Expendable Hydrophone for Sonobuoy Application

R. W. TIMME, R. L. DAVIDSON, AND A. C. TIMS

Standards Branch Underwate: Sound Reference Division

17 September 1973

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151

ם ווויבוהי SEP 25 1973 ע היה B

'n

NAVAL RESEARCH LABORATORY Underwater Sound Reference Division P.O. Box 8337, Orlando, Fla. 32806

Approved for public release; distribution unlimited.

AD-766 786

~

EXPENDABLE HYDROPHONE FOR SONOBUOY APPLICATION

NAVAL RESEARCH LABORATORY

September 1973

DISTRIBUTED BY:

ALL SALLES

のとうないので

National Technical Information Service U. S. DEPARTMENT OF COMMERCE

Security Classification			
	ONTROL DATA - R	& D	ĸĊĸĸĸĸĸŦŦŎĸĸĸĊĸĊĸĸĸĸĸŢĊĬĬĬĸĊĸġŗĸĸŦĬĸĸĸġĬĸĸĊĸĬĸĬĬĬĸŦĊĸĸĸĸŎĊŎĬ
Security classification of titls, body of abstract and inde-	king annotation must be	entered when th	e overall report is classified)
ORIGINATING ACTIVITY (Corporate author)			SECURITY CLASSIFICATION
Naval Research Laboratory		Unclas	sified
Underwater Sound Reference Divis_on		2b. GROUP	
P. O. Box 8337, Orlando, Florida 32806	······································	1	
REPORT TILE			
EVPENDABLE HYDROPHONE FOR SONOBUOY APPL	ICATION		
DESCRIPTIVE NOTES (Type of report and inclusive dates) A final report on one part of the probl	.em.		
AUTHORISI (Fitst nome, middle initiol, last name)			
R. W. Timme			
R. L. Davidson A. C. Tims			
REPORT DATE		DE DAGES	
17 September 1973	78. TOTAL NO.	115	76. NO. OF REFS
L CONTRACT OR GRANT NO.	98. ORIGINATOR	TO REPORT NU	
NRL Problem S02-36			
D. PROJECT NO.	NRL Repor	t 7644	
NOL P.O. 3-0025 (NASC Task No.			
A370-5330/292C/2W21400000)	96. OTHER REP	ORT NO(S) (Any	other numbers that may be assigned
	this report)		,
d.			
D. DISTRIBUTION STATEMENT		·····	
. A BSTRACT	Departmen	c Systems nt of the on, D. C.	Navy
A low-cost, low-noise, high-s for possible application in an ex- array system. An acoustic elemen- radially poled cylinders was comf fiver to produce a hydrophone with operating frequency range of 10 H In addition to a description of t tions, a discussion of design cr:	Appendable, air- at consisting of bined with a lo th a sensitivi Hz to 3 kHz, a the hydrophone	-deployabl of two Typ ow-noise, ty of -149 nd depth c and its c	le, passive sonar pe III ceramic high-gain preampli- dB re l V/µPa, capability of 4550 m. operating specifica-

Security Classification			والمركبين الأوري بيتك عوري والمتحد	LIN	K A	LIN	K 29	LIN	кс	
	KEY WORDS	\$ 		ROLE	WT	ROLE	₩Ŧ	ROLE	WT	
Nydrophones Sonobuoys Gerroelectric ceramics Preamplifiers			·							
assive sonar										
										ł
										1. I.
					ł					
					1					
							12.0			
										÷
			<u>}</u>							
. 、										1
		•	· · ·							
		· .								
		. *								
										í
	,									
	·									
			• •							
D POR 1A73 IRAC	<)		3		Lannagener					Į
D . NOV 1473 (BAC PAGE)			1 Q	1	Connel	y Cleasif	UNCLA	SSIFIE	D	

Contents

2

Abstract	Ĺ
Introduction	Ĺ
Design Considerations	2
Size Sensitivity Sensitivity Sensitivity Operating Depth Sensitivity Sensitivity Sensitivity Directionality Sensitivity Sensitivity Sensitivity Cost Sensitivity Sensitivity Sensitivity Phase Matching Sensitivity Sensitivity Sensitivity Output Impedance and d-c Offset Sensitivity Sensitivity Sensitivity Operating Temperature Sensitivity Sensitivity Sensitivity	2211577399990
Summary of Design Criteria)
Hydrophone Prototypes)
Preamplifier	1
Summary	3
Hydrophone Construction)
Future Development	L
References	L
Appendix	
A. Calculation of Sensitivity and Capacitance	-
Pressure) _ }
Figures	
 Schematic of hydrophone preamplifier	
if	

3

1.53.00

- 5

3.	Hydrophone rms noise voltage spectral density
4.	Average phase shift of preamplifier
5.	Preamplifier sensitivity to vibration in
	lateral and axial directions
6.	Twin and triple stacks of Type III ceramic,
	radially poled, capped cylinders
7.	Vibration sensitivity of a twin stack of
	Type III ceramic cylinders
8.	Vibration sensitivity of a triple stack of
	Type III ceramic cylinders
9.	Vibration sensitivity of a lead metaniobate disk 18
10.	Preamplifier circuit board 22
11.	Assembly of hydrophone
D-1.	
D-2.	Maximum acceptable rms output noise
•	voltage spectral density for hydrophone
F-1.	• - • •
•••	theoretical calculation
F-2	Maximum acceptable FET self noise for
	various acoustic elements

Tables

1.	Sensitivity and capacitance for various	
	acoustic element configurations	
II.	Maximum compressive stresses (in megapascals)	
	contributing to depolarization of a capped	
	cylinder (b = 11.1 mm and $P = 46 \text{ MPa}$)	
III.	Decision on hydrophone application based on	
	liklihood of depolarization of element	
T \ I	under hydrostatic pressure of 46 MPa 6	
IV.	Approximate primary longitudinal and radial	
	resonances for selected acoustic elements,	
v	22.2 mm O.D	
۷.	Comparison of unit cost of selected ceramic	
VI.	elements purchased in lots of 10,000	
¥1.	Summary of design criteria applied to ceramic elements 10	
VII.	ceramic elements 10 Preamplifier parts and cost list 15	
VIII.	Comparison of hydrophone models	
A-1.	Piezoelectric constants and dielectric	
11	constant for several ceramic materials	
B-I.	Maximum allowable stress for poled ceramics	
B-II.	Compressive stresses contributing to	
	depolarization	
C-I.	Selected parameters of Type III and	
	lead metaniobate	

Abstract

112.

についていたのです

A low-cost, low-noise, high-sensitivity hydrophone has been developed for possible application in an expendable, air-deployable, passive sonar array system. An acoustic element consisting of two Type III ceramic radially poled cylinders was combined with a low-noise, high-gain preamplifier to produce a hydrophone with a sensitivity of -149 dB re 1 V/ μ Pa, operating frequency range of 10 Hz to 3 kHz, and depth capability of 4550 m. In addition to a description of the hydrophone and its operating specifications, a discussion of design criteria and prototype selection is included.

Problem Status

This is a final report on one part of the problem.

Problem Authorization

NRL Problem S02-36.402 NOL PO 3-0025*

Manuscript submitted 2 July 1973.

*The prime source of funds for the work reported on here is the Naval Air Systems Command under Task No. A370-5330/292C/2W21400000.

EXPENDABLE HYDROPHONE FOR SONOBUOY APPLICATION

🐙 (1997) 1999 (1997), 1999 (1997), 1999 (1997) 1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997) 1997 (1997)

Introduction

機械のなる。なないな

The objective of the work reported here has been to develop a hydrophone to satisfy guide specifications provided by the Naval Ordnance Laboratory (NOL) for a hydrophone that can be used in an expendable, air-droppable, passive sonar array system. The result is a hydrophone that has the advantages of low cost, low self noise, and high sensitivity.

The guide specifications provided by NOL are:

Bandwidth:10 Hz to 3 kHzDirectionality:Omnidirectional to within 1 dB over a bandwidth of 10 Hz to 2 kHzOperating depth:Maximum of 4550 m, which is equivalent to 46 MPa (6670 psi)Vibration sensitivity:Less than 10 dB re 1 V/gReproducibility:Unit-to-unit variation shall be less than that required to pass a -40 dB null balance test over the reduced bandwidth of 10 Hz to 1 kHz and a -30 dB null balance test over the remaining band of 1 kHz to 3 kHzPhase matching:Units shall track within ±3° of each other over the full bandwidth 10 Hz to 3 kHzSelf noise:Noise power spactral density referred to input acoustic power shall be 10 dB below sea state zero noise at all frequenciesOutput d-c offset.Less than 5 V to groundOutput impedance:Typically 50 Ω Size:Maximum 2.54 cm diameter by 7.6 cm longNass:0 to 30°CCost:Minimal	Sensitivity:	-149 dB re l V/ μ Pa
width of 10 Hz to 2 kHzOperating depth:Maximum of 4550 m, which is equivalent to 46 MPa (6670 psi)Vibration sensitivity:Less than 10 dB re 1 V/gReproducibility:Unit-to-unit variation shall be less than that required to pass a -40 dB null balance test over the reduced bandwidth of 10 Hz to 1 kHz and a -30 dB null balance test over the remaining band of 1 kHz to 3 kHzPhase matching:Units shall track within ±3° of each other over the full bandwidth 10 Hz to 3 kHzSelf noise:Noise power spectral density referred to input acoustic power shall be 10 dB below sea state zero noise at all frequenciesOutput d-c offset:Less than 5 V to groundOutput impedance:Typically 50 %Size:Maximum 2.54 cm diameter by 7.6 cm longNass:250 g or lessOperating temperature:0 to 30°C	Bandwidth:	10 Hz to 3 kHz
46 MPa (6670 psi)Vibration sensitivity:Less than 10 dB re 1 V/gReproducibility:Unit-to-unit variation shall be less than that required to pass a -40 dB null balance test over the reduced bandwidth of 10 Hz to 1 kHz and a -30 dB null balance test over the remaining band of 1 kHz to 3 kHzPhase matching:Units shall track within ±3° of each other over the full bandwidth 10 Hz to 3 kHzPhase matching:Units shall track within ±3° of each other over the full bandwidth 10 Hz to 3 kHzSelf noise:Noise power spectral density referred to input acoustic power shall be 10 dB below sea state zero noise at all frequenciesOutput d-c offset:Less than 5 V to groundOutput impedance:Typically 50 RSize:Naximum 2.54 cm diameter by 7.6 cm longNass:250 g or lessOperating temperature:0 to 30°C	Directionality:	
Reproducibility:Unit-to-unit variation shall be less than that required to pass a -40 dB null balance test over the reduced bandwidth of 10 Hz to 1 kHz and a -30 dB null balance test over the remaining band of 1 kHz to 3 kHzPhase matching:Units shall track within ±3° of each other over the full bandwidth 10 Hz to 3 kHzSelf noise:Noise power spectral density referred to input acoustic power shall be 10 dB below sea state zero noise at all frequenciesOutput d-c offset:Less than 5 V to groundOutput impedance:Typically 50 NSize:Naximum 2.54 cm diameter by 7.6 cm long Nass:Operating temperature:0 to 30°C	Operating depth:	
that required to pass a -40 dB null balance test over the reduced bandwidth of 10 Hz to 1 kHz and a -30 dB null balance test over the remaining band of 1 kHz to 3 kHzPhase matching:Units shall track within ±3° of each other over the full bandwidth 10 Hz to 3 kHzSelf noise:Noise power spectral density referred to input acoustic power shall be 10 dB below sea state zero noise at all frequenciesOutput d-c offset:Less than 5 V to groundOutput impedance:Typically 50 NSize:Maximum 2.54 cm diameter by 7.6 cm longNass:0 to 30°C	Vibration sensitivity:	Less than 10 dB re 1 V/g
Self noise:Noise power spectral density referred to input acoustic power shall be 10 dB below sea state zero noise at all frequenciesOutput d-c offset:Less than 5 V to groundOutput impedance:Typically 50 Ω Size:Maximum 2.54 cm diameter by 7.6 cm longNass:250 g or lessOperating temperature:0 to 30°C	Reproducibility:	that required to pass a -40 dB null balance test over the reduced bandwidth of 10 Hz to 1 kHz and a -30 dB null balance test over
Note:point operial density referred to input acoustic power shall be 10 dB below sea state zero noise at all frequenciesOutput d-c offset:Less than 5 V to groundOutput impedance:Typically 50 RSize:Maximum 2.54 cm diameter by 7.6 cm longNass:250 g or lessOperating temperature:0 to 30°C	Phase matching:	
Output impedance:Typically 50 flSize:Maximum 2.54 cm diameter by 7.6 cm longNass:250 g or lessOperating temperature:0 to 30°C	Self noise:	input acoustic power shall be 10 dB below
Size:Maximum 2.54 cm diameter by 7.6 cm longNass:250 g or lessOperating temperature:0 to 30°C	Output d-c offset:	Less than 5 V to ground
Nass: 250 g or less Operating temperature: 0 to 30°C	Output impedance:	Typically 50 N
Operating temperature: 0 to 30°C	Sizo:	Maximum 2.54 cm diameter by 7.6 cm long
	Nass:	250 g or less
Cost: Ninimal	Operating temperature:	0 to 30°C
	Cost:	Ninimal

The order in which the items appear in this specification should not be construed as an indication of relative importance. There are, in addition, other requirements that are not explicitly stated, but, nevertheless are important. These requirements include such characteristics as long shelf life, operational lifetime of at least 72 hours, and sufficient ruggedness to withstand field use and air deployment.

Succeeding sections of the report will discuss how the guide specifications can be met, discuss which guide specifications cannot be met simultaneously because of inherent incompatibilities and describe several hydrophone models, describe the construction of the model that most nearly satisfies all the guide specifications, and, finally, describe an area for possible further development.

Design Considerations

The hydrophone actually consists of two well-defined components--the acoustic element and the preamplifier. Among the decisions to be made for the acoustic element are choices of material, configuration, dimensions, and polarization. For the preamplifier, selections include electrical components, layout, gain, and self noise. The choices can be made only after a thorough analysis of the guide specifications that have been listed. This analysis is presented in the following paragraphs where the various items are considered in the order in which a logical design concept proceeded by process of elimination rather than by relative importance of the various aspects. Cost was considered a prime factor throughout because this hydrophone derives its usefulness by being inexpensive and expendable.

Size

Size is considered first because it determines the configuration and dimensions and, to a large extent, the sensitivity of the acoustic slement. The diameter dimension is considered critical and must not exceed 2.54 cm. The maximum length called for is 7.6 cm; however, this requirement can be relaxed by as much as a factor of two, if necessary.

Sensitivity

The required over-all sensitivity, -149 dB re 1 V/µPa, can be achieved by a combination of preamplifier gain and piezoelectric ceramic sensitivity. The design philosophy in this case is that given a preamplifier, the gain should be maximized with respect to the output self noise, thereby reducing the sensitivity required of the ceramic element. Typically, a gain of about 40 dB can be obtained from a low-cost preamplifier while still maintaining a relatively low output noise. Thus, a ceramic element sensitivity of about -189 dB re 1 V/µPa would be required.

A choice exists as to the size, shape, and material of the acoustic element. Table I summarizes the sensitivity and capacitance for various feasible acoustic element configurations. The designations of Type I, II, and III refer to ceramic materials as described in MIL-STD-1376(SHIPS) [1]. The dimensions used in Table I were derived by choosing the maximum element dimension so that when the element was covered by a protective barrier, the 2.54-cm size limitation would not be exceeded. The

ちゃうちょうちょう ちょうかいしょう ちょうちょう 3 8 7 「ないという」をおいたが、このなど、ないない、ないないで、ない、ないないないないのであり、 Table I. Sensitivity and capacitance for varicus acoustic element configurations.

	Dáske . 22.2 m	Dísks. axially pole 22.2 mm in diameter	poled eter	Cappe radia Ing O.I	Capped cylinders, radially poled, 22.2 mm 0.D. and 6.35 mm long	s, 22.2 5 m	Strip ders circu poled and 6	Striped capped cylin- ders (6 stripes), circumferentially poled, 22.2 mm 0.D. and 63.5 mm long	cylin-), 1Y 0.D. 9	Spher poled	Spheres, radially poled, 22.2 mm 0.D	1 <u>v</u> 0.D.
Ceranic	Thick- ness (m)	Sens. (1B re 1 V/(Pa)	Cap. (pP)	a fi	Gens. (dB re 1 V/µPa)	Cap. (pF)	I.D. (mm)	Sens. (äB re 1 V/µPa)	Cap. (pF)	I.D. (mm)	Sens. (dB re 1 V/µPa)	Cap. (pF)
Type I	10.0	- 208 - 208 - 206	430 340	15.9 19.1	-195 -196	1300	15.9 12.7	-184 -190	220 370	15.9 19.1	-201 -199	3900 9400
Type II	10.0	-212	5 80 4 60	5.6	-196	1800	15.9 12.7	-190 -190	300 510	15.9 19.1	-260 -199	5300 13000
Type III	10.0	- 708 - 708 - 1	900 900 900	19.19	661-	1100	15.9 12.7	-185 -191	180 300	15.9 19.1	-202 -201	3200 7700
Lead mota- niobate	12.0	-191 -169	06 C	19-1	-218	240 240	12.9	-179 -184	40 70	15.9 19.1	-220 -213	700 1700

and the second se

3

other dimensions such as length, inside diameter, and thickness then were chosen for optimum sensitivity and capacitance while reasonable pressure-resistant qualities were maintained. The calculations for sensitivity and apacitance are shown in Appendix A.

Capped striped cylinders and lead metaniobate disks would appear to be the only single elements with sufficient sensitivity; however, single elements of lower sensitivity can be wired electrically in series for greater sensitivity but with a decrease in capacitance. For example, two elements in series result in a sensitivity gain of 6 dB and 50% lower capacitance; three in series give a gain of 9.5 dB and a 67% lower capacitance. Therefore, a stack of radially polarized capped cylinders of Type I, II, or III ceramic wired in series could be used with a resulting sensitivity of about -189 dB re 1 V/uPa. The same is true for ceramic spheres, except that three or four in series conflict with the size limitation and are not as economical as capped cylinders.

It appears, then, that lead metaniobate disks and Types I, II, and III ferroelectric ceramic capped cylinders, either radially or circumferentially polarized, would satisfy size and sensitivity requirements for the acoustic element.

Operating Depth

The maximum expected operating depth of 4550 m (15,000 ft) in sea water is equivalent to 46 MPa (6670 psi). It would be preferred that the hydrophone be insensitive to changes it hydrostatic pressure; however, the large hydrostatic pressure at depth can cause the sonsitivity of the acoustic element to change and it literally will crush an uppretected preamplifier. For this reason, the preamplifier must be protected by a rigid pressure vessel or encappulated in a rigid epoxy. Cost considerations suggest the epoxy encapsulation.

The accustic element configurations listed in Table I have sufficient physical strength to resist cruching. The effect of excessively high hydrostatic pressure is to depolarize the element, thereby producing a loss of its piezoelectric characteristics and its sensitivity.

The calculations for the stresses generated within the acoustic elamont by the hydrostatic pressure are presented in Appendix B. The calculations indicated have been performed for the acoustic elements that have been considered to be possibilities for hydrophone development. The values of the three components of compressive stress encountered by capped cylinders under a hydrostatic pressure of 46 NPa are given in Table II. These values were compared with the maximum allowable stresses in Table B-1, and thus the range of acoustic element possibilities was further reduced as shown in Table III.

Bandwidth

The free-field voltage sensitivity of a piezoelectric element is independent of frequency at frequencies far below the primary resonance

Polari- zation	Stress	a = 6.35 mm	a = 7.9 mm	a == 9.5 mm
Radial	T _{II} , T _r ^a		46	46
	T ₁ ; T ₀ ^b		190	360
	Tz ^c		95	180
Circum- ferential	T _{II} ; T _g ^b	137	190	
	T ₁ ; T _r a	46	46	· .
. ·	T S	68	95	• . •

Table II. Maximum compressive stresses (in megapascals) contributing to depolarization of a capped cylinder (b = 11.1 mm and P = 46 MPa).

 $T_{i} = 0$ at r = 1 and is a maximum of r = b.

 T_n is maximum at r = s and minimum at r = b.

T, is constant, independent of r.

frequency. If the resonance is sufficiently high, the specified bandwidth, 10 Mz to 3 kHz, can be satisfied. The primary resonances are presented in Table IV for the configurations under consideration. Since all the resonances are well above the operating bandwidth (10 Mz to 3 kHz), no problem of limited operation should be encountered. The equations and appropriate ceramic characteristics are given for the calculation of the primary resonance in Appendix 2.

Directionality

A disk or capped cylinder of the dimension, previously discussed will operate in a volume expander mode and will sppcar canidirectional if the maximum element dimension is much less than the wavelength of sound in the medium at the working frequency. At 3 kHz, the wavelength in water at 4°C is approximately 475 mm. The maximum dimension of the disk or capped cylinders under consideration is the circumference, which is about 70 mm. Thus, these element configurations are expected to be canidirectional within the frequency range from 10 Hz to 3 kHz.

lable III. Decision on hydrophone application based on liklihood of depolarization of els-ment under hydrostatic pressure of 46 MPa. lable III.

	Disks, e 22.2 mm	Disks, axially poled, 22.2 mm d <u>tam</u> .	Capye rađia 22.2 6.35	Capped cylinders, radially poied, 22.2 mm 0.D., 6.35 mm long	Strip cylin feren 22.2 1 63.5 1	Striped capped cylinders, circum- ferentially `led, 22.2 mm 0.L _ 63.5 mm long	, Spheres, radially poled
	Thick-						
Ceramic	ness (m)	Application?	п.р. (Ш)	Ap ylication?		Application?	
Type I	`_		15.9	NG	15.9	No	}
I	Thanf	Tnanfficiant	19.1	No	12.7	No	
TYPE II	sensi	sensitivity	15.9 19.1	NC NC	15.9 12.7	NC NO	
Type III	o		15.9	Possibly	15.9	Probable	Thsufficient sensitivity
			1.°L	No	12.7	Probable	1
Lead meta- 10.0 niobate 12.7	10.0	Yes Yes	{ sens	Insufficient sensitivity	15.9 12.7	Probable Probable	
							•

W. Old march of

3

6

Ceramic	Configuration	I.D. (nm.)	Length (mm)	Long. res. freq. (kHz)	Rad. res. freq. (kHz)
Type III	Cylinder, radially poled	15,9	6,35	273	58
	Cylinder,	15.9	63.5	27	71
	circumf. poled	12.7	63.5	27	78
Lead meta-	Disk, axially		10.0	154	79
niobate	poled		12.7	121	7≪
	Cylinder,	15.9	63.5	21	51
	circumf. poled	12.7	63.5	21	56

Table IV. Approximate primary longitudinal and radial resonances for selected acoustic elements, 22.2 nm 0.D.

Cost

W. S. Weedes Char

The total cost of the hydrophone comes primarily from the acoustic element, preamplifier, and labor, and secondarily from epoxy, cylinder end caps, cables, and other miscellanea. Most of these costs are essentially fixed for a given preamplifier and assembly procedure. The major decision lies in the choice of acoustic element. Table V is a cost comparison of appropriate ceramic elements. It is based on vendor quotations and prices of similar items recently purchased. The prices are also based on quantities of ten thousand.

It is immediately obvious that lead metaniobate circumferentially polarized cylinders are too expensive for this application. The Type III circumferentially polarized cylinders are much cheaper but are still more expensive than the disks. There would also be extra labor costs for the cylinders because of the necessity to wire the individual striped segments in proper sequence. Thus, they are eliminated because of high cost. Type III radially poled cylinders are individually the cheapest, but, because of their lower sensitivity, several must be used in series for each hydrophone. If three are wired in series, their total sensitivity would be about equal to that of the lead metaniobate disks. The material cost would be a little more than one half that of the lead metaniobate disks; however, there would be extra labor costs from bonding and wiring the elements together, which could make the radially poled cylinders and the lead metaniobate disks comparable in cost.

Self Noise

Self noise is a product of the preamplifier only. Most of the self noise originates at the input stage. The acoustic element does not actively contribute to the self noise but does affect it by the amount of

Capped cylinders, Striped capped radially poled, cylinders, cir-Di ks, axially 22.2 mm O.D., cumf. poled, poled, 22.2 mm 15.9 mm I.D., 22.2 mm O.D., diameter 63.5 mm long 5.35 mm long Thick-I.D. Unit ness Unit Ceramic cost (mm) cost Unit cost (mm) Type III \$11.25 \$1.75 15.9 12.7 13.50 Lead meta-10.0 \$8.00 15.9 75.00 12.7 \$10.00 12.7 90.00 niobate

Table V. Comparison of unit cost of selected ceramic elements purchased in lots of 10,000.

impedance loading on the input. In general, the higher the input load capacitance, the quieter the preamplifier. This implies that the radially polarized cylinder with its higher capacitance (see Table I) would result in quieter operation than would the disk.

Although the actual self noise is of electronic origin, it often is related to an equivalent acoustic noise pressure level. It is assumed for the purpose of definition of this relation that the preamplifier is noise free and the hydrophone detects a certain specified level of acoustic pressure. In this way, a more realistic lower limit on sensitivity to true signal can be established.

The conversion between sea state noise and preamplifier noise is discussed in more detail in Appendix D. When converted, the noise specification calls for an output noise voltage of less than -69 dB re 1 V. If the preamplifier gain is about 40 dB, then the critical input stage must have components with a combined noise level below -109 dB re 1 V.

Reproducibility

£

È.

A 40-dB null balance is equivalent to a 2% variation between hydrophones and a 30-dB null balance is equivalent to a 6% variation. Appendix E gives the proof of equivalence. Such variation can arise in the ceramic element or in the preamplifier. Careful design and construction of the preamplifier can make the ceramic element the dominant factor. The sensitivity of a ceramic element is due largely to the piezoelectric constants g_{31} and g_{33} and, to a lesser extent, to the dielectric constant ε_{33} , as seen in Appendix A. Hence, any variability in the sensitivity can be traced to those constants. Unfortunately, the manufacture of ceramics entails slightly different compositions and production ******

ことであるというまたのであるとなるないないないないないないであるというないのである

techniques such that the characteristics of ceramics differ not only from one manufacturer to another but also from one batch to another by the same manufacturer [2]. Ceramic characteristics change with age as well and at different rates for different manufacturers. いいたい ゴード・ション

It is not unrealistic to expect the sensitivity of ceramic elements to vary by 15% over a long period of production by several manufacturers [2].

The reproducibility specification can be met in several ways. One is to obtain all elements from one manufacturer's single batch. Of course, this may not be possible for very large quantities, but fewer individual batches should result in a smaller variation. Individual variabilities could be compensated by preamplifier gain adjustment or capacitor "shading" of the element. Aged ceramic elements also could be used to alleviate the problem.

Phase Matching

In the frequency range from 10 Hz to 3 kHz, the sound wavelength is much larger than the element; therefore, a disk or capped cylinder should respond to a sound wave of this length with no phase shift. Some phase difference may exist among preamplifiers, but, with proper design and component tolerance, the difference should be less than the $\pm 3^{\circ}$ required in this frequency range.

Vibration Sensitivity

Vibration of the hydrophone while deployed in the ocean would come from wave motion, suspension cable strumming by currents, antenna strumming by wind, and other unknown factors. A hydrophone can be made less sensitive to vibration by making it more massive (by Newton's second law, a given force will produce less acceleration). Mass and size limitations, however, eliminate this solution. Hydrophones can be made insensitive to vibration also by arranging an even number of acoustic elements symmetrically about the center of gravity. In this way, the effects of acceleration upon elements on one side of the center of gravity will be canceled by opposite effects of acceleration upon ϵ lements on the other side. The disadvantage of this approach is greater cost and size.

The most satisfactory solution, in view of the other specifications, is to decouple the hydrophone array from the cable suspension system, thereby decreasing the amount of vibration to which the hydrophone would be subjected.

Output Impedance and d-c Offset

A low output impedance is typical of preamplifiers and should present no problem. The output d-c offset voltage can be held to practically zero by a blocking capacitor on the preamplifier output.

Nass

A small mass is compatible with the small size and cost and should be no problem.

Operating Temperature

The hydrophone will experience temperatures from 0 to 30°C near the ocean surface, depending upon the location of operation. At any appreciable depth, the operating temperature will be near 4°C. These temperatures will produce no appreciable effect on the ceramic element or the preamplifier.

Summary of Design Criteria

The design considerations discussed above have been directed mostly toward the ceramic sensor element because this is where the alternatives exist. Once an element configuration is found feasible, a suitable preamplifier can be obtained by modifying a basic design to suit the requirements. The many possible acoustic element configurations have been limited by the various guide specifications. Table VI summarizes the elimination process. Lead metaniobate disks and the Type III radially poled capped cylinders appear to be worthy of application in this hydrophone development.

Hydrophone Prototypes

Several hydrophone models were designed, constructed, and tested. The characteristics of the most promising ones will be discussed here. The preamplifier was designed for compatibility with all of the acoustic element configurations and will be described separately, because the one basic design was used with all acoustic elements.

	Disks, axially	Capped c	ylinders	Spheres,
	poled	radially poled	circumf. poled	 radially poled
Ceramic	diam.×thick. (mm)	OD×ID×length (mm)		
Type I	(sensitive	(
Type II	Insufficient sensitivity		Seusitive	Insufficient
Type III		22.2×15.9×6.35	High	sensitivity
Lead meta- niobate	22.2×10.0 22.2×12.7	{Insufficient {sensitivity	cost	

Table VI. Summary of design criteria applied to ceramic elements.

のないないないないで、このできょうないないないないないで、

12

に見て行

SS (HUMRS)

Sele Ja

Fig. 1. Schematic of hydrophone preamplifier.

Preamplifier

語語を言語と語

A line schematic of the preamplifier is shown in Fig. 1. It is basically a straightforward design incoporating a low-noise field effect transistor (FET) input, two stages of amplification, and a balanced lowimpedance output. The preamplifier is approximately 57 mm long by 16 mm wide by 12 mm thick with components mounted on both sides of the circuit board to conserve space. The circuit is potted in Eccobond 51 epoxy for protection from hydrostatic pressure.

Two factors related to hydrophone application that affect the choice of input impedance are charge dissipation and low-frequency roll-off of sensitivity. Charge is generated by the piezoelectric effect in the acoustic element when the pressure increases as the hydrophone sinks to operating depth, and also by the pyroelectric effect as the temperature of the hydrophone changes to that of the surrounding water. The resulting voltage can rise to very appreciable levels and saturate the FET, thereby preventing it from functioning and can, in fact, permanently damage it. There are several ways to dissipate the charge as it is generated. The resistive path to ground is used here. From the standpoint of charge dissipation alone, it would be desirable that the resistive shunt be of low value; however, the sensitivity of the acoustic element to underwater sound is adversely affected by a low-resistance shunt because the signal also is shunted. The input impedance of the preamplifier must be much larger than the low-frequency impedance of the acoustic element to avoid a low-frequency sensitivity roll-off. Calculations of the charge build-up are given in the first part of Appendix F. The effect of the impedance on the sensitivity is shown in the second part of Appendix F.

The shunt resistor satisfies both the above considerations if a value of 5000 M Ω is used with the lead metaniobate acoustic element and 900 M Ω with the Type III cylinder series element.

Fig. 2. First-stage preamplifier gain as a function of feedback resistor R_1 value.

The FET and a 2N3906 transistor provide the first stage of amplification with a gain of approximately 20 to 25 dB. The value of the precision resistor R_1 is set to give the proper over-all gain as required by the acoustic element. A graph of the gain of the first stage as a function of the resistance is given in Fig. 2. The second stage of amplification is derived from a 2N3904 transistor and a bootstrap between the output and second stage input. A precision resistor of 40.2 k Ω in the bootstrap produces a second stage gain of 20 dB.

The output is balanced and provided with a d-c blocking capacitor and 100- Ω line resistor. The blocking capacitor satisfies the specification of less than 5 V output d-c offset. The output impedance of 100 Ω is necessary to prevent self oscillation.

A three-conductor cable serves for preamplifier power, common ground, and signal. It is not considered good practice in low-noise hydrophones to use a coaxial cable where both B+ voltage and a-c signal are on a common conductor.

The noise appearing at the output terminals of the preamplifier is primarily the sum of the shunt resistor thermal noise and the FET self noise multiplied by the preamplifier gain. The FET chosen is a Siliconex 2N3687, which has a satisfactory self noise and cost figure. The calculations involved in selecting a FET with sufficiently low self noise are presented in the third part of Appendix F.

The total rms noise voltage spectral density for the preamplifier is shown in Fig. 3. The data are based on noise measurements made on three individual preamplifiers with the appropriate capacitive and resistive loads and gains to simulate the desired acoustic elements. Internal variances of the different preamplifiers produced somewhat different curves under identical conditions; therefore, the noise voltage spectral density is represented by bands rather than by lines in Fig. 3. A comparison is made also to the maximum noise permitted by the guide specification. The specification is exceeded by the preamplifier for the lead metanicbute acoustic element at frequencies below 40 Hz.

12

The dynamic range of the preamplifier is limited at the lower level by the sum of the self noise and the sea state acoustic noise. The upper level is limited by the inability of the preamplifier to pass a sufficiently undistorted signal. This upper limit has been determined by measuring the amplitude of the input sine wave that causes a 1% distortion in the output wave form. The rms value of the input signal was -35±1 dB re 1 V at all frequencies from 10 Hz to 3 kHz for the three preamplifiers. For an acoustic element sensitivity of -191 dB re 1 V/ μ Pa, this value would correspond to a sound-pressure level of approximately 156 dB re 1 μ Pa. The preamplifier will continue to operate at input levels as high as -20 dB re 1 V but with considerable distortion and deviations in gain and phase caused by saturation. Within the dynamic range of the preamplifier, the gain is constant to within ±0.1 dB.

の語言語を見たい。などのである

Fig. 4. Average phase shift of preamplifier.

「「「「「「「「「」」」」

いたないないとう

A phase shift does occur between the input signal and preamplifier output, but the shift appears to be a design constant. The average input-output phase shift of any individual preamplifier and the average phase difference between the outputs of any two preamplifiers are given in Fig. 4. The specifications of gain and phase matching are met.

Fig. 5. Preamplifier sensitivity to vibration in lateral and axial directions.

The sensitivity of the preamplifier to vibration was measured in the axial and lateral directions. As expected, the vibration sensitivity is quite low in comparison with that of the acoustic elements. The results are shown in Fig. 5.

A list of preamplifier components and costs is given in Table VII. The estimated costs are based on quantities of ten thousand. Labor costs for constructing the preamplifiers can be reduced considerably by production line techniques to about equal that of the components.

Ceramic Acoustic Element Type III

The Type III ceramic, radially poled, capped cylinder, discussed previously, is useful in this application only if several are wired in series for greater sensitivity. A twin stack (two cylinders in series) and a triple stack (three cylinders in series) are illustrated in Fig. 6. The dimensions of the cylinders are 22.2 mm O.D. by 15.9 mm I.D. by 6.35 mm long. The end caps of alumina (AlSiMag 771 by American Lava Corp.) are 22.2 mm in diameter by 4 mm thick.

The calculated sensitivity of one cylinder has bee given in Table I as -109 dB re 1 V/ μ Pa. Two cylinders in series should produce a sensitivity of -193 dB re 1 V/ μ Pa and three in series, a sensitivity of -189.5 dB re 1 V/ μ Pa. Actual measurements indicate sensitivities of -193.1 dB re 1 V/ μ Pa for the twin stack and -189.8 dB re 1 V/ μ Pa for the triple stack. The sensitivity is independent of frequency between 10 Hz and 3 kHz except for the expected low-frequency roll-off caused by the RC combination of the preamplifier shunt resistor and the ceramic cylinder capacitance. The extent of this roll-off at 10 Hz is 0.3 dB for the twin

Fig. 6. Twin and triple stacks of Type III ceramic, radially poled, capped cylinders.

Component	Num- ber	Unit cost	Total cost
Resistors, precision:			
R_{s} (900 MM or 5000 MM, depend-			
ing on acoustic element)	1	\$1.75	\$1.75
R ₁ (exact value depends on gain)	1	.15	.15
196 Ω	1	.15	.15
1960 Ω	1	.15	.15
40.2 k Ω	1	,15	.15
Resistors, nonprecision:			
50 Ω	3	.03	.09
100 Ω	1	.03	.03
1 kΩ	1	.03	.03
2.7 kΩ	1	,03	.03
4.3 kΩ	1	.03	.03
13 kΩ	1	.03	.03
17.8 kΩ	1	.03	•03
27 kΩ	3	.03	• 09
62 kΩ	1	.03	•03
Capacitors:			•
6.8 µF	4	.22	.88
30 µF	1	. 24	. 24
56 VF	1	.24	.24
330 pF	. 1	.09	.09
680 pF	1	09	.09
Transistors:			• •
2N3687	1	1.00	1.00
2N3904	2	.28	.56
2N3906	2	,29	.58
Diodes:	• •		
1N4001	1	.15	.15
Sensitized P.C. board	1	. 40	.40
Total estimated cost		-	\$6.97

Table VII. Preamplifier parts and cost list.

الالا ويبية فكو بوليسيا والمار الركاسة كالمحاص المالاكات

1.1053775

a and a second strategy of the second se

日本語のなどの

and the second second states and the second s

いたいないないないないないないないないない

stack, which has a measured capacitance of 560 pF, $a_1 = 0.4$ dB for the triple stack with 400 pF, when the shunt resistor is 900 MM.

The sensitivity decreases approximately linearly with increasing hydrostatic pressure by 1 dB between atmospheric pressure and 46 MPa. The cylinder sensitivity is omnidirectional within 0.5 dB at all pressures throughout the frequency range from 10 Hz to 3 kHz.

The measured sensitivities of supposedly identical cylinder stacks were all within 0.2 dB of each other at atmospheric pressure when made from ceramic elements of the same batch. As shown in Appendix E, this reproducibility is equivalent to a -40 dB null balance. At a hydrostatic pressure of 46 MPa, the variation between stacks increased to 0.4 dB, which is equivalent to a -33 dB null balance. This change with pressure probably is due to differences in epoxy bonds between cylinders and end caps and is largely unavoidable. Greater differences in sensitivities existed when stacks were made of cylinders from different manufacturers. Differences of 1 dB in sensitivity between stacks were not uncommon. This difference corresponds to a -25 dB null balance.

When the stacks were subjected to an acoustic signal between 10 Hz and 3 kHz, the electrical output tracked within 1° of each other.

The vibration sensitivities of the twin stack and triple stack are shown in Figs. 7 and 8, respectively. For the complete hydrophone to meet the specification of less than +10 dB re 1 V/g, the vibration sensitivity of the acoustic element must be less than the specification by at least the pre-mplifier gain. Thus, vibration sensitivity levels of about -34 dB re 1 V/g for the twin stack and about -31 dB re 1 V/g for the triple stack are critical. Both stacks exceed these levels at about 100 to 200 Hz.

In quantities of ten thousand, a cylinder costs \$1.75 and an alumina end cap costs \$0.045. Therefore, the material cost of a twin stack should be about \$3.60 and a triple stack about \$5.35. These material costs are based on manufacturer's quotations [3,4]. The extent of the labor involved is to solder leads to the proper electrodes and to cement the cylinders and end caps together. An estimate of a reasonable production line labor charge is \$0.75 for the twin stack and \$1.00 for the triple stack. This brings the total cost of a twin stack to approximately \$4.35 and a triple stack to approximately \$6.35.

Lead Netaniobate Acoustic Element

State State State

The axially polarized lead metaniobate disk is a simpler sensor element than the capped cylinder in that connections need be made only to the electrodes to have a working sound detector. The theoretical sensitivity of a 12.7-mm thick disk is equal to that of a triple-cylinder stack. The primary disadvantage of lead metaniobate is its low dielectric constant. The disk capacitance is so low that quite often leakage capacitance is large enough to cause an appreciable loss in sensitivity. The calculated sensitivities and capacitances of a 12.7-mm and a 10-mmthick disk are given in Table I. The measured values are -193 dB re 1 V/uPa and 100 gF for the 12.7-mm-thick disk and -193.5 dB re 1 V/uPa and 120 pF for the 10-mm-thick disk. The discrepancy between calculated and measured sensitivities is in good correlation with the differences in calculated and measured capacitances.

The sensitivity is canidirectional. There was a gradual increase in sensitivity to the extent of 0.3 dB per decade of frequency between 10 Hz and 3 kHz in addition to the expected low-frequency roll-off. A 5000-NH bleed resistor was used in the preamplifier input for the reasons discussed in Appendix P. The RC low-frequency roll-off at 10 Hz was 0.3 dB

Fig. 9. Vibration sensitivity of a lead metaniobate disk.

for the 12.7-mm-thick disk and 0.2 dB for the 10-mm-thick disk. The sensitivity decreases approximately linearly with increasing hydrostatic pressure by 0.7 dB between atmospheric and 46 MPa.

The reproducibility of sensitivity for lead metaniobate disks is adversely affected by the inability to maintain stray capacitance within acceptable limits. As little as 10 pF stray capacitance is typical and amounts to 10% of the disk capacitance, which changes the measured sensitivity by about 1 dB. Thus the unit-to-unit variation could pass only a -25 dB null balance test.

The vibratio: sensitivity of a 12.7-cm-thick lead metaniobate disk is shown in Fig. 9. A vibration sensitivity level of -34 dB re 1 V/g is critical for the disk, if the complete hydrophone is to meet the guide specification. The disk exceeds this level between 200 and 300 Hz for vibration in the axial direction. Sensitivity to vibration in the lateral direction is guite low at all frequencies. The size of the disk is such that the disk could be oriented without violation of the over-all size limitation so that the dominant vibration present would be in the lateral direction.

Lead metaniobate disks. 10 mm and 12.7 mm in thickness, cost \$9.00 and \$10.00, respectively, in quantities of ten thousand [5]. Labor is not a factor because the preamplifier input leads need only be soldered to the disk electrodes.

Sumary

Characteristics of the three hydrophone models are compared in Table VIII. None of the three meet all of the specifications, although the model containing the Type III twin stack acoustic element most nearly does so. The primary shortcoming is in the sensitivity to vibration. A hydrophone could be built to meet the vibration specification, but the resulting size and cost would be much greater. The total hydrophone cost given in Table VIII is somewhat relative because of the estimate of labor costs that are associated primarily with the preamplifier. The broad-band self noise of the hydrophone between 10 Hz and 3 kHz is less

	Type III	ceramic	Lead meta- niobate	
	Twin	Triple	disk	Specifi-
Characteristic	stack	stack	(12.7 mm)	cation
Element sens. (re 1 V/µPa)	-193.1 dB	-189.8 dB	-193 dB	
Reproducibility, null- balance test:				x
at atmospheric pressure	-40.0 dB			-40 dB
at 46 MPa	-33.0 dB	-33.0 dB	-25 d8	-40 dB
Change in sens. with pres- sure, 0-46 MPa	1,0 dB	1.0 d9	0.7 dB	
	7.0 00	1.0 00	0.7 us	
Preamplifier gain required to meet specification	+44.1 dB	+40.8 dB	+44 dB	
Hydrophone meets bandwidth				
requirement?	yes	yes	yas	10-3000 1
Omnidizaction to within	0.5 dB	0.5 dg	0.5 dB	l dø
Vibration sens. maximum (re 1 V/g):				
axial mode	+14.0 88	+17.0 dB	+18 66	+10 dB
lateral mode	+22.0 d9	+20.0 db	+4 dB	+10 48
Phase matched to	2240	±25°	-	±3 ⁹
Broadband self noise (re 1 V)				•••••••••
between 10 Hz and 3 kHz	-77.0 de	-81.0 db	-70 38	~69 di)
Output d-c offset	0.225 V	0.225 V	0.225 V	~5 V
Output impedance	150 R	150 u	150 #	*50
Size:			· ·	· ·
diametor	2.54 cm	2.54 cm	2.54 cm	2.54
length	8.40 cm	9.00 cm	7.60 cm	7.60 cm
mass	109 g	110 g	90 g	<250 q
Nydrophone cost:		· · · ·		
acoustic element	\$4.35	\$6.35	\$10.00	
proamplifier	6.97	6.97	6.97	• •
miscellaneous materials	.28	.28	. 23	
labor (estimated)	7.00	7.00	7.00	
total	\$18.60	\$20.60	\$24.20	minimal

Table VIII. Comparison of hydrophone models.

į,

ومتعدد المحادية

Ċ.

Typical.

19

for all three models than the recification; however, this is because the narrow-band noise is considerably below specification above 100 Hz. Actually, the narrow-band noise for the lead-metaniobate hydrophone is well above specification at frequencies below 50 Hz.

Hydrophone Construction

Mass production practices probably will differ considerably from the laboratory techniques on which the following discussion is based, but at least a basis that has produced working hydrophones is provided.

The hydrophone with the twin-cylinder stack acoustic element has been shown to satisfy most nearly the guide specifications. A first step in assembling the acoustic element is to bond the two cylinders together endwise. Epon VI (Hysol Epoxy Products) is a suitable bonding agent and is applied according to manufacturer's instructions. A small compressive force is applied during the cure to maintain alignment and to insure a uniform bond. The two cylinders should have opposite polarity to facilitate hook-up; that is, one cylinder should be polarized with the positive electrode on the inner diameter and the other with positive on the outer diameter.

Two possibilities exist for wiring the two cylinders together in series. In either case the stack should be oriented with respect to the preamplifier so that the positive electrode of the cylinder nearest the preamplifier is connected to the preamplifier input. This insures the outputs from all hydrophones are in phase.

a. The two cylinders can be wired as illustrated in Fig. 6. The outer-diameter electrodes are either soldered together by a jump lead or joined by a coat of conductive paint or epoxy which has a bulk resistivity equal to or less than 0.001 Ω -cm. The positive inner electrode is connected to the preamplifier signal input and the inner negative electrode to the preamplifier ground. The two leads pass through a hole in the end cap that must be hermetically sealed with Epon VI. The advantage of this arrangement is that the cylinder outer dimension defines the hydrophone outer diameter except for the protective over-all potting compound. The end-cap electrical feedthrough.

b. The inner-diameter electrodes can be joined by soldering a lead between them or by painting a conducting path over the bond joint. A lead then is connected between the preamplifier signal input and the positive outer-diameter electrode of the cylinder nearest the preamplifier and a second lead between the preamplifier ground and the negative outer-diameter electrode of the other cylinder. The advantages of this method are that no feedthroughs are required in the end cap and the element is easier to assemble. The disadvantage is that the leads must pass between the cylinder and the maximum 2.54-cm dimension. Care must be taken that the leads are not exposed through the potting compound to the hydrostatic pressure and that they do not short circuit the outer electrodes of the cylinders. After the stack is wired, the end caps are bonded to the cylinders with Epon VI. The connections between the twin stack and the preamplifier then can be completed. Next, the assembly is positioned in a mold that describes the finished dimensions of the hydrophone and is encapsulated in a suitable compound like Eccobond 51 (Emerson & Cuming). The potting forms the finished dimension of the hydrophone, seals the cable, forms a waterproof barrier, and protects the preamplifier from the hydrostatic pressure.

يوليكي جارب كجلا بالرسيلان مكارثهم بالعلالان ساء المكرسان الاخلا والأنجاب وكالجام وحواري الماريني والمراجع والك

Before the assembly is encapsulated, all surfaces of the cable, preamplifier, and sensor element are cleaned of all flux and other contaminants.

The Eccobond 51 is mixed according to the manufacturer's recommendations. The container used for mixing is free of any coatings or other contaminants and is of sufficient size for degassing the mix. After the compound is thoroughly mixed with a glass or metal rod, it is degassed. The initial evacuation stage must be gradual to prevent the froth from overflowing the container. Evacuation should continue until all major bubbles stop forming and vacuum of about 0.3 Torr pressure is maintained for approximately 5 minutes.

After initial evacuation of the mix, it is poured into the mold with care taken to entrap as little air as possible. The potted assembly then is evacuated for 5 to 10 minutes until the major bubbles have been removed.

The vacuum system used to degas the encapsulant should have sufficient capacity to pump down to 1 Torr within 3 minutes. Such a system is necessary to insure that the finished assembly be free of any entrapped gases or voids that could produce unwanted low-frequency resonances.

The preamplifier circuit board and location of components are shown in Fig. 10. Again, it should be commented that the preamplifier layout is adequate but not necessarily optimum. Figure 11 is an illustration of steps encountered in assembling the components into a working hydrophone.

Future Development

- 25-52 93-57 - 12-56 - 12-56 - 12-56 - 12-56 - 12-56 - 12-56 - 12-56 - 12-56 - 12-56 - 12-56 - 12-56 - 12-56 -

all is when alt alt alt

The part of the hydrophone that probably can undergo further development is the preamplifier. Integrated circuits may be more feasible for large quantities with the result of reductions in cost and size. This possibility should be investigated before any large procurement proceeds. It is conceivable that the preamplifier can be reduced to a size that can be mounted on an end cap inside the ceramic cylinder stack. The total hydrophone size then would be approximately 2.5 cm diameter by 2.5 cm long after potting.

References

- [1] MIL-STD-1376(SHIPS), "Piezoelectric Ceramic for Sonar Transducers," 21 Dec 1970.
- [2] R. W. Timme, "Low Electrical Field Characteristics of Piezoelectric Ceramic Rings," NRL Report 7528, 5 Jan 1973 (AD-907 068L).

- [3] Type III cylinder quotation from Channel Industries, Santa Barbara, California.
- [4] Alumina end cap quotation from American Lava Corp., Chattanooga, Tennesses.
- [5] Lead metaniobate disk quotation from Gulton Industries, Metuchen, New Jersey.

Fig. 10. Preamplifier circuit board.

いいちのとうからい

通知なため

Appendix A

Calculation of Sensitivity and Capacitance

Symbol Definition

- M free-field voltage sensitivity
- C capacitance
- e open-circuit voltage
- p incident sound pressure
- g₃₃, g₃₁ piezoelectric constants

ε₃₃ dielectric constant

- t thickness between electroded surfaces
- a inner radius
- b outer radius
- A cross-sectional area of electroded surface
- l length of cylinder
- N number of stripes

The free-field voltage sensitivity for a piezoelectric ceramic disk or plate can be calculated from an expression that is derived from the equation of state relating the electric field generated across the ceramic element to the inc deat stress and strain:

$$M = e/p = (g_{33} + 2g_{31})t. \tag{A-1}$$

The capacitance can be obtained from the simple relation for the parallel plate capacitor:

$$C = \varepsilon_{3,3} A/t.$$
 (A-2)

The expression for the free-field voltage sensitivity of a capped cylindrical ceramic tube has been derived by Langevin [A-1]:

The capacitance is given by

$$C = \frac{2\pi\varepsilon_{33}l}{\ln(b/a)}$$
(A-4)

and the second second

Langevin's derivations were extended to striped tubes with circumferential polarization. The sensitivity and capacitance are given by

$$M = \frac{1}{N} \frac{2\pi b}{\ln(b/a)} \left(g_{31} \frac{2 - a/b}{l + a/b} + g_{33} \right)$$
(A-5)

and

日本のからなるため

ł

いたがいたちがあたいが

$$C = \frac{N\varepsilon_{33}l}{2\pi} \ln(b/a).$$
 (A-6)

The free-field voltage sensitivity of a ceramic sphere has been derived by Anan'eva [A-2]:

$$M = \frac{b}{q^2 + q + 1} \left(\frac{q^2 + q - 2}{2} g_{33} - \frac{q^2 + q + 4}{2} g_{31} \right), \text{ where } q = a/b. \quad (A-7)$$

The capacitance of a sphere is given b,

$$C = \frac{4\pi\varepsilon_{3,3}ab}{b-a}$$
(A-8)

The piezoelectric constants g_{33} and g_{31} and the dielectric constant ε_{33} for the ceramic Types I, II, III, and lead metaniobate have the nominal values given in Table A-I.

Table A-I. Piezoelectric constants and dielectric constant for several ceramic materials.

Material	9 ₃₃ (V·m ⁻¹ Pa ⁻¹)	931 (V•m ⁻¹ Pa ⁻¹)	€33 (F•m ⁻¹ ×10 ⁻⁸)
Type I	0.026	-0.0110	1.1
Type II	0.025	-0.0115	1.5
Type III	0.022	-0.0090	0.9
Lead metaniobate	0.036	-0.0045	0.2

References

- [A-1] R. A. Langevin, "The Electro-Acoustic Sensitivity of Cylindrical Ceramic Tubes," J. Acoust. Soc. Amer. 26, 421-427 (1954).
- [A-2] A. A. Anan'eva, Ceramic Acoustic Detectors (Consultants Bureau, New York, 1965), p. 46.

Appendix B

Calculation of Stresses due to Hydrostatic Pressure

Symbol Definition

Tr	stress in radial direction of cylinder
τ _θ	stress in circumferential direction of cylinder
Tz	stress in axial direction of cylinder
т _п	stress parallel to direction of polarization
L ^T	stress perpendicular to direction of polarization
P	hydrostatic pressure
a	inner radius of cylinder
ь	outer radius of cylinder
r	distance from center of cylinder along radius

The stresses in a capped cylinder as derived by Langevin [B-1] are:

$$T_{r} = -P_{b^{2} - a^{2}} (1 - a^{2}/r^{2}); \qquad (B-1)$$

$$T_{\theta} = -\frac{p}{b^2 - a^2} (1 + a^2/r^2); \qquad (B-2)$$

$$T_{Z} = -P - \frac{b^{2}}{b^{2} - a^{2}}$$
 (B-3)

The maximum stress that a capped cylinder can experience without undergoing depolarization depends on the direction of poling. A radially polarized cylinder experiences a radia stress T_r parallel to the direction of poling and combined stresses of T_{θ} and T_z perpendicular to the direction of poling. A striped cylinder is circumferentially polarized and experiences a stress T_{θ} parallel to the direction of poling and bombined stresses T_r and T_z perpendicular to the direction of poling.

Unfortunately, little work has been done to determine the compressive stress limits for the different ceramic types and configurations. Clevite [B-2] has determined for ceramic Types I and II the compressive stress at which the dielectric and piezoelectric constants have changed several percent without recovery and this they have defined as the maximum allowable stress for Type III or lead metaniobate; however, one can infer from the high electrical field characteristics that Type III and lead metaniobate are successively more resistant to depoling than Type I [B-3].

The values given in Table B-I are the result of one-dimensional stress measurements. Because the stresses encountered within the capped cylinders are two-dimensional, the stresses parallel and perpendicular to the poled direction should not be compared directly with those in Table B-I. It is not well understood how the individual components of stress calculated from Eqs. (B-1,2,3) should be combined to represent the resultant stress leading to depolarization. Empirical data strongly suggest that ceramics are more resistant to depolarization by a two-dimensional stress than by a one-dimensional one. Until more definitive work is done, the only recourse at this point is to obtain a relative, order-of-magnitude comparison of the Table B-I data with the calculated values of T_r , T_{θ} , and T_z , assuming (incorrectly) that the stresses are completely independent of each other. This is done in Table B-II.

The compressive stresses sustained by a solid disk can be obtained from Eqs. (B-1,2,3) in the limit a = 0 and are just equal to the hydrostatic pressure P. The maximum compressive stress in this mode given by Clevite [B-2] is 345 MPa (50,000 psi) for Type I and 138 MPa (20,000 psi) for Type II ceramic. Again, data are not available for Type III and lead metaniobate, but again it is expected that Type III is better than Type I and lead metaniobate is better than Type III.

St	ress	Type I	Type II	Type III	Lead metaniobate
TU	(max)	83 MPa (12,000 psi)	35 MPa (5,000 psi)	>Type I	>Type III
T <u>1</u>	(max)	55 MPa (8,000 psi)	14 MPa (2,000 psi)	>Type I	>Type III

Table B-I. Maximum allowable stress for poled ceramics.

References

The state of the second states and the second states and the second states and the second states and the second

のないためであったい

- [B-1] R. A. Langevin, "The Electro-Acoustic Sensitivity of Cylindrical Ceramic Tubes," J. Acoust. Soc. Amer. 26, 421-427 (1954)
- [B-2] Clevite Corp., Piezoelectric Div., "Piezoelectric Technology Data for Designers" (Bedford, Ohio, 1965).
- [B-3] Gulton Industries, Inc., "Glennite Piezoceramics--Catalog H-700," p. 16.

Polarization	Stress	r = a	r = b	Common multiplicative factor
Radial	^T 11; ^T r	0	$1 - a^2/b^2$)
	T _L ; T ₀	2	$1 + a^2/b^2$	
	Tz	1	1	1
Circumferential	τ _μ ; τ _θ	2	1 + a ² /b ²	$\begin{cases} p \\ 1 - a^2/b^2 \end{cases}$
	T _L ; T _r	0	$1 - a^2/b^2$	
	Tz	1	1	J

Table B-II. Compressive stresses contributing to depolarization.

5

and the state of the state of the second second

è

•

Appendix C

nastala ne 1919 en en en en en en en anariana Pasin penerada asis della seguina persisten en pasina della segui A

Resonance Frequencies

Symbol	Definition
fr	resonance frequency
ρ	density
$\mathbf{s}_{11}^{\mathbf{E}}$ $\mathbf{s}_{33}^{\mathbf{E}}$	elastic moduli at constant electric field
k ₃₃	electromechanical coupling factor
$\sigma^{\mathbf{E}}$	Poisson's ratio at constant electric field
η	disk radial mode Bessel function
t,l,D	thickness, length, and mean diameter, respectively, of element

The resonance frequencies are determined by the size and configuration of the acoustic element. There are many possible modes of vibration, but the ones of real concern here are the thickness mode of a disk, the radial mode of a disk, the longitudinal mode of a cylinder, and the radial mode of a cylinder. In the simplest case, only one mode of vibration will be excited at a time. This occurs when the dimension determining the resonance is much different from other dimensions. Whenever the simple expressions indicate that resonance frequencies in different modes are similar or identical, there will be coupling of energy between modes and the simple expressions will not give correct results. However, the simplified equations will provide information as to whether resonance is far above the intended range of operation.

Equations for the resonance frequency have been derived by Berlincourt $et \ al. \ [C-1]$ for the following cases of interest. The values obtained will be for the fundamental, or primary, resonance.

Axial (thickness) mode

$$\vec{z}_{r} = (1/2c) \left[\rho s_{33}^{E} (1 - k_{33}^{2}) \right]^{-1}$$
 (C-1)

Radial mode

$$f_{r} = (\eta/\pi D) \left(\rho s_{11}^{E} \left[1 - (\sigma^{E})^{2}\right]\right)^{-\frac{1}{2}}; \eta = (1 - \sigma^{E}) \frac{J_{1}(\omega a/c)}{J_{0}(\omega a/c)}$$
(C-2)

)

Cylinder (radially polarized), radial mode

$$f_{\rm g} = (1/vD) (\rho s_{11}^{\rm E})^{-1}$$
 (C-3)

Cylinder (circumferentially polarized), radial mode

$$f_r = (1/\pi D) \left[\rho s_{33}^E (1 - k_{33}^2)\right]^{-\frac{1}{2}}$$
 (C-4)

Cylinder (independent of polarization), length mode

$$f_{r} = (1/2l) (\rho e_{11}^{E})^{-\frac{1}{2}}$$
(C-5)

The parameters for use in these equations are given in Table C-I. Only Type III and lead metaniobate are considered because the other types already have been shown to be inadequate for this application.

Type III and lead metaniobate.				
Parameter	Type III	Lead metaniobate		
ρ (kg/m ³)	7500	5800		
s ^E ₁₁ (m²∕N)	11.1×10 ⁻¹²	25.0×10 ⁻¹²		
933 (m²/N)	12.2×10 ⁻¹²	21.3×10 ⁻¹²		
k ₃₃	0.63	0.38		
$\sigma^{\rm E}$	0.37	0.27		
η	2,08	2.03		

Table C-I. Selected parameters of Type III and lead metaniobate.

Reference

[C-1] D. Berlincourt, D. Curran, and H. Jaffe, "Piezoelectric and Piezomagnetic Naterials, in *Physical Acoustics*, Vol. I-A, W. P. Mason, ed. (Academic Press, New York, 1964), pp. 221-231.

Appendix D

and the state was a shown as a state of the state of

and the second second

いたい、「日本のないない」を見たる「ある」をないたい、おは、そのです。 ちょうしん だいしょう だいしょう だいこう ちょう

Hydrophone Self Noise

The guide specifications require an acoustic noise at least 10 dB below the light shipping sea state zero composite curve of Urick [D-1]. The sea state zero curve is shown on Fig. D-1. According to the "pink noise tangent" principle [D-2], this composite curve can be represented by the pink noise slope (-10 dB per decade) indicated on Fig. D-1. The total noise pressure in the band between frequencies f_1 and f_1 is given by

$$p = p_0 \ln \sqrt{(f_2/f_1)},$$
 (D-1)

where p_0 is the noise pressure at 1 Hz. For the frequency range from 10 Hz to 3 kHz, the noise pressure is

$$p \approx +90 \text{ dB re } 1 \text{ V/}\mu\text{Pa}, \tag{D-2}$$

The specification calls for an equivalent input noise pressure of 10 dB below sea state zero; hence, the noise wust be

 $p < +80 dB re 1 \mu Pa.$ (D-3)

If the hydrophone sensitivity is -149 dB re 1 V/ ν Pa, then the rms output noise voltage must be

$$e_{rms} \leq (-149 \text{ dB re 1 V/}\mu\text{Pa} + 80 \text{ dB re 1 }\mu\text{Pa})$$

< -69 dB re 1 V. (D-4)

For purposes of preamplifier design and testing, it is convenient to plot the total rms output noise voltage as an output noise spectrum on a log voltage vs. log frequency curve. This is done in Fig. D-2.

References

[D-1] R. J. Uzick, Principles of Underwater Sound for Engineers (McGraw-Hill, New York, 1967), p. 168.

[D-2] L. Smith and D. H. Sheingold, "Noise and Operational Amplifier Circuits," Analog Dialogue 3, 1-15 (1969).

Fig. D-1. Ocean acoustic noise pressure.

Fig. D-2. Naximum acceptable rms output noise voltage spectral density for hydrophone.

32

Appendix E

「「「「「「」」」、「」、「」、「」、「」、」、「」、」、

22 2

Null Balance Equivalent Calculations

Symbol Definition

 M_A free-field voltage sensitivity of hydrophone A

 M_{B} free-field voltage sensitivity of hydrophone B

A null balance measurement (NBM) is made by determining the sum and difference sensitivities of two hydrophones:

NBM = 20 log
$$\frac{N_A - M_B}{N_A + N_B}$$
. (E-1)

If the two hydrophones have exactly the same sensitivity, then there will be an infinite null, but this condition does not normally exist. The null balance requirement can be expressed also as a logarithmic variation (dB) or as a percentage variation. For example, let $NBX \leq 40$ dB; then

$$20 \log \frac{N_{A} - M_{B}}{N_{A} + N_{B}} \le -40 \text{ dB}$$
(E-2)
$$\log \frac{1 - N_{B}/N_{A}}{1 + N_{B}/N_{A}} \le -2$$
(E-3)
$$\frac{1 - N_{B}/N_{A}}{1 + N_{B}/N_{A}} \le 0.01$$
(E-4)

$$\frac{16}{2} \leq 0.98 = 20 \text{ variation} \tag{E-5}$$

(5-6)

$$\frac{N_B}{M_A} \ge 20 \log 0.98 = 0.2 \text{--db variation}$$

A second example can be solved in a similar manner:

NBM \leq -30 dB $\frac{M_{B}}{M_{A}} \geq 0.94 = 6% \text{ variation}$ (E-7) 20 log $\frac{M_B}{-B} \ge 20$ log 0.94 \simeq 0.5-dB variation. M_A (E-8) 34

Appendix F

Preamplifier Design Calculations

1. Voltage generation and dissipation as a result of changes in hydrostatic pressure and temperature.

The hydrophone will be dropped into the water and deployed at some depth £. The hydrostatic pressure and temperature change will generate a charge and voltage at the preamplifier input. The effect of the temperature change could add or subtract from the effect of the pressure change, depending upon whether the temperature increased or decreased and upon the element configuration. Either condition could be experienced, so the worst case should be expected; that is, that the effects add.

Let:

William Sector

 $D \equiv d\ell/dt$, time rate of descent

 $B \equiv dP/dl$, rate of pressure change with depth

 $M \equiv de/dP_r$ piezoelectric sensitivity of acoustic element (change in voltage with pressure)

 $F \equiv dT/dt$, time rate of temperature change

 $N \equiv de/dT$, pyroelectric sensitivity of acoustic element (change in voltage with temperature)

Then the rate of voltage increase due to charge generation by the piezoelectric and pyroelectric effects will be

$$A \equiv de/dt = MBO + NF$$
.

The acoustic element and resistive shunt form a simple parallel RC circuit relative to the preamplifier FET. The voltage generated at the FET will decrease with time as the charge leaks through the resistance to ground.

$$de/dt = -e/RC$$
.

The voltage at any time t is given by the differential equation formed by combining Eqs. (F-1) and (F-2):

$$de/dt = A - e/kC.$$
 (F-3)

A solution for Eq. (F-3) for any time after the hydrophone touches water at z = 0 is

$$\mathbf{G} = \operatorname{ARC}[1 - \exp(-t/RC)]\theta(t_0 - t)$$

+ $ARC[1 - exp(-t_0/RC)] \{exp[-(t - t_0)/RC]\} \theta(t - t_0)$

35

(F-2)

(F-4)

(F-1)

where t_0 is the time when the hydrophone reaches operating depth and temperature and $\theta(t,t_0)$ is a function such that its value is unity when its argument is positive and zero when its argument is negative. It is imperative that the generated voltage e not exceed some critical value e' that would permanently damage the FET. Therefore, the first term of Eq. (F-4) must satisfy the relation

$$\operatorname{ARC}[1 - \exp(-t/RC)] < e'. \qquad (F-5)$$

The maximum value occurs when $t_0 >> RC$.

$$Lim ARC[1 - exp(-t/RC)] \rightarrow ARC.$$
 (F-6)

Thus,

ARC < e',

{F-7}

which places the restriction upon the shunt resistance that

 $\dot{\kappa} < e'/AC$.

(F-8)

There exists a range of voltage between a saturation or blocking voltage e and the critical voltage e' such that the FET is "blocked,"

or inoperative, but not permanently damaged. If $ARC[1 - exp(-t_0/RC)] > e_{L}$, then a period known as the "dead" time must pass before the hydro-

phone again is operational. The second term of Eq. (F-4) describes the decay of the voltage after generation has ceased. Generally, if the condition in Eq. (F-8) is satisfied, the dead time will be minimal. For this specific application, the following estimates have been made:

 $D \approx 1 \text{ m/sec}$

 $B \simeq 0.01 \text{ MPa/m} = 10^4 \text{ Pa/m}$

 $M \approx -192 \text{ dB re } 1 \text{ V/}\mu\text{Pa} \approx 2.5 \times 10^{-4} \text{ V/Pa}$

 $F \simeq 50^{\circ}C/200 \text{ sec} = 0.25^{\circ}C/\text{sec}$

 $N \simeq 72 \text{ V/}^{\circ}\text{C}$ for a 3.2-mm-thick-wall Type III cylinder.

From Eq. (F-1),

A = MBD + NF

= (2.5 + 18) V/sec

= 20.5 V/sec

 $e' \simeq 50 V$ (for a Siliconex 2N3687).

Therefore, from Eq. (F-8),

RC < 2.44 sec.

いいたいというで

The values of B, D, N, and F are based on estimates of conditions possibly encountered, so it is appropriate that a safety factor be included to further limit the value of RC:

$$RC < 0.6 \text{ sec.}$$
 (F-10)

Maximum values of the bleed resistor at the preamplifies input now can be calculated:

$$\begin{split} & R \leq 6.7 \times 10^9 \ \Omega \ \text{for a lead metaniobate disk;} \\ & \leq 1.6 \times 10^9 \ \Omega \ \text{for three Type III cylinders in series;} \\ & \leq 1.1 \times 10^9 \ \Omega \ \text{for two Type III cylinders in series.} \end{split} \tag{F-11}$$

2. Sensitivity roll-off at low frequencies

The impedance of the acoustic element is an inverse function of frequency and must be much less than the bleed resistor to avoid an unacceptable low-frequency roll-off (LFRO). The loss in sensitivity is given by

$$LFRO = -20 \log (1 + 1/\omega RC).$$
 (F-12)

If an arbitrary limit of 0.5 dB at 10 Hz on sensitivity loss is chosen, then the minimum values of the shunt resistance are established:

 $\begin{array}{l} R \geq 3.0 \times 10^9 \ \Omega \ \text{for a lead netaniobate disk;} \\ R \geq 0.73 \times 10^9 \ \Omega \ \text{for three Type III cylinders in series;} \\ R \geq 0.49 \times 10^9 \ \Omega \ \text{for two Type III cylinders in series.} \end{array} \tag{F-13}$

3. Self noise at the input stage

Thermal noise from the shunt resistor is a function of frequency as given by Eq. (F-14) because it is in parallel with the capacitive acoustic element:

$$e_{\rm rms} \approx (2kT/\pi C)^{\frac{1}{2}} (\tan^{-1}\omega_2 RC - \tan^{-1}\omega_1 RC)^{\frac{1}{2}},$$
 (F-14)

where $\Theta_{\rm rms}$ is the rms thermal noise voltage in a bandwidth defined by angular frequencies ω_1 and ω_2 ; C is the capacitance of the acoustic element, R is shunt resistance; $k = 1.37 \times 10^{-23} \text{J/K}$ is Boltzmann's constant; and T is temperature in kelvin. The thermal noise is plotted as a function of frequency in Fig. F-1 for the values of R and C for the lead metaniobate and Type III ceramic elements:

(F-9)

```
Lead metaniobate: R = 5000 \text{ M}\Omega

C = 90 \text{ pF}

Type III cylinders: R = 900 \text{ M}\Omega

C = 550 \text{ pF} (two in series)

C = 367 \text{ pF} (three in series)
```

To obtain a value for the acceptable FET self noise, the resistor therm-1 noise and preamplifier gain can be subtracted from the guide specification in Fig. D-2. The results are the three curves in Fig. F-2. There is a separate curve for each of the different acoustic elements because of the different capacitances, bleed resistors, and gains. The crosshatched region in Fig. F-2 is a composite self noise curve representing actual measured values for five Siliconex 2N3687 FET's. Other FET's that have a self noise as good or better and a comparable cost include the Siliconex 2N3460 and 2N4338.

Fig. F-1. Thermal noise at preamplifier input from theoretical calculation.

a provide the second second

and the second se

•

and the second secon

Salar Contract

Fig. F-2. Maximum acceptable FET self noise for various acoustic elements.