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ABSTRACT

The present report describes research accomplished during the
first year of the cooperative program aimed at determining the nature
of the seismic radiation from small strike-s1ip earthquakes. Our
activities have been in two areas, to develop and operate four long
period portable stations in the area to be monitored, and to develop
the necessary theoretical framework for the interpretation of the ob-
servational data.

In summary, during the first year contract period we: (1) de-
veloped four, Tow power multi-component Tong period trailer units with
broadband recording capability employing both analog and digital record-
ing capability (7 channels each); (2) upgraded eight existing trailer
units to broadband, analog recording capability to record both long and
short period data; (3) installed and operated a four trailer array in
Bear Valley, California area and successfully recorded two small events
(magnitudes 4 and 3.5) from Bear Valley and numerous teleseismic events;
(4) investigated near and far field radiation from relaxation source
models of earthquakes and extended the theory to a variety of source
geometries and prestress conditions. It was found that the low frequency
behavior of the near field was 1/f, as expected. The low frequency be-
havior of the far field varies between a flat spectrum and a spectrum
decreasing as f2 with decreasing frequency away from a spectral peak,
depending on whether the prestress field is uniform to infinity or con-

centrated in a zone of characteristic dimension equal to a few times the
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fault dimension. Larger, yet finite, prestress zones produce a broad
spectral peak, the spectrum remaining nearly flat with decreasing fre-
quency to a characteristic frequency which is controlled by the dimen-
sion of the prestress zone, below which the spectrum begin: to cncrease
again as f2 for lower frequencies. Within a wavelength or so from

the source the spectrum is dominated by the near field spectral component.
At high frequencies, above the characteristic "peak" or "comer" fre-
quency determined by the rupture length and rupture velocity, the spec-
trum decreases as 1/3.; (5) investigated near field wave propagation

in a layered mediun using the Cagnaird method incorperating various simple
source models and applied the method to the prediction of the field from
several small earthquakes, with reasonal:'e first order agreement with ;

observations; (6) incorporated complex source models (e.g., relaxation

and dislocation types) in surface and body wave (ray theoretic) programs.

Both near and far field source terms are included and these computations

should be accurate in the teleseismic and intermediate distance ranges

(up to a wavelength or two from the source). The programs are being used
to predict My and MS from earthquakes. Preliminary results for my E
VS, MS are in overall agreement with observations. A cutoff my value
is predicted implying that if 1 cps energy is used to calculate L E
then the maximum m for any earthquake, however large, will be about |
7.0, and for "normal" prestress levels of a few hundred bars, the maximum
my will be near 6.0. An M; cutoff value of around 10 to 11 is also

predicted.




I. Introduction

The purpose of the research conducted under this contract is to
determine the detailed nature of the seismic radiation spectrum from
small earthquakes, especially the nature of the long period part of the
spectrum. The objective is to not only verify discrimination criteria
for various types of small earthquakes (e.g., m, vs. M5 criceria) but
to obtain a fundamental understanding of why such criteria woik. This
implies that we must obtain a model for an earthquake that is sophisti-
cated, incorporating the basic physics of the process, and, in addition,
that we must be able to predict the near field wave propagation effects
as well as far field wave propagation in order to interpret the observa-
tions in terms of the earthquake model.

Our work under this contract during the first year has therefore
been divided into: (1) Field operations and instrumental systems fabri-

cation. (2) Investigations of wave propagation theory from complex

seismic sources in the near and far field distance ranges. And (3) Model-

ing of earthquake by numerical and analytical relaxation sources.

In addition, of course, data reduction and interpretation would be
an essential part of our program; however no well recorded earthquake
was obtained during the present contract period, so that no extensive
interpretive work was done. Hopefully we will have the opportunity to
analyze an earthquake from the Bear Valley area during the course of the
next contract period.

In the following sections we discuss our accomplishments in some

detail, with many of the theoretical results incorporated in this report
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prior to publication in order that other program investigatcrs be aware

of the implications of our work in their own investigations.

g II. Field Program and Instrumentation

: Our part of the cooperative field program was to provide record-
ing of the Tong period radiation from small earthquakes in the magnitude
range 3.0 to 5.0. Four systems were to be designed and placed in the

designated field site near Bear Valley, California. In this section we

describe the system design used to achieva broad band recording in the
range from a few cycles out to periods of around 60 seconds, as well as

the field program actually undertaken in cooperation with other investi-

gators,

(1) Instrumental Characteristics of Mark I and Mark II Trailer
Uni ’s

In order to achieve a highly portable and reliable field record-
ing system for long period seismic radiation from small events, we chose
to employ internally recording trailer units, using a relatively short
period seismometer (with adjustable period from 5 to 15 sec) in order to
avoid drift problems associated with lTonger period seismometers. Further-

more, use of the 5 sec seismometer minimizes parasitic effects inherent

in Tong period recording, wherein high frequency puises result in non-
linear response producing long period motion of the recorder. In order

to extend the useful response of the system to Tong periods, we

apply a variety of high frequency filtering followed by amplification of

T S P T & MY PRI et

4 the Tow frequency output using very Tow noise amplifiers.
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Two separate trailer systems are employed in the present program,
both of them are self contained recording systems with thei~ own battery
and/or solar power available if necessary. The newest 'Mark II) units,
constructed under the present program, reccrd both di gitally and in
analog form with a rather wide variety of filter settings
available, resulting in both long period and short period recording capa-
bility. The digital recording is used for ihe long period data, and with
a sample rate oF 2 samples/sec will record seven channels of data for
approximately 8 days before a tape replacement is necessary. Two differ-
ent filter settings can be used, or two different gain levels can be
recorded. The analog recording can be carried on simultaneously and can
be used for either high or low frequency recording (using variable fil-
tering) of the 5 sec seismometer output or it can be used to simultaneously
record data from a different type of seismometer. The analog system
records over a 40 db range.

Since the construction of the new Mark II units was if progress
over much of the current report period, we employed four of our older
(Mark I) trailer units as recorders in the field over this period. We
have eight such units, all of which record on FM magnetic tape and on
film. We modified all eight units to function as broad band systems, and
in particular, when using the 5 sec seismometers, the system response is
very close to the long period response of the Mark II units. These units
will be replaced in the field by the new Mark II systems as they become

available. At this time the Mark II units are complete and are being

field tested, so that replacement should begin soon. (One or two of the
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Mark I units may, however, be left in the field to provide additional
coverage of the monitored site provided we can afford the costs.)

The system response of the Mark I and II portable trailer units
have been obtained by shake-table tests and are given in Figures 1
through 4. Figure 1 shows the pass band and gains available from the
amplifiers used in these systems. Figure 2 gives the amplitude and
phase response for the Mark I systems operating either as broadband
recorders or as "long period" recording systems. To date we have
found that the Mark I systems function exceptionally well as long period
recording systems. In the next section (II-2) we show two small earth-
quakes (mb =4 and m, = 3.5) from the Bear Valley area as examples
of this recording capahility.

Figure 3 shows the system response of the Mark II units with
third order low pass filtering at the various filter settings available.
Curve C, with the filter setting at 20 sec is equivalent to Curve B in
Figure 2 which shows the long period response of the Mark I units. This
response is what we are currently using in the field.

Figure 4 shows the response of two Mark II systems using fourth
order Tow-pass filtering and the available variety of pass bands. Either

the third or fourth order fiTters can be used.

(2) Station Configuration and Events Recorded

Figure 5 shows the configuration of the Bear Valley array along
with a general identification of instruments employed and field program
participants. This array has been completely operational for only the

last 4-5 months and in that period no events occurred within the central

monitored area, nor in fact within the general area enclosed by the most




'.: IIIIHH[ | |Iﬂﬂ” IR ERETHI IIIIHM llll%%
|- o
— Ila =
| -
‘é!O" __:__— \ "g
- = =
= :
: - ~
Q102 = =
> — -
o = =
o - -
w — E—
&5 ' -]
C:.l0'5:—:- —
\ E =]
) (= =
- — —
Ll - -
o)
> — -
Q‘uo“‘-_— =
o. — =
L E -
a — -]
s | -
o
105 — =
— B ) =
3 F—  A-BROAOBAND —
| B-1{0 SECONO TosS SEC., COMPOUNENY 2 ]
.; - C-20 SECOND AMPLIFIER GAIN 2000 7
8 — D-40 SECOND By
Lol ol vl vrgml 1o
4 ! Tel(sec) 10 100
+ [T T T U T i T inn
e 00 = ®  IIb
250 |— 4: —
; A 200 |— %p° —
: 1 150 b~ — 14
3‘ 100 p— — §i
5 '.l o 50 - i
e '? 3 1
© s0}— ) —
; ? 100 — |
] 1 150 p— —
8 STEADY-STATE PHASE
8 358 f RESPONSE _
S A -BROADBANO 8
o 3 250 — B -10 SECOND ( ° -—]
: € ~20 SECOND
4 300 |— 5-40 SECONT —
- v vromd ool ovoyood v ool 1 ;
4 ' 1 Te (sec) 10 100 :

MARK I1 TRAILER SYSTEM SHAKE-TABLE TEST
WITH 3RD OQRDER LOW-PASS FILTERING

Figure 3




OUTPUT-P-P VOLTS/P-Pu GROUND AMFPFL | TUDE

230

200
280
300

10.

: = R R AR A R R PO T liIE:‘_ﬁ
[~ Iic I
107! p— —
= A =
: -
102 =u =
I0'3'—:— .___-
— 4 =
1074 — —
= =
- -
I0’5:—_— —_—
= B . 0 =
™ A ~BROADBAND p—
: B -0 SECOND To *S SEC., COMPONENT 2 .

C-20 SECOND AMPLIFIER GAIN®* 2000
— 0D -40 SECOND -
el el el el o

4 I Telsec) 10 109

T T O A O MR

—

I1d

O T TR

STEADY=-5STATE PHASE
RESPOMNSE

& =BROADBAND

S—

MARK II TRAILER SYSTEM SHAKE-TABLE TEST
WITH 4TH ORDER LOW-PASS FILTERING

— B =10 SECCND —
C=20 SECOND
= 0 ~-40 SECOND —
Lol e o rrod c il 1o
K} | T.(sec) 10 100

Figure 4




'117

extremely separated elements of the array. However, prior to the com-
pletion of the array twc small events occurred which were recorded by
our long period trailers. Even though we cannot analyze these events
using the full array, the recordings provide a demonstration of the
ability of these portable units to adequately record long period
radiation from events in the magnitude range of interest. Figure 6 shows
the two events as recorded by one of the trailer units.

It is felt that the units presently in the field will record
m, = 3.5 events out to the most extreme distance and that the Maric II

units will be somewhat more sensitive.

III. Theoretical Developments

In anticipation of successfully recarding earthquakes in the near
and far field distance ranges during this program we have developad the
theoretical framework for the interpretation of near and far field wave
propagation effects as well as a more comprehensive relaxation source
representation which treats near field effects in detail.

The problems faced in treating the near field of an earthquake are
two-fold. First: An earthquake is a volume source, in that energy is re-
leased from within some finite volume resulting in a net decrease in
stored strain energy within that region; the question then is whether
measurements of the radiation field made withir this source volume will
be fundamentally different than measurements made when outside of it.

In the near field it is quite literally the case that the real source is

distributed in space all around the point of observation instead of being

localized at some point, or on some surface. In this case, the usual
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theoretical treatments of energy radiation, which assume a localized source,
are inadequate, or at least.have implicit in their formulation an assumption
regarding the spatial origins of the energy release which are extremely restrictive.

Thus the problem is to determine the field to be observed at a
point which is within the source itself; in the case of an earthquake,
within the zone of stress relaxation.

The second problem is that conventional "far field" approximations
used in wave propagation theory must be given up and the propagation of
energy in the rather complex medium must be calculated more exactly for
near field observations. Furthermore, interference effects related to
multiple reflections, and hence waveguide phenomena giving rise to
ordinary surface waves, for example, cannot be fully effective in the
near source region since the required constructive or destructive inter-
action of reflected, refracted and diffracted waves will not have completaly
occurred. This means that, in the very near source region, it is
necessary to calculate the field using a Cagniard (or generalized ray
theory) method which takes explicit account of individual generalized
rays and sums them to provide the predicted radiaticn field. Alternatively,
the so-called "leaking mode" theory can be used, or a full numerical
calculation using finite difference or finite element methods.

In addressing ourselves to these problems, we decided in the first
nlace that the problems were such that without special attention devoted
to them, one could not hope to obtain a meaningful interpretation of the
field data to be obtained in this program. Therefore we began investigations
in three separate areas; (1) on the theory of the source in the near field

range for the receiver inside the pPrestress zone as well as outside the zone;

o B b B b i o v
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(2) on the inclusion of cemplex relaxation snurce models in surface
wave propagation programs wherein all near field effects are included;
(3) and on the inclusion of complex source models in the Cagnaird
genralized ray theory, again retaining the near distance radiation

effects from the source. Further, in conjunction with other work related

to earthquake-explosion discrimination, we began systematic investigations
of source characteristics utilizing these theoretical capabilities.

In the following subsections (II-1 threcugh II-3) we summarize,
in some detail, the results of the theoretical investigations. 1Ia
Section IV we give a summary of some of the preliminary results obtained
through applications »f the theory to the discrimination problem,
particularly in terms of source characteristics which lead to

discrimination on the basis of mb vs MS.
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(1) Extensions of Relaxation Source Theory for Near Field Representations

The solution can be expressed in terms of potentials, Archambeau (1972)

obtained (eq. 5-1).

T x /& (XX
o 3y Iy —t+tu
(l)(r t) = - A dt g g dr
Xo Lo 4mv2 ) ot - -—o (1)
a " o r

V(to)

Xq @ F 1...4 represent the three components of rotation and the dilatation.

Va is the appropriate wave velocity, x: are the equilibrium fields appropriate
to a moving boundary I in the medium. V(to) is the volume exterior to I, as a
function of t,s the source time, and L7 is the total rupture time.

For the case of the self similar problem, where I is an expanding spherical
rupture, V(to) is the volume exterior to that sphere.

However for the case of a propagating spherical rupture, we w.11 use an
approximation, necessitated by the lack of symmetry of the problem. In particular,
we shall consider the case of a unilateral rupture and consider a spherical rupture
propagating from the point 0' along the Xgo) axls, with a radius R(to),
and center at d(to) on this axis (Figure 1). Beceuse of theoretical complications

associated with healing phenomena (after rupture), the treatment given in this

report will be confined to the case

aty) < R(e)

More complicated rupture geometries, of greater generality, will be treated

later. However, this '"enveloping" model will show all the essential characteristics

of importance.
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In order to preserve the symmetry of the problem, the volume of
integration V(to) is then defined as the volume exterior to the sphere
B(to) (Figure 1), centered at the hypocenter, and going through the
rupture front. The radius of this sphere is then VRto' This neglects
contributions from inside B(to) but the approximation is justified by the
fact that all of the non-elastic phenomena associated with failure take place
within B(to), and the elastic energy stored inside B(to) can safely be assumed
to be dissipated by these pheuomena.

It is convenient to take Fourier transforms of (1) with respect to t, and then

we have T
"0 . ALK =ik r*
~ m 'lwto DXC! e a
r =
X () 4mV2 € at 95, 4ty (2)
a o o
V(to)
-]‘_ku rk
The function e /r* is the Green's function for the Helmholtz equation

in the infinite domain. 1Its use in equation (2) is an approximation: The
solution given by (2) will satisfy the initial value conditions, but

xa(r,t) will not necessarily satisfv the appropriate boundary conditions

onI for all t. 1In order to satisfy those boundary conditions, one would

have to superpose general solutions of the homogeneous equations and (2). This
additional term would in essence represent the interaction of the dymamic

fields with the boundary I, in other words, the scattered fields. Ignoring
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the scattered fields is equivalent to making the inclusion within I
transparent to incoming waves and can indeed be taken as the definition of
transparency. To model underground explosions, we consider an expanding
sphere of radius R(to), upon which the tractions vanish, center at 0'. The
initial values X: are given by

2

*
Xucgo’to) - (r

(a‘,g:;) cos m ¢ + bga) sin m ¢0)Pl; (cos 60)

m=0

3)
Where the coefficients aég) and bg:) are given by Archambeau (1972, eq. 4.9
and 4.10)
(0)p  _5€0),, (0)
[ 3 0,4 /2 91 /2 /4
5{(1l-0)-6¢ c]
a(® a4 3
2 () " T59) R 30D O /4 (4.1)
0 (0)/2 0(0)/2
0 gg) 0
v (@) 3
= a * R%°(t )
2m °
5[(1-0)- §,,0] 0 0 o{ 14
() - ad
®om (to) u(7-50) R3(to)
(0) (0)
0 2-
/ /4 (4.2)
0 -2 0
0 £ o)

- v (a) 3
b2m R3(to)
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(0)
ij

homogeneous for this case.

where ¢ represents the prestress, chosen to be pure shear and
On the other hand, in the case of a propagating rupture, one has to
take into account the fact that at time to, the failure zone is centered
1 1
on the X3 axis at a distance d(to) from 0 . Using addition theorems for

the Legendre associated functions one gets in that case
2

- L (a) (a)
X:(Eo’to) 3 mZ-O (aZm cos m¢_+ b, * sinm ¢o>

S
= d(t )
2=t
) 2 'éT'('z_-'x%%' [roo ] P;-]+s (cos 8,)
S-

(5)

where the coefficients a(a) (t ) and b(a)(t ) are again given by (4.1) and
2m o 2m * o

(4.2). Note that only the harmonics of degree 2 are present. This is not

the case for non-spherical ruptures.

Therefore we see that (3) is merely a particular case of (5) where
the sum over the index s is reduced to its first term s = 0. (5) is only
valid for r < d(to), however, this is always the case for I, e V(to).

The initial value x*(;o,t ) vanishes like L at r + <, However,

a o r3 )
if only because of the finiteness of the earth, 8nd because the present
oig)can hardly be homogeneous at very large distances from the source,

one may assume that this initial value becomes vanishingly small beyond

a relaxation radius RS. The simplest way to approximate such a behavior
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is to use the initial value given by (3) or (5) in (2), but to truncate
the volume integral in (2) at the radius RS. The volume within R.S will g
be henceforth referred to as the relaxation zone. Two possible geometries
then arise, 1In a first instance, the relaxation zone may be confined

to the vicinity of the failure, so that most observer's points r would lie
outside of it, This is the geometry investigated previously by Archambeau
(1968). Archambeau showed that the error on the energy released is

negligible provided that R, is equal to about five times the fault length

S

do. This case we shall consider as one possible extreme behavior - the

other geometry corresponds to the case where R, may be large and, in the

S

i s i

limit, infinite - observer points then lie within the relaxation zone.
This constitutes another extreme behavior. p
These two extreme behaviors will allow us to place bounds on the

spectral content of the radiation fields, the reality being, of course,

e

between these extremes.

We shall now treat the case of a propagating rupture, with a finite ;
relaxation zone and an observer inside this relaxation zone. This is the
most general case, and the results appropriate to the extreme geometries,
as well as the results for non-propagating ruptures may be deduced easily ¥
thereafter. 3

We first rewrite equation (2) in the form: i

2T T

¥ ) =i | d in 6 de
xa(r,w T ¢, sin 6 do_

a 0
0
* (6)
R -ik r

To 8 dyk a
. dt =i, 2 r2dr
o ato r* o o
0
Rtl:l
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Equation (6) is obviously valid for any of the cases considered above.

shall make use of the usual spherical wave expansions

- . (2)
. k. r Jl(karo) hl (kar)

= = - ik, ) (20+41) B, (cos ) 2) @
) 5,k 0 1w r )

where the upper pair of Bessel functions are to be used when IrI > |« |,
= o

and the lower pair when |r | > |x| > 4 .
=0 = 0

Here

2
. 3 (2=k)! k k
Pg(cos Y) kzo (2 5ko) H | Pl(cos 8) PL(COS eo)

(8)
* cos k(¢-¢o)

We
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22. §a
e
; where Gko is the usual Kronecker delta. We shall also use the integral
3 e
3 relation i
k 27 . :'?
] . cos u¢o 5
Pz(cos Y) P (cos eo) . sin 60 deo d¢o = 2
: o Jo sin ué b
: 9
] 9) :
4 2
3 cos ¢ ¢
4m " o
3 = P (cos g) )
i 22+1 "2 (sin v ) v
i o
*
g Using (7), (8), (9) in (6), inserting (5) for Xq where appropriate, and ]
E splitting the last integral in (6) as '
] R r R
) s s
VR " VR%e T 4
gives © 2
4 - m
RIS D
L"l a 2-2 m=0
2) @) @) ., i
h!L (kar) 2A2m cos m¢ + By Sin m (10) :
s (k r (a) + (Ot) . ',
+ Jz( ’ ) ( 1Cop c€OS mo + D27 sin m
1 .-;
: where the multipole coefficients 2A2m’ 9:B2m’ KCZm’ %DZm’ are given by: 1
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(o)
2A2m (r,w) a;é?) (2=-m)! ki
B(a) b' (a) (2'2)! (Z'm)! Va
2 2m (r,w 2m
(11)
T
0 ~iwt J 2+1
o[ e o g?;. |:R3(to) dg'-z(to)] f <§—o) jz(karo)rg dr0 dt0
’ VRto
(a) .
2%9m (r,w) azsa) (2-m)! kg
) (1=2)! @-m)! V,
(a)
D '(a)
2 2m (r,c.v))JI me J (12
To Rs
=iwt +1
° 9 _ =2 1 (2) 2
f e ° ato [R3(to) d (to)]/ (ro> hy (kmrc,)r0 dr0 dt0
0 .

Y

For the non-propagating rupture, because symmetry is preserved, only the
term £ = 2 survives in (10), (11) and (12).

Despite its symmetry, solution (10) is not particularly convenient
since the multipole coefficients depend on r, the hypocentral distance
of the observer. A more convenient form for computation can be obtazined

by evaluating the integrals in (11) and (12).

i s
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It can be shown (Minster, 1973) that

. 5, (k@) 3, (kb)
./&}ro) D gligr,) wodr, = ==hpie . eLg

=1 -1
a k. b
a ka a
b (2) (2)
- (2+1) (2) 2 By 1(ka)  hyTi(k b)
(r) h (kr)r dr = -
o 2 oo o o -1 -1
k a k b
a o a

Inserting these formulae into (11) and (12) one gets

() ' (@)
ghop (Ts0) 8m (%-m)! ko
(@) o ()T 2-m! v,
SZ,BZ::: (r,w) bszxa) " =

(13)

-iwt Jgoq(kgVot y 3 - (k,r)
. o 39 3 -2 L-1'"0'R79/ - -1'%a
/e TS [R (to) d (to)]
0

- dt
o <ka\.'Rto) (k,r) 2
and
(o)
SLCZm (r,w) a'ztf‘a) L
- (2-m)! _a
D(a) b'(a) (2-2)! (2-m)! Va
2 2m (r,w) 2m (14)
01t ) kr) w?) qr)
“Yo 3 3 %-2 g-1 $a¥) _ By 7 (kR .
¢ e - |R (t ) d (t ) T dt i
ato o o (k r)l-l (kR ) -1 o E
0 a atg ,
One sees immediately that the only integrals left to evaluate are 1
T 3
o -iwt ,j
(1), o o Yoa [ .3 2.2 i
I, (w) . e dto R (to) d (to) dto 5

3
which can be evaluated in closed form (Minster and Archambeau, 1973) and ;

o i bt i e g PP S
s Bl S o e e - 30 L
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To -iwt £=2 i, (kV_t)
(2) % d 3 d-11% R 0 1
I (w) = e T— | RN(t ) d  (t) dt_ ,
[} dt o o -1 0
o k V. t
0 a Ro
for which closed forms can be found, but which is nevertheless best
computed numerically as a finite Fourier transform. 1

We can now combine the r dependent terms in (13) and (14), and make

use in (10) of the Wronskian relation

(2) ) . |
jl(kr) hi_l(kr) - hz (kr) Jz_l(kr) 2.2

This allows us to write the solution in the final form.

;(va(zyw) - Z

2
Z PI;(cos 8) [héz)(kar) (Aé:) cos mp + Bé:) sin mtb)
L=2 m=Q )

i () (@)
+ R (CZm cos mp + Dlm sin m¢>

+ jl(kar) (Eé;) cos mp + Fé;) sin m¢>]

(15)
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where

(a) '
(w) a %
B R ) R e D
(2-2) (2=-m) v, g @
B @] | by
I \
(a) '
(w) a L
m 2m k
- (g-m) ! _a (1)
@0t em: v W
(@) '
\Dlm (w) blm

£ (u) 03 x| G @

(a) ()
FZm (w) D, "(w)
(16)
The analysis proceeds in an identical fashion for the non-propagating

case, by keeping only the ¢ = 2 term. The second term in equation (15) is

a non propagating term; in fact, it represents the creati-n of the initial

value. To see this take the Fourier transform of (5)

) 2 .
"xf:(bm) = Z%) ZO é??;:i;; ls+3 (~(°‘) (w) cos md + bé @) sin m¢)
5= m= ) S

m
' Ps+2(cos 8)
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which by simple redefinition of the indices can be rewritten

© 2
e - 5 5 Heen oy ) (662 com mt 422 e m¢) an
= m:

(kar)

because (15.) gives us the relative field, (measured with respect to
the final equilibrium), one has to subtract (17) from (15) to obtain
the observed radiation field.

We are now in a position to investigate the extreme cases presented
above.

1) If we take RS infinite, then we have immediately

xa(g_,w) = 2 Zo hy (kar) m (w) cos m$ + om (w) sin md
= m=

(18)

. Pz(cos 0)

2) In the case of a limited relaxation zone Rs < r we need only keep

the first term in (10) and change the upper limit of the integral over

r, in (11) to R, - consequently the solution has the same form as (18)

S
and the integral Iéz)(w) appearing in (16) has to be replaced by

T

° _jwt j (ch) j (k,R_)
1’53)(w)=f . °£—[R(:)d (:)][ 1 -1 ]dto
o (kavRto) (kaRS)

0

This is specifically the case investigated by Archambeau (1968).




T T PR e

it S e sk fn ke S A i it R A i i e Sl i

Long period behavior of the spectra

Let us first investigate the long period behavior of Iéz)(w) and

153)(w). It is easy to show that

IéZ)(w) - 11

3.2 R ) a7 2(r)) + 0w for w << 1

T

(3) 12k ° 4 3 -2 2 2
a -
LYW =137 emD f dt_ (R (t,) d (to)) [Rs - (Vpey) ] 4ty
0

o

+ 0(w3) for w <<'1

therefore the following results hold

1) Ry<r
(a) '
= ‘i 2
= (2-m) 1/2 -
= .
g(®) X (2-2)! (2-m)! 1.3....(28+1) V
m 2m
f
o
/ dt ( R7(t ) d (to)> [RS = (Vpt) ] de ¢ 0w ™)
0
for w << 1
(19)
e )w’::ﬂrw;:«:‘_. S e bt i e s e i B e b o . = - ,‘7 : s

28.




S
(a) '
A a
im 2m : R3(T ) dl—Z(T ) kl
= (hom) - 2 © & 4 o™y for w << 1
@) : (=27 (2-m)! 1.3....02F1) ¥
B b o
£m 2m
(20)
furthermore we can write
-ik r [
2) 41 e © -k
By (ke p) = 17T S—— Z (24 1/2, k) (21k 1)
o
0
where
4!
(2 + 1/2,%) = {7700

I. Farfield approximation kar <<1

In this case we approximate the Hankel function by its far field term

-ik r

2+1 e
1 kr
a

(2)
hz (kar)

The spectral shape is then easily obtained, because only the quadrupole term

is importent for long periods.
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for w << 1
O(wz)

—
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This result is the one obtained by Archambeau in previous studies. It implies
that the displacement spectrum exhibits at least one peak. The displacement

spectral density vanishes as w2 at long pericd.

2) Rszm

0(w)

Then [')Za(w) ]
F

[ U(w) ]
F

This gives a spectral shape similar to that suggested by various authors

for w << 1

0(1)

(e.g. Aki, 1970 and Brune, 1970), with a "flat" long period level.

II. Near field behavior

In the near field, the most important term in thc Hankel function is

-ik r
1(20)! e ©

Q!(Zkar)2 kar

héz)(kar) ~ w<<1

from this we get




1) R <x [Ya(“’)]n = 0(w)
w<<1
2 nee el of)

In this case however, the displacement spectrum is worth a more detailed

investigation. We have in general

Lo 2

5 VO(z,w) +5 7 i,
P S

=
-~

where the first term represents the P-wave radiation, and the second the

S-wave radiation. As an example we shall consider in detail, the radial
component of motion.

~ 1 39 2 3 a\

ur(g,w) - ST~ (sin ¢ =g 1 cos ¢ cos ¢/

k rk
P S

+ (sincb cose%-cose%)ﬁz_% 3

o]

Noting that

ah(z) -ik r
i(22)) (442) e w << 1
22 3 k9,+l r9,+2
o
We see that
5 ) oy = o<-1-—> for w << 1
r - 3
w
Similarly

> for w << 1

31.




Such asymptotic behavior would seem to indicate that both P and S waves

carry infinite energy at very long periods. Of course, the reason for

this surprising behavior is that one cannot define P- and S-waves in the
static limit, and that the mathematical separation indicated above is not
physically realized, that is P and § energy overlaps and adds in the long

period limit. 1In particular, we can show analytically that

u (r,w ='ﬁ§p) + uss) = 0(%) for w << 1

The proof is rather tedious but tractable. More importantly, numerical results
exhibit the same behavior to a high degree of accuracy, and this provides a

useful check on the stability and accuracy of numerical calculations.

High frequency behavior

One can show that the asymptotic behavior of the displacement spectra
for all the cases considered in this report is u(y) = 0(1—3) s W > oo,
Numerical calculations also show this asymptotic behgvior. However
the preliminary investigations show that the spectra are quite complicated
at high frequency, due to the significant excitation of higher order
multipoles. The same complexity is present in theoretical radiation patterns
as well. Because analytical investigations become extremely cumbersome
for the intermediate frequency range, one has to rely on numerical parameter

studies to comprehend the nature of the seismic radiation in that range. Such

studies are currently underway.

Summary

We solved the problem of the relaxation of a prestressed elastic medium

due to a propagating rupture for two extreme prestress conditions. The first

one, where the relaxation zone is limited in size, may be used to model the effect {4




of a local concentration of stress. The other one, where an infinite medium
is allowed to relax, models cases of high stress levels on a regional scale,
and is particularly useful in the investigation of near-field effects. On
the basis of these two extremes, one can bracket the long period behavior

of the far field displacement spectrum

0(w?) < [’a]F < 0(1) for w << 1

The lower bound corresponds to the source model previously proposed by
Archambeau (1968), and yields a peaked spectrum. The upper bound gives a
long period spectral shape similar to that proposed by Aki (1970) and
Brune (1970).

The "near field" is defined as that part of the radiation field decaying
with distance as l; , n 2 2., It is reasonable to assume in this case that
the observers lierwithin the relaxation zone. Making this zone infinite
in size, one finds that [G]N = 0 (1/w) for w << 1. This merely expresses
the fact that a net static displacement is to be observed.

Both of the extreme stress conditions yield average slopes of m—3 for
the high frequency end of the spectrum. This fact is critical when one
tries to explain Mb/MS data.

A major effort has been undertaken to add these new theoretical
developments to existing computer programs. Numerical computations constitute
the most efficient method of determining the effects of the different source

parameters on the radiation field and the asymptotic behavior described

above provides an important check on the accuracy of the numerical codes.
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(2) Surface Waves from a General Elastodynamic Source

in a Vertically Inhomogeneous Half-space

As our source in a locally homogeneous region, we take the slightly modified

elastodynamic source form of Archambeau (1968).

® p
2
$s = (-1/k§) = :‘;5 2;0 { Anm cos m$ + Bnm sin m¢$ } P:(cos 8) hr(l )(kor.R)

(1)

-‘51 - (Z/k ) m Z 2 { (j) cos md + Drirjn) sin m¢ } P:(cos ) hr(12) (kBR)

n=0 m=0

where $s and ES j are the Fourier-time transformed compressional and
Cartesian shear potentials (j=1,2 and 3) respectively. In order to express
these potentials in terms of the separable solutions to the Helmholtz

equation in cylindrical coordinates, we use the following relation

(Harkrider and Archambeau, 1973)

2 ) wn [ Ty |2l Jm(kr) kdk
hr(1 )(kvR) P:(cos 8) = -I-E-‘-’—)—- [sgn(h—z)] / Fﬁ {vv/kv } E—Vv_" m (kr)
0
where
_ ~ 2 .2.1/2
v, = krV = (k k%) k < kv
-i(k k2)1/2 k > kv
m _ n/2 . (m)
Pn(E) = 10~E) P (&)
- -2 .m/2 _(m)
P = -0 2 M @)
40
ey = d-p (5

ae”




v is elther o or B, the compression or shear velocity respectively and
(r,z) = (0,h) is the source location.

Making use of this relation, we can rewrite equations (1) as

-ikr Iz—h|
) ZO[ {K cos m$ + B sin mé } Jm(kr) dk (3)
kr8|z-hl
Es f (J) cos md + D (3) sin md)) ——— J_(kr) dk
50 ; g o

where

i -n mtn
Z [sgn(h-—z)] A PP{ v /k
&= nm n o a

o |
]

- ()"

(4)

E(j)
m

> -n min (J)—m
2, G [Sgn(h~z>] Com n { s/“s}
n=m B

otn (j)zm
sgn(h—z)] D i {vB/kB }

. had -n
5 _ E (1)
o n=m

r—

Next we obtain an expression for the cylindrical SV potential,
which is a convenient potential for our cylindrical coordinate system, in
terms of the Cartesian SV potentials given in equation (3). The vertical

displacement integrand, w, of its k integral is related to the compressional

and Cartesian SV potential integrands by

s
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Rkt

oy Ny
= 9% 2 _ 1
vey * %= Ay )

and in terms of the compressional and SV potential integrands by

_ 99 2
w = a—z + kY (6)
which by inspection yields the relation
k2 ox dy
Performing the above operation and comparing with the cylindrical SV
potential
n m -ikr Iz-hl
'117—2 E ¢+ F sinmp § = i J_(kr) dk (8)
ey E o, cos m g Sin m - o (KT
m=0 B
0
we obtain the foll.wing relation between coefficients as derived in
(Harkrider and Archambeau, 1973).
5 =l 82 5 Y _f50) Jmi)
2KE, = ( Cotl ~ Gl Dot * Dp-1
/ l<m<n (9
7 - [ =) -(l)> =(2) _ =(2)
Zka - ( Cm+1 + Cm-l + Dm+1 Dm--l

where

are zero form > nand m < 0

E(j) and B(j)
m

m b

36.
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and in addition
=(2) _ =(1)
o =D

=(1) _  =(2)
€ " == Dy

and

i o AR

F0 = 0.

The cylindrical source potentials given by equations (3) and (8) may
now be substituted into the multilayer formulation of Harkrider (1964). But
first we note that alternating terms in the infinite series in equations (4)

are of opposite sign depending on whether z 1is greater or lesser than h.

We separate the series such that 3

- e =
Am—Am+Am (10)

where the e superscript denotes a new series made up of the terms with
min even and the o, a series formed by terms with m+n odd. A similar

separation is done for the sther source coefficients. The new coefficients

have the following property

A(z > h) = A>(z < h)
(11)
and
K:;<z>h>=—K;<z<h>




Defining

ﬁs c u_ \s
§ " cos mp + § E_s_ sin m¢
m m

Su_ =
m

\’;Is c ‘;]s s
W =61— cos mp + §{ — sin m¢
m (o4 (o4

m m

82 = 80° cos m¢ + 80° sin md
m m m

(12)

§X =681. cos mp + 6T§m

‘s c \'rs s
e cos m¢ + § = sin m¢
m m

sin m¢

(=)
a<:
i
o
<

§Y = 8T° cos md + 615

m Lm Lm sin ud

and comparing our source potential relations with equations (30) and (37)

_;L_“n__Harl_c_rid_er (1964)3 we obtain
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Following Harkrider (1964) we obtain as our integral solution for the

vertical displacement at the surface of our inhomogeneous half-space

n

1\ Ry (Al = Ry, (Bl + R,z
¢, > =Z()/<i_k) oo 12w 138§ (kr) dk (14)

m= e
0
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(Al = | ~(Aggdys S, + (Apg) gy W - (Apg)as 82, + (A39) 4 me]

LI (Ans 42 U~ (gglay &) + (Ad),y 62, - (Ard) 1, me] a5

and

[ (Agg)yy S + (pgdyy W - (o), 82 + (Ar) 11 X ]

(For symbols used without definition here, refer to Harkrider (1964), (1970)
and Harkrider and Flinn (1970).

The matrix ARS as defined in Harkrider (1964) 1is the layer product
matrix which gives the displacement-stress vector assoclated with P-SV motion
at source depth in terms of the surface displacement-stress vector. The
integral solution given by equation (14) 1s also valid for a vertically
inhomogeneous half-space where ARS is the linear transformation of the P-SV
displacement stress vector from the surface down to the source. The only
restriction on this form of the solution is that at some depth the media
is terminated by a homogeneous half-space.

The surface azimuthal displacement due to SH waves is given by

(1) (2) dJ_ (kr)
m
(Vo 2 ° 2/(11() F d(k ) e (16)

where
* *
FL= = (g - A gqup rg
(17)
(1) *® *
Ny = i[(A'L)ZZ = (A .uy rsz][(“xs)n S CTY: ‘SVM]
and

F
(2) _ .
N, = (1) [(ALS 12 %% ~ (A g),, ‘Wm]

L S g e o e
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The ALS is the transfer matrix for the displacement stress vector associated
with SH motion down from the surface to the source depth. AL is the transfer
matrix from the surface down to the depth at which the terminating
homogeneous half-space begins with elastic properties denoted by subscript %.
Evaluating the residue contributions of equations (14) and (16), in

order to obtain the surface displacements due to Rayleigh and Love waves

respectively, yields

e T,o(h) o_(h) w_(h) u_(h)
i RS 8 8 . 8
{wo}= L3 Ay Z {Gum[——‘.‘7 Te J - Gwm[w 7e ]+ sz[_w —]- me[ = ]} .
m=0 o R o R o o

(18)
(2)
H (kr)
where "
R*
12
AR = T 7%F
—£
(=)
w
and
n v_(h) T, (7)1 ey
m s LS m
{vo}= - ;2- éL ;‘6 {GYm[vo ] - va [vo/Ci } dr - (19)
where
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Using equations (13) the solutions can be written as

e e
{wo}s—Qﬂlﬁ‘uAR{KR(D —kLR‘{’ MR(D +"2u———éN‘y } (20)
and
v (h) T () )
. -0
= 211y 8 +1 X | LS~ 21
{v} éL{ [o J re["ochf D
where
*
us(h) 1 os(h)
KR = 7 o | B 7c,
- ws(h) 1 TRS(h)
g ~ [ A *om u 7y (22)
[ w (h) ] (h)
= pc’(y-1) | -8 + ﬁ—]
MR i vy | | wo/CR
* [ %
(h) o_(h)
N, = pC%(Y-1) s -1 2 ]
R L wO . 18 wO/CR
902
-2
c

n
¢ = E (K:l cos mp + E: sin mq;)H:lz) (kr)

n
y® = Z (fe cos mp + Fm ain m¢) y(? (kr)
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and the

n
;

‘.d

m=0

o

(2)

(EéB)e cos mp + 3é3)e sin m¢ ) %%__" (kr)

superscripted variables defined similarly.
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(3) Near Field Wave Propagation in Layered Media using Simple

Diglocation and Explosion Sources.

We begin by first reviewing the treatment of a spherically symmetrical
source followed by the general treatment of dislocation models. Our
approach is to develop the mathematical tools for a very simple model,

an infinite homogeneous medium, that can be usged in treating the "n" layer

model after the application of generalized ray theory. To apply generalized
ray theory we must reduce all sources to simple displacement potentials

of the P, SV, and SH type. This is easily accomplished for symmetric

s Y

sources like explosions but difficult for earthquake sorrces. We will

present such potentials later.

The radial displacement for a simple point source can be expressed in

,i terms of the potential
=9_ -R
’ where
(2) o(R,t) = ¥ &(t - R/V)/R.

R 18 the radial coordinate and V is the velocity., The parameter wo is a
constant with units of volume (assumed to be tnity) and we are assuming a

delta function time history. Taking the Laplace transform of (2) yields

T | SO WS

-5 8

(3) $(R,s) = £ .

Applying the Sommerfeld transformation we can write ¢ in terms of cylindrical

coordinates




4 6 . “'g

JD{kr} e

2 . 8% \1/2
(k +1§'—2)

where k is the horizontal wave number. Next we go from Jo to Ko (modified 4

4y  o(r,z,s) =

0

o i e i B e

Bessel function) using the basic Cagniard-de Hoop notation

k = - i8p .

and

(5)  ¢(x,z,8)

oo
-8 n,|z|
%9 Tm/ Pn; Ko(spr) e v dp
0

(1 2)1/2
yZ~ P :

Now we must take the inverse Laplace transfcrm, in general we will

1}

where nV

be working with Kn(spr) 8o we will allow n to be unspecified for the

moment. Equation (5) can be solved exactly but there are some useful

approximations to discuss. Using the asymptotic expansion (9.7.2 Abramowitz

and Stegun) we have

1/2
[ -X p-1 . (u-1) (u-9)
(6) Kn(x)-<2—x-) e [1+8x + 2 (8%) + ......]

where p = 4n2. The geries converges the fastest for small values of n.

However, assuming n = 2 (the highest order needed in dislocation modeling)

and x = 3 we get

1/2
0w =(3) ¢ [1+smem] .

Thie approximation is 98% accurate.



If we assume large (spr) we have

m 1/2 -8pr
N K (epm) m( o > ¢

and substituting into (5) we obtain

{o
/e ~(pr + nvlzl)s
8) ¢(v,z,8) = (JT—> L Imf—P-e dp
¢ rm /;' ; nv

which can be treated by line source theory.

Pollowing the de Hoop transformation

t=pr+nvz z>0

we obtain

1/2
P R? _ 2 z R
P iz't + (%7‘ t ) ﬁf s t < v
(9) 1/2

2
o I 2 _R z_ .
P iz’t-+i.(t - vz) Z t 2

<|=

The asymptotic solution becomes

(10) ¢(r,2z,t) = \/%%g[}l,—_* Im (?%%)]
t
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If we let sin h = ﬁ'and cos h = % (see diagram below)

source r
-
rh; i.
z 3
. recelver §
we obtain ;
in h R2 L2 h |
. 8in 2 _ cos ;
(1) P - t+1 (t vz R
;
2
and 4
1/2
(12) —_ cos h e I 2 = RZ gin h
v vZ R

Equation (10) is to be evaluated along the contour defined by (9). A

further simplication of (10) can be obtained by making a so called

"first-motion'" approximation. For values of t near R/V, p =~ sinh
and ny = 55%}11 and (10) reduces to

;
|

1 R
(13) o (ry2,t) = R 6<t - V) .

which was the starting equation (2). Note that p = 313 L

(the ray
parameter) in the first-motion approximation. This approximation is

useful for comparing Cagniard solutions of dislocation models with

conventional far-field results.




The exact solution of (5) can be obtained by applying transform

theory. We note that

H(t - pr) cos h (n cosh-l<-§?>)
(14) i [Kn(spr)] = !

(¢t - pn3)t/2

and applying the shift rule

s [e"as f(s)] = F(t-a) H(t-a)

then

H(t ~ pr - g) cosh(n cosh_l(ﬂ))

pPT

-1 -g8
(15) L [K (spr) e .
" I (-2 - pry2) 12

where g = nV 2,

Letrﬂpr+nvz

(t - nz)2 - (pr)2 = {(t-r)(t-1 + 2pr)

And let
) . [ EyE
C(t,p(r)) = cosh{n cosh -

or
t_an= t-'r+pr]
pPT PT

The solution then becomes

5 t C(t"[')

b d 2{‘[’2
(16) ¢(v,z,t) === Im L dr
T At / (t-r)llz Qe g 2pr)llz dr Ny
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The integral for various values of t can be evaluated using the transfor-

mations used by Helmberger (1968).

1 Earthquake sources

In this section we will examine some relatively simple dislocation
models. Starting with Haskell's representation for shear faulting it is
relatively easy to devise the displacements for double couples in an
infinite medium. The solution for a strike-slip fault becomes

- p 3%2A 1 ?3A
W(r,z,w) = K 2 (-5;2- o= ar) sin 28
L

!
~

V(r,z,w) =

2(23%A 1 2A 2 9B
r(? rar)+k83r cos 26

s x| (3%A_12A 2 3B
q(r,z,w) = K ar(ﬁ = ) + kB - sin 26

where W, V and q are the displacements in the vertical, azimuthal and radial
coordinatee. The parameters are

-1w B -1w B
o

B
R R

and




D(w) is the Fourier transform of the time higtory across the fault.

We are assuming an instantaneous motion over a rectangle with dimensions
LH. It is easy to generalize to finite rupture velocity by adding the
moving source directivity (see Mikumo, 1972). We will add such features
later along with multiple sources as well. Our approach is to compute and
understand the three basic faults, strike-glip, dip-slip and 45° dip

slip. Burridge and Knopoff (1964) show that a linear combination of these
three solutions will represent any fault orientation. We will treat the
strike-slip dislocation as an example although any motion can be

handled using our approach.

Next, we breakdown these displacements in terms of potentials,

After some effort the potentials become

o0

- K / kzFa Jo(kr) sin 26 dk

0

o0

— 2
= K &= [ Fy Ja(kr) sin 26 dk

@

K kg FB Jo(kxr) cos 26 dk
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where

-(kz—K%)llzlz]

k e

(19) F_ = s K%)l/Z

We are concerned with the evaluation of the integrals in (18), so

we need only consider the field variable:

(20) t(r,z,w) :—'/FV J,(kr) dk .

0
Changing variables

w = -1s and k = - isp

we obtain

m

{o
_ 9 -8nyz
(21) t(r,z,s) = =g Im %—Kz(spr) e dp
\)

0

1/2
[ i._ 2
nv '\TZP

Equation (21) is almost identical to (5) of the previous section and

where

can be solved following the same technique. Since K, decays slower than

KO we know that z will develop a tail. That is, the polarity of the second
term of the series given in equation (6) is negative for n = 0 and

positive for n = 2 indicating a long period enhancement. Suppose we

express ¢ 1n a series

=1L +17p+z;3

s el et




where the z's indicate the various terms in this expansion;

/p d 1
J, = Im [ 2SR —_
1 <ﬂvdt)/2—r
(22)
15\ 2 1
£ = <8_)?[7t-* Jz(t)]
JZ-Im ﬁgﬂ.l_ 1
nydt e ] oy
and

t3 = ?11% <%)jdt[$‘g* J3(t)

/pdpl 1
J3 = Im ( Ny dt p2 1/2

(2r%)

This series can be Teadily cvaluated and is applicable for all periods

such that

2nr
3V

T <

For small distances and long periods we must use expressions similar to
(16). Before generalizing to a layered half space we will consider the

first-motion approximations of the equations given by (18). First we note

that

LT =101 = % s(t - %) where

bl 1o




R R

- sinh and - cosit
v Wy =¥

» as indicated from the first section. - We

can then write

R
§(t - =)
¢(r,z,8) = + HZ%%Eégl (szpz) L ['—__ifil'] sin 26

(23) 5 9
B<(LHD )
B,z ) = 2 ) ( sinh ) H(t-R/B) sin 2
o R
4
assuming D(s) = Do/S’ that is we assume a step function time history of

the displacement across the fault. The moment is just p(LHD ).
0

Similarly,
82 (LHD )
0 o] 1 H(t-R/V) "
(24) x(r,e,t) = - ——Z;———“ '(Eg> ——_E———_ cos 20
It is convenient to define a new potential @1 = %-E- which reduces to
B2 (LHD )
0 0 cos h H(t-R/B
(25) wl(r,Z,t) = - 4_” ( Bé > ( R / ) Sin. 26
cos h
where we used nB = g .

These first-motion approximations can be compared with the results
of geometrical ray theory by computing the displacement due to P and SV and

SH waves where 4

(26) T = (W2 +q2)"



(27)

(28) USH = VX

For example, note that the operations can be written

-

\
11 [%; t(r,z,s) - L_l((SP)C)

-1 3 ] -1
L [3; C(r,Z,S) - L [SHVC:I

and using the definitions (17) we have

LHD g
- L2 o) [ sin‘h §(t-R/a)
Up(r,z,r) Bo( T )( 23 ) R sin 26

g2 LHDo R(h,6) &(t-R/a)
aZ 2ma R

sin?h sin 20
2

where

R(h,8) =

This is the far-field expression for the field given by 3en-Mcnahcm,
Smith aud Teng (1965).

The form of the solution to use is dictated by the value of r, the
source time history and the model response. It would appear that all three
golutions, exact integral evaluation given by (16), the power series
development (22), and the first-motion approximation, have domains of
interest. We are primarily interested in the first two, especially the

power seriecs solution for application to the ncar ficld radiation ficld

obscrvations.
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Generalization to layered half space

Using the method of generalized rays we can construct solutions
by the same technique as used for the case of no azimuthal dependence.
f‘ We will not list all the expressions here but we will work out the
equations for the ¢-potential as an example. For an incident P-wave

at the free surface we have

f - 2
¢(r,z,0,s) = Mo(;r—> Im f p? Fa(r) G¢(Z) sin 20 dp
where
-snalzol -sn 2
G (z) = e + R e
¢( ) PP
= P
F (r) n K> (spr)

and the time history across the fault is assumed to be a step function
in digsplacement. The sources is situated at z There will also be a

converted SV wave which can be written

vi(r,z,0,8) = M()(%—) 1m[p2<Fa(r)Gw(z) sin 29) dp

where

If one substitutes these equations into the stress equation, the zero
stress conditions at the boundary are satisfied. The vertical displacement

becomes
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1
W¢(r,z,6,s) =M ﬂg s Im/ p*> M(a) RPZ sin 20 dp

o
0
where
= B 2
M(v) Ny [ K, (spr) + - Kz(spr)]
and
by 2n, (n‘é - p?)
R 82 R(p)
with

X 2 _ .2 + 2
R(p) (nB p°) 4 p nNge

R(p) is just the Rayleigh denominator. The radial displacement produced

vy the ¢ potential becomes

1(0
Ed’(r’z’e’s) = MO(%)S Tm/ (p2) M(a) RPR sin 26 (lp
0
where

4 pn n

o B

RPR = ————0—,
82R(p)

There will also be a tangent.al component generated by this ¢ potential

since it contains a '"8" dependence,

[+

T = 2\1 2
V¢(r,z,8,s) = Mo(ﬂ)r Im (p°) RPT (2 cos 26) Ma(r) dp

0
where

T =1+ - Bn, R
RPT = 1 Rup Bn

B pS*

e o sl s e g T
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The reflection coefficients Rpp and Rpg are given in Helmberger (1968).
The various receiver functions RPZ, RPR and RPT all contain the Rayleigh
denominator and thus there will be a Rayleigh wave propagating along

with motion in all three coordinates. These solutions can be transformed

back to the time domain by breaking the solution into far and near fields

denoted WF; and WN¢ »etc. Applying the theory developed in previous

; scections we obtain

t
= 23 2 )
Wﬁﬁ(r,z,s,t) = Mo B (p°) RPZ N(1l,t,t) dT sin 26

3 where

-1
N(n,7,t) = cosh (.1 cosh (t=1 + pr)/pr))
(t:-r)ll2 (t-1 + 2pr)1/2

and for the near field we obtain

t
- 2 2y( 2 rpz si
WN¢(r,z,O,t) = Mo(n) Tm[ (p )<pr) RPZ sin 26 N(2,t,t) dT.

It is useful to examine the high frequency solution by expanding M(V)

n 2spr 2spr

5
M(V) = B= L e SPT ( 1l + —— + H.O.)
v

Let

w¢(r,z,6,t) ~ (wl¢(r,z,t) +'w2¢(r,z,t)) sin 280

bt B AR TR it i il e e, Tt 20 2



and

29 1 1
1 = Lo | A
wt (r,z,t) M JW
¢ omaJdt /E ¢
where
lecb =Im[J1 p? RPZ]
and
Jl.___/E(_qB) 1
na dt /2_1‘
The second term is simply
We (r,z,t) = M < L. Jw?2
¢ o Vry )
where
JW2 = (Jw!l) 2 .
0 ) 2pr

The interpretation of these equations is relatively simple. If
one neglects p2 RPZ in JWé , we obtain for Wl¢ a delta function time
response multiplied by the source strength Mo and divided by the

distance traveled, The time function is the derivative of the source

time function. The p? factor is a source correction for take-off angle as

mentioned earlier. The RPZ function is equal to 2 at vertical incidence,

which is the plane wave surface effect (Knopoff, Fredericks, Gangi and

Porter (1957)), This function yiclds the Rayleigh wave at p = l;u where
R
VR is the Rayleigh velocity. The time function will look like the

derivative of a Gaussian function. The second term W’ will also

¢

contain a Rayleigh wave but will appear as a Gaussian and decay

1/r faster.
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The displacements produced by the other potentials X and ¥ can be
computed following the same procedure. A complete presentation in matrix
form will be given later. To generalize to " layers we need only apply

the concepts of generalized reflections and transmission coefficients.
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IV. Summary of Theoretical Source Predictions: Implications for
Discrimination of Earthquakes and Explosions

In this section the preliminary applications of the theoretical results
of section III are summarized in terms of theilr relevance to discrimination
of earthquakes and explosions. Additional work under a separate program
(AFOSR Contract F44620-72-C-0078, Seismic Phenomena Connected with Earthquakes
and Explosions) aimed at a systematic modeling of both earthquakes and
explosions for purposes of defining and understanding discrimination criteria
is also underway and to some extent the work reported in this section
overlaps work under this second program. However, the work here is distinct
in the sense that we have concentrated on the near field and the more complex
problems related to observations in this range while in the former program
we are mainly concerned with the far field "teleseismic" radiation. Nevertheless
our investigations of the near field and the attempt to incorporate complex
source models within the various wave propagation programs for studies in the

near field range have resulted in a more complete understanding of

earthquake radiation and the underlying basis for discrimination.

3
4
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In particular, theoretical methods were devised which enabled us to express the

complicated source models of Section ITI-1. above as equivalent point (multipolar)

sources. (These methods apply to both analytical source models and numerical
source models.) The approach was first utilized to combine explosive ¢ource
models and the tectonic release effects together, and then to incorporatc
this composite source into a wave propagation program for both surface and
body waves (ray theoretic approximation) so that we are able to predict the

e

teleseismic radiation of first and later arrival body waves (including surface

reflections) and Love and Rayleigh surface waves at any point in or on the
earth. The same procedure was followed for eartiijuske gources in the present
program, wherein a variety of complex relaxation source models arc included
and for which the teleseismic radiation fields of body waves and surfacc
waves can be predicted at any spatial point and in either the frequency or
time domains. The very near field wave propagation is handlid using the

Cagniard method. This approach gives results directly in the time domain.

L e gy e



Spectra can also be obtained from these results.

Using this predictive capability, we began a systematic investigation
of the radiation fields from the variety of source representations
described in Section III in order to determine the spectral
characteristics of tecleseismic signals from these sources and to comparc

these spectral predictions with observations. Our purpose was to obtain il

best model (or model series) for earthquakes using data from events in ~oiion .

environments. Sccondly, we wanted to determine the spectral detail: .
number of particular seismic phases, in particular, the first arrivinc

pP phases (separately and combined) and the Love and Rayleigh surfacc w.ve

for these '"best" models. Some of the more important results were as ‘¢ i.. -:

(a) Earthquakes appear to be reasonably well modeled by relaxation
source models in that, of the rather incomplete set of spectral
observations made, we can obtain a reasonable fit to any of the
data. In particular, either flat appearing or strongly peaked
appearing spectra can be fit by the model by choice of a larger
prestrained region or small prestrained region relative to the
failure or fault zone dimension, so that quite different looking
spectral observations can be fit by the same basic model. Indecd,
the model actually predicts that a rather wide range of possibilities
for the radiation field spectra are to be recasonably expected. How-
ever, we will have to wait for additional data to be sure that this
range is actually met in nature; we will conclude thai earthquakes
within this predicted range are possible only if we are sure the

model is in close agreement with a wide range of data.
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(b) The P and S wave displacement spectra predicted by relaxation
sources and partially verified by observations, are such that the P
and S wave spectra have characteristic frequencies fz and fg which
effectively divide the spectra into high and low frequency parts.
The characteristic (i.e., corner or peak) frequencies are somei, .
azimuth dependent and fg < fg generally, although this relation:..::
can be reversed in some azimuths. The behavior at high frequency
f> fg (or fg) is such that the average amplitude of the spectrux
decreases rapldly from a maximum level at fg(fg) reaching a mean
slope proportional to l/f3 for £ >> fg(fi). Superposed on this
average behavior are secondary maxima and minima that are due to
rupture propagation effects resulting in constructive and destructive
inference. At low frequencies f < fg(fé) the spectrum is even more
complex in that both near and far field effects are present, and
spectral shapes at long periods depend on the distance of the obser-
vation point frem the source. The near field effects are dominated
by terms which behave as 1/f at low frequency and this term can
dominate within the entire range f < fg(fé) at near source distances.
At larger distances,the far field terms, having different distance
dependence, dominate and the spectral behavior of this far field
component is dependent on the dimensions of the prestress reglon.

In particular, the spectrum is flat to zero frequency if the pre-
stress region is taken to be infinite (which is impossible in the
earth, of course), and decreases for f << fg(fg) for the prestress

region finite with a slope of f2 for f small. TFor a small prestress
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zone (prestressed zone dimension comparable to the rupture dimension)

the spectrum is strongly peaked at fg(fg) decreasing immediately
toward the lower frequency end of the spectrum with the f2 glope
while for a larger prestress zone dimension, the peak broadens and
as tihe prestress zone increases the peak continuously broadens
being essentially flat until a frequency near féR(féS) where it
begins to decrease again with the f2 slope. 1In general, the S wavc
spectra (either SV or SH) are from 5 to 10 times larger in magnitude
than the P wave spectra and shifted somewhat to lower frequency but
otherwise of gimilar overall shape.

(c) The spectral characteristics discussed in (b) above have been

found, theoretically, to scale in a simple way. That is,a complete

far field gpectrum for an earthquake model, with failure parameters

specified in terms of prestress magnitude and orientation 0(9),fau1t

or failure zone dimension I, rupture velocity VR’ intrinsic material
velocities VP and VS’ and relaxation zone or initial prestress zonc
"characteristic dimension" Ry; can be scaled to yield the spocir.-
for any sized earthquake of similar type. These scaling laws . ..
to be in at least rough agreement with observations. The scaling

law 1is as follows:

(1) The characteristic frequency for P waves:
P -1
£oo (L/Vp)

In fact,fz is essentially equal to VR/L except that it varies

somewhat with azimuth.
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The characteristic frequency for S waves:
S -1
fCa (VS/VP) (L/VR)

Again fz is very nearly equal to this quantity except for
azimuthal variations which are somewhat larger than thosc ior

the P wave radiation (e.g. fz can be larger than fz at some

azimuths).

(2) The spectral amplitude Iupl scales with rupture dimension

L as:

li | o3
p

Similarly for S waves:

i | o g
s

The shape of the spectrum is not altered with changes in L,

holding all other parameters fixed. (Note, however, that as

L changes both fz and fg shift.)

(3) The spectral amplitudes scale directly with the prestress

(or prestrain, eig) more properly), so:

~

and |& | a |e
s

15 ] o 9]
p 1]

(O)I
1j
(4) The width of the spectral peak (or flat portion of thu

spectrum which begins at fz (or fg for S waves) is controlled

1 1
by RS. The frequency fCP (fCS) at which the spectrum falls off

with decreasing f (as f2) scales as:




- op -1
fq a(RS/VR)

'S -1
£ (Vg /V,) (R /VL)

Thercfore the spectral width of the peak (the flat portioan of Cuc
P 'p S 'S

spectrum is AfP = f,-f, or AfS = f. - £f.". Again the [requencies

c C C C
E;P and fé appear to be nearly equal to the expressions given
above (the factor of proportionality is nearly unity but varies
with azimuth somewhat).
(d) The radiation patterns for P and S waves correspond to superposcd
multipole patterns, but the quadrupole is dominant at all frequencies
(double couple force equivalent). However, at high frequencies the
higher order multipoles became significant and the resulting obscrved
patterns are distorted quadrupole (4 lobe) patterns, usually with
high amplitudes in the direction of rupture propagation. These high
frequency effects are due to rupture propagation (moving source
effects). The patturns are nearly pure quadrupole at frequencies

P S
less than fc and fc.

In view of the previously summarized results, we considered the

implications of these source properties insofar as discrimination was

concerned. The discririnates considered in some detail so far were m Vi

MS, and P wave spectral shapes. The m - MS results for earthquake can be

summarized as follows:

(a) my and Ms were estimated using the log of the P wave amplitude at
1 cps for o and the log of the SV amplitude at .05 cps for Ms. One

standard event was computed and the scaling laws previously described

A o g
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were used to obtain results for larger and smaller events. (Tuis
will be replaced later by actual time domain measurements usin
synthetic seismoprams generated from the spectra, and employing
the actual field procedurc followed in obtaining m and Ms). ror

carthquakes the m_ vs. MS curve had a one to one slope at low

magnitudes. Because of the expected variaticns in prestress .l

dimensions of the zone ¢l prastress we actually obtain a band i:

el Al L sl u e n 2

: the mo- Ms plane within which earthquakes should occur. Tiic b.uc

width is about one unit on the (vertical) Ms scale., The band ihicn

has the 45 degree slope in the mo= Ms plane. Turther at m
magnitudes which appear to correspond to from 5+ to 6.5+, the curve
quite abruptly becomes vertical indicating a maximum m of around
6.5. Larger fault lengths involving larger earthquakes will not

give m_ any larger than about 6.5. But witia very high prestress

of the order of kilobars, this maximum m could be as high as 7. “ic
curve (or band more properly) continues upward until at around Ms of
11, it terminates. (No earthquake, however great in length, would

have a larger MS than 11, for Ms measured in this way.) The fault

lengths corresponding to the critical points for earthquake ™ VS, Ms
are near 10 km (for the m cutoff) and near 900 km (for the MS and m
cutoff or termination point). The earthquake population should lic in

o band of one magnitude unit (roughly) and this arises from the possible
variations among earthquakes of the rupture velocity, the prestress,

and dimension of the prestress zone.
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