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CONSERVING CONFLUENCE CURBS ILL-CONDITION

W. Kahan*

Abstract. Certain problems are ill-conditioned, in the sense that
thelr solutions are hypersensitive to small changes in data, only
because a slight change in data could cause thoce solutions to
exhibl: singular behaviour assoclated with various kinds of
coniluence. For example, an over- or under-determined linear
system solved by least-squares can be iil-conditionec only if
there exist some small perturbations to its matrix which increase
its nullity (i.e. diminish its rank); zeros of a polynomial can
be ill-conditioned only if their multiplicities can be increased
bv very small perturbations of the polynomial's coefficients;
eigenvalues of a non-Hermitian matrix can be ill-conditioned only
1f thelr algebraic multiplicities can be incressed by very small
perturbations of the ma:rix. When perturbations constrained to

a small neighbourhood can be further constrained to maximize
confluence, i.e. to maximize nullity (minimize rank) or maximize
multiplicity, and when that maximized confluence can be increased
again only by perturbations far beyond tae small neighbourhood,
then the slightly perturbed problems exhibit well-conditioned
confluent solutions. Bevond these vague atatements lie the
shadows of numerical methods which may either eliminate 111~
condition or, when ill-condition is persistent, illuminate its

cause,

*
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CONSFRVING CONFLUENCE CURBS ILL-CONDITION

W. Kahan
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"Mother may I go to swim?"

"Yes, my darling daughter;

Hang your clothes on yon tree limb,
But don't go near the water."

Introduction. Numerical calculations generally appear in the form

Compute y = f(x)

W

where [ characterizes a clase of problems and =x represents

the partlcular data. Commonly f is defined implicitly by a
set ot equations whose coefficients' values constitute x, and
y 1s the solution of those equations. The equations are called
ill-conditicned whenever there exist tiny perturbations Ox
which cause huge changes &y = f(x+68zx) - f(x). To make this
notion more precise we imagine x and y to reside in metric
spaces -- normed linear spaces are custowary -- and define a

condition number

Y = sup 18yl/1éx]

waiere the gsupremum is taken over all déx in some neighbecurhood

of x. Thus, the condition number Y 1s a Lipschitz constant;

' f(x48z) - f(z)! < yB6xl. The larger is Y, the more ill-condi-
t!oned 18 the problem f near z. When Y is infinite we

sometimes say that f 1s <1ll-posed near z, though this term

is reserved by some for discontinuous behaviour.

i 4
3
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Non~differentiable functinne [ are so rarely encountered
in practice that we might as well expleit the simplification
afforded by constraining perturbations ¢x to infinitesimal

neighbourloods . Now
flx+bx;, - f(z) = (3f/52,0x

wherever the Frechet derivative 2f/3z exists, in which case

here we uvse the induced norm for 1l .uear operators between two
normed linear spaces,

Since 2f/3x 1is usually differentiable too, it seems natural
to guess that an i’l-conditioned problem, with [13f/3z! huge,
prebably has its data x rear a place where 37/2 becomes
infinite or fails to exist. The locus of all such places iy
usvally 2 manifold in x's space, and that manifold Zg i{he sub-
Ject of vhis paper. Here are three examples:

When f represents solving a system ¢f linear 2quations
Ay = b with squave matrix A, 8o each poin: =z {in data-space
has coordinates (A,b), and when the infinitesimal neighbourhcods
are generated by all infinitesimal (64,8 without constraini,
then the manifold where 23f/dxr becomes infinite consists of
just those points x ~ (4,b) with singular 4 since elsewhere
y = £ varies hy Oy = a"teb - A-l(GA)A-lb, a bounded linear
function of the infin:cesival perturbation &r ~ {84,8b). When

f vepresents solving polynomis! equations

» n-1 N
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so each point o ~ (xl,xz,...,xn) in data-space is identified

. n " n-J

with 2 polynomial x(y) =y - Zl 2.y 7, the manifold where

of/ox Dbecomes infinite consists of just those polynomials &

with scme multiple zeros since elsewhere each simple zero y of
~%

z varles by 8y = Ly yn-Jéx,/x'(y). A similar situation arises
J

7 reoresents solving eigenproblems for square matrices

when
X; the eigenvalues and eigenvectors are well-known to be
differentiable functions cof X's elements only when X's eigen-
values are distinct, so the manifold of interest consists of
those matrices X with some multiple eigenvalues.

One might be tempted to assign some pejorative adjective to
that manifold on which df/oxr fails to be finite. (There are
precedents; in 1884 Sylvester assigned the word derogatory to
certain matrices with multiple eigenvalues, and physicists
almost universally apply the epithet degemerate to eigenvalues
whose only flaw is thelr indistinguishabilirty.) 1In so far as
f 1is ill-behaved near that manifold, the wnore so as it is
appreached, the manitcld warrante the name pejorative*. But
in the last two examples above f will be found to behave very
well on the manifold, except as > approaches certain sub-mavl-
fol'’s. More precisely, for almost all x on the pejorative
manifold and for all infinitesimally mnearby z+8x also on that
manifold the difference f(x+6x)~ f(x) 1is a bounded linear func-
tion of &x, and the bound varies with =z on the manifold in
such a way that the bound can approach infinity only as =
approaches some doubly pejorative sub-manifold on which the same
kind of betaviour recurgs. That phenomenon is what thia paper i

about

® .
Fejorative: from the Latin pejorare to make worse,
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The paradox, that f can be well~behaved on a manirfold in
every open neighbtourhoed of which f 4s arbitrarily ill-behaved,
would be uninteresting but for another property of such pejorative
manifolds; they can be charactevized ostensibly independently of
f's good or 11l behaviour. For wznt of a better term I use the
word confluence to describe what happens to [ on those manifolds.
When [ reorasents zeros of polynomials or eigenvalues of matrices
the confluvence is obvious; some zeros flew tugether as a polynomial
x aporoaches a pelorative manifceld; some elgenvalues flow
together as a matrix X approaches a pejorative manifold.
Confluence in a linear system is identified with collapse of the
range of its matrix as it approaches a pejorative manifold; this
manifold in matrix-space is the locus of discontinuiiies (drops)
ia the rank function,

Pejorative manifolds are inter_sting just becausz they are
agsociated simultaneously with confluence and with an abrupt
change from wild mis-behe ur to tame good-behaviour. Consider,
for example, a polynomial xo so constructed as to ensure, in the
absence of error, that among its zeros Yo = f(xc) must be some
that are coilncident; but because error Ar has crept into the
data x  mnonme of the available zeros y04-Ay = f(x0+Ax) are coin-
cident. They may well be nowhere near coincident. Frantic
dispersal of perturbed zeros is frequently quite pronounced
when & 18 of high degree, and is not surprising when we realize
how wildly f must misbehave near a pejorative manifold. Gilven
only xo+Ax and A bound for lAxl, can we discover a nearby =

i

on a8 pejerative manffold? That x, will not be unique but,

1




provided the bound on [Ax! 1s small enough to keep Z, well away

1

from a doubly pejorative sub-manifold, we can expect that the multiple

s

zeros among Yy, = f(xz.) will not vary much as x, runs through

1

those values on the pejorative manifold close to xo+Ax. Thus do we

substitute a well-conditioned problem f(ml) for an ostensibly 111~

B 2 Tk e

conditioned problem fCrO+Ax). On the other hand, we may discover
that x°+Ax is farther from the pejorative manifold than the bound
4 on fAxl, in which case we infer that something, either the bound
or the construction of z is wrong (i.e. mistaken).

The properties of pejorative manifolds have many other prac-
tical implications but to discuss them here would be premature.
First we must verify the foregoing assertions cbout those properties.
Secondly, we should consider how to locate the manifolds compu-

tationally; here is where the theory is weak. Only for linear

3 systems do we krow how to tell cheaply whether a duta-point X
is close to or far from a peiorative manifold, and whether there
are multiply pejorative sub-manifolds nearby, and where they are.
Some of this knowledge is imparted in part I of the paper.

Parts 11 and III consider polynomials' zeros and matrix

eigenproblems respectively. For these problems the simplest
pejorative manifolds, corresponding to dcuble zeros and double

eigenvalues, are easy enough tco locate; but multiply pejorative

e L

sub-manifolds are not yet within reach of cheap computation. In

particular, we cannot easily tell whether a data point x 1s far
enough from a multiply pejorative sub-manifold that that subl-mani-
fold need not be explored, vniess x 1s very far from every such

sub-manifold. Fortunately for our theory, multiply pejorative

foaas ¥ ghosiiaie el s b




sub-manifolds need only rarely be considered; in ordinary language
this means that double roo0ts, though rare, are overwhelmingly
more common in practice than are roots of higher multiplicity.
Consequently, the theory is ripe for exploitation despite 1its
immaturity. The theory's subsequent growth seems likely to depend
upon numerical analysts' proficiency with algebraic geometry and
metric spaces.

k k % k%

1 take pleasure in acknowledging here the assistance and
encouragement received, wnile the foregeing notions were evolving,
from several years' discussions with many colleagues and friende.
Especially, George Forsythe's continuing interest in those notione
considerably stimulated their development. I am indebted too to
the riganizers of the SEE Gatlinburg Symposium on Numerical Linear
Algebra, held zt Los Alamos on June 5~10, 1972, for an opportunity

to present those notions to a wide audience,
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Part I: The Pseudo-Inverse

+
The pseudo-inverse X of an mx» matrix X is uniquely

defined formally b7 the familiar equations

¢ o xx=x, X -xt, oot ey, wh -t
but a better definition is derived from its principal application,
the solution of linear least-squares problems: Given X and an
m-vector v we seek thar n-vector w which minimizes Hv - Xwl,
and when the minimizing w i{s not unique fas must be the case
just when X's columns are linearly dependent) we seek that mini-

mizing ® with minimal fwl. The vector norm used here is

fwd = vw*w; we shall also use the induced matrix norm

1z! = max #Z2w!/%w} and the root-sum-squares norm HZRZ Ytr.(2*2).
wt0 “
The desired minimizing vector w turns out to be w = X v;

i

see R. Penrose (1954,1955). This formula is interesting only when
X's columns are linearly dependent or nearly so, since otherwise
we could substitute X+ = (X*X)_lX* and ignore the equations

(*) above. But just when X+ becomes interesting it becomes
numerically exasperating no matter what method ie employed to
comute it because when X's columns are linearly dependent )i.L
must be a violently diascontinuous function of X and hence hyper-

sensitive to small variations, as we shall see,

In what follows we shall discern a nested sequence
) ») D s
Mo Ml MZ

nf pejorative (for k 2> 1) manifolds and sub-manifolds in the

space M0 of mxn matrices X; M, is the manifold of matrices

k




whose rank does nct exceed min(m,m)- k. We shall discover that

X+ is a well-behaved function of X provided X 1is confined to

Mk and avoids Mk+l' More precisely, we shall find that while X

and its infinitesimally neighbouring X+ 68X are constrained to M;"Mk+1

§¥+ﬂ = 1//the minimum distance l+++} from X to Mk+1) ,
it 2 t ,
fX 17 = gupld(x )ﬂzlﬂﬁXﬂz over X+8X on the same Mk as X .

Some of these discoveries heve been seen befora, particularly in
F the works of G.W. Stewart (1969), V. Pereyra (1969), and Golub

and Pereyra (1972), whose treatments should be compared with what

follows. Finally, we shall consider, given X and a tolerance

£ >0 such that all X+AX with JIAXE < L must be regarded as

indistinguishabla for practical purposes, how to find an approximarion

X indistinguishable from X with the best-bahaved §+. -;
Some apparatus is needed. Let us assume nm >n  (otherwise i
i
transpose X) and denote X's »n siagular values in order by i*
J.'
> >-n-> > v a = "| 3
El‘— EZ‘— > En‘— 0. That &y fxl 1is well known, as is j
o
the fact that X''s singular values are the re-ordered numbers
.1..
Ej’ where
- -
' = 1/7 except for 0 = 0
i
Not so well known is the following relation proved by L. Mirsky 5
(1960, theorem 2): %;
Ek = min JAX} over rank(X+AX) < k . ¢
1y
il
One implication of this relation, to be used later, is that no i 3

singular value of X+AX cen differ from the correspondingly

R, 3
B g i i
(ke it i




numbered singular value of X by more than [AXfi. Another impl'-

cation chtained via Gx'] = max4(£;) is that
gt
PX°1 = 1/minfAX]  over rank(X+AX) < rank(X) .

Consequently, if X @ Mk but X é M

then

k+1

+
te o -
X' § = 1/min?s¥! over X+AX e Mk+l R

which %8s just what was claimed for JX ! above.
Next we shall exploit a little known formula;
g - + t oy k th + +t% * i
e X =Y ==Y (X-)X + (1Y DX-Y) X' X + Y'Y (¥-Y) (1=-xx") =
This formula can be verified by applying the equations (1) abnve
to reduce the right-hand ride to its simplest terms. Note that
b

(l—Y+Y) and (1-XX') are orthogonal projectors which annihilate
+ * +%
Y and Y, 2nd X and XY respectively. Consequently we

find

w -y otrh -

>

+ * %
-0y e

: ke LR I * +
¥ j X X=Y) Y Yy (X-Y) (1-XX')

+ 8 . T+ + B 0 o
i X X-DHQA-Yynux-»x x

+

G bkt +
Q=XX"YX=DY Y Y (X-¥)X

+ R * +
+ (=XX )Y X=Y (Y Y Y (X=Y) (1-xx) i

i and taking norms yilelds an important inequaliry ‘;
5 T
’i E & + + % k
- P R P L (e RS Pl L T LY P ar T Py RIS Bad ey |
¢ < shx-y1? rax{ llx*ll.uy*n}" .
1 Now let Y = X+AX, and suppose both ¥ and X+AX lie on M i

k

e i S G W R %
il et 2 i3 o



10

but not on Mk+l' As AX + 0 we see that H(X+AX)+H becomes

and remains bounded, and then that ﬂX+-(X+AX)+ﬂ + 0. In short,
-1-

X 18 a continuous function of X on Mk away from Mk+

.'.

1° It

soon follows that X  1s differentiable too, for we need only
set Y = X+0X, with infinitesimal &X constrained to keep

X+6X, like X, on Mk away from M to deduce that

k+1?

sy = —xTenxt + a-xTo @™+ T e a-xh

Next we seek to compute sup“G(X+)ﬂ2/ﬂéXﬂ2, To this end it
is convenient to invoke Autonne's theorem which exhibits X = PAQ
where P 18 mxXm unitary, ¢ is nxn unitary, and A is
mxn diagenal with the singular values Ej on its main diagonal,
This singular value decomposition may be computed at modest cost

by methods described in Golub and Reinsch (1970), and will be

further exploited below. For the present let us partition

A o)
A=| °
0 ©

i

in such a way that just X's non-zero singular values Ej appear
on the diagonal of {he square diagornal matrix Ao' Evidently

+ * = X
X = ¢ AP where

Also HX+“ - HA;II. Next partition conformally

. S LS

o ;- o g




« « [646B
SA =P (8X)@ =
8§C &D
by fixing P and & 1independently of &% we oblige &8A to be
non-diagonal in general. Since X+06X must have the same rank

as X, A+0A must have the same rank as /A, and this must be

the same as the rank of

{ 1 0 ‘\ ( A _+é4 8B \
: (A+SA) =

1 1 )
| ~6c(h +6)7H 1 } \ 0 OD-8C(A +64) 6B

The rank in question is that of Ao’ and also of A°+6A since

84 18 infinitesimal. Therefore we must have
X - =1
8o - ,(A°+6A) §B = 0 R

but this merely says that the infinitesimal 6D = 0, Therefore,
infinitesimal perturbatinns ©&X for which . and X+8X have

the same rank must have the form

84 53\
6X = P Q
8 0 /

Substitution into the formula above for G(XT) soon leads to the

conclusion that
ode
(1 < fien?

with equality possile when 84, 6B and 6C are chosen to have

non-zero entries only in rows and columns corresponding to the

largest entries in A;l. Thus we conclude that pseudo-inveraion

o

core
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can be ill-conditioned with resperct to rank-preserving perturba-
tions only 1f the data-matrix X is very near another of lower
rank,

Finally let us discuss how tc compute a pseudo-inversgse appro-
priate for a given matrix X when given also a tc.erance { > 0
such that all X+AX with HAX! < £ must be regarded as indis-
tinguishable from X. Should some of these matrices X+AX have
different rank than X there must exist others whose pseudo-
inverses differ arbitrarily much among each other. None of those
wildly divergent pseudo-inverses can be useful. Instead let us
find a matrix X = X+AK of minimal rank with 14Xl < £. Such
& matrix is easily obtained from A above by ennihilating ali

> >

gj < £; let K denote what results and let 2 - PKQ. If £ < ‘n
then A= A and 2 = X+ in this case for all AX with

fAX0 < £ we find that

§ ) T

IA

1/(5,-8)  and

o - xTr T

A

(14 8276, -5)%) M 2

n

The latter inequality is obtained by substituting Y = X+ AY and

+
X+X = Y'Y =1 into the formula above for X+—YT, and then taking

Ry o toh* c pot

the norm of (X =Y )(X -¥') with the aid of X' = l/En and
HY+“ < l/(En“E). The point of the inequality is that if E/En << 1
we mey confidently assert that all indistinguishable matrices
X+0X have nearly the same pseudo-inverse.

The interesting case occurs when En-k >6 2 & for some

n+l-k
k > 0. This means that amorg the matrices X+AX witk JAXI < §

are some of rank n-k n+l-k,....n. Every time X+AX changes rank,




o
3

13

(X+A’()+ jumps iafinitely violently. But as X+AX runs through
ode
matrices on Mk of rank n-k with [1&X! < g, (¥+AX)' varies

continuously and 13

Ve -0 < B, 6, 0

Whenever E/En_k << 1, the pseudo-inverses of matrices on Mk
indistinguishable from X will differ only slightly among each
other, although matrices X+AX not on Mk will have huge and

A A
wildly varying pseudo-inverses; in this case X' seems to he a N

S e

reasonable response to the co.umand

"Compute X+" o

But if En—k is only moderately larger than £ ths:'. command

deserves to be questioned.

“+
‘ << 1 <
Another way to appreciate X when E/En-k 1< E/En-k+x

is geometrical. Consider the image P under the operation *t of
the ball B of matrices X+AX with Hax! < &; 1.e. consider the ;
set P cof pseudo-inverses of all matrices in that bzll B. P has 4
two disconnected componants Po and Pm. Po consists of the
pseudo-inverses of matrices in & r‘Mk, and looks like a small

~d

s
bent coin roughly centered ou X ; all the points (X+AX) in Po

are close to 2+ (see the inequality above) and have modest norms

not exceeding l/(ﬁn_k-ﬁ). The other component P_ has tentacles Q
which reach to = starting from far-out points (X+AX)T which

must satisfy H(X+AX)T" > l/(E+En_k+l) >> 1/(§n_k-§).
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Part 11: Zeros of Polynomials

Many numerical analysts suffer from a misconception that
multiple roots are infini‘ely more ill~conditioned than simple
roots. Actually, a multiple roct behaves much better than the
clustered simple root-approximations so often accepted in its
place. More precisely, we shall find that each zero of a poly-
nomial is a differentiable function of its coefficients provided
that zero's multiplicity is conserved; only when multiplicities
change can the derivatives become irfinite. Moreover we shall
find that the condition number of a multiple z2ro must be inversely
proportional to the product of the distances from that multiple
zero to all other zeros of the polynomial. For the problem of
finding polynomials' zeros the pelurative manifolds and sub-mani-
fecids 1 the space of polynomiaus are evidently the loci occupied
by polynomials with variocus combinations of multiple zeros (one
double zero, two double zeros, ..., one triplas zero, cne triple
and one couble zero, ...). However, given a polynomial 2z no
convenient way is known yet for determining how near x 18 to =
pejorative mnanifold short of computing laboriously all the points
nearest X on each of the various manifnlds and sub~manifslds.

We shall describe some of the easier such calculations.

I1.1: Differentiability of Multiple Zeros

If 7 1is a simple zero of the monic polynomial
I n-J
e(1) g1 - F) 2.1

then x'e first derivative x'(7T) camnot vanish at 7 and hence




each a;/axj - cn-j/x'(c) must be finite, whence it follows that
§{ must be an analytic function of each coefficient xj 46 long &8
{ remains simple. To what extent can this assertion be valid
when f 1is a multiple zero of &?

Whenever x has a multiple zero its ccefficients xj must
satisfy certain constraints expressible as polynomial equations
in those coefficients with the aid of determinants known as
bigradients or reeultants; see B5cher (19C7, ch. XV) or Householder
(1970, 8§1.2-3) or van der Waerden (1950, ch. XI). It suffices
to acknowledge th: e constraints without describing them, and

then expleit them with the foilowing result:

Proposition II.1: The constraints satisfied by the coefficients

xj of the monic polynomial

- n 1 n=Jg
z(t) 22 - 2t
3 (%

when it possesses an 1. -tuvle :erc U define U and the

last m-1 coefficients poresy to be analytic func-~

X
rt2-m

tions of each of the first n+l-m coefficients

xl,xz,..., as long as the multiplicity of [ remains

Lyt 1em
precisely m, irrespective of the other zercs' multiplicities.

And then if Cm+1’cm+2""’cn are 2x's other n-m zeros,

different from ¢ but otherwise not necegsarily distinct,
n=i+l-m .
1

& n .
3g/3x, = <) Mopy (B8) for 1< 4 <mtlem

Proof: Since f is an m-tuple zero o1 =z, x(m)(c) ¥ 0 but

By w0, 2™ () a0, ..., 2'() =0 and 2(Q) = 0. The

15
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;irgt two relations imply that 7, as a simple zero of x(m_l),

i . 'i.u‘ £ f{‘\ 4 s 00 .
uust be an analytic function of its coefficients xl,xz, 'In+3-m
“ubstituting that function for 7 1in the last m-1 equatiocas

xhibits the last m-1 coefficients in turn as analytic functions

(m=1)

<f£ the first n+l-m. Then differentiate the equation =x ) = 0

with respect to x. to produce

L

x(”’)(c)a;/exi = N AT el m)

and apply Leibniz's rule to x(1) = (T-c)mH;+l(T—Cj) to produce
x(m)(g) = m!H;+l(§—c;), whence follows the last part of the af
1

proposition,

Here are three examples to i1llustrate the proposition. Fi.st,
a quadratic TZ-ZaT+8 has a double zero 7 = o just when & = az;
here § and B arz analytic functions of o as claimed in the it
propositicr. out if we regarded [ and o as functions of
they would have a branch-point singularity at 8 = G, This firat
example provides scme excuse for regarding, as does tne p..position,
the flrst n+l-m coefficients z, instead of some other subset

v

as independent variables.

The second example i8 a quartic
ra - 4GT3 + 6812 - 4yt + &

which has a triple zero [ = 0+ A whenever vy = (a+A)2(a-2A)

and § = (a+A)3(a-3A) where A = t(az-S)l/z; evidently [, Y

and ¢ are analytic functions of & and 8 except at the branch

point where 4 = 0, at which point 7 becomes a quadrunle zero.
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The third example 1is the quartic

o 2ad)? + it + 1 - 2% for real 3

4 q(1t,\)

(t- sign(l))2(1+-sign(k)+'A)(T*—sign(%)-A) .

L]

. has a double zero § for all real A, but =1 for A >0

rnd g = -1 for A <0, with ambiguity and discontinuity at
A = 0 despite that [ and the last coefficient l—Az may appear

to be formally analytic functions cf the first three coefficients

(0,2+A2,2A%Af). But these first coefficients are not free here

to vary independently, nor are rhey analytic functions of the real

parameter A near X = 0. A oetter explanation for the apparent
ancmaly is obtained from a geometrical approach which identiflesn
quartic polynomials with points in & 4~dimensional space. The
polynomials with double zeros constitute a 3-cimensionsl manifold
in that space; the manlfold inteicects itself at pointe corres~
ponding to polynomials, like ¢ft1,0), with two double zeros., As
X runs from -1 to O to +1, say, ¢{t,A) runs along one
sheet of that manifold to a point of self-intersection and then
turns a corner to run along the other sheet. The 3-dimensional
manifold is pejorative; the corner where ¢g's double zero is

discontinuous lies on a multiply pejorative sub-manifold. Little

seems to be known about the complicated gecmetry of these manifolds.

11.2: Condition Numbers for Multiple Zeros
The condition of a zero [ of a polynomial x is genzrally

a vague notion (cf. Wilkinson (1963, pp.29-32 and 47-48)) partly

because the metric by which we measure distance between polynomials
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is 80 often arbitrary. A natural metric for polynomials regarded
a8 pcints in a linear space is a vector norm [f+--§; e.g. for
arbitrary weights wj >0

agz xjr“"]" z ,/(z:‘ wjng{z} .
Although we shall use just this last norm in what follows, the
statements concerning condition numbers will be stated for (and

are valid for) any vector norm. Whatever the norm, one corresponding

condition number for a zero f of a polynomial x will be

defined to be

Y(g,z,l°+ 1) = sup |6z)/16x!
Sz

where &7 d1s the infinitesimal change in 7 ccused by changing
the polynemial & infinitesimally to x+8x. This condition number

Y 1is appropriate when absolite variations in f and 2z are at

issue; Y/?cf is a more appropriate condition number when relative
variations 6Z/f are a. 1issue,
0f courzse Y's definition makes sense only if 6x 1s under- z
stood to be so constrained that r's multiplicity is conserved;
otherwise 7 loses 1ta identity, disintegrating into a cluste:
of zeros whose condition numbers approach infirity as the cluster
coalesces upon . This assertion, which we have yet to prove,
explains why multiple zeros haw~ a bad reputation for ill-condition
undeservedly acquired by associat on with the cluster of closely

spaced and therefore ill-conditioned approximate zeros which are

8o often accepted instead of multiple zeros; cf. Wilkinson (1963,

p.4l, §8).




Precposition I1.2: If ¢ 4is an m-tuple zero of a monic polynomial

x whose other zeros are Cm+l’ m+2"'°’cn

number is
VRN VIR LR NN SRV Gl I

where K 1is independent of & and its zeros other than .

Proof (for any notm fee<f): If z(1) = Tn _ z: xﬁn-,y and
[
Sx(tT) = -Z: ijTn-J then by proposition II1.1
1 on+l-mm-iy n-i+1l-m n
LT | < S /LT

Here 6 1s expressed as a linear function of the first n+l-m
infinitesimal coefficients 6xj. The last m-1 coefficients
are also linear functions of the first n+l-m obtained by solving

a triangular system of linear equations derived from the equations

x(k)(c) =) for k=20,1,2,....m=1

2™ () + 2™V rjsr a0 for k=0,1,2,0..m1 .
The last set reduces simply to
(k)
Sx*"(g) = Q0 for k= 0,1,2,...,m=2 ,

which may be solved for &x 8 ,an in turn. Hence

n+2-m’ xn+3—m""

there exists some linear operator & depending upon {, 7 and

m alone such that

6z = de(m-l) x

This linear operator ¢ transforms an arbitrary polynomial p

then its condition

;
g

b

:

%
4
3
iv
%

e e




of degree #n-m into another ¢ = ¢p of degree n~l1l in such a

i way that
q{%) = g’ () = cee = q(m'z)(;) = 0 and q(""l) =r

1 the last few equations constitute an ialtial value problem whose

solution is

T
. 1 f m=2
q(t) = (Qp) (1) T J;(T-e) p(6)d8 .

: Hence we deduce that &p =0 only if p = 0, rnd therefore %
# ‘ 1 ;ﬁg‘
i”p!” = HQP” 1s ancther norm on the linear space of polynomials |

:: p of degree n-m. Now ‘
vy = sup |67|/16xl over constrained Sz = Qéx(m-l) i

* 1 *
and 6 = e éx(m 1)/H;*1(c-;j) where e 1s the linear functional

defined above in the earlier expression for &Z. Hence

v s [ G s |

as claimed, where

K = sup !a*p[/mp“[ over (n-m)-degree polynomials p

depends upon m, n, f and the norm [J:<+} but not upon =z

nor its zeros other than .

Corollary: Proposition Y..2 may be applied to non-menic polynomials

z(t) = Z x.Y

5 with , # 0 provided K 1is replaced by
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a different function
K(m,n,c,ll“‘!!)/!xo' .

The foregoing results fail to reflect one important aspect
of floating point computation -- independence of scaling. Speci-

fically, we would expect the relative precision of approximations

-~

to a zero ¢ = 0f of E(T) z onx(r/o) to be independent of 0o

at least as long as the scale factor U 1is a modest power of the
computer's radix. The proposition above appears to give results
which are altered by scaling, but it can also be applied in a way

independent of scaling. The proposition remains valid when the

norm {***l varies with ({, as for example does
4 n-jy - n n-j2
i Ty | = /(I wJ.[;cJ.t, )

More generally, whenever the no.m f***l varies with  1in such

a way that lIx(T)llC ~ lcx(zt)l]l for some norm [lj+-+!ll independent

of [ we find that

n
Y(0%,0 x(r/o),H°'-H0C)/!ocl - Y(;,x,""'ﬂc)/i;!

n
5 x(m,n.l,u---nl)/nm+1!1-gj/c! .

Then the condition number vy/|z! 1is independent of sceling and
depends only upon the multiplicity m of [ and its relative
separation from x's other zeros, Consequently, only ciusters of
relatively closely spaced zeros can be ill-conditioned when such
a [5-dependent norm s uged.

The word cluster used above has been used very loosely. One

might hardly consider the zeros of x(71) = Hio(f—j) to constitute




a cluster in the usual sense, yet the zeros near 15 have been
observed by Wilkinson (1963, pp.41-43) to be ferociously 1ll-
conditioned. This ohservation does not contradict proposition I1I.2
and 1its corollaries; when the comstant K 1is evaluated (for
m = 1 here) we do get condition numbers of the order of 1010.
This means that one's intuition about clusters is unlikely to be
reliable.

Calculations by a student, Mr. David Hough, have shown that
one need only perturb each coefficlent of /1) = HiO(T-j) by
less than one part in 10ll to construct a nearby polynomial

x+Ar whose zeros, while still all real, include a double zero.

Consequently the polynomial ax 41s very close to a pejorative

manifold; in fact, it 1s almost equally close to several multlply
pejorative sub-manifolids., These observations explain Wilkinson's
§ polynomial's 1ll-conaition more convincingly than can any alle-

gation of clustering among its zeros.

11.3: Where are the Pejorative Manifolds?

When m of a polynomial's :zeros are clustered closely in a

region well-separated from the rest of the zeros, it is natural
to expect that a small perturbation in the polynomial's coeffi-~ F
cients should suffice to collspse the cluster into an m-tuple

zero. That m-tuple zero must be a simple zero of the perturbed

polynomial's (m-1)§£ derivative, and therefore close to a zero

of the original polynomial's (m-1)§£ derivative. Consequently

T

when we wish to substitute what we hope 18 a well-behaved m-~tuple

ki zero for a cluster of m ill-behaved zeros, we can approximate
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the m-tuple zero by a simple zero of the polynomial's (m--l)EE
derivative provided such a simple zero can be found near the cluster.

The next resul't guarantees that such a zero can be found.

Lemma II.3: Suppose the "l degree polynomial x(1) has at
least m zeros ;1,52,...,§m (1 <m <n) 1in some convex

(m-l)(T) must vanish at least once n the

region (. Then &
star-shaped region S consisting of all points from whi:ht (

subtends an angle no less than 7/(n+l-m),

Proof: Let Am’lr(cl,cz,...,;m) be the (m-1)35 divided
difference of x(T) over the zeros cl,cz,...,cm. Since each
x(cj) = 0 that divided difference must vanish. Therefore we

obtain

f

vee [ (m-1) m=1 =
( ; ] % (Z? cj;j)dcldc dcm = A x(;l,cz,...,cm) 0

|
All 0 >0

and L 0.=1
J

2

from a tformula attrivuted to Hermite and to Genocchi by Milne-

Thomson (1933, p.10 and p.18 ex. 6). Let us denote the n+l-m

zeros of Y by M,aN,,qse++s",  and so infer
e 5 '?
J j ] kum(nk-jilojcj)dcldcz dc =0 . ?
All cjgp
and & 0 .=l g
J

From this point we pursue an argument similar to Marden's (1966,
§24),
Were every N outside S we could find a 9k for each

k= mm+l,...,m such that

PAOTITeS
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0 5_arg(nk-1)- Gk < n/{ntl-m) for all T in C . 3
In particular ZT Gj§4 lies amidst the ;j's, and hence in 7,
v

for all relevant sets of 7alues 01,02,...,cm; therefore we should
deduce that ?
g .
n ? E i3
O<arg{ I (n,- )o.z))~-F6 <nm 3
Kwm k J=1 JJ m k ?;

whence it would follow that the last integral, with its integrand
confined to a half-plane that excludes zero, could not vanish.

This contradiction proves the lemma.

In particular, when C 1is a circle of radius p then S

m/2
turns out to be a concentric civcle of radius p csc ;:4—;1 ‘n
P

general S cannot be enormously larger than C, so the deaired
1y

m-.
simple zero of x( ’ can always be found somewhere near a

cluster of m zeros of =z,

In general ome cannot expect ill-conditioned zeros to cluster
in an obvious way, and we must search instead for nearby polyno-

mials on pejorative manifolds. Thus one comes to consider problems

like this one:

Froblem I1.3: Given x(1) 3 t"=J7 2.7"7 find the nearest

i ‘VJ
polynomial x-y, where T & Z: ijnwg’ with an m-tupie zero.

We interpret '"nearest" to mean that

2_wm 2
yh® = Zl wjlyjl

with given positive weights wj, should be minimized.

This problem can be approached in a conventional way via




Lagrange multipliers. The result is a set of m equations

m=-2 n-k . o gn 2 ~J=1.* n-j-k ;
LTI VU N (CES /13 N (i M-S
LT (k) N (n=F-1) ! .
i=0 tjm1 (d-R)1(r=7-1) e
for k =0,1,2,...,m-1
: from which we eliminate the Lagrange multipliers Xi by setting
; a determinant of the coefficients of (l,ko,kl,...,km_z) to zero.

The result is an equation to be solved for the m-tuple zero .
The equation is not a polynomial equation because both [ and its

*
complex conjugate f appear. When m = 2 the equation is

' (6) = 20 (1 o) 10 2w )1 (11677 )

and is not hard to solve for [, though most of the solutions

must be discarded as irrelevant.

The problem becomes more interesting when x(T) has real
coefficients and, naturally, we require that y(T) have real
coefficients too.

However ugly these calculations may be, they are worth pur-
suing whenever & has a badly {ll-couditioned m-tuple zero 7.
For 1f ('s condition number Yy 1is huge then, since proposition
11.2 tells us that

n
Y=K/ T |z-¢.] = m!K/!x(m)(C)l
ml Y

for some modest K, we see that x differs from a polynomial

:: (m)
} z(t) - yi(t) = z(1) - '?-—-—(-;-)—(T-ﬁ)m

m!

with an (m+l)-tuple zero § by just a little;

Y F WIS . Ty i L ot st Soadl
e e agad o ™ A
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Iyt = KhC-0)™1y .

x can be no farther than that from the multiply pejorative sub-

manifold of polynomials with (m+l)-tuple zeros.
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Part I11: Eigenproblems

"What I tell you three times ls true."

Lewis Carroll, Hunting of the Snark, Fit 1.

Let § be an wm-cupie eigenvalue of the nXn matriz .
and let 6Z run through infinitesimal perturbations so cousciained
that 7482 continues to possess an m-tuple eigeavalue I+S&

near (. We define
Y(GyZ,he++4) = sup |6g|/#82Z1 over such conerrained 62

to be the condition number of 7 as an m-Luple elgenvalue of 2
with respect to some given matrix norm f++-l. The constraints
on OZ are complicated but indispensable when m > 1; wichout

them the condition number <Y would be either infinite or

meaningless.

We shall obtain estimates for ¥ which relate 1t to the norm

of the spectral projector F onto ['s m-dimensional invariant

s st

subspace. P 1s characterized by the equations

bk

P°=p, Pz=1IP, rank(P) =m , P@Z-5)" =0

.
s

R

P can be computed straightforwvardly from the similarity trans-

formation that exhibits .'s Jordan normal ferm. (For example,

Alar LbIANF's & ek

when m = 1 [ 's non-zero row and column eigenvectors x* and Yy,
which satisfy z'Z = Zx* and Zy = Ly, yleld P = yz*/z*y.) i
We shall £ind that, roughly speaking, Y 41s big if and only if }
IPl 1is big. Since Yy 1s appreciably rore expensive to compute

than [Pl when m > 1, we shall use Pl as a measure of ~'s

hd
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ill-condition instead of Y.

Hypersensitivity to small perturbations, and the condequens
risk of numerical instability, always accompany a spectral prujec-
tor of large norm irrespective of whether it belongs to a nultiple
eigenvalue or to a cluster of simple elgenvalues of 2. The ek -
tral projector 7 onto an m-dimensional invariant subspace
belonging to a cluster of m eigenvalues L. {counting multi-
plicities) is just the sum of the spectral projectors }E beinng-
ing to the distinct values Cj' When [Pll/m is huge at least
one of the "EJ"'S must be huge too so at least one Cj must be
ill-conditicned. We shall see other bad things happen; for exam-

ple every similarity transformation &, which reduces 2 to »

diagonal sum

in which the mxm natrix B has as its spectrum the cluster of
m  eigenvaluzs Qj' is necessarily ill-conditioned in the seuse
that EQ“-NQ_lH must exceed [|P|, roughly. Indeed, when W2l jm
is huge the cluster'y very identity as a cluster of m eigen-
values may be jeopardized by small uncertainties or perturbations
in Z. Why? Because then to every closed contour [ which
encloses the cluster and excludes the regst of 2's eigenvalues
corresponds at least one small perturbation A2, with

1azy < <hzi /iy t/m for a modest constant «x, such Liat : j

has either fewer than 7 or more than eigenvalues inside T,

In the special case when 2 's cluster containe just one m-tuple




eigenvalue [, the small perturbation LZ can be so chosen that

that same ¢ {5 an (m+l)-tuple eigenvalue of Z+AZ; our proof

of this assertion will sharpen and generalize porteicous results

for m = 1 published earlier by Ruhe (1970) and Wilkinson (1972). %:
So, spectral projectors of huge norm are critical symptoms oi

hypersensitivitv to small perturbations, and no matrix can prssess

huge projectors unless tiny perturbations to its elements suffice

to increase the multiplicities of some of its eigenva.uz2s, Evi-

dently the eigenproblem's pejorative manifolds and cub-manifolds

consist of those matrices with various combinations of multiple

eigenvalues (one double, one triple, two double, one quadruple,

one double and one triple, ...).
Although, given a matrix Z, nuno convenient way is known yet

to determine just how near Z 1s to arbitrary pejorative sub-

man’folds, ways are kncwn to find points, close enough to 2 :ov

many practical purposes, on some simpler pejcrative sub-manifclds.

These ways invoke unitary similarity transformations which reduce

Z to a block-upper-triangular form with diagcnal blocks of small
dimensionality. Each block is intended to correspond to a cluster
of Z's eigenvalues to which belcongs a spectral projector of
moderate norm even though the spectral projectors belonging to
every sub-cluster of the cluster have huge norms. When such clus-
ters exist, and often they do exist, they may not look like clus-
ters to th- waked eye; this is so because the individual eigen-
values in the ~luster are very ill-conditioned and disperse fran-

tically in response to most small perturbations of Z. The eigen-

values {r a cluster can be identified only by the observation that




each eigenvalue's projector, though huge, cancels parta of the
others' projectors Ir such a way that the sum of all the individuel
projectors has a moderate norm.

Having found suitable clusters and corresponding small blocks,
we try to replace each block by its nearest like-diwmension:d
matrix with just one eigenvalue; this turns out to be tantamount
to the construction for each block of the nilpotent matrix nearest
to it. Enough is known about that construction to make it cheap
for small blocks -- 2x2 and 3x3 -- but for larger blocks nn
cheap construction is known yet.

The theory 1s extensive but incomplete. Lacking sharp 1.di-
cations of the distance from Z to various pejorative sub-rauifeli:,
we coul.i too often become enmeshed in expensive calculations of
nearest nilpotent matrices whenever 7 is neither so far from
all pejorative sub-manifolds that they are obviously ignorable
A0r 50 near to some as to indicate obviously which ones are the
only ones worth considering. Yet the theory is attractive. If it
can be refined to cover the majority of cases that arise often in

practice, 1t will be complete enough.

III1.1 Some apparatus

Only the following matrix aorms will be used;

%
Ytr. (X X) = /I (singular values of X)2 ,

i

Ixi,

hxi

m

max §XYI,/0Y}, = maximum singular vali: of X .
véo ¢ 2

These norms have been chos 'n becsuse they are not changed when X

is multiplied by a unitary matrix and consequently have many useful

30
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properties which we will invoke with little comment; for -detajls
see Mirsky (1960) or Gohberg and Kreln (1969),

Given an nxn matrix 2 we shall sometimes identifv a clus-
ter of m of its eigenvalues Cj (counting multiplicities) by
specifying one of the closed contours I in the complex plane
which enclose all of the cluster's m eigenvalues strictly an
their intericrs leaving the rest of 2's spectrum strictly outside.
Some of the contours may have disconnected components but none of
them can pass through an eigenvalue of 2. We soon discover,

after Kato (1966, p.67), that
., $ ~1
P—mir‘(": Z) ~dt

is the spectral projector onts 2's invariant subspace belonging

to the cluster of eigenvalues inside T. These elgenvalues are the
m non-trivial eigenvalues of P7 = ZP, of which the remaining
n-m eigenvalues are just O,

There are other ways to represent FP. We may aptly select a
new (generally not orthogonal) coordinate system, or equivalently
rerform an apt similarity transformation, which will exhibit 7
in the reduced form (g g) in which the mxm matrix B has as

its eigenvalues just those incide the cluster and 4's eigenvalues

00
01

Alternatively we may invoke Schur's theorem to obtain & new

are outside. In that coordinate system £ appears as (

orthogonal coordinate system, or equivalently perform a unitary

similarity, which will exhibit Z in the (block-) upper triangular

form
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A AR-RB

& B

in which 4 and B have the same spectra as before. The block

AR-RB is written that way for more convenient correlation with P

E which, in the same coordinate system, has the form
£y

§ 0 -R

3 0 1

i

£

If we do not insist that 4 and B be upper triangular we can

L

instead arrange with the aid of Autonne's theorem that K bhe an
{(n-m) xm diagonal matrix exhibiting its singular values. Either
way, because the similarity transformation is unitary we have

ey o=t ('f) I and, incidentally, 01-P§ = I(1 R) = IP} (cf. Kato
(1960)). Finally, a non-unitary similarity which relates the tri-

angular form to a block diagonal form is

AAR-—RB} 1 -r\fa ol\f1 &

0 B } 0 14\0 Bj\0 1

When the cluster inside [' contains only one m-tuple eigen-

value 7 the mxm block B must ha.2 onlv [ atg an eigenvalue;

>m-l = () too B is called

consequently (B-c)m = 0., When (38-g

derogatcry for reasons that will be clear soon. To simplify

matters let us temporarily set ¢ = O as we digress to study nil-

potent mXxXm matrices; these are characterized by the equation

sy, !
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4 Lemma 111.1.1: #" = 0 if and only if tr.(Bk) =0 for

Lia L TPV
DT L DN

k=1,2,...,m,

LR

- Proof: Apply Newton's identities (cf. Househclder (1970) p.37)
to sums of powers cf 3's eigenvalues to deduce that the; 5=

all vanish, f

What conditions upon an infinitesimal perturbation 638
ensure that both B and B+6B are nilpotent? Another way t<
think of this question is to imagine that B = B(7) 41is an analytic
function of T that stays nilpotent for all T; what characterizes
é = dB/dt for all such functions? The question is not triv‘al
because, although we may differentiate the equations B« ¢ ong {

tr.(Bk) = 0 to get respectively

K Y L . I 718" = 0 and

Ba

e (FSYEE) =0 oF  wEo(BTlB) = B for K = 1,0 s

those are merely necessary conditions upon &5 and B ; when B
is a derogatory nilpotent matrix those conditions fail to be suffi-

clent. For exumple, when B = 0 those conditions impose almost no

£ constraint vpon 85 aid B whereas they ought to satiefy

(GB)m = 0 and ém = 0,

Lemma II!.1.2: Wwhen Bo is a non-derogatory nilpotent m xm

matrix the following three conditions are equivalent and charac-

terize the derivative éo = 3(0) of every nilpotent analytic

function B(t) which satisfies B(0) = Bo :

1) B =58 =88 i solvabie woE S .

o] 0 0 (ol




3) tr.(Bﬁéo) =0 for k= 0,1,2,...,m=1 .

Proof: Without intcrpreting the dot as a derivative, we observe

trivially that 1) implies 2) and 3). To deduce 3) implic: .},

define the linear cperator B thus; BX = XBo - BOX. Any li.eat

functional L on the range of B must have the form

LBX = tr.(LBX) for some matrix L. But tr.(LBX) = tr.(LXBOo-LBoX)

= tr.(B LX-LB X) = -tr.((BL)X). From Fredholm's theorem of the :
alternative (cf. Dunford-Schwarz (1958) p.609) we knowv that the

equation Béo - éo le solvable (perhaps not uniquely) for é.

only if Léo = 0 for every L which satisfies LB = 0, and -

%
have just seen that [B = 0 means BL = 0, which implies E%
BoL = LBO, which implies that L 4s a polynomial in Bo gince ﬁ
Bo is non-derogatory (ct. Gantmacher (1959) p.222). So every L .
which satisfies (3 = 0 has the form Léo = tr.(Léo) = %
= tr.((polynomial in Bo)éo), and this must vanish because of 3) 5‘

and the fact Bﬁ =0 for k >m., Therefore 3) implies 1). Next
let us deduce 2) implies 3). Since Eo is non-derogatory and
01
01
nilpotent it must be similar to J = |

\ 01
\ 0 mXm

the similarity that takes Bo to J takes Bo to X = (x. .

then, by 2), X must satisfy

ZT Jk_IXJm—k = 0 g

o
ey
N

m+l-1
i.e. 2

L .xi+k-l,j—m+k =0 for L<i®gs<m .
mei=]
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This is soon recognized as equivalent to

ri-X

E :j+k 2= 0 for 0 <k <ml
l P L X7

[
1]

tz.’JkX) =0 for 0<k <ml

Reversing the similarity yields 3).
Finally we demcnstrate the existence of an analytic nilpotent
B(t) that interr ~aw.ecs B(0) = Eo and B(0) = éo' Solve 1) for
éo and set & ) = l+~Té° and B(1) = S(T)BOS(T)_l. Now B(T)
is nilpotent (and non-derogatory), since it is similar to Bc’
at least for 7T small enough. And B(0) = S(O)Bo-Boé(O) = éo'
Lacking anything comparable to lemma III.1.2 for derogar sry
nilpotent matrices, we should like to avoid them. That is no:
difficult to do. 1In the manifold of nilpotent matrices the non-
derogatory ones con-®ltute 2 dense open set; that this is true
can be inferred from the Jordan normal form in a way that will

be left to the reader.

[11.2: The condition number of a multiple eigenvalue

Let 7 be an m-tuple eigenvalue nf an #nxn matrix 2 ard

let P be {'s spectral projector. We shall estimate the condi-

tion number

Y = Y(,2,001,) = sup lscl/uszuz

where the supremum 1. taken over all infinitesimal &2 such that

Z+8Z continues tc pcssess an m-tuple eigenvalue Z+8L near

P

We shall show that
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Y < WPh,/m .

Furthermore, provided the restriction of Z to P's range is =9t
derogatory, i.e. providsd Z has only one eigenvector belongi :z
te g or, equivalently, provided P(Z—C)m =0 ¢ P(Z—C)m-l. we
shall show that <Yy csun bLe computed straightforwardly though
expensively by solving a linear least-squares problem;

1

(v TN Ky
Y = min |P{1- ] A (2-0) )}/m .
A, i " ’

K
In this case, we shall conclude,

v > m et e 1m0

Although the upper and lower bounds for 7y are far apart when
m>1 and HPHZ is b’g, each bound can be achieved by an appro~
priate and non~trivial example.

Here 1s how those claims are proved. Recall that, provided

no eigenvalue of 7 1iies on the closed contour T,

-1 -1
P = ET § (t-2) “dz
r
is the spectral prelector upon Z's invariant subspace belconging

to the eigenvalues inside ['. Suppose there are m such eigen-

values., Then their average value is
= tr.(PZ)/m .

Since no eigenvalue of Z 1lies on T, we find that both F and

4 are continuously differentiable functions of 4; in fact an
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infinitesimal perturbation ¢Z causes P and u to change by
(cf. Kato (1966) pp. 76 and 79)
&P = s & (1-2)"Y62¢r-2)"YdT  and
il

Su = tr.(P82Z)/m since tr.(Z8P) =0

We are interested in the special case when all m eigenvalues

inside [ are coincident at g, and when the perturbation 62

is so constrained that all m perturbed eigenvaluee inside I stay

coincident at 487, In this case p =7 and 6u = &8, so C's

condition number Y(C.Z,H"'Hz) satisfies

Y = sup i&u[/uazuz over constrained &2

= % sup ltr.(PGZ)l/ﬂGZﬂz over constrained &2

I A

% sup itr.(PGZ)I/HGZHZ over all 62

Py, im

Thus we conclude that an ill-conditioned eigenvalue must have a
spectral projector ~f large norm., After we show to what extent the
converse is true we shall show how, given m and a value ﬂP"z,
to construct a matrix Z with v = HPHZ/m.

To obtain a sharper estimate for vy we must take the con-
straints upon &7 into account, and we shall now do that just in

m m=1

the non-derogatory case when P(Z-f) = 0 # F(Z-7) . By

lemma IIl.l.1 the equation P(Z—C)m = 0 18 equivalent to
S0 gl
tr.(P(Z-C) ) - O fOI‘ k - l,z,...,m

which, when differentiated, yizlds

37
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X tr.(P(Z-C)k-l(éz-éc)) + tr.((Z-C)KGP} =0

Ine last term vanisues pecause

tr. ((2-5)%6P) = < § er. 0@-0) -2y Lsz (v Lar
“ ér

1

= f;~ tr.(£ (Z-C)k(T-Z)—ZdT §2) = 0 g
m e

s

Furthermore the coefficient of ¢&f, -k tr.(P(Z-C)k—l), already

7

vanishes when & > 1. Therefore &7 necessarily satisfies
k-1
tr.((Z-5)" "P82) = 0 for k = 2,3,...,m

and what remains to be shown is that these conditions upon &7
are also sufficient ro ensure that C+87, with 67 = te. (P61,
is an m-tuple eigenvclue of Z2+4Z7.

g O
Let us choose 2 c.ordinate system in which Z-¢ = (h Z} with

0 £
non-singular 4 anc an mxm matrix 5 which must satisfy
- 8z 62,
=0 ¥ B dow B = (0 O}. Let &2 = nll *2) satisty
01 .’SL,,l 5222'

the conditions in gquestion:
s omk N N
tr.{(2-¢) P8Z) = tr.(R 6222) =0 for k=1,2,...,m1

We wish to infer that Z+8Z has an m-tuple eigenvalue [+47

L3 ]

and shall do so by constructing a non-singular matrix

(differing infinitesimelly from 1) for which

N e e SR Ak
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B [avss 0
(1=85) 7482 - £ = 6L)(1=65) = |
o s

When this similarity relation is pre-multiplied by (1-8S) we

find that &8S and 64 must satisfy

= 35 f .- i - B =
84 Oull A AGSll+ Gzll 8z AGSlz 58, B Gzlz

12

36521 -6521'A = §2 B6S, - 65, B = §2

21 227 %993 22" %

These equations are obviously solvable for &84, &8 (arbirrary),

)
N v A, ! o §1=1l =j~1 N
85, = Iy Blez, -4 and 85, = [0 476z 0B tae

S

the solution 6322 of the last equation is not so obvious How=

ever, lemma IXI.1.2 rrovides assurance that a solution &7,  oes

s

exist provided 6r » tr.(6222)/m = tr.(P8Z)/m, 1in which case the

conditions 3) of Jceume ITI.1.2 are satisfied with Bc = B and

Bo = GZZZ -G,

0f ccurse, the foregoing manipulations with infinitesimals

GS;j can be re-interpreted in terms of derivatives along the lines

[

of lemma III.1.2 and the matrix S(T) constructed there.

Now that we know the necessary and sufficient constraints

upon GZ etc., namely

er (PE-0)F) = 0 and tr. -0 67-50) = 0 for & “1,2,.. .

provided P(Z-Q)m-l # U, we return to the computation of

Y = sup [6;?/"62"2 over constrained 487

The computation will be carried out in a new orthogonal coordinate

system in which




T —
e el b g aaiodl o o b Lot it el e

40

and 4 1s non-singil:. and H" = 0 ¢ Bm-l. Once again we ser

6211 6Z12
NP ( . ) br.n now the constraints take the forn,
82 82, .7
21 22
= / - 2!
8z tr.(6222 éZZlH,/m and
) k 1, - -
tr.((éZzz-GZZlR)B ) 0 for % 1,2,...,m1 :
Therefore

Yz = sup jdgzz/ﬂdzng over constrained 62

= m-zsup }cr.(GZzz-GZZIR)IZ/ZEHGZijﬂg) over ..
-2 = 2 e 2 2
= " i 2 lz v e
m “sup ltr.(c‘.z2 éZzlﬁ)f /(h6221ﬂ2-+16 2215)  over

where we have set S;jl = (0 and 6212 = 0 because any other
values diminish the ¢rotlent we are trying to maximize. The desired
Supremum nay now be iocated by standard variational techniques
which we shall merejy summarize and verify, though first we ghall

drop the & in front of 6222 and 7 since the quotient and

21

the constraints are homogeneous functions.
. - Tl | N *

Let ( = (l-zl )\J.B") (=F 1) with the coefficients ).

v

*
so chosen that ?C“; = tr.(CC ) is minimized. The A.'s are the
LY

solutions of the normal equations
-E k b .
tr.(C( l)B ) =0 for k= 1,2,...,m~1

which are linear in {Ai} and non-singular too because, since

F =04 Bm—l’ the polynomial ZT-* XjBJ cannot vanish unless
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all Xj's vanish. The normal equations for { coincide with the

constraints that (Z.,1 Z?z) mus- satlsfy (recall that the 3's
have been dropped), 90  1is a permissible choice for [7_, 222)

and differs from any other choice by a matrix Y = (Z Z -C

21 49

which must satisfy the same coastraints, namely
cr.(y(”lf)sk) =0 for k=1,2,...,m=1 .

We are about to discover that only when (221 ZZZ) is a n.ox-zero
scalar multiple of [ can the following quotient achieve its

supremun:

st ez)? = lera(Gyy 2 (V1M 2y 2,
m=-1 q

e €N T LE ) 2oy
l [

2+tr.(YC*/’+O§2/!|C+Y!‘§

S 1ol

pe

*
- (e 2icrd - eeo ™ | 2) e

< IcH

NN NN

with equality only winen Y is a scalar multiple of (. Therefore

we have provec that, in the non-derogatory case, g

YT, 2,00 0,) = ACh, /m

P U
=i fa- 1T ED F 1, /m
k

= utn |P(1- 7770y 20/

%

Our next task 1s to secure a lower bound for Y. Write

Usl- ZT-lAkBk and let U's singular values in order be

e o
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g, >0, 2> «++ >0 > 0. Also write pz = ﬂRHZ - HPNz—rn. We
L SR = - m 2 2
x %
seek a lower bound in terms of p and m for W (-R l)ﬂzlm.
Evidently
KK T *,2
b (-n l)l.z W R Hz + v !.2
*
> 0202 + tr.(VVU)
- m
* X 2 %
the last Iinequality is achieved just when UV R = Omﬁ . What do
we know about 's singular values oj? Since H' = 0, det./ =1
2. 2 2 L K
and hence 0 .0,++«:c = 1 while ¢+ 0_ 440 = tr.(U /).
172 mn e 2 m
i
Therefore
X x 2. 2, .2 2 ) ’
7 - Y oo0 I'4
W (R DU, > 07405+ 0+ + {1470
. f v S 2.31/m
> m{g]05° "0, 10, (1+0 )) 1!
- m(l+02)1/m

with equality in the inequality between arithmetic and geometric

= om\/1+o2 q

means just when O, = 0_ = se¢¢ = 0O
J 1 2 m=-1

Assembling the relevant relations above viiian

—1/2( 1/2n 3

=2
Y >m UPY, +1-m)

as claimed. The final tasks are to demonstrate that the bounds

are a.hievable. Briefly, to achieve the upper bound Y iiﬂPﬂz/m
*

it suffices that # A above be dlagonal. To achieve the Lower

bound it suffices that

e
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*
and that 7 have the form 7 = yr where

* l-m 2-m -2 -1
r = (0 Re seees0 ,C 7,1) and

A o

o)
yy=0 '(02-1)

for some arbitrary o > 1. It wiil turn out that
v=1 -(02-1}§§"lo‘jej and RA+1 =0”@Ws™)™ . The details are,
once again, left Lo the reader.

Since Y 18 huge 1f and only if ﬂPﬂz is huge, even though
they may still be ¢ud:'rs of magnitude apart, we shall henccelorth

Jdispense with Yy and use only ﬂP"z c¢. Pl as our measuve ~f

ill-conait.on.

[I1.3 What happens when iPi is huge?

We shail consider now some of the ugly phencmena associated

with spectrzl projecrcrs of huge norm.

Proposition 111.3.1: If r s an m-tuple eigenvalue of 7 and

P 1ts spectral projector, then there exists a perturbation 42
such that { is zn {m+l)-tuple eigenvalue of Z+AZ and

1820 < KZ-gh/0PIY™ ) o 1AZI 1s small 4f PI  is huge.

Proof: By a unitary similarity exhibit

[4 ar-rB fo -r
i-g = and F = |
0 & \o 1
m m
where A 1s non-siugular and g = 0. Evidently (Z-;)m - f% AOR)

so we find that
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E 120 = 0@ R < @ ARy
= 7 z-0)™ < 1z

How close 18 A4 tc its nearest singular neighbour A+AM? Ve know
§ (see part I) that suck 2 A4 can be found with 1M} -~ BBt o
: and the previous ireguality shows that that A4 saticfies

1Md) < HZ-Q“/HPHl/m. Trerefore we can use AZ = (?f g) to
E achieve what has heen claimed.
] Tis proposition alightly sharpens one of Wilkinsen'e (1972}
s when m = 1, 1in which case the proposition is best-possible with-
F out more information zbout Z than 4Z-gf and IPI. Fven so, it j
| can be somewhat mizl::iing. Consider an example used by %

G.E. Forsythe:
: /o 1
b 01
. 2 = L :
Y
‘ g 0/ nxn 1
|
E Here we may assume »n > 10, and ¢ small and positive, say %

7 < 1/10. Z has n distinct eigenvalues equaily spaced around

a circle of radius ¢ all with the same condi:ion number

-1/2C1-n

Y = [|Projector| = n (1—C2n)/(l-cz) .

Consequently, the proposition says that Z 1is no farther from a

matrix with a double eigenvalue then roughly nllzcn-l. In fact,

Z 1s within Cn of & matrix with an n~tuple eigenvalue.

Whenn m > 1 proposition III,3.1 probably far over-estimates
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the distance to the nearest matrix 2+AZ with an (m+l)-tuple
eigenvalue, |

We now turn to the spectral projectors belonging to clunters
of eigenvalues of unspecified multiplicities, and demonstrate why

projectors of large norm are to be avoided.

Proposition 111.3.2: Let T be a closed contour in the complex
plane which separates Z's gpectrum into two parts; m eigenvalues
(countirg multiplicities) strictly inside [ and the rest strictly
outside. And let » be the spectral projector onto 2's iuvariant
subspace belonging ts the m eigenvalues inside T. Wheusave:

iPl is huge, in particular whenever {P} > vm+l, there exists a

small perturbation 4/ satisfying
nesh Azl < 1.22/ (% - 1t/ O
fre

such that Z-AZ hw... 3. least one eigenvalue on the boundary

Proof: Once again vse a unitary similarity to exhibit

LT

[4 4Rr-r5) 0 -R
2w | | and P =
\o = | 0 1

where B i3 an mxXm matrix whose spectrum lies inside T and
A's spectrum lies outside. .urthermore, we may exploit Autonne's
theorem to exhibit # as an (n-m)xm diagonal matrix with its
singular values PpzpPy2rrr20, 2 0 on its main diagonal.
(It is convenient he:c to assume 7n-m > m; otherwise swap the

roles of 4 and £5.) Note that [Rl = o, and 1Pl = /1+p7 .




T

R

T T P
o She g e i [

ST T PO
P ST

= e B e S YA A T A e S i sl (ot g o e £

46
For any K 4in 1<k <m we may partition
A 0\ with square A = diag(o,,pz,...,pk)
R = .
0 hj and M= diag(ok+1,...) or null,
aund conformally partition
X xq\ {A A-AB._ A, M-AB
/ 11 laé =% zAR-RB = | 11 11 712 12 '
\%51 %0l \Ag A MByy A M By,
We shall examine = ..t Inguished EZ = (ﬁf ﬁ%) where
-1 -1
X A 7/20 -AN "X /2 B
EN 1 "
M = 11 1 and A7 2 ( 11 12] are so chesen “hat
{4 o) ( 0 0.
d ey
La
A (A A 22 4, A /("—1‘111/“511)/2 0
A=A = o and B- AB = \ -
\ n
\ ‘ A22 Shn By2
have in common the /. common eigenvalues of
a,, + a5 82 = ATt A3 Y2
11 Lk 11 11
Consequently, using A7 = (AZ with 0 < 1 < 1 we shall find that
the eigenvalues of %-A7 move continuously, as T increases from
0 to 1, until k elgenvalues that started ipside [ coalesce
with % that started outside T. For some T between 0 and 1
one of those eigenvalues must cross I, and then HAZHZ - THEZHZ < i
< 1Az, ]
_s;AZﬂz

Thus, all tha: renains to be shown is that 1521 sacisfies

the inequality claimed in the proposition for at least ore k > 1. ]
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A 2 o 2 -~ 2
“AZHZ = hAA"Z + HAD"?

=}._. -142 g -1y2 -1 4 2}_-1
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2
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) QR
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1A

" -2 2 .
Let us now choose X toc minimize the factor ok (1+.p’+l)" Sup-
"

pose £ is that minimum value; 1.e.

pl);Z(l.‘hpi+l." g for k= 1,2,.00.m (O = 0
Then Qi . n‘l

evidently 9 s nc Llgser than the positive root 6 of

99 2 = N -
IP1, = 4ol = 1407 070 b0

Vhen Di >m we must have le » 1 and hence Qi < md ', whence
0 < ml/mp'iz/m < e oypt®-1) V™ uhere @€ 1.845040 . The
claimed result follouws,

This propositiu: scems to overestimate FAZE grossly. Indeed,

if P has k large singular values and the rest small, say

/1+pi/¢l+pi+l >> 1. +hen the proof above yilelds

TAZI j_pkl/Tlpk+1HZﬁ, which 1s far smaller then claimed in the

proposition. Another example of overestimation arises when a

9k
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similarity (perhaps ust unitary) of modest condition number (:ce
below) succeeds in dlaguaalizing A and B without erasiug che
block AR~ 75. It is possible to show then that JAZIl need uot
much exceed ﬂZUQ/ﬁPﬂz wvhen Pl 1s large; this claim will uot
be proved here.

Next we shall cousider the condition number (3} = PQﬂ-ﬂQ—l"
of simllarity transformations that reduce Z to the block d/sgonal

form

There are many simi?izities which reduce Z to this form, ard we
shall be particularlv {nterested in the ones whose condition nur-
bers are roughly minim21l., Experience teaches us that 1if the mini-
mal condition number !s huge then the reduction of 2 will be
hvnersensitive to rounding errors and other perturbations and

uncertainties; see wtlkianson (1965) p.87.

Proposition I11.3.3: Let T, Z, m and P be as in the previous

proposition II1I.3.2. when [Pl 1is huge every similarity Q_lZQ,

which reduces Z t¢ black diagonal form with one block for the =
eigenvalues inside T and the other block for those outside, must
be ill-conditioned; «/7) > [Pl. Conversely, 1f every similarity

is ill-conditioned *hen [P} must be big because for some such

similarities [P > «(Q}/4.

Proof: Once agair “7c a unitary similarity (which does not aggra-

vate the condition rumbers) to exhibit Z in the block triangular

48




i A R

AR,

ORERL PR T e

49

furm used in propusition 11i.3.2. Any eligible similarity ¢
auste exhibit two vlocks, cue similar to A and the oither v C.

Conscquently, eve:v such & must have the form

o shs o
¢ @ = -1 ’
0 T "BT
(s -rT) - ~1 om1lp
whence @ = ii ?T! aad  § e v _Rg. Now QY > IS0
y / o T
= L = =) g
and 5Q1 > 0 (707w > i, and #QTM > 377N ana
HQ_l“ Z_“S_l(l f,0 o wliiSh. Therefore

(@) = wpor-15 e s s apinrh) (ir e+ apr s en

iv

{ v

4HPY , as claimed.

On the other hand, :: %+ choose for S and I any matrices which
* 2 Wk 2
satisfy S S =c¢° od T = 1" for constants O and 1 that
satisfy o/t = P, w- find that
R Ly . o 5 i _l -l
k(@) = gk i < (Hu"4~HPﬂ RT“)(HT h+ s H'"P")
- o+rn (e

» 4Pl , as claimed.

111.4: The nearest nilpotent matrix

Suppose we have identified every cluster of Z's eigenvalues
to which belongs a spectral projector of moderate norm, and no
such cluster may be hroken up without introducing huge apectral
projectora. We cov'i péevform a unitary similarity which exhibits
Z 1in hlock-upper-triungular form with one diagonal block for each

cluster. What shouid pe done next?
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Gebssing

3 In a sense, wuth blu.k resists further reduction as 1f it

. weélt dan approxima.ild L a Lruly irreducible block, namely & biock
w.th only one multiple ~igenvalue. The purpose of what foilows

is to discuss how to lucace that irreducible block in the iope that
~c Lay replace e€a.. lil-c:liaved cluster of eigenvalues vy a weual-

Lehaved multiple cigeivalue without appreciably changiug iie given

matrix,

Problem II1.4.1: Given an mxm block B, find the nearest

matrix B+C with oniy one eigenvalue B; ¢ must be allpotent,

By "nearest” we me:. t. vinimize B~ 8-CH2.
It is not hard ¢35 find the best value for B; write

B = tr.(B)/m+f aun’ Jbserve [B- 8-Cﬂ§ = [B~tr.(B)/m- C“§-+[£i‘

since tr.(C) = 0. ‘herefore the best value for 8 is

§ = tr.(B)/m (cf. u 1in III.2)

and from the same o~ ;vation we deduce that the nilpotent matrix

i

Fal

¢ nearest to B-. ‘- !ndependent of R. That at least one such

~

nearest nilpetent ~ r-ists follows from the fact that we need

only search for the matriv in the compact set of nilpotents C(

which also satisfy

13- 8-Cl, < 15-8-0l,

since there is no need .5 look at anything farther away than the

e bt A S e R 5

nilpotent O.

Let us imagine :%2t the best C has been found, and chodse

i an e etk . St

a new set of orthogonal coordinates to exhibit ( 4in upper

e AN,




51

tviangular form. 3Since ¢ 1is nilpotent it is strictly upper
triangular. Since ¢ 1is closest to b-f, B-B~C must pe lower
=i tangular in ths © coor’.nate system, and that lower trisngle must
have the minimum norm of all lower tifengles of matrices unitarily
similar to E-p. %ince tne norm of all of é-B 18 urcnRangua

vy unitary simiiarity. we nave the following result:

Proposition Iil.4.2: Given an m xm matrix B, the nearest

matrix B8+ C with only one eigenvalue £ can be constructed as
follows. Of all wmactices U*BU unitarily similar to B, choose
one whose super-di.zcnal elements have the largest sum of sgunred
magnitudes; call {1 & = U*BU. Annihilate all the sub-diagonal
elements of £ v gt T, 1Its diagonal elements will ali be the
same, namely B (thims is not obvious -- see below). Then

*
B+C = UFU .

To prove that all ..« d!agonal elements of E are the same we
need only consider its 2Xx2 principal submatrices with adjacent
rows and columns. Lactn such submatrix must be suck that no 2x2
unitary similarity .su iovrease its super-diagonal element. A
modest calculatio. =iww. that this implies its two diagonal ele-
ments are equal. | am indebted to Alan J. Hoffman for suggesting
this simple approach to what used to be a much more complicated
proof. That proof, which used variational methods, also showed
that (B-B-C)* must be a polynomial in (, and that if Ck =0
then k > (m+l)/2, .i. these facts seem not to help the search

for C.
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Proposition III.’.2 suggests that C( might be constructed

via a sequence of 2% 2 Jzcobi rotations each designed ro enhance

tae magnitudes oi super-diagonal elements. Such & scheme works

immediately when m = 2, may work well when m = 3, and seems to

v intolerably slow for m # 4. There is ample scope tu: 'ur:her

research,
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