AD-766 640

STOL TACTICAL AIRCRAFT INVESTIGATION. VOLUME III. TAKEOFF AND LANDING PERFORM-ANCE GROUND RULES FOR POWERED LIFT STOL TRANSPORT AIRCRAFT

Franklyn J. Davenport, et al

Boeing Aerospace Company

Prepared for:

Air Force Flight Dynamic Laboratories

May 1973

DISTRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 AFFDL-TR-73-19 Volume III

STOL TACTICAL AIRCRAFT INVESTIGATION

Volume III

Takeoff and Landing Performance Ground Rules for Powered Lift STOL Transport Aircraft

Franklyn J. Davenport Arnold E. Rengstorff Vernon F. Van Heyningen

THE BOEING CONTRANT

Technical Report AFFDL-TR-73-19 - Volume III

May, 1973

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151

Approved for public release, distribution unlimited

Air Force Flight Dynamics Laboratory Air Force Systems Command Wright-Patterson Air Force Base, Ohio 45433

Notice

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

\$2 J 103/8741 ADIA 1 65025 11. 11 IS SILLAL

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/20 August 1973 - 150

Unclassified

Security Classification

DOCUMENT CONTROL DATA - R & D (Scrwity classification of title, body of obstract and indexing immotation must be entered when the overall report is classified)							
Boeing Aerospace Company (A Division of Th P.C. Box 3999	e Boeing Co)	28. REPORT SE Unc. 25. GROUP	LUBITY CLASSIFICATION lassified				
Seattle, Washington 98124							
STOL Tactical Aircraft Investigation, Vol. Takeoff and Landing Performance Ground Rule	III 5 for Powere	d Lift STO	DL				
Transport Aircraft							
4. DESCRIPTIVE NOTES (Type of report and inclusive deres) Final Technical Report, 8 June 1971 through	8 December	1971					
S AUTHOPISI (First name, middle initial, last name) Franklyn J. Dave Arnold E. Rengst Vernon F. Van He	nport orff yningen						
N REPORT DATE May 1973	78. TOTAL NO. OF	PAGES	76. NO. OF REFS				
SE. CONTRACT OR GRANT NO.	S. CRIGINATORS	REPORT NUME	BER(\$)				
F33615-71-C-1757 b. Project No.	D180-	14403-1					
643A							
d. b). OTHER REPORT NO(3) (Any other numbers that may be assigned tille report) AFFDL-TR-73-19, Volume III							
Approved for public release; distribution unlimited.							
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson AFB, Ohio 45433							
13. ABSTRACT							
Rules for determining takeoff and landing distances of STOL transport airplanes equipped with powered-lift systems are proposed and discussed. These rules relate to speed margins and maneuvering capability required for safe operations and to the procedures for computation of required runway lengths. The most significant difference between the proposed rules and "conventional" performance rules is that speed margins and maneuver g - margins should be based on the airplane's capability with power on.							
Procedures for calculation of powered- detail.	lift STOL pe	rformance	are stated in				
			~				
DD FORM 1473							

ia:

Unclassified Security Classification

KEY WORDS	LINK	<u> </u>	LINK	LINK	<u> </u>
	ROLE	WT R	DLE WT	ROLE	
STOL					
Powerad life					
Performance rules					
			l		
					يببد
1 0 January 04/100 1072 758 425/08		Unclass	aified		

STOL TACTICAL AIRCRAFT INVESTIGATION

Volume III

Takeoff and Landing Performance Ground Rules for Powered Lift STOL Transport Aircraft

> Franklyn J. Davenport Arnold E Rengstorff Vernon F. Van Heyningen

Approved for public release, distribution unlimited

in

FOREWORD

This report was prepared for the United States Air Force by The Boeing Company, Seattle, Washington in partial fulfillment of Contract F33615-71-C-1757, Project No. 643A. It is one of eight related documents covering the results of investigations of vectored-thrust and jet-flap powered hift technology, under the STOL Tactical Aircraft Investigation (STAI) Program sponsored by the Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. The relation of this report to the others of this series is indicated below:

AFFDL TR-73-19	STOL TACTICAL AIRCRAFT INVESTIGATION
Vol I	Configuration Definition: Medium STOL Transport with Vectored Thrust/Mechanical Flaps
Vol II Part I	Aerodynamic Technology: Design Compendium, Vectored Thrust/Mechanical Flaps
Vol II Part II	A Lifting Line Analysis Method for Jet-Flapped Wings
Vol III	Takeoff and Landing PerformanceTHISGround Rules for Powered LiftREPORTSTOL Transport AircraftREPORT
Vcl IV	Analysis of Wind Tunnel Data: Vectored Thrust/Mechanical Flaps and Internally Blown Jet Flaps
Vol V Part I	Flight Control Technology: System Analysis and Trade Studies for a Medium STOL Transport with Vectored Thrust/Mechanical Flaps
Vol V Part II	Flight Control Technology: Piloted Simulation of a Medium STOL Transport with Vectored Thrust/Mechanical Flaps
Vol VI	Air Cushion Landing System Study

The work reported here was performed in the period 8 June 1971 through 8 December 1971 by the Aero/Propulsion Staff of the Research and Engineering Division and by the Tactical Airlift Program, Aeronautical and Information Systems Division, both of the Aerospace Group, The Boeing Company. Mr. Franklyn J. Davenport served as Program Manager. The Air Force Project Engineer for this investigation was Mr. Garland S. Oates, Air Force Flight Dynamics Laboratory, PTA, Wright-Patterson Air Force Base, Ohio.

The main body of this report was released within The Boeing Company as Document D180-14403-1, and submitted to the USAF in December 1971. The report was resubmitted, after major format revisions to assure suitability for publication by the USAF, minor text changes, and addition of the Appendix, in December 1972.

This technical report has been reviewed and is approved.

EJ (Losol

E. J. Cross Jr., Lt. Col., USAr Chief, Prototype Division Air Force Flight Dynamics Laboratory

ABSTRACT

Rules for determining takeoff and landing distances of STOL transport airplanes equipped with powered-lift systems are proposed and discussed. These rules relate to speed margins and maneuvering capability required for safe operations and to the procedures for computation of required runway lengths. The most significant difference between the proposed rules and "conventional" performance rules is that speed margins and maneuver g - margins should be based on the airplane's capability with power on.

Procedures for calculation of powered-lift, STOL performance are stated in detail.

TABLE OF CONTENTS

Page

I	SUMMARY AND INTRODUCTION	1
1.1	Summary	1
1.2	Introduction	1
II	PROPOSED PERFORMANCE GROUND RULES	7
2.1	Scope	7
2.2	General Performance Criteria	7
2.3	Reference Minimum Speeds	7
2.4	Normal Takeoff	8
2.5	Assault Takeoff	12
2.6	Normal Landing	12
2.7	Assault Landing	14
III	DISCUSSION OF PROPOSED STOL GROUND RULES	17
3.1	Takeoff Rules	17
3.2	Landing Rules	20
IV	APPLICATION TO THE STAI BASELINE CONFIGURATION AIRPLANE	23
4.1	The STAI Baseline Configuration Airplane	23
4.2	Powered Lift Performance Method	24
4.3	Speeds	32
4.4	Field Lengths	38
4.5	Concluding Remarks	40
Append	lix	
Perfo	mance Calculation Procedures	41
Refer	200 6 5	49

Preceding page blank

ì

LIST OF ILLUSTRATIONS

Solution and solution

CO. Salara

A STATISTICS

k

Figure	Number <u>Title</u>	Page
1	Summary of Proposed Takeoff Ground Rules	2
2	Summary of Proposed Landing Ground Rules	3
3	Critical Field Length	9
4	Assault Takeoff Distance	15
5	Normal Landing Distance	15
6	Assault Landing Distance	15
7	General Arrangement, 953-801 Airplane	25
8	Flap-Down Aerodynamic Characteristics, 953-801	27
9	Thrust Vectoring and Reversing System	28
10	Thrust Vector Turning Efficiency	29
11	Engine Takeoff Thrust	30
12	Powered-Lift Force Polars, 80 Knots	31
13	Operational Envelope - Engine Out, O.G.E.	33
14	Operational Envelope - Engine Out, I.G.E.	34
15	Operational Envelope - All Engines, O.G.E.	35
16	Operational Envelope - All Engines, I.G.E.	36
17	Ground Roll Forces	47
18	Assault Takcoff Distance	47
19	Normal Landing Distance	47
20	Forces During Braking	47
21	Assault Landing Distance	47

LIST OF TABLES

Table Number		<u>Page</u>
I	Comparative Summary, Takeoff Ground Rules	18
II	Comparative Summary, Landing Ground Rules	21
III	Reference Minimum Speeds (Knots)	32

SIMBOLS

6. (r

A A REAL PROPERTY AND A REAL PROPERTY AND A

ternet in the second second

ALT ALL AND ALL

a liter and the design and a liter on

с _р	Drag Coefficient
с _ј	Thrust Coefficient
с _г	Lift Coefficient
с _w	Weight Coefficient
q	Dynamic Pressure, 1bs/sq ft
S	Wing Area, sq ft
v _B	Initial Braking Speed, knots
^у со	Climbout Speed, knots
v _F	Engine Failure Speed, knots
V _{FR}	Engine Failure Recognition Speed, knots
V _{LO}	Liftoff Speed, knots
V _{min}	Minimum Flight Speed, knots
V mca	Air Minimum Control Speed, knots
V _{m10}	Minimum Liftoff Speed, knots
V _{mtd}	Minimum Touchdown Speed, knots
v _R	Takeoff Rotation Speed, knots
v _{TD}	Touchdown Speed, knots
V _{TH}	Threshold Speed, knots
Δn	Normal Acceleration Margin, g's
α	Angle of Attack, deg
Y	Flight Path Angle, deg
n _T	Thrust Vectoring Efficiency
μ	Friction Coefficient
σ	Thrust Vector Angle, deg

SECTION I

SUMMARY AND INTRODUCTION

1.1 Summary

This document constitutes the "STOL Takeoff and Landing Specification Data Report" prepared by The Boeing Company for the U. S. Air Force Flight Dynamics Laboratory under contract number F33615-71-C-1757, "STOL Tactical Aircraft Investigation".

It presents a set of rules, summarized in Figures 1 and 2, for determining takeoff and landing speeds and field lengths for STOL airplanes which use "powered lift" to permit flight at speeds Jower than the power-off stall speed. These rules are proposed to supplement those given in MTL-C-5011A (Ref. 1) and will permit consistent, meaningful comparison of the performance capability of STOL aircraft designs in configuration studies and proposal evaluation.

1.2 Introduction

and a state of the second s

1.2.1 Background

The U.S. Air Force has determined the requirement to modernize its Tactical Airlift capability. The Tactical Airlift Technology Advanced Development Program (TAT-ADP) was established as a first step in meeting this requirement, contributing to the technology base for development of an Advanced Medium STOL Transport (AMST).

The AMST must be capable of handling substantial payloads and using airfields considerably shorter than those required by large tactical transports now in the Air Force inventory. If this short-field requirement is to be met without unduly compromising aircraft speed, economy, and ride quality, an advanced-technology powered-lift concept will be required.

The STOL Tactical Aircraft Investigation (STAI) is a major part of the TAT-ADP, and comprises studies of the aerodynamics and flight control technology of powered lift systems under consideration for use on the MST. Under the STAI, The Boeing Company was awarded Contract No. F33615-71-C-1757 by the USAF Flight Dynamics Laboratory to conduct investigations of the technology of the vectored-thrust powered lift concept. These investigations included:

- (1) Aerodynamic analysis and wind tunnel testing
- (2) Configuration studies
- (3) Control system design, analysis, and simulation

Takeoff and landing ground rules are the "bridge" relating the first two of these topics, since they determine the configuration benefits obtainable by application of new aerodynamics technology. The

DISTANCE

CRITICAL FIELD LENGTH; SPEED, MANEUVER AND CLIMB MARGINS DETERMINED WITH ONE ENGINE OUT NORMAL:

DISTANCE TO LIFTOFF, SPEED, MANEUVER AND CLIMB MARGINS DETERMINED WITH ALL ENGINES OPERATING ASSAULT:

SPEED MARGINS

2

≥ 1.10 V_{min} (19, FREE AIR) ● V_{LO} ≥ 1.08 Vmlo

• v_R ≥ v_{FR}

• V_{mlo} MAY 3E DETERMINED BY:

STALL IN GROUND EFFECT PITCH ATTITUDE LIMIT --' ri

MANEUVER "9" MARGIN

● △ n ≥ 0.10g @ V_{LO}, IN GROUND EFFECT

CLIMB GRADIENT

>3% @VLO, OGE, GEAR UP

BRAKING COEFFICIENT = 0.30 ROLLING COEFFICIENT = 0.04

Figure 1: Proposed Takeoff Ground Rules - Summary

● 7 2% @ V_{LO}, IGE, GEAR DOWN

SPEED MARGINS

MANEUVER MARGINS

- @ V_{TH} ● ∆ n ≥ 0.30g
- @ VTD ● Δn ≥ 0.15g

V_{mtd} MAY BE DETERMINED BY:

1. STALL IN GROUND EFFECT 2. PITCH ATTITUDE LIMIT

TOUCHDOWN RATE OF SINK

● R/S ≤ 2/3 LANDING GEAR DESIGN RATE OF SINK

TRANSITION TIME

- MANUAL SPOILERS- 2 SECONDS
- AUTOMATIC SPOILERS ½ SECOND

FIELD CONDITION

DRY, HARD DIRT

 $(\mu_{B} = 0.3 \text{ wITH NO REVERSE THRUST})$

Figure 2: Proposed Landing Ground Rules – Summary

rules specified in MIL-C-5011A (Ref. 1), the most frequently used performance basis for proposals and design studies, are unsuitable for evaluating modern STOL airplane concepts because they give no credit for powered lift. "Ad Hoc" STOL ground rules have had to be formulated for recent studies and programs, such as the Light Intra-Theater Transport (LIT), the "readily available" Light STOL Transport (LST), and the Baseline Configuration Study portion of the present STAI. A new set of rules, framed to meet the general requirements of powered-lift STOL is therefore needed.

1.2.2 Military Rules vs Civil Rules

The problem of STOL performance ground rules has been studied before, although most attention has been given to commercial aviation requirements. NASA TN D-5594 and FAR Part XX (References 2 and 3) both treat the subject, but commercial STOL is still a thing of the future, and Part XX remains centative.*

The most striking difference between civil and military transport aviation ground rules is the fact that in some circumstances, military meeds justify operation in conditions where engine failure would result in loss of the airplane. Two sets of rules are therefore set forth in this report:

- (1) "Normal" rules, for everyday, routine operation, allowing for a single major failure. These provide a degree of safety comparable to commercial transport rules. Either a safe abort or a safe continuation of takeoff or landing can be made following engine failure.
- (2) "Assault" rules, for operations where full advantage is taken of the airplane's performance capability with all engines operating, but where engine failure would probably cause a crash or forced landing.

1.2.3 Objectives

In framing ground rules for STOL performance, it would also be well to recall that the purpose of these rules is not to define airworthiness requirements in great detail for purposes of certification or of flight manual preparation. It is, rather, to guide designers and configuration evaluators. This means that the rules should be:

^{*}Flying qualities required for STOL have received much attention. They are discussed in Ref. 2, and a military specification (MIL-F-83300, Ref. 4) has been issued. (That document is currently being reviewed and may be revised.) Flying qualities specifications pertain to takeoff and landing ground rules because they may define minimum acceptable control power, which must be considered in selection of takeoff and landing speeds. That is the only respect in which flying qualities will be referred to in this report.

- (1) Simple enough to be easily applied to a large number of designs that are to be compared.
- (2) "Responsive" to design characteristics. The rules must motivate the designer to take realistic advantage of technological innovations.

1.2.4 Document Organization

Section II of this document states the rules recommended as a result of this study. Section III discusses them and compares them to other sets of ground rules, STOL and CTOL, civil and military. Section IV shows how these apply to the Baseline Configuration vectoredthrust airplane defined in an earlier portion of the Boeing STAI program. Appendix A provides details of the calculation methods used in determining STOL performance data shown in this and other volumes in the series reporting the results of The Boeing Company's portion of the STAI.

SECTION II

PROPOSED PERFORMANCE GROUND RULES

2.1 Scope

The rules given here are applicable to multi-engined STOL aircraft with powered lift systems. Aircraft capable of hovering over a fixed point in zero wind (VTOL) are not covered by this specification.

STOL criteria are presented for both "normal" operation and "assault" (maximum effort) operation. "Normal" takeoffs and landings allow for critical system failures such as an engine failure during takeoff or a brake failure on landing. "Assault" rules assume that all systems function properly.

2.2 General Performance Criteria

Performance must be determined without requiring exceptional piloting skill, alertness, or strength. The available thrust must not exceed the approved ratings less installation losses and he thrust absorbed by the accessories, services, and flight controls.

2.3 Reference Minimum Speeds

2.3.1 Minimum Flight Speed

V - The lowest speed at which the aircraft is controllable in steady 1"g" flight out of ground effect. The minimum speed may be a conventional stall, or may be established by a control limit, by objectionable buffeting, or by undesirable pitching and rolling moments. V shall be determined for all appropriate flight configurations:

- (1) With powerplants supplying power output levels for normal operation in the applicable flight configuration.
- (2) At the appropriate weight, elevation, and temperature for which the minimum speed is being determined.
- (3) At the most unfavorable center of gravity within the allowable limits.
- (4) With the critical powerplant component supplying propulsion, and/or lift, and/or control, inoperative. (Except for "assault")

2.3.2 Minimum Liftoff Speed

V - The lowest speed at which the airplane can lift off the ground and continue the takeoff. This may be the stall speed in ground effect, with the main wheels on the ground and oleo extended, or may be established by a pitch attitude limit (aft body ground contact),

Preceding page blank

control limit, objectionable buffeting, or undesirable pitching or rolling moments. V_{mlo} shall be determined for all takeoff configurations:

- (1) With powerplants supplying power output levels for takeoff.
- (2) At the appropriate weight, elevation and temperature for whic. the minimum speed will be used.
- (3) At the most unfavorable center of gravity within the allowable limits.
- (4) With the critical powerplant component supplying propulsion, and/or lift, and/or control, inoperative. (Except for "assault")
- 2.3.3 Minimum Touchdown Speed

V - The lowest speed at which the airplane can touch down. This may be the stall speed in ground effect with the main gear wheels on the ground and oleo extended, or may be established by a pitch attitude limit (aft body ground contact), control limit, by objectionable buffeting, or by undesirable pitching or rolling moments. V shall be determined for all landing configurations:

- (1) With powerplants supplying power output levels for normal operation at touchdown.
- (2) At the appropriate weight, elevation, and temperature for which the minimum speed shall be used.
- (3) At the most unfavorable center of gravity within the allowable limits.
- (4) With the critical powerplant component supplying propulsion and/or lift, and/or control, inoperative. (Except for "assault")
- 2.4 Normal Takeoff

Normal takeoff distances shall be based on the total distance to accelerate on all engines to the critical powerplant failure speed, experience a critical powerplant failure, then to continue the takeoff with the remaining powerplants, or to stop in the remaining distance. This is the same as the Critical Field Length for conventional aircraft and is shown in the upper half of Figure 3.

2.4.1 Critical Powerplant Failure

For STOL aircraft, the critical failure is the failure of the powerplant component supplying propulsion, and/or lift, and/or control, the loss of which would most degrade performance or control. Aircraft with propellers driven by separate engines through crossshafting must allow for either a propeller failure or an engine failure. Also, aircraft with fans driven by gas generators through cross-ducting

Figure 3: Critical Field Length

to the said a same of the priside a prior with the provider

9

oscielus de

an a sure on a sublishe destruction of the set of the sublished and sublished and the sublished and th

must allow for either a fan failure or a gas generator failure, whichever is more adverse.

2.4.2 Critical Field Length Segments (Refer to Figure 3)

Segment A is the acceleration distance to the powerplant failure speed, V_F , where all engines are operating at normal takeoff power.

Segment B is the acceleration distance from the failure speed, V_F , to the failure recognition speed, V_{FR} . One second is allowed to detect the failure from the instruments. Thrust loss for the failing powerplant shall be ignored during this second.

<u>Segment C</u> is the critical powerplant-inoperative acceleration from V_{FR} to liftoff. Any windmilling drag or the aerodynamic drag due to controlling asymmetric thrust must be added to the basic airplane drag for determining the acceleration in Segment C and the subsequent climbout performance.

<u>Segment D</u> is the transition distance between recognition of the failure and the establishment of the full braking configuration. Three seconds are allowed for 1) brake application; 2) thrust reduction to idle; speed brake actuation. During the transition, the speed increases initially, then decreases so the initial braking speed is assumed equal to $V_{\rm FR}$.

<u>Segment E</u> is the braking distance for the refused takeoff. No credit for thrust reversal is taken during this segment, but full braking is assumed.

2.4.3 Rolling and Braking Coefficients

Usually STOL takeoff distances shall be for unsurfaced airstrips having a r lling coefficient of friction of .04, and a braking coefficient of .30 (dry, hard dirt).

2.4.4 Normal Takeoff Speeds

Note: In determining normal acceleration or climb capability as required in the definitions to follow (as well as in those given in the sections on landing), credit may be taken for "configuration changes", provided that:

- (1) The flight control concept embodied in the design is such that the "configuration change" is accomplished by normal operation of the control system*, or through a pilot action consistent with normal (i.e., not emergency) procedures.
- (2) The probability of failure of the mechanism(s) effecting the configuration change can be expected to be no greater than the probability of engine failure or other major propulsion system component failure.

V - Ground minimum control speed. V is the minimum speed at which controllability is demonstrated during the takeoff run to be adequate to permit proceeding safely with the takeoff using average piloting skill, when the critical powerplant is suddenly made inoperative.

 v_{FR} - Critical powerplant failure recognition speed. v_{FR} shall not be less than v_{mcg} .

V - Air minimum control speed. V is the minimum control speed in the air with the critical powerplant inoperative. When the critical powerplant is suddenly made inoperative at this speed, it shall be possible to recover control of the airplane with the powerplant still inoperative, and maintain it in straight flight at that speed, with an angle of bank not in excess of 5°.

 V_R - Takeoff rotation speed. V_R is the speed at which rotation is initiated. V_R shall not be less than V_{FR} .

 \mathbf{V}_{LO} - Liftoff speed. \mathbf{V}_{LO} shall not be less than:

- (1) 1.08 V_{m10} with the critical powerplant inoperative.
- (2) The minimum speed providing .1g normal acceleration margin with the critical powerplant inoperative, in ground effect with wheels touching, oleos extended.
- (3) 1.10 V_{min} with the critical powerplant inoperative.
- (4) 1.05 V_{mca} with the critical powerplant inoperative.

^{*}For example, a vectored-thrust airplane might control path angle by varying vector nozzle angle, at fixed engine thrust. To "wave off" from an approach, the pilot would pull back on the control column. The control system would then apply a combination of vector nozzle and elevator angle movement so as to pull up, ending at a vector angle corresponding to equilibrium flight at a positive path angle.

At V_{LO} , the climb gradient capability shall not be less than 3% with the critical engine inoperative, and

• Landing gear down, in ground effect,

or

• Landing gear retracted, out of ground effect.

NOTE: In the same configuration as for liftoff, the airplane must be able to attain a flight condition for climbout which meets the following requirements with the critical engine inoperative, out of ground effect:

3% climb gradient

0.3g normal acceleration margin

 $\frac{V_{CG} \ge 1.2 \ V_{min}}{V_{CO} \ge 1.1 \ V_{mca}}$

Normally, this condition is guaranteed by the requirement that $V_{LO} \ge 1.08 V_{mlo}$. In that case, it does not affect takeoff perforance. For some airplanes, especially with very high flap drag, this condition may restrict the flap setting for liftoff.

2.5 Assault Takeoff

No consideration is given to a powerplant failure and the liftoff and climbout speeds are reduced for the assault takeoff. The assault takeoff distance is the distance from brake release to liftoff with all engines at takeoff power (Figure 4). At liftoff, the airplane is flared to reach climbout speed at 50 feet (above the runway elevation) and then climbout at constant indicated airspeed. At gear up, the aircraft shall have a climb gradient of at least 3%.

2.5.1 Assault Takeoff Speeds

 $\rm V_{LO}$ - Liftoff speed. The liftoff speed, $\rm V_{LO}$, shall not be less than:

- (1) 1.08 V_{m10} with all engines operating.
- (2) The minimum speed providing .lg normal acceleration margin with all engines operating, in ground effect with wheels touching, oleos extended.

At V_{LO} , the climb gradient capability in ground effect shall not be less than 3% with gear extended, all engines operating. In free air, the climb gradient shall not be less than 3% with the gear retracted and all engines operating.

2.6 Normal Landing

The normal landing distance shall be the distance to clear 50 feet and

come to a complete stop.

こうしていたいでは、こうないないできたが、こうないないできたないできたかが、こうないないできたないできたが、 ちょうないないないできたが、

2.6.1 Normal Landing Segments

The landing distance shall be determined in three segments as shown on Figure 5.

a and a set of the second s

<u>Air Distance</u> - The air distance is based on 1) crossing the threshold (50 ft. above the airstrip) at a steady rate of sink no greater than 2/3 of the gear design sink speed, 2) no flare, and 3) touchdown at the threshold rate of sink.

<u>Transition Distance</u> - Manual spoilers: two seconds are allowed to lower the nose, apply brakes, and deploy spoilers. A 3% speed loss shall be assumed during transition. Automatic spoilers: 1/2 second transition time is allowed for aircraft with automatic spoilers that land in a near level (<5°) attitude.

<u>Braking Distance</u> - The braking distance is the greater of the distances required to come to a complete stop on either:

- (2) A wet unsurfaced airstrip (maximum braking coefficient .15) with maximum normal reverse thrust. Any additional transition time required for thrust reversers shall be accounted for.

2.6.2 Normal Landing Speeds

Landing speeds for normal operation shall be selected to allow for the failure of the critical powerplant at any time during the approach and landing.

 $V_{\rm TH}$ - The threshold speed, $V_{\rm TH}$, is the final approach speed and is maintained down to 50 feet over the airstrip elevation. The threshold speed shall not be less than:

(1) 1.20 V_{min} with the critical powerplant inoperative.

- (2) The minimum speed providing .30g normal acceleration margin with critical powerplant inoperative.
- (3) 1.1 V_{mca} .
- (4) The minimum speed permitting a climb gradient of 3% at full power, all engines operating, gear down, and 50 feet over airstrip elevation. A configuration change* is allowed provided the trim change is small and provided reasonable stall and maneuver margins are maintained.

*Flap setting, vector angle, or other adjustment depending on the airplane design. V_{TD} - The touchdown speed, V_{TD} , shall not be less than:

- (1) 1.10 V_{mtd} with the critical powerplant inoperative.
- (2) The minimum speed permitting a normal acceleration margin of .15g, in ground effect at the height for touchdown with oleos extended, and one engine inoperative.
- (3) V_{TH}, unless a means of deceleration during descent from 50 feet altitude to touchdown is defined.

2.7 Assault Landing

No consideration is given to a powerplant failure and the threshold and touchdown speeds are reduced for the assault landing. Threshold height is not specified. The landing distance (Figure 6) shall consist of an air distance segment of 300 ft., a normal transition segment, and a braking segment using all available stopping devices (maximum braking coefficient = 0.3). Any additional transition time required for thrust reversers shall be accounted for.

2.7.1 Assault Landing Speeds

 V_{TH} - The threshold speed shall not be less than:

- (1) 1.20 V_{min} with all engines operating.
- (2) The minimum speed providing .30g normal acceleration margin with all engines operating.
- (3) The minimum speed permitting a 3% climb gradient at full power, gear down, and 50 feet over airstrip elevation. A configuration change is allowed provided the trim change is small and provided the threshold stall and maneuver margins are maintained.

V_{TD} - The touchdown speed shall not be less than:

- (1) 1.10 V_{mto} with all engines operating.
- (2) The minimum speed providing a normal acceleration of .15g in ground effect, at the height for touchdown, with oleos extended, with all engines operating.
- (3) V_{TH} , unless a means of deceleration during descent from 50 feet altitude to touchdown is defined.

Hereit Charles

Figure 6: Assault Landing Distance

15 (16 Blank)

SECTION III

DISCUSSION OF PROPOSED STOL GROUND RULES

3.1 Takeoff Rules

Table I summarizes and compares the various ground rules in use or proposed for takeoff performance determination.

3.1.1 Definition of Takeoff Distance

This report proposes to establish critical field length, instead of all-engine distance to 50 foot height, as the standard of takeoff distance. Critical field length is usually the shorter of the two, but it was felt that engine-out control characteristics should be reflected in the takeoff distance.

Furthermore, critical field length is more realistic, since it is the basis for weight limit determination in U. S. Air Force operations. (The Airlift Operations Manual (Ref. 5), paragraph 41.4.? states that the takeoff weight shall not exceed the weight corresponding to a critical field length equal to the available runway.)

The air distance portion of the older definition served to require the takeoff speed to be high enough to permit adequate climb performance. But <u>engine-out</u> climb is not specifically referred to in that way. Here the requirement for an 8% margin above minimum liftoff speed guarantees climb or acceleration capability, since V is defined as an engine-out condition for normal takeoffs.

Finally, air distance is hard to calculate. The optimum combination of longitudinal and normal acceleration must be determined iteratively*, and it seems improbable to expect a pilot to achieve that precision in the rotation and initial climb maneuver anyway.

3.1.2 Takeoff Speeds

The principal difference between CTOL and STOL rules appears here: Minimum speed is determined with power on, instead of off. Speeds recommended for failure recognition and rotation (V_{pR} and V_{R}) appear to be more conservative than those of FAR Part 25, but in fact correspond to roughly the same " Δ knots", considering the differences in takeoff speed between conventional and STOL aircraft. Thus, equivalent protection from following gusts is provided. Definition of the margin as a percent of speed is proposed here, however, for convenience in calculation.

*See, for example, Reference 6.

Preceding page blank

RY STOL RULES	ASSAULT	VLOS 1.08 Vmin LAEO	Vco>1.10 Vmh (AEO)						• & 101 • VLO (AEO)	> 3% (AEQ)	,			(AEO) DIST TO	LIFTOFF			SAME AS NORMAL RULES		
PROPOSED MILITA	NORMAL	Vp> V mag (OEI)	V.0>1.05 V 106		1.10 V _{min} tott	Vco > 1.2 Vmh (0El) 21.1V (0El)			• 0.10 • V _{LO} (06!)	> 3% (0£!)	e dean com ev _{uo} m gro, effect	ev _{co} In Pree An	e star uf ev _{ud} in free ain	GREATER OF • (DEI) DIST TO		DIST		DRY, HARD DIRT	BRAKE # -0.30	
TAI BASELINE	STUDY	VLOP12Vmin (CEI)	>V min + KTAS (OEI)	> 1.1 V man (OEI)	^V co > ^V LO		10.2. DV (AEQ)	• 0.15 • VLO (0EI)	FLARE LOAD FACTOR	7 - 5.2% (061)					50 FT			ROLL # =0.1		E INDREATIVE
لگا ا	(RAD 0-123)	VIORMAL	POWER OFF OR Vmos	POWER OFF OR V mos	VLO > 12 Ve	POWER ON V _{CO} > 1.2 V _S	FOWER ON								GROUND RUN	• NORMAL	(AEO)	+DRY, MARD DIRT ROLL # -0.04	BRAKF # - 0.30	OEI & ONE ENGINI
FAR PART XX	(TENTATIVE)	VL0>1.05 Vmg (0EI) >1.05 Vace (0EI)	VFRAV mog (OEI)	NREF (OEI)	VCO>V mca + 15 KTS	>1.1 V mas				(OEI) •GEAR DOWN	SEAR UP	TEVODATK OR300FPM	7 @ 1,500 > 1.7% OR 300 7* EINAL > 1.7% OR 300			DAME AS		DEMONSTRATED ON AN SURFACE	SELECTED FOR CERTIFICATION	IES OPERATING
 CLAULES	FAR PARI 25	V1 >Vring (OEI) Ve V		VL0>1.1V mb (AEO)	> 1.05 V mio (OEI) Vco>1.2 Vc	>1.1 Vince >VFR				(OEI) •GEAR DOWN	70 VLO > 0.5%	• GEAR UP	7400 FT-1,500 FT-21,7% 7 FINAL SEG > 1,7%	GREATEST OF:	• 1.15 × (AEO) DIST	• (DEI) GO DIST	• (DEI) ACC-STOP DIST	SMOOTH, DRY, HARD-SURFACED	DEMONSTRATED BRAKING COEFF	AEO . ALL ENGIN
		۷L0>۱.10 ۷۶	V 00>1.2 VS	,	<u> </u>					10C FPM @ SL (OEI)			-	AEOI DIST	TO 50 FT			ROLL # - 0.025 BRAKE # - 0.30		VLL SPEED
 SOURCE	ITEM	SPEEDS					MANEUVER	MARCINA		CLIMB GRADIENT				FIELD	DEFINITION			FIELD CONDITION	(APPLIES TO L'NDING ALSO)	VS = FAR STA

Table I: Comparative Summary of Takeoff Rules

and a state bearing the state

「日本のない」のないで、いたのの

18

Climbout speed is not itself a parameter affecting critical field length, so it isn't specified here. It is important, however, to select a value of liftoff speed (V_{LO}) which will assure that the airplane can continue to accelerate (both along the flight path and normal to it) to reach an appropriate steady climb speed and angle. The 87 margin above V_{mlo} is adequate for for this purpose.*

3.1.3 Maneuver "g" Margins

Normal acceleration capability is implicitly specified in CTOL rules, because minimum speed is determined by power-off maximum lift coefficient. A speed of 1.2 V min thus guarantees a .44 g normal acceleration capability, not counting power effects, which would add a little more.

For STOL, explicit specification of normal "g" capability is needed because power setting and thrust vector angle affect it. Furthermore, the increment of maximum lift due to power tends to be independent of speed for vectored thrust, and to vary with the first (or somewhat lower) power of speed for jet flaps. As a result, a given ratio above minimum speed gives less "g" margin for powered lift airplanes than for conventional ones.

The full .44 "g" increment implied by CTOL rules is generally much more than is ever used. Furthermore, the relatively low speeds of STOL operation imply a reduced "g" requirement for a given turn radius. It is therefore considered that .3g is an adequate maneuvering margin for the climbout phase of flight.

In determining V_{LO} , a problem arises which was not generally recognized in the past: Reduction of lift due to ground effect. At the high lift coefficients characteristic of STOL (especially with jet flaps), when flying close to or rolling on the runway, the wing creates a sort of "tail wind". The reduced dynamic pressure results in an apparent reduction of lift coefficient, which may be greater than the increase due to the downwash reduction of "classical" ground effect theory. In any case, maximum lift is generally reduced, and occurs at a lower angle of attack than in free air.**

In specifying a normal "g" capability for V_{LO} , it is therefore necessary to require that it be achievable in ground effect. The

^{*}See note on climbout in Section 2.4.4.

^{**}See Ref. 7, Section 2.2 for a discussion of ground effect for STOL aircraft.

proposed requirement of .lg is adequate to assure that the airplane can lift off. The adverse ground effect attenuates rapidly with height, so substantially more than .lg will be available soon after liftoff.

3.1.4 Climb Gradient

Gradient, rather than rate of climb, determines capability to clear terrain or obstacles. MIL-C-5011A requires 100 fpm with one engine out. This amounts to about .7% gradient at conventional jet takeoff speeds. Since STOL air fields are likely to be located in areas of rough topography, a requirement of 3% is proposed here.

3.1.5 Field Condition

On dry, paved surfaces, modern anti-skid braking systems can develop a friction coefficient (μ) in the range of .4 to .5. However, tactical airlift STOL operations are likely to be conducted on a variety of surfaces, mostly poorer than pavement. The values of μ proposed here correspond to dry hard dirt. This was selected as an appropriately representative type of field. The requirement that stopping distance take no credit for thrust reversal adds an extra margin for more adverse conditions. (See braking distance, Section 2.6.1.)

3.2 Landing Rules

Table II summarizes and compares ground rules in use or proposed for landing performance determination.

3.2.1 Definition of Landing Distance

The FAR Part 25 (civil CTOL) landing distance is 66% (92% for wet runway) longer than the one defined by MIL-C-5011A or other military landing rules. The extra length has been found necessary in commercial operation for a number of reasons, but largely to account for touchdown dispersion along the runway.

The apparent implication is that MIL-C-5011A is unconservative. Nevertheless, this report proposes to use the same definition, for the following reasons:

- The FAR Part 25 landing distance is based on demonstrated maximum effort braking, for which a modern airplane will develop a braking μ substantially larger than the .3 value for which credit is taken in the proposed rules.
- Touchdown dispersion for a STOL transport will be reduced by an order of magnitude relative to current CTOL airplanes because of steeper approach angle, no-flare touchdown, and the improvement in quality of the flight director instrumentation and displays to be expected from AMST flight control technology work.

Table II: Comparative Summary of Landing Rules

				2	TOL RULES		
	EXISTING C	TOL RULES	FAR PART XX	L2	TAI	PROPOSED MILITA	LAY STOL AULES
SOURCE ITEM	MIL-C-6011A	FAR PART 26	(TENTATIVE)	(RAD-0-123)		NORMAL	ABRAULT
FIELD LENGTH DEFINITION	DIST FROM 50 FT	DIST FROM 50 FT + Q.6 × 1.15 WHEN WET	DISTANCE FROM 35 FT + 0.6	GROUND ROLL AND DIST FROM 50 FT (AEO) > 2 SEC TRANSITION	DISTANCE FRLAM 80 FT WITH 2 THRUST REVS 6°/REC MAX DEMOTATION TRANS = 2 SEC	DISTANCE FROM 80 FT Threshold HEIGHT	HTTW TY OLL
SPEEDS	V _{TH} > 1.2 V _S V TH > 1.1 V _S	VTH > 1.3 VS	V _{TH} > 1.06 Vmaa	VTH > 1.28 VS OFF VTD > 1.1 VS OFF ASSAULT VTH > 1.15 VS OFF VTD > 1.1 VS OFF	V _{TH} > 1.1 Vmos	VTH >1.1Vmm (OEI) >1.20 Vmin (OEI VID>1.1Vmm (OEI)	VTH > 1.2 VIND
MANEUVER					0.29 • V _{TH} (AEO) 0.19 • V _{TH} (DE))	0.305 e V _{TH} 1061) 0.165 e V _{TD} 1061)	G.16 e V _{TD} (AEO) G.16 e V _{TD} (AEO)
FLIGHT PATH CO-AMOUND					R/S < 2/3 GEAR DEBIGN R/S NO FLARE	NS 4 2/3 GEAN DEMGN NS NO FLANE	I
CLIMB		7 > 2.7% (OEIMPFFLAPS > 3.2%	(0EI) >2.7% OR 226 FM > 3.2% OR 280 FM (AEO) 0 1.3 Vs			3% 0 50 FT (OEI)	3% 8 10 FT (AEO)

21

3.2.2 Speeds and Maneuver "g" Margins

The discussion of these topics presented in Sections 3.1.2 and 3.1.3 is largely applicable to landing as well as takeoff.

It will be noted that FAR Part 25 requires approach at 1.3 times stall speed. In fact, this corresponds more closely to 1.24 times V_{min} , because the stall speed determination procedure specified by the FAR* results in a. apparent magnification of maximum lift coefficient due to dynamic effects.

*Minimum speed reached in a maneuver conducted by pulling up the nose in a manner to reduce speed at 1 knot per second until stall occurs.

SECTION IV

APPLICATION TO THE STAI BASELINE CONFIGURATION AIRPLANE (VECTORED THRUST PLUS MECHANICAL FLAPS)

4.1 The STAI Baseline Configuration Airplane

As one of the first steps of the STAI program, a configuration study was conducted, resulting in definition of a baseline airplane designated as the Boeing Model 953-801. This design served as a reference airplane for wind tunnel test planning, simulation studies, etc. It was used as an example airplane on which to apply the rules proposed in this report. The 953-801 is described in detail in the Appendix to Volume I of the series of reports documenting the Boeing portion of the STAI (Reference 9). For convenience, important characteristics are also described in this volume. (While the 953-801 airplane differs in many ways from the refined configuration reported in the main body of Ref. 9, the similarity of the two airplanes is so close in the respects affecting takeoff and landing performance criteria that the results of this report are considered fully applicable to both airplanes.)

Figure 7 shows the general arrangement of the -801. Its principal dimensions and aerodynamic parameters are listed on the figure.

The wing is fitted with triple slotted Fowler flaps out to 75% span. The ailerons occupying the remainder of the trailing edge are drooped and blown when the flaps are lowered. Further lateral control is provided by spoilers over the whole flapped part of the span. Full span curved Krüger flaps, also with blowing BLC, are applied to the leading edge.

Figure 3 shows the lift and drag characteristics of this wing at the flap setting for STOL operation.

The four (scaled) Allison PD 351-2 turbofan engines, rated at 17,740 pounds SLST, are equipped with a thrust vectoring and reversing system of the type shown in Figure 9.

A translating sleeve serves to uncover the cascade vanes of the reversing and vectoring nozzles, and at the same time to block the plug-type cruise nozzle. Vectoring or reversing are selected by a rotating valve arrangement, also shown in Figure 9. The vector angle (σ) can be modulated between 45° and 75° by movement of the cascade vanes. Between 0° and 45°, the effective vector angle can be modulated by motion of the translating sleeve. In a partially open position, the flow is split between the vectoring cascade vanes and the cruise nozzle. Figure 10 shows the estimated turning efficiency (n_T) of this arrangement. For $\sigma > 45^{\circ}$, a constant value of .9 is obtained. Between 0° and 45°, the split-flow scheme leads to a straight line locus of possible operating conditions, as shown in Figure 10. The n_T of this concept is poorer than that of others in the 0-45° σ range, but it appears to offer major weight advantages. The estimated reversing efficiency of this arrangement is .5.

Figure 11 shows engine net and gross thrust at the takeoff power setting at sea level, 59°F, and at 2500 ft., 93°F.

4.2 Powered Lift Performance Method

The procedure outlined below was used to develop the climb and acceleration data required to establish speed margins.

4.2.1 Power-on Force Polar

The first step is construction of power-on polars at speeds covering the range of interest, here from 60 to 100 knots. The methodology of Ref. 7 for power effects was not available when the study reported in this volume was made. Therefore, polars were constructed by direct vector addition of ram drag and gross thrust at the appropriate nozzle angle to the estimated power-off polar. (I.e., zero interference between propulsive and aerodynamic effects was assumed.)

Figure 12 shows the polars for 80 knots at 100 percent power on all four engines, and diagrams the construction procedure. Note that C_n and C_r are plotted to the same scale.

To determine the operating point for a given weight, construct a circle about the origin, of radius C_W (\equiv W/qS). At each point on the circle, the aerodynamic force is just sufficient to balance the weight vector in flight at constant speed and path angle (γ). Now construct a line through the origin at the angle γ from the C_L axis, positive to the left. The intersection point of that line and the circle is the operating point. σ and α for that weight, speed, power setting, and path angle may then be read directly. For example, the point marked by the circle on Figure 14 is for a weight of 132,600 pounds, $\gamma = -3.8^\circ$, $\sigma = 75^\circ$, and $\alpha = 5^\circ$.

Acceleration and climb capabilities are also readily obtained. The normal acceleration available is simply $\Delta C_L/C_W$, where C_L is measured from the operating point to the maximum C_L point of the appropriate polar curve. An example is shown on Figure 14: $\Delta n = .487g$ at $\sigma = 75^{\circ}$. Similarly, longitudinal acceleration capability can be inferred from the margin of $\Delta C_D/C_W$, measured in the negative drag direction from the operating point. Steady climb capability is found by noting the intersection of the C_W circle with the appropriate force polar. In the present case, a climb angle $\gamma = \pm 14.5^{\circ}$ is available at $\sigma = 0^{\circ}$, though the Δn available there is substantially reduced.

MODEL 953-80)

AERODYNAM	DATA			
AREA SPAN	FT ² FT	1589.50 112.76	HONE PAL 422.30 41.10	VERT. IAL. 327.36 18.09
ASPECT RAT SWEEP, C/4	10	8.0 10*	4.0	1.0 35*
DHEDRAL NCIDENCE		0* 0*	- 4* • 4*-15*	
TAPER RATH	D MILO RODVSI	.3	.5	.8 17
	.55%2 IP	.132	.13	.13
MAC	FT	15.46	10.65	18.17
TUDALE CO	ELL PORT		1.10	0.10

POWER FLANT 4 CF MISS 5.25 TURBORING WITH THILIST VECTORING 17,740 LB THILIST

LANDING	GEAE	L.	
MAIN	8	42×15.0-16	THES
NOSE	2	34×12.0-12	TIRES

CANGO COMPARTMENT 144"w 1447148"14 540"L

WEIGHTS DESIGN GROSS DESIGN STOL STOL AWLOAD O.E.W. DESIGN GROSS	145,440 132,350 88,500 194,000	LB LB LB LB LB LB LB LB LB CTOL MISSION
STOL PHELOND Q.E.W. DESIGN GROSS MAX. PHYLOND	88,500 194,000	LB) LB LB}CTOL MISSION LB}

FUEL TANK NO. 14.6 TANK NO. 24.5 TANK NO. 38.4 SUB TOTAL CENTER TANK TOTAL

B

12

and a subscription and and an Paradar Strategic and the second second second second second second second second

And the Manual and Control of a second state

1 AL 7 A

C

(**26 Blank**)

Figure 8: Flaps Down Aerodynamic Characteristics (Power Off)

Preceding page blank

Figure 9: Thrust Reverser/Vectoring System-Rotating Valve Concept

the principle of the second second

and the second s

Takeoff Thrust - Lb × 10³

True Airspeed - Knots

Figure 11: Engine Takeoff Thrust - .828 Scale Allison PD 351-2

Figure 12 : Powered Lift Force Polars

4.3 Speeds

Speeds are most conveniently discussed in the format used in NASA Ti D-5594 (Reference 2). Angle of climb is plotted against speed for the configurations and power settings of interest. "g" margins, etc., are then superposed. Figures 13 through 16 show these data for the 953-801 airplane at 132,600 pounds, at 2500 feet, 93°F. Only the takeoff power setting is shown, but the whole range of available σ 's are given. Figures 13 and 14 correspond to the engine-out condition, for determination of "rormal" STOL performance, in free air and in ground effect. Figures 15 and 16 present the all engines operating data, for determination of "assault" performance.

4.3.1 Reference Minimum Speeds

V can be read or interpolated on the free air charts (Figures 13 and 15) as the extreme left end of the curve for the appropriate value of σ .

V is the point at which the climb gradient curve at the appropriate σ crosses the $\gamma = 0$ axis, provided that this point is not at a lower speed than V. Here, V does not even appear on the charts, because it is below V in every case.

V is here determined by stall in ground effect, since stall in ground effect occurs at the body attitude limit, and the descent angle provides additional clearance.

Table III summarizes these values, and also lists minimum control speeds.

Table III

Reference Minimum Speeds (Knots)

Condition	σ	V	V mlo	V _{mtd}
Normal Takeoff	30 ⁰	71.5	80.9	
Assault Takeoff	30	67.0	70.0	
Normal Landing	65	70.0		74.0
Assault Landing	75 ⁰	62.0		66.0

Minimum Control Speeds

Air (V _{mca})	66.0 knots	(Roll, $\sigma = 75^{\circ}$)
Ground (V _{mcg})	68.5 knots	(Yaw, $\sigma = 30^{\circ}$)

True Airspeed - Knots

Figure 13: Operational Envelope - Engine Out, OGE

Figure 14: Operation Envelope - Engine Out, IGE

di di da

Figure 15: Operational Envelope – All Engines, OGE

True Airspeed -- Knots

Figure 16: Operational Envelope - All Engines, IGE

36

4.3.2 Operating Speeds

Normal Takeoff

$$V_{LO}$$
:
1.08 x V_{mlo} = 87.3 knots
.1g Δn IGE → 84 knots
3% gradient IGE → 82 knots
1.1 x V_{min} = 78.9 knots
 V_{LO} = 87.3 knots
1.2 V_{min} = 86 knots
.3g Δn OGE → 91 knots
3% gradient OGE → 78 knots

 $V_{CO} = 91.0$ knots

(Note: In this case, $\rm V_{CO}$ does not restrict speed or flap setting, and so does not affect field length.)

Assault Takeoff

V_{LO}: 1.08 x V_{mlo} = 75.6 knots
.1g Δn IGE → 78.5 knots
3% gradient IGE → 70 knots

$$V_{LO} = 78.5$$
 knots
1.2 V_{min} = 80.5 knots
.3g Δn OGE → 80 knots
3% gradient OGE → 67 knots
 $V_{CO} = 80.5$ knots
(Note: In this case, V doe

(Note: In this case, V_{CO} does not restrict speed or flap setting, and so does not affect field length.)

Normal Landing

$$V_{TH}:$$
1.2 V_{min} = 84 knots
.3g Δn OGE + 89.5 knots
1.1 V_{mca} = 72.5 knots
(10 ft/sec rate of sink limit requires γ = -3.8°, which determined σ = 65°.)
V_{TD}:
1.1 V_{mtd} = 81.5 knots
.15g Δn IGE + 86.7 knots
.15g Δn IGE + 86.7 knots
.3g Δn OGE + 76.3 knots
(Reduces rate of sink to 9 feet per second at σ = 75°.)
 $V_{TD}:$
1.1 V_{mtd} = 72.6 knots
.15g Δn IGE + 76 knots

$$V_{\rm TD}$$
 = 76.3 knots

4.4 Field Lengths

Normal Takeoff

The takeoff procedure used here is as follows: At the start of roll, σ is set to 0°. At V_{FR}, σ is rotated to 30°, and the acceleration continues until the airplane lifts off.

 $\rm V_{FR}$ = 68.5 knots, set by $\rm V_{mcg}.$ Therefore, the critical field length is not balanced.

The speeds and distances are as follows:

Assault Takeoff

Distance - 740 feet, at $V_{LO} = 78.5$ knots.

 $V_{\rm TH} = 76.3$ knots $V_{\rm TD} = 76.3$ knots

V = 0 knots Distance = 780 ft.

4.5 Concluding Remarks

The field lengths given in the preceding section do not match the values to which the 953-801 airplane was designed. This was to be expected, since the "STAI Baseline" rules were used to obtain the design values.

The "normal" takeoff field length was reduced from 2000 feet to 1550 feet, because the climb to 50 feet was eliminated.

The landing distance increased from 1700 feet to 2075 feet because of the increase in threshold speed due to the .3g maneuver requirement (versus .2g in the STAI), despite credit for a slightly higher braking coefficient.

Airplanes designed to the proposed rules will tend to have bigger wings and less installed thrust than for the STAI. The authors consider the shift in emphasis prudent, since landing tends to be a more difficult phase of flight.

APPENDIX

PERFORMANCE CALCULATION PROCEDURES

1. Introduction

This appendix contains a description of the methods used to determine the takeoff and landing performance of the 953-813. There were some differences between the AFFDL rules for updating the STAI baseline configuration and those recommended here in Volume III. The sizing of the 953-813 and all performance shown in Volume I was determined in accordance with AFFDL rules.

2. Normal Takeoff

where:

Normal takeoff distances were based on the total distance to accelerate on four engines to the critical powerplant failure speed, experience a critical powerplant failure, then continue the takeoff with the remaining three powerplants, or stop in the remaining distance (Figure 3).

Forces acting on the airplane during ground roll are shown in Figure 17. The aerodynamic coefficients (C_L and C_D) contain the vertical and horizontal components of the gross thrust vector. During ground roll, C_L and C_D were obtained from the drag polar at $\alpha_{body} = 0^{\circ}$ as a function of C_J . Thrust vector was set at 7° (to clear the flap trailing edge) from brake release to V_R , then rotated to the maximum angle that would provide a climb angle of 3° with the critical engine inoperative.

The acceleration was obtained from the following expression:

$$a = \frac{C_D qS + D_{ram} + \mu (W-C_L qS)}{W/g}$$

$$a = \text{acceleration}$$

$$g = 32.2 \text{ ft/sec}^2$$

$$q = \text{dynamic pressure}$$

$$S = \text{wing area}$$

$$W = \text{airplane weight}$$

$$D_{ram} = \text{ram drag}$$

$$\mu = .1 \text{ (rolling friction coefficient)}$$

Note: C_r and C_p include propulsive forces.

The distance for segments A, B, and C were obtained from the expression:

$$s = \int_{v_{i}}^{v_{f}} \frac{v dv}{a}$$

where:

s = distance to accelerate from V_i to V_f
V_i = initial velocity
V_f = final velocity

The distance required to stop (Segment E) was also obtained from Equations (1) and (2). The acceleration term to be integrated is then negative. However, since the limits of integration go from large velocity to zero velocity, the stopping distance is positive. When stopping, thrust was set at idle, the friction coefficient was increased to $\mu = .3$, the lift was decreased due to spoilers, and the drag was increased due to spoilers.

2.1 Speed Definitions

Minimum Flight Speed

 V_{min} - The lowest speed at which the aircraft is controllable in steady lg flight out of ground effect:

- (1) With powerplants supplying power output levels for normal operation in the applicable flight configuration.
- (2) At appropriate weight, elevation, and temperature for which the minimum speed was used.
- (3) At the most favorable center of gravity within the allowable limits.
- (4) With the critical powerplant component supplying propulsion inoperative (except for "assault").

Minimum Liftoff Speed

 $V_{m \, lo}$ - The lowest speed at which the airplane can lift off the ground and continue the takeoff.

(1) With powerplants supplying power output levels for takeoff.

- (2) At the appropriate weight, elevation and temperature for which the minimum speed was used.
- (3) At the most unfavorable center of gravity within the allowable limits.
- (4) With the critical powerplant component supplying propulsion and lift inoperative. (Except for "assault".)

 V_{mcg} - Ground minimum control speed. The minimum speed at which controllability by aerodynamic controls and nose gear steering is adequate to permit proceeding safely with the takeoff using average piloting skill, when the critical powerplant is suddenly made inoperative.

V_r - Critical powerplant failure speed.

 \mathcal{V}_{FR} - Critical powerplant failure recognition speed.

2.2

Takeoff Speed Limitations

 $V_{\rm F}$ - Critical powerplant failure speed $\geq V_{\rm mcg}$.

 $V_R^{}$ - Takeoff rotation speed. $V_R^{}$ is the speed at which rotation was initiated. $V_R^{}$ was $\geq V_{FR}^{}$

 $V_{1,0}$ - The liftoff speed.

- \geq 1.05 V_{mlo} with the critical powerplant inoperative.
- The speed providing l.lg normal acceleration with the critical powerplant inoperative, in ground effect.
- V_{co} The climbout speed was assumed equal to the liftoff speed and in all cases:

 $V_{co} \ge 1.1 V_{min}$ with the critical powerplant inoperative.

> The speed providing 1.3g normal acceleration in free air with the critical engine inoperative.

3. Assault Takeoff

Assault takeoff distances were based on the distance to accelerate on four engines to liftoff (Figure 18). Thrust was set at 7° from brake release to rotation and then vectored to the angle that would provide a 3° climbout with all four engines operating. Liftoff and climbout speed and maneuver margins were the same as for normal takeoffs except they were determined with all engines operating: $V_{LO} \ge 1.05 V_{mlo}$ $\ge 1.10g$ normal acceleration $V_{CO} \ge 1.10 V_{min}$ $\ge 1.30g$ normal acceleration.

4. Normal Landing

Normal landing distances were based on the total distance to stop from a threshold height of 50 feet. The landing distance was determined in three segments as shown on Figure 19.

Air Distance was based on (1) crossing the threshold at a steady 10 fps rate of sink, (2) no flare and (3) touching down at the threshold rate of sin's.

Air Distance =
$$\frac{50 \text{ ft}}{\tan \gamma}$$

 $\tan \gamma \approx \sin \gamma$

where:

$$\sin \gamma = \frac{10 \text{ fps}}{V_{\text{TH}}}$$

V_{TH} = threshold speed, fps

<u>Transition Distance</u> - Two seconds were allowed to lower the nose, deploy spoilers and apply brakes.

Transition Distance = $2 V_{TH}$ (fps)

Blaking Distance - The distance required to stop was determined from the basic distance equation:

Braking Distance =
$$V_{\rm B}$$
 $\frac{V \, dV}{a}$

The forces acting on the airplane during braking are shown on Figure 22.

$$a = -\frac{D + D_{ram} + T_{rev} (\cos \sigma_{rev}) + \mu (W-L+T_{rev} \sin \sigma_{rev})}{W/g}$$

where:

D = aerodynamic drag .ith spoilers deployed

T_{rev} = reverse thrust (two engines)

orev = reverse thrust vector angle
W = gross weight
µ = .3

Minimum Touchdown Speed Definition

 V_{m+d} - The lowest speed at which the airplane can touch down:

- (1) With powerplants applying power output levels for normal operation at touchdown.
- (2) At the appropriate weight, elevation, and temperature for which the minimum speed was used.
- (3) At the most unfavorable center of gravity within the allowable limits.
- (4) With the critical powerplant component supplying propulsion and lift inoperative. (Except for "assault".)

Landing Speed Limitations

The normal threshold speeds were selected to provide the following margins with the critical engine inoperative:

 $V_{TH} \ge 1.1$ minimum flight speed, V_{min}

- > The speed providing a 1.3g normal acceleration in free air
- \geq 1.1 minimum touchdown speed, V mtd
- > The speed providing a 1.15g normal acceleration in ground effect.

Landing vector angles were selected to provide waveoff capability from 100 feet with the critical engine inoperative.

5. Assault Landing

Assault landing distances consist of a 300 ft. air distance, a 2 second transition and a braking segment utilizing maximum braking and maximum four engine thrust reversal (Figure 21).

Equations used for assault transition and stopping distances were the same as those for normal landing.

Assault Landing Speeds

and the second state parts with the subscript rates

The assault landing speeds were selected to provide the same margins as the normal landing speeds. However, assault landing margins were determined with all engines operating.

 $V_{\text{TH}} \geq 1.1 \text{ minimum flight speed, } V_{\text{min}}$

- > The speed providing a 1.3g normal acceleration in free air
- > 1.1 minimum touchdown speed.
- > The speed providing a 1.15g normal acceleration in ground effect.

Thrust vector angles were selected to provide waveoff from 50 ft. with all engines operating.

Figure 17: Ground Roll Forces

Figure 18: Assault Takeoff Distance

Figure 19: Normal Landing Distance

Figure 20: Forces During Breking

Figure 21: Assault Landing Distance

47 (48 Slank)

REFERENCES

- 1. <u>Charts; Standard Aircraft Characteristics and Performance</u>, Military Specification MIL-C-5011A, November 1951.
- Innis, Robert C., Holzhauser, Curt A., Quigley, Henry C., <u>Airworthiness Considerations for STOL Aircraft</u>, NASA TN D-5594, January 1970.
- 3. <u>Tentative Airworthiness Standards for Powered-Lift Transport Aircraft</u>, FAR Part XX, August 1970.
- 4. <u>Flying Qualities of loted V/STOL Aircraft</u>, Military Specification MIL-F-83300, December 1970.
- 5. Airlift Operations Manual, MM 55-1A, September 1965.
- Krenkel, A. R., and Selzman, A. "Takeoff Performance of Jet Propelled Conventional and Vectored-Thrust STOL Aircraft," Journal of Aircraft, Volume 5, No. 5, Sept-Oct 1968.
- Runciman, W. J., et al, <u>STOL Tactical Aircraft Investigation -</u> <u>Aerodynamic Technology: Design Compendium, Vectored Thrust/</u> <u>Mechanical Flaps</u>, AFFDL-TR-73-19, Volume II, Part I, May 1973.
- 8. <u>Readily Available STOL Tactical Airlift Aircraft</u>, RAD 0-123-(1), April 1971.
- 9. Carroll, R. H., et al, <u>STOL Tactical Aircraft Investigation -</u> <u>Configuration Definition: Medium STOL Transport with Vectored</u> <u>Thrust/Mechanical Flaps</u>, AFFDL-TR-73-19, Volume I, May 1973.

Preceding page blank

49 (50 Blank)