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ABSTRACT

The intensities of the second harmonic light in total reflection
and in transmission from uniaxial KDP cyrstals immersed in an optically
denser liquid 1-bromonaphthalene have been measured as a function of
angle of incidence of the fundamental beam from a mode locked Nd:glass
laser. In the experiment, variouscrystallographic orientations of the
KDP crystal were used. The results agreed well with the theoretical
predictions of Bloembergen and Pershan(lz). In particular, the existence
of a nonlinear Brewster's angle of a transparent medium (KDP), with
nonlinear polarization in the plane of reflection, has been first demon-
strated. The transmitted second harmonic intensity under phase matched
condition by birefringence(33’ 34), in the oblique direction was found to
vary more than ten orders of magnitude in the angular range of interest.

The transmitted second harmonic intensity under noncollinear
phase matched condition by means of two beam spatial mixing (TBSM)
in the KDP crystal, using Q-switched Nd:glass laser pulses, was
observed as a function of the angle of incidence. The result was in good

(12)

agreemeont with the theory of Bloembergen and Pershan As a

consequence, this result was utilized to measure the second order
intensity auto-correlation function of Nd:glass laser radiation. The

picosecond pulsewidth of Nd:glass laser radiation was measured to be

5.29 picosecond.
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CHAPTER I
INTRODUCTION

A. General Introduction

Since the advent of LASER @ (Light Amplification by Stimulated

Emission of Radiation) or optical maser, the coherent, high intensity

and monochromatic light sourcesare available for nonlinear optical
2
processes in materials. Franken and his co-worker( » in 1961, performed
an artfully devised experiment in which they proved that the ruby laser
o
light of wavelength 6943A focusec within a quartz crystal contained on
emerging a small admixture of a second harmonic of a wavelength
o

3471. 5A. The discovery of this phenomenon, which has its origin in the
nonlinear optical properties of matter, became the starting point of vast
development further enhanced by the rapid evolution of laser technique.
This has led to the detection of a number of novel optical effects,

. . : . ! (3, 4)
which have since been discussed in various monographs and

X : (5-10) . .
review articles . Furthermore, the theoretical essentials of
coherent nonlinear processes are to be found in the fundamental work of -

(11)

» Bloembergen and Pershan(lz), Akhamonov and

(14-17)

Armstrong et al

Khokhlov(l3) and certain other authors

When low intensity light propagates in a transparent medium, it

does not affect the optical properties of the medium because the

e

-
electric polarization P(;,t) induced in it is a linear function of the
A% 5 »
electric field E(r,t) of the light wave. A linear relationship between

b Y -+ 5
P(r,t) and E(r,t) results immediately in Lorentz' s classical electron

(18) 4

theory . To a linear approximation, the solutions of Maxwell' s

equations satisfy the principle of superposition, which states that the




electromagnetic waves simultaneously transversing a linear medium
propagate independently without interacting upon one another. In linear,
optically transparent medium, electromagnetic waves accordingly
propagate without distortion, the refractive index n depending solely
on the properties and thermodynamic state of the medium but not
depending on the incident light intensity. All optical phenomena depend
linearly on the electric field strength as long as the medium under
investigation is probed by low intensity light wave and is not acted upon
simultaneously by external field.

However, when a transparent medium is transversed by light of

very high intensity, i.e. laser, its refractive index n and electric

permitivity become dependent on the intensity of the incident light.
This has indeed been directly observed, with the help of giant pulsed
ruby lasers, by various authors . Lasers operating continuously
or pulsed radiate a parallel and monochromatic light, coherent in space
and time, and contain a flux of immense energy density. The very high
light intensities of the beams, never achieved by ordinary light, cause

-+ 5

the index of refraction to depend on the electric field E(r,t) of the

beam. An electromagnetic wave of such strength, inducing optical

nonlinearity in the medium, itself undergoes distortion when propagating
through the medium. By Fourier spectral analysis, the original wave

of fundamental frequency w is now additionally accompanied by harmonic
components of double frequency 2 u triple frequency 3 ® and higher

harmonics. (3-6, 11-13). Furthermore, due to the availability of high

B T T —— - SN b s R e u«mﬂmumJ




) 1. Harmonic Generation in Reflection.

intensity and ultrashort light pulses,

various nonlinear optical processes,

€. g. self focusing phenomena, self induced transparency, stimulated

Raman emission, photon echo, have been observed and well described

2- , 10,
in various articles(2 ex) and reviewed article (9,10 17).

the present

work, which will be pPresented here thereafter, only second harmonic

generation in reflection and transmission from an uniaxial crystal KDP

using Nd:glass laser radiation as fundamental beam, will be described in

detail, and to a lesser extense, an attempt to generalized the effect to

third order is also included.

B. Review of Previous Experiments

Theory of interactions

between light waves in a nonlinear media was given by Armstrong.

Bloembergen, Ducuing and Pershan(11 Consequently, the theory of

light wave at the boundary of nonlinear media was given by Bloembergen

12
and Pershan( ) Second harmonic generation in reflection was first

observed by Ducuing and Bloembergen in 1963(25’ 26), Both the directional

and the polarization properties of second harmonic reflection from III.V

semiconductor mirrors, €.g. GaAs, have been verified. Furthermore,

(26

Bloembergen has predicted(lz) and demonstrated ) SHG in reflection

by using two fundamental beams of Q-switched ruby laser spatial mixing

2
in GaAs mirror. Chang and Bloembergen( have verified the laws for the

reflected intensity of second harmonic light. In the experimental

verification they used various crystallographic cuts of cubic crystal

GaAs mirrors upon which the fundamental beam of Q-switched ruby laser

babad b 5 N o G o e SRR LB B S ) (g
I ) T T e T S e Gl e e
OETIL S ST TR TCLI VR CIar PO AR Py SRS .




wag incident, In that experiment Chang and Bloembergen have first
demonstrated the existence of Nonlinear Brewster Angle for the
absorbing nonlinear medium. Bloembergen and Lee(zg) observed the
internal reflected second harmonic intensity (SHI) generated at 4860}(\)
by an incident beam totally reflected by nonlinear medium NaClO 3and
KH2 P04 (KDP), immersed in an optically denser linear fluid (I-
bromonaphthalene). The incident beam was the stimulated Stoke beam
induced by Q-switched ruby laser in H2 gas. In accordance with theory
given by Bloembergen and Pershan(12 ), this experiment shows anomalously
high reflected harmonic intensity because of the enhancement of the
intensity by phase matching at the critical angle of incidence for total
reflection. Furthermore, a detailed discussion and experimental
verification to the theory(lz) concerning total reflection and two beam
spatial mixing on NaClO3 has been given by Bloembergen, Simon and
Lee(zg).

The first experiment in obtaining an ultraviolet third harmonic
generation in reflection was done by Bey, Giuliani and H. Rabin(30).
With the help of previous work of Bloembergen and Lee(zg), they
introduced in the experiment anomalous dispersion into normally
unmatched medium. They obtained phase matched third harmonic
generation (THG) at 353OX of the Nd:glass laser line by introducing dye
molecule of fuchsin red into the liquid medium of hexafluoroacetone
sesquihydrate. Wang and Baarden(31) reported studies of THG reflected

from the boundary of solids including metal, semiconductors, alkali




. 32
halides and glass. Recently, Burns and Bloembergen( ) used pico-

second pulse from Nd:glass laser to study reflected THG in absorbing

media of cubic or isotropic symmetry.

2. Harmonic Generation in Transmission. The first

experiment of second harmonic generation was performed by Franken

(2)

et al" ’ in the transmitted direction. They used ruby laser beam focused

in a piece of quartz and observed, after separation the fundamental by a
o
prism, a second harmonic of wavelength 3471. 5A. Since then, the

second harmonic of light has been observed in various piezoelectric

(33) (34)

and other nonlinear material. Giordmaine , Maker et al in 1962,

demonstrated independently the use of birefringence of uniaxial crystal
to achieve phase matching condition under which the second harmonic of
. . (11) . (14) .

light is enhanced. Armstrong et al and Kleinmann introduced

the concept of coherent length along which the fundamental and second
harmonic beams will travel in step with respect to each other. Second

harmonic generation with double refraction has been given in detailed

(35). Miller(36) used Nd:CaWO, laser to observe second

by Boyd et al %

harmonic of light from BaTioj. KDP, ADP CdS and strongly nonlinear

(37) (38)

o
3 observed SHG at 5320A in

LiNbO3 and LiTa Geusic et al

BaZNaNbO15 and K6Li4NbO3 using slightly focused, continuously pumped,

repetitively Q-switched Nd:YAG laser. Using ruby laser and Nd:glass

(39) (40)

laser Kurtz et al and Nath made a rovel study of SHG from

4
strongly nonlinear materials HI% and LiI% respectively. Askin et al( b

Observed continuous SHG using the infrared transition 1. 1526 of the He-Ne

oo ol ob oo
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gas laser with a focused and a non-focused beam to measure the second
order susceptibility component d36 of KDP. With the help of temperature
tuning, phase matched SHG in LiNbO3without double refraction using
infrared transition 1. 1526 of He-Ne gas laser was demonstrated by
Miller(42). Bloembergen et al(Zg) demonstrated two beam spatial
mixing in NaClO3 near critical angle of incidence and observed SHG in
transmitted direction. The equation for the nonlinear phase matched
condition which requires all three propagation vectors of the fundamental
and of the second harmonic have to form a closed loop was first

pointed out by Tien(43) and later by Boyd (44). Phase matched SHG with-
out double refraction (or noncollinear phase matched SHG) in ADP,

KDP using He-Ne line of 1. 1526 was demonstrated by A. Askin et a1(45).
Later noncollinear phase matched SHG in LiIO3 was performed with
Q-switched Nd:YAG laser by Shinsuke Umegaki et a1(46). Recently

47
Agga rwal( )

achieved noncollinear phase matching in GaAs by using a
carbor dioxide laser,
The first experiment in obtaining an ultraviolet third harmonic at
o : (20)
2314 A using ruby laser is due to Terhune et al in calcite and
- . . - (48, 49)
subsequently in cubic crystal LiF, KCl, CaF and liquids by Maker .
(50) . . : .
Bey et al provided the earliest experimental evidence that phase
matching can be achieved in harmonic processes by the introduction of
anomalous dispersion into a normally unmatched medium. They obtained

o
phase-matched THG at 3530A of the Nd:glass laser line by introducing

dye molecule (fuchsin red) into a liquid medium (hexafluoroacetone




~)

sesquihydrate). Their experiment was extended by Chang and
Galbraith(57) to other solvents of different index mismatch and to

another dye, methylene blue. Bey et a1(52) reported interesting THG

studies, which prove that a linearly polarized laser beam generates a
third harmonic signal, while a circularly polarized beam does not, in
. (53) L.
accordance with theory. Ward and New observed THG at 23144 in
. . (54)
gases He, Ne, Ar using a focused ruby laser beam. Harris et al

macde a theoretical analysis and proposed THG in phase matched alkali

(55)

L

metal vapors, e.g. Li, K, Na, Rb, Cs. Consequently Young

Miles(56) demonstrated THG in phase matched Rb vapor and in the alkali

metal vapors res pectively.

3. Measurement of Picos econd Pulsewidth by Means of

Nonlinear Optical Method. The Nd:glass laser has recently become

an important research tool. Not only does it constitute one of the most

powerful sources of coherent radiation in terms of peak power, but it

also distinguishes itself as a source of ultrashort light pulse. The

emission of trains of short pulses produced by mode locking of this

laser was first observed by DeMaria et a1(56’ 57). Recent review

articles of mode locked laser pulses and picosecond laser pulses have

58 60
been given by DeMaria( ), DeMaria et a1(59) and Smith( ). In ruby

(61)

laser » mode locking could be achieved by Q-switching the laser

with a saturably absorbing dye. The duration mode locked laser pulses
2
from Nd:glass laser was measured by Armstrong(6 ) by means of SHG

in GaAs, and the result of pulsewidth measurement was about 4-6 pico-

B b e i n
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seconds (ps). The introduction of another technique for measurement of
the pulsewidth, so called two-photon fluorescence (TPF) method, was

(63) (64)

given by Giordmaine et al » Rentzepis In the TPF method care
has to be taken in connection with the contrast ratio between the back-
ground and the overlapped region of the autocorrelation picture.

Various theories were proposed to explain the picosecond substructure
observed in Nd:glass laser. The simplest proposal made independently
by several authors(65-69), was that the picosecond peaks observed in
TPF arose from the short duration fluctuations present in spontaneous
emission. The theory of iwo-photon fluorescence and another nonlinear
optical coincidence technique (harmonic generation technique) has been
treated in detail by several authors, particularly rigorous and exhaustive

70)

treatment, are given by Rowe and Li( » and Picard and Schweitzer(71).

The difficulty in observating the contrast ratio 3:1 was removed, and

the experimental result in pulsewidth measurement in agreement to the

theory was performed, by means of TPF with very thin cell, by Shapiro

2
and Duguay(7 ). They obtained the pulsewidth of Nd :glass laser of 0.4
ps. The three photon fluoresence technique for measurement of ultra-
. (73)

short pulse was performed by P. M. Rentzepis et al » and the

experimental result, in agreement to the theory, of the contrast ratio

of 10:1 was obtained. The exhaustive review of study of the Nd:glass
. . (74)

Laser Radiation was given by Duguay et al :

The optical harmonic generation technique, which gives background

free in autocorrelation measurement of the ultrashort pulse, was first
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performed by Armstrong(62). In his experiment he utilized the unique
y . (27) .
polarization property of of GaAs, given by Chang et al » for SHG in
reflection. Armstrong obtained the pulsewidth of Nd:glass laser
. (75) . . .

radiation of 4-6 ps. Weber » using KDP in experimental set up
similar to famous Michelson-Morley experiments, determined the
pulsewidth of Nd ‘glass laser radiatipn, He obtained the pulsewidth of

X : (76) . 3 -
8-12 ps. Giordmaine et al Introduced a new technique for determining

of a narrow pulsewidth by using two beam spatial mixing on a crystal KDP,

effectin CS; using Q-switched rubylaser, the backward Raman-Stoke wave was

equally splitted into two parts with a proper delay time T. Then the

two beams were recombined in KDP crystal oriented to allow phase-
unmatched second harmonijc generation. The average Stoke pulsewidth
was found to be 30 ps. Treacy””, using a grating pair for pulse
compression technique, obtained the pulsewidth of Nd:glass laser radiation
of 0.44 ps, in agreement to theoretical limit. The unique polarization
properties, reported by Bey et al(sz), for THG from a phase matched
solution consisted of dye fuchsin dissolved in hexafluoroacetone
sesquihydrate, was promptly utilized by Eckardt and Lee(78) for third
order autocorrelation measurement of Nd:glass laser. The result of

their experiment yields the pulsewidth of Nd:glass laser radiation of 0.7
Ps, in agreement to theoretical limit. Recently, Jayaraman and Lee(79’ 80)

made an observation of two photon and three photon conductivity in GaAs,

CdS and CdS0 S-Se0 5 using Q-switched and mode locked pulse from




10

Nd:glass laser, and demonstrated(8l) the potentiality of multiphoton

conductivity for measuring mode locked pulse from Nd:glass laser.

C. Aim of the Experiment

It is the purpose in this work to study and verify the theoretical
prediction in the area of second harmonic generation given by
Bloernbergen and Pershan(lz). Furthermore, the experimental results
concerning unique polarization properties and phase matched condition
of uniaxial Potassium di Hydrogen Phosphate (KDP) crystal will be
utilized for measurement of picosecond pulsewidth of Nd :glass laser
radiation. During the course of study, Q-switched and mode locked Nd:glass
lasers are employed as excitation sources and uniaxial KDP crystals
of various crystallographic orientations served as nonlinear optical
media. The angular dependence of relative second harmonic intensities

in both reflection and transmission are measured and compared to theory,

The theory of wave propagation in a medium with nonlinear

susceptibility and criteria of conventional phase matching and noncollinear
phase matching are given in Chapter II. A concise account of pico-

second pulsewidth measurement using phase matched second harmonic

generation technique is also given. The experimental technique including
crystal preparation and design of experiments is described in Chapter III.

In Chapter IV detailed experimental results are given and discussed.

The proposal and brief analysis for future experiments are given in

' Chapter V.

2 o
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CHAPTER II
THEORY

Introduction

In the presence of very high intense electromagnetic radiation,
-
the medium exhibits an electric polarization ﬁ(r,t) , which ie in
g
general a nonlinear functions of electric field strength E(r,t). The

-+ -
relationship between P(%,t) and the applied field E(%,t) can be

written in a tensorial form as (5)

!

-» - -+ A e )
P = tE E+ ¥ EEE+ .... (2.1)

>
>xn

Py

1 E + > x

where ¥ 's are nonlinear susceptibility.
If the applied electric field is harmonically varying in time t

with frequency w , then the second term on the right hand side of (2.1)

is the nonlinear source term at the second harmonic frequency

UJZ = ZUJ1 . The nonlinear susceptibility ¥ of the medium will give
rise to a polarization at the harmonic frequencies, which in turn radiates
energy at these frequencies. The effective nonlinear source term at

the second harmonic frequency w, = Zwl is given by

A PNLS(Z(MI) = X, = 20,) : EITElT expifd®.F-2wt)  (2.2)

where EIT is the amplitude of transmitted electric field
in the medium

-+
s .
k™ is the wave vector of the source term and

-+ -
k® = Zle
) NLS .
The nonlinear source term P was introduced by Armstrong
(11) . : el
et al” ', In their paper the nonlinear susceptibility tensor y was




shown quantum mechanically, to be related to the atomic properties
of the medium. Furthermore, they also showed that the effective

nonlinear source term can readily be incorporated in Maxwell' s

equations for the nonlinear medium. Since, during the course of study, a
large number of harmonic photons are created by the interaction, the
pProblems can be treated clas sically via Maxwell' s equations. In this
thesis, we shall recast the theory of Bloembergen in a form that

direct comparison with the present experimental data can be readily

made,

A. Wave Propagation in a Medium with Nonlinear Susceptibility

Maxwell' s equations in c.g.s. units for nonlinear medium are

- -+
VD = 47 vV.B=0
£,

-
E

vx B = . LApH 2.3)
c ot
-+ - 4
vxH = L D+4—TT J
c ot c
- - -
where D = ¢E + 47 PNLS

’ [

For the cubic but noncentrosymmetric, nonconducting crystal,

the wave equation, at the second harmonic frequency, obtained from

(2.3), is given as

22 2-+NLS
-
vxvxEZ.}.E(ZZA)a_EZ:Z;_%a—EZ_.(Zw)
c ot c ot 2. 4)
- 2

22 _ew) 3°E, 4y 22PNES 2B

2 2 2 2 2

C ot C at
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Equation (2.4) is similar to the usual linear wave equation except

it is augmented by a source term on the right hand side. The general

solution of (2.4) consists of the solution of the homogeneous equation

plus the particular solution of the inhomogeneous equation. The general
equation for the transmitted and reflected second harmonic field created
by the fundamental field incident on the medium fromthe vacuum (see

Fig.2-l) are given as,

2, 2
. - 4rPNIS 4y 22
BLsE €Texpi(kT r - 2w t) L %
2 T2 2 R 2 s 2
(ky )" - ()
“+s 4s A - a
o - etk < P} T ons 8. 7. 26 t)
il T2 1
(k™)
{2.5)
- - -
T C T .
H2 = ZUJI (k2 X eT) 82 exp i (k2 r - Zwlt)
-,
2
'4TTPNLS(4‘w 2/C ) -+ - - i
< (kS x /1;) exp i(kS r-2W t) 4
2 s2 2w . 1 3
(k, )" - (k%) :
- - ‘.
/}; = unit vector along the PNLS direction. j
The reflected harmonic fields are
+ R A R .. *R - )
E2 = eR 82 exp 1(k2 . r - ZJ)lt) (2.6)
2 R e g AR A R *R
= o 3 B o
I—I2 <2w1 ) (k2 x eR) £, exp 1(k2 I Zwlt)
2 IR
The direction of the wave vectors of the reflected wave k2 and
-
the homogeneous transmitted wave kzT » as well as the polarization
A : R T
unit vectors eTand eR and the magnitudes 62 and 82 have to be

determined from the boundary conditions.
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The tangential components of E and H should be continuous
everywhere on the boundary at all times. This requires that the individual

frequency components at wl and 2 wl, are separately continuous across

the boundary in order to satisfy this condition at all points on the boundary

simultaneously , Thus for the fundamental frequency

i . R T i
S = Eips F £ % I g

The polarization of electric fields at 20)1 are determined by the

-
polarization of PNLS. Also it is required that

k T =k S =k R = k T
- 1x 2x 2x 2x @ &)

Relations (2. 7) and (2. 8), in short, are the requirements of the
conservation of tangential component of momentum.

1. General Laws of Reflection and Refraction. Consider

2 - 435 -+
two incident plane waves, E1 exp i(k1 . T -Ww 1l:) and E2 exp i(k2 .T -
wzt) » where y 1 7 w, approaching the boundary between the linear and
nonlinear media, from the side of the linear medium. The boundary is
defined as the plane z = 0 ag depicted in Fig. 2-2, The angles of
incidence of the two waves are Gli and ezi . The planes of incidence
make an angle ® with each other,and ©® varies between 0 and 27 .

Choose the z and y direction of the coordinates system such that
k'.lyi = - k‘2yi . In general, waves at all sum and different frequencies
m1 wl + m2 w2 will emanate from the boundary (m1 and m2 are integers).

However, in case of second harmonic generation, the sum frequency

W 3 = wl +w 5 (w-l = wZ) will be considered explicitly,
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A necessary and sufficient condition for the requirement that

the boundary conditions will be satisfied simultaneously at all points in
the plane z = 0 is that the x and y components of momentum wave

vector remain conserved. For the sum wave, this gives the conditions.

3x 3x 3% 1x 2x 1x 2x (2.9)

Equation (2.9) suggests that the inhomogeneous source wave, the
homogeneous transmitted and reflected waves and the boundary normal

all lie in the same plane which is xz plane called '"plane of sum

reflection'', as indicated in Fig.2-2. The propagation of the inhomogenous

INLS 5

-
wave, proportional to P (w3) ,» is given by exp i{(k.1T+ k2 T). r-(w1+w2)t?.

Its angle with the normal into the nonlinear medium 93S is determined by

» S 2 7 g Hip,, g
sing,” = lklx thy, T/ [k, ™+ ky | (2.10)
Sy -+
The wave vectors lc.l and k.2 are given by Snell' s law for

refraction in the usual linear case. From Fig.2-2 the relationship

- -’i - i .
between k3 h k1 ; k2 is given as
-+ -
T2 .2 T * R2 .2 R
|k3 |” sin B = lk.3 |” sin 8

= I T R B T i i
= lkl I"sin 9, + |k.2 " sin 9, + 2|k1 | !kz.lsmel sing, cos o

(2.11)
2 c2

Since ¢ =k , equation (2.11) can be written as

ol

w




17 ;
. .2 2. r_ .2 2.2 &
w = 1
€, 3 8in 93 €, w3 sin 93
R 2 2 i R By . 2 i
= [{}] 2
' € p sin 91 + €, wz sin 92
R R\1/2 i i
+ 2 i i i
' (e:1 €y ) u)lu)z sm@1 smE)2 cos ¢ (2.12) !
) 2
‘ Since k' = ew—z » and also from (2.9) we can arrange (2,12) as
c
S.2. .S T 2 T_ R .2 R
i € sin 93 =€y sin 93 = ¢ sin 93 (2.13)
. 2R 2 :
.' Equation (2.13) gives directional relationship between k3 , k 3
, -
] ' and k 3S This relationship is the nonlinear counterpart of linear Snells
‘ law.
} The example of second harmonic generation follows from equation

(2.12) if we put 911=921 and ® = 0, and eIR =g R

This will lead to Snell' s law for nonlinear case

w = =
2 ,and 1 wz w

T.29T_ R .Zei
y e3 sin 3 = el sin

: or in general (with the combination of (2.13)).

[R_. 4 [T T [R . RrR_/ 5 . s i
el sin A e3 sme3 = e3 s1n63 = e3 sin A (2.14) ‘

The relationship (2.12) can be generalized further to the case of

1
1

two beam spatial mixing (TBSM) second harmonic generation where two

fundamental beams are incident from the opposite side of the face normal

(z axis). Here we have 911 = ezl ;e = 1800. From the equation (2.12)

and (2.13) we get

8" =8 =8"=0 . (2:'15Y

This means that all three second harmonic waves travel along

A A ARG ewd  emss amee
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facing normally inward for k’g and ks3 » and outward for k? with

respect to the boundary.

From the above analysis, one notices that the conditions of
conservation of tangential component of momentum, equation (2.9), are
very general. They can easily be used to derive the directional relation-
ship for higher harmonics. They hold regardless of whether the
harmonic radiation is of dipolar, electric or magnetic, or quadrupole
origin.

2, DPolarization and Intensities of the Harmonic Waves. In

this section particular attention will be devoted for the polarization

and intensities of harmonic waves at sum frequency w 3 =W + w, = 2w

The nonlinear polarization induced in the medium is
&=

- - -
LS(wz)=)((2(.1u) : E

T 1

N i For
P E expi‘ (kl +k.2 ). r-Zwt_j (2.16)

1 2

T

The refracted waves at w 1 and wz are known in terms of
incident waves by means of the formulas of Snell and Fresnel for the
incident medium. Therefore the nonlinear source term, given in
Equation (2.16), at w3 is known. The angular dependence of 1;;NLS
itself is derived from the transmitted linear waves given by Fresnel
equation. One must take proper account of this in analyzing the
angular dependence of harmonic generation. As in the linear case,
the second harmonic wave at UJ'3 = 2w with electric field vector
normal to the plane of reflection (El (2w)), as defined in the preceeding

section,can be treated independenfly from that with electric field vector

in the plane of reflection (Ell(Zw)) ;




2a. Perpendicular Polarization (E (2w)) . (EY = K

EX = EZ = 0). Consider the case where the nonlinear polarization is

S NLS
normal to the plane of reflection, i.e. PNL =P as shown in

Fig.2-3, The continuity of the tangential components of the solution

in equation (2.5) and (2.6) at the boundary requires in this case

NLS
4TTP.L

. — _R . T
Hx—-A/eRE‘L cos GR— (-:TE!_L cos GT
—_ NLS
4m./ €q Py cosf g
+ ( ) (2.18)
g °m

oY oY
The continuity of the normal components of D and B follows

automatically from the equations (2.17), (2.18), and (2.12).

By solving for Ei and Ei from equations (2.17) and (2.18), one

obtains after algebraic manipulation.

NLS — —
-4 -
R mP - J € i cos@T /es cosqs_‘
E_L = - R ; (2.19)
Sp~g —A/eT cos 9T+A/e—P; cos@RJ
NLS — —
T - 4P '_ g ofl €g cos@S + \/eR coseR
E.L = —e——e— exp ik .r - 2wt) - = — X
T °S A/eTcoseT+ \/eRcoseR
N
e AT s e 2wt) (2.20)

Since

- -+
e T

nlE

W -Je. 172 2.2
IJeS cos@S JeT cosBTJ Z (2.21)

Equation (2.20) can be transformed into a single plane wave with a

-5
propagation vector kT, with an amplitude
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T R 4rrPTLS

- W /e e 1 >
E =E + {exp[c(,Jes cosdc-/€ cosd )Z -1} (2.224)

€s7¢r

For the small values of z which satisfy the condition

w ; — —— \ 2
=z - a 2.2¢4b
c? ol € cosﬁ)(s JeT cosf, | << 1 ( )

The expansion of right hand side of equation (2.22) will give E’f_
as a linear function of z. Then the intensity grows as z2 from the

boundary. This is precisely the effect of harmonic generation in the

(11)

volume of an infinite medium, discussed by Armstrong et al

2b. Parallel Polarization (E = P NLS = 0). The nonlinear

y y
-+ )
polarization P has only x and y components as indicated in Fig.2-4 :

It will be advantageous to describe the nonlinear polarization in

the plane of reflection by its magnitude PHNLS and the angle g4

-»
between its direction and the direction of propagation in the source k's.

The continuity of the tangential componenets at z = 0 requires that

from equations (2.5) and (2. 6).

B T 41-rP11NLSsincycosQS
Ex = - E11 coseR = 311 coseT +
s - €7
NLS .
- 4wP11 coSgy smes (2.23)
€1
o . 4r PllNLSsinry
= - I o . - ~ 2.2

By -al€gE [erln = \Fs s - € (@.24)

By solving for EHR from equation (2.23) and (2.24), one obtained

the amplitude of the reflected wave EHR after arranging terms as




NLS

2

. . . 7

L R_ 4nP11 smes sin GTsm (o +6T QS) 2 g
11 eRs1n9Rs1n(6T+ Bs)s1n(9T+6R) cos(BT-GR)

With the introduction of the angle B8between EHT and the direction

-
of propagation k T the transverse component of the total transmitted

wave will be given with the help of equations (2.25), (2.26), (2.23) and

(2.24), as

NLS

4 . . . :

= Tsins _ nPll s1nqss1n9Ts1n(a+ E)T BS)
11 eTs1n(6T+ QS) s1n(8T+6R) cos(eT-BR)
NLS . .

) 41’rP11 sing s1nescosgs

€ TSln(E)T+ GS)

NLS . — —
+ 4~r-rP11 cosasm(GT-Gs) expi {C z(\/gscoses-\/eTcoseT)}

€r

+ 4nP N

LS w —
. - lr_ - -
1 sing cos(E)T BS) exp i~ z(\/EScoses J eTcoseT)} 1

-eT

(2.26)

The longitudinal component of the electric field vector, parallel

-+
to kT , can be written in the form

T _ NLS . 12 .
E11 cosR = 41-rP11 sing sin Gs-c03qcos(eT-es) s1n(qT+ BS)
LW
exp 1(C z(«/—escoses-ﬂ/ € cosBT)}
i 2.2
s1n(9T+ BS) ( 7)

X
€t

3. Nonlinear Brewster's Angle For the case where P NG lies

11

in the plane of reflection,the electric field of the reflected harmonic wave

is given by equation (2.25). Equation (2.25) reveals the existence of

Nonlinear Brewster's angle for harmonic waves, when EHR:O . Or in
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other words

R
- . ; = 2.28
E, 0 implies S, Agt @ =0, m ( )

This condition implies that the nonlinear polarization PHNLS is
parallel to the direction of pPropagation of the harmonic wave in the
nonlinear medium and hence it can not radiate. This nonradiating
wave upon refraction back into the linear medium would otherwise give
rise to the reflected ray in the direction GR . This is shown in Fig. 2.5,

In the present work, several KDP crystals of rectangular
parallelepiped shape are used as the nonlinear media from which second
harmonic waves are created and furthermore the optically dense fluid
(l-Bromonaphthalene) is employed as the linear medium. It would be
advantageous not only to depict wave vectors of fundamental and second
harmonic waves at the boundary of KDP crystal immersed in the
optically denser liquid ( Fig. 2-6 ) but also to recast those fundamental
equations given in the previous section into appropriate forms such
that they are suitable for experimental comparison.

According to geometry of Fig. 2.6, the angles OR, 8. and GT

S
of the reflected, transmitted source and transmitted homogeneous waves,
respectively, are given, with the aid of equation (2.14) and n = Je,

by

nliq(w') smF)i = nl iq(Z'(.u )s1n9R = n(w) s1n6)S = n(Zw)smeT (2.29)

The index without subscripts refers to the KDP crystal,
Since the liquid is optically denser than the KDP crystal, then

there exist critical angles under which the fundamental and second
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harmonic waves are totally reflected. Those are given by

sin (w) = n(w)/n_ . (w) <1 (2.30a)
cr Liq

sin‘)Cr(Zw) = n(Zw)/nliq((v')<1 (2.30b)

-
The components of the harmonic polarization P along the cubic

axes of the nonlinear KDP crystal are given in terms of the fundamental

field components at each point inside the crystal by

NLS _ NL _ T oy
PZ (ZW)—X36 Ex (‘”)Ey (w) (2.31a)

PXNLS(Z(»‘) , P NLS(Z(D) can be obtained by cyclic permutation of

equation (2. 31la).

Equation (2. 3la) can be expresscd in terms of the amplitude E0 of

the incident fundamental wave by

L 2
P S o) =y : 6N n(FTL E ) (2. 31b)

Where n is a geometrical factor which depends on the orientation

of the fundamental field vector and nonlinear polarization component with

respect to the crystallographic cubic axes of the KDP. The linear

Fresnel factor FTL describes the change in amplitude of the fundamental

wave on transmission at the crystal surface. For the laser polarization

perpendicular to the plane of incidence, it is given by

L 2 cosei
FT - cosh, +sinf (w) cosh (2.32a)
1 cr S

and for the laser polarization in the plane of incidence it is

L 2c039i
FT ) 8inf (W) cosh, + cosh (2.32b)
cr 1 N
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The nonlinear polarization PNLS is the source of the three

harmonic waves. The amplitudes of electric field of second harmonic

waves can be expressed in terms of PNLS as follows:

NLS NL
2 =4~ P
ER( w) A FR

(2.33a)
EQ(Zw) = 4y PNLSFSNL (2.33b)
NLS_ NL
) = 4 P 2.
ET( $) ™ FT (2.33¢)
NL ;
where F g5 are the nonlinear Fresnel g factors.

From equations (2.19), (2. 20), (2.22) and (2. 33), the nonlinear

Fresnel factors for the case of second harmonic polarization perpendicular

to the plane of reflection are given by

= P :
F NL = 1 . &.,"-/ G:TCOSQT N E:S coses (2. 34a)
R, L eT - es / es \,,/e:T coseT+A/eRcoseR
FS TL 3 2 (2. 34b)
s €T es
FT _IEL = - + FR R (2.34c)
’ €T es ’ :

For the case

of reflection the no

(2.23), (2.24), (2.25) and (2.33).

NL
R, 11

NL
FS, 11

NL
FT, 11

e e e 2 o s

of second harmonic polarization paralle to the plane
nlinear Fresnel factor can be obtained from equations
They are given by

y 2 .
smqssm L)Tsm(q +9T +GS)

N i in(3_+9 3_)sin(8_+6.) (&35
eRsmeRsln(eT “R)COS(QT- R)s1n( Tt 9%

_ _ sing (2. 35b)
€5~ €T

G‘.S singy e:R NL
e ee. ) e Frou
€r €g€q €1 b

(2.35¢)
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The time average second harmonic power carried by the harmonic

beams is given by the real part of Poynting vector multiplied by the

cross-sectional area A of the respective beams. The intensities of

harmonic beams are.

| E (2w)1%p (2.36)

1 (ZGJ):—(-:—-_
R,S,T 81 v R,S, T R,S, T

°R,s, T

where subscript R,S, and T refer to reflected, inhomogenous and homo-

geneous harmonic beams respectively. AR is the cross-section

,'Si T
area of the beam and it can be written as

_dd’ cosh
AR,S,T_ R,S, T (2.37)

cosf,
i

where d d’ are rectangular slit which defines the size of the incident
laser beam.

Since the intensities of harmonic beams cannot be observed inside
the crystal, it is preferable‘to relate the intensities of transmitted beams
after they have reenterred the liquid at the side of the crystal. The
transmitted power from the crystal to liquid is given by

€
_/ ®R L ,2
T—A l fs,T' (2.38a)

s, T

L . : L .
where f is the linear Fresnel factor for transmission at the interface
Sr

for crystal with right angle corner. It is given by

L 2
= 2.38b
fS, 0 ( )

) 1/2
1+ f(eR-eS, ) e(w)sin "8 +1)

This factor is always close to unity, and fRL = 1 by definition.




B |
;'? 30
; l Now the intensities given by equation (2. 36) will be written in a
! rigorous form and are ready for direct comparison to the experiment.
i Ig,s, 7@ = (/M B I a sty NP o B
i |FL|4 IFR’S, TIZ cosGR,S’T(cosei)-l (2.39)
i B. Criteria of Optimum Second Harmonic Generation

In this section, it is intended to point out general criteria for

optimum harmonic generation, in particular, second harmonic generation.
In the experiments, which verify the nonlinear optical laws for second
harmonic generation (SHG), it is anticipated that the low level second

ha rmonic intensity (SHI) will be encountered. Therefore it is worth-
while to utilize the condition for optimum SHG wlich is described below.

l. Phase Matching by Birefringence, When a fundamental

wave of frequency w propagating in a direction of 12 is incident on a

nonlinear medium of piezoelectric crystal, the nonlinear polarization

-

source PN = will be induced in the medium as

N
Pi LS(ZU)') = xijk(Zw) Ej(w') Ek(w) (2.40)

NLS

The nonlinear polarization P (2w) in turn will radiate SHI in

transmission with electric field E(2w) which is given by
2  l-expiAkr:
Y- 4 ! 2. 4‘].
Ei(Zw) Xijk Ej(w) Ek(w).\ Ak ; ( )

where

Ak =k ("w) - 2k (w)

_2w, 2w w
=—(n " -n

) (2. 42)
c

- — > = s i - Tl r” N T L T e
K it} r 3 — e T b = o b ol
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Consequently, the intensity of SHG will be given by

AR 2,

Iew)~ (x20)P 18in 2 2 (2. 43)
A °
2

where Io is the intensity of the incident laser.

One possible method of increasing I(2w) , described in equation

(2.43)is to set Ak =0, - This condition can be achieved by the

utilization of double refraction of an uniaxial crystal, e. g.- KDP, as

33 34
pointed out independently by Giordmaine( ) and Maker et al( ). This
condition is called phase matching which is
2
Ak=0=Tw w22 _ ¥, (2. 44)

Under this condition both fundamental and second harmonic beams
travel in step inside the crystal with the same phase velocity. However,
when Ak # 0, equation (2.41) shows E(2W) to vary periodically as a
function of distance r from the crystal surface. The period of
variation is determined by the term so called ""coherence length' ¢
which is given by
=CT 2n = o (2. 45)

- W W w oW
¢ bk 2 oy 202 -n?%)

L

The physical interpretation of fc is that it is the maximum crystal
length which is useful in producing SHG. It is noted that under phase
matching condition (Ak = 0) fc is infinite, In practice, however, due
to double refraction phenomena the maximum interaction length is
(11,14)

limited because of the walk off effect

The diagram showing how to obtain phase matching condition in

KDP is shown in Fig.2-7, In this diagram the angle Bm , with respect
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to z (optic) axis is called the phase matching angle. For KDP, if the

fundamental beam is launched along Qm a8s an ordinary ray, the second

harmonic beam will be generated along the same direction as an
extraordinary ray. The angle Bm is determined by the intersection
between the sphere corresponding to the normal index surface of the
ordinary beam with the ellipsoidal surface corresponding to the normal
) . . (82)
index surface of the extraordinary ray. The angle em is given by

0, 2T g, ZEg2
e}

o & - o)
el e T 20 -2 (Prrtbl)
(n - (n )
e [e}

Taking careful consideration to equation (2. 43) the criteria for
increasing second harmonic generation can be drawn as following.

l. By using laser systems that provide high peak power or large
i it .
intensity Io

2. By selecting proper nonlinear crystal that possess large

2w
value of nonlinear susceptibility y .

3. By utilizing phase matching condition (Ak = 0) as described

above,

2. Noncollinear Phase Matching. According to the previous

section, phase matching results in enhanced optical second harmonic

generation (SHG). In certain bifringent crystal such as KDP this is

2w 2w
accomplished by making the birefringence (n0 -0, ) equal to the

2
dispersion (n0 v now) at phase matching angle Bm as shown in

Fig. 2-7, However, SHG may still be limited by double refraction(ll’ 14)

which is describable by an angle p between the poynting vector of

TP Y g e
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extraordinary harmonic wave and the ordinary fundamental wave.  The

angle p is given by(35)

2
1 2W 1 1 )
tanp = > ine (9)} { - }s1n29 (2.47)

(n Zw(ﬂ/z)z (n ZUJ)Z
e o

where 9 is the angle between Propagating vector of homogeneous second
harmonic beam and the optic axis.
Consequently, the harmonic wave separates from the fundamental
forabeam of finite diameter. The limitation of SHG from a gas laser
. (35) .
due to double refraction shows the reduced . production of

second harmonic beyond the aperture length [a which is given by
)
" o 2.48
¢ =./m 5 (2.48)

where Vs is the minimum Gaussian spot size.

Increased SHG will result from [a + o when p=0. However,
the divergence of the fundamental beam will then limit SHG instead of
the aperture length [a (or double refraction). Phase matching with
0= 0 has recently been achieved(42) in LiNbO3 with 9m = 90° by
varying the birefringence and dispersion via temperature tuning.

Another phase matching method with p = 0 is via noncollinear
phase matching. This geometry is handy for application of ultrashort
pulse measurement. However, one should point out that even when g is
zero as in this case, the interaction length is not ini{inite. One
normally does not adopt this scheme for maximum harmonic production.

The noncollinear phase matching employed in the present work,

Y
requires all three wave vectors k 's forming a closed loop. The
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condition is given by several authors(43' 33, 34) as shown in Fig. 2_g
- -+ -+
ky (Qw) = Ky(w) + & { (w) (2. 49)

-+ -+
where kl and k 1’ are wave vectors of two crossing fundamental beams,

=%
and k 2 is the wave vector of second harmonic beam. According to
equation (2.49), this vector relation can be satisfied only if
-+ -+
lkz l<2 [k1|. This means that the birefringence must exceed dispersion.

This condition is applicable to KDP crystal.

w
n
By using equation (2.49) and relationships k ,l(w) = %— W
2Ur
n
and k'Z (W) = ec . 2w one can get from Fig. 2- 8 the conditions for

noncolinear phase matching of the normal component :

w W, 2w
n n n

o e
LW cos(91+93) + LW cos(92-93)

- .chnse3

(2.50a)

For the tangential component :

W ) 2w
n _ n n
) s1n(61+ 83)+ ‘W 31n(92-93) =

cw sin63 (2.50Db)

For two beam spatial mixing (TBSM) in second harmonic generation,
one can select the coordinates system and crystal orientation such that
some parameters in equation (2.50a) and (2. 50b) will be eliminated.

Such configuration is illustrated in Fig.2-9, According to equation
(2.11) and the symmetry in Fig. 2-9. the net tangential component of the
-+ -+

vector kl + k'l’ becomes zero. This in turn makes the tangential

_’
component of kZ(Zw) zero, i.e. 93 = 0. Under this condition the

-
propagating vector k‘Z (W) will be in the direction normal to the optic
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(z) axis. Equation (2.50a), with 93 = 0, can be reduced to

w w 2w
t‘lo n n

—— + » cosfh. + =2 wcos‘9=e
c 1 2

C

- 2w (2.51)

By symmetry of Fig.2-9, 91 = 92 = Cpm , then (2, 51a) turns out to e

w- 2w

no cos (‘.pm=ne . (2.52)

Equation (2.52) is the condition for noncollinear phase matching for the

experimental configuration shown in Fig.2-9. Having known the phase

matching angle inside the crystal, the phase matching angle § !
m

PM

for the incident beam can be computed via Snell' s law given by equation

2.14). i{_

i . -1 o . 7
QPM_ sin ,jnw smCDn_Ll (2.53)

i = 1.0).
(taking ns. 0)

C. Theory of Picosecond Pulsewidth Measurement

In this section, the theory involving the utilization of nonlinear

optical methods for picosecond pulsewidthmeasurements will be discussed. Two

photon fluorescence (TPF) method has been us ed for the measurement of

picosecond pulsewidth by several authors(64' 72, 74). However,

particular treatment will be emphasized on harmonic generation
method, which is utilized in this experiment.

f-nce KDP is a nonlinear crystal from which phase matchable SHG
can be produced, then it is very convenient to use the square law *

intensity characteristics of KDP to measure the second order auto-

correlation function of the laser light which, in this case, isa picosecond
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(62,75, 78), the

pulse from Nd:glass laser. In the previous experiments
harmonic intensities resulted from the spatial and temporal overlapping
in the nonlinear media were weak such that they could be detected only
Ly means of photomultiplier.
In the experiment KDP crystal of a special cut such that

noncollinear phase matching can be achieved, is served as the source

of SHI. Therefore, it is anticipated that there will be high SHI produced
and the measurement of the pulsewidth can be done by means of both
;;hotomultiplier and photographic methods. The theory behind this

measurement method for second order auto correlation is given below.

1. Second Order Auto-Correlation. The SHI radiating from

the KDP crystal represents the variation of the auto-correlation function
with respect to the degree of spatial and temporal overlapping of the
light pulse onto itself. This can be performed by using a beam splitter
and two 1009 reflectors reflecting the two beams into the KDP crystal
where inspatial and temporal overlapping occurrs . The schematic
diagram is shown in Fig.2-10, The incident electric field is E(?,t).

-
-
Then the resulting electric field ER(r,t) inside the KDP crystal is

given by

o L » o
ER(r.t) = E(r,t)+ E(r,t + 1) (2.54)

where T = 2nd/c is the delay time of one of the reflected beams, and 2nd
is the optical path difference between the two beams , The output,
resulting from the overlapping of the two beam, is in the form of

average second harmonic intensity (SHI) in the direction normal
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inward to the crystal. The {(SHI) can be expressed in terms of the analytic

signal VR(t, r) associated to the real field ER(t, r) as

(SHD) ™ (Vp (6, 7) V (8, x) V “it, ) vR*(t, r)) (2. 55)

R

where VR * is the complex conjugate of VR.
The analytic signal is well known as the complex representation
of an oscillating field. The real part of V(t) is equal to the light field
E(t) and the imaginary part is its Hilbert transform., Since in the
classical limit V*(t) corresponds to the quantum mechanical
anihilation operator a and V(t) to the creation operator a+ . One

can view equation (2.55) as directly related to the quantum mechanical

pProbability P for two photon absorption inthe two photon fluorescence (TPF)

method.
P~ Tr”p a+ al aa ! (2. 56)
where o is the density matrix describing the light field.
By using equation (2.54) and (2. 55) the observed (SHDT at a
certain position r corresponding to the delay 7 is expressed by the

incident light field V(t) as

(SHDT ~ ((V-VT) (V-VT) (v -VT ) (V -VT) Y

2V VV V'Y + 4y vTv":v: )

2((Vv + VTVT) (VVT + Vv VT)3

VYV VYV E VOV Vv 2.57)
7 v T T

where V = V(t)and V_r = V(it+ 7).

In equation (2.57), the first two terms are proportional to the

P T

P T ey
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intensity correlation function G(Z), known as Glauber' s second ordei
coherence function(83). The last two terms describe the interference
effects, giving spatial variation Proportional to cos w T and

cos Zon » respectively, where wo is the center frequency of the
light field. These variation are averaged out to be zero since the
average value of cosw o7 and cos ZU)O’T' over and interval Ar
corresponding to several wavelength vanish. The normalized intensity
(SHI) is now expressed by intensity correlation function G(Z)('r) of 1
the incident field

(2) (2)
(sHD) = 28 (0)+ 4G r) (2. 58)
i G(Z)

(0)

2
where G( )('r) is defined as

G(Z)('r)= (V(t) V(f+’r) VOV (t+7))

i s (2' 59)
(V) Vv t)) /Vit+r) v (t+7) )

The bracket indicates the time average or ensemble average. Ifonly g
the time average isconsidered , We can use IR(t) = VR(t) V'P(t) and

arrange equation (2.59) into a new form as

f“’ I(t) I(t+7)dt

G(r) = =2 = (2. 60)
(I)

where I(t) is actual intensity and 1 is the mean intensity.

In the experiment the KDP crystal is oriented in such a way
that the noncollinear phase matching for SHI will be achieved if and
only if the two beams have temporal and spatial overlapping inside the

S
crystal. The nonlinear polarization PNL will be created and then it

radiates at second harmonic frequency. Interms of those applied
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electric fields the PNLS is given by *
NLS :
P ~ E(t) . E(t+T) (2.61)
NLS . N .
Further, P can be described by analytic signal VqH Using
the analytic signal V(t) associated with the real field E(t) , the {
analytic signal VSH is directly obtained from |
VSH~ Vit). V(t+T) (2.62)
By using I(t) = V(t) V*(t) and equation (2.62). The average
second harmonic intensity ( ISH> produced by two parts of the same
signal V(t) with spatial overlapped and time delay 7 is given by
sl st (2)
(ISH> ~ V) VIEFT) V (t) V (t+71) ~ G (T (2.63)

In this case the second harmonic intensity is a direct measurement
of the second order auto-correlation function G(2 )'(T) . Since neither one of f}
the fundamental beams can produce SHI in the normal direction, then
there will be a background free auto correlation function G(Z)('r) and
there is no contrast ratio, as in TPF method, to be considered. o

(2)

Since the G '(T) obtained in the experiment is background free
function, then by using the photographic method the exposure of the

film will reveal the pulsewidth of the G(Z)( T ) function which in turns gives
the direct measurement of the picosecond pulsewidth. Furthermore,

the two fundamental beams are obliquely incident on the crystal as

shown in the Fig.2-11, Due to the finite size of the two beams, there

will be a built -in time delay along different points on the surface of the

very thin crystal. As shown in Fig.2-11, at the central point of the
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overlapping region, the light pulse of two beams arrive at the same
time, thus there is no time delay. At the point x away from the center
the light pulse from one beam will arrive at time AT earlier then the
other beam. The delay is given by

o]

2x cos(90-9i)

AT = 3/a
) i
Ar = 2x sin 9

c/n

where ¢ is the velocity of light,
Qi the angle of incidence
n the refractive index of the linear meglium.
For a beam of width d, the maximum delay T across the entire
overlapping region is

AT) = 9 ginat (2. 64)
max C

where n =1.0 for air,

For d=5 mm, ei = 15° the maximum delay AT)max is calculated
to be about 5 picoseconds. This total built-in delay will be enought to
cover a picosecond pulsewidth which has a theoretical value about 0. 33
picosecond.

In order to cover the entire Picosecond pulsewidth measured at the
base, 2 crystal of larger birefringence is required.

Such a  crystal will provide a relatively large noncollinear phase
matching angle which in turn gives at higher value of A o) in (2.64)

max
Another factor that will increase AT)max is the index of refraction n

of the linear medium. One can use a linear optically denser liquid called

l-Bromonaphthalene instead of air in the experiment.
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CHAPTER III
EXPERIMENTAL TECHNIQUE

Since the present experimental work, by nature, involves
nonlinear optical interaction in KDP crystal, it is appropriate to concisely
describe the experimentalarrangements and techniques including the laser
systems that were used The source of excitation was a Nd:glass laser
which was operated in mode locked and Q-switched fashions. During
the course of the experiment very high and low second har monic
intensities (SHI) were encountered and properly detected and
subsequently they were compared to the theory. Furthermore, the
experimental results concerning polarization properties and phase
matched condition of KDP crystal were utilized for measurement of
picosecond pulsewidth of Nd:glass laser. In this chapter major
experimental preparations and techniques involved in setting up and
detection  second harmonic signal will be given. Since a Nd:glass laser

was employed as the excitation source,and also to facilitate under-

standing the picosecond pulsewidth measurement, the Nd:glass laser

operated in mode locked and Q-switched fashions will be briefly discussed

below.

A. The Neodymium Glass Laser

+3
The laser rod is made of glass in which the Nd ions reside

and act as impurities. The energy levels involved in the laser trans-
. +3
ition the excited states of Nd ion. The laser action

4
take place from the upper level F3/2 to the lower level 41 which

11/2
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La

is approximately 1950 cm_1 above the ground state as shown in Fig. 3-1.
The laser is classified as 4 level laser system from which the emission
wavelength ) = 1.06pm is radiated. The fluorescent linewidth can be
o
: -1 (82) . g :
measured directly and ranges around 300cm . This width is
rather broad. This is due to the amo rphous structure of glass, which
! il ! . .
causes different Nd lons to "'see'! slightly different surrounding.
This causes their energy splitting to vary slightly. Different ions
consequently radiate at slightly different frequencies causing inhomogeneous
broadening of the spontancous emission spectrum. This larger band-

width is advantageously utilized for riode lock:ng the laser since it can

support many axial modes , N i in the oscillation . For

4
Nd:glass laser N is about 10" .

1. The mode locked Nd:glass laser. The mode locked

Nd:glass laser used in the experiment was a Korad Kl-system as shown

in Fig. 3-2. It is consisted of Nd:glass rod having a Brewster - Brewster

configuration to avoid reflection losses. The laser rod is of diameter

1.25 cm and of length 20cm. The two coated dielectric mirrors have at

.06y m reflectiviiies of 100% and 65% respectively, and form a
laser cavity having 75 cmlength. In addition the contact dye cell of

0.078 cm thick, is attached to the mirror M](IOOU/? reflectivity). The

cell contains Kodak 9860 dye solution dissolved in dichloroethapne . The

solution serves as passive nonlinear zbsorber which is required to

achieve mode locked pulse.

12
laser is 3x10 Hz

Since the inhomogeneous linewidth ( Av)ofthe

h then it is expected theoretically that the laser

pulse will be of 0.33 picoseconds duration.

T o T —— S e e ao N o i a = P
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To generate ultra short pulses from the system, all the laser
modes (axial modes) falling within the laser linewidth must be coupled
together. This can be achieved by introducing the cell containing passive
nonlinear absorber as described above. Despite of its wide use, passive
mode locking is not well understood. However the mode locking by
using saturable absorber can be explained on a qualitative basis in the
time domain as follows:

The laser can be viewed as a quantum mechanical oscillator
building up from spontaneous emission noises of various amplitude and
intensity. The saturable absorber (dye solution) has a nonlinear
absorption characteristic which for low lightintensities acts as a strong
absorber and for high light intensities is transparent. When the laser
starts to build up, the low amplitude portions of the amplified fluctuating
spontaneous emission noises are discriminated against the higher
amplitude portion because of the nonlinear absorber. As a consequence,
the lower intensity portion of the pulse is cut off and the peak portion is
allowed to pass through the absorber. By the time the pulse is reflected
back from the mirror, the absorber relaxes to the ground state and
once again the pulse is sharpened and amplified by the laser rod. After
many passes thinugh the cavity the pulse jg narrowed to its
limit, which is the inverse of the oscillating bandwidth of the laser system.
The output will be a train of Picosecond pulses contained in a single

envelope. The characteristic length of the pulse train is about 300-600

nanoseconds.
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The mode locked laser has two major advantages which are
employed in the experiments. First, not like other lasers, it has a
definite phase relationship among participating modes (axial modes),

This causes the intensity of the laser output to have a temporal coherence
(87)

and overall less fluctuation . It is very important to the SHG experiment

since it is a nonlinear optical process, Indeed , experimental data points

are found to exhibit less fluctuation |, Secondly, the
laser system of this type has very high peak power. Therefore it is very
useful for SHG when this effect is extremely small as in certain situation,
e.g. Nonlinear Brewster's angle condition,Due to the ultrashort pulse
duration the damage threshold to the crystal will be high ; consequently
crystal will not be easily damaged by the experiment,

2. The Q switched Nd:glass Laser. In the experimental

investigation for two beam spatial mixing (TBSM) and for noncollinear
phase matching in KDP, the Nd ‘glass Q-switched laser was utilized.

Q -switched pulses were obtained by means of Korad Pockels cell model
K-QS2 and polarizer stack consisting of glass plates oriented at Brewster's
angle. The Q-switched Nd:glass laser system is depicted in Fig. 3-3,

The Pockels cell and polarizer stackwere oriented in such a way that

their polarization axes were orthogonal to each other , A
Pockels cell operation can be briefly described as follow s It serves
as an  optical shutter for Q-switched operation. While the laser rod

is being pumped and the laser is building up the Pockels cell will be

passive in the sense that it blocks or prevents the laser light from
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reaching the cavity mirror M1 - This will introduce high losses into the

system such that the laser oscillation is prevented at the low population

inversions. When the population inversion in the laser rod reaches
maximum value, the Pockels cell is triggered by means of the delay
electronic circuit. At this moment a high voltage is applied across
the crystal in the cell such that via electrooptical effects the axis of the
polarization of the crystal is rotated by m/2. The laser light will
pass through the cell .reaching the mirror M1 and be reflected back. Upon
returning from mirror M1 and passing through the cell again, the
polarization of the light is suffered another T/2 rotation. The total
change of the polarization of the light is 1. Then the light can pass
through the laser rod, the polarizer stag and reaches the mirror MZ'
The essential role of polarizer stag is to enforce the polarization of
the light and helps the Pockels to work efficiently. This will result in

raising the Q of the system to a very high value in a short time. As a

consequence the system will oscillate at the highest population inversion

level. Then the laser will lase out from the mirror M2 as a giant pulse

having pulse duration about 30 nanoseconds. The Pockels cell for

Q-switching is very effective and the Q-switched pulse is reproducible.
Besides it is much easier to operate than the clumsy passive
dye Q-switched cell used in the early day. The advantage of using a
Q-switched pulse for two beam spatial mixing (TBSM) experiment is that

its pulse duration is so long that the temporal overlapping is always

achieved.
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B. KDP Crystal

The nonlinear crystals used in the experimental investigation
are all KDP (Potassium di Hydrogen Phosphate) of several crystallographic
cuts. The orientation of crystallographic axes of the crystals are given
along with the experimental results in chapter IV. The crystal KDP is a
tetragonal crystal belonging to the symmetry class 42m. Itis piezo-
electric and the second harmonic polarization in it is given by the
equations (2.40) in Chapter II and its nonlinear susceptibilities has been
given elsewhere 84).

The crystal is eminently suitable for the present experiment
since it is phase matchable and has relative high value of the nonlinear
susceptibility. Furthermore it is transparent at the fundamental and
second harmonic wavelengths respectively. This will enable an
investigation in transmission. In addition to poss essing the intrinsic
properties described above,its linear optical properties are isotropic
so that the equations developed in chapter Il are applicable . Because
its linear index of refraction is relatively low , total reflection
from it is possible via the optically denser linear fluid 1- Bromo-

(82)
naphthalene. From the tables for refractive dispersion its indicies
of refraction for the ordinary and the extraordinary raysat the fundamental
and second harmonic wavelengths are deduced and given as

w
n = 1.4943
o

w
n 2 = 1.5131 n e =1.4708
o} e
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Where m corresponds to the fundamental wavelength of 1. 06pm.

The KDP crystals were ordered and prepared by Gould Inc.
Tne typical dimensions of the crystals are 25 x15x 8 mm3. The
entrance and exist surfaces are polished optically flat to A/5 at the
D-line of sodium light. The other surfaces are see-through polished.
The parallelism between opposite faces is better than 30 seconds, and

none of surfaces are coated.

C. Optically Dense Fluid

In the experimental investigation ofa phenomenon so-called total
reflection and Nonlinear Brewster's angle are involved,The investigation
under these conditions can be achieved only if the linear medium from
which the laser beam is incident has a higher index of refraction than
KDP. To observe the Nonlinear Brewster's angle of KDP in air would
require an angle of incidence from air to KDP greater than 90°. This
is impractical. Therefore, it is essential that the linear medium in contact

with KDP, must possessahigher index of refraction. By using optically denser
fluid l-Bromonaphthalene, the angle of incidence which corresponds to
the Nonlinear Brewster' s angle is in the vicinity of 43, 0°

In the experiment, the nonlinear crystal KDP was immersed
in the optically denser fluid 1-Bromonaphthalene which has larger indices
of refracticn than KDP at both and 2w The fluid is transparent
from the range 0.4 - 1. 06 um. The index of l-Bromonaphthalene has
been tabulated at five different wavelengths (85). The values at wave-

(86)
lengths of interest may be interpolated by means of the Cauchy relation




This gives for the index of refraction of the fluid

n_, (w)=1.6260 n . (2u)=1.6701
l11q 11q

From Snell' s law given in Chapter Il one finds the critical angles
for total reflection of the fundarnental and second harmonic beams to be

acrl(w) = 66.78° 9 (2w) = 64.76°, respectively.

i
cr

D. _Experimental Arrangement

In the present study, the experimental arrangement can be
divided into two major parts. One involves detection of SHG in the
reflection and transmission using a single incident laser pulse and the
other is two beam spatial mixing (TBSM) setup and measurement of a
picosecond pulse. The experimental arrangements are described in the
following.

1. Experimental Arrangement for SHG in Reflection and

Transmission. The excitation source for this case was a Nd:glass laser

operated in mode locked fashion. The laser system

cavity mirrors M1 and M , a contact dye cell with dye solution Kodak

9860 dissolved in dichloroethane and a water cooled laser head. The ]
+3 1

laser head consists of a Nd  doped glass rod. The rod was

surrounded by a helical xenon flash lamp. The laser system is shown in

Fig. 3-2 in the previous section. All optical alignment was performed

with the help of He-Ne gas laser. The cavity length which was the

optical path length between the mirrors M1 and M2 is about 75 cm.

The entire laser system was covered with a wooden box, to
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prevent the flash lamp radiation during the purnping period from
interfering with the SHI detection. Furthermore a (rning filter no
2-64 (C.F. 2-64) was used at the exist of the wooden box to filter out the
residual flash lamp light in the lasing direction. The experimental
layout which will be described hereafter is depicted in Fig. 3-4. The
fundamental beam was then partially deflected by an ordinary glass slide
plate into a ITT photodiode F-400 (S-1) with ground glass and
neutral density filter in front of it. The pulse from the ITT photodiode,

displayed on a Tektronic 519 oscilloscope had

. -"t
%

an overall rise time of 0.7 nanosecond. In turn the Tektronic 519

oscilloscope also provided, upon registering the fundamental beam, the

triggering signal to the Tektronic 557 dual beam oscilloscope, used for

e

recording SHI from the monitor channel and from the KDP. A piece of

z-cut quartz platelet was used in the monitor arm. The

s e

laser pulse causes the quartz . to generate SHI which is used as a

=3 4»‘%

reference for reducing of statistical fluctuations in the SHG exveriment
The use of a monitor channel is a standard technique in nonlinear

(27,28)
experimentation .

The reason for usinga z-cutquartz platelet quartz in the monitoring
arm, rather than KDP, was that its surface did not deteriorate with
time. The z~cut was chosen mainly because of the convenience in not
having to worry about the orientation of the laser polarization with
: . (27) .
respect to the crystalline axis . If the z axis is normal to the

platelet, the second harmonic intensity from the quartz is proportional to
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2 4
I(2w) =~ (XNL(ZUJ))Z )E4 (w) + ZE2 (W)E (W)+E™ (w))
X X y Yy

& ewn? B (3.1)

Here EX(U)) and Ey(w) are the projection of the lager field on
the X and Y axes of the quartz crystal. The second harmonic intensity
was not changed when the quartz is rotated about the » axis. Another
advantage of using a z-cut was that the crystal was far from the phase-
matching condition. Thus accidental misalignment of the monitoring
system would not effect the second ha rmonic conversion by a noticeable
amount.

Corning filter CF 2-64 and 7-57 were used in front the quartz
platelet in order to ensure that only the fundamental beam could strike
‘the quartz, To discriminate the fundamental beam from the admixture
of second harmonic signals from the quartz platelet, a copper sulphate solu-
tion (CuSO4) was employed to filter out the fundamental. The
remaining signal is then transversed through a Viard Atomic interference
filter, having transmission peak at wavelength 530012 corresponding to
second harmonic of the fundamental. The signal was collected
by a "ten stage Amperex photomultiplier,model 56 AVP. The
signal from the photo multiplier in the monitor channel was fed to the
upper beam terminal of the Tektronic 551 dual beam oscilloscope.

The main fundamental beam was polarized in the vertical
direction corresponding to the "110] direction of the KDP target.

The linear polarization of the fundamental beam was achieved

by means of half waveplate and Glan-Kappa prism which were coated for

o e b e e s o
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anti-reflection at the wav~! ngth of 106pm . Before the fundamental beam
entered a liquid cell, it transversed through Corning filters no. 2-64 and
no. 7-56. This was to ensure that all spurious signals generated by the
laser beam from various optical components were suppressedandonly the
fundamental beam of the wavelength ) = 1,06 ym would be incident on
the KDP crystal.

The KDP crystal was mounted onan aluminum target holder
which was connec.ed to the angular rotator mounted on the platform above
the liquid cell. The angular rotator was Kinematic model RT 200, with
vernier scale permitting variation of rotation within accuracy of 0. 01°,
The fundamental beam before entering the liquid cell was regulated by a
rectangular slit I mm wide and 5 mm high. The liquid cell had a
hexagonal shape with a circular flat fused quartz window on each side.
Each window subtends an angle of 20° ) The cell contained optically
denser fluid I-Bromonaphthalene in which the KDP crystal was immersed.
The KDP crystal was oriented in such a way that its nonlinear polarization

ONLS
source P » 1n the direction of optic (z) axis, lay in the plane of
reflection. The fundamental beam was polarized normal to the plane of
reflection. In  other w01'ds)the polarization of the fundamental beam
was in the direction M110] with respect to the crystallographic axes of
the KDP.

The detecting system for SHI produced from KDP was mounted

on an aluminum arm pivoted underneath the liquid cell. The axis of

rotation of the arm was common to the line passing through the center




A0

of the cell and tangent to an entrance surface of the KDP. This will

ensure that when the arm was rotated to change the angle of incidence

Ql » the SHI would be properly collected. Furthermore it helped to

verify the directional property of SHI by rotating arm slightly off to both

sides of the expected direction of the SH signal.

The detection system for SHI from the KDP wa s consisted of the
following. A slit 4mm wide and 10 mm high was used to separate the
reflected or transmitted SHI from the rcflected or transmitted fundamental
beam respectively. The slit was placed about 50 ¢m away from the
liquid cell. For the case of total transmitted SHI where there were two
transmitted beams of homogenous and inhomogeneous SHI, the larger
slit was placed at 15 ¢cm away from the cell to allow the two harmonic 1
beams to pass through. Behind the slit a biconvex lense of 30 focal
length was employed to ensure that all the harmonic signals would be

properly collected by the rhotomultiplier which was about 75 cm away from
the liquid cell. Between the lense and the photomultiplier a copper
sulphate cell and Baird Atomic interference filter with transmission peak

o
at 5300A were employed in the manner as described previously for the

monitor arm channel. Between the copper sulphate cell and the inter-
ference filter, a sheet of polariod was used for verifying the polarization
orientation of second harmonic signal before passing through the inter-
ference filter. The photomultiplier in this channel was identical to that
of the monitor channel so that the rise time of the two channels will be

essentially the same and time correlation for SHG could be easily verified.

i
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The signals from both channels were displayed on the dual

beam oscillscope and photographed. The oscilloscope was triggered
externally by a triggering signal from the Tcktronic 519 oscilloscope which
simultaneously monitored. To generate a data point, we took the ratio

of the pulse heights corresponding to the signal and monitor intensity
respectively and then averagedthis ratio overfive to ten laser firings.

This was essential in order to improve the quantum statistical fluctuations
of the SHG. The data points were plotted and compared to the computed
theoretical curves.

2, Experimental Arrangement for Two Beam Spatial Mixing

and Measurement of Picosecond Pulscwidth. When two fundamental

beams have properly spatial and temporal overlapping inside a KDP
crystal, second harmonic signal will be genecrated. This particular
situation is well described previouslv in chapter II, To ensure the
temporal overlapping inside the KD crysta]> Q-switched Nd:glass

was used as a source of excitation since it had relatively long pulse
duration. Q-switched pulse was produced "y means ot Pockels cell
(Korad K-QS2) and polarizer stag inside the laser cavity. The arrange-
menl for the monitor arm was exactly the same as described in the
previous setup . The laser was again regulated by a slit of 2 mm wide
and 5 mm high. A schemalic of the experimental arrangement is shown
in Fig. 3-5. After passing through the slit the fundamental beam was
then reflected by a mirror having antireflection coating at ) = 1. 06 um.

The two fundamental beams were then made incident uponth e KDP crystal, The
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KDP crystal and the detection arm for SHI from the KDP were fixed

and aligned with the help of He-Ne pas laser which shone tangentially
through the surface of the beam splitter (sce the set up in Fig. 3-5 ).
The KDP crystal is oriented in such 2 way that its optic (z) axis was
parallel to the entrance surface and in the plane of reflection. This
orientation of the KDP would yield the noncollinear phase matching
condition, which was experimentally confirmed and will be discussed in
Chapter IV. Angle of incidence 91 of each fundamental beam was equal
and regulated by the rotation of reflecting mirrors. The angular turning
platforms on which both reflecting mirrors were situated had a

144:] reduction gear ratio and a vernjer scale permitting a variation of
-’9i in step of 1 minute (1/60°). The polarizations of both incident beams
were in the direction normal to the plane of reflection. In another
words they are in I 11—0] direction with respect to KDP crystallographic
axes. The detection arm was exactly the same as in the previous setup,
however, it was fixed in a normal direction with respect to the exit
surface of the KDP crystal. The Q-switched pulse shape of the fundamental
beam was monitored by Tektronic 519 Oscilloscope which in turn provided
triggering signal to the Tektronic dual beam oscillosccpe on which both
harmonic signals from the monitor and signal channcl (from KDP) were
displayed and photographed.

The experimental arrangement for measuring the picosecond

pulsewidth was almost the same as in the TBSM experiment. However,

the source of excitation wasa mode ]OCked Nd:glaSS laser Which prOVided

e o o
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picosecond pulse trains. The experimental setup is shown in Fig., 3.6,
Temporal delay for each beam was introduced between the beam

splitter and the reflecting mirror. One delay was fixed and the other
variable. A system of optical delay was composed of three right angle
Prisms as shown in Fig. 2 -10, Variable temporal delay was achieved by
mounting the prism on a very sensitive translational stage,

which could translate in step of 1 mil (0. 0254 mm), roughly  equal to 1/10
picosecond. The KDP crystal with its orientation used in the investigation
was the same as in TPSM case, In this experiment a single fundamental
beam could not produce SHI in the normal direction to the exit face of th:-

KDP crystal. It required both spatial and temporal overlapping of the

two beams in the crystal, Spatial overlapping was easily arranged by proper-

ly  rotating the two reflecting mirrors, HoWevier temporal overlapping
could be achieved only by straight forward scanning the temporal delay
until SHI was observed. By varying temporal delay and recording the
corresponding S™I, the autocorrelation function was mapped out and the

picosecond pulsewidth could be deduced.
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CHAPTER IV
EXPERIMENTAL RESULTS

In this chapter, experimental results of second harmonic generation
(SHG) in reflection and transmission from KDP crystal of various
crystallographic orientations, using a mode locked and Q-switched
Nd:glass lasers, are presented. Furthermore, an experimental
technique of utilizing the polarization properties and phase matched
condition in a KDP crystal for measurement of picosecond pulsewidth
is reported and accounted for. The results of the present work are
divided into four major parts namely the SHG in reflection, transmis sion,
SHG by two beam spatial mixing (TBSM), and measurement of picosecond
pulsewidth of Nd:glass laser. Those results are presented in the

following paragraphs.

A. Second Harmonic Generation (SHG) in Reflection.

l. Nonphase Matchable SHG at Total Reflection., The KDP crystal

used in this experiment has dimensions 25 x 15 x 8 mm,3 The entrance
surface is the 25 x 15 mm2 face. The face normal of the entrance
surface is along the optic axis which is [001] direction. The total
reflection of the fundamental laser beam and for harmonic beam are
achieved by means of optically denser linear fluid l-bromonaphthalene as
previously described. The polarization of the fundamental beam, as
indicated in Fig. 4-1, is along the I 110 ] direction.

The reflected second harmonic intensity generated from the crystal

was observed as a function of the anglc of incidence ei for the

66
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crystallographic orientation shown in the inset of Fig. 4-1. The KDP

crystal is a noncentrosymmetric cubic cryctal and its linear susceptibility

12
is a scalar. The theory developed by Bloembeigen and Pershan( )

’

which is given in Chapter II, can be applied directly here. The reflected

harmonic field polarized in the plane of -eflection is given by equation
(2. 33a)

NLS . NL
-4 2.3
Ep (i 4% P Fp n (2.33a)

NL

where the nonlinear Fresnel factor F i is given by equation (2. 35a)

NL sts stT sin(y +QS + QT)
R,11 ¢

R stR sm(9T+ QR )cos(QT-eR)sm(Q T+ )

¥

) (2.35a)
S

The angles QR, F)S and QT are related to Qi by equation (2-29)

which is recast into the forms

sineR'= Fn . (w)/n

lig liq (2w)] sti

sinf, = [n.. (w)/n_ (w)] sinsg. 4.1)
S lig cr i

. - r .
stT A nliq(w)/ncr(zw )] sti

where n_. stands for reflective indicies of the KDP crystal whichare given

in chapter III,

Using indicies of refraction for the liquid and the KDP, The critical
angles of the fundamental and second harmonic beams can be found,

according to equation (4, 1) as

er . -1/1.4943\ _ o
8 (w) = sin (1.6260> = 66,78 o

9Cr(2w )= sin_1<-i'—2.27%> = 64, 76°
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For Qi> 9cr((u), BS becomes complex and one should use

cos B = if (sin@i/sinecr(w))z -1]1/2 (4. 3)

in equations (2. 32b), (2.35a) and (2. 39). Similarly, for 8i> Gcr(Zw) ;

GT should be expressed as

cosGT = i[(sin@i/sinecr(Zw))Z -1]1/2 (4.4)

According to the theory, the reflected second harmonic intensity

IR(Zw) » given by equation (2.39), is

=5 4 NL22 L2
I Quw) = (C/8Tr)./eR IEOI dd’(4my 5, )n (f, )7 x

L4, NL,2
" IF

|F _ cosGR(Cosei)-l (2.39)

The solid curve drawn in Fig. 4-1 is a plot of equation (2.39) g a
relative scale and is calculated from the last five factors

NL,2

L .4 -1
I | cosGR(cosei)

|F |F

R
This is appropriate since the remaining factors in equation (2.39) can

be treated as constants in the experiment. The vertical scale in Fig. 4-1

is adjusted tothedata. The experimental points arein striking agreement

with the computed theoretical curve which displays nonanalytical singularities

. cr cr .
at angle of incidence Bi =h (w) and 91 =0 " (2w) respectively. These
two singularities are expected since at these angle, cosH_, and cosh

S

respectively, change froma real value to a pure imaginary value . We would

like to point out specifically that the data points even reproduce two

cus»s in Fig. 4-1. This experimental features were not observed in the
(28, 29)
earlier measurements of this sort . We attribute the

P |
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succesis here to the fact that in our experiments the mode locked laser
beam was used. The unique phase relationship among the axizl modes
in the fundamental beam eliminated most of the intrinsic quantum

(87)

fluctuations which are typical ofnonlinear optical experiments . We
thus emphasize once more the importance of using the mode locked laser
in these experiments.
The enhancement of the reflected intensity arises mainly from two
: . L - .
sources. First, the linear Fresnel factor F near the critical angle is
larger than that away from this angle by about a factor of two. This will

give a factor of sixteen in the reflected second harmonic intensity IR (2w).

Second, the nonlinear Fresnel factor F NL

R 11 defined in equation (2. 35a)

in the neighborhood of these critical points as dominated by the term

Msin(A T+ GS)]-I and it is larger than that away from these points by

(88)

about a factor of three Therefore, after all factors are accounted for,

the additional enchancement of I_(2w) in the neighborhood of the critical

R(
angles will be about two orders of magnitude. This r=sult is in good

agreement to the theoretical curve.

The physical interpretation of the enhancement of nonlinear Fresnel

. . (33,34) .
factor is that momentum matching for the wave propagating
parallel to the surface inside the nonlinear medium is important in
determining the reflected second harmonic intensity IR(Zw) at the
critical angle. The reflected second harmonic intensity near the
critical angle is generated by the polarization in a surface layer with

1/2

thickness of about (\¢ ) where { is defined as the coherent
coh coh
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success here to the fact that in our experiments the mode locked laser
beam was used. The unique phase relationship among the axial modes
ir. the fundamental beam eliminated most of the intrinsic quantum
. 2 . . . : (87)
fluctuations which are typical of nonlinear optical experiments . We
thus emphasize once more the importance of using the mode locked laser
in these experiments.
The enhancement of the reflected intensity arises mainly from two
L . L . .
sources. First, the linear Fresnel factor F  near the critical angle is
larger than that away from this angle Ly about a factor of two. This will
give a factor of sixteen in the reflected second harmonic intensity IR(Zw).

Second, the nonlinear Fresnel factor F LS

R 11 defired in equation (2.35a) %

in the neighborhood of these critical points as dominated by the term

Msin(h T+ GS)]"l and it is larger than that away from these points by
(88)

about a factor of three Therefore, after all factors are accounted for,

the additional enchancement of IR(Zw) in the neighBorhood of the critical
angles will be about two orders of magnitude. This result is in good ?g

agreement to the theoretical curve.

The physical interpretation of the enhancement of nonlinear Fresnel

(33,34)

factor is that momentum matching for the wave propagating

parallel to the surface inside the nonlinear medium is important in

s e

determining the reflected second harmonic intensity IR(Zw) at the
critical angle. The reflected second harmonic intensity near the

critical angle is generated by the polarization in a surface layer with

)1/2 where ¢ is defined as the coherent
coh coh

thickness of about ()¢
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length. In general, the reflected second harmonic intensity at angles
away from the critical angle is only generated from a layer about
A/, thick.

2. Phase Matched Second Harmonic Generation (SHG) at Total

Reflection. The KDP crystal used in this case has dimensions of

25 x12 x 18 mm3. The entrance surface is 25 x 12 mm'2 face and it has

a face normal in the [111] direction. The crystal was immersed in

the optically denser linear fluid l-bromonaphthalene. The special cut
was specially made for the crystal in such a way that the phase matching
direction is along the entrance surface of the crystal. This can be done
by cutting the crystal such that the optic (z) axis, which is in the same
dir ection of nonlinear polarization ;’NLS, makes a phase matching angle
Sm to the surface. The angle Qm was computed by using equation

(2. 46) and indices of refraction of KDP crystal. It was found that at the
wavelength of interest the angle em takes value of 41.2°. The reflected
second harmonic intensity IR(Zw) generated by the crystal was
observed as a function of the angle of incidence ei for the crystallographic
orientation shown in the inset of Fig. 4-2. The fundamental field was
polarized along the rITOJ direction and propagated as an ordinary ray,
According to equation (2. 31a) the nonvanishing nonlinear polarization

was along the optic axis and therefore the harmonic field was polarized

in the plane of reflection and propagated as an extraordinary ray.

The experimental result in Fig. 4-2 shows that the reflected second
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the angle of incidence is changed by a few tenth of a degree in the vicinity
of the critical angle. There is one maximum (peak) value of the reflected

L . 4 F i cr o .
harmonic intensity and it is exactly at 9 = g (w) = 66.78" in agreement
to the theoretical prediction. The observed maximum reflected intensity
is about 30 times of magnitude larger than reflectcd intensity in the
nonphase matching case described in the previous section., This is due
to more enhancement of the reflected harmonic intensity by nonlinear
Fresnel factor in the phase matching case.
The enhancement can be matheinatically explained in the view of
equation (2. 39) and (2. 35a), According to the crystallographic cut of the
NL
crystal, the value of the nonlinear Fresnel factor F tends to infinity
when the angle of incidence 91 = ch(w) . At this condition we have
eg =9 - n/2 where the phase matching condition prevails and thus
sin(qsi-g T) = 0 in equation (2.35a). However, in practice, there are
several factors, e.g. beam divergence, walk-off effect, that limit the
reflected harmonic intensity from reaching infinite value. Furthermore,
the singularity causing the divergence at critical total reflection predicted
(12) C .
by the theory for this situation has been removed by another treatment
3 . (91) " .
given by Shih and Bloerabergen . They used the Green' s function
technique to describe the generated harmonic field, with due attention
being paid to the effects of the finite beam diameter. According to the
theory based on this technique, the second harmonic intensity at the

critical angle Gcr(m) does have a finite value and it is in agreement to

the experimental result that the enhancement of the reflected second
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harmonic intensity is three to four orders of magnitude when the angle

of incidence is changed by a few tenth of a degree in the vicinity of

5 ().

The theoretical curve in Fig. 4-2 has been calculated using again

equation (2.39) with 4 = fpoand =0 =4.2°

and assuming

|
I
i
i
‘
Z

Y
n_(n)= ne(Zw) = 1.4943 without including angular variations for k
cr
-
and kT. This is justifiable that in the vicinity of the critical angle the

extraordinary index of refraction for second harmonic frequency is

slowly varying. A complete,

but very involved expression, has been

given by Fischer (89) for rigorous treatment, The theoretical curve is

again calculated from the last five factors.

—— E £ _ iy

,f L,Z 'FL'4I NL'Z -

1
FR,ll cosQR(cosei)

R

; of equation (2.39). The vertical scale in Fig. 4-2 was adjusted to the

data. N

ote the striking agreement between the experimental points and

——. ..

the theoretical curve, which predicts anomalously high reflected

e . cr
harmonic intensity at Qi =97 ().

Furthermore, it is seen that the 3

variation in the immediate neighborhood of the critical angle is rather

well described by equation (2.39) for the geometry used. In the region

where 91 is greater than ecr(u)),and also cosGS and cos@T take

pure imaginary values, the reflected harmonic intensity is still

value when ?i approach 90°, This can be understood physically because

bevond the critical angle there is still evanescent wave of the fundamental be.

-

am whichwill create the nonlinear polarization P

l comfortably detectable and it tends to decrease monotonously to zero

(2w)and will radiate back
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into the linear medium the reflected harmonic beam. The enhancement
due to phase matching at critical angle corresponding to this geometry is
very useful for studying nonlinear optical properties of the medium
which absorbs at the fundamental and/or second harmonic frequencies.
Since all the information will be analyized via reflected harmonic intensity.

To facilitate better physical understanding in connection with reflected

second harmonic phenomena, one can consider the drawn curve in 4
Fig. 4-2 as a limiting case of that in Fig. 4-1. The separation between
the two cusps in Fig. 4-1 depends upon the degree of phase mismatching
in the neighborhood of the critical angle. As the condition for
perfect phase matching is approached, the two cusps in Fig. 4-1 will
move closer towards each other and the reflected harmonic intensity
becomes larger until finally these two cusps collapse into one peak
and the intensity tends to the highest value . This explanation
was also carried out to reflected third harmonic generation (THG) by
Bey et a](30).

Another experimental investigation in relation to phase matching at
the critical angle was performed. Here the same KDP crystal of the
same crystallographic cut was employed. However,the crystal was

rotated 180° about the face normal which is in T111] direction as in the

previous case. The reflected harmonic intensity IR(Zw) generated from

the crystal was observed as a function of the angle of incidence 9§, .
i
The crystallographic orientation and the polarization of the fundamental ]

beam are shown in the inset of Fig. 4-3. Again in this case the fund-
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amental beam propagated as ordinary ray and the reflected harmonic
beam polarized in the plane of reflection was extraordinary ray.

The experimental result in Fig. 4-3 shows that the reflected
harmonic intensity increases by about two orders of magnitude when the
angle of incidence changes by a few tenth of a degree from the critical
angle. The maximum reflected harmonic intensity occurs at the critical
angle as predicted by the theory. The theoretical curve in Fig. 4-3
was calculated in the same way as in Fig. 4-2. The vertical scale was
adjusted to the data. Note the striking agreet:nent between the
experimental points and the theoretical curve, which predicts
anomalously high reflected harmonic intensity at ':')i = Gbr(m).

When the result from Fig. 4-3 is compared to that from Fig. 4-2,
it is found out that the overall shape of the peak in Fig. 4-3 is broader
and in addition the peak intensity .s lower than that in Fig. 4-2 by
about 13 times. This discrepancy can be well understood by the fact
that KDP crystal is an uniaxial crystal possessing variable extraordinary
index of refraction.

In genecral, one may expect different reflected harmonic intensities
from the two geometries as shown in Flg. 4-2 and 4-3, respectively.
These two geometries are identical except that in cne case the KDP
crystal has been rotated by 180° about its face normal with respect to
each other. The two situations corresponding to Fig. 4-2 and 4-3 can be
shown in Fig. 4-4 where the normal (index) surfaces of ordinary ray and

second harmonic extraordinary ray are fully indicated for both cases.
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This is equivalent to an illumination by a beam of incident from a

symmetric position on the other side of the face normal. In Fig. 4-4,

where the drawing indicates the conservation of the tangential components of

R -

k vectors., The k vectors with subscripts a and b correspond to

the geometries in the insets of Fig. 4-2 and 4-3, respectively. At
-+ -+

total reflection, kqa = O0A, kgb = OC. According to the normal
N S s .
(index) surfaces and boundary conditions of it s vectors, it is required
-+ -+ -+ - '
that k_° me take two values, i.e. k_° = k aL=OA or k a=OB
T M3y ¢ S T '
-

. a
However) the former solution of k

= OA would give a ray velocity
propagating out of the nonlinear medium; i.e. » the energy propagates
out of the medium. This is not a physically allowed solution. Thus the

- -+

only physically allowed solution is (... ' kTa = OB and ka = OC. They
_’

_.
correspond to the incident }’:a and ki waves, respectively.
In the formal treatment of the theory, Armstrong et al(ll) and
. (14) ..
Kleinman have represented the laser and second harmonic light by
(1) . .
unbounded plane waves. Armstrong et al pointed out that the inter-
action between light waves of finite aperture takes place along the
. . . : (14)
direction of energy flow. In his paper,Kleinman also showed that
SHG will ultimately be limited by slightly different directions of
propagation of the energy of the laser and second harmonic beams. The
effect is called doubl: refraction in a uniaxial crystals. In fact, the
light wave in the nonlinear medium KDP in the two geometries have very

narrow apertures near critical angle. Therefore, to examine the

phenomena of SHG at phase matched condition in a uniaxial crystal, e, g.

T T
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KDP, it is important to know the degree of overlapping between the

-
direction.of energy propagation of polarization wave kS and radiation

wave ]—:T. It has been shown by Boyd et a1(35) that for any direction of
phase propagation the direction of energy propagation (Poynting vector)
is given by the normal vector to the normal (index) surface. For the
ordinary wave the propagation vector and the Poyting vector are parallel.
However, for the extraordinary wave the Poynting vector deviates from

the phase propagation direction by an angle p, called the angle of

3
double refraction, the angle p is given by( )

1 1 1
tan o = 5 ns (3) { - ! sin2s (4.5)
FARAT) Lrne ( /2).]2 ) ]2
2w "2u
where @ is the angle between the phase propagation direction and the

optic (z) axis. Furthermore, the angle o in Fig. 4-4 can be obtained

from
- e] > = ol 5 cos‘%2 + 5 ! ]2 sin29 (4. 6a)
r o] r =
nZw( ) nZw] nZwm/Z)
n. (41.2%¢) cosm = 1° (4. 6b)
2u) w

From (4. 6a,b) the angle ¢ and as a consequence nS (41.20-co) were

2w

found as

o=1.12°

nS (41.2°-1.12%) = p
2w

;w (40. 08°%) = 1. 49465

The angle 0, was found, upon substitution nsm (40, 080) and

appropriated value of indices of refraction of KDP, as

n_

P P T




0, 1.07°

In the same way 0, was calculated as

- o
0, 1. 08 (4.9)

Therefore,the angle between the directicns of energy propagation of
“a 25
ks and kT corresponding to the geometry of Fig. 4-2 is

@_01:1.12°- 1.07° = 0.05°

whereas the angle between the direction of energy propagation of k

» S

and k;)_ corresponding to the geometry of Fig. 4-3, is 0, = 1. 08°,

Thus in the former case, the polarization and radiation waves will have a
larger interaction volume and hence will produce more intense second
harmonic wave.

This qualitative analysis via double refraction phenomena explains
the experimental results shown in Fig. 4-2 and 4-3. However, the ]
double refraction effect corresponding to the idealized geometry of phase
matching shown in Fig. 4-4 probably cannot account for the experimental
factor of 13 times increase. The effect mentioned above depends very

much on the actual value of the angle © and the sizes of the fundamental

and harmonic beams near the critical angle inside the nonlinear medium.

Another possible explanation of the different intensities when the
KDP crystal is turned by 180° can be based upon the beating of different

ordinary ray directions inthe fundamental wave. This idea was first

(34)

i
3
i

given by Maker et al In this explanation, we assume that the crystal

was not cut precisely that the phase matching direction is not along its
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surface and in addition the fundamental beam is allowed to have a slight
divergence. The illustration is shown in Fig. 4-5 where symbols of
subscripts a and b denote the same geometries as previously
described in the early analysis. According to this case, the experimental
maximum intensity is not obtained for the idealized geometry of Fig. 4-4,
however, the maximum occurs when the phase matching direction 0 A
make a small angle QA with the surface as shown in Fig. 4-5. The
nonlinear polarization is created from the mixing of slightly divergent

- 7 ~>_n

pairs of fundamental rays with wave vectors k; and k; . The allowed

perfect phase matching condition is

-

k =

’ "

*a
k

4a
+ k
s’ s

This condition can be satisfied if A = Qm , as discussed by Maker

k
(34) T s
et al , where qk is the angle between kT and the optic (z) axis.

g0
When the crystal is turned by 180° around its face normal, the wave

-5
b /
vectors of the incident fundamental rays are represented by kS and

1’

kq . For this situation the phase matched condition is not satisfied and

as a consequence the reflected harmonic intensity will be lower. The

(34)

analysis based on the discussion by Maker et al seems to agree with

the experimental data obtained in the case of nonphase matched and

phase matched conditions described in Fig. 4-1 and 4-3, respectively.

It was experimentally found that ratio of the harmonic intensities at the critical
angle for phase matched to nonphasc matched conditions is about 30 times,

which is in the same order of magnitude (I3 times) as obtained upon

comparing Fig, 4-3 to Fig, 4-2 .
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3. Nonlinear Brewster' s Angle. The agreement of experimental

data with theory for those separate experiments described in the previous
sections encourages verification of a more subtle nonlinear optical
postulate. In particular, we are led to ask if a nonlinear Brewster' s angle
for the nonlinear transparent medium can be found experimentally.

Even though the nonlinear Brewster' s angle for absorbing medium, e.g.,
GaAs,was first confirmed by Chang and Bloembergen( ), it is still
important to carry the postulate to the transparent regime. An uniaxial
KDP crystal is known to be transparent for both fundamental and

second harmonic frequencies of Nd:glass laser. Besides its transparent
property, it is also an ideal nonlinear material in the sense that it
crystallographic, point group properties and nonlineur optical characteristics
concerning SHG are well understood. The KDP crystal used in the
investigation is the same as one used in the phase matching condition at
total reflection described in Fig. 4-3. Again the crystal is immersed in
the optically denser linear fluid 1-bromonaphthalene. The use of the

liquid is to facilitate the achievement of observation of Nonlinear

Brewster' s angle since without optically denser linear medium from

which the fundamental is incident, the condition for Nonlinear Berwster's
angle will never be achieved. The face normal of the entrance surface

of the crystal is in [111] direction and the fundamental wave is polarized
along rlTO] direction. According to (2.3la) the nonlinear polarization
2NLS

P will be in T001] direction or optic (z) axis. The reflected

harmonic intensity IR(Zu)) generated from the crystal was observed as

P e s o L el L b e Lo o T R T O TP e, SNl o ol oo . i L fo b e ST LR e, el b b




2%

i
i
s .
i
f

a function of the angle of incidence, which varies from 20° to 750. The
experimental result is shown in Fig. 4-6. In this particular geometry
of the KDP crystal, we have the nonlinear polarization in the plane of
reflection. The electric field of the reflected harmonic wave is given
by equation (2.25) . This equation reveals the existence of a Nonlinear

R
Brewster' s angle when Ell (2w) = 0. Or in another words, we have 1

S . .
4-r-rPNL sin? s1n29 sin(w+8_+1 )
ENRE=0 & = T T S (4.10)
. . 'H . - N
11 eRstRsmL 'I'+ GS)Sln(6T+8R)cos(9T GR)

The equation (4.10) is true, if

sin(~ +6T +BS) =0

or ry+ﬂs+9T =0, (4.11)

From the Fig. 4-6, one has 4 + GS » which is the angle between the

nonlinear polarization and the face normal direction inside the crystal,

equal to - 48, 78°, Therefore, from equation (4.11) using the first

condition which provides the realizable value of QT we have

= 48, 78°
QT

Tafwm

Having known the value of QT = 48. 780, the corresponding index of

P T P T T - T o PR LT e WP L

L

refraction of an extraordinary ray n;w(QT = 48.78°) is found via

equation (4. 6a) to be

nelkiammen.

ne (A

= 48.78%) = 1. 47125
2w

T

Thus the Nonlinear Brewster's angle can be found via nonlinear

Snell law (2.29) as

N oAy

I
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A _=48.78
i ,NL.Brew. _ -1{n2w( T : cing |
i s n., () wl
liq
i - o SFl 47125 ) o}r
= sin - 16260 sin48. 78
Q'NL. Brew. - 42 8.’%0

1

Should the KDP be placed in the air instead of immersed in

I-bromonaphthalene, the calculated nonlinear Brewster! s angle would bhe

o NL-Brew. el Lams sin48.78%}
1 T

o

= S 0896 |

This angle, of course, is nonphysical.

Note the striking agreement between experimental result and the

theoretical prediction. One can see that in the vicinity of a' = 42, 780,

there exists a pronounced dip of the reflected ha rmonic intensity IR (2mw).

This evidently confirms the existence of Nonlinear Brewster! s angle.

This is for the first time that Nonlinear Brewster' s angle for transparent

medium has been experimentally demonstrated. Notice that the reflected

harmonic signal in the neighborhood of Nonlinear Brewster angle is very

Tebaac SRS

low level and at the angle it is expected no IR(Zw) generated out of the

crystal. By increasing the incident power density via a biconvex lense and

using the low levcl signal detection method in which the reflected harmonic
signal was collected and averaged over 25 to 50 laser firings, the
pronounced dip at Qi = 42. 83° was achieved. Other experimental points

agree well  with  the theoretical curve which was calculated, as in previous

i
i

case, from the last five factors of equaticn (2.39). In this case the A
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the angular variation of ng () was taken into consideration in computing
W

the theoretical curve since we are now dealing with much larger angular

range. From Fig. 4-6, again the anomalously high reflected harmonic

intensity IR(Zm) at critical angle and overall agreement between data

points and theory from 20°< 8" < 75° confirm the nonlinear optical theory
(12)

developed by Bloembergen and Pershan .

The physical interpretation of the existence of a Nonlinear Brewster' s

angle can be understood in terms of classical dipole radiation. When

the fundamental beam is incident on the KDP crystal at the Nonlinear

INLS
Brewster' s angle, it will setup a nonlinear polarization P in
direction parallel to the direction of propagation of the reflected harmonic
wave inside the nonlinear medium. According to the classical dipole
radiation theory, there would be no radiation seen in this direction. This

nonradiating wave upon refraction back into the linear medium would

otherwise give rise to the reflected ray in the direction of A _.

The experimental points and the corresponding theoretical curve in
the vicinity of Nonlinear Brewster's angle havea pronounceddip,in contrast
, . (34)
to the case of GaAs irradiated by ruby laser, performed by Chang et al !
This can be explained that for the KDP case, the crystal has real and small
value of e(n) and g(2w) in contrast to the case of GaAs which has large
and complex values of ¢(w) and e(2w) at the ruby laser line, Maxwell's equa -
tions and the boundary conditions derived for a transparent medium can all

be extended to an absorbing medium’provided that the dielectric constants

are replaced by their complex values. Then, in that case,one can see

i s Lo Sashia o T IRy S el e s e e . ey O T - oy
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that the condition for E“

(2w) = 0 can never be satisfied, as
. _ 1/2 . o . .
sinf. = e(Z'U)/eh.q(ruV sin 48. 78" can never be achieved physically
if e(2m) is complex. This fact was confirmed when a Nd:glasslaser was
used instead of a ruby laser, and the pronounceddip at the Nonlinear Brewster' s

(34)

angle for GaAs was observed by Chang et al This is because the second

harmonic emission of the Nd:glass laser is ahsor bed much less by
GaAs since the imaginary part of its linear dielectric constant is 1. 50.
The conclusion (o be drawn, in relation ‘o the reflected intensity of the

harmonic wave from a nonlinear medium KDP crvstal immersed in a

oprically denser linear fluid 1-bromonaphthalene, s that the obseryed
angular dependence  of the reflected harmonic intensity and , in
particular,the existence of Nonlinear Brewster' s angle of a transparent
medium are in good agreement with the theory of Bloembergen and
Pershan“ ). The regime of an evanescent fundamental wave and

reflected second harmonic wave have been demonstrated.

B. Second Harmonic Generation (SHG) in Transmission.

1. Tlomogeneous and Inhomogeneous Second Harmonic Waves in the

Neighborhood of Critical Angles. Having obtained a good agreement

between the experimental data and theoretical prediction in the case of the ¥

nonphase matchable reflected SHI described in section A-1, it was
encouraging to investigate the SHG in transmission near the critical

cr cr . . :
angles 9 " (2w) and 9 ~ (w), respectively. The result obtained in
this investigation, according to the theoretical prediction, will

complement that of section A-1. The gemetrical situation just
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before total reflection occurs was shown in I'ig. 2-6 in chapter II. The
primary fundamental beam is transmitted aimost parallel to the surface in

. . . (12)
the nonlinear KDP crystal. There are two transmitted harmonic beams .
The driven polarization wave propagates in the same direction as the

> -

transmitted laser beam. It has a wave vector k_ = 2k (w) and
S Laser

represents the particular solution of the inhomogeneous wave equation.

-
In addition,thereisa homogeneous solution with wavs vector k (2w} .
&

T
In the present study the KDP crystal has a right angular corner and the two
transmitted harmonic beams are spatially distinct and readily observed
separately. According to the particular crystallographic cut, which will

Y
be described later, it is clear that the beam with wave vector kT will
disappear first at 9i = 9”(2(») «.nd the ray with wave vector —I:S will
disappear at the same time as the transmitted fundamental since ch(m)
is found to be greater than Bcr(Zu)) . As the angle of incidence Qi becomes
larger than ch(;v) the inhomogeneous wave will disappear.

The KDP crystal used has dimensions of 25 x 15 x 8 mm3. Its face
normal is in the [001] direction (optic axis). The homogeneous and
inhomogeneous transmitted harmonic intens’ty were observed separately
as a function of angle of incidence. The polarization of the fundamental
beam and the orientation of the crystal are shown in the inset of Fig. 4-7.

The homogeneous and inhomogeneous harmonic intensities are given
by equation (2.39), respectively, as

NL 2 2 1,

— 4., L 4
Lo@w) = (c/8m/e 'E_|"dd (4 X 5 ) () |F

|~ x

2 -1
| 9
FTI cosQT(cos i) (4.12)

TR A el taoas




(RELATIVE UNITS)

SHI

TRANSMITTED

100
L ]
[ QY Homao. SHI
SO eo—-y Inhomo. SHI J
ar or
6fzw) 6 (w)
o L | I I I 1 j I
6l 62 63 64 65" 66 67

ANGLE OF INCIDENCE

FIGURE 4 -7

R R g RO i -




— M. AR G

== 4 NL2 2 I  _L.4
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The drawn solid .urves in Fig. 4-7 are plots of equations (4.12) and
(4.13) for homogeneous and inhomogeneous SHI and are calculated from
the last five factors, respectively,

L 4

NL 2 -1
IF ' 'F lcosGT S(cosei)

ThiS ,

The linear vertical scale in Fig. 4-7 is adjusted to the data as
appropriat for each case. The experimental points are in good agree-
ment with the compuated theoretical curve. They arr in excellent
agreement to the theoretical prediction that the homogeneous and
. : . cr cr
inhomogeneous SHI will be terminated at § 2w) and 8 (w) ,

. B cr cr
respectively. The critical angles 8  (2w) and 8 (n) from the
experiment are the same as found in the previous cases. The behavior
of the two SHI near the critical angles as shown in Fig. 4-7 can be
explained in the following. The two transmitted SHJI are the net result
of the competing effects of the increasing linear Fresnel factor to the
fourth power, the decreasing nonlinear Fresnel factor squared, and the
rapidly decreasing cross section of the fundamental inside the medium
near the total reflection. As to these competing factors the homogeneous
and inhomogeneous harmonic intensities fall down rapidiy toward
cr cr )

8 (2w) and 8 (w). The reason for the homogeneous and inhomogeneous

) cr cr . . .
SHI terminated at 8  (2w) and 8  (w) respectively is that when Bi is

greater than ecr(Zw) and ecr(w) the value of cosQT and cosfaS become




Pure imaginary respectively. As a consequence the two transmitted
harmonic iriensities will become imaginary which are not physically
allowable. Furthermore, one can see from Fig. 4-7 that the homogeneous
SHI disappears at ecr(Zw) while inhomogeneous SHI still persists for
2.02° more and finally is terminated at Gcr(m) . In the region between

Ccr cr D . o .

8 (2m) < qi <95 (w) which is 2. 02" interval, one can comfortably
observe inhomogeneous SHI. One can apply the result from this

. . . . 0 g cr cr
Investigation, particularly in the region §  (2m) < Gi <5 (w to other
nonlinear crystal which is appropriately cut. Since in this region one
will obtain only inhomogeneous SHI which has direct association with the

g c +NLS : .o Bl
nonlinear polarization source term P and the nonlinear susceptibility

XNL. The knowledge of inhomogeneous SHI in this particular region will

= NL
directly facilitate the study of PN g and XNL of a nonlinear medium.

2. Phase Matched Second Harmonic Generation (SHG) in Transmission.

SHG under phase matched conditions and in a normally incident
direction was performed by several authors(33’ 34\. However in the
present work the phase matched direction is no longer in the normal incident
dire~tion. The SHG in transmission under this phase matched condition,and
away from it,were experimentally investigated and compared to the prediction
of the theory. This will verity the theoretical prediction and check the
theory for other conditions aside from previous confirmations.

The KDP crystal used in the experiment was the same one as in

section B-1. The total transmitted second harmonic intensity due to the

suni of homogeneous and inhomogeneous transmitted harmonic intensities

el i D e o e 4 e 2 g IR Pt
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is observed as a function of angle of incidence which varied from -15° to
50°. The fundamental beam is polarized in the T ITO:] direction and the
KDP crystallographic orientation are shown in Fig. 4-8. The phase
matching angle 9m according to this geometry can be computed by using
equation (2. 46) and indices of refraction of KDP crystal given in Chapter III
The phase mat ched direction was found to be Qm = 41.2° away from the
crystal face nornial direction (optic axis). Thus the angle of incidence
corresponding to this direction is given by

e

n
g, = sin {2 m oo
i . n., (w) m)
liq

where n 8 )= n° = 1. 4943
2w m )

. _ ..m1r1.4943 ) o
Fence 4, = 11. 6260 * sindl.2 }
5. = 37.27°

The theoretical curve for total transmitted second harmonic intensity
is the sum of homogeneous and inhomogeneous intensities given by (4.12)

and (4.13), respectively

(2w) = IS(Zm) + I..(2w) (4.14)

Itotal T

The thereotical curve shown in Fig. 4-8 was computed from the sum of
the last five factors in equation (4.12) and (4.13) and it can be mathematically
expressed as

NL 2

l +

! s, 11

L., L4 -1 )
@)~ (£ ) | F| “(coss,) ™ I F cosByt  (4.15)

ITotal

The expression for I I.+ IT given by equation (4.14) is

Total ~ 'S

justified for the present investigation. For this geometry, the transmitted
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inten <ities were measured by observing the transmitted harmonic waves

emerging from the back face of the crystal. Since the two harmonic
beams now overlap and interfere,the harmonic intensity is a function of
the path length of the beam irside the crystal. If the entrance and exit
faces are not parallel over the entire cross sectional area of the beam,
the interference must be integrated over this area. The result of this
integration gives three terms. The first two terms a re exactly the
separate homogeneous and inhomoy eneous intensities given by (4.12) und
(4.13) respectively. The third term retains an oscillatory dependence of
the length of crystal and has an amplitude determined by the angle of
parallelism of the two faces. If the two faces are exactly parallelthe
magnitude of the third term equals to the sum of the first two terms (90).
If the path lengths of the two harmonic beam differed by several coherence
lengths, the amplitude of the third term is negligible compare to the first
two. Since the KDP crystal used in the experiment is an uniaxial crystal
in which a double refraction phenomena is intrinsic. Therefore the
magnitude of the third term corresponding to the interference of the two

harmonic beams is negligible and thus the expression of I (2w)

Total
given by (4.14) is valid.

According to the theory for general crystallographic orientation, it
is anticipated that the total harmonic intensity will exhibit the oscillatory
feature in the heighborhood of very small angle of incidence. However,

this effect has not been observed. Instead,the total harmonic intensity

near normal incidence is falling rather monotonically toward zero value
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at Qi = 0°. This behavior ¢an be understood in terms of two physical

reasons. First, for the region of small angle of incidence, the double
refraction still persists and it reduces the effectiveness of the interference

between the two harmonic beams as described in the previous paragraph,.

Second, according to particular crystallographic orientation of the

L
3

"*ﬁ%“?

crystal used in this experiment, it is noted that the _I;NLS is in the
same direccion of the crystal face normal. In terms of the dipole radiation
point of view, the nonlinear polarization -I;NLS cannot radiate harmonic
waves in the direction of its oscillation. Therefore it is anticipated that
no harmonics intensities are observed in the direction of the crystal
face normal i.e., Qi = 0° . Furthermore, the total harmonic intensity
will be small in the reighborhood of Bi = 0°. Thus the trend of
monotonic  decrease of the total harmonic intensity dominates the
anticipated oscillatory behavior in this region.
The total harmonic intensity, collected by means of the technique
described in details in chapter III, is observed as a function of the angle
of incidence which varies from -15° to 55°. Note the striking agreement
between experimental data points and computed theoretical curve of
ITotal(Zw ) given by (4.14). In particular, the theoretical prediction con-
cerning the phase matching angle ei = 37.27° and zero total harmonic
intensity at ei =0’ are confirmed. In addition, oy using a KDP crystal
and a mode locked Nd:glass laser, the dynamical range of the dectable

harmonic intensity is of about 10 orders of magnitude.

Another investigation of phase matched SHG in transmission was
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performed by using a KDP crystal of different crystallographic cut. The
KDP used in this investigationhas an optic axis , which is "001] directed
making an angle 41.2° to the crystal entrance surface. The normal to the
crystal face is in M 111] direction. The crystal is immersed as usual in a
linear optically denser liquid l-bromonapththalene. The fundamental beam is
polarized in the F110 ] direction. The total harmonic intensity ITotal(Zu))

was observed as a function of angle of incidence which varied from 0° to

o

52.5 . The crystallographic orientation of the crystal and the result

obtained from the investigation is depicted in Fig. 4-9., The theoretical

curve of total harmonic intensity I (2w) 1is again given by equation

Total

(4-14) on the same assumption explained in the previous section. The
theoretical curve drawn in Fig. 4-9 was computed from equation (4-15)

and the vertical scale is adjusted to the experimental data.

The angle of phase matching C)m could be found in the usual way by
using equation (2.46) and indices of refraction of KDP given in Chapter IIL
The phase matching angle was found to be Qm = 41.2°, According to the

present geometry, there exist two possible phase matched directions. The

first direction is along the entrance surface of the crystal. This direction
is as<ociated with phase matched SHG at total reflection and has been
investigated in section A-2 previously. The second direction which is
still 41. 2° away from the other side of optic (z) axis. It makes an angle
eT, inside the KDP crystal, to the direction of the face normal. The
angle eT is given by

8. = 90° - (41.2°+41.2°%) = 7.6°
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The corresponding angle of incidence ei is given by

e

n bl
i_ . <l 2w 'm . )
8 = sin LT, ) s1n9Tr
lig
where n. (9 )=no = 1.4943
2w m )
Thus
_.-1r1.4943 o
Qi— sin 1\ T 570 - sin(7. 6 )}
A, = 6.95°

The rapid increase of the total harmonic intensity at the phase
matching angle em is due to an enhancement of the nonlinear Fresnel
factors FSN’LIJ1 and FI,I\I,LH given by (2. 35b) and (2. 35¢) for polarization and
radiative harmonic waves ~espectively. This rapidly monoton
increase of the total harmonic intensity dominates the oscillatory
pattern in the region of small angle of incidence so that no oscillatory
pattern of interference between the homogeneous and inhomogeneous
harmonic beam has been observed. The experimental data points
are in striking agreement to the computed theoretical curve shown in
Fig. 4-9. 1t is noted that the prominent dip of the curve occurs in the
neighborhood of 9i = 44° as expected in theory. According to classical

dipole radiation, the inhomogeneous or homcgeneous harmonic intensity

- -

will become minimum when the propagating vector kS or kT parallel
. . 2NLS : P . . . : .
to the direction of P which is in the 001] direction. This situation

occurs when GS or GT is (90° - a1, 20) = 48.8° . The corresponding angle

of incidence Qi is thus given by




e AR dEe

A

o
n
,_ .o =1 W .
Qi = sin {n N R smesl
lig
_ . =171,4943 . o
. {1.6260 S8 8 )}
B 23,93° (4.16)

1

. ' o - INLS . _ o
For the situation that kT is parallel to P , one has QT = 48.8

and the corresponding ne can be computed by equation (4.69) as

2w
e o
nZu) (0) = nZu) = 1. 5131
Thus the ccrresponding angle . f incidence Q;’ is given by 1
=B
. =17 2 . |
el = Y . n |
T T R T} "
lig i
%
-1r1.5131 . o} ‘
[ = sin” {J2ons . sin(48.6%)]
Qi sin {1.6260 sin(48,87)
” o
N = 44,42 (4.17)

1

Due to the intrinsic birefringent phenomena in KDP crystal
the two harmonic beams have larger spatial separation when Qi become
large. Furthermore, information from equations (4.16) and (4.17) indicate
that homonogeneous and inhomogeneous harmonic intensities will never
be simultaneously zero value at the same angle of incidence Qi .

Therefore the value IT taLl(Zm) given by equation (4.14) will never
o

become zero as in the previous case where the nonlinear polarization

INLS
P is parallel to the face normal direction, i.e., 98 = GT = 0. The

experimental points are indeed in good agreement to the theoretical
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prediction given by the above analysis. It is noted that the dynamical
range of the total harmonic intensity for this case is about 10 orders of

magnitide which is the same as in the previous case. g
The investigation relating to SHG in transmission emanating from a KDP 3

crystal immersed in an optically denser linear liquid l-bromonaphthalene

can be concluded that the experimental results of individual as well as the

total harmonic intensity are in good agreement with the theory developed
(12) : .

by Bloembergen and Pershan . The regime of transmitted second

harmonic waves corresponding to an angular range from normal incidence

to critical angle " as been demonstrated.

C. Second Harmonic Generation (SHG) by Two Beam Spatial Mixing
(Noncollinear Phase Matched Experiment).

12

The theory developed by Bloembergen and Pershan( ) Llas also
predicted the possibility of SHG using two fundamental beam mixing
inside the nonlinear mediunmi. The first demonstration of SHG by two
beam spatial mixing (TBSM) technique was performed with Q-switched

ST T . (25)
ruby laser radiation incident on GaAs by Ducuing and Bloembergen.
x (28) '
Later Bloembergen, Simon and Lee performed TBSM experimer:t
o

using Raman laser of wavelcngth 9770A incident upon NaClO3 . Those
previous experiments were performed without phase matched condition.
In the present study of TBSM experiment, an uniaxial KDP crystal
prepared for noncollinear phase matched condition wis employed and
the fundamental beam was Q-switched pulse from the Nd:glass laser. The

purpose is to extend the theory into the domain of noncollinear phase
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matched condition from an uniaxial KDP crystal and as a consequence the

knowledge of polarization and SHG by TBSM tzchnique will be utilized for
picosecond pulsewidth measurements of the Nd:glass laser.
The KDP crystal used in the experiment has dimensions of 25 x 15 x 8
3 . .
mm . It has crystallographic orientation that its optic (z) axis is

parallel to the entrance surface. The two equal intensity fundamental

beams are incident from opposite sides of the face normal which is in

M110] direction. The angles of incidence of each beam are equal to 9i

The fundamental beams are polarized in ]-1.0] direction and
. A s NLS, |
according to equation (2.3la) the nonlinear polarization P is in the [ 001 ]
direction (optic axis). The polarization and crystallographic orientation
of the crystal are shown in the inset of Fig. 4-10. The overall experimental

arrangement and the transmitted SHI in this experiment have been in

Fig. 3-6 of Chapter III.

When the two fundamental bea.ns of equal intensity impinge on the
nonlinear KDP crystal with equal ang'e of incidence 5. from the
1

. . 1 s NLS .
opposite sides of the face normal, a nonlinear polarization P is

created in the plane of incidence with zero tangential component of the wave 4
vector. Since the polarization has the same phase at all points along the
surface, it radiates second harmonic waves in the normal inward and
outward direction. According to this situation, equation (2.15) can be
applied directly and one has
8..=68_.=8_=0 (4.18)
The value of €g inside the KDP is determined by the length of the

-5

source wave vector ks;
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2w A\ 2w o A

-4
k = _: = — 4.1
/.;_S a == n cosQt a (4.19)

S
where Qt is the refracted angle for the individual transmitted fundamental

beam.

-
By using equation (2.30a) and n_.. 1.0, the kS given by equation
r

(4.19) can be expressed in term of L’i as

21

_’
2 N
Kk ==2n° [1-sin 9./sinzgcr(w)]l/2 a
S c W - 1

(4.20)

where QCr('u) is 66.78°,
> o
According to equation (4.20), ks has maximum value at Qi =0 and

Ccr

vanishes when f—}i =6 " (w). This is in agreement to the fact .hat when

the two fundamental beams are incident at critical angle Gcr(w) the
fundamental beam will be along the bourdary of the interfaces and their

normal component with respect to the interface is zero.
+

From equation (4.20), one can vary the length of k_ which is along

S

-
the face normal direction such that it is equal to the length of kT in the

same direction. Thus the noncollinear pha=~ matched condition is
achieved.

The physical description which described this condition has been given
in chapter II. According to the noncollinear phase matched condition,

one has for normal component condition given by equation (2.51) as

w 2w
n n
W

o e
n_ . ycosy+ — . weosey’ = —— (r1/2). 2w
o c c

2
n? cosg’ = n m(‘rr/Z)
o e

Thus

P ———— —— o 1 T N R T bt =, |
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-1 ne (rr/Z)
d = cos J‘
| w
n
O
. -171.4708 7
T 9% | 14943
a’ =10.17°

The corresponding angle of incidence or the noncollinear phase
matched angle, is given by equation (2. 53) as

m . =1l o . 7
8. = sin  n ging’ |
1 h

= sin"' 71,4943 sin 10,17° ]
o J
eim = 15.29°

The total .ransmitted harmonic intensity ITotal(zw) was observed

in the direction of face normal of the exist face of the crystal. It was

measured as a function of angle of incidence and compared to the

computed theoretical curve. The theoretical curve shown in Fig. 4-10

was computed by using equation (4. 15).  The justification of using

equation (4.15) for ITotal(Zw) is the same as given in the previous

section. The anomalously high total harmonic intensity I

2

Total( )

in Fig. 4-10 is due to the enhancement of nonlinear Fresnel factors
NI, NL | _ .M . .

FS, y 2and FT, y 2t Gi = Bi . This can be mathematically shown

in the following.

From equation (2, 35b), one has

FSNE _ _Sin g
’ €S €

(o]

; where 4 = 90
T

il i o
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Thus
g NL 1
' FS,ll T r oo t2 r e 12 (4.23)
n cosh -| - n (m/2)
i W y 2w
Furthermore, since BS = 9T = 9R =0 and ¢ = 900 for this case
] NL . . .

E i the nonlinear Fresnel factor FT )3 &iven by equation (2.35c) is reduced
: o to

‘ oNL_ i 1 N 1
3 Tnll - ‘\/T (€ -& )
| T 'S °T ./ eréy
{

i
[ where ¢ =1.0 for air, thus
1 . R

! no sh

NL w °%7s 1 w 1
F = - (4.24)
- T, 11 ne( /2) rn°coset72 rne ( /2)"2_, ne
Q 29 “ Sw 3 2 ey 2w

Here et in equations (4.22) and (4.23) is the same parameter used

{
in equation (4.19). It is noted that hoth FSN%I and FTNIII given bv

equations (4.23) and (4.24) respectively have the term in their denominators

satisfied the phase matched condlition given by equation (4.12). In other

NL

P t_ ., o
S 11 and FT,ll become infinite at § = o’ =10.17 . Therefore

words F

upon substituting equation (4.23) and (4. 24) into equation (4.15) one has

a singularity point for I (2w) at the noncollinear phase matched

Total

condition.

Note the striking agreement between experimental points and the

computed theoretical curve shown in Fig. 4-10. The noncollinear phase

matched angle Bim is indeed ecual to 15.29° as predicted by the theory.

The total harmonic intensity I 2w) changes by about four orders of

f
Total

magnitude when the angle of incident changes by a few tenth of a degree

I
J
?
|
i
§
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from 8 .m . This is for the first time that the theoretical prediction of
i
L
the enhancement of the nonlinear Fresnel factors FSN%I and F,II?I 1

for a uniaxial KDP crystal at noncollinear phase matched condition has

been demonstrated.

D. Measurement of Picosecond Pulsewidth

The agreement of experimental data with the theory for the TBSM
experiment described in the previous section encourages us to utilize
the results for measurement of picosecond pulsewidth of mode locked
Nd:glass laser. Since KDP is a nonlinear crystal from which phase
matchable SHG can be produced, then it is very convenient to use its
square law intensity characteristic to measure the secord order auto-
correlation function of Nd:glass 'aser radiation.

In the experiment the KDP crystal used in the TBSM experiment in
the previous section served as the nonlinear medium. The KDP crystal
was in the air and its crystallographic orientation was the same as
indicated in the inset of Fig. 4-10. The fundamental beam were mode
locked pulse trains of 300-600 nanoseconds durationas chown in Fig. 4-11

and their polarizations were in the T110 Jdirection, The two fundamental beams
were incident upon the crystal at noncollinear phase matclied angle 8 im'
The detail of experimental setup was given in Fig. 3-6 of Chapter III
According to the result of TBSM experiment, it required both spatial and
temporal overlapping of the two fundamental beams inside the crystal.
The iemporal overlapping was critical and could be achieved only by
straight forward scanning of the temporal delay of one beam with respect

to the other until SHI was observed. Frora equation (2. 62) one can
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see that the transmitted ha rmonic intensity 1 (2w) 1is directly

(2)

proportional to the second order auto-correlation function G' (7).

(2)

Total

The G (1) obtained from this experiment is a background free function

since a single fundamental beam cannot generate SHI in the normal

direction to the exit face of the crystal. In the experiment the
transmitted harmonic intensity was observed as a function of temnoral i
(2)

delay 7 and as a consequence the G '(1) was directly mapped out as

shown in Fig. 4-12 .

The resolution in the picosecond pulsewidth measurement is strongly

dependent on the thickness of the KDP crystal used in the experiment. The used

crystal thickrness of 8mm, can give a relatively large volume of interaction

mE

between the two fundamental beams inside the crystal. The depth of the

interacting volume inside the crystal was reduced to a minimum value such

that the SHI c,:ould be comfortably observed for the entire scanning delay
T . This was done by means of masking the entrance surface of the
crystal by a0, 2 mm wide slit , which would give a depth of interaction of 14

about 0.6 mm corresponding to a time duration of 3.0 picosecond for the

G gbess; SRS DR

light travelling inside the KDP crystal. From the experimental result

2
given in Fig. 4-12, the full width at half height of the curve G( )("I') gives
about 2.67 picoseconds for the width of the auto-correlation curve. Since

the scanning introduces a factor of two for the temporal delay of one pulse

in relation to the other, thus the measured pulsewidth is about 5 picoseconds.
The accuracy of this measurement can be improved by using the same

crystallographic orientation of a KDP crystal with a thickness

CANMG 0 TS s Wy e
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of the order of only 0.1 - 0.2 mm. Another factor that contributes

to the larger pulsewidth is the characteristic of the laser system itself,

It is an intrinsic problem of the system itself whether or not it can
reproduce a perfectly mode locked pulse train . Any partially mode

locked pulse train, which cannot be distinguishable by the fast oscilloscope,
will yield a larger measured pulsewidth,

Apart from the resolution limitation, the principle of noncollinear
phase matched technique via square law of SHG can be used for second
order auto-correlation mapping and for picosecond pulsewidth measure-
ment. The advantage of very high SHI by this method could be utilized
in the future for the measurement of the pulsewidth via photographic

merthods which will be very convenient to operate.

e




CHAPTER V
DISCUSSION

During the course of the present study an attempt was made to ex -
(12)
tend the study and verification of the theory to the third harmonic

generation (THG) by using two beam spatial mixing (TBSM) technique

The source of excitation was a Q-switched Nd:glass laser and a nonlinear
optical medium immersed in an isotropic liquid consisting of fuchsin red
dye molecules dissolvedin hexafluoroacetone sesquihydrate, The concen-

tration of the dye solution was set at 45 gm/liter. At this concentration

&%

the phase matchable THG in normal incidence and total reflection of a

30,50
;ﬁ single Nd:glass laser beam was demonstrated earlier by Bey et al( ),
and indices of refraction of the solution were given as
§ n(y) = n(3w) = 1. 3205 (5.1)

The experimental setup for this investigation is shown in Fig. 5-1.

s

The monitor channel was similar to the previcus setup except for the

Sy

fuchsin pyrex cell and an interference tilter ofa transmission peak at 3500 A° i

were used instead of the quartz platelet and second harmonic interference

filter respectively. The fundamental beam was split into two beams of

equal intensity by the beam splitter. Subsequently the two beams were

incident on the fuchsin cell with equal angle of incidence from the opposite

side of a face normal of the cell. The signal channel, as indicated in

i

Fig. 5-1 could be rotated around the vertical axis which was tangential to

the entrance face of the fuchsin cell.

ﬁﬁi’:&'

The signal arm was scanned through a large interval of angle by 1°

ta

for each step. Despite careful alignment of every optical component,

113
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varying the angle of incidence 9i and repeated scannings, the transmitted
third harmonic intensity (THI) was not observed. The reasons that justify
the result can be mathematically explained in terms of a noncollinear phase

matched picture which will be given belcw.

The two incident beams of equal intensity are incident from quartz

2

with Qil = ei = 9i as shown in Fig. 5-2. Since the dye fuchsin solution

is an isotropic medium,the locus of transmitted third harmonic wave

- -
vector kT will be a semicircle of radius 3|kt! inside the medium.

S f = 28 m m m L o

-
The kt is the transmitted fundamental wave vector. According to the

phase matched condition given by several authors(33' &5 43), the three

transmitted fundamental wave vectors must add up so that the resultant

-
vector is equal to kT(3w). Here one assumes that one fundamental beam

contributes the transmitted fundamental wave vector 2’:\1 (w) whereas
the other is I:t(w) . Furthermore, boundary conditions given by
Bloembergen and Pershan(lz)require that the tangential components of
those wave vectores must be conserved, By using equation (2. 49) one
obtains from Fig. 2-5 that
tangential component:

FZkt(w) - kt(w)] sinE)1 = kT(3w) sin‘&)T (5.2)

normal component:

[Zkt(w)+ kt(w)] cose1 = kT(3w)cos6T (5. 3)
. W 3w .
Since kt(w) = Py n(w) and kT(3w) = T n(3w) , equation (5.2) and

%

(5.3) can be deduced to equation (5. 4) and (5. 5) respectively as

4
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. 3n(3w) .
] T ———————— .4
s1n8l n() sm6T (5.4)
n(3w) :
= 5.5
COSQl n(w) COSE)T ( )

Since the dye fuchsin solution has a concentration such that
n(y) = n(3w) , the solution of the simultaneous equations (5.4) and (5. 5)
becomes

91:’3 =0 (56)

This is not a surprising result. It has the physical meaning that
phase matched THG will be created if the fundamental beam is normally
incident upon the dye fuchsin solution. Under this situation one obtains

4+ o
from equation (5. 3) that 3kt = kT and the two fundamental beams will
collapse into a single beam. This situation has already been investigated
(50)
by Bey et al

From the above analysis it is noted that when the dye fuchsin of
concentration 45 gm/liter is employed as a nonlinear medium, the
phase matched THG is produced under normal incidence of the fundamental
beam. However, in the experimental investigation the angle of incidence

o o] o]
was varied in 2~ steps from 10 to 25 . This variation of the angle of
incidence apart from 0° will yield phase mismatched condition and since
the dye fuchsin solution is strongly absorbed at the third harmonic line

o)

(3530A), a transmitted third harmonic intensity will not be observed
in the experiment.

From equation (5.4) and (5. 5), future analysis can be made if one

selects a dye concentration different from 45 gm/liter. One has to
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use higher dye concentration due to the fact that n(w) is greater than
n(3w) in this region and the equation (5.4) and (5. 5) will give physical
solution. This can be mathematically demonstrated in the following
example,

By using the dye concentration of 50gm/liter the indices of
refraction at fundamental and third harmonic frequencies will be given
as

n{v) = 1,3225 n(3m) = 1.3210 (5.7)

From equation (5.4)and (5. 5) one obtains

—
i

2
~ L2 2 n(3w) i,
(9sin DT + cos § T) {__n(u))

2
[1.3210
L1.3225

—
[l

L2
(8sin 9T+ 1)

A= 0.97° (5.8)

Thus, from equation (5.4) the corresponding angle of incidence in
Fig. 5-2 will be

qim = 2.88° (5.9)

This is the phase matched angle for a dye concentration of 50 gm/liter.
One can use even higher dye concentration in order to achieve a relatively
large phase matched angle. However, due to a lack of knowledge of the
indices of refraction at hand, the experimental investigation has not been
carried out. The above analysis will serve for future experiment involving
TBSM for third harmonic generation from isotropic nonlinear media

with n(w)> n3w) .
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Even though the experimental result for the case of dye concentration
of 45 gm/liter, turned out to be negative,it can be explained by the theories

(12, 33, 34, 43) . . :
. In a relatively .new field it

developed by several authors
cannot be expected that experimental results always agree with
theoretical predictions . However, to be able to ultilize theoretical
knowledges to explain the phenomena observed in the experimental
investigation will result a better understanding and direct contribution

to the theory.

For this reason it is very important that experimental and theoretical

go hand in hand for increase our knowledge of the field .




CHAPTER VI
CONCLUSION

The nonlinear optical interaction in a KDP prism in relation to
second harmonic generation was investigated by means of Q-switched
and mode-locked Nd:glass laser pulses and the results obtained from
the investigation were subsequently utilized to measure the second order
intensity auto-correlation function. The experimental results obtained from
this investigation provide additional rather striking and detailed confirrna-
tion of the theory developed by Bloembergen and Pershan(lz) on the
behavior of the light waves at the boundary of a nonlinear crystalline KDP
medium, Although the theory was developed for a homogeneous incident
plane wave of infinite cross section, the results are well described by
taking the field solution for the infinite plane wave and the cutting off
the beam by modification of the aperture width expression and taking
linear Fresnel factor into consideration. The recasted theoretical
expressions given in chapter II have been well verified andare valid for an
uniaxial crystal, e.g., KDP. The reasons that the modification of the
infinite plane wave case works so well is due to the fact that the dimension
of the relevant experimental parameters are large compared to the

characteristic dimension of the physical problem. Detailed justification

(92)

has been given by Simon
The results obtained from the experiment of phase matched second
harmonic generation at total reflection are in agreement with the other
. (88) . .
observationg under the same condition except different wave length
and type of the fundamental beam. When the KDP crystal being phase

matched along its surface was rotated about its face normal by 180° jt

120
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was found that the reflected second harmonic intensity in the neighborhood

of critical angle was always lower . This phenomena can be qualitatively

explained by an intrinsic pProperty,

sults in a  walk-off effect in the uniaxial crystal. However, an exact

mathematical treatment that accounts for a detailed explaination of

this phenomena remains for future investigations.

With good utilization of the advantages of mode locked Nd:glass laser
pulses for the observation of reflected second harmonic intensity frdm
a

KDP crystal, the Nonlinear Brewster' s angle of the transparent

medium (KD P) has been first demonstrated with an excellent agreement

to the theoretical prediction.

For the transmitted second harmonic waves, the angular dependence
of homogeneous, inhomogeneous as well as the total harmonic intensities
emanated from KDP crystals were experimentally confirmed with the

theory. The phenomena of phase matched SHG along the oblique direction

4
by means of birefringence(33' 34)

in good agreement to the theory. The relative differences of SHI between
the maximum and minimum as indicated in Fig. 4-8 and 4-9, were

observed to be about ten orders of magnitude. The striking agreement

of the experimental result of noncollinear phase matched SHG by means
of two beam spatial mixing (TBSM) to the theoretical prediction was

utilized to measure the second order intensity auto-correlation function
of Nd:glass laser radiation.

tion of a device for picosecond pulsewidth measurement using simple

the so called double refraction which re-

was investigated and the results were also

This,in principle, can be used for the construc-

P T

e S
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photographic techniques. This is due to ihe fact that the SHI emanating
from the KDP crystal under noncollinear phase matched condition is

so intense that it can be photographed.

Finally, the results obtained from this investigation confirm and 3

12
extend the theory of Bloembergen and Pershan( ) for onlinear optical

interaction in an uniaxial crystal (KDP) in the regimes of reflected and

transmi:t:d second harmonic intensities.
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KUN /B9 305168  BHANTHUMNA »1+100 124
'PASEWD 1789F1
'FOR¢IS MAIN
COMPLEX Als A2s A3y ALs A5y A6y A7s ABy FNLs FLTy, C» D
C = (16040401
D = (Je09140)
READ (557)A
7  FORMAT(F8,5)
10 XINC = 0,1
A = A+XINC
Pl = 3,1416
IF ( A-75,0 ) 12, 12, 100
12 AX = A%P[/180.0

Z = SIN(AX)

Al = Z2ar

Z = COS{AX)

A2 = Z#C

Bl = 1,513122
B2 = 1.47122
B3 = 14494305
Dl = 1,6260

D2 = 1,670

Z = (P1/D2) %Al
A3 = zZ#C

Z = SORT( 140-(A3)#%#2,0)
A4 = 72aC

13 IF (A=64,797) 14, 14, 15
14 Z = ( D1/83) *al

AS = I»C

Z = SURT ({ 140— (AS5)%%2,0)
A6 = 2%C

Z = (131/82)%A1

A7 = Z#C

Z = SNRT (1e40-(A7)#%#%2,0)
A8 = 2%C

GO To 80

15 IF (A+664781) 16, 16, 17
16 Z = (D1/R3)*A1

AS = 2#C
2 = SIRT ( 1¢0- (A5)%%2,0)
A6 = 2%C
Z = (D1/B2) %Al
A7 = 2#C
Z = SORT ((A7)%%#2,0-140)
A8 = 2#D
GO TO 80
17 2 = (D1/83) %Al
AS = 2#C
Z = SQRT((A5)*%2,0-1,0)
A6 = 2D :
Z = (D1/B2)*A1
A7 = 2xC
Z = SQRT((A7)%%#2,0-1,0)
A8 = 2#p
80 FLT = ((2.0)%A2%A5)/(A1%A6 +A2%AS)

FNL = (ASHAT®ATHAT) /(A% (AT*AL +AB*A3)#(ABRAL + ATHA3Z)
1% (A7#AE &+ AB®AS))
FLTR = REAL(FLT)

FLTI = AIMAG(FLT)

FNLR = REAL (FNL)

FNLI = AIMAG (FNL)

FNLM = SQRT ( FHLR*FNLR + FNLI®*FNLI)
FLTM 2 SQRT({ FLTR*FLTR + FLTI#FLTI)

SHI = (FNLM®*#2,0)% (F| TM#*%4,0)%{A4/A2)
VRITE (6490) Ay SHI

90 FORMAT (1HOs * [INCe ANGLE = 9,Fge3y ' REFLECTED SHI = F1043)
GO To 10 .
100 END
'XQT
59,9000
'FIN

Computer Program for the Theoretical Curve
of Figure 4 -1

—
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=

'RUN VB130516802+BHANTHUMNA 34200
*FORs1S MAIN
COMPLEX FsAlsA24A34A49A50A69F1sFNLIFL4CsD 4
C={1,04,0,0) i
D2(040s1,0) |
1IF(A=/540)12+12+50
12 IF(A-66e615) 134513514
13 ¥=SIN(A*P1/180,0)
Xz 1,7892#x
X=X #X
X=SQRT(1,0-Xx)

B P 7 e WA —

X= 1.0892%x
X=X#X
X=SQRT(X=1.0)
FzxX*D
15 AX=A#P1/1804,0
Z3SIN(AX)
Fl= 1,0892#72%C
Al=2%(
2=COS(AX)
A2=2#(
ALPHA=41,2%P1/18040
* Z=SIN(ALPHA)
A3az#(C
Z2=2COS(ALPHA)
A4=2%(C
R= ASIN(0.9T46%#SIN(AX))
Z=SIN(R)
AS5=2#(
2=COS(R)
A6=2#(
FNL=(F1'F1'F1)'(2.0'F1'F'A6-A3+2.0*FI*FI*AB)/(AS'(Z.O'FI*F)*(FI'A6
L4F#AS) % (FRAGHF1#A5))
FL22,0#F1%A2/(A1#F+A2%#F1)
FNLR=REAL {FNL)
FNLI=AIMAG(FNL)
FLR=REAL(FL)
FLI=AIMAG(FL)
FNLM=SQRT (FNLR*FNLR+FNLI®#FNLT)
FLM2SQRT(FLR*FLR+FLI#FLI)
SHI=(FNLM##2 ,0)#(FLM##4,0)
WRITE(6+20)1AsSHI
20 FORMAT(1HOs* INCIDENT ANGLE =tF8,5+¢ INTENSITY OF SHG =tF10.3)
50 FND
59.90000
00

e

2 3
Bt i, Yacie e it s
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i Computer Program for the Theoretical Curve
of Figure 4 . 2

Fax#C
8 GO TC 15
e 14 X=SIN(A®#P1/180.0)
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' RUN

1FOR

12

13

14

15

VB3 30516802 +sBHANTHUMNA 34200

1S MAIN

COMPLEX AlsA23A340ALsASsA63ATIABFNLoFLsCWD
C= (1e030,0)

D= (0e091.,0)}

READ(5,T7)A

FORMAT(F8,5)

XINC =C,1

A = A+XINC

PI = 3.,1416

IF (A=75,0) 124124100

AX= A®pl/180.0

2= SINC(AX)

Al= 2#C

2= COS{AX)

A2= 72%C

2= (166277/1.670) %A1

A3=s 2»C

723 SQRT(1s0-{(14627T7/1e6T0) %A ) #%2,()
A4= 2%C

IF (A=66461) 13,1314
2=(145277/104942)2A1

AS5= Z2%C

2= SCRT(1e0=(({166277/1:4942)%A1)%#%2,0))
Ab= 2%C

GO T0 15

2= (166277/1,4942) %A,

AS5= 2#C

Ze SQRT(({(1e6277/1e4942)%A1)%%2,0)-1,0)
A6= 2%D

ALPHA= 48,8%P1/180.,0

Z= SIN(ALPHA}

AT= 2%#(C
Z= COS{ALPHA)
A8= Z#(C

FNL= ((AS#ASRAS)#{ASHAB+AGRAT)) /(AR {ASHAL+A \HAS ) H(ASRALIAGRAT)
1% (Ap#AL+ASRAT)) )
FL= 2,0%A5%#A2/(A1%A&+A2%AS5)

FNLR= REAL(FNL)

FNLI= AIMAG(FNL)

FLR= REAL(FL}

FLI= AIMAGI(FL)

FNLM= SQRT(FNLR®*FNLR + FNLI®FNLI])
FLM= SQRT(FLR*FLR + FLI%*FL])

SHI = (FNLM®##2,0) % (FLM#*%4,0)
WRITE (6+20) Ay SHI

20 FORMAT(1HOs' INCIDENT ANGLE =tF8¢5+* INTENSITY OF SHG =1F1043)
GO 70 10
100 END
'XQT
59,90000
‘FIN

YFIN

Computer Program for the Theoretical Curve
of Figure 4 - 3
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RUN VB+30516802 +yBHANTHUMNA 3,200
'FORS IS M'AIN

READ(5+7) A

7 FORMAT(F84.5)
10 XINC =0.1
A = A+XINC
Pl = 341416
IF (A=5040) 124125100
12 AX= A%¥P1/180.,0
L=SIN(AX)
Al= 2
2= COS(AX)
A2= 2
Z=(l.6277/1-670)*A1
A3= 2
Z=SORT(1-3'((1-6277/1-670)*A1)**2-0)
Aa= 2
&= (1662777164942 ) %A1
AS5= 2 ‘
Z2=5QRT (I-U-(((1-6277/1-5942)*A1)**2-0))
Ab= 2
ALPHA= 48.P4P[/180.0
Z= SIN(ALPLA)
Al= 2
Z= COS{ALPHA)
A8= 2
2= (le6cT77/1et6716) %A1
A9 = 2
Z=SQRT(1~0-(((1-6277/1-4716)*A1)**2-0))
$10= 2
FNL:(A5*A9*ﬂ9*(A9*AR'AlO*A7))/(AB*(Ag*A6+A10*A5)*(Ag*ADDAlO*A3)
1*(ALO*AL+A9HRAG) )
FL= (2eCHAZN\L )/ (AL¥NL+A2XAY)
SHI = (FNL*¥2,0) % (FL%*%4,0)
WRITE (69201 Ay SHI
20 FORMAT(1HOs' INCIDENT ANGLE ='FBe59t INTLNSITY OF SHG 1'F10.3)
GO 10 10
100 END
'XQT
34,90000
'FIN
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*RUN VBs305168,8HANTHUMNA 1,100
tPASSWD 1789F1
*FOR1IS MATII
READ(S5+T)A
7 FORMAT(FB45)
10 XINC = 0,1

A = A+XINC

Pl = Telblb

IF (A~90,0 ) 12,512,100
12 AX = \#P1/180,0

Al = SIN(AX)

A2 = COS(AX)

B2 = 1,47122

Bl = 14513122

B3 = 1,494305

D1 = 1,6260

D2 = 1,670

A3 = (BlwAl)*#2,0

A4 = (B2#A2)%%2,0

A5 = SQRT(A4+A3)

B4 = (Bl#B2)/AS

CX = AX

Cl = SIN(CX)

€2 = ASIN((B4%C]1)/B3)

C3 = (C24180.0)/P1
C4 = ASIN((B4%C]1)/D]1)
C5 = (C4w18040)/P1
Cé = ASIN((B4%C1)/D2)
C7 = (C6#180,0)/P1

Rl = SIN(C4)

R2 = ¢0S(C4)

R3 = SIN(C2)

R4 = CoOS(c2)

P5 = SIN(C6)

FLT = (2,0%R2%R3)/(R]*R4+R2#R3)
FNLS =2 ((R3)%(-140))/((B3)##2,0-({B4)%%2,0) ’
FNLT = ((1.0)/(02’84))*(RB!AI*AI‘AI)/(RS*(SII(AX+C6))*(COS(AX-C6)
T#(SINIAX+4C2))) - (FNLS)*(B3/B4)
SHIL1 2 B3®(FLT##4,0)% (FNLS#*2,0)#*R4/R2
SHI2 = B4#(FLT*#4,0)%(FNLT##2,0)%A2/R2
SHI = SHI1 + SHI2
WRITE(6990) AyC34C5¢ SHIls SHI2, SHIB4
90 FORMAT (]1HOy * ZETAT = Y9F6a3y v ZETAS =  9,F6e3,
1' INCoANGLE= *4F6e3y! SHILI® ¢4F1043s¢ SMHI2s *9F1043,
1% SHI = ¢4F1043y * INDEX E= *4F10.7)
GO T0 10
10¢ END
'XQT
000000
'FIN

Computer Program for the Theoretical Curve
of Figure 4 - 7 and 4 - 8
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'RUN VB+305168,BHANTHUMNA 1100
*PASSWD 17BAFI
YFORYIS MATI")
READ(5+T)A
7 FORMAT(FB,.5)
10 XINC = 0,1

A = A+XINC

Pl = 341416

IF (A~6648112,12,100
12 AX = A#P1/180,0

Al = SIN(AX)

A2 = COS(AX)

B3 = 1,494305

B4 = 1,47125%

D1l = 146260

A3 = ASIN((D1#A1)/B3)

A4 = SIN(A3)

AS = C0S(A3)

FLT = (2,0%A2%A4)/(A1%AS +A2%A4)
FNLS = ((AG1%(-1,01)1/((B31#%2,0 -(B4)*%2,0)
SHI1 = Ba#(FLT#%40) #(FNLSH#2,0)#A5/A2
WRITE (6450) Ay A3, SHI
90 FORMAT (1HOs ' INCeANGLE = 94F6e3y ' ZETAS = 19F643,
1* SHI1 = '+F1043)
GO 70 10
100 END
*XQT
64,50000

Computer Program for the Theoretical Curve
of Figure 4 -7 ( partial)
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'RUN VB+305168 4BHANTHUMNA,+1+100
PASSWD 17R9F1
'FOR41S MAIN

7

10

12

15
16

25
26

35
36

45
46

55
56

65
66

75

76

80

90

READ(JsT)A

FORMAT(F12.8)

Dl = 1,4R89679

D2 = 1,4929732

D3 1,4968934

D4 145041322

DS 15097313

D6 165127767

D7 = 145131219

D8 = 1,5125449

XINC = 0,1

A = A+XINC

Pl = 3,1416

Bl = 146260

B2 = 1,494305

B3 = 1.670

B4 = (4B,8%P1)/180.0

IF (A=540)12+12415

YINC = 0,000079328

D1 = D1+YINC

DX = D1

GO TOo 80

IF (A-10,0) 16516425

YINC = 0,00007878

D2 = D2 + YINC

DX = h2

GO TO 80

IF (A-20,0) 26426435

YINC = 0,00007256

D3 = V3+YINC

DX = D3

GO TO 80

IF (A~3040) 36436945

YINC = 0,00005881

D4 = J4+YINC

DX = D4

GO TO 80

IF (A= 4040) 46446455

YINC = 0,00003050

D5 = DS+YINC

DX = DS

GO TO 80

IF (A=44,43) 564569 65

YINC = 0,00000793

D6 = D6+YINC

DX = D6

GO To 80

IF (A=50,0) 66+66¢75

YINC = 0,00001034

D7 = D7-YINC

DX = D7

GO TO 80

IF (A-60,0) 764764100

YINC = 0,00004607

D8 = DB-YINC

DX D8

AX A#01/180.0

Al SIN(AX)

A2 COS(AX)

A3 (Bl#Al)/B2

AbS SQRT(140-(A3#A3Y)

AS (Bl#A1)/DX

L1 SQRT(140-(A5%#AS5))

A7 (Bl#Al1)/B3

AB ASIN((B1%#A1)/B2)

A9 ASIN((B1#A]1)/DX)

Al0 = ASIN((B1#A]1)/B3) 3

FLT ® (2,0%#A2%A3)/(A1%A4 + A28A3)

FNLS = (SIN(B4-AB))/((B2)%22,0-(DX)** ,0)
FNLT = (1.0/(B17DX))#(A3RASHASHSIN(AI+LL) )/ (ATHSIN(AG+ALOD)
1#COS(A9=A10)%SIN(AB+A9)) ~(B2/DX)I*(SIN(B4-ABY)/((B2)#%2,0~
1(DX)#22,0)

SHIL1 = B1#(FLT#*#4,0)#(FNLS#%#2,0)%A4/A2
SHI2 = DX®(FLT##4,0)#{(FNLT##2,0)#A6/A2
SHI = SHI1 + SHI2

WRITE (6490) AsDXs SHIle SHI2+ SHI -
FORMAT (1HOs ! INCe ANGLE = 9F6e3y ! LIDEX ERAY = *9F10e7
10 SHI1 s '94F12e3,y * SHIZ =  "4F12,3, SHI = *4F12.,3)
GO To 10

100 END

' xQt

0,00¢ 300

‘FIN
‘FIN

Computer Program for the Theoretical Curve
of Figure 4 - 9
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'RUN VB1+30516802+BHANTHUMNA93+200
YFORIS MAIN

READ(54+7)A

7 FORMAT (F8.5)

10 XINC = 0,1
A = A+XINC
Pl = 33,1416
IF(A-2500)124124100

12 AX=A#D][/18060
2=SIN{AX)
Al=2Z
2=COS{AX)
A2=2
Z=(1.0/1.‘09‘02)*A1
A3=2
2=5SQRT(1,0-A3#%A3)
A4=2
FNLT =(16064942/1e4T712)%A4%#(160/((104042%AL)%%2,0~(1e4712)%%2,0))
14(100/7144712)
FLT= (20%A2%A3) 7 (A1%AL+A2%A3)

FNLS = (1+0/((1e4942%AL)#%2,0~(1,4712)%%2,0))
SHI1 = (FLT##4,0)%(FNLT*%#2,0)/A2

SHI2 = (FLT*##4,0)%(FNLS*%#2,01)/A2

SSHI = SHI1 + SHI2

R WRITE(6+20) As SSHls SHI1ls SHI2
20 FORMAT(1HO+' INCIDENT ANGLE ='FB8.5¢ ¢TOTAL INTENSITY OF SHG =
1F10e30s ISHI1 = 'F10e3y YSHI2 = ' F10.3)
GO TO 10
100 END
'XQT7
0.00000
'FIN

v— e emes RGN GeE 0 e SR o el BB

Computer Program for the Theoretical Curve
of Figure 4 - 10
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