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CONSERVING CONFLUENCE CURBS ILL-CONDITION 

W. Kahan 

Abstract.  Certain problems are ill-conditioned, in the sense that 

their solutions are hypersensitive to small changes in data, only 

because a slight change in data could cauee thoce solutions to 

exhibit singular behaviour associated with various kinds of 

confluence.  For example, an over- or under-determined linear 

system solved by least-squares can be ill-conditionec. only if 

there exist some small perturbations to its matrix which increase 

its nullity (i.e. diminish its rank); zeros of a polynomial can 

be ill-conditioned only if their multiplicities can be inc:eased 

by very small perturbations of the polynomial's coefficients; 

eigenvalues of a non-Hermitian matrix can be ill-conditioned only 

if their algebraic multiplicities can be increased by very small 

perturbations of the mazrix. When perturbations constrained to 

a small neighbourhood can be further constrained to maximize 

confluence, i.e. to maximize nullity (minimize rank) or maximize 

multiplicity, and when that maximized confluence can be increased 

again only by perturbations far beyond the small neighbourhood, 

then the slightly perturbed problems exhibit well-conditioned 

confluent solutions. Beyond these vague statements lie the 

shadows of numerical methods which may either eliminate ill- 

condition or, when ill-condition is persistent, illuminate its 

cause. 
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CONSFRVTNG CONFLUENCE CURBS ILL-CONDITION 

W4 Kahan 

"Mother may I go to swim?" 
"Yes, ray darling daughter; 
Hang your clothes on yon tree limb, 
But don't go near  the water." 

Introduction.  Numerical calculations generally appear in the form 

Compute y  - f(x) 

where / characterizes a class; of problems and x represents 

the particular data. Commonly / is defined implicitly by a 

set oi equations whose coefficients' values constitute x, and 

y    is the solution of those equation». The equations are called 

ili-conditicnea  whenever there exist tiny perturbations 6x 

which cause huge changes 6y  = f(z + 6x)  - fix).    To make this 

notion more precise we imagine x    and y     to reside in metric 

spaces — normed linear spaces are customary — and define a 

condition number 

y  = sup (Syl/fl&eJ 

w.iere the suoremum is taken over all 6x in some neighbourhood 

of x.    Thus, the condition number y    is a Lipschitz  constant; 

1 f(x+6x) - fix) | <_yl6xft.    The larger is Y» the more ill-condi- 

t.'or.eo is the problem / near x.    When y    is infinite we 

sometimes say that f    is ill-poeed near x,    though this term 

is reserved bv some for discontinuous behaviour. 

i -i i-.«ttiir'--""-"-*— 
in imiiiiiiM liiliinnMlWiii mm ... *-.—u— iiitüntnmaiiMi ill  Mb 
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Non~differentiable functions f are so rarely encountered 

in practice that we might as well exploit the simplification 

afforded by constraining perturbations 6x to infinitesimal 

neighbourhoods  Now 

f(x+6x)  - fix)  - (3//3x)6x 

wherever the brechet derivative 9//3x exists, in which case 

Y - !i 3/73x1  ; 

here ve use the induced norm for 1 ..near operators between two 

normed linear spaces. 

Since d//3x is usually differentiable too, it seems natural 

to guess that an i- i-conditioned problem, with l!3,f/3xl huge, 

probably has its data x rear a place where 3f/?„:  becomes 

infinite or fails to exist. The locus of all such places Its 

usually a manifold in x's space, and that manifold is the sub- 

ject of uhis paper. Here are three examples: 

When f    represents solving a system of linear equations 

Ay  ■ b    with square matrix A,     so each point x    in data-space 

has coordinates (A,b) , and when the infinitesimal neighbourhoods 

are g3nerated by all infinitesimal (6A,6b)    without constraint, 

then the manifold where 3f/3x becomes infinite consists of 

just those points x ~ (A,b)    with singular A    since elsewhere 

y  - A    b    varies by 6y  - A~ &b - A~   (6A)A~ b,    a bounded linear 

function of the infinicesiual perturbation 5r - (&A,6h).    When 

f    represents solving polynomial equations 

n n-1 n-'l u   -xxy       -x%y c    ,y - x    - 0 

i^^^aMJMttäflitttaai—i ■ —'^-»-'*'>H*"a»*^™^""'-»" ■ ~-^~ i twtititft*- - — aatMMMMBaMma—iMata 
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so each point    x -  (x~ ,x~,...,x j    in data-space is identified 
1 2     n 

with a polynomial xfj/j ■ j/ - K * •£ ♦ t^e manifold where 

df/'dx become1? infinite consists of just those polynomials x 

with some multiple zeros since elsewhere each simple zero y    of 

x    varies by 6y  » J' y ' 36x Jx'(y).    A similar situation arises 
"1     j 

when /" represents solving eigenproblens for equare matrices 

X;     the eigenvalues and eigenvectors are well-known to be 

differentiable functions of ^'s elements only when X's  eigen- 

values are distinct, so the manifold of interest consists of 

those matrices X    with some multiple eigenvalues. 

One might be tempted to assign some pejorative adjective to 

that manifold on which df/dx    fails to be finite.  (There are 

precedents; in 1884 Sylvester assigned the word derogatory  to 

certain matrices with multiple eigenvalues, and physicists 

almost universally apply the epithet degenerate  to eigenvalues 

whosfc only flaw is their indistinguishability.)  In so far as 

f    is ill-behaved near  that manifold, the nore so as it is 

* 
approached, the manifold warrants the name pejorative  . But 

in the last two examples above / will be found to behave very 

well on  the manifold, except as x    approaches certain sub-tnar.i- 

foiJs. More precisely, for almost ail x    ov.  the pejorative 

manifold and for all infinitesimally nearby x+6x    also on that 

manifold the difference f(x+6x) - f(x)    is a bounded linear func- 

tion of 6x, and the bound variep with x    on the manifold in 

such a way that the bound can approach infinity only as x 

approaches some doubly pejorative, sub-manifold on which the same 

kind, of behaviour recurs. That phenomenon is what this paper it« 

about 

Pejorative: from the Latin pcjorare  to make worse, 

yjginaaaM»«* i ma^usutätmm aaaaaiM8at«MMBa«ui tJUMM*-"--**" i •■«*»•«»«*- 
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The paradox, that / can be well-behaved on a manifold in 

every open neighbourhood of which f    is arbitrarily ill-behaved, 

would be uninteresting but for another property of such pejorative 

manifolds; they can be characterized ostensibly independently of 

/'s good or ill behaviour.  For want of a better term I use the 

word confluence  to describe what happens to / on those manifolds. 

When f    represents zeros of polynomials or eigenvalues of matrices 

the confluence is obvious; some zeros flow t<.?,etber as a polynomial 

x approaches a pejorative manifold; some eigenvalues flow 

together as a matrix X    approaches a pejorative manifold. 

Confluence in a linear system is identified with collapse of the 

range of its matrix as it approaches a pejorative manifold; this 

manifold In matrix-space is the locus of discontinuities (drops) 

in the rank function. 

Pejorative manifolds are interesting just because they are 

associated simultaneously w> th confluence and with an abrupt 

change from wild mis-behe  ur to tame good-behaviour. Consider, 

for example, a polynomial X  so constructed as to ensure, in the 

absence of error, that among its zeros y    » f(x )    must be some 

that are coincident; but because error Ax has crept into the 

data x  none of the available zeros y   +Aty « f(x  +AxJ are coin- 
o o      '  o 

cident.  They may well be nowhere neat coincident. Frantic 

dispersal of perturbed zeros is frequently quite pronounced 

when x  is of high degree, and is not surprising when we realize 

how wiid3y f   must misbehave near a pejorative manifold. Given 

only x +Ax and a bound for IIAxII, can we discover a nearby x, 
o J      1 

on a pejorative manifold? That r      will not be unique but, 

^.■"■wim        i    in rilfii liilriif lilltflili ....—jMiammai^dM **-"-*-ii»»iMiMii iiif ittrtMMWtitimirtr ■' - —'—-'-""-^«^-—"'■"•'"' •wr,-^r„^rmtmM^nMMhmMMil,a 
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provided the bound on BAxü is small enough to keep x. well away 

from a doubly pejorative sub-manifold, we can expect that the multiple 

zeros among y~  ■ f(x.)    will not vary much as x.    runs through 

those values on the pejorative manifold close to x +Ax. Thus do we 

substitute a well-conditioned problem f(x.)    for an ostensibly i 11- 

conditioned problem f(x +hx). On the other hand, we may discover 

that x +Ax is farther from the pejorative manifold than the bound 
o r  J 

on II Ax II, in which case we infer that something, either the bound 

or the construction of i , is wrong (i.e. mistaken). 
o 

The properties of pejorative manifolds have many other prac- 

tical implications but to discuss them here would be premature. 

First we must verify the faregoing assertions cbout those properties, 

Secondly, we should consider how to locate the manifolds compu- 

tationally; here is where the theory is weak. Only for linear 

systems do we know how to tell cheaply whether a data-point x 

is close to or far from a pejorative manifold, and whether there 

are multiply pejorative sub-manifolds nearby, and where they are. 

Some of this knowledge is imparted in part I of the paper. 

Parts II and III consider polynomials' zeros and matrix 

eigenproblems respectively. For these problems the simplest 

pejorative manifolds, corresponding to double zeros and double 

eigenvalues, are easy enough to locate; but multiply pejorative 

sub-manifolds are not yet within reach of cheap computation. In 

particular, we cannot easily tell whether a data point x is far 

enough from a multiply pejorative sub-manifold that that sub-mani- 

fold need not be explored, unless x is very far from every such 

sub-manifold. Fortunately for our theory, multiply pejorative 

\a^gsmmäMim»mismätmaS»m irimMt,*mt«,Mwruittoi«*ri^iM*-'"*^^":"-*"M^^'   i mkiiiniMii"'*****^"'**^" -^■-^-■-»Tfr'«Aa»M-ii.mlWM^ 
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sub-manifolds need only rarely be considered; in ordinary language 

this means that double roots, though rare, are overwhelmingly 

more common in practice than are roots of higher multiplicity. 

Consequently, the theory is ripe for exploitation despite its 

immaturity. The theory's subsequent growth seems likely to depend 

upon numerical analysts' proficiency with algebraic geometry and 

metric spaces. 

* * * * * 

I take pleasure in acknowledging here the assistance and 

encouragement received, while the foregoing notions were evolving, 

from several years' discussions with many colleagues and friends. 

Especially, George Forsythe's continuing interest in those notions 

considerably stimulated their development. I am indebted too to 

the ciganizers of the 5-— Gatlinburg Symposium on Numerical Linear 

Algebra, held at Los Alamos on June 5-10, 1972, for an opportunity 

to present those notions to a wide audience. 

Sfl^a^iaMa^MB-)'in-|^1..Ml-'--^,wrnr'liT[ai-T-.    J " i*J*tfi*MMi»tt'  immMniti MtiiHIHMmiiMMtlliffl ^Kun. ■i I, if inliiiii inMi Iriiiiiii iMnrtiM- Osama •    i 'W»»^«»*«»! 



»IS*»»®«1 

Part I: The Pseudo-Inverse 
+ 

The pseudo-inverse X'     of an n x r.    matrix X    Is uniquely 

defined formally bj  the familiar equations 

(t) XXfX  - X ,    x\r  - XY ,     (/*)* t      t *    t x x ,   (xx ) - A';: , 

bvt a better definition is derived from its principal application, 

the solution of linear least-squares problems: Given X    and an 

m-veotor u we. seek tha»- «-vector w    which minimizes By - Xwl, 

and when the minimizing *J is not unique ^as must be the case 

just when X's  columns are linearly dependent) we seek that mini- 

mizing w    with minimal Hull. The vector norm used here is 

hA  E vw*w\    we shall also use the induced matrix norm 

11211 = max IIZüü/üwü and the root-sum-squaree norm IIZlL = Ax.(Z*2J. 

The desired minimizing vector w    turns out to be w - X'v; 

see R. Penrose (1954,1955). This formula is interesting only when 

X's  columns are linearly dependent or naarly so, since otherwise 

we could substitute X    » (X*X)    X*    and ignore the equations 

t 
(r) above. But just when X      becomes interesting it becomes 

numerically exasperating no matter what method is employed to 

compute it  because when X's  columns are linearly dependent X 

must be a violently discontinuous function of X    and hence hyper- 

sensitive to small variations, as we shall see. 

In what follows we shall discern a nested sequence 

o   1   2 

of pejorative (for k  > 1) manifolds and sub-manifolds in the 

space MQ of m*n   matrices X\    M^ is the manifold of matrices 
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whose rank does net exceed min(m,n)- k.    We shall discover that 

X      Is a well-behaved function of X    provided X    is confined to 

M^, and avoids M,  . More precisely, we shall find that while X 

and its infinitesiraally neighbouring X+6X    are constrained to M,-41 

i. 'v I! ■ l/'the minimum distance II • • • II from AT to M  ) 

ll/ll2 - sup I! 6 (Xf) §2/UX I!  over AT+6I on the same M  as A' 

Some of these discoveries have been seen befora, particularly in 

the works of G.W. Stewart (1969), V. Pereyra (1969), and Golub 

and Pereyra (1972), whose treatments should be compared with what 

follows. Finally, we shall consider, given X    and a tolerance 

i  > 0 such that all X+&X   with iAATll <  £ must be regarded as 

indistinguishable for practical purposes, how to find an approximation 

X    indistinguishable from X   with the best-behaved X . 

Some apparatus is needed. Let us assume m > n    (otherwise 

transpose X)    and denote A's n    singular values in order by 

K-,  >  £, >•">£> 0. That £,  - ÜA'I! is well known, as is 
4. 

the fact that X  's singular values are the re-ordered numbers 

£ ., where 
V 

C = 1/? except for 0 0 

Not so well known is the following relation proved by L. Mirsky 

(1960, theorem 2): 

£k  - min (IAATB over rankfAf+AAV < k 

One implication of this relation, to be used later, is that no 

singular value of X+hX    cen differ from the correspondingly 

■ .■in h»il)illf iMl 
ÜjIMaÜlBitil .iiiiiiiriiiM.ii-rniiniinirwrii-trif-^— iKfiaiMflatitfMittütäMiitiiäBMBi 



numbered singular value of X    by more than ÜMÜ. Another impl'.- 

• „r„ cation obtained via    liJT i!  - rrax.(f'.)     is  that 

Ix'l  - 1/rainHA/B     over    rankf.Y+MV  <  rank a; 

Consequently,  if    X 6 M.     but    X ^ M then 

Wl - 1/minSAZt    over    J+M e M 
fc+1 

which is just what was claimed for IX''!! above. 

Next we shall exploit a little known formula; 

x' -i - -y (jr-y)x' + (i-y Y)(X-Y) r X'  +n (X-Y) a-xx) 

This formula can be verified by applying the equations (t) above 

to reduce the right-hand Fide to its simplest terms. Note that 

+ J- 
(H 7) and (1-XX' ) are orthogonal projectors which annihilate 

t      *       t* 
Y      and Y  , and X        and X    respectively.  Consequently we 

find 

+ f * t t (X  -7 ) {X -Y ) 
+* * +* +    + 

+*  *+* + +*  *  + 
- x'  (x-j) i' j y (x-Y) (i-xr) 

+ ,Y+*/+u-y) (i-yfy) (X-Y) W" 

t    + +* +   t 
- (l-xx )(J-Y)Y y y (X-Y)X 

+ (i-xi ) (x-y> (yV-*)2 (x-y)*(!-//) 

and taking norms yielda an important inequality 

l*+-yV < sx-y»2(liAf+!!4 + «/!i2!iy+ii2 + 2!i/«iiytü3 + i!y+ii4) 

< 5SX-yP2 max{ll/!IJly+l!}4      . 

Now let    Y - X + hX,    and suppose both    X    and    X+AX    lie on    M. 
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but not on M.+J. As A# ■*■ 0 we see that l(X+kX)  8 becomes 

t      t 
and remains bounded, and then that IX   - (Jf+M) It ■+ 0. In short. 

#  is a continuous function of * on M,  away from M,,,. It 
k k+l 

aoon follows that X      is differentiable toe, for we need only 

set 1 ■ X + 6X,    with infinitesimal 6^ constrained to keep 

X + 6A , like Z, on M,  away from M,  , to deduce thßt 

6 GO - -Jf+(5*)X+ + (l-XfX)(&X*)Xf*Xf  + I+It*(6I*)(l-^t) 

Next we seek to compute supH6(^ )R /flÖ^IL» To this end it 

is convenient to invoke Autonne's theorem which exhibits X  - PhQ 

«here ? is mxm    unitary, Q    is n x n    unitary, and A ia 

mxn   diagonal with the singular values £. on its main diagonal. 
3 

This singular value decomposition may be computed at modest cost 

by methods described in Golub and Reinsch (1970), and will be 

further exploited below. For the present let us partition 

!A o\ 

° 0 0/ 

in such a way that just X's  non-zero singular values £. appear 
3 

on the diagonal of 'ehe square diagonal matrix A . Evidently 

+   * * * 
X   - Q A P     where 

/ -1 \* 
/A l  0\ 

o 

0 0 

t     -1 
Also 8* I! • IA i. Next partition conformally 

i_ ;iaa*-*a;=-«^iai1ji._ ^^-^Jex<*a*t '■*«** W 

"*^&k*J^ 

„ it,, ktfi^i afa *■■,>.. ig^^^^^j^iSm^ssäigäMtiämäiaä^ üa jusa^atoaüä l,ltM--^-f'-(^fM.iirTiri^rff^-^^^^^ 
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6A = P (6X)Q   - 
6A 6B] 

6C oD 

by fixing P and Q    independently of SX   we oblige 6A to be 

non-diagonal in general. Si^ce X+6X    must have the same rank 

as X,    A+6A must have the same rank as A, and this must be 

the same as the rank of 

-1 

0\ h +6A 
1 (A+fiA) -  ° 

SB \ 

\~&C(hQ+6A)  x 1 .-1* \  0   5D-6C(A HA)    6B 
\ o 

The rank in question is that of A , and also of A HA    since 
o' o 

6A    is infinitesimal. Therefore we must have 

&D -     7(A +6i4)_16S - 0 

but this merely says that the infinitesimal 6D - 0. Therefore, 

infinitesimal perturbations 6X    for which ,i and XHX    have 

the same rank must have the form 

Substitution into the formula above for 6{X  ) soon leads to the 

conclusion that 

U(xf)l22 < l*Vll6x!!* 

with equality posbi'le when 6A,    6B    and 6C    are chosen to have 

non-zero entries only in rows and columns corresponding to the 

largest entries in A . Thus we conclude that pseudo-inversion 

11 
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can be ill-conditioned with respect to rank-preserving perturba- 

tions only if the data-matrix A is very near another of lower 

rank. 

Finally let us discuss how to compute a pseudo-inverse appro- 

priate for a given matrix A when given also a tclerance (, > 0 

such that all A+AA with lAAi <_ 5 must be regarded as indis- 

tinguishable from X.    Should some of these matrices A+AA have 

different rank than X    there must exist others whose pseudo- 

inverses differ arbitrarily much among each other. None of those 

wildly divergent pseudo-inverses can be useful. Instead let us 

find a matrix X  - A + tx    of minimal rank with lAAll < 5. Such 

a matrix is easily obtained from A above by annihilating all 

£. < 5; let A denote what results and let X  - P\Q.    If f, < ~ 
J — n 

then A - A and X  - X \    in this case for all AX with 

IIAAB < 5 we find that 

||(A+AA)+II < l/(e„-5)  and 

!!U+^)+-/il/llA'+N < (l+^/($n-ü
2)1/2£/Cn  • 

The latter inequality is obtained by substituting Y  « A+AA and 
ff ft 

X X  » 7 J ■ 1 into the formula above for A" -7 , and then taking 

the norm of (*T-JT ) tf -J')  with the aid of If A II - 1/5  and n 

U  II < 1/(5 -5). The point of the inequality is that if 5/5 « 1 —   n .    . n 

we may confidently assert that all indistinguishable matrices 

A4AA have nearly the same pseudo-inverse. 

The interesting case occurs when 5 _^ >  £ > K +, fc for some 

k  > 0. This means that among the matrices A+AA with BAA"II < 5 

are some of rank n-k,n+l-k,...,n.    Every time A+AA changes rank, 

aai^M^ iiiiiilliF.-..iiiiiiri)riiiiiirtiriviiimiii;iwrr^^^^ MÜ I ^ftBMBMJMBaBII Bmaaauuia »■"■*  Fn.iiiMmiiillfliUlliliiillWM 
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(X+AX)      jumps infinitely violently. But as X+äX   runs through 

a. 

matrices on M,  of rank n-k    with üAXÜ _< £, (X+hX)'     varies 

continuously and 

! (X+M)+ - Fl < S5(?,+Kn+1_k)I ttn_k-0
2 

Whenever S/£n_L. 
<<  1» the pseudo-inverses of matrices on M. 

indistinguishable from * will differ only slightly among each 

other, although matrices X+&X    not on M. will have huge and 
K. 

wildly varying pseudo-inverses; in this case X'     seems to be a 

reasonable response to the coomand 

"Compute X t„ 

But if £ .  is only moderately larger than £ th.» ■'. command 

deserves to be questioned. 

Another way to appreciate X     when £/£ _, «  1 < £/£ , 

is geometrical. Consider the image P under the operation t of 

the ball B of matrices X+&X    with SMI! < £; i.e. consider the 

set P cf pseudo-inverses of all matrices in that ball ß. P has 

two disconnected components P  and P . P  consists of the 
O ao    o 

pseudo-inverses of matrices in BOM,, and looks like a small 

bent coin roughly centered on X  ; all the points (X+LX)      in P 
o 

At 
are close to X      (see the inequality above) and have modest norms 

not exceeding 1/(5 v~0• The other component P  has tentacles 

f 
which reach to » starting from far-out points (X+A*)  which 

must satisfy S(X+M)+II > l/(5+5n-fc+1) » l/(5„_^). 

 i miitt-TiitMMitri*if Tijtir->^t«^^Mtf^-^-' ■BlliWMlmB^llAl^*Yf^**Wllrll^liliMfillHlMillf^■■-■^^-■•'-^"'■■ ** 
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II.1: Differentiability of Multiple Zeros 

If £ Is a simple zero of the monic polynomial 

r(x)  -  T - I   x.T " 

then x'e first derivative XTTJ cannot vanish at r,    and hence 

14 

Part II: Zeros of Polynomials 

Many numerical analysts suffer from a misconception that 

multiple roots are infinitely more ill-conditioned than simple 

roots. Actually, a multiple root behaves much better than the 

clustered simple root-approximations so often accepted in its 

place. More precisely, we shall find that each zero of a poly- 

nomial is a differentiable function of its coefficients provided 

that zero's multiplicity is conserved; only when multiplicities 

change can the derivatives become infinite. Moreover we shall 

find that the condition number of a multiple z»ro must be inversely 

proportional to the product of the distances from that multiple 

zero to all other zeros of the polynomial. For the problem of 

finding polynomials' zeros the pejorative manifolds and sub-mani- 

folds ti the space of polynomials are evidently the loci occupied 

by polynomials with various combinations of multiple zeros (one 

double zero, two double zeros, ..., one triple zero, one triple 

and one double zero, ...). However, given a polynomial x no 

convenient way is known yet for determining how near x    is to ° 

pejorative tuanifold short of computing laboriously all the points 

nearest x on each of the various manifolds and sub-manifolds. 

We shall describe some of the easier 3uch calculations. 

,.. ..imiM—^,,...^.^,MMn-.~.....^...^,~...^.^^ 
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each 3£/9x. - C "■/x'(t)    must be finite, whence it follows that 
J 

£ must be an analytic function of each coefficient x. as long as 
3 

C remains simple. To what extent can this assertion be valid 

when £ is a multiple zero of x? 

Whenever x    has a multiple zero its coefficients x      must 
J 

satisfy certain constraints expressible a3 polynomial equations 

in those coefficients with th» aid of determinants known as 

bigradients  or resultants;  see Bocher (1907, ch. XV) or Householder 

(1970, §§1.2-3) or van der Waerden (1950, ch, XI). It suffices 

to acknowledge the e constraints without describing them, and 

then exploit them with the following result: 

Proposition II. 1: The constraints satisfied by the coefficients 

x .    of the monic polynomial 

, , _ n      vn       n-j 
x(i)  = x - }. x .x    " 

Lt ] ■* 

when it possesses an t -tuple ^erc C define £ and the 

last m-1    coefficients x  ,» ,...,x  to be analytic func- 

tions of each of the first n+l-m    coefficients 

x.,x_,...,x .   as long as the multiplicity of t,    remains 

precisely m,    irrespective of the other zeros' multiplicities, 

And then if L  ,,,£ ,„,...,C      are x's other n-m    zeros, 
w+1*^m+2    n 

different from X,    but otherwise not necessarily distinct, 

„n-i+l-m 
3C/3x. - ;' «""C'^^^C-C,) for 1 < i  < n+l-m  . 

Proof:  Since Z,    is an m-tuple zero oi x, x^™'(Z.)  </>  0 but 

x;m"1;fc; - 0, x(m"2)C;; - 0 x're; - 0 and x(V  - 0.  The 

füfcü.-.:.:-.. .-;J.. .,..■■ ...,.■..■■•.:. '"!'!■ r»??^?!''?^'^!^^^ afcaü^aüiBäi teibi i^aiiifflaiiSfitiitariäMiääm 
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lrst two relations imply that £, as a simple zero of x (m-1) 

L.ust be an analytic, function of its coefficients r, ,x.,...,i ,, 

"ubstituting that function for 5 in the last m-1 equations 

exhibits the last m-1 coefficients in turn as analytic function« 

vf the first w+l-ffi. Then differentiate the equation xK  " ' (I.) - 

with ressect to x.     to oroduce 

xirn)(UH/'dx.  - (n-£>ICn"i+1"m/(n-i+l-m)! - 0  , 
1 

and apply Leibniz's rule to x(x)  « (T-£) H . (T-£ .) to produce 

a;  (V - mill .,(£-£•). whence follows the last part of the 

16 

' m+1v 

proposition. 

Here are three examples to illustrate the proposition. Fiist, 

2 2 
a quadratic T ~2at+ß has a double zero •; - a    juat when S ■ a ; 

here C and ß are analytic functions of a as claimed in the 

propositiir, out if we regarded Z,    and a as functions of ß 

they would have a branch-point singularity at 6 ■ 0. This first 

example provides some excuse for regarding, as does tne proposition, 

the first n+l-m coefficients x.    instead of some other subset 

as independent variables. 

The second example is a quartic 

T - 4ax + 6ßx - 4yT + 6 

which has a triple zero C ■ «+ A whenever y - (a+A) (a-2A) 

and 6 - (a+A)J(a-3A) where A S ±(a2-3)1/2; evidently C, y 

and 6 are analytic functions of en and 6 except at the branch 

point where A - 0, at which point X,    becones a quadruple zero. 

' ■ ■■-— ■ ■ - " iTT«*">"l*i«« l.^M^.>..-.J,..^.J,nir-I.-l„rr-J--„.-^.-li-, n iinj- iirm-iB-riwriiiimiii niifiMirirnfint'triTiiiiiifrtirt •Uttiifinimfrrii -—- ■ ia ■:-"" —»■"•--»»^a,..^»^.....^.m .-,..:...,. 



M»■■'■"" i w*mm jj.iim*mmimm tiMP*9vmfi*mm*<n*immimnimu**w> vvw»,wm?B7im*mm***t&imim**Kwmw»'''v«i*se.-'t* ■.i.j...»r.,uii. g—| 

17 

The third example is the quartic 

q(x,\)  Si4- (2+X2)x2 + 2A!XiT + 1 - X2 for real A 

= (T- signa;)2(x +signa;+ X)(T +signa;-A) 

^ has a double zero £ for all real A, but £ - 1 for X > 0 

.~:.d C * -1 for X £ 0, with ambiguity and discontinuity at 

2 
X ■ 0 despite that £ and the last coefficient 1-X  may appear 

to be formally analytic functions of the first three coefficients 

(0,2+A ,2AjXJ). But these first coefficients are not free here 

to vary independently, nor are »-.hey analytic functions of the real 

parameter X near A * 0. A oetter explanation for the apparent 

anomaly is obtained from a geometrical approach which identifier» 

quartic. polynomials with points in £ 4-dimensional space. The 

polynomials with double zeros constitute a 3-c'imensional manifold 

in that space; the manifold intCirects itself at points corres- 

ponding to polynomials, like q(j,0),    with two double zeros. As 

X runs from -1 to 0 to +1, say, q(itXJ    runs along one 

sheet of that manifold to a point of self-intersection and then 

turns a corner to run along the other sheet. The 3-dimensional 

manifold is pejorative; the corner where q's double zero is 

discontinuous lies on a multiply pejorative sub-manifold.  Little 

seems to be known about the complicated gecmetry of these manifolds. 

II.2: Condition Numbers for Multiple Zeros 

The condition of a zero £ of a polynomial x    is ger.srally 

a vague notion (cf. Wilkinson (1963, pp.29-32 and 47-48)) partly 

because the metric by which we measure distance between polynomials 

(..-.;,,...... m MaaaajjaMHaBMuflaatt ifiaüMsaai aaBBüttBaaia -"*»»'» fatfittb «u» 
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is so often arbitrary. A natural metric for polynomials regarded 

as points in a linear space is a vector norm If* ••II; e.g. for 

arbitrary weights w . > 0 
J 

ip x.xn~h s/([%.!*.!2)    • L0     .'/ U0  .7 ' .1'    ' 

Although we shall use just this last norm in what follows, the 

statements concerning condition numbers will be stated for (and 

are valid for) any vector norm. Whatever the norm, one corresponding 

condition number for a zero i; of a polynomial x    will be 

defined to be 

y(Z,x,||•••(; ~ sup |6;|/!!6xl! 
6x 

where 65 is the infinitesimal change in C ceased by changing 

the polynomial x    infinitesimally to x+6x.    This condition number 

Y is appropriate when absolute variations in C and x    are at 

issue; Y/jSj  is a more appropriate condition number when relative 

variations <5£/C are al issue. 

Of course y'e  definition makes sense only if 6a? is under- 

stood to be so constrained that C's multiplicity is conserved; 

otherwise C loses it3 identity, disintegrating into a clustei 

of zeros whose condition numbers approach infinity as the cluster 

coalesces upon £. This assertion, which we have yet to prove, 

explains why multiple zeros ha-" a bad reputation for ill-condition 

undeservedly acquired by associa? on with the cluster of closely 

spaced and therefore ill-conditioned approximate zeros which are 

so often accepted instead of multiple zeros; cf. Wilkinson (1963, 

p.41, §8). 

-,,■■.,        w,...„~~-.^....|| ,ii.if.i-ir   i -, mUHM     ....'.11.11111.1 li-t.«.al»l.l».*M HBtC ..     -.  ma 1111111  nnvinr"-* ■«■».—*—.. ■ ■ -.,.,..■ 
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Proposition II.2: If £ is an m-tuple zero of a monic polynomial 

x   whose other zeros are C , i»C .«*•»•*£  then it» condition m+l  *m+2'   TI 

number is 

m+l'  j 

where K is independent of x and its zeros other than C> 

n  _ V" • T»-J Proof (for any norm !•••!):  If x(x)  - T* - T" « .T 
J 

dxfTJ - -j^ ^/t"'^ then by proposition II. 1 

and 

65 
1 rn+l-m rn-i-\ _n-i-(-l-m 
m 

Here 6£ is expressed as a linear function of the first nS-l-n 

infinitesimal coefficients 5a:.. The last ra-1 coefficients 
J 

are also linear functions of the first n+l-m obtained by solving 

a triangular system of linear equations derived from the equations 

x^k)(V  - 0 for fc - 0,1,2,...,m-l  ; 

6x(A:)r;; + x(fe+1)^;6c - 0 for k  - 0,1,2 m-l      . 

The last set reduces simply to 

.(*> &x>  '7;; - 0 for k  - 0,l,2,...,m-2 

which may be solved for <5x - „»6x,, „,...,6x  in turn. Hence n+2-m  n+3-m     n 

there exists some linear operator Q    depending upon t,,    n    and 

m    alone such that 

6x  - Q6x (m-l) 

This linear operator Q    transforms an arbitrary polynomial p 

n ■ ,iHI i  i ■ i ■ urnKiifi.HMlTri.1Mii ..w>..,..,^^.^*,^^1i||fl1ri|MM^^ t&jlg^g m ifiäfeatiiiiüüiüaHi ■■^■■>^~«»«--«'~»-«*M*J 
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of degree n-m into another q = Qp    of degree n-1 in such a 

way that 

q(V - q'(V  - ••• - q{m~2)(V  - 0 and c?
(m"1) - p  ; 

20 

the last few equations constitute an initial value problem whose 

solution is 

q<t)  - i.Qp)(t) 
1    ■ (x-ef"2v(d)de 

(W-2)l J 

• i 

Hence we deduce that Qp  » 0 only if p - 0, r.nd therefore 

ÜIPÜI 
E
 I^Pf *-8 another norm on the linear space of polynomials 

p of degree n-m.    Now 

y m  sup 16C! /tl6JC!1 over constrained 6x  » $6x (w-i) 

and 6£ - e &r    /IL.,(C-C •) where e      is the linear functional 

defined above in the earlier expression for ö£. Hence 

6T (m-1) 
'm+lv" "j' Y-  sup |«"6arv"' *'/lT* (C-Ol/lll**^^ 

^Cii^-i 

as claimed4 where 

K = sup \e  p|/|||p!||  over (n-m)-degree polynomials p 

depends upon m,    n,    X,    and the norm !l • • • II but not upon x 

nor its zeros other than £• 

Corollary: Proposition IX.2  may be applied to non-mcnic polynomials 

x(l)  - I   x .1 *"J with x +  C provided K is replaced by 
-o j 
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a different function 

o 

The foregoing results fail to reflect one important aspect 

of floating point computation — independence of scaling.  Speci- 

fically, we would expect the relative precision of approximations 

to a zero Q ^ or,    of x(x)  5 cr X(T/O)  to be independent of 0 

at least as long as the scale factor a is a modest power of the 

computer's radix. The proposition above appears to give results 

which are altered by scaling, but it can also be applied in a way 

independent of scaling. The proposition remains valid when the 

norm II •••! varies with £, as for example does 

i£v"-'M <»>/"-'l2)   • 
More generally, wnenever the no.m II" "I! varies with £ in such 

a way that \\x(x)\\    » |j|c x(Z,x) |j|  for some norm 

of 5 we find that 

independent 

yCas.o x(xla) A or, ;/|a;| - Y^,x,!l---!!J/k| 

K(m,n,l,l|' i^/n^U-c,/;! 

Then the condition number Y/JCJ  is independent of scrling and 

depends only upon the multiplicity m    of r,    and its relative 

separation from x's other zeros. Consequently, only clusters of 

relatively closely spaced zeros can be ill-conditioned when such 

a ^-dependent norm is used. 

The word cluster  used above has been used very loosely. One 

might hardly consider the zeros of x(x)  -  IT, (T-J)  to constitute T20, 
ll 
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a cluster in the usual sense, yet the zeros near 15 have been 

observed by Wilkinson (1963, pp.41-43) to be ferociously ill- 

conditioned. This observation does not contradict proposition XI.2 

and its corollaries; when the constant K is evaluated (for 

m - 1 here) we do get condition numbers of the order of 10 ' . 

This means that one's intuition about clusters is unlikely to be 

reliable. 

Calculations by a student, Mr. David Hough, have shown that 

20 
one need only perturb each coefficient of x(x)  -  IL (T-J) by 

less than one part in 10   to construct a nearby polynomial 

x+Ax whose zeros, while still all real, include a double zero. 

Consequently the polynomial x    is very close to a pejorative 

manifold; in fact, it is almost equally close to several multiply 

pejorative sub-manifolds. These observations explain Wilkinson's 

polynomial's ill-conaition more convincingly than can any alle- 

gation of clustering among its zeros. 

II.3: Where are the Pejorative Manifolds? 

When m    of a polynomial's zeros are clustered closely in a 

region well-separated from the rest of the zeros, it is natural 

to expect that a small perturbation in the polynomial's coeffi- 

cients should suffice to collapse the cluster into an m-tuple 

zero. That m-tuple zero must be a simple zero of the perturbed 

st 
polynomial's (m-1)— derivative, and therefore close to a zero 

8t 
of the original polynomial's (m-1)— derivative. Consequently 

when we wish to substitute what we hope is a well-behaved m-tuple 

zero for a cluster of m    ill-behaved zeros, we can approximate 

,....„-,..,;.., :.■:■■  ^a,,^^^---. ^^^^^^^^^^^^^^^Sttä^M^^^^^M^^i^^^^-^^^^^ ■•■•■-"" ■■:" --•' ■■-■ 
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,8t the m-tuple zero by a simple zero of the polynomial's (m-1)- 

derivative provided such a simple zero can be found near the cluster. 

The next resu.1*: guarantees that such a zero can be found. 

Lemma II.3: Suppose the n      degree polynomial x(x)    has at 

least m    zeros £i»52 ^  ^ — m — n^    *n some convex 

region C.    Then x (x)    must vanish at least once in the 

star-shaped region S consisting of all points from whizh C 

subtends an angle no less than TT/(n+l-m). 

Proof: Let if""1«?^,? C ; be the (m-1)—divided 

difference of xft,/ over the zeros C,,5»,...,5 . Since each 

xC? J " 0 that divided difference must vanish. Therefore wr-> 
3' 

obtain 

| j ••* | -(m_1)^ Wd0xd02-% " ^W^ y - o 
All a .>o 

•?- 
and £ a .*1 

J 

from a formula attributed to Hermite and to Genocchi by Milne- 

Thomson (1933, p.10 and p.18 ex. 6). Let us denote the n+l-m 

zeros of x bv 1 ,n ,, 1  and so infer m OT+l    n 

f f   f n     w 
i •••  31 (n - £ o.;.)dc do •••do - 0  . 

i *  k*m    *    im\ J J      l    2 m 

All O .>0 *^    J   1 

J- 
and E o ."1 

3 

From this point we pursue an argument similar to Marden's (1966, 

§24). 

Were every ru  outside 5 we could find a 9,  for each 

k - m,m+l,...,n such that 
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0 < argfnfc-x;-efc < Tr/{n+l-m) for all T In C  . 

In particular £J a r  lles amidst the 5#,  and hence Jfj ^ 

for all relevant sets of values ^«V* *' *V therefore we should 

deduce that 

0< argr n (i, - lax))  - \  9 <. ,  , 
m 

whence it would follow that the last integral, with its integrand 

confined to a half-plane that excludes zero, could not vanish. 

This contradiction proves the lemma. 

In particular, when C    is a circle of radius p then S 

IT/2 turns out to be a concentric circle of radius p esc -——; 4.r\ 
n+i-m' 

general S    cannot be enormously larger than C,    so the desired 

simple zero of x can always be found somewhere near a 

cluster of m    zeros of x. 

In general one cannot expect ill-conditioned zeros to cluster 

in an obvious way, and we must search instead for nearby polyno- 

mials on pejorative manifolds. Thus one comes to consider problems 

like this one: 

Problem II.3: Given x(x)  '-  in - fl x^.xn"s    find the nearest 

polynomial x-y,    where y(x)   ^ J* y A "J f    with an m-tup.t.e zero. 

We interpret "nearest" to mean that 

with given positive weights w.,    should be minimized. 
«/ 

This problem can be approached in a conventional way via 

24 
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Lagrange multipliers. The result is a set of m    equations 

n-j-i*n-Q-k 
y(k)(v i y x. y Lfr-j)» (Lj-j-i *<*>(c; 

for fc * 0,1,2,...,m-l 

from which we eliminate the Lagrange multipliers X. by setting 
is 

a determinant of the coefficients of  (1,X ,X,,...,X „)  to zero. 
o 1    m-2 

The result is an equation to be solved for the m-tuple zero C, 

The equation is not a polynomial equation because both £ and its 

* 
complex conjugate X,      appear. When m-2 the equation is 

c*w - * w(TV*')!r*\ V.)/(Z?!cM"J*!V.) 

and is not hard to solve for £, though most of the solutions 

must be discarded as irrelevant. 

The problem becomes more interesting when x(t)    has real 

coefficients and, naturally, we require that y(j}    have real 

coefficients coo. 

However ugly these calculations may be, they are worth pur- 

suing whenever x has a badly ill-conditioned m-tuple zero r. 

For if s's condition number y is huge then, since proposition 

II.2 tells us that 

n , 
Y - K/ n JC-U ■ m\K/\x(m)(V\ 

m+1 ,'i 

for some modest K, we see that x    differs from a polynomial 

(w) .   , 
x(x)  - y(x)   = tfflj - f^-(T-C)m 

with an    (m+1)-tuple zero    C    by just a little; 
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x can be no farther than that from the multiply pejorative aub- 

manifold of polynomials with (m+l)-tuple zeros. 
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Part III: Eigenproblems 

"What I tell you three times Is true." 

Lewis Carroll, Hunting of the Snark,  Fit 1. 

Let £ be an m-cuple eigenvalue of the n* n    matrix 

and let 6Z run through infinitesimal perturbations so consciaintd 

that Z+5Z    continue? to possess an w-tuple eigenvalue £+0^ 

near £.  We define 

y(Q,Z,\\---V  2 sup |6s}/R6Zi over such constrained 6Z 

to be the condition number of Z,    as an m-luple eigenvalue of 2 

with respect to some given matrix norm li • • • II. The constraints 

on 62 are complicated but indispensable when m  > 1; without 

them the condition number y    would be either infinite or 

meaningless. 

We shall obtain estimates for y    which relate it to the norm 

of the spectral projector F    onto £ 's ^-dimensional invariant 

subspace. P    is characterized by the equations 

P2  = P , PZ  = ZP  ,  rank(P)  - m  , P{Z-Qm  - 0  ; 

P can be computed straightforwardly from the similarity trans- 

formation that exhibits Z 's Jordan normal form.  (For example, 

when m  - 1 £ 's non-zero row and column eigenvectors x  and i/ , 

which satisfy i Z ■ {x  and Zy  - £y , yield P - yx /x y.) 

We shall find that, roughly speaking, Y is big if and only if 

SIPII is big. Since y    is appreciably more expensive to compute 

than üPil when m >  1, we shall use ilPl  as a measure of £ 's 
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ill-condition instead of y. 

Hypersen9itivity to small perturbations, and the coimequani: 

risk of numerical instability, always accompany a spectral projec- 

tor of large norm irrespective of whether it belongs to a multiple 

eigenvalue or to a cluster of simple eigenvalues of Z.    The „pu 

tral projector P    onto an m-dimensional invariant subepacr 

belonging to a cluster of m    eigenvalues t,.     (counting multi- 

plicities) is just the sum of the spectral proiectors P      belong- 

ing to the distinct values £.. When lP\\/m    is huge at least 

one of the üf'.li 's must be huge too so at least one 5. must be 

ill-conditioned  We shall see other bad things happen; for exam- 

ple every similarity transformation Q,    which reduces Z to H 

diagonal sura 

/ 

Q~XZQ *  j 
A    0 

\0    BJ 

in which the m xm    inatrix B    has as its spectrum the cluster of 

rn    eigenvalues t, . ,    is necessarily ill-conditioned in the sei:se 

-1 
that liö!!"SI<2 II must exceed  ||F||, roughly.  Indeed, when WPfJm 

■'s huge the cluster^- .-avy  identity as a cluster of m    eigfn 

values may be jeopardized by snail uncertainties or perturbations 

in 2.  Why? Because then to every  closed contour T    which 

encloses the cluster and excludes the rest of Z 's eigenvalues 

corresponds at least one small perturbation AZ, with 

ÜAZÜ <  KtlZll/llPlI    tor a modest constant <, such cuat 

has either fewer than m    or more than rn    eigenvalues inside ?, 

In the special case when ?, 's cluster contain? just one "»-tuple 
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eigenvalue £,  the small perturbation LZ    can be so chosen that 

that same £ is an (m+l)-tupie eigenvalue of Z+AZ; our proof 

of this assertion will sharpen and generalize portei.cous results 

for m - 1    published earlier by Ruhe (1970) and Wilkinson (1972^. 

So, spectral projectors of huge norm are critical symptoms or 

hypersensitivitv to small perturbations, and no matrix can possess 

huge projectors unless tiny perturbations to its elements suffice 

to increase the multiplicities of some of its eigenva-uas. Evi- 

dently the eigenproblem's pejorative manifolds and cub-manifolds 

consist of those matrices with various combinations of multiple 

eigenvalues (one double, one triple, two double, one quadruple, 

one double and one triple, ..„)• 

Although, given a matrix Z, no convenient way is known yet 

to determine just how near Z is to arbitrary pejorative sub- 

manifolds, ways are known to find points, close enough to Z f,cx 

many practical purposes, on some simpler pejorative sub-manifclds. 

These ways invoke unitary similarity transformations which reduce 

Z to a block-upper-trianguiar form with diagonal blocks of small 

dimensionality,,  Each block is intended to correspond to a cluster 

of Z 's eigenvalues to which belongs a spectral projector of 

moderate norm even though the spectral projectors belonging to 

every sub-cluster of the cluster have huge norms. When such clus- 

ters exist, and often they do exist, they may not look like clus- 

ters to th- -<aked eye; this is so because the individual eigen- 

values in tht -.luster are very ill-conditioned and disperse fran- 

tically in response to most small perturbations of Z. The eigen- 

values in. a cluster can be identified only by the observation that 

29 
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each eigenvalue's projector, though huge, cancels parts of the 

offers' projectors Is such a way that the sum of all the inJividuel 

projectors has a moderate norm. 

Having found suitable clusters and corresponding small blocks, 

we try to replace each block by its nearest like-dimension?A 

matrix with just one eigenvalue; this turns out to be tantamount 

to the construction for each block of the nilpotent matrix nearest 

to it.  Enough is known about that construction to make it cheap 

for small blocks — 2x2 and 3x3 — but for larger blocks no 

cheap construction is known yet. 

The theory is extensive but incomplete. Lacking sharp indi- 

cations of the distance from Z to various pejorative sub-rcauL£el.e: 

we cou.1' too often become enmeshed in expensive calculations of 

nearest nilpotent matrices whenever Z    is neither so far from 

all pejorative sub-manifolds that they are obviously ignorable 

.ior so near to some as to indicate obviously which ones are the 

only ones worth considering. Yet the theory is attractive.  If it 

can be refined to cover the majority of cases that arise often in 

practice, it will be complete enough. 

II1.1 Some apparatus 

Only the following matrix norms will be used; 

imi. Ar. (X X)  - /£ (singular values of X)' 

\\X\\   = max UYW -/HI, - maximum singular valu» of X 
¥+0 

These norms have been choa n because they are not changed when X 

is multiplied bv a unitary matrix and consequently have many useful 
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properties which we will invoke with little comment; for details 

see Mirsky (1960) or Gohberg and KreXn (1969). 

Given an n xn    matrix Z    we shall sometimes identify a clus- 

ter of m    of its eigenvalues £.  (counting multiplicities) by 

specifying one of the closed contours T    in the complex plane 

which enclose all of the cluster's m    eigenvalues strictly m 

their interif rs leaving the rest of Z 's spectrum strictly outside. 

Some of the contours may have disconnected components but none of 

them can pass through an eigenvalue of Z.    We soon discover, 

after Kato (1966, p.67), that 

_ 1 
2TH 1 (T-Z)-1dT 

is the spectral projector onto Z 's invariant subspace belonging 

to the cluster of eigenvalues inside T.    These eigenvalues are the 

m    non-trivial eigenvalues of PZ m ZP,    of which the remaining 

n-m    eigenvalues are just 0. 

There are other ways to represent P.    We may aptly select a 

new (generally not orthogonal) coordinate system, or equivalently 

perform an apt similarity transformation, which will exhibit Z 

in the reduced form [n    J  in which the mxm    matrix B    has as 

its eigenvalues just those inside the cluster and A 's eigenvalues 

are outside.  In that coordinate system P    appears as (n .). 

Alternatively we may invoke Schur's theorem to obtain a new 

orthogonal coordinate system, or equivalently perform a unitary 

similarity, which will exhibit Z    in the (block-) upper triangular 

form 

31 
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in which <4 and B    have the same spectra as before. The block 

AB-RB    is written that way for more convenient correlation with P 

which, in the same coordinate system, has the form 

0 -R 

If we do not insist that A    and B    be upper triangular we can 

instead arrange with the aid of Autonne's theorem that R    be an 

(n-ra)xm diagonal matrix exhibiting its singular values. Either 

way, because the similarity transformation is unitary we have 

IIP!! - I ff) I and, incidentally, Ill-Pll - 1(1 Ä)l - IPI  (cf. Kato 

(I960)). Finally, a non-unitary similarity which relates the tri- 

angular form to a  block diagonal form is 

i -R\(A   O\/I R 

0  IAO Bj\0    1 

When the cluster inside Y    contains only one m-tuple eigen- 

value £ the m*m    block. B    must ha. 2 only £ as an eigenvalue; 

consequently {B-O™  - 0. When (3-;)m"X = 0 too B    is called 

derogatory  for reasons that will be clear soon. To simplify 

matters let us temporarily set £ » 0 as we digress to study nil- 

potent mxm.    matrices; these are characterized by the equation 

f  -0. 
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Lemma III. 1.1:    Z7 - 0    if and only if    tr.(B ) - 0    for 

k - 1,2,...,m. 

33 

Proof: Apply Newton's identities (cf. Householder (1970) p.37) 

to sums of powers cf 3 's eigenvalues to deduce that the, •» :?t 

all vanish. 

What conditions upon an infinitesimal perturbation 6B 

ensure that both B    and S+6B are nilpotent? Another way to 

think of this question is to imagine that B <* B(i)    is an analytic 

function of x that stays nilpotent for all T; what characterizes 

B  = dB/dx for all such functions? The question is not trivial 

because, although we may differentiate the equations B-  0 and 

tv.(B )  - 0 to get respectively 

•m „j~l'jy-,i 
lm

x Ep-^tB-B™-'1  -0  or  5 B^Bfl"^ = 0  and 

tx.(Bk~16B)  - 0 or  tr.fßk"1^ = o for k - 1,2, 

those are merely necessary conditions upon 65 and B  ; when fl 

is a derogatory nilpotent matrix those conditions fail to be suffi- 

cient.  For example, when B *>  0 those conditions impose almost no 

constraint upon 6D aad B    whereas they ought to satisfy 

(69)m - 0 and 3"  - 0. 

Lemma III.1.2: When B      is a non-derogatory nilpotent m xm 

matrix the following three conditions are equivalent and charac- 

terize the derivative B    ■ B(0)    of every niipotent analytic 

function B(x)    which satisfies B(0)  » B    : 
o 

1)  B    * S B    - B S      is solvable for S    . 
o   o 0   o o o 
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2)     T fl*"1« iT* - 0 '•l    o      o o 

3)       tr,rSoV  ' °    for    * " °'1'2 m"1 • 

Proof: Without interpreting the dot as a derivative, we observe 

trivially that i) implies 2) and 3). To deduce 3) implies i), 

define the linear operator 8 thus; BX  £ XB    - B X.    Any li..;eat r o   o 

functional L    on the range of 8 must have the. form 

LBX  - tx.(LBX)     for some matrix L.     But tr. flÄU - txJLXB   -LB X) 
a        o 

- tr.(3 M-Lfl J; - -tr.f(Bi)i;. From Fredholm's theorem of the o     o 

alternative (cf. Dunford-Schwarz (1958) p.609) we know that the 

equation 36' »3  is solvable (perhaps not uniquely) for i" 

only if LB    ■ 0 for every JL which satisfies LB  - 0, and v.: 

have just seen that LB  » 0 means 8L - 0, which Implies 

B L " LB  ,    which implies that 3 is a polynomial in 5  since 

B      is non-derogatory (ci. Gantmacher (1959) p.222).  So every t 

which satisfies LB *  0 has the form Li? = tr.(LB )  ■ 
o       o 

• tr. ("(polynomial in S )fl j, and this must vanish because of 3) oo 

and the fact 3*0 for k >_m.    Therefore 3) implies 1).  Next 

let us deduce 2) implies 3).  Since B      is non-derogatory and 

0 1 
0 1 

nilpotent it must be similar to J  - I If 

\ 
0 1 

0 ' nx-m 

the similarity that takeo B      to    J    takes 3  to X  ■ (x. .) 
o o 

then, by 2), X    must satisfy 

5 Jk-lxJn~k - 0       ; 

i.e. 
m+l-i 

I 
m+l-J _.Xi+k-l,j-rr»k - 0    for    1 < 1 c 5. m 



£■'■• 

This is soon recognized as equivalent to 

BJ-fc 

Jr. , . ■ 0 for 0 £ /c £ m-1  ; 

i.e. tr.'Ay - #; - 0 for 0 < fc < m-1 

Reversing the similarity yields 3). 

Finally we demonstrate the existence of an analytic nilpotent 

B(x)     that interr at es Bfo; - S  and 5(0; - B  .  Solve 1) for 
o o 

S      and set S   J = 1 + xS  and ßd; = S(T;# S(x) 
o o o 

Now Sflj 

is nilpotent (and non-derogatory), since it is similar to B  , 
0 

at  least for    x    small enough.    And    B(0) « SfOjS   -S SfOJ  *  >i . 
o  o      o 

Lacking anything comparable to lemma III.1.2 for derogai .-»ry 

nilpotent matrices, ve should like to avoid them. That is not 

difficult to do.  In the manifold of nilpotent matrices the non- 

derogatory ones cor.-tlr.ute a dense open set; that this is true 

can be inferred from the Jordan normal form in a way that will 

be left to the reader. 

111.2: The condition number of a multiple eigenvalue 

Let £ be an w-tuple eigenvalue of an n *n    matrix Z    and 

let P    be 5 's spectral projector. We shall estimate the condi- 

tion number 

Y - yC;,z,||-..|!2; - sup l6;!/!!6Z|l2 

where the supremum I0 taken over all infinitesimal 62 such that 

Z+6Z continues tc possess an m-tuple eigenvalue £+5c near ;. 

We shall show that 
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Furthermore, provided the restriction of Z to P 's range ie  at 

derogatory, i.e. provi'.it-d Z has only one eigenvector belongi :g 

to    £ or, equivalentiy, provided PiZ-tf m 0 i  P(Z-^)m" . we 

shall show that y    can be computed straightforwardly though 

expensively by solving a linear least-squares problem; 

m-1 

I 
1 

Y » min j|p(l~    £ \k{Z-Ok)\lm 
A, 

In this case, we shall conclude, 

^ -1/2,„„„2 L ,  .1/(2«) 
Y > w   (8PIL + 1-m) 

Although the upper and lower bounds for Y are far apart when 

m >  1 and IIPIL is bJg, each bound can be achieved by an appro- 

priate and non-triviaJ example. 

Here is how those claims are proved. Recall that, provided 

no eigenvalue of Z    lies on the closed contour Y, 

PS2^i(T"Z)"ldT ;

 i. 

is the spectral projector upon Z's invariant subspace belonging 

to the eigenvalues inside F. Suppose there are m such eigen- 

values.  Then their average value is 

y E t~.(PZ)lm 

Since no eigenvalue of Z lies on V,    we find that both F    and 

p are continuously differentiable functions of Z; in fact an 
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Infinitesimal perturbation 6Z    causes P and y to chance by 

(cf. Kato Ü.966) pp. 76 and 79) 

6F - r.l" 9  (T-2)'1ÖZ(T-Z)"1dT  and 
„TU Jp 

6u - tr. (P6Z)/m    since tr. (Z5PJ  «= 0 

We are interested in the special case when all m    eigenvalues 

inside T    are coincident at £, and when the perturbation 6Z 

is so constrained that all m    perturbed eigenvalues inside T    stay 

coincident at C+<$C  In this case y ■ £ and 6y - 6Q,    so £ 's 

condition number YfCiZ,!'••!J  satisfies 

Y ■ sup |6yj/|<52|  over constrained 6Z 

* - sup |tr.(F&Z) j/1521  over constrained 6Z 

< - SUP itr.i'Pöz; /IÖZI. overall 6Z 
— m  - !       '    2 

- UPS - A» 

Thus we conclude that an ill-conditioned eigenvalue must have a 

spectral projector :?f large norm. After we show to what extent the 

converse is true we shall show how, given m    and a value IIPIL, 

to construct a matrix Z with y  - l|P|L/m. 

To obtain a sharper estimate for y    we must take the con- 

straints upon 6Z into account, and we shall now do that just in 

the non-derogatory case when P(Z-S)m » 0 4 P(Z-t,)m~  .  By 

lemma III.1.1 the equation P(2-£) - 0 is equivalent to 

tr.(P(Z-0  )  - 0 for k  - 1.2,...,n 

which, when differentiated, yields 
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The last term vanishes Decause 

tr r(z-r,)k6p; «T~<5 tr.r(z-o;c(T-z)";L6z(T-z)~1; dT 

~ tr. f4> (Z-C)fc(t-Z) 2dT ÖZJ - 0 

Furthermore the coefficient of £c,,   -k  tr. (P{Z~Ok~l) ,  already 

vanishes when k > 1.    Therefore 62 necessarily satisfies 

tr.aZ-0' _1P6z; =0 for fc - 2,3 m 

and what remains to be shown is that these conditions upon 6Z 

are also sufficient fo ensure that 5+6£, with 6c - tr.{p6L,-n, 

is an m-tuple eigenvalue of Z+6Z. 

Let us choose a coordinate system in which Z-C » (1 '?)  with 

non-singular /. ana an m x m matrix B    which must satisfy 

_i 6Z, 
zf-O^zf"1.  Now P=(;°).  L«t 5Z = r11 ^121  satiny 

the conditions in question; 

5Z21 6Z22 

tr.f(Z-0 P6Z; = tr.r/oZ22; - 0 for fe = l,2,...,m-l 

We wish to infer that Z+6Z  has an w-tuple eigenvalue i,+6c, 

and shall do so by constructing a non-singular matrix 

1-65 - 
'l-65n -6Sn   \ 

-«52I  l-6522 

(differing infinitesirrslly from 1)  for which 
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(1- SS)"  C8 + «Z- ;-6;)(l-65) 
IAHA 
I 

1° B, 

When this similarity relation is pre-multiplied by    (1-65)    we 

find that    öS    and    6A    must satisfy 

6/5 - ÖSn-A-A6S11+6Zu-6r        Ate^-SS^B - ÖZ 

S6521"6521M " 6Z21 S6522-6522^-6Z22-^ 

Theie equations are obviously solvable for 6A,    65 ..  (arbif-ary), 
_—. "I ■ «*„ »-r1^,,^-1 and

 6512 " C1 A'j"l^rl'^   *     bir '21   "o  " ""21      " 12 Lo      "        U"12 

the solution 65.  of the last equation is not so obvious  Hew- 

ever, lemma III.1,2 provides assurance that a solution 65,,., -Ines 

exist provided 6c * tr.(6Z)/m  = tr.(P6Z)/m,    in which case the 

conditions 3) of 1^-ma  III.1.2 are satisfied with B    - 5 and 
c 

3 6Z22-6c. 

Of course, the. foregoing manipulations with infinitesimals 

&Sj .    can be re-interpreted in terms of derivatives along the lines 

of lemma III.1.2 and the matrix Sfxj    constructed there. 

Now that we know the necessary and sufficient constraints 

upon &Z    etc., namely 

tr.(P(Z-Ok)  - 0 and tr. (P(Z-C,)k~l (ÖZ-6Q J   =  0 for fc«l,2,...,m 

provided P(Z~0        $  0, we return to the computation of 

Y ■ sup 16C | / II62II. over constrained 62 

The computation will, be carried out in a new orthogonal coordinate 

system in which 
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7    r       A   ^~M /0   -/?' 
2 - « "    f !        and P .    ' 

\°        * / 0      1 

•and    4    is non-sin>a.2.-;.   and    f - n 4 n'""1      r. «. <ina    a    » u * 5      .     Once again we  *ei 

oZ -  {    U        u)    , 
"        6Z21    6Z22 ' nOW      6 COnstraints  take  the fern. 

«C - tr.(iZ22-6ZnR}/m      and 

tr.({6Z22-6zuRrf}  =o    for    * - 1,2,...,m-i      , 

Therefore 

Y    - sup   |6C|2/S6Z|2    over constrained    6Z 

-m~2sup   |tr.fö£22-6Z21/?;|2/zz|6z   .I!2)    over 

m-2sup   |tr. r«<:22^Sz21Ä; |2/Ci«Z21|2 + |6s22|2j    ^ 

^3  V 

,2 

where we have set 6;  =»0 and 5Z, _ ■ 0 because any other 
J.J. 12 

values diminish the quotient we are trying to maximize.  The desired 

supretnutn may now be located by standard variational techniques 

which we shall merely summarize and verify, though first we shall 

drop the 6 in front of 6Z,,- and 6Z0,  since the quotient and Li. ZJ. 

the constraints are homogeneous functions. 

Let C  2 (1-L \.F)   (-H      1) with the coefficients X, 
i J J 

so chosen that l!Cl!^ ■ tt,(CC )     is minimized.  The. A .'s are the 

solutions of the normal equations 

f-M Jt tr. (CCJB«)  -0 for *- i,2 m_i 

which are linear in (X.) and non-singular too because, since 

^-0^-\  the polynomial ^ XJ    cannot vanish unless 



all A.'s vanish. The normal equations for C    coincide with the 

constraints that  (Z_,  Z„.) must satisfv (recall that ehe d 's 
'  1     Li. 

have been dropped), so C    is a permissible choice for  '2   Z„,) 

and differs from any other choice by a matrix 1 ^  (.2'   Z?~) - C 

which must satisfy the same constraints, namely 

tr.fy(-*)fl*J " ° for k  = i,2,...,m-l 

We are about to discover that only when (Z?1  Z.«)  is a no.i-zero 

scalar multiple of f can the following quotient achieve it3 

supremun: 

m-1 
-   \tr.ac+i)(C*+{'F)   I \J))\2/lC+Yli V 

=• :JC\\2+tr.(YC*) + 0\2/lC+X$2 

\ci2 - (lyijici?- |tr.ryc*;|2)/5c+y»^ 

1 l£»2 

with equality only when 1    is a scalar multiple of C.     Therefore 

we have proved that, in the non-derogatory case, 
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Y^,Z,I!"-|IJ licii2/m 

•m-1, Je, *  * * min |(1- yj" ^/) (-/?  1) 12/n 

-,ainlP(l-rj-\(Z-Ofc)S2/^ 

Our next task is to secure a lower bound for y.    Write 

rifff— 1      /^ 

y = 1- K  A-.B  .ind let U's  singular values in order be 

IMMfiiHirftlllln'   l   '■*"  -■—■■'-  r.HWr^rtMl BMHtfaariaam   -~- - -■-■■- ■■-■■■ •■■■■ BBäMM 
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a. >a2> ... > a > 0. Also write p m \2  - iPl^-m .      We 

seek a lower bound in terms of p and m    for W  (-R      1)1Jm. 

Evidently 

,  *      * „2 * * 2       ..   *,.2 
i;   K-R   Dir - «y i? »2 + iy v2 

2  2 * 
> op    + tr.fi/ W       ; —   m 

* *   2 * 
the last ine^ua.1 itv is achieved just when UU R    - a R  . What do 

n 

we know about. U 's singular values 0.1    Since e    « 0, det.l/ • 1 

2  2      2     - * 
and hence a,0 -.-a =» 1 while a. + a„ + '-'+a    - tr.(UO). 

12 7! 12 ffl 

Therefore 

**222 2 22 
|y (-/?     l)!l, > o^+o^+'-'+cT^+U+p^cT 

.     r  2  2 2      2., ,   2,a/w > m(oTa ...a     a (1+p )J —    *•  1 l       m~l m ' 

,.,2,1/m 
<* m(l+p ) 

with equality in the inequality between arithmetic and geometric 

means just when a ■ a * m-1        m 
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Assembling  the relevant  relations above yi^itih 

-1/2 
Y > m        [1P!12 + 1- wj 

1/2-71 

as claimed. The final tasks are to demonstrate that the bounds 

are achievable.  Briefly, to achieve the upper bound y <_ llPlL/m 

* 
it suffices that R R    above be diagonal. To achieve the lower 

bound it suffices that 

/ 0 1 
I  0 1 

0 1 I 
0 I rv.y.rr, 

.»^»«ai.aamMiaimtoi«. ,.,,„. .,.,.-^i»..~.-J.»^..~:" .,.«,.....■„..■„ .i,.-,,..,.» jjngin, ,.„....   „..,_. ■„..,, ^. ... ...-^MmirrtrM,,,^.  ,,   itH 
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and that r. have th£ form R  « MC  where 

1-m 2-rc -z. _-l 
(o  ,o  ',...,0  ,c  ,1)  and 

*    205-2, 2 ,, 
y y  = o   (a -1) 

for some arbitrary a > 1.  It will turn out that 

U  - I- (a^-l)y?;"1a",7F7 and P*P. + 1 - o^M/*)""1. The details are, 

once again, left to Lne reader. 

Since y is huge if and only if IPlL is huge, even though 

they may still be cvJ'.rs of magnitude apart, we shall hancefcvth 

dispense with y    .ind use only llPlL c.  I Pi  as our measure of 

ill-condition. 

111.3   What happens when lipli is huge? 

We shall consider now some of the ugly phenomena associated 

with spectral projectors of huge norm. 

Proposition III.3,1:  If r,    is an m-tuple eigenvalue of Z and 

P its spectral projector, then there exists a perturbation AZ 

such that r, is ?r. {m+1)-tuple eigenvalue of Z+AZ and 

ÜAZP < IIZ-CÜ/ÜP!!1^,  so lAZil  is small if  IPS  is huge. 

Proof:  By a unitary similarity exhibit 

Z-C 
//. /1P-PP \ 

i i   and P- 
(o   -R\ 

0   B / \° I 

where A    is non-siagular and e - 0. Evidently (Z-s) 

so we find that 

m (A    A R) 
<-0  0 J 

t; .-^.      rihtirwunrtiiB liil   iiliinr nur-—'---""*■--"■ r-iir,r-..t.fnn«.r *-— ^ililMi'iM-^-|l-irrnitriiilTH1i nnHMiniJillnMlflil ir "  _-.—iiinnimninMlfirinii ^■|ll>lMlli■^^r"^^^^'^^-^"—"—■ —■■-— 



-^> . J^.yW.-^p..|PH'.-, M-ffTi« 

-/7!H ,, . M     Amr JPI - 1(1 R)\  <  U TUX    AmR)t 

JU""!I(Z-r,)wl < U'h^z-rf 

How close is A     to its nearest singular neighbour /?+M? We know 

(see part I) that such a M    can be found with 8MI1 ■_ :.i\.k~xl, 

and the previous inequality shows that that M satirfies 

!|M|| < !!2-c!i/i!P!!1/m. Therefore we can use AZ - (^ °Q)     to 

achieve what has hoen claimed. 

Tills proposiffor» slightly sharpens one of Wilkinson'« (T972) 

when m -  1, in which case the proposition is best-possible with- 

out more information about Z    than !IZ-£ll and llPil.  Fven so, it 

can be somewhat mi::''-•:: ling.  Consider an example used by 

G.E. Forsythe: 

A4 

/0 1 
/  0 1 

0 1 
0 ' nx« 

Here we may assume, n >  10, and r small and positive, say 

£ <  1/10. Z    has n    distinct eigenvalues equaxly spaced around 

a circle of radius i,    all with the same condition number 

Y - IProjectorl  = n_1/V~n(l-C2n)/(l-£2) 

Consequently, the proposition says that Z is no farther from a 

matrix with a double, eigenvalue then roughly n  £ ~ .  In fact, 

Z is within C  of a matrix with an rc-tuple eigenvalue. 

When m >  1 proposition III.3.1 probably far over-estimates 

. mj|iajMi»iM| if »iiflllBliiiil>>win imn nrntWTiimirnr 
^utäOätUitBiMmbdmm ^^^•fJr.^iaitfiHrft—-^-^^^ 
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the distance to the nearest matrix Z+AZ with an (prt-l)-tuple 

eigenvalue. 

We now turn to the spectral projectors belonging to clusters 

or eigenvalues of unspecified multiplicities, and demonstrate why 

projectors of larg* liorm are  to be avoided. 

Proposition III.3.2: Let r be a closed contour in the complex 

plane which separates Z 's spectrum into two parts; m    eigenvalues 

(counting multiplicities) strictly inside T    and the rest strictly 

outside. And let P be the spectral projector onto 2 'a invariant 

subspace belonging to  the m    eigenvalues inside T.    Wheueve: 

iPII is huge, in particular whenever IPI > /m+1, there exist? a 

small perturbation A/  satisfying 

(A7»./IZl2 < 1.22/(llPil
2-l)1/(2m) 

such that Z-AZ h-,:.   nv.  least one eigenvalue on the boundary T. 

Proof: Once again vae a unitary similarity to exhibit 

IA    AR-Rs\ 
I 
\0        B 

and P 

where B    is an m * m    matrix whose spectrum lies inside F and 

,4*s spectrum lies outside,  .urthermore, we may exploit Autonne's 

theorem to exhibit R    as an (n-m) x m    diagonal matrix with its 

singular values p >  p > •* * > P > 0 on its main diagonal. 
1. ~    I — —   m — 

(It is convenient he/«, to assume n-m >_ m;    otherwise swap the 

roles of A    and P.) Note that II Pi! »» p  and tPl - A'+pf . 

i **■■« um. MaMüBaBBii gBffljafe  -■ iiimnimnwnnii 
—^ ■—,—m    H iiiniMr--"-'^'"*-' 
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R 
A 0\  With square A * diagfp, ,p_ pfe; 

^0 K;  and M ■ diagfp, ,,...)    or null, 

and conformally partition 

\X„     X 21      22 

A    A-hB        A    H-AB 
X = .4i?-/?S - " Xi " 

I Wrtl    /I22M-HB22 

We shall examine fe   il.tanguished    AZ =   [n   * J    where 
0   Ai?J 

Art    ~     , P.r,<        ü5   = ! 
*•    A ol 2 J 

I 0 0 J 
are so chosen '.hat 

.    M     ,W11+AV~*>/2   Au\      A    „   *       /^"^11A+511)/2      ° 
A - M - i i and fl - AS ■ 

/J 22 21 *22 

have in common the /•. common eigenvalues of 

(Ain + Aa.,A 
1)/2 «= A(A~1An1A + 311)A~

1/2 

Consequently, using A,£ -- iAZ with 0 < T < 1 we shall find that 

the eigenvalues of Z~b7,    move continuously, as T increases from 

0 to 1, until k    eigenvalues that started inside T    coalesce 

with k    that started outside F.  For some x between 0 and 1 

A 

one of those eigenvalues must cross T,    and then IIAZlL ■ xllAZlL <_ 

<  !!AZ82. 

Thuss all that remains to be shown is that SAZl satisfies 

the inequality claimed in the proposition for at least one k >  1. 

if.iir-iiiitr-—-—"—'■ ■       -rintliin-nWimwinmi 
„^-^^..^.->„...,^.»;^^,^.mniir¥tlli,(r,irili[li,1tti(miT,iT.^-^ ■ mam mtämmaim 
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mil' s^4!i2 + ,^sl? 

iPft2<1+0^<lrill2+l'2ll?+lB2d22+l'l2l2*l412li> 

<p-2(l + p^1)l!Z!i2 

Let us now choose & Co minimize the factor p7 (1+P- ,).  Sup- 

pose 6 is that minimum value; i.e. 

Pfc2(l+p£+1> 1 9 for ,2c •* 1,2 m (Pm+1 5 0) 

Then 2 , a-l 

Mm-1 •- 
2    -1-2 a+p ) < e   +e «  — 

p2 <• fl^n+o2) < 9-1-he~2+ x-m 

evidently 9 is no digger than the positive root 0 of 

IIPI! 2 -■ j + o7
x  = 1 + G"1 + 0"2 + • •. + 0~m 

9 * 9       _^y 
When p > m    we must have 0  > 1 and hence p < m© , whence 

A 1 

~ . 1/m -lfm _,    l;.i,,-,,,2  , s-l/m   ,     1/e  , ,,F 0 < m  p '  < e  (.l?l! -1)   , where e        - 1.445*•• .  The 

claimed result follows. 

This proposition poems to overestimate ÜA2II grossly.  Indeed, 

if P    has k    larg2 singular values and the rest small, say 

/l+pf/Vl+p? . » 1,  '■hen the proof above yields 

-1 
HAZI! _< p7 Ä+p*A7A,    which is far smaller than claimed in the 

proposition.  Another example of overestimation arises when a 

iHMi'it'-ifi'tiaii^iti'Mi i aBBiS 
ii-iiiiiiinma-*i'niM-m«Mir" i  jMBBiÜgaWteBaaiMMilMl Kiinrmiifir^—rrrr—''-*-^iiiiWflTiiWr-":' ■--'■••""»MlgaiÜM 
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dimilarity (perhaps :iot anitary) of modest condition number (iee 

belotf) succeeds in. dia^uaiizing A and B without erasing Che 

block AR-RB. It is penible to show then that UAZJl need not 

much exceed |Z||0/|r*I when IIP I! is large; this claim will aot 

be. proved here. 

Next we shalJ consider the condition number K(Q)  " |!£!'•!!£" " 

of similarity trar.-5f0rr.ations that reduce Z    to the block diagonal 

form 

W. 

Q~lZQ 
u   0 

0 B 

There are many siai?i?ities which reduce Z    to this form, ar-i we 

shall be particularl" Interested in the ones whose condition num- 

bers are roughly nrfntr^.l.  Experience teaches us that if the mini- 

mal condition number is huge then the reduction of Z    will be 

hypersensitive to rounding errors and other perturbations and 

uncertainties; see Wilkinson (1965) p.87. 

Proposition III.3.3: Let r, Z,    m    and P be as in the previous 

proposition III.3.2. When IIPII is huge every similarity Q~ ZQ, 

which reduces Z    tc blick diagonal form with one block for the m 

eigenvalues inside r and the other block for those outside, must 

be ill-conditioned; x(Q)  > UpII. Conversely, if every similarity 

is ill-conditioned ;-ben ||P|| must be big because for some such 

similarities ||P|| > *(Q)fk. 

Proof: Once agair. ■:■■"- a unitary similarity (which does not aggra- 

vate the condition rvr.bcrs) tc exhibit Z    in the block triangular 

11 !■ II... I.-IT- 
imifciiMHmi"""!-""-"'-" " '»"««"f«ai«MM«««MaiMll ■ in mm    - -    —- 
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lutm used In propus>ii.i<jn III.3.2.     Any eligible similarity    Q 

aju&L exhibit two blocks,  tue similar  to    A    and  the ouaei   *u    B. 

Consequently,   eve 1:7  such    Q    must have  the form 

n~lAS        0     X 

0        T~lBT 

whence    Q » (5    -AT) -1       [S~l    S~XR) 
0     1   I    a'1G    Q I  „       „-1 • Now    tQt   *   ??ll 

(0    a j   —   -        lor, 

and    !j<?||   > If*) II  >  »Pl/la"1!,    and    lie"1!!  >  Sir"1!!    ana 

-1.  >  |,5"1
(1    Ä-. I -1 

II v i5H,     Therefore 

4KW  - 410»'»0"1}   >    (lS| + |Pl/lrtO(lT"1l + lPl/'l«l] 

>   4|PR   ,    as claimed. 

3 

1 ■ 

On the other hand, ü. v choose for S and T    any matrices which 

*    2       *    2 
satisfy 5 5 ■ c      «v.d 1  T  ■ T  for constants a and X  that 

satisfy o/r « IIFl! 

«re; - 11 §11 

find that 

»™-li .-I» < (1151 + iipii • in) (IT-1
! + Il5"xll • IIPII) 

«   (0 + T||P||)(T"1+0"1i|P||) 

* 4IIPII , as claimed. 

111.4: The nearest nil potent matrix 

Suppose we have identified every cluster of Z 's eigenvalues 

to which belongs a spectral projector of moderate norm, and no 

such cluster may be broken up without introducing huge spectral 

projectors. We cou'i jit-rforra a unitary similarity which exhibits 

Z in block-upper-triangular form with one diagonal block for each 

cluster. What should oe done next? 
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In a sense, e.»cL biu«-.k resists further reduction as if it 

weic an approximation L>  a. truly irreducible block, namely & block 

with only one mult (pie *-.1fc,euvalue. The purpose of what follow« 

is to discuss how to locate that irreducible block in the hope that 

*« u»ay replace fca._i iil-& shaved cluster of eigenvalues oy  a wej.1 

Lthaved multiple eigenvalue without appreciably changing ,i,t ,,iven 

matrix. 

Problem III.4.1: Given an w.-x-m    block B,    find the nearest 

matrix Q + C    with only  one eigenvalue ß; C    must be niipotent. 

By ''nearest" we me*u t.., minimize l|£-ß-CH . 

It is not hard tr.  find the best value for ß; write 

6 - tt.(B)/m + Z    anri observe Ifl-ß-Cl* - 15 - tr. (R)Im- C\l + j&{ 2 

since tx.(C)  ■ 0.  Cherefore the best value for ß is 

S - tr.(B)/m (cf. u in III.2) ; 

and from the same o>-:■ ;vation we deduce that the nilpotent matrix 

0    nearest to B-i      ' ■   Independent of ß. That at least one such 

nearest nilpotent  ~ r-ists follows from the fact that we need 

only search for the matrix in the compact set of nilpotents C 

which also satisfy 

»5-ß-C|l2 < |S-8-0|l2 

since there is no need ,o look at anything farther away than the 

nllpotent 0. 

Let us imagine. tVst the best C   has been found, and choose 

a new set of orthogonal coordinates to exhibit C    in upper 

.■■...„^„-^.».in-nffumMT---—" -—m-.->«am»< MjimflBniiillrifi-*" BMäÜMBii MM -mi itiiiiii--"*-*ititwinr""""'' mutaem 
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triangular form. Since c is nilpotent it is strictl) upper 

triangular. Since C    is closest to 5-3» B-Q-C   must ot lowtr 

r.t tangular in ths r.cor.*:n%te system, and that lower triangle must 

have the minimum norm of all lower tiWangles of matrices unitaiily 

similar to S-p  'ünc« tue norm of all of B-ß is urcr.angtc 

by unitary similarity., we nave the following result: 

Proposition III.4.2: Given an m *m   matrix B,    the nearest 

matrix 3 + C with only one eigenvalue 6 can be constructed as 

follows. Of all matrices U BU   unitarily similar to B, choose 

one whose sup er -n'—.t ens I elements have the largest sum of sqiuired 

magnitudes; call ii S « U BU. Annihilate all the sub-diagonal 

elements of E    l\   g< l. F.     Its diagonal elements will all be the 

same, namely 0 (this is not obvious — see below). Then 

ß+6- - UFU*. 

To prove that all '_'s<. '!!atonal elements of E    are the same we 

need only consider its 2x2 principal submatrices with adjacent 

rows and columns. Kacn such submatrix must be such that no 2x 2 

unitary similarity -<an increase its super-diagonal element, A 

aodest calculation suuw"» that this implies its two diagonal ele- 

ments are equal.  I am indebted to Alan J. Hoffman for suggesting 

this simple approach to what used to be a much more complicated 

proof. That proof, which used variational methods, also showed 

that (ß-3-O  must be a polynomial in C,    and that if Cr  - 0 

then k >_  (m+l)/2, ts. . these facts seem not to help the search 

for C. 

IM.II-I ■«■■ii-irfiMiiWiiy-hinimitiitt-iiiii-Mrtf-ri-tfttrirtrfiT^ifV^-"-^^-—-"■-•^^*~<"^' '*■■—■*»**kA*ä.rii**x-n«iMr- MMWM« ^--■--—^-■iiliiiH^iWriiitfiairilii'ilriHiii 
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Proposition III.'.2 suggests that C   might be conotructed 

via a sequence of 2*2 Jacobi rotations each designed ro enhance 

uie magnitudes oi super-diagonal elements.  Such a scheme works 

immediately when m  ■ 2, may work well when m  - 3, and seems to 

■ •>:■  intolerably slow iox    m >  4.  There is ample scope to: rurther 

research. 

I 

■- -    MM miar    I I —   - 
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