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Preface

This dissertation 1s the result of my effort to use the
mathematical theory of zero-sum differential games as an analytical
tool to learn as much as possible about the one-on-one air-to-air
combat problea and the problem parameters which have major cffect on
its outcone, My thanks are given to the faculty of the Air Force
Institute of Technology and especially to Professor Gerald M. inderson
for his intcrest and guidance. I am indebted to the Air Force Flight

Dynarics Laboratory for not only willingly providing time, but

encouragement ro do this research. In this respect I wish to recognize

Willian L. Othling Jr. and Anthony L. Leatham whose research efforts
created the original interest in the laboratory for differential
games research.

I am especially grateful to my wife, Janet, for her encouragement
and support throughout this course of study, and to my soas

Andrev and Matthew who gave up tneir father nany an evening.
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Abstract

The mathematical theory of perfect information, zero-sum,
differential games is used as an analytical tool to learn as much: as

possible about the one-on-one, air-to-air combat problem and the problem

L N P

paraneters which have major effect on its outcome. The primary
emphasis is on differential game Barrier theory and the application
of the Barrier as an analytical tool for ajir-to~air combat analysis.
A series of progressively more complex air-to-air combat models

is developed and solved in such a way that the solution results of
a given model have direct input to the more complex model that
follows and learning from one model to the next is accumulative.
The importance of the Barrier, its shape and its sensitivity to
aircrsft design parameters is discussed and demonstrated.

Barrier sensitivity analysis of the models shows that given

the opportunity to increase a fighter aircraft's air-to-air combat

capability with either improved turning gs, weapons system, or thrust

to weight ratio, increased thrust to weight ratio yields the greatest

{mprovement in this capability. Darriar results of the models are
designed into a workable computational technique to relatively

evaluate the air-to-air combat capability of a series of fighter

P IR A, B E T

aircraft. A general zero-sum payof{ function is also developed which

ot

4

allows the roles of the players to be an inherent decision in the

model itself based on terminal state,
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I. Introduction

Background
Limited war and its associated use of ccuventional airpower,
has in recent years led many researchers to studv the afr-to-air

combat problem. To appropriately model thils problem, many factors must

be considered, The following list suggest a few of the major factors

involved:
1) How many combatauts are involved?
2) What is each combatant trying to do?

3) Uhat roles (i.e. pursuer or evader) do the cocbatants
assune? Do the roles change?

4) How nmuch information does cach combatant have?

5) Based on the information, what strategy (contrel logic)
should each cocbatant employ?

6) For a given initial encounter, what is the outcome
of the coxbat? -

7} 1If a particular coabatant does not like the outconme,
how can he change the systen parameters under his
control to best influence the outcome in his favor?

An ideal model of the air-to-air combat problem would have

an analytical structure which would couple these scven factors

together. Such a nodel could te used to define the air superiority

alrcraft and its associated tactics.,

lany air-to-air cocbat nodels exist which attempt to simulate

several of the factors involved; however, their usual disadvautage

i1s that the coatrol logic for onc or more of the conbatants is

e AN e o e e B S s s 7N ! s b

assumed and not derived., As such, the outcome of the corbat or the

effcct of a particular system parameter change is subject to the

question: "hat if?" or "Is therc a better way?”, etc.

N g TR S
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The mathematical theory of zero-sun differential ganes, as

¥

developed by Isaacs (7] in 1954, is an analytical tool which nodels

systeas with conflicting objectives. It can be likened to an optimal

oo e oy 0 s S i e

s

i

PN

control problem with two players - one choosing controls to maximize

a payoff and the other choosing controls to mininmize the payoff. As %
such, the control logics of the game are derived to optimize the %
outcoze and are not an input variable vwhen assessing the effects of :%
systen paraceter changes. Therefore, the mathematical theory of zero- %
.sun differential g , as iatod i by Isaacs, does possess an inherent é

mathematical structure that couples factors 2, 5, 6 and 7 for two

FINNN

combatants. In actuality, there is a broader theory of differentizl

ganmes called nonzero-sun differenzial ganes (see Starr {14] and Leathan §
(£:3)) which involves factor 1 (i.e. nore than two players) and é
stochastic differential game theory which involves factor 4 (i.e. g
ganes with incomplete information). Chapter IX of this dissertation g
examines factor 3, if.e. role. Thus, the nath theory of differential ¥
gaces is capable of counling the major factors involved in the air-to- .
air co=bat probleam. é
Even though the math theory of differential games does % %
possess tne desired analytical structure and great promi;c for ;§
probless with systess in conflict, the facts are, however, that it is % E%
little used today as a practical analysis tool for such problexs. ; :}

What then arc the reasons for the apparent failure of such a pewerful

analysis tool? 1Isaacs [7:2] suggpest two reasons. One is the increased

difficulty of the oroblem witen an ooposing player is added. The seceal
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reason is that the theory abounds with general theorexs usually

of the highest calibre mathematics, but of very little use in
obtaining answers to practical problems. Since Isaac’s book, much work
has been done in practical techniques to solve the differential gawe,
e.g. Noberts [13]. But even these techniques have not been brought

to the point of real practical application.

Dissertation Purpose

The researches of this author have led him to add a third
reason to Isaac's list. Of the problems that can be solved, however
simplified, and of the techniques and concepts that exist, little

or nothing has been done to show how and where they can be practically

applied. To this end the purpose of this dissertation is devoted.

This dissertation conceras itself with one-on-one, air-to-air
coobat nmodels eaploying zero-sum pavoff and perfect informatiecn.
The technique of "dynamic modelling" employed by Othling {11) and
inherently suggested by Isaacs [7] is used to progressively complex
the air-to-air corbat model and to learn the influence of the added
realisnm on the solution. As will be shown, the nodels are developed
in such a way that the solution results of a given model have direct
input into the noxe complex models that follow. In this way the zodels
build on one another and learning fron one model to the next is

accunulative.

L
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Dissertation Contributions

The original contributions of this dissertation are: 1)
‘Tue Barrier results of a three-dimensional model are used in a new
technique to realistically and numerically rank fighter aircraft in
terminal combat throughout the flight envelope. The technique was
used by AFFDL in the recent Light-Weight-Fighter proposal evaluation.
This is the first known practical application of differential games

to the air-to-air combat problem. 2) The concept of a differential

o DI ST, 0 bt b b

game Barrier, as developed by Isaacs [7], is brought to usefulness by
recognizing the importance of its existence, shape, and seansitivity
to aircraft parameters. This research is vitally important in recog-
nizing those paraueters which have major effect on corbat outcome,
and therefore help to define the air superiority aircraft. 3) The
field of optimal control, in genmeral, receives much eriticise
because the results of the method are often obtained by tie use of

very basic payoff forms such as minimun time, ninimun fuel, etc.

The same problen exists in differential games i.e. what payoff form

really models the air-to-air combat problem? 1In this dissertation,

TN g o e et

a realistic general purpose zero-sum payoff is developed for the first
time that allows differcnt roles to be assumed by each of the players.
This 1s done by simply selecting con;tants in the payoff function.
The importance of this payoff is demonstrated by its use in

air-to-air combat role decision-a problem of air-to-air combat

ParE

yet to be solved by any technique. its use in the combat role decfsion

SR RCAR T ma s A

¢
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logic of s simple air-to-air combat model is demonstrated.
Guide to Chapters

Chapter 1l presents a summary of the mathematical theory of zero-sum
differential games, the "Isaac's appraanch" to differential games, znd the

Isaac's Barrier theory. In this chapter the nature and importance of the

Barrier is discussed which is the basic notivation of the dissertation.

A major portion of the dissertation (Chapters III, IV, VI, VIII)
concerns itself with the application of the theory in Chapter II to a
series of progressivsly more complex air-tc-air combat models - i.e.
"dynazic modelling". In each model chapter, the following approach is
used:

1) Set up the problem

2) A;ply the necessary conditfons of Chaprer II

3) Solve the problem backward from the teminal surface and
identify the control singular surfaces

4) Apply the necessary conditions for the Barrier and solve for
the Barrier

5) Exanine the model paraceter relationships that cause
interesting cases of Barrier closure

6) Examine the sensitivity of the closure conditions

7) Draw conclusions from 1-6
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. @ Chapters III, 1V, and VI are model chapters that follow the above
plin. Chapter VIII is also a model chapter, however, its main
purpose 1is to evaluate the first order effects of variable velocity
magnitude on the problen.

Interspersed in the model chapters are Chapters V and ViI which
apply the nodeli‘resulcs t> a real Air Force problem - the relative
evaluation of fighter aircraft. A

In the process of solving the models in Chapters III, IV, VI and
VIII, certain deficiencies were noticed in the fixed roles that wese

assigned to the combatants. This deficiency led to the development

of a gene-al purpose payoff and its use in the role decision logic of

a given model. This work is presented in Chanter IX. As-will be seen,
},‘ the Barrier plays an important function in the role decisiun logic of

a model.

T fen ML CLRL o ARG S Mo e T e

P IYT

Chapter X suzmarizes conclusions of the dissertation and makes

recormendations for :.rther work.
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II. Differential Game/Barrier Theorv

The air-to-air cozbat rodels treated in this dissertation are
zodeled as zero-sum, perfect information differential games. The
purpose of this chapter {s to mathematically define this class of
differential games, to summarize what this author calls the "Isaacs
approach”, and to define the Barrier mathematically with its associated
implications. The mathematical conditions surmarized in this chapter
can be found in References [1], [2], [4], and [7]. Throughout this

chapter classical control theory terminology is used, nften followed

by a parenthetical expression shoving Isaac's terminology.

Zerv-Sur, Perfect Information Differcntia) Games

1. Problen Formulation: *

The state ecquations (kinematic equations) def{ining the dynamic

systens of the combatants ave

=F(x,u,vt)  ; xlE)=X, 12.1)

where X is an n-vector of states, M 1is an m-vector of player 1 (P)

controls, ¥ is a p-vector of plaser 2 (E) controls and t is the scalar

tize. The initial conditions are X at t, . The control vectors may

be subject to inequality constraints of the form

ol W SolicBical R

R(y,¥)z o
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where £' is an r-vector. ‘ine goal of the players it to find the
controls u* and ¥ that satisfy Eq (2.2) and produce a final state X
so that a k-vector of terninal conditions, ¥ , (terminal surface, ¥ )

is satisfied

wlxtp)=2 2.3
and such that the scalar payoff

t¢
T=¢Lxep, t;] + St Lix, U,y t)dt 2.4)

satisfies

T(iu)e TCuh v e T(u v . (2.5)

4) is 2 smooth scalar function defined on ‘U .
f and L are assur~d to have all partial derivatives.

If _L_J_* and i*can be found, the pair of controls is called a
saddle point of the gane, for obvious geometric reasoas in Eq (2.5), and
J(Q*, g*) is called the value of the game. As defined in Eq (2.5),
P (the pursuer) is minimizing J and E (the evader) is maximizing J.
It is the nature of Eq (Z.5) that if L does not pl:y the saddle point
strategy !*, P will be able to reduce J below J{ u™, *) an¢ gain
anu advantage never to be recovered by E. Likewise L can increase J
above J( ¥, \i*) if P does not play LJ_*. The loss 1a J of the non-
optimal player becomes the gain of J vo the optimal player, hence the

name zero-sun payoff. Perfect information comes from the fact that each
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player knows the exact state of the game and the goal, capability,
and limitations of the other player.
2. Necessary Conditions:

In the necessary conditions that follow, the existence of a J
saddle point solution is assumed. If U is the class of U controls

satis{ying Fq (2.2) and V is the class of ¥ controls satisfying

Eq (2.2), i.e. they are admissible controls, them a necessary

condition for the existence of the J saddle point is

minmox J(L,v) = maxmin J(y,v) ., (2.6)
velU veV VeV veU

A necessary condition for a saddle point of J is that the Hamiltonian

defined by

Ae)

H(x,u v

’

be minimized over U and maximized over V i.e.

Fy
H = min max H = maxmwn H
velU veV veT geU B (2.8)

A 1s an n-vector of costates that satisfies the costate differential

equation

. T
A =-VH

e

iy
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The transversality conditions at € are given by

H({;) = - 31’/2{:;

At =
Ay Vﬂt‘

$=¢+ey (2.12)

and @ 1s a constant k-vector to be determined. It can further be

‘shown that

)
-~ aH
H =985,

so if H does not envolve t explicity, then

*
H&) = COﬂStdnt = H({;\’ -aé/at{' e (2.14)

Eq (2.8) requires that the minim:zation and maximization
operations comnute which in general is not true. It can be shown,
however, that if the H function can be separated into a function **P

not involving ¥ and a function Hé rot involving v , i.e.

Hix, 00 A t) = H(x,u At)+H (x v A )« HIXAR)
: (2.15)
then Eq (2.8) is satisfied and a sa dle point of H does exists.

Unfortunately, the existence of a saddle point of i does not
necessarily imply a saddle point of J. Other procedures nust be
used to insure that a candidate solution of Eq (2.8) does indeed

satisfy Eq (2.5).
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In many cases, and very often in sinplified models, a contxol
variable ¢ will appear linearly in H. If the function aH/aC
happens to be zero for a finite time, then in effect H is independent
of C and it is not possible with conventional extremunm techniques to
determine the C that extremizes H. Extremal solutions that have a
control component such that 3%620 along the solution are called
singular solutions. Anderson {1] presents necessary conditions for

singular solutions in two-player, zero-sum differential games. If Hc

, is defined as HC_E a%c , then necessary coniitions for the

existence of a singular solution require that H. and all of its
time derivatives vanish. Successive differentiation of H,. N
with zppropriate substitution of the state and costate equations,
yields auxiliary necessary conditions such as . ( X, A,t) o
f_;c(_&'z‘_ '-t) =0 , etc., which nust be satisfied all along the
singular arc. Continued differentiation of H_ ofren leads to an
expression involving € explicitly which can be solved for the
singular control Cg . A necessary condition for the control to be

singular is

(2.16)

The nucber 29 is the order of the H derivative in which C first
appears explicitly. The upper inequality applies if C belongs to P's

controls and the lower inequality if € belongs to E's controls.
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3. Problen Solution:

As can be seen by the basic necessary cooiitions (i.e. Egs (2.1),
(2.3), (2.8), (2.9), (2.10), (2.11), (2.12)) the solution of the posed
differential game requires the solution of a two point boundary value
problem (TPBVP). This is usually done on a high sneed digital computer
using sophisticated numerical techniques. The form of these computer

solutions is such that for a given initial state X_ , the control

vectors will take the form

g*: !(5‘01t)

2.1
v= v (X, t)

Eqs (2.17) are referred to as open~loop controls and are optimal

only for the starting position X

X, and assuning that both players

continue to piay optimally. In order to know the svluticn for
another x_ or to take advantage of the inequalities in Eq (2.5),

vhen either p'ayer plays non-optimally, the control vectors must have

the forn

(x,1)

(2.18)
(%,4)

Eqs (2.18) are referred to as closed-loop controls. Im order for
differential ganes to have real time application in an actual
air-to-air engagement, the optimal controls or approximate optimal
controls tust have the closed-loop form. It should be noted that
finding the open-loop solution for all initial states of interest is

equivalent to closed-loop control.
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The Isaac's Aporoach

Several major concepts and an underlying theae pervade Isaac's

book which this author chooses to call the "Isaac's approach”.
1. 1lsaac's Problem Formulation:

Isaacs begins in Chapter I by developing the cencept of an
n-dimensional state vector X which is an element of a plaving space,
e . E is defined as sore subregion of Euclidean n-space. The %

yector is known by both players so complete information is assumed.
He envisions the game terminating on a smooth n-1 dirensional surface,

]: , which is taken as part of the boundary of E . In terms of the

Brh g

previous section, k has the value one (1). le justifies this single

i

scalar ternminal zonstraint from two points of view. The first 1s that

%1 g ki,

o

gty Thal

ternination on a physical surface surrounding P makes sense in terns of
relative positicn. A locus of positions surrounding P is described

by one scalar equation. hé second is practically; i.e., it is

-

easy to solve this differential game backwards since all the states and.

A e
SELARTY

;ﬂ
e
< 5
3
15

costates will be known on t .

Isaacs then discusses the problen of controliability in his own

Cragh e eiby

unique way. He distinguishes between the "gane of kind" which addresses

= e Vo

the question: can termination be achieved at all? and the "game of

degree" where there are a continuun of outcozes and we are interested

in terninating in some “best" way. It is the game of kind that later

leads to the concept of a differeatial game Barrier.

o

n ~3

5 b
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In Chapter II he presents the concept of a "reduced" playing

space E . This 1s a space where the states are measured relative

AN\ LA

to P and results in a playing space of lower dimension which is easier

to visualize. As will be shoun, 1t also has more meaning for the

b

players actually involved.

-

BHD

Instead of characterizing }; with a sirgle scalar equation, he

gl g o
RSV DY

chooses to describe this n-1 dimensional surface in E with n

equations involving n-l1 parameters s, i.e.

xl.:hz.(sl.lszn'°°-sn-g)shg(é)

Xp=hi(s,,8,,---,5,.,)= h;&®

Xn=hn(sy, 8,000 80dah(2) L (44

In his developnent, Isaacs never lets + appear explicitly. If

¥
64
e
£
51
>

4+ is involved exolicitly, he adds one more state cquation

x ;(t,)=o (2.20)

s

AR e

o

saons

and increases the dimensionality of e by one (1). As such, Isaac's

payoff takes the forn

T "
Sy,
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For each initial condition, 5.’ , there is an associated value
of the game J'()_(_p) . J can be looked upon as a function of the
state X Z.e. if the game were to be played optimally from X

’

J(x) would be the value of the game.

ey

2, Isaac's lecessary Conditions:

Y

In the development of the necessary conditions, Isaacs defines

Ty = VIX) (2.22)

and "main equation 1" (MEl) is derived as

mv’.nmaxrj,('E(!,H,‘_’)*L(.’S.,Q,!)}=°
8 ¥ wxS

(2.23)
where the n-.ix“ ard max are dene subject to the constraints on y and

v . Eq (2.23) is the sane as Eqs (2.7) and (2.8). He then substitutes

the optinal controls 2* and ‘_I* into kq (2.23) which yields

JeS(x vivH+Llx,uhy™) =0 (2.26)

Eq (2.24) is the same as £q (2.14) and is called 'mair equation 2"

(ME2). He further develops

T, =-9[3. 5 +L)

o P R ]

Eq (2.25) is the same as kq (2.9) (note the row vector
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For the terminal conditions he points out that J evaluated on ‘G is

T} =)
ia $E) | (2.26)

Therefore on G

n
@) _ S 3 2his) | kag,.ee,na

A5 @ % Tas, (2.2

Eq (2.27) cau be shown equivalert to the transversality conditions

of Eq (2.11). Eq (2.27) contains n-1 scalar equations and together
with ME2 evaluated on {§ completely determines J
3. Isaac's Problen Solution:

Since for a given 5ec . Jx ‘ is known, Isaacs solves

o
AL

the problen backward for all X € E thereby converting the TPBVP

i

into a final value problem., This he c¢dlls the “retroeression orinciole’.

Rty

Yote, this is only possible because t has n~1 dimensions. This

ot
S
K

e

backward solution fron 2; , not involving the definition of unusual

&y,
£

singular surfaces, Is acs refers to as the “solution in the small”.

The complete solution of a ditferential game requires the identification
of unusual singular surfaces such as the Universal surface (same as

the singular control discussed on pg 11 ), Barrier surface, Jispersal
surface, Lquivocal surface (see Isaacs for the other surfaces) etc.
Isaacs refers to the complete solution as the “solution in the large”.

Isaac's Barrier Theorv/The Gare of Kind

Isaac's Barrier theory bemins with the assumption that P's goal

is to force cane teraination (i.e. force E to cross c ) and E's goal
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1s to prevent game termination.
1. The Game of Kind YNear § :

Let iU be a vector originating on ‘c , normal to 7; , and
extending into £ . Then gré( % ,4, V) represents the rate of
change of state normal to and away from § . If x is onor
infinitesirally close to ?é and if gt{)o , then g will not be
penetrated. If QTf_ < O then penetration of 2: will occur and gane

ternination. Therefore, in light of the goals of P and E, P wants

\_g'T_S-__'c< © and E wants \_J_’Té ‘ﬂ >0 . Since QT§-

.
may involve the controls £ and ¥ , P should do his best to make U _-£
as negative as possible to insure termination and E should do his

best to prevent this i.e.

. v iy
w;:n mg.x X3 \.’(_,SL.V-) (2.28)

7

The sign of expression (2.28) devends solely on the X on '1: .
The region of {’, where (2.28) is positive represents a region where
E can prevent ternination regardless of P's best attempts. Isaacs
calls this region the "non-useable paic (¥UP) of ‘Q . The region
of  vhere (2.28) is negative represents a region where P can force
termination regardless of £'s best attempts to get away. Isaacs
calls this region the "useable part™ (UP) of c . The states on §
for uhich (2.28) is identically zero form a curve on ‘G vhich
separates the UP from the NUP. Isaacs calls this curve the

"boundary of the useable part" (BUP). 1Its significance is in that it

17
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" divides 'c into regions where P can force capture and where E can
prevent capture, As will be seen, it has najor importance in the
game of kind and coastruction of the Barrier.
2. Necessary Conditions for a Semiperneable Surface:
Consider the small portion of a surface S (n-1 dimensions) in
E showm in Fig. 1.Isaacs assumes that the surface separates the

neighboring space. The two sides of the surface are labeled by P and E.

Figure 1: Semipermcable Surface (5PS)
Definiticn: The surface S is seaipermeable at y_eScE i#3aTeUs
if Q -ﬁ then 3 no ¥eV that causes penetration to the P side.
Similarly 3 a YeV 2 3
no Wel that causes penetration to the E side.
Definitfon: If the surface $ is semipermeable V x €S , then S is
said to be semipermeable.

Let SC E be a smooth, semipermeable surface and let U be its
norral pointing co the E side. Then by definition of S semipermeable

. T
minmax U F(x,uyv)=o .

weU veV (2.29)

P

it

i

“d
7

ARV

e A T3
R0 S EASTE




.
B N
-

R e A R TaM e ANy LSRN - g il

R e e

P SONAE IR e E n

DS/NC/73-1

Isaacs refers to Eq (2.29) as “pscudo™ MEl. Substituting the semipermeable

controls O and ¥ into Eq (2.29) yields "pseudo’ ME2,

v i(x,T, (2.30)

On the assumption that S can be imbedded in a family of semipermeable
surfaces which £11l a neighborhood of S, Isaacs derives the following

differentfal equation for U .

(2.31)

Now consider a curve‘b in ‘é (i.e. n-2 dimensional surface in
E ) characterized by
OB: xl=h1(51p'.'rsn-2)

i=hilsy -+, 5,.,)

Xpr b sy -2 5.,) (2.32)

H

{

i

]

H

:

P 4

§ &9
>

and the problem of passing a unique semipermeable surface through JD .

Since e S, normality of U on O requires that

R

v

SRR

3 \j=1‘l."‘n_2
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and since the length of W is arbifrary, U is nade a unit vector

by requiring

(2.34)

Eqs (2.30), (2.33), and (2.34) provide n scalar equations which define
g on 09 . Isaacs then proves the following theorem.

Thecrem: Let Q and z denote functions of X and U as obtained
fron Eq (2.29). For a given curve D, let vzoon D be cefined

as by Eqs (2.30), (2.33), and (2.34). Let X( iS4y Tt 2 Snp )

and yw(T,8;,---,S, ,) be integrals of the differential equations

e ST N WA SO

.

(2.31) and the state equation, then X ('r“sl'--o.sn_z) is the parametric
representation of a unique semipermeable surface which contains °9 .
3. Barrier Construction:

As defined, the BUP on C has zero closing rate and can be though
of as a neutral outcome where the trajectory just prazes ‘C . To
either side of the BUP, E either gets 5:aptui‘ed or E escapes. Since

the BUP 1s an n-2 dinm curve on §C E » Isaacs constructs a SPS backward

R N N T L TV ST PR T AN I

fron c starting at the BUP. He calls this SPS the Barrier.
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4., Barrier Importance and Physical Interpretation:

The importance of the Barricr can be seen by the implications of the

following observations:

NI

1) The Barrier is a surface of state nositions in E that leads

SR

to a neutral outcoze for optimal Barrier nlay (i.e. the Barrier is

A

2 fanily of optinal escape trajectories where ternination is just

preveated).
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2) BDecause the Barrier is an SPS, it is never crossed provided
both players know its existence and play cptimally.

3) If the Barrier forms a completely closed surface in }5 N
it will divide !E into two parts. The region between { and the
Barrier represents a capture region; the region of E outside the
Barrier represents a region of escape.

4) 1f play starts with E outside the completely closed Barrier,
E can play nc~ -uniquely until the Barrier is reached at whica time SZ
;rovides an escape strategy for E regardless of what P does.

5) Even if the Barrier is not completely closed, its controls,
size, shape and sensitivity to svstem parameter changes, are important
to know. .

It is instructive to note that the method of Isaac's Barrier
developrment finds its counterpart in co?crol theory. Since every optimal
control problen can be converted to one with a terminal payoff (i.e.

a Mayer problem), the terminal surface can §e mapped with lines of
constant J pavoff whose backward optimal trajcctories form surfaces of
constant payoff{ (see isocost surfaces in Leitman [9]). The costate
vectors are nornal tec these surfaces. These isocost surfaces parallel
Isaac's SPS in that the isocost surface is not penetrated provided the
single player plays optimally. In éhe event play is not optimal, the
trajectory toves off to another isocost surfacce of higher J (in the
case of a minimun problem) where the trajectory will remain previded

play remains optimal from there on.
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Simplifying the necessary conditions of the differential game

DR

(i.e. Eqa (2.14), (2.9), (2.11), (2.12)) to the case where |l =0

N, T S,

yields.
mun max [ A -S-( X, 9,V )] = - a§/9t; (2.35)

veU xe

A= -v[ AT (x,0,v] (2.36)
PYCAR <§| ‘ (2.30)
-’y (2.38)

Assume now that 4> is some terminal payoff with no terminal constraint.

Then Eqs (2.35), (2.36), and (2.37) become °

NS ix, oty = (2.39)

- —V[A’igé,g’f )] (2.40)

T
Alt) =V (2.41)
< 4>L<_

Now consider the 4> isocost surface associated with a particular

winimax valve. Note that Eq (2.41) implies that:i({;)is normal to this

Lreaks

isccost surface and that Eq (2.29) at t_r implies the trajcctory just
grazes this surface. If 4) is specialized to be the physical distance
from P to the terminal surface Z; , then Eqs (2.39) and {2.40) are

the same as Isaac's Eqs (2.30) and (2.31) for the Barrier. This shows

e e el e ASRABLIY A

that the Barrier, often solved for by lIsaacs, is a family of minimax

A%H

distance trajectories - in narticular the distance associated with the

LN

terninal surface Z: . This particular Barrier scparates those

trajectories that can be drauvn into C from those which can not.

22
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III. The Simplest Model

This chapter applies the necessary conditions of Chapter II to
the simplest of air-to-air combat models. It is instructive in
that it illustrates the Isaac's approach which will be spplied to all
models in this dissertation. The model assumes that the players move
with constant velocity magnitude, their contruls (simple motion model)
being the angular orientation of their veleccity vectors. In esserce,
the model assumes that each combatant is highly maneuverable. The nodel
‘is first examined in two dimensions, A three dimensional model is
briefly discussed as an extension of the two dimensional model..

2D Constant Velocity

1. Problen Setup:

The coordinate system used for this model is shown in Figure 2.
The roles of the players are fixed with F pursuing and E evading.
At this point, this selection of role is very much intuitive and

subjective. Chapter 9 addresses the role decision problem later.

Figure 2: 2D Coordinate System
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To make P pursue and E evade, the payoff is taken as the
time for P to force E to the terminal surface § , i.e.L=1 . P
is minimizing and E is maximizing. Note again that the selection of
time as the payoff is somevhat arbitrary. For the moment, it
is simply a payoff that makes P and E assume the desired roles. There
is nothing to say that this is the best payoff to use to simulate
pursuit-evasion in a real combat situation.

The terminal surface, ‘@ , 1s assumed to be a circle about

P at a radius £ taken to be the effective gun radius of P. Its

> e R, St

usual description with Eq (2.3) is

= oy son Loty

-

PLxtt] = (%) + (emve)' 8% = 0

3
€
5

@ can also be described with Eq (2.19) as
xP(t-{) =S5, = h, ()
YP ('t_c) 52 = hz(é)

Xglte) = 5.+ LsinsSg = Hz(s)

Ye (t¢) S,+ RcosSy = hy(s)
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The state vector of the gane is

y_':ee

The costate vector Z\_ is

)\,‘P
A = X)p

)‘x
E
)\yr__ .
2. Application of Necessary Conditions:

MEL is

= min ¢ =
° meLP me::x[ M Vpcose, + )\YPVPSLn B+ AV cos o+ Xy;/esm o+ 1]_

= wviinV [)\ cos O + X SmQJ-@man [)\ WSO+ )\ si )+ =
&, PL™p PT My P o, El'xg R ne |+1

=min Ho+ max H +1
ep P = 3 (3.8)
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where
H,= Vp[kxpcos 8+ Ay, 3in e,,]
He = e[\ cos, + Ay sing, ]
The min HP conditions are
=4
MHpoo = tan ep*= >“/"/'>\,<
29, P

2 N -

2Hp >0 = sine. . Yo
=2 (3

o7 R

GS*
cos
. P=

The max Hg conditions are
B¢

* X
tan S = Ye/>\xE

. %k 4.)\
AHe © = 5ing. =

20,

Ye
2 T
Mg + Ave

The costate equations are

o T
A = -{HP+HE]5= -
implying that

X)) = constant vector = L({‘)

T S R

*
, Cos6_

sieopy

(3.15)
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The transversality conditions are
4
D A3h3) L adE =0 , k=1,23
= asy 25K

k=1 =5 A (g + A W) =0

k=2 = )‘Yp(t{.) + )\YE(‘E‘C) =

k=3 = A,ét;)l 0SSz~ )ye(k_c)}l sinsz=0o .

3. Problem Solution:

A A28 A St BN

Eqs (3.12) and (3.18) show that G

tan e;, = Z‘_\L.E = ot Sg = tanCoo- S3)
i Ax
€ t.F

Slte) = =53 = 8,

Also, Eqs (3.16), (3.17), and (3.10) show

*
+tan QP

t‘F XKP f“
and because A(L) = _X(&“) +then

“—xl"—’ =§_Yi =‘éoaer:

&

KEe

* *
eP (f) = eatt) = 9f+
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Even without integrating the state equations, the closed form
control laws are obvious, i.e. QP({)z 95({) is the instantaneous
line of sight angle as viewed by P. The optimal minimax t trajectories
are straight, co-linear lines.
4. Barrier Solution:
To examine the game of kind and the Barrier, we first exanine

€ and find the UP, NUP, and BUP. Define g]c as

,
"4! .

. 4
The normality condition of \v on § , ; \S'-Lah.:(é) =0 ,

. L= aSJ
J=12,2,3 ylelds

“1&4.)* \3'5(&“) =0

\fz({4) + U:‘(t{_\l = Q

U;({£)zq <os S_:, - ‘};_(t_‘sﬂ sin 53 = O - (3.26)

The unit vector condition iaplies

2 2 z
("_1*“’2"‘0—3*0—4,2)'{—:1 .
{
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Eqs (3.24) co (3.27) sinultaneously yield

T s s MR

-sinSs
iz
l -C05 53

A

Jz

q sinSs3
Jz
<osSs

Jz

v

AR NPT O B

s Code Ny

Expression (2.28) hecomes

‘min max ng-’ = mi max [ -SIn3: v, cos8, +
o ¥ =g & e = P

(3.29)

2z .

- < ; ‘
o533\, sin GP + Sjl_gss Vg €0S, + ©O5Ss vesmee}

Jz

The mininax operation in Eq (3.29) is sinilar in form to the minimax
operation in Eq (3.8) implying
sin8, = cos Sy cos 8, = snsg

and
o
sin © COg Sy

Eq (3.29) now becores

nin max o' §

& & %

a2y

AR
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Eq (3.31) implies that if

L
&

Lol
PRI

1) Vp>Vg then all of % is the UP.

PR

2) Vp=Vg then all of C is the BUP.

SR a3 4 ge et b

eI
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3) Vp< Vg then all of C is the NUP.

e
e

In case 1, all of t is useable for termination and nov Barrier

v
i

exists, In this case all of E is & capture region; E can not avoid

o kit

capture so long as P uses the line of sight control logic. Similarly,

wvt

in case 3 none of ’Q is useable for termination and all of E is an

A d iyl e D e s
223

L

escape region for E provided line of sight evesion is used by E. A

BUP exists on Y, only for the special case 2 where A Ve in which

S W Fages N5 T iy

case all of c i{s the BUP. The backward trajectories from the BUP
becone the Barrier which in this case is simply l:, itselt. Note that
the Barrier in this case is a closed surface and in a trivial way
separates E . The Barrier, t , represents the initial states for
which the outccme of the corbat is neutral. . Outside the closed
Barricr is the escape region where £ cdn play non-optimally until

the Barrier is approached.

.
5
3
3
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&
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5. Model and Barrier Conclusions:

Several things can be learned evea fron this simplest of models
involvingz highly mancuverable players:

1) 1Ir this pursuit-evasion model, the highly maneuverable cozbatants
want to align their velocity vectors along the line of sight P-E,

2) The Barrier and the outcome of the combat is critically linked

to the ratio of the combat velocities _\\L/."- .

P
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3) In an attemnt to improve the combat capabilities of either
player, the Barrier results indicate that the players should increase
their velocity advantage.

3D Constant Velocity

This model is a trivial extension of the 2D model. The
terninal surface, ’G » is a sphere of radius, 2 , about P. The
closed form control logic is again line of sight from P to E. The
optimal trajectories are straight, co-linear lines in 3D space. The

same general conclusions made in the 2D model apply in the.3D model.
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IV. Linmited Pursuer Model

The dynamics of the pursucr model Is made more realistic
by constraining him to maneuver his constanc ragnitude velocity
vector within a bounded turning rate, éée .

For a real aircraft

=) _ acceleration .L to Y

L Ivpl

Therefore, the added realism of the bounded turning rate nodel in

actuality is recognizing the maneuvering é{ limits of a real aircraft

inposed by either a structural or hurian limit. The evader has the
dynamics of Chapter III so he can be thought of as highly maneuverabie.
The model is examined in both two and three dinensions.

2D Linited Pursuer

£ g

[
ELEEEI S A e

e

n
(i

Fodenin s
£ it

oty e e

A
i3

citp o i

Figure 3: Reduced E Coordinate System
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Izsacs [7] solves this problem but does not interpret or
apply the mecdel or Barrier results.
1. State Equation Formulation:

The model dynamics in Chapter III was formulated in an inertial
coordinate system (realistic E ). The model dynamics here will be
formulated in the veduced E .

The reduced g is the set of orthogonal unit vectors i and 1,
fixed to P's position and rotating such that 2, ie always aligned with

)LF « The details of the state equation formulation can be found in

Appendix A. The state equations are

N
Vg SINng, ~ Y"'E%, of

VecosBg -V + x VP o
Rp

Note that

X - distance from P to E along l?
y - distance from P to E perpendicular to _\LP
eg- E's control; the angle between _\LF and !e

of - P's control; of = +1 (-4) is a hard right(left) turn

EERZIV SRV B 7T S




p : i y o . S R S 2
R e ZR R I S

LS

DS/MC/73-1

2. Problem Setup:

. »
- e, AT A AT
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The terminal surface, 'c s 1s again assumed to Se a circle about

P of radius . Its usual description with Eq (2.3) is

Ylx) = e + yitp -2 =0

Figure 4: Terminal Surface

€ can also be described with Eq (2.19) as
X)) = h(8) = L sins

Y = hy(s) = Rcoss

s =[s]

The controls for the plavers are

b oo kir e

o snr v il
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and the costate vector \ is

3= [);:} ) (4.6)

As in Chapter 11i, the roles of the players are preselected

by choosing qD:o,L=1 with P minimizing and E maximizing.
3. Application of Necessary Conditions:

MEl becones

Rt B R e et

O= munmox [ AN (Vesme -y 1"2:'«)*. A (Yeose, - Vp+ x‘_g.ro()+ 1] =

(4.7)
min (XAy=y A, Y+ Ve mgex (Xxsmse-b- Xycosee> - VP)\V+ 1

= Y%

Re
= Ye roinH_ +V_wax H_ + H
= « P EUg. e Te
where

HP= (K)\Y-y )\_‘3 ot

He = Nsmo+ Aycos O

S at et reodted catatmn At ) e e v s e

Ho = -vP)\7+ 1

S

The min H, conditions are
o P

o(*= -sgn (x)\y—ykx)-_'=~s3nA (4.9)

provided A= x XY—Y )\xﬂé © for a finite time. Since of appears

linearly in HP » there exists the possibility of « singular control in oy

TSI,

{f Az o for a finite time. A summary from Appendix A of the of singular

o
R

s1esEeR ey

A,

s rasn
- e




Ll , . S ™ . N .
B T s N e e e G LA o L)

DS/MC/73~1

f

T RN, ‘»‘yli:,h:?"

control necessary conditions shows

e

A= x)\y—ykx= =

vt o A
R PR PR AR

Sk

4
e
3
%
¥
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3 ¢
,2 3
7
; 7
1
1
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The max H conditions are
&¢

*
.ED_‘_"_E =0 = 'EOV) QE =

X
98¢ Xy . (4.15)

B R

2 *
PHe <o = smee=.__.ﬁ__ coss-_-_i"____(la.m)

%6 e RS

ME2 becomes

"\TIEEP“\' + VE/ )‘xz+ X\; - VPAV"*J. = O

The costate equations are aH
x
2u
ay
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The transversality conditions are Z Aahds) - D¢(S)~ o, j=1
& 3 o N

d=1 = Xx({;c)ﬂ wes-A(t)lsms =0 . (4.19)
4. Problem Backward Solution Froa Z: :

As indicated on pg 12, a closed form control is needed for a
real time application of differential games. In the case of the Barrier,
closed form control on either side of the Barrier is needed to insure
that the Barrier is not inadvertenly crossed. The backward solution

from the UP of C is analyzed to provide the closed form control on the

pursuer side of the Barrier. The details of the analysis are presented in
Appendix A of which the following is a summary.

The controls on the UP of ¢ are

9:({‘4) S

d‘('!:'[) s Csins)

A singular control in o{ occcurs at ﬁ for Szo and has the following

necessary state and control conditions.

X=0

R L e o

PR

ks
A

oiy s,
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The singular surface in the reduced ‘E is simply the y-axis
and reoresents a non-turning direct tail chase.
The trajectories and controls backward from the UP of }: for

S>o0 (note S<© is symmetric about the y-axis) are

e;'( T) = S5+ ‘_/{_ T (4.23)
P

o‘*('r) = Sgh [_coss - c.os(s-r,\_/ér)] . (4.26)

. ¥
o{ switching cccurs when

Np T = 2(Tr=s) ,
Re

*
Prior to ‘X switching the state trajectories are

v R e

(4.26)

y

*(T) = (-T)sin(s+2 1) + Ry (1-cos¥e 1)
Re Rp

LT AT

_ -— 4 V V,
v = (R-vT) cos \s—i—th_;‘r) + I?Pscnﬁgp'r - 2

IR

As will be seen later, the Barrier is completely closed for realistic

systen paraneters and the above trajectories intersect the Barrier and
3

terninate prior to o switching.

Fig 5 shows some of the basic backward trajectories and

£ i O SRS, Qan i e oo,
SRR Y, :

controls {(neglecting the Barrier) in both the reduced and realistic E .
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For most of the initial states, E orients
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Figure 5: 2D Limited Pursuer Trajectories & Controls
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Vg tangent to P's circular path which is a fixed angle in the

realistic 'g and travels in a straight line. P does a hard right turn

RS RERIIE S

until E is directly down the line of sight along ¥, at vhich time P
switches to the singular control o{=o© and the remainder of the trajecctory
is a direct tail chase. Now we¢ 2xamine the Barrier and its influence

on the solution of the gare.

[

Lokt

5. Barrier Backward Solution From Q :

i,

As in Chapter III we first examine Q and find the UP, NUP, and BUP.

s
i

Finld 3,

WRISIIN O

"

e

NRRI AL

SAv

2




i % e . St
IR ior v ¢ TER S {8 5 T UL S Pl S Ee A U Al R (RS

— SRS K

¥

o

k=

DS/MC/73~-1

3

Define U'l as
T

2
The normality condition of U on C , 2
(=1

ylelds
U';( (f‘c)i s S - U-Y (f_c).Q sSLNS =0

.The unit vector condition implies
2 2
b

Eq (4.29) and (4.30) yield

suns
_‘II& = cos S . (4.31)

Expression (2.28) becomes

.
minmax J 'S', = munmax[k’f Vesine, - Y v )+
[TV e o O x (Ve & RPY
+U'Y(VE<osee—VP+_\£gxa()] = (4.32)
P

— Vi 1 -
—.ﬁim';n (xo'y Y el +V mg.:(U;SLnSE-& v, cos 8;) -V, 0y

The similarity of Eqs (4.32) and (4.7) show that

Lrd

A = -Sgn(x‘r\{"yu_x)

sin 5,_-__ = __Yx , ¢os 55_ = Sy

Jo . v,? Jozs w2
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Substituting Eq (4.33) into Eq (4.32) yields
T - _v -
mgg.nmgx \_:_ﬂt_ _ég?lxu'7 Yol «+

%.34)
+ [oEent -0y

Substituting Eqs (4.3) and (4.31) into Eq (4.34) yields

mLn Mmox g’}l = Vg-V,wsS | (4.35)
VY t

Eq (4.35) and the definition of the UP, NUP and BUP implies that if
1) coss< Ve = sec LP
“p

2) c05S= Ve =» s€BUP
Ve

L X TV V.

3) wsS > Ve == se Nup
Ve
-1
If ve define S_<co0s V£ then
Ve

1) -s,<s<s, = 0P
2) s= ¥s, => BuUP
3) Isl>s, = NOLP

If Eq (4.32) is equated to zero it becomes pseudo MEl. Eqs (4.33)
are the Barrier controls and Eq (4.34)_equated to zero is pseudo ME2,
The costate Eq (2.31) for the Barrier takes the same form as Eq (4.18)

except that X is replaced by U 1i.e.

Ve g, o
R 1
__\_/El)'xd

3
Rp
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The state equations and Eq (4.36) are now integrated backward from
the BUP on ‘Q to get the Barrier. In doing this it is instructive to
note that the state, costate and control equations (i.e. Eqs (4.1),
(4.18), (4.9), (4.11)) for the UP of ¢ have the same form as the
state, costate and ccntrol equation (i.e. Egs (4.1), (4.36), (4.33))
nf the Barrier. The statc boundary conditions, Eq (4.3), have the
same forn except in the case of the Barrier, S is specialized to S, .
'1:he costate boundary condition Eqs (A.17) and (4.31) are similar except
in the latter case Vpcoss—VE does not appear and S :!.s specialized
to S, . Even though the backward trajectories of Egs (4.26) and (4.27)
are quite different from the Barrier, the backward solution of the
Barrier equations take the same general form as Eqs (A.32), (4.23), (A.30),

(4.26), (4.27), i.e.
U, ) = sin(s,+ _\T’Eg_ T) (6.37)
: P
Uy(T) = cos s+ X‘?g ) (4.38)
P

SelT) = S+ Yo T 4.39)
Re

AT = XUy-YUyx = -Rp[cosso- <os(s°+\/_£—,-)] (4.40)
P

ey AYIEAN

X(T) = (2-VeT) sin (S°+,X§P1-)+QP (1—(05%1-) (4.41)

R

YO = (L-VeT) s (s ) + RpsinYe T . (4a)
Rp EP

R A NA

3

Ehx sy g2
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Isaacs [7,236] gives a very instructive construction aid for
visualizing the shape of one side of the Barrier vhich is shown in
Figure 6. A circle C; of radius VE/VPR’ is constructed at
position RP oa the x axis. The terminal surface C is constructed at
the origin. A line i{s drawn from the origin tangent to the upper
part of C, . This line cuts ‘Q at the BUP. A taught string
can be visualized as wound around C,; and coning off of C; to initially
lie on the above line thru the origin. The point on the string over the
BUP is marked. As the string is unwound in a taught fashion, the point on
the string which was initially over the BLP traces the Barrier, i.e.
physically behaves as Eq (4.41) and (4.42). The angle \_/‘g'r‘ is the
angle between the initial tangent point of the string on C:_ and the

instantancous tangent point of the string on Cl .

-
A swiTcnes ON
THIS 250 Line

AN

Figure 6: 1saac's Barrler Construction
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6. Barrier Interpretation:

Note from Fig 6 that the Barrier throat always occurs when

Vo =
TorYeT =Ty (4.43)

This is easily seen in Fig 6, but can also be obtained from Eq (4.41)

as a condition to make X = . Substituting Eq (4.43) dnto Eq (4.42)
yields

Vi 4,44
Yi‘hr t-Esun(‘;’/ -s. )= RpcosS, RP\EP_ (4.44)

Since the left half of the barrier is symmetric abcut the

T R

’ Y-axis, the condition for complete Barrier closure is for.any portion :
of the right Barrier to have negative X f.e. E
RpsinsS, -2+ (T-3,) ‘\’_Z Bp>Rp . (4.45) ;

i\lé Since LOsS, = Ve /VP then
sSNS_ = ,-?- - LV%P)Z (4.46)
i 3

s ("")2— S,) = cos S, = Vs/\/‘> (4.47)

implying

-
- Sc = W VE/VP . (4.48)

© St e e VRSEMR RIS R

Rearranging Eq (4.45) and dividing by W, yields

%/2 < "—CVE/VP)z VEsm( ) 1.

P
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Defining -S'(-:%’) as

(%) = -BF e -2 (6.50)

e e

Eq (4.49) becones
Y
(< (.51

The equality in Eq (4.51) corresponds to the case vhere the Barrier

AL N NPT DN VEPPR

is tangent to and just touches the Y-axis. For % < -5-(.\’_5;)
P

s

* closure of the Barrier at the Y-axis is not grazing and occurs for

P

Vi
Se -+ _RBPT < Tr/z .

If we assume % < (%i ) and define 9‘ as that value

P

of ¥p 7 for which X = 0, then the time of closure 7¢ is
P

T = ©.Re
ve

Substituting Eq (4.52) into Eq (4.41) with X = 0 yields

o=(2-~ %Rpec)snn(s°+ec)+)2?(1- cose.) . (4.53)

Adune A ot Fma s

Dividing Eq (4.53) by Rp and rearranging yields the closure condition
vhen O € U5~ S, » dee.

;Q_ = Ve e - l - CosB. (4.54)
Re Vp © s (s +6,) :

Substituting the definition of O, into "pseudo" ME2, Eq (4.34), and

[N

using Eqs (4.37) and (4.38) ylelds
-_“’_zg ~y‘_$m(sa+9,_)} +Vg - Vpeos(s,+6¢) =0, (4.55)

45
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Since Y, >0 and sin (S,+ 6. )> O , rearranging Eq (4.55) yields

ZS_P = [V%P- cos(s°+e¢_)]/ sin{(sz+9.) (4.56)

I AR

which can be used to get )%P for given 6c . Figure 7 is a plot of
Eq (4.54) for lines of constant St 9& ‘bo,. Superimposed on these
1lines are lines of comstant %P .

We now use the Barrier and its closing conditions in Fig 7 to learn
as nuch as possible about the air-to-air combat problem and the problenm
parameters which have major affect on its outcore. Consider a combat
engagement where P is at Mach # » .8 at 30000 ft. altitude (i.e. Vp = 800

ft/sec). We assume that P maneuvers with a maxinum load factor of 5 gs.

The 800 ft/sec velocity and 5 3 load factor together vield a turning

$
&
4]
4
4

radius R?- 4000 ft. We further assune that under these conditioms,

P's zuns can effect a kill at a radius £ = 1000 fr. Since .’% = .25,
P

Fig 7 shows that 3u order for P to insure that the Barrier is not closed,

he must have sufficient velocity advantage so that Me < .69.
Ve
This i{s quite a large advantage to assume P to have. In a more realistic

s

situation we might expect P to have a velocity advantage \_/5_ ~ .85 -~ .95
(4

which inplies that the Barrier is closed. Note hov the added realism of P's

model has linmited his capability as corpared to the simplest model in

Chapter III where the only requirement for capture was Ye< 1. We
ve
thercfore sce that for a combat cngagement with realistic parameters (against

a highly mancuverable evader), the Barrier is completely closed.
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Faced with P's linited capability and a closed Barrier, we are
interested in the best way to improve P's air-to-air combat capability.
Any of the following three inmprovements snould increase P's combat
capability: 1) increase Vp , 2) increase R (i.e. weapons system
capability}, 3) decrease the turning radius R, (i.e. higher gs).

To make this decision, we assume that the area of the capture region is
a good measure of P's air-to-air combat capability. A closed Barrier

is shown in Fig 8.

Figure 8: Closed Barrier
The area of the capture region, Ac ,» is approximated by

Ac= Y lsins, = RS- Jép \:Z)“Q [i_ L\—/%)Z @s7)

where the fe- (R \:/E relationship is given in Fig 7. The
e VP

nominal condimn 2 =25, VE =.9, L =1000ftand V=
Rp Vp P

800 ft/sec is assunmed and the gradient of AC is given in Eq (4.58).
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ch 2sins_+ R sins, &(") QQL’)
Rp (%% ) atep

Y, 3in S, + R Asms, Q(’E (L)
9(%,,)

(!2 25m$ %__2 EP——’ ) a/\—;ﬁ;

a(.s) sins,_ 3% |

Since

Ak . AL _ . al%)
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then Eq (4.58) becenes

BTN R IR 2T

A ) Ye ’
25ms,,[ \rlz,, gp ;S@ ) ]

VA = ePsmso[ic_ _.._,%P a( )
a(ﬁf)
B Ve 1[_"‘ % /sms — sns, 3(75p (6.59)

VP VP

) |

Ye
From Figure 7 we get Ye = 213, LRP) .= 1,51, and A _E_p) =

Rp vy
a%g,) 2CE)
-.60. Therefore Eq (4.59) beccrmes

A, -28 £
ETZ‘P £t
VA, = |24 72
C 33. 1200 /-ct
A 2
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Eq (4.60) shows the overriding influence of Vp(xe.yqe ) on
P

P's combat capability. This result suggests that an increase of VP

inhances P's combat capability more than corresponding improvements in

e ¥ ot lhln

the weapons system or turn radius. It should be moticed that the tip
of the Barrier is located at Y, = .313 x 4000 = 1250 ft in front of P
and E's velocity angle off at the tip to effect the escape is

Q,a = S+ B, = 47°. Inside the Barrier, E's optimal velocity
angle off is much smaller ({.e. less than 10°) and indicative of a tail

‘chase maneuver. This digcontinuity of E's control across the Barrier

L et AT S s g,

is a characteristic of the Barrier.
7. Model and Barrier Conclusions:

1) The sizplest model showed that for P to guarantee capture,
all that was needed was ior Vg/ VP< 1 . P's dynamics was made more
realistic in the present model, in that P was limited in turn capability.
For realistic P model parazeters, and ‘és <1, the Barrier closes within
P's visibility range and much of the sta:e space, E » is outside the

Barrier and unavailable for capture of E by P. The main observation

to be made here, {s that the effect of P's limited turn rate on his
combat capability (note one would expect this to decrease his capability)

is reflected in the Barrier capture area as a numerically wmeasurable

W A e A

decrease,

2) In this pursuit-evasion model, the combatants are still
attempting to align their velocity vectors along the line of sight
P-E; however, the optimal control laws to do this have been refined

by the added paraceters im the problen.
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3) Sensitivity analysis of the Barrier continues to show that
:;; is the rost important parameter. The weapons capability Q is
P
next, followed by the turn radius E?p .

3D Limited Pursuer

This model development is original work. The intent in studying
this model is to begin to reveal what the out-of-plane optimal maneuvers
are and how they affect air-to-air combat.

1. State Equation Formulation:

The coordinate system for this model is shown in Fig. 9.

P mancuvers by selecting the magnitude, <{ , of his transverse

Figure 9: 3D Coordinate System
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acceleratien and its clock angle orientation, d) « The added
complexity of this model is that P must not only select the magnitude
of his transverse acceleration but also the bank angle. E continues
to maneuver by selecting the orientation of !E through the direction
cosines (1,™ , A ) which are relative to the X »Y s 2 axes system.

The model dynamics is formulated in the reduced E fee (x,y,2 ).

The details of the state equation formulation can be found in Appendix A.

The state equations are
X Ve 2 — T‘;z oy cos¢
P
Ve - Vp+ Vo xcosdps zsind)
R
P
Ver - ¥B
o
=2
2+
2. Problem Setup:

The terminal surface, {g , is assumed to be a sphere about P

of radius @ . Its usual description with Eq (2.3) is
- 2 2 2 2
$lxép] = x(tp) + yltg) + 2 -2 =

£ can also be described with Eq (2.19) as
x(tg) = hy(2)= Leoss,sins,
Y{t) = h(3) = Reoss,coss,
2 () = hy(s) = Lsins,

52
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Figure 10: 3D Terminal Surface
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The controls for the players are
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A
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and the costate vector A is
Ax

A= N (4.68)
A .

As with the other models,

LSRR R TEAD Sk v

the roles of the players are oreselected

2

by choosing 4) =0, L=1with? minimizing and E maxinizing.
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3. Application of Necessary Conditions:

ME 1 becomes

o= MV E -V . \
(5«".'43&“."7.){ x[ e 73PY°‘C054>)+

Yo x( %cosd+ ismcb)] + Xi [VEE -_‘égpa(ysm¢]+1}.—_

Rp

(:‘ig).‘;_:o([txxy—ykx) cos¢ + (-E)\\/—y)\i)sincb] -+

[-Q)\ +M>\ +n A\ ].._V Ay.,.l =

mn HP + Ve max Ho o+ H (4.69)

Hy= = [(KX\,-Y Nac) cos + (%k‘,—y)\is smd>]
(4.70)

2]

The nin HP conditions are

*
QHp -0 L2 'tam4> =B
EPN A

2 T *
IHp > o g sing =B ,cosd = A

242 VA%, g2 Jag ez

“.n)

(4.72)
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The max HE conditions subject to the constraint £q (A.47) are

Ax

’x:_._xyz_'_ X;

Ay

DNy

As

V sz+ )\yz-o- )\;

ME 2 becozmes
vV, 2, 2 2 z z
o = -_‘%,/A-;-B +VE/A,<+/\Y+A2 —XYVP*-:-'-(I..M)

The costate equatiors are

_V?P?otxyco's¢

=-1-¥ x (A cosd+ A%smd:) (4.75)
Rp

Ve & A, sin
p L4 &

-3
The transversality conditions z ALQHL(E) ___ad:(g) =0

; ]
= aso asJ-

j=1,2 are
J=z1 = ( A coss, - )\ysmsa)lcl wss, = o (4.76)

J=2 = (X sws;sms, -Aysins,coss;+ X, 055,) é =0 (4.77)
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4. Problen Backward Solution From 1; :

Ordinarily, the following analysis of the backward solution from
t; would appear in an appendix; however,it is essential to the
proof of a proposition that P's motion is planar. We begin by
detcrnining the controls on ?: , then the proposition follows.

Subsituting Eq (4.76) into Eq (4.77) yields

A*IQ = XY’Q'E’anSz/cossl

Noting that

A,Q= COWRY X,()]Q-.: Qeose, sins, X, ,‘:— Rcoss,sins, Xy I 5 29
B)c=(zk7-y ka)lc= Leins, )‘YI o -Lsins, )\y,ﬁ = o (.80

and substituting Eq (4.76) and (4.78) into Fq (4.74) yields for ML 2 on

G
(4.81)
2 2 2 2 2
- | . tan s, ,
o= \/E /‘t’ovn'.s1 X,,& + )yl& + _"i’z_._ k‘/le —\p)\/]t-e-:)_ i

oSS 1

Sirplying Fq (4.81) yields

)u,l‘ _ by -
VE”cosSzcosS, b y’t + 1 =0
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Since >\7>o Eq (4.32) yields,

A , _ 055, €055,
Y ﬁ VP(°S$1(D$5‘—'VE

Substituting £q (4.83) into Egs (4.76) and (4.78) vields

)\xl _ _swSj1 05Se

| A VpeosS$,¢0s5,-Ve

x%l - Stn S»
% VpeosS,cosS; - Ve

SOSIN derh w50 ks N
k& R R S P N TR
QYT P RTINS
PPN %

Noting that

PPN VI Wy -
I 22y + X e~ 7

P

we see that

_%
2 I‘C. = SINS;05S,

-
m) = CODS; 0SS,

F“I = sSmnsS
& - T

*
which shows that ,\_/E!ais perpendicular to ‘c . Since tand)' =

. +
=L , we use 1ilopital’s rule to cvaluate d L& , 1.e.
¥* lum %?:
ton ¢ l = T=o 9T (4.87)
€

lim C_li
T->0 47

2],
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Now

dA_-_dA - x +xS~ “Aayn =v)\+_‘_{gqsm¢(x)‘z-%)\) (4.88)
il >“/ LARAE TN A ol 4% =,

vwhich is obtained by substituting the state and costate equations

and E's optinal controls. Likewise

4 g

9B .d8 - 2N, 4ad 9 -yh = VLA e Yol cosdb (2h - x N, ) (4.89)
at ar b4 Y YAe-Y 2 P2 R ¢ x 2 g

A

Since

oy

AT

o
s

(x)\i 2 )l), - Qcosstms,Smsz——QsmSz SINS4¢osS, = o (4.90)
& Vp oSS, 0SS, - Ve

)

then substituting .g3s (4.90) fnto kqs (4.88) and (4.89), Eq (4.87)

becomes

'f'ond;l = if-' = 'eanSz/SInS:l
% *lg,

From Fig 10 we see that

E'é
3
i
3
i
:
]
i

>
ton® = _3mS: = ’L'Qn4> I (4.92)
coss,sINS, e

netan aml e

Therefore on 'Q P's optimal acceleration vector, the reclative position
vector, and _\_/_E all lie in the sane plane.
Proposition: For the 3D Linited Pursuer model, P's moticn under

-4
optiral play is planar (i.c. =0 ),
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Proof: From Eq (4.71)

.

ds
d (tond) = 2o
dt A?

By substituting Eqs (4.88) and (4.89) into Iq (4.93), the numerator

N e o A

N , of Eq (4.93) can be shown to be
(4.94)
N=Ad®_pda -(xA-2) S[V +Yr /A"’-c-Bz ]
T A T ae (Ag 22 %y Re .

Substituting Et; (4.74) into Eq (4.94) yields
3 2
N=(x)\%—a>\x)[1+ve ,/x:+ XY.,-X% ]

Froa Eq (4.90) we see that N ,& =0

Ak on MBI 8w oo

Now

(4.96)

GOl L ey 5.

d (20D = K Rgaxhg- -2
t

& r‘-vv_»é‘ &

Substitution of the state and costate equations into Eq (4.96) yields

i‘l_(x)\_z__- X ) = Ve(2 -0 Xx)+,‘ég wspB-Vesing A .
+ ? (4.57)
Substitution of thie optinal control Xes (4.71) and (4.73) into Eq

AN ey

3
H
;
A
2
4
H
1
1
&
i
#
3
H
%
¢
M
¥
=
3
i

(4.97) vields

.C‘_kae—%k,;):\le Aeda-Asd | Vo |-AB+AB
dt INENFONE Re({AZ L BT |
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- = e il
Since ( x)z 2)\,‘ ) ,Q = O we see that for all time

xAe-2A, =0 (4.99)

Eq (4.95) for all tize is therefore

N=o

d (tond®) = &
H(l«.w

cos? "

we see that

* 2 .
b = Ncosed _ _N

A - [62+ B2 (4.102)

Eqs (4.102) and (4.92) yield

(4.103)

4>Q:l = constant = 4;‘,&: .@

Though it is not i{mmediately obvious in the reduced E , E's ontimal
motion is straizhit iinc motion. This fact is more casily seen in the
real space in which Ay , )-\’ ani )\% are all constants. Since

on Q P's acceleration vector, the relative nosition vector and Mg

all 1ie in the sace plane, we sece that P and £ are in rotion in the

sarie fixed pnlane. This shows that the solution of the 3D Linited Pursuer

model is a simple revolution of tihe 2D Limited Pursuer model about thie
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Y-axis. All the conclusions made concerning the 2D wmodel apply

in the 3D case.

5. Model Conclusion:
The most inmportant added conclusion to be drawn from the
3D nodel is the 3D closed form control law of P:
1) P banks his aircraft to keep E in P's longitudinal pitch plane.
2) Following this bank schedule, P pulls max gs until £
is directly line of sight out the nose of I''s aircraft.
3) P then pursues a direct tail chase.
This maneuver, which is an optimal tactic for this 3D model, has

been suggested by tacticians and is called the "slice" manecuver.
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V. A Relative Evaluation of Fighter A/C Capability/An Application

B B 3 s

sk

This chapter presents the first known practical application
of differential game theory to a real fighter aircraft problem.
The problem is the following: Given several fighter aircraft, similar
in many respects, which is the best fighter aircraft from an air-to-air
combat point of view? This {s not unlike the real problem faced by
the Air Force when it must select the best contractor proposal on a

nev fighter aircraft system. Though many factors influence that final

R VRS « SR PN

decision, a numerical ranking of the proposed aircraft as to their
air-to-air coubat capability is vital to that decf{sion process. The
technique presented here was recently used by the Air Ferce Flight
Dynamics Laboratory as part of its evaluaticn of the recent Li- it Weight
Fighter proposals.

Model for Comparing Fighter Aircraft Capabilities

The model is the 3D Limited Pursuer. In this model the pursuer
maneuvers by selecting the bank angle and load factor within his
capability. Important parameters in this model are maximum load
factor, turn radius, weapons envelope and closing velocity. In order to
have a means of comparing the several aircraft, the standard evadiag
afrcraft will be the highly maneuverable Evader in this wmodel.

The results of chapter IV show that for a realistic coubat

engagenent (i.e. max tracking 85 =5, M% = .6 - 1.1, gun capture

B

radius & 1400 ft., V‘/VP =~ .9), the Barrier is closed and very

sensitive to the ratio of combat velocities VE/V « Sensitivity
P

results of that Barrier indicate that 1t is much better to have the

TR PR

5

62
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ability to control VE/G/P (i.e. accelerating capability) than to

ey

U e S

increase the load factor. The pursuer employs the 3D slice maneuver.

Evaluatior of the 3D Linited Pursuer Model as a Comparison Tool

One of the best means of exanmining aircraft maneuverability
throughout the flight envelope is with the "max maneuver corridor"
concept developed by Boyd. It is a one-vehicle, energy naneuverability

(EM) analysis which draws attention to the rore iazportant regions of

« ik o 5 St oo A, m > B,

the altitude - Mach diagram vhere a given aircraft has good maneuverability

SR e SR

ot

and consequently a good chance of winning a combat engagerent.

TARN N

o

It does not indicate how to use that capability or indicate the outcome
of a particular engagerent., Though it is a powerful tool for defining
and comparing aircraft mancuverability, it, like many other air-to-air
combat models, does not address many of the model problems mentioned

on page 1 . The technique developed here considers many of those

32 ARG

problens and is a blend of EY results with differential game Barrier
results. .

With a gun capture canability of JQ = 1400 ft., results of

H
3
3
3
%
1
H
i

Chapter IV show that in the Mach # range .6 - 1.1, that the Barrier

&y

closes in front of P in the range 1550 - 2400 ft. This is within

<

g% R RARME Y S A

pilot visibility range so, as will be applied here, visibility (i.e.

part cf the comvlete informacion problem) is nct a nroblen. If we
place E on the furtherest tip of the Barrier (sce Figure 11), we are

assuning that P has somchow obtained this tactically sunerior position.
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SRR

This is not an unlikely assunption since many documented kills

resulted from a fortunate initial position at engagement. Since

drd ety

“

the aircraft are close, a one-on-one assurption seems to apply.

Sat

Since P is tracking for a kill, he will be limited to 5 g% because
of pilot linmitations. e are assuming that the constant speed model

can be applied with small error (sec Chapter VIIL for justification),

N EAACAY 19N

3l

that P can effect the slice maneuver, and that the standard evader

e

SR

has the fortunate velocity direction associated with the molel's

HR Y

optimal strategy (inside the Barrier the velocity angles off are small
and realistic of the not unlikely tail chase maneuver).

Specific Application to Relative Fiphter Aircraft Capability

The technique compaves each fighter aircraft in the study
against a standard evading vehicle. Since the 3D Limited Pursuer model
showed that the ability to control -\é% was paranount, the difference in
the accelerating capabilities (i.e. specific power, ¥y )‘st;,
of each fiphter aircraft against the standard evading vehicle was
gencrated (see Figures 12 - 17). The evader is the superior F
vshicle in most cof the flight reginme and is initially placed 2t the tip

of the 3D Barrier (see Figure 11). P is given a closing velocity -

here 50 ft/sec. Z now employs his APy  advantage in an attempt to

inprove fg% .« 4As E does this, the Barrier shrinks tcwvard P;  however,
(]

P is clesing at an ever decreasing rate. One of two eveats will occur:

elther the Barrier will shrink faster than P is closing and E will escare,

bk A MAARAS v X S
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or else E will cross the gun canturc radius before he gets outside

A

the Barrier. The specific result depends on the Mach # of P and

e L B I R z»:g

g

the altitude of the engagend¢ht, i.e. APg . To make the analysis

s W
e

more meaningful, we define the combat arena to be Mach # .60 to 1.1

e

AN PR e

SRS

and altitude 0 to the aircraft operating limit. This region is representative

TG

of the area of the h-mach diagram where visibility is good, turn

radius small, and turn rate high. A computer program was built using

SO

the numerical Barrier results of Chapter IV and the properties of the

ey

aircraft to deternmine the escape ~ capture result for each point of the

A s b WKt s KD A

combat arena. The results are shown in Figures 12 - 17.
The area between the heavy black lines in the combat arena

is the region where cavture of E occurs irn spite of his . Y advantage.

5
)
H
H
i4
o
£
£y
3
:
N
¥

The area from the dashed lines to the heavy black lines in the combat
arena is where E escapes because of the APy advantage.

Since a standard evading vehicle is used in cach case, it

is « ble to assume that the fighter aircraft with the largest

capture area in the combat arena is the best afrcraft. The percent

o TAerieton et oy W AAENG § Vg S 4 95

area of the combat arena associated with capture orovides a means of
numerically ranking each fighter aircraft. Six aircraft are compared

in Figures 12 - 17. A definite numerical ranking results.
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VI. Linited Pursuer ~ Evzder Model

The dynamics of the model in this chapter is nade more realistic

by constraining both the Pursuer and Evader to maneuver their constant

B P WP T

speed velocity vectors within bounded turaing rates. Neither player is

o

highly maneuverauie in tae sense that the velocity vector can be
oriented instantanecously. The intent in studying this model is to

find the effect of the more rcalistic evader on the solution. The

1 teAtn, Wk v e e

HERRRS R S

model is examined in both two and three diwmensions.

2D Liuited Pursuer -~ Evader

b

™
T

Isaacs [7) partially solves this problem but does not interpret

or apply the model or Barrier results. The model dvnamics is formulated

C OV

in the reduced EE . The coordinate system for the 7D riodel is

shown in Figure 18 (similar to Figure 3).

T P

Figure 18: Linited Pursucr-Evader Coordiaste System
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1. State Lquatfcn Formulation:
The reduced $ is the set of orthogonal unit vectors 2,
and 1, fixed to P's position and rotating such that 1, is alvays

aligned with .\LP . The details of the state equation formulation can

be found in Appendix B. The state equations are

- Y/
x Vesmne —v2r &
E RP

v Vg o5 © -VP+Xyé£o(
P

lé Ve — Vr

Rp

where

X - ¢istance fron P to L aleng Mp
Y - distance from P to E perpendicular to l/.}.

© -~ angle between ){_P and )LE
K - P's control; of = +1(-1) is a hard right (left) turn
& - E's control; R =+1(-1) is a hard right (left) turn

Note that the state equations here are very sinilar to tue
state equation (4.1) for the Limited Pursuer model - the only

difference being that © 1is no loanger a control variable but a

state variable whose differential equation is &q (B.13).

o
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2. Problem Setup:

The terminal surface, C s is again assumed to be a circle
about P of radtus £ , however, at any © . f; i3 shown in
Fig 19 vhere it is visualized as a cylinder in the reduced E .

Its usual description with Eq (2.3) is

Figure 19: Terminal Surface

¥
!
i
{
i
¥

¢{x)] = xz(q) - sz.-ﬂ-lz= o (6.2)
vhere ©(t;) 1s free. € can also be described with Eq (2.19) as
x(&L) = h(s) = dsins,
y&) = hy(s) = Reossy
ol = hyz)r= s,
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=-[3)

The controls for the players are

Y = [)

v =(e]

R R L I W WLV Sy

and the costate vector A 1is

A

x
= Ay
)‘e

As done in the previous models, tne roles of the plavers are

preselected by choosing (.b=o , L= 1 vith P ninilnizing and E maxinizing,

et R

tote

3. Application of Necessary Conditions:

ME 1 becomes

T

A

. Vi .
O = mun max [X (V SME - _,f_d)-;-x (\/ CosO -V, +x_\i>d)+
il Ve YE‘P 7+ Ay \WVe PR

a-ke(.‘gi—___e—_:_fpc()+ 1] =

Vo min | xAy-yh~2glel + V2 max [ X

+ Ve [ \sine+dycosB) - A+ 1

Vv, H Ve max H. + H
Ve mun + Me
= "% P = & e °
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where

Hp = [x’\\("‘l g~ >‘e]
He = [Ao 8
Ho = Ve[ A snB+Xycos0] -NVe+1 | (6.])

Ay L WA AN
42 LAY i

FONOT N,

The min Hp condition yields
P

g e g2 o fa e b

o e - sqn LAg]

AQ = XX\’-—\IX,‘—XG

provided Aeql: © for finiie tine.

The max Mg conditions vield
8

3*= sgr t):Q]

provided X #0O for a finite tare.
Singular controls in both o and @ can occur. A summary of the of

singular necessary conditions from Appendix R shows
Ae-; XXY—YAX— Xo =0
Ae = Vka =0

Ag = —%'A o = o
Rp
Y

y o

Therefore, the singular control in o requires the added necessary

conditions
(6.15)
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A summary of the @ singular necessary conditions from Appendix B

shows
(6.16)

Ve ( )\Y SINB- )\Kcose) =0 (6.17)

2
= Ve A SmB+\,0s8) = o
= B( ' >‘y (6.18)

AxSIN@+Aycose 2 © (6.19)

There it is also shown that Eas (6.16) to (6.19) imply that

- - = = <
& = Msne-\wse =M\g=0=< Xxsm9+)\ycose
. (6.20)
are the added necessary conditions for a singular 8 .

Substituting Las (6.8) and (6.10) into Eq (6.6) yields ME 2

~¥<‘Ep | Agf + %E&I Xol + Ve[ A sme+ )\Ycose]— )\YVP+(:;.=2;:; )

The costate equations are

K -V x )‘Y
x Rp
. VB ot Mg
23% Rp

%% Ve (A\ysinB -, <0s®)

e AT a1 L e

e S CAUE
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Note that the first two costate equations here, are the same as the
costate Eq (4.18) for the Limited Pursuer model, The main influcnce
of the added realism of this model, i.e. the velocity angle off © ,

is thru its effect on )\9 in the switching functions Ae and )\e
which determine the controls.
3
i S$) =
The transversality conditions are Z)‘%Qg,gé_p - ags_./ =0, (6.23)
j*&,z (=t 5', ° 1Y
j=2z = Xeltd=o

e da mnbns e 0 NN S

J=1 = o= >\x((:£_\)-°- COsSy + )\y({‘.‘)(-ﬂ 5-n$1)+ Xe(ﬁ_;):-(x)\v-y)\,()!_--Ael .

6.20) & Y
4. Problen Backward Solution Fron ‘C :

As was done in Chapter 1V, the backward solution fron Q is
done to find the control logic on P's side of the Barrier. The details
of the analysis can be found in Appendix B of which the folicwing is
a summary.

The controls on the terminal surface 6 are

5*' e = ~sgn [ sin Lsz—Sxﬂ (6.25)

a(*l - 53"\:5'"51-]

&

(6.26)

There are singular controls for botn P and E. The E singularx control
condirions are characterized by
Ay =0
e =
a =o . (6.27)

Since R=© , the E singular control vields a nmon-turaing straight line
dash. The P singular control conditions are characterized by

Ag= xky—ykx—xe =X, = & =0 . 6.23)

79
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RS

Since of=0, P's singular control also yields a non-turning straight

R0 2T

line dash. 1If both P and E are singular together, then =0 also
and the double singular condition corresponds to a direct tail chase.

Now 1f E is singular then Appendix B shows Xe=o , 8-

2

Ax b
€050 & X A=xA\-y\. Under these conditions
NG VEvOR o N7

the state equations, Eq(6.1), and the costate equation, £q (6.22),

SiNB =

reduce identically to the state and costate equations for the

Limited Pursuer model. From this it can be seen that the E singular

case in the present nodel has the same solution as the Linited Pursuer

model. In this singular case, E initially just happens to have the

o I

242

position and © angle off associated with the optimal eE freely chosen

Mo

by the highly maneuverable Evader in the Limited Pursuer model.

The optimal controls, for the rajority of e , are either

haré turns or the singular straight line dashes. Based on the Appendix B

discussion of the closed forn control logic for E while P is singular,

and vice versa, the closed foram control logi.c (see Figure 20) for this
model (neglecting other singular surfaces - sce pg 16 ) is: P does a

hard turn into L until M_ is tangent to E's hard turn circle at which

P

time P switches to the non-turning singular control; L does a hard

turn away from P until y,E is tanpent to P's hard turn circle at which
tire E switches to thie non-turning singular control. WUith this knowledge

about the singular control surfaces, we continue with the backward

i kot e B

solutien fron G and return to the controls on K .
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E swWITCH To
SINGULAR

~P SWITCH TO

/ SNGU\AR/
2

Figure 20: Partial Closed Form Control ogic

Eqs (6.25) to (6.28) are expressions for the controls on c as
a function of the state on e . It was stated, but not shown, that

the UP of C was cnaracterized by those states on C for which

Vp (O3S - Vg cos(S,-S1) > © (6.29)

It will be shown (see section on Barricr) that equality in Eq (6.29)

defines the BUP.

Figure 21 represents the cylindrical terminal surface, 2: s
of Figure 19 cut along the S, (i.e. € )axis at S,=%T and unrolled
on a flat siieet. As in the other models V}gp( 1 . Eq (6.29)
equated to zero defines the BLP and is shown by the curved lines in
Figure 21. A pair of curved lines rerrecsents the BUP for a given .YVE<1.

The area of c between the diametrically onposed narts of the BUP is

s it £k < S N DS RS I~ WD TIRTNATI R 0 0.2 o - AU BRTRATERI B0 50

RO RS
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the UP of C « The vemainder of }: is the NUP. Eqs (6.26) and (6.28)

show that for the UP of C and
1) O<Sy <'T =2 ot ,a= +1 (i.e. hard right turn)
2) -We 440 -.-,ex)tg -4 (i.e. hard left turn) (6.30)
) s;=0 > d,§=° (i.e. P singular)
4 s, = Dispersal surface

This shows that at ‘c ternination, P is turning into the position
of E. Even though termination on t does not occur for the NUP, the
controls are defined as in Eq (6.30),however, with the 3igns changed.

Eqs (6.25) and (6.27)-.show that for the UP of ﬂ and

1) O<S,-S,<T 3,Q= -1 (4.e. hard left turn)

2)-w<e5,~5, <O g| =+1 ({.e. hard right turn) (6.31)
3) S,-S;=0 2 g| - o (i.e. E singular)

1A
4 Sp-S, =T = Dispersal surface

This shows that =zt Q terminution, E 1; turning in the direction of
the line of sight i.e. E is trying to lessen the closing rate to prevent
termination on ‘C . For the NUP of ’Q the control signs in Eq (6.31)
are reversed.

Figure 22 portrays several k.ids of termination on ﬁ by reference
to specific points on Figure 21. For points 1, 3, 4, 6 in the UP, P
is clearly the attacker and E the evader. Points 7, 8, 9, 10 are

also in the UP, however the positions are such that P probably should not




1. 5425, ,UP 4, 5,XS, ,UP
el Br+2 otzel, Bo-1

2. 535S, , NUP 5. 5,¢5, ,NUP
Re-1, Be-1 Az-1, Brsd

7, SpSy2MW 8.5, , 5,37 2.0¢5,¢% , e T
DISPERSAL UP, szl Brél UP, olaql, 8»-2

Pigure 22: Positions at & Termination

attack but evade and :ics versa with E. The problem here is with

the payoff function fuim and the fixed roles that have been assigned

to the players. The problem of choosing a gecod payoff function was
mentioned in Chapter I and again wentioned in Chapter 1II - 1 4n

the 2D Constant Velocity model. Tiuls payoff problem is addressed later

in Chapter IX. The nain point to be made here is that the backward

solutions from points such as 7, 8, 9, 10 may be interesting to do

nathematically (and as it turns out extremely difficult because of the
Dispersal surface in this region of C ) but have little use practically

since the roles of the players are fixed. This is not to say that the
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present model is not good - just limited in sone areas of & for
practical application. The ares of ﬁ where the present fixed roles
have practical application (i.e. when the roles make sense) is around
~W<S3 < W, sinultancously with [{S,.-S,[ < 772 . This
area is enclosed by the heavy dashed lines in Figure 21, Wit the

controls on 5 and the part of C useful for practical application defined,

the analytics of the backward solution from this areca of c is done
next. The E singular traj.:t.ries are done first.

As was previously discussed, the E singular case is the same
as the i.imited Pursuer model. The only real distinction to be made
here betwveen the models is one of nomenclature i.e. 9& and © are
similar; A and Ag are similar; S and S; are similar, A surmary of
tl}e equations for the backward solution in the E singular case foilous.
These eguations come dircctly from the Limited Pursuer model. Because
of the X ,© symmetry in the problem (to be shoun later), only the
©<LS, < T that 1lic in the UP (i.e. ot¥= +1., 3.‘;.-. © ) are exanined.

The results are

Sp=5, (6.32)

>\9 (1) =0 (6.33)

AT = sm(s;#."_‘g;'r)/[vpcossl-vsj (6.34)

AyCT) = cos(sa+ ‘_"Zap'r)/[vpcossl-ve] (6.35)

A () = —Re 0sS4-0s(S,+Vp T -
(=4 LVP%S.—VE]E 1 ( 1 _QEP )] {6.36)
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olr) = Sy +VpT

Ry (6.37

X(T) = (L-VeT)sin (S;+%T) +R,(1- cosyég;'r) 6.38)
vy = (R-veT) cos(s_t-e-_‘é_:'r)-c- EPsm,‘éz’r . (6.39)
¢
As with the Linited Pursuer rodel, these trajeztories will generally
intersect the Barrier before switching occurs in Eq (6.36).
The backward solution of the P singular tr;'ljcc:ories is straipat
forward; hovever, they are not very useful in the analysis of the
. Farrier. This is because their initial conditions on G U.e. s, 2)
do not interscct the BUPF. These P singular solutions are not presented.
Wlext we examine the backward solutions fron the UP of ﬁ where
o(*to and 3'*:& (=] . The details of this aralysis is done in
Appcndix'n of which the following is a summary.
For the UP of {: the controls are hard turns as shown in Figure 21
with L switching and P switching at Te and ‘T, respectively defined by

A
Ye Ty = 217~ 2|5,-5,| (6.40)
Re
Np T 2= 2ls, ) (6.41)
R, A
For a given sS4, S, in the UP of c and for 7T smaller than

To or 'rA the state solvtions are

*
OlT) = Sa+ (-2 a'yr (6.42)
P ]

* *
X@T) = A Rp( l-ccsoLT\;gT)+_Q5,n(51+°‘*‘v~PT)+
P =N

*
+ Be [cos(seot’¥eT) - Cose(’T)] (6.43)
&* Re
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¥ = o *Rysin(e Ve 1) + R cos(sy+et Ve T) +
Rp Rp
- %E['sm(sz-f-d*\?’?z T) - :-meL’l’)] . (6.44)
P

This completes the solution of those trajectories immediately leaving
the UP of C . These trajectories will be discussed later. To
complete the analysis of those trajectories leaving c , we now examine
the Barrier.
5. Barrier Backward Solution From {p :

As was done in Chapters IIL and 1V, we first examine ‘C and

find the UP, NUP and BUP, Define gltas

U

x
—"—'IQ‘-‘ Yy o

Ug

ejt[ Oy 'f{ .

Uy

3
The normality conditions of \J on & . Z ﬂ-“.alf,b{?_, =0 , wield
’ (=1 3s;

for

J=1 = UL('L'_L)CDﬁS& - 0:1('(:_;) sSiNS4 =0©O

j=2 = o’e({:ﬂ =0
The unit vector condition implies
z 2 4
U;({'L) “+ 0'\'({'{) + U_é (f_‘) =1 . (6.48)
Substituting Laq (6.46) for U'x(t‘() and Eq {6.47) for U"g(t(_) into
Eq (6.48) and solving Eq (6.48) for U:/G“") vields

\S\-‘l&{) = C0sS; .
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Substituting Eq (6.49) into Eq (6.46) yields

Uy {.{:‘): smMSy . (5.50)

AL NE RS E NP

Lxpression (2.28) beconmes

o

. T .
mgnmg.x _U;i, = mot‘,n “”g-“[‘fx(vasme“/-g—;d)*

+0y (Vecoso - vpr x‘_éto() +\>'9(_V§-6—T\;fd)]| =
P & |4 &

= Ve mun | XUy -y U, - |ot] + Ye mox [ 6, +
Ry o“‘ {. Y 3 9] )C P._EMB Le] t

+ Ve oysmo+ v",cosslln~ oy VPlt . (6.51)

The nin operation yields

‘B'Lln= —sgnU\Je] 6=~ Sén[’ﬂ"y"l\&- ‘fe),ln (6.52)

A
provided A#O for a finite time. The nax operation vields

3]& = sgn [Jg]’& (6.53)
provided 3o for » finite time. Substituting Eqs (6.52) and (6.53) into
Eq (6.51) yields

mgnmgx SF| <[~ % 18]+ ¥e 1l +
Ve (Uysine+ U'y‘-°f9) - "’v"?]‘n . (6.54)

Substituting Eqs (6.3), (6.49), and (6.50) into Eq (6.54) yiclds

o B W e VS AL BB ¢ SR

m-.;;" max _\[Ti- 'IC = VE[S.ms_‘ SINS,+ cossicossz]—\/ocossl_ =
S '

= Ve (OS(SQ"SJ.) 'Vp wsSy . (6.55)
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Eq (6.55) inplies that if

1) Ve(os(5,-S1)-Vpos51 <O, then {315, e P of &,
2) Vgcos{ssS1)—VpeosSy=o , then §s45.5 € s ofg

3) Vg cos(s,-Sy)-VpeosS; >o , tuen §£s.,5.% & NUP of &
(6.56)
These equations justify the statements made on pgs 81, 210 and 211,

Having defined the BUP, the Barrier is constructed backward from the
BUP by satisfying the necessary conditions of the Barrier.

The first necessary condition is “pseudo” ME1l, Eq (2.29),

o= mnmox I -S— (x,0,¥) = VP min HP+ Ve max H,_ -~
3 P o ‘?k.

+ \IF_L\J',‘sm B+ Uy osO ) ~UyVp 6.57)

vhere

= (xoy-yVx~VYslat = [Rg]et (6.58)

~
Hp

~S
He

= (vl B ‘ (6.59)

The min HP conditions yield

= -sgn (Re] ’ (6.60)

A
provided Ae'«#o for a finite time. The mgx HE conditions yield

= sgn [ (6.61)

provided \)'Q#.o for a finite time. lMNote the possibility of singular
controls on the Barrier. Substituting Eqs (6.60) and (6.61) into Eq (6.57)

yields "pseudo" ME2, Eq (2.30).
o=-% 1A9|+ we] + Ve Uy sine + 5, cose) -ty Vp (6.62)

The costar.c cquations for the Barrier, g (2.31) are
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%%
. =3

lé: = =V C Eziii> =l %Y Ux
Rp

Ve (u:, SING - Uy cosO) (6.63)

As was done in the Limited Pursuer model, the similarity in the form
of the nccessary conditions for the Barrier and the form of the

necessary conditions for trajectories from the UP is pointed out.

BUP(Barriers)
) x({:;) same form
except s and s '

dre on RUP .

same state Qciuaiioﬂs

Ve (My3ine- ) cose}f ve (Uysine- v, cos8)

M) = sms, ) o)
) d VposS;-Ve 0SS, ) x( é) sSINS,
Ay () cosS, Sg) - osss
VP(DSS‘ - VE(OSLSz_ Ss )
)\e ({(.) = © U'e(-e.‘ - o

d‘:-sgn[xxy-y)\x- ] &= -ssn[x\r\(-y\rx-xfe]
when Ag+o when Ke £ 0
8"= synlhe) g = syn[5%)
when Mg #o when Ug 2o

K2 ¥ .‘)‘* ~*
Ols =Q, 8, =c ds=0, B;=0

Fx

G B S R b i 4 I %

-

3
7
§ %3
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As can be scen, the BUP (Barrier) equations are sinmilar in form
to the equatioas for the UP - the only difference being the initial
values of state and costate variables for the BUP (Barrier). Although
the resultine trajectories will be different in shape (because of
different boundary conditions) the form of the solutions are the sane.

Taking advantage of this similarity, the equations for the Barrier are

*given. The E singular case, for that part of the BUP where o< 5:1 <
is done first.
The E singular case requires that §=S,(sce Eq (6.32)). However,

since S, and S, are on the BUP, Eq (6.56) yields

COSSy = Ve/VP . (6.64)
The E singular case also reguires Cfgcl')zo (see Eq (6.33)
Realizing the Sarrier boundary conditions of Eqs (6.49) and (6.50),
Eqs (6.34) and (6.35) show that
Oy (7) = sm(sl+.‘%1‘) (6.65)
0 (1) = cos(3avieT) ®.66)

Likewise, Eq (6.36) shows that

Ke(.n = -’EP[(°$51"‘—°$C$L+-‘-‘/2€PT))

S5 AR

and Eqs (6.37), (6.38) and (6.39) stow
&)= S +XeT
Re

o

23

x{T} = ( P_-VET‘) sin (514-)123 T)+ EPL:L— Cstég'?)
P 4

91
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Y@ = (Q—VET)<0>(S1+.‘%‘I‘) + 2P5'”,—\§:;T
where S, is defined by Lq (6.64).
Reference o Eqs (4.37) to (4.42) shows that the E singular case on the
Barrier of the present model is exactly the same as the Barrier of
the Limited Pursuer model. The P singular case is done next.

The P singular case requires 5, =© . Fronm Figure 21 and
Eq (6.56) for the BUP it can te seen that S,30 on the BUP. It was
for this reason that the P singular trajectories from the UP were not
presented. MNext we exanmine the backward Barriec‘ trajectories from that
part of the BUP where E F= O .

To be on the BUP, S; and S, must sati;fy Eq (6.56) {see also
Figure 21). Eqs (B.46) and (B.47) indicate, realizing the Barrier
boundary conditions of Eqs (6.49) and (6.50) that.

~
U, (M) = SHn(S;_-(—a(-éP—PT) 6.71)

0'\,(“") cos(s,_-o—z.\_é’_'r) .

(6.72)
{4

Eq (6.42) shows that .
= Y. Vel
o) = s+ (EH- LT .
Eq (B.50) along with the Barrier boundary conditions of

Eqs (6.49) and (6.50) shows that

) = ke [cos(sz_-sz)- «s(54-5, + %EEE 'r)} o (6.74)

E switching on the Barrier occurs when 7 equals

T defined by (see Eq (6.40))

\_,/%;7'9 = 2W- 2|5~ S,|
&
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Eq (B.55) shows that

KQLT) - ’2?[ cosS, - cos(S3+ A YP 7’)]

(6.76)
o(

~t
and ? switching on the Barrier occurs when T equals 'T'A defined

by (see Eq (6.41))

Ve "ﬁ, = 2T- 2|s,]
Rp

.

The X and y Barrier solutions are similar to
Eqs (6.43) and (6.44) {.e.
x@) = % Rp( 2- cos,(_g'r) + R sin(sg+ ,(qu-) +

Ry
+ Re [cos(sz-&-ol_z'r) - cos e('r-)] (6.78)

yir) = rai smd_ép_'r -+ ,Q_COS(S_1_+O{ 7-) -

-Be[sm(s+d¥e7) - sin ecr):]
B Rp

This completes the solution of those trajectories immediately

6.79)

leaving the BUP.
6. Barrier Interpretation:

First the X,0 symmetry in the Barrier (as well as the whole
problem - was mentioned previously) is shown analytically. Counsider

a case where S, = Sic: >0 and Sz"'szo vhere o(si-sz<'"'7_

Then o = +1 ana 'é‘ = + 1 and the Barrier trajectory

i.e. Eqs (6.73), (6.78) and (6.79) yield

1t LB e s % st s
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8'(m = 5Z°+(-_. - V:g'r'
e = EP(:L-— SVPT)-Q-,QSIn(Sw(-VPT)

-+ Ee_[_ms C 5294- Ve 1-) - 05 9 (T) ] (6.81)

yHen = », sm__r;'r +‘Qc.oscsw+_z—r) +
Rp

- l?a[sn')g S-‘_,° 1‘) - sNe L'l‘)] {6.82)

Now consider the case where S, =-S54, and S =2 -S,e

Then $4-S,5-S,5+Cee S~ (S”-Szo> 2nd since originally

©< Sy5-Speé W, then in this case  ©> $;-5,> ~ T,

Therefore in this "mirvor image" case, ot —=-1 and E =~1

and

[

Eqs (6.73), (6.73) and (6.79) yield
eg) = -3 L"" —-VYe \T (6.83)

) 20" UG, " e

W)= -Rp (1~ cos_Eg‘r) ...,Qsm(s_w-&-_?_'r) +

-Re [cos( sw-a-_}_'r - cos & ('r) ] (6.84)
Y@ = Rpsin _z T+ LR c.os (Siat _.zv-) +
-R [sm (sp0+ ..&'r) - 3N e L'r)l (6.85)
A conparison of equations shows eCr) = -9{.1') y X (1') = -%xX ()

+ -
ad Y (T) =y (@) ; hence, the X, ©

symmetry is shown. With this symmetry in wmind, the Barrier shape,

h ot et

passible closing conditions and sensitivities are examined.
As will be demonstrated shortly, by a comparison of the Barrfers
of the Limited Pursuer model with the present model, the Barrier

2nd its closure properties depend on the particular air-to-air combat

Ceari o WK SR e A

model and its system parameters. Except for the simplest of air-to-air
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combat models, the Barrier is generally not a completely closed surface
in !E ;s however, selected Barrier trajectories or trajectory types

can be made to close for judicious choice of the system parameters.

As seen in Figure 22, not all of the escape trajectories making up the
Barrier are physically interesting for ome reason or another ~ in this
particular case, role, However, there are physically important

Barrier trajectories on each Barrier. It is the closure of these
Barrier trajectories (can be thought of as a partial Barrier closure)
and their sensitivities to system parameters that is important to study.

This pt will b more clear as we examine specific Barrier

trajectory closure in this model.

Figure 23 is a pictorial drawing of the terminal surface, t; .
and the Barrier leaving the surface. Both the right and left BUP
are partially drawn on Q . The E singular line on l‘: is also drawn;
it appears as a helix wrapping around z: « The origin of the Dispersal
Surface oa z: is also shown. The A trajectory is the E singular Barrier
tvajectory in Eqs (6.68), (6.69) and (6.70). The projection of this
trajectory onto the X-Y plane (mote that ©(7) is increasing
positive on the right side and is increasing negative on the left side)
4s identical to the Barricr of the Limited Pursuer model (see Figure 6).
If we examine the conditions that allow the E singuludr projections to
4unt touch the y-axis tangentially (i.e. a grazing Barrier closure for

the Linited Pursuer model), Eq (4.43) shows that ESCFI:<€§% for the

95
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right projection and ©(T)= -"72 for the left projection.
Therefore, even though the Barrier of the Limited Pursuer model is
also a Barrier trajectory in the preseant model, it can be seen from
the above that the completely closed Barrier in the Limited Pursuer
model I ot a closed Barrier trajectory in the present model. This is
not to say that closed Barrier trajectories do not occur in th. present
model, just that the added realism of the E model has changed the

conditions under which closed trajectories occur.

Since P 1s pursuing E, V% <1 was selected earlier to
> !

correspond to P's role. Now, the realism rdded to this model was a
limtted turning rate for E - previously E was infinitely maneuverable.

In order to give E a change at closing the Barrier completely or partially,
it seems logical that the turning rate of E should be larger than the
turning rate of P 1.e. é,%P> 1 . 1In the analysis that follows this

is assumed. Therefore, P is faster but can not turn as rapidly as E.

We leave the required magnitudes of _\LE N _9,;

, etc., for closure °
Ve ep

to the analytics of the Barrier.
The P trajectory in Figure 23 corresponds to the case where H=+1
and é‘ =+71 . Eq (6.73) applies here and shows that

o) = Sz + (6p-6e) T . (6.86)

Since ée> éP ,» ©(T) 1s decreasing i.e. the B trajectory is heading
toward the X-Y plane of ©=0 . Likewise, the mirror i{mage of the

B trajectory off the left BUP is heading toward the X-Y plane of

I Y 2 A TR LA
AN
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©=21 (same a3s ©=0O ). If both these trajectories meet the
respective planes at X=o , the y's of the two trajectories will be
identical (because of the symmetry) aluag with the ©Z being zero ( 277 ).
If the parameters of the problem can be found toc cause this to occur,
the Barrier will be partially closed for these specific trajectories.

The E trajectory in Figure 23 corresponds to the case vhere

o =41 and B' = -1. Eq (6.73) applies here also and shows

e(‘_l') = S2+ ( éP+éE) T T, (6.87)

() is increasing rapidly and heading towards the region of the

Dispersal surface (defines a surface of unusual enconnters which have
for each point on the surface two different trajectories leading to the
same payoff i.e. escape in the case of the Barrier). The mirror image
of the E trajectory off the left BUP is also heading for this region

and closure on the Dispersal surface. Note that the Dispersal surface

itself is a kind of Barrier trajectory closure. As was mentioned earlier,
the encounters on this surface are the head-on-type etc., where the
present fixed roles are not justified and have little jractical application.
As will be shown, this leads to certain anomalies in the Barrier of
1ittle practical use.

The C and D trajectories in Tigure 23 are trajectories which branch
of £ the E singular trajectory. The D trajectory .orresponds to E

L
switching frem the singular @=o to g = -1 which heads the

o At e e o i S o B s A it AR

trajectory towards the Dispersal surface region. Tor the same reasons
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just discussed, the D trajectories are not examined. The solution of

the C trajectorics is done next.

The solution of the C type trajectories (i.e. X =4l , 8 =0

RN P R P 22

followed by E = 1) satisfies the necessary conditions for the Barrier

st

trajectories, however, subject to the boundary conditions on the E
singular trajcctory £t *he point where switching occurs. Let T be

the time that E awliches :oni.ois 3nd define SP, as

(6.88)

Note that 9’,5 1s tke angle that P turns thru while E is on the
singular Barrier trajectory. Substituting Eq (6.88) into Eqs (6.64) -

(6.70) gives the boundary conditions at Tx i.e.

-t
-— Vi
s, = cos e)
VP

(6.89)
\}'ecrs) =0 (6.90)

U, (1) = sin(Se+ B . (6.91)

0, () = cosls3+0p;) (6.92)

Ro(R) = ~R,[ cossy - cos(s3+80)] (6.93)

OUT) = S1+ Sps (5.94)

x(1z) = (2~ tzP Bps) SIN(53+6p;)+ Ry, (1-<ose )
(6 95)

yiR)=(2- \_\/{s_.;re,,ep,) €25($3+0,5) + Rp SN, 6.9
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tote that

O(T5) =54+ 8, < 2T-73, {6.97)

54

E T 3

or else switching of ;'( will have occured. The details of the C
trajectory analytics can be found in Appendix B of which the following
is a summary.

Time after Tg is defined as

T =77 ; (6.98)

After £ swvitches to +1 the results are

(6.59) T

" -
B(T) = 5,4+ 6,6 (1 .52)7

The P switching condftion remains unchanged {.e.

~F A~
O+ T, = Yo (Tg+ Ty ) = Ve B = 2m-z2ls,l (6.100) E
Rp RP EP A
The )(('r'), \/(1') state sclutions subject to the boundary conditions of r
Eqs (6.89) - (6.96) are
X(t) o ~cos(O, +VeT)r (L - ')‘>m $,46, + Yo )+ 3
X = e O T (K 2T
+T¥§g w$(51+9%+_\g_’r’) + 1 - _‘g_s os ©(T)  (6.100) >
P P P .
YTI_ (2. .Vee, )cos(sy+0, +\2 ) +sin{s_+ Y1)t “
RP = T,; PS) ( 1 Ps -é- ) \®ps, .E-P )
—Besin{5+6,,+%7) + Be sma(T) . (6.102) .
e Rp Re

Eqs (6.99}, (6.101) and (6.102) are the equations for the C type

%

Barrier trajectorics in terms cf QP, » T’ , and the parameters of

the problem. The equations are only valid provided P switching does not

i bR s Sy

occur i.e. Eq (6.100).
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Again it is noted that £oré£>6}, that ©(T") (Eq (6.99) will
decrease towards the X--y plane vhere €& =0, Likewise, the mirror
image of the C trajectory off the left BUP will increase toward the
plane of ©@=2W . As with the B trajectories, if these C trajectories
meet the ©=0(277) planes at x=0 , this will be a case of Barrier
trajectory closure.

The importance of the B Barrier trajectory closure and the C
Barrier trajectory closure is seen when it is realized that the ciosure

‘43 taking place on the totally singular surface i.e, the ¥y -axis.
Since 2 majority of the trajectories from the state space come down
this totally singular surface, partial Barrier cl/sure on the y -~axis
provides an E escape route for a majority of the state space.

The parameters of the problenm determine the vy position at which
the Bariier partially closes on the Yy -axis. Assuming that tle coabat
has startea from a state that has led to the totally singular y -axis
(see Fig 20) and assuming that E has not passed the y point of Barrier
closure, as that point is reached E pulls max 35 and P pulls max gs .
Depending on the parameter magnitudes of the problem (see Figure 26),

E may or may not switch to the singular non-turning trajectory. P
always maintains nax gs « The result is that E ¢scapes. To better

visualized the shape of the Barrier in the region of ‘nterees ({.e. the B

. -t
and C type trajectories which occur vhen - cos Ve £S5, £ cos Ve )
Vp Vp

and the interesting case of Barrier trajectury closure with the y~ singular

101
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axis, cross sections of the Barrier perpendicular to the e(sz) axis
in Figure 23 were calculazed.

Figure 24 shows cross sections of the Barrier for © <£S, £
<o§lie =<O;'(.9) = 25.84° for a specific case of velicle parameters

Ve
that result in Barrier trajectory closure with they-singular axis.

)
For ~tos ¥g & S, £ © , the mirror image of Figure 24 about the
p *

Y - axis applies. Cross sections of the Barrier are presented for
S, = 0 and S, = 25°. The cross sections for any S, between 0°

and 25° are curves of smooth transition (not shown so as not to clutter
Figure 24) between the two shown. Note that each cross secticn represents
those X-vy positions that lead to escape for E provided E's velocity
angle off is initially the S, value of the cross section. Note also
how the Sz = 0 cross section closes with its mirror image on the

Y - singular axis at %P = .490. For the given system paraceters,
this %P position ic the closest distance that E can be from P

in a direct tail chase and still effect an e'scape. The importance of
this XL position is pointed cut later.

Re
Fote thut by increasing SEP to .250, closure of the Barrier

with itself and the y singular axis {s not possible (see dashed 1line
i Figure 24).

Figure 25 presents cross sections of the Barrier for © <

Vv At o deanenle bR

- -
S, £ Cos .}’Ig = Cos5(,9) = 25.84°, however, in the region of the
P

left BUP and Dispersal surface where the roles are ill defined. As can

s o

be seen, the cross sections are inside of C and terminate very close
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to § . Isaacs [7: 217) treats this condition as an aromaly in the

Barrier sinca the Barvier is only defined physically external to '@ .

As can be seen by Figures 21 and 25, E 18 considerably behind and left
of P with Mk pointing towards P. Both ? and E are doing hard left
turns since P is pursuing and E evading. It is very obvious that E
has’the wrong role f.e. he should be turning right to attack, not left
to evade. The fixed zrole situation happens to be poorly defined for
this region of the Barrier and is causing the above anomaly. For this
* reason, extensive analysis of the Barrier in this region is not done.
The role problem is discussed later in Chapter IX.-
A computer program was written, using the equations defining

the B and C trajecto y types, to calculate the parameter conditions

that result in the interesting Barrier trajectory closure on the y
singular axis. The results of these computations are shown in
Pigures 26 and 27.

Figure 26 shows the maxinmum value of % for closure, versus
P

the combat velocity ratio Yé—; for fixed turning radius ratio %&
P €

The results are based on éE> éP . The sigunificance of "max"

is the following: for a given Y and Br (d.e. Se = Ve Rp

ve Rg “6r VpRe

if the actual .:SE/P is larger than the max % , then closure is not
- P

possible (see Figure 2% for example), Superinmposed on the data are

2
lines of constant g ratio, gE/P = a.LE/Q L -‘{_\_’_e_)_g_e .

P\ Vpl e
Below the dashed line, the escape trajectories are non-singular i.e.

type B. Above the dashed line the escape trajcctories are partially
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singular for E, i.e. type C. Computer results showed <hat the
switching of E to the non-turning singular coatrol always occurvad at
the point where E made a quarter turn in real space. Knowledge of
the dependence of the closure point on the state of the sare (i.e.
Figure 27) =i-ether with the above optimal control information yields
the following closed loop control Barrier escape laws:

(1) At the Yy Barrier closure point, both P and E pull max gs .

(2) Provided E has not already grazed l: (i.e. B type trajectory),
E switches to the nou~turning singular control at the 90° point in
his turn.

Figure 27 shows the .closure .Y’sp dependeace for the lower
right region of Figure 26 - a region of practical interest.

Some general comments can be made about both Figurcs 26 and 27:

1) As _‘el_z.z goes to infinity (.e. Rg = 0 and E can tuzn
e

instantaneously), the closure conditions are the same as for the
Limited Pursuer model. )

2) For points above the dashed line, E is not pulling %s
terainally.

3) &§=/p 1s greater than one (1).

4) Note the parall:l tendensiés of the _% and SE/P curves.
P

The eff:scis n the closure cenditions of making E more realistic,
can be seen froz Figure 26. Note that the -%é’ max value is always

less than that value for the Linited Pursuer model f.e. the decreased
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capability of E requires less capability of P to insure capture.
A specific case helps to point this out. Take the case where V=800

Phecr Q= 5% (fee. Rp =400 ft) and let \L%; -.9

Figure 7 or Figure 26 ( BB = oc hows that max  equals .445
gu 8 (25 ) shows tha %? quals

in the Limited Pursuer model. Assume that in an escape maneuver that
Arg= 7gs (i.e. a structural limit) implying that
= 1,4, Figure 27 then shows that .LEPMQK = ,114 - a considerable
. reduction in the required capability of P's weapons system to insure
capture.

Having exanined the basic Barrier shape and the closing conditions
of interest, we now examine the sensitivity of the closing conditions
in an at.tempc to learn more about thz parameters most influencing the
combat outcome. We begin by constructing a "realistic" combat situation
simila; to that used in Chapter V.

Consider a cozbat engagement where P is a Mach # = .8
at 30000 ft altitude (i.e. Vp = 800 ft/sec). 1t is assumed
that P's tracking ability linits him to a 33 maneuver (f.e. Rp
= 6600 ft). It is further assumed that in an evasive situation, E
can sustain Ggs (1.e. 5% v 2,). It is further agsumed that the gun
capability of P is effective at 2 = 1400 fr. (i.e. %;, - ,212). To
guarantee that the Barrier does not close, Figure 27 shows that P

wust have sufficient velocity advantage to have Ve, 9.

<
Ve

s o m———— o i WV s <ot g
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Figure 27 also shows that at VE. = .9, J—) = .490
~p Rele

implying that Ye = 3230 ft. Note that this vy, is within

e

pilot visibility, yet not so far away from P that E could be inside
this point under a surprise engagement.

Considering this, or any other specific engagement condition,

5
:

s
S I

A

we are interested in the best ways that P and E can improve their

combat capabilities. These combat capabilities are given analytical

Fo N

measure through the distance Y. : a decrease in Yy, indicates z more
capable evader in that E is closer to P and yet escapes; a larger v,
indicates a more capable pursuer in that E m:tst be farther away from P
to escape. The parameters under P's control are ’Q,VP and Q Lp -
The parameters uader E's control are Vg and O_,_E « Improvements in

E are examined first. As an example, we begin with the "realistic"

combat engag t just disc d

Since % = ,212, E does not want to change the parameters
P

to bring the combat condition below the .212 1ine i.e. escape is not

possible if E does this. Since VE/\/p = .9, then Y = 3230 ft

{.e. Y‘/Ep = .490}). Tvo cases arise here: actual vy > VY,
or actual Y< Ye . In the y>y. casc, Figure 27 indicates
geveral possibilities for E to escape:

1) Since y>Y, , E can remain on the totally singular y - axis

PRI T A D A

until P closes to where = y. = 3230 ft. At this poinmt E initiates the

required 63; (i.e. 55/', = 2.0 required for escape) turn and P does a
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POV

38 turn. The result is that E es:apes.

K
< 18 S Y . > Y‘ -,
; 2) Since y>vy. (i.e. assume %, = .550 = 490
‘ where .490 1s that %P for 25,‘5/? = 2.0), Figure 27 indicates

that E need not wait until Z/,ZP = 490 to escape, but could escape

at Y/EP = ,550 provided éE/? & 2,27 1.e. 35 =2 6.8 8s .

E could also reduce V (i.e. VE/VP ) on the v - singular axis

vwhile P s closing (i.e. while Y/jo  is reducing below .550).

This will reduce the required 8&/P for escape below 2.27 yet not as

lowas 2.0. In essence E is trading his velocity for a lesser value of
Ae/p to escape. The net result is that if E chooses to escape

at a )72?> .490, by either option, it will require as/P > 2.,0.

3) The final optiox; is that if E has the AF, advantage, he can

4
JUPERRICTITY. DU
o Srge . s
e
/‘:aﬂ%

increase VE/VP vhile P is closing. For example, if _‘%, can be
. P >
increased on the y -singular axis to .91, then at %P - 212

ke )l
I : the required conditions for escape are Yé = 480, @% = 1.95, it
i s i ig . P
’1 § 3 Note this allows E to be closer to P, use léss than 635 s and still escape, 4 3
. ; If we continue to assume that a smaller Ye indicates a better evader, %
~ S
then in the Yy > Yy, case, 3) 1s the most attractive improvement for E :
)
E. Note here the increased emphasis on velocity and reduced és . é :
e » L fz’gﬁ 3
. In the y<Y, case, E must reduce -y, . Figure 27 indicates only one R -
. ?f 24
option: i ’
L.
] 1) 1Increase Ve (e VTJG ). This will decrease Ye and the % 4
] P N~
%s required. 5 “
) ‘f "
R k Note again the increased eumphasis on larger velocity and reduced és . R
P }
%‘ Improvenents in P are exanined next. 13
b \: g i
% 3 ¥

1 m
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The saue “realistic" conbat engagemeat is assumed. We now
examine the effects of increases in Q , Vp al Q Lp OR escape .
Stnce g/rz,, max = .212 ( R, = 6600 ft), Figure 27 shous that any

increase of Q makes _% >% max and escape by E impossible unless
P P

E increases 5% {at Vg/v,, = ,9) or increases ‘_/5_’ (at 9% =2).
This is advantageous from P's design standpoint since it forces

E to higher Ve and to escape. Note also that it can increase
obigher Yo and g, to escap
Yg/,zP « For exaxple, consider a 100 ft increase of Q to 1500 ft

= isco
(i.e. %P %0oo = ,227). If E increases OJ_C to escape, Figure 27

ghows that Yc equals .520 yfelding Y. = 3430 £r - a 200 ft increase
=,
. P
in v, .
Now consider an increase im \j, of 25 ft/sec. The new Ye s 120

vp 825
= ,873 and at the same 3;’; Figure 27 yields }é max = ,197,
P

Now Rp cquals 8252/3(322) = 7050 ft and the actual Qé 15 4o
P

Therefore % is approximately uanchanged at .49 yielding Y, = 3450 ft
P

~ & 220 ft iacrease in v, .

Finally consider an increase of d_,_P by 1o<F§/ 21i.e. O'LP= 3(32.2)+
10 = 106.6 c}s’“"- . Then geyP equals 6(322)/1G6.6 = 1.81 and Figure 27 shous

%, max = .190. Since R equals 800°/106.6 = 6000 £t, the actual
%/EP is 1400/6000 = .233. Under these conditions Figure 27 shows that

escape is impossible unless E increases a e or Vg .« If E increases Cl_‘_E

SaTeTE i oy s
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enough to escape then 124, = ,535 and Y. = 3210 - a decrease
P
of 20 ft in Y. . If E increases V, enough to escape then Ye = 49
Re
and Y. = 2940 ft - a decrease of 290 ft in v .

Summarizing these cases we find:

1* PZor a 1 ft increase of { , Y. increases 2 ft

2) For a1l ft/sec increase of Ve Ye increases 8.8 ft

3) Foral ft/sec2 increase of OJ,P » Yo decreases 2 ft.

Note that in each case of an improvement to P, that E is captured unless

he {mproves ( Le etc. Assuming that this increase in O_LEis

within E's capability, the results indicate that an increase of Vp is
the best improvement to make to P. Since E's strategy for improvement
is clearly to increase Vg , this also suggests that P should consider
1ncreasing VF . Apparently, the aircraft with the greater ?s will

have the advartage in improving the combat condition in its favor.

7. Model and Barrier Conclusfons:

1) 1Ia this nodel, E's dynamics was made more realistic by
limiting his turning rate. 4s with the Linited Pursuer model, this
decrease capability of E was reflected in the parametric conditioss
causing Barrier trajectory closure. Again it is pointzd out that the
Barrier is a tool that does analytically reflect the combat capabilities

of the players.
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2) In this rodel the control laws ave more refined, but
still reflect the combatants attempts to align their velocity vectors
along the line of sight P to E. Closed form control laws for the
important cases of Barrier trajectory closure were found.

3) Sensitivity snalysis of the Barrier continues to show that

‘,’5; is the most important parameter. Figures 26 and 27 optimally
reveal how turning gs , velocity, P's gun capability, and relative
;:osition affect the outcome of a given terminal combat engagement. Its
application to relative . raluation of fighter aircraft is discussed

{a Chapter VII.

3D Linited Pursuzr-Evadex

In the 3D Linited Pursuer model, the out-of-plane optimal
maneuver for the case of a highly maneuverable evader was exanmined.

“elice maneuver". The intent

The optimal maneuver was sht;wn to be the
of the present model is o examine the cat-of-plane maneuver for a more,
realistic evader, who 1like the pursuer i: alss limited In turning rate
and nust control by gs #nd bank angle. Williamson-Noble [15] partially

examines this problem in the realistic ten (10) dimensiuvnal space E .

The 10-D 6 wakes characterization of the 3D ma rs and iated
controls extremely difffcult. Williamson-Noble also alludes to a problem
with the model near a tail chase situatlon. He attributes this to the

singular surfaces near this position.
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The model development that follows is original ia that the
ten (10) dizension problem is reduced to four (4) dimensions. Also,
the four dimensions are chosen in such a way as to be physically
peaningful to the combatants involved and to take advantage of the

previous two dimensional model work. As will be seen, this choice

of coordinate system does much to aid the characterization of the

controls associated with the 3D maneuvers.
1. State Equation Formulation:

The coordinate system for this model is shown in Figure 28. The
reduced space E is used. The details of the state equation derivation

can be found in Appendix B.

Figure 28: 3D {oordimate Systen
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The state equations are

f Ve Sing cosy ~ d)’é’_ y cos$
P

~t
Vgcosqg —Vp + d_‘{ﬁg x cosd (6.103)
P

gV?Eecos:, - o‘,‘_’écos(z—éﬁ)

v BN PRV +eol
.5_‘_ismésmq, + x[ esmq»sm% _ae;,sm$JJ

143

Note the physical meaning of the states aund controls:

% — distance from Y -axis, to E in the plane of y_P and ©

y - distance along y -axis to E in the plane of ;g_r and =

¢ - angle between !, and ¥

’;_t' = © -8 - angle from K -axis to projection of ga onto the z-xplane

- e e pad 4 e .

$ - P's bank angle from % -axis to position of _QJ_P

; - E's bank angle from %, ~axis to position of QLE

Three Euler angle rotations are involved in defining the above angles:

first a counter clockwise rotation, © , about the vy -axis; second

R 2SR 900 e U TR R BTSRRI,

ORI AN TN

a counter clockwige rotation, \p , about the Z,; -axis; third a

counter clockwise rotation, g , about the Yz -axis. These Euler angles

L'y

are defined more explicitly in Appendix B.

'
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It is irnstructive to note that for '2' =0, the first three state
equations of Eq (6.103) reduce to the state equations for the 2D Linited
Pursuer-Evader model. By comparison to the 2D Limited Pursuer~Evader
model, the added fourth dimension for the 3D problem is therefore seen
to be % .

2. Problem Setup:

In the reduced space e , the terminal surface is three dimensional.

It can be thought of as a set of circles of radius R - one circle for

*each of the velocity angles \y and 2 . 1Its usual description with
Eq (2.3) is

elx&)] = xzc{:‘() + yzcg) -2°= o (6.104)

where 'f({{) and 2 (‘E_c) are free. C can also be described
with Eq (2.19) as

K(‘ﬁ;) = hi(f_) = Qsmsl
y €)= hys) = Qeossy

4 &)= ha®) = S,
2 ) = hy(s) = 33
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The controls for the plarers are

and the costate vecter A\ is "

L3

A= N )
6.108)
X .

As with the other models, the roles of the players are preselected
by choosing q)= o , L =1 with ? ninimizing and E maximizing.
3. Application of Necessary Conditions:

ME1l becomes

o= (%1:3 ('3?;) kx[vt__smtycas Z -~ dT\;EP\; cos $] +

+ )“/ LVEcosq.{-V?+ o(.\_éE‘.,')Lcosag] -+

-+ )\g,,[ﬁ_écos'a-e( cos(2- 4>)] +

+\2[B\ig§.a s bs'“‘i’ - _\__L(c(\TletP Y-sma -Vgsing sin E>]+1} =

= min Hp 4+ max He + Hg (6.109)

@ ) (3,9)
where
= oz_g [AccsB+B3nE]) (6.110)

zxy YAk~ hycos®, (6.111)

H
A =
B = % - kq,sm% 6.112)
H: = Ve [)\%smés.mp -+ >\ ;‘J (6.113)

e AR

s;
k2
:




o SEF Ko 2 €17

T 3 e vEs

B O A <y $ P s

.
-

DS/MC/73-1

Hy= 1-vphy+ V(-:D‘xs‘"‘i’ s+ hycosy - _t\;_;z sinpsin
- (6.114)

The max Hg conditions subject to the constraints, Eqs (B.86) and
(B.88), are
a¥= h(hg sngsiap + >‘\P‘-°$§) (6.115)
vwhere h 1s the Heavyside step function. Notice the singular
possibility if %zs\nésm?-# Xq,r_osé=o for a finite time.

It is also necessary that

OHe = & \!s_ [)\ sm\pcosa Xi,smg ]_

Sé (6.116)
implying that
3
“Can 3 = i%.s_‘_'l‘_*’_ (6.117)
(.')
or
* + N : * + )\ (6.118)
swdy = 2SNy L2083 = == hd .
J )\zsm % ,/),; + )\;sm’\p .

Substituting Eq (6.117) for Xzsnﬂl{/ into Eq (6.115) yields

=h ('\‘f’{_cng smg+ )\\Pcosé*) ,_).(6.119)
It {s further necessary that
&
> IdHeg = V
o= 3.; & Ve [ )Y qu)smé >“F‘°$é ] H_ (6.120)
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%
implying that H’E’. 2 © . The plus (+) sign in Eq (6.118)

nust be chosen to make Eqs (6.119) and (6.120) compatible. In

BN A X AT A

oo

this case the controls are

.B¥= +1
(6.121)

sin é*" Xzs‘?q’ ==, cos§*= Av -
/ k; “+ ‘>‘2$m Y ,/)xq,z... ).%sm?\f)

with a singular possibility 1f >\2‘Smb$ln\y+ )“fcosa=o for

.a finite time.
The min HP conditions are similar to the max HE conditions

yielding

<= [ -{ Acosd+ Bsma;)}

~ ~
with a singular possibility if Acosdb+Rsinp=o
finite time. Now @_ﬂ’e = ©  implies
2%

¥

tond = %

+ A (6.124)

120
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Substituting Eq (6.123) into Eq (6.122) yields
¥
= (A .
« =h[ L’c’osfﬁ“” (6.125)

It is also necessary that
2

oz %—%&, =—-Hp (6.126)
The minus (- sign in Eq (6.124) makes Eqs (6.125) and (6.126)
compatible yielding
A =<1
(6.127)

,A'Z-_’_BZ ' -,Az""Bz

with a singular possibility if Ac.os$+ Bsm$=o for a finite time.

* E
snn$ =B cosa; -A

Appendix B shows that the singular controls are the same as in the

2D model.

Substituting the optimal controls into MEl yields ME2.

B LR P

P

The costate equations are

B, s Vi &
%(d'%p\l sm4>-vp_sm\psm§,)- aixy cosP

a‘T’ag (xxcosc];— % sind)
P

PR S\.
VEQ“/S'"‘P'"XT:' cospiu-hcospeos \,) SE%XQSmCa)cosq:

[\I&(Xx_$lnq)$m% + %smq,cosz)— o(T‘;i,\?ﬂn(%,—&) j
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4
The transversality conditions Z ).':%b_‘gé) ~ad(s)- o yleld
35y 3s; (6.129)
Je 1 =» )sx(:(:_c)ﬂ CosSy~ )\Y(’E_‘-_\. Lsins, =o (6.130)

J\To.n 51

Mp(¥g)=o (6.131)

A%(é\() = o (6.132)

4. Problem Backward Solution From € :

Appendix B contains 2 major portion of the analysis of the

2

backward solution fron C of which the following is a summary.

On the terminal surface l: the controls are

b B
i
y
&
H

& 3

T TACH)

o

tan "'G\_) = s\n\p‘&qnsg_.{onwsm%
ot
ony ~tans; cos 2

I
DA AT Y

e

PRI

a2 fio B
RS\,

sgp [cos 5({1\) = -san(cosS:) san(smyp—tans,cospeost)
s%n[v?cossl ~Ve(coss tosy+SNS S0 nypcosy, )}

(6.134)

(X

R g N e

t

* §

tan (t) = \‘}Os‘tco&!&s!:% ’ (6.135)
.;/EE... coswpsin’y,

t

P T I T2

San[q”g&ﬂ] = sgn(sins,) sgn (-}/}’é- cosy smzz,) l

S%ﬂ[vi,cossl -Ve (cosslcosng +3MS;SIny cosfz_)] '

6136 F
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The singular controls of the present 3D model are the same as the
singular cases {n thz 2D Limited Pursuer-Evader model.

Before proceeding with the backward solution and mapping the controls
[ G » the following two theorems are proved.
Theorem 1: If in the backward solution Z,(T )=o and Xz (T)z o
for some T= ‘l",, then 2 and A% renain zero for T=T and the.problenm

1s planar for T=T'.

Proof: Z(T)= )“Z ()=0 and 59(6.112) => B(T)=0 and 53(6.127) =»

o -, P * '
sindT)=0 . cos@(f)_—-sanA, Also Eq (6.121)<> sm5(‘r)=o ,<os;)(1“)= san\rcr .

The state Equations (6.103) therefore become
(T = Vesing + yé_ Yy sgn ACT)
P

viT) = Vecosyp ~V, —Xéz'u sgn ALT’)
P

PLTY = Ve san AL(T) + Ve san AT
b d _E_ES% )\’, *Te; 3n

Z2(t) = o

The costate Equations (6.129) become
X LTY o Ve AL san ALE)
X ®; Y J°
N (TY = -V A )
)\7( ) szP x 3§° A
):,_*,(T') Ve ( Ay siny - Xy cony)

z(‘r') T o
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[ for

Stace Z(T) = )\E(‘T’)=o = g = )%(T)
— *
TzT and sin ¢*L'r) =0 , cos HLT) = - s%n ACT),

s b"(ﬂ =o, sy (7= sqn Ap(™) for T=zT .

As such, the above state and costate equations are identical in form
to the state and costate equations (i.e. Eqs (6.1) and (6.22} of the
2D Linited Pursuer-Evader model. 1

+ -+ +
Theotem 2: Let 2 ) <12l and let % (T, V(T , D),

g
'i".(’." ) $U" é(’ﬂ represent the backward solution for Z l
Furthermore let ,t= ~12)  and ler X@) ' Y(T) Y (1‘)‘

- - 4
2.7, &T), é () represent the backward solutfon for Z "t
{
Then X CT) = X'(T) , Y(T)= \/.‘.(T), ap(T),cp('r) ‘a@')——%m

3E1--35 we FO) = -3

Proof: Eq (6.103) shows that)z ,\./ and tia remain unchanged provided
cosa; , cosZ cosé and cos (%~ ;1;) remain unchanged. Eq (6.103)
shows that é will change sign if sinb. N sinz , and sin$ chaage sign.
Eq (6.121) shows that the above conditions on siné and cosé will hold
provided )\.,P is unchanged and :\z changes sign. Eqs (6.111), (6.112) and
{(6.127) show that the above conditions on sina; and ccsz will hold

provided XY , and \', renain unchanged and )‘3 changes sign. Eq (6.129)

shows that under the above conditions )\ )\ aad \ rcmain unchanged and >‘z

changes sign. As such, all the above conditions are met and the
backward trajectot_vz symmetry as stated, 1is proved.. Ve now continue

with the backward solution and map the controls on 2: .
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Eqs (6.133), (6.134), (6.135) and (6.136) define the optimal
¥ P
controls $ and 9 on a « 7Tu che denominator of Eqs (6.134) and

(6.136) the tem

\'-"I*‘F-E- Vpeossy - Ve (ossscosp+ sims sy sy, )

appears. It will be shown later that "—,t& 7O defines the UP of

l£:6.137)

% > \"] L, <° defines the NUP of 'Q , and r'-];o defines the
+ {
BUP on . Therefore, on the UP of € Eqs (6.133), (6.134), (6.135) and

(6.136) become (mote that for Vp>1,Ve > (os\fsnnz% )
Ve Ye

. .
ton F (L) = L23¥ ‘“%5”’2‘ 2 (6.138)
N2 - cosw sin®y,
Ve ¢

~¥
sgn[tos 3ap] = sgn (=m3,) (6.139)

J‘ 2
«&o_ﬂé(_t{) - tonsssimypsin® (6.140)
Swy- tOﬂS:LCOSli) cos <
§

sgn [cos 5 (t{)] = -sgn (toss,y) sqn (sing- ‘?anslc:esq:cos.-‘z;)]Jc .
{
6.141) *.

»
Anothicr expression for '{'on$ ({(_\ can be obtained by subtracting tan?,

from both sides of Eq (6.138) {.e.

tan $‘(t‘) = tan’ ( 1-

N romteymomme i e e -
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Eq (6.142) shows that on ﬁ , cT> lags % . For small 2

Eq (6.142) can be approximated by
~F
tan & (&) =2 tan [ -\\'%P cosw]‘ . (6.143)
¢

or even mora crudely by
~F
P = 2% wsyl .
* Ve ¥ ty

For small Z (ie. 0-10%, VYe -~ .9
4

)
and |y | < 25°, Eq (6.144) fmplies 4>(£C)z .8 %(tp.
For a given Xg , S3 , and 2, s Eq (6.137) equated to zero

Ve
defines the BUP and is quadratic inm sin t.P yielding

\Y 2 2 Vp 12
~ +ons,cosy T j‘Ecm S, OS2, - [(-\};)- 1] (6.145)
1 + tan's, cos®y,

smy =
t2

The two P, ,Wa solutions on the BUP exist provided the radical is

real i.e.

]
(‘_’e -1 €6.146)
Ve

K
ton S, < S
cos” g,




s Banbuiianaion

DS/MC/73-1

It will be shown later that the controls on the BUP have the same
form as Eqs (6.138) - (6.141); hovever, because Eq (6.137) equated
to zero holds on the BUP, _‘é/&, can he eliminated from Eq (6.138)

3
ylelding

*an $U§;)I - sin%,

. tons, tany+ cos?,

BUP

An expression for tan $—%)’BUP car also be derived and is

tan( B- 2)! -~ s tans,tany 6.1
BUP 1+ cosZtans,tany

BLP

-t ~
Note again that ¢ lags 2, and for small 2, that d>l ~ Z:}
- BUP

A computer program was written to cozpute the BUP and map the
UP of C and the BUP with the optimal controls. Results of a typical
computation are shown in Figures 29 and 30.

Figure 29 {s a plot of the BUP (in the area of C of practical
interest) for VC—.Q and % = 30°. The dashed line is the BUP for

% = 0°. Note that the 2, effect is to increase the area of the UP

of Q ; however, even for a Z of 30 degrees the effect is small.
Figure 3C is an enlarged portion of an area of Figure 29 of

~¥ ~®
practical interest. On the'p axis is plotted ¢ ({-_‘) and ¢-%}*

—t
As can be seen from Eq (6.138), for a given 2 and %’.’_ . @ @-() is only
(-1

& function of ‘PU‘#) - Notc that, as suggested by r s (6.142) - (6.144),
('(:;) slightly lags 2 . There are two nuzbers plotted at

each ( Sy P ) coordinuizs in tba UP of n The uncircled nuzber is

fesidig A

g‘({»‘) which is neasured fron the 2 plane. Nott that;( Yvery slightly
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%* -oy'
lags 'Z . ‘The circled number is b C‘t_‘;) - [ 13 (.4:,(_) - %)

This latter number is small, icplying that P and E are banking and
pulling 85 in approximately the same direction i.e. a direction that
sl3ghtly lags B, . These results are suggesting the following
approximate 3D control logic at termination:

1) P should bank towards E slightly lagging the relative clock
angle direction in which E is going.

2) E should bank very slightly lagging the plane defined by
the coincident velocity vectors.

Note if both P and E play this pseudo optimal terminal strategy, their
wings will be approximately parallel i.e. P will be banked just
slightly to the right of E.

To see if the above approximate 3D control logic applies, not only
at termination, but also along the backward trajectories, the highly
coupled, non-linear state and costate equat%ous nust be numerically
integrated backwards. Since it will té necessary to do this also ior
the BUP, the Barrier necessary conditions are developed first.

5. BRarrier Necessary Conditions:

,eA‘ 1

As was done with the other models, we first exawine ;; and

.

deternine the UP, NUP, and BUP.

&
S

Vo)

-

A
UL

Define g] as
14




;

) N . ! e At SRARAIT Ay i e Bt AR Ky ST Kb e oSl s 2 P N
e EAE RS Ty Pk P TR R O S R WL DRI a RUCHIBRGT Eaatiat

. 44 O\
o o7, I8 AV 5 B h 5 0

b A

w.m,...wc. [

ol

m_.va. N

1, W

- I AT

LRI

=9, 2 =30°

Ve
Ve

Figure 30: ‘Q Centrols,

DS/MC/73-1

ot T T oY ey e eI PRI
SR s



DS/MC/73-1

-

The normality condictions of ¥ on {§, Z v 2h®) 2o, j=123
=1 asJ

yield for

de1 = wlt)cossy - o (E)sing, =0 (6.150)
j=2 Uplf) =0 (6.151)

=3 Ualtd = o (6.152)

The unit vector condition implies

o

(0 v oe vt \rz)l =
x *+ Uy + Uy + U, t; 1 (6.153)

Substituting Eqs (6.151), (6.152) and Eq (6.150) for o‘,‘({-p

into Eq (6.153) yields

N

Uy ) = cossy L (6.154)

fraad £ PR

Substituting Eq (6.154) into Eq (6.150) yields
u-,c({-ﬂ = SINS, (6.155)
Expression (2.28) becouzes

B v b AW e DAY 51ROt BB WPLEE st

raad N
2ty

A

T ~
— ¥ RV,
mnmax J -_S:i = min mo.x{i.);[vESm‘ycos-E, o«’}z?\, cos¢]+

t (‘T’-‘*) (glg)

V -~
+ \S‘Y[Vacosy—\l?+ d”ﬁix tosd>] +

N v S A 8
SRR Mo s U AR A e

+ U, Ve _ vV <
?[8$Ecosé dEPl;cos(?:‘ d>))+
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'*'\72[3 yf;s'”'és'mi"" %("%P“ sind~ vesm\,;smz)}} =

~ ~

= M Hp & max He o+ Hy (6.156)

G (3.8)

T e ol o S B s e

- dxg[xcos$+“és.n$] (6.157)
Ry
ATy = YUy - Upeos (6.158)
_;IZ Uy - Upsing, (6.159)
= aV . v .
2 EEE[UESMESM\P + Ycosb] (6.160)

C,#o = ~VpUy+ Ve[uxsnnq)cosz + Uy Cosy 'Exff' smypsin 2] (6.161)

The sinilavity of Eqs (6.156) - (6.161) with those of Eqs (6.109) -
(6.114) is readily apparent. Therefore, using the results o.f

section 3, it is scen that the Barrier controls are
~ % ~) 2’( * =+1 ~$ x
snd =/-__&:B—-———-.__?__z—— . cosP = J_—-':z_-"
+ B8 AT
-~ ~ ~r
with a singular pessibility 4f A COS$+ Bsing =0 and
L% U sin B N
SLﬂé = 0% > L__ , (osé = Ty
JU’,{,z_‘_'\%' Sy J\fq}-ﬁ- U’;}slnzw
with a singular possibility if “TZ Smé SNy 4 Uy wsé 2o,

(6.162)

Substituting Eqs (6.162) and (6.163) into Eq (6.156) and evaluating

Eq (6.156) on & yiclds
minmax ¥, = Wl = [-vposs, +
[SR =1 % (6.164)

+Ve(3ing sinycosZ+ cosSycos (f,)] , 0 -
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2 4
5
2«% ):4
Eq €6.164) implies that if % 3
~ T3
1) H°1a<o then {S;,\v,‘tjl?{e UP of C é
4
%
~ | i N
D Hol <o then {51,p,2)] e BUPof & (6.165) i,
& Ce ¥ ;j/ '
- 'g ke
3) Hyl >0 then 5.51.9’,2-3! e NUP of & i ~
& ¢ P
;o
i
Note that Eq (6.1265) is in agreement with the previously assumed Eq (6.137). H fé
1
M H .i‘f
The costate equations for the Barrier are i ‘3
. [ Ol Ve FoVos ) %V, -
Ve (2 ysind-V.smeusm@) - o Vp v, Cosd TR
x X2 RPY q> e SNy Re ! o
e . '\-, =1 .‘_’EE (chos% - % sind ) , =
Q.) \J- = = } 4 ~ :4
= . r - g Ve 2 : §
» vs_(\rysm\y-r%cosq)smz U, cospcosiz) &35 Gysngosy -
Uy | 1 v o sinpsin + Y2 simn cos)-A e, sm(%,—g) v 9
£ WYxSINY - ¥ p:
R x R ¥ (6.166) . -
i
]
As was pointed out in the other models, there is a direct % i;
oo
similarity between the form of the necessary conditons for the UP f ot
i of t: and the form of the necessary condition for the Barrier - the % ?f

only real difference being the initial values of the state and costate

e

variables in each case. With this similarity of the necessary

Ty ary ey

conditions recognized, we now return to the nunerical integration of

the state and costate necessary conditions backward from the UP and BUP

ofC . .
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6. Backward Trajectories from ﬁ 3
ve €
To exhibit the ratios & Se X b etc.
Ve ' T&p ' Rp ' Rp ’
the state and costate equations were rearranged into a new form.

The new states and costates are K- . Y. . 2( , ?_',- R
Ve Vp [=)S &p
)\x' Xy , )_\:y__ and X.z, . Note that the new states
Re Rp
have daimensions, seconds, and the new costates have dimension,

ft/second. Also note that

X =
)

P (6.167)

= QP

J
=p A

The new state equations become

(‘4- = Ve siny cos®?, - ece )cosd>
Vp

(\/)_ Ve cosq)-l*'o‘a( c0s4>
Y\ = pl =

A “p ke
- i
(,_‘_f_) = g%_ :osé- dCOSC$—2~)
S, 5 - T i
: &) oz .
(i> = 592 smésnﬂ\y + of =P sing + (6.168) i 3
QP er (VP) fz "
ve '
i
Sm\ysln?: . é 5 .
P( i
\,
71
134 i
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The boundary concitions for the new state equations are

;P( A )Smsi

(6.169)

In the case of the Barrier, the state equations are the same as Eq (6.168)
and the boundary conditions are the same as Eq (6.169) except that

Sl' S, and SZ ate.on the BUP,

The new costate equatlons becoze

DN
S‘x= (.’_i_'ﬁ.z,)[ ——)sn'n? /‘:’ smxpsmzj—ole X cosq>

)
‘ — 2 Qep) o
Xy = A s - 7R n
y = [ o d G, )S' d>]
by
( > [e @ ySOY - xkcosqlcos?_-,)+ g%cos? Sivi %]
. A
-~ BGE(%) sm.z)cos?
N (6.170)
. 5
(%%) - V_\;E‘;[QP)\ksmuysmg + (ﬁ% Slﬂ\i}(O‘SZ] +

V,

-+ déP(%) sin($- 32)

:
i
i
}
§
i

Do b2t wion i Hminls o

onnt e
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In the case of the Barrier, the A; in Eq (6.170) simply

becone the \J: . The boundary conditions on the new costate variables

oS S‘.L
o (5

t

(6.171)

% L = oSSy ~ %(_coss,_cosqu- sIns, siNyos )

24

The boundary conditions on the Barrier costate variables are

\J-Z&[) = SN Sy

R .

oy &) = cossy

Rp

U-QLeG) = O
=

vhere S, s on the BUP.
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The optimal controls take the form
Q\%r sy
2 E3
I Y+ Cg Yot
s é"“ = O Re) -
Xy \* N
JEEY+ () swty

Sm'{;‘ = - B/,
’ 2
TFey - Cay

N
SLnb =

n‘ﬁ_y‘.»ﬁ,,w; St &2&

%
Cos$ = ~ A/’Z'

[C=)~ Ga)

vhere

2= [ (2)- (B ] Cg)eesa

2
3‘

B EE
Ererid

oy e A

%, ) -
.E_ = ..g_/\_lz_. X - _)_\& n‘i" -
Re (‘):7,,) ‘é> ( Rr)s‘

el o A
../% i‘y ROTARAE
ke :‘-?u' S fat ke

ot & X0 1 S
B scbe AT AT A o

At
e

In the case of the Barrier, the optfmal controls have the same

1 ¢ 5 00E

Sadis

forn as Eq (6.173) except the X; are replaced with the . .

SAny

by 3
IO TA L P TE T
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To check the optimality of the backward numerical integration,
the numerical value of ME2 and pseudo ME2 can be computed and checked

against the zero optimal value {.e.

. 2 2 - N 2 2z, -
_%4 =<5, B)-B) +& GV (f2)omy - S

ne2 )\% )
- _V =
4—}{V§? S, [’\xs‘" pcos2 -+ Xycosq,] Ye __;:'Ez. singsn -+
7
+ X e (6/174)
2? -

The valuve for _“é. pseuvde has the same form as Eq (6.174) except
Pl Me2

2
the = tera is dropped.

The player parameters required to define the new state and costate

equation are \_/5 ’ éP and ejé « The player parameter required
P

Ld
for the new state boundary conditions is £_ . Yote that it does
P
not take a player parzmeter’to define the costate boundary coaditions,

Eq (6.172), for the Barrier. 1hevefore, in the five dinensional vector

space i\/e Ve, éP . éc . .Q} the pararceters Ve . é'P , Se . £_
' ve S Rp
form & vector subspace of one (1) diwensfon {.e. a given Barrier

trajectory in the new state-costate systen will correspond to a fazily
of Barrier trajectories in the original state-costate system, However,
the costate boundary conditions for the UP of C s Eq (6.171), requires
the added player parameter VP vwhich makes each trajectory from the UP

in the new state-costate system, corresponds to only one (1) trajectory

in the original state-costate system.

R i e B T e
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A computer program was written to solve the new state-costate
equations backward from the UP and BUP of C « A fixed step Runge-

Kutta integration technique was used to numerically integrate the

G TIAD

differential equations.

To demonstrate the results of Theorem 1 and to provide a check on

A

the program, a Barrier cocputation for 2 = 0 was done for which the

closed form solution 1s known i.e. 2 Limnited Pursuer-Evader model case.

Th+ specific parameters used were V%P = .95, éP -2 "045/& s
€/ = 2

E/Qr 1.25 and {2?- .25,
A fixed step of .1 second was used in the numerical integration.

‘?, remainea on the order of 104deg and ‘%_ remained on the order
> 4
of 5. x .‘l&).6 sec. $ and 5 vere on the order of 1. x 10"‘degrees.

Had the 'numerical integravfon been periormed exactly, these variables
would have been exactly zero., These results demonstrate Theorcm 1 and
provide 2 check on the computer program. Non-zero % trajectories were

then examined.

AT IR S
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Figure 31 shows sample control history results for trajectories

backward from the BUP, Three specific cases are shown: Z (%)= 1°,

Z(‘k_‘)- 15, 2(";@)0 30°. The parameters for the problem are the

same as in the Z ({'_;) = 0 case praviously discussed. In each case 2@,

3(1'\ and Z,(T) -\-3(1') are plotted. All these trajectories

exhibited the trend to graze ‘c and go to the right and back of t .

The trajectories were terminated around T=10 seconds as_‘é is negative

(1.e. for large negative "Yé the present fived evader roll probably
P

P AN S SR T

does not apply). In each case the following trends are noted:

1) 2.(r) is reducing to zero and appears tc be doing so

ssymptotically.

SNy

2) DT slightly lags Z(T)

3) 5@'\ very slightly lags 2(T)

It is important to note that the approximate 3D control logic that

Ry T it

exists on g continues for the backverd.trajéctory. Here it can he

seen how the reduced space pt has greatly helped the characterization

of the 3D controls that would otherwise be extremely difficult in the

iAvEt vey sk SOAN

10D reaifstic space.

Because these trajectories (including the Z({ﬂ = 0 case) exhibited

the trend to irmediately go to the right and behind ﬁ , an attexpt was

made at changing the system paraneters to make the Z+0 Barrier

trajectories go in a direction more forward of c into an area of e

having wore practical interest. These attempts were not very successful.

The 2D Linited Pursuer-Evader model also exhibited this characteristic
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S

for non-singular trajectories. Figures 26 and 27 show that below

e e e N e #WAgm,‘:,ﬁ
P

2y o,
TS

%

e nd
St

the dashed line (i.e. non-singular cases) the ,Z'R_ values are small,
P

Those Barrier trajectories in the 2D model that go forward of §

”

into an area of interest, branch off the E-singular surface. It was

e

therefore concluded that, as with the 2D model, to get the Barrier
trajectories to go in a forward direction of 8 for the 3D model,

the singular surfaces in the 3D model had to be used immediately

from c followed by a possible branching off the singular surface later
on. Note, however, that the singular surfaces in the 3D model are the
singular surfaces in the 2D model. Since the singular surfaces are

the sanme, it can be seen that the parametric relationships of real

importance in the 3D model (i.e. that deteruine the intercsting

e

conditions of escape and that should be used for sensitivity studies)
are alrecdy those parametric relationships found for the 2D model.

We are, however, still 1nte1::ested in how the non-zero z trajectories
branch off the planar singular cases for two reasons: to see how a

non-zero case nigrates to the planar case of real parametric interest;
8 P

bosed Al B Bt o T

to see what 3D control logic is used in nigrating to the planar case.
An impasse was met at this point; for based on Theorem 1, it is
impossible to branch off the planar singular case to a non-planar
(1.e. 2#0©) case. The reason for this problem is in part associated
with the foilowing theorcm:

Theoren 3: If X;‘ and 2, are approaching zero simultiancously to weet

the conditions of Thecorem 1, then they approach zero asymptotically,
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Proof: Since /\2‘-4-9 and 2~c,Eq (6.112)=» B5—~o0 . Together with

+
Eqs (6.121) and (6.127) this icplies sinéio and sin$ -»o . Based on this,

Eq (6.103) and (6.129) show >0 and Ag—o . .

Isaacs [7, 133] alludes to the possible existence of a singular
surface made up by the limit of parallel trajectories. He calls this
kind of singular surface a ( p,u, P ) singular surface. Based on
Theorem 3, the planar singular case in the present 3D rzodel appears
to be a specific case of a ( p,v, P ) singular surface. The problen
of investigating these parallel trajectories close to the planar singular
case {note Williamson-Nobel [15] also alluded to problems in this area)
1s left to other iavestigators as they are not the main intent of this
digsertation and appear to require considerable examination.

7. Model and Barrier Conclusions

1) In the 3D model, the parasmetric relationships of real importance
that determine the escape conditions are those found in the 2D model.

2) For those terminal conditions having non-zero %C{_‘;), an

approxizate 3D closed form control logic has been found.

S et B, e 102 U Ardbce
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VII. Application of the Limited Pursuer~Evader Model

This chapter discusses the practical application of the
Barrier results of Chapter VI to the same problem addressed in
Chapter V i.e. the relative evaluation of fighter A/C capability.
This method is the original work of the author and represents a ‘ore
“realistic" (to that of Chapter V) practical application of differential
game theory to the above problem. The method is more "realistic" in the
sense that the Evader is no longer highly maneuverable and that the
parameter relationships for escape involve another inmportant variable -
the turning as of the Evader. The method is being developed into a
computer program by the Air Force Flight Dynamics Laboratory as an
analysis tool to evaluate the relative cocbat capability of fighter
aircraft. The purpose of this chapter is to outline the method and
the computational procedures.

Results of the Limited Pursuer-Evader Model

Results of the 3D Limited Pursuet-Evad;r showed that paracetric
relationships of real importance in the 3D model (i.e. that determine
the interesting conditions of escape and that should be used for
sensitivity studies) were those found in the 2D Limited Pursuer-Evader.
These 2D results are contained in Figures 26 and 27. These figures,
under the assumptions of the Limited Pursucr-Evader model, optimally
reveal how the turning g% , velocities, and relative positions of the
two aircraft and the gun capability of the Pursuer affect the outcome

of a given terminal combat engagezent. Sensitivity analysis of these

ey o~ s
S A S '},’.1,' S5 Me o o2
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results continued to show that the ratio of combat velocities,
V“/VP , was the most important parameter. The sensitivity
analysis, along with Figures 26 and 27, yielded logics for improving

both aircraft systems ~ the logic with the most payoff was to increase

A G A e A i

VE and VP .

oy

Cr

Methods and Computational Procedure

The method compares each aircraft in the evaluation against
a standard Pursuer. The Pursuer is standardized by selecting fixed

values for the wedapons capability, L, tracking as s Q 1p s and

2N s N S W

specific pover map P (% h ). A realistic ratio of combat velocities
VS;—,P (t.e. 1like .9 etc) is picked for the method. For a grid of

points in the altitude - Mach (velocity) diagram, the following

2
computations are made: Rp= %’% , %?—P ’ 2es
P

X
i
b
%
A
i
i
N
3
%
H
¢
A
£y
'f
kS
H
2
N
t
4
H
A
3
#
¢}
5
23
e
S
i
3
v)
&
3
%
o
3

B hEl 5 SIS s

Ye = 83q d = Ye i . Th
‘5 9= %%, , an Ye _‘%_PQP e ratios Sgﬁ and
Vn/e are obtained by the escape conditions in Figures 26 aad 27.
P

Lines of constaat &and constant y, are dravn on the altitude - Mach

PN RSB W TP

diagram. These lines represent the required distance that E nust

oy

be in front of P and the associated%s E must pull to affect an escape.

W)

This map of the altitude ~ Mach diagram with the escape requirements is

Lax

a function only of the standard Pursuer and the ratio V%P'

AT A

The following series of computations is then done for each

UL

aircraft in the evaluation:

3240
4T

1) The specific power, ¥; (for omne (1)8 flight) and turning g

SEAg I

li{nes in the h-Mach dfagram ave computed.
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2) The 3 requirements for escape are overlayed on the 5

capabilities of the aircraft computed in 1).

3) The combat arena (call it Area 0) is defined - much like

e OPEG s

S,
i

that done in Chapter V.

4) The area of the combat arena where the 3 capability of the

aircraft is greater or equal to that required for escape is established

O £ Ldrea 2 k3 o S
ST 20 e

.

(call it Arca 1) and the average vy, , 7¢ » in this ares is computed.

L

v
oY

The results in line 4) show the portion of Area O where E has

A

-sufﬁcientg capability to escape and the ’/’oto effect the escape.

PR,

A large Area 1 and small . in that area 1s indicative of a good
atrcraft.

The area of the combat arera outside the escape area in line
4), 1.e. Area Orv Area 1, represents an area where E does not have
sufficient 5 capability to escape. However, E may have a F, advantage
in a portion of Area OaArea 1 (call this portion of Area OasArea 1,
Area O~1/E). Based on the Barrier results, E should employ his B

advantage in Area O~1/£ and render a portion of it an escape region

ST

(call this area Area °~‘UF*)' Likewise there may be a portion of Area 1
vhere P has the F. advantage (call it Area 1/p) and P may render a

%
portion of Area 1 a capture region (call this Area 1/p). Figure 32

is a Boolean algebra diagram of the sets (i.e. areas) involved.

e s

NS5
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Figure 32: Boolean Sets

The sum

Area/E = [Area 1~ Area i/p*] U Area OvullE*

R A Y

represents the escape region of the combat arena. The ratio,

Area/E/Ares 0, is a good re of the bat capability of a given

aircraft against the standard Pursuer.

To compute Area ONI/E*' the following computations nust be done

for a grid of points in Area O~ 1/ beginning at the =
E Qe = 3s

REPUIRED
line:

1) At a given point in Area o~1/£ (i.e. a given h, V%, B

s *

Vp=Ve :"_lg; , Ps,, ) apply Psg and PS? and compute \Ia(i:), Velt) »
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.\_\IIE (&) (will increase), yit), QPG:) (will increase) versus time.
P

2) As computation 1) is done, compute X (will decrease)
and using .‘.’ﬁ&.) conpute Q¢ and Y required for escape from
V? P Rp
Figure 27 (note Dg. and Yo will decrease).
P _EP
3) One of three (3) events will occur which will determine

s

35 e

1¢ the grid point is an Escape or a Capture point:
a) The required 25{, for escape reduces to the é capability>
of E. At this point compute y.&)= '\IEL'?EP@:) o 1 vy @)2 y&)
then the grid point is an Escape point. If 'ycﬁ.)>yﬁt) then
the grid point is a Capture point.
b) E crosses { , f.c. y{)<Q, and the grid point 1s a Capture
poiat.
) 2’\7%@-)2 1 and the grid point is an Escape point.
To comput: Area 1/p%, the following computations must be done
for a grid of points in Area 1/p beginning at the 8& = @E required
1line: ’
1) At a given point in Area 1/p, apply ‘PSE and 9, and compute
ve®y | Vek) | Ve/vp (£}  (vill decrease), y(), RJf¢)

(will increase) versus time.

2) As computation 1) is done, compute .é‘%&)(will decrease)

and using YE(X) compute € and Ye for escape from Figure 27. Note
Ve P fp
that 9_5;_. nndj/é_ tend to remain unchanged (Y, will increase because
td

S R AN G T o

X

of lisrger :aP@:) ) but will depend on the specific instance.
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3) One of two (2) events will occur which will determine
the Capture or Escape nature of the grid point:
a) gE/p required for escape will exceed the s capability
of E in which case the grid point is a Capture point.
b) 8% required for escape wili be less than the
capability of E in which case the grid point is an Escape point.
In this manner the areas in the altitude - Mach diagram are
established for each aircraft in the relative evaluation, and Eq (7.1)
18 computed. The relative measure of combat capability is-embodied

in the numbers ?c. and Area E/Area 0 for each aircraft.
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VIII Variable Velocity Models

The models of the previous chapters assumed constant velocity
magnitudes. The models were applied to the terminal phase of the
air-to-air combat where constant speed appeared to be a good
first order assuuption. The main purpose of this chapter is to
cxamine the first order effects of variable velocity magnitudes
on the problem, A seccndary purpose is to relate the constant
.velocity models of the previous chapters to a more realistic aircraft
n.odel.

Alrcraft Model

The following vertical plane nodel is the standard point mass
model fo;nd in most texts on aircraft performance, for example [12, 7].
Figure 33 shows the aircraft coordinate system and the main variables.

The model assumes

W= M%

-

Pigure 33: Adrcraft Coordinate System

i

i
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that the angle of attack is small and that the thrust vector I,

i3 essentially longitudinal. The ajircraft maneuvers with

the thrust and 1lift vectors (T L ).
The kinematic acceleration of the aircraft, 1'/_ »

can be written

Vo= Vi, + ¥V,

The net vector force, F, on the aircraft can be written
£ = (T—D- mgsmr)L, + (L-mgeosy)z,

Applying E = 1 _\L s the equations of motion become

vV = 1"-_“2 - %smr

Yv = %- %cosr .

The aerodynamic forces are modelled by
L - Q S C;_
D=5

vhere

@ = dynamic pressurc

& = reference area

0N
¢
]

1ift coefficient

Cy, = drag coefficient

and 2
Co = CDO+ kC’ .

(8.1)

- (8.2)

(8.3)
(8.4)

(8.5)
(8.6)

8.7

k 1s obtained vy the best parabolic fit of Eq (8.7) to the actual

drag polar of the aircraft or approximately by

151

-l

it

PRCIUPIR R e e

;.

Shae

Lo

e o A e

EE RN NSy Lo o

(PO oo o

i BT

e

oo bR e IS

5
it

T ot
WS

o Sres, s
22 i A

r




e

. . L . L 0 > . ‘ o sy P
N e e 2 . g gl ¥ ORI O = PR e SRR IR
B T e N L LRI o N s B e 4o TER RO A
PRI T S S AT S s o E i hite Py

et ]

DS/MC/73-1

~ 1 8.8 S
k 4eR ®.8 i
where .
e = effectiveress ratio
AR - aspect ratio = (wing span)Z/S
Substituting Eqs (8.5), (8.6) and (8.7) into Eqs (8.3) and (8.4) yields

a = v = T-03{Cpo+kcd)
m

- %sm ' (8.9) 3

a; =%V = @®sC - geosy (8.10)
m

e

TN

Figure 34 is a plot of Eqs (8.9) and (8.10) (i.e. acceleration

5 vectogram) with varying , for a typical F4 afrcraft at 35000 ft, 3
£
3 b #
1 M # = .8, W= 38600 Ibs, S = 530 ££2, Cpp = .019, k = .116 and max it
g a2
15 thrust = 11000 1%s. The vector from the origin to the 15 circle §
3 ¥ -~ Et
IR represents vector subtraction of the 49 vector. As cat be seen, Q
4 3 b

1
e

ot p o

greatly exceeds (,, ten to one (10:1) which in part substantiates the K-

first order approximation of constant velocity magnitude. Note that Q..

and G, are the naneuvering accelerations and not the acceleration

o eSS

Foon V) ok
e

forces felt by the pilot.

1f 1¥}<2S th oSk < DAY Eq (8. 35
we assume l¥}<2c then %c. ¥Y< 943 g and Eq (8.10) is A

approxinated by ? A

k=)

k " = ~ QSCL — '
FvE a2 Ipe-g (8.11) i 9
A ; C,_ is then related toa, by § '
Co=m (a,+4) . (8.12 . A

QS i 8 g ) .V
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Substituting Eq (8.12) into Eq (8.9) and rearranging ylelds

. e @s(Coot b_\sf.i)] y 2
v = ~ cot G5 - kw a,+ a (8.13)
3[ W 1 dos (2gau+a.)

where we have assumed ¥ small and neglected the %sin}( term,
4
Note that é——%, is tie added drag cocfficient for straight level

a

; oy : ¥
. m%»aiieiuﬁu;ﬁ}uiﬁdaﬁw& TR g /8
Srgn st NN R SR S Bt e ®

£1ight.
Define CT as

W

bW el o7 it Sond i 35y

2
Cr = 3[ ’-VIV' - 3( oo+ ("l;;:)z)]
Under a given flight condition, C_ will be b'ounded by
L N
vhere C_n_and C‘ru are the lower and upper bounds respectively

and are determined by the bounds on thrust. The bounds on (O, are

determined by the V-N diagram in Figure 35.

B N L L T L PP Rt

e,

[ _steuckor Lirt
N buman lisit

~

)

V, VeLoaiTY

Figure 35: V-N Dirgraa
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For I¥] <26 , a good approximation to the equations of

motion are therefore
wvoe= Cr~kW(2 Q_,_-rQ_gz_)
T 3as % (8.16)

¥V = QL (8.17)

x5 B 0ot T g Ao e

where C; and Q; are bounded as just described. As mentioned previcusly,

note that the V capability of the aircraft will be small in

kw = _wW
4> gmeb’Q®
(b»wingspan) determines the drag acceleration penalty for pulling

comparison to the ¥V capability. Note also that

transverse gs (1..0; ). Since Q, ez Q_WSC,_. it is seen that

a highly maneuverzable aircraft (i.e. large V and ¥v ) is

characterized by an aircraft with large SC. , I, and small W
w w b2

{mplying high T, sC_ » b, and low W . A high maneuverabie

aircraft is therefore characterized by high thrust, large wing and

s

o

low weight.

The constant velocity nmodel dynamics of the previous chapters

st

were of the form v=o (8.18)

g— - Qg (8.19)

-~ .

Eqs (8.17) and (8.19) are the same. On comparing Eq (8.16) with Eq (8.18},

s TEER LR Sy

it is seen that to nmodel the first order effects of variable
velocity naganitude, that V should be represented by a swmall bounded
accelerarion, C+ , followed by a drag penalty tera for transverse

acceleration, d; .
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The main purpose of this chapter i{s to examine the first
order effects of varying velocity. Therefore, since Figure 34 shows
the doninance of Q; as compared to EZ’?V (250 +U _,_),

the following approximation to Eq (8.16) results

<I= CT-Kla.L’

= .k_"‘_’(z
3

The heaving dashed line in Figure 34 shows tte degree of approximation

3+°-'-max) (8.21)

(for Q;. " 33) by using Eq (8.20) and (8 21). As can be seen,
the approximation is very good. This approxiiate aircraft model is the
saze 2s-Othling's [11, 48] Linearized Drag Polar Model.

Licearized Drag Polar Model

Othling [11] examined this nodel in the :-eslistic space E
from the standpoint of control logic; the follewing analysis is
done f{n the reduced space, E , and fncludes the Barrier analysis.
1. State Equation Formulation:

The coordinate systen for this nmodel is the sane as ¥y are 18
vicwed froa the side. The GP and & are equivalent to ¥ in
Figure 33. The kinematic equations for this wmodel are the same as

Eqs (6.1) except that a %:é tera in Eq (6.1) is replaced with the

¥ = 9 term in Eq (8.17) f.e.
v
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X = vesing -y U

Crp-Kplau,l

Cre _KE l GLE.\

where Eqs (8.25) and (8.26) come from Eq (8.20). Note that

= G -%
and that the bounds on the controls are

Le "o

Q'L P wmox

it

£ Gy’

e

Crep. 2 G = GCgy (8.28)

and are determined as previously discusscd. Note that the state

PR TV SV S

Eqs (8.22)~(8.26) are the same as the state Eqs (6.1) for the 2D Limited

«w

Pursuer-Evader model with the exception that V, and Vg are row state

variables instead of fixed wodel parameters,

it vt A A R

RIS LT I

gt
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2. Problenm Setup:
The terminal surface, 'C s ¢an be visualized as in Figure 19

except V. and Vp are also variables. Its usual description with

Eq (2.3) 1s
2 k3 2
(2] = x + v () -2 =0 (8.29)

where G(Q, Veldg) , and VE(&() are free. c can also be

described with Eq (2.19) as
x(&g) = hy(s) = Rsms,y
¥ &) = ho(2) = Rcossy
e (tg) = hz(s)
Velte) = h,(s).
velky) = wg(e)

s =

The controls for the players are

- Crp v = Cre
Oyp

and the costate vector A\ is

2=

o lgmmw..m:-e,wd&um{fmmﬁ S
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As done previously, the roles of the players are preselected by

choosing (j):.o » L =1 with P ninimizing and E nmaximizing,

3. Application of Hecessary Conditions:
MEl becozes

O= mun  max [)‘x( VeSINB -~y &P) + Xy(v,;_cose—vp+ xQep )y
CTP.OJ_P Cre ‘q‘_e Vp Ve

“e( - %)+ Nl Kl 2, ]) « N (e Ko “ieD] raE

.= min [(XAZ-‘/X:—XQ) O‘LP ~KP>\VrlOJ_P‘+ )\(PCTP] -+

e, Qup Ve

+ mox [ 2ea, ~K A\ la l+\ C ] +
Crz .04.5[ Ve ® Kﬁ "E.l JE' Ve TTE
+ Ve ( hysme+ Xycose)—VPXY+ 1=

= wmin HP"' max HE_+ H,

Cre,Qy, C Qa
wvhere ¢ TeSe

Hy = %;;Q_,_P—- Kol o]+ MeCrp
He = 5.2 Q'LE _KE. >\VE‘ O-LEI + )‘v&CTE

Ve

Ho = Ve ( A sine+ \jcose)- Vel + 1 (8.35)

A= XAy -y A~ Ae (8.36)

g ————— T e 3 -
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The min HP conditions yield

Cpp ’\VP> o
Ceu kvr< o (8.37)

A%+0 = a, = —GJ_mes%nLA)h[K?)\VP-« 'fv_;]

A= = h
© > Qp= Qe D] (8.38)

vith a totally singular possibility if both )\vv- A= 0 for
P
a finite time, The max HE conditions yield-
Cer Aye<@
Cre = (8.39)
CED XVE >0
Xe*o = el _
e =2 O'LE O-LEmQxS%n ()\9) h [ VE KE XVE

= = Q -X

with a totally singular possibility if both >9= Aves-o for
a finite time. Othling [11, 99] shows that the singular cases are

not possible. The costate equations are

T [ -NSee
>‘x&?
\(s
ve (Aysine- A coso)

PR A P R

Xy + A ClJ.p/va

-

AeOie /V!_:2 -( Ao+ )“((.cse\
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Note that the first three (3) costate equations are the same as
the costate Eq (6.22) for the 2D Limited Pursuer-Evader model,

The transversality conditions yleld

>‘x ({:-F) = SN S,
VpeosSs -V 0s(S,-0)

ty

>‘Y (*&L) = CosSe
Vpt0osS, - Vg cos{s;~0) &

Xg({.(_) = )\VP({_L\ = Avecfl_\j =0

4, Problem Backward Solution From 2::

From the transversality conditions, Eq (8.42), and the equations
for C , Eq (8.30), it can be shown that on Q A=dg= XVP= X(Ezo
and Eqs (8.37)-(8.40) for the controls are undefined. Evaluating the
backward derivatives of the arguements in Eqs (8.37)-(8.40), it can be
shown that the controls an infinitesimal distance away from the UP
of C are

C

TPI =C

a_‘_P]& = Q_LPW %) Ll sm'sll ~ KpcossL]

PU

PRETT I s o eI s

(8.43)

FITENC ST,

CTEIQ = CE.U

a La)& = Qa J'Emo:'%n [sm(s,:s.g) ‘n[}sm(s,-s,)[—KELos(sfs,]

Fderand SLET NS RAEGeE LG $)6T

T T

Vg BT 3 el RN ey ey e oo LoAtE
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Figure 36 is a plot of z: (similar to Figure 21) and the terminal
controls, Eq (8.43) for the parameters of the F4 aircraft previously
mentioned. The BUP, which for a given terminal velocity ratio is the

same as for the 2D Limited Pursuer-Evader model, is shown for the

ratio.;% = .9. Note how the P and £ singular surfaces of the Limited
Pit

Pursuer-Evader model do not appear in the present model. There are
however, switching surfaces in the present model. Note also that
the switching surfaces retain the basic 2; control characteriscics
of those singular surfaces.

The parallogram shaped area around the origin in Figure 36 1s a
region of tz vwhere both P and E are non-turning terminally. This
can be likenad to the totally singular surface (i.e. the y axis
with © = 0) of the Limited Pursuer-Evader model. Because both
P and E are non~turning off of z; in this region, the backward solution
from this region back to the first control switching can be done closed

form {.e.

MG = Mlg) = sinsy /[ VoS -Vg 03(8,-55)] (5.46)
AN = AN G) = coss,/[Vpeoss; ~Vocos(s;-S)]  (8.45)

O(T) = oly) = s, (8.46)

Vel@) = Velty)- e, T (8.4
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AgT) = _Sin (S:-52) S [v,__(t;) T~ Cey T72] (8.48)

VpwsS; - Ve cos(s,-<,

)\VE@) = —.0s(3;-5;)

Vpeos Sy - Vecos(s,-s,) (8.49)

Ve@) = vplep)~cp T {8.50)

ACT) = ~ s Sy [ Vet )T - cot .51
Vpeos 5y -Vecos(s,-s,)L F £ P2 |

R

= - o= S
)“’rCT) N > (8.52)

VpLosS, -Veos(s,-5.)

The control switching times, 'I‘E aad 'I; » are obtained from the

following expressions

‘
5
N
3
i
H

| Xel - K& xva Ve = I Sm(Sg_-S,)I CS ,.r_ce —:_z)_ (S ,r_(.t T?)E
Ke cos(s.-5,) K cos(sss,) R YARE R~
MpOIS; -V cos(s,S)

o W A e

= 1’[-54( l—K;_) + G, T( L—'K&:/2>]

(8.53)

K,,X\,.VP + 1Al lswinsgl 1‘1 2

L = T-Co, T2)=(s7-¢, 7=
Kp COS Sy KPcos51 Ss Y 2) (53 o )
VpeOS 51~ Va cOS(S,-S,)

= -r[-s; (1-%K,)~cT(2- KP'/;‘.)] (8.54)
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;¥
; where /; B
KI= lSlﬂ(S;-SQ)I 3 3
& Kecos(sis:) (8.53) T d
8 l_'
K !/ = { SnNsS, l . f
P KPCOS Sl (8.56) ; 2
Note that the denominators of Eqs (8.53) and (8.54) are = 0 in the .
’ v v 24
UP of € and that Keand Kpatc < 1 in the non-turning region of & . - ‘
The switching times, Tg and T, , are therefore determined from :
. et
Eqs (8.53) and (8.54) respectively i.e.
7
Te= 3| A-Ke 8.57
Cev| 1~ K¢ /2 (8.50 E:
. Tp= S= [.&-_K_z__ (8.58)
- ol 1-Kp'/2 . v
T
The X(T) and¥}solutions fronm the non-turning region of C are fo
T 5
. x(Tl= Rs0S1~ sins, ((S4T-CeuTra) (8.59) O
‘:‘< N '\
i3 2 E
£ y() = Reossy +(55-5,¢055:) T- (€ 7 Ce, c055:) TS (8.60) ’ B
, .
. and are valid up to the saaller of Ty or T, . 18
.; %
A computer prograz was written using Eqs (8.44)-(8.60) to solve K
4 '
H for the shape of the switching surface emanating from the non-turning ¥
A
A region on f;,‘ . This switching surface forms 2 closed regfon in E
=3 vhose base is the non-turning region on ?: . Figure 37 1s a two S
b 3
A 3
+4 dimensional representation of the switching surface for a particular VE(%L) 4
- 43
3 X 23
: ¢ 3
2 / y 165
2’ K, 7
# - 3
§ K Z
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and VPGg_\and system paraneters. TheS,, i.e. 8, axis can be

thought of as positive out of the paper. Only the positive values
(the negative S, have a nirror image about y-axis) of =,= 9({.‘) are
shown. For a particular value of S, » the x-y reglon inside the
switching surface reserble "fingers' emanating from the non-turning
region of C . As the S, values get larger, the "fingers" fan out

to the left (would be to the right for increasing negative S, ) and
get narrower. The surfaces of the “fingers" are labeied with the
particular control switching that occurs first. The "fingers"
represent regions of the state space where 1& is bes: for both playvers
to accelerate and not turn. The trajectories backward off the finger
surfaces will be the turning portion of the trajectorfes. The tips
of the "fingers" are associated with zero velocities and are therefore
not very physically cea.ingful. Lines of =eonstant velocity in the

“"fingers" are shown. Note that the Sxo “"firger" fs the variatle

velocity model counterpart of the totally singular surface in the

Limited Purguer-Evader model. Xote also that the trajectories coming

into the "fingerc" are of rcal interest since they lead to position
angles off (i.e. S, ) and velocity angles off (i.e.S;) where the
Pursuer and Evader roles, as selected, are well defired. If the
Barrier can be made to cut through a given "finger", then this will

represent an Interasting and physically applicable nmeans of Evader

N
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escape, As will be shown, Barrier closure and Evader escape in
the Limited Pursuer model is associated with escape from a non-zero S,
"€inger" in the present model; the interesting Barrier closure and
Evader escape condftion of the Linited Pursuer-Evader model is
associated with es-ape from the Sfo"finger" of the present model,
5. Barrier Kecessary vonditions ¢

In each of the previous models, the similarity between the
necessary conditions for the UP of { and the necessary corditions for
the Barrier bas been pointed out. The following necessary conditions
for the Barrier can be obtained directly by applying the results of
Chapter II; however, taking advantage of the above similarity tkey

are sinpiy stated. The BUF is defined by those states on (‘é for vhich
VpeosS; ~ Ve tis(s,~8.) =0 . (8.61)

The normality conditions ot v ﬂnt yield
G-K (‘{;C) = S'nSi
\J’Y ('&_‘) = QOSsl :
\)-9 (f_;\ = \3-\,?({'4) = U:,E(‘t‘_) =0 . (8.62)

The control ejuations on the Barrier have the sane form as Eqs (8.37),

(8.38), (8.39), (8.40) and (8.43) except that ) 1s replaced with (v .

The costate equatiocs on the Barrier have the same form as Eq (8.41)

except that ) is replaced with ¥ .
€. Barrier Solution/Evaluation Constant Vclocity Barrier Results:

The main purpose of this chapter is to examine the variable

L P RO R T SR ST
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velocity effects on the rasults of the constant velocity models.
The main results of the Limited Pursuer model are contained in the
Barrier zlosure conditions of Figure 7. The main results of the

Linited Pursuer-Evader model are -ontained in the Barrier trajectory

elosure conditions of Figures 26 and 27, We examine the variable
velocity effects on Figure 7 firsc.

As discussed in the 2D Limited Pursuer-Evader model paragraph 6,
_the closed Barrier trajectory in the Limited Pursuer model is also
a specific Barrier trajectory of the Limited Pursuer-Evader model,

however, it does not represent a closed Barrier trajectory in the

Limited Pursuer-Evader nodel. Except for the variable velocity

effects, the same is true for the present codel i.e. the closed
Barrier trajectory of the Limited Pursuer model is also closely
resembled by a non-closed Barrier trajectory in the present variable
velocity wmodel.

To see the variable velocity effects on Figure 7, the
following snecific Brrrier computation was done for the Linearized

Drag Polar model: R= 1400 $t v Cpo= Q’%«.‘ . KP—_- -2615,
\ = £ : = = €
Qp = 3¢s , vp(Y)= 800 Voee , Ve (d =120 8, Cgy = 6{2&

K = - 2615 , QJ_E = 6>gs . This is the data previously used
Mox

for a specific flight condition of the F4 alrcraft. The above data

shows that Ve(fz)/v,(é‘)- 90, Rplty) =622 ftand L = 212,
!E}(ﬁ;)

5 , . L . " . v . e
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Figure 7 shows that escape is possible for the constant velocity, 2
highly maneuverable Evader of the Limited Pursuer model if the Evader 35
is at the tip of the Barrier located at ;1/5} = 257 (f.e. Y. = 1702 ft) ‘ ; }
vith a velocity angle off ©, = 43.7 degrees. The highly maneuverable ; j
Evader pulls no as to effect the escape and the constant velocity Pursuer : é‘
pulls the maximum 39S. The results of the Linearized Drag Polar N .
Barrier computation showed the following: § '
; 1) Both players use maximum forward thrust. E pulls no 35 and z
‘;; P pulls the maxinum 335 . j \ .
' 2) Tie tip of the Barrier was located at 1792 ft and the required
velocity angle off was 43.6 degrees. ) :
RE 3
‘S 3) g at the tip had reduced to 704 Cs);c and Vp at the tip hed 3 f
f {ocreased to 850 gs/ec . -;
B . { e
Even though the velocities vary, the required escape conditions and 3
control laws to effect the escape for the Linearized Drag Polar model, ; : !
sgree closely to these of the constant-velocity model. Note that 1 T
the constant velocity nodel slightly underestimates the required Y for ;
escape. liote also that each player is usiang maximum forward thrust in . 3
the variasle velocity model in an attempt to increase the velocity X
advantage; this was also suggested by the Barrier sensitivity "
:‘- . snalysis of the Limited Pursuer model. Next we examine the variable '
: velocity effects on Figures 26 and 27. “
: As previously mentioned, the escape conditions of Figures 26 and 27 "‘
¢ . for the constant velocity Limited Pursuer-Evader model, should be similar }.,
‘g} to the necessary escape conditions from the Sz-.-o "finger" '
i ;
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of the present variable velocity Linearfzed Drag Polar model. To
examine the variable velocity effects on Figures 26 and 27, the

following flight conditions were used: f = 1400 fe.,

vP(£ﬂ = 800 %‘ oo = 3% Ve (tg) =720 F\‘/_,,ec'a;em: 6ds.

e
Figuree 26 and 27 show that for E to effect the escape, % = 490
P

implying Y = 3244 ft. The controls for the constant velocity

%,

PRGN AT LS i

playerc are maximum 35 with E non-turning after a ninety (90) degree

rotation in real space. Tue specific computations of Linearized

S 2 A i ahAEON D ADT Dt A S AN

Drag Polar Barrier closure with the sz:o"finger" werz done. Each
is discussed in turn.

The first computation was donc using the aforementioned flight
conditions and the follewing aircraft parareter values;
Cpo= L , K= .09, Cepz et | K09,
The aircraft paraneter values are indicative of an aircraft with
small longitudinal acceleration capability and about one third (1/3)

the drag penalty of the F4. The results of .this computation showed

the following:

A by el N ol L SN S G T st 1

1) Both players use maximum forward thrust. P pulls

the maximum 3%5 « E pulls the mavimunm 635 initially and switches

S rer s

to O as after an 87 degree turn in real space.
2) The Barrier closed with the S, 0 finger at vy, = 3382 ft.
3) The velocities at the closure point were V, = 876 ft/soc,

Ve = 814 ft/sec.
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4) The minimax time totz via the S, = 0 "finger" was 31.9 sec;
the time for escape along the Barrier was 9.95 sec. Even though the
velocities vary, the required escape conditions and control laws to
effect the escape for the Linearized Drag Polar model, agree closely to
those of the constant velocity model, Note how the time for escape
is very different from the minimax time to via the optimal S,= 0

"finger". This discontinuity in the time payoff is another characteristic

of the Barrier.

T T T P T I P
S BB b Yo S A

The second specific computation of the Linearized Drag Polar

model Barrier used the same flight conditions of the first computation,

but used the following more realistic aircraft parameter values:

- 6% - . -
Cov Gggg' Kp =265, Cpg =6% ., K =.261.

These are the values for the F4 aircraft. The results of the computation

showed the following:

1) Both players use maximun forward thrust. P pulls the maximum

3%5 . E pulls the maximun 655 initially and switches to 0 és after a

xoaka waar e sy B SRR s e P

83.5 degree turn in real space.
2) The Barrier closed vith the S, = 0 "finger" at Y. = 3629 ft.
3) The velocities at the closure point were Vp = 1009 ft/sec, Vg
« 960 HZec . '
4) The minimax tine to}ﬁ via the 5&' O finger was 45.3 sec; the

time for escape along the Barrier was 10.83 sec.

Even though the velocities vary considerably in this wmore realistic

case, the error in the Y, closure point is only around 10%. The escape
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control loglc agree very wejl with only a 6.5 degree error
in the E control switch point.

7. Model Conclusions

xS o ek A € e B

The escape conditions of Figures 7, 26, and 27 appear to be
a very good first estimate of the requirements for escape, The escape
control logics appear to be very good. Note that the major effect
of variable velocity is to cause the y_. closure point to be under

estimated; however, the error is not large. The main reason for the

- A o AL A e

“good agreement between the constant velocity and variable models {is,
as reasoned earlier, that in the terminal phase of combat the velocities
do not have time to vary enough to appreciably effect the problem.
From a practical point of view, it chould also be realized that in a

real combat engagement there will probably only be a rough estimate

PN T e T T

of the opponent's velocity magnitude, which would tend to justify

S, ok ctn

using the escape requiremeats of the simpler constant velocity model

in real combat.
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IX The Barrier and Its Use in Afr-to-Air Combat Role Decision

The analysis of the previous chapters always a priori assumed
the roles of the combatants. To make P pursue and E evade with
the payoff Eq (2.4), d>vas made zero (0) and L was made one (1) with
P minimizing and E maximizing. Chapter I mentioned the role selection
problem (major factor 3) and payoff problem (major factor 2). Chapter II
pointed out the importance and physical interpretation of the Barrier
as regards escape and capture. The problem of fixed roles and
payoff function form was dezonstrated in the Limfted Pursuer-Evader
model in Figure 22 where state positions in the UP of C obviously did not
correspond to the assigned fixed roles. Consequently, only the
portion of the UP of ¥ where the fixed roles made sense, was used for
analysis. As discussed in Chapter I, “the ideal model of the air-to-air
combat problem would have an analytical structure which would couple

these seven (7) major factors together".

The resezrch and ideas in this chapter are the original work

of the author, and are first attenpts at building the analytical
structure into Zero-Suw Differential Games zo additicnally couple the

major factors of payoff function form and role decision. As will be

o Sy

shown, the problem of role decision, payoff function form, and the

>

Barricr are all interrelated. The results of this research lead to

SRt

e

a broader concept of zero-sun differential games than that found in

A
O

Iasacs [7] or elsewhere in the literature.

Ny

Tiwe Gencral Purnoce Payoff

The following general zero sum, air-to-air combat payoff wae deduced
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to elininate the role - payoff problems encountered in the Limited
Pursuer-Evader model. Refer to Figure 28 and consider the following

payoff function with P minimizing and E maximizing

e

J = asmi(,e,z&) + bsm"(%ﬁ.) + c cose‘,Sd-t ©.0

where

O e

(t_‘) and r_‘(":‘p\

e

©, = angle between V. P

©, = angle betveen vy, U:L) and I (‘l‘{)

Note that
sz(e/z) - A-Co5O 9.2)

2

and that ws®, = é’..:('l:;.) (&N (9.3)
{e el ete)
Cos O, = Lelk) i)
°* e Y@l = el . 9.4

Substituting Eq (9.2) into Eq (2.1) yields another form of the payoff

J = .Q.:AZ:L - %[acosep-c- b cos'ep_] + ccos e”S dt ) 9.5)

i3]
.
B
P
&t

fas,
S

AR LY

.
Y

The effect of the three terms in Eq (9.1), will be to cause P (neart ).

to force E to cross ¥ at small 18, and small leel as quickly as possible

for le‘,lf_"P2 . Note also that the three terus will cause E (near & )

0rs

to force P to a |9?l near 77 and lQEI near T as quickly as possible for

T, 2 1©p] £ T . Figure 38 shows the best possible position that P and E

e aRew W bt s
7

can hope to achieve at 'C .
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Ve

[3)

N

i 2
PJ

Ps best E% best

Figure 38: Best Conditions at &

As can be seen, the single minimax, zero-sum payoff in Eqs (9.1) or

(9.5) allows the roies of the combatants near C to be automatically

structured in the payoff form. 1In each case, the combatants ave attempting
to achleve a direct tail chase firing position as quickly as possible.

Note also that if P finds himsclf in a poor position mear Y5 (i.e. IGPI.'-_’TT,
(95[ ~ T ), the payoff function form is structured to cause P

to evade logically i.e. maximize time to ¥ while decreasing ISFI and | & |
(note this increases P's position and velocity angle off relative to E).

The same is true when E finds hirself in a poor position near C .

Zero-Sun Differential Ganes and Roll Determination

To solve the roll determination problem, the general purpose
payoff, Eq (9.1), is used in the following three (3) ways:

1) a=b=o0, ¢=1

) azb=0, C=-1

) aso, b>o, o
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In problem 1), the minimizing player is a definite pursuer and
the maximizing player is a defiuite evader., The problem is solved
backward from the UP of G and the Barrier is established. This is
the same as was done for the model of the previous chapters.

In problem 2), the mininizing player is a definite evader and
the maximizing player is a definite pursuer i.e. the roles are switched.
The problem is solved backward from the UP of t} and the Barrier is

established.

In problem 3), the UP of %: is determined and based on terminal

state is divided into four (4) regions: Reglon 1 represents terminal
astates of clear advantage for the minimizing player; Region 2 represents
terminal states of clear advantage for the maximizing player; Region 3
represents terminal states resulting in a mutual kill; Reglon 4 is the
remainder of the UP where no clear outcome is indicated or may be

thought of as a "draw". An example of a Region 1 has already been

given by the area of t: inside the heavy dashed lines of Figure 21.
Regions 1-4 are disjoint ard their union is the UP of ﬁ « The problem
is solved backward from the UP of YZ . Problem 3) can be thought of as
a cese where the game {s fanerently structured so that both players

assume the proper roles hased on terminal state.

The backward trajectories from the three (3) distinct uses of
the general purpose payoff, go into regions of the state space and

in general the regions will intcrsect. Based on the desires of the

POTRT T LA AR

combatants, a role logic then developes for the state suuce.
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Some Illustrative Exsuples

The following simple examples are intended solely to illustrate
the basic concepts for role determination with zero-sum differential
games; the examples are not intended as ends in themselves.

1. The Simplest Model:
For problem 1) (i.e. a=b=0o , <=1 ) the results of Chapter 111

show that if

1) Vp>Vg then all of € 1s the UP and line of sight pursuit and

evasion is used with E always captured.

2) Vp< Vg then all of § 1s the NUP and the maximizing player E
always escapes with line of sight evasion.

For problem 2) {i.e. a=b=o ,C=-1), the results of
Chapter III apply again and show that if

1) Vp>Ve then all of € is the NUP and P alvays escapes by
using line of sight evasion.

2) Vp< Ve then all of ‘Q is the UP and P is alwvays captured
provided E uses line of sight pursuit.

For problem 3) (i.e. >0 ,b>0 ,C>0), the general purpose
payoff is not applied since the controls appear in the Mayer payoff;
however, it is clear that if both highly maneuverable players are
aggressive , the result {s always a mutual kill.

Assuming that both coxbatants prefer the outcomes in the order
kill opponent, draw, mutual kill, then regardless of whether Vp>Ve

or V>V, the role logic is always a draw. I1f one of the combatants

SRR

Tt g 3 o ’y o
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48 aggres;ive (i.e. has a ki1l at all cost objecrive) and has the
velosiiy advantage, then the roie logic is always a mutual kill.
2. Limited Pursuer-Model:

For problem 1) (i.e. a=b=0 , C=2 7 the results of
Chapter IV apply and are contained in the Barrier closure conditions
of Figure 7.

For problem 2) (i.e. a=besc, 2=-1), the necessary conditions

of Chapter II are straight forward to apply and solve the problem.

A summary of the main results follows.

The coordinste systen is shown in Figure 39.

v
-
AL

Ade !

“
B

Pigure 39: Limited Evader Coordinate System

The state equations are the same as Eq (4.1). The terminal surface

ig described with Eq (2.19) as
x(&g) = hy(s) = Rsms

v {t) = hy) -2 wss

(9.6)
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npplication of MEl yields

.
mn.nmcxx[Li—l]: Ve Mmin Ho + Y2 max H+ H
o O - Rp « P ©

where
HPz (X‘XY—\IXQ)D( = Ao

He A SO + >“I 0s O
H’O = -VP X\I + 4 .
The controls are
*
AR = sqn A
. with a singular possibility 1f A = 0 for a finite time and

: Y
tonee = M Xy (9.16)

-X * N
x . <°see_= Y

T = 9.11
INGE N VENCRPW ©-11

*
S, =
ME2 becones
-ve,/ A+ X‘f + .‘éBF\AI —VpAy+ 1 =0 | 9.12)
The costate equations are the same as Eq (4.18). The transversality
conditions yield

tons = —_}”‘ ' (9.13)
My
i

_‘: - sns
)\"c *C) Ve - VpCosS

Ay ()= —=¢osS
v Ve~ VposS

i

&)

BV
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) T, PR

Note that at terminarion, E orfents his velocity vector directly

at P. Note also that E will close on P at ¥, provided Ve-VptosSro

Vi
i.e. cc$S £ -£ or
p

P
S»cws e =5
P
o

Stnce A= VX, and A= 'VP>‘=<

o

Ps

terminal control is for S >,

Lk
= Al = = m$ (9.17)
= IC sgr )& sq° A, san[ } -sgns
At £ it can be seen that P is turning avay fron E.

Investigating P's singular control we find the following:

¥
Azo = meee~>~x =%
Y Y
Aoa\ )\—0-9) =0 ad S=0,T =

Ag=O = X=O ,ea=o and >“/=)\/(t-c)

The last requirement of Eq (2.16) requires >\7 ({_() L0,

For S=o A \
N -
AN S VE-VP (9.18)

N Gy)= (9.19)
Ve+ VP

Therefore, a P singular case only exists at S=O in the uninteresting

case where V\.__>V? and all of ﬁ is the UP. For the case V<V, no

E singular control exists; however, it will be seen later that the

portion of the Y -axis inside the closed Barrier is a Dispersal surface.

IRy
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For S5 <T (note as with the Limited Psrsuer model, the
problen is gymmitric in S), the costate solutions are

AT = sin(s+Xe T)/[VE-V coss] (9.20)

A\’(T) = _<o5(5+ 2 T)/ [Ve_— P(.DSSJ (9.21)
P

oL = -(s+X¥e ) . 9.22)
P

Since P 13 turning left at the rate _éz » Eq (9.22) shows that E
h in straight line motion in real space. The state equation solution
is

%U(T) = (.Q+\IET)Slh(s+ —r) Re(1- cos_L«rB (9.23)

Y1) = = (L+vT) C°S(S+—{§PT) + Rp sm_\g_"'r (9.26)

and A(T) 1s

AlT) = VE_P Pwssl—_ oSS 4 c°sL5+,\_%"r)} ) (2.25)
Note that A(T) initially goes negative off of t and switching occurs
when Vo T = 2(-8) .

2p s (9.26)

At gwitching X(T) is

x(-r)l = -[Q+ 22,,_"_&_(17—5)] sins - R,(1-cos2s) < 0
Ty ve

i.e. x(T3) {is alvays negative. Seritcehing 4n reality never occurs

g SRR ATy S N L L,

since the Dispersal surface at xz=o, y¥>o is intersected first.
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The equations for the Barrier are simply a specialization of the
equations for the UP of C to S=S,= <os-l_‘_/§_ with the term V- oSS
Ve
nissing £.2.
0 (7) = sin (S.+ \_‘%«r) (9.27)

Uy (T) = ~cos S+ Y2 T) (3.28)
Y =

S (T (9.29)
vV,
eE. ) = ( So+ e T )

R(M = Ry [— coss_+ cos( S,+ ‘\Tl::e,rT)} (9.30)

PSPt par

x (1) = (L+yT) sin(s+ }’é’;ﬂ -R, (1-C°$l,’zr;"‘) (9.31)

-

y (1) = =(24veT) cos(s‘,.c-_\_g:) - QPSM%,P—P . ©9.32)

¢
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Figure 40: Linited Evader Barrier
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Typical results are shown {n Figure 40, As can be seen,
the Barrier always exists for % <1 and 1s always closed. The
closure dinensions of the Barrie: are shown in Figures 41 and 42,

This finishes problem 2) for the Limited Evader model.

For problem 3) {{.e. a>0,b>o,c>0), the gricral purpose
payoff is not applicd since E's control appears in the Mayer payoff;
hovwever, it is clear that ont E has the capability to always effect
at least a mutual kiil if not a kill of P.

A specific example shows how the role logic can develope. Two
specific cases are shown in Figure 43; one with the Li-~ited Pursuer
Rarrier closed, the other with the Linited Pursuer Barrier open.

As mentioned previously, the Limited Evader Barrier is always closed.

The role logic for the\/evPcondition 15 not very interesting
since E can effect any outceme he desires. However, for V<4 Vp ,
the role logic depends on the parameters of the problea which deternine

the specific cases in Figure 43.

- -‘+ 4 - " -
Assume that Vv, = 800Z= , Vg 7205;“ » Qug 5%5(1@. Rp

= 4000 £t) and R = 1000 ft, S, = 25.84°, %; = ,25 and Figure 7 indicates
that the Linited Pursuer Barrier is closed, i.e., case 1, at 12‘_" = 315

or Y¢ = 1260 ft. Figures 41 and 42 indicate that the Linited Evader
Barrier closes at Y‘/sz 2.41 (1.e. Y = 9640 ft) with !12“; ma.\: .70
(1.e. X0, = 2800 f£t). Note how the Barrier of the Limitea Evader

is much larger and completely encloses the Barrier of the Limited Pursuer
and reflects E's superfority in an aggressive role. Note also that if

the actual Evader did have the high maneuverability modelled ia the

- aw
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problem, how the results of the Limited Pursuer model alone would
lead to an incomplete picture of his capability. However, with

both analysis, it is clear that E should adopt an aggressive policy
i.e. kill opponent, mutual kill, draw, The outcome of the combat

1s then largely dependent on the state of the game initially and P's
migsion. If P prefers a draw to a mutual kill, then outside the
larger Barrier P should do a tight turr and use his velocity advantage

in 1line of sight evasion to escape. If E is initially inside the

‘larger Barrier (the larger Barrier is sbout a one mile wide and two

PR T ATy

miles in front of P), it is impossible for P to do better than

possibly a mutual kill., If P decides to Evade here, he is hopelessly

captured. Finally, if P prefers a mutual kill to a d;aw, then the mutual
k111 will be tae outcome regardless of E's initial position.
If P can improve his velocity to open the Limited Pursuer Barrier,

the roll logic remains the same except now the cross-hatched area

e

B AP P SRR
gx g SRS

(where E has a definite advantage) is much smaller and a chance for
8 mutual kill is much larger for P.
3. 2D Limited Pursuer-Evader Model:

Because player controls appeared directly in the general purpose
payoff ({.e. problem 3) where a>o,b>0¢>c), this problem was not
solved in the previous two exanples, The purpose here is to simply

deronstrate that the general purpose payoff can be applied and that the

automatic role determination near tz 1s structured inherently in the

payoff function.

The state equations are the same as Eq (6.1) except that cime,

5 s ot S Ay i
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+ , 1s now made a state variable whose differential equation is
t=1 (9.33)

The characterizatlon of {, s the same as Eq (6.3) except for the added
state varfable i.e.

tly)=hE@)=ss . . (9.36)
The general purpose payoff is the Mayer form )

I = _9_*2‘_5_ - Lz_[acossl-r bcos( sz-s_,)] + CS5cosS,
9.35) °
MEl is the szme as Eq (6.6) except

Hy= Ve[ Mcsme+ Xyoso] - Ayvp+ Xy (9.36)

vhere k{,_ is the costate varfable for the state t .

The form of the controls remains the same as Eqs (6.8) and (6.10).

ME2 is the same as Eq (6.21) except the 1 is replaced with ’\t i.e.

__“{22?] Ag) + l’é&E 1 2el -(-VEY_)\KSMB+ chos e]-x,vp-« X{=? 9.37)
The costate equations are the same as Eq {6.22) except for the

added costate eguation

50=-24 co = A =constant |, 0930
ot

4
The transversality conditions $(S)- 3(s) . Z Neah 2l
35J‘ Ds\, (Y] QSJ'

Gt o

¥ 73y AT

yield

=1 =>_§_3; nL%-c$3>$lnsl-%_stﬂ(sz~$;) = (9.39)
Sq
=R [kx(*l;c) oSy - Ny (%‘(_\smsd
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y= 23 _ b -~ =
j=2 = 22 - b sin(ss35) PN ET

.)=3 == é_; = C(os$1 = )\tL'!:_C\
253

Substituting Eq (6.3) into Eq (6.9) for Ao(f‘f_) ylelds

As(i:ﬂ = [xky-‘/ Ax- Xe]’ﬂ:[lsmsl X, -Rcossyh, - \9]L£ (.9.1.2)

Substituting Eq (9.40) for )‘e and Eq (9.32) for }l)‘x(é_‘:)(ossl, into
Eq (9.42) yields

Ay (k) = —(%g-ci)sins, | ©9.43)
The controls onﬁ are therefore

o(*({ﬁ = -sqn Agl) = s%n[(%-c‘k_c)sms,,-} (5.44)

& () = san X ()= sgn [smGses0))=- sqn [sinsys,) )

(9.45)
If 1t is assumed at tercination that the combatents weight heavily

a good firing position (i.e. advantageous S, ) then %>>cf‘_and
Eq (9.44) becomes

*®
ot () = 3gn Csnsy) . €9.46)
Figure 44 is a map of Eqs (9.45) and (9.46) for the controls on

the UP of t - Note that P's controls in the UP of ' are the same as in

e haade i o £ S et

codte S
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Figure &44: General Purpose Payoff L Controls

Figure 21; however, E's controls in the UP of Q are the cxact opposite
of those in Figure 21. As such, P is turning into the line of sight

P to E; 1likevise E is turning into the line of sight E to P. Note

how for points ‘such as A B C D, where E was evading in Figure 21,

E 4s now turning into P to attack.
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Results and Conclusions

The general purpose payoff and its use in the role decision
logic of some 1llustrative models hus been demonstrated. The work
is far from complete and continued research in this area is
suggested. What ever method 18 used to develope a role decision
logic, the Barrier's under reversed role situations will have an

important function in that role decision logic.
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X Conclusiors and Recormendations

The main conclusicns of this dissertation are progressively

contained in the last paragraphs of the main chapters, A summary

of these conclusions shows the following:

1) "Dynamic Modelling" was most useful in learning the influence

LA padi i
SRR,

of added parameters on the game solution as the air~to-air combat

model was made more complex and realistic. Had the simpler models

not been solved first, the solution of the more complex models would

have been much =ore difficult.

5yt
s
e

2) The differential game 3arrier is s fool that analytically 4

reflects the optimal combat capability of an aircraft. The Barrier [4 f?

o shape and sensitivity to afrcraft parameter changes is a useful tool ;%
§¢: to ferret out those aircraft design narameters that most affect jé,
air-to-air cowbat outcome. Results of Barrier sensitivity analysis in ;z

this dissertation show that the ability to longitudinally accelerate k <§

3 A4

(1.e. better thrust to weight ratio) yields the best improvezent in § §§.

fighter aircraft cocbat capability. Sibce the turning 3, structural

b ooy
WA

linits of most fighter aircraft are near or exceed sustained human

finok

capability, this also suggests that effort to enhance fighter combat

capability might be best spent in another area - such as thrust to

PR P NN

weight ratio.

3) For desi,n purposes, results of the 3D models in this
dissertation show that the important design tradeoffs are revealed

in the 2D models.

& i s P
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4) Variable velocity nagnitude did not significantly
affect the Barrier closure conditions of the simpler constant
velocity ragnitude codels,

5) As demonstrated in Chapters V and VII, differential game
results for simplified models can be properly applied to give useful
and meaningful results for real Air Forcs problems. The techniques
of Chapterz V and VII represent the first known practicai applications
of differential game results to a reazl Air Force air-to-air combat
problen.

6) The 3D Linited Pursuer model is the only completely
soived 3D air-to-air cozmbat nodel that includes a closed form control
bank schedule. This meneuver has been called the “slice naneuver”

by tacticians,

Basez on the research in this dissertation, the following

recommendations are wmade:

1) The relative aircraft evaluztion of Chapter VII should .
be designed into a computer program whose output is the map of Figure 32.
The Air Force Flight Dynamics Laboratory presently plans to do this.

2) The coordinate system used in the 3D Limited Pursuer-Evader
model is a physically appealing cor?diuate systea for characterizing
approximate 3D control laws. Based on the way the sinpular surfaces

of the 2D Linited Pursuer-Evader model disappeared in the 2D Linearized
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Dcag Polar model, it is postulated that the “impasse” encountered
with the singular controls in the 3D Limited Pursuer-Evader model will

not exist for a 3D Lincarized Drag Polar model using the same 3D

relative coordinate system. 7This latter 3D problem should be analyzed

to characterize the approximate 3D control laws,

3) The general purpose payoff for problem 3, i.e. 0>0, bvo, Ccoo
started in Chapter IX should be examined in detail. When forward
solv.ng differential gane numerical techniques are developed into
useful computer prograxs, the programs should be capable of hindiing

the general purpose payoff.

1 o AR S i TG S e o A L SRR
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Appendix A

Analysis Details of the Limited Pursuer Model

1. State Equation Foraulation of 2D Model:

Refer to Figurs 3. Tre position of E as observed by P 13 X.

2= oxd, vy, .2
The rotation rate of 1, ond 1, 4
w= 1, =
-whare
Q= va/ Rp = acceleration of P perpendicular to ¥V

Rp = turning radius of P

and
-1 L el £ 41

The scalar, o{ , is P's :ontrol f.e. o = 41
ig a hard turn to the rigit andoX = -1 is & Lard tum tu the

left. Nru5ecan be written

and

where

_X_‘ =« velocity of X as observed in the rotating coordinate frame.
r

PRI st
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=i

Lz
WX X = ¥ = -XVpotd +yVPor L
o _‘_zLPcl é =, Yol

Rp

(=
X

Y ° |
Solving Eq (A.5) for g]r yields

x| =X -x -wxx
I -4 P

then Eq (A.7) becomes
. W,
5_“’ = (Vesmse"‘/—é'?"‘)£_,_ +

v
+ ( Ve tos O - Vp+ K—%?‘" ) X,

From Eq (A.1) _{5)'_ is

5),. = ;(-;.L-.' v,

Eqs (A.10) and (A.11) yield the state equation

* VESmQE—\/‘_"?c o
. ?
x| =
e v - \V7
Y Vg 0 Bg ~\p+ x é»o(
-
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2. FProblem Backward Solution From §; for 2D Model:
We begin by determining the controls on & . Egs (4,19) and

(4.10) indicate that
tan o (3= 32| = %ams

(A.13)
Ll £
89 that +
eelt)=s . (A.14)
Since Ah{: Lsins My g)-2eos s\, (), ehis
and Eq (4.19) shows that
Alt(_““ ° - " (A5)

Substituting Eq (A.15), and Eq (4.19) for ‘)\,‘(’E{) into Eq (4.17) yields

ME2 on ‘Q as
Ve 2y (E) ritants - )+ =0 | Gae

Eqs (A.16) and (4.19) show that

NHy) = —Sos8
vt vl .

ANGFy) =20

VpCoSS- Vg (4.7

Note that VPQOSS-VE 1s the rate at which P is closing on E

at termination.

. . 3
Since Al &1;—. o on{ , we nust cxamine ~ Alc to determine 0(' .

A = {gx\!+x\7—~'/>~x—~/\x (A.18)

200
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Substituting the state and costate equations into Eq (A.18) yields

A=vpl, . ) (A.19)
Therefore, an infinitesinal distance away from 'Q , ol* is
% . -
o lrf -sgnhly=-sgr bAlg) = sgnily -
= sgn \“lt = sgr ( ._E'_"S_-) = S0 (>ns) (.20

~ \plossS— Ve
The last equality in Eq (A.20) will be justified later by showing that
on the UP of ﬁ the closing rate \/PcosScVE'>o. Note that i\lao for
S=o (i.e. a direct tail chase termination) and the possibility
of a singular control here. Now we examine the singular contxol
necessary conditions.

Firat it is necessary that

A= XXY~Y)\XE_Q

Eqs (4.10) and (A.21) yield

+
tane, = Xx = X A.22
N Se N ~ ( )

implving the closed form control for E, while P is possibly singular,
is line of sight evasion. Now the second necessary condition is
A = W \ =
A=Vphy=o (A.23)
implying that

(A.24)
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Egqs (A.22) and (A.21) show that,
X=o and (A.25)

since X\l'éo is a trivial problem with A=0, The third necessar

condition is

NIV W W (4.26)
Rp

implying that

o(s =0 i (A.27)

is the candidate sirgular control in o . S5ince o, is P's control,

the last necessary condit}on is Eq (2.16), {.e.

der

2¢ -
(—|)q_a—[cl He, - Q'i)’._é_[AA }Zo (A.28)

at 9 o

-_e_[-y_éx.d >0
et ®p

or finally

£

>~\, z o (A.30)

)\ = constant

" Since o(szo » Eq (4.18) shows that A=zo inplying

vector. Because of Eqs (A.24) ané (A.17), the P singular suxface meets

NI An oty TREARE 7Y

}: at S=o and

Nn s romonr s RS, Y S LB

X = constant vector =

R

1 AR T T gy e rra ey
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All the necessary conditions of the singular control are met
provided )\Yzo 1e, sz VE. The singular surface in the reduced E
is simply the y ~ axis and represents a non-turning direct tail chase.
We now continue with the backward solution and examine the optimal
trajectories backward from tz for S>0 (notescois symmetric about y-axis).
Solution of the costate Eq (4.18) backward ftomc with the boundary

conditions of Eq (A.17) ylelds

Ve
)‘x.('ﬂ = Sin{ S+ =5 )
VpCOsS-Ve

A @) - <os(s+¥ET)

VotosS - Vg

vaere
'7"=f_[-t tize backwards from .
By Eqs €4,10) and (A.32) it is seen that

*
fonee = X = tan(s+e )
Xy Rp

N

Y
Sy

{mplying

SO

s

e,:o-) = s+XeT (A.34)
=p

8

.‘A i
Q2 SR

Since d;e_a = -<_!§e, -Mpand since we know P is turning inmto E at
di dr Rp
the rate :_"za , this shows that in the realistic E y E is 4n straight

id

line motion. We now solve for A to check switching of of from +1.

Eqs (A.19) and (A.32) show

da -

dTr Vptoss — Ve

v
- Vp )\K(T\ = =\poin(S+ —::ﬁ_'r )

v
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Integrating Eq (A.35) with the beundary condition of Eq (A.15) yields

AT = _—Fe oSS - cos(s-a—lt’l‘)]
Vptoss - Vg [ Re ‘ (a.36)

Eq (A.36) shows that A initially goes negative (as suggest by —A,a< o)

and then positive when

NerT = =2(m-3) (A.37)
Rp

The angle 20r-s)can physically be shown to be the =ircular angle
P must turn through going backwards to recrcss E's straight line path.
As will be shown later, the Barrier is closed for realistic system
paraneters and the S>0 trajectories intersect the Barrier befofe
the switching condition of Eq (A.37).

1f ve examine the trajectories branching cff the y-azis singular
surface for o(*- 41, we find the costate solutions have the

same form as Eq (A.32) only with szo, !.e.

Ve ¢
XK(";) = —-—-—.&5'"( 2 I_s)

v,
Xy (7s) = cos )
Vp- Ve

where

Tg = backwards tize off singular surface, Likewise, AlT)

15 the specialization of Eq (A.36) to SzO i.e.

AlTy) = —Fe [1-cos(¥2n)] (A.39)
Vp- Vg Re
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Note chat A('i;) initially goes negative off the Y -axis
singular surface, goes to zero when !eg;rs = 277 but does not switch.
Like the S»o trajectories, these trajectories off the portion of the
Y -axis inside the closed Barrier, intersect the Barrier and terminate.
For the ©>© case, and assuming A dces not switch, o¢ * +1
and 9; = S+l"_2€‘> T . Substituting these controls into the state Eq (A.12)
and solving backwards from ‘(; with the boundary condit{ons of Eq (4.3)

yields
x(T) = L 2-vaT)sin (s-d- T) +Rp(1- cos._z‘r) (A.40)

v = (2-vT) tos(s+_‘i&1‘)+2ps:n_\_/g'r (A.41)
ﬁp QP *

3. State Equation Formulation of 3D Model:
The position of E as observed by P is X.
2= %Xl +vyL +241 ' (4.42)
- -x =Y a4

The instantareous rotation rate of the ., ;Y , '1’2 ares system is

= -
w = __‘,Ezp(sw‘mk £y <.os4>ge) A (A.63)

o< ¢
(=] o

£ 22T
< 1

(A.44)

Eq (A.7) applies in this case with

LP: V_P-_.\/P$Y (A.45)

e= Vel s, +mL 1 (A.46)
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Wxx = .\g"‘ sing o -cosd
P
x Y 2

= _\é_"l.’d[:/ wsd L - (xcoshb+ 2smd) 'J-"I + ysind ée-J

(A.48)

then Eq (A.7) becomes

= [V 2 -Yody cos L+
[E 2? Y ¢] 1% (A.49)

+ [ve® - Vp L"zzPo( {xcosd+z smd))] 1.+

“+ [\/E'v'\ - \lefdeS'nd>] L, .

= %1 +yl + 2l
r
the state equations are

Ve 2 - X‘%’d y cosd (A.51)

Ve ™ —\p + _\ézpo: (xwsp+zsind)

Ve N — _‘_/P_d,ySlntb
Re

ety S
R A
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Appendix B_

Analysis Details of the Limited Pursuer-Evader Model

1. State Equation Formulation:
The position of E as observed by P 1s X.
5- = x.;..l_ + Yév

The rotation rate ofld andi is

Q L= VP‘/R, = acceleration of P perpendicular to !LP

Rp = turning radius of P

and -1 £ ol & 41

The scalar, o< , is P's control.

The vector _&_ecan be written
X -+
p X

. SRS,

where

i(_l'_ = velocity of E as observed in the rotating coordirate

e a1

frame,

P O O R 1

SRR e g gy
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= —xM ol +ydeas
RP v RP ES (3.6)

¥o=Vpd

P P (8.7)

= Mg = Vesin®l, +\posol, ®.8)

lr = % .1:_,_‘*' :/év (3.9)

then substituting Eqs (B.6), (B.7), (B.8), (B.9) into Eq (B.5)

and solving for ';'('ir yields

v ayNex
Esme ‘] ’2?

Vg €OSO - Vp+ x_‘_é_?_d
. P

From Figure 18 it is seen that

© = Evader's velocity angle off = GE- GP

s0

2
= YE u acceleration of E perpendicular to M
=

g = turuing radius of L

O_LE
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-1 £8<£+1

The scalar, & , is E's control. Substituting Eqs (B.2)
and (B.13) into Eq (B.12) yields

5 - Vi
© = ée—%d . (8.15)
The state equations for this mg}iel are thercfore
Ve - ot
= v:s:_ cl:seg j;fi x.!gr_d
%e- \7/22?“

o <L Ko

(B.16)

Z. Problen Backward Solution From{}for 2D Model:

Equacious for the controls on the terminal surface & are found

first. A rearrangement of Eq (6.24) ylelds
tans, = MO/ N D L (8.17)
Note that both Aeho:nd )9) {-; o , so ME2 at{_‘becomes
VE[ A (&) sins, + Xy &L) coss,]-ky({;‘;) Vp+1=0 (B.18)

Substituting Eq (B.17) for kx(tl_)into Eq (B.18) and solving Eq (B.18)

for );'(@yields
M) = €03 54 (B.19)
VP Sy~ Ve 0s(S,-5.)
Eq (B.19) substituted back into Eq (8.17) ylelds
A (&) = SINSy
K .
+ VpCoS Sy ~ Ve cos(sz_si) (8.20)
209
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Note that \/Pcossi-VEcos(Sz—Sg) is the rate at vhich P is

closing on E at termination on § . On the UP of {{ , this term
will be shown (see section on Barrier) to be positive.
Since both A, and Ap &re zero ¢a & » "Ae and
—)\9 must be examined to determine the controls an infinitesimal

distance off §, . From Eq (6.22) we see that

- )\9!& = VE[)«K('I:{_) coss, - Ny () sin sz} . (B.21)

Substituting Eqs (B.19) and (B.20) into Eq (B.21) yields

(B.22)
3 } _ Velsins cos5,~o85,3m5.) Ve sin (S,-55)

e - -— e ——
. ¢, Vecossi- Vetos(s,-s,;) Vpeossy —\, tos(s,s) -
i P Assuming that the denominator cf Eq (B.22) is positive, as previousiy
2 35 Fe
“%’ indicated, the & control on '@ is
E3
4 ES i 3 <
e : = - o - B.2
Blpe s3[et]= g0 (-8 Up)] = -sgn[sin (5] @29 :
3]
4 Now from Eq (6.9) we get
S . . . b
- : ; . .
e ,‘ Ae = X)\Y-i—)()\\/-\/ )\x - ,\x.- \e (L.24)
3 i and substituting the state and costate equations yields
b2, : 3
3 - 4 iz
Ag = VpAg (8.25) 5
1 b Then x
e - A [+ ~Vp SinS (B.26) 3
i - Ae o= — P)\x\‘t_‘;) - P ES .
¥ Vp oSS, -V o (5,5, ) %

e

o,
o ey,

Sl B
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R

QS AT vk

where Eq (B.20) has been substituted for )\x (&4)_

TR CPRT R

Therefore

o(ﬂ&= _sgn[Ae Lq;)] =~ s%n[- Ae\&] =S n[smSJ (8.27)
where again it has been assumed that the denominator of Eq (B.26)
is positive. Eqs {B.23) and (B.27) will be used later to determine
the controls on the UP of {5 .

To give more insight into the backward solution, the singular
control necessary conditions are examined next. The E singular
control conditions are exawined first.

For E singular, it is first necessary that

)~9= © (B.28)

Also it is necessary that
o= %o = Vel dysme-A cose) (5.29)

implying that

tane = Xx : (8.30)
ry

It is also necessary that
Y (83D

Ve[ AySmMe « )\Ycoseé - MtosO+Xsmes|

o= Xe =
Substitutiny the state and costate equations into Eq (B.31) yields
.o 2
v - )
O= >\9 - _éﬁ[)*x)lﬂe‘i' )\YCOSG] . (B.32)

Eq (B.32) fmplied that either B=0 or )\xsm‘s-i- )«Y cos® = O
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for a finite time, If the lacter case is true, then along with

Eq (B.30) 1t implies that
the costate vector A= Q@

the candidate singular E control,

=0

)\,‘z XY = O

. Since )\eco already,

which is a trivial case. Therefore,

8s »1s

implying that E 4s doing a non-turning straight line dash.

The last necessary condition to check is Eq (2.16),1i.e.

$*(ve,

.4 ) 1 2
1) 2 = -1)2. [ gl=-V to,
1) DG[ et ] ¢ 1)3.6[ o) éf_)\xﬂﬂe-\—&,(osQ] o

Now Eq (B.30) implies

smea £ Xx

e N '

(B.34)

£\ {8.35)

Cos® = =Y

SN

The requirenent of Eq (B.?%) shows that the plus (+) signs in Eq (B.35)

apply. The P singular control conditions are examined next.

For P singular it is first necessary that

A9= KX\I—\/)“.~X9=C>

Also it is necessary that (See Eq (B.25)

(B.36)

o= Aa = VPX)‘
inplying that
2 =O
Eq (B.38) implics that ).«Y= [

Now it is also necessary that

k3
Ag = VP)\ = ~Npl Ay o
Rp

{mplying either

>“I=o or ot =O . Since

(B.37)

(B.33)
(see Eq (6.22) i.e, )sY 1< constant,

o (8.39)

>~\l=0

o,

o,
>

r‘;

a9 Ko 2 e TSl ot 'O
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Eq (B.38) and Eq (B,.36) imply _)_\_ =0 , this is a trivial case,
Therefore, the candidate singular P control, Xg , is

e =0 ) (3.40)

Again it is seen that P is non~turning. The last necessary
condition to check is Eg (2.16) i.e.
] 2 N - 2 2 = Vp? X, =
e’ 2 Hed) = ) E‘Lhe}'—é yZO  (B.4D)
amplying that
Nzo . (B.42)
Ic is interesting to note that if P is singular then

Ag = XAy (8.43)
and

3"'-_— sgn >‘e= sgn x)\y = sgnx (B.44)

the last equality coming from Eq (B.42). Eq (B.44) is a closed fom

control. If P is singular, them as x goes to zero >‘9 goes to zero

and E will switch to his singular arc provided

o= % = Vel Nsn© - cs8) = Vg)ysine (8.45)
i1.e. a3 x goes to zero E will switch to his singular control if ©=0.
These two conditions, Xx=o and ©zro it:.piy a direct tail chase.
A direct tail chase therefore corresponds to the control case where

both P and E are singular. ihe backward solution from the UP of t in

% %
the case where £z 0 and & # O 1s done next.
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Solution cf the first two costate equations in Eq (6.22) backward

using the boundary conditions of Eqs (B.19) and (B.20) yield~
2NG) = sin (Sl-ecl‘;%'r)/[vpcossl—VE_CQs(sz-SL)] (B.46)

AT = cos (S;_i»cl‘,‘_égp ) [Vpeoss, ~Vecos(se-sa)) | (BN

Solution of the © equation backward in Eq (B.16) using the boundary

conditions in Eq (6.3) yields

e i

R T

¥ = Ve ¥ ve *>
{4 e = S, + (.EPO( -8 )T . 5.48)
X Substituting Eqs (B.46), (B.47) and (B.48) into the Xg (i.e. backward
5 fa costate equation) in Eq (6.22) yields
% Es v >
i 3\9 (M) = Yesmn(S4-Se+ 2 8'1) . (8.49)
- § [Vpeossy « Ve cos(s,- s4)]
1 )2 .
) i 63 Solving Eq (B.49) with the boundary condition of Eq (6.23) yields
e 8% -
; bl < Aol = BelosGuss)- cos(ses, ¥ ™) ®.50)
2 hE g% [vpeoss, - v ©03(5;-5,)) -
A * For ©¢3,-F, <T/p s Figure 21 shows that in the UP 5$= +1.

For small T~ Eq (B.50) shows >bt')>° and :.a.itchcs vhen T equals T , ' ‘
defined by STy - o alsies) (8.51)
For -T<S,.-S,4 & , Figure 2) shows that in tha P 8= .1 . : ‘
For small T Eq (B.50) shows A{T)<o and switches when T equals To 5 ‘
defined by . :
~VE T = ~2T-2(5y-5,) . (8.52)
e .

In this latter case Se- S,_ <O , so the switching zimes in

Fratsd
-

v
SRS E R A

both Eq (B.51) and Eq (B.52) can be summarized Ly

PN

Ve T, = 2mr- 2)s,-5,} (B.53) :

—= lp £

¥
214 ‘;’

st

R
A
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Eqs (B.52) and (B.53) must be applied in a coordinate system such
that )Sg_- Szl < T . Knowing that E is in a hard turn, the physical
significance of E switching (i.e. Eq (B.53) can be shown to be that E
recrosses the terminal line of sight ia real space,

To examine P switching, Eq (B.46) is first substituted into

Eq (B.25)
Ay = Yesie (sytol ) —
[Vpeoss; — Ve cos(s¢59)])
, Using the boundary condition of Eq 5.24), Eq (B.54) is solved

(B.54)

backward yielding
*V
A = =Re [coss,-cos(s+ol £T)) (8.55)
eL*[VP COS Sy — Ve cOs(5,-54) )

S
For $,5>0 , Figure 21 shows that in the UP > = 1 .

For small T Eq (B.55) shows Aetr)<o and switches when T equals T

defined by
XPT = 27~ QSJ. . (3.56)
”, A

*
For S;<o , Figure 21 shows that in the UP o{ =-1 .
For small T Eq (B.55) shows Ae\'r) >0 and switches when T equals
Ta defined by
-V = ~2T- B.57)
B T>, = ~2W-2S . (
=, A 1

In this latter casc S,¢0 , and the switching times in both

Eq (B.56) and (B.57) can be summarized by

Yo Ty = 2T~ 2154]
Rp

o
3
4
4
3
3
4
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where |S,| £ T . Knowing that P is in a hard turn, the physical
significance of P switching (f.e. Eq (B.58) can also be shown to be

that P recrosses the terminal line of sight in real space. Because

of switching, the solution presented sv far is only valid up to

the smaller of 1‘9 or ‘I'A . As in the Limited Pursuer model,

these trajectories will gererally hit the Barrier prior to To € T »

Eq (B.48) is now substituted into the X and ~; state equations

of Eq (B.16) and set up for backward integration i.e,

©

% P * )
X -Ves‘“[52+(¥2d‘¥é3)71+d%7 (B.59)

¥
V= = Ve cos(s+ (e o( Veg)'r]+v,,-ot‘7’2r_x,(s.6o)
P

Eqs (B.59) and (B.60) are solved cimultareously with the boundary
conditions of Eq (5.3) yiclding
®(T) = o Ry (1- cOS \,/zo'r) +2 smLS1+ol\1/29‘r) (8.61)
e
QE e [cos (s, I, _-B-r) cos O

YLT)" °‘~ Q Slno( T.*.,Q (05L51+°£ .éz'r -+ (B.62)

-~ Be Ls.anz-\-oL 'r) sme(:r)]
vwhere @) 1s defined in Eq (B.48) .

3. C Trajectory Analysis
Solution of \-)'x and :J'\I in Eq (6.63) subject to the boundary

conditions of Egs (6.91) and (6.92) yields

4 W B.63
‘J'xcrl) = S|W(511—9‘,s+.\!§f€1‘) = S CSL.(._‘_ZLPT) ( )

oy (') = cos( 5:."'995*—\‘123?"") = cos(Si+ YeT) (e.64)

e B A o, Gl ATyt A T e

|
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T'= T- Ts

Note that the ‘T dependence of v, and 0’7 is unaffected by E
switching on the singular trajectory.
Solution of the é state equation subject to the boundary
condition of Eq (6.94) yields (B.66)
Vi Vi ¢ ’
ot )=s,+0_+( L VT 5,40, - (1% Bc \T'=
17 Pes (2,, sz‘) 1+ e '?e( thpvf)

-

= Si-&-e‘,s- QF_(:.-__é__:)'r' .
Ge

Solution of the 6'9 equation subject to \l'é(O)=o yielés

o) = & (1-cos \_éz—r') . (.67

Note that for small ’l‘", 0'9('7')>o which agrees with Eq (6.61)

(1.e. Z;' -=s%n Oy = +1 ) and that \J’BCF') =z o  always.
o

Since ‘Ke = ~VpUy. and siace s (T) is unaffected
~o
by E switching off the singular trajectory, the Ae('f)

solution remains unchanged (i.c. Eq (6.76) ~
Ae@) = —RPE(°S51— cascs,_-:-_‘g'.’ﬂ} . (B.68)

Therefore, the switching condition for P on the Barrier (i.e. Eq (6.77)

remains unchanged i.e.

— . (B.69)
O+ Ve = M (T3+T/ )= YT, = 2mw-z2lsyy
> A = s = A= 1
PR, R i 2p
where ’1’;\' is the time of P switching after E switches from the

singular trajectory.
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Simultaneous solution of the X and :/ state equztions backward
for 2 =+1 , Z-. 1 in terms of .irbitrary constants “a"
and "b" yields

X = o.sm_‘ée'r'.u. b cos_‘éz‘r' + Ry~ Recos ©LT)  (3.70)
e P

\/(:\".l -bsin ll,_?EPT’-o- Qcos :éi’]".p EESui SLT') . (8.71)

Applying the boundary conditions of Eqs (6.95) and (6.96) at Tto yields

. Vi -
A = RpSmBp+ Ry (!é-; - .5;-’ eps) 05 (S+8,5) - Re 5 7 (51+6p5) (B.72)
b= 2”('12?} - \TI/% Ops) 3 (S+8p;) - Ry (05 Opg + B COS (514 6) (B.73)

Substituting Eqs (B.72) and (B.73) iato Eqs (B.70) and (B.71) and

dividing by QP yields

) ( . (8.74)
X - —ces(o, +2m)+ (LYoo Vsin(s+e_~Ver’
= Ps Ep) (QP v P:) (1 Ps = )‘*‘

Be \p e R
+ ZEcos(s+8 4-.21')-4-1—_;:05661"1
s 7% Zp

(B.75)
- _‘%9‘?‘) cos(($,+ 6,5+ .‘g.P‘r')-#— sin (eP,+_\_/§?T')+

—Besin(s5+ Bps+ YeT') + B smo(T’) |
Ep Rp Re
4, State Equation Derivation for 3D Model:
Examine Figure 29 of the main text., Fp locates the coordinate
system of the pursuer whose v axis is always along the velocity vector

iP . The terminal surface, c , is a sphere of radius, 2 , about the

TES Yo o B I T A BRI P 0

R N
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origin of P's coordinate system. The vector, r, locates the evader's
position relative to P. The projection of I onto the x-z plane

(i.e. X ) has the angle © relative to the x-axis. The acceleration
vertor of P normal to )LP N 1.e.g4,r, lines in the X-Z (or X -2 ) plane
and has the angle $ relative to the x-axis and the angle 4> relative
to the x-axis {i.e.

d-© N © (B.76)

? maneuvers by selecting the magnitude of g__,_P s which is bounded,

and the bank angle § (or q~> ).

Now

(B.77)

(B.78)

v _ (8.79)
o(_é’; (sin &1 cos'@ £

where oz d 2w ’ (8.80)

The !5 orientation and acceleration, g"a’ are darived next.

A counterclockwise rotation, & , about the y-axis locates the
X4,Y1, 4 axis systen so that !E lies in the ¥,-Y;plane. The rctation
rate of the X, v, 2y axis uystenm, VJ e relative to the w, Y, % systen

and the coordinate system transformation after the © rotatir. are
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¥.= ;"Y

> 0sO 1 +smot,

2™ SO L +osBL, (8.81)
.‘i"e = -1 = -93-_1

” E (B,.82)

Next a counterclockwise rotation y about the ¥ -axis locates

the vector Ve along the v,~ axis. The coordinate systen trancformation

and total rotation rate of the X, , Yo, 2, axes system, W

gz
relative to the x,Y, 2 systew are

»

2 =12
S22~ Tra

- - n
L,z cosgp L -SaypL

;L_\n-: Sy L -+ cospl (B.83)

We,= W -PL,. (B.84)

The %,-2, plane is the plene of E's acceleration vector g_,_e .

g‘a has the angle, 9 » relative to the x,~ axis. E maneuvers by

selecting the magnitude of @, , which is bounded. and the bank angle
&

? + Now -

2
la. | = Xe (8.85)

oz@ < 1 (8.86)

= aV _ ) (8.87)
£E~5.§E(s:né}_xz COS;L‘R

oﬁaézv




DS/MC/75-1

Substituting the Eqs (B.8l) and (B.83) into Eqs (B.84) and (B,.87)

yields

W= YSMO L ~6L -prosol, (B.89)

.‘;JE_ = %&L(sunécos;?cose-t—cos§sme) 1 «+
e

(8.90)
-LSM’éS'"‘P)é.,- +( Sm’b ospsnd- (osécosa ) i, ] .

The formal derivation of the state equations is doae next.
The position of £ from P can be written

L= %3 +yi +241

L, =')¢1__.4-\11

2 =
= Keos &S
2=Ysin® .

Eq (A.7) applics here so that

€] = ¥ -V -~w_x £
€] = Yo-¥-w, (8.93)

The veetor \/ can be written
y—e= Ve 'i'_YZ = VE( S .j_-xi"' cos éy‘;_ 3 (8.94)
where Eq (B.83) has nlen used for éyz' Further substitution of

(B.81) into Eq (B.94) yields
= 4 v _(B.95)

\IE = Vg [Shmi;cosa éx + cosPp _1_-_7 +sunxgsm8_’;al N

The vector \{Pcan be written

o A R e oI B e S e

A2 B o T Aue i A e A G eeE,

IRSRP RPN SRR A T T




DSMC/73~1

Substituting Eq (8.92) into Eq (B.91) and using Eq (B.79), the
_tgP'::r_' tern becones

4, 2, 2,1
_“_"_?KC = ot Mp sing o -cnd
“p

wes® xS

Yéﬂd{\lcosé L, -%os(B-8)L +ysind1 ] (8.97)
P .

Differentiating Eq (B.91) relative to the moving X,y,2 systen yields
_r':]r:- XL +9L 43l = (i'_cose-3<_smeé)_.1_.K +

+J ;L_Yi—(i_smaﬂ-xcos@é)’_i;z . (8.95)
Substitutirg Eqs (B.95) to (2.98) into Eq (B.93) and equating the

scalar couponents vields

% = %c0sO-XSMBB = Vg sypiose —_\é%oL ycosd (899

Ve COSP - Vp + _\_‘lziot % cos( ©-P) (8.100°

X SMP +xcosOO = VeStnpsine - _\g_:zy siad | (8.101)

Mulciplying Eq (B.99) by cos and Eq (B.101) by sin@® , adding,
and sipplifying ylelds

X = Vgsinygcos(2-8) _,_\;:dy wos(®-F) . (B.102)
v

Multiplying Eq (B.99) by sin@ and substracting Eq (B.101) nultiplied by
cos B yields

-%8 = Vg sy s (B-0) - Loty sin(©-F) . (8.103)
F
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Since the total rotation rate of the X, y,l 2, axes system,

L\JE_ » equals the total rotation rate of P (i.e. wo } plus the

rotation rate of E relative to P (1.e.“__lz)‘ it i3 seen that

W = -+ .
We= W, , (8.104)

Substituting Eqs (B.79) and (B.90) into Eq (B.104) yields
(B.105)

=W - =]a¥e -t M &
W =W W, [5EFELsmbcost{:cose+cos§5me) o(_g;’sm@]g_x-p

*_L—S‘éessm s q;l&\[+ [sl’i;ee( s gcosq/sme—cosgose) + ol_;_{; :Os§1 ;2.

Equating scalar corponents in Eqs (B.89) and (B.105) yields
¢snd = aYe (Smbcos?cose-i—ccs;sme)—dyg sing (8.106)
Re Rp

—©e = - Q%smbs-mq, (8.107)
-yeose = 8¥s (s OSWYSINBD - oS 20050 Y+t e ¢ .
25( 1y osy 3 Y+ = o (8.108)

Multiplying Eq (B.106) by sinS and substracting Eq (B.108)
vultiplied by cos© yields
w=38Ye cos3 - Vo o coz(O-3) .
2, e

1=
Now let

Z=6-6 (8.110)

Substituting Eqs (B.76) and (8.110).into Eqs (B.102), (B.100),
(B.103) and (B.109) yields

% = Vgsinpcos - d!ﬁg y s (8.111)
P

Y = Vetosyp —Vp + olyég Keosh (8.112)
r
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e-= _’;Z[VF-SW“P smy - o!_\éﬁry sm&] (8.113)

-

v= R .‘;_f;:cos'é— d_\ég cos(2-3) (B.114)
= 1d

Differentiating Eq (B.110) and substituting Ecs (B.107) and (B.113)

yields
(B.115)

é—:é-é = 6,‘f2ismésmq.4. ULQ[- VeSmysing ¢ oz_“{zgr\, sm&] .

Therefore, the four (4) dicensional state vector X is
(B.116)

and the state equations are Eys (B.1il), (8.112), (B.114) and (B.115).

Wepretafy

5. Problen Backward Solution From ¥ for 3b Model:

o
-
<4
L
=
i3

v H
bs
F4
i3

Equations for the contrils on the terminal surface, t , are
found first. Substituting Eqs (6.105), (6.130) and (6.131) into Eq (6.111)
shows that A(é_‘_)- 0. Furthermore, Eqs (6.131) and (45.132) show that
B) ~ 0 and HE('E.L)"'O . Therefore at '{'; nain Eq (6.128)
becomes (B.117)
() = 1-v x’(f‘c)-(-ve[)\x(tﬁ SINPCosZ + N({:‘\cosq;}!{.:o

B R e T I T

Substituting Eq (6.130) for )\x(f‘) into Eq (B.117) yiclds
)\lC{_g‘\ = -1 =

Ve (tonsysimycosg + cos ], Ve

oSy
Vp o351~V (cossylosy +SmS sy cos )

1
1 .118
!*{ L@ )

Substituting Eq (B.118) back into Eq (6.130) yiclds
\ ({4)= Sm S4 (B.119)
X Vpeos Sy - Ve coss osg ¢ sins s cos) 4 .

% o i
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Since A-({L\ = B(t‘() = X\i,({g) = )\z(f;)=o. Eqs (6.127)
# o

.12 4 defi e. 2 . T

and (6.121) show tha §| ‘and 3 g are undefined i.e. -5 o

evaluate the/ in é) , Eqs (6.121) are first rvartanged by dividing

)g.,r()\e) into the n.x zerator and denominator of cos g (sin% )

yielding
(B.120)

cosgn-.: sar My . Smé sgn(Ag) smy
1+ (M/a Yoy ‘/( } + sin'y
Therefore, an infinitesizal time away fronm ‘c the } controls are

cosa L) = sg‘”(i“‘.
e [r+Ciemy _7._)

&

&

‘\.l
#
<3
ks
Py

)

o

v Az - =Vedxswmysme

'l:->‘&; v ~Ve ()\ysm-.{)_ chos\p oS 4 (B.122)
~ . {
£ S\w;p s - {ans, sy sin'g |
Siny - tans, osyp o3 2 l
t
7

Siny — ____ (os\.P s iy

where Egs (6.129) and (6.130) have becn used. Since

sgnf_cossﬁ({_()} = sgyn ('\‘f‘)lt; (8.123)

then substitot Lf\g
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Eq (6.129) into Eq (B.123) yields

53.4 [cos é‘(t_;)] = s%n [— VE(. )\Ysm V- )\xcos«f: cosZ ))t;] =
-sgn l-.)“l Uc@] sgn '\5"’7\{) ~ % ‘°5"}"°52\) l{-{_ =
-sqn[y ()] sgn (siny- tans, COS\("‘”’%)lu (2.124)

Where Fq (6.130) has again been used. Substituting Eg (B.122)

into Eq (6.117) yields

‘L‘av‘é*(‘l:_[_) < _tons; smiusmg -
Sy — +an$1c05\Pcos¢Z, {4

= smyptans, ‘(:cu;ny sin®
tany - tans, cos ty

and substituting Eq (B.118) into Eq (B.124) yields
5%'{1 LCOSé*C‘t_E)} = .
— —sgn(s31) san(Sing-tans;coswosy)
san [Vpeossy —ve(cossy cosp + sinsysing <052)] (5.126)
Eq (B.125) and (B.126) will be used later to deternine 9‘(&) i,

Note that for %&4’)”’ £qs (B.125) and (B.126) become

tan é¥(t£) =0

Sgn {cos g&‘r_\:\ _  —son{smiy-31)]
sqn (Vpeossy~Vecosiy- 5.1.3}

afin gt
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vhich give exactly the same result as in the 2D Limited Pursuer-
Evader model.

o+
To evaluate the$ in (P]{, Eq (6.123) 1s written as
£

b BRI AN D O B2t 5 kR, R T
5
o

&
{on,q;v.: B Fre-deswn | X 3%~ sz (8.128) 5
= = X2 . 72
AT xAy-yXi-t. os% K—L&rﬁh- cos2 -
bY Sy v A
Since A% is givia by Eq (B.122), only E_.‘(_‘L_&, e
need be determined for Eq (B.128). And since .5?;7:_‘1..&_.‘ o, .
' 2 ° 4
it too muat be evaluated by LHopL{als rule i.e. E:
whyoyda | o by, £ G-y AK) (8.129)
>\‘+ frm > - % S
T S T {
& Now .
d (’0“( Vxx)){ -(K)\\,-Hf-)\ -y Xx—vxx)l 4 N
= e(szOSY er‘"‘i’ws‘"«] VP Ax ) (B.130) i Y
i 2
where the backward state and costate equations have been substituted : ;
g
and evaluated at {‘ . Multdiplying Eq (B.130) by _X_Y_ and N
x r
) Y ;T B
i~ T3 i 6.130) yield 2 s
SN vstog Eq (6.130) ylelds (8.131) .
T 4 G-y M)l = M Ive (o tons,)] CG
: =2 x ) = NS WOSW—SINP s Z )~ \GTan s, . B
£ OAy-y ‘{£ yLVe (fans,cosp-simpeos )=, J,c‘ .3
H o 9
Since >“f’({'£) cen be written, 53
* s
)\\r (4) = - NVe € sy - tons, ospcos ]’ (8.132) ‘

LRI L s e A ety

L RN B AR SN e )
N
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then substituting Eqs (B.131) and (B.132) into Eq (B.129) yields

XAy-y Ay l = vg({-onsicos P~ smq;:bs%)- VP{Q,,, s, | (B.133)
Ay lﬁ Ve [Slmp - tans; cospeos R ) {{"
Substituting Eq (B.133), (B.122) and (6.105) into Eq (B.128) yields
* ot tons, sSiny sm¥e
fon$({)— 1 Sy - tanss oS¢ cos g,
4 Ve (tanss cosw - sy ool ) ~Vp tansg
~Ve (smy - Jmnsicossr os %)
Simplifying Eq (B.134) yields

. cosycosZ sm?2
+ =
on VB, ~ cosy sy
e
From Eq (6.127) it is ncen that

- 3n%g

~Cos2

’ . (8.135)
g
' (8.136)

sgn {cos v$',é )] = - sqn Alf)s - sén[%&*\/-‘l xx)-jl:rG\‘JOSZ)]} )
Also +I

.(%(M,cw%)}q: X,,coSZIu . (8.137)

Substituting Eq (B.132) into Eq (B.137) and then substituting Eq (B.137)

and (B.131) into Eq (B.136) ylelds

sgn (cos ai*({ .{’] = -sgn {k‘l [VE(":Onslcos\f~ s-mf-cos%)- vpfonsi]*

(B.138)
+ Vel (siny-~ tans, osypos) (05'2-‘} , )

Y

i
j
H
H
i
g
%

" 3

R

iy

B A
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Simplifying Eq (B.138) yields (5.139)
s%n [_cosﬁi’c _(_)3 =sgn () >gn (ans,) sgn @’\-,?‘-_’ - costySln’q.‘)] + ‘

Substituting Eq (B.118) for A (L )inco Eq (B.139) yields
¥ (B.140)
sgn [wsa*&p}, = 3gn(smsy) san (& - cosyp i) |
sgn [Vptosss-ve (cossycos g+ Snsysmgposz)) ’

—~ £
Eqs (B.135) and (B.140) will be used later to determine ¢ (f,(.) B

Note that for !?1-({.(_)=o » Eqs (B,135) and (B.140) reduce to
tan &(:_;) zo (8.141)
sqr (s () - —2an (sns,)
sgn (Vo531 - Ve cos Cy-55)] 1y

which give exactly the same result as the 2D Limited Pursuer-Evader
nodel.,

To give pore insight into the backward solution, the singular
control necessary conditions' are exanined next. The E siagular control
conditions are examined first. For a singular control in @ , it is

necessary that
)\zanbsm\?-(— >“P<°='§ = o
Substituting Eq (6.121) into Eq (B.142) yields

/ X\;.., )\_gsunzn‘, = O

Eq (B.143) implies that both
)\P =0
Ag smy =o

s

By e o 2 s e
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B e
i

Eq (B.144) has two pussible cases: 1) X\',zo and Az=o , 2)

.5" '}'i;"‘;ﬂm .t

AFOand smmp=zo. In case 1), Eqs (6.111), (6,112) and (6.127) show
¥ Y

that P's controls are 2
X = 414

sm$* = © (B.145)
w0sP = - sgrA - s%n(xxY—ykx)

vhich are the same as the P controls for the E singular case of the

R LT PR RS A YT

2D Limited Pursuer-Evader model. Now, since )\q,z )\zr_ o , this

implies that Aoz d,z0. Eq (6.129) shows therefore that both
ki

bty

3\% = Mysmypsn=o (B.146)

)«Y: )\Q‘= [~}

;\\f,l = Aysioy- Ny cosyeos? = o (5.147)
Xz:o

are also necessary for 3 to be singular. Now Eq (B.146) implies three

further possibilities for case 1): a) )\y_c o , b) sy =0 ,

¢) s =o .

==
]
2
el
%
:
1
H
%
i
:
3
i
i

In case la), Eq (B.147) shows that Xﬁlm}: equals zero ( ).\I=o
yields the trivial case of A=0 ) from which it is concluded

SNy =0 . (B.148)

Now since )\(:Sm\f:o, this implies that M = ¢ = ©

v aaraX e St WA O

Therefore, Eq (6.129) shows that

WV, ~
o= \x = _o(__E-P X1 ws ¢ (B.149)
X‘;:o *
from which it is concluded (XY;‘. o since this will be the trivial

case of A=0o ) that

A=zo . (8.150)




o PN o
VRIS (S N N Ty,

. - - -
D R T L I A R S YN

B s ——— ¥ r—— , Mﬁwwm%% §~

DS/MC/73-1

s A oy 57

Eq (B.114) shows that
o= 4) =8 !E. COSé
A=o e
from which it is concluded that

3:’0 .

o7 v st AT R

Therefore, case la) shows the following =dp = AL =S = olzR=0 .
§ = “x =3y

EVRY

Case la) is therefore the totally singular tail chase condition of

the 2D Linfted Pursuer-Evader nodel.
Turning to case 1b) it is seen that sin \l) =0 (i.e. (osq,:

+ 1) and Eq (3.147) implies

¢ = ¥, cosZ =0 . (8.152)
)\2:0
SINY=o

In this case either Ay = © or cos® =0 . The forer

leads once again to case la). If Syp= wcZ-0, then L{J =Z2=0 .

From Eqs (B.114) and (B.115) then

-

D = N/ V; -3 1
Y = BYE cosa-a Ve osl2-B) =0 (B.153)
e é 12', "

é d\_/ft_‘LS\ng =o
Swiyp=c

(B.154)
=

and it is concluded for case 1lb) that A= = O .
Therefore, this latter case i.e, >\Y= Xa: LI wsZcclz8z0 ,
is also implying the non-turning totally singular tail chase of the

2D Limited Pursuer-Evader model.
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Going to case lc) with )\q,z )\ersu‘)z:o' the present state and
costate equations becore the same as the E singular case of the
2D Linited Pursuer-Evader model,

It can therefore be seen that the & singular conditions of case
1) are simply those already found in the 2D Limited Pursuer-Evader
model.

Examining case 2) with A\',=smxr=oit 1s seen that X*a «.;) =
Therefore, Eq (B.114) shows that
0= ¢ = 8)e s - Y cos2- ‘ .
¢ =8 = 033 - e (2-&) (8.155)

P
and Eq (6.129) shows that

. (B.156)
o=>~?' = Vcosv,:( ’\%‘ SN, - )\kcose, o_jsmé)

:.mq;:o
It appears that the only possible way to satisfy Eq (B.155) is vhen
A=1 =0 . This is partially subst:.antiated vhen it is realized
that 2 and 'g are really undefined for sm;f,.-o. 1f 8= , then Eq (B.156)
shows that )

ton® = x X (8.157)
Ae,
But since Z is undefined then tan? must be of the form2 implying M=

X,a = 0, Much of this in case 2) is very subjective, but once again is
implying the totally singular tail c‘hase sitsation.

In summary then, it appears that the singular control conditions
for arc simply those already found in the 2D limited Pursuer-Evader

nmodel. The singular control conditions for P are examined next.

g i 325
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For a singular control fnof , it is necessary that
Acosg+Bsmd = o

Substituting Eq (6.127) into Eq (B.158) yiclds

- /l\2+"3>z =o

implying that both .
O= A = XAy-yrx-A¢pcony (8.160)
o=‘5=%)\%_)\vsm?, -

Defining'&':ks, the requirements of Eqs (B.160) can also be written as

A= xAy-yAy-Apws = o (8.161)

=y X%—'Xkc‘r S’V)z

Since A=B’-.—.o, it is also necesszary that A =

2 1
Differentiating B' ylelds (8.162)

- . .
B = yhgevig - (dgexig)sma - xApcos2 & =o
Substituting the state and costate operations into Eq (B.162) and

simplifying the resulting exvression with Eq (3.161) yields

= >\2[ y.cosqo*_s"e ;mé(xsm?,cos\k \((o‘ézslﬂkp)-‘-

A

(B.163)
~Vp+ Ve ';1 k_ws\l;(osz:] =
‘il

VI NI RN

Differentiating A yields

e

;i

o

A= x‘{"' X).‘Y' ¥ A~y S‘k* S\r(os?., + XTsln%,’.Z, =0, (8.164)
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Substituting the state and costate equations into Eq (B.164) and

simplifying the resulting expression with Eq (B.161) yields
A = —atV A/

A = >*z.[ Yo s+ 5ésnné(cosz<osq>+{_5\ntp)+

P (B.165)
+\Vp (_3\7___ —cot 2 ) -—Ve_"_Y_(bsvsm?,] = O.

>‘\P =N % NP
Eqs (B.163) and (B.165) both indicate that
Ay =o ) {3.156)

is another necessary condition for a singular control in o4 .

Since An=O, it is also necessary that
2

o= &zk = Vgh, Siny sm?,-o(:_g .\\i,smﬁi-&') (8.167)
?

g=o
With Ayz=o0, Eq {B.160) shows that Nﬂn?. equals zero which yields

two possibilities: 1) M: (=3 or2) sSWMZ =0
Case 1) is examined first.
In case 1) X‘P = 0 also implies iq,-_- o i.e.

o= xq,l)\z_o.; Ve (Ny SINY—X, COSY oS R, ) . (B.168)
Ffrom Eq (B.167) with )\r-o, there are three d’stinct possibilities

for case 1): a) >‘k=° s b)sing=zo, c) sin®?, = 0 .
In case la), Eq (B.168) implies
Sy =0 (5.169)
since )\‘=o is the trivial case of A =© . Eq (B.169) further

implies that kl.r:oi.e.

o=y = s:’_'i_cos;—dxfcosiz—a;) . (8.170)
Re R
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A suonary of case la) shows A=B = g = XY =Xy =Siny=0o .
Since Eqs (6.121) and (6.127) show that g and ¥ are undefined
under the conditions of case la),s<and 8 nust be zero to satisfy

Eq (B.170). Note once again that this is the totally singular tail

chase situation of the 2D Limited Pursuer-Evader model.

In case 1b) (i.e. siryp=0c , fosq»zt:l), Eq (B.1A8) shows

that * )\xcosz equals zero implying either X\, =o

or cos=c . If )\xgo , the present case is the same as case la
(l.e. AzB = )\?‘_—. )“I,: sSmyp= )\)io'e(n). If cosZ:0this implies 2=

o i.e.

gl = «¥ Yswm=o (8.172)

Smy=o P
vhich also irplies of=o . Since {roalso, Eq (B.170) implies Bwo

A suzmary of this latter case shows A=Bz Ag=dp=smyp=(osg=el=8:o
which is also indicating the totally singular tail chase conifitioan.
In case 1lc) (i.e. A=B < XE: X‘k:sm—'zlgo ), it can be seen
: 3
that with Xg = Sn=o (l.e. Bz0) é" (Eq (5.121)) and
(Eq (6.127)) becone

* ¥
Smé - o . Cosé < sgw )\.*, (5.172)

t )
smd - o s = -sgn A (8.173)
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As such, the ii‘ 9 and QJ state eyuations reduce to the state equations
for the 2D Linjited Pursuer-Evader model, The % state equation is
identically zero. Likewise the costate equations;&,iyand &?, reduce
to the costate cquations for the 2D Linited Pursuer-Evader model.
The iz costate equation 1is also identically zero. Case lc) is
therefore the same as the 20 model. In particular, since A= )\Y=O s
it is seen that case ic), as well as cases 1a) and 3b), corresponds to
the totally singular tail chase of the 2D Limited Pursuer-Evader model.
. Examining case 2) (i.e. A=B= Xz SN =0) it is again seen,
as with case 1lc), that the 3D model reduces identically to the 2D
Linited Pursuer-Evader model. As such, the o singular conditions for
case 2) are the same as theo{ singular conditions for the 2D Limited
Pursuer-Evader zodel.

In summary then, it is seen that the of singular control conditions,
as it was found with the g singular control conditions, are simply those

already found in thz 2D Limited Pursuer-Evader wodel. This concludes

the singular control necessary conditions.
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