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ABSTRACT 

The intensities of the second harmonic light in total reflection 

and in transmission from uniaxial KDP cyrstals immersed in a.n optically- 

denser liquid 1-bromonaphthalene have been measured as a function of 

angle of incidence of the fundamental beam from a mode locked Ndrglass 

laser.     In the experiment, variouj crystallographic orientations of the 

KDP crystal were used.    The results agreed well with the theoretical 

(12) 
predictions of Bloembergen and Pershan       ,     In particular,   the existence 

of a nonlinear Brewster' s angle of a transparent medium (KDP),   with 

nonlinear polarization in the plane of reflection,  has been first demon- 

strated.     The transmitted second harmonic intensity under phase matched 

condition by birefringence       '        ,   in the oblique direction was found to 

vary more than ten orders of magnitude in the angular range of interest. 

The transmitted second harmonic intensity under noncollinear 

phase matched condition by means of two beam spatial mixing (TBSM) 

in the KDP crystal,  using O-switched Ndrglass laser pulses,  was 

observed as a function of the angle of incidence.    The result was in good 

(12) agreement with the theory of Bloembergen and Pershan       .    As a 

consequence,   this result was utilized to measure the second order 

intensity auto-correlation function of Nd:glass laser radiation.     The 

picosecond pulsewidth of Ndrglass laser radiation was measured to be 

5.29 picosecond. 
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I 
CHAPTER I 

INTRODUCTION 

A.      General Introduction 

,(1) Since the advent of LASER( ) (Light Amplification by Stimulated 

Emission of Radiation) or optical maser,  the coherent,  high intensity 

and monochromatic light sources are available for nonlinear optical 

processes in materials.    Franken and his co-worker(2 >.   in 1961,   performed 

an artfully devised experiment in which they proved that the   ruby laser 

light of wavelength 6943A focused within a quartz crystal contained on 

emerging a small admixture of a second harmonic of a wavelength 
o 

3471. 5A.    The discovery of this phenomenon,  which has its origin in the 

nonlinear optical properties of matter,  became the starting point of vast 

development further enhanced by the rapid evolution of laser   technique. 

This has led to the detection of a number of novel optical effects, 

which have since been discussed in various monographs (3' 4) 
and 

(5-10 
review      articles""      .    Furthermore,  the theoretical essentials of 

coherent nonlinear processes are to be found in the fundamental work of 

Armstrong    et al(11),   Bloembergen and Pershan(12), Akhamonov and 

Khokhlov and certain other authors(14"17). 

When low intensity light propagates in a transparent medium,  it 

does not affect the optical properties of the medium because the 

electric polarization   P(?,t)   induced in it is a linear function of the 

electric field   E(r. t)   of the light wave.    A linear relationship between 

P(r.t)   and   E(r.t)   results immediately in Lorentz' s classical electron 

,, (18) 
theory       .    To a linear approximation,  the solutions of Maxwell' s 

equations satisfy the principle of superposition, which states that the 

u 
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I 
I electromagnetic waves simultaneously transversing a linear medium 

propagate independently without interacting upon one another.     In linear, 

optically transparent medium,   electromagnetic waves accordingly 

propagate without distortion,   the refractive index   n   depending  solely 

on the properties and    thermodynamic state of the medium but not 

depending on the incident light intensity.    All optical phenomena depend 

linearly on the electric field strength as long as the medium under 

investigation is probed by low intensity light wave and is not acted upon 

simultaneously by external field. 

However,  when a transparent medium is transversed by light of 

very high intensity,   i.e.   laser,   its refractive index   n   and   electric 

permitivity become dependent on the intensity of the incident light. 

This has indeed been directly observea,  with the help of giant pulsed 

ruby lasers,  by various authors (2'19-21).     Lasers operating continuously 

or pulsed radiate a parallel and monochromatic light,  coherent in space 

and time,  and contain a flux of immense energy density.      The very high 

light intensities of the beams,  never achieved by ordinary light,   cause 

the index of refraction to depend on the electric field   E(r,t) of the 

beam.    An electromagnetic wave of such strength,  inducing optical 

nonlinearity in the medium,   itself undergoes distortion when propagating 

through the medium.     By Fourier    spectral analysis,  the original wave 

of fundamental frequency     i») is now additionally accompanied by harmonic 

components of double frequency   2 m   triple frequency 3 u.' and higher 

. (3-6,  11-13) 
harmonics. .    Furthermore,   due to the availability of high 

- ■ - ^- -  
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I intensity and ultrashort light pulses, various nonlinear optical processes, 

| e.g.   self focusing phenomena,   self induced transparency,   stimulated 

Raman    emission, photon echo,   have been observed and well described 

in various articles(22-24) and reviewed article(9' 10' l7\    j» the present 

work,  which will be presented here thereafter,  only second harmonic 

generation in reflection and transmission from an uniaxial crystal KDP 

using Nd:glass laser radiation as fundamental beam,  will be described in 

detail,   and to a lesser extense,   an attempt to generalized the effect to 

third order is also included. 

# 

B.      Review of Previous Experiments 

' ^      Harmonic Generation in Reflection.    Theory of interactions 

between light waves in a nonlinear media was given by Armstrong. 

Bloembergen,   Ducuing and Pershan(11).    Consequently,   the theory of 

light wave at the boundary of nonlinear media was given by Bloembergen 
(12) 

and Pershan       .    Second harmonic generation in reflection was first 

observed by Ducuing and Bloembergen in 1963(25'26).    Both the directional 

and the polarization properties of second harmonic reflection from   III-V 

semiconductor mirrors,   e.g.   GaAs,   have  been verified.    Furthermore. 

Bloembergen has predicted^ > and demonstrated™ SHG in reflection 

by using two fundamental beams of Q-switched ruby laser spatial mixing 

j in GaAs mirror.    Chang and Bloembergen(27) have verified the laws for the 

reflected intensity of second harmonic light.    In the experimental 

verification they used various crystallographic cuts of cubic crystal 

| GaAs mirrors upon which the fundamental beam of Q-switched ruby laser 



ä 

was incident.In that experiment Chang and Bloembergen have first 

demonstrated the existence of Nonlinear Brewster Angle for the 

absorbing nonlinear medium.    Bloembargen and Lee
(28) observed the 

internal reflected second harmonic intensity (SHI) generated at 4860A 

by an incident beam totally reflected by nonlinear medium ^^  and 

3 
KI^ P04 (KDP),  immersed in an optically denser linear fluid (1- 

bromonaphthalene).    The incident beam was the stimulated Stoke beam 

induced by Q-switched ruby laser in H., gas.    In accordance with theory 

given by Bloembergen and Pershan^    «-»^ B  n ana i-ershan       ,   this experiment shows anomalously 

high reflected harmonic intensity because of the enhancement of the 

intensity by phase matching at the critical angle of incidence for total 

reflection.    Furthermore,  a detailed discussion and experimental 

verification to the theory(12) concerning total reflection and two b. Jeam 

spatial mixing on NaClC^ has been given by Bloembergen.  Simon and 

(29) Lee 

The first experiment in obtaining an ultraviolet third harmonic 

generation in reflection was done by Bey.   Giuliani and H.   Rabin(30). 

With the help of previous work of Bloembergen and Lee(28),  they 

introduced in the experiment anomalous dispersion into normally 

unmatched medium.   They obtained phase matched third harmonic 

generation (THG) at 3530A of the Nd:glass laser line by introducing dye 

molecule of fuchsin red into the liquid medium of hexafluoroacetone 

sesquihydrate.    Wang and Baarden(31) reported studies of THG reflected 

from the boundary of solids including metal,   semiconductors,  alkali 

 - ■-- ■  ■-■ —   •■•": —,*,,— L — .-..■,,,.     
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halides and glass.    Recently,  Burns and Bloembergen(32) used pico- 

second pulse from Nd:glass laser to study reflected THG in absorbing 

media of cubic or isotropic symmetry. 

2-    Harmonic Generation in Transmission.    The first 

experiment of second harmonic generation was performed by Franken 
(2) 

et al       in the transmitted direction.    They used ruby laser beam focused 

in a piece of quartz and observed, after separation the fundamental by a 

prism,  a second harmonic of wavelength 3471. 5A.    Since then,  the 

second harmonic of light has been observed in various piezoelectric 

and other nonlinear material.    Giordmaine(33),   Maker et al(34) in 1962, 

demonstrated independently the use of birefringence   of uniaxial crystal 

to achieve phase matching condition under which the second harmonic of 

light is enhanced.    Armstrong et al(11) and Kleinmann(14) introduced 

the concept of coherent length along which the fundamental and second 

harmonic beams will travel in step with respect to each other.    Second 

harmonic generation with double refraction has been given in detailed 

by Boyd et al    5 .    Miller(36) used Nd:CaW04 laser to observe second 

harmonic of light from BaTiQj.   KDP,  ADP   CdS and strongly nonlinear 

LiNb03 and LiTa   3
(37).    Geusic et al(38) observed SHG at 5320A in 

Ba2NaNb015   and   K^NbC^   using slightly focused,  continuously pumped, 

repetitively Q-switched Nd:YAG laser.    Using ruby laser and Ndrglass 

laser Kurtz et al    9) and Nath(40) made a novel study      of SHG from 

strongly nonlinear materials HI03 and LilC)   respectively.    Askin et al(41) 

observed continuous SHG using the infrared transition 1. 1526|JI of the He-Ne 

—     - ■ — ——.~—^— ..  _.         . — 
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gas laser with a focused and a non-focused beam to measure the second 

order susceptibility component d^ of KDP.    With the help of temperature 

tuning,   phase matched SHG in LiNbC^without double refraction using 

infrared transition 1.1526^ of He-Ne gas laser was demonstrated by 

..       (42) (29) 
Miller        .    Bloembergen et all        demonstrated two beam spatial 

mixing in NaClC^ near critical angle of incidence and observed SHG in 

transmitted direction.    The equation for the nonlinear phase matched 

condition which requires all three propagation vectors of the fundamental 

and of the second harmonic have to form a closed loop was first 

pointed out by Tien(43) and later by Boy.d(44).    Phase matched SHG with- 

out double refraction (or noncollinear phase matched SHG) in ADP, 

KDP using He-Ne line of 1. 1526^ was demonstrated by A.  Askin et al(45). 

Later noncollinear phase matched SHG in Lil03 was performed with 

Q-switched Nd:YAG laser by Shinsuke Umegaki et al(46).    Recently 

(47) 
Aggarwal achieved noncollinear phase matching in GaAs by using a 

carbon  dioxide laser. 

The first experiment in obtaining an ultraviolet third harmonic at 
o 

231 4.A using ruby laser is due to Terhune et al{20) in   calcite and 

subsequently in cubic crystal LiF,   KC1,   CaF and liquids by Maker(48, 49). 

Bey et al provided the earliest experimental evidence that phase 

matching can be achieved in harmonic processes by the introduction of 

anomalous dispersion into a normally unmatched medium.    They obtained 

phase-matched THG at 3530A of the Ndrglass laser line by introducing 

dye molecule (fuchsin red) into a liquid medium (hexafluoroacetone 

i 

■; 

■ 
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sesquihydrate).     Their experiment was extended by Chang and 

(57) 
Galbraith to other solvents of different index mismatch and to 

another dye.  methylene blue.    Bey et al(52) reported interesting THG 

studies,   which prove that a linearly polarized laser beam generates a 

third harmonic signal,  while a circularly polarized beam does not,   in 

accordance with theory.    Ward and New(53) observed THG at 2314^ in 

gases He,   Ne,  Ar using a focused ruby laser beam.    Harris et al(54) 

made a theoretical analysis and proposed THG in phase matched alkali 

metal vapors,   e.g.   Li.   K,  Na.   Rb,   Cs.    Consequently Young(55 >. 

Males demonstrated THG in phase matched Rb vapor and in the alkali 

metal vapors respectively. 

3.      Measurement of Picosecond Pulsewirfth by Means of 

Nonlinear Optical Method..    The Ndrglass laser has recently become 

an important research tool.    Not only does it constitute one of the most 

powerful sources of coherent radiation in terms of peak power,   but it 

also distinguishes itself as a source of ultrashort light pulse.     The 

emission of trains of short pulses produced by mode locking of this 

laser was first observed by DeMaria et al(56' 57).    Recent review 

articles of mode locked laser pulses and picosecond laser pulses have 

been given by DeMaria
(58).   DeMaria et al(59) and Smith(60).    m ruby 

,        (61) 
laser        .   mode locking could be achieved by Q-switching the laser 

with a saturably absorbing dye.    The  duration mode locked laser pulses 

from Ndrglass laser was measured by Armstrong^2 >   by means of SHG 

in GaAs.  and the result of pulsewidth measurement was about 4-6 pico- 

-■■ ■ •- — ■■- ■- -—- — 
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seconds (ps).     The introduction of another technique for measurement of 

f the Pulsewidth.   so called two-photon fluorescence (TPF) method,  was 

givenby Giordmaineetal^^,   Rentzepis(64).    In the TPF method   care 

has to be taken in connection with the contrast ratio between the back- 

1 ground and the overlapped region of the autocorrelation picture. 

- Various theories were proposed to explain the picosecond substructure 

observed in Nd:glass laser.    The simplest proposal made independently 

j by several authors(65-69)
> Was that the picosecond peaks observed in 

TPF arose from the short duration fluctuations present in  spontaneous 

emission.    The theory of cwo-photon fluorescence and another nonlinear 

optical coincidence technique (harmonic generation technique) has been 

treated in detail by several authors,   particularly rigorous and exhaustive 

treatment,  are given by Rowe and Li™,  and Picard and Schweitzer(71). 

The difficulty in observating the contrast ratio 3:1 was removed,  and 

the experimental result in pulsewidth measurement in agreement to the 

theory was performed,  by means of TPF with very thin cell,  by Shapiro 

j and Duguay(72).     They obtained the pulsewidth of Ndrglass laser of 0.4 

ff ps.    The three photon fluoresence technique for measurement of ultra- 

short pulse was performed by P.   M.   Rentzepia et al(73).  and the 

experimental result,  in agreement to the theory,  of the contrast ratio 

I of 10:1 was obtained.    The exhaustive review of study of the Nd:glass 

Laser Radiation was given by Duguay et al^74\ 

The optical harmonic generation technique,  which gives background 

| free in autocorrelation measurement of the ultrashort pulse,  was first 

I 

I 
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performed by Arm8trong(").    „ hi8 ^^ ^ ^^ ^ ^^ 

I polarization   property of of GaAs,   given by Chang et al'"', for SHC in 

J reflection,    ^rmatrong obtained the pulaewidth of Nd:glass iaser 

radiation of 4-6 ps.    Weber'75', using KDP in e]£perimental 8et up 

I -milar to famous MicheUon-MoHey experiments, determined the 

pulsewidth of Nd:glass .aser radiation,. He obtained the pulsewidth of 

S-n PS.    Giordmaine et ai'76' introdoced a new technique for determining 

of a narrow puisewidth by using two beam sPa„ial mixing on a crystal KDP. 

* *eir experiment empioying an intense Ught burst in the stimuiated Kamen 

erfec. in CS2 using «.switched r„by User, the backward Rama„.Stoke wave „as 

equally spfltted into two parts with a proper delay time T.    Then the 

«wo beams were recombined in KDP crystal oriented to allow phase- 

unmatched second harmonic generation.     The average Stoke pulsewidth 

was found to he 30 p,.     Treacy'77»,  using a grating ^ for ^ 

compression .ech„ique, obtained the pulsewidth of Nd:glass laser radiation 

of 0.44 ps.   in agreement to theoretical limit      TV,-      • 1 llmit-     The unique polarization 

properties,   reported by Bey et al(52)    for THr ( y « ai        .tor THG from a phase matched 

solution consisted of dye fuchsin dissolved in hexafluoroacetone 

sesquihydrate.  was promptly utili.ed by Eckardt and Lee(78) for third 

order autocorrelation measurement of Nd:glass laser.     The result of 

their experiment yields the pulsewidth of Nd:glass laser radiation of 0. 7 

Ps.  in agreement to theoretical Wt.    Recently(   Jayaraman and Lee^ ^ 

made an observat.o. of two photon and three photon conductivity in GaAs. 

CdS and CdS0_ 5-Seo  5 using Q-switched and mode locked pulse from 

-■-'- ■ -■■ -■ 
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Nd:glass laser,   and demonstrated^ the potentiality of multiphoton 

conductivity for measuring mode locked pulse from Ndrglass laser. 

c-     Aim of the Experiment 

It is the purpose in this work to study and verify the theoretical 

prediction in the area of second harmonic generation given by 

Bloembergen and Pershan(12).    Furthermore,   the experimental results 

concerning unique polarization properties and phase matched condition 

of uniaxial Potassium di Hydrogen Phosphate (KDP) crystal will be 

utilized for measurement of picosecond pulsewidth of Nd:glass laser 

radiation.    During the course of study,   Q-switched and mode locked Nd:glasS 

lasers      are employed as excitation sources and uniaxial KDP crystals 

of various crystallographic orientations served as nonlinear optical 

media.    The angular dependence of relative second harmonic intensities 

in both reflection and transmission are measured and compared to theory. 

The theory of wave propagation in a medium with nonlinear 

susceptibility and criteria of conventional phase matching and noncollinear 

phase matching are given in Chapter II.    A concise    account of    pico- 

second pulsewidth measurement using phase matched second harmonic 

generation technique is also given.    The experimental technique including 

crystal preparation and design of experiments   is   described in Chapter III. 

In Chapter IV detailed experimental results are given and discussed. 

The proposal and brief analysis for future experiments are given in 

Chapter V. 

I 
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CHAPTER II 
THEORY 

Introduction 

In the presence of very high intense electromagnetic radiation, 

the medium exhibits an electric polarization   ^(r.t) ,  which   is    in 

general a nonlinear functions of electric field strength   E(r, t).    The 

relationship between   Pfr, t) and the applied field    E(r,t)   can be 

written in a tensorial form as     ^5) 

P   =   Xj E+ x2 : E     E+X3:EEE+.. (2.1) 

where y • s are nonlinear susceptibility. 

If the applied electric field is harmonically varying in time   t 

with frequency   UJ   ,   then the second term on the right hand side of (2.1) 

is the nonlinear source term at the second harmonic frequency 

^2 = 2UJ1 '    The nonlinear susceptibility  y    of the medium will give 

rise to a polarization at the harmonic frequencies,  which in turn radiates 

energy at these frequencies.     The effective nonlinear source term at 

the second harmonic frequency   uu     = 2UJ     is given by 

P =P (21^) = X2("J2 = 2^) : E1
1E1     expiOTVr^uJjt)        (2.2) 

T 
where   Ej      is the amplitude of transmitted electric field 

in the medium 
-» 
is 

K      is the wave vector of the source term and 

k     = 2k 

^NLS 
The nonlinear source term   P was introduced by Armstrong 

,(11) 
et al      .In their paper the nonlinear susceptibility tensor   y    was 

11 
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ies shown quantum mechanically, to be related to the atomic property 

of the medium.    Furthermore,   they also showed that the effective 

nonlinear source term can readily be incorporated in       Maxwell' s 

equations for the nonlinear medium.    Since,   during the course of study,  j 

large number of harmonic photons are created   by     the interaction,  the 

problems can be treated classically via Maxwell' s equations.    In this 

thesis,  we sha.U recast the theory of Bloembergen in   a    form that 

direct comparison with the present experimental data can be readily 

made. 

A.      Wave Propagation in a Medium with Nonlinear Susceptibility 

Maxwell' s   equations   in c. g. s.   units for nonlinear medium are 

V-D   =    4TTDf V.B=0 

VxS =.i--Mi 
c    öt 

c    at c 

(2.3) 

where   D   =   s E + 4TT P NLS 

I 
I 
! 

For the cubic but   noncentrosymmetric.     nonconducting   crystal, 

the wave equation,  at the second ha-monic frequency,  obtained from 

(2.3),   is given as 

x v x E„ + ^sl a E2= . in iP 
2-+NLS 

2   '        2 
c at 2 2 

c at 

2j*NLS 

(2U)) 

2   -t       e(2ü))    ÖE 2       4Tr  ö   P1 

c      at c      at 

(2.4) 

■  -   ■ -^-:-J.l „-.^^^ ^.^ 1^^^...^ ^.^^J^.^,              ._,     „.,  ,.,....-.-   ■  ■  ^- 
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Equation (2.4) is similar to the usual linear wave equation except 

it is augmented by a source term on the right hand side.     The general 

solution of (2. 4)     consists of the solution of the homogeneous equation 

plus the particular solution of the inhomogeneous equation.     The general 

equation for the transmitted and reflected second harmonic field created 

by the fundamental field incident on the medium from the vacuum (see 

Fig. 2 ■- t ) are given as, 

. ,   ^NLS..     2.2^ 
-»  T     A T T     -» 4TTP (4U,

I   
/C

   ) 
E2     =eTe2     exPi(k2    '   r " 2V* " —-Tl—TT- x 

(k2    )    -  (k0) 

-»S.--+S     A 

T 2 
(k    ) 

exp i (k    ,   r - 2(ju t) 

(2.5; 

T        c"*TA T "*'?-♦ 
H2    =27"(k2     xeT)e2     ^PM^     .  r-ZUJ^) 

-41TP
N^(4«)i

2/c2) 

(k2
T)2 - (kS)2 2UB 

c "*s      A -»s 
(k   x p) exp i(k    .   r - 2(iJ t) 

1 1 

-,NLS   ,. p   - unit vector along the P direction. 

The reflected harmonic fields are 

I 
I 
I 

R _ ^    0  R . „-♦ R    -» 
C2 

E2     = e
R e

2     exp i(k,    .   r - 2ü),t) (2.6) 

H2     =(l^"Uk2     xe
R

)';
2     e-Pi(k2

K.   r-Z-^t) 

The direction of the wave vectors of the reflected wave   k  R   and 

the homogeneous transmitted wave   k2     , as well as the polarization 

A 
R unit vectors   e^nd eR   and the magnitudes   t^   and   6   T   have to be 

determined from the boundary conditions. 

  MMMMMaaat^Mi 
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The    tangential components of   E   and   H should be continuous 

everywhere on the boundary at all times.    This requires that the individual 

frequency components at  . 1   and   2^,  are separately continuous across 

the boundary i„ order to satisfy this condition ^ ^ ^ ^ ^ ^^ 

simultaneously   .   Thus for the fundamental frequency 

k      i=ki   R=tc      T 
lx Ix Ix (2.7) 

The polarization of electric fields at 2^ are determined by the 

polarization of   PNLS,  Also it  i is required that 

2k     T = k:     S = k R 
Ix 2x 2x 2x (2.8) 

Relations (2. 7) and (2. 8).   in short,  are the requirements of the 

conservation of tangential component of momentum. 

L    Ge"eral Laws of Reflection and Refraction.    Consider 

two incident plane waves.    Ej exp i^1  .   r-v  t)   and   E_ exp i(k i. r - 

^t) .  where  V ^ V z    approaching the boundary between the linear and 

nonlinear media,  from the side of the linear medium.     The boundary is 

defined as the plane   z = 0 as depicted in Fig. 2-2.      The angles of 

incidence of the two waves are   9/    and   9^.    The planes of incidence 

make an angle cp    with each other,and cp    varies between 0 and 2TT . 

Choose the   z   and   y   direction of the coordinates system such that 

. .   i i 
"ly   ' "     2y   '    ^ general,  waves at all sum and different frequencies 

mri i m2 "^   wil1 emanate from the boundary (rr^ and m., are integers). 

However,   in case of second harmonic generation,  the sum frequency 

'^ 3 = (Dj + U) 2  (u^ = u^) will be considered explicitly. 

 ——■ "-""'—^^^^^ ^-^-^. U^MMM^MMI^ atom 



■ ■ ■ ' ^^""■^ "I. i  L   i i w~*m**mm mmmmmmmmmmammmmimmmmm 

I 
I 
I 
f 
I 
I 
I 
I 
I 
I 

I 
I 

FIGURE     2-2 

   - -.      - ■ ■ ■ - - ■  - 



TU,!>■'.,!i«i« ^^^iffjpHinpp^nqHnpff^HiqnF^RH^r^ni^nqTnMwnivw^mi^qBvviv 

17 

I 
I 

I 
I 
I 
I 
I 
I 

A necessary and sufficient condition for the requirement that 

the boundary conditions will be satisfied simultaneously at all points in 

the plane   z = 0   is that the   x   and   y   components of momentum wave 

vector remain conserved.    For the sum wave,  this gives the conditions. 

R k      b= k     T+  k     T= k    Sk      i 
3x 3x 3x    "     lx    T     2x Ix   +     2 x (2.9) 

R 

Equation (2.9) suggests that the inhomogeneous source wave,  the 

homogeneous transmitted and reflected waves and the   boundary normal 

all lie in the same plane which is   xz   plane called "plane of sum 

reflection", as indicated in Fig. 2-2.     The propagation of the inhomogenous 

wave,   proportional to    P (UJ3) ,  is given by   exp i{(k   T+k   T). r-(u, +U,   )tl, 

Its angle with the normal into the nonlinear medium   9   S   is determined by 

81n93    =lklx     +k2x    1/    lkl    +^      ' (2.10) 

The wave vectors   kj      and   k2      are given by Snell« s law for 

refraction in the usual linear case.    From Fig. 2-2   the relationship 

"*   T     "* i     "» i 
between   k 3    ,    ^   , k2     is given as 

* i.2   .  2    i 

■3    '      "    ^3 

i|2   .  2.   i 
= lk1 I sin  91 + lk.2  I   sin 9^+ 2^1   I k2

1| sinej sinB^ cos CD 

(2.11) 

2 c 
Since   e - k    —     ,   equation (2.11) can be written as 

w 

 ■ ■■' ■■ _ _ 
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^   2 ^Ja 
T- .  R..,   2   .   2„   R 

i        3 e ,    «,5    sin 93    = e3   ««3 sin-g 

R     2        2    i R      ?       ?     ^ 
el   cüj   sin 91  + e2   ^  sin P ' 

2      2 

,   9 ,    R     R%l/2 i i 
(ei   e2    )      ^j^ sinQj sin92 cos cp (2.12) 

2 

Mnce   k     - e—    .  and also from (2.9) we can arrange (2. 12) as 
c 

e
Ssin2e3

s = e3
T

sin
293

T = e
R
sin

2e3R 
(2.13) 

Equation (2. 13) gives directional relationship between   k   R    k    T 

3    '      3 
and k ^ .    This relationship is the nonlin 

law. 

ear counterpart of linear Snells 

The example of second harmonic generation follows from equation 

(2.12) if we put   9,1 = 9/   and   cp = 0 ,  and g R = e   R 

This will lead to Snell' s law for nonlinear case 

,-     .and   UJ    = u)     = tu 
*- 1 Z 

T   .   2   T 
e3    Sln93 

R    .  2 i 
e,     sin 9 

or in general (with the combination of (2.13)). 

^1 
R    .    „i     /   T T      r~R R 

/e,     sin 9   =ye       sin 9,    =76,    sin90 
S    •    oS e      sin 9 (2.14) 

The relationship (2. 12) can be generalized further to the case of 

two beam spatial mixing (TBSM) second harmonic generation where two 

fundamental beams are incident from the opposite side of the face normal 

(z axis).    Here we have   9/ = a/ ; cp  = 180°.    From the equation (2. 12) 

and (2.13) we get 

eT=9S=9R=o . (2.15) 

This means that all three second harmonic waves travel along 

.    .        ■     .   . 
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I 
■ racing normally inward for ^ and ^S  >    and outward for ^R ^^ 

i respect to the boundary. 

From the above analysis,  one notices that the conditions of 

conservation of tangential component of momentum,   equation (2. 9),  are 

| very general.    They can easily be used to derive the directional relation- 

ship for higher harmonics.     They hold regardless of whether the 

harmonic radiation is of dipolar,   electric or magnetic,  or quadrupole 

| origin. 

| 2-    Polarization and Intensities of the Harmonic Waves.   In 

this section     particular attention will be devoted for the polarization 

I and intensities of harmonic waves at sum frequency   UJ     =uu    +u)     =2uu. 
Jit 

The nonlinear polarization induced in the medium is 

"*NLS ^ -»T-»T *     r- -*       rr -* 
P        (Wz) = X(2u)):   E/  E/ expiTdc^+k,^).   r-Zujt] (2.16) 

i 
I 

The refracted waves at U) j   and   UJ 2   are known in terms of 

j incident waves by means of the formulas of Snell and Fresnel for the 

incident medium.    Therefore the nonlinear source term,  given in 

Equation (2.16),  at   UJ 3 is known.    The angular dependence of F^1^ 

$ itself is derived from the transmitted linear waves given by Fresnel 

equation.    One must take proper account of this in analyzing the 

angular dependence of harmonic generation.    As in the linear case, 

I the second harmonic wave at  m^ = 2 m with electric field vector 

| normal to the plane of reflection {El (2t»))),  as defined in the preceeding 

section^can be treated independent ly from that with electric field vector 

in the plane of reflection   (E11(2UJ)) 

--  —     
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2a.      Perpendicular Polarization (E|(2(Jü))  .     (E    = E 
   y 

E
x 

= E
z ~ 0)-    Consider the case where the nonlinear polarization is 

normal to the plane of reflection,   i. e.     PNLS = p NLS   as shown in 

Fig. 2-3,       The continuity of the tangential components of the solution 

in equation (2. 5) and (2. 6) at the boundary requires in this case 
NLS 

T 4TTPL 
E  = E,    = e,   +  

y     i       ^     (es-eT) 
(2.17) 

I Hx = _-/eR
E-f cos 9R = eTeI   cos 9' 

4TT./ Ee ?! cosR S 

(eS - ST) 
(2.18) 

The continuity of the normal components of D and B folio ws 

automatically from the equations (2.17),   (2.18),  and (2.12). 

R T 
By solving for   E^  and   E±   from equations (2. 17) and (2.18),  one 

obtains after algebraic manipulation. 

,R 
4TTP, 

NLS 
1 r 7 e     co s9. • / e,,, cosQ 

cT-es 

T T     "  "S Sn 

7 eT cos 9T + ,/€R cos9R 

(2.19) 

A  T.NLS 

eT-eS 

-s   H                 ,/s    Cos9    + ye     cos9 
I  exp i(k  .r   - 2u)t) ^ 

,/eT cos9T + y eRcos9R 

"♦T   "* -i 
exp i(k    . r - 2u)t)   ' (2.20) 

f 

Since 

k    'k      = c i1^^008^ "^^T008^1  Z (2.21) 

Equation (2.20) can be transformed into a single plane wave with a 

"♦T 
propagation vector k    , with an amplitude 

 ,  
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E    ~ El + l~Ti  texpj   ^(Ve^ cos9q-VeTcos9T)Z i-lv (2.22a) L c ^  "S       ' 'S      "T T 

For the small values of   z   which satisfy the condition 

f z« y^ coset, - v/eTcosq     N: « 1 (2,22 b 

The expansion of right hand side of equation (2.22) will give   ET 

J. 

as a linear function of   z.    Then the intensity grows as   z2   from the 

boundary.    This is precisely the  effect of harmonic generation   in the 

volume of an infinite medium,  discussed byArmstrong et al(11). 

2b.    Parallel Polarization-  (E    = P NLS = 0) .    The nonlinear 

polarization   P has only   x   and   y   components as indicated in Fig. 2-4. 

It will be advantageous to describe the nonlinear polarization in 

the plane of reflection by its magnitude   P^1^   and the angle   a 

between its direction and the direction of propagation in the source kS. 

The continuity of the tangential componenets at   z = 0   requires that 

from equations (2. 5) and (2.6). 
.   _   NLS   . 

p ry 4TT-'rii siniycosQ 
Ex = - Ell   COse

R = \? -s9T + *  * 
eS      CT 

A   T.   NLS 
4TTP cosa sin 9 (2.23) 

I 
I 
i 

A     TD    NLS   . 

eS " €T 

R 

(2.24) 

By solving for ^    from equation (2.23) and (2.24),  one obtained 

the amplitude of the reflected wave    E^ after arranging terms as 

  -   -       ■--   —-^ —— — -  -   —   - - 
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E 

A   ^   NLS    .   „       .2 
4TTP..           sin9    sin  9    sin (» +9     +  9   ) 
 ^ T T        S 11 R 

11 eRsin9Rsrn(9T+9s)sin(nT+eR)cos(eT-9R) (2.25) 

With the introduction of the angle   S between   E and the direction 

of propagation   k       the transverse component    of the total transmitted 

wave will be given with the help of equations (2.25),   (2.26),   (2.23) and 

(2.24),  as NLS 

T 4TTP sin9   sin9    sin(,Y+9   +9   ) 
E„    sinS =  p  §_ 

11 eTsin(9T+9s) sin(9T+9R) cos(9T-9R) 

.   _   NLS   . .   „ 
^TTJr' sin» sin9   cos9 

e Tsin(9T+9s) 

NLS 
+ 4^    ~   cosasin(9   -9   ) expi [^z^cosg   -ye   cos9rr)} 

S v "T 

f 

r 

i 
i 
i 

+ 4^        sing^ cos(9T-9s) exp if- z(A/I co89   V e   cos9   )] - 1 

eS-eT 

S S  *  -T™T' 

(2.26) 

The longitudinal component of the electric field vector,   parallel 

to k      ,   can be written in the form 

E11   cosS - 4TTP11 sina sin  9s-cosrycos(9   -9   ) sin(P   + 9   ) 

.U) 
exp if- z(,Aeqcos9   -71     cos9    )] 

eT sin(9T+es) (2.27) 

3-    Nonlinear   Brewster's   Angle, For the case where   P   NLS 11 es 

in the plane of reflection,the electric field of the reflected harmonic wave 

is given by equation (2.25).    Equation (2.25) reveals the existence of 

Nonlinear Brewster1 s angle for harmonic waves,  when E   R=0 ,  Or in 
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other words 

E    R - Ell     - 0    implies   9_ + 9e + a = 0 , TT T        S (2.28) 

This condition implies that the nonlinear polarization   P   NLS is 

parallel to the direction of propagation of the harmonic wave in the 

nonlinear medium and hence it can not radiate.    This   nonradiating 

wave upon refraction back into the linear medium would otherwise give 

rise to the reflected ray in the direction   eR .    This is shown in Fig. 2_5. 

In   the present work,   several KDP crystals of rectangular 

parallelepiped shape are used as the nonlinear media from which second 

harmonic waves are created and furthermore the optically dense fluid 

(1-Bromonaphthal.ne) is employed as   the linear medium.    It would be 

advantageous not only to depict wave vectors of fundamental and second 

harmonic waves at the boundary of KDP crystal immersed in the 

optically denser liquid ( Fig.   2.6    ) but also to recast those fundamental 

equations given in the previous section into     appropriate    forms such 

that they are suitable for experimental comparison. 

According to geometry of Fig. 2-6, the angles   9    ,9    and 9 
R     S T 

of the reflected,  transmitted source and transmitted homogeneous waves, 

respectively,  are given,  with the aid of equation (2. 14) and   n = /^ , 

by 

n^u.) sine. = niiq(2u))sin9R = n(u,) sin9s = n(2a))sin9T (2.29) 

The index without subscripts refers to the KDP crystal. 

Since the liquid is optically denser than the KDP crystal,   then 

there exist critical angles under which the fundamental and second 

-- -  ;-...-^---^- ^.-.^      — ■..^■■^....^...^ ..,..  ^w-.^.-.-- -■.^..^. .,-.,-....■ ^.v..   . ■■■^■^■...^^^■^ rirmui mfni ■-, n i rfi i if nAt 
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harmonic waves   are totally reflected.     Those are given by 

sin9     (u,) = n(üü)/n  .   («)•) <1 
*-r l-iq 

sin9     (2UJ) = n(2aJ)/n   .   ((U) < 1 cr liq 

27 

(2. 30a) 

(2. 30b) 

The components of the harmonic polarization ;NLS along the cubic 

axes of the nonlinear      KDP crystal are given in terms of the fundamental 

field components at each point inside the crystal by 

P,NI^=*36
NLS>S>) (2. 31a) 

p NLS NLS 
x KUJ),   Py (2U))   can be obtained by cyclic permutation of 

equation (2. 31a). 

Equation (2. 31a) can be expressed in terms of the amplitude E    of 
o 

the incident fundamental wave by 

Where   n   is a geometrical factor which depends on the orientation 

of the fundamental field vector and nonlinear polarization component with 

respect to the crysfcallographic cubic axes of the KDP.    The linear 

Fresnel factor   F^   describes the change in amplitude of the fundamental 

wave on transmission at the crystal surface.    For the laser polarization 

perpendicular to the plane of incidence,   it is given by 

2 cose. 

T cose. +sine     (UJ) cose 
1 er S 

(2.32a) 

and for the laser polarization in the plane of incidence it is 

2cose. 

sinecr(U)) cose. + cos6 (2.32b) 
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The nonlinear polarization PNLS is the source of the three 

harmonic waves.     The amplitudes of electric field of second harmonic 

waves can be expressed in terms of   PNLS as follows: 

E0(2-u))= 4^ P
NLS

F   
NL 

K R 

EC(2U))= 4rrPNLSF NL 
s S 

E   .   oO^nP^F   NL 
T x 

(2.33a) 

(2.33b) 

(2.33c) 

,NL. 
where   F      ' s are the nonlinear Fresnel» s factors. 

From equations  (2.19),   (2.20).   (2. 22) and (2. 33).  the nonlinear 

Fresnel factors for the case of second harmonic polarization perpendicula, 

to the plane of reflection are given by 

NL = _L__.    /feT././eTCOs9T->/^
Cos9.qv 

R.i       C
T - es    Ve     vVel cose.+yFIcose^   / 

NL 
S, 1 

'T     "S 

1 
eT ~ eS 

(2. 34a) 

(2. 34b) 

NL 
+  F, NL 

T.X eT- es    " rR. (2-34c) 

For the case of second harmonic polarization paralle to the plane 

of reflection the nonlinear Fresnel factor can be obtained from equations 

(2.23).   (2.24).   (2.25) and (2.33).    They are given by 

NL_       sinQ
s

si" QTsin^+9T+9<;) 

R'11        "eRsin9Rsin(9T+9R)cos(9T-RR)sin(9rr+9c<) 
(2- 35a) 

T   WS' 

NL sincy 
S.ll eS-eT 

NL 
T.ll 

/  S       singy R NL 
eT      eS~eT R.ll 

(2.35b) 

(2.35c) 

■ - --.■--..  
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The time average second harmonic power carried by the harmonic 

beams is given by the real part of Poynting vector multiplied by the 

cross-sectional area A of the respective beams.    The intensities of 

harmonic beams are. 

where subscript RfS,  and T refer to reflected,  inhomogenous and ho mo- 

geneous harmonic beams respectively.    A is the cross-section 
R, o, T 

area of the beam and it can be written as 

. d d' cos9. 
R.S.T R.S, T 

cos 9. 
(2.37) 

where   d d ' are rectangular slit which defines the size of the incident 

laser beam. 

Since the intensities of harmonic beams cannot be observed inside 

the crystal,  it is preferable to relate the intensities of transmitted beams 

after they have reenterred the liquid at the side of the crystal.     The 

transmitted     power from the crystal to liquid is given by 

T = ■R     lfL    .2 

^T   !   ■S'T 

(2. 38a) 

where   f is the linear Fresnel factor for transmission at the interface 
S' I 

for crystal with right angle corner.     It is given by 

,L 2 
S' T     1 + f(eR-cs> T) e(«j)sin"29i+i}1/2 

(2. 38b) 

This factor is always close to unity,   and   f       = 1 by definition. 
R 

■   "   - „__  
■ 
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Now the intensities given by equation (2. 36) will be written in a 

rigorous form and are ready for direct comparison to the experiment. 

'R.S.T'2""1 (C/8"'^R lE,|4dd'(4"*36NL'212'Vs.TL,2x 

^VR.S./^VS.T''»
89
''"

1 (2.39) 

I 

B-    Criteria of Optimum Second Harmonic Generation 

In this section,  it is intended to point out general criteria for 

optimum harmonic generation,   in particular,   second harmonic generation. 

In the experiments,  which verify the nonlinear optical laws for second 

harmonic generation (SHG),   it is anticipated that the low level second 

harmonic intensity (SHI) will be encountered.    Therefore it is worth- 

while to utilize   the condition for optimum SHG which is described below. 

1.      Phase Matching by     Birefringence.        When a fundamental 

wave of frequency   UJ    propagating in a direction of  £    is incident on a 

nonlinear medium of piezoelectric crystal,   the nonlinear polarization 

source P will be induced in the medium as 

Pi        (2u,)=   Xij^Zw) E (u)) Ek((jü) (2.40) 

The nonlinear polarization PNLS(2(ju) in turn will radiate SHI in 

transmission with electric field   E(2i!j)   which is given by 

2fu E^l^KWE^Itespri (2.41) 

where 

I 

Ak   =k Pa) - 2k(ur) 

2a), 2(D     m 
= T(n     -n    ) (2.42) 
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Consequently,  the intensity of SHG will be given by 
AI?       -♦  -, 

I(2u,)«  (x^)2   '   Sin t
2     '   r  \   1Z (2.43 

Air O 

2 

where   I     is the intensity of the incident laser. 
o 7 

One possible method of increasing 1(2(13) ,   described in equation 

( 2. 43 ) is to set   Ak = 0 .   ■ This condition can be achieved by the 

utilization of double refraction of an uniaxial crystal,   e.g.   KDP,  as 

pointed out independently by Giordmaine and Maker et al        .     This 

condition is called phase matching which is 

,.       n      2 uü   . 2 (U        uu % Ak = 0 = — (n       - n   ) (2.44) 

Under this condition both fundamental and second harmonic beams 

travel in step inside the crystal with the same phase velocity.    However, 

when   A W 0 ,   equation (2,41) shows    E(2^ )   to vary periodically as a 

function of distance   r   from the  crystal surface.    The period of 

variation is determined by the term so called "coherence length"    I   , 

which is given by 

2TT    _ 2TT   o  
c " Ak    " . 2UJ UJ     "        2(JU      UU (2'45) 

k        - 2k 2(n      -n    ) 

The physical interpretation of   t      is that it is the maximum crystal 
c / 

| length which is useful in producing SHG.    It is noted that under phase 

matching condition   (Ak = 0)   t      is infinite, In  practice,  however,   due 

\ 1 to double refraction phenomena the maximum interaction length is 

I limited because of the walk off effect       * 

The diagram showing how to obtain phase matching condition in 

KDP is shown in Fig. 2-7. In this diagram the angle   9      ,  with respect 

■ ■ ■■ - ■' ■-■'-'-— 
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to    z    (optic) axis is called the phase matching angle.    For KDP,  if the 

fundamental beam is launched along    ^   as    an ordinary ray.   the second 

harmonic beam will be generated along the same direction as an 

extraordinary ray.     The angle   9m   is determined by the intersection 

between the sphere corresponding to the normal index surface of the 

ordinary beam with the ellipsoidal surface corresponding to the normal 

indexsurfaceof the extraordinary ray.     The angle   9       is given bv 
m ^ ' 

(82) 

2 m      )       -  (h 
sin  9     = —^ 0 

m      .     2<i)  -2      ,     2UJ   -2 (n ■  (n        ) o 
(2.46) 

Taking careful consideration to equation (2.43) the criteria for 

increasing second harmonic generation can be drawn as following. 

1. By using laser systems that provide high peak power or large 

intensity   I  . 
o 

2. By selecting proper nonlinear crystal that possess large 

value of nonlinear susceptibility y 2UJ. 

3. By utilizing phase matching condition    (Ak = 0)   as described 

above. 

2-    Noncollinear Phase Matching.     According to the previous 

section,   phase matching results in enhanced optical second harmonic 

generation (SHG).    In certain bifringent crystal such as KDP this is 

2-UJ 2-U), 

o e 
accomplished by making the birefringence U - ne      ) equal to the 

dispersion   (n^ ^ - n^ )   at phase matching angle   9m   as shown in 

Fig. 2-7.   However.  SHG may still be limited by double refraction(11, 14) 

which is describable by an angle   D between the poynting vector of 
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2 
r l i 1 

sin29 (2.47 

a 
w 

I 
| 
w- extraordinary harmonic wave and the ordinary fundamental wave.   The 

1(35) 
angle    p   is given by 

f tan D^^   
2UJ(9)U—-1 \ 1 

t D      2  s   e      (   H \       20) 2 2UJ2  / 
■ (n        (n/2        (n 

e o 

where    1 is the angle between propagating vector of homogeneous second 

harmonic beam and the optic axis. 

Consequently,   the harmonic wave separates from the fundamental 

| for a beam of finite diameter.    The limitation of SHG from a gas laser 

(35) 
due to double refraction shows the      reduced   .  production   of 

second harmonic beyond the aperture length    i      which is given by 

I 
| where   wo   is the minimum Gaussian spot size. 

Increased SHG will result from i     -» »    when   p = 0 .    However 

the divergence of the fundamental beam will then limit SHG instead of 

the aperture length    ^ (or double refraction).     Phase matching with 

0=0   has recently been achieved in LiNbO   with 9     = 90°   by 
3 m y 

varying the birefringence and dispersion via temperature tuning. 

I Another phase matching method with   p = 0   is via noncollinear 

- phase matching.     This geometry is handy for application of ultrashort 

pulse measurement.    However,  one should point out that    even when p is 

zero      as      in this case,  the interaction length is not infinite.    One 

normally does not adopt this scheme for maximum   harmonic production. 

The noncollinear phase matching employed in the present work, 

requires all three wave vectors k < s   forming a closed loop.     The 

£a ='^   V" (2.48; 
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condition is given by several authors       '      ' as shown in Fig, 

-* -♦ -» 

k2(2uj) = k'jCu)) + k j M 

2-8 

(2.49) 

where   kj   and  k ^ are wave vectors of two crossing fundamental beams, 

and ^ 2 is tI"'e wave vector of second harmonic beam.    According to 

equation (2,49),   this vector relation can be satisfied only if 

lk2l<2|k1l.     This means that the birefringence must exceed dispersion. 

This condition is applicable to KDP crystal. 
uu 

n 
By using equation (2.49) and relationships   k   (cu ) = -2— ' uu 

2u> 1 c 
ne 

and   k.2((ü) = —-—   ,  2 UJ   one can get from Fig. 2- 8 the conditions for 

noncolinear phase matching   of the normal component 

UJ U). 
no n 

 . UJ   cos(qi+9j +-2- c 13c 

2 UJ 

UJ   cos(9_-eo) = — 
£     3 c 

. 2UJ cos 9 

(2. 50a) 

For the tangential component : 

(Jü UJ 2UJ 
n_ n. 

• UJ  sin(91+9J+ 
c 13c •UJ  sin(q -e_) = 

2     3 c 
UJ  sin9        (2. 50b) 

For two beam spatial mixing (TBSM) in second harmonic generation, 

one can select the coordinates system and crystal orientation such that 

some parameters in equation (2, 50a) and (2, 50b) will be eliminated. 

Such configuration  is illustrated in Fig. 2-9. .According to equation 

(2.11) and the symmetry in Fig, 2-9. the net tangential component of the 

-»        -» 
vector   kj + k  '  becomes zero.    This in turn makes the tangential 

-♦ 

component of    k2(2uj) zero,   i, e.   9=0,    Under this condition the 

-♦ 
propagating vector   k   (2UJ)   will be in the direction normal to the optic 

-       ■ -  ■  ■HMIMMMMIBaMM aMaaa^M1>a_aaMB^KMIta^^_^Ma(BHataBlMalaMaMaAlgM 
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(z) axis.    Equation (2. 50a) ,  with   B    = 0 ,   can be reduced to 

uu U) 2uu 
no "e 

• uu  cos9   +  uu cos9^ =   •  ZUJ 
i c 2 c 

By symmetry of Fig.2-9,   9     = 9    = cp      ,   then (2. 51a) turns out to be 
i "        m 

2UJ 

(2.51) 

n        cos CD       = n 
o me (2.52) 

Equation (2. 52) is the condition for noncollinear phase matching for th< 

experimental configuration shown in Fig.2-9.   Having known the phase 

matching angle   cp       inside the crystal,   the phase matching angle   9 1 

m PM 

for the incident beam can be computed via Snell1 s law given by equation 

(2.14). 

W sin 

(taking n  .    = 1, 0) 
air 

ir     o -i 
n       sinCP      ! 

L     U) ml (2.53) 

c-      Theory of Picosecond Pulsewidth Measurement 

In this section,  the theory involving the utilization of nonlinear 

optical methods for picosecond pulsewidth measurements will be discussed.  Two 

photon fluorescence (TPF) method has been used for the measurement of 

picosecond pulsewidth by several authors^4,   72'   74).      However, 

particular treatment will be emphasized on harmonic generation 

method, which is utilized in this experiment. 

'nee KDP is a nonlinear crystal from which phase matchable SHG 

can be produced,   then it is very convenient to use the square law 

intensity characteristics of KDP to measure the second order auto- 

correlation function of the laser light which,  in this case,   is a picosecond 

 --—-■ ■ - -—..—^,.^—^.^^^-^».1^. ■•MaWM^MMMMMaMIBMMIHHHMIaMMM 
; - -■    - --   ■         -Ji 



I 
pulse from Ndrglass laser. In the previous experiments (62' 75'78)

I the 

I harmonic intensities resulted from  the spatial and temporal overlapping 

| in the nonlinear media were weak such that they could be detected only 

by means of photomultiplier. 

i 

In the experiment KD? crystal of a special cut such that 

noncollinear  phase matching can be achieved,   is served as the source 

of SHI.     Therefore,   it is anticipated that there will be high SHI produced 

( and the measurement of the pulsewidth can be done by means of both 

f photomultiplier and photographic methods.     The theory behind this 

measurement method for second order auto correlation is given below. 

L      Second Order Auto-Cor relation.     The SHI radiating from 

j the KDP crystal represents the variation of the auto-correlation function 

with respect to the degree of spatial and temporal overlapping of the 

I light pulse onto   itself.     This can be performed by using a beam splitter 

j and fcwo 100<7' reflectors reflecting the two beams into the KDP crystal 

where in spatial and temporal overlapping occurrs   .     The schematic 

I diagram is shown in Fig. 2-10. The incident electric field is    E{r,t). 

j Then the resulting electric field    ER(r.t)   inside the KDP crystal is 

given by 

i -->-».♦-»* 
ER(r,t) = E(r.t) +   E(r,t +  T) (2.54) 

j where   T = 2nd/c   is the delay time of one of the reflected beams,  and  2nd 

- is the optical path difference between the two beams   .    The output, 

resulting from the overlapping of the two beam,  is in the form of 

ave rage second harmonic intensity (SHn in the direction normal 

L _^ . 
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inward to the crystal.    The   (SHI^ can be expressed  in terms of the analytic 

signal   VR(t,r)   associated to the real field    E   (t, r)   as 

(SH^ ~ (VR{t, r) VR(t, r) VR
:':(t( r) VR

::C(t, r)^ 

where   V        is the complex conjugate of V   . 

(2. 55) 

The analytic signal is well known as the complex representation 

of an oscillating field.     The real part of   V(t)   is equal to the light field 

E(t) and the imaginary part is its Hubert transform.    Since in the 

classical limit   V   (t)   corresponds to the quantum mechanical 

anihilation operator   a   and   V(t)   to the creation operator   a+    .    One 

can view equation (2. 55) as directly related to the quantum mechanical 

probability P for two photon absorption in the two photon fluorescence (TPF) 

method. 

P~ Trrpa+ a+ aa 1 {Z56) 

where   o   is the density matrix describing the light field. 

By using equation (2. 54) and (2. 55) the observed   ^SHI^ at a 
T 

certain position   r   corresponding to the delay T is expressed by the 

incident light field   V(t)   as 

^SHn     ~   ((V-V   ) (V-V ) (V;::-V>::) (V*-V:::) ) 
T x T T T 

= 2(V V V V   ^ +  ^V V V V* ) 
T T 

- 2((VV"' +  V  VV) (VV;': +  V*V   )) 
T     T '   V T T 

(v v ' v v   + v"~ v  v": V ) 
T T T T 

(2.57) 

where   V= V(t) and   V    =   V(t+  T) . 
T 

In equation (2. 57) ,   the first two terms are proportional to the 

  



I 

intensity correlation fnnction   C(2),   Known as Glauber' s second orde, 

f coherence function'83'.    The last two terms describe the interference 

effects,   giving spatial variation proportional to   cost»    T    and 
o 

cos 2V ,   respectively,   where   a; o    is the center frequency of the 

| Hght field.     These variation are averaged out to be zero since the 

average value of   cos. ^   and     cos Z^r over and interval   AT 

corresponding to several wavelength vanish.    TT^e normalized intensity 

I •    'SHI)    is now expressed by intensity correlation function   G(2)
(T)   of 

the incident field 

I 

^2 

■l2)- .(2), /SHI)      =   2 G- (0)+  4_G^(T) 

G(2)(0) (2-58' 

where    G(   ^T )   is defined as 

r-{Z\T]-  Üqt) V(t+T)   V^t) v:;
(t+T) ) 

( V(t) V^t))  /V(t+T) V^t+T) \ (2'59) 

The bracket indicates the time average or ensemble average.     If only 

the time average is considered   .  we can use     yt) = VR(t) V>)   and 

arrange equation (2. 59)   into a new form as 

Kt)  I(t+T)dt 
n (T) 

(T,2 (2.60) 

where   I(,)   is actual intensity and   7   is the mean intensity. 

In the experiment    the KDP crystal is oriented in such a way 

that the noncollinear phase matching for SHI will be achieved if and 

only if the .wo beams have temporal and spatial overlapping inside the 

crystal.     The nonlinear polarisation   PNLS will be created and then it 

radiates at second harmonic frequency.    In terms of those applied 
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NLS electric fields the P is given by 

T^NLS 
P ~   E(t) .   E(t+T) 

,NLS 

(2.61) 

Further,   P can be described by analytic signal V      .    Using 
SH 

the analytic signal   V(t)   associated with the real field    E(t) ,  the 

analytic signal     V is directly obtained from 

V, SH       W{t' ■   V<t+T, (2.62) 

By using   I(t) = V(t) V   (t)   and equation (2.62).     The average 

second harmonic intensity        (1^) produced by two parts of the same 

signal   V(t)   with spatial overlapped and time delay   T    is given by 

a
SH> ~   V(t) V(t+T) v'^t) V^t+T) ~G

(2)
(T ) (2.63) 

In this case the second harmonic intensity is a direct measurement 

of the second order auto-correlation function   G(2)
(T) .    Since neither one of 

the fundamental beams can produce SHI in the normal direction,    then 

there will be a    background free auto correlation function   G(2)
(T)   and 

there is no contrast ratio,  as in TPF method,  to be considered. 

(2) 
Since the   G      (T)   obtained in the experiment is background free 

function,  then by using the photographic method the exposure of the 

film will reveal the pulsewidth of the G(2)( T ) function which in turns gives 

the direct measurement of the picosecond pulsewidth.    Furthermore, 

the two fundamental beams are obliquely incident on the crystal as 

shown in the Fig. 2-11,  Due to the finite size of the two beams,  there 

will be a built -in time delay along different points on the surface of the 

very thin crystal.    As shown in Fig. 2-11, at the central point of the 
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overlapping region,   the light pulse of hvo beams arrive at the same 

time,   thus there is no time delay.    At the point   x   away from the center 

the light pulse from one beam will arrive at time   AT    earlier then the 

other beam.     The delay is given by 
o 

AT _   2x cosCJO-Q1) 
c/n 

AT = 
2.x sin 9 

c/n 

where   c   is   the velocity of light, 

^       the angle of incidence 

n       the refractive index of the linear medium. 

For  a    beam of width   d.  the maximum delay   T across the entire 

overlapping region is 

AT) -      d nl -   ~ sin 9 max        c (2.64) 

maximum delay   AT) is calculated 
max 

where   n   = 1. 0   for air. 

For   d = 5 mm,   91 =   15°   the 

to be about 5 picoseconds.    This total built-in delay will be enought to 

cover a picosecond pulsewidth which has a theoretical value about 0. 33 

picosecond. 

In order to cover the entire picosecond pulsewidth measured at the 

base,     a   crystal of larger birefringence is required. 

Such   a      crystal will provide a relatively large   noncollinear pha 

matching angle which in turn gives at higher value of A T )        in   (2. 64) 

A      .,        , max 
Another factor that will increase   AT)^ is the index of refraction   „ 

of the linear medium.    One can use a linear optically denser liquid called 

se 

1-Bromonaphthalene   instead    of air in the experiment. 

    - — - 
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CHAPTER Til 
EXPERIMENTAL TECHNIQUE 

Since the present experimental work,   by nature,   invob 

nonlinear optical interaction in KDP crystal,   it is appropriate to concisely 

describe the experimental arran 

ives 

gements and techniques including the 1 aser 

systems 'hat were used/The source of excitation was a Nd:glass laser 

which was operated in mode locked and Q-switched fashions.     During 

the course of the experiment very high and low second harmonic 

intensities  (SHI) were encountered and properly detected and 

subsequently they were compared to the theory.    Furthermore,   the 

experimental results concerning polarization properties and phase 

matched condition of KDP crystal were utilized for measurement of 

picosecond pulsewidth of Ndrglass laser.     In this chapter major 

experimental preparations and techniques involved in setting up and 

detection       second harmonic signal will be given.    Since  a Ndrglass laser 

was employed   as     the excitation source,and also to facilitate under- 

standing the  picosecond pulsewidth measurement,   the Ndrglass laser 

operated in mode locked and Q-switched fashions will be briefly discussed 

below. 

A-      The Neodymium Glass Laser 

+ 3 
The laser rod is made of glass in which the Nd       ions reside 

and act as impurities.     The energy levels involved in the laser trans- 

ition + 3 
the excited states of Nd       ion.     The laser action 

take    place from the upper level '3/2 to the lower level  ^^ which 
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is approximately 1^50 cm"   above the Rrounr] state as shown in Fig.   3-1. 

The laser is classified as 4 level laser system from which the emission 

wavelength    }., ^ - 1. 06|im is  radiated.     The fluorescent linewidth can be 

measured directly and ranges around 300cm"]  f82 ^     This width is 

rather broad.     This is due to the amorphous structure of glass,   which 

causes different Nd       ions to "see"  slightly different surrounding. 

This  causes their energy splitting to vary slightly.     Different ions 

consequently  radiate at  slightly different  frequenciespausing inhomogeneous 

broadening of the spontaneous emission spectrum.     This larger band- 

width is advantageously utilized for node locking  the laser since it can 

support many   axial    modes    ,     N    , in     the     oscillation    .     For 

4 
Ndrglass laser   N     is about 10   . 

1-     The mode locked Ndrglass laser.     The mode locked 

Nd:glass laser used in the experiment was a Korad Kl-sysrem as  shown 

in Fig.   3-2.    It is consisted of Ndrglass rod having a Brewster - Brewster 

configuration to avoid reflection losses.     The laser rod is of diameter 

1. 25 cm and of length 20cm.     The two coated dielectric mirrors have at 

1. 06     u m   reflectivities of 100%    and 65^Respectively, and form a 

laser cavity having 75 cm length.   In addition the contact dye cell of 

0. 078 cm thick,   is attached to the mirror    M (100<7(  reflectivity).     The 

cell contains Kodak 9860 dye solution dissolved in dichloroethane .     The 

solution serves as passive nonlinear absorber which is  required to 

achieve mode locked pulse.    Since the inhomogeneous linewidth ( Av)ofthe 
12 

laser is    3x10 Hz     ,       then it is  expected theoretically that the laser 

pulse will be of 0. 33 picoseconds duration. 

■ '— •- '■-■■ - ■        — 
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To generate ultra short pulses from the system,   all the laser 

modes (axial modes) falling within the laser linewidth must be coupled 

together.     This can be achieved by introducing the cell containing passive 

nonlinear absorber as described above.     Despite of its wide use.   passive 

mode locking is not well understood.     However the mode locking by 

using saturable absorber can be explained on a qualitative basis in the 

time domain as follows: 

The laser can be viewed as a quantum mechanical oscillator 

building up from spontaneous  emission noises of various amplitude and 

intensity.     The saturable absorber  (dye solution) has a nonlinear 

absorption characteristic which for low light intensities   acts as a    strong 

absorber and for highlight   intensities    is      transparent.     When the laser 

starts to build up.   the low amplitude portions of the amplified fluctuating 

spontaneous emission noises are discriminated against the higher 

amplitude portion because of the nonlinear absorber.    As a consequence, 

the lower intensity portion of the pulse is cut off and the peak portion is 

allowed to pass through the absorber.     By the time the pulse is  reflected 

back from the mirror,   the absorber relaxes to the ground state and 

once again the pulse is sharpened and amplified by the laser rod.    After 

many pas.es through the   cavity    . the pulse    is narrowed to its 

Hmit.  which is the inverse of the oscillating bandwidth of the laser system. 

The output will be a train of picosecond pulses contained in a single 

envelope.     The characteristic length of the pulse train is about 300-600 

nanoseconds. 

 ■ ■' —- MK^^^M^M ■ - 
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The mode locked laser has two major advantages which are 

employed in the experiments.     First,   not like other lasers,   it has a 

definite phase relationship among participating modes  (axial modes). 

This causes the intensity of the laser output to have a temporal coherence 

and overall less fluctuation(87).     It is very important to the SHG experiment 

since it is a nonlinear optical process.        indeed ,   experimental data points 

are     found     to       exhibit       less fluctuation   . Secondly,   the 

laser system of this type has very high peak power.     Therefore it is very 

useful for SHG when this effect is extremely small as  in certain situation, 

e. g.    Nonlinear Brewster' s angle condition.Due to the ultrashort pulse 

duration the  damage threshold to the crystal will be high  ; consequently 

crystal will not   be easily damaged by the experiment. 

Z-     The Q switched Ndrglass  Laser.     In the experimental 

investigation for two beam spatial mixing (TBSM) and for noncollinear 

phase matching in KDP.   the Nd:glaSs Q-switched laser was utilized. 

Q-switched pulses were obtained by means of Korad Pockels cell model 

K-QS2 and polarizer stack consisting of glass plates oriented at Brewster' s 

angle.     The Q-switched Ndrglass laser system is depicted in Fig.   3-3. 

The Pockels cell and polarizer stackwere oriented in such a way that 

their polarization axes were orthogonal       to each   other.        A 

Pockels cell operation can be briefly described as follows   .    lt serves 

as     an       optical shutter for Q-switched operation.    While the laser rod 

is being pumped and the laser is building up the Pockels cell will be 

passive in the sense that it blocks or      prevents the laser light from 

I     I      H       .„—-—-■-- — -•—^ ■—    ■ ....:■—^■.:.l..    .     . 
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reaching the cavity mirror   Mj .     This will introduce high losses into the 

system such that the laser oscillation is prevented at the low population 

inversions.    When the population inversion in the laser rod reaches 

maximum value,   the Pockels cell is triggered by means of the delay 

electronic circuit.    At this moment    a   high voltage is applied across 

the crystal in the cell such that via electrooptical effects the axis of the 

polarization of the crystal is rotated by   TT/2 . The laser light will 

passthrough the ceU.reaching the mirror   Mj   and be reflected back.   Upon 

returning from mirror   Mj   and passing through the cell again,   the 

polarization of the light is suffered another   TT/2    rotation.     The total 

change of the polarization of the light is   TT .    Then the light can pass 

through the laser rod.   the polarizer stag  and reaches the mirror    M   . 

The essential role of polarizer stag is to   enforce the polarization of 

the light and helps the Pockels to work efficiently.    This will result in 

raising the Q of the system to a very high value in a short time.    As a 

consequence the system will oscillate at the highest population inversion 

level.     Then the laser will läse out from the mirror   M.,   as a giant pulse 

having pulse duration about 30 nanoseconds.    The Pockels cell for 

Q-switching is very effective and the Q-switched pulse is reproducible. 

Besides it is much easier to operate      than the clumsy passive 

dye Q-switched   cell       used in the early day.     The advantage of using a 

Q-switched pulse for two beam spatial mixing (TBSM) experiment is that 

its pulse duration is so long that the temporal overlapping is always 

achieved. 

—   —■ — MMM^aMH^MMMM^MM-M. - 
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B.      KDP Crystal 

The nonlinear crystals used in the experimental investigation 

are all KDP (Potassium di Hydrogen Phosphate) of several crystallographic 

cuts.     The orientation of crystallographic axes of the crystals are given 

along with the experimental results in chapter IV.    The crystal KDP   is a 

tetragonal crystal belonging to the symmetry class 4 2m .    It is piezo- 

electric and the second harmonic polarization in it is given by the 

equations (2.40) in Chapter II and its nonlinear susceptibilities has been 

given elsewhere 

The crystal is eminently suitable for the present experiment 

since it is phase matchable and has relative high value of the nonlinear 

susceptibility.    Furthermore it is transparent at the fundamental and 

second harmonic wavelengths respectively.    This will enable    an 

investigation in transmission.    In addition to possessing the intrinsic 

properties described above.its linear optical properties are Isotropie 

so that the equations developed in chapter II are applicable .    Because 

its linear index of refraction is relatively low , total reflection 

from   it   is possible       via     the        optically denser linear fluid 1- Bromo- 

(82) 
naphthalene.    From the table s   for refractive  dispersion its indicies 

of refraction for the ordinary and the extraordinary rays at the fundamental 

and second harmonic wavelengths are deduced and given as 

1.4943 
tu 

2uu 
n =1. 5131 

o 
2tD 

n = 1.4708 
e 
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Where   .u    corresponds to the fundamental wavelength of 1. OG^m. 

The KDP crystals were ordered and prepared by Gould Inc. 

Tne typical dimensions of the crystals are 25 x 15 x 8 mm3.     The 

entrance and exist surfaces are polished optically flat to   \/5   at the 

D-line of sodium light.    The other surfaces are see-through polished. 

The parallelism between opposite faces is better than 30 seconds,   and 

none of surfaces are coated. 

C    Optically Dense Fluid 

In the experimental investigation of a phenomenon so-called total 

reflection and Nonlinear Brewster's angle are involved.The investigation 

under these conditions can be achieved only if the linear medium from 

which the laser beam is incident has a higher index of refraction than 

KDP.    To observe the Nonlinear Brewster-, angle of KDP in air      would 

require an angle of incidence from air to KDP greater than 90°.     This 

is impractical.     Therefore.it is essential that the linear medium in contact 

with KDP.mustpossessahigher index of refraction. By using optically denser 

fluid 1-Bromonaphthalene.   the angle of incidence which corresponds to 

the Nonlinear Brewster'  s angle is in the vicinity of     43. 0° . 

In the experiment,   the nonlinear crystal KDP was immersed 

in the optically denser fluid 1-Bromonaphthalene which has larger indices 

of refraction than KDP at both u,     and   Zu.      The fluid is transparent 

from the range 0. 4 - 1. 06 Km.    TTie index of 1-Bromonaphthalene has 

been tabulated at five different wavelengths (85).    The values at wave- 

lengths of interest may be interpolated by means of the Cauchy relation (86) 

■ ■     ——■—— — ■—— —'  MMUMaWKi^UHtlU 
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This gives  for the index of refraction of the fluid 

n        (uu) = 1.6260 n   .   (2uy) = 1.6701 
l ^ Uq 

From Snell' s law given in Chapter II one finds  the critical angles 

for total reflection of the fundamental and second harmonic beams to be 

(W)- 66.78°    9cr
1(2uj) = 64. 76°,   respectively. 

i 
q 
cr 

D.      Experimental Arrangement 

In the present study,   the experimental arrangement can be 

divided into two major parts.    One involves        detection of SHG in the 

reflection and transmission using a single incident laser pulse and the 

other is two beam spatial mixing (TBSM) setup   and measurement of  a 

picosecond pulse.     The experimental arrangements are described in the 

following. 

1.     Experimental Arrangement for SHG in Reflection and 

. Transmission.    The excitation source for this case was   a Nd:glass laser 

operated in mode locked fashion.     The laser system 

i 
* cavity mirrors M   and M   ,   a  contact dye cell with dye solution Kodak 

2 

19860 dissolved in dichloroethane and a water cooled laser head.    The 
+ 3 

laser head consists of a Nd       doped glass    rod. The rod was 
| 
• surrounded by a helical xenon flash lamp.     The laser system is  shown in 

| Fig-   3-2 in the Previous section.    All optical alignment   was performed 

with the help of He-Ne gas laser.    The cavity length which was the 

optical path length between the mirrors    M     and   M     is about 75 cm. 

The entire laser system was covered with a wooden box,    to 
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prevent        the flash lamp radiation during the pumping period from 

interfering    with the SHI detection.     Furthermore a      Corning filter, no 

2-64 (C. F.   2-64) was used at the exist of the wooden box to filter out the 

residual flash lamp light in the lasing direction.     The experimental 

layout which will be described hereafter   is depicted in Fig.   3-4.     The 

fundamental beam was then partially deflected by  an ordinary glass slide 

plate       into     a      ITT photodiode F-400 (S-l) with ground glass and 

neutral density filter in front of it.     The   pulse from the ITT photodiode, 

displayed     on     a   Tektronic      519       oscilloscope had 

an   overall rise time of 0.7 nanosecond. In    turn the  Tektronic 519 

oscilloscope also provided, upon registering the fundamental beam, the 

triggering signal to the Tektronic 557 dual beam oscilloscope, used for 

recording SHI from the monitor channel and from the KDP. A piece of 

z-cut quartz platelet was used in the monitor arm. The 

laser pulse causes  the quartz     to   generate SHI which  is used as a 

reference for reducing   of statistical fluctuations in the SHG exoeriment 

The use of a monitor channel is a standard    technique in nonlinear 
(27, 28) 

experimentation 

The reason for using a z-cut quartz platelet quartz in the monitoring 

arm,   rather than KDP, was that  its    surface did not deteriorate with 

time.     The z-cut was chosen mainly because of the convenience in not 

having to worry about the orientation of the laser polarization with 

(2 7) 
respect to the crystalline axis .     If the z axis is normal to the 

platelet,  the second harmonic intensity from the quartz is  proportional to 

k. mmmmmmmmaam ■MIMkMWiaiaMMtMiiBMi 
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Here   E^)   and    Ey(U) )   are the projection of the laser field on 

the   X   and    Y   axes of the quartz crystal.     The s econd harmonic intensity 

was not changed when the quartz is  rotated about the   z   axis.    Anothe 

advantage of using a z-cut was that the crystal was far from the ph. 

matching condition.    Thus accidental misalignment of the monitoring 

ler 

lase- 

system would not effect the second h armonic conversion by a noticeable 

amount. 

Corning filter CF 2-64 and 7-57 were used in front the quartz 

Platelet in order to ensure that only the fundamental beam could     strike 

the quartz. To discriminate the fundamental beam from the admixtu re 

of second harmonic signals f 
romthe quartz platelet, a copper sulphate solu- 

tion (CuSCM       was  employed to filter out the fundamental.     The 

remaining    signal is then transversed through a Viard Atomic interference 

filter,  having transmission peak at wavelength 5300A corresponding to 

second harmonic of the fundamental.     The signal was     collected 

■ ten stage Amperex photomultiplier,model 56 AVP.     The 

signal from the photo multiplier in the monitor channel  was fed to the 

upper beam terminal of the Tektronic  551 dual beam oscilloscope. 

The main fundamental beam was polarized in the vertical 

direction corresponding to the    ^110] direction of the KDP target. 

The linear polarization of the fundamental beam was achieved 

by means of half waveplate and Glan-Kappa prism which were coated for 

illin inl ii  —^—'     - 
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anti-reflection at the wavo] ngth of l.O^m . Before the fundamental beam 

| entered a liquid cell,   it transverse.] through Corning filters no. 2-64 and 

no.   7-56.     This was to ensure that all spurious signals generated by the 

laser bean, from various optical components were suppressed and only the 

| fundamental beam of the wavelength    }   =  1. 06 „m   would be incident on 

the KDP crystal. 

f 
The KDP crystal was mounted onan aluminum target holder 

| which was connec ed to the angular  rotator mounted on the platform above 

the liquid cell.     The angular rotator was  Kinematic model RT 200,   with 

vernier     scale permitting variation of rotation within accuracy of 0. 01°. 

J The fundamental beam before entering the liquid cell was  regulated by a 

rectangular slit       1 mm wide and  5 mm high.     The liquid cell had a 

hexagonal shape with a circular      flat fused quartz window on each side. 

| Each window  subtends an    angle of 20°  . The cell contained optically 

denser fluid 1-Bromonaphthalene in which the KDP crystal was immersed. 

The KDP crystal was oriented in such a way that its nonlinear polarization 

source P ,   in the direction of optic  (z ) axis,   lay in the plane of 

reflection.     The fundamental beam was polarized normal to the plane of 

reflection.     In      other words,the polarization of the fundamental beam 

| was in the direction rflO]    with respect to the crystallographic axes of 

the KDP. 

I 

I 
_ rotation of the arm was common to the line passing throUBh the center 

The ,letectinB system for SH] produced from KDP „as mounted 

on an aluminum arm pivoted underneath the liquid cell.     The axis of 

 -■        ■ ' -...     . ...     ..           ...    .    _. 
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of the cell and tangent to an entrance surface of the KDP.     This will 

ensure that when the arm was rotated to change the angle of incidence 
i 

Q    ,   the SHI would be properly collected.     Furthermore it helped to 

verify the directional property of SHI by rotating arm slightly off to both 

sides of the expected direction of  the SH signal. 

The detection system for SHI from the KDP wa S consisted of the 

following.       A    slit 4mm wide and 10 mm high   was    used to separate the 

reflected or transmitted SHI from the reflected or transmitted fundamental 

beam respectively.     The slit was placed about 50 cm away from the 

liquid cell.     For the case of total transmitted SHI where there were two 

transmitted beams of homogenous and inhomogeneous SHI.   the larger 

slit was placed at 15 cm away from the cell to allow the two harmonic 

beams to pass    through.     Behind the slit a biconvex lense of   30 focal 

length        was employed to ensure that all the harmonic signals would be 

properly collected by   the photo multiplier which was about 75 cm away from 

the liquid cell.     Between the lense and the photomultiplier a copper 

sulphate cell and Baird Atomic interference filter with transmission peak 
o 

at 5300A were employed in the manner as described previously for the 

monitor arm channel.     Between the copper sulphate cell and the inter- 

ference filter,   a sheet of polariod was used for verifying the polarization 

orientation of second harmonic signal before passing through the inter- 

ference filter.     The photomultiplier in this channel was identical to that 

of       the monitor channel so that the rise time of the two channels will be 

essentially the same and time correlation for SHG could be easily verified. 

 - - - ■■-    ■ '— -  ■ —*-■— -- 
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The signals from both channels were displayed on the dual 

beam oscillscope and photographed.     The oscilloscope was triggered 

externally by a triggering signal from the Tektronic  519 oscilloscope which 

simultaneously monitored.     To generate a data  point,  we took the ratio 

of the pulse heights corresponding to the  signal and monitor intensity 

respectively and then averagedthis ratio   overfive to ten laser firings. 

This was essential in order to improve the quantum statistical fluctuations 

of the SHG.     The data points were plotted and compared to the computed 

theoretical curves. 

2.     Experimental Arrangemeit for  Two Ream Spatial Mixing 

and Measurement of Picosecond  Puls'-'width.     When two fundamental 

beams have properly spatial and temporal overlapping inside a KDP 

crystal,   second harmonic signal will be generated.     This particular 

situation is well described previously  in chapter II, To ensure the 

temporal overlapping inside the KDP crystal.    Q-switched Nd:glass 

was used as a  source of excitation since it had relatively long pulse 

duration.    Q-iwitched pulse was produced by means ot  Pockels cell 

(Korad K-QS2) and polarizer stag inside the laser cavity.     The arrange- 

ment    for    the      monitor arm was exactly the same as described in the 

previous setup .     The laser was again regulated by a slit of 2 mm wide 

and 5 mm high.    A  schematic of the experimental arrangement is shown 

in Fig.   3-5.    After passing through the slit the fundamental beam was 

then reflected by a mirror having antireflection coating at   X - I. 06 \im. 

The two fundamental beams were then made incident upon th e KDP crystal. Th( 

JM 
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KDP crystal and the detection arm for SHI from the KDP were fixed 

and aligned with the help of He-Ne gas laser which shone tangentially 

through the surface of the beam splitter  (see the set up in Fig. 3-5   ). 

The  KDP crystal is oriented in such s way that its optic  (z ) axis was 

parallel to the entrance surface and in the plane of reflection.     This 

orientation of the KDP would yield  the nonc-dlinear phase matching 

condition,   which was experimentally confirmed and will be discussed in 

Chapter IV.    Angle of incidence   O1 of each fundamental beam was equal 

and regulated by the rotation of reflecting mirrors.   The angular turning 

platforms on which both reflecting mirrors   were situated   had a 

144:1 reduction gear ratio and a   vernier  scale permitting a   variation of 

i 
9    in step of 1 minute (1/60°).     The polarizations   of both incident beams 

were in the direction normal to the plane of reflection.     In another 

words they are in T no]     direction with respect to KDP crystallographic 

axes.     The detection arm was exactly the same as in the previous setup, 

however,   it was fixed in a normal direction with respect to the exit 

surface of the KDP crystal.     The Q-switched pulse shape of the fundamental 

beam was monitored by Tektronic 519 Oscilloscope which in turn provided 

triggering signal to the Tektronic dual beam oscilloscope on which both 

harmonic signals from the monitor and signal channel (from KDP) were 

displayed and photographed. 

The experimental arrangement for measuring the picosecond 

pulsewidth was almost the same as in the TBSM experiment.    However, 

the source of excitation was a mode locked Ndrglass laser which provided 

-     - ■ -         - - 
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Picosecond pulse trains.   The experimental setup     is    shown in Fig.   3-6. 

I Temporal delay for each beam was introduced        between the beam 

splitter and the reflecting mirror.    One delay was fixed and the other 

variable.    A system of optical delay was composed of three right angle 

prisms as shown in Fig. 2 -10.   Variable temporal delay was achieved by 

mounting the prism on a very  sensitive translational stage, 

which could translate in step of 1 mil (0. 0254 mm),   roughly       equal to l/lO 

Pic.econd.     The KDP crystal with its orientation used in the investigation 

I was the same as in TFSM case.    In this experiment a single fundamental 

beam could not produce SHI in the normal direction to the exit face of th. 

KDP crystal.     It required both spatial and temporal overlapping of the 

- two beams  in the crystal. Spatial overlapping   was   easily arranged by   proper, 

ly      rotating      ^he two reflecting mirrors. However temporal overlapping 

I could be achieved only by straight forward scanning the temporal delay 

until SHI was observed.     By varying temporal delay and recording the 

corresponding SHI,   the autocorrelation function was mapped out and    the 

picosecond pulsewidth could be deduced. 
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CHAPTER IV 
EXPERIMENTAL RESULTS 

In this chapter,   experimental results of second harmonic generation 

(SHG) in reflection and transmission from KDP crystal of various 

Ci'ystallograPhic orientations,   using a mode locked and Q-switched 

Ndrglass lasers,  are presented.     Furthermore,   an experimental 

technique of utilizing the polarization properties and phase matched 

condition in a KDP crystal for measurement of picosecond pulsewidth 

j is reported and accounted for.     The results of the present work are 

divided into four major parts namely the SHG in reflection,   transmission, 

SHG by two beam spatial mixing (TBSM),   and measurement of picosecond 

| pulsewidth of Ndrglass laser.     Those results are presented in the 

following paragraphs. 
t 

A-     Second Harmonic Generation (SHG) in Reflection. 

| L     Nonphase Matchable SHG at Total Reflection.     The KDP crystal 

used in this experiment has dimensions 25 x 15 x 8 mm.3  The entrance 

surface is the 25 x 15 mm2 face.    The face normal of the entrance 

j surface is along the optic axis which is    [001] direction.     The total 

reflection of the fundamental laser beam and for harmonic beam are 

achieved by means of optically denser linear fluid 1-bromonaphthalene as 

j previously described.      The polarization of the fundamental beam,  as 

indicated in Fig.  4-1,   is along the T HO ] direction. 

The reflected second harmonic intensity generated from the crystal 

was observed as a function of the angle of incidence   6.   for the 
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crystallographic orientation shown in the inset of Fig.   4-1.     The KDP 

crystal is a noncentrosymmetric cubic crystal and its linear susceptibility 

as a scalar.    The theory developed by Bloembergen and Pershan(12), 

which is given in Chapter II.   can be applied directly here.     The reflected 

harmonic field polarized in the plane of reflection is given by equation 

(2. 33a) 

E = 4. PNLS F   NL 
R'n R,ll (2.33a) 

where the nonlinear Fresnel factor    F   ^ is given by equation (2. 35a) 

FNL    _    sinq
5 sin9Tsin(cy+Qs+  9^ 

R.ll       eR sin9R sin{9T+9R)co8(9   -9   )8in(9T+9j 
T     S 

(2.3 5a) 

The angles    9R,   ^   and   9T   are related to   9.   by equation (2-29) 

which is recast      into    the     forms 

Sin9R=rniiq(^/niiq^)1^9. 

sine    = [n      (üu)/n     (UJ)] sin9 
o liq er i (4.1) 

sin9T = fn      (UU)/n^^(2oü)]sin9, er 

whe re ncr   stands for reflective  indicies of the KDP 
crystal which are given 

in chapter III. 

Using indicies of refraction for the liquid and the KDP,   The critical 

angles of the fundamental and second harmonic beams can be found, 

according to equation (4.1) as 

(4.2) 

 ■-■  ■- 
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For   q.> 9      ((D),    9S   becomes complex and one should use 

cos 9S = if (sine./sing01"^))2 .1]1/2 (4i 3) 

inequations {2.32b),   (2. 35a) and (2. 39).    Similarly,   for    ^>^T
{2W), 

9T   should be expressed as 

cos9T = ir(sin9i/sin9Cr(2uu))2 .l]1/2 (4>4) 

According to the theory,   the reflected second harmonic intensity 

IR(2(ij) ,   given by equation (2.39),   is 

y2») Mc/8„)./TR  |Eo|
4dd'(4.Xu

NL,V(fD
L)2   x 

I 

^36      '  n  (I
R 

ITPL^  .       NL.2 .i 
|F    |     |FR       |     cos9R(cos9)1 (2<39) 

The solid curve drawn in Fig.  4-1 is a plot of equation (2. 39) 

relative scale and is calculated from the last five factors 

|f   L|2  .    L|4 ,       NL.Z _i 
lfR    I    lF    I     lFR       I     cos9R(cos9.) 

on a 

can | This is appropriate since the remaining factors in equation (2.39) 

• be treated as constants in the experiment.    The vertical scale in Fig.   4-1 

is adjusted tothedata.     The experimental points arein striking agreement 

I with the computed theoretical curve which displays nonanalytical singulariti 

| at angle of incidence   9. = 9" (*)   and   9. = 9°^)  respectively.    These 

two singularities are expected since at these angle.  cos9c   and cos9 
S T 

respectively,  change froma   real value to a pure imaginary value .   We would 

} like t0 POint OUt sPe"fically that the data points even reproduce two 

cusps in Fig.  4-1.    This experimental features were not observed in the 

,. (28,29) 
earlier measurements of   this    sort   _ We attribute the 
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succefiS here to the fact that in our experiments    the mode locked laser 

beam was used.    The unique phase relationship among the axial modes 

in the fundamental beam eliminated most  of the intrinsic quantum 

fluctuations which are  typical  of nonlinear optical experiments .     We 

thus emphasize once more the importance of using the mode locked laser 

in these experiments. 

The enhancement of the reflected intensity arises mainly from two 

sources.    First,  the linear Fresnel factor   F    near the critical angle is 

larger than that away from this angle by about a factor of two.    This will 

give a factor of sixteen in the reflected second harmonic intensity   I   (2uu). 

Second,   the nonlinear Fresnel factor   F defined in equation (2.35a) 

in the neighborhood of these critical points as dominated by the term 

rsin(eT+9s)]       and it is larger than that away from these points by 
/og\ 

about a factor of three        .     Therefore,  after all factors are accounted for, 

| the additional enchancement of   I   (Zuu)   in the neighborhood of the critical 

angles will be about two orders of magnitude.    This result is in good 

~ agreement to the theoretical curve. 

The physical interpretation of the enhancement of nonlinear Fresnel 

factor is that momentum matching       ' for the wave propagating 
I 

parallel to the surface inside the nonlinear    medium is important in 

determining the reflected second harmonic intensity   I   (2(ju)   at the 

critical angle.    The reflected second harmonic intensity near the 

critical angle is generated by the polarization in a surface layer with 

I thickness of about   (\l       ) where    I     ,    is defined as the coherent 
con coh 
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success here to the fact that in our experiments    the mode locked laser 

beam was used.    The unique phase relationship among the axial modes 

in the fundamental beam eliminated most  of the intrinsic quantum 

fluctuations which are  typical  of nonlinear optical experiments^7'.    We 

thus emphasize once more the importance of using the mode locked laser 

in these experiments. 

The enhancement of the reflected intensity arises mainly from two 

sources.    First,   the linear Fresnel factor    FL near the critical angle is 

larger than that away from this angle by about a factor of two.    This will 

give a factor of sixteen in the reflected second harmonic intensity   I   (2m) 
■ '      R       " 

Second,  the nonlinear Fresnel factor   F^ ^   defined in equation (2. 35a) 

in the neighborhood of these critical points as dominated by the term 

rsin(0T+Gs)]       and it is larger than that away from these points by 

I (88) 
about a factor of three       '.     Therefore,  after all factors are accounted for, 

. the additional enchancement of   IR(2W)   in the neighborhood of the critical 

angles will be about two orders of magnitude.    This result is in good 

agreement to the theoretical curve. 

, The physical interpretation of the enhancement of nonlinear Fresnel 

factor is that momentum matching(33, 34) for the wave propagating 

I 
parallel to the surface inside the nonlinear    medium is important in 

I determining the reflected second harmonic intensity   I   (2uu)   at the 
' R 

critical angle.    The reflected second harmonic intensity near the 

critical angle is generated by the polarization in a surface layer with 

thickness of about   (X^)12   where   I ^   is defined as the coherent 

:■'- 

—-    
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length.    In general,   the reflected second harmonic intensity at angles 

away from the critical angle is only generated from a layer about 

W./e      thick. 

R£n££tion.      The KDP crystal used in this case has dimensions of 

25 x 12 x 18 mm3.     The entrance surface is 25 x 12 mm2 face and it has 

a face normal in the    d II] direction.     The crystal was immersed in 

the optically denser linear fluid   1-bromonaphthalene.     The special cut 

was specially made for the crystal in such a way that the phase matching 

direction is along the entrance surface of the crystal.     This can be done 

by cutting the crystal such that the optic    (z)   axis,   which is in the same 

direction of nonlinear polarizaeion   PNLS    „,i 
pu on   P ■   makes a Phase matching angle 

8m   to the surface.     The angie   ^   „as compoted by using equation 

<2. 46, and indices of refraction of KDP crystal,    ft was found that at the 

wave.ength of interest the angle   ^   takes value of 41.2°.    ^ renecled 

second harnnonic intensity   IR,2lu)   generaeed    by      the crystal was 

Observed as a function of the angle of incidence   ^   for the crystallographic 

orientation shown in the inset of Fie    4  ?      T^O f      i vig.  *.£.    The fundamental field was 

PO.ari.ed along the   rjTo] direction and propagated as an ^^ ^ 

According to equation ,2. 31a) the nonvanishing nonlinear pclari.ation 

was along the optic axis and therefore the harmonic field was polarized 

in the plane of reflection and propagated as an extraordinary ray. 

The experimenta. result in Fig.  4-2 shows that the reflected second 

h-rmonic intensity increases by about three orders of magnitude when 

M^^^^M^^MIM 
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the angle of incidence is changed by a few tenth of a degree in the vicinity 

of the critical angle.    There is one maximum (peak) value of the reflected 

harmonic: intensity and it is exactly at   Q1 = 9°%) = 66. 78°    in agreement 

to the theoretical prediction.     The observed maximum reflected intensity 

i is about 30 times of magnitude larger than reflected intensity in the 

nonphase matching case described in the previous section.     This is due 

to more enhancement of the reflected harmonic intensity by nonlinear 

i Fresncl factor in the phase matching case. 

The enhancement can be mathematically explained in the view of 

equation (2. 39) and (2. 35a).    According to the crystallographic cut of the 

(1        u NL 

crystal,   the value of the nonlinear Fresnel factor   F tends to infinity 
R.n y 

when the angle of incidence    91 =  q"^) .   At this condition we have 

eS " ^ T = TT/2
   

where the Phase matching condition     prevails      and thus 

sin(qs+9 T) = 0   in equation (2.35a).    However,   in practice,  there are 

several factors,   e.g.  beam divergence,  walk-off effect,   that limit the 

reflected harmonic intensity from reaching infinite value.     Furthermore. 

the singularity causing the divergence at critical total reflection predicted 

(12) 
by the theory    "    for this  situation has been removed by another treatment 

given by Shih and Bloembergen(91).     They used the Green' s function 

technique to describe the generated harmonic field,  with due attention 

being paid to the effects of the finite beam diameter.    According to the 

theory based on this technique,   the second harmonic intensity at the 

critical angle   9°%)   does have a finite value and it  is in agreement to 

I 

| the experimental result that the enhancement of the reflected second 
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ha rmonic intensity is three to four orders of magnitude when the angle 

of incidence is changed by a few tenth of a degree in the vicinity of 
cr 

e   (-1). 

The theoretical curve in Fig.   4-2 has been calculated using again 

equation (2. 39) with «    =9       and   rv = 0      - 41   ?0 
7g        T   ana   ar-4m-41.2      and assuming 

"cr^ = V2'^ = ^^B    without including angular variations for k 

and kT.     This is .justifiable that in the vicinity of the critical angle the 

extraordinary index of refraction for second harmonic frequency is 

slowly varying.    A complete,   but very involved expression,   has been 

Riven by Fischer (89) for rigorous treatment.       The theoretical curve is 

again calculated from the last five factors. 

If   L|2   lFLl4 I v NLi2 -1 
'  R    '     lF    '     'FR>ii       '     eos«R(cos9.) 

of equation (2.39).     The vertical scale in Fig.   4-2 was adjusted to the 

data.     Note the striking agreement between the experWntal points and 

the theoretical curve,  which predicts anomalously high reflected 

harmonic intensity at   0 . = ^iw).     Furthermore,   it is seen that the 

variation in the immediate neighborhood of the critical angle is rather 

well described by equation (2. 39) for the geometry used.     In the region 

where    9^   is greater than   9^) , and also   cos9s   and   cos9T   take 

pure imaginary values,   the reflected harmonic intensity is still 

comfortably detectable and it tends to decrease monotonously to zero 

value when   ^   approach 90°.     This can be understood physically because 

bevond the cri(ical angle there is ^      ^^ ^ ^ ^ ^^^ ^ 

am whichwill create the nonlinear polarization   PN^(2.)andwill radiate back 

. _    . . ^  - 



vmmrnmmmmifmm'i*^^ 1        '   vm^mmmm^^i^m*m^*^~ ■ -■■ —■■--      - ■■• 
111  

I 
I 
I 

I 

I 

75 

into the linear medium the reflected harmonic beam.     The enhancement 

due to phase matching at critical angle corresponding to this geometry is 

very useful for studying nonlinear optical properties of the medium 

which absorbs at the fundamental and/or second harmonic frequencies. 

Since all the information will be analyized via reflected harmonic intensity. 

To facilitate better physical understanding in connection with reflected 

second harmonic phenomena,   one can consider the drawn curve in 

Fig.   4-2 as a limiting case of that in Fig.   4-1.    The separation between 

the two cusps in Fig.   4-1 depends upon the degree of phase mismatching 

in    ihr neighborhood   of        the     critical angle.    As the condition for 

perfect phase matching is approached,   the two cusps in Fig.   4-1 will 

move closer towards each other and the reflected harmonic intensity 

becomes larger until finally these two cusps collapse into one peak 

and the intensity tends     to     the   highest value .        This explanation 

was also carried out to reflected third harmonic generation (THG) by 

hey et a) 

Another experimental investigation in relation to phase matching at 

the critical angle was performed.    Here the same KDP crystal of the 

same crystallographic cut was employed.     However,the crystal was 

rotated 180    about the face normal which is in rlll]  direction as in the 

previous case.     The reflected harmonic intensity   I   (2tw)   generated from 
R 

the crystal was observed as a function of the angle of incidence    q 
i 

The crystallographic orientation and the polarization of the fundamental 

beam are shown in the inset of Fig.   4-3.    Again in this case the fund- 

.    .- .. -  ***** 
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amenta] beam propagated as ordinary ray and the reflected harmonic 

beam polarized in the plane of reflection was extraordinary ray. 

The experimental result in Fig.   4-3 shows that the reflected 

harmonic intensity increases by about two orders of magnitude when the 

angle of incidence changes by a few tenth of a degree from the critical 

angle.     The maximum reflected harmonic intensity occurs at the critical 

angle as  predicted by the theory.     The theoretical curve in Fig.   4-3 

was  calculated in the same way as in Fig.   4-2.     The vertical scale was 

adjusted to the data.    Note the striking agreement between the 

experimental points and the theoretical curve,  which predicts 

anomalously high reflected harmonic intensity at   9. = 9Cr(())). 

When the result from Fig.   4-3 is compared to that from Fig.   4-2, 

ler it is found out that the overall shape of the peak in Fig.  4-3 is broad, 

and in addition the peak intensity    s  lower than that in Fig.   4-2 by 

about 13 times.     This discrepancy can be well understood by the fact 

that KDP crystal is an uniaxial crystal possessing variable extraordinary 

index of refraction. 

In general,   one may expect different reflected harmonic intensities 

from the two geometries as shown in Fig.   4-2 and 4-3,   respectively. 

These two geometries are identical except that in c ne case the KDP 

crystal has been rotated by 180° about its face normal with respect to 

each other.     The two situations corresponding to Fig.   4-2 and 4-3 can be 

shown in Fig.   4-4 where the normal (index) surfaces of ordinary ray and 

second harmonic extraordinary ray are fully indicated for both cases. 

- -■    -—     ■■ *- -      ■ t^tom^mMfmamätm^mtmi+a^m 
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This is equivalent to an illumination by a beam of incident from a 

symmetric position on the other side of the face normal.     In Fig.   4-4, 

where the drawing indicates the conservation of the tangential components of 
-» -♦ 

k       vectors.    The   k  vectors with subscripts   a   and   b   correspond to 

the geometries in the insets of Fig.   4-2 and 4-3,   respectively.    At 

I 

i 

a   _     ^ .        7 b 
total reflection,    kg      =     OA,    k^OC.    According to the normal i 
(index) surfaces and boundary conditions of   k' s vectors,   it is  required 

that   kT   may   take two values,   i.e.    k^ =k  a = OA   or   k   a = OB . 

However;the former solution of   k^    = OA   would give a ray velocity 

propagating out of the nonlinear medium;    i. e. ,   the energy propagates 

I out of the medium.     This is not a physically   allowed solution.     Thus the 

only physically allowed solution is tl.: t   k^ = O B and   k^ = O C.     They 

correspond to the incident   k^ and   k.h   waves,   respectively. 

In the forma] treatment of the theory,   Armstrong et al(11) and 

j Klemman have represented the laser  and second harmonic light by 

unbounded plane waves.    Armstrong et al(11) pointed out that the inter- 

action between light waves of finite aperture takes place along the 

| direction of energy flow.    In his paper, Kleinman(14) also showed that 

SHG will ultimately be limited by slightly different directions of 

i propagation of the energy of the laser and second harmonic beams.     The 

effect is called doub!.- refraction in a uniaxial crystals.     In fact,   the 

light wave in the nonlinear medium KDP in the two geometries have very 

narrow apertures near critical angle.     Therefore,   to examine the 

I phenomena of SHG at phase matched condition in a uniaxial crystal,   e. g. 

 ___^„____ ^_ , ^ ^   —     
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KDP,   it is important to know the degree of overlapping between the 

direction .of energy propagation of polarization wave   k      and radiation 

wave   kT.     It has been shown by Boyd et al(35) that for any direction of 

phase propagation the direction of energy propagation (Poynting vector) 

is given by the normal vector to the normal (index) surface.     For    the 

ordinary wave the propagation vector and the Poyting vector are parallel. 

However, for the extraordinary wave the Poynting vector deviates from 

the phase propagation direction by an angle   p ,   called the angle of 

double refraction,   the angle o  is given by^35^ 

1     e           f         1 
tan o = 7 n_    {■]) i  1 

rn:    (TT/2)12        r    0  f 
2'JLI 2(ju J 

Ui sin29 (4.5; 

where     < is the angle between the phase propagation direction and the 

optic (Z) axis.     Furthermore,   the angle   cp in Fig.   4-4 can be obtained 

from 
] 1 

rn.f mi2        rn°   ]2 
2UJ 2(ju J 

cos^     + 1 

rn-e (TT/2)f 
2'jj 

sm   9 (4.6a) 

n       (41. 2   -co) COSCD =    n (4.6b) 

From (4.6a, b) the angle cp and as a consequence   n^    (41.2
0
-CD)   wer. 

2HJ 

found as 

CD = 1.12 

ru    (41.20-1.120)= n^    (40.08°)- 1.49465 

The angle   0     was found,   upon substitution   n6    (40.08°)   and 
2n) 

appropriated value of indices of refraction of KDP,  as 

(4.7) 

._____-_____^_^i_ ^MMMM^^^^MM^^^m »MUaMBlMMBi^  ' ^B 
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Oj =  1.07u 

In the same way   o2   was calculated as 

o2 = 1.08 

(4.8) 

(4.9) 

Therefore.the angle between the directions of enorKy propagation of 

kg   and   kT   corresponding to  the geometry of Fig.     4-2 is 

CP- o1 = 1.12° -  1.07° = 0.05° 

whereas the angle between the direction of energy propagation of   k % 

and   kT   corresponding to the geometry of Fig.   4-3,   is    o    =1.08°. 

Thus in the former case,   the polarization and radiation waves will have a 

larger interaction volume and hence will produce more intense second 

harmonic wave. 

This qualitative analysis via double refraction phenomena explains 

the experimental  results shown in Fig.   4-2 and 4-3.     However.the 

double refraction effect corresponding to the idealized geometry of phase 

matching shown in Fig.   4-4 probably cannot account for the experimental 

factor of 13 times increase.     The effect mentioned above depends very 

much on the actual value of the angle   cp   and the sizes of the fundamental 

and harmonic beams near the critical angle inside the nonlinear medium. 

Another possible explanation of the different intensities when the 

KDP crystal is turned by 180° can be based upon the beating of different 

ordinary ray directions in the fundamental wave.     This idea was first 

given by Maker et al(34).     in this explanation,  we assume that the crystal 

was not cut precisely that the phase matching direction is not along its 
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surface and in addition the fundamental beam is allowed to have a slight 

divergence.     The illustration is shown in Fig.   4-5 where symbols of 

subscripts   a   and   b   denote the same geometries as previously- 

described in the early analysis.    According to this  case,   the experimental 

maximum intensity is not obtained for the idealized geometry of Fig.   4-4, 

however,   the maximum occurs when the phase matching direction 0 A 

make a small angle    Q       with the surface as  shown in Fig.   4-5.     The 

nonlinear polarization is created from the mixing of slightly divergent 

pairs ol fundamental rays with wave vectors   k and   k     .     The allowed 

perfect phase matching condition is 

k^   =   k    + k 
T S S 

This condition can be satisfied if   Q.      > 9      ,   as discussed bv Maker 
*_       m , 

,(34)       , T  -» 
et al        ,   where q is the angle between   k       and the optic  (z) axis, 

T 
When the crystal is turned by 180    around its face normal,  the wave 

~*b ' vectors of the incident fundamental rays are represented by   k        and 
V' ■    s 
k^    .     For this situation the phase matched condition is not satisfied and 

as a consequence the reflected harmonic intensity will be lower.     The 

analysis based on the discussion by Maker et al seems to agree with 

the experimental data obtained in the case of nonphase matched and 

phase matched conditions described in Fig.  4-1 and 4-3,   respectively. 

It was experimentally found that ratio of the harmonic intensities at the critical 

angle for phase matched to nonphase matched conditions is about 30 times, 

which is in the same order of magnitude (13 times) as obtained upon 

comparing Fig.   4-3 to Fig.   4-2 

■ ■     ■ - - -     -- ——     -  - -■'    - L 
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3.      Nonlinear Brewster' s Angle.      The agreement of experimental 

data with theory for those separate experiments described in the previous 

sections encourages verification of a more subtle nonlinear optical 

postulate.    In particular,  we are led to ask if a nonlinear Brewster' s angle 

for the nonlinear transparent medium can be found experimentally. 

Even though the nonlinear Brewster' s angle for absorbing medium,   e.g. , 

(27) 
GaAs.was first confirmed by Chang and Bloembergen        ,   it is still 

important to carry the postulate to the transparent regime.    An uniaxial 

KDP crystal is   known to be transparent for both fundamental and 

second harmonic frequencies of Nd:glass laser.    Besides its transparent 

property,   it is also an ideal nonlinear material in the sense that it 

crystallographic,   point group properties and nonlinear optical characteristics 

concerning SHG are well understood.     The KDP crystal used in the 

investigation is the same as one used in the phase matching condition at 

total reflection described in Fig.   4-3.    Again the crystal  is immersed in 

the optically denser linear fluid 1-bromonaphthalene.     The use of the 

liquid is to facilitate the achievement of observation of Nonlinear 

Brewster' s angle since without optically denser linear medium from 

which the fundamental is incident,  the condition for Nonlinear Berwster' s 

angle will never be achieved.     The face normal of the entrance surface 

of the crystal is in Fill] direction and the fundamental wave is polarized 

along    r110] direction.    According to (2. 31a) the nonlinear polarization 

P will be in ^"001]   direction or optic (z) axis.     The reflected 

harmonic intensity   I   (2a))   generated from the  crystal was observed as 

—'yF««M   (^WMb-'HU.AMMH^M'^Id^^w 
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a function of the angle of incidence,   which varies from 20° to 75°.     The 

experimental result is shown in Fig.  4-6.     In this particular geometry 

of the KDP crystal,  we have the nonlinear polarization in the plane of 

reflection.     The electric field of the reflected harmonic wave is given 

by equation (2. 25) .     This equation reveals the existence of a Nonlinear 

Erewster' s angle when    i^    (2UJ) - 0 .    Or in another words,  we have 

P                     4TTP        sine   sin  9_sin(a+9   +A   ) 
EjjM = 0 =      : l [      s 

eRsineRsin(eT+9s)sin(9T+eR)cos(9T-9    ) 

The equation (4. 10) is true,   if 

(4   10) 

or 

sin(^ +9T +es) = 0 

a+9s + 9T   = 0 ,n (4.11) 

I 
i 

\ 

From the Fig.  4-6,  one has   a + 9    ,  which is the angle between the 

nonlinear polarization and the face normal direction inside the crystal, 

equal to - 48.78°.     Therefore,  from equation (4. 11) using the first 

condition which provides the realizable value of   q       we have 
T 

^ = 48.78° 
T 

Having known the value of   9     = 48. 78°,   the corresponding index of T 

la refraction of an extraordinary ray   n*!   (9    = 48. 78°) is found v 

equation (4. 6a) to be 

nL(9T = 48-780) = 1-47125 

Thus the Nonlinear Brewster1 s angle can be found via nonlinear 

Snell law (2. 29) as 
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XTT    is i      n-f   (^   =48- "78°) NL. Brew. .   -1  f    2(1)     T 
H. =  Sln      J __  
i In,,   (uu) sin9 

liq Tf 

1 f 1.4712 5 Sn1      TTz^r '   -n48.780} 

0NL.Brew.   = 42   ^o 

Should the KDPbe placed in the air instead of immersed in 

1-bromonaphthalene,   the calculated nonlinear Brewster' s angle would be 

NL. Brew. 
sm 

•If   1.4712 5 
1.0 

sin48. 78 

■l! = sin    i 1. 0896;- 

This angle,  of course,   is nonphysical. 

Note the striking agreement between experimental result and the 

theoretical prediction.    One can see that in the vicinity of   o1 = 42. 78°, 

there exists a pronounced dip of the reflected harmonic intensity   I   (2-u). 
R 

This  evidently confirms the existence of Nonlinear Brewster' s angle. 

This is for the first time that Nonlinear Brewster' s angle for transparent 

medium has been experimentally demonstrated.    Notice that the reflected 

harmonic signal in the neighborhood of Nonlinear Brewster angle is very 

low level and at the angle it is  expected no IR(2uu)   generated out of the 

crystal.     By increasing the incident power density via a biconvex lense and 

using the low level signal detection method in which the reflected harmonic 

signal was collected and averaged over 25 to 50 laser firings,   the 

pronouiced dip at   9. = 42. 83° was achieved.    Other experimental points 

agree well     with     the theoretical curve which was calculated, as in previous 

case,   from the last five factors of equation (2,39).     In this case the 

aaua^^BU—(■_„,___!,______ 
■ ■MHrOMMUUiM ^MMUdkHuMMIM mm^i 
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the angular variation of   n.   (9)   was taken into consideration in computing 

the theoretical curve since we are now dealing with much larger angular 

range.     From Fig.   4-6,   again the anomalously high reflected harmonic 

intensity   I   (2ii))   at critical angle and overall agreement between data 

points and theory from 20  < 0    < 75      confirm the nonlinear optical theory 

(12 ) 
developed by Bloembergen and Pershan 

The physical interpretation of the existence of a Nonlinear Brewster' s 

angle can be understood in terms of classical dipole radiation.     When 

the fundamental beam is incident on the KDP crystal at   the Nonlinear 

Brewster' s angle,   it will setup   a    nonlinear polarization pN:LS in 

direction parallel to the direction of propagation of the reflected harmonic 

wave inside the nonlinear medium.    According to the classical dipole 

radiation theory,   there would be no radiation seen in this direction.     This 

nonradiating wave upon refraction back into the linear medium would 

otherwise give rise to the reflected ray in the direction of   9    . 

The experimental points and the corresponding theoretical curve in 

the vicinity of Nonlinear Brewster' s angle havea pronounced dip,in contrast 

to the case of GaAs irradiated by ruby laser,    performed by Chang et al       *. 

This can be   explained that for the KDP case, the crystal has real and small 

value of   e(-j))   and   e(2(ji)   in contrast to the case of GaAs which has large 

and complex values of e((JU)   and   e(2uu)   at   the ruby laser line.   Maxwell' s equa- 

tions and the boundary conditions      derived for a transparent medium can all 

be extended to an absorbing mediurr^provided that the dielectric constants 

are replaced by their complex values.     Then,  in that case.one can see 

    ■■■■■ ■ —■■■•■■ -..^— -*   '-■ -■ ^—■ -■-■-— -~ ..- ,...,........-^.-....^.-  
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that the condition for    E     (2UJ) = 0   can never be satisfied,   as 

1/2 
sine». =  fe(2'u)/e      ('v)}       sin 48. 78      can never be achieved physically 

if   E(2()))   is complex.     This fact was confirmed when a Nd:glass laser was 

used instead of a ruby laser, and the pronounced dip at the Nonlinear Brewster' s 

(34) 
angle for GaAs was observed by Chang et al .     This is because the second 

harmonic em ission of Ihe Nd:glass laser is abso; bed much less    by 

GaAs since •he imaginary part of its   linear dielectric constant is 1. 50. 

The conclusion io be drawn, in relation to the reflected intensity of the 

harmonic wave from a nonlinear medium KDP crystal immersed in a 

op'ically denser linear fluid l-bromonaphthalene , !-=       that the observed 

angular dependence     of        the       reflected harmonic intensity and  ,    in 

particular.the existence of Nonlinear Brewster' s angle of a transparent 

medium are in good agreement with the theory of Bloembergen and 

(12) 
Pershan    '  .     The regime of an evanescent fundamental wave and 

reflected second harmonic wave have been demonstrated. 

B.      Second Harmonic Generation (SHG) in Transmission. 

1.    Tlomogeneous and Inhomogeneous Second Harmonic Waves in the 

Neighborhood of Critical Angles.     Having obtained a good agreement 

between the experimental data and theoretical prediction in the case of the 

nonphase matchable reflected SHI described in section A-l,   it .was 

encouraging to investigate the SHG in transmission near the critical 

The  result obtained in 

this investigation,   according to the theoretical prediction,  will 

complement    that      of       section A-l.    The gemetrical situation just 

c r cr 
angles 9      (2fu)   and   9      (w) ,   respectively. 

^ ■ ■--■ ■ __^. - —■— ■   -   ■'-  
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before total reflection occurs was shown in Fig.   2-6 in chapter II,     The 

| primary fundamental beam is transmitted almost parallel to the surface in 

the nonlinear KDP crystal.     There are two tiansmitted harmonic beams 

The driven polarization wave propagates in the same direction as the 

j -* -* 
I transmitted laser beam.    It has a wave vector   k    = 2k fuu)   and 
■ S La s e r 

represents the particular solution of the inhomogeneous wave equation. 

f 

I 
| In the present study the KDP crystal has  a right angular corner and the two 

I 

I 

I 

^ 

L 

In addition.there IF a homogeneous solution with wav^ vector   k    (Ziu) 

transmitted harmonic beams are spatially distinct and rsadily observed 

separately.    According to the particular crystallographic cut,   which will 

% be described later,   it is clear that the beam with wa"e vector   k      will 
T 

cr -4 
disappear first at   9. = 9     (2(ju)   „nd the ray with wave vector   k      will 

S 
cr, disappear at the same time as the transmitted fundamental since   9     (t«) 

c r 
is found to be greater than   9      (2(ju) .    As the angle of incidence    9     becomes 

i 
c r 

larger than   9     (JU )   the inhomogeneous wave will disappear. 

7'he KDP crystal used has dimensions of 25 x 15 x 8 mm   .     Its face 

normal is in the   ["001] direction (optic axis).    The homogeneous and 

inhomogeneous transmitted harmonic intensity were observed separately 

as a function of angle of incidence.     The polarization of the fundamental 

beam and the orientation of the crystal are shown in the inset of Fig.   4-7. 

The homogeneous and inhomogeneous harmonic intensities are given 

by equation (2. 39),   respectively,   as 

| IT(2U}) = (c/8n)yFR lEo|
4dd'(4nX3^)2Tl2(f^)   |FL |4 X 

I FT|    cos9T(cos9.)" (4.12) 

,- .....^.■.^:-J--. ■^   -....:   ^O...,.^-^^^-..   ■■ —.-■..■ .........   ^-             -■■■-•■ ■J...^...J .: — ...-....—.-t^-^..: -—i..^,,.-.    -....■■.   „w-N-^:..,^.^.^ ...... V....-.JJ^...-...-■     ■   .-. 
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Iq(2(JJ)= (c/8rr)yTD|Ej
4dd' (4TTX„NL)2ri2(fir)|FL|4 

R1    o 

i       i2 -1 
Fcl    cos9c(cos9.) 

b S i 

^36       '    '   ""T 

(4.13) 

The drawn solid -arves in Fig.   4-7 are plots of equations  (4. 12) and 

(4. 13) for homogeneous and inhomogeneous SHI and are calculated from 

the last five factors,   respectively, 

i,L     ,2   .    1^.4  .    NL ,2 -1 
I'T.S

1
     lF    I     ^T.S1  "seT,S,C0S,i) 

The linear vertical scale in Fig.  4-7 is adjusted to the data   as 

appropriat        for each case.   The experimental points are in good agree- 

ment with the computed theoretical curve.     They ar-- in excellent 

agreement to the theoretical prediction that the homogeneous and 

inhomogeneous SHI will be terminated at    9Cr(2')j)   and 9Cr((u) , 

respectively.     The critical angles   9Cr(2(i))   and   9Cr((u)   from the 

experiment are the same as found in the previous cases.     The behavior 

of the two SHI near the critical angles as shown in Fig.  4-7 can be 

explained in the following.    The two transmitted SHI are the net result 

of the competing effects of the increasing linear Fresntl factor to the 

fourth power,  the decreasing nonlinear Fresnel factor squared,  and the 

rapidly decreasing cross section of the fundamental inside the medium 

near the total reflection.    As to these competing factors the homogeneous 

and inhomogeneous harmonic intensities fall down rapidly toward 

cr c r 
9     (2(D)   and   9     (UJ) .    The reason for the homogeneous and inhomogeneous 

c r c r 
SHI terminated at   9     (2u))   and   9     (m)   respectively is that when   9.   is 

c^. ,cr 
greater than   9     (2(u)   and   9     (üü)   the value of   cos9     and   cos9     become 

■ _. ^■....^■.-■^.■.^■.■. ,... ....—.-.-...  ■■ -.■..-.-.- - 
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pure imaginary respectively.    As a consequence the two transmitted 

harmonic iriensities will become imaginary which are not physically 

allowable.     Furthermore,   one can see from Fig.   4-7 that the homogeneous 

c r 
SHI disappears at   9     (2u))   while inhomogeneous SHI still persists for 

2. 02     more and finally is terminated at   9°%) .    In the region between 

9     (2(i)) S 9. s 9     ((„)   which is 2. 02° interval,  one can comfortably 

observe inhomogeneous SHI.    One can apply the result from this 

investigation,   particularly in the region   9Cr(2(ij) <:  9. <: g"^)   to other 

nonlinear crystal which is appropriately cut.    Since in this  region one 

will obtain only inhomogeneous SHI which has direct association with the 

nonlinear polarization source term    PNLS and the nonlinear susceptibility 

NL 
X      •     The knowledge of inhomogeneous SHI in this particular region will 

directly facilitate the study of   PNLS and   X
NL of a nonlinear medium. 

2-     Phase Matched Second Harmonic Generation (SHG) in Transmission. 

SHG under phase matched conditions and in a normally incident 

direction was performed by several authors(33' 34\    However in the 

present work the phase matched direction is no longer in the normal incident 

direction.     The SHG in transmission under this phase matched condition,and 

away from it,were experimentally investigated and compared to the prediction 

of the theory.     This will verily the theoretical prediction and check the 

theory for other conditions aside from previous confirmations. 

The KDP crystal used in the experiment was the same one as in 

section B-l.     The total transmitted second harmonic intensity due to the 

sum of homogeneous and inhomogeneous transmitted harmonic intensities 

-    .M^MMMM^MM|iMMM*.jl^*MBIi   ---^- . 
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is observed as a function of angle of incidence which varied from -15° to 

i 50   .     The fundamental beam is polarized in the T HO] direction and the 

KDP crystallographic orientation are shown in F^g.  4-8.    The phase 

matching angle   ^   according to this geometry can be computed by using 

I equation (2. 46) and indices of refraction of KDP crystal given in Chapter III. 

The phase matched direction was found to be   9      = 41.2°   awav from the 
m ' 

crystal face normal direction (optic axis).     Thus the angle of incidence 

I corresponding to this direction is given by 

I 

i 

t 
I 

-1  f     2(ii    m . 1 9. - sin     A  —  •   smq 
1 - niiq

(,1J) mJ 

{where   n^    (9     ) = n0 = 1.4943 
2UJ     m UJ 

Hence   9. = sin-1!-^^3-   .   sin41.20| 
i 11.6260 I 

9. = 37.27° 
i 

The theoretical curve for total transmitted second harmonic intensity 

is the sum of homogeneous and inhomogeneous intensities given by (4,12) 

and (4,13),   respectively 

Wi'2^= V2^'- V2uj) (4-14) 

The thereotical curve shown in Fig.  4-8 was computed from the sum of 

the last five factors in equation (4.12) and (4.13) and it can be mathematically 

expressed as 

^otai'2»' ■* <£T ' I^"(cose.r1!'<n|2<:°sV 'Fs,nl2-8^}       '4-»I 

The expression for ITotal = ^ +   U   given by equation (4. 14) is 

justified for the present investigation.    For this geometry,  the transmitted 
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intennties were measured by observing the transmitted harmonic waves 

emerging from the back face of the crystal.    Since the two harmonic 

beams now overlap and interfere,the harmonic intensity is a function of 

the path length of the beam ir.side the crystal.    If the entrance and exit 

faces are not parallel over the entire cross sectional area of the beam, 

the interference must be integrated over this area.    The result of this 

integration gives three terms.     The first two terms are exactly the 

separate homogeneous and inhomo^eneous intensities given by (4. 12) and 

(4. 13) respectively.    The third term retains an oscillatory dependence of 

the length of crystal and has an amplitude determined by the angle of 

parallelism of the two faces.    If the two faces are exactly parallel the 

magnitude of the third    term equals to the sum of the first two terms        . 

If the path lengths of the two harmonic beam differed by several coherence 

lengths,  the amplitude of the third term is negligible compare to the first 

two.    Since the KDP crystal used in the experiment is an uniaxial crystal 

in which a double refraction phenomena is intrinsic.    Therefore the 

magnitude of the third term corresponding to the interference of the two 

harmonic beams is negligible and thus the expression of   I (2m) 
Total       ' 

given by (4. 14) is valid. 

According to the theory for general crystallographic orientation,  it 

is anticipated that the total harmonic intensity will exhibit the oscillatory 

feature in the heighborhood of very small angle of incidence.    However, 

this effect has not been observed.    Instead,the total harmonic intensity 

near normal incidence is falling rather monotonically toward zero value 

~   -- -   ^- ■■    - -   ■-     -■   — - ■ -■ -■      ■■-     - ■ -■   — ■ - - — ^      - 
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at   ^   = 0   .     This behavior can be understood in ferms of two physical 

reasons.    First,  for the region of small angle of incidence,  the double 

refraction still persists and it reduces the effectiveness of the interference 

between the two harmonic beams as desciibed in the previous paragraph. 

Second,  according to particular crystallographic orientation of the 

crystal used in this experiment,  it is noted that the P is in the 

same direction of the crystal face normal.    In terms of the dipole radiation 

point of view,  the nonlinear polarization P cannot radiate harmonic 

waves in the direction of its oscillation.     Therefore it is anticipated that 

no harmonics intensities are observed in the direction of the crystal 

face normal i, e. ,   9. = 0    .    Furthermore,  the total harmonic intensity 

will be small in the neighborhood of   9. = 0° .    Thus the trend of 

monotonic       decrease of the total harmonic intensity dominates the 

anticipated oscillatory behavior in this region. 

The total harmonic intensity,  collected by means of the technique 

described in details in chapter III,   is observed as a function of the angle 

of incidence which varies from -15° to 55°.    Note the striking agreement 

between experimental data points and computed theoretical curve of 

^otal^ ) given by (4-14)-    fr Particular,  the theoretical prediction   con- 

cerning   the    phase matching angle   9. = 37.27°   and zero total harmonic 

intensity at   9. = 0      are confirmed.    In addition,   oy using a KDP crystal 

and a mode locked Nd:glass laser,  the dynamical range of the dectable 

harmonic intensity is of about 10 orders of magnitude. 

Another investigation of phase matched SHG in transmission was 



9R 

performed by using a KDP crystal of different crysi:allographic cut.     The 

KDPused in this investigationhas an optic axis ,  which is r001] directed 

making an angle 41.2    to the crystal entrance surface.     The  normal to the 

crystal face   is in rm] direction.     The crystal is immersed as usual in a 

linear optically denser liquid 1-bromonapththalene. The fundamental beam is 

polarized in the rllO ] direction.    The total harmonic intensity I      ,   ,(2^) 
To ta 1 

was observed as a function of angle of incidence which varied from 0    to 

52. 5   .     The crystallographic orientation of the crystal and the result 

obtained from the investigation is depicted in Fig.  4-9. ,   The theoretical 

curve of total harmonic intensity   I (2u) )   is again given by equation 

(4-14) on the same assumption explained in the previous section.     The 

theoretical curve drawn in Fig.  4-9 was computed from equation (4-15) 

and the vertical scale is adjusted to the experimental data. 

The angle of phase matching   9        could be found in the usual way by 

using equation (2.46) and indices    of refraction of KDP given in Chapter III. 

The phase matching angle was found to be   o      = 41,2   .    According to the 

present geometry,   there exist two possible phase matched directions.    The 

first direction is along the entrance surface of the crystal.    This direction 

is associated with phase matched SHG at total reflection and has been 

investigated in section A-2 previously.     The second direction which is 

still 41. 2    away from the other side of optic (z) axis.    It makes an angle 

9_f   inside the KDP crystal,  to the direction of the face normal.     The 

angle   9       is given by 

eT = 90° - (41. 2°+41. 2°) = 7.6° 

--   -■      -■            --      ■ .»..li-iiai- ..      i   "  
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The corresponding angle of incidence   9.   is given by 

9   - sm    i -—- .   Sln9    1 
^ n      (iij Tl 

hq 

where   n      (9     ) = n0   = 1.4943 
2 a)    m 

Thus 

UÜ 

.    _     .   -lrl.4943 ,o 
VS]n   1176260- '  Ein(7-6   ) 

I 

9. = 6.95u 

i 

The rapid increase     of the total harmonic intensity at the phase 

matching angle   em   is due to an   enhancement of  the nonlinear    Fresnel 

motors    FS)11   and    F^ 11   given by (2. 35b) and (2. 35c) for polarization and 

radiahive        harmonic waves -espectively.    This rapidly monoton 

increase of the total harmonic intensity dominates the oscillatory 

pattern in the region of small angle of incidence so that no oscillatory 

pattern of interference between the homogeneous and inhomogeneous 

harmonic beam has    been   observed. The experimental data points 

are in striking agreement to the computed theoretical curve shown in 

Fig.   4-9.     It is noted that the prominent dip of the curve occurs in the 

neighborhood of   9. = 44°   as expected in theory.    According to classical 

dipole radiation,  the inhomogeneous or homogeneous harmonic intensity 

will become minimum when the propagating vector   kc or k    parallel 
. o T 

to the direction of   PNLS   which is in the   rod ] direction.    This situation 

occurs when   9g or 9 T   is (90° - 41.2°) - 48. 8° .    The corresponding angle 

of incidence   9 .   is thus given by 

_AMM_a_MH_h_-1_te^»^_^_M^^MMiaaaBM     - 1 i^L^a^iMM^i^^l^^^ 
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o 

Qf - sin"1 {\.   .   singl 
inliq

(uj) S 

-1 f 1.4943 o 
= Sin     i-6260   '^(48.8   ) 

< = 43.73° 
i 

For ehe situation that   kT   is parallel to    piN^(  one has   9_ = 48   g 

(4.16; 

NLS 
T 

and the corresponding   n^    can be computed by equation (4.69) as 

n^    (0) = n_0     - 1. 5131 

Thus the corresponding angle ,f incidence    q''   is given by 

o 
r"    -        •"If     2(1) . "I r>.   - sin     \ —   .   sinq    I 1 Ln..   (tu) Tf 

hq 

Q„ _     .   -1 f 1. 5131 .   ,_     0 T 
9i   -Sln     1H^6Ö   •   sln(48-80)} 

a;/ = 44-420 (4.17) 

Due to the intrinsic  birefringent phenomena   in   KDP   crystal 

the two harmonic beams have larger spatial separation when   q      become 
i 

large.     Furthermore,  information from equations  (4. 16) and (4. 17) indicate 

that homonogeneous and inhomogeneous harmonic intensities will never 

be simultaneously zero value at the same angle of incidence   9 
i 

Therefore the value   1,^^(2'.,)   given by equation (4. 14) will never 

become zero as in the previous case where the nonlinear polarization 

üNLS • 
P is parallel to the face normal direction,  i. e. ,    9   =0     =0,    The 

experimental points are indeed in good agreement to the theoretical 
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prediction given by the above analysis.     It is noted that the dynamical 

range of the total harmonic intensity for this case is about 10 orders of 

magnitude which is the same as in the previous case. 

The investigation    relating to SHG in transmission emanating from a KDP 

crystal immersed in   an     optically denser linear liquid 1-bromonaphthalene 

can be concluded that the experimental results of individual as well as the 

total harmonic intensity are in good agreement with the theory developed 

(12 1 
by Bloembergen and Pershan       .     The regime of transmitted second 

harmonic waves corresponding to an angular range from normal incidence 

to critical angle ' as been demonstrated. 

C-      Second Harmonic Generation (SHG) by Two Beam Spatial Mixing 
(Noncollinear Phase Matched Experiment). 

The theory developed by Bloembergen and Pershan^12^ has also 

predicted the possibility of SHG using two fundamental beam    mixing 

inside the nonlinea r medium.     The first demonstration of SHG by two 

beam spatial mixing  (TBSM) technique was performed with Q-switched 

ruby laser radiation incident on GaAs by Ducuing and Bloembergen. (25) 

(2 8) 
Later Bloembergen,   Simon and Lee performed TBSM experiment 

o 
using Raman laser of wavelength 9770A   incident upon NaCIO   .     Those 

previous experiments were performed without phase matched condition. 

In the present study of TBSM experiment,   an uniaxial KDP crystal 

prepared for noncollinear phase matched condition was employed and 

the fundamental beam was Q-switched pulse from the Nd:glass laser.   The 

purpose is to  extend the theory into the domain of noncollinear phase 
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matched condition from an   uniaxial KDP crystal and as a consequence the 

knowledge of polarization and SHG by TBSM technique will be utilized for 

picosecond pulsewidth measurements of the Ndrglass laser. 

The KDP crystal used in the experiment has dimensions of 25 x 15 x 8 

3 
mm   .     It has crystallographic orientation that its op*:ic (z) axis is 

parallel to the entrance surface.     The two equal intensity fundamental 

beams are incident from opposite sides of the face normal which is in 

rn0] direction.     The angles of incidence of each beam are equal to 9 
i 

The fundamental beams are polarized in    r UO] direction and 
-» 

according to equation (2.31a) the nonlinear polarization   PNLSis in the [ 001 ] 

direction (optic axis).    The polarization and crystallographic orientation 

of the crystal are shown in the inset of Fig.   4-10.     The overall   experimental 

arrangement and the transmitted SHI in this experiment have been in 

Fig.   3-6 of Chapter III. 

When the two fundamental beams of equal intensity impinge on the 

nonlinear KDP crystal with equal ang^ of incidence   9     from the 
i 

opposite sides of the face normal,  a nonlinear polarization pNLS is 

created in the plane of incidence with zero tangential component of the wave 

vector.    Since the polarization has the same phase at all points along the 

surface,   it radiates second harmonic waves in the normal inward and 

outward direction.    According to this situation,   equation (2. 15) can be 

applied directly and one has 

V  V9R=0 (4.18) 

The value of   e      inside the KDP is determined by the length of the 

source wave vector   k  ; 

- ■- -      -     ■      -- 
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(4.19) 

where   9     is the refracted angle for the individual transmitted fundamental 

b ea m. 

By using equation (2. 30a) and   n 

(4. 19^ can be expressed in term of   L 

- 1. 0  ,   the   k     given by equation air S /     ^ 

as 

k        ia,^      _sin2q/sin29Cr        1/2A 
S       c      (jj  - i '   'J (4.20) 

where    ■5Cr(-ij)   is 66. 78°. 

According to equation (4.20),    k      has maximum value at    9=0°   and 
a i 

c r 
vanishes when   9    =9      (uu) .    This is in agreement to the fact -hat when 

the two fundamental b^ams are incident at critical angle   9Cr(uu)   the 

fundamental beam will be along the boundary of the interfaces and their 

normal component with respect to the interface is zero. 

From equation (4.20),  one can vary the length of   k     which is along 

-» 
the faje normal direction such that it is equal to the length of   k       in the 

same direction.     Thus the noncollinear phase matched condition is 

achieved. 

The physical description which described this condition has been given 

in chapter II.    According to the noncollinear phase matched condition, 

one has for normal component condition given by equation (2, 51) as 
uu 2(ju 

n n 
ID o e 

n    .   m cos^ + — .   uucosa' =     (TT/2) ,   Zuu 
o c c 

n    cosa   =   n     (TT/2) 
o e (4.21) 

Thus 
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COS 
■1 r 1.4708 -] 

L 1.4943 (4.22) 

c^ ' = 10.17° 

The corresponding angle of incid ence or the noncollinear phase 

matched angle,   is given by equation (2. 53) as 

T m _     .   -1-   0 -, 
i      ~  Sln       n,„ Sln» 

= sin"   ■ 1.4943 sin 10.17° ] 
j 

9m = 15.29° i 

The total ..ransmitted h 

in the direction of fa< 

armonic intensity    l^^&U)   was observed 

ice normal of the exist face of the crystal.    It was 

measured as a function of angle of incidence and compared to the 

computed theoret.cal curve.     The theoretical curve shown in Fig.   4-10 

was computed by using equation (4. 15).     The justification of using 

equation (4.15) for    T (7,^   ;„ tu 
' ITotal(2uj)   ls the same as given in the previous 

section.     The anomalously high total harmoni 

in^Fig.  4-10 is due to the enhancement of nonlinear Fresnel factors 

Fc  ..    and   FNL    at   q   =flm       TU- 
S-11 T,ll      L    \      öi      •     Thls can be mathematically sho 

in the following. 

From equation (2.35b),  one has 

c intensity   I (2^) 
Total 

wn 

■pNL   _    sin pi 
S, 11      e    - c eS     GT 

; where   a = 90° 

L. - -^—. ^■^■.. 
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Thus 

, NL 
'S,ll 
 1  

o        Qt -i 2      r   e .    ...iZ 
n   cos9 -    n_   (rr/2 

(4.23 

Furthermore,   since   9=9=9=0   and   & = 90°   for this case 
o i K 

the nonlinear Fresnel factor    F given by equation (2.35c) is reduced 

to 

NL 1 + 
T,ll "7 e™   (eq -£„)       , 

T       S       T ,/ e 
R^T 

where   e „ = 1. 0   for air,  thus 
R 

-TT n     cos9„ 
NL    _ _UJ s   r  
T,U e  ,    ,,,    tr    o tn2      re,    ,,_nZ ! e 

1 

n     (TT/2)       ,   n   cos9 n^   (n/2)] 
2(ju J 

7?I   -"4-     (4.24) 
n 

2UJ 

Here   9    in equations (4. 22) and (4. 23 ) is the same parameter used 

in equation (4. 19).    It is noted that both   F^    and    F NL      given by 
o > ii r, 11 

equations (4.23) and (4, 24) respectively have the term in their denominators 

satisfied the phase matched con']it:.on given by equation (4. 12).    In other 

t .      ..       o ^L 
S,ll 

,NL 
T.ll words    F^  ,,  and   F^  „   become infinite at   9   = ry' = 10.17" .    Therefore 

upon substituting equation (4.23) and (4.24) into equation (4. 15) one has 

a singularity point for   ITotal(
2UJ)   at the noncollinear phase matched 

condition. 

Note the striking agreement between experimental points and the 

computed theoretical curve shown in Fig.  4-10.    The noncollinear phase 

matched angle   9.       is indeed ecaal to 15.29° as predicted by the theory. 

The total harmonic intensity   I fZoj)   changes by about four orders of 
lotal 

magnitude when the angle of incident changes by a few tenth of a degree 

■■  ■   - -   '-  ■■ -    -  ■■—■ - - - - --- ■■■ ■>  
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.    m 
from 9   .      .     This is for the first time that the theoretical prediction of 

the enhancement of the nonlinear Fresnel factors    F and    F 
S.ll T.ll 

for a uniaxial KDP crystal at noncollinear phase matched condition has 

been demonstrated. 

D.     Measurement of Picosecond Pulsewidth 

The agreement of experimental data with the theory for the TBSM 

experiment described in the previous section encourages us to utilize 

the results for measurement of picosecond pulsewidth of mode locked 

Nd:glass laser.    Since KDP is a nonlinear crystal from which phase 

matchable SHG can be produced,   then it is very convenient to use its 

square law intensity characteristic to measure the secor.d order auto- 

correlation function of Nd:glass  'aser radiation. 

In the experiment the KDP crystal used in the TB.SM experiment in 

the previous section served as the nonlinear medium.     The KDP crystal 

was in the air and its crystallographic orientation was the same as 

indicated in the inset of Fig.   4-10,     The fundamental beam were mode 

locked pulse trains of  300-600 nanoseconds duration as   .hown in Fig.  4-11 

and their polarizations wel.e in the nlo ] direction.The two fundamental beams 

were incident upon the crystal at noncollinear phase matched angle   9 .rn. 

The detail of experimental setup was given in Fig.   3-6 of Chapter III. 

* According to the result of TBSM experiment,   it required both spatial and 

temporal overlapping of the two fundamental beams inside the crystal. 

The temporal overlapping was critical and could be achieved only by 

straight forward scanning of the temporal delay of one beam with respect 

to the other until SHI was observed.    From equation (2, 62) one can 

- -     — —■■ -— '—   ■ .   - . ■■-  i   -■ 
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see that the transmitted harmonic intensity   I ,(2«j)   is directly 
To ta 1 

(2 ) 
proportional to the second order auto-correlation function   G      (T). 

(2) 
The   G      (T)   obtained from this experiment is a background free function 

since a single fundamental beam cannot generate SHI in the normal 

direction to the exit face of the crystal.    In the experiment the 

transmitted harmonic intensity was observed as a function of temnoral 

(2 ) 
delay   T   and as a consequence the   G      (T)   was directly mapped out as 

shown in Fig.   4-12 . 

The resolution in the picosecond pulsewidth measurement is stronglv 

dependent on the thickness of the KDP crystal used in the experiment.   The used 

crystal thickness of 8mm, can give a relatively large volume of interaction 

between the two fundamental beams inside the crystal.     The depth of the 

interacting volume inside the crystal was reduced to a minimum value such 

that the SHI could be comfortably observed for the entire scanning delay 

T .     This was done by means of masking the entrance surface of the 

crystal by a 0. 2 mm wide slit     ,    which would give    a    depth of interaction of 

about 0. 6 mm corresponding to   a    time duration of 3. 0 picosecond for the 

light travelling inside the KDP crystal.    From the experimental result 

given in Fig.  4-12,  the full width at half height of the curve   G      (T)   gives 

about 2. 67 picoseconds for the width of the auto-correlation curve.    Since 

the scanning introduces a factor of two for the temporal delay of one pulse 

in relation to the other,   thus the measured pulsewidth is about 5 picoseconds. 

The accuracy of this measurement can be improved by using the same 

crystallographic orientation of   a KDP crystal with   a thickness 

 •—■—*- __l^____   ■ •  • 
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of   the     order   of   only 0.1 - 0.2 mm.    Another factor that contributes 

to the larger pulsewidth is the characteristic of the laser system itself. 

It is an intrinsic problem of the system itself whether or not it can 

reproduce a perfectly mode locked pulse train .    Any partially mode 

locked pulse train,  which cannot be distinguishable by the fast  oscilloscope, 

will yield a larger measured pulsewidth. 

Apart from the resolution limitation,  the principle of noncollinear 

phase matched technique via square law of SHG can be used for second 

order auto-correlation mapping and for picosecond pulsewidth measure- 

ment,    the advantage of very high SHI by this method could be utilized 

in the future for the measurement of the pulsewidth via photographic 

mpthods which will be very convenient to operate. 

i 

« 
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CHAPTER V 
DISCUSSION 

During the course of the present study an attempt was made to ex- 
t(12) 

tend the study and verification of the theory to the third harmonic 

generation (THG) by using two beam spatial mixing (TBSM) technique 

The source of excitation was a Q-switched Nd:glass laser and a nonlinear 

optical medium immersed in an Isotropie liquid consisting of fuchsin red 

dye   molecules dissolved in hexafluoroacetone sesquihydrate.   The concen- 

tration of the dye solution was  set at 45 gm/liter.    At this concentration 

the phase matchable THG in normal incidence and total reflection of a 

single Nd:glass laser beam was demonstrated earlier by Bey et al , 

and indices of refraction of the solution were given as 

n('j)) = n(3(u) = 1. 3205 (5.1) 

The experimental setup for this investigation is shown in Fig.   5-1. 

The monitor channel was similar to the previous setup except for the 

fuchsin pyrex cell and an   interference Ulter of a transmission peak at 3500 A0 

were used instead of the quartz platelet and second harmonic interference 

filter respectively.    The fundamental beam was split        into two beams of 

equal intensity by the beam splitter.    Subsequently the two beams were 

incident on the fuchsin cell with equal angle of incidence from the opposite 

side of a face normal of the cell.     The signal channel,   as indicated in 

Fig.   5-1 could be rotated around the vertical axis which was tangential to 

the entrance face of the fuchsin cell. 

The signal arm was scanned through a large interval of angle by 1° 

for each step.    Despite careful alignment of every optical component, 
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varying the angle of incidence    9.    and repeated scannings,   the transmitted 

third harmonic intensity (THI) was not observed.     The reasons that justify 

the result can be mathematically explained in terms of a noncollinear phase 

matched picture which will be given belcw. 

The two incident beams of equal intensity are incident from quartz 

12 
with   9.    =9.    =9.   as  shown in Fig.   5-2.    Since the dye fuchsin solution 

is an Isotropie medium,the Jocus of transmitted third harmonic wave 

vector   kT   will be a semicircle of radius    3 | kt!  inside the medium. 

The kt   is the transmitted fundamental wave vector.    According to the 

phase matched  condition given by several authors(33'34'43 ^  the three 

transmitted fundamental wave vectors must add up so that the resultant 

vector is equal to   k^Sn)).    Here one assumes that one fundamental beam 

contributes the transmitted fundamental wave vector   2k (uj)   whereas 

the other is   kjw) .    Furthermore,   boundary conditions given by 

Bloembergen and Pershan(12 ) require that the tangential components of 

those wave vectores must be conserved.     By using equation (2. 49) one 

obtains from Fig.   2-5 that 

tangential component: 

r2kt(uj) - k>)] sin91 = kT(3(jj) sin9 (5.2) 

normal component: 

[2kt((ü) + kt(uj)] cosei = k   (3UJ ) cos9 (5. 3) 

Since   k>) = ^(w) and   k^w) = ^ n(3uü) , equation (5.2) and 

(5. 3) can be deduced to equation (5. 4) and (5, 5) respectively as 

„-^     - -■■■■ ■—   ■  .-..-— ^ __^_i_ ,«.._^„_,_ u. „^ .~^  . —^ 
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.   ,.        3n(3uu) 
s:ner "^r sln9T f5-4) 

_ n(3(u ) 
1        n(tjL') T \?-?) 

Since the dye fuchsin solution has   a     concentration such that 

n(j.O = n{3uj) ,   the  solution   of   the    simultaneous equations  (5.4) and (5. 5) 

be c om e s 

9l=qT=0 (5.6) 

This is not a surprising result.     It has the physical meaning that 

phase matched THG will be created if the fundamental beam is normally 

incident upon the dye fuchsin solution.    Under this situation one obtains 

from equation (5. 3) that   3kt = kT   and the two fundamental beams will 

collapse into a single beam.     This situation has already been investigated 
(50) 

by   Bey et al 

From the above analysis   it is noted that when the dye fuchsin of 

concentration 45 gm/liter is employed as a nonlinear medium,   the 

phase matched THG is produced under normal incidence of the fundamental 

beam.    However,   in the experimental investigation the angle of incidence 

was varied in 2° steps from 10 to 25    .     This variation of the angle of 

incidence apart from 0° will yield phase mismatched condition and since 

the dye fuchsin solution is strongly absorbed at the third harmonic line 
o 

(3530A),   a transmitted third harmonic intensity will not be observed 

in the experiment. 

From equation (5.4) and (5. 5),   future analysis can be made if one 

selects a dye concentration different      from 45 gm/liter.    One has to 

.^^.--MB-aM 
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use hisher dye concentration due to the fact that   n(üu)   is greater than 

n(3'jj)   in this  region and the equation (5. 4) and (5. 5) will give physical 

solution.     This can be mathematically demonstrated in the following 

example. 

By using the dye concentration of 50gm/liter the indices of 

refraction at fundamental and third harmonic frequencies will be given 

as 

n(m) = 1.3225 n(3(ij)   = 1.3210 

From equation (5.4) and (5. 5) one obtains 

1 =    9sin   a     +  cos   q       i1 ——^-L '■ 
T T' 1   n((u) 

1 -  (8sin   9     +  1)     ■   ^      A 
T L 1. 3 ii 2 5 J 

^^ = 0.97 T 

(5.7) 

(5.8) 

Thus,   from equation (5.4) the corresponding angle of incidence in 

Fig.   5-2 will be 

i (5.9) 

This is the phase matched angle for   a     dye concentration of 50 gm/liter. 

One can use even higher dye concentration in order to achieve   a relatively 

large phase matched angle.    However,   due to a lack of knowledge of the 

indices of refraction at hand,   the experimental investigation has not been 

carried out.    The above analysis will serve for future experiment involving 

TBSM for third harmonic generation from Isotropie     nonlinear media 

with   n(tjL) )>   n(3uj ) . 

 - ——-^ 
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Even though the experimental result for the case of dye concentration 

of 45 gm/liter,   turned out to be negative,it can be explained by the theories 

/I'?       OO       O/l       A *}   \ 

developed by several authors      '   ' '• J   '       '. In a relatively new field it 

cannot be    expected that   experimental results always agree with 

theoretical        predictions   ,        However,   to be able to ultilize theoretical 

knowledges to explain the phenomena observed in the experimental 

investigation will result a better understanding and direct contribution 

to the theory. 

For this reason it is very important that experimental and theoretical 

go hand in hand for increase our knowledge of »he field 

i 

I 



..-,...,...,.»...,, ,„   ,     , .    . T. ^'~—^"— '—-' '      'i      ""  *.l^iWWUpiP"li"^ipiJI.P   lilMtfm,,„*,„,„.mm,.,mv<<,m,„itmn*m    . ■■■■ miiW^^^M^ WI.WPP.I.PIM Vli<MJWIIOT^q*^9PHn|pan*HIPt^H^«in«^m«H^nPWfPf^^^«^^W^^^^*>^^«m 

f 

I 

I 

I 

I 

* 

CHAPTER  VI 
CONCLUSION 

The nonlinear optical interaction in a KDP prism in relation to 

second harmonic generation was investigated by means of Q-switched 

and mode-locked Nd:glass laser pulses and the results obtained from 

the investigation were subsequently utilized to measure the second order 

intensity auto-correlation function.     The experimental results obtained fro 

this investigation provide additional rather striking and detailed confirma- 

tion of the theory developed by Bloembergen and  Pershan(12) on the 

behavior of the light waves at the boundary of a nonlinear crystalline KDP 

medium.    Although the theory was developed for a homogeneous incident 

plane wave of infinite cross section,   the results are well described by 

taking the field solution for the infinite plane wave and the      cutting off 

the beam by modification of the aperture width expression and taking 

linear Fresnel factor into consideration.     The recasted theoretical 

expressions given in chapter II have been well verified andare valid for an 

uniaxial crystal,   e. g. ,   KDP.     The reasons that the modification of the 

| infinite plane wave case works so well is due to the fact that the dimension 

of the relevant experimental parameters are large compared to the 

characteristic dimension of the physical problem.      Detailed    justification 

has been given by Simon 

The results obtained from the experiment of phase matched second 

harmonic generation at total reflection are in agreement with the other 

observations        under the same condition except different wave length 

and type of the fundamental beam.     When the KDP crystal  being   phase 

matched along its surface was rotated about its face normal by 180° it 

12 0 

m 
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was found that the reflected second harmonic intensity in the neighborhood 

of critical angle was always   lower .     This phenomena can be qualitatively 

explained by an intrinsic property,   the so called double refraction which re. 

suits in a     walk-off effect in the uniaxial crystal.     However,  an exact 

mathematical treatment that accounts for   a     detailed explanation of 

this phenomena  remains for future investigations. 

With good utilization of the advantages of mode locked Ndrglass laser 

pulses for the observation of reflected second harmonic intensity frdm 

a       KDP crystal,   the Nonlinear Brewster' s angle of the     transparent 

medium (KDP) has been first demonstrated with an excellent agreement 

to the theoretical prediction. 

For the transmitted second harmonic waves,   the angular dependence 

of homogeneous,   inhomogeneous as well as the total harmonic intensities 

emanated from KDP crystals were experimentally confirmed with the 

theory.     The phenomena of phase matched SHG along the oblique direction 

by means of birefringence(33' 34) was investigated and the results were also 

in good agreement to the theory.     The relative differences of SHI between 

the maximum and minimum as indicated in Fig.   4-8 and 4-9,  were 

observed to be about ten orders of magnitude.     The striking agreement 

of the experimental result of noncollinear phase matched SHG by means 

of two beam spatial mixing (TBSM) to the theoretical prediction was 

utilized to measure the second order intensity auto-correlation function 

of Ndrglass laser radiation.    This,in principle,   can be used for the construe 

tion    of    a device for picosecond pulsewidth measurement using simple 

-^ —  —..,—.,^-..-—-...    -...^— .-  ■ ..-- --v.. ■--,.... 
■ - ■   
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photographic techniques.   This is due to the fact that the SHI emanating 

from the KDP crystal under noncollinear phase matched condition is 

so intense that it can be photographed. 

Finally,   the results obtained from this investigation confirm and 

extend the theory of Bloembergen and Pershan(12) for   .onlinear optical 

interaction in an uniaxial crystal (KDP)   in the regimes of reflected and 

transmit 3d second harmonic intensities. 

- -:-     ■    --  -  .■.-^-....,..-.,■.■..,■■..^.^w^J^.^-.  
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7 
10 

12 

•KUn /B.JU5168.BHANTHUMNA,ltl00 
•PAS5WD 17B9FI 
•FOR«IS MAIN 

COMPLEX Al. A2, A3. A4,  Aj, A6. AT. A8.  FNL. FLT. C. D 
C = (1.0,0.0) 
0   = (J.0.1.0) 
READ (5.7)A 
FORMAT(F8.5) 
XINC = 0.1 
A = A+XlNC 
PI = 3.U16 
IF ( A-75.0 ) 12. 12, 100 
AX ■ A»PI/180.0 
Z = SINtAX) 
Al = Z«C 
Z = COS(AX) 
A2 = Z»C 
Bl = 1.513122 
B2 = 1.47122 
B3 = 1.«94305 
01 = 1.6260 
D2 = 1.670 
Z = (r>l/D2)*Al 
A3 = l*C 
Z   -   SORT( 1.0-(A3)*»?.0) 
A4 = 7.*C 
IF (A-64,797) 14. 14, 15 

124 

13 
14 

15 
16 

Z = ( D1/B3) »Al 
A5 = Z»C 
Z = SORT ( 1.0- (A5)**2.0) 
A6 = Z*C 
Z = ()1/B2)«A1 
A7 = Z*C 
Z = SORT (1.0-(A7)»*2.0) 
A8 = ;.»c 
GO TO 80 
IF (A-66.781) 16, 16, 17 
Z = (Ü1/B3)»A1 
A5 = Z»C 
Z " SJRT { 1.0- (A5)»»2.0) 
A6 = Z»C 
Z = (D1/B2)«A1 
A7 = Z«C 
Z = SORT ((A7)»»2.0-1.0) 
AS = ^«0 

GO TO 80 
17  Z = (D1/B3)»A1 

A5 = Z»C 
Z " SORT((A5)«*2.0- 

80 

90 

1.0) 
A6 = Z»D 
Z = (D1/B2)»A1 
A7 = Z»C 
Z = S0RT((A7)**2.0-1,0) 
A8 = Z»D 
FLT = ((2.0)»A2»A5)/(A1»A6 +A2*A5) 
FNL = (A5»A7*A7»A7)/(A3«(A7*A4'+A8»A3)«(A8»A4 t- A7*A3) 
1«(A7M6 + A8*A5» ) 
FLTR a REAL(FLT) 
FLTI = AIMAG(FLT) 
FNLR « REAL (FNL) 
FNLI =« AIMAG (FNL) 
FNLM = SORT ( FNLR»FNCR + FNLI»FNLI) 
FLTM ^ SORT( FLTR»FLTR + FLTI»FLTI) 
SHI = (FNLM»»2.0)«(FLTM»*4.0)»(A4/A2) 

100 
•XOT 
59.9000 
•FIN 

WRITE (6,90) 
FORMAT (1H0, 
GO TO 10 
END 

SHI 
INC. ANGLE ,F6.3t REFLECTED   SHI •F10.3) 

Computer Program for the Theoretical Curve 
of Figure    4-1 

^*^^MMH«MIML^^^MttaHiMM -   ■ ■ ill. 
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•RUN VBt305l6802.BHANTHUMNAt3,200 
•FOR.IS MAIN 

COMPLEX F.A1,A2.A3.A4»A5.A6.F1.FNL.FL,C.0 
oa.o.o.oi 
D»(O,rt,l,0) 
IF(A-/5.0)12,12,50 

12 IF(A-66.615) 13.13JU 
13 X=SIN(A»PI/180,0) 

X= 1.0892«X 
X-X»X 
X*SQRT(l,o-X) 
F=X*C 
GO TC 15 

U   X=SIN(A«PI/ieO.O) 
X= 1.0892*X 
X=X»X 
X«:SORT(X-1.0) 
F«X»D 

15  AX=A»PI/180.0 
Z'SINIAX) 
Fl» 1.0892*Z*C 
A1»Z»C 
Z»COS(AX) 
A2«Z»C 
ALPHA-41,2»PI/180.0 
Z»SIN<ALPHA) 
A3»Z»C 
Z«COS(ALPHA) 
A4«Z»C 
R« ASlN(0,9746»SlN(Ax)» 
Z=SIN(R) 
A5=Z»C 
Z"COS(R) 
A6 = Z*C' 

FNL=(F1*F1»F1)»(2,0»F1*F*A4-A3+2.0*F1*F1»A3)/JA5»(2.0*F1»F)«<F1»A6 
1+F«A5»«(F»A6+F1»A5)) 
FL»2,0»F1»A2/(A1*F+A2»F1I 
FNLR=»REAL(FNL) 
FNLI=AIMAG(FNLI 
FLR=REAL(FL» 
FLI-AIMAGCFL) 
FNLM=,<JORT(FNLR«FNLR+FNLI*FNLI ) 
FLM»SORT(FLR»FLR+FL!*FLI) 
SHI=(FNLM»»2.0)»|FLM»*4,0» 
WRITE(6.20)A.SHI 

20  FORMATdHO.i INCIDENT ANGLE «^8.5.« INTENSITY OF SHG -^10.3) 
50  FND 

59.90000 
00 

I 
I 

Computer Program for the    Theoretical Curve 
of Figure    4-2 

' 
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•RUN 
•FOR 

7 
10 

12 

13 

1A 

VB.30516802iBHANTHUMNA»3»200 
.IS MAIN 
COMPLEX AltA2,A3,A4,A5,A6.A7,A8,FNL.FL.C,D 
C« (1.0»0.0) 
D= (O.Oil.O» 
READ(5,7JA 
FORMAT(F8.5) 
XINC =0,1 
A = A+XINC 
PI = 3.1416 
IF (A-75.0) 12»12.100 
AX= A»PI/180.0 
Z= SIN(AX) 
Al= Z»C 
Z= COStAX) 
A2= 7»C 
Z= (1.6277/1.670)*A1 
A3= Z«C 
Z= SQ^T(1.0-((1.6277/1.670)*Al)♦♦2.0) 
A4= Z*C 
IF (A-66,61) 13tl3.l4 
Z=(1.'S277/1.4942)»A1 
A5= Z*C 
Z= SC^T(1.0-(((1,6277/1.4942)«Al)••2.OH 
A6= Z*C 
GO TO 15 
Z= (1.6277/1.4942)»A1 
A5= ZWC 

I 
I 
I 
I 

Z« SQRTt(((1.6277/1.4942)*A1)**2.0>-1.0) 
A6= Z*0 

15  ALPHA» 48.8»PI/180.0 
Z= SIN(ALPHA) 
A7= Z»C 
Z= COS(ALPHA) 
A8» Z*C 
FNL= ( ( A5»A5»A5)*(A5*A8+A6»A7) ) /(A3»( A5»A6+A ',*A5)*( A5»A4+A6»A3 ) 
1»(A6»A4+A5*A3)) 
FL= 2.0»A5»A2/(A1»A6+A2»A5) 
KNLR= REAL(FNL) 
FNLI= A1MA6(FNL) 
FLR= REAL(FL) 
FLI= Al^AG(FL) 
FNLM= SQRT(FNLR»FNLR + FNL1*FNLI) 
FLM= SORT(FLR»FLR + FLI»FLI) 
SHI =  (FNLM»»2.0)»(FLM»»4,0) 
WRITE (6,20) A, SHI 

20  FORMATdHO,« INCIDENT ANGLE »•FB.S»' INTENSITY OF SHG =«F10.3) 

100 
•XOT 
59,90000 
•FIN 
•FIN 

FORMAT(1H0, i 
GO TO 10 
END 

Computer   Program for the Theoretical Curve 
of   Figure   4-3 
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RUN VB»3O516802tBHANTHUMNAt3f200 
'FOR. lb f'AIN 

KE.AD(5.7)A 
7  FORMAT(F8.D) 

10  XINC =0.1 
A = A+XINC 
PI = 3.1416 
IF (A-50.01 12.12,100 

12  AX= A«PI/180.0 
i=SIN(AX) 
Al= Z 
1=   COS(AX) 
A2= 2 
2={ 1.6277/1,670)»A1 
A3= Z 

2=SORT(1.0-((1.6277/1.6 7 0)«A1)»»2.0) 
A'»= Z 
2= ( 1 .6277/1.4942)*A1 
A5= Z 

2 = .SQRT I 1. U-( ((1.6277/1.4^42)» A 11»»2.01) 
A6= 2 
ALPHA» 48.P<PI/180.0 
2= SIN(ALPhA) 
A7= 2 
2= COS(ALPHA) 
A8= 2 
2= (1.6277/1.4716)»Al 
A9 = 2 
2 = SORT(l.ü-(((1.6277/1.4716)«Al I»«2.0)) 
'1C= 2 

f        - 1^M5«^^ul?9,tAR"A10*A7,,/(A3,,,A9*A6 + A10#A5,#,A9<ADDA10*A3) 
FL- (2.C*A2« v5)/(Al»Ab+A2*A'j ) 
SHI = (FNL»« %0)»(FL»«4.0I 
WRITE (6,20) A, SHI 

20      GO^l^0''    I'NCIDt'NT   ANGLt   =,F-"8.5.'    INTLNSITY   OF   SHG    "FIO.S) 

100   END 
•XOT 
34.90000 
•FIN 

Computer   Program for the Theoretical Curve 
of Figure   4-6 
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•RUN VBf 305168,RHANTHUMNA,1,100 
•PASSWD 17BOFI 
•FOR .IS MAI'I 

READ(5,7)A 
7 rORMAr(F8.5) 
10 XINC a 0,1 

A C A+XINC 
PI r 1.1416 
IF (A-90.0 ) 12,12,100 

12 AX B .\»PI/180.0 
Al 3 SIN(AX) 
A2 = COSfAX) 
B2 = 1.47122 
Bl B 1.513122 
B3 = 1.494305 
Dl = 1.6260 
D2 B 1.670 
A3 B (B1»A1)»»2.0 
A4 B <B2»A2)»#2.0 
A5 B SQRT(A4+A3I 
B4 B (B1»B2)/A5 
CX = AX 
Cl S SIN(CX) 
C2 » ASIN(<B4«C1)/B3) 

■ 

C3 ■ (C2»180.0)/PI 
C4 •= ASIN((B4»C1)/0H 
C5 = (C4»180.0)/PI 
C6 « ASlN((B4»Cl)/02) 
C7 « (C6»180.0)/PI 
Rl E SIN(C4) 
R2 = «:0SiC4» 
R3 « i>IN(C2) 
R4 « COS(C2» 
P5 = ■5IN(C6) 
FLT = (2.0»R2»R3)/(Ri»R4-fR2#R3) 
FNLS " (rR3)»(-l,0))/((B3)*»2.0-(B4)»»2.0) 

,^1:1..! ,n'01/(D2#B'')>#<R3»Al»Al»Al)/(R5*tSl J( AX+C6 ) )*( COS( AX-C6 )' 
1»(SIN(AX+C2))) - (FNLS)*(B3/B4) 
SHI1 « B3»(FLT»»4.0)»(FNLS»»2.0|«R4/R2 
SH12 *   B4»<FLT»*4.0)»(FNLT»*2,0)»A2/R2 
SHI = SHU + SHI2 
WRITE(6,90) A,C3,C5, SHI1, SHI2, SHI,B4 

90  FORMAT ( 1HO, •  ZETAT =  •,F6.3, •  ZETAS -  «^6.3, 
!• INC«ANGLE=  •^6.3,' SHU» •.F10.3.t SHI2« «.FIO^, 
!• SHI = i,F10,3, • INDEX E« •,F10.7I 
GO TO 10 

10( END 
•XOT 
O.OOf00 
• PIN 

Computer Program for the Theoretical Curve 
of Figure   4-7 and   4-8 



I 
I 
i 

i 
i 
I 
I 
i 

l 

i 

l 
I 

129 

•RUN VBt305l68,0HANTHUMNA,lfl00 
•PASSWO ITB^FI 
•FOR 1 IS MAI'I 

READ(5,7)A 
7   FORMAT(F8.5) 
10  XINC « 0,1 

A = A+XINC 
PI = 1.1416 
IF (A-66.8)12,12,100 

12  AX ■ .\*PI/180.0 
Al = SIN(AX) 
A2 « COS(AX) 
B3 « '..494306 
B4 « 1.47125 
Dl = 1.5260 
A3 ■ ASlN((D1»A1)/B3) 
A4 = SIN(A3) 
A5 = f:0S(A3) 
FLT = (2.0»A2»A4)/(Ai*A5 +A2»A4) 
FNLS = ((A4)»(-l,0))/((B3»»*2.0 -(B4)»»2.0) 
SHI1 » B3»(FLT»»4.0)»(FNL5»*2.0)*A5/A2 
WRITE (6,90) A, A3, SHU 

90  FORMAT (1H0, 1  INC.ANGLE =  «^6.3, • ZETAS - ',fb,l, 
1'  SHI1  =   ».FlO.a) 
GO TO 10 

100 END 
•XOT 
64,50000 

Computer Program for the Theoretical Curve 
of Figure   4 -7   ( partial ) 
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•RUN VBt3051(S8,RHANrHUMNA,lilOO 
'PASSWD 17B1F1 
•FORtIS MAIN 

RfAD(j.7)A 
7   FORMAT(Fl?.8l 
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01 ■ " 1,4889679 
02 • • 1.4929732 
03 ■ ■ 1.4968934 
04 • • 1.5041322 
05 • • 1.5097313 
06 • ■ 1.5127767 
07 ■ • 1.5131219 
08 ■ ■ 1.5125449 

10 XIN( : • 0,1 
A ■ A+XINC 
PI • • 3.1416 
Bl • • 1.6260 
B2 ■ > 1.494305 
B3 • ■ 1.670 
B4 ■ • (48.8«Pn/180,0 
IF A-5.0)12.12,16 

12 Y1N< : • 0.000079328 
01 ■ ' Ol+YINC 
OX ■ ■ 01 
GO 1 ro so 
IF A-10,0) 15.16.25 
YIN( : « 0,00007878 
02 • • 02 ♦ YINC 
OX • ■ r>2 
60 1 ro so 
IF A-20,0) 26,26.35 
YIN< : - 0,00007256 
03 • • IJ3 + YINC 
OX • ■ 03 
GO 1 ro so 
IF A-30,0) 36.36.45 
YIN< : » 0,00005881 
DU   • ■ )4*YINC 
OX • ' 04 
GO 1 ro so 
IF A- 40,0> 46.46,5«> 
YIN( ! « 0,00003050 
05 • ■ D5*YINC 
OX • • 05 
GO 1 ro 80 
IF A-44,3) 56.56. 65 
YIN( : « 0,00000793 
06 • ■ 06-»-YINC 
OX • < 06 
GO 1 ro so 
IF A-50,01 66.66.75 
YIN( : • 0,00001034 
07 > ■ 07-YINC 
OX ■ • 07 
GO 1 ro so 
IF A-60,0) 76.76.100 
YINC : • 0,00004607 
08 • < 08-YINC 
OX • ' 08 

80 AX ' ' A»oi/180.0 
Al ■ ■ SIN(AX) 
A2 • COS(AX) 
A3 ■ > (B1»A1)/B2 
A4 • • SORTtl40-(A3»A3)l 
A5 ■ ■ (B1«A1)/0X 
A6 • ' SORT(1.0-(A5#A5)) 
A7 • ■ <B1«A1)/B3 
A8 • • 'VSIN((B1»A1)/B2) 
A9 > ■ ASlNt(Bl»Al)/DX) 
AID ' ASIN((B1»A1)/B3l 
FLT « (2,0»A2«A3(/(Al»A4 + A2»A3) 
FNLS . " (SIN(B4-A8) )/((B21»»2.0-IDXH •: .0) 
FNLT • (LO/lBl^DX))»! A3»A5*A5«SIN(A9+b4) l/(A7»SINIA9+A10) 
1«COS(A9-A10)«SIN(A8+A9)) -(B2/DX)•(SIN(B4-A8»)/((B21»»2,0- 
1(0X)"2,0) 
SH11 » B1»(FLT»»4.0)»(FNL5»»2,0)«A4/A2 
SHI2 « 0X*(FLT»»4.0)»(FNLT»«2,0)»A6/A2 
SHI ■ SHI1 ♦ SHI2 
WRITE (6,90) A.OX. SHtl. SH12. SHI 

I 

90  FORMAT (1H0. 
1»   SHI1 •  • 
GO TO 10 

ior END 
•XQT 
0.001300 
•FIN 
•FIN 

>   INC, ANGLE ■ 
iF12.3, •   SHI/ 

,F6,3. • 
•.F12.3.' 

MOEX ERAY •  '.F10,7. 
SHI =  <.F12,3) 

Computer Program for the Theoretical Curve 
of Figure   4-9 
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1 

i 

•RUN VB,305l6802tBHANTHUMNA.3,200 
•FOR IS MAIN 

READ(5.7)A 
7 FORMAT (F8.5) 

10 XINC = 0,1 
A ■= A + XINC 
PI = 3,1416 
IF(A-25.0)12,1 NICO 

12 AX=A»PI/180.0 
2=S1N(AX) 
A1 = Z 
Z=COS{AX) 
A2 = 2 
Z=(1.0/1,4942)»A1 
A3 = Z 
Z=SORr(1,0-A3«A3) 
A4 = Z 
FNLT =(1,4942/1.4712)»A4»(1 .0/((] .4942*A4)**2.0- ■d, .4712) »•2.0)) 
1+(1.0/1.4712) 
FLT= <2.0»A2»A3I/(A1»A4+A2»A3) 
FNLS = (1.0/((1,4942»A4)»*2 .0-(l. 4712)«*2.0)) 
SHI1 = (FLT»»4.0)»(FNLT»«2. 0)/A2 
SHI2 *   (FLT»»4.0)»(FNLS»»2. 0)/A2 
SSHI = SHI1 + SHI 2 
WRITE(6.20) A, SSHI, SHI1, SHI2 

20 FORMATdHO.« INCIDENT ANGLE = «F8. 5,  •TOTAL INTENSITY OF SHG = 
1F10.3,   'SHU = <F10.3t 'SHI 2 = • F10.3) 
GO TO 10 

100 END 
•XQT 
0.00000 
•FIN 

Computer Program for the Theoretical Curve 
of Figure   4-10 
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