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APPROACHES INI
SEQUENNTIAL DESIGN OF EXPERIMENTS

by

Herman Chernoff

1. Introduction

Sequential design of experiments refers to problems of inference
characterized by the fact that as data accumulatje, the experimenter
can choose whether or not to experiment further. If he decides to

experiment further, he can decide which experiment to carry out next,

and if he decides to stop experimentation, he must decide what terminal

decision to make.

In principle, ordinary sequential analysis, where there is no

choice of experiment but where one must simply decide whether or not

to repeat a specified experiment, is a special if slightly degenerate

case of sequential design. The same can be said for double sampling,

where the experimental choice reduces to selecting the size of the first

sample and, given the outcome, the size of the second sample. Indeed

double sampling may be regarded as the origin of sequential analysis

and hence of sequential design of experiments. With the exception of

a few references of special interest, we shall avoid the discussion

of these degenerate cases, and we shall concentrate mainly on problem

areas and theories where there is a choice of experimentation after

each observation. We shall do this in our search for general insights
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even though douole sampling is probably of more practical interest

than the remainder of sequential experimentation.

In recognition of the importance of a theory of sequential design,

Robbins [ il proposed the two-armed bandit problem as a prototype

problem of possibly f'undamental importance. Two variations of the

sinplesf vers.i)n arc- the Volo,ring. In both there exist probabilities

p1  end p co.rrespr.iUng to tht probaility of success with two arms.1lan P2 " "

Selecting an observation from arm i leads to a success with proba-

bility p, :1.2 . The two alternative hypotheses are H1: (plP 2 ) =

kp! and 2 pip, ) = (p20pl) where plO and p2 0  are

distinct specified prcta oilities. Thus one knows both probabilities,

but one doesn't know wbach corresponds to which arm. Each hypothesis

i s ass~jmed to be eqall1y likely. After each observation the experimenter

may select tne arm tc be used nex* until N observations have been
tsass ed to bne eari -- li bl. 'e r ac to bsr inteeprmne

taken. In one variati.r. the ob.ji, is to make the choices so as

to maximize the probabtili-y of deciding which hypothesis is true after

the N observation. In the cthir variation the object is to maximize

the expected total r.'.mter of successes in N trials. The second version

is the one usually referred t( as the two.-armed bandit problem and

seems tn t.ufvont the issue mote directly. How does one compro-

rise between *he a-ticipated cost and the value of the information?

For in that probl-m tne choice of the arm less likely (according to

the poste'ior probabiity) to bave the larger probability would consti-

t'ute a sacrifice fA _mmediate gain in the hope of information which could

2



lead to ultimate profit.

As a prototype this prcblem was a7t acked ,igornus y, but the

results implied 'that this problEni farled as r lsef~l prototype, at

least in its Immediate interpretaticon. The main res-zIt. wdich was

surprisingly difficUt to estlish 11F5'* & aways :&!Ils fcr the useI

of the arm most likely to have the tugh- p.barilit; and hence does

not yield a usePl compariscn of cost with inf',rmatJ.in. The vaxia-

tions of this problem where this res.', does nct apply did riot

seem to have any clearly generailzable Interpretatl-n. These varia-

tions involve imposing different pric-r dd ei c-s on P

Note that the original problem correspcnds to a tur,-polnt prior dis-

tribution with probability allocated to the two poini.s (p.0 op ) and A
1020'

A problem which is currently of c nsiderab.la i..:erzst in pattern

recognition prcblems is fPndame- ,aiy r'lateic t. ser't:ai design of'

experiments/ although str-ctiy speakirg there may be no novel experi-

mentation. Here the qaestion becomes one of wnach f'nctions of" the

already collected data should be stu3ied. For exarpve, one may have

samples of cardiograms for rormal peoplP &nd. for people havring had

heart attacks. One may wish to develop a me'hod of claLsifying a

given cardiogram into one c'f these twc c'ategories. What aspect of

the cardiogram should one study? One may se:.ec! f-,'st some simple

function of the data (called a meat.ure ir. the patte.rn recognition

literature). To the extent that. the ?se of" this feat--.re can only



do part of the job of classifying, one may attempt to look for addi-

tional features sequentially. Although the data are completely avail-

able, the process of selecting new features is equivalent to the

carrying out of additional experiments, as is practiced by the physician

who diagnoses an illness by a succession of "tests". Both of these

cases have one aspect in comon which separates them from the main

body of the literature on sequential design of experiments. In both

th
of these the result of the n experiment" is statistically dependent

on the previous results. However, most of the literature in sequential
th

design of experiments concentrates on problems where once the 
nth

experiment is selected, its outcome is independent of the past. Indeed

an experiment can be repeated (independently) several times in such

problems, whereas a repetition is useless (except to correct for exper-

imental error) in the cardiogram and diagnosis-type problems.

The literature in sequential design contains two broad types of

general approach and several major classes of applications. One type

of general approach is that of stochastic approximation. Three varia-

tions are the Robbins-Monro methods, the Box-Wilson response surface

methods, and the up-and-down methods. These variations apply to the

estimation of characteristics of a regression function and use the data

to determine the next level of the independent variable at which to

measure the dependent variable. Typically no attention is paid to

a stopping rule. The other general approach consists of finding

optimal or asymptotically optimal designs, generally in a Bayesian

: i
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decision theoretic context.

Special classes of applications, about, some of which little will

be said here, are (1) survey sampling, (2) multilevel continuous

sampling inspection, (3) selecting the largest of k populations, (4)

screening experiments, (5) group testing, and (6) search problems.

While one would expect. Monte Carlo sampling tc be one of these classes,

the literature seems to lack interest in the sequential selection

of simulation experiments. There are a few miscellaneois categories

such as "forcing experiments to be balanced" and some process control

problems which also deserve mention.

This paper consists of two major parts. One is devoted to the

more general approaches, the other to the classes of applications.

2. Stochastic Approximation

The Robbins-Monro [R4] method applies to the following problem.

Corresponding to a choice x of the "independent variable", oie

observes the dependent variable Y(x) with non-decreasing expectation

M(x) = E[Y(x)j • It is desired to estimate 0, that val!ue of x

for which M(x) a for some specified value a Starting with an

initial guess x successive choices x2 ,xl, ... are made according

to

Xn+ 1  xn -an[Yn(Xn) - ]

for some specified sequence (a The sequence jxn1 serves both

as the successive estimates of 0 and as the experimental levels of

5
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x • Since Yn(xn) -a tends to reflect how far x is from 0,

the above iteration represents a correction for overestimates or

underestimates. The [a 1 sequence represents the extent of the

correction. If the an were bounded away from zero, the successive

terms would tend to fluctuate by an amount determined in part by the

variance of Y(x n) If the an -4 0 too rapidly, the corrections

might not build up fast enough to correct for an initial error. How-

ever, if a -# 0 at a suitable rate, it is possible to show that

xn -4 x with probability one under weak assumptions concerning the

distribution of Y(x) . There is an extensive literature to this

effect which indicates that the method requires little but that

M(x)>a for x>G and M(x) <U for x<O.

While very little is required of the sequence (an], what does

seem remarkable is that with a proper choice of (a this method,n

which confuses design level with estimate and which ignores the past

except for the last estimate and the number of observations, is asymp-

totically efficient. Hodges and Lehmann (16] have shown that if

Y(x) has mean M(x) O x + 6 and constant variance a , and

an = c/n, then 0 : (a-5) and
n 2

E(x n n0)p2.) if cp > 1/2
n+l n2~l /

It follows that if c = f-l, this method has asymptotic efficiency

one for estimating 9 in the normal linear regression problem where

the slope is known but the y-intercept b is not known.
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Some reflection based on the followirg facts will help explain

this resilt. If the regression is linear and . is known, .he effi-

A
ciency of the conventional estimate En of C is independent of the

A - -12

design. Indeed n = - has variance n- a and the corres-

pondirg estimate of 9, P [ n )] has variance

Moreoverif xis selected to be e ,th e n n 1Y CnI

Finally in the case where is no' known. the asympt,-Aic variance

of the conventional estimate of 0 is '2 2 fl+s; 2 ( 6n-)22 where
S is n" iZ~ (xi-Xn)- Thus the results of the known case can "

n

be approximated as l~ong as x1,-9 is small ccmpared tc sn I a the

stochastic approximation case using the sequence a c/n, there is

no prior knowledge of 0 to insure that c = I-However, as

data accumulate one would hopefully obtain a satisfactory estimate of

providing the successive xn  are not toc close to each other. This

proviso was achieved by Venter (V1] and Fabi at, K, by thi expedient I

of separating the design and estimation fanctic s of x . That is,

they use zn  as an estimate of e and slect twro levels z n c nn n,

and z - c at which to draw successive d)serva!.ions from which ann n
estimate of Mt( ) is derived as well as an estimate of 0 .

These revised versions of the Robbans-Monro method have some of

the robustness property of the original methoao Fut,hermore, with

regularity conditions under which M(x) is "rcaJ',y linear (and smooth)

with slope at x =0, vn(Xn-) is asymptotically normal with

S2
meant 0 and variance a /no where n is the ni'ber of observations.
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This is the best one could hope for in the case of normal linear

regression.

The suggestion for separating the design and estimation functions

of x was isplicit in the earlier generalization of the Robbins-Monro

method by Kiefer amd Wolfowitz [ 2) to the problem of locating the

value 0 of x at which M(x) achieves a maximum. Just as

-sgn(Y(xn)-a] est.lmates sgn(A9-x n ) and points in the direction of

O from x in the R-M problem, so does sgn M'(xn) point in the
n n

direction of 0 fm xn  in the K-W method. Here (M'(z A) is

estimated by (Y(zr+C' -'- cn )/2c n  and the K-W method uses

a [Y(z +c n ) -Y( -C
Zn+1 = n C

nnn

where a nc r. 0 so tha:, an 00)~ n n2-2)Znn 0(egj

a = n c, nn ~ (~.

Venter fy22 and Fabian fFl1,3] have also generalized the K-W scheme

to obtain procedures which converge in general but which are asymnp-

totically optimal if the local behavior of M(x) at 0 is smoth.

This work has been extended to several dimensions. Relatively little

attenticn in the literature has been paid to stopping rules.

The price paid for the robustness of these methods is that their

behaviz3: depends mainly on the nature of M(x) for x close to 9

and do not take advantagp of extra knowledge. Thus in problems where

Y(x) depends In a known way upon several unknown parameters, it could

be possible to develop more efficient if less robust sequential estima-



tion techrques. In particular, for estamation the LD.OI of -the

Probit model, the efficiency of the "best" Robbius-Monro method

L relative to a locally optimal design is only 64,.

A parallel development to the Robbi-ns-Monrc, Kiefer-Wolfowltz

methods was the stochastic approximation methods of Box-WVilscn [ BliL,

which gave rise to a literature usir the terms "respon .e surface"

and "steepest ascent" and "rontatable designs". Principall;, designed

for multivariable applications, one observes Y(x) ffcr a set of
points x in k-dimensional space. Approximating EY(x) by aplane

surface, one estimates the direction of steepest as-.ent gradient

and moves In that direction. Alternatively, one r-an appr, xImate

EY(x) by a quadratic surfare and estimate the poi:.t a whch the

quadratic is maximized. At each stage the eEtimated paramete's are

used not only to estimate the locaion -f .e maxim be'. to suggest

another set of values of x at whicfh t.o take addit:nal cbser.-ations.

Rotatable designs are a special class of designs us.d arounad the

point of interest [B5,61. The general approach as ratter pragmatic

and informal compared with the methods proposed by R&bbi-s and Monro,

Kiefer and Wolfowitz, and Fablan and hence are less ami.nabt- to sya-

tematic analysis and evaluation. On the cther hanl, as these more

formal methods devoped they tended I.o resemb e + h Bcx.W:_aon approach

more and more.

A variation of the Box-Wilson tpproach ises Partan, a method I
developed by Shah, Buehler and Kempthcrrte 'S2 . It replac;,es the

q2
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gradient or steepest ascent approach by a more sophistiiated varia-

tion which combines two successive gradients in a method which is

successful in speeding up convergence for deterministic problems and

is apparently effective in the stochastic problems dealt with here.

A review of the literature on response surface methodology was given

by Hill and Hunter [ H5].

A somewhat more specialized method of stochastic approximation

applied in quantal response problems is that of the up-and-down method,

introduced by Dixon and Mood [D3]. It is desired to estimate the

dose x for which the probability of response assumes a certain speci-
fled value a . The possible dose levels of the experiment are equally C'

spaced (possibly in a logarithmic scale). If a dose at level x

leads to a response, the next dose applied is one step down and if

it does not lead to response, the next dose applied is one step up.

When the investigator terminates sampling, he estimates the parameters

of the model by some method such as maximum-likelihood. A considerable

number of variations of the basic approach have developed. See

[C7, DI, W21. For quantal response problems, this approach has a

potential advantage over that of the Robbins-Monro method in that the

associated estimation procedure makes use of the specific model applied.

In doing so it of coura, loses the all-purpose robustness properties

of the Robbins-Monro method.

3. Optimization Approaches

In principle the problems of sequential design of experiments can,

10z.
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by assuming a priori probability distrb*.ticns and cost functions, be

reduced to optimization problems which can bs solved by backward induc-

tion. This idea has been exploited by Whitile [W21. -who used it to

set up a functional equation in terms of posterior probability datribu-

tions. However, the approach has been effective on very few rather

simple problems. The insight provided by t!,Ls sta'.eme±i ras limited

value in most statistical problems.

It is not uncommon for investigators to use a myopi' version of

backward induction. Here the experimenter asks, al.r the cutcome of

each trial, "If I have at most one more experiment to perftrm, which

if any will I perform?" In many cases this meth-l seems *.o yield satis-

factory results. I say "seems" because one seldom %oMpa-es :. with

cptimal procedures. One case where it has been ues-d is in mEdia. diag-

nosis [G2). In principle this idea is aiso used -,n ster.se regression

techniques for building up a good set 't pf l;. va-'ab.es.

It will be informative to see hcw t,- s nycp.iv. pol cy wor~s in a

completely different context. Tc matrr2ze a ftict.c.-i. f(x), xcEE
th

by the gradient method, one adjusts the n estimate. by

X+ 1  x + h (x

where )f/x represents the gradient or rect.cr 7f partial derivatives

with respect to the components of x . Thas metf-od does not specify

the value of the scalar of h . A speciad ^;r'sion ca.led he optimal
af,

gradient method selects h to be tha-t value for wh.i Cb f'xn + h (x))

11.



asums its maxim. This can be regarded a IMIC seqUential

2 2
optimization procedure. Applying it to the function f(z). -(x ),

the gradient is (-2x,# 2x and an Initial aroition

X (x3,x 2 ) to the point (oo) which maxiases f Is followed by

x* .x . h af/U, where h a [ [+IL2]9 x. ,2t 2
a g cx2 /x1  The value of f is reduced

this factor does not change in successive iterations even thouh h

alternates between the above value and 2 2 [ + . on the

~other hand

other f*(x) -[fxl 1 l-2h)? + (2 (-2ch)fP)bewe22 an

could be much more rapidly reduced by alternating h betwen 12 and

1/2c•

For this particular function, itf we assue no round-off error,

alternatir4g h between 1/2 and 1/2c accomplishes the maximization

in two steps. In general, when f represents only the main term in

the expansion of the functlon to be maximised, and there are round-off

errors, two iterations will not suffice to reach the maximizing point.

The above example illustrates that the rate of convergence can be faster

than for the myopic policy called the "optimal gradient method" if the

values of h are chosen with due attention to the characteristic roots

of the quadratic form approximatIng the function to be maximized.

Two slightly less myopic policies which are probably more effective

12



and carVNPOMing3- more 0.tc1t, to execite are thr forvo1the

(1) loft two stop ahead Into the ttwe. 'This involves the aa'bematics

of a tWO.4tep bacbtard indwtton at each s6t* fe) At each mitep

ask whetbar then se an esperiment e u4 a rn1aber of' repetit~ions a

so that the statistician would profbr it independeat4 repetitions

of a to xnW other (e~pa*) and to stoping. It es,; selert -a

the ant trial. Apparetly until recently this 1atttr approach his

been WMe car lo o, MeteI.n V0b5Ot0ible. StOVin ruia It VOWef w

no choice of eri 3 f sntetion U3, (21 Reze&tly Giviune, and4 Ja*6t3

Mav us#& a v riatIft of this I&PA *Mtitvev tPgi~ ,;w ±i4

In the twoe-eroed bndit problem by evaluating & eboice In ttrms Of

hov good it would be it ve bad to use that chlce 41heafter.

Ii. A'wtolically 9Pim1roceduares In~ Tea*,ng Wj~cltteses

Large simle theor7 provides ,lxefZ irtsig*Y t in et kca.Problems

for two reesons. First, the derivat;on anid simple expression of approp-

riate distributioas are easiest, for saaplk sizes of 1, 2, and~

Second, as saiple size becomes large,. many dirferzn philcuopfxice

approaches lead to results which are a-irm.Aar, &,A vhtZI un-' cmztiy

best procedures are generally nonoxisteent frir fi rite sample si e,

asymptotically optimal procedures do -exis+ 11 was t'ped th~at large

sample theory would provide insights wt~ f4.p--rZu-t cme tc bypass

the need tbr backward induction. An we sh,.1 se.e 4a~, hse is rela-

tively trivial I.- -estimation problems wItere loz.aly optin'A. dEeigns

yield relatively efficient procedures easi'y.



In testing problems, the situation seems more difficult. But

even here simple asymptotic results yield useful insights. in sequen-

tially testing of a simple hypothesis H: e = e1  versus a simple

alternative 0 2 where the successive observationsH2: .,xn, 2
X1,X2 ,...0(n... are i.i.d. with density f(xe) the admissible

procedures are the sequential probability-ratio test with limits A
n

and B, B < I < A, on the likelihood-ratio X n= [ f(X I1 (X110 2)•- - - n i=l

In a Bayesian framework with initial prior probabilities gI and 2=

1 - i a cost of sampling c, and regrets for deciding wrong ri

r(Oi) > 0, i 1,2 the Bayes procedure is determined by appropriate

limitr A(xl,rl, r,c) and B(lrlr 2 ,c) . As the cost of sampling

c -0 0, the appropriate sample size -, s and this is derived from the

fact that log A-,o and log B-.-. In fact) log A -log B S-log c,

theposterior risk upon stopping as well as the posterior probability of

being wrong is of the order cf magnitude of c and the expected sample

size is given by

c lg -log c
B~(n, Pt _* Ee(n -
1 1 2 92 2 1

where i(9:q) = E6 {logff(X,0)/f(Xq)] f f logr[f(xG)/f(xq)Jf(x,G)dx

is the Kulolback-Leibler information number. Indeed the main contribu-

tion to the risk or expected loss is the cost of sampling, and this is

given by

-C-logogR(l) , and R(,) ,0 l,17~ 1' 22"

14;
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In effect, the importance of the Kullback-Leibler information number

derives from the fact that I(0 , 2 ) measures how fast the posterior

probability for 0 approaches zero when e is the true state of

2

nature.

This simple result for sequentially testing Omple hypotheses where

there is nc choice of expezimentation suggests that if one had a choi 2e

:f experiments to perform at each stage. the appropriate choi-e no;L1d

depend on I( 9, 2,e) the Kullback-Leibler nmber corresponding to

data from experiment e . Indeed if I(91,02 .el) > I(e 2 ,e 2 ) and
V(2, l, el) > V 2, 91, e, it seems clear that el is preferable to

2 t 1,1 l/> 2 2.

e2  But if the last inequality is reversed then el is preferable

to e, only If H is true. The obvious implication is that if

the data strongly suggest.s H1 is true, one should select the nex .

experiment to maximize I(0I ,92 ,e) provided the evidence is not so

overwhelming that it pays to stop sampling.

Suppose now that we move to the more complex problem which involves

composite hypotheses with a fixed experiment. The simplest case is

where Rj.9 0 and H* . 049 or 0 Suppose I 0 startI ' 1 2 -
out with initial prior probabilities tlO 120' 0 ' After n

observations the posterior probabilities are rIn 32n' )n' and

assuming H1 is true,

>2n 2ne , 4  J1~ e )
t- n 3n e

Thus the rate at which the posterior probability of approaches

1
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zero is determined by the minimum of I( 0 ) and I( , ) . This

observation leads to the following suggested" procedure for the more

general problem of testing the composite hypotheses H1: B , w vs.

}H: e when there is a choice of experiments. Stop sampling after

the nth observation if the posterior probability of one of the hypotheses

is of the order of magnitude of c (or if the posterior risk of

stopping and making a ermiasl decision is of this order). Otherwise

select the next experiment e to maximize

ir 4  1(9 , e) ,S

where 9 is the maximum likelihood estimate of 9 and a( 0), the

&1ternate hypothesis to 9, is defined by

a( 0)if 0e

It should be noted tha' e is selected from among the class of random-

ized experierents, and it has been assumed that each of these experiments

as the same low cost c . If the cost per experiment varies, hen

one deals w;th information per anit cost rather than information.

The method sugges-:d abcve was shown to be asymptotically optimal

under mild conditions .... as c -0 0 in the sense that for each 0

it yields a risk

where

I(e) sup inf I(Oce)
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and ' is the class of randomized experiments derived from the

class E of available or "elementary" experiments. Moreover fbr

any alternative procedure to do better for some value of 9, it

must do worse by an order of magnitude for some other value of 0

This result wvs tirst proved for the case where ci - and

were finite. Bessler [B21 extended the result to the case where

is infinite ani the problem of choosing between two hypotheses could

be replaced by a choice among k actions, Albert jAlI extended this

result further to tbe case where the hypothesis spaces (a, c:2 may

be infinite sets.

Here a fundamental difficulty appeared. In' such a simple problem

as testing whether the probability of response to one drug is greater

than for another drug, the two hypothesis spaces are adjacent to one

another and I(9) vanishes on the boundary. Then the asymptotic

optimaldty breaks down. Heiristics indicated that the difficul ty

arises mre from the stopping rule than the experimental design aspect

of the problem, and G. Schwarz (Sl ] attacked that problem by studying

optimal sequential procedures for testing that the mean .t of a nor-

mal distrbution is ai versus the alternative that it is -. tl when

it is possible that w colild be or 0 * In the latter case it

doesn't matter what terminal decision is made. His results extended

to asymptotically optimal and Bayes results for testing that the mean

exceeds 1i versus the alternative that it is less than 1

<( . when it is possible that "2 < < 1i, in which case either

17



decision is equally satisfactory. In other words, this is the case

of at indifference zone. Here asymptotically Bayes procedures consist

of stopping when the posterior risk of stopping and making a terminal

decision is C(c) and yield overall risks of order O(-cogc) .

Finally Kiefer and Sacks [KI] combined these results to obtain an

asymptcticlally optimal prvcedure. fcr problems in sequential design where

the parameter points ror wtdich various actions are preferred are ceparated

by indifference zones. In these results the key information number is

expressed by

I( 9) sup sup inf I( ,p,e)

where wi is the set of O's on which the ith action is optimal, and

thG. is the set of i for which the i action is optimal when 0 is H

the true state of nature. (In the two action problems, G. = (1,21

for 0 in the indifference zone.) The appropriate experiment is the

randomized experiment e c which yields I(6) as the supremum in

the above expression and

R(& 0) o~

Both the proof and the method are simplified considerably in the

Kiefer bqd Sace..s paper where a two-stage sampling procedure is used.

An initial large sampi. of s2ze o(-±og c) is followed by an estimate

of 9 and a second sample of appropriate size on an appropriate choice

of e

A
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In principle this approach is extremely successful in bypassing

the need for backward induction. Asymptotically optimal results are

obtained w tti recourse only to Kullbck-Leibler infortion numbers

and likelihood-ratio statistics. However, there are several short- 3

comings. First. the role of indifference zones implies that. the simple

problem cf dez-dig whether the mean p of a normal dist.ribution is

positive or negative witi a positive loss such as 1i! attached to

the wrong decision Is not covered. Second, the approach i. very coarse I
for moderate sample size problems. Indeed the Kiefer-Sacks two-stage
variation sJdesteps the issue of how to experiment in. the early stages

whereas the original Chernoef approach simply treats the estimate of
0 based on a few observations with as much respect as that based on

manty observations.

Or, top of tiiso shor.comings the asymptotic analysis distinguishes

sharply between terms of order of magr-Itude of c and of clogc,

whereas the difference in most applied examples may be less than over-
A

whelmirg. (A prcper analysis should pay more attention to the fact

that log c is dmensiona.l y wrong. The quantity c should be nor-

malized approximately with respect to the costs of making the wrong

4decision. This normalization occurs naturally if one stops when the

postericr risk of stopping is of the order of the cost of stopping.

In additlon to this approach, alternative procedures have been

proposed by Lindley [12 1. DeGroot [J2Wi and Box and Hill [B,1 For

example Lindley suggested measuring the value of an experiment in
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terms of the Shannon Info rmation or Entropy. One may select at each

stage the experimen . frr wt ich the expected reduction in entropy Is a

maxim,,=i. To be m,.rae eifi c, I±f 0 1'2 8'6  are the possible states

of nature amcng which one must decide and t is the prior probability

of Oi, the entrcpy is -2:0 log Ji - After an experiment yielding
I -

X the prior proabi1:ties P. are replaced by * proportional toe .

*2f(Xe19,e) and *,he reducticn in entropy is
*lea

whose expectation may be computea to be

4

where 9, corresponds to an ideal distrib,ition with density Zgif(xey e)

Box and KllI starled with 11he sam.- approach, but to simplify the

calcAlis approximate thie expected reduction in entropy by an upper bound

which tley proceed to use tc select the next experiment. Neither of

these approaches is asympt.o; cally ortimal except in special "symmetric"

problems. Ore may expect the Box-Hill approach to fail to be optimal

beca-ise it Is n.Ly an apprcxima:cn to the method proposed. Apparently

the Li..ley approach, whach seems mcre reascnable, fails because a

mvopi . :ne-stag,:-ahead policy caanot be depended on for optimality as i

was s.e, in ',he a'l,stration cf t.he optimal gradient method.

20
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On the other hand Meeter, Pirie and Blot fj] carried out now

extensive Nzinte Carlo experlUentation8 on tvo problems. These were

I to select the single odd coin in a roup of k coins and to lientify

three noral populations with co n variance if the values of the

three mans are spcifoed b,, . the appropriate order is not known.

In both of these ',he. Bcxl{U approaz. did better than tte Chernoff

approach fbr sample sizes that wre liuted by a stcpping rule which

led ro,4ghly to error pmbabilities of .05 . Apparently the diffi-

culty with the asympttically efficient approach of Chernoff was that

initial exper!ietMat.ica has a pot en'.ial fbr con.enutrating on non-

informative exporia ,s ib sems to show up In these examples.

Blot and Meter (B4.1 s.seq'zent-y attemted to develop an alternative

wbch woId be a.vxtctical~l optimal and effectivv in the early stages.

Their method sems to be effetive in' a speciai class cf problems.

At h: _s ti !pQ,, wa€,r theoretical problems seem to be the prob-

A!2 cf noiriffere.c: zot. and findig effective methcds of experi-

:r., at the early s t aes cT swmlir g. For tte problem of no-

indifferenre zcne, *be prol-l% cf decidirng tLe sign of a normal mean

was used as a prototype on the b.zoud tbat Its so-tion could be extended

via logari hm cf 1ik~1Thod*r 4 Ao to more general situatiors. Although

this work was &4nt in the* context of no experimental cboice, one con-

sequence is of some Lterist bere. Consider the problem where the

cost of decldiP4 wrong is 1,(4) and the cost per observat.or is

c -* 0 . Then us:. Bayes procedures the risk for non-sequential pro-
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cedures is R8) =0(c4  . The risk, for the optimal sequential

procdr isR(H (23 ald and Woding ( H11,23 have shown

that the risk for k-staoge sampLing procedures satilsy Rk(I) a

C(c k(l1 og C~) where yk (2 k 4l)/i 3 . 2k1- 1 )

As a prelimirary to this sectic:. we mentlon results In tvo types

of problemf. For seq' r-AAltv etimatir4 the narim of a normal diltri-

but.on wth k,-won varl:aze, using squared error loss and constant

cost per observitloc, the op..ial sample size no  is obtalind by02- i /2
minimizing nW Tk iin (nIc) mndthe optimal

risk is 2(ckc22 if the varianco a is not known, an approach

svgosted by Rob'4 rs !1. consists of sampling until the sample size

n exceeda 2 ar.d t-4 crrezut estimate of (,w c) Thum we stop
" when n > an~d

nI
zl~ (XI..1) < ck'" d ( n - 1 ) •

Results of S ar: and WoZirocfe [5'1! indicate that the difference between

the optaa risk and tha*, fcr ,,is prcedure is 0(c)) 1..,, the cost

of not knowing the nulsar..e paraeter a is equivalent to that if

a fi-r.e vrimber of observatioro, (Tkus ^ost is ebcut the cost of one

obserati= ,lse o is exPtre.mely small, rIn which case these obser-

Vatons are excessive ; Alvo JA21 has attained precise bound ' in a

BW-esi . cc-.!,-sx4. The print or "his discussion is the., in estimating,

one can expect ,,o do very wel using rather simple .deaa. That is,
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it is easy to find procedures %.aich achieve risks which are

2(ck ) 1/ 2 + O(c) where the first term would be optimal when

is known. A nontrivial notion of asymptotic optimality must attempt

to minimize the O(c) term. On the other hand, the practai.al use for

such a nontrivial optimality may not be great.

A second result concerns one-armed bandit problems. This may be

stated as follows. Let X,,X2, ... be independent observations on

a random variable X . A player who plays n < N times collects II
XI 2+ .. ,+Xn whose expectation is nE(X) . Determine n sequen-

tially to maximize the expected payoff which is E(n)E(X) • If

E(X) > 0, it pays to play N times, and the expected payoff is

NE(X) If E(X) < 0, it pays not to play. Chernoff and Ray [C61

have given a characterization for the solution bf the normal version

where th-. Xi  are normal with unknown mea-a g and known I.variance i
and ;. has a specifled normal prior distribution, and N is large.

Here it. is shown that the expected loss due to ignorance of the sign .1
2of p is of the order of maknatude of (log N) . One may conjecture

that. the two-armed bandit problem would share this property.

A nmber of papers in optimal design ar'proach the sequential . stima-

tion problem from a myopic iterative point of view without much atten-

tion to s! opplng rules [B8, F6, P2, s5, S6). For example, consider

the nozmal, linear regression problem with

y 0'X + U
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where u is normal with mean 0 and constant variance 1, and

where x may be selected from some compact set S . The covariance

matrix of the estimates of e based on n observations corresponding

to Xl, ... x n is

[inx= v iXs

one approachis to select the (n+l)st experiment, i.e., Xn+l) to

minimize the generalized variance., 7-n+lI. since

ln+1 = 'n Jn+1

where J Xn xn is the Fisher information contributed by the

n+lst observation and is of rank one, the matrix identity

(A+xx')' = - A ' A"

facilitates the mi.,tmizing calculation. The iteration involved is

independent of the actual data observed and is also used to calculate

fixed sample size designs which minimize the generalized variance.

See also [1N ]. Minor variations of this basic idea apply Bayesian

notions and can be used in nonlinear problems.

This approach has two shortcomings. First, the emphasis on the

criterion of generalized variance is deplorable. While the criterion

of minimizing t.he generalized variance has the aesthetic property of

leading to tnvariance of optimality under linear transformations of

the parameter space, this elegant mathemat.cal property simply dis-
2
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guises the underlying fact that the criterion has no basic statistical

justification and simply delegates the scientist's responsibility

of selecting the criterion to the vagaries of the mathematical s';ruc-

ture of the problem. Thus in a probit model where one is primarily

interested in the LD5 and only slightly interested in the LD5O,

the use of the generalized variance criterion leads to an efficiency

of as little as .56.

It is true that in the linear regression problems where one is con-

cerned with all the unknown parameters, the design which minimizes
the generalized variance also minimizes the maximum variance of the

estimated regression for all x e S [X3]. However, this min-max

optimality interpretation for interpolation disappears when one is

concerned with a subset consisting of several but not all of the
~unknown parameters.

This criticism of the use of generalized variance (i.e., D-optim-

ality) does not invalidate the general idea of the myopic iteration,

which can also be applied to other criteria. However, the second

shortcoming is that any asymptotic optimality obtained is basically

the cheap one which any locally optimal design attains. What would

be more interesting is a demonstration of a more sensitive optimal 4 ty

of the sort suggested in our discussion of the Robbins, Starr, Wood-

roofe, Alvo results. But once again it is far from clear that a myopic

policy will be successful in this more delicate task. On the other

hand, one may argue that this task is more of academic than practical

25
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value. Once again the issue centers about what constitutes effective

procedures of cumulating information rapidly in the early stages of

sampling and how important are these early stages. I found little

discussion in the literature which was relevant to this problem. An

exception consists of a paper by myself [C3] and one by Mallik [M1]

which combine the ideas of the bandit problems and the Robbins approach

to sequential estimation. I believe that these point in the correct

direction to assess appropriate orders of magnitudep and a brief dis-

cussion follows.

The two-armed bandit was dismissed early in this paper as a failure

as a prototype example to clarify the problems of sequential design

of experiments. I now propose to disinter it as a problem of theoret-

ical relevane by considering it in a new context. Incidentally some

theoretical insiglts have been contributed by Gittins and Jones [Gl],

to whom we referred earlier, and to Vogel (V3] and Fabius Von Zwet

IFAl who studied minimax solutions.

Suppose that there are two instruments which can be used to measute

a parameter p., but it isn't known which is more accurate. How should

one select between the two instruments, and when ought one to stop

samplirg? More specifically, suppose X is normally distributed

2
with unknown mean p ard variance a, and Y is normally distributed

with mean p. and variance c2 . The cost of sampling is c per unit
2

observa,ion where c -+ 0 . The cost of estimating incorrectly is

where "I is the eatimate of p . In one version of this
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problem o ad are both unknown. In another we know

but cri is unknown. Chernoff (C4] approached the first using an

approximation to the solution of the two-armed bandit problem.

Mallik (11) attacked the other by using the solution of the one-

armed bandit problem. Let us consider this simpler case.I 2
While Cr is unknown, it, makes sense to take observations on Y,

simultaneously obtaining information on i and an estimate of C2

One continues until the Robins-type procedure suggests stopping,

or until the evidence indicates that C2 > Ol, in which case one

estimates how many additionil observations from X are advisable

before terminating the sampling process. A careful computation shows

that if ar < qo , the loss attributed to taking n observations

from Y before switching is roughly proportional to r(02 -al)

If a >q -2 the appropriate number of observations is n =

(cOa2/k) V2 on Y and a decision to switch to X after n obser-

vations leads to a loss of (n -n)(al-a2) . B'.it in our one-armed

bandit problem the expected loss duve to taking n observations when

< 0 was -ni whereas the expected loss due to taking n obser-

vations when p > 0 was (N-n)ji . Relating N and i to n and0

a1-a2 suggests Mallik's prccedvre of applying the solution of the

one-armed bandit to decide when to switch to X

Monte Carlo simulations suggest that this method yields a highly

efficient design for sequential experimentation. Theoretical consider-

ations1 supportea only partly by the Monte Carlo simulations, indicate

P7
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that v.Ile loses due to errcir of estimation are of the order of

manitude of c the loas attriuted to lack of knowledge of

q2 is of the order of magnittde of 0(lo c) 2 . This is slihtly

larger than the magnitude Of c) achieved in the nondesign problem

of Robbins, Starr. Wocdroofe, and Alvo.

6. M

L The ideas of sequential experimentation apear in one form or

another in a variety of telds of application. Som of the zmot

important ones have extensive literatures., and we barely mention

these. In particular, survey sampling Is one field where doubler

sampling and several-,tage sampling have an exterive history.

Indeed the origin of aequentea analysis can be traced back to the

udoube sampling inspection sc'leme of Dodge and Romig (D5]. In

very few of +tese fields tias a serlovs attempt been made to explore

optima.Jly fr- a tmdsmern,.al poirt, of view. Typically an ad boc

class of prcced, res hu beer, proposed, and sometimes the best among

these is chara terized. Seldcm does Cne attempt to compare these

with some m.re geners.ly optimaJ. procedure. Thus one is often in

the dark ai,,,z the lim s of fr',.hr possible improvements.

A:, early form of sequential experimentation was in the multi-

level inspectiorn scemes of Dodge [1.4. Lieberman and Solomon Lil]

rephzasea s:,me pre,,ricus amAi+ous cptimization problems to formulate
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a simpler but highly relevant problem. Imagine a continuous pro-

duction process yielding manr items which can be inspected. As the

items bass by, they are inspected with one of several available

probabilities p1 = 1 > p2 > ... > Pk . If a defect is found, the

rate of inspection is increased. If ni  successive non-defects
k

are found while sampling at level Xi, the rate of inspection is

reduced. When the prcduction process turns out items which are defect-

ive independently with constant probability, the "state" of the

inspection system describes a simple stationary Markov process whose

limiting characteristics are easily evaluated. Thus one can com-

pute the costs and gains of this multi-level inspection scheme for

each p . One can easily maintain a minimum level of quality of

outpit. When the production process goes out of control, this system

seems to respond sensibly. There is one major aspect in which the

Lieberman-Scloon problem differs frcm the class of problems with

which we ave previously been concerned in this paper. Those involved

terminaion in a f inite time. This process is stationary and should

be thought of as going on indefinitely. Indeed this paper initiated

a good deal of subsequent research in Markov decision problems and

constituted an early form of stochastic control.

0. of~- '~J1.Largest f -Means .

As initially formulated [BI] this problem specifies k normal

populations 1i, i=1,2,...,k with means p and common known variance A

2
a The object is to decide after n observations on each popula-
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I tion whicth aa the lrgest wnan. The rwvzra1 praceftm-is to select

the -olt'o corepndn to thl- largest saspe, mean. The sap.

size n to selected so a. to asr&.re +4 +a tbe probability of eorrect

selecti1on attuins at least a given 'va*l-.Q !-ai the largest popula-

tion man is at least b~ greater trAnt each of the others. *Here ct

and 5 are speclfled and r~ -&a ' da a function of k.. a2 ,

as and 6 . This eczwM'?aticii is relvaively triviul since there Is

a t t leaat-fayerable" ceAnfgrtior. of man~s jipjp** where

- The pmrbleu of sequentol 4"J.e ue1a-o aper when one May

decide to proceed sequerntaaav. ess&. B21 applied the theory of

Part TT to nb+Mr. a procedure. Alztt is a iWtotrtally optima if one

4 can aa~that tne largest mean txctvc-l all the others by at least

a Mel' d Ow4t.

MIa vtm6 s 'I c t-a,,e i.,xvc:ed by~ sJbseq7Aeav. workers in

the f-e.4"a vhi: appllsi afqueeIie&L st viewIre each popi~1ation is

sa~'- ~ S~q.r.1YG-.-umar iG. and Pa:1lbon (P1]

d~~cuisz; aLterrWav! m'Al . s*taC pr: ned'.rea where the results

of ecer atagr e vre ,Azt. t jdlsc&ri sc-w p4izdfxs from further

c.si4ratiori. Altarnatl-i w4dos na-!r nv-n d-ifeloped by D. Hoel

P77? Sa J.W i .. Swane~cel. and J. Vs. LSic -

Vhpre has veen ar tx1t S-sjt~~7'. t' j-s problem

to woter ftt-Wlii;.ons and o ttef 1parazme t -rs. The variat ion of the

r ~ ~wo-&rmcd baur.dit problIem, wher? tLe payovf'~r only after the last

-. A



t ; observation and the experimenter decides whihh ir the better arm,

is also an example of this type of problem. The largest of k

populations problem corresponds to a k-armed bandit problem subject

to two variations. The total sample size is not necessarily fixed.

Also, in dealing with the k-armed bandit problem one does not typically

apply the rather artificial criterion of maintaining a minimum proba-

bility of correct selection at configurations of parameters vhere

the largest exceeds the others by at least a specified 5

Several variations of the two-armed bandit problem occur in appli-

cation contexts. In connection with medical trials where the arms

refer to treatments, various investigators M2, Z, S 4, 09, "F?, 161

have investigated Play the Winner Rules,which continue the use of a

treatment as long as it is successful and switch when it fails, as

well as other "adaptive" methods. These rules can apply in problems

with an infinite horizon of patients to be treated. On the other hand,

one-armed bandit variations applied to medical trials were discussed

by Chernoff (C3], Colton (C8], and Anscombe (A)] In Colton's version

drugs are tried alternately until there is an implicit decision that

one is better and the remainder of a horizon of N patients are

treated with the dg that is considered better. The one-armed bandit

problem comes up naturally in a rectified sampling inspection problem

too( I.

Finally, Hellman and Cover (H3] have exploited rardomization in

a finite memory two-armed bandit prcblem where the observer J,, res-



tricted to -owving only the current sample size n and the valve

of a k-valued function of the past.

9. Screeni Rxperimente

In pharmaceutical research where one seeks drugs which have anti.

disease activity, one must screen many possible candidate chemical

formulations by testing them first on animals. It. is important to

devise a system where many drugs are tested and quickly discarded

(because of the ex.pense of testing' un;less they show indications of

activity. In that case they are retested more thoroughly. This

procedure passes each drug through several screening experiments.

eacft more elaborate t.ban the preceding. If the drug passes all of

these, it is regarded as a candidate for further research and testing

on hvs. (See [Tfl R5 i.

"o. rcu Test ng

During World War II i . was rcted by Dorfma [D6] that the cost

of testing blood spidmens of ina dals for the presence of a mod-

erately rare dias-ase could be reduced considerably by combining the

saMles of ma- Andividuals. If the combined sample showed no sign

of disease, the entire group was passed at the cost of one test. If

the combined sample shcws signs cf disease, the individual specimens

coid be tested separa-ely. WJth appropraate groupir depending

on the overall frequency of disease) this system and improvements

produced considerable sa.ings. Tkhs subject Is elaborated upon by
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Sobel and Nebenusbl tSB] who contributed a thorough bibliography.

31. Search Problems

Search problems have appeared in a variety of contexts and appli-

cations. They deal with the problem of locating an item which may

be in ary one (or sometimes possibly none) cf k locatiorn, each

of which may be searched and yield the time, if it is there, with a

specified probability. Often these problems are treated as combina-

torial problems and k is large. No attempt will be made to elaborate

on the topic, which has an extensive literature which was surveyed

by Enslow (E31, and some further references are given by bereat [S.10.

A different approach is given by Lipster and Shiryaev [I3], who use

diffusion approximations for a variation of the search problem where

k is not large. '1
1.CnrlTheory

Multi-level sampling inspection is one form of control applied

to waintain the quality of a continuous productior line. Box and

Jenkins [B9, B10] have considered the problem of monitoring a complex

chemical production process where slow changes in the underiying

environment may reqire adjustment of inputs to maintain optimality.

They suggest perturbing the inputs off the position that seems optimal,

to detect and estimate possible changes in the response surface by

measuring the efficiency of the system. In this way the estimate of

the current optimum is continuously updated. The price of this is
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the los of efficiency involved in perurbing the system to measure

the response surface. If the perturbation is too 8toaL the surface

and possible changes in it are not measured precisely enough. If

the perturbations are too large, the experimentation reduces the

efficiency of the system. This type of system may be thought of

as a statonary c-n,rol proelem.

13. Fnrcing p rinto be Balanced

In clirucal t.rials as well as in many other scientific investi-

gations, the need to avoid bias requires experimentation where the

parties involved do not know whether they are receiving a treatmett

or a contrcl. Thus assigrnents may be made by using a fair coin,

but in smali-sized experiments this may result in a severe imbalvnce.

Blackwell and ffcdges I E]and Efrc'n I El] have considered alternative

schemes to complete rar domiza'eicn to avr-d several kinds of bias,

e.g., selection blas and expetr.mental ).-as. One scheme considered

is to assir tne reatment with probability p if the treatment

has been used mote ofter tiin the conrcl and (1-.p) if the control

has betn -*ed mire o4 r:.. Efror. ndicatee a preference for p = 2/3

. and comparcs the balarxc;,4 propertlee of this and other schemes as

well as *he potentialities for selec-tion bias and experimental bias.

14. IMiscellarif -

Problems of information storage and retrieval and error-correcting

codes involve notions of' sequert.iad experimentation in .fashion which
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does not fit traditional pproaches of statistics very well. Never-

thelass, these problem have fundamental statistical aspects.

In clinical problems and control problem. there are classes of

problem where the response to an experiment is not observed iind-

iately and some theory is required to deal ith delayed observations

A useful bibliography on design of experiments is given by

Herzberg and Cox [H1 I.

I5-
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