which causa syatem faulta to develop as a
reault of these errora, are by definition rarely
encountered, they wili not in general cause unacceptable
service disruption,

The effect of s hardware or softwsre fault on the externsl
environment will bs to csuse one or more of the followinp:

* If the fault dissbles e store or processor, & permsnent
drop in the throughput of the aystem wili result, at least
until the necessary maintenance action is undertaken,

* If the fsult is elaewhere s terporary fall in the
throughput capacity of the Syater will oceur while test and
Teatart or reload messures are undertaken. The magnitude
and duration of thia fall depends on tha type of fault, the
status of the System ({.e, with repsrd to work load) snd
the hardware and softwvare configuration of the Syatem,

* Depending on the nature of the fault, it may he possible
to restart affected processes at the point at which the
fault was detected or it may be neceassary to restart
processes from ihe beginning., In the telecormmmicationa
control application the former sction should cause no {oss
of cails whereas ths latter action may mean the losa of
some or all of the calls haing handled by tha affected
proceasea. 1in the worat case the whole aystem {s reloaded
from hackiog Store snd all read/write dsta areas are
clesred resulting in the loaa of all cslis being handled by
the syatem, Thia case should be very rarely encountered,

A2,33

* Fauita in Serisl or Parallel interface Units will
naturally diasble the peripherals to which they are
artached, These units nre ailocated on a one per
perlphsral basia thus s aingle fault will only affect one
peripheral device. All cormmication psths betwaan
proecssaor and periphersi intsrface mita are duplicatad
thus s fault in one or more of the umits on only one of the
covemication paths will not affect syatam opsration,

3,2.2. FAULTS NOT TOLERATED: it is anticipatad that tha
only fault conditiona not tolerated by zhe System (i.e,
from which the aystem 1a unable to recocover automaticaily)
1nvolve at least two simultaneous faulta which

* Dissble at least two syatam hardvare rmodulas of the asme
tvpe s0 that no fauit free wodules of thia type remain, or
* Overide the Capability mecheniam and corrupt ALL copies
of s vital softwara area before the faylt 1s detected,

It is believed that the chancea of either of the above
hsppening ere scceptsbly remote. in any apecific
application the ctancas of such aituationa arising can
slways be reduced helow any finite 1imit by suitably
incresaing redundancy of hardvare and software moduics,

3.2,3, TECHNIQUES: The System 250 architecture allows a
fault to he toierated in sny single hardwsre module by
providing redundant modulea of esch type in s aecurs ayatep
configuratior. Faulta wil} normally be detected efther by
one of sn exteasive range of hardware fault detection
mechanisms provided in eoch PP250 proceasor unit (e,g.
cspability checks, parity checks, microprogram checks,
etc.) or by bsckground test routinss or by consistency
checks written into the Operating Syatam and applicationa
software,

Faulta detected by hardvare automaticelly csuse the
procesaor concerned to enter a self-test routine with very
limited access to syster resources, Proceesors which
succesfully emerge from the aelf-teat cen apply to rejoin
the ayatem, the application normally beinpg dealt with by
fault recovery softwire Laing run on & good proceasor,
Processors which have o bad history of fsults may be
refussd permiasion to cajoin the syatem and forced to
endlessily repeat the aclf-test procedure until raintsnance
acticn 1s undertakan,

1f a hardware fault s traced to a module other than &
Proceasor tha fault recovery software causea tha faulty
module to be effectively tsolated from the system awvaiting
saintenance action, {f (aa may be the case for certain
intermittent hardware faulta) the fault cannot be traced to
& psrticular module the recovery softwsre will as & laat
resort cause the system to be reconfigured leeving out
modnles on s trial basis, until & feult free configurstion
is achievad,

“.:‘-Em oIsc PENiFeF R,
Py Pry) e
4
1 L
STORE STORE BFORE LI0RE
G M el i W el v R
: T HH— LHH——TT] 1
1 1| 4
ki B I J o
T I _J
: e n
rRO- rRO- | wag- RO PROCE 4
cesson] lcesson]| |emssoml Jenssos Ll i
] b 5
EXAMPLE OF MEDIUM INSTALLATION !
[

@

Softvare recovery procedurea arr arranped {n a hiararchicel
atructure atarting vi:h procadurea which attempt to clear
corruptad deta and raatart fafled proceases and if oecea-
sary vorking up through several atagea of succasively wore
diaruptive recovery measurea each {nvolving reloading coda
and data araas from copiea on backi{ng atora. Eventuslly,
1f al) elae faila, thia culminater in cleariop 111 code and
data areas from fast atora (ascept certain areaa contatning
teplicated copias of tha basic recovery prograns), clearing
all read/vrita data from backiog store and reloading all
programs and read/only data from back{op atore.

Recovery from both hardware and softvare faulta involve the
implementation of a aeries .f increasingly diaruptive
actionr unti] tha fault {s cleared, When one proceasor in
a multi-procesaor aystem bezomes faulty and antera {ta
self-teat routine, 1ts abaenca ia soon noticed by a Syscey
Monitor process which fnanecta th. atatus of the system and
i{a achaduled to run at regular {nterva This procasa
initiates a high priority recovery proceas vhich ia then
placed in a 'ready to run' 1fst and in due courea fa
acheduled to run on a pood proceaaor Just like any other
Procaas.

3.3, NOVELTY: The moat unusual deaign featurea of the
avatem are as follows:

* Tha ayates aa been designed to be fault tolerant to a
degree hither. 5 unheard of in commercially availabl¢
Computer syatass,

* Syatem power and atorapr msy ba axpanded independently
aimply by adding furthar proceasors or atorage unitas,

* Additional "redundant” Proceasore and stores added to a
ayatem to enhance ita reliability, also parform useful vork
and thus increase the cowputing capacity of the aystam,
Theaa mndulea are therefore not redundant {n tha same senae
en radundant wodulea {o many other syatams vhich puraly
perform & backup function and do not uaefully contribute to
ayater performance {n tha abaence of s fault.

* Syatem hardvire and/or aoftwars modulea can ba insarted,
removed and/or modified wvhilat tha syatem {n on-line vith
no consaquent losa of aervice,

* Data and program sscurity ta preserved by a hardware
irnlementad Capability mechanis® which not only definea the
areaa of store or the input/output aystsm vhich are
acceaaibla by a program, but alao definea tha type of
accesa alloved. Thia is & particularly important featura
vhen the aharing of atore ia alloved batveen proceases.

* Thera {8 no privilegad mods of procesaor operation,
Operating Syatem progprams ara subject to the asme ascurity
reatrictions (enforced by Capsbilities) as uvaer programs.

* 1n tha avent of a fault batop detectad in hardvare, a
hierarchy of autoratic racovery rrocedures ia entared vith,
1f neceasary, aucceasively more diaruptive mesauraa being
taken in order *o recover a vorking svatam, This leada to
a trial reconfipuration procadure 1f all elae tatla,

* Diagnoe{a of a faulty hardvare module nsy ba carried out
on-1i{na vith no focreased risk to the reat of the aystem,

* The {nput/output aystem 1a des{gned to be vary flextible
in fta configurability and in particular allowa very larpe
niwbare of low activity peripharal devicea to be
effictently dealt with,

* No axternal intarrupts are allowed {nto the pProcesaora
(for aacurity rewsona) and all {nput /output 1a handled via
polling procaduraa,

* Virtual mevory 1o uved {n & reai-tins contaxt,

3.4. INFLUENCES: Tha usa of Capabilitiea to structure and
protect tha Syatam 250 softwvare has baen aignificantly
influenced by tha research vork of Dr, R, S, Fabry carriad
out at the Univereitvy of Chicapo or "Liat Structured
Addreaaing” and alao bv the tdeas and advice of Profeasor
M. V. Wilkea of the Univeraity of Carbridpe.,

3.5, HARDCORE: The PP250 procesaor has baen deaigned auch
that tha convent{onal conception of hardcors (i.e. that
aingle portion of tha syatam vhich rust vork {n order to
make tha ayatem vork or meke diagnceia posatble) has been
svoided. Replication of all vital ayster hardvare and
aoftwvara modulea ansures that no aingle modula failure can
bring the ayater down,

&, JUSTIFICATION
b,1. REL1ABILITY EVALUAT1ON: Syatem reliabtlicy
calculationa have baen carriad out using aatinsted
M.T,B.F'a and H.T.T.R's of syatam hardvare modulaa, Theae
in turn vare calculated from messured fatlure rates of
individusl hardvars componeota, Tha proceasor aelf-teat
program has heen t. ad using a logic lavel aimulation
program for the procesaor into which & largs nusber and
variety of faulta vare {njected,

4o2, COMPLETENESS OF EVALUATION: Tha deaipn avaluation ia
expected to continue for some conaiderabla time ({f {ndeed
it aver atops) sspecially in tha 1ight of runoing Operating
Syatem (vell under vay) smd applications proprems.

b.3, OVERHEAD: This dependa very much on tha required
Syatem pover and tha requirad level of relfabflfty, In the
Swaalest Lccuta configuration {n whic all mndulaa ars
duplicated ona could arpue chat more than 507 of the coet
1a devoted tn the provistion of fault tolerance. Howaver,
aven in thia case the estra procsssor and extrs atorc make
raal contributions to aystem performence and so cushion
system “geinat instantaneous peska, See also 3.3, {tem 3,

In larpe ayatems the ratio of easantial to "redundant”
hardware mey be preater tham 5 to | depending on system
size and the desired level f ralfabilfty.

The proportion of fast atorape davoted to fault racovery
softvare in a typical telacomunications application will
probably be not more than 257 and could be a lot less in a
larpe ayates. Probably sure than 50% of backing atorage
hovever {8 preaent {o order to echisve fault tolerance
ainca beckiop storape centaining copies of all aystem
softvare must bs duplicatad for reliabilfey.

1t {a difficult to asaess the cost overhead asaociatad vith
the usa of capabil{ties saince their usafulneaa axtenda far
bryond just fault procactiom.

4.4. APPLICABILITY: The syatem ia applicable to almost any
real-time control applicatfon but particularly those vith a
pood raltability snd axpanaion potential,

4.5, EXTENPABILITY: Thia queatfon cannot be astiafartorily
ansvered at this a apa as it requirea a much more complete
evaiuation of the | reaent aystam deaign,

4,6, CRITICALITIES: Both sulti-programming and
multiproceaaing are fundamental to the achisvement of tha
aystam deaipn atmw, The chofce of .11 except peripheural
and storaga hardvare {a critical as ¢ll othar aystem
hardvere modules have butlt tn featuras vhich are closely
mstched to the overall systam requirementa, 1t {a of
couraa possible to usa modules vhich of far tha aame
faci'itiea and intarfacaa bu. differ internally 1o detatled
{mplamentatioo,

4,7, 1MPLICATIONS: Mafo requirement on hardware syatam
deaignera {s that design ahould not allow aingle hardware
filluraa to generata furthar failurea and thus spread to
several aodulea, Softvare designars sre respon-ible for
insarting conafstaocy checks, atc., in their own programe,
They ahould also vrita routines vhich enabls axecution of
thair programs to be restarted followviop a detected fault,
Thia rasponsibility also axtande to user programmera,
Haintenance sction should be deaigned such thet it can ba
carried out on-lina.

5. CONCLUS10NS

S.l, STATUS: Several pra-production multfprocessor ayatems
working and under evalustion, Production sxpected to
commence in middla of 1973, Firat deliversd production
ayatam expected to ba f.1ly operational {n Septembar 1974,

5.7, EXPERIENCE: The baaic ayatam philovophy 1a a proven
aucce Planned devalopment tarpate are baing
conaisiently achieved. Sowe minor modifications are betnp
introduced as a reault of evaluation of & ousber of

pre-; oduction ayatews,

5.3 FUTURE: As a paneral policy ayatam implemsntation ia
continually wder critical review in the 1ight of operatine
experienca and advancea {n technology. The ability to
allow aystem evolution ia easential in applications auch as
telecommunications control whers tha aystem {8 dasipnad to
oparats continuously for perhapa savaral decadea.

Scb, ADVANCES: ln respact of ayatem architectura, ao many
novel fasturas are {ncorporated in the presant Syatam 250
daafpn that thaess require s mora complata svaluation
befora a1l of .he important implicationa becoms appareot.
it ie tharafore not possbibla at this ataps to indicata
architactural advances which are ocbviously desfirable,

Obviously desirabla advancas in hardvare tachnology {nclude
incraasad raliability of peripharals and minimum use of
moving part mechanical techoiquas in particular,

poesible numher of fized point edditions rer sscond for e
sinpla 77250 processor 1iss bstween sbout 500,000 and
900,000 depending on the type of store ussd (viz. BSOne
core or 300os plstsd wire) end on whether the additions is
¢ store refsrencs or registsr to repister operation.

3.1.2,1. MODES: The eystsw 1s s sulti-CPU eyetas vith sll
CPU’s bsing ssynchronous identicel wnits of squal etetus,

All Opereting Syetam modules sra re-entrant and thus say bs
emcutsd by severs] processore simultansously and
independently. The Opereting System will oormally bs
entsred by s euhroutine cell but can sleo bs antered as e
reeult of e propram trep or ss the result of s timer
maturing within ¢ CPU,

Ths System is wultiproprasmebls with ssch procsssor bsinp
Tun on & time-ehsring basis, Multi~processi.,y 1s s standard
fsaturs of the Systar snd processes can bs run
indepeodently ’rom or in controllsd co-operstion with othsr
processes.

In System .50 e procsss i1e « dynsmic sntity and 1s defined
8s ths sxecution of proprem code on s perticuler set of
input dets. Lecsuse of ths protsction sfforded by
Cepabilitise, many procsseas cam sefely ehore s psrticulsr
block of proprss code simul wneously, but sech vill sxecuts
it on s diffsrent sst of de. .. A nrocsss may only be run
on on: Processor et ¢ time but may in penarel run on
severel different processore conescutively.

Sincs 1t 1s dests and not code vhich dietiopuishee on *
procers fro- anothsr, proceeses sre slloved to cross .»s
conceptus]l boundsTy between Operstinp System snd usst
proprems in just the seme wey as they wvould crose ths
bounderies bstween individusl user proprems. This presents
no specisl difficultiee eincs the hsrdwsrs Cspability
mechsnise vhich monitore and conetrsiots the switching of
control bstweeo proprems, mgkes no dietinction betwssn
Opersting Syster and ussr proprems.

3.1.2,2, SOFTWARE: Ths System 250 eoftwsre orpenizstion is
described in D.M. Enplend’e nspsr presented et ths
internstions] Switchiop Sympoeium, Juns 1972. (Ses 1,7.)

3.2, FAULT TOLERANCE

3.,2.1. FAULTS TOLERATED: Ths Systsm 25 srchitecturs
sllows st lsast ons redundant module of esch type to bs
providsd in s syrtem. Thus ths systsw will carry on
opersting in ths fece of herdvere fsults provided thst st
lsast one module of ssch type remains feult-fres. Fsulte
csussd by softwsre srrore vill normslly only occur
(sseuming programs have been properly dsbugpe) when rsther
rere combinstione of dste snd/or timing sre sncowmtsrsd.
Ths eoftvsrs rscovery procedures outlined in 3,2.3 bslow
ellov ths unususl circusstences surrounding the feult to bs
svoided by employing incressingly powerful (and henes mors
disruptivs) recovery sctione until ths feult no lonper
sanifeets itsalf,

It {e recopniesd thst s nuwbsr of obecure softwsre srrore
srs slveys liksly to be prssent in the eystsm but since ths
circumstences, which ceuss eystes fsults to develop as e
result of thees errore, sre by dsfinition rsrely
encountsted, they vill not in psnsrsl csuse wneccsptshle
servics disruption,

The effsct of s hsrdwere or softwsre fsult on ths sxtsrnsl
snvironment vill be to csuse ons or more of the followinp:

* 1f the feult disablas s etors or processor, s permansnt
drop in the throughput of ths syster will result, st lsast
witi]l the necasesry maintenancs sction is undertaken.

* 1f the feult is slsevhsrs ¢ terporery fsll in ths
throughput cepscity of ths Systswr will oceur whils teet snd
restert or relned massures are undertsken. Ths magnitude
and duretion of thie fsll depends on ths type of feult, the
ststus of ths Syetsm (1.s, with repsrd to work losd) end
the herdvsrs and softwere configuretion of ths Syster,

* Depending on tha nature of ths fsult, 1t may he possible
to restert sffccted proceseee ot ths point st wvhich ths
feult vas Jetscted or it may bs nscssssry to reetsrt
procsssse from the baginoing. 1n tha tslscormunicetione
control spplicstion the former ection should csuss no loes
of calle vhereas the letter sction may mesn ths lose of
some of sll of the cslle bsing handlsd be ths sffectsd
procssese, In the vorat rasa the vhole eyetsr is reloedsd
from becking Stors and ell resd/vrits dste ereas ers
clsered resulting in the loss of ell cslls bsing hendled by
ths syetsin, Thie case ehould be very rerely sncountsrsd.

* Feults in Ssriel or Persllsl loterfscs Unite will
naturelly diesble the peripherels to which they ere
atteched, Thesa units sre ellocatad on & one per
peripherel basfy thus s sinple feult vill only sffact ome
peripheral device. All covemmicetion peths betveer
proceseor and peripherel foterfece v its ers duplicatsd
thus s fsult in one or mora of ths u:ite on only one of the
cosmunicstion peths will not sffect eystsm operstion,

3.2.2, FAULYS NOT TOLERATED: 1t is anticipeted thet ths
only feult conditions not tolerstsd by the Systam (i.s,
from vhich ths eyetem ie unabls to rscocover eutosaticslly)
involve at lsast tvo eimulisnsous faulte vhich

* L'eah” st lesst tvo eystem herdvsre modulse of ths esms
type eo tiet oo fsult free wodulse of this type rsmaio, or
* Overide the Capability mechaniss and corrupt ALL copies
of & vits]l softwere eree before ths feult ie detsctad,

1t is belisved thst ths chancee of eithst of the ebove
heppering sre scceptably remots, In sny epecific

ep: icotion ths chances of euch situstions srising can
slvsys be reduced tslow any fioits limit by euitably
iocressing redundancy of herdvsre and softvsre modulss.

3.2.3. TECHNIQUES: The Systsm 250 srchitecturs ellows s
feult to bs tolsrsted in any sinple hsrdvere moduls by
providing rsdundant modulse of sech type 1o ¢ securs eyetsm
configurstion. Feults will oormally bs detectsd either by
ons of an extensive ranpe of herdvsre fault detsction
sachsnisme providad in sech ?7250 proceeeor unit (e,.p.
cepsbility chacks, perity chacks, sicroprogras checke,
stc.) or by beckground test routinee or by coneletency
checks vritten into the Opersting Syeter and spoplicstions
softwsre,

Fouvite detactsd by herdvere eutomatiially csuss ths
procsseor concerned to entsr s sslf-teet routine with vary
limd scceee tO eyeter ressources. Froceesore which
euccesfully smarps from the self-taet cen spply to rsjolo
ths syetsm, ths spplicstion normsliy baing deslt with by
fault recovery eoftwere being run on s pood proceseor,
Proceeeors vhich heve s bed history of fsults may bs

permiesion to rajoio ths syetsw and forced to
endlseely repest ths self-teet procsdurs unti] maiotenance
sction is undertsken,

1f s herdvars fsult 1s treced .0 ¢ moduls othsr theo a
proceseor the fsult recovery softvere ceuses ths feulty
moduls to bs affectively ieoletsd from ths systsr aweiting
saint~neocs ection., 1f (es wmay be the cass for certein
inte: .ttant herdvere fsults) the feult cannot bs traced to
8 psriiculer moduls ths recovery eoftwsre will as ¢ last
Tesori ceuss chs eyetes to bs reconfigured lsevinpg out
modnlss on e triel basie, until s feult fres confipurstion
is schisved,

EXAMPLE OF MEDIUM INSTALLATION

APPENDIX 3
DETAILED CONSIDERATIONS OF MEMORY RECONFIGURATION

This appendix considers detailed asperts of reconfiguration of memory
systems, not only of the memory circuits themselves, but of other

components such as data busses, address decoders, etc.

The memory is assumed to be built from a number of units -~ for example
LSI chips, each having the same memory capacity. When a fault is
detected, some of these units are discarded, and either they are
replaced by a similar number of spare units, or the system now has

reduced memory capacity., The terms used are as defined in section 6.

A3,1, MEMORY RECONFIGURATION BY BLOCK REPLACEMENT

We restate the reliability estimates previously given in section 4.2,

| (w=w")/yJ
(Al)

P[> w' o w] =

(A2)

A3.2 THE USE OF CODING WITH BLOCK REPLACEMENT

The questions addressed in this section are: What is the optimum number
b of bits per byte? and, given the probability p of chip failuve, what

is the value for p(> w'iw)

If w' words are required to be still available after t blocks have

become faulty, then W=(w'+yt). The number of chips required is
therefore

N = (k+r) (w'+yt)/(yb) (A4)

Let N(b,t) be the number of chips required for varying b and t for the

case w' = 16k, yb = 4k, n = 22, Then a few important values of N are

N(1, t} = 152 + 38¢
N(2, t) = 152 + 19t
N(4, t) = 160 + 10t
N(8, t) = 192 + 6¢.

There are good reasons for b to be a power of 2, although codes of

course exist for other values of b (see Section 4.!). The reliability

can be expressed as

(w-w')/y
, < w/yy t o (w/y-i) (A5)
P2w swls (s) P (1-P)
i=0
vhere
d
Pf = 1-(1-p), (A6)
whence
(w=w')/y '
p - P[> v Wy = S‘ (w:y)(l_(l_P)(k+p)/r)(l_p)(k+p)(w(y-1)/b (A7)
1=0

Figures A3.1(a) to (e) show Pg or P -l—Ps, i.e., the probability of

success or failure for p-10'" » n=1...5, and k=32, b=1,2,4,8 and w=16k.

A3.3. RECONFICURATION BY CHIP REPLACEMENT
A3.3.1.THE MEMORY MODEL

The basic model is depicted in Figure A3,2. It consists of a decoder
(for high-order address hits), an input switching network, an output
switching network, and a set of memory chips. Each memory chip acts as
a y-word by b-bit RAM. The following parameters describe the
configuration of the main memory:

A3.2

Fig. A3.1 Probability of success (PS) or failure (Pf) asla
function of number of chips for
(a) p=0.1
(hj 0.01
(c) 0.001
(d) 0.000,1
(e) 0.000,01

T v T O
n] 1}

1073
10744
- P_(p=0.1) 10

10°Y

-12

=12

10

I I I
(o] 100 200 300 400

number of chips

P, (p=0.01) 1o~6s

g=,5,b=f =

: 1 LI i
] 100 300 300 ' 400
numbe: of chips

. s . = g — T T TR ST

Pf(p-O .001)

aumber of chips

P,(p=0.000,1) 10°%

pt(p-o .000,01)

d © number of bytes per n-bit word (typically 4 to 16), d=n/b

z= number of blocks of memory (typically &4 to 2048), where a block

consists of y words

s = number of spare chips (typically small relative to total memory

size)

m = total number of chips = (zd+s)

t = number of faulty chips to be tolerated.

INPUT
%Een :2 SWITCHING
* z NETWORK
High [;l' |J' CHIP3
Order E
Bits L = :
' | Low ouUTLT]
Order SWITCHING :
Bits NETWORK .
[’
Address

Fig. A3.2 General model for reconfigurable memory.

From the standpoint of maximal use of spare chips, s=t is desirable;
however, as seen below, some benefits accrue from having s>t in terms of
switching-network regularity and simplicity, and ease of switch set-up,
In this model, t is the guaranteed fault-tolerance, i.e., the memory can
be configured into z blocks of d chips in the presence of all
combinations of t or fewer memory chip failures., In one of the examples
below, s t. In this case there are sufficient spares to correct more
than t failures, but switching-network limitations may prevent this
extended ccrrection, However, an analysis shows that the number of such

offensive combinaticns is vanishingly small, and that certain economies

in switching-network complexity are attained by keeping the guaranteed
correction below the number of spares. Thus, in any event the value t

itself is not sufficient to evaluate the reliability of the memory.

The memory functior is to be configured out of a set of zd operative
chips. The block selection is accomplished by the decoder, which
selects one appropriate control line, under control of the logzz higher
order addrees bits. The lower-order address bits are delivered to all
memory chips, with the word selection accomplished by a decoder within
each chip, The appropriate configuration is achieved by setting up the
input and output switching-network pairs (SNP). Note that the
connecticn established by the SNPs needs to be modified only when the

menory is reconfigured.

For most of this section, only single-level incomplete cross-bar arrays
are considered. Note that in contrast with the telephone cross-bar
arrays, the switching networks for the memory organization require

switches at comparatively few cross-points.

As a better illustration of the role of the SNPs, consider a simple
example for which z=4, d=3, s=6, m=18, t=5, Figure A3,3 displays one
possible set-up of the switching networks to accommodate the indicated
faulty chips. Each utilized chip is identified according to its place
in memory; that is, for a chip at (i,j), "i" signifies the block and "j"
signifies the byte. The activation of a particular block of d chips is
accomplished by activating the appropriate control line. This
activation signal is transferred through the input switching network to
a unique set of d chips, The memory word emerging from the d chips is
transferred tc a unique set of d output data lines by the output
switching network.

As not2d in the next section, this example illustrates & nonseparable
switching network-pair that is an SNP for which the set-up at the input
and output networks must be accomplished together., For a separable
network pair the set-»p of one of the two networks can be done first in

its entirety, independently of the other.

A3.6

INPUT
CONTROL
LINES

INPUT SWITCHING NETWORK

OUTPUT SWITCHING NETWORK

Fig. A3.3 An cxample chip reconfigurable memory.

Before embarking on the details of the synthesis procedures for these
SNPs, it is worthwhile to indicate the possible benefits of this
organization, as compared with other fault-toleran: memory
organizaticns., Consider a modest-sized memory requirement of 32
kilowords, each 32 bit long. Such a requirement can be achieved with 16
blocks, each of which contains i6 2-bit-wide chips, for a total of 256
chips. Assuming a chip failure probability of 10- per hour, in a
miesion of five years ten faiiures might be expected., For the
organization discussed in this section, a tolerance of 10 failures
requires a redundancy of 10 chips, or under 4% redundancy. This can be
contrasted with a memory system wherein an entire block is replaced upon
the occurrence of any chip failure within the block. For this latter
system to achieve comparable reliability, a redundancy »f abuut 50% is
required. Two comments are in order Lera. First, the lower redundancy
measure Iis meaningful only if the switching ~verhead is small--a
situation that we will now show to be the case. Second, chip

replacement becomes more favorable as b is decreased and Yy increased

A3.7

&I"\ Ps oY Va (I /] /] SW.TCH
T "t‘?\ A ZAA 74 OPEN
1T 1 :
SWITCH
-1+ P @——P1- D1 b iyl
- R W o
o 1 GOOD
e T e e o e = Sl I
- <t M| |~ -— N| | N| M (< o™
: FAULTY
| cHip
[W W W P W W I W P S
N o P Ja % N pa o OouUTPUT
\S ¥ A\ %4 ﬁ AN AN o \/_T kY AN %) A Z4 DATA LINES
4 F b L et D4 D 2 ==

(with yb held constant). Moreover, if error detecting and correcting

techniques are used in addition to replacement, then the smaller hyte

sizes are preferable from the etandpoint of lower code redundrucy (and

simpler decoding circuitry).

A3,3,2, SWITCHING NETWORK SYNTHESIS TECHNIQUES

In this section we are primarily concerned with establishing conditions
for the eristence of suitable single-level cross-bar switching networks.
The last subsection below deviates from this single-level formulation,

to indicate a less costly multi-level network that handles large values

of t.

It will be convenient to view the input network as described by the z by
m matrix SI, and the nutput network, by the d by m matr’x SO, A "1" in

a paxiicular location (e,f) of the matrix corresponcs to & switch in row
e and column f of the network. The following "heorem gives necessary
and sufficient conditions for the matrices SI anda SO such that the SNP
is capable of reconfiguring the memory in the: prccence of any t or fewer

failed memory chips,

THEOREM l: For the single-level incomplete cross-bar input and output
switching networks, there exists a setting of the switches such that in
the presence of t or fewer memory chip failures, the operative chips can
be configured into an array of z rows by d columns, as long as the union
of each combination of i rows of SI, i=1, 2, ,.., z, and the union of
each combination of j rows of SO, j=1, 2, ..., d, overlap in at least
ij+t places,

The proof is an extension of the Diversity Theorem (Ore 63), which gives
necessary and sufficient conditions for the assignment of workers to

jobs,

The neccssity part is obvious since for some set of 1 rows of the input
network and j rows of the output network, there must be ij paths when
the networks are configured. Since up to t chip faults are to be

A3.8

tolerated, wherein each chip failure disables a path, and since 3 path
corresponds to the appearance of 1's in u column of SI and SC » the
necessity part is seen., The sufficiency part will be proven by strong

induction on 1,j.

(a) The sufficiency part is trivially true for i=j=1, since an overlap
of t+l places between a row of SI and a rcw of SO guaran .ves at least

one good path for t or fewer failures.

(b) Define an ordered row-pair (@, B) 48 consistirg of row @ of Si

and row B of 50, Define a N-1 ordered row-pair set (or simply iN-1 set
for short) as a set of N-1 such ordered row-pairs. The intention here
is that if (o, B) 1s in an ordered row-pair set, then there exists a
path between row o of the input network and row g of the output network,
Now assume that if the conditions of Theorem 1 are satisfied for all N-1
ordered row-pair sets, then an appropriate setting of the switches can
be achieved to establish paths (@, B) for all contained in the set,
Note that the theorem condition, abstracted for the N-1 ordered row-pair

set, 1s that
lu] P 2 N1t ,
V(@,8)

, «<ontained in M subset

(A8)

where RWB is the set of overlap positions between row @ of SI and row B
of SO.

Byvlg]s)(overlap between row @ of SI und row g of S0), we mean the
number of distinct columns for which there is a "1" in position (@,€)
of SI and (£,8) of SO , taken over all (0,8) The "union" operation
signifies that we count a column only once no matter how many times it
appears because of distinct (@,B).

(c) As the induction step, we will show that given condition (b) above
and the premise of the theorem for all N-1 ordered row-pair sets, then
the theorem is true for all N ordered row-pair sets, There are two
cases to consider. In the first case assume that for a particular set

of t or fewer chips, all M subsets MCN of the N ordered rov-pair set

A3.9

saiisfy the conditions of the theorem with room to spare, That 1s:

jul P_>M.
V(a,8) ol (A9)

contained in M subset

Then for any (a, 8) in the N ordered row-pair set, make an arbitrary
switch setling to establish the path between and B, After removing
(a, B), what is 12ft 13 an N-1 ordered row-pair set, and this set
satisfies the conditiony of the Theorem as in (b) above, thus
establishing the induction step. In order to see that the theorem
conditions are satisfied after removing (o, 8), note that any N-1
subset 1:ft will have lost a maximum of "1" from the summation of
ov:rlaps-——-namely that corresponding to the column . Thus after
removine the t or fewer columns in error and the column caused by the
"removed” (@,8), we find

vl

V(a,P)
in N-1 subset

P
GB Z N-1 . (AlO)

In the second case, assume that for a particular set of t or fewer chip
failures, after removing all paths through the failed chips, there is at
least one subset that savisfies the theorem conditions exactly, that is:
U &
Vla}B) o, =¥ (A1l)
in M subset

1f we then assigr the appropriate paths for all @, B) contained in the
M subset, which *re know we can do by virtue of (b) above, then for the

(@, B) ordered row-pairs in the complement set, we have

lul p > N-M
V(o,8)
in N-M subset (A12)

since the entire N set satisfied the theorem conditions. Thus by
virtue of (b), path scsignments can be made for the N-M subset, The
theorem is then established for an arbitrary N ordered row-pair set, so
that it is certainly satisfied for a set compos>d of bd elements,

narcely, b rows by d rows,

A3.10

In a subsection below we illustrate SNPs that satisfy the conditions of
this theorem. The one disadvantage of these nonseparable SNPs is that
the switch-setting aigorithm must deal with both the input and output
network simultaneously. The situation is improved with the separable

networks defined next,

DEFINITION: A switching network pair is SLPARABLE with respect to the
input network if the switches can be set to achieve the configuration of
the memory into z rows and d columns, in the presence of t or fewer
failures, and if the appropriece settings of the input network can be
decided without knowledge of the output network. The settings of output
network switches are them decided after those of the input network,
(Separability with respect to the output network can be similarly

defined, although no advantage seems to be found in such SNPs,)

The following theorem pives necessary and sufficient conditions on the

SI and SO matrices for the existence of such a separable network,

THEOREM 2: An SNP, composed of single-level input and output networks,
is ceparable with respect to the input network if and only if (4iff) the

corresponding SI and SO matrices satisfy the following properties:

(a) The union of all sets of 1, i = 1, 2, «vvy 2 rows of SI contains at

least id+t cnes.

(b) Tie union of all sets of j rows, j =1, 2, ..., d, of SO overlaps

each row of SI in at least j+t places, and the symmetric difference of
each row of SI with the union of all sets of j rows, J= 1, 2y el

of SO does not have rore than d-j ones,

We now develop a few general procedures for synthesizing single-level
separable and nonseparable SNPs, as well as algorithms for establishing

the switch settings.

A3.3.3, SEPARABLE SNP SYNTHESIS

Cne procedure for synthesizing an SNP that 1s separable with respect to
the input retwork is illustrated by means of the example of Figure A3.4,
with parameters z=6, d=4, s=t=3, The general form of the input network
for the case s=t 1s as follows, The first row contains switches in the
first d+s positions. The second and all succeeding rows also contailn
d+s switches with an overlap of s switches with the preceding rows.

Thus a given row is merely the preceding row shifted d places. It 1is

seen that the total number of input switches is z{(d+s).

N D N DD
\J AR ZAAN ZARY ZERS ZAAN VAN o)
Vo n e W e 0 W n s a4 NS 0
A} ZARN ZEAN ZARN VARR VARN VAR 7
JauWa W a2 WV a0 Wa 2 Wae a W anY
AN ZARN NN VERN ZARN VAR N “
aoy a ad Do
AVZARN ZARN VRN AN ERN VAN ¥y
Fan W4 AW 2 W s a W2 0. W0 0 W04 0
AV AN PARN VRN VAN ¥ AN ¥ SN ¥
Vo n W2 w2 2 W s S a2 W4 AW 4
A 7N ZERN FARN WARN VAN VARS
[] [] [] []
Vo O o DD D N A 4
S AV 7N VAR V4 3/ \NEAN 2N P anN v/ AV 7N P ERN VN v AV
N Fa 2 W2 nWaaY o DD Pant oD Fan)
/ YV UV VYV 3/ V\ U A % A ZAAN PN v 3/
D o s e LW g Y oD Jar Wa oW QI Vo a W an W anY o
\v \N VAN VRN \e vy \NVAANVaRN \v % AN AN P ARN v A\
Vo n W a 2 Wa 2 W4 2 W4 uN Vo w s A Wa 2 W4 b N DD D a
AN AN ZEnN VERN VAR V4 AN VAN PARN PN U AU P ARN VEAN FARN 4

Fig. A3.4 An example of a separable SNP z = 6, d

1
[~
n
[}
-
[
&

This input network bears some resemblance to Stiffler's "rippler" (see
Stiffler 73). The rippler's function is to transfer data from (say) a
d-byte register to an arithmetic unit containing d+R byte slices. The
transfer is such that the order of the bytes 1s prescrved while avoiding
faulty byte slices. A reasonable form of the rippler network is the

input network of Figure A3.4, where the number of switches per row is

R+l, and the row overlap is R.

An extremely simple algorithm suffices for deciding which switches are
to be set for the input retwork.

ALGORITHM 1, For each row in turn the d leftmost switches are
consicered. For each of these which corresponds to the position of a

failed chip, this switch is skipped and the next to the right
considered.

Now let us consider the output network as illustrated in Figure A3.4,
The first d columns consist of a diagonal line of switches followed by a
solid block of switches in columns d+l1, d4+2, ,.., d+s. Thereafter the
network consists of alternating diagonal lines of switches and
"inverted" diagonals, with solid blocks of switches superposed on top of

s consecutive columns every 2d columns, (The alternation of identity

arrangements with the inverted identity arrangements provides a uearly

balanced load on each row.) The number of switches in each row of the

output network is bounded from above by z + srz/ii, yielding a total

number of switches zs + 2zd + sdrz/i1, inclnding the input network;

"[x]" denotes the smallest integer containing x.

An algorithm for deciding which switches are to be set in response to a

pattern set by the input network is quite simple.

ALGORITHM 2, Consider the first d columns activated by the setting up
of the input network, Switches are to be set in the output network so
as to connect each of these d columms to a unique output row. First set
the switches in the identity section to handle any of the activated
columns, Those rows not yet served will be handled by setting
appropriate switches in the solid block section, Then the second group

of d columns is handled, and so on, until all groups are accommodated,
A3,3.4, NONSEPARABLE SMNP SYNTHESIS

The primary advantage of separable SNP's is the simplicity of algorithms
for deciding switch settings. One would expect that a price for such
simplicity would be an increase in the number of rejuired switches, but

we have not yet found a nonseparable SNP that is more economical than
the separable network construction of Figure A3.4, However, oa.
disadvantage of the SNP of Figure A3.4 is the excessive switch loading
on some of the columns of the output network. This is a particularly
severe problem if the switches are part of the memory chips., We have
attempted to find separable SNPs wherein all columns in the output
network contain an equal number of switches, Such networks can be
found, but they are costly. This has led us to pursue the synthesis of

nonseparable SNPs.

The nonseparable SNP displayed in Figure A3,5, for the parzmeters z=6,
d=4, s=6, t=5, alleviates this difficulty by providing a nearly constant
loading on all columns of the input and output networks, In this

structure there is effectively one spare chip per control line (s=z).
The guaranteed correction capability is t=5, independent of the other

parameters. Fach row of the input network contains 3(d+1) switches with
an overlap of 2(d+l) switches between adjacent rows., The rcws of the
output network are simple cyclic shifts of a repetitive pattern,

consisting of two switches folloved by d-1 places with no switches,

The total switch count for this SNP is approximately 5z(d+1), or about
twice that of the separable SNP »f Figure A3,4 with t=5, The structure
of Figure A3.5 can be generalized to one containing t(zd+s) switches,

which tolerates all patterns of t or fewer chip failures.

JMMAW._{\M
Y IUUUVUC’VUUVUW

Mhm.ﬂﬁmwmh
T g A NS L@ o w L W W W W Sy

v
f\f\{gf\r\f\f\r\hf\f\r\r\f\j
VUVV\J\JV\JVVVV\JV\
A D AN P aWaVaVallaWaaWa
VLS TS UL N N \ W A v an w w e W WP S W A B A S AR
e . O e O T, O P i O O i O O o N
B T T e e g e e S S T W WS

P ﬂee__. — ee .{}Aﬁ F B Y Fa oW o
L AT et NS N
iy

3

é_l W Y o W W . Y W Y o o B Y F o O F o W
L= Nl et WS W T d AT N L

QO Switch in Original Network

) Augmenting Switch to Give
Correction of t = 6

Fig. A3.5 An example of nonseparable SNP for z = 6, d = 4, s = 6,
A3.14 t = 5(6).

It is possible to increase the correction capability of this
nonseparable SNP to t=6 by augmenting the output network with the extra
switches indicated by () in Figure A3,5. This augmentation places an
extra switch in all columns of the output nétwork that previously
contained only one switch., It is observed from Theorem 1 that each row
of the output network must overlap each row of the input network in 7
places for a fauit correction capability of t=6. Since the switches of
each input row span three groups of output switches and since each such
sutput switch group contains two columns of one switch, the augmentation

technique yields the overlap of 7 only if d <6,

This latter SNP is of interest from two viewpoints. First, the input
and output switch loading is constant on all memory chips, i.e., the SNP

is CHIP REGULAR. This regularity (or near regularity in the case of the
noraugmented version) permits the simple embedding of the input and

output networks within the wemory chips. Second, although there are
some patterns of t+l, t+2, ... chip failures that are not correctable,
the number of such offensive patterns for large values of z is small,
In Sections A.3.3.6 and A.3.3.7 we discuss a realization with embedded
switches and an analysis of the correction capability of the SNP beyond
the guaranteed limit,

A3.3.5, MULTI-LEVEL NETWORKS

We thus see that there are SNPs :that handle all combinations of t chip
failures at a cost of approximately kzdt switches, where k is a constant
between 0.5 and 1. This is certainly a tolerable ccst for a relatively
small number of chip failures, e.g., up to 8. However, if a large
memory employing such reconfiguratior techniques is to function
unattended for a mission of a year or more, it might be necessary to
handle 20 or more chip failures. In this case the switch cost can
become a significant fraction of the total memory cost. As discusseri
below, the switch cost can in this case be reduced by replacing a
single-level network by a multi-level network. The discussion below is

S e ™ W

brief, since a previous paper (Goldberg et zl. 68) pursues the
multi-level case in 3reat detail -- although for a different
application,

AR.15

CONTROL —s INPUT NETWORK
LINES __|

d+t+
,

d bdt 1 N - 2d+1
tl___[?(]ﬂi‘“dﬂ dod2d+t

r LK R i

]
(d+t), d open

PRESERVING
NETWORK

. A3.6 A multi-level SNP.

Figure A3.6 illustrates the »asic form of the SNP. The ifaput network
{1lustrated in Figure A3.4 requires only z(d+t) switches, a cost that is
not excessive for all reasonable values of t. Thus the SNP of Figure
A3.6 is assumed to have this same input network. However, the costly
output network of Figure A3.4 cen be avoided. Recall that the setting
of the switches in the first row of the input network activates d
columns among the first d+t colummns. It is the role of the output
network switches, corresponding to this set of d+t columns, to funnel
the activated columns into the set of d output lines. Similarly, the
second row of the input network activates d columns in the set

d+l, d+2, ..., 2d+t, and so on for the remaining z=2 input rows, llence,
the output network function can be realized by a set of 2z
order-presevving (OP) networks, each of which performs the funneling
operation a¢ describes above., (Actually, for this memory application,
the networks need not ve order preserving, since tne order oi memory
chips within a block of memory is not critical. However, if we vequire
an efficient network, we have always been able to find an OP network as

efficient as a comparable non-OP network.) The first OP network has as

T NN“

input colums 1, 2,..., d+t, the second d+l, d+2, ..., 2d+t, the third
2d+1, 2d+2, ..., 3d+t, and 8o on. Eact OP network ylelds d bytes. The
ith bytes from each of these z networks are ORed rogethér bytewise
(e.g., by wired ORs) to form d bytes at the output,

In Goldberg et al. (68), a procedure is given for synthesizing such an
OP network as an interconnection of two-input, two-output, two-state
prirnitive cells as shown in Figure A3.7. Depending on the state of the
cell, the inputs are interchanged or merely directed through the cell,
We have described a recursive procedure for developing the netwerk, as
1llustrated in Figure A.3.7. At the input, | (d+t-2)/2l cells and at the
output [(d=2)/2l cells flank two smaller networks. The upper network is
an OF network of r(d+t)/2-]1nputs and [d/2l outputs, while the lower is

an OP network of [(d+t)/2] inputs and Ld/2] outputs, where "Lx/" is the
largest integer contained in x. Each of these networks is replaced by a

similar three-layer construction, and so on. Evertually, there is a
degenerate requirerent for an OP network of P inputs and 1 output, Sucn

a network is easily realized as ¢ simple linear array of p-l1 cells.

1 |
2 r 2
3) [llexefe = [
" 1l 2|2 A 4
et
f e ==
1 —— L e
d+t -4 —
d+t-3 sl
d+t-2 — 2)|2 .=
= R - — d-1
d+t e - d

Fig. A3.7 Decomposition of the order preserving network.

The number of cells required for this OP network is C(d+t)log2t, where C .
is approximately one-half, Thus, the number of cells in the output ;

network (which still dominates the input network) is Cz(d+t)logzt, which
represents a saving of t/logzt, compared with the single-level cross-bar
realization, For t> 8, the multilevel version becomes more economical.
Techniques for setting up the OP network and an approach to

incorporating fault tolerance within it are discussed in Goldberg et al,
(68). '

In conclusion we have determined that the switch cost for reconfiguring
the chips of a memorr is small when compared with the total memory cost,
In addition, we have shown that the algorithms for deciding which

switches are to be set can be simple in certain cases.

A3,3,6, » NOUSEPARABLE NETWOKK WITh EMGEDDED SWITCHES

As mentioned previouslv the switches in the nonseparalle SNP of Figure
A3.5 can be embedded within the memory chips. In the augmented version
of Figure A3.5, a piven chip can, by virtue of the input switching
network, receive an activation signal from one of three control lines,
or be disconnected from all control lines. Similhrly, by virtue cf the
output switching network, the chip can be switched onto one of two data
lines, or be disconnected from all data lines. The process of embedding
the switching within the chips can be seen by reference to Figure A3.8.
Each chi» has as inputs three control lines, and as outputs two data
lines., /n activation select switch makes the connection to one of tiirce
control lines, or to a fourth vacuous input, Similarly a data-line
select switch nakes the connection to one of two data lines or to the = -

vacuous output, At

Figure A3.Y shows the connections of the array of chips to the control
and data lines for the same parameters as the SNP of Figure A3.5,
namely, 2z=b, d=4, s=6, t=5 or 6. When the dotted line connections to

the data lines are present, t=6 faults can be handled; otherwise, t=5,

A3.18

Control Lines

Activation
Select

=

Low Order o=
Address Bits ‘'~

Memory Contents
of Chips

Fig. A3.8 Memory chip with components of input and output switches.

Data-line
Se'sct

? o

I

pe-

=

H J
} ,
¢ 3 11 1 1 1
Q
3
T
' o 1
._o‘ [
5 ,g 1 1
=1 1 11 T
g 4 1 Y 11 i
Q
. b 1
[S _: 1
L
3 13
4 1 ¢ =¥) 4 k
5" 1 [r b ! L,
TC 7L H
H
4
8 1 1
[] i [? 11 1
1 |z . 3 4
mta Lihes

Fig. A3.9 Organization of nonseparable SNP with embedded switches

A3.19

It is convenient to view the last column of chips as spares -- 1i.,e,,
wvith all chips operative, this last column of chips remains
disconnected. As failures occur, the spare chips a.e brought into

: service, Ve have developed an algorithm that determines the appropriate

switch settings for any correctable faulc pattern, The algorithm is

more complicated than the algorithm for the separable case, and may
require a substantial reorganization of the memory blocks subsequent to
a failure, including operative blocks. The span of the reorganization
can be shiwn (Goldbere et al. 68) to be related to the clustering of the
chip failures in the ariay. That is, if the failures are sp-ead out

over the array, relatively little reorganization is required,
A3.3.7. ANALYSIS OF CORRECTION CAPABILITY IN RLGULAR SNPs

The organization of the type depicted in Figures A3.5 and A3.9 exhibits

more spares than the guaranteed fault-correction cepability., liowever,
in these organizations a _airpe fraction of the fault patterus containing
f failures, t+l <f <s are irdeed correctable. 1in this section we
present some approximate upper and lower bounds on the fraction of such
faults that are correctable for the case of what we dcfiﬁe below to be

1/0 regular SiPs, lhe derivation of these bounds is given below,

wWe defire the function c(f) to be the fraction of patterns containing f
faulty chips that cannot be accommodated by reconfiguration. In a
memory organization n.ith z rows each of ¢ bytes, there are }szd unique
paths that must Le established between the control lines and the data
lines. The iaput and output switching networks must be set so that each

path contains a (unique) nenfaulty chip,

In estimating c(f) we define a ROUTE to be the set of paths between a
given control line and a piven data line, and make the assumption that
each route to be served contains e paths, and that e is a constant for
each route. This is the definition of an I/0 REGULAR SNP. The
nonaugmented SNP of F.gure A3,5 is 1/0 regular with e=6, but not chip

regular, The opposite is true for the augmented version. (In particular

some routes in the augmented version contain seven paths while others

contain eight.) Thus, the bounds derived below are only exact for the’
nonaugmented SNP, However, the; represent lower bounds for the

augmented case, provided tne lower applicable value of e is used.

Clearly, we have the following special cases: n(f) = 0 for f <e, for
clearly no route is deprived of all of its paths, On the other hand, if
we consider the case where all spares are used, then c(f)=l for f >s.
The development of estimates (or bounds) for c(f) reduces to the cases

between these two extremes,

A particular fault pattern of f faulty modules will ncot be tolerated it
and only if, for all i <f, it contains a sub-pattern such that all but

(i-1) or less modules included in i rcutes are in the sub-pattern,

1f we denote by ¢ , the probability of the ith term above, then
1 - C(f) = (1 - cl)(l - c2) esee (1 - ci) XX
For small values of ¢ , a sufficiently close approximation is
c(f) ~ €y te, * oo (Al3)
we introduce the concept of 'overlap' *13 def‘ned by

Ag{j = number of modules that serve routes i and j In common, (Al4)

and also A = MAX (Xi)

gy U (AL5)

The value of c; can be computed for regular structures (i.e., those for

which e is a constant for all routes).

. 1

Given a pattern of f faults the number of sub-patterns of size e is().
e

There exist just p patterns of e faults that will not be tolerated out

m
of a total number of patterns of e faults of(e) ; therefore:

1~ (f-e)! m® (Al6)

A3.21

!
.

For m>> e, we have the approximation
P (g)
=1-({1-~- 17
‘1 (™) 1D

Since ¢5 , c3 , ... are non-negative, (Al17) is an approximate lower
bound of c(f).

In obtaining an expression for c ,, we need to consider the size of a
pattern that will not be tolerated because only one module remains of
those that are included in two routes. Given two routes i and j, the
minimum pattern to disable one of thew because of commonality of

modules to them is L. . , where

i)

= 2e-\A -1
€ iJ (AlS)

i
Yor the case where no overlap exists for routes i and j, i.e, xij = 0,
the disabling is of the tyre considered under the deriv' tion of ¢

above, We defiie the paresmeter L by

L = MIN (Lij) = 2e-~h-1 .

AlY
i (A19)

Ljj
We consider each pair of routes i and j. For each such pair the fault

Given a pattern of f faults, there exist(f)sub-patterns of size Lij'

pattern will be tolerated if and only if it does not contain a
sub-pattern of size LiJ included in the set of modules of number I.j g+l
that serve the two routes 1 and j. For these (&J +1) modules, there are
(L1J+l) ways of selecting a fatal sub-pattern, Within th? whole
structure there are(gij)sub patterns of size Lij , and (Lij)are
included in the fault pattern being considered. The pair of routes will

survive with a probability Qi‘ , where
J

£
g
(L13+1’\L13)

ij m)
(Lij

the approximation being valid if L <<n. The probability Q of all pairs

Q ‘ ~ 1-

surviving is given by

E [} = [
2 (Lu+1) £! (n LU).

- !
(f LIJ)!m°

Each term in the double series can be expanded in the form

of =L +1
(Lij+1)(-fl;)(-f_-t;l) (m-Li +1)

i3

As I.<<L1J, the replacement of Ly ; by L in (A23) will result in fewer

terms in the product. We can therefore derive aui upper bound for c, as

(L+1) £! (m-L)!

(A24)

which for l«<r yields the approximation

o Rl s1) f!(m-L)!
27 2(£-L) 'm!

(A25)

Consider now the expression for c(f) the probability of non-coverage,
i.¢. from (Al3) e(f) = e #C oo

(A29)
On intuitive grounds, we say that this series is strongly converging,
for if it were not so, *the implication would be that a fault pattern
would bz more probable to be not covered because of interaction among
{i+1) routms than between i points, Fcr values of i smail compared to
m, this implies that in going from 1 to (i+l) there is a greater
probability of the new fault being strongly connected thar being
disjoint, which for small i is absurd. We therefore consider only the

first two termu of the series to obtain

c(f) ~ c1+c2 (A27)

< c(f) < c_+¢ o
c1 < c(f) c1+c2

Note: in computing values »f ¢y and cp , the cp 1s, for reasonable

cases, significantly smaller than S lending crcdence to the intuitive

argument abovz, The bounds on c(f) are therefore:

pf! £ 2 1
< e(f) < pf: P (L)1
(f-e)!m® = CUE) £ (f~e)'m® * 2 (f-L)!

A3,3.8. REGULAR SEPARABLE SWITCHING NETWORKS

We consider the design of input (SI) and output (S0) switching networks
which are separable and are also uniform in that the fan-in and/or
fan-out of each unit of each part of the system (decoder, chip, etc.) is

the same,
Define:

number of inputs to SI

number of outputs from $0O

number of spare chips

number of faulty chips to be tolerated = s
numoer or cells in each row of SI

number of cells in each row of SO

number of cells in each column »f SI
number of cells in each column of S0

number of chips total = bd+s

Separable networks have the desirable property that a simple algorithm
is known for setting the switches in the presence of arbitrary fault
patterns, Most separable networks known to date have the disadvantage
that the loading on the parts of the system is nonuniform, We develop a
set of necessary conditions for a network tc be regular separable.

Using tihese conditions a number of potentially regular separable
networks (KSN) have been found, some of which are indeed kSN, No cases
have been found of a network satisfying all the conditions and not being

RSN, We conjecture that all the cases are RSN,

CONDITION 1--REGULARITY OF SI

The total number of cells in SI is bnl « The total number of modules is

m=bd+s., Clearly.
bmi = k, (an integer) (A30)
—_— i

bd+s

by Theorem 1 of Section 4.2, it follows that m i=d+s:
b(d+s)

(bd+s) ~ ki (A31)
or (ki-l)bd
" o (432)
i

CONDITION 2--REGULARLTY OF SO
The total number of cells in SO is m d. Clearly,

m d/(bd+s) = k where 1 < k < d and k integer (A33)
o o o 0

CONDITION 3--SEPARABILITY

We restate Theorem 2 of Section 4.2 on necessary and sufficient

conditions on SO,

"Assume a valid SI, then the combination of SI and SO is separable if
and only if the union of every set of j rows of 50 (j=1,,,d) overlaps

each row of SI in at least s+j places."

Consider any row of 50 and apply a test for the case j=1. The overlap
with the first row of SI must be at least s+i, Ve rus* therefore

allocate at least s+l ceclls to those columns where the irst row of SI
has cells, Call this allocation Al' In making the allocation there are
ki Ajcells in the allocated colurns of ST. Consider another row of SI,
choosing that one that has a minimum nurber of cells in the columns

already aiiocated. There are (ki-l)A1 available cells in the allocated

A3.25

T

columns to be shared over the remaining b-1 rows. Therefore, there
exists at least one row of I which contains only L(ki'l)Al/(b-l)J

cells in the allocated columns, Choose this row. We must allocate uore

cells of the row of SO to this row of SI, Specifically we must allocate
at least (s+1)-L(ki—1)A1/(b—1)J. Specifically we must allocate at

two rows is therefore

A2 = A1+(s+1)‘L(ki-1)A1/(b"1)J (A34)

Using the above reasoning to successive rows of SI we can develop the

general form

= 8§+l

A +(s+1)= (s+1)(U-1))/(b-£+1)] L - 2...p

(A35)
The necessary condition on ng becores Mo> a g ~Jote that Condition 3

2 = A A=k -

is necessary, but to prove sufficiency using Theorem 2 of Section 4,2,
it is required to consider every set of J rows of SO. It is, however,
conjectured that for repular networks, Condition 3 may be sufficient,

No cases that satisfy Condition 3 that are not regular separable have

been found,

To 1llustrate the test consider the case b=6, d=4, s=6, k=2, n=10., Then
Al = 7. Az- 13. A3- 17. A4- 20. As‘ 21. AG- 21. Whence %2 21.

The scheme used to find RSis was programmed and the results of a small
run are shown in Tables Al and A2, Note that the solution m = bd+s
which is a totally full SO is trivial and is not shown,

We conclude that regular Separable Network exist, but such networks

contain a very high proportion of cells in the switch, leading to high

fan-out and fan-in. llowever such networks can be designed to enable

reconfiguration in the presence of a large number of faults.

‘umoys axe Oy JO SanTeA 2oIYyj3 JO wnuIXew y ‘g IO
[o
A o OE pue 8¢ s ¥2J o2sed 8yl sa31edIPuUl 8F ‘gk/51 Ax3ud Ayl ajduexa xo03 ‘- w ‘w/s
WIOJ 9yl uy pPajedipuyr oae OE Jo sanyea afdijinu (21qissod) ayj pue s JO anlea 3¥YL :330N
Z1
11
06/S1 01
6
¥8/91 9¢/21 8
L
cL
‘09/81 09/61 Sv/21 0£/6 9
ov/c1 [
99 ‘09 09°‘ve °17 Zv 9¢
‘pC/VeE ‘8v/22 2v/02 ‘zv/81 ‘98,91 ‘oc/v1 0£/21 vZ/01 81/8 17
ct 1t o1 6 8 L 9 3 2
Zz = '3 103 SNSY [BTIU0IO04 1V 21qeL

A3.27

cer/ee
Z2€1 0zZ1 801 96
‘ogT,/9¢ ‘801/€€ ‘96/0¢ ‘v8/LZ b8/bC 2L/1e 09/81 8v/ST
cot/2v v8/G¢
o011 00T
‘oo1/8% ‘06/b¢p 06/0b 08/9€ 0L/2€ 09/82 0S/F2
011/09 001/SS 06/0¢ 08/¢¥F 0L/0F 09/S¢
2€1/96 0zZ1/88 801/08
2t 11 ot 6 8 L 9 3
= 'y 107 sney Teriuajod Zv aiqel

T NURISINUE————]]

APPENDIX 4

L
ERROR CORRECTION IN BYTE-ORGANIZED ARITHMETIC PROCESSORS

Peter G. Ncumann and T. R. N. Rao

Cumputer Scicuce Group
Stanford Rescavch lastitutce
Menlo Park, CA 94025

ABSTRACT

This paper vonsiders codes with radlas ¢ > 2 whach

arve capsble of correcting avbitrary aritiimetic errors in
any radix r digit, [If cach radix r digit represents a
bytc of b binary digits (e.g., r = z‘;. these codes cor-
rect ar, combination of errors occurring in the b binary
digity of any stingle byvte. A theoretical basis for
these codcs is presentwd, along with practical consider-
ations regarding their applicabtlity.

1 INTRODUCTION

This paper is concerned with evvor detcction, crror
correction and error location for multiple crrors within
a psrticular byte of an arithmetic unit, and is motivated
by several otservations. First, it is possible to ob-
tain byte error-correcting arithmetic codes with low code
redundancy. Second, it is possible to provide high sys-
tem avatlability snd relatively maintenance-free opcra-
tion through autonomous icolacement with spares, For
certain applications it is desirable to replace not an
entirc processor or arvithmetic unit, bat rather one of
several identical sut-units. Thus byte-slicing ts at-
tractive. Third, by e-slicing is also naturally allied
with fast-carry logic, e.g., carry look-ahead over bytes
(snd even within bytes). Fourth, LSI technology is suit-
able for realication of a byte of logic on a chip. Fifth,
LS! technologies often givc rise to multiple errors on a
chip resulting from a simple fault. Thus higher radix
(byte) arithmetic coding mcy be highly effective: with
chips correaponding to uwytes, multiple errors in arith-
metic within a byte may then be economically corrected.
Besides, single-bit error-correcting codes are inade-
quate for the multiple errors which say arise from fast-
carry logic. Location of the faulty byte-slice and
autonomous raplacemecnt with spares is also facilitated

by the byte coding.

In this paper previous results of Peterson and of Rao
and Trehan for perfect single-error-correcting arithme-
tic codes sre generalized to higher-radix number systcms,
A single arithmetic error in a radix r representation
is of the form 2arJ, 0<a<r, It is shown here that
all such errors are correctable by an AN code with gen-
er:}or A of the form (r-1)p, where p 1s a primc grester
than r sstisfying certain specified conditions. These
results also apply direct{y to corresponding systematic
codes (e.g., bi-residue codes with residues r-1 snd P,
and gAN codes). Further results are also given for
other interesting (bu’ non-perfect) codes.

The results of this paper are potentially suitable for
use in a byte-organized processor, e.g., using one chip
for each b-bit byte (representing a radix r digit) of
tbe processor, where r = zb, r = 10, etc. Thus it is
possible to correct any combination of bit errors

Electrical Engineering Dept.
University of Maryland
College Park, MD 20742

vesulting from errors in any single byte position, that
is, any arbitrary single-digit arithmetic error in the
higher radix r. As a consequence, certain known bit
correcting codes wre seen to be byte correcting as well.
Exauples are included here, aloag with a discussion of
the appltcability of such codes in fault-tolerant com-
puting systems. Sto determine the set of all possible
errors capable of arising from various faults, a careful
and thorough analysis is required, such as the one con=-
ducted by Langdon and Tang [12] fer sdders emploving
carry look-ahead between and within bytes. Their analy-
s$is establishes that the errors in carry look-ahead ad-
ders resulting from single faults are frequently not of
the form !ZJ. Therefore the binary siagle-error-cor-
recting codes are not effective in such cases, cspecially
in byte-per-chip realizations. Here we assume that the
byte adders can be designed in such a way that the
carry-out (look-ahesd) logic circuit is indepcndent of
the rest of the logic (namely, the internal Carry gencra-
tion, sum=bytc logic, etc.). Consequently, sc allow any
crror combination in the sum byte or in the carry-out

but not in both (unless that combination is equivalent

to an error in one or in the other). Specifically, the
byte~c.rrecting codes discussed here are capable of cor-
recting any additive error involving a single digit
(byte) of radix r, of the form arJ, where @ 135 3 positive
or negative additive error of magnitude a = |0|, 0< a<r,
and where) is ths position of the radix r byte processor
in erros, O €3< n. Such errors are characterized as
single arithmetic errors in radix r by Peterson [17) and
have arithmetic (Peterson) seight one, More preciscly,
in adders using radix-complement (or diminished-radix-
complement) arithmetic, = single byte (arithmetic) error

E is defined as an error of modular seight nne [21]1, and
is given by

Es= urJ or m - arJ,

where 0 < | < r, 0 <3J<n, and ms N T Y for
the diminished radix complemcnt case).

11 BYTE-ERROR DETECTION

Error detection techniques arc well known using "AN"
codes (which are nonsystema‘*ic) [4,5,17) and "(N, |N|A)"
residue codes (which are systematic and separate) [1,4,
18,19). Single-byte error detection arises whenever the
base A i3 an integer greater than r that is relativcly
prime to r. Two suitable choices sre r + 1 and r2 = .
Yhen r = 2°, tne check base r - 1 1s also interesting,
particularly for the simplicity of its implementation;
however, in this case not all single by te ervors are de-
tected (e.g., an error changing 0 to 1 - 1 leaves the
residue unchanged), although the mont probable errors {1)
and a very high percentage of all single byte errors arc
detected, Such a residue code is used (with b = 4) in
the JPL STAR computer [3].

-

1 NEAR -PERFECT BYTE-CORRECTING CODES

p Single-error correction in binary adders is attainable

1 with the nonsystematic AN codes first studied Ly DBrown
{5) and Peterson f17), and with the systematic multa-
residue codes studied by Avizienis {1, 2, 4], Rao 118
19, 21] and Garcia, 3Systematic rearrangements of the AN
codes, namely, the systematic gAN codes, have been dis~
cussed by Garner (Y] and by Rao {20}, Extcnsion of the
results of Brown and Peterson to higher radices have
been discussed previously by Rao and Trchan (22), pri-
marily for r = 3. Here we first characterize those opti-
mal AN codes in radix r which are capable of correcting
arbitrary arithmetic errors in a single (radix r) byte.
These byte-correcting codes are obtained by choosing A
of the form (r-1)p, shere p is a prime greater than r
satisfying certain specified conditions. (Theorems of
Peterson snd of Rao and Trehan follow as special cases
for r = 2,) Further theorems ure developed which sid in
deriving suboptimal codes, ana e'ianplu are cited. These
results are immediately applicabie to corresponding
systematic codes with the same r and p: bi-residue codes
(N, lVl o |N|p) in radix r with residues r - 1 and p,
and gAN codes with A = (r-l)p, both of which are there-
fore also byte correcting. interesting byte-correcting
codes also exist for some nonprimes p.

The reader is assumed to be exposcd to the concepts of
arithmetic veight, arithmetic distance, and litear con-
gruences used here; he may wish to refer to Peterson

[(17) or to Massey and Garcia [11) [or background.
Throughout Sections [I! and [V, p denotes a prime greater
than r. The follosing are observed throughout this pa-
per: Gp(p) denotes the cyclic (miltiplicatlve) sub-
group (rJ(l\od p)]. and e, (p) denotes its order; er(p) is
also called the order or exponent of r in the fieid
GF(p); "a” is a nonzero radlx r dlgit, 0 < a<r -1,
i.e., an element of the field; n'\ is its multiplicative
Ilnverse, with aa”! = 1 (mod p). With A = (r-1)p,
Mp(A,3) 18 the maximum number of code words in the radix
r byte-correcting AN code (with arithmetic distance J3).
The error syndrome of a given presumed word in an AN
code 1s the modulo A residue of that word, e.g., O if

it 1s a correct code word AN, since every code word has
residue zero. Thus an error ar), 0 < |a| < r, has the
syndrome ard (mod A). With this background the follos-
ing theorem ls the basic theorem of this paper.

Theorem 1: For any prime p > r, given that p - { does
not exlst 1n tr(p) and that the condltion

-1
(a-rsl)a € Gr(p) for all a, 0<a<r-1 (1)

is satisfied, then er(y)
r -1

A

ur(A,J) = . (2)
Proof is lound in tho Appendix, along wlth proofs of

other theorems. (As an example,
r=8, p=19, a = 2,)
case
(mod
0 to

the reaoer might try
Next wc consid~r the special
when =r (i.e., p=r) ts primitive [1.e., (-rjt

p) generates all elements from 1 to p-l1 for i from
p=2), but when r is not priritive in GF(p). We
know from number theory (e.g., [(19]) that in this

case o,.(p) = (p-1)/2, while ('r)(p-”/z E -] (mod p) snd
r(p'”?z - { (mod p). Thevefore (because of the non-
primltivity of r) -1 does not exist in cr(p), satlsfylng
the flrst part of the hypothesis of Theorem 1. Thls pro-
vides us with the following useful result,

' Ad,

1heorem 2. Given ‘*hat =1, but not v, i1» primitive 1n GH(p)
and that condition (1) 1s »atisfied. then

rlp-1/2 0y
' M (A,3) = ™. A= (r=i)p.
r
Theorems of Peterson (47 | and ot Rao and Frchan (22)
follow by sctting v = 2 and ¢ = 3, respeciively n

3)

Theorem 2, since condition (1) is vatid.
Corollary 3 (Peterson): If -2 but nov 2 s primitive in
h
GF(p), then (1172 _ .
llz(A.:l) = , A= p . (4
Coroiiary 4 (Rao and Trehany: If =3 but not 3 is priai-
tive in GF(p), then Ay
12 a.ap. 5)
lla(A,:l) = —-A—'—-
The sequence of expressions (4) and (3) extends readtly
tor =9,
Theorem 5: If =4 but not 4 is pramitive in GF(p), then
_'(9'1)/2 -1
H‘(A,J) = _A—_' A= Jp (6)

For r > 4, however, the =implicity of (4), (5) and (6)
no longer exists. Condition (1) is no ionger generally
satisfiable, and we must resort to Theorem 2, (When
condition (1) is not satisfied, Theorem 7 below 1s use-
ful.)

Theorcm 2 is thus a generalized form of the Petecison
Theorem whenever =r but not +r is primitive, [ts con-
verse is also true, The full theorems of Peterson and
of Rao and Trehan also cover the case of +r prir tive
for r = 2 and 3, respectively, for which cases p-1 is
s (p-1)/2

+ 1
A .
if and only if +r is primitive in GF(p). Unfortunately,
(7) does not hold for any r > 3, since r-1 cannot dlvide
r(p'l)/z + 1 for any p. A counterpart of Theorem 1 ex-
1sts in this case, however, as follows.

)Ir(A.J) = r=2,3, 7)

Theorem 6: Given that p-1 exists in cr(p), and that uon-
dition (1) is satisfied, then

e (p)/2
M (A3) = T 5 + 1 for r even, {9)
r
e (p)/2
e - + 1 for r odd. (9)
2p

Theorem 2 specifies the cxistence (or nonexistence) of
near-perfect codes in which all possible nonzero syn-
dromes (omitting r-2 multlples of p) are used to correct
the possible byte errors in each of the n = (p-1)/2

bytes of the resulting radix r AN code, The codes covered
by (7) and by Theorem 2 (and its derivatives (4)-(6)) are
the only near-perluct byte-correcting AN codes. (Those
for r = 2 are perfect.,) The hypothcses for Corollary 3 1
and Theorem 5 are true preciscly shen p = 8i-1 and 41-1
are both primes (cf. (21], Theorems 38 and 39). Such
codes therefore exist for r = 4 (as :cl]l as r = 2) when
p=27, 23, 47, 71, 79,... . As further exawples, the
shortest nontrlvial near-perfect c.'es forr= 5, 6, 7,
8, 9, and 10 have p = 11, 19, 31, 71 59, and 31, re-
spectively. The shortest nontrivial .car-perfect code
for r = 16 has p = 503. (Note that p wst be at leaat
2r-1 for a code to be perfect.)

2

¥ NUNPERFECT BYTE-CORRECTING CODES WiTH PRIME P

Yor completeness, the following theorem is included aa
an extension of Rao and Trehan'a [22) Theorem S. it ia
sometimes helpful in generating efficient codea, particu-
larly for r > 4.

Iheorem 7: When condition (1) does mot apply, let J be
the smallest possible poaitive integer such that rJ = ¢
(mod p), where ¢ % (a-rel)a”} (mod p) four aom: a in

0<a<r-), That ia, c ¥ -ga~ , where a = r-l1-a. Then

Ir(A,J) - _A__ .

A useful class of nonperfect bytc-correcting codea is
available when p ia a (Meraenne) prime of the form 29-1,
Correaponding results fo:- nonprimes of this form are
given in the next aection. Reaiduea of thia form are
called "low-coat” by Avizienia [1) because of thc rela-
tive aimplicity of implementation.

d
Lemma 8: leenrnzbnd prime p =2 -1, p>r, it
foilowa that condition (1) ia satisfied.

b d
Theorem 9: For r = 2% and ‘prlloap =2 -1, p>r,

r -1
lr(A,.‘!)- A_ i (10)

Theorem 8 follows from Lemma l‘lnd Theorem 1, The re-
aulting codes correspond to the aingle-bit error cor-
recting bireaidue codes [1, 19) with the given reaidues
=1 and p (prime), which are thua seen to be byte cor-
recting aa well aa bit correcting.

V EXTENSION TO NONPRiMES p

The foregoing theorems all aaaume that p ia a prime.
However, byte-correcting codea in fact exist for many
ronprimea p--although none ia near-perfect. An example
tar=8, p=11°13, AMg(A,3) = 260 . 1, which ariaea
from an extension of Theorem 1. For tow-cost reaiduea,
Theorem 8 is generalized below (with an additional con-
dition) to certatn nonprimes p = 2° - 1. For this caae,
nontrivial codes exiat for every d > 3 other tin 4 and
6, for at lesst some r = 2b3 4.

Theorem 10: With r = 2b and p = 2d = 1(>n, withp

not neceaaarily prime), with ged (r-, p) = 1, and with

A= (r-1)p, et f be the), vgest integer 1 <t <d for

which 2‘ - 1 (also not neceasarily prime) ia a diviaor

of p. Then .-d - P
— iff r <

R faime N SR

A= a consequence of Thcorem 10, some but not ail aingle~
bit error correcting bireaidue codes with reaidues

r=l = 2"-1 and p = A-1 are in fact alao byte correcting,
above and beyond thoae covered by Theorem 9. For pP=
233, for exampie, the code with r = 8 1a byte correcting,
shife the codes with r = 32 and 128 are not (uniess
truncated to about half their length). For P =207 =
23°89, the codes for all r = 2", 1< b < 11, are byte
corrcecting.

If p 1a generalized to
)y d, t,
p=1T1 (2 -l).tlZI, 1)
i=]

some additional aimply implementablc and more efficient
byte-correcting codcs arise, with cachd, > b4, with patir=~
sise nd'ldall one among the d s and b, where each
value of 2 ! - 1 aatisfics r @ -2t -y,
where 2 ! = 1 1a the largeat auch diviaor of 2 ! -1,

Al.

3

1<t < d‘. A simple exsmple of such a bylrcorroctln;
code Pu: r~1= 3, p=dd = 72 (a base 7 residue calcula-
tion!), with AM,(A,3) = 242 - 1. This code is ciose to
near-perfect (c’. Theorem 42 of [23]). (It ia retiated
to the more redundant code with p = 7:127.) Such codea
include certain of the multi-residue codes (1,21, in-
cluding not just those witb prime residuea 291 -)

(t, = 1), Ltut also some with nonprimea. A simple ex-
smple of the latter type has r~1 = 7, p = 31°255, for
which AM (A,3) = 2120 - ;1. (Note tbag the code with

r~1 = 7, p = 15°3]1 has AM_(A,3) = 5:2° + 1, although
the triresidue code has Aa (A,3) = 280 - 1 for the same
A.) Thus the greedy -lgorith- of aimply trying multi-
reaidue codes does chew off various Meraennary codea
that are byte correcting.

Vi SOME POTENTIALLY USEFUL EXAMPLES

Arithmetic coding is of interest fo. sorda of length up
to about 64 (or poasibly 128 for spolicationa auch aa
double preciajon and multiplicatiw), Table 1 1llua-
tratea some byte-correcting codea for r = 4, 8 and 16,
and for r = 10. Vrlues of p, AM (A,3), 1, p. and p_ are
given in the table, with the tolIovln(meaning. The AN
codea for A = (r-1)p can be uaed to encode up to M (A,3)
code sords; DA is the effective bit redundancy required by
A. The given value of n 1a auch that 2" ia the largest
power of two contained in AI,_(A,.‘!) + 1., Thuan - p_is
the effcctive number of binary inforrmation digita in the
AN code.

M the other rsnd, the bi-residue codea sith residues
=1 and p can be uaed to encode up to Alr(A,.‘!) code
worda; g ia the bit redundancy required by these codes.
The given value of n ia thus the effective number of
binary information digits in the bi-residue code. if
ayndromes are cosputed in bi-reaidue fors in both casea,
then correaponding byte errora have identical ayndromes.
(Note that when only one value of Pa and Pg ia given, it
1a the value of botb.) The reaults also apply directly
to the syatematic gAN codea |8, 20), providing a permuted
aubcode of the AN code sith 2""PA code vorda.

Near-perfect codes in the table (derived Zrom Theorema
2 and 3) are indicated with asterisks., The remaining
codea in the table are all derived from Theorem 7, with
the exception of thoae sith r =8, p = 17, and with

r =16, p = 31 (shich arise from Theorems 6 and 9, re-
apectiveiy), and that sith r = 16, p = 73 (which ariacs
from Theorem 1, but which is closely related to a Thcorem
10 code with p = S11, p = 13), Table il aummarizea a
few sclected codea with p givan by (11.) Since ncar-
perfcct codea are aecn to be fairly sparse for

r = 2‘ > 8 and reaaonable n, the codea of the form of
(11) are often competitive in terms of redundancy, be-~
sides having implementation advantagea.

[Values of n for
4 r =4 r=8]|r=16
11 18 - 36 i
2047 22 33 44 t
2”-1 4 s1 68 §
12;1.121 42 -- -
31-127 70 105 140

Table 11. Exampica of single-bytc corrccting arithmetic
codca with aimpie syndrome gcneration.

r =10
n> [AN 0 { AM n e I
= 5 n FA. 8| P Mr n DA' B P L KcE P Aur(,_g)
1
1n 17 1..4, 140 7.8 19 2:10 +7 14] 8,9
L]
16 23¢ 14 ~1]22 |7 29 5-31.2 23 [} 31 16°-1 200 9
41 |58 +2 | 26 9 53 112°16 +3 27{ 10 % 15
" 5 73] 161 3] 1 IO RUNRA I £ I
470 71 [96 |8 53 |6-8%%. 1| 62 9 101 | 14-16!%1 43] 11 19
64 [71e [-1]70 |8 139 | 10+16 7.5 7} 12 107 710 +2|6s| 11
79 | 47178 | 8,9 || 71+] 835-1j105] 9,10] | 263 | 826347 | 139] 12,13
| 503°l 162%1-1 | 1004] 13
Table 1. Summary of byte-correcting srithmetlc codes for various radices and small primes p.

vi ERROR LOCAT10M

1n practice there may be no need for error corvecticn
(sapart from real-time criticalities) if the faulty byte
arncessor can be immediately located and replaced by s
Spere. Alternatively this byte processor could be
removed, with computatiou continuing either with de-
graded precision or slth multiple precision opera-
tions, (Instruction retry sithout replacement may of
course be adequate tf the fault is transtent or tnter-
mittent.) Thus the use of error-locating arithmetic
codes which specify the dyte processor in error might
appear to be very desirsbla. Unfortunately (sith ex-
ceptions noted belos) almost all linear byte-error lo-
csting codes are ctlso byte-error correcting. This fol-
loss {rocm the linearity of the syndrome generation for
errors within s dvte position--shich =rrors therefore
have distinct syndromes. Of course, error-correcting
codes may be used as error-lccating codes. (Partial
error location is discussed in [1,4).)

Error-locating codes that are not error correcting do
in faet exist: outright duplicatioh and comparison has
thir property since the lowest byte position exhibiting
8 discrepancy is the position in error--sssuming that
the arithmetic error »ss confined to a single byte.
(Note that 4uplication of n-bit sords can be considered
8% an AN code in shich A = 2%1.)

Vil MULTIPLE BYTE-ERROR OETECTIO» AND CORRECTION

AN codes for r = 2 are known that arc capable of detect-
ing double errors while corrccting single errors (dis-
tente 4, e.g., for A = 43), or of correcting Jouble
sdjacent errors (e.g., for A = d41)--see (17]). Similar
codes also exist for r > 2, along sith correspondin_
smul ti-residue codes. As an example, comnsider r = d,

P = 109. Using the residues 3 and 109 over 2-bit bytes
results in an AN code with single-byte error correction
plus double-byte error detection with M _(327,4) = 9.
The corresponding bi-residue code has up to AM = 2943
code words, or at least 1! bits of inforration with 9

bits of reduniancy.
IX SOME IMPLEMENTATION CONSIDERATIONS

The codes discussed here
and effectiveness in use

offer considerable flexibility
s1th byte-sliced arilhmetic
unlts (7,24), pcrmitting replacement of fauity byte
processors. The cost of reliably ssitching the spares
does not seem to be excessive (e.g., [19)).
8 eareful comparison remains to he made with altcrnative

Hlovevuer,

schemes involving rcplication, comparison, and diagnosis,
under various system assumptions., In any c¢vent the
total system effect must be considercd in time and in
equipment compleaity. Results of Rao [19) for r = 2

- .

seem to indic. te that about a 100% increase in equipment
(i.e., effecti ely equivalent to duplication of the
arithmetic unit suffices to provide byte-error
correction.

Various arguments concerning the implementation of
arithmecic codes are also relevant here (cf. [1,2,4,7,
18-22), In gcnerrl the effectiveness of arithmetic
coding using arbiirary residues p other than of the form
111) rests heavily on the effectiveness of the residue
calculations, possibly even using analog techniques [6].
The use of low-cost residues p of the form 2d -1, or
more generally of the generalized low-cost residues (11),
simplifics syndrome calculation, ' te however that
various tricks may also be userul, The residue modulo 49
is not needed in the code with r=4 and p=49 unless an
error has actually occurred; single-byte errors are
completely and rapidly detectable by use of the residuc 7
alone. For the code with r=16 and p=73, resldues modulo
73 may be derived from residues modulo 511, since
511=7x73.

Bvte-correcting arithmetic codes also provide byte-error
correction when used in memory, e.g., in a byte-organized
memory [10). As scen below, some of these codes have
redundancy very clase to the Best comparable byte-error
correcting codes for memory [11) given hy Hong and Patel.
Such codes thus have potential for dual use both in
memory (for error correction) and in arithmetic (for
error detection at least, if hot for error correction).
Advantages of such dual use are similar to those in the
JPL-STAR [3]), which uses a (modified) residue 15
error-detecting code. See also 116].

\
For comparison purposes, the redundancies of
byte-correcting codes of various types are summarized in
Table 111. Included are the byte-eorrecting Hong-Patel
codes for remory, denoted by "M" tn the table, and the
following arithmetic codes: the A and gAN codes (denoted
by "»\"), (multi-)residue codes with arbitrary residues
C('R"y, (multi-)residue codes with generalized "low-cost"
residues of the form (11) (denoted by "G"), and those
(multi-)residue codes with low-cost residues, of the form

won

29 -1 (denoted by "L').

The near-perfect AN codes (when they exist) have
redundancy

log, [(r=1)pl,
at most one bit more than that of the byte-correcting

Hong-Patel codes for memory [11], which require a
redundancy of at least the larger of 2b and

logz [(r=1)(n/b) + 1) = lo;z C(r-1)(p~1)/2 + 1)}.

(The Hong-Patel redundancy is actually equal to this
latter nusber in many cases.)

Ar-ithmetic codes need not be near-perfect to be close in
redundancy to the Hong-Patel memory codes. Several
examples of such potential dusl-use srithmetic codes are
worth noting. One case is that with r=4 and with k from
37 to 42. Here 7 bits of redundancy are required for
byte correction in memory (M), while 8 bits suffice for
severa forms of arithmetic byte correction (A, R, G),
€.R., \ @ AN codes with A=7x7]1 and with A=3x79, and the
grmeral.zed low-cost residue code with p=49, (Note that
the Hamming code for single-bit error correction requires
6 bits of redundancy.) Other examples with tnis one-bit-
extra property exist for b=3 with k from 45 to 62 (with 8
bits of redundancy for M, 9 bits for A and R); for b=6
with k up to 42 (with residues 63 and 127 giving p=13,
instead of 12 for byte correction in memory alone); and
for b=1l0 with k up to 110 (with residues 1023 and 2047
giving p=21, instead of 20). In many cases, however, the
arithmetic code redundancy is aignificantly greater than
the memory code redundancy. In such cases the arithmetic
codes may not be suitable for dual use, although they me,
still be applicable for arithmetic alone.

In passing, it is worth noting two oddities for p=31 (a
low-cost residue for nz"), namely the near-perfect codes
with radices r=7 and r=10. The code for r=1 could be
quite effective in a binary-coded decimal machine. It is
also interesting to observe that, due to irregularities
in the existence of good codes with r at least 4, the
redundancies of the residue codes are occasionally less
than the comparable AN codes.
exist in Table III.

Several such examples

A source of complexity arises when a truncated code is
used, e.g., a code of Theorer 7. The implicit truncation
leads to the need for an internal overflow correction,
requiring some increase in circuitry.

The systematic multi-residue codes snd the gAN codes have
advantage: >ver the AN codes due to the visibility of
their informa!'on digits. The multi-residue codes have
the disadvantage that the check digits are not directly
protected by the code as they are in the AN and gAN
codes. Detailed comparison of these approaches is
desirable for byte correction. However, the results here
apply to all these types of arithmetic codes. Another
approach to error correction of iterative errors
resulting from a single fault in high-speed arithmetic is
found in [7]. Further discussion of systems aspects are
found in {15).

X CONCLUSIONS
i

The codes presented here have conziderable potential in
the realization of cost-effective fault-tolerant
computing systems capable of high availability. They
contribute a new approach to the design of byte-sliced
arithmetic processors.

X1 ACKNOWLEDGMENT

The authors are indebted to Karl N. Levitt for various
helpful suggest' ...

1-bit bytea
k M A R G L
16 5 6 H 8 9
24 5 6 7 8 10
32 6 7 8 8 12
48 6 7 8 12 12
64 7 8 9 12 14
2-bit bytes
k M A R G L
16 3 8 ? 8 9
24 6 8 8 8 10
32 6 8 8 £ 12
48 7 8 9 12 14
64 7 8 9 12 14
4=bit bytes

k | A R (4 L
16 8 10 9 9 L]
24 8 1 10 11 1
32 8 11 11 13 D
48 8 12 12 14 16
64 9 12 12 14 16

Table III.
dundancy for byte correctimg codes:
= Mewmory error correctiag
AN, gAN arithmetic error correcting
Multiresidue arithmetic error correcting
R with generalized low-cost reailv-s only
R with low-cost reaiduea omly

. - .

:"ﬂ’>!r

Ad4.5

APPENDLIX: PROOFS OF TH® RESULTS

Proof of Theorex 1l: We prove (2) using the concept thst
sn AN code (with artthmetic distsnce st iesst J in rsdis
r) is single-byte error correcting if distinct errors
have dtstinc! syndromes.® Consider two distimct byte
errors E, = 1rd snd £, = 3rf, wttn 0 < fof < r,

0 < |Bl 2 r, for) ll\s L swong 0, 1,..., or(p) -1,

) # L. Suppose their syndromea sre equsl, which is to
be proven impossible. (Aasume) > £, without losa of
generality.) Then,

1 -2
or‘, S Br (mod A), sid or" a2 f (mod A),

t
f.e., ar 8 8 (wod A), (12)
for t = j-£, some integer smong 1,..., ep(p) - 1. (it
follows from (12) that for thia {

(n't a8 (mod r-1) 13)
and or! =8 (nod p). aq)
From (13) ve hsve tk. a £ 8 (mod r-1), since sz
(mod r=1). There are tao csses. if @ snd 8 hsve the
same sign, then they sre equal. When they sre of oppo-
site sign, choose @ to be positive witliout loss of

generslity, whence
as=f e (r=}). (15)

When @ = B, (1) csnnot be satisfied for smy i, 0 <
t < e.(p), shence the syndromes of sll such distinct

errors must be distinct, ss is to be proved. When
a d B, subatitute (15) in (14), shence n
ar! 5 a-(r-1) (mod p), and (@-re1) @} = ¢! (mod p),
vhich implies that (hy definttion)
(a-rs1) 07} ¢ c . .
This is a contrsdiction of ithe hypothesia (1), implying

that the tso syndromes mun.otpglsunct. Finaliy, if
P-1 ts not in 5 _(p), then r r £ 1 (mod p), the
smallest positive pos~r of r hsving thia property. Thus
the code c-n.l ;*ude sll code words AN up to (hut not
tacluding) r T "= 1, shich has srithmetic weight two. U

Proof of Coroiisry 3: In Theorem 2, set r = 2, wheunce
A = p. We observe that the open intervsl (9,r-1) is
empty, snd therefore (1) is trivislly astisfied. Thua
(4) follows from (3) in Theorem 2.0

Proof of Coroilary 4: Set r = 3 in Theorem 2. {a the
open interval (0, r-i) there is oniy one integer and
that is s = 1, For thst csse (l-rol)l- Recsll
thst -1 does not exist in G (p) (because of the non-
primttivity of r = 3-=-see the text preceding Theorem 2).
Therefore the condttion (1) is ustisfied, snd (5) foi-
lows from (3) in Theorem 2. J

= ={.

Proof of Theorem 5: Set r = 4 in Theorew 2. In the
open intervsl (0, r-i) exist only a = 1 and s = 2, for
which (s-re1)s”) = =(3-8)8"! 13 -2 and

(-1)(- L;l) = L;'l, respectiveiy. Since -1 is not in
G (p) (because of the nonprimitivity of r = 4, as above),
and becsuse 64(p) is identicsl to Gz(p) in this csae
(wvhence -2 but not +2 is primitive), -2 cannot be in

I_ol,(p)

*(The error + fa nsturslly excluded.
shows that otherwtse, and in genersl for other thsn
single errors, it is not neceassry for sll syndrowes

to be dtstinct for correction of s given set of errors.)

Magsey [13)

A4.6

(p=1)/2 csanot be. (If it

G‘(p). For the ssme ressoa,
Thus condition (1) holds, O

were, then -1 would be.)

Proof of Theorem 6: The proof of syndrome uniqueness is
identical to thst of Theorem 1, except thst the ranges
of 1, j snd L sre up to or(p)lz = 1. This is to svoid
sabiguity betseen positively snd negstively signed errors,
since r®r PY2 g 1 (mod »). Consequently the code esn
include sll code words AN up to but not including
(r-1)r2r(P)/2 | (r-1) for even r, snd
e (p)/2

« D)

e)

3)r
the amailes: nonzero radix r representstions of srithme-
tic weigbt two divisible by (r-1)p. O

for odd r,

Proof of Lerms 8: We observe thst since p is (by defint~
tion) s prime, d must be s prime (Cstsldi-Fermat, e.g.,
see [23),p.3). Thus the elements of G_(p) are prectsely
the first d consecutive powvers of 2, since Gr(p) is bere
identicsl to Gz(p). since gcd (,d) = 1. Therefore we
need only prove thst s8.2° 8 s-rs1 (mod 29-1) csanot

occur, Assume thst it csn. Tben
2
ne2t 229 - 2 L a (mod 2%-1)
and s-2b 8 2B -1) + 8 (mcd 29-1). (16)

We note thst on the righthand side of the congruence (16)
we bave an integer less than 2d = 1 whose binsry repre-
aentstion hss two parts, the higher order psrt of vslue
A - and the lower order psrt (b digits) of vslue a.
Alao we note the Hsmming weight of this integer (the
number of ones in the binsry representstion) muat de st
lesst one greater thsn the Hamming weight of 5. On the
other hsnd, the Hamming weight of s°2* (mod zd-l) is the
asme 83 the Hsrming seight of «, for the resson thst the
multiplicstion by s power of 2 modulo z" =1 is in
effect a cyciic .hi’t of a by £ placea and the Hsmming
weight is invar.snt under cyclic ahifts,
the congruence (16) cannot hold. T

Therefore

Proof of Theor:m 9: From Lemma 8, condition (1) of
Theorem 1 is satisfied., Further, the elements of G (p)
sre of the form 2K(k = 0, 1,...d-1), snd p-1i clelrl; is
not in G .(p). Also, since the gcd of b snd d is 1, we
have er(zd-l) = d. Thus (10) foilows from Tbeorem 1. O

Proof of Theorem 10: 1{f r > ;’%, then the tewo errors
{ (1]
"[L' . £ ond * r hsve identical syndromes, vio-

f:;lng error correction. This foilows simply from
rf-1 2 0 (mod r-1) snc¢ rf-1 = (20)®-1 = 0 (wou 2f-1),

vhence A = (r-1p= (r-1)-575y +(27-1), which divides the

difference of the errors,

22— - -1,

in 3 itr< ;}-—l , then theae errors csnnot
a;l.e ss single byte errora. it is readily seen thst
2°-1 csnnot divide s(r'-1) in sny other wsy for 1 < 1 < 4,
snd thus oll single-hyte error syndromes sre distinct. O

REFERF.NCES

1, A. Avizianis, Concurrant Diapnosis of Arithmetic

Processors, Dipast IEFF lst Annual Computa: Lonf., pp.
34-37, Sapt 1967,
containad tharein, notably to 1964-66 JPL raports.

Saa also rafarancas to aarlier work

2, A, Avizianis, Digital fault diagnosis by low cost
arithmetical coding tachniques, Proc, Purdue Cantenn.
Yaar Sywp, Infore. Proc., vol, 1, Lafayatta Ind: Purdue
Univ, Fnp. Exp, Sta., pp. 81-91, April 28-30, 1969,

3. A, Avizienis at al.,, Tha STA" (self-Tasting and
Rapairing) Cowputar: An investigation of tha thaory and
practica of fault-tolerant corputar dasign, IEEF Trans,
Elactr. Comp, C-20, pp, 1312-1321, Nov 1971,

4, A, Avizianis, Arithmetic arror codes: coat and
affactivanaas studias for application in dipital systam
dasign, IEEE Trans.Comp, C-20, pp. 1322-1331, Nov 1971,

5. D.T, Brown, Error datecting and arrcr corracting
binary codas for arithmetic oparstions, IRE Trans,
Flectr. Comp, EC=9, pp. 333-337, Sept 1960,

6. T.L. Cauthan and T.R.N. Rao, Analog techniquas for
residue oparations, Proc, IEEE-TCCA Symp, on Computer
Arithmetic, Univ, Md., Collape Park Md, May 15-16 1972,

7. R, T, Chian and S. J. Hong, Error corraction in high-
spaed arithmetic, IEEF Trans., Cowmp, C-21, pp. 433-438,
May, 1972,

#, R,E, Forbea et al,, A salf-diagnossble corputer, FICC,
pn. 1073-1086, 1965,

9, R.L, Garner, Error codas for arithmetic oparationa,
IEEE Trans, Electr, Comp, EC-15, pp. 763-770, Oct 1966,

10, J. Goldbarg, K, N, Levitt and J, i, Wanslay, An
organization for a highly survivabla memory, Digest 1973
Int. Symp, on Fault-Tolarent Comp., Palo Alto CA, pp.
59-64, Juns 20-22, 1973,

11, S, J. Hong and A, M, Patel, A ganeral class of
maxinal codas for computer applications, IEEE Trans,
Comp, C-21, pp. 1322-31, Dec, 1972,

12, G.G, Langdon and C.K. Tanp, Concurrent arror
datecti.n for proup look-ahead binary adders, IBM
J.Ras,Dev., Sept 1970.

13, I.L. Massay, Survey of rasidue coding for arithmetic
arrors, ICC Bull, vol 3, no. &, Oci 1964,

14, J.L, Massay and O,N, Garcia, Arithmetic codas, (in
Advancas in Cowputing, ad. .J. Tou), Planum Publ,, 1972,

15, P. G, Naumann, J, Goldbarg, K, N, Lavitt and J, I,
Wanslay, A Study of Fault-Tolerant Computing: Final
Raport, Stanford Rasaarc. Instituta, Manlo Park CA. .July

1973,

16, B, Parhami and A, Avizianis, Application of
arithmetic arrnr codea for chacking of mass memoriaa,
Digast 1973 Int. Syrp. on Fault-Tolarant Comp,, Fal~ Alto
CA, pp. 47=-51, June 20-22, 1973,

17, ¥. W, Petarson and k., I, Weldon, .Jr., Error
Corracting Codes (2nd, edition)., MIT Prass, Cambridge,
Msss., 1972, First adition hy Peterson, 1961, valid

altermativa raference,

18. T.R.N., Rao, frror chacking logic for arithmetic type
oparstions of a processor, 1FEE Trans. Flactr. Comp,
C=-17, ppp. 845-B49, Sept 1968,

19, T.R.N, Rao, Rirasidue arror cori- _.ing codas for
computar arithmetic, IEEE Trans. Cowmp, C-19, pp. 398-402,
Hay 1970,

20, T.R.,N, Rao, Frror corraction in addars using syste-
ma’' ‘e subcodas, IEEl Trana.Comp, pp. 254-259, Mar 197

21, T.R.N,Rao and O,N.Garcia, Cvclic and wmultiresidue
codes for arithmetic operations, ILEE Trans, Info. Thaory
c-21, pp. 85-91, Jan 1971,

22, T.R.N, Rao ard A, K, Trahan, Singla arror corractins,
non-binary arithmetic codes, IEEE Trans. Info., Theory
IT-16, pp. 604-60B, Sapt 1970,

23, D, Shanks, Solved and Unsolved Problams in Number
Thaory; vol, 1, Spartan Rooks, Washin~ton DC, 1962,

24, J, J, Stiffler, Tha SERF fault-tolarant co.vputar,
Part I: concaptual design, Digast 1973 Int. Sym.. on
Fault-Tolarant Comp,, Palo Alto CA, pp., 23-26, Jun*
20-22, 1973,

Al,7

BAS1C DISTRIBUTION LIST (69 coples, | each except ss»
noted)

Director, ARPA, Arlington VA 22209 (3 coplea)

Oafanse Documentstion Canter, Alexsndria VA 22314 (12
coplea)

Offlce of Naval Research Code 430C, Arlington VA 22217
2)

Dfficr of
02210

sl Resesrch, Boaton Dffica, Boston, Maas.

Office of Nsvsl Rescsrch, Chicago Office, Chicsgo 111,
6D6DS

Office of Nsval Resesrch, irsadena Office, Paasdens, CA
91101

Director, Navsl Resesrch Lab, Librsry, Code 2029, wWssh DC
20390 (6)

Comnandant of the Msrine Corps, Dr. A, L. Slsfkesky,
Scientiflc Advisor, wash DC 20380

Office of Nsvsl Resesrch, Code 427, Arlington VA 22217

Office of Ksvs] Resesrch, New York Ares Office, New York
NY 10041

ODffice of Navsl Resesrch, Ssn Frsncisco Area Office, Ssn
Frsncisco CA 94102

Uffice of Navsl Resesrch, Contrsct Adminlstrator
Southesstern Ares, Wash DC 20D37

Dr. Paul Richards, Nsvsl Research Lsborstory, Code 7800,
Wssh DC 20390

Dr. Eruce wsid, Nsval Rescsrch Liboratory, Code 5030,
Wash bC 201390 .

Chief of Naval Uperstions Dept, of the Nsvy, Wash DC
20350 (2)

Commsnder, haval Haterisl Command, Dept. of the Nsvy
hash DC 2036D (2)

Commsnder, Navsl Alr Systems Command, Oept, of the Nsvy,
Wssh DC 2D360 (2)

Hr, Ron Entnar, Naval Air Systems Command, Dept. of the
Nsvy, Wssh DC 20360

Comisnder, Nsval Llectronics Systems Command, Uept, of
the Navy, Wash OC 20360 (°)

Commsndar, iisvsl Ordnsnce Systems Command, Uept. of the
Nsvy, Wssh DC 20300 (2)

Commander, Navsl Shlp Systems Cormand, Dept. of the Navy,
Wash DC 20360 (2)

Commsnder, Nsvsl Ship Engineerinp Center, hysttsville MO
U782 (2)

Mr. Gene i, Gleissner, Navsl Ship Research snd
Oevelopment Center, Dept, of Applied Mathemstics,
Bethesds 10 20034

U. S, Nsvsl Drdnance Laborstnry, White Osk, Silver Spring
MO 20910

Nsval Kespons Center, Chins Lske CA

» Naval W

Lsborstory, Oshlgren VA 22448

C
)

br, John B, Slaughter, N¥~val Electronlcs Laborstory
Center, San Olego CA 9.15:

Commanding Dfflcer, Fleet Computer Programuing Centar,
Pacific, Ssn Dlego CA 92147

Coemander, Nsvsl Alr Development Center, Code ALLC,
Wsrminatar PA 18974

Commsnding Ufflcer, Nsvsl Underwater Sound Lsboratory,
New London Conn, 06320

Dr. Lswrence Roberts, 73UAs - ARPA, Arllngton VA 22209
Dr. Robart E. Kshn, 730A8 - ARFA, Arlington VA 22209
Mr., Stephen Crocker, 73UAb = ARPA, Arlington VA 22209

Or. i. R, Herschnar, Dfflce of the Chief, Reaesrch and
bevelopment, U, S, Army, Arllagton VA 2D315

Mr. M. Andrrvs, Alr Force Office of Sclentific Research,
Arilngzon VA 22209

Lt. Col. T. J. Wachowski, Alr Force Ufflce of Sclentlfic
Resesrch, Arlington VA 22209

Katlensl Buresu of Stsndsrds, Wsah DC 20214

Hr. J. Lehnan, Nattonsi Sclience Foundstion, Waah DC
20550

flr, N, Murray, NASA-Lsngley, hampton VA 23365
R. Nelson, HADC, Rome NY 1344]
Mr. J. R. Suttle, USARU, Ourtiam NC 27706

Mr. 0. Brewer, AFAL/AAM Wright-"atterson Air Force bBase,
Ohio 45433

SELECIED ONR CONTRACTORS (9 coples, 1 copy esch)

br. 0, Cssasent, Usrnegie-Mellon Lniv,, Dept. of
flectrical Engineerlng, Pitesburgh PA 15213

Dr. W, Chu, Lniv. of Cslifownis, L. 4., Dept of Computer
Science, Los Anpeles CA 90024

Hr, Roy liunter, John lopkins University Appl. Physics
Lsb, 8621 Georgis Ave, Silver Spring, MU 2091u

Or, 1, Rnohbel, Univ, of 1llinols, Coordlnated Science
Laborstory, Lrbans 111 61801

br. W, J. Poppelbsum, Univ, of 111inois, DIgitsl Computer
Lsborstory, Urbsns 111 61801

Prof, U, A. Rudberg, Hontans Stste Univ,., Electrlcsl
Engineering Uept., Bozaman Mont, 59715

Mr, Rotert Colemsn, Nuvsl Wespons Center, Code 3031,
Chlna Lske CA 93555

Prof. C. M, Allen, Stste Univarsity of New York st
Buffslo, Dept. of Electrical Engineerlng, Buffslo NY
14214

Dr. M. A, Breuer, Univ, of Southern Csllfornla,
Electronic Sciences Laboratory, Los Angeles, CA 90007

ARPA CONTRACTORS (37, | copy each)

¥r. Robert P. Abbott. !awrence Livermore Lebore ry, P,
0. Box 80B, Livermore CA 9455

Profeesor sonethan Allrm, MIT, Cembridge, Masa. U213y

Dr. Roy Amare, Imst .tute for the Future, Menlo Perk, CA
94024

Dr, Robert Balzer, Leiv, Southern Celifornia, Informstion
Sciences Inetitute, Marina Del Ry, CA 90291

Mr. Peul Beran, Cebledete Associetes, Inc., Menlo Perk,
CA 94025

Profeesor Herbert B, Baskin, University of Celifornia,
Berkelsy, CA 94720

Mr. Morton L. Bernstsin, System Development Corporetion,
Sante Monice, CA 90406

Mr. Roland F. Bryan, Computer Syatems Leb, University of
Celifornia, Sente Berbsra, CA 93106

Profeesor Thomas E. Cheethem, Jr,, Harverd Univereity,
Aiken Computetion Lab, Cambridge, Mase, 02138

Dr. Douglas C. Engelbert, SR1, Menlo Park, CA 94U25

Professor Devid C. Lvens, University of Utah, Selt Lake
City Utah 84112

Professor tdwerd A. Feigenbeus, Computer Science
Department, Stanford Universi:v, Stanford, CA 9435

Mr., Jemes W. Forgie, MIT, Lincoln Laboretory, Lexington,
Mass. 02173

Dr, Howard Freak, Netwotk Analysis Corporetion, Glen
Cove, NY 11542

Professor Ldwerd Fredkin, MIT, Project MAC, 545
Technology Square, Cowr!dp, Mass. 02159

Profeesor t. L. Claser, Cese Western Reeerve Univereity,
Clevelend, Ohio 441U6

Dr. Peter Hert, SR1, Menlo Perk, CA 94025

Mr. Fronk Heert, Bolt, Berenek & Newman, Camtridgs, Mase
02138

Lr, Anetol W. Holt, Messachusette Computer Associstes,
Wekafield, Mass. 01880

Professor Leonerd Kleinrock, Computer Science Depertment,
UCLA, Los Angelss CA 90024

Professor Franklin Kuo, Univereity of Heweii, Homolulu,
Haweii 96882

Profeasor J, C. 1, Licklider, N1T, Project NAC, 545
Technolog Square, Cembridge, Maszs, G2139

Dr. Thomas Marill, Computer Corporetion of Americe,
Cambridge, Mass, 02139

Professor John McCerthy, Artificiel letelligence
Laboretory, Stanford University, Stamford, CA 94305

Professor Mervin Minsky, Artificiel Intelligenca
Laboratory, MIT, 545 Technology Square, Cambridge, Mess.
02139

Dr, James G. Mitchall, Xerox PARC, Computer Science
Leboratory, 'elo Alto CA 94304

Profeasor Cherlea E, Molnar, Computer Syatems Laboratory,
Washington Univeraity, St, Louis, MO 63110

Prafeasor Allen Newell, Computer Sceinca, ’enegie-Mellon
Univeraity, Pitteburgh, PA 15213

Dr, Mel Pirtla, NASA/Ames Resesrch Canter, Moffett Pleld,
CA 94035

Professor Willism K, Prett, USC, Lot Angelea, CA 90007

Professor J. A. Robinson, Syrecuse Univeraity, Systems
and lnformation Sciences, Syracuss, N,Y, 13210

Profesaor John Sevegs, Brown Univeraity, Division of
Enginesring, Providenca, Rl 02912

Dr. Jure E, Shoup, Spsech Communicetiona Rezterch
Laboratory, Sente Barbera CA 93109

Frofessor Deniel L. Slotnick, Centsr fo: advancad
Coemputetion, University of 111inoia, Ur.ens, 111, 61801

Profeaaor Themas G. Stockhem, Jr., Computer Scieace,
University of Utah, Selt Laka City, Uteh 84112

vr, Willism k. Sutherlend, Bold, Beranel & Newman,
Cesbridge, Mess, 02138

Mr. Keith W, Uncepher, Luiv, Southarn Californie,
Information Jciences Institute, Merine Del Ray, CA 9u291

CONTRIBUTORS 10 APPENDIX 2 (16 copies, 1 copy sech)
Prof. A, Avizienia, JPL end UCLA

Mr. B. R, Borgerson, U. C. Berkeley, CA

Dr. W, C. Certer, iBM, Yorktown Haighte, NY

Jo L, Delerers, EMD, to=Cloud, Francs

Cept. L. A. Fry, SAMSO, Los Angeles, CA

Prof, A. L. Hopkins, Jr., MIT Draper Lab, Cambricge MA
Mr. L. J. Koczels, North-Americen Rockwell, Anaheim CA
Mr. W, L. Martin, Hughes Alrcreft, Fullerton CA

Mr, J. S. Miller, Intervatrice, Cambridge MA

Mr, S. M. Ornetein, Bolt Berenek & Newman, Cambridge MA
Dr. W. C. Ridgwey 111, Bell Labta, Mediaoa NJ

Prol. J. H. Seltzer, MIT Projert MAC, Cembridge MA
Prof, D, Siewiorek, Carnegi.=Mellon Univ, Pittsburgh PA
Dr, W, Ulrich, Bell Isvs, Neperville, 111,

Pacific Coast Stock Exchenge, San Fran/Los Angeles, CA

R. K, <illiems, Plesesy, Teplow, England

