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I Preface

This dissertation is the result of my effort to use the

mathematical theory of zero-sum differential games as an analytical

tool to learn as much as possible about the one-on-one air-t,-air

combat problem and the problem parameters which have major effect on

its outcome. My thanks are given to the faculty of the Air Force

Institute of Technology and especially to Professor Gerald M. Anderson

for his Interest and guidance. I am indebted to the Air Force Flight

Dynaric3 Laboratory for not only willingly providing time, but

encouragement to do this research. In this respect I wish to recognize

William L. Othling Jr. and Anthony L. Leathan whose research efforts

created the original interest in the laboratory for differential

games research.

I am especially grateful to my wife, Janet, for her encouragement

and support throughout this course of study, and to my sons

Andrew and 11atthew who gave up th'ýir father nany an evening.
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Abstract

The mathematical theory of perfect information, zero-sum,

differential games is used as an analytical tool to learn as much as

possible about the one-on-one, air-to-air combat problem and the problem

parameters which have major effect on its outcome. The primary

emphasis is on differential game Barrier theory and the application

of the Barrier as an analytical tool for air-to-air combat analysis.

A series of progressively more complex air-to-air combat models

is developed and solvcd in such a way that the solution results of

a given model have direct input to the more complex model that

follows and learning from one model to the next is accumulative.

The importance of the Barrier, its shape and its sensitivity to

aircr&,ft design parameters is discussed and demonstrated.

Barrier sensitivity analysis of the models shows that given -

the opportunity to increase a fighter aircraft's air-to-air combat

capability with either improved turning gs, weapons system, or thrust

to weight ratio, increased thrust to weight ratio yields the greatest

improvement in this capability. Darrier results of the models are

designed into a workable computational technique to relativoly

evaluate the air-to-air combat capability of a series of fighter

aircraft. A general zero-sum payoff function is also developed which

allows the roles of the players to be an inherent decision in the

model itself based on terminal state.

X
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I. Introduction

Background

Limited war and its associated use of cc.aventional airpower,

has in recent years led many researchers to study the air-to-air

combat problem. To appropriately model this problem, many factors must

be considered. The following list suggest a few of the major factors

involved:

1) How many combatanats are involved?

2) What Is each combatant trying to do?

3) What roles (i.e. pursuer or evader) do the combatants

"assume? Do the roles change?

4) How much information does each combatant have?

5) Based on the infdrmation. what strategy (control logic)
should each combatant employ?

6) For a given initial encounter, what is the outcome
of the combat?

7) If a particular coabatant does not like the outcome,
how can he change the systen parameters under his
control to best influence the ourcome in his favor?

An ideal model of the air-to-air combat problem would have

an analytical structure which would couple these seven factors

together. Such a model could be used to define the air superiority

aircraft and its associated tactics..

Many air-to-air combat models exist which attempt to simulate

several of the factors involved; however, their usual disadvantage

is that the control logic for one or more of the conbatants is

assumed and not derived. As such, the outcome of the corbat or the

effect of a particular system parameter change is subject to the

question: "Uhat if?" or "Is there a better way?", etc.

14
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The mathematical theory of zero-sum differential games, as

developed by Isaacs [7] in 1954, is an analytical tool which models

systems with conflictinp objectives. It can be likened to an optimal

control problem with two players - one choosing controls to maximize

a payoff and the other choosing controls to minimize the payoff. As

such, the control logics of the game are derived to optimize the

outcot-e and are not an innut variable when assessing the effects of

system parameter changes. Therefore, the mathematical theory of zero- 4
.sum differential games, as Intoduced by Isaacs, does possess an inherent

mathematical structure that couples factors 2, 5, 6 and 7 for two

combatants. In actuality, there is a broader theory of differential

games called non:ero-sun differential games (see Starr [14] and Leatham

""ý 1[8]) which involves factor 1 (i.e. more than two players) and

stochastic differential game theory which involves factor 4 (i.e.

games with incomplete information). Chapter IX of this dissertation

examines factor 3, i.e. role. Thus, the math theory of differential

gaves is capable of counling the major factors involved in the air-to-

air co'abar problem.

Even though the math theory of differential games does

possess the desired analytical structure and great promise for

problems with systems in conflict, the facts are, however, that it is

little used today as a practical analysis tool for such problems.

,hat then are the reasons for the apparent failure of such a pewerful

analysis tool? Isaacs (7:2] suggest two reasons. One is the increased

difficulty of the oroblem when an oaposeing player is added. "he seconJ

2
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reason is that the theory abounds with general theorems usually

of the highest calibre mathematics, but of very little use in

obtaining answers to practical problems. Since Isaac's book, much work

has been done in practical techniques to solve the differential game,

e.g. Roberts [13). But even these techniques have not been brought

to the point of real practical application.

Dissertation Purpose

The researches of this author have led him to add a third

reason to Isaac's list. Of the problems that can be solved, howeer

simplified, and of the techniques and concepts that exist, little

or nothing has been done to show how and where they can be practically

applied. To this end the purpose of this dissertation is devoted.

This dissertation concerns itself with one-on-one, air-to-air

combat models employing zero-sun payoff and perfect information.

The technique of "dynamic modelling" employed by Othling [11] and

inherently suggested by Isaacs (7] is used to progressively complex

the air-to-air combat model and to learn the influence of the added

realism on the solution. As will be shown, the models are developed

in such a way that the solution results of a given model have direct

input into the more complex models that follow. In this way the models

build on one another and learning fron one model to the next is

accumulative.

3 1



Dissertation Contributions

The original contributions of this dissertation are: 1)

Mie Barrier results of a three-dimensional model are used in a new

technique to realistically and numerically rank fighter aircraft in

terminal combat throughout the flight envelope. The technique was

used by AFFDL in the recent Light-Weight-Fighter proposal evaluation.

This is the first known practical application of differential games

to the air-to-air combat problem. 2) The concept of a differential

g ame Barrier, as developed by Isaacs [7], is brought to usefulness by

recognizing the importance of its existence, shape, and sensitivity

to aircraft parameters. This research is vitally important in recog-

nizing those parameters which have najor effect on co=bat outcome,

and therefore help to define the air superiority aircraft. 3) The

field of optimal control, in general, receives much criticism

because the results of the method are often obtained by the use of

very basic payoff forms such as minimum time, ninimum fuel, etc.

The same problem exists in differential games i.e. what payoff form

really models the air-to-air combat problem? In this dissertation,

a realistic general purpose zero-sum payoff is developed for the first

time that allows different roles to be assumed by each of the players.

This is done by simply selecting constants in the payoff function.

The importance of this payoff is demonstrated by its use in

air-to-air combat role decision-a problem of air-to-air combat

yet to be solved by any technique. Its use in the combat role decision

'6}
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logic of a simple air-to-air combat model is demonstrated.

Guide to Chapters

Chapter II presents a summary of the mathematical theory of zero-sum

differential games, the "Isaac's appronch" to differential games, and the

Isaac's Barrier theory. In this chapter the nature and importance of the

Barrier is discussed which is the basic motivation of the dissertation.

A major portion of the dissertation (Chapters III, IV, VI, VIII)

concerns itself with the application of the theory in Chapter II to a

skeries of progressively more complex air-to-air combat models - i.e.

"dynamic modelling". In each model chapter, the following approach is

used:

1) Set up the problem

2) Apply the necessary conditions of Chapter II

3) Solve the problem backward from the terminal surface and
identify the control singular surfaces

4) Apply the necessary conditions for the Barrier and solve for
the Barrier

5) Examine the model parameter relationships that cause
Interesting cases of Barrier closure

6) Examine the sensitivity of the closure conditions

7) Draw conclusions from 1-6

Bg

B•
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• Chapters III, IV, and VI are model chapters that follow the above

pln. Chapter VIII is also a model chapter, hownever, its main

purpose is to eviluate the first order effects of variable velocity

magnitude on the problem.

Interspersed in the model chapters are Chapters V and VII which

apply the modal results tn a real Air Force problem - the relative

evaluation of ffhter aircraft.

In the process of solving the models in Chapters III, IV, VI and

VIII, certain deficiencies were noticed in the fixed roles that we:e

assigned to the combatants. This deficiency led to the development

of a genezal purpose payoff and its use in the role decision logic of

a given model. This work is presented in Chanter IX. As-will be seen,

the Barrier plays an important function in the role decisiLn logic of

a model.

Chapter X su-marizes conclusions of the dissertation and makes

recommendations for Lrther work.
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II. Differential Game/Barrier Theory

The air-to-air combat models created in this dissertation are

modeled as zero-sun, perfect Information differential games. The

purpose of this chapter is to mathematically define this class of

differential games, to summarize what this author calls the "Isascs

approach", and to define the Barrier mathematically with its associated

implications. The mathematical conditions sur•arized in this chapter

pan be found in References [1], [21, [4], and [7]. Throughout this

chapter classical control theory terminology is used, nften followed

by a parenthetical expression showing. Isaac's terminology.

Zer,,-Sum, Perfect Information Differentia] Games

1. Problem Formulation:*

The state equations (kinematic equations) detining the dynamic

systems of the combatants are

where x is an n-vector of states, !J is an m-vector of player I (P)

controls,\1 is a p-vector of pla*ier 2 (E) controls and t is the scalar

time. The initial conditions are S. at t, . The control vectors may

be subject to inequality constraints of the form

B (•t,•_J > (2.2)

1

FI N lunlllnli ~ l~l llllnl I I
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where ~2is an r-vector. The goal of the players it: to find the

controls &L* and Y*that satisfy Eq (2.2) and produce a final state_

so that a k-vector of terninal conditions, W+ (terminal surface,

is satisfied

Y~~ 4 = (2.3)

and such that the scalar payoff

x= [(yi~, tr +5 (,,.tJ (2.4)
to

satisfies

J, I. X :ý _T '.e Mý :E _T(2.5)

4~is a smooth scalar function defined on '

+ and L are assut"'d to have all partial derivatives.

If u9' andi l. can be found, the pair of controls is called a

saddle point of the game, for obvious Feometric reasons in Eq (2.5),and

J(~,~ is called the valixe of the game. As defined in Eq (2.5),

P (the pursuer) is minimizing J and E (the evader/ is maximizing J.

It is the nature of Eq (2.5) that if L does not r~llz the saddle point

stra~tegy XP will be able to reduce J below J( u''*~~anc' gain

sar advantage never to be recovered by E. Likewise E can irtrease J

above J( !a*~. if P does not play .The loss ia J1 of the non-

optimal Player becomes the gain of J co the optimal player, hence the

name zero-sum payoff. Perfect information cones from the fact that ea~ch

8
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player knows the exact state of the game and the goal, capability,

and limitations of the other player.

2. Necessary Conditions:

In the necessary conditions that follow, the existence of a J.

saddle point solution is assumed. If U is the class of 1 controls

satisfying Eq (2.2) and V is the class of v controls satisfying

Eq (2.2), i.e. they are admi3sible controls, then a necessary

condition for the existence of the J saddle point is

Smn rno. x I-CT ,v =) n ';."1, VnY) (2.6)

A necessary condition for a saddle point of J is that the Hamiltonian

defined by

• NC x aZ. _, t = _ '_ + L (2.7) 1
be minimized over U and maximized over V i.e.

H- HL~ = mo-I m~~WLv H.ucJv_• _V • (2.8)

_ is an n-vector of costates that satisfies the costate differential

equation

__--_- N (2.9) ,

) ~94

fI
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The transversality conditions at tF are given by

H(~Y (2.10)

(2.11)

where

4~4- 9 (2.12)

and e is a constant k-vector to be determined. It can further be

"shown that

! (2.13)

so if H does not envolve t explicity, then

*i
(2.14)

Eq (2.8) requires that the minimization and maximization

operations commute which in general is not true. It can be shown,

however, that if the 11 function can be separated into a function H p

not involving M and a function 4, not involving 2 , i.e.

(2.15)
then Eq (2.8) is satisfied and a sa dle point of H does exists.

Unfortunately, the existence of a saddle point of 1I does not

necessarily imply a saddle point of J. Other procedures must be

used to insure that a candidate solution of Eq (2.8) does indeed

satisfy Eq (2.5).

10
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In many cases, and very often in siuplified models, a control

variable c will appear linearly in H. If the function OH/ac

happens to be zero for a finite time, then In effect H is independent

of C and it is not possible with conventional extremum techniques to

determine the C that extrenizes H. Extreral solttions that have a

control conponent such that 0O along the solution are called

"singular solutions. Anderson (1] presents necessary conditions for

singular solutions in two-player, zero-sum differential games. If V4c,

"is defined as '
4

C3 M , then necessary conlitions for the

existence of a singular solution require that 4. and all of its I-
time derivatives vanish. Successive differentiation of H ,

with appropriate substitution of the state and costate equations,

9 yields auxiliary necessary conditions such as c (. , Žt = o j
l.-I•,•, t• = o , etc., which must be satisfied all along the

singular arc. Continued differentiation of Hc ofren leads to an

expression involving C explicitly which can be solved for the

singular control Cs . A necessary condition for the control to be

singular is

Ho > (2.16)

The number 2c is the order of the Hc derivative in which C first

appears explicitly. The upper inequality applies if C belongs to P's

controls and the lower inequality if C belongs to E's controls. ,

-11
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-c 3. Problem Solution:

As can be seen by the basic necessary con'iitions (i.e. Eqs (2.1),

(2.3), (2.8), (2.9), (2.10), (2.11), (2.12))the solution of the posed

differential game requires the solution of a two point boundary value

problem (TPBVP). This is usually done on a high sp-ed digital computer

using sophisticated numerical techniques. The form of these computer

solutions Is such that for a given initial state -, the control

vectors will take the form

(2.17)

Eqs (2.17) are referred to as open-loop controls and are optimal

only for the starting position o and assuming that both players

(3 "continue to play optimally. In order to know the soluticn for

another ?S-, or to take advantage of the inequalities in Eq (2.5),

when eitheý player plays non-optimally, the control vectors must have

the form u _

(2.18)

Eqs (2.18) are referred to as closed-loop controls. In order for

differential games to have real time application in an actual

air-to-air engagement, the optimal controls or approximate optimal

"controls rust have the closed-loop form. It should be noted that

finding the open-loop solution for all initial states of interest is

equivalent to closed-loop control.

12
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The Isaac's Aporoach

Several major concepts and an underlying theme pervade Isaac's

book which this author chooses to call the "Isaac's approach".

1. Isaac's Problem Formulation:

Isaacs begins in Chapter I by developing the concept of an

n-dimensional state vector IS which Is an element of a playing space,

Is defined as sore subregion of Euclidean n-space. The ?S

vector is known by both players so complete information is assumed.

He envisions the game terminating on a smooth n-l divensional surface,

which is taken as part of the boundary of . In terms of the

previous section, k has the value one (1). lie justifies this single

scalar terminal constraint from two points of view. The first is that

Stermination on a physical surface surrounding P makes sense in terms of

relative position. A locus of positions surrounding P is described

by one scalar equation. Thie second is practically; i.e., it is

easy to solve this differential game backwards since all the states and.

costates will be known on I
Isaacs then discusses the problem of controllability in his own

unique way. He distinguishes between the "game of kind" which addresses

the question: can termination be achieved at all? and the "game of

degree" where there are a continuum of outcomes and we are interested

in terminating in some "best" way. It is the game of kind that later

leads to the concept of a differenLial game Barrier.

13
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In Chapter II he presents the concept of a "reduced" playing

space This is a space where the states are measured relative

to P and results in a playing space of lower dimension which is easier

to visualize. As will be shown, it also has more meaning for the

"players actually involved.

"Instead of characterizing • with a single scalar equation, he

chooses to describe this n-1 dimensional surface in with n

equations involving n-1 parameters S, i.e.

SSi. S2, -S, 2s.) =hCs)

X, =h 1(,s S,2.- * ,a h,(.C) (2.19)

In his developnent, Isaacs never lets t appear explicitly. If

t is involved exvnicitly, he adds one more state equation

and increases the dimensionality of E by one (1). As such, Isaac's

payoff takes the form

SL(~,u ~(2.21)

14
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For each initial condition, X. there is an associated value

of the gane 5'J~_) . J can be looked upon as a function of the

state . :'..e. if the game were to be played optimally from K

T(_.) would be the value of the game.

2. Isaac's Nlecessary Conditions:

In the development of the necessary conditions, Isaacs defines

J" '•• (2.22)

and "main equation 1" (.fEl) is derived as

r~nox -T C iv.y) L .-L Kuv )I =0

!L ' - (2.23)

where the nin and max are done subject to the constraints on u and

S. Eq (2.23) is the sane as Eqs (2.7) and (2.8). fie then substitutes

the optimal controls _ and Y* into Eq (2.23) which yields

_ -(~ oJ~)--LC.D=° (2.24)

Eq (2.24) is the sane as Eq (2.14) and is called 'Main equation 2"

(HE2). He further develops

X ., i V -h [ s aS ,2L (2.25)

Eq (2.25) Is the same as Eq (2.9) (note the rev4 vector 'K>.T 2,7
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For the terminal conditions he points out tha-t J evaluated on ' is

"-: J•=%C-• .(2.26)

Therefore on I(.

"•. -. I--- °* (2.27)

Eq (2.27) car be shown equivalert to the transversality conditions

of Eq (2.11). Eq (2.27) contains n-i scalar equations and together

with MIE2 evaluated on r completely determines 5-T

3. Isaac's Problem Solution:

Since for a given 25 6 is known, Isaacs solves

the problem back-ward for all X 6 • thereby converting the TPBVP

into a final value problem., This he calls the "retrogression orininle'.

_Note, this is only possible because ý has n-i dimensions. This

backward solution fron r , not involving Ehe definition of unusual

singular surfaces, Is acs refers to as the "solution in the small".

The complete solution of a ditferential game requires the identification

of unusual singular surfaces such as the Universal surface (same as

the singular control discussed on pg 11 ), Barrier surface, Dispersal

surface, Equivocal surface (see Isaacs for the other surfaces) etc.

Isaacs refers to the complete solution as the "solution in the large".

Isaac's Barrier Thcorv/The Gaze of Kind

Isaac's Barrier theory beg.ins with the assumption that P's goal

"is to force gane termination (i.e. force E to cross ) and E's goal

16
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is to prevent game termination.

1. The Game of Kind Near

Let ir be a vector originating on , normal to • , and

extending into . Then represents the rate of

change of state normal to and away from • . If x is on or

infinitesimally close to r and if _j'f>o, then r will not be

penetrated. If 0 then penetration of ý will occur and game

termination. Therefore, in light of the goals of P and E, P wants j
%J- I < o and E wants _r7- >c . Since _r

may involve the controls S and v , P should do his best to make -y

as negative as possible to insure termination and E should do his

best to Prevent this i.e.

. _ -(2.28)

The sign of expression (2.28) depends solely on the • on

The region of r where (2.28) is positive represents a region where

E can prevent termination resardless of P's best attempts. Isaacs

calls this region the "non-useable pa'c (NUP) of . The region

of ý where (2.28) is negative represents a region where P can force

termination regardless of E's !"'st attempts to get away. Isaacs

calls this region the "useable part" (UP) of . The states on

for which (2.28) is identically zero form a curve on r which

separates the UP from the ,UP. Isaacs calls this curve the

"boundary of the useable part" (BUP). Its significance is in that it

17
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divides • into regions where P can force capture and where £ can

prevent capture. As will be seen, it has najor Importance in the

game of kind and construction of the Barrier.

2. Necessary Conditions for a Semniperneable Surface:

Consider the small portion of a surface S (n-I dimensions) in

shown in Fig. l.isaacs assunes that the surface separates the

neighboring space. The two sides of the surface are labeled by P and E.

V*

Figure 1: Semipermeable Surface (SPS)

Definitien: The surface S is semipermeable at xcS ±r- •ifa CU

if V. then 3 no XeV that causes penetration to the P side.

Similariyg a 4EV 3 3
no uU•1 that causes penetration to the E side.

Definition: If the surface S is semipermeable V x e S ,then S is

said to be semipermeable.

Let S c be a snooth, semipermeable surface and let u" be its

normal pointing :o the E side. Then by definition of S semipermeable

sacU xV - _.(2.29)

18
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$K

Issaacs refers to Eq (2.29) as "pseudo" MIEl. Substituting t~he semipermeable

controls ý and Z- into Eq (2.29) yields "pseudo' ME2.

,- (2.30)

On the assumption that S can be imbedded in a family of semipermeable

surfaces which fill a neighborhood of S, Isaacs derives the following

differential equation for 1.7

S=- (2.31)

Now consider a curveS• in (i.e. n-2 dimensional surface in

S) characterized by

_x: .= h ,..- s-,.)

X .H( --. Sf_2) (2.32)

and the problem of passing a unique semipermeable surface through

SinceE 5 , normality of ir on requires that

n-2&

= '(2.33)

19
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and since the length of-1" is arbitrary, L is made a unit vector

by requiring

=2.•
* •(2.34)

Eqs (2.30), (2.33), and (2.34) provide n scalar equations which define

onJ . Isaacs then proves the following theorem.

Thecrem: Let Z and V denote functions of x and iY as obtained

from Eq (2.29). For a given curve l , let Oon) be ccfined

as by Eqs (2.30), (2.33), and (2.34). Let K( -,-, - - -,S,_. )

and •r(, S1 , o ,n2) be integrals of the differential equations

(2.31) and the state equation, then x (_z-.) is the parametric

representation of a unique semipermeable burface which contains

3. Barrier Construction:

As defined, the BUp on 1 has zero closing rate and can be though

of as a neutral outcome where the trajectory just grazes . To

either side of the BUP, E either gets captuied or E escapes. Since

the BUP is an n-2 din curve on 1;C Isaacs constructs a SPS backward

from • starting at the BUP. lie calls this SPS the Barrier. N

4. Barrier Importance and Physical Interpretation:

The importance of the Barrier can be seen by the inplications of the

following observations:

1) The Barrier is a surface of state nositions in that leads

to a neutral outco=e for optimal Barrier play (i.e. the Barrier is

a family of optimal escape trajectories where ternination is just

prevented).

20
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2) Because the Barrier is an SPS, it is never crossed provided 4
both players know its existence and play optimally.

3) If the Barrier forms a completely closed surface in ,

it will divide *e into two parts. The region between 1 and the

Barrier represents a capture region; the region of i outside the

Barrier represents a region of escape.

4) If play starts with E outside the completely closed Barrier, 2

E can play nc- uniquely until the Barrier is reached at whica time

provides an escape strategy for E regardless of what P does.

5) Even if the Barrier is not completely closed, its controls,

size, shape and sensitivity to system parameter changes, are Important

to know.

It is instructive to note that the method of Isaac's Barrier

development finds its counterpart in control theory. Since every optimal

control problem can be converted to one with a terminal payoff (i.e.

a 'ayer problem), the terminal surface can be mapped with lines of

constant J payoff whose backward optimal trajectories form surfaces of

constant payoff (see isocost surfaces in Leitwan [9]). The costate

vectors are normal to these surfaces. These isocost surfaces parallel

Isaac's SPS in that the isocost surfacq is not penetrated provided the

single player plays optimally. In the event play is not optimal, the

trajectory moves off to another isocost surface of higher J (in the

case of a minimum problem) where the trajectory will remain provided

play remains optimal from there on.

21
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C Vq
Simplifying the necessary conditions of the differential game

(i.e. Eqs (2.14), (2.9), (2.11), (2.12)) to the case where L=-0

yields.

rM" .1"0[6X ~ L,) - / (2.35)

- -v[ --. ,~,•, } (2.36)

(2= (.37)

(2.38)

Assume now that 4 is soae terminal payoff with no terminal constraint.

Then Eqs (2.35), (2.36), and (2.37) become

,r (. L• ) 0 (2.39)

1.-' " (2.41) i -

2ic ~ r uV ~ ) (2.40)

Now consider the 4 isocost surface associated with a particular

minimax value. Note that Eq (2.41) implies -hat X•&)is normal to this

isccost surface and that Eq (2.29) at t3- implies the trajectory just

grazes this surface. If (P is specialized to be the physical distance

from P to the terminal surface • , then Eqs (2.39) and (2.40) are

the same as Isaac's Eqs (2.30) and (2.31) for the Barrier. This shows

that the Barrier, often solved for by Isaacs, is a family of minimax

distance trajectories - in narticular the distance associated with the

terminal surface • . This particular Barrier sevarates those

trajecrories that can be draz:n into from those which can not.

22
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III. The Simplest M1odel

This chapter applies the necessary conditions of Chapter II to

the simplest of air-to-air combat models. It is instructive in

that it illustrates the Isaac's approach which will be applied to all

models in this dissertation. The model assumes that the players move

with constant velocity magnitude, their controAs (simple motion model)

being the angular orientation of their velocity vectors. In esserce,

the model assumes that each combatant is highly maneuverable. The model

"is first examined in two dimensions. A three dimensional model is

briefly discussed as an extension of the two dimensional model.

2D Constant Velocity

• 1. Problem Setup:

The coordinate system used for this model is shown in Figure 2.

The roles of the players are fixed with F pursuing and E evading.

At this point, this selection of role is very much intuitive and

subjective. Chapter 9 addresses the role decision problem later.

y

Figure 2: 2D Coordinate System

23
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t To make P pursue and E evade, the payoff is taken as the

time for P to force E to the terminal surface i.e. L= I P

is minimizing and E is maximizing. 'Note again that the selection of

time as the payoff is somewihat arbitrary. For the moment, it

is simply a payoff that makes P and E assume the desired roles. There

is nothing to say that this is the best payoff to use to simulate

pursuit-evasion in a real combat situation.

The terminal surface, r , is assumed to be a circle about

P at a radius R taken to be the effective gun radius of P. Its

usual description with Eq (2.3) is

Y) (y YP) -Z' 0 (3.1)

can also be described with Eq (2.19) as

Xp( = _ h()

KE (+-.) + e Q SnS (3.2)

where

M 2 (3.3)

"-.1 24
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The state vector of the gane is

S_= -(3.4)

and the state equations are

(2P V Cos 9P

x.Ž=[P 4Sfe (3.5)
Va s iel

where

v~e2  (3.6) -

The costate vector X is

fPj% x = X),. (3.7) :

2. Application of Necessary Conditions:

ME! is

e -m• i eP .4' xvPc° 9 \p"V ep-',..)e- X va.os G.- X.V, Ile

lP P YP m Es J

epO J-* E (3.8)

25
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where

•-f P vE[k>.oseE-,Y, . (3.9)

The min 14p conditions are

Dop XP (3.10)

ýtfe z 0 =;P sin xt-"'P#

E)St1P coseTq lp Fx--+ K•

(3.11)
The max 4E conditions are

ee

l e a ( 3 . 1 2 )

S0 el C'

The costate equations are (3.13)

P -[e- - • ] 0 (3.14)

implying that

S•X ) = conSoia vector X(•) (3.15)

26
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The transversality conditions are
4.

k = 3 =. •x + X, .( o (3.16)

L =2 X - -( - N E . (3.17)

'ENt)coS-A() 0 (3.18)

3. Problem Solution:

Eqs (3.12) and (3.18) show that on

'A-

+ c _=4 ~ 3 (3.19)

or

-•&-- (3.20)

Also, Eqs (3.16), (3.17), and (3.10) show

~orGp - __ ŽL &o (3.21)

and because Xth.z. Ž&4) ,h.

(3.22)
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Even without integrating the state equations, the closed form

control laws are obvious, i.e. Qr((Q.)= e,&) is the instantaneous

line of sight angle as viewed by P. The optimal mininax - trajectories

are straight, co-linear lines.

4. Barrier Solution:

To examine the game of kind and the Barrier, we first examine .

and find the UP, NUP, and BUP. Define as

- = Z (3.23)

The norm-alitv condition Of Ar on l , iS. Z =

j~.Z,3 yields =

t4 \3--I- (3.24)

2- 4- 4 a (3.25)

.3 =3 =. CS S - Y.~G~.QSir 53= 0 (3.26)

The unit vector condition implies

('~±~-~~3 ~~I ~(3.27)

28
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Eqs (3.24) to (3.27) simultaneously yield

t• /"s, n Si(3.28)L -- ---- 55
sin S.

o&r2

Expression (2.28) becomes

'min max <•mi-max 1-,ss ,Co (3•2

-COSSSV, sin -I- S VC F 4v- ose• + COS y S E

The minimax operation in Eq (3.29) is similar in form to the minimax

operation in Eq (3.8) implying

sin CO S 3= , COS = & .n S 3  (3.30)

and

sinek = Coss,- I cosee tnS

Eq (3.29) now becomes

min max ______

O GE re F2 (3.31)
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Eq (3.31) implies that if

1) Vp> VE then all of is the UP. -*

2) Vp= VF thcn all of is the BUP.

3) Vp< V, then all of is the %UP."

In case 1, all of r is useable for termination and no Barrier

exists. In this case all of is a capture region; E can not avoid

capture so long as P uses the line of sight control logic. Similarly,

in case 3 none of . is useable for termination and all of ý is an

escape region for E provided line of sight ev.,sion is used by E. A

BUP exists on ' only for the special case 2 where Vp=V. in which

case all of is the BUP. The backward trajectories from the BUP

become the Barrier which in this case is simply r. itselt. Note that

the Barrier in this case is a closed surface and in a trivial way

separates . he Barrier, C , represents the initial states for

which the outcome of the combat is neutral. Outside the closed

Barrier is the escape region where E cdn play non-optimally until

the Barrier is approached.

5. Model and Barrier Conclusions:

Several things can be learned even frot, this simplest of models

involving highly maneuverable players:

1) In this pursuit-evasion model, the highly maneuverable combatants

want to align their velocity vectors along the line of sight P-E.

2) The Barrier and the outcome of the conbat is critically linked

to the ratio of the combat velocities V&

VP

30
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3) In an attempt to improve the combat capabilities of either

player, the Barrier results indicate that the players should increase

"their velocity advantage.

3D Constant Velocity

This model is a trivial extension of the 2D model. The 4

terminal surface, i , is a sphere of radius, Q about P. The

closed forn control logic is again line of sight from P to E. The

optimal trajectories are straight, co-linear lines In 3D space. The

same general conclusions made in the 2D model apply in the.3D model.

3

-J
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IV. Limited Pursuer Model

The dynamics of the pursuer model Is made more realistic

by constraining him to maneuver his constar.c magnitude velocity

vector within a bounded turning rate, 1e .

For a real aircraft

- acceleration .L to
pv -

Therefore, the added realism of the bounded turning rate model in

actuality is recognizing the maneuvering 9 limits of a real aircraft

imposed by either a structural or hutian limit. The evader has the

dynamics of Chapter III so he can be thought of as highly maneuverable.

The model is examined in both two and three dimensions.

20 Linited Pursuer

/

1.-'X

Figure 3: Reduced Coordinate System

32
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Isaacs [7] solves this problem but does not Interpret or

apply the model or Barrter results.

1. State Equation Formulation:

The model dynamics in Chapter III was formulated in an inertial

coordinate system (realistic • ). The model dynamics here will be

formulated In the reduced

The reduced i is the set of orthogonal unit vectors 1. and ..

fixed to P's position and rotating such that 4ý, is always aligned with

*p The details of the state equation formulation can be found in

Appendix A. The state equations are

1__ (4.1)'- vF Cose, - V. +< X p

N~ote that

X - distance from P to E along .~4,
Y - distance from P to E perpendicular to Mp

0 - E's control; the angle between M, and VY

S- P's control; of 1- (- i) is a hard right(left) turn

33
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2-. Problem Setup:

The terminal surface, , is dgain assumed to be a circle about

P of radius j . Its usual description with Eq (2.3) is

-° [ (y oZ - 0(4.2)

Figure 4: Terminal Surface

"can also be described with Eq (2.19) as

KO= 11(S A. sins
:" ~(4.3) "

y . r= h z (S ) = C to s $ (4 .

where

L's (4.4)

"The controls for the players are
U m (] • _(4.5)
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and the costate vector X is

(4.6)

As in Chapter III, the roles of the players are preselected

by choosing =*o, L1 I with P minimizing and E maximizing.

3. Application of Necessary Conditions:

1E1 becomes

-- = • " G

(4.7)

--

where

q \C iv&- X. o~ (4.8)

The min conditions are

Sy (X Xy- -/, A(4.9)

provided A - ", --y Xx -9 o for a finite tine. Since o appears

linearly in Wp , there exists the possibility of a singular control in c-

If As o for a finite time. A summary from Appendix A of the a• singular

35
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control necessary conditions shows

A= x yx = (4.10)

S:ve 0 (4.11) :

--- --. Xv - o (4.12)

Z 0 (4.13)

Therefore, along a singular arc the following conditions hold

x : = S=O . (4.14)

The max I-r conditions are

"(4.15)

__1 c- 4'C SW~~ I "a> (4.16)

ME2 becomes

-. I• + (4.17)

The costate equations are >4 1zT

vH '" (4.18)
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12
The transversality conditions are 0 LK()=o,.=

X' \ )t Y COcbS - sint). ~iS 0 (4.19)

4. Problem Backward Solution FroA I:,
As indicated on pg 12, a closed form control is needed for a

real time application of differential games. In the case of the Barrier,

closed form control on either side of the Barrier is needed to insure

that the Barrier is not inadvertenly crossed. The backward solution

from the UP of i is analyzed to provide the closed form control on the

pursuer side of the Barrier. The details of the analysis are presented in

Appendix A of which the following is a summary.

The controls on the UP of • are

(4.20)

(4.21)

A singular control in o occurs at for S:o anA has the following

necessary state and control conditions.

(4.22

37
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The singular surface in the reduced ' is simply the y-axis

and reoresents a non-turning direct tail chase.

The trajectories and controls backward from the UP of r for

-S>c0 (note -S<o is symmetric about the y-axis) are

'9 -- . r (4.23)
R p

oý switching occurs when

v -r= 2 Tr--5s (4.25)

Prior to 'c' switching the state trajectories are

x(T) = .V&T) sCn rT-) - Rp C I- osýP_-r) (4.26)

RP RPy (.Tv)- = J - V . ) c.O S Is 4-Vp T - + K'p (4 .27)T

As will be seen later, the Barrier is completely closed for realistic

system parameters and the above trajectories intersect the Barrier and

terminate prior to o( switching.

Fig 5 shows some of the basic backward trajectories and

controls (neglecting the Barrier) in both the reduced and realistic
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For most of the initial states, E orients

4 /
-L P

Figure 5: 2D Limited Pursuer Trajectories & Controls

VL tangent to P's circular path which is a fixed angle in the

realistic and travels in a straight line. P does a hard right turn

until E is directly down the line of sight al-ong X. at which time P

switches to the singular control o<0= and the remainder of the trajectory

is a direct tail chase. Now wc exanine the Barrier and its influence

on the solution of the gate.

5. Barrier Backward Solution From --: ,

As in Chapter III we first examine and find the UP, NUP, and BUP.
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2

The normality condition of V on ~ __

yields

COS S- Lry )S L n S (4.29)

.The unit vector condition implies

( i~~4- 1(4.30)

Eq (4.29) and (4.30) yield

(4.31)

Expression (2.28) becomes

Rp o "- E coes-o

The similarity of Eos (4.32) and (4.7) 32o) that

-. ( -(4.33)
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Substituting Eq (4.33) into Eq (4.32) yields

z + -. 'j• (4.34)

Substituting Eqs (4.3) and (4.31) into Eq (4.34) yields

|T
1YLO~ =a VE.Vpcc, . (4.35)

Eq (4.35) and the definition of the UP, NUP and BUP implies that if

2) cosS= v. _ Sc BRUP

3) cos S > ze . e Jup
'If-

If we define SO= Cs V then
VP.1) --.5 ' /-- <s =:> UP :•

2) S<= +±S BUP

If Eq (4.32) is equated to zero it becomes pseudo MEl. Eqs (4.33)

are the Barrier controls and Eq (4.34) equated to zero is pseudo HE2.

The costate Eq (2.31) for the Barriet takes the same form as Eq (4.18)

except that . is replaced by '" i.e.

I " I(4.36)

41



DSIMCI73-1

The state equations and Eq (4.36) are now integrated backward from

the BUP on ( to get the Barrier. In doing this it is instructive to

note that the state, costate and control equations (i.e. Eqs (4.1),

(4.18), (4.9), (4.11)) for the UP of r have the same form as the

state, costate and control equation (i.e. Eqs (4.1), (4.36), (4.33))

of the Barrier. Mie state boundary conditions, Eq (4.3), have the

same form except in the case of the Barrier, S is specialized to S. -

The costate boundary condition Eqs (A.17) and (4.31) are similar except

in the latter case VpCOYS-V 2  does not appear and S is specialized

to S. . Even though the backward trajectories of Eqs (4.26) and (4.27)

are quite different from the Barrier, the backrward solution of the

Barrier equations take the same general form as Eqs (A.32), (4.23), (A.36),

(4.26), (4.27), i.e.

Ur r) =s in(5 s.+vP -r (4.37)

ry. =p CosS . Yo -") (4.38)

Q.~) (7) -ET 5,, (4.41)

IRp

yC')= ('"•-Vj-oT)((SC' 4-S,# TLT)+ -i- RpsinYev " (4.42)
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Isaacs (7,236] gives a very instructive construction aid for

visualizing thn shape of one side of the Barrier which is shown in

Figure 6. A circle Cof radius V_/,Pr is constructed at

position Rp on the x axis. The terminal surface is constructed at

the origin. A line is drawn from the origin tangent to the upper

part of C. . This line cuts at the BUP. A taught string

can be visualized as wound around C, and coming off of C1 to initially

lie on the above line thru the origin. The point on the string over the

BUP is marked. As the string is unwound in a taught fashion, the point on

the string which was initiatly over the BUP traces the Barrier, i.e.

physically behaves as Eq (4.41) and (4.42). The angle i.1 is the

angle between the initial tangent point of the string on C, and the

instantaneous tangent point of the string on C1 •

XV

Figure 6: Isaac's BArrier Construction
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6. Barrier Interpretation:

Note from Fig 6 that the Barrier throat always occurs vhen

Ye (4.43)

This is easily seen in Fig 6, but can also be obtained from Eq (4.41)

as a condition to make o = o • Substituting Eq (4.43) into Eq (4.42)

yields

, ,,(' -so)C= .Osso = R,,,. (4.44)

Since the left half of the barrier is symmetric abcut the

Y-axis, the condition for complete Barrier closure is for any portion

of the right Barrier to have negative X i.e.

Since Co So = Ve /,Vp then

si ns (4.46)

and

M. 7(" - CosS 5. Ve/1 (4.47)

implying

S- sm V(4.48)
P

Rearranming Eq (4.45) and dividing by RP yields

V VP Vp)

4>4
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Defining as
VP

/ - L n-' Li4 e i (4.50)

Eq (4.49) becomes

•- V-, (4.51)

The equality in Eq (4.51) corresponds to the case where the Barrier

is tangent to and just touches the Y-axis. For -Q-- .,
lep '

closure of the Barrier at the Y-axis is not grazing and occurs for

If •e assume and define 1 as that value

ofy'gr for which X =0 , then the time of closure 41- is

7~m e~r. .(4.52)

VP

Substituting Eq (4.52) into Eq (4.41) with X = 0 yields

0 vP - -R -) (4.53)

Dividing Eq (4.53) by Rp and rearranging yields the closure condition

when 9, !~S ,Ei.e.

A = V - -COS49
F2P VP (4.54)

Substituting the definition of 19 into "pseudo" ME2, Eq (4.34), and

using Eqs (4.37) and (4.38) yields

VP I-v 5 ( 0 +G ) .iV \-VpLOSs 4  ) 9 (4.55)
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Since Y,>o and sin ( So-. Ec. )'> 0 rearranging Eq (4.55) yields

YC Fý -[v C 05S.- o~ 0 e.]5 n ( S.* (4.56)

which can be used to get Yc for given e. Figure 7 is a plot of

Eq (4.54) for lines of constant S,+Ej-G o 1! . Superimposed on these

lines are lines of constant

We now use the Barrier and its closing conditions in Fig 7 to learn

as much as possible about the air-to-air combat problem and the problem

parameters which have major affect on its outcore. Consider a combat

engagement where P is at Mach # .8 at 30000 ft. altitude (i.e. Vp - 800

ft/sec). We assume that P maneuvers with a maximum load factor of 5 gs.

The 800 ft/see velocity and 5 a load factor together yield a turning

radius RP- 4000 ft. We further assume that under these conditions,

P's guns can effect a kill at a radius 1. - 1000 ft. Since - - .25,

Fig 7 shows that Pa. order for P to insure that the Barrier is not closed,

he must have sufficient velocity advaiitage so that VE e .69.
VP

This is quite a large advantage to assume P to have. In a more realistic

situation we might expect P to have a velocity advantage & t- .85 - .95
VP

which implies that the Barrier is closed. Note how the added realism of P's

model has limited his capability ab corpared to the simplest model in

Chapter III where the only requirement for capture was :/_ < 1. We
Vp

therefore see that for a combat engagement with realistic parameters (against

a highly maneuverable evader), the Barrier is completely closed. 4
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f J-

1, i

by i

Figure 7: Barrier Closing Conditiors
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Faced with P's limited capability and a closed Barrier, we are

interested in the best way to improve P's air-to-air combat capability.

AAny of the following three improvements snould increase P's combat I
capability: 1) increase Vp , 2) increase _j (i.e. weapons system

capability), 3) decrease the turning radius R. (i.e. higher gs).

To make this decision, we assume that the area of the capture region is

a good measure of P's air-to-air combat capability. A closed Barrier

is shown in Fig 8.

---

sis = ;z -. ý _ ---

Ii
Figure 8: Closed Barrier

The area of the capture region, A¢ , is approximated by

P~ R P V~p (j P (.~

where the -(.- V
2 

) relationship is given in Fig 7. The
FZP RP VP

nominal conditlon ..- = .25, , = .9, A - 1000 ft and V =
VpP

800 ft/scec is assumed and the gradient of A is given in Eq (4.58).
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p N12 .) ap.
V--c e.I -j = , ,(4.58)

VIP) (RpQwsG~ R ~ )~~

Since

p Vp Vp

then Eq (4.58) beccmes

I P IZP > _

IVA..,• _ ,

-6 T E )bJ(4.59)

From Figure 7 we' get Y5.=.313, ______ = 1.51, and ep

VP
-.60. Thierefore Eq (4.59) beccr.es

20. 
(4.60)

1200
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Eq (4.60) shows the overriding influence of Vo(± e.2 ) on

P's combat capability. This result suggests that an increase of V?

inhances P's combat capability more than corresponding improvements in

the weapons system or turn radius. It should be noticed that the tip

of the Barrier is located at Ye - .313 x 4000 - 1250 ft in front of P

and E's velocity angle off at the tip to effect the escape is

G= S 0 + 19 - 47". Inside the Barrier, E's optimal velocity

angle off is much smaller (i.e. less than 10*) and indicative of a tail i -

"chase maneuver. This discontinuity of E's control across the Barrier

is a characteristic of the Barrier.

7. Model and Barrier Conclusions:

1) The simplest model showed that for P to guarantee capture,

all that was needed was for <1E/ .< P's dynamics was made more

realistic in the present model, in that P was limited in turn capability.

For realistic P model parameters, and ýg < , the Barrier closes within
VP

P'a visibility range and much of the state space, , is oLtside the

Barrier and unavailable for capture of E by P. The main observation

to be made here, is that the effect of P's limited turn rate on his

combat capability (note one would expect this to decrease his capability)

is reflected in the Barrier capture area as a numerically measurable

decrease.

2) In this pursuit-evasion model, the combatants are still

attempting to align their velocity vectors along the line of sight

P-E; however, the optimal control laws to do this have been refined

by the added parameters in the problem.
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3) Sonsitivit,, analysis of the Barrier continues to show that

is the rost important parameter. The weapons capability A is

next, followed by the turn radius I .

3D Limited Pursuer

This model development is original work. The intent in studying

this model is to begin to reveal what the out-of-plane optimal maneuvers

are and how they affect air-to-air combat.

1. State Equation Formulation:

The coordinate system for this model is shown in Fig. 9.

P maneuvers by selecting the magnitude, < , of his transverse

0r

Figure 9: 3D Coordinate System
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acceleration and its clock angle orientation, The added

"complexity of this model is that P must not only select the magnitude

of his transverse acceleration but also the bank angle. E continues

to maneuver by selecting the orientation of Me through the direction

cosines (l,• , ) which are relative to the x Y , t axes system.

The model dynamics is formulated in the reduced i.e. ( • , y , .

The details of the state equation formulation can be found in Appendix A.

The state equations are

VFwhere ;-. - Y 2. (4.62)

9-+;nZ = (4.63) 2

2. Problem Setup:

The terminal surface, • , is assumed to be a sphere about P

of radius 2 Its usual description with Eq (2.3) is

C K( Y, Y t+ C-I-ý .t)-IQ .(4.64)

Scan also be described with Eq (2.19) as

CCS Ssi S(4.65)
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- F

Figure 10: 3D Terminal Surface

where

-- "•(4 .6 6 )

The controls for the players are

[~1 (4.67)

and the costate vector ) is

S-- (4.68)

As with the other models, the roles of the players are oreselected

"by choosing 0 = 0, L I 1 with P minimizing and E raxinizing.
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3. Application of Necessary Conditions:

MIE 1 becomies

o rnil MCL \,,[ E - e cos4i + xf V,;;:ý V,

RP

+ Xrnc..iEiCy

yp P -I- vr -1~~~ (4.69)

where

pp

The m~in 14conditions are

P

e(~1 (4.71)

where
?%~X~~y~x(4.72)
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The max 14E conditions subject to the constraint Eq (A.47) are

V j
iz

x(4.73)

. t + X Z+ X I

Ill "

M1E 2 becomes

•"• -•- V ...- VE •K-2-p ,-.2 -- Xy p + .1 (4.74)

The costa,.e equatiors are I

raN 1 p -A 1-o
_V'= - XXCOS4#Xsin4ý (4.75)

J II I

The transversality conditions 5
|ii L.ne *

6re

(YsIrsa)) Aws S, a (4.76)

j 2~ ,ScsS 1 in 2 -1 y X 2os =) 0 (4.77)
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4. Problem Backward Solution From

Otdinarily, the following analysis of the backward solution from

would appear in an appendix; horiever•it is essential to the

proof of a proposition that P's motion is planar. We begin by
d etermining the controls on ,then the vroposition follow's.

Subsituting Eq (4.76) into Eq (4.77) yields

4L. S4 -b s/C~ossl. (4.78)

t Noting that

Aj=~~-y.4=coss,. insi Ay ~co~sszsins1 Y 0

B1 X Y - X =.Qsi,,SzXYI -.. S~nS 2 X ) (4.80)

and substituting Eq (4.76) and (4.78) into rq (4.74) yields for ME 2 on

O~V~ tckn1)~~ + 2(4.81)

Sirplying rq1 (4.81) yields

______4-_1 (4.82) V
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Since o Eq (4.32) yields,

.xY) Co$S, co$sz (4.83)

VP rOSSI1CD$ 2S. -Ve

Substituting Eq (4.83) into Eqs (4.76) and (4.78) yields

,\ sIt•s,, Cos.O S

10. VPC.OSS±C.OSS 2 -VE- (4.84)

,- r S-

'4C VP C-OsS., cossz -VE

Noting that

-x2 Y (4.85) 4"

"we see that

ml c~S~co~S1 (4.86)

Sin S%

which shows that V a1r is perpendicular to *since a4

-.-c use Il"opital;s rule to evaluate i i.e.

e rn4~
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aA__ A_ K +•i Y _ _x ,,= V _X , (X•_•X (4.88)
dt d-r - Z

which is obtained by substituting the state and costare equations 4

and E's optinal controls. Likewise

~ X~yX ~(4.89)

Since

( z-~ ) -Qoss~)~s~ 2 - ,s ws (4.90)rep L, s.CSS z -s• ve-

then substituting -,s (4.90) into .qs (4.88) and (4.89), Eq (4.87)

becomes

tcan~J ~ /si~s1 (4.91)

From Fig 10 we see that

+G @ ) ~ (4.92)

Therefore on • P's optimal acceleration vector, the relative position I'

vector, and all lie in the sane ilane.

Proposition: For the 3D Linited Pursuer model, P's moticn under

optical play is planar (i.e. f 0
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Proof: From Eq (4.71)

a CorA~ ) - d (4.93)

d.t A2 4

By substituting Eqs (4.88) and (4.89) into Eq (4.93), the numerator

N , of Eq (4.93) can be shown to be

N =•,a_•. _ dA (×•-JA, (4.94)

cit d+ R

Substituting Eq (4.74) into Eq (4.94) yields

N, x V.E•• •.,[1 ,, :+ (4,•; ],.95)

From Eq (4.90) we see that N 0

Now

(4.96)cit "
! at

Substitution of the state and costate equations into Eq (4.96) yields

d+.p (4.97)

Substitution of the optinal control E.s (4.71) and (4.73) into Eq

(4.97) yields

i~x~j~)Q~V[ xR¾ 1 V VAB+AB 1z
(4.98)
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Since ( xwX-eX• ) we see that for all time

Eq (4.95) for all time is therefore

KJ C> .(4.100)

Since

cos, A(4.101)

we see that

•A . B 2 z (4.102)

UJ

Eqs (4.102) and (4.92) yield

- (4.103) '

Though it is not i-.ediately obvious in the reduced , E's ontimal

motion is straight line notion. This fact is more easily seen in the

real space in which Xx " ani A are all constants. Since

on P's acceleration vector, the relative nosition vector and •E

all lie in the same plane, we see that P and E are in -otiol in the

sane fixed nlane. This shows that the solution of the 3D Liutted Pursuer

model is a si-mple revolution of the 2D Limited Pursuer model about t'ie
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Y-axis. All the conclusions made concerning the 2D model apply

in the 3D case. I
5. Model Conclusion:

The most important added conclusion to be drawn from the

3D model is the 3D closed form control law of P:

1) P banks his aircraft to keep E in P's longitudinal pitch plane.

2) Following this bank schedule, P pulls max 4s until E

is directly line of sight out the nose of P's aircraft.

3) P then pursues a direct tail chase.

This maneuver, which is an optimal tactic for this 3D model, has

been suggested by tacticians and is called the "slice" maneuver.
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V. A Relative Evaluation of Fighter A/C Capability/An Application

This chapter presents the first known practical application

of differential game theory to a real fighter aircraft problem.

The problem is the following: Given several fighter aircraft, similar

In many respects, which is the best fighter aircraft from an air-to-air

combat point of view? This is not unlike the real problem faced by

the Air Force when it must select the best contractor proposal on a

new fighter aircraft system. Though many factors influence that final

decision, a numerical ranking of the proposed aircraft as to their

air-to-air combat capability is vital to that decision process. The

technique presented here was recently used by the Air Force Flight

Dynamics Laboratory as part of its evaluation of the recent Lii t Weight

Fighter proposals.

Model for Comparing Fighter Aircraft Capabilities

The model is the 3D Limited Pursuer. In this model the pursuer

maneuvers by selecting the bank angle and load factor within his

capability. Important parameters in this model are maximum load

factor, turn radius, weapons envelope and closing velocity. In order to

have a means of comparing the several aircraft, the standard evading

aircraft will be the highly maneuverable Evader in this model.

The results of Chapter IV show that for a realistic coubat

engagement (i.e. max tracking -5 -, 5,M .6 - 1.1, gun capture

radius W 1400 ft., '
4
/v' .9), the Barrier is closed and very

sensitive to the ratio of combat velocities '/E/ . Sensitivity

results of that Barrier indicate that it is much better to have the

S I"62
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ability to control Vl/VP (i.e. accelerating capability) than to

increase the load factor. The pursuer enploys the 3D slice maneuver.

Evaluation of the 31 Linited Pursuer Model as a Comparison Tool

One of the best means of exanining aircraft maneuverability

throughout the flight envelope is with the "r.ax maneuver corridor"

concept developed by Boyd. It is a one-vehicle, energy maneuverability

(EM) analysis which draws attention to the more important regions of

the altitude - Mach diagram where a given aircraft has good Vaneuverability

and consequently a good chance of winning a combat engagement.

It does not indicate how to use that capability or indicate the outcome

of a particular engagerent, Though it is a powerful tool for defining

and comparing aircraft maneuverability, it, like many other air-to-air

combat models, does not address many of the model problems mentioned

on page The technique developed here considers many of those

problems and is a blend of EM results with differential game Barrier

results.

With a gun capture capability of Q = 1400 ft., results of

Chapter IV show that in the Mach j range .6 - 1.1, that the Barrier

closes in front of P in the range 1550 - 2400 ft. This is within

pilot visibility range so, as will be applied here, visibility (i.e.

part of the comolete information problem) is nct a problen. If we

place E on the furtherest tip of the Barrier (see Figure 11), we are

assuming that P has somehow obtained this tactically sunerior position.
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This is not an unlikely assunption since many documented kills

resulted from a fortunate initial position at engagement. Since

the aircraft are close, a one-on-one assunption seems to apply.

Since P is tracking for a kill, lie will be limited to 5 as because

of pilot limitations. Ule are assuming that the constant speed model

can be applied with small error (see Chapter VIII for justification),

that P can effect the slice maneuver, and that the standard evader

has the fortunate velocity direction associated with the model's

"optimal strategy (inside the Barrier the velocity angles off are small

"and realistic of the not unlikely tail chase maneuver).

Specific A1plication to Relative Fiphter Aircraft Cavabilitv

The technique compares each fighter aircraft in the study

against a standard evading vehicle. Since the 3D Limited Pursuer model

showed that the ability to control M was paramount, the difference in

the accelerating camabilities (i.e. specific power, P=. ),•P5

of each fighter aircraft against the standard evading vehicle was

generated (see Figures 12 - 17). The evader is the superior R.

vehicle in most of the flight regime and is initially placed at the tip

of the 3D Barrier (see Figure 11). P is given a closing velocity -

here 50 ft/sec. E now employs his &Ps advantage in an attempt to

improve *, . As E does this, the Barrier shrinks tcuard P; houever,

P is closing at an ever decreasing rate. One of two events will occur;

either the Barrier will shrink faster than P is closing and E will escape,
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or else E will cross the gun capture radius before he gets outside

the Barrier. The specific result depends on the Mach # of P and

the altitude of the engageneht, i.e. &P$ . To make the analysis

more meaningful, we define the combat arena to be MIach #? .60 to 1.1

and altitude 0 to the aircraft operating lluit. This region is representative

of the area of the h-mach diagram where visibility is good, turn

radius small, and turn rate high. A computer program was built using

the numerical Barrier results of Chapter IV and the properties of the

aircraft to deternine the escape - capture result for each point of the

combat arena. The results are shown in Figures 12 - 17.

The area between the heavy black lines in the combat arena

is the region where capture of E occurs in spite of his bPs advantage.

The area from the dashed lines to the heavy black lines in the combat

arena is where E escapes because of the b advantage.

Since a standard evading vehicle is used in each case, it 4

is reasonable to assume that the fighter aircraft with the largest

capture area in the combat arena is the best aircraft. The percent

area of the combat arena associated with capture provides a means of

numerically ranking each fighter aircraft. Six aircraft are compared

in Figures 12 - 17. A definite numerical rankinq results.
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Figure 12: Vehicle 1 Combat Results
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Figure 14: Vehicle 3 Combat Results
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Figure 15: Vehicle 4 Combat Results
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Figure 16: Vehicle 5 Combat Results
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VI. Limited Pursuer - Evder Model

The dynamics of the msodel in this chapter is made core realistic

by constraining both the Pursuer and Evader to maneuver their constant

speed velocity vectors !hithin bounded turning rates. Neither player is

highly maneuverave in tae sense that the velocity vector can be

oriunted instantaneously. The intent in studying this nodel is to

find the effect of the more realistic evader on the solution. The

model is ex~amined in both two and three dimensions.

2D Limited Pursuer - Evader

Isaacs [7] partially solves this problem but does not interpret

or apply the nodel or Barrier results. The model dynamics is fornulated

in the reduced . The coordinate system for the 1D nodel Is

shown in Figure IS (si•ilar to Figure 3).

Figure 18: Linited Pursuer-Evader Coordiute Svstsm
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1. State Equation Formulation:

The reduced V is the set of orthogonal unit vectors 1

and I., fixed to P's Position and rotating such that Iv is always

aligned with Y. . The details of the state equation formulation can

be found in Appendix B. The state equations are

V. vsine -yMF o (.1

Ve Cos 0-Vp -- X Ye(I lep

where

X - distance fron P to 1; along Mi

Y- distance from P to E perpendicular to YV

09 - angle between _ýL and

0(-P' onrl;c +(l)i ahrdrgh letptr

- P's control; e(-+1(-!) is achard right (left) turn -

Note that the state e'nuations here are verv sinilar to t:,e

state equation (4.1) for the Limited Pursuer nodel - the only

difference being that E) is no longer a control variable hut a

state variable whose differential equation is Laq (B.15).
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2. Problem Setup:

The terminal surface, i , is again assumed to be a circle

about P of radius Q , however, at any E . is shown in

Fig 19 where it is visualized as a cylinder in the reduced

Its usual description with Eq (2.3) is

4 P

Figure 19: Terminal Surface

= x+)÷ y(- 2 0 (6.2)

where G(C4) is free. • can also be described with Eq (2.19) as I

Y - O~cs si (6.3)

Q(~~Yh3(~) S2 P
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where

The controls for the players are

(6.4)

and the costate vector ) is

(6.5)

As done in the previous models, the roles of the players are

preselected by choosing zo, L: I.c ritlh P ainimizing and E maximizing.

3. Application of Necessary Conditions:

XE 1 becomes

o =: wnivi moi~y EX (V, sr - Y2 +a)4 ky (VF COSO Vp+ c.Vflo(4-

. vx, " s -'-,, +,+ C]

, - veYYL,.,. 4p+V5 mcL,- N× 4% • (6.6)
+6C "
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where

o= va&LXst9+XvCoSe] - XyV+ 1. (6.7)

The min condition yields

CK s~n LA9] (6.8)

wh.re

S - -(6.9)

provided Aq qe o for finize time.

The max WE conditions yield

3 58= (6.10)

provided ,*.o for a finite tine.

Singular controls in both o( and can occur. A sumnary of the o(

singular necessary conditions from Appendix R shows

;'A : × -YX×- > o : (6.11)

io vxx = 0  
(6.12)

A _.p 5  
e o( (6.13)Rp Y

2:o C (6.14)

Therefore, the singular control in o( requires the added necessary

conditions

-. - •=' &A G,- - -- o , , 7 (6.15)
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A summary of the .~singular necessary conditions from Appendix B

shows

(6.16)

Xes vEXSn Car.o6)) =0 (6.17) 1'

(6.19)

There it is also shown that Ecs (6.16) to (6.19) imply that

y SXn-X.XC0se X 0 o' X nE*-Xycose
(6.20)

are the added necessary conditions for a singular 49

Substituting Ens (6.8) and (6.10) into Eq (6.6) Yields H4E 2

-VP I +j L -V-Ž!,\,eI-VjJ g -fb .X yCosa Xy +1
(6.21)

The costate equations are

_ [ '1 (6.22)

1. j [ve=(X~sn -In X XCOSe
I __ I
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Note that the first two costate equations here, are the same as the

costate Eq (4.18) for the Limited Pursuer model. The main influence

of the added realism of this model, i.e. the velocity angle off e ,

is thru its effect on A. in the switching functions A, and

which determine the controls.

The transversalitv conditions are • )sLb1a.j- = - , (623)

L-1.

IL 1 ! o= XK4'),QCOS.4i+ Xy(t.)(-. 5.nSj'+

(6.24)

4. Problem Backward Solution Fron :

As was done in Chapter IV, the backward solution from is 3

done to find the control logic on P's side of the Barrier. The details

of the analysis can be found in Appendix B of which the follcwing is

a summarv.

The controls on the terminal surface arc

- -Sa45n SZ ±) (6.25)

5=. s n S ,ts (6.26)

There are singular controls for both P and E. The E singular control

conditions are characterized by

a = ,o (6.27)

Since 5= 0 , the E singular control yields a non-turning straight line

dash. The P singular control conditions are characteried by

SAG= XXY-Y)X-XO = " o 0 > (6.283)
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Since a=O, P's singular control also yields a non-turning straight

line dash. If both P and E are singular together, thenie=o also

and the double singular condition corresponds to a direct tail chase.

Now if E is singular then Appendix B shows X o , =0

stne= ,•
sine _ r9, A=xN\-y),. Under these conditions

the state equations, Eq(6.1), and the costate equation, Eq (6.22),

reduce identically to the state and costate equations for the

Limited Pursuer model. From this it can be seen that the E singular

case in the present nodel has the same solution as the Linited Pursuer

model. In this singular case, E initially just happens to have the

position and 9 angle off associated with the optimal e9 freely chosen

by the highly maneuverable Evader in the Limited Pursuer model.

The optimal controls, for the rajority of , are either

hard turns or the singular straight line dashes. Based on the Appendix B

discussion of the closed forn control logic for E while P is singular,

and vice versa, the closed form control logic (see Figure 20) for this

model (neglecting other singular surfaces - see pg 16 ) is: P does a

hard turn into E until M/p is tangent to E's hard turn circle at which

time P switches to the non-turning singular control; E does a hard

turn away fron P until Y is tangent to P's hard turn circle at which

time E switches to the non-turning singular control. Vith this kno :ledge

about the singular control surfaces, we continue with the backward

solution fron and return to the controls on -
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Figure 20: Partial Closed Form Control !oglec:•

r qs (6.25) to (6.28) are expressions for the controls an as

S~a function of the state on • It was stated, but not shown, that

the LT of ý was chiaracterized by those states on r, for which

N/p rOS S:. - Ve_ CO--CS'.<•-.. S, > O> (6.29)

It will be shown (see section on Barrier) that equality in Eq (6.29)

defines the MI•.

Figure 21 represents the cylindrical terninal surface, ¢ ,•

of Figure 19 cut along the S. (i.e. e )axis at S,=±-[r and unrolled

on a flat sheet. As in the other models I .I Eq (6.29)

equated to zero defines the ULP and is shown by the curved lines In ,

Figure 21. A pair of curved lines renrcsents the BUP for a given ••I

Vp
Tile area of between tile di~m-etrically onnosed parts of tile BUP is %
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the UP of * The remainder of is the EU,. Eqs (6.26) and (6.28)

show that for the UP of and

1) 0<- 1  'r< D."d-- +-I (i.e. hard right turn)

2) -TI<-.•.o • -0 (i.e. hard left turn) (6.30)

3) S•= c C> (i.e. P singular)

4) sm TT Dispersal surface

This shows that at termination, P is turning into the position

of E. Even though termination on 4 does not occur for the NUP, the

controls are defined as in Eq (6.30),however, with the signs changed.

Eqs (6.25) and (6.27),show that for the UP of 4 and

1) o<s-•<r,. -1 (i.e. hard left turn)

S2)-,'rr <S2-•S .- •,0 -S -f. 1 (i.e. hard right turn) (6.31)

3) S•- S1 c , o (i.e. E singular)

4) sz-Si .1 Tr - Dispersal surface

This shows that et 4 termination, E is turning in the direction of

the line of sight i.e. E is trying to lessen the closing rate to prevent

termination on * For the NUP of the control signs In Eq (6.31)

are reversed.

Figure 22 portrays several k.kds of termination on V by reference

to specific points on Figure 21. For points 1, 3, 4, 6 in the UP, P

is clearly the attacker and E the evader. Points 7, 8, 9, 10 are

also in the UP, however the positions are such that P probably should not
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1. S1 )9S UP 3. S,..S, . UP 4 u.,2 ,UP 6. SI.-O. UP
OC.,-1, S~ .. +I O-1., 630 B¢T.1 •-1 otO,•:

2. 52.552 M* V. (Sit, IUP

20 +.1

- -

UPPRSL up &~1 up, --I1 . up' 1,S!P2ES

Figure 22: Positions at t Termination

attack but evade and ".Ic-, vorsa with E. The problem here is with

the payoff function fUx-- and the fixed roles that have been assigned

to the players. The problem of choosing a good payoff function was

mentioned in Chapter I and again mentioned An Chapter III - I in

the 2D Constant Velocity nodel. This payoff problem is addressed later

in Chapter IX. The main point to be made here is that the backward

solutions from points such as 7, 8, 9, 10 may be interestinp to do

mathematically (and as it turns out extremely diffi:ult because of the

Dispersal surface in this region of • ) but have little use practically

since the roles of the players are fixed. This is rot to say that the
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present model is not good - just limited in some areas of for

practical application. The arer of ) where the present fixed roles

have practical application (i.e. when the roles make sense) is around

r-T/Z <S I .C z simultaneously with ISC-SaI 4 7 This

area is enclosed by the heavy dashed lines in Figure 21. Uith the

controls on 1 and the part of useful for practical application defined,#I
the analytics of the backward solution from this area of is done

next. The E singular traj;,t~ries are done first.

As was previously discussed, the E singular case is the same

as the Limited Pur.'uer model. The only real distinction to be made

here between the models is one of nomenclatvre i.e. 1_ and ) are p

similar; A and A. are 6imilar; S and S. are similar. A suramary of

the equations for the backward solution in the E singular case follows.

These equations come directly from the Limited Pursuer model. Because

of the X,O syrmetry in the problem (to be showin later), only the

e .S, Tr that lie in the UP (i.e. e) m+±, . = o ) are examined.

The results are

S2  S 1  (6.32)

Xo(T) -= 0 (6.33)

X( -) sen 4s±.e -rP)/[V COSS1 V (6.34)

co-.(5,+YL-r)/tivPcossj_ va (6.35) A

_lo- COS(5Ve-r1] (6.36,
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-. 
(6.37

RPP

×(•• =C• v•T sni•÷• +RPC•.1- CO'S V.'-) (6.38)

Rpp

As with the Limited Pursuer rodel, these traje:tories will generally

intersect the Barrier before switching occurs in Eq (6.36).

7he backward solution of the P singular trajectories is straignt

forward; however, they are not very useful in the analysis of the

FEarrier. This is because thdir initial conditions on 4 (i.e. S )
do not intersect the BUP. These P singular solutions are not presented.

Next we examine the backward solutions fron the UP of * where

0o(•o an•> 3 The details of this aralysis is done in

Appendix B of which the following is a summary.

For the UP of r the controls are hard turns as shown in Figure 21
with E switchinS and P switching at -Tr and '-A respectively defined 6y

- q 2n-- 21S.,SZ (6.40)

-__T4 2Tr- 21S 1j . (6.41)

For a given S., Sz in the UP of and for Ir smaller than

're or '. the state solutions are

49C7) S24 AS+Yee'- ~ - (6.42)

R 
Rp

_f, co~~~&r (6.43) ;
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ycr1 ,(*R 5lin(.4MP- ) -4 1co ' Cs.,+ -yi t-r) -+-i RI P RP

- RE 5if1(S of- zeYf )t o V- e.f0L (6.44)
T* LzsR.

This completes the solution of those trajectories immediately leaving

the UP of . These trajectories wLll be discussed later. To

complete the analysis of those trajectories leaving we now examine

the Barrier.

5. Barrier Backward Solution From

As was done in Chapters III and IV, we first examine and

find the UP, NUP and BUP. Define is) as

(6.45) 1
l1e

The nornality conditions of LT on ,. " d

for 
=

Cos, try CEO S l-4sar ts 0 <6.46)

cr. O (6.47)

The unit vector condition inplies

"-i.-�(•c ~-,- ) + % . .Ce = 1z . (6.48)

Substituting Eq (6.46) for LT(ti) C nd Ec ,6.47) for i-C',) into

Eq (6.48) and solving Eq (6.48) for d yields

Vk Coss, . (6.49)
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Substituting Eq (6.49) into Eq (6.46) yields

Ssin S1  (6.50)

Expression (2.23) becomes

-4-K~ -.4) 4- ire, ose3 - Yf~ .a6.1

The min operation yields I

provided A,*O for a finite tine. The max overation yields

3K S~ Le3 (6.53)

provided'.~o for afinite time. Substituting Eqs (6.52) and (6.53) into

Eq (6.51) yields

CTY (6.54)

Substituting Eqs (6.3), (6.49), and (6.50) into Eq (6.54) yields

mIY)vYk 3i wax[si~sns, 2+S. coss! (ossz3 - oCbss,.

\/- C OS 5>2-s1 S -J VpOS SI (6.55)
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Eq (6.55) inplies that if

1) V/COý(-SC-S) -\1V,_Oý5i<0 then jS, Zý e UP of r

2) V iL.-± ~coS 0,tten e 3UP of4

3) t,,en I s,., sas w f

(6.56)

These equations Justify the statements made on pgs 81, 210 and 211

Having defined the BUP, the Barrier is constructed backward from the

BUP by satisfying the necessary conditions of the Barrier.

The first necessary condition is "pseudo" ,'•El, Eq (2.29),

0 = m'vnMox IY .ý(p,~ -"p LY Wp+-a mx4,-l-I

Vr sl l ne+Xry COSE) TyV' (6.57)

where

4P T-, - xTe-1 )~ j 3 c' (6.58)

-- , (6.59)

The min H conditions yield

-3 [h (6.60)

provided A9*0 for a finite time. The Sax 
4  conditions yield

= s��-r' e3 (6.61)

provided C>O for a finite time. Note the possibility of singular

controls on the Barrier. SubstitutinR. Eqs (6.60) and (6.61) into Eq (6.57)

yields "pseudo" MIE2, Ev (2.30).

..O0 = - )",1+ A Le ItY6t +VE•(÷v SIne +3fCOS)_LvP (6.62)

The costate equations for the Barrier, L• (2.31) are

89
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U~- -~(yj-~-I vp ~I I- -- j=
v[ (v ssing- Ocose) (6.63)

As was done in the Limited Pursuer model, the similarity in the form

of the necessary conditions for :he Barrier and the form of the 4
necessary conditions for trajectories from the UP is pointed o.t.

UP DUP(IBarriers)
' "×• ) A sins, sam e -,e-m

i css' v-cept S •o d4 dS
dre on BV

Cis_ U ~ m StAte oeqetiovis

RP- Y la

YCo'sS~ 3-.
VPCtaSS

1
, - Va COS(.Sai S,)

""i StnC %,,X,
.ajl~en A9 neo -Aq
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As can be seen, the BUP (Barrier) equations are sinilar in form

to the equations for the UP - the only difference being the initial

values of state and costate variables for the BUP (Barrier). Although

• the resulting trajectories will be different in shape (because of

different boundary conditions) the form of the solutions are the sane.

Taking advantage of this sinilarity, the equations for the Barrier are

*given. The E singular case, for that part of the BUP where 0 4 5 7rT

is done first.

The E singular case requires that !=S 1 (sce Eq (6.32)). However,

since SL; and S. are on the BUP, Eq (6.56) yields

.vC/P (6.64)

The E singular case also requireo (see Eq (6.33)

Realizing the Barrier boundary conditions of Eqs (6.49) and (6.50),

Eqs (6.34) and (6.35) show that

O',,T = SsIY, --.S •.t T) (6.65)

•Y'•iT} = •-~i S +VP I-)(6.66)

Likewvise, Eq (6.36) shows that

(6.67) 3

and Eqs (6.37), (6.38) and (6.39) sh.ow

qCjj SlL+Y' (6.68)

PW)=L~--vT1 sin( (s1.4YE 7) 4+ 2ZpQI-CCISYXr) (6.69)

91



DS/MC/73-1

v,!ir' (.•-V,=)o . , -, ) + R -r (6.70)
1

1
p

where Sd is defined by Vq (6.64).

Reference to Eqs (4.37) to (4.42) shows that the E singular case on the

Barrier of the present model is exactly the sane as the Barrier of

the Limited Pursuer model. The P singular case is done next.

The P singular case requires , . From Figure 21 and

Eq (6.56) for the BUP it can be seen that S*o on the BUP. It was

for this reason that the P singular trajectories from the UP were not

presented. Next we examine the backward rarrie" trajectories from that

part of the BUP where 0 * .

To be on the BUP, S 1. and S? must satisfy Eq (6.56) (see also

Figure 21). Eqs (B.46) and (B.47) indicate, realizing the Barrier

boundary conditions, of Eqs (6.49) and (6.50) that.

= (6.71)

vryLi -r cosCs,4-V].t-r) .(6.72)

Eq (6.42) shows that

Yf 114 T(6.73)

Eq (B.50) along with the Barrier boundary conditions of

Eqs (6.49) and (6.50) shows that

;x (C-) = I LCoSC-•.-SZ - C S,- S ,4(-.• P . -+Y 'r)f (6.74)

E switching on the Barrier occurs when 'r equals

"7'0 defined by (see Eq (6.40))

S(6.75)
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Eq (B.55) shows that

- - _[coss, - C-CoSs± -2• r) (6.76)cc IRP

and 7 switching on the Barrier occurs when 'r equals TA defined

by (see Eq (6.41))

Vp - 2T'- 21S,I (6.77)

The x and y Barrier solutions are similar to

Eqs (6.43) and (6.44) i.e.

Sr 
2 6F9

This completes the solution of those trajecto~ries immediately

leaving the EU?.

:m 6. Barrier Interpretation:

"(Frst the G25 symmetry in the Barrier (as well. as the whole

Sproblem - was mentioned previously) is shown analytically. Consider

a case where S = S, > 0 and S2=Sz w where o L-S$<Tr-

Then -C= 4j ana 6 = + 1 and'the Barrier trajectory

i.e. Eqs (6.73), (6.78) and (6.79) yield
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e CT)= t- Ve T- (6.80)

V. C-6 II RC ±.-C•O.T --- ) + sin C(S±+V Y-) -"--

R~p
+ Rcpsin 2  -Y+. 'r) - cose-Cr) 4.8

Now consider the case where Is -S~o and Sz =

Then S z . - Sj"o- - - •.oS•c.) end since originally

o0 eS - S -- then in this case O> SI-St•> -

Therefore in this "mirror image" case, c =c - and I - 1 and

Eqs (6.73), (6.78) and (6.79) yield

e a y) .E 
(6.83)

- - (±-coI a-r) -- sIVI(SI+--L-r) -i-

-'Y " -- -- )] (6.84)
2 p.

QT - Ypstfl -r - Ic~os Cs Ic+ -r) 4--

1-C = p , I) C ÷ + Ys- T) M. A-0-3) * (6.85)4

Scomparison of equations shows 6(-•) • -• ) , ÷( -) - X-II

and Y.c-) ..- rT ; hence, the •, e

symmetry is shown. With this symmetry in mind, the Barrier shape,

passible closing conditions and sensitivities are examined.

As will be demonstrated shortly, by a comparison of the Barriers

of the Limited Pursuer model with the present model, the Barrier

and its closure properties depend on the particular air-to-air combat

model and its system parameters. Except for the simplest of air-to-air
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combat models, the Barrier Is generally not a completely closed surface

in thoever, selected Barrier trajectories or trajectory types

can be made to close for judicious choice of the system parameters.

As seen in Figure 22, not all of the escape trajectories making up the

Barrier are physically interesting for one reason or another - in this

particular case, role. However, there are physically important

Barrier trajectories on each Barrier. It is the closure of these

Barrier trajectories (can be thought of as a partial Barrier closure)

and their sensitivities to system parameters that is important to study.

This concept will become more clear as we examinz specific Barrier

trajectory closure in this model.

Figure 23 is a pictorial drawing of the terminal surface, • ,

and the Barrier leaving the surface. Both the right and left BWP

are partially drawn on . The E singular line on ý is also drawn;

it appears as a helix wrapping around T The origin of the Dispersal

Surface on 4 is also shown. The A trajectory is the E singular Barrier

trajectory in Eqs (6.68), (6.69) and (6.70). The projection of this

trajectory onto the X- Y plane (note that G(T) is increasing

positive on the right side and is increasing negative on the left side)

is identical to the Barrier of the Limited Pursuer model (see Figure 6).

If we examine the conditions that allow the E singulir projections to

just touch the y-axis tangentially (i.e. a grazing Barrier closure for

the Llmited Pursuer model), Eq (4.43) shows that 6rT)=i+-3 for the

2J
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Figure 23: Barrier Trajectories
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" i~I
right projection and G(2-- -C 3 for the left projection.

Therefore, even though the Barrier of the Limited Pursuer model Is

also a Barrier trajectory in the present model, It can be seen from

the above that the completely closed Barrier in the Limited Pursuer

model -' at a closed Barrier trajectory in the present model. This is

not to say that closed Barrier trajectories do not occur in thu present

model, just that the added realism of the E model has changed the

conditions under which closed trajectories occur.

Since P is pursuing E, wj. <- ± was selectee earlier to

correspond to P's role. Now, the realism Fdded to this model was a

limited turning rate for E - previously E was infinitely maneuverable.

In order to give E a change at closing the Barrier completely or partially,

it seems logical that the turning rate of E should be larger than the
turning rate of P i.e. .- > I . In the analysis that follows this

is assumed. Therefore, P is faster but can not turn as rapidly as E.

We leave the required magnitudes of *,, , etc., for closure

to the analytics of the Barrier.

The P trajectory in Figure 23 corresponds to the case where +1

and I 4 :1 . Eq (6.73) applies here and shows that

eOy) SZ +.÷ p-Gm)T (6.86) C

Since G_> es , GT) is decreasing i.e. the B trajectory is heading

toward the X- Y plane of 9 Likewise, the mirror Image of the

B trajectory off the left BUP Is heading toward the X-Y plane of
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E)=ZT (same as 9=0 ). If both these trajectories meet the

respective planes at x=o , the y's of the two trajectories will be

identical (because of the symmetry) aisag with the e9. being zero ( 21T ).

If the parameters of the problen can be found to cause this to occur,

the Barrier will be partially closed for these specific trajectories.

The E trajectory in Figure 23 corresponds to the case where

. . +1 and 3 - -1. Eq (6.73) applies here also and shows

qCT)= s+ E. -p+ _9 " (6.87)

SE)r) is increasing rapidly and heading towards the region of the

Dispersal surface (defines a surface of unusual encounters which have

for each point on the surface two different trajectories leading to the

same pay6ff i.e. escape in the case of the Barrier). The mirror image

of the E trajectory off the left BUP is also heading for this region

and closure on the Dispersal surface. Note that the Dispersal surface

itself is a kind of Barrier trajectory closure. As was mentioned earlier,

the encounters on this surface are the head-on-type etc., where the

present fixed roles are not justified and have little Iractical application.

As will be shown, this leads to certain anomalies in the Barrier of

little practical use.

The C and D trajectories in Figure 23 are trajectories which brancb

off the E singular trajectory. The D trajectory .orresponds to E

switching from the singular (3=o to :=-1 which heads the

trajectory towards the Dispersal surface region. ror the same reasons
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just discussed, the D trajectories are not examined. The solution of

the C trajectories is done next.

The solution of the C type trajectories (i.e. 9 - +1 , = 0

followed by 1 - +1) satisfies the necessary conditions for the Barrier

trajectories, however, subject to the boundary conditions on the E

singular trajectory rt -he point where switching occurs. Let -r be

the ti.e that E avicchet, "onL.)I8 3ni define 1 as

"-L•P'• (6.88)

Note that 9ps is the angle that P turns thru while E is on the

singular Barrier trajectory. Substituting Eq (6.88) into Eqs (6.64) -

(6.70) gives the boundary conditions at I-s i.e.

-VP. (6.89)

!_s y~s) =o (6.90)

= (�6.92)

Aq(T) -pI CS-5 - -Os(s~tePA(6.93)

0 Lrs) -S +es(6.94)

y(T, Vk Rpp.., C~sCSt~p) -f RpSir~ps(6.95)

VP* (6.96)

99



DSIXCI73-1

Note that

(Ic-r1 ) < Tr- Z S (6.97)

or else switching of will have occured. The details of the C

trajectory analytics can be found in Appendix B of which the following

is a surm.ary.

Time after 7S is defined as
ii T i .- (6.98)

After 6 switches to +1 the results are

S(T') 4 s+epj-, -. r) ' (6.99)

The P switching condition remains unchanged i.e.

'r YZ -rs 2Tr-7-JtI$±. f6.100)

The Y(1), y(7)state solutions subject to the boundary conditions of

Eqs (6.89) - (6.96) are

.- f RF CO 9p,+ \/?-' + 2. - - 9_ co (T') (6.101)

FP VP '4,

_ 51V .1i p. 4 S I~ in ER( T) . (6.102)

Eqs (6.99), (6.101) and (6.102) are the equations for the C type

Barrier trajectories in terms cf G0 , 3nd the parameters of

the problem. The equations are only valid provided P switching does not

occur i.e. Eq (6.100).
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Again it is noted that for 6>&, that 9(T') (Eq (6.99))will

decrease towards the X-.y plane where e 9 0. Likewise, the mirror

image of the C trajectory off the left BUP will increase toward the

plane of 0 = • . Aswith the B trajectories, If these C trajectories

meet te O(2Tri planes at <=0 , this will be a case of Barrier

trajectory closure.

The importance of the B Barrier trajectory closure and the C

Barrier trajectory closure is seen when it is realized that the closure

*is taking place on the totally singular surface i.e. the Y -axis.

Since a majority of the trajectories from the state space cone down

this totally singular surface, partial Barrier cl, sure on the y -axis

X- provides an E escape route for a majority of the state space.

The parameters of the problem determine the y position at uihfchithe Bafiler prilycloses onthe y-axis. Asuigthat tL~e com•bat

has startea from a state that has led to the totally singular y -axis

(see Fig 20) and assuming that E has not passed the y point of Barrier

closure, as that point is reached E pulls max 9s and P pulls max 95.

Depending on the parameter magnitudes of the problem (see Figure 26),

E may or may not switch to the singular non-turning trajectory. P

always maintains max Is . The result is that E iscapes. To better

visualized the shape of the Barrier in the region of !ntere-t (i.e. the B

and C type trajectories which occur when - c•os ŽL - 0 - I o' )
Vp VP

and the interesting case of Barrier trajectury closure with the y- singular
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axis, cross sections of the Barrier perpendicular to the eQ. 2 ) axis

in Figure 23 were calculated.

Figure 24 shown cross sections of the Barrier for 0 - S _ :-

(IoSI-" V,-=Cc('9) - 25.84' for a specific case of veticle parameters

that result in Barrier trajectory closure with the y-singular axis.

For .- cos4 sz !S o , the mirror image of Figure 24 about the
VP

y - axis applies. Cross sections of the Barrier are presented for

S,.- 0 and S2 - 25*. The cross sections for -any S. between O*

and 25* are curves of smooth transition (not shown so as not to clutter

Figure 24) between the two shown. Note that each cross section represents

those X-.y positions that lead to escape for E provided E's velocity

angle off is initially the S" value of the cross sectior. Note also

how the S2 - 0 cross section closes with its mirror image on the

m - singular a.is at Y - .490. For the given system parameters,

this , V position is the closest distance that E can be from P

in a direct tail chase and still effect an escape. The importance of

this Y- position Is pointed cut later.

Fote that by increasing 41 to .250, closure of the Barrier

with itself and the -y singular axis is not possible (see dashed line

in Figure 24).

Figure 25 presents cross sections of the Barrier for o £

-. _- co-s_ COS(.9) = 25.84, however, in the region of the
VP

left Bb? and Dispersal surface where the roles are ill defined. As can

be seen, the cross sections are inside of and terminate very close
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to * Isaacs [7: 2171 treats this condition as an anonaly in the

Barrier since the Barrier is only defined physically external to

As can be seen by Figures 21 and 25, E is considerably behind and left

of P with Ye. pointing towards P. Both P and E are doing hard left

Lurns since P is pursuing and E evading. It is very obvious that E

has the wrong role i.e. he should be turning right to attack, not left

to evade. The fixed role situation happens to be poorly defined for

this region of the Barrier and is causing the above anomaly. For this

*reason, extensive analysis of the Barrier in this region is not done.

The role problen is discussed later in Chapter IX.

A conputer program was written, using the equations defining

the B and C trajecto y types, to calculate the parameter conditions

that result in the interesting Barrier trajectory closure on the

singular axis. The results of these computations are shown in

Figures 26 and 27.

Figure 26 shows the maxinum value of -9 for closure, versus

the combat velocity ratio E for fixed turning radius ratio

The results are based on 9, GP . The significance of "max"

is the following: for a given M6 and ft (i.e. 6 = _ !-),

VP P- , ý, / %F

if the actual is larger than the max - , then closure is not

possible (see Figure 2% for example). Superinposed on the data are

lines of constant a ratio, -/ V / P-.

Below the dashed line, the escape trajectories are non-singular i.e.

type B. Above the dashed line the escape trajectories are partially

105



T777 ý-

DS/MC/73-1

LI I

A

4j d

-:TI

17 f7
".411/

7 1 ' 7~

1",, UJ --------------

Figr 26 Clsr Cnitin i/nj, O l /e79>O

106 ki~~I1~



DS/MC/73-1

.5i If

V H-4 HL

-j4-

107



DSIMC/73-1 -

singular for E, i.e. type C. Computer results showed .hat the

switching of E to the non-turning singular control always occurred at

the point where E made a quarter turn in real space. Knowledge of

the dependence of the closure point on the state of the .ame (i.e.

Figure 27) ';6-ether with the above optimal control information yields

the following closed loop control Barrier escape laws:

(1) At the y Barrier closure point, both P and E pull max 4* .

(2) Provided E has not already grazed ý (i.e. B type trajectory),

E switches to the nou-turning singular control at the 90' point in

his turn.

FiSure 27 shows the closure .1 dependence for the lower
right region of Figure 26 - a region of practical interest.

Some general comments can be made about both Figures 26 and 27:

1) As FE goes to infinity (i.e. I•e = 0 and E can turn
instantaneously), the closure conditions are the same as for the

Limited Pursuer model.

2) For points above the dashed line, E is not pulling •S

terminally.

3) ut/p is greater than one (1).

4) Note the parall-il tendent.is of the a- and SE/ curves.

The effacts -, the closure ccnditions of making E more realistic,

can be aecn from FJPure 26. ?'.)t- that the &P max value is always

less than that value for the Limited Pursuer model i.e. the decreased

108
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capability of E requires less capability of P to insure capture.

A specific case helps to point this out. Take the case where V= 800

,k 5 (i.e. Rp - 4C00 ft) and let VY. -. 9

Figure 7 or Figure 26 ( R = c ) shows that V/ me equals .445

in the Limited Pursuer model. Assune that in an escape maneuver that

. OCLa = "7 gs (i.e. a structural limit) implying that C - __
CLP 5

1.4. Figure 27 then shows that k.- may - .114 - a considerable

reduction in the required capability of P's weapons system to insure

capture.

Having examined the basic Barrier shape and the closing conditions

of interest, we now examine the sensitivity of the closing conditions

in an attempt to learn more about thi- parameters most influencing the

combat outcome. We begin by constructing a "realistic" combat situation

himilat to that used in Chapter V.

Consider a combat engagement where P is a Mach # - .8

at 30000 ft altitude (i.e. Vp - 800 ft/sec). It is assumed

that P's tracking ability limits him to a 3 maneuver (i.e. •p,

- 6600 ft). It is further assumed that in an evasive situation, E

can sustain 6 .s (i.e. 93Yp - 2.). It is further assumed that the gun

capability of P is effective at - 1400 ft. (i.e. - - .212). To

guarantee that the Barrier does not close, Figure 27 shows that P

must have sufficient velocity advantage to have VE < .9.
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Figure 27 also shows that at =_ -9, - - .490j

implying that Yc - 3230 ft. Note that this yC is within

pilot visibility, yet not so far away from P that E could be inside

this point under a surprise engagenent. i -

Considering this, or any other specific engagement condition, I
we are interested in the best ways that P and E can improve their

combat capabilities. These combat capabilities are given analytical

eaesure through the distance Y $ a decrease in yý indicates a more

capable evader in that E is closer to P and yet escapes; a larger y.

Indicates a more capable pursuer in that E must be farther away from P

to escape. The parameters under P's control are , Vp and Ca...

The parameters under E's control are V. and 0.r. Improvements in

E are examined first. As an example, we begin with the "realistic"

combat engagement just discussed.

Since - .212, E does not want to change the parameters

to bring the co-bat condition below the .212 line i.e. escape is not

possible if E does this. Since V5P = .9, then "/¢ - 3230 ft

(i.e. 95- - .490). Two cases arise here: actual y > yc
PI

or actual Y < YC. In the j>yc case, Figure 27 indicates

several possibilities for E to escape:

1) Since y/ > , E can remain on the totally singular y - axis

until P closes to where Yc - 3230 ft. At this point E initiates the

required 619 (i.e. e/p - 2.0 required for escape) turn and P does a
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3 turn. The result is that E es'.apes.

2) Since y>yc (i.e. assume Y .550 > Y. .490

where .490 is that Yc for 0$,S - 2.0), Figure 27 indicates

that E need not wait until ,/-P .490 to escape, but could escape

a t Yj =-.550 provided cýE % -t 2.27 i.e. :W• 6.8 .
E could also reduce VF (i.e. •vE1,) on the y - singular axis

while P is closing (i.e. while Y/2 is reducing below .550).

This will reduce the required ge/ for escape below 2.27 yet not as

low as 2.0. In essence E is trading his velocity for a lesser value ofIF
•,a/p to escape. The net result is that if E chooses to escape

ata > .490, by either option, it will require > 2.0.

3) The final option is that if E has the AP. advantage, he can

increase VE/V, while P is closing. For example, if '•g. can be
P VP

Increased on th y -singular axis to '.91, then at 41 - .212

the required conditions for escape are Yc .480, t.. - 1.95.
S-le P

Note this allows E to be closer to P, use lss than 6 s , and still escape.

If we continue to assume that a smaller Y, indicates a better evader,

then in the y - yc case, 3) is the most attractive improvement for

E. Note here the increased emphasis on velocity and reluced •

In the y y, case, E must reduce -y, . Figure 27 indicates only one

option:

1) Increase V/. (i.e. A . This will decrease y and the
"%P C.

S required.

Note again the increased emphasis on larger velocity and reduced O's

K. Improvenents in P are examined next.

................................................................. ,.........., ,
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The same "realistic" combat engagement is assumed. We now

examine the effects of increases in *Q , VP aL1 p on escape

Since 9/, ra. .212 ( Z, - 6600 ft), Figure 27 shows that any

increase of JQ makes ::L > max and escape by E impossible unless

E increases 9&P (at V~.-.9) or increases ýA. (at ~),*2).
VP

This is advantageous from P's design standpoint since it forces

E to higher Vs and tN to escape. Note also that it can increase

-i - i]. For example, consider a 100 ft increase of A to 1500 ft

(i.e. 4/ < - .227). If E increases _ to escape, Figure 27~P

shows that Yc equals .520 yielding yc - 3430 ft - a 200 ft increase

in yC.

Now consider an increase in V? of 25 ft/sec. The new L is 22-0

-.873 and at the same tý Figure 27 yields k .nx- .197.

Now Rp equals 825
2

/3(3Z2) - 7050 ft and the actual is 10 .198.

Therefore % is approximately unchanged at .49 yielding yc = 3450 ft

- a 220 ft increase in Y C

Finally consider an increase of CitP 6y, ±oP;V/ i.e. CLLP =3(S2.2)-4-

30 = 1O06.f _ . Then %./ equals 6(322)1106.6 - 1.81 and Figure 27 shows

A a• k. .190. Since P.p equals /0021106.6 = 6000 ft, the actual

is 1400/6000 - .233. Under these conditions Figure 27 shows that

escape is impossible unless E increases o1L or V. If E Increases CLF-
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enough to escape then ye .535 and Y_ 3210 - a decrease

of 20 ft In Y, . If E increases V. enough to escape then V 3 .49

and y, = 2940 ft - a decrease of 290 ft in .

Summarizing these cases we find:

F. ?or a 1 ft increase of ., y, increases 2 ft

2) For a 1 ft/sec increase of vp, , y. increases 8.8 ft

3) For a 1 ft/sec
2 

increase of Oa. , /C decreases 2 ft.

Note that in each case of an improvement to P, that E is captured unless k
he improves L• , etc. Assuming that this increase in O.Lr is

within E's capability, the results indicate that an increase of %/p is

the best improvement to make to P. Since E's strategy for improvement

is clearly to increase VE , this also suggests that P should consider

increasing Vp . Apparently, the aircraft with the greater P. Vill

have the advantage in improving the combat condition in its favor.

7. Model and Barrier Conclusions:

1) In this nodel, E's dynamics was made more realistic by

limiting his turning rate. As with the Limited Pursuer model, this

decrease capability of E was reflected in the parametric conditio.as

causing Barrier trajectory raosure. Again it is pointed out that the

Barrier is a tool that does analytically reflect the combat capabilities

of the players. R
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2) In this model the control laws are more refined, but

still reflect the combatants attempts to align their velocity vectors

along the line of sight P to E. Closed form control laws for the

Important cases of Barrier trajectory closure were found.

3) Sensitivity inalysis of the Barrier continues to show that

Sis the most important parameter. Figures 26 and 27 optimally

reveal how turning as , velocity, P's gun capability, and relative

position affect the outcome of a given terminal combat engagement. Its

application to relative !-aluation of fighter aircraft is discussed

in Chapter VII.

3D Limited Pursu-r-tvader

14 In the 3D Limited Pursuer model, the out-of-plane optimal

maneuver for the case of a highly maneuverable evader was examined.

The optimal maneuver was shown to be the "--lice maneuver". The intent

and must control by 8 fnd bank angle. Williamson-Noble [151 partially

examines this problem in the realistic ten (10) dimensional space S .

The 10-D S makes characterization of the 3D maneuvers and associated

controls extremely difficult. Williamsou-Noble also alludes to a problem

with the model near a tail chase situation. He attributes this to the

singular surfaces near this position.
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The model deve.opnent that follove Is original in that the

ten (10) dimension problem is reduced to four (4) dinensions. Also,

the four dinensions are chosen in such a way as to be physically

meaningful to the combatants i.svolved and to take advantage of the

previous two dimensional model work. As will be seen, this choice

of coordinate system does much to aid the characterization of the

controls associated with the 3D maneuvers.

1. State Equation Formulation:

The coordinate system for this model is shown in Figure 28. The

reduced space • is used. The details of the state equation derivation

can be found in Appendix B.

Figure 28: 3D Coordinate Syste",•
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The state equations are

x VSt"4 R c$s - o(P -- Cos4

VCos PVP --C(YAt XCo~s41 (6.103)

Note the physical meaning of the states and controls:

S- distance froma y -axis, to E in the plane of 'J_ andr

S- distance along 'j -axis to E in the plane of "v and

S- angle between .i and . )pan

=0-• -- angle from e. -axis to projection of •/ onto the -pan

-- P's bank anle from - -axis to position of
A - d's ban gle from y -axts tho position of an.C

Three Euler angl l rotationa are involved in defining the above angles:

first a counter clockwise rotation, 9 , about the y -axis; second

a counter clockwise rotation, 4J , about the 1, -axis; third ai

counter clockwise rotation, about the y2-axis. These Euler angles

are defined more explicitly in Appendix B.
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it is Ins.tructive to note that for ýF -0, the first three state

equations of Eq (6.103) reduce to the state equations for the 2D Limited

Purs'er-Evader model. By comparison to the 2D Lamited Pursuer-Evader

model, the added fourth dimension for the 3D problem is therefore seen

to be

2. Problem Setup:

In the reduced space , the terminal surface is three dimensional.

It can be thought of as a set of circles of radius * - one circle for

"each of the velocit,' angles %V and • . Its usual description with

Eq (2.3) is

5 = = (6.104)

where and , ( are free. can also be described

with Eq (2.19) as

j
y({. ~ ~ Co Q sSi

where

(6.106)
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The controls for the pla. ers are

and the costate vecter X is

[~1 (6.108)
As with the other models, the roles of the players are preselected

by choosing , L = I with P minimizing and E maximizing.

3. Application of Necessary Conditions:

HEl becomes

0OmaK{i-Y XXk ~vs-In~c(S..Ž Co +I

+4 X [~V, q.St--v,> -P a Cos~] -

4I C OS Ž Co---.( 4] -
Re 0 R,+1 'A ,V P-- ýE\'s , ,S PS

Wm)l Nr ..- ,no.K N -S - I-I' (6.109)

where , -4 V [ A co 5.$ + B ,, ] (6.110)

~eXi>.~- XCOS!7 (6.111)

X XL -,~,s in '4 (6.112)

!4~

4 r. = X" Sk --n y Co01 (6.113) '
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410k

Si i + j " (6.114)

The max 4. conditions subject to the constraints, Eqs (B.86) and

(B.88), are

s n* (6.115)

where h is the Heavyside step function. Notice the singular
i. -- possibility if X!An~ b S + Xr3 =0 for a finite time.
posiiltyifXc i~

It is also necessary that

a~ n si sin (6.116)

implying that

or
' l(6.118)

SL~VI b=

Substituting Eq (6.117) for X•, inqi into Eq (6.115) yields

4i5 =(6 119)

It is further necessary that
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implying that 4 > 0 • The plus (+) sign in Eq (6.118)

must be chosen to make Eqs (6.119) and (6.120) compatible. In

this case the controls are

(6.121)

with a singular possibility if X!2SInSln9 -4- X rCOcS- 0O for

a finite time.

The min H, conditions are similar to the max HF conditions

yielding

-LAcosK ~ (6.122)

with a singular possibility if Aco04 +PB-S Z o for a

finite time. Nov C0 implies

A-~ (6.123)

or

0(6.124)
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Substituting Eq (6.123) into Eq (6.122) yields

It is also necessary that

0 ! (6.126)

The minus (- sign in Eq (6.124) makes Eqs (6.125) and (6.126)

compatible yielding O.±

,-_A ( 6 . 1 2 7 )

-Az rA -Bt

with a singular possibility if Acos;-,;3sirt,$o for a finite time.

Appendix B shows that the singular controls are the same as in the

2D model.

Substituting the optimal controls into ME1 yields ME2.

_ IA• 4 .~ + , ,~~X p . ,N 6. 1 2 8 )

The costate equations are
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4.
The transversality conditions 2 " h.3•) , I = 0 yield

(6.129)

1 ~CkY coS ~t 4 . sin S, (6.130)

or >'2- - +os 1

? = x '• o. (6.131)

3, ~ tJ (6.132)

4. Problem Backward Solution From re

Append•x B contains a major portion of the analysis of the

backward solution from of which the followIng is a sugaary.

On the terminal surface the controls are

SI+ C" . -s in1 (6.133)

rEovOy -- S (C 0.5

4o~ t 9 c ~ o~' (6.134)

SWVp 1),ccJ -\aI(C-StiO-- -4- S~nri SI'~ nup COSi

(6.136)
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The singular controls of the present 3D model are the same as the

singular cases in the 2D Limited Pursver-Evader model.

Before proceeding with the backward solution and mapping the controls

0-- the following two theorems are proved.

Theorem 1: If in the backward solution -(T)-1 and

for someT=r, then . and X renain zero for 77tT'and the-problem
'is planar for 7-zT'Z"

Proof: %(D-r)= X•(7'= and EI3(6.112) =ý B(.T')=o aria E-j(b.L27)=•

s,14.Y)_-o, ccosýý)r-%.A" Also Eq (6.12 1)•,cý e-o, < (, sý;
S~The state Equations (6.10:3) therefore become

X CT,) V, s O ny V-4-Yr y S~ A (-r )~. • r)=vco-. -vp -v-.' s~n A(.'r')

ve s&, s~X.(T') 4 Vpsr A (T')

The costate Equations (6.129) become
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Since E--i> = X C CT) C for

T2zT' and siv%; (-r)=0 ,c c0 5  CT ).L ~$) ,A T),

- -= . ) =f

As such, the above state and costate equations are identical in form

to the state and costate equations (i.e. Eqs (6.1) and (6.22) of the

2D Limited Pursuer-Evader model.

4 -4. 4.
Theorem 2: Let ta- I and let x C-r) , Y C CT)

I• I Proo•: Eq (6.10) representht , an eanucaedpodd

I121T)shoC s represen the backward solution for

Furthermore let 7sh aIl and let Xh(T) , yer) > (r),

J .CTh ,~(r), ~CT)represent the backward solution for

"Then " |) =IkrJ, y CT)

cCr1) $(-4o) and Cr) - -i

Proof: Eq (6.103) shows that Y' , and remain unchanged provided

Cos4 cos~ cosý and cos (~4 remain unchanged. Eq (6.103)

shows that ý will change sign if si si%.,n sin4- chaage sign. -

Eq (6.121) shows that the above conditions on sn and cos~ will hold

provided Xeiunhnean ýcsg sign. Eqs (6.111), (6.112) and

(6.127) show that the above conditions on sinc; and cos Z will hold

provided ). ,and >premain unchanged and \Zchangea sign. Eq (6.129)

ahows that under the above conditions >~Xand \remain unchanged and

changes sign. As such, all the above conditions are met and the

backward trajectory4 symmetry as stated, Is proved. We now continue

with the backward solution and map the controls on
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4 V
Eqs (6.133), (6.134), (6.135) and (6.136) define the optimal

controls and on * c.. cne denominator of Eqs (6.134) and

(6.136) the term

=- v oss±-v (c o, , (6.137)

appears. It will be shown later that 4 0 defines the UP of

S < defines the NW of • , andilwo defines the

BUP on . Therefore, on the UP of 4 Eqs (6.133), (6.134), (6.135) and

(6.136) become (note that for •P>,i -!.p > C

S-- CO•t2 SVL (6.138)
-• c•o$- s -

V&~

S3!' ~ 4) CO z 'lf (6.139)

CQ 4-n5 i2ysn(6.140)1

Si Yý •vS.C>TCS

sr- [Ics In Ccos-) Sy n y - +GnSjCcStCOSC)j

"(6.141)

Another expression for ±On • can be obtained by subtracting tan z

from both sides of Eq (6.138) i.e.

C-OS-
- rk C 2 (6.142)
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Eq (6.142) shows that on I, 1 Z . For small

Eq (6.142) can be approximated by

VPt

or even more crudely 6y

C S P (6.144)

*and 4 25% Eq (6.144) implies 4> .3!
d ~~~For snail- - ('La. 0 - 1.0),• • _ .9 .

;-4

For a given _ S1  , and Z , Eq (6.137) equated to zero

defines the BUP and is quadratic in sintfl yielding

The two tp, tp,,• solutions on the BUP exist provided the radical is

real i.e. t

(6.146)

,2,
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It will be shown later that the controls on the BUP have the same

form as Eqs (6.138) - (6.141); however, because Eq (6.137) equated

to zero holds on the BUP, .ŽP_ can be eliminated from Eq (6.138)
V&

yielding
_____________--- ____ _ (6.147)

p- t f BUP

An expression for tan car also be derived and is

tcav•(. C -•'1 - - S~ { ±.'av~) 1 (6.148)

Note again that lagss f_" and for small that d>

A computer program was written to compute the BUP and map the

UP of r. and the BUP with the optimal controls. Results of a typical

Figure 29 is a plot of the BUP (in the area of ý of practical

interest) for 2-_.=.9 and • - 30. The dashed line is the BUP for

= 00. Note that the t effect is to increase the area of the UP

of U ; however, even for a • of 30 degrees the effect is snall.

Figure 30 is an enlarged portion of an area of Figure 29 of

practical interest. On thei %axis is plotted and tF

As can be seen from Eq (6.138), fot a given ' and , 1b .4:) Is only

a function of (p Notz that, as suggested by t ,s (6.142) - (6.144),

4>L slightly lags Z • There are two numbers plotted at

each SaL ,P ) coordinh.: In tt e UP of . The uncircled number is

which is measured from the ! plne. Nott tha st v slightly
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Y.
lags ~ Tecircled number is a)-!

This latter number is small, implying that P and E are banking and

pulling 8S in approximately the same direction i.e. a direction that

slIghtly lags • . These results are suggesting the following

approximate 3D control logic at termination:

1) P should bank towards E slightly lagging the relative clock

angle direction in which E is going.

2) E should bank very slightly lagging the plane defined by

the coincident velocity vectors.

Note If both P and E play this pseudo optimal terminal strategy, their

wings will be approximately parallel i.e. P will be banked just

slightly to the right of E.

To see if the above approxinate 3D control logic applies, not only

at termination, but also along the backboard trajectories, the highly

coupled, non-linear state and costate equations must be numerically

integrated backwards. Since it will b6 necessary to do this also ior

the BUP, the Barrier necessary conditions are developed first.

5. Barrier Necessary Conditions:

As was donse with the other models, we first examine ' and

determine the UP, NUP, and BUP.

Define %J as

.r I (6.149)
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The normality conditions of xW on 0 _ j= 1,2,S

yield for

=1 • .cos. - U-.( sin S =o (6.150)

j= ~ I9Lc 4 = (6.152)1

The unit vector condition Implies

Lr j-Iy - r +1LV2 (6.153)

Substituting Eqs (6.151), (6.152) and Eq (6.150) for ky•j

into Eq (6.153) yields

Substituting Eq (6.154) into Eq (6.150) yields

so=ns, (6.155)
Expression (2.28) beco=es

rYi,- [AL ]T ycy , "EY (V Siy_-ý-z 4CO-Sý]
I• Rp
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SP R P

s ilay) of E os 4S - 46 (6.156)

where

1 s e .a C o saren. Th e r, (6.157)

setion, s seen that th arr r o(6.358)

(6.159)

Lr• Sin Stole=+ cos (6.160)
The similarity of E qs (6.156) (6.161) with those of Eqs (6.109) _

(6.114) Is readily apparent. Therefore, using the results of

section 3, it is seen that the Barrier controls are

+ ~ (6.162)

SN -- -

with a singular possibility if A = 0 and

with a singular possibility if (6.263) rt o,

Substituting Eqs (6.162) and (6.163) into Eq (6.156) and evaluating

Eq (6.156) onZ: yields

2 u (6.164)
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Eq (6.164) implies that if

1) 0 o <0 thenI, . P uP of -

2) H 0  then I S Zti C- BLP of (6.165)

3) HOIr > 0 the, si CW p ofc

Note that Eq (6.165) is in agreement with the previously assumed Eq (6.137).

The costate equations for the Barrier are

--~~ j ~ n~I~ --O )- "9r (6.166)

As was pointed out in the other models, there is a direct

similarity betwecn the form of the necessary conditons for the UP

S~~of and the form of the necessary condition for the Barrier - the •-

S~only real difference being the initial values of the state and costate

variables in each case. With this similarity of the necessary

conditions recognized, we now return to the nunerical integration of

the state and costate necessary conditions backward fron the UP and BUPof2 R RP

-- =• 133 ,

-- -T•,-ý 1kIZ

I1 11 11 III I i~ ll !! !! ! | ! -... Rll iF ("y Sny c>-'sln -T'C~kFCS-ý)-!
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6. Backward Trajectories from

To exhibit the ratios ,% 1& W ? etc.,

the state and costate equations were rearranged Into a new form.

The new states and costates are .. ~ ~e
X X Y and N.• . Note that the new states

' ,I --- I--
have dimensions, seconds, and the new costates have dimensinn,

ft/second. Also note that

vp- p (6.167)

VP ~
The new stato, equations become

& C
IPV

VP VP VP

S IE riSI i c( vl:ý4 (6.168)
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÷I

The boundary conditions for the new state equations are

U 9?

1C 4 5. (6.169)

In the case of the Barrier, the state equations are the same as Eq (6.168)

and the boundary conditions are the sane as Eq (6.169) except that

S., S. and S3 are on th4 BLIP.

"The new costate equatons become

vJ

(6.170)

(X~ V ~ x snp)l sit XYco s]

.4135 -S;

I II II

SMT X, .0s e CO -I

COS
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In the case of the Barrier, the . in Eq (6.170) simply

becone the " . The boundary conditions on the new costate variables

are4

" wVhere

m The boundary conditions on the Barrier costate variables are

Y - - coss ,

___ -_ o(6.171)

where S1 is on the EU?.

COS Si 136
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The optimal controls take the form

4, (X•) sh•
46 ;~;Sin yt

R PY +,}') +

vhere

P.- f(CY •I-~A

B ____ . (6.173)

In the case of the Barrier, the opt'mal controls have the same C

form as Eq (6.173) except the X are replaced vith the LT "
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To check the optimality of the backward numerical integration, j
the numerical value of HE2 and pseudo ME2 can be computed and checked

against the zero optimal value i.e.

'41- 1Aa4.) 66 -

4- - (6/174)

The value for 4a psev, has the same form as Eq (6.174) except
Or1 Mr-Z

the -A- term is dropped.

The player parameters required to define the new state and costate

equation are a G end e The player parameter required
\/V p

for the new state boundary conditions is N... . ,ote that it does

not take a player parameter' to define the costate boundary conditions,

Eq (6.172), for the Barrier. Therefore, in the five dimensional vector

space J vGý V, ~ the parameters V, el 6

form a vector subspace of one (1) dimension i.e. a given Barrier

trajectory in the new state-costate system will correspond to a family

of Barrier trajectories in the original state-costate system. However,

the costate boundary conditions for the UP of , Eq (6.171), requires

the added player parameter \p which makes each trajectory from the UP

in the new state-costate system, corresponds to only one (1) trajectory

in the original state-costate system.
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A computer program was written to solve the new state-costate

equations backward from the UP and BUP of * A fixed step Runge-

Kutta Integration technique was used to numerically integrate the

differential equations.

To demonstrate the results of Theorem 1 and to provide a check on

the program, a Barrier computation for - 0 was done for which the

closed form solution is known i.e. a Limited Pursuer-Evader model case.

Th. specific parameters used were '_4 - .95, Ep - .2

""1.25 and .25.

A fixed step of .1 second was used in the numerical Integration.

remaine_ on the order of 10-deg and LTZ remained on the order

of 5. x 106 sec. 4 and vere on the order of 1. x0 4
degrees.

A Had the numerical integrati-on been pcriormed exactly, these variables

would have been exactly zero. These results demonstrate Theorem 1 and

provide a check on the computer program. Non-zero • trajectories were

then examined.
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Figure 31 shovs sample control history results for trajectories

backward from the BUP. Three specific cases are shown: C(- l*,

Z(.'• 15', ZQ4 ). 30*. The parameters for the problem are the

same as in the • L1• - 0 case pr,viously discussed. In each case •TL •
* T and t(-r)4 ) are plotted. All these trajectories

exhibited the trend to graze • and go to the right and back of .

The trajectories were terminated around T-10 seconds as Y is negative

(i.e. for large negative Y4 the present fixed evader roll probably

does not apply). In each case the following trends are noted:

1) CT) is reducing to zero and appears to be doing so

asymptotically.

2) 4) C-0 slightly lags 7ýCTi

3) 2t very slightly lags 4r)

It is important to note that the approximate 3D control logic that

exists on r continues for the backward. trajectory. Here it can be

seen how the reduced space concept has greatly helped the characterization

of the 3D controls that would otherwise be extremely difficult Ln the

lOD reailstic space.

Because these trajsctories (including the - 0 case) exhibited

the trend to immediately go to the right and behind • , an attempt was

made at changing the system parameters to make the 0 Barrier

trajectories go in a direction more forward of r into an area of

having more practical interest. These attempts were not very successful.

The 2D Limited Pursuer-Evader model also exhibited this characteristic
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for non-singular trajectories. Figures 26 and 27 show that below

the dashed line (i.e. non-singular cases) the Y values are snall.

Those Barrier trajectories in the 2D model that go forward of

Into an area of interest, branch off the E-singular surface. It was

therefore concluded that, as with the 2D model, to get the Barrier

trajectories to go in a forward direction of r for the 3D model,

the singular surfaces in the 3D model had to be used immediately

from . followed by a possible branching off the singular surface later

on. Note, however, that the singular surfaces in the 3D model are the

singular surfaces in the 2D model. Since the singular surfaces are

the sane, it can be seen that the parametric relationships of real

importance in the 3D model (i.e. that deteruine the intercsting

covditions of escape and that should be used for sensitivity studies)

are already those parametric relationships found for the 2D model.

We are, however, still interested in how the non-zero % trajectories

branch off the planar singular cases for two reasons: to see how a

non-zero ý case Tnigrates to the planar case of real parametric interert;

to see what 30 control logic is used in nigrating to the planar case.

An impasse was met at this point; for based on Theorem 1, it is

impossible to branch off the planar singular case to a non-planar

S(i.e. '~o) case. The reason for this problem Is in part associated

with the following theorem:

Theoren 3: If XZ and 1 are appioaching zero simultaneously to meet

the conditions of Theorem 1, then they approach zero asymptotically.

142
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Proof: Since A7-o and.--o, Eq (6.112)=4p f-o . Together vith

Eqs (6.121) and (6.127) this i=plies snaTo and sinu-q.o . Based on this,

Eq (6.103) and (6.129) show~,~o and XV .-

Isaacs [7, 133] alludes to the possible existence of a singular

surface made up by the limit of parallel trajectories. He calls this

kind of singular surface a ( p.u, p ) singular surface. Based on

Theorem 3, the planar singular case in the present 3D model appears

to be a specific case of a ( p,u, p ) singular surface. The probler

of Investigating these parallel trajectories close to the planar singular

case (note Williamson-Nobel [15] also alluded to problems in this area)

is left to other investigators as they are not the main intent of this

dissertatlou and appear to require considerable examination.

7. Model and Barrier Conclusions

1) In the 3D nodel, the para=etric relationships of real importance

that determine the escape conditions are those found in the 2D model.

2) For those terminal conditions having non-zero !C14), an

approximate 3D closed form control logic has been found.
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VI1. Application of the Limited Pursuer-Evader Model

This chapter discusses the practical application of the

Barrier results of Chapter VI to the same problem addressed in

Chapter V i.e. the relative evaluation of fighter A/C capability.

This method Is the original work of the author and represents a .ore

"realistic" (to that of Chapter V) practical application of differential

game theory to the above problen. The method is more "realistic" in the

sense that the Evader is no longer highly maneuverable and that the

parameter relationships for escape involve another important variable -

the turning 6s of the Evader. The method is being developed into a

computer program by the Air Force Flight Dynamics Laboratory as an

analysis tool io evaluate the relative combat capability of fighter

aircraft. The purpose of this chapter is to outline the method and

the computational procedures.

Results of the Limited Pursuer-Evader Model

Results of the 3D Limited Pursuer-Evader showed that parametric

relationships of real importance in the 3D model (i.e. that determine

the interesting conditions of escape and that should be used for

sensitivity studies) were those found in the 2D Limited Pursuer-Evader.

These 2D results are contained in Figures 26 and 27. These figures,

under the assumptions of the Limited Pursuer-Evader model, optimally

reveal how the turning qs , velocities, and relative positions of the

two aircraft and the gun capability of the Pursuer affect the outcome

of a given terminal combat engagement. Sensitivity analysis of these
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results continued to show that the ratio of combat velocities,

SV/Pvp , was the most important parameter. The sensitivity

analysis, along with Figures 26 and 27, yielded logics for improving

both aircraft systems - the logic with the most payoff was to increase

VE and Vp.

Methods and Computational Procedure

The method compares each aircraft in the evaluation against

a standard Pursuer. The Pursuer is standardized by selecting fixed

values for the we~ipons capability, . , tracking Cs , and

specific power map P (Tf0h ). A realistic ratio of combat velocities

vF.,. (i.e. like .9 etc) is picked for the method. For a grid of

points in the altitude - Mach (velocity) diagram, the following
IA

computations are made- Rp= Vp A

"- , ,- , and yY .i The ratios f and
RPfYe. are obtained by the escape conditions in Figures 26 aad 27.

Lines of constantUand constant y, are drawn on the altitude - Mach

diagram. These lines represent the required distance that E must

be in front of P and the associated S E must pull to effect an escape.

This map of the altitude - Mach diagram with the escape requirements is

a function only of the standard PurAuer and the ratio NP.

The following series of computations is then done for each

aircraft In the evaluation:

1) The specific power, P. (for one (1)g flight) and turning

lines in the h-Mach diagram are computed.
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2) The requirements for escape are overlayed on the

capabilities of the aircraft computed in 1).

3) The combat arena (call it Area 0) is defined - much like

that done in Chapter V.

4) The area of the combat arena where the 9 capability of the

aircraft is greater or equal to that required for escape is established

(call it Area 1 and the average Y. , in this area is computed.

The results in line 4) show the portion of Area 0 where E has

-sufficient 5 capability to escape and the yto effect the escape.

A large Area 1 and small V in that area is indicative of a good

aircraft.

The area of the combat arena outside the escape area in line

4), i.e. Area Orv Area 1, represents an area where E does not have

sufficient 5 capability to escape. However, E may have a P. advantage

in a portion of Area OvArea 1 (call this portion of Area O-Area 1,

Area 0-1/E). Based on the Barrier results, E should employ his PS

advantage in Area O-1/E and render a portion of it an escape region

(call this area Area 01/Fl,). Likewise there may be a portion of Area 1

where P has the P, advantage (call it Area i/P ) and P may render a

portion of Area I a capture region (call this Area 1/p). Figure 32

is a Boolean algebra diagram of the sets (i.e. areas) involved.

l4,..•
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S•t• (will increase), '.), ( (will increase) versus time.

2) As computation 1) is done, compute •-. (will decrease)

and using ABCt) conpute • and Vc required for escape fromV4 P

Figure 27 (note • and Yc vwill decrease).
P-F

3) One of three (3) events will occur which will determine

if the grid point is an Escape or a Capture point:

a) The required qp for escape reduces to the ý capability

of E. At this point compute yr (I.Y Y 2,,(+.) . if i,(4_) ý .(4_

then the grid point is an Escape point. If -,4) >-(.{) then

the grid point is a Capture point.

b) E crosses , i.e. y(4_Q, and the grid point is a Capture

point. *

c) 2 .•.•z :± and the grid points is an Escape point.

To compute Area i/pC, the following computations must be done

for a grid of points in Area i/p beginning at the & e required

line:

1) At a given point in Area i/p, apply PS& and ' , and compute
SVI•('F..)W VpCL.f.) I VF_/Vp UI:) (willl decr-ase), y(,.k) l-.'

(will increase) versus time.

2) As computation 1) is done, compute P.- (will decrease)

and using v compute te_ and Yc for escape fron Figure 27. Note

that nyid Ye tend to remain unchanged (Yc will increase because

of I..rger 12,,) ) but will depend on the specific instance.
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3) One of two (2) events will occur which will determine

the Capture or Escape nature of the grid point:

a) S/p required for escape will exceed the 8 capability

of E in which case the grid point is a Capture point.

b) S- required for escape will be less than the

capability of E in which case the grid point is an Escape point.

In this manner the areas in the altitude - Mach diagram are

established for each aircraft in the relative evaluation, and Eq (7.1)

is computed. The relative measure of combat cap3bility is-embodied

in the numbers and Area E/Area 0 for each aircraft.
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VIII Variable Velocity Models

The models of the previous chapters assumed constant velocity

magnitudes. The models were applied to the terminal phase of the

air-to-air combat where constant speed appeared to be a good

first order assumption. The main purpose of this chapter is to

cnamine the first order effects of variable velocity magnitudes

k on the problem. A secondary purpose is to relate the constant

.velocity models of the previous chapters to a more realistic aircraft

--3del.

Aircraft Model

The following vertical plane model is the standard po.nt mass

"model found in most texts on aircraft performance, for example 112, 71.

Figure 33 shows the aircraft coordinate system and the main variables.

The model assumes

Figure 33: Aircraft Coordinate System
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that the angle of attack is small and that the thrust vector T

is essentially longitudinal. The aircraft maneuvers with

the thrust and lift vectors ( L).

The kinematic acceleration of the aircraft, _

can be written

The net vector force, F, on the aircraft can be written

- - rn ) - d-vn -4- ( L- (8.2)

Applying F -i' , the equations of motion become

C _ "'-D _ r
WV (8.3)

V = L (8.4)

The aerodynamic forces are modelled by
L QS (8.5)

where

•)=dynamic pressure

S•reference area

CL , lift coefficient

Co, - drag coefficient

and

k Is obtained ev the best parabolic fit of Eq (8.7) to the actuZ

drag polar of the aircraft or approximately by151i
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Ti T AZ (8.8)

where

e - effectiveress ratio

jQ - aspect ratio (wing span) 2/S

Substituting Eqs (8.5), (8.6) and (8.7) into Eqs (8.3) and (8.4) yields

'4~~O - r0 (1>0 4 k C,2 -ast (8.9)

m (8.10)
mu

Figure 34- is a plot of Eqs (8.9) and (8.10) (i.e. acceleration

vectogram) with varying " , for a typical F4 aircraft at 35000 ft,

H M .8, W - 38600 lbs, S 530 ft
2

, Cj, - .019, k . 6 and max

thrust - 11000 B5s. The .vector from the origin to the us circle

represents vector subtraction of the j• vect-.r. As can be seen, LL.

greatly exceeds CL, ten to one (10:1) which in part substantiates the

first order approximation of constant velocity magnit:ude. Note that Ctv

and G.L are the maneuvering accelerations and not the acceleration

forces felt by the pilot.
If we asume 1 - 2<:7 then c: ,,• - and Eq (8.10) is

approximated by

QSC.. - (8.11)

CL is then related too.by
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Substituting Eq (8.12) into Eq (8.9) and rearranging yields

• •W d"'s

where we have assumed Y small and neglected the isiny term.

Note that (R)% is the added drag coefficient for straight level

flight.

Define C T as

T- (8.14)

Under a given flight condition, CT will be bounded by

where C TL.Land C.rL are the lower and upper bounds respectively

and are deternined by the bounds on thrust. The bounds on (1, are

determined by the V-N diagram, in Figure 35.

'Z

_ N _QV• Io~ l,,,, .____

V. V&-LrOC "Ty

Figure 35: V-N Dirgran
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For IYI ,-2c7 a good approximation to the equations of

motion are therefore

V - T VS(zCQ .1 " (8.16)

V -(8.17)

where CT- and 0Q_ are bounded as just described. As mentioned previo'usly,

note that the V/ capability of the aircraft will be small in

comparison to the bV capability. Note also that

(b-wingspan) determines the drag acceleration penalty for pulling

transverse gs (i.a.Qo.L Since .,. Q CL. it is seen that

a highly maneuverable aircraft (i.e. large 'Z' and jv ) is

characterized by an aircraft with large c• , . , and small W

implying high T, sCL, b. and low vi . A high maneuverable

aircraft is therefore characterized by high thrust, large wing and

low weight.

The constant velocity model dynamics of the peevious chapters

were of the form C>(8.18)

O.L (8.19)

Eqs (8.17) and (8.19) are the same. On comparing Eq (8.16) with Eq (8.18),

it is seen that to model the first order effects of variable

velocity magnitude, that V should be represented by a small bounded

acceleration, CT followed by a drag penalty term for transverse

acceleration, Q*
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The main purpose of this chapter is to examine the first

order effects of varying velocity. Therefore, since Figure 34 shows

the dominance of O. as compared to kw (24COi,÷o,),

the following approximation to Eq (8.16) results

C X,-- I CXLI (6.20)

where

2- kw f(-z . 4X) (8.21)

The heaving dashed line in Figure 34 shows tte degree of approximation

(for QI'tax" 31) by using Eq (3.20) and (8 21). As can be seen,

the approximation is very good. This approxi.•ate aircraft model is the

same as'Othling's [11, 48] Linearized Drag PoYar Model.

Linearized Drag Polar Model

Othling 11] examined this model in the .*ealistic space

from the standpoint of control logic; the follkving analysis is

done in the reduced space, e , and .ncludes the Barrier analysis.

1. State Equation Formulation:

The coordinate system for this model is the same as V,.are 18

viewjed from the side. The Gp and I are equivalent to I" in

Figure 33. The kinematic equations for this model are the same as

Eqs (6.1) except that a 2!L=-- term in Eq (6.1) is replaced with the

V___ Oz term in Eq (8.17) i.e.
V
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-- -- p (8.22)
.;<= v 6;,COeG ,-p~4K 83

• /=va ¢O.q- Vp+ x, 2.__. (8.23)
Vp

,d ~ ,F- _-VP-pa•• (8.24) •
and

=I CrP -Kp I -,P (8.25)

= T, - e (8.26)

where Eqs (8.25) and (8.26) come from Eq (8.20). Note that

- ~~r (• '- I 'r (8.27) •

and that the bounds on the controls are

_ C-rp•. C~rp :S C_•p,.,"-

CT• _ CTa • CT, (8.28)

and are determined as previously discussed. Note that the state

Eqs (8.22)-(8.26) are the same as the state Eqs (6.1) for the 2D Limited

Pursuer-Evader model with the exception that V and VF are now state

variables instead of fixed model parameters.
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2. Problem Setup:

The terminal surface ,l can be visualized as In Figure 19
except V. and VP are also variables. Its usual description with

~~~~ .. .. z

Eq (2.3) is

+ --- (8.29)

where and V,(, and are free. a lob

described with Eq (2.19) as

tný P-SinSi

(8.30)

where

(8.31)

The controls for the players are

CTP (8.32)1

adthe costate vector X is

xy (8.33)
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As done previously, the roles of the players are preselected by

choosing C=zo, L -1 with P minimizing and E maximizing.

3. Application of Necessary Conditions:

ME1E becomes

0= m Lfl rMx xK( VrStn q- y2Lp) + XY (V, Cose..v'.~ XO±Cli-

19QJ~ (CTJ.. Vp- Y' p 3--I,

VP,

-4 MYK X +k IFC '' 4-CT ~a rl VF- I II + E 1-i-
-a. V&JJkySln 9-4 XY cos 9) -VP Xy

"where (.4

Kp P ~ ip TP2
P- VP -PC~

H" V'i- K~ea YC~OSE)) V~x,,+ 1~ (8.35)

and

A )( XsIX.- (8.36)
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'

The min 14_ conditions yield k

=" < C> (8.37)L Xv. u v-

(8.38)

vith a totally singular possibility if both -- A 0 for

a finite time. The max PEs conditions yield,

Cr .. . x • (8.39)

Xe~o=mqv. OveCe~[1 91K

Xg-LGWOY- (8.40)

with a totally singular possibility if both >. =- for

a finite time. Othling (11, 991 shows that the singular cases are

not possible. The costate equations are

__4 XY. P (8.41)
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Note that the first three (3) costate equations are the same as

the costate Eq (6.22) for the 2D Limited Pursuer-Evader model.

The transversality conditions yield

•g i vpCO :v acOS(S,-e)

(8.42)
Cos ~

%/pOSj p 6 co.( 1 e oI

4 Problem Backward Solution From

From the transversality conditions, Eq (8.42), and the equations

for , Eq (8.30), it can be shown that on ý A= >,9= X,,,= '. o

and Eqs (8.37)-(8.40) for the controls are undefined. Evaluating the

backward derivatives of the arguements in Ejs (8.37)-(8.40), it can be

shown that the controls an infinitesinal distance away from the UP

of 4 are

'TPI r PL)

a 'ii e plwla(8.43)

CI- I -rUC
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Figure 36 is a plot of (similar to Figure 21) and the terminal

controls, Eq (3.43) for the parameLtrs of the F4 aircraft previously

mentioned. The BUP, which for a given terminal velocity ratio is the

same as for the 2D Limited Pursuer-Evader model, is shown for the

ratio. ; = .9. Note how the P and E singular surfaces of the Limited
VP ,

Pursuer-Evader model do not appear in the present model. There are

however, switching s'jrfaces in the present model. Note also that

the switching surfaces retain the basic r control characteris.zcs

of those singular surfaces.

The parallogram shaped area around the origin in Figure 36 is a

region of 1 where both P and E are non-turning terminally. This

can be likenad to the totally singular surface (i.e. the y axis

with E) - 0) of the Limited Pursuer-Evader model. Because both
P and E are non-turning off of in this region, the backward solution

from this region back to the first control switching can be done closed

form i.e.

. "- -(8.44)

xy P COs .SSjK/ypC S5 VCOSCS±'SA) (8.45)

9C=)S (8.46)

VF(C) \ý/L( ')CU 0  (8.47)
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OpcssVi O.•~ - 2J (8.48)4

Vpcc~~.~.v~co~ss)(8.49)

V~(~i = ~(-y.%,1 -1; 8.50)

~'-~ -V?~s± eC1±-S~' C p~j' (8.51)

VP VcstVC±.,)(8.52)

'Ile control switching times, -r. sa1d7- r bandfo h

following expressions

LVPCO--I.S .~o -

Cr -r I_

zU (8.53)

C CI -Sc; 7 ~ 2  c o s? ýs'J - . ( s T . c. '5r

CPu,( (8.54)
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where

-.- (8.55)

P - x Cos (8.56)

Note that the denominators of Eqs (8.53) and (8.54) are 2 0 in the

1p of ) and that K and K are i- 1 in the non-turning region of re

The switching times, T. and Tr, , are therefore determined from

Eqs (8.53) and (8.54) respectively i.e.

r~= [ I'~§~~ ~e.(8.57)

-1 (8.58)
"C :L - j>7.

The X(T) andlT}solutions from the non-turning region of are

S.,i ~Sji- sinS ( s, S. CT-CEU X% (8.59) .

"" -i_ = 4- C S3 -S 4 COS--0)r- CC GC•-c ,OS -- (8.60)

and are valid up to the smaller of rL or -5.

A computer program was written using Eqs (8.44)-(8.60) to solve

for the shape of the switching surface emanating from the non-turning

region on Th. is switching surface forms a closed region in

whose base is the non-turning region on Fi. gure 37 is a two

dimensional representation of the switching surface for a particular V=(•.)

165
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and V CWand system parameters. The S2, i.e. 6, axis can be

thought of as positive out of the paper. Only the positive values

(the negative S, have a mirror image about y-axis) of Sa= eC ) are

shown. For a particular value of S, , the w-y region inside the

switching surface resemble "fingers" emanating from the non-turning

region of . As the S values get larger, the "fingers" fan out

to the left (would be to the right for in:reasing negative S. ) and

get narrower. The surfaces of the "fingers" are labeled with the

particular control switching that occurs first. The "fingers"

represent regions of the state space where it is best for both players

to accelerate and not turn. The trajectories backward off the finger

surfaces will be the turning portion of the trajectories. The tips

of the "fingers" are associated with zero velocities and are therefore

not ver-y physicalli =e"Ingful. Lines of t•onstant velo~tit in the

"fingers" are shown. Note that the Sio "finger" is the variable

velocity model counterpart of the totally singular surface in the

Limited Pursuer-Evader model. 'Cote also that the trajectories coming

into the "finger3" are of real interest since they lead to position

angles off (i.e. S 1 ) and velocity, angles off (i.e. 2 ) where the

Pursuer and Evader roles, as selected, are well defined. If the

Barrier can be made to cut through a given "finger", then this will

represent an interesting and physically applicable means of Evader
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escape. As will be shown, Barrier closure and Evader escape in

the Limited Pursuer model is associated with escape from a non-zero S2

"finger" in the present model; the interesting Barrier closure and 4
Evader escape condition of the Limited Pursuer-Evader model is

associated with es-ape from the =O'"finger" of the present model.

5. Barrier Necessary ,onditions :

In each of the previous models, the similarity between the

necessary conditions for the UP of r and the necessary corditions for

the Barrier has been pointed out. The following necessary conditions U
for the Barrier can be obtained directly by applying the results of

Chapter II; however, taking advantage of the above similarity they

are simply stated. The BUP is defined by those states on for vhich

vpcSS~CCS.-.~ o= (8.61)

The normality conditions ol ý.h'n yield

ýY~c~3 * 4 (: L, ý k Q-A~ o (8.62) A;

Thie control e',uations on the Barrier have the same form as Eqs (8.37),

(8.38), (8.39), (8.40) and (8.43) except thatX xs replaced with .S .

The costate equatiots on the Barrier have the same form as Eq (8.41)

except that _X is replaced with %,r

6. Barrier Solution/Evaluation Constant Velocity Barrier Results:

The main purpose of this chapter Is to examine the variable
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velocity effects on the results of 'he constant velocity models.

The main results of the Limited Pursuer model are contained in the

Barrier closure conditions of Figure 7. The main results of the

Limited Pursuer-Evader model are -. ,ntained in the Barrier trajectory

closure conditions of Figures 26 and 27. We examine the variable

velocity effects on Figure 7 first.

As discussed in the 2D Limited Pursuer-Evader model paragraph 6,

the closed Barrier trajectory in the Limited Pursuer model is also

a specific Barrier trajectory of the Limited Pursuer-Evader model,

however, it does not represent a closed Barrier trajectory in the

Limited Pursuer-Evader model. Except for the variable velocity1 •) effects, 'the same is true for the present model i.e. the closed

Barrier trajectory of the Limited Pursuer model is also closely

resembled by a non-closed Barrier trajectory in the present variable

velocity model.

To see the variable velocity effects on Figure 7, the

following snecfic Bnrrier computation was done for the Linearized

Drag Polar model: , i4.O0-4t , C,0 =, K .GX-S,

a0,_ p' 1, 15L4 ~ 00 "ýscc , Vp UI) = 7 20 C C -,

4 . 2 O ir, This is the data previously used

for a specific flight condition of the F4 aircraft. The above data

shows that 'm . )- .90, 2 , 44 6622 ft and .212
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Figure 7 shows that escape is possible for the constant velocity,

highly maneuverable Evader of the Limited Pursuer model if the Evader

is at the tip of the Barrier located at .Y - .257 (i.e. Vc = 1702 ft)

with a velocity angle off 9C- 43.7 degrees. The highly maneuverable

Evader pulls no 85 to effect the escape and the coostant velocity Pursuer

pulls the maximum 3 s. The results of the Linearized Drag Polar

Barrier computation showed the following:

1) Both players use maximum forward thrust. E pulls no •s and

P pulls the ma'dxnum 3 S

2) The tip of the Barrier was located at 1792 ft and the required

velocity angle off was 43.6 degrees.

3) Ve at the tip had reduced to 704 4k and VI> at the tip hed

increased to 850 *ýA .

Even though the velocities vary, the required escape conditions and

control laws to effect the escape for the Linearized Drag Polar model,

agree closely to thcse of the constant-velocity model. Note that

the constant velocity nodel slightly underestimates the required y. for

escape. Na;te also that each player is using maximum forward thrust in

the variable velocity nodel in an attempt to increase the velocity

advantage; this was also suggested by the Barrier sensitivity

analysis of the Limited Pursuer model. Next we examine the variable

velocity effects on Figures 26 and 27.

As previously mentioned, the escape conditions of Figures 26 and 27

for the constant velocity Limited Pursuer-Evader model, should be similar

to the necessary esc:ape conditions from the S-O "finger"
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of the present variable velocity Linearized Drag Polar model. To

examine the variable velocity effects on Figures 26 and 27, the

following flight conditions were used: Q-1400 ft., i
-Vp4 . 800 OL? 3 6S V• -720 A ,see 016 s.

Figure- 26 and 27 show that for E to effect the escape, .490

implying %, - 3244 ft. The controls for the constant velocity

playerc are maximum T with E non-turning after a ninety (90) degree

rotation in real space. Tuo specific computations of Linearized

Drag Polar Barrier closure with the S o "finger" wera done. Each

is discussed in turn.

The first computatlon was done using the aforementioned flight

conditions and the following aircraft parameter values;

The aircraft parameter values are indicative of an aircraft irith

small longitudinal acceleration capability and about one third (1/3)

the drag penalty of the F4. The results of this computation showed A

the following:

1) Both players use maxinum forward thrust. P pulls

the maximum E3 i pulls the maximum 6Ts initially end switches

toO0ý after an 87 degree turn In real space.

2) The Barrier closed with the Sz 0 finger at V,.- 3382 ft.

3) The velocities at the closure point were V,4- 876 ft/&-sc,

- 814 ft/see.
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4) The minimax time to' via the S, - 0 "finger" was 31.9 sec;

the time for escape along the Barrier was 9.95 sec. Even though the

velocities vary, the required escape conditions and control laws to

effect the escape for the Linearized Drag Polar model, agree closely to

those of the constant velocity model. Note how the tine for escape

is very different fron the minimax time to via the optimal S.= 0

"finger". This discontinuity in the tine payoff is another characteristic

of the Barrier.

The second specific computation of the Linearized Drag Polar

model Barrier used the same flight conditions of the first computation,

but used the following more realistic aircraft parameter values:

C - 6 r- .2615, CpF - 6•- E~ - .2615.
sec. e' E

These are the values for the F4 aircraft. The results of the computation

showed the following:

"1) Both players use maximum forward thrust. P pulls the maximum

=- ---3 E pulls the maximum 68s initially and switches to 0 6S after a

83.5 degree turn in real space.

2) The Barrier closed vith the S2 - 0 "finger" at yc. 3629 ft.

"3) The velocities at the closure point were Vp. - 1009 ft/sec, V.

- 960 £'ec.

4) The minima% time to* via the S1- 0 fingcr was 45.3 sec; the

time for escape along the Barrier was 10.83 sec.

Even though the velocities vary considerably in this more realistic

case, the error in the y. closure point is only around 10. The escape
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control logic agree very we3l with only a 6.5 degree error

in the E control switch point.

7. Model Conclusions

The escape conditions of Figures 7, 26, and 27 appear to be

a very good first estimate of the requirements for escape. The escape

control logics appear to be very good. Note that the major effect

of variable velocity is to cause the y. closure point to be under

estimated; however, the error is not large. The main reason for the

"good agreement between the constant velocity and variable models is,

as reasoned earlier, that in the terminal phase of combat the velocities

do not have ti=e to vary enough to appreciably effect the problem.

From a practical point of view, it should also be realized that in a

real combat engagement there will probably only be a rough estimate

of the opponent's velocity magnitude, which would tend to justify

using the escape requirements of the simpler constant velocity model

in real combat.
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IX The Barrier and Its Use in Air-to-Air Combat Role Decision

The analysis of the previous chapters always a priori assumed

the roles of the combatants. To make P pursue and E evade with

the payoff Eq (2.4), + was made zero (0) and L was made one (1) with

P minimizing and E maximizing. Chapter I mentioned the role selection

problem (major factor 3) and payoff problem (major factor 2). Chapter II

pointed out the importance and physical interpretation of the Barrier

as regards escape and capture. The problem of fixed roles and

payoff function form was demonstrated in the Limited Pursuer-Evader

model in Figure 22 where state positions in the UP of ý obviously did not t

correspond to the assigned fixed roles. Consequently, only the

• portion of the UP of f where the fixed roles made sense, was used for

analysis. As discussed in Chapter I, "the ideal model of the air-to-air

combat problem would have an analytical structure which would couple

these seven (7) major factors together".

The research and ideas in this chapter are the original work

of the author, and are first attempts at building the analytical
structure into Zero-Sum Differential tames to additionally couple the

major factors of payoff function form and role decision. As will be

shown, the problem of role decision, payoff function form, and the

Barrier are all interrelated. The results of this research lead to

a broader concept of zero-sum differential games than that found In

Ijascu (7) or elsewhere in the literature.

R% Ceneral Purpaoe Payoff

The following general zero sum, air-to-air combat payoff war deduced
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to eliminate the role - payoff problems encountered in the Limited

Pursuer-Evader model. Refer to Figure 28 and consider the following

payoff function with P minimizing and E maximizing

J ~ ~ ~ ~ 4 OSt~),(9* . coep., (9.1)

where

9e - angle between V U) and _

- angle between Y.~ Ct4) and ~(4

Note that

and that (-o0. e)P '. l-Coe (9.2)

Cose CD noil

Substituting Ec: (9.2) into Eq (9.1) yields another form of the payoff

T= £ i oco+.s. f+ cose,] -+ C coseG. (9.5)

The effect of the' three terms in Eq (9.1), will be to cause P (near• )

to force E to cross 4 at small ila.) and small I1G5 as quickly as possible

for leG.1S . Note also that the three terms will cause E (near • )

to force P to a IGI near W" and 16lnear 7r as quickly as possible for

T/. E 9f.)J ýE 77 Figure 38 shows the best possible position that P and E

can hope to achieve at
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p P

YE-

PS 6est.6

Figure 38: Best Conditions at

As can be seen, the single minimax, zero-sum payoff In Eqs (9.1) or

(9.5) allows the roles of the combatants near to be automatically

structured in the payoff form. In each case, the combatants are attempting

to achieve a direct tail chase firing position as quickly as possible.

Note also that if P finds himself ir, a poor position near re (i.e. [G•pJ=ýV0

19J P2 Ti ), the payoff function form is structured to cause P

to evade logically i.e. maximize time to ý while decreasing 19,J and I e8l

(note this increases P's position and velocity angle off relative to E).

The same is true when E finds himself in a poor position near

Zero-Sum Differential Gar~es and Roll Determination

To solve the roll determination problem, the general purpose

payoff, Eq (9.1), is used in the following three (3) ways:

1) 0-= 0O, C=_

7) 6 b 0 h_

S. .. . . . .. . = =17 6
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In problem 1), the minimizing player is a definite pursuer and

the maximizing player is a defiuite evader. The problem is solved

backward from the UP of ý and the Barrier is established. This is

the same as was done for the model of the previous chapters.

In problem 2), the minimizing player is a definite evader and

the maximizing player is a definite pursuer i.e. the roles are switched.

The problem is solved backward from the UP of ) and the Barrier is

established.

In problem 3), the UP of r is determined and based on terminal

state is divided into four (4) regions: Region 1 represents terminal

states of clear advantage for the minimizing player; Region 2 represents

"terminal states of clear advantage for the maximizing player; Region 3

' represents terminal states resulting in a mutual kill; Region 4 Is the

remainder of the UP where no clear outcome is indicated or may be

thought of as a "draw". An example of a Region 1 has already been

given by the area of ý inside the heavy dashed lines of Figure 21.

Regions 1-4 are disjoint a'd their union is the UP of * The problem

is solved backward from the UP of * Problem 3) can be thought of as

a case where the game is iaherently structured so that both players

assume the proper roles based on terminal state.

The backward trajectories from the three (3) distinct uses of

the general purpose payoff, go into regions of the state space and

in general the regions will intcrsect. Based on the desires of the

combatants, a role logic then developes for the state strce.
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Some Illustrative Exmples

The following simple examples are intended solely to illustrate

the basic concepts for role determination with zero-sum differential

games; the examples are not intended as ends in themselves.

1. Th,' Simplest Model:

For problem 1) (i.e. O.b=o , c =i 1 ) the results of Chapter II1

show that if

1) Vp> Vp then all of ý is the UP and line of sight pursuit and

evasion is used with E always captured.

2) Vp Va then all of ý is the KUP and the maximizing player E

always escapes with line of sight evasion.

For problem 2) (i.e. Ca-=-=o , C=- 1), the results of

Chapter III apply again and show that if

1) %;> V. then all of ? is the NUP and P always escapes by

using line of sight evasion.

2) v/p< V, then all of ' is the UP and P is alvays captured

provided E uses line of sight pursuit.

For problem 3) (i.e. Q>, b>o , c>o), the general purpose

payoff is not applied since the controls appear in the Mayer payoff;

however, it is clear that if both highly maneuverable players are

aggresoive, the result is always a mutual kill.

Assuming that both combatants prefer the outcomes in the order

kill opponent, draw, mutual kill, then regardless of whether V.

or V,-,Vp the role logic is always a draw. If one of the combatants

_ _ _ _ _ _ _178
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is aggres,4ve (i.e. has a kill at all cost objective) and has tbe

velo-.:.y advantage, then the role logic is always a mutual kill.

2. Limited Pursuer-Model:

For problem 1) (i.e.O.-6o , 6 = o the results of

Chapter IV apply and are contained in the Barrier closure conditions

of Figure 7.

For problem 2) (i.e. o= Zb=, -1 ), the necessary conditions

of Chapter 11 are straight forward to apply and solve the problem.

A summary of the main results follows.

The coordinate system is shown in Figure 39.

V

Air

!S

Figure 39: Limited Evader Coordinate System

The state equations are the sane as Eq (4.1). The terminal surface

Is described with Eq (2.19) as

"sins (9.6)
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sapplication of MEI yields

rmLn max[ x MQCL4 I 0 (9.7)

vhere

N• =Xx~n•E-- X~o•(9.8)

The controls are

,= Sr A (9.9)

wvith a singular possibility if A = 0 for a finite time and

or ~ eY (9.10)or

* -xx= -*

SW) VIID Cs i (9.11)
51 ~ ~* .2 -1.XCX

ME2 becomes

conditions 1v. -- =. o (9.12)

The costate equations are the same as Eq (4.18). The transversality
J J • cond!it~ions yield

kaYl (9.13)
iuplying

-E1ý: S (9.14)

and

Ve -vpcosS (9.5S)

1 mV;.- C•OSS
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Note that at terminarion, 2 orients his velocity vector directly

at P. Note also that E will close on P at ?. provided Va-V,.cOSS>o

i.e. ccSS iE- or
Vp

-S1 cos S, (9.16)

VPK
,m•Since A=pX n ,\

terminal control is for S •$,

SY = A~r• -14p ns "(9.17)

At it can be seen that P is turning away iron E.

Investigating P's singular control we find the following:

0 =!a. XK=0 -0)'~ and S = 0, ri

. • ~ ~ 0~=s-- .=• K o , ea=o .,& ./ r.v.d•-0 P X= > d XY YC'-'x)
The lAst requirement of Eq (2.16) requires X ;ý 'O

For S = C

-or- >"/ v (9.18)

. -- m

For S =ITr
Sct() (9.19)

-- Therefore, a P singular case only exists at S=0> in the uninteresting

case where V,>v, and a)I of 4 is the UP. For the case , no

E singular control exists; however, it will be seen later that the

portion of the 'y -axis inside the closed Barrier is a Dispersal surface.
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For So< S e-Tr (note as with the Limited Parsuer model, the

pzoblem is symizc:ric in S), the costate solutions are

XK(1i Vi SY'r/ ~ poS (9.20)

a ~C(~-0 - cos(5+2ýur)/ Cv,- vpCsJ (9.21)

and
E)E r 'I S - 4-s.,- VP "-r (9.22)

Since P is turning left at the rate _•2 , Eq (9.22) shows that E

Is In straight line motion in real space. The state equation solution

is

sin (--e rep -I -C- Cc'>-SA'r (9.23)

'y T -U !+ v r) c sC s( 4 -T)+ -i-fZS in Ye- r (9.24)

and A 1 is

ALCT)- COS -4 COStS -4 ,. (9.25)
•. V) - p -o S o S -

Note that ACT) initially goes negative off of and switching occurs

when
. -_ = - s) (9.26)

At snwitching X(Tc ) is

-er)I P_~+22Pvm!L--(-rrs)] si f> I.(- COS2S)<
"ini.e. • -) is always negative. SItching in reality never occurs

since the Dispersal surface at x=o, I> o is Intersected first.
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The equations for the Barrier are simply a specialization of the

equations for the UP of to S S= cos 'e with the term vE-Vpco
VP

|C, (9.27)

-*r =-r cos s,,,• Yr.o.r
2 p (9.29)

(EST) =-(•-.• ) (9.29

CLT) RV -Cos SQ--CO S S,+ &'T)3 (9.30) A ;

Y- cT) -ev)Sn(.-!PT)-I (ICSVr (9.31)

p (9.32)
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Typical results are shown in Figure 40. As can be seen,

the Barrier always exists for V l <1 and is always closed. TheVp

closure dimensions of the Barrier are shown in Figures 41 and 42.

This finishes problem 2) for the Limited Evader model.

For problem 3) (i.e. cO.O.b,->o), the g':.;ral purpose

payoff is not applied since E's control appears in the Mayer payoff;

however, it is clear that on E has the capability to always effect

at least a mutual kill if not a kill of P.

A specific example shows hot the role logic can develope. Two

specific cases are shown in Figure 43; one with the L:i.'ied Pursuer

Barrier closed, the other with the Limited Pursuer Barrier open.

As mentioned previously, the Limited Evader Barrier is always closed.

"The role logic for theVW epcondition is not very interesting

since E can effect any outccme he desires. However, for V---Vp

the role logic depends on the parameters of the problem which determine

the specific cases in Figure 43.

Assaue that V.1 - 8004- 720• , . 5!ý (i.e. s p

-4000 ft) and .- 1000 ft. SO = 25.84', = .25 and Figure 7 indicates

that the Limited Pursuer Barrier Is closed, i.e. case 1, at .X.-.315
or Yc - 1260 ft. Figures 41 and 42 indicate that the Limited Evader
Barrier closes at Yc/m 2- 2.41 (i.e. Yc - 9640 ft) with .. " .70

p Rpvn~
(i.e. XC•ac - 2800 ft). Note how the Barrier of the Limitee Evader

is much larger and completely encloses the Barrier of the Limited Pursuer

and reflects E's superiority in an aggressive role. Note also that If

the actual Evader did have the high maneuverability modelled ii the
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Figure 41: ~- Closure Conditions

185 Iepr duced fr m
b 1Oviab.o'Oy



'-5ý

DS/MC/73-1

-7-

-7 ... ... ...... .

~~K T ' -7-\

SK LV TV

j~~-
t t--', j jI z:lr

Figure 42: !!.
5

O
2  

Conditions

186



DS/HC/73-.1

Figre43:Liitd Prser/vaerRol Lgi
18



DS/HC/73-l

problem, how the results of the Limited Pursuer model alone would

lead to an incomplete picture of his capability. However, with

both analysis, it is clear that E should adopt an aggressive policy

i.e. kill opronent, mutual kill, draw. The outcome of the combat

is then largely dependent on the state of the game initially and P's

mission. If P prefers a draw to a mutual kill, then outside the

larger Barrier P should do a tight turr and use his velocity advantage

in line of sight evasion to escape. If E is initially inside the

,larger Barrier (the larger Barrier is about a one mile wide and two

mile: in front of P), it is impossible for P to do better than

possibly a mutual kill. If P decides to evade here, he is hopelessly

captured. Finally, if P prefers a mutual kill to a draw, then the mutual

kill will be the outcome regardless of E's initial position.

If P can improve his velocity to open the Limited Pursuer Barrier,

the roll logic remains the same except now the cross-hatched area

(where E has a definite advantage) Is much smaller and a chance for

a mutual kill is much larger for P.

3. 2D Limited Pursuer-Evader Model:

Because player controls appeared directly in the general purpose

payoff (i.e. problem 3) where -,b-o¢•, this problem was not

solved in the previous two examples. The purpose here is to simply

desonstrate that the general purpose payoff can be applied and that the

automatic role determination near is structured inherently in the

payoff function.

'CD1The state equiations are the same as Eq (6.1) except that cime,
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t , is now made a state variable whose differential equation is

(9.33)

The characterization of is the same as Eq (6.3) except for the added

state variable i.e.

(a kt h _(9.34)

The general purpose payoff is the Mayer form

. $ -b [-b aco,-o i- b •0 C-52 co-4- 2 - -) C -. S 32 2 (9.35)
HEl is the same as Eq (6.6) except

40 V X v 4 nxE)i-4- X, 1 os CO XGv) ýYV ý (9.36)

where > is the costate variable for the state

The form of the controls remains the same as Eqs (6.8) and (6.10).

ME2 is the same as Eq (6.21) except the I is replaced with + i.e.

AGE A-• + \I -_, Ve X@I"+• •X.SM + ý,y, 1.5, 9 - X,/ Vp-+ 4 f= (9.37)
tep Fee=

The costate equations are the same as Eq (6.22) except for the

added costate equation

o X+- constnt (9.38)

The transversality conditions I . _ , .

yield

•= •• • •#-s•) ,.s• • ,•s•-s3 =(9.39)
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_ ____ (9.40)

22 Cc s C. (9.41)1

Substituting Eq (6.3) into Eq (6.9) for A(* yields

Aec s[x• I: ,-×-•'Xe•: L Z I.-nsi,, - - coss2,,- >,9i11 (9.42)

Substituting Eq (9.40) for X and Eq (9.39) for , into

Eq (9.42) yields

Aq, (9.43)
The controls on e are therefore

(9.45)

--Tf it is assumed at terinaion that the combatents weight heavily

a good firing position (i.e. advantageous S,) then %c >>C and

Eq (9.44) becomes

~?' (9.46)

Figure 44 is a map of Eqs (9.45) and (9.46) for the controls o,:

the UP of Note that P's controls in the UP of 'ý are the same as in
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Results and Conclusions

The general purpose payoff and its use in the role decision

logic of some illustrstive models h.s been demonstrated. The work

is far from complete and continued research in this area is

suggested. Wihat ever method is used to develope a role decision

logic, the Barrier's under reversed role situations will have an

Important function in that role decision logic.

4
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X Conclusions and Reconmendations

The main conclusions of this dissertation are progressively

contained in the last paragraphs of the main chapters. A summary

of these conclusions shows the fol.týiig:

1) "Dynamic Modelling" was most useful in learning the influence

of added parameters on the game solution as the air-to-air conbat

model was made more complex and realistic. Had the simpler moeels

not been solved first, the solution of the more complex models would

have been much more difficult.

2) The differential game ,3nrrier is a tool that analytically

reflects the optimal combat capability of an aircraft. The Barrier

shape and sensitivity to aircraft parameter changes is a useful tool

to ferret out those aitcraft design garameters that most affect

"air-to-air combat outcome. Results of Barrier sensitivity analysis in

this dissertation show that the ability to longitudinally accelerate

(i.e. better thrust to weight ratio) yields the best improvement in

fighter aircraft combat capability. Since the turning structural

limits of most fighter aircraft are near or exceed sustained human

capability, this also suggests that effort to enhance fighter combat

capability night be beat spent in another area - such as thrust to

weight ratio.

3) For design purposes, results of the 3D models in this

dissertation show that the important design tradeoffs are revealed

in the 2D models.
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4 Ai

4) Variable velocity magnitude did not significantly

affect the Barrier closure conditions of the simpler constant

velocity magnitude models.

5) As demonstrated in Chapters V and VII, differential game

results for simplified models can be properly applied to give useful

and meaningful results for real Air Force problems. The techniques

of Chapter: V and VII represent the first known practical applications

of dIfferential game results to a real Air Force air-to-air combat

problem.

6) The 3D Limited Prsuer model is the only completely

solved 3D air-to-air combat model that includes a closed form control

bank schedule. This tiu~neuver has been called the "slice maneuver"

by tacticians.

Base, on the research in this dissertation, the following

recommendations are made:

1) The reltive aircraft evaluatio of Chapter VII should

be designed into a computer program whose output is the nap of Figure 32.

The Air Force Flight Dynamics Laboratory presently plans to do this.

2) The coordinate system used in the 3D Limited Pursuer-Evader

model is a physically appealing corrdinate system for characterizing

approximate 3D control laws.* Based on the way the singular surfaces

of the 2D Limited Pursuer-Evader model disappeared in the 2D Linearized
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Drag Polar model, it is postulated that the `impasse" encountered

vith the singular controls in the 3D Limited Pursuer-Evader model will

not exist for a 3D Linearized Drag Polar model using the same 3D

relative coordinate system. 7his latter 3D problem should be analyzed

to characterize the approximate 3D control laws.

3) The general purpose payoff for problem 3, i.e. o.Po, b-o, ¢•.

started in Chapter IX should be examined in detail. When forward

solv.ng differential gaue numerical techniques are developed into

useful computer progrars, the programs should be capable of handuing

the general purpos', payoff.

195

- =GM.-
_4



DS/MC/73-1 A

Bibliography

[1] Anderson, Gerald M., "Necessary Conditions for Singular j
Solutions in Differential Games wiLh Controls Appearing
Linearly", Proceedings of the First International Conference
on the Theory and Application of Differential Caries,
University of Fassachusetts, Amherst, Massachusetts, September
29'to October 1, 1960.

[',' Baron, S., "Differential Games and Optimal-Pursuit-Evasion
Strategies", Ph.D Dissertation, Engineering anid Applied
Physics, Harvard University, 3966.

[33 Berkovitz, L.D., "A Varlational Approach to Differential
Games", Advances in Gcce Theory, Annals of Hath. Study 52,
Princeton University Press, 1964, pp 127-174.

1[4 Bryson, A.E., and Y.C. Ho, Anplied Optimel Control.
Waltham, Massachusetts: Blaisdell Publishing Company, 1969.

[53 Cootz, T.A., "The Calculation of a Barrier for a Pursuit-
Evasion Game", McDonnell Douglas Astronautics Company,
Rept # DAC-63260, May 1969.

1[6 Ho, Y.C., A.E. Bryson and S. Baron, "Differential Canes
and Optinal F-irsuit-Evasion Strategies", IEEE Transactions
or Automatic Control, Vol. AC-IO, No.-4, 1965, pp 385-389.

[7j Isaacs, R., Differential Games, New York: John Wiley & Sons,
1965.

l[8 Leacham, A.L., "Some Theoretical Asnects of Nonzero Sun
Differential Games and Applications to Combat Problems",
Ph.D Dissertation, DS/I{C/71-3, Air Force Institute of
Technology, School of Engineering, WPAFB, Ohio, June 1971.

l[9 Leitmann, C., "An Introduction to Optimal Control, New York:
McGraw-Hill book I onpany, 1966

I103 Hiller, E.L., "Tactics Optimization Study: Constant Speed Case",
ASSES WP6S-8, Aeronautical Systems Division, Wright Patterson

A!B, Ohio, 1968.

196

""III--



DS,/C/73-1

111] Othling, W.L., "Application of Differential Game Theory
to Pursuit -vasion Problems of Tuo Aircraft", Ph.D Dissertation,
DS/IC/67-1, Air Force Institute of Technology, School of
Engineering, UPAFB, Ohio June 1970.

[121 Perkins, C.D. and R.E. Hage, Airplane Performance Stability
and Control, New York: John Wiley & Sons. 1963.

-13) Roberts, D.A. and R.C. Montgomery, "Development and

Application of a Gradient Method for Solving Differential
G-mes", NASA TI; D-6502, Langley Research Center, Hampton,
Virginia, Nov 1971.

[141 Starr, A.W. and Y.C. 11o, "Nonzero-Sum Differential Ga=es",
Journal of optimization Theory and Application, Vol 3, No. 3
March, 1969, pp 184-206.

(151 Williamson-Nobel, S.M.D., "Tovard a Differential Game
Solution to a Practical T•o-Aircraft Pursuit-Evasion Problem
in Three Dimensional Space", •S Thesis, GAIMC/71-5,
Air Force Instit,,te of Technology, School of Engineering, WPAFB,

Ohio, June 1971.mI

4,

197

ni _
win- ',



DS/MC/, 3-1

Appendix A

Analasis Detailn of the Limited Pursuer Model

1. State FquatJon Foraul-tion of 2D Model:

Refer to Figure 3. Tte position of E as observed by P ia X.

x .. -- ,(A.)

The rotation rate of 1v Pnd 1, ie

VP R, - (A.2)

-*h't're

-= - acceleration of P perpendicular to p

Rp- turning radius of P

and S-: L --4 c4(A.3)

The scalar, o( , is P's -*ontrol i.e. X - +1

is a hard :urn to the rig at andc( - -! is a Lard turn to the

left. Ne F- can be written

- 2 L -p--K (A.4)

and
K, Y - to x..L xK (A.5)

vhere

- velocity of X as observed in the rotating coordinate frame.
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anti ±~ (A.6)4

!6 xX 0:ýo x aj -f -XMc p +' 1"oi I
Rp -v R

Solving Eq (A.5) for yields4

LU = Y-, (A.7)

and since-P -- - A8

g.E- Fj. 6 6- (A.9) p
then Eq (A.7) becomes

C , nG -Y 4 It -4- (A.10)

From Eq (A.1) ~Lis
= K1±)Ilv(A.11)

Eqs (A.10) and (A.11) yield the state equation

_ ~ [= :::~ (A. 12)L

IZFI
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2. Problem Backward Solution From for 2D Model:

We begin by determining the controls on . Eqs (4.19) and

(4.10) indicate that

~ tht e (k') ~j=4~a~vs(A.13)so that

S (A.14)

Since A, -is). o this

and Eq (4.19) shows that

-o (A.15)

Substituting Eq (A.15), and Eq (4.19) for AK(c) into Eq (4.17) yields

HEZ on ' as -

Ve ~ 'A 2 t+ vSs \X1 L4 -a 1.o (A.16)

Eqs (A.16) and (4.19) show that

Vpcoss-va

(A.17) •

Note that V/ 'o.ss- VF- is the rate at which P' is closing on E
!!I ,

at termination.

Since A, o on ,we muat examine - ~~to determine c

(A.18)
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Substituting the state and costate equations into Eq (A.18) yields

SA = vpX (A.19)

Therefore, an infinitesinal distance away from 01 is

~ ~ :sins ) stin uivS) (A.20)

The last equality in Eq (A.20) will be justified later by showing that

on the UP of t the closing rate VcosS-V•,o. Note that f,1o for

S=o (i.e. a direct tail chase termimntion) and the possibility

.- of a singular control here. Now we examine the singular control

necessary conditions.

First it is necessary that

A XjY C> (A.21)

Eqa (4.10) and (A.21) yield

- ._ (A.22)Xv Y

impplving the closed form control for E, while P is possibly singular,

is line of sight evasion. Now the second necessary condition is

\/P. o (A.23)

Implying that

X •0(A.24)
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Eqs (A.22) and (A.21) show that,

S-= O and (A.25)

since X•- 0 is a trivial problem with k,_g. The third necessary

condition Is

!! I [] implyingS that

ii (A.27)

Is the candidate singular control in o< . Since o• is P's control,

the last necessary condition is Eq (2.16), i.e.

All [I (ia [ 4L 0C (A.28)

4! I I[or

- (A.-29)

or finally

SC> . (A.30)

:Since "'(so , Eq (4.18) shows that o implying 2S - constant

vector. Because of Eqs (A.24) and (A.17), the P singular surface meets

at S=o and

consfaA 'ecto-r -~(A.31)
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All the necessary conditions of the singular control are met

provided Z C>o e. . Vp_ V,. The singular surface in the reduced I
is simply the y - axis and represents a non-turning direct tail chase.

We now continue with the backward solution and examine the optimal

trajectories backward from for S>o (note s<o ls symmetric abouL.-axis).

Solution of the costate Eq (4.18) backward from with the boundary

conditions of Eq (A.17) yields

VP(.~ C /. Os R )V
i c ( sS+ -T (A.32)

•1 Illvpcss- vF-

v7qere

"-r-'., " time backwards from .

By Eqs t4.10) and (A.32) it is seen that

IZO'Vi C-{Q+ 4- -r) ~ (A.33)

implying

S.....== = =__the rate •R. , this show•s that in the realistic , E is in straight - -

line motion. We now solve for A to che~k switching of o( from +1. ••

Eqs (A.19) and (A.32) show

___ _-_-__ ___- -_.35

S.. .. ~203 ; -
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Integrating Eq (A.35) with the boundary condition of Eq (A.l5) yields

A(-r) c ~ os.s - cot.Cs --Yz -)1 (A. 36)

Eq (A.36) shows that A initially goes negative (as suggest by -A , o)

and then positive when

Vz r z Cr- s(A.37)
V rmp

The angle 2&r-s)can physically be shown to be the zircular angle

P must turn through going backwards to recrcss E's straight line path.

As will be shown later, the Barrier is closed for realistic system

parameters and the S> o trajectories intersect the Barrier befoie

the switching condition of Eq (A.37).

I If t.e examine the trajectories branching off the%/-azis singular

surface for o4 +1, we find the costate solutions have the

same form as Eq (A.32) only with Ss-o , L.e.

5,)- id .Ža; (A.38)

Vp - Ve

where

backwards time off singular surface. Likcvise, A(C1)

is the specialization of Eq (A.36) to Sac i.e.

,,,-1(T-o r (A.39)
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Note hat A(-r) initially goes negative off the /-axis

singular surface, goes to zero when v_•Ers = -2Tr but does not swaitch.

Like the S>o trajectories, these trajectories off the portion of the

y -axis inside the closed Barrier, intersect the Barrier and terminate.

For the 5>o case, and assuming A does not switch, -4 z. ÷-

and 6) S +.YE r Substituting these controls into the state Eq (A.12)

and solving backwards from ý with the boundary conditions of Eq (4.3)

yield3

RI P R
r •/(.T) = (.•.-v•T) •o(.•+_7_eP) +•sinv_- .,.)

3. State Equation Formulation of 3D Model:

The position of E as o,,served by P is X.

= '. t -Z (A.42)

The instantaneous rotation rate of the i . 1i axes system is

R (A.-3)

where isP

0 iý:(A.44)

Eq (A.7) applies in this case with

YE = VeC4 -i Y -. __i (A.46)
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vhere
2 -4- -4 . (A.47)

Since ±j

Si$ (A.46)

p

ý-p

then Eq (A.7) becomes

VC•h t eCos4<uo -4e
RP (A.49)

2:,o° co4+ir4)]ii

+L i - VPY2?Yco+z lý -y

Since

Xir + :y (A.50)

the state equations are

Cos . (A.51)

ý) r v, -4- Cxct+sýýSniýj
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Appendix B

Analysis Details of the Limited Pursuer-Evader Model

1. State Equation Formulation:

The position of E as observed by P is X.

Xi 3 -. x Y± + (B.1)

The rotation rate ofa ±andi ý sis

where

o.Lp= VP2/Jp , acceleration of P perpendicular to YL

Rp turning radius of P

and -... :E +I (B.3)

The scalsr,o( , is P's control.

The vector Y, can be written

X -K- (B.4)

-• -• L"" ve'locity of E -as observed in the rot~ating coordina•te•
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Since

CA- ,e, -x -- •eo v- Y ±J-jL (B.6)

and (B 7)I

and k ME~ Va sil r) e I_ VFCoseI v (B. 8)

and + 'kp yi- (B.9)
%r

then substituting Eqs (B.6), (B.7), ýB.8), (B.9) into Eq (B.5)

and solving for •r yields

R. (B.10)Vs CO--/ -= VP,.,oL.

From Figure 18 it is seen that

-Evader's velocity angle off (B.11)

t o ( B .1 2)2 ._ BB

SE= - accelerstion of E perpcndicular to VF.

. turing radius of E
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and

The scalar, & , is E's control. Substituting Eqs (B.2)

and (B.13) into Eq (B.12) yields

* = .. - ( 3.1 5 )

The nstate equations for this model are therefore

G1'ueR (B.16)[

2. Proble• Backward Solution From for 2D Model:

Equacious for the controls on the terminal surface are found

) first. -A rearrangement of Eq (6.24) yields

Note that both A nd ,so ME2 tb

Substituting Eq (B.17) for )ýAdinto Eq (3.18) and solving Eq (3.18)

for )A-yields

C~55 (3.19)

Eq (B.19) substituted back into Eq (3.17) yilds

K vpcosst- VCOSC~Sj7S) (B.20)

I209
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*
Note that ',,pco5Sj-VrCoS j •)is the rate at which P is

closing on E at cermination on * On the UP of • , this term

will be shorn (see section on Barrier) to be positive.

Since both and X are zero wa , - and

X-, must be examined to determine the controls an infinitesimal

distance off F Prom Eq (6.22) we see that

- s t os - (ý'j Sir)S (B.21)

SubstitutinE Equ (B.19) and (8.20) into Eq (B.21) yields (3.22)

~ VpO$S- Ve CS~Sj~) ~ p~V~c c - SlsY7

Assuming that the denominator cf Eq (B.22) is positive, as previously

Indicated, the , control on 1 is

~ s[~(~ a ~i L- ~v~ srnCSz7SO.J B3.13)

Now from Eq (6.9) we get

and substituting the state and costate equations yields

4r ''\. •(B.25)

Then

VPI Coss,- VE o 0 S -sc + 5')
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where Eq (1.20) has been substituted for X{U ).

Therefore

ioy [A CnLL )O = Ae1~ lr$jS~ (B.27)

where again it has been .ssued that the denominator of Eq (B.26)

is positive. Eqs (B.23) and (B.27) will be used later to determine

the controls on the UP of

To give more insight in~to the backward solution, the singular

Sm controel necessary conditions are examined next. The E singular

control conditions are examined first.

For E singular, it is first necessary that

Also it is necessary that

S= va X s Xve-Xcose) (B.29)
IL-• implying that

i "•v• =•',.• -(B.30)

i ~ ~It Is also necessary that (.1

0 V~~ S~yinXyCOS 96- ts

Substitutinp the state and costate equations into Eq (3.31) yields

oS \,:;i~n 6 -- *Cos (B32

Eq (B.32) Inplied that either 6=0 or (,3S + C, . 320
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for a finite time. if the lacter case is true, then along with

Eq (B.30) it implifs that X, = XY Since X. =o already,

the costate vector ?.e 5- which is a trivial case. Therefore,

the candidate singular E control, as * is

(B.33)

implying that E is doing a non-turning straight line dash.

The last necessary condition to check is Eq (2.16),i.e.

2t (B.34)

N•: Eq (B.30) implies

The requirement of Eq (B."i) shows that the plus (+) signs in Eq (B.35)

apply. The P singular control conditions are examined next.

ror P singular it is first necessary that

A .9 = " Y X- - ~ C>= (B .36)

Also it is necessary that (See Eq (B.25)

0= • Y.pX (B.37)

implying ttat
\ - 0• O (B.33)

Eq (B.38) inplies that 0 (see Eq (6.22) i.e. Xy 'I- constant.

Now it is also necessary that

implying either > co r 0 Since ), =0

-- '

212
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Eq (B.38) and Eq (B.36) imply _.-n , this is a trivial case.

Therefore, the candidate singular P control, "'s , is

(3.40)

Again it is seen that P is non-turning. The last necessary

condition to check is Eq (2.16) i.e.L-, T• i '••= ¢ .L•4 - x . (B.41)
±rnpIt•ng that 

( 4

XY t• C> .(B.42)

It is interesting to note that if P is singular then
Xa- >C,,/ (B.43)

and
,i. e=.'Y , (B.44)

the last equality coming from Eq (B.42). Eq (B.44) is a closed form

control. If P is singular, then as x goes to zero >e goes to zero

and E will switch to his singular arc provided

o' \/Fe vC X~s ) s - X,..CO~S \.eX yS I n 9 (B.45)

i.e. as x goes to zero E will switch to his singular control if 9=0.

These two conditions, X=co and e=o inpiy a direct tail chase.

A direct tail chase therefore corresponds to the control case where

both P and E are singular. The backward solution from the UP of in'A iii
the case where <to and 0 o is done next.

21
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Solution of the first two costate equations in Eq (6.22) backward
using the boundary conditions of Eqs (B.19) and (B.20) yield-

sl. c (s4': )!Y Co~ss, -V, coS(5?-SL)j (B.47)

Solution of the 6 eqvation backward in Eq (B.16) using the boundary

conditions in Eq (6.3) yields

o ST) = S 2  -i-p - - (B.4))

Substituting Eqs (B.46), (B.47) and (B.48) into the Ne (i.e. backward

costate equation) in Eq (6.22) yields

Solving Eq (B.49) with the boundary condition of Eq (6.23) yields

OCT LI= el, C~OSCSL-S2ý- ccsOS(S±$Z '-rl (B.50)

e.* Lvpcoss 1.- V ~S0C2-s

For -Oe.S,1-F,.1/ , Figure 21 shows tha t in the UP 6_-1.
For small 7- Eq (B.50) shows kb(•0<o and switches when 'T equals T"9

F odefin ed by T . .( 5 )

I _Va re, "= ~2-n- Z( S ?.5) (B.51)

For ,igr21swstaintaUsmall Tr Eq (B.50) shows X,(r)-<c and switches when 7- equals 'rji
defined by

Vci. 2Tr--'z Csý- 5,2  (B.52)

In this latter case SL.- S, <0 , so the switching cimas in

both Eq (B.51) and Eq (B.52) can be summarized by
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$

Eqs (B.52) and (B.53) must be applied in a coordinate system such

that JIS-S)I4.rr . Knowing that E is in a hard turn, the physical

significance of E switching (i.e. Eq (B.53) can be shown to be that E

recrosses the terminal line of sight in real space.

To examine P switching, Eq (B.46) is first substituted into

Eq (B.25)

., vp1sI, (si . o -r)

[VpC-OS Si - V, COSCSC Sý,jJUsing the boundary condition of Eq :5.24), Eq (B.54) is solved

backward yielding

A0rCOSStCOSCS4OL T) (B.355)
00'Lvp cOS S, - vcs(e I

For S.>O , Figure 21 shows that In the UP oC = 2 *

For small •T Eq (B.55) shows A(Qi<o and switches when 'r equals -A

defined by

-YR -i- = -71"-2 (B.56)

For S.1 o , Figure 21 shows that in the UP c=_<

For small T Eq (B.55) shows Aj(i :>o and switches when T equals

"T' defined by

= -2r- 2~ .(B.57)

In this latter case SeO , and the switching times in both

Eq (3.56) and (B.57) can be summarized by

(B.58)

._Tp'IA 2 7#r- .. S.1.[ l,8
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where I :.) "- Tr Knowing that P is In a hard turn, the physical

significance of P switching (i.e. Eq (B.58) can also be shown to be

that P recrosses the terminal line of sight in real space. Because I
of switching, the solution presented so far is only valid up to
the smaller of or *-A . As in the Limited Pursuer model,

these trajectories will generally hit the Barrier prior to "l-, cr-.r

Eq (B.48) is now substituted into the ;k and y state equations

of Eq (B.16) and set up for backward integration i.e.

- EsY{S2  VP T 0Ž "YE- (B.59)

S- _ IF So'{s)+ V.-- -4 X-•÷v - f' x (B. 60)
2

p ý"r

Eqs (B.59) and (B.60) are solved simultaneously with the boundaty

conditions of Eq (5.3) yielding

yL '-r- = cl 'Ir" r 4 iT -.- (B.61)2p

where C T) is defined in Eq (B.48).

3. C Trajectory Analysis

Solution of & and L in Eq (6.63) subject to the boundary

conditions of Eqs (6.91) and (6.92) yields

~ - ~ -r)(B.63)
r') os C - os(.SCS.+ __ r) (B.64)
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where

Note that the 1r dependence of 1Y and ty is unaffected by E

switching on the singular trajectory.

Solution of the G state equation subject to the boundary

condition of Eq (6.94) yields (B.66)

9 (TI) S:L ev- U, V- V (±L-zt~ "
(ee.

Solution of the Lr equation subject to tr-(o)=o yields

"T9(r'') cos .- T") (B.67)

Note that for small "T', -. (-t'.)>o which agrees with Eq (6.61)

(i.e. - )and that C'",(i-T) c> always.

Since 'YX : and sa.-%ce - ) is unaffected

by E switching off the singular trajectory, the

solution remains unchanged (i.e. Eq (6.76)

QT ReCC < 5 C[os5 - S C S,-4- Yar3I-) (B.68)j

Therefore, the switching condition for P on the Barrier (i.e. Eq (6.77)

remains unchanged i.e.
(B.69)

9P54 YE ArL (:

where r is the time of P switching after E switches from the

singular trajectory.

K1
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Simultaneous solution of the X and y state equations backward

for .t--+ , i . --- :. in terms of arbitrary constants "a"

and "b" yields

-s C•Yi vYe -r.'-4. b cosv YT' Qp- 2e Cos 9(-T) (B.70)

2
1f,

Applying the boundary conditions of Eqs (6.95) and (6.96) at T'-o yields

CL Rz,4i.ge - IZ, CO CS+ .~ -cs. (B.72)
IP Vp P

Substituting Eqs (B.72) and (B.73) iato Eqs (B.70) and (B.71) and

134, dividing by QP_. yields

(B.74)

Y L('11 OS 9 4- !e Y ap' 51 wVs. -eý 5-4.Y.E-r') ,

C-,- co, s , --- YE ) - - EE C5 f3L

(B.75)

YLI- F-19fae)COy5(5s1 ý49 -P - -1) +7S I rep,*YE T') -±

-
2  siY(-, -.- e V, .r) EG . y 9,-,CT')

4. State Equation Derivation for 3D Model:

Examine Figure 29 of the main text. TZP` locates the coordinate

system of the pursuer whose y axis is always along the velocity vector

- The terminal surface, ) , is a sphere of radius, Q , about the
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origin of P's coordinate system. The vector, S, locates the evader's

position relative to P. The projection of I onto the x-z plane

(i.e. Y- ) has the angle C) relative to the x-axis. The acceleration

voto o Pnoma t F , i.e. Cka. rlines in the X-Z (or 3L~)plane

and has the angle qý relative to the x-axis and the angle 4> relative

to the xc-axis i.e.

(B.76)

P maneuvers by selecting the magnitude of Q.LP which is bounded,

and the bank angle~ (or -J).

NOW

P (B.77)

where
C) s Q(B.78)

and {
where

0 :! -T (B.80)

The orientation and acceleration, OLare derived next.

A counterclockwise rotation, GO about the y-axis locates the

axis systen so that M.lies In the Y1.~plane. The rotation
rate of the %L, Y:L Z- axis osev relative to the v, y, -Z system

and the coordinate system trzansformation after the El rotatl--. are
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-5-.10 -I- Cos

4d,>- ± -- l (B.82)

Next a counterclockwise rotation s, about the V,-axis locates

the vector VP along the y.- axis. The coordinate systen transformation

and tfstal rotation rate of the x. , /- axes systpm, W4..

relative to the 9,,/, systei are

SW

The Y=-.2- plane Is the plone of E's acceleration vector C..L•

0,a has the angle, rel.ative to the Xx- axis. E maneuvers by

selecting the magnitude of•l,, which is bounded, and the ban% angle

g, E (B.65)

_ - ••-•-(B.86)

and

vhere
o -- E 'Z 7- (B.88)
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Substituting, the Eqs (B.81) and (B.83) into Eqs (B.84) and (B.87)

yields

z(•-(.89)

(3.90)
,--i ii -Lst.•iv, I.! -t-(.s nSoas w~sl- cc~syo.•)a ] .I

The forimal derivation of the state equations is done next.

The position of E from P can be written

Y -(- Z la X- (3.92)
where

IS S ( B.92)

Eq (A.7) applies here so that

_iiir A - (B.93)

The vector V\can be written

Vei- = Ve(sm k C-J - 4 VI (B.94)

where Eq (B.83) has n.zn used for Iyz. Further substitution of

Eq (B.81) into Eq (B.94) yields .

NIP = vsimp Cosa j: -4S-P jo'4 -I- sin ysw'i- .1

The vectorY._can be written

V~- Py (B.96)
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Substituting Eq (B.92) into Eq (B.91) and using Eq (B.79), the

WXr term becomes

J 'n I v os )n -j

-x1- • c - --y- -O- '/t ] (B.97)

Differentiating Eq (B.91) relative to the moving •*y, system yields

+ + (B.96)
I"-

Substituting Eqs (B.95) to (B.98) into Eq (B.93) and equating the

scalar components yields

•- -- s, •- osi . V v -,7qCse _. y c o,. (B.99)

Y VCO-' Vf>+ Y-CA co-( e-!)(5.100'

S.Y7 , -CO06 Vestr4,sv76 - Vrý y siniý(5.101)

Multiplying Eq (B.99) by cos) and Eq (B.101) by sine6? adding,

and simplifying yields

3 • = v~s, co~Le-@)-Y• • ccs(y..- (B.102)

Multiplying Fq (B.99) by sinG and substracting Eq (B.101) multiplied by

cos • yields

(B.103)

222
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Since the total rotation rate of the Mm, Y",2 axes system,

* equals the total rotation rate of P (i.e. p) plus the

rotation rate of E relative to P (i.e.±_a it is seen that

wU 4- Wýk (B.104)

Substituting Eqs (B.79) and (B.90) into Eq (B.104) yields
(B l105)

Sa = "PA VE San~o co +co Co.~Žs1~}

Equating scalar components in Eqs (B.89) and (B.105) yields

6LC-7' (B.106)

-e-S -' ii SI~ (B.107)

-'pcyoTsei -Cs2C-9 40ýPCS (B.108)

Multiplying Eq (B.106) by si.n and substracting Eq (B.108)

multiplied by cos9 yields

- LE C. .(B19
A~- aw o co:C -' 319

Now let

Z - (B.110)

Substituting Eqs (B.76) and (B.110) into Eqs (B.102), (B.100),

(B.103) and (B.109) yields

V/ESir, yCos~ -0 z~ 2 .j co-S (B.111)

\IE COS 9 )-\4, + 'cA2f3,LCOS,ý (B.112)
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0

- o~Žc ys i~.](B.113)

-o ý -A Ve, Co B14

Differentiating Eq (B.110) and substituting Ers (B.107) and (B.113)

yields

(B.125)= tS Y | -F L-~V S k1 JS V (.o"tSI ) ' $

"Therefore, the four (4) dimensional state vector 2 is

(B.116)

and the state equations are Eqs (B.111), (B.112), (B.U14) and (B.115).

5. Problem tackward Solution From 1 for 3D M!ode1:

Equations for the controls on the terminal surface, *are4.

found first. SubstitutinS Eqs (6.105), (6.130) an~d (6.131) into Eq (6.111)

shows that 0 0. Furthermore, Eqs (6.131) and (6.132) show that

0 and .lz)=o Therefore at mrin Eq (6.128)

becomes (B.117)

Substituting Eq (6.130) for i,((g) into Eq (B.117) yields

VP CO '-ECO 2 (B.118)

Substituting Eq (B.118) back into Eq (6.130) yields

kx ' sin<• S (B.119) 2
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Since AL) (.)= =XU)oEqs (6.127)

and (6.121) show that~ and are undefined i.e.9- .ý To

evaluate theS in Eqs (6.121) are first rearranged by dividing

into tenumerator and denominator of cs (i

yielding yleldlng (B.120) "

Therefore, an infinitesimal time away from the %eontrols are

CC"5v~~!Ž (B.121)

V, X>•; -•:9 -- (.1

-ý V (B.122)

./_ -, I"-,•• •, .' I•

- ~ ~ SV~ -9''" t -il1 SVySIV) IO5
sini - (os.,co6Z, S,1 - "co-,S.ccj, Co. $!2

XY4

where Eqs (6.129) and (6.130) have been used. Since

£LcOc5sZt)J (B.123)
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Eq (6.129) into Eq (B.123) yields

"'" L o• -sy 'si14- cosyj c =

= S~Y{X~(4 )] ~n ~(B.124)

Where Eq (6.130) has again been used. Substituting Eo (B.122)

into Eq (6.117) yields

ii ii ,and substituting Eq (B.118) iLnt~o Eq (B.124) yields

S(B.125) and (B.126) wll be used later to determine .)

Ndoe that for %ution Eqs (B.125) and (B.126) become

~ (B.127)

[C OS -5 -
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vhich give exactly the same result as in the 2D Limited Pursuer-

Evader model.

To evaluate the - n in Eq (6.123) is written as

4144,

-S I (B.128)

Since Z ) is giv,.. by Eq (B.122), only

need be determined for Eq (B.128). And since XXV->k•j oXX

it too must be evaluated by L°I4opLdals rule i.e.

IF~ ~CKY"\Y x (B.129)

N~ow x'' x

where the backward ,tate and costate equations have been substituted

an ealaedat .Multiplying Eq (B.130) by XY and

using Eq (6.130) yields (B.131)

Since can be written,

lB-.132)
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then substituting Eqs (B.131) and (B.132) into Eq (B.129) yields

~ 1 (B.133)

Substituting Eq (B.133), (B.122) and (6.105) into Eq (B.128) yields

4 cc,+, {ojnSIn~JSv~ - I
11 siy (B.134)

Simplifying Eq (B.134) yields

-toy) Cc>'s CO-t?, SIY7ý

-CS slv;ý (B.135)
From Eq (6.127) it is aicen that (Y. (3.136)

sy [Cos r( tl)]= -, sy~ A U4') syf x X k'-A 2~o'
V ( Ti, d-r

,LJ Also 4

(B.137)4

Substituting Eq (B.132) into Eq (B.137) and then substituting Eq (B.137)

and (B.131) into Eq (B.136) yields

-I [v

(B.138)
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Simplifying Eq (B.138) yields (B.139)

Substituting Eq (B.118) for Xy(-)inco Eq (B.139) yields 44

(B.140)

Eqs (B.135) and (B.140) will be used later to determine

Note that for o , Eqs (B.135) and (B.140) reduce to

0 ~ (B.141)I

which give exactly the same result as the 2D Limited Pursuer-Evader

model.

To give core insight into the backward solution, the singular

control necessary conditions' are examined next. The E singular control

conditions are examinud first. For a singular control in ( it is A

necessary that

%f 4 >IT(0'!ý C>(B.142)

Substituting Eq (6.121) into Eq (B.142) yields

0(.4

Eq (B.143) implies that both

= 0 (B.44)
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Eq (B.144) has two possible cases: 1) Xy and X 0, 2)

AfO and •/npco. In case 1), Eqs (6.111), (6.112) and (6.127) show

that P's controls are

sin a 0(.145)

which are the same as the P controls for the E singular case of the

2D Limited Pursuer-Evader model. Now, since XY=X, = 0 , this

implies that Xy= 4=o. Eq (6.129) shows therefore that both

i�= s�;-.1 :j~s o(B.147)

40 are alsonecessary for e to be singular. Now Eq (B.146) implies three

further possibilities for case 1): a) >., o , b) sjriy=o

C) sin o

In case la), Eq (B.147) shows that ) , equals zero ( =0

yields the trivial case of . o ) from which it is concluded

* (B.148)

Now since -- t-=-o, this implies that

Therefore, Eq (6.129) shows that|~~~ iCOSi- =--••' (B.149) ••

from which it is concluded ( o since this will be the trivial

case of 3 o ) that

Io(0 = (B.150)
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Eq (B.114) shows that

from which it is concluded that

Therefore, case la) shows the following a= S=C'

Case la) is therefore the totally singular tail chase condition of

the 2D Limited Pursuer-Evader model.

Turning to case ib) it is seen that sin - 0 (i.e. Cos T=

3.,,, and Eq (B.147) implies

CC>S (B.152)

In this case either c= o or cost, o The forner

leads once again to case la). If Siny--c-.o. then 4,

From Eqs (B.114) and (B.115) then

COSgv CA• -_V? Co-01S = o> (B.1153)

! [] sl 
(

and it is concluded for case lb) that 0 = O

Therefore, this latter case i.e. sX= X%= •, •,st . o C> ,

is also implying the non-turning totally singular tail chase of the

2D Limited Pursuer-Evader model.
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Going to case 1c) with Xw= )=Siný=o, the present state and

costate equations become the same as the E singular case of the

2D Limited Pursuer-Evader model.

It can therefore be seen that the 3 singular conditions of case

1) are simply those already found in the 2D Limited Pursuer-Evader

model.

Examining case 2) with A'=j)~i is seen that . =o .

Therefore, Eq (B.114) shows that

0.. L, COS: ca~ ~ Cos U?-'4 (B.155)

and Eq (6.129) shows that

(B.156)

It appears that the only possible way to satisfy Eq (B.155) is when

o =• • This is partially substantiated when it is realized

that • and X are really undefined for sr•-n. If $=c , then Eq (B.156)
0'

shows that
-- •-61 f= p (B.157)

But since" is undefined then tan% must be of the forms_ implying k=

0. Much of this in case 2) is very subjective, but once again is

implying :he totally sinLular tail chase situation.

In summary then, it appears that the singular control conditions

for8 arc simply those already found in the 2D Limited Pursuer-Evader

model. The singular control conditions for P are examined next.
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For a singular control in o( , it is necessary that

Substituting Eq (6.127) into Eq (B.158) yklds

- •0 (B. 159)

implying that both

o YX , Xy B10

DefinlngBýzka, the requirements of Eqs (B.160) can also be written as

- 0(B.161)

Since A B'= o, it is also necessary that A - 0>

Different.ating B' yields (

Substituting the state and costate operations into Eq (B.162) and

simplifying the resulting exoression with Eq (3.161) yields

(B.163)
V cclaŽ1 'LiOS% 0

Differentiating A yields
-+,(8.164)
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Substituting the state and costate equations into Eq (B.164) and

simplifying the resulting expression with Eq (B.161) yields

-- A (B.165)

Eqs (B.163) and (B.165) both indicate that

is another necessary condition for a singular control in c>(

Since o, it is also necessary that

= V~,~sCi~OYe B.167)

With Eq 'B.160) shows that Y nZ equals zero which yields

- two possibilities: 1) o or 2) ,- i -i C>

Case 1) is examined first.

In case 1) =0 also implies C. o i.e.

0S V,).~ Y ,,c:SpC> (B.168)

From Eq (B.167) with XIVo, there are three d'stinct possibilities

for case 1): a) . b) sirro, c) sintZ = 0

In case la), Eq (B.L68) implies

SMY = 0 (B.169)

since )--,=o is the trivial case of )X = 0 • Eq (B.169) further
Implies that •--oi.e.i

(B.170)
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A summary of case la) shows A~~ 8= SI(t-

Since Eqs (6.121) and (6.127) show that and are undefined

under the conditions of case la),-<and _ must be zero to satisfy

Eq (B.170). Note once again that this is the totally singular tail

chase situation of the 2D Limited Pursuer-Evader model.

In case lb) (i.e. -slyt=)o , c0o+-_.t), Eq (B.168) shows

that C • tLO.• equals zero implying either xy-= o

6r , t2=O . If XOo , the present case is the same as case la

(i.e. AmB13 X= X rSlyly= \jec. If cosý-O~thie, implies

o i.e.

),sO 4q(.10 (B.171)[

which also implies ct--o . Since imoalso, Eq (B.170) implies S-c

A su=mary of this latter case shows Pc=a= X = =psc osZ•-:.o

which is also indicating the totally singular tail chase conlition.

In case ic) (i.e. A=B k SI,.t O), it can be seen

that with s =o (i.e. 5=0o ) ' (Eq (6.121)) and 41

(Eq (6.127)) beco=e

SmV C> o , cos54 s Xtr (1.172)

-0 , COS.> - n A (B.173)
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Bz

As such, the X y and 4 state equations reduce to the state equations

for the 2D Limited Pursuer-Evader model. The ý state equation is

identically zero. Likewise the costate equations k,iand 4 reduce

to the costate equations for the 2D Limited Pursuer-Evader model.

The . costate equation is also identically zero. Case lc) is

therefore the same as the 20 model. In particular, since A= X = *

iL is seeni that case ic), a5 well as cae 1a) and lIb), carresponds to

the totally singular tail chase of the 2D Limited Pursuer-Evader model.

Examining case 2) (i.e. A=• B= XZ = it is again seen,

as with case 1c), that the 3D model reduces identically to the 20 1.
Limited Pursuer-Evader model. As such, the o( singular conditions for

case 2) are the same as the-( singular conditions for the 2D Limited

Pursuer-Evader model.

In sumary then, it is seen that theo(singular control conditions,

as it was found with thee singular control conditions, are simply those

already found in tha 2D Limited Pursuer-Evader model. This concludes

the singular control necessary conditions.
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