AD 766 515

LIBRARY TECHNICAL REPORT SECTION NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

R-K RESEARCH AND SYSTEM DESIGN 3947 Ridgemont Drive Malibu, California

Technical Report No. 1-73

CROSS VALIDATION AND GENERALIZATION OF A CONTENT ANALYSIS OF THE NARRATIVE SECTIONS OF NAVY PERFORMANCE EVALUATIONS FOR SENIOR ENLISTED PERSONNEL

April 1973

Diane M. Ramsey-Klee, Ph.D. Principal Investigator

Vivian Richman, M.L.S. Research Associate

This research was sponsored by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research

Contract N00014-72-C-0231 Contract Authority Identification Number, NR 150-344

Reproduction in whole or in part is permitted for any purpose of the United States Government. Approved for public release; distribution unlimited. R-K RESEARCH AND SYSTEM DESIGN 3947 Ridgemont Drive Malibu, California

Technical Report No. 1-73

CROSS VALIDATION AND GENERALIZATION OF A CONTENT ANALYSIS OF THE NARRATIVE SECTIONS OF NAVY PERFORMANCE EVALUATIONS FOR SENIOR ENLISTED PERSONNEL

April 1973

Diane M. Ramsey-Klee, Ph.D. Principal Investigator

Vivian Richman, M.L.S. Research Associate

This research was sponsored by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research

Contract N00014-72-C-0231 Contract Authority Identification Number, NR 150-344

Reproduction in whole or in part is permitted for any purpose of the United States Government. Approved for public release; distribution unlimited.

DOCUMENT CONTROL DATA - R & D)
DOCOMENT CONTROL DATA - R & D	
(Security classification of title, body of abstract and indexing annotation must be enter	ted when the overall tenort is classified)
1. ORIGINATING ACTIVITY (Corporate author) 2a,	REPORT SECURITY CLASSIFICATION
R-K Research and System Design	Unclassified
3947 Ridgemont Drive	GROUP
Malibu, California 90265	
Cross Validation and Generalization of A Content Analysis of Navy Performance Evaluations for Senior Enlisted Perso	s of the Narrative Sections onnel
4. OESCRIPTIVE NOTES (Type of report and inclusive dates) Technical Report No. 1-73 March 1, 1972	2 to February 28, 1973
5. AUTHOR(5) (First name, middle initial, last name)	
Diane M. Ramsey-Klee and Vivian Richman	
6. REPORT DATE 78. TOTAL NO. OF PA	AGES 75. NO. OF REFS
April 1973 262	22
BA. CONTRACT OR GRANT NO. 94. ORIGINATOR'S RE	EPORT NUMBER(S)
N00014-72-C-0231	nort No. 1-73
NP 150_344	port No. 1-75
c	NO(5) (Any other numbers that may be assigned
this report)	
d.	
10. DISTRIBUTION STATEMENT	
Approved for public release; distribution unlimited.	
11 SUPPLEMENTARY NOTES 12. SPONSORING MILI	ITARY ACTIVITY
Personnel an Programs, Of	nd Training Research fice of Naval Research
13. ABSTRACT	
(U) In an earlier pilot study of the narrative section ations for senior enlisted personnel in pay grade E-7, it analytic techniques that it is possible to differentiate typical and superlative chief petty officers based on the tion Reports. A second study attempted to cross validate new Evaluation Reports for senior enlisted men in the same (AT's and BT's) represented in the pilot study sample and sis to two different occupational ratings (CS's and RM's) izability of the content analytic techniques developed ear ment, the cross validation and generalization samples were ledge of the ratee's relative position in the upper half formance of Duty (the criterion variable). A reliability whose objectives were twofold: (1) to determine the leved dividuals all of whom independently would perform a conter of 48 Evaluation Reports, and (2) to investigate if nonre- successfully to apply the complex content analysis method study. This report presents detailed evidence that the pr tially were extendible to the blind cross validation sample ratings and also were generalizable to two different occur initial expectation that it would be extremely difficult individuals to consistently index the narrative sections is surprising result in the reliability study was that in on quite respectable level of agreement was achieved.	ons of Navy performance evalu- was determined by content between the performance of a narrative content of Evalua- the pilot study results on the two occupational ratings to extend the content analy- in order to test the general- arlier. As a further refine- e analyzed without any know- of the marking scale on Per- study was also conducted al of agreement among four in- ent analysis of the same corpus esearchers could be trained cology developed in the pilot of the same two apational ratings. Despite the to train nonresearch-oriented of Evaluation Reports, the ally six training sessions a

DD 1 NOV 63 1473

Unclassified

iv

nera	227	the state of the		
Seci	irity	Class	ification	

KEY WORDS	LINI	LINK A		LINKB		LINKC	
	 ROLE	WT	ROLE	wт	ROLE	WT	
Personnel technology							
Personnel selection							
Navy Evaluation Reports							
Content analysis							
Reliability							
Stepwise discriminant analysis							
Scaling							
Performance evaluation							
Appraisal of performance							
						-	

CONTENTS

DD FORM 1473:	DOCUMENT CONTROL DATA - R & D	iii
LIST OF FIGURE	S	vi
LIST OF TABLES		ix
ACKNOWLEDGMENT	S	xiii
SUMMARY OF FIN	DINGS	xv
SECTION 1	INTRODUCTION	1
SECTION 2	NATURE OF THE PILOT STUDY SAMPLE AND THE CROSS VALIDATION AND GENERALIZATION SAMPLES	3
SECTION 3	CONTENT ANALYSIS METHODOLOGY	9
	Conceptual Approach	9
	Indexing Vocabulary	9
SECTION 4	STATISTICAL ANALYSIS AND RESULTS	19
SECTION 5	RELIABILITY STUDY	81
SECTION 6	FUTURE AREAS OF INVESTIGATION	91
REFERENCES		93
APPENDIX A	TRAINING MANUAL FOR INDEXING THE NARRATIVE SECTIONS OF NAVY PERFORMANCE EVALUATIONS FOR SENIOR ENLISTED PERSONNEL	95
APPENDIX B	OUTPUT FROM PROGRAM BMD01D - SIMPLE DATA DESCRIPTION FOR THE CROSS VALIDATION AND GENERALIZATION SAMPLES	151
APPENDIX C	CORRELATIONS AMONG THE 67 VARIABLES	177
APPENDIX D	MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES	221

DISTRIBUTION LIST

259

v

LIST OF FIGURES

Figure 1	Evaluation Report Form NAVPERS 1616/8	4
Figure 2	Indexing Form Used in Performing the Content Analysis	10
Figure 3	Example of the Narrative Text for An Evalua- tion Section Showing the Indexing Decisions That Were Made, Factual Statements Requiring No Indexing Are Enclosed in Brackets. T = Total Number of Words in the Narrative Text.	16
Figure 4	The Indexing Form As It Was Filled Out to Record the Indexing Decisions Made in the Example of Narrative Text Shown in Figure 3	17
Figure 5	Accuracy of Classifying the Cross Valida- tion Sample (N=222) and the Pilot Study Sample (N=224) into Correct Criterion Group Using the Cross Validation Sample Discrimi- nant Functions (Evaluation Section - 19R)	43
Figure 6	Accuracy of Classifying the Cross Valida- tion Sample (N=222) and the Pilot Study Sample (N=224) into Correct Criterion Group Using the Cross Validation Sample Discrimi- nant Functions (Justification Section - 19S)	44
Figure 7	Accuracy of Classifying the Pilot Study Sample (N=224) and the Cross Validation Study Sample (N=222) into Correct Criterion Group Using the Pilot Study Sample Discrimi- nant Functions (Evaluation Section - 19R)	47
Figure 8	Accuracy of Classifying the Pilot Study Sample (N=224) and the Cross Validation Study Sample (N=222) into Correct Criterion Group Using the Pilot Study Sample Discrimi- nant Functions (Justification Section - 195)	48
Figure 9	Accuracy of Classifying the Cross Validation AT's (N=138) and the Pilot Study AT's (N=144) into Correct Criterion Group Using the Cross Validation AT's Discriminant Functions (Evaluation Section - 19R)	50
Figure 10	Accuracy of Classifying the Cross Validation AT's (N=138) and the Pilot Study AT's (N=144) into Correct Criterion Group Using the Cross Validation AT's Discriminant Functions (Justification Section - 19S)	51

Figure ll	Accuracy of Classifying the Pilot Study AT's (N=144) and the Cross Validation AT's (N=138) into Correct Criterion Group Using the Pilot Study AT's Discriminant Functions (Evaluation Section - 19R)	54
Figure 12	Accuracy of Classifying the Pilot Study AT's (N=144) and the Cross Validation AT's (N=138) into Correct Criterion Group Using the Pilot Study AT's Discriminant Functions (Justifica- tion Section - 195)	55
Figure 13	Accuracy of Classifying the Cross Validation BT's (N=84) and the Pilot Study BT's (N=80) into Correct Criterion Group Using the Cross Validation BT's Discriminant Functions (Evaluation Section - 19R)	57
Figure 14	Accuracy of Classifying the Cross Validation BT's (N=84) and the Pilot Study BT's (N=80) into Correct Criterion Group Using the Cross Validation BT's Discriminant Functions (Justification Section - 19S)	57
Figure 15	Accuracy of Classifying the Pilot Study BT's (N=80) and the Cross Validation BT's (N=84) into Correct Criterion Group Using the Pilot Study BT's Discriminant Functions (Evaluation Section - 19R)	59
Figure 16	Accuracy of Classifying the Pilot Study BT's (N=80) and the Cross Validation BT's (N=84) into Correct Criterion Group Using the Pilot Study BT's Discriminant Functions (Justifica- tion Section - 19S)	59
Figure 17	Accuracy of Classifying the Generalization Sample (N=222) into Correct Criterion Group (Evaluation Section - 19R)	62
Figure 18	Accuracy of Classifying the Generalization Sample (N=222) into Correct Criterion Group (Justification Section - 19S)	63
Figure 19	Accuracy of Classifying the Generalization CS's (N=60) into Correct Criterion Group (Evaluation Section - 19R)	65
Figure 20	Accuracy of Classifying the Generalization CS's (N=60) into Correct Criterion Group (Justification Section - 19S)	65

1

v	1	i	1

Figure	21	Accuracy of Classifying the Generalization RM's (N=162) into Correct Criterion Group (Evaluation Section - 19R)	66
Figure	22	Accuracy of Classifying the Generalization RM's (N=162) into Correct Criterion Group (Justification Section - 19S)	67
Figure	A-1	Evaluation Report Form NAVPERS 1616/8	97

N

LIST OF TABLES

Table 1	Range of Raw Marks, Range of T Scores, and Mean of T Scores on 19A-PERFORMANCE OF DUTY for the Three Criterion Groups in the Pilot Study Sample	5
Table 2	Distribution of the 225 Pilot Study Evaluation Reports Among the Three Criterion Groups for Each of the Two Occupational Ratings and for Both Occupations Combined	6
Table 3	Range of Raw Marks, Range of T Scores, and Mean of T Scores on 19A-PERFORMANCE OF DUTY for the Three Criterion Groups in the Cross Validation Sample	7
Table 4	Range of Raw Marks, Range of T Scores, and Mean of T Scores on 19A-PERFORMANCE OF DUTY for the Three Criterion Groups in the Generalization Sample	7
Table 5	Distribution of the 222 Cross Validation Sample Evaluation Reports Among the Three Criterion Groups for Each of the Two Occupational Ratings and for Both Occupations Combined	8
Table 6	Distribution of the 222 Generalization Sample Evaluation Reports Among the Three Criterion Groups for Each of the Two Occupational Ratings and for Both Occupations Combined	8
Table 7	Weighting Scale	12
Table 8	Definition of the 67 Quantitative Variables Derived from the Indexing Form	20
Table 9	Transformation of Weighting Scale	22
Table 10	Descriptive Statistics on Variable 66: Total Number of Words in Narrative Text for the Cross Validation Sample	23
Table ll	Descriptive Statistics on Variable 66: Total Number of Words in Narrative Text for the Generalization Sample	23
Table 12	Descriptive Statistics on Variable 67: Total Number of Index Terms Used for the Cross Validation Sample	25
Table 13	Descriptive Statistics on Variable 67: Total Number of Index Terms Used for the Generalization Sample	25

		۴	
	н	Ŀ.	
d		n	

Table 1	4 Distribution of Total Number of 5 Weights Through 1 Weights Used in Indexing the Evaluation Section (19R) of the Cross Validation Sample for All Three Criterion Groups	27
Table 1	5 Distribution of Total Number of 5 Weights Through 1 Weights Used in Indexing the Justification Section (19S) of the Cross Validation Sample for All Three Criterion Groups	27
Table 1	6 Distribution of Total Number of 5 Weights Through 1 Weights Used in Indexing the Evaluation Section (19R) of the Generalization Sample for All Three Criterion Groups	28
Table 1	7 Distribution of Total Number of 5 Weights Through 1 Weights Used in Indexing the Justification Section (19S) of the Generalization Sample for All Three Criterion Groups	28
Table 1	8 Results of the Chi Square Tests of Common Distribu- tion of Index Weights Used for Each Pair of Criterion Groups in the Cross Validation Sample	. 29
Table 1	9 Results of the Chi Square Tests of Common Distribu- tion of Index Weights Used for Each Pair of Criterion Groups in the Generalization Sample	29
Table 2	0 Statistically Significant Variables Resulting from Pairwise Criterion Group Comparisons on the Evaluation Section (19R) for the Cross Validation Sample	32
Table 2	1 Statistically Significant Variables Resulting from Pairwise Criterion Group Comparisons on the Justification Section (19S) for the Cross Validation Sample	33
Table 2	2 Statistically Significant Variables Resulting from Pairwise Criterion Group Comparisons on the Evaluation Section (19R) for the Generali- zation Sample	37
Table 2	3 Statistically Significant Variables Resulting from Pairwise Criterion Group Comparisons on the Justification Section (19S) for the Generali- zation Sample	39
Table 2	4 Best Classification into the Three Criterion Groups Using the Cross Validation Sample	45

Discriminant Functions

Table 25	Best Classification into the Three Criterion Groups Using the Pilot Study Sample Discriminant Functions	49
Table 26	Best Classification into the Three Criterion Groups Using the Cross Validation AT's Discriminant Functions	52
Table 27	Best Classification into the Three Criterion Groups Using the Pilot Study AT's Discrimi- nant Functions	56
Table 28	Best Classification into the Three Criterion Groups Using the Cross Validation BT's Discriminant Functions	58
Table 29	Best Classification into the Three Criterion Groups Using the Pilot Study BT's Discrimi- nant Functions	60
Table 30	Best Classification into the Three Criterion Groups for the Generalization Sample	64
Table 31	Variables Selected by the Stepwise Discriminant Analysis Program at Steps 1 Through 15 for the Cross Validation Sample	69
Table 32	Variables Selected by the Stepwise Discriminant Analysis Program at Steps 1 Through 15 for the Pilot Study Sample	70
Table 33	Variables Selected by the Stepwise Discriminant Analysis Program at Steps 1 Through 15 for the Cross Validation AT's	71
Table 34	Variables Selected by the Stepwise Discriminant Analysis Program at Steps 1 Through 15 for the Pilot Study AT's	72
Table 35	Variables Selected by the Stepwise Discriminant Analysis Program at Steps 1 Through 15 for the Cross Validation BT's	74
Table 36	Variables Selected by the Stepwise Discriminant Analysis Program at Steps 1 Through 15 for the Pilot Study BT's	75
Table 37	Variables Selected by the Stepwise Discriminant Analysis Program at Steps 1 Through 15 for the Generalization Sample	76

xi

v	4	4
Δ	1	alle i

Table 38	Variables Selected by the Stepwise Discriminant Analysis Program at Steps 1 Through 15 for the Generalization CS's	77
Table 39	Variables Selected by the Stepwise Discriminant Analysis Program at Steps 1 Through 15 for the Generalization RM's	78
Table 40	Results of the Kappa Analysis for the Six Pair- wise Comparisons Between the Four Reliability Indexers in Selecting Index Terms for the Entire Reliability Study Data Base	84
Table 41	The Weighting Algorithm Used in Computing Weighted Kappa for Assessing the Level of Agreement in Assigning Numerical Weights to the Index Terms Selected in the Reliability Study	87
Table 42	Results of the Correlational Analysis and the Weighted Kappa Analysis for the Six Pairwise Comparisons Between the Four Reliability Indexers in Assigning Numerical Weights to Each Index Term Selected for the Entire Reliability Study Data Base	89
Table A-1	Hierarchy of Index Terms	99
Table A-2	Weighting Scale	101
Table A-3	Glossary of Word Clues to the Use of Index Terms	106

ACKNOWLEDGMENTS

This research project has concerned itself with developing a valid content analysis methodology for analyzing the narrative sections of Navy performance evaluations for senior enlisted personnel in pay grade E-7 in order to determine if it is possible to differentiate between the performance of outstanding chief petty officers and their slightly less qualified colleagues. This technical report presents the findings resulting from an attempt to cross validate and generalize the results of an earlier pilot study and to elucidate the issues of trainability and reliability. The continuing investigations being conducted under the auspices of this project are sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research. The Navy Personnel Research and Development Center (NPRDC), San Diego, California, provided the data bases used in this research, supplied the keypunching required in the initial pilot study, and performed the computer calculations of the Mann-Whitney U tests for both the pilot study and the cross validation and generalization study. The correlation matrices reported in Appendix C were also computed by NPRDC at the computing facility of the Naval Electronics Laboratory Center in San Diego. The continuing support by ONR and the cooperation from NPRDC are gratefully acknowledged. Marshall J. Farr, Ph.D., Director of Personnel and Training Research Programs, Office of Naval Research, and Joseph L. Young, Ph.D., Assistant Director of Personnel and Training Research Programs, Office of Naval Research, have provided intellectual input and encouragement. Bernard Rimland, Ph.D., former Director of the Personnel Measurement Research Department, Naval Personnel and Training Research Laboratory, and David W. Robertson and Marjorie H. Royle of his department gave willingly and extensively of their time in obtaining the data bases and conferring about issues of experimental design and statistical methodology. Their guidance provided insight into potential applications for this research endeavor. To all of these individuals I wish to express my special appreciation.

During the writing stage, this report was reviewed by Mr. David H. Robertson and Mrs. Marjorie H. Royle. Their valuable suggestions have been incorporated into the final product.

Keypunching of the cross validation and generalization samples was performed at the UCLA Health Sciences Computing Facility, as were the descriptive statistics, t tests of mean difference, and the stepwise discriminant analyses. This facility operates under the directorship of Wilfrid J. Dixon, Ph.D., and is sponsored by NIH Special Research Resources Grant RR-3. All of the agreement statistics calculated for the reliability study were performed on the Olivetti P602 microcomputer at R-K Research and System Design.

Mrs. Vivian Richman, M.L.S., played the major role in conceptualizing the 29 index terms used in the content analysis. She also was responsible for the exceptional quality and consistency of the indexing of the pilot study sample and the cross validation and generalization samples as well as for training

the reliability indexers. Mrs. Jonnie Handley assisted both the Principal Investigator and Mrs. Richman in the myriad tasks of coding for keypunching, quality control, data extraction, and statistical computation. Her quick comprehension and her diligent and careful work insured that the research schedule did not fall behind. Mrs. Handley also served as one of the reliability indexers.

Mrs. Carol J. Randall was responsible for the excellent typing of this technical report. She also served as one of the reliability indexers.

Diane M. Ramsey-Klee, Ph.D. Principal Investigator

SUMMARY OF FINDINGS

In an earlier pilot study of the narrative sections of Navy performance evaluations for senior enlisted personnel in pay grade E-7, it was determined by content analytic techniques that it is possible to differentiate between the performance of typical and superlative chief petty officers based on the substantive content of Evaluation Reports. The results of this pilot study strongly suggested that there are stable differences among the performance characteristics of chief petty officers in the various portions of the upper half of the marking scale on Performance of Duty that are reflected in narrative statements written by evaluators.

The findings from the pilot study were considered to be provocative enough to warrant further investigation. Therefore, a second study was embarked upon to attempt to cross validate the pilot study results on new Evaluation Reports for senior enlisted men in the same two occupational ratings (AT's and BT's) that were represented in the pilot study sample and to extend the content analysis to Evaluation Reports for senior enlisted men in two different occupational ratings (CS's and RM's) than those investigated in the pilot study in order to test the generalizability of the content analytic techniques developed earlier. As a further refinement, the cross validation and generalization samples of Evaluation Reports were to be analyzed without any knowledge of the ratee's relative position in the upper half of the marking scale on Performance of Duty (the criterion variable). In the pilot study the criterion data were made available early in the study, thus introducing the possibility that this knowledge subconsciously might have influenced the content analysis that was performed. This factor was controlled for in the second study by withholding the criterion information until the content analysis of the narrative text had been completed.

Also of concern in the pilot study were the issues of reliability and trainability, although the scope of the small initial research effort did not permit these aspects to be studied in any substantial way. Therefore, in designing the second investigation these issues were dealt with by including a reliability study whose objectives were twofold: (1) to determine the level of agreement among four individuals all of whom independently would perform a content analysis of the same corpus of 48 Evaluation Reports, and (2) to investigate if nonresearchers could be trained successfully to apply the complex content analysis methodology developed in the pilot study.

In the earlier pilot investigation, the Navy Personnel Research and Development Center (NPRDC), San Diego, selected a sample of 225 Evaluation Reports for senior enlisted personnel in pay grade E-7 including 145 Aviation Electronics Technicians (AT's) and 80 Boilermen (BT's). All 225 Evaluation Reports were drawn from the top half of the marking scale on 19A-PERFORMANCE OF DUTY of Evaluation Report Form NAVPERS 1616/8. This form subsequently has been replaced by another form that can be scanned by an optical character reader; however, the content of the two forms is essentially the same. The pilot study sample of 225 Evaluation Reports was divided equally into three criterion groups---Upper, Middle, and Lower---corresponding to three continuous segments of the upper half of the marking scale on 19A-PERFORMANCE OF DUTY.

In the study being reported here, NPRDC also selected the sample of Evaluation Reports to be analyzed. The cross validation sample consisted of 222 Evaluation Reports from the same two ratings that were used in the pilot study (i.e., AT's and BT's). In addition, a generalization sample consisting of 222 Evaluation Reports was also selected by NPRDC from two different ratings in order to ascertain the generalizability of the content analytic methodology developed in the pilot study. The two ratings from which the generalization sample was drawn were Commissarymen (CS's) and Radiomen (RM's). The N's in the various occupational ratings represented in the cross validation and generalization samples were 138 AT's, 84 BT's, 60 CS's, and 162 RM's. The cross validation sample and the generalization sample were each divided equally into the same three criterion groups as the pilot study sample---Upper, Middle, and Lower. Actual criterion group membership for the cross validation sample and the generalization sample was known only to NPRDC until the content analysis of the narrative text had been completed, Consequently, the content analysis of these two samples was conducted in the blind without benefit of knowing to which criterion group each Evaluation Report belonged.

An indexing vocabulary consisting of 29 descriptive labels was devised to encompass the substantive content of the narrative sections of Evaluation Reports. These 29 index terms fell into three major areas --- MANAGEMENT FUNCTIONS, SKILLS AND ABILITIES, and PRODUCTIVITY AND ACHIEVEMENT. Under each of these headings there were more detailed terms such as PLANNING, TECHNICAL SKILLS, and AWARDS AND PUNISHMENT, providing the indexer with a 3-level hierarchy of descriptive labels from which to choose. Each sentence of narrative text in the pilot study sample and the cross validation and generalization samples was read carefully and, where appropriate, divided into segments corresponding to the assignment of specific index terms. However, it is not enough to simply label a narrative statement with the most appropriate index term since the statement may have been a highly positive, quite positive, neutral, quite negative, or highly negative one. Therefore, a weighting scale containing five degrees of favorableness/unfavorableness was devised based on the range of adjectives and adverbs that occur in narrative text of this kind. The indexing procedure that was used in this study was the following: The narrative text of each Evaluation Report was read, segmented into distinct statements, and each statement was assigned one or more index terms from the set of 29 possible choices. Each term selected was also assigned a numerical weight from 1 to 5 depending upon the nature of the adjectives or adverbs used as modifiers in the statement. When the entire narrative text of the Evaluation Report had been indexed, the indexing decisions that had been made were recorded on a special indexing form.

A set of 67 quantitative variables was derived from the indexing form used in the content analysis. The first 29 variables reflect the simple frequency with which each index term was used to index a particular section of narrative text. Variable 30 is the sum of these 29 frequencies. Variables 30 through 59 represent the weighted frequency of each index term used to index a particular section of narrative text. Variable 60 is similar to Variable 30 in that it is the sum of the 29 weighted frequencies. Variables 61 through 65 represent the frequency counts over the entire indexing form for all 5 weights, 4 weights, 3 weights, 2 weights, and 1 weights. Variable 66 is the total number of words in the section of narrative text that was indexed. Variable 67 is the total number of index terms of the 29 available that were used to index the section of narrative text. Profiles or vectors of these 67 values then were prepared for all of the Evaluation Reports contained in each sample. Separate profiles were compiled for the evaluation section (19R) and the justification section (19S) of each Evaluation Report.

Descriptive statistics were computed for each of the three research samples on the 67 quantitative variables. As expected these statistics showed in general that the higher the criterion group, the longer the narrative text. Also, as the evaluator uses more words to describe the ratee, he is more likely to comment on a wider variety of specific areas of the ratee's performance. Correlations among all 67 variables for the evaluation section and for the justification section also were computed for the cross validation and generalization samples as well as the matrix correlating the evaluation section with the justification section on all 67 variables. There were very few high correlations except for the correlations between Variables 1 through 30 and Variables 31 through 60, these two sets of variables being the same except for the method of weighting that was used. Variable 67 (Total Number of Index Terms Used) is a focal variable, correlating highly with Variable 30 (Sum of Variables 1 through 29), Variable 60 (Sum of Variables 31 through 59), Variable 61 (Total Number of 5 Weights), Variable 62 (Total Number of 4 Weights), Variable 63 (Total Number of 3 Weights), and Variable 66 (Total Number of Words in the Narrative Text). Correlations among the variables having to do with the 29 index terms per se were notably low, indicating that these 29 dimensions are relatively orthogonal and represent independent aspects of managerial performance. In the correlation matrix for the evaluation section versus the justification section, no high correlations were evident in either the cross validation sample or the generalization sample, demonstrating that these two narrative sections of Evaluation Report Form NAVPERS 1616/8 are quite independent and should be treated separately.

Both the Mann-Whitney U test and the t test of mean difference were computed on each of the 67 variables for the pilot study sample, the cross validation sample, and the generalization sample. These computations were made for each pair of criterion groups in both the evaluation and the justification sections. The most difficult discrimination to be made is that between the Middle and Upper criterion groups. In the cross validation sample the characteristics that differentiated outstanding CPO's from their slightly less qualified colleagues on the evaluation section were cooperation, grooming and attire, resourcefulness, and productivity and achievement. Cooperation was also implicated as a discriminating variable between the Middle and Upper criterion groups on the evaluation section in the pilot study sample. On the justification section, eight variables showed a statistically significant difference between the Middle and Upper criterion groups in both the pilot study sample and the cross validation sample. When an evaluator is required to justify his marks in evaluating a ratee, he apparently calls out certain areas of performance that distinguish the ratee in the Upper criterion group from his slightly less qualified colleague in the Middle criterion group. Skills and abilities as well as productivity and achievement were the differentiating areas of performance. The ratee in the Upper criterion group also had bestowed upon him more superlative adjectives and adverbs. Total Number of Words in Text and Total Number of Index Terms Used were also discriminating variables.

In the comparison between the Middle and Upper criterion groups on the evaluation section of the generalization sample, Total Number of 5 Weights (Excellent), Total Number of 2 Weights (Poor), and potential were the discriminating variables. None of these variables overlapped with those that were statistically significant for the Middle versus Upper criterion group comparison on the evaluation section of the cross validation sample. Seventeen of the 67 quantitative variables showed a statistically significant difference between the Upper and Middle criterion groups on the justification section for both the cross validation sample and the generalization sample, the most significant of which were Total Number of 5 Weights (Excellent), Total Number of 4 Weights (Good), Total Number of 2 Weights (Poor), Total Number of Index Terms Used, Sum of Variables 1 through 29, Sum of Variables 31 through 59, leadership and directing, communication, cooperation, technical skills, drive, and potential. This finding suggests that there is partial overlap between these two samples. The nonoverlapping areas may be attributed to a difference in the nature of the occupational ratings represented in the cross validation and the generalization samples and/or to unreliability in the indexing procedure, although the results of the reliability study suggest that differences among the four occupational ratings provide a more reasonable explanation for these results than unreliability.

In every pairwise criterion group comparison made for the three research samples using the Mann-Whitney U test and the t test of mean difference, one or more of the five variables involving total number of weights proved to be significantly differentiating. This finding supports the results of the correlational analysis in which the system used for weighting Variables 31 through 59 was highlighted as an important aspect of the content analysis methodology.

It is of considerable interest to learn how well the set of 67 quantitative variables, used in optimal combination, can classify each of the research samples into correct criterion group. A stepwise discriminant analysis program was used to perform this analysis. A special feature of this program allows new cases to be classified by the discriminant functions generated on the original sample. This feature was used to conduct two cross validation studies of the AT's and BT's combined and also of the AT's and BT's considered separately. The results of the two cross validation studies were very similar for the total cross validation sample and the total pilot study sample, for the cross validation AT's and the pilot study AT's, and for the cross validation BT's and the pilot study BT's. These findings support the expectation held at the outset of this investigation that it would be possible to index the cross validation sample in the blind, without knowledge of criterion group membership, and achieve as good classification accuracy as was achieved with the pilot study sample where criterion group membership was known to the indexer. Further, it can be concluded that better classification into the three criterion groups using an optimum combination of the 67 quantitative variables is achieved when the two occupational ratings represented in the pilot study sample and the cross validation sample are treated separately. These findings suggest that classification procedures based on the content analysis methodology developed in this research should be tailored to specific occupations. In all of the stepwise discriminant analyses performed, better classification was achieved in the analysis of the justification section compared to the evaluation section. Classification of each sample by its own

discriminant functions achieved perfect classification for the BT's on the justification section in both the pilot study sample and the cross validation sample. In the pilot study sample, 95 percent of the AT's were classified correctly on the justification section. In the cross validation sample, 93 percent of the AT's were classified correctly on the justification section. The superior classification accuracy achieved for the BT's compared to the AT's indicates that the Aviation Electronics Technician rating may represent a more varied amalgamation of technical activities than the Boilerman rating. Further, it appears that the best classification accuracy than can be achieved on a second sample using the discriminant functions generated on the first sample, with the content analysis methodology developed thus far, is 65 to 70 percent.

In the stepwise discriminant analyses of the generalization sample, all 60 generalization CS's were correctly classified on the justification section. Of the 162 generalization RM's, 89 percent were correctly classified on the justification section. This suggests that the occupational rating, Radioman, may be more heterogeneous and require a greater variety of skills than the Commissaryman rating just as the Aviation Electronics Technician rating may represent a more varied amalgamation of technical activities than the Boilerman rating. It is evident from these results that the content analysis methodology developed initially on the pilot study sample consisting of AT's and BT's was generalizable to a new sample consisting of two different occupational ratings, viz., CS's and RM's.

In the double cross validation of the pilot study sample and the cross validation sample, the best classification accuracy for the sample being cross validated was achieved early in the stepwise discriminant analysis procedure, typically by the fifth step. The key discriminating variables for the evaluation section were Total Number of 5 Weights (Excellent) and Total Number of 2 Weights (Poor). In the justification section without exception the key discriminating variable was Total Number of Index Terms Used. These same three variables were those selected first in the stepwise discriminant analysis of the generalization sample. It appears that the modifying adjectives used by an evaluator to rate a ratee and the range of skills and abilities that a chief petty officer possesses may be key factors in the ratee's superior performance. The results also suggest that a smaller number of dimensions than the full complement of 67 quantitative variables derived from the indexing procedure can be used to identify superlative CPO's whose superior performance recommends them as candidates for promotion to a higher level of responsibility.

In addition to the cross validation and generalization study, a comprehensive reliability study was conducted whose objectives were twofold: (1) to determine the level of agreement among several individuals all of whom independently would perform a content analysis of the same corpus of Evaluation Reports, and (2) to investigate if nonresearchers could be trained successfully to apply the complex content analysis methodology developed in the pilot study.

A set of 48 Evaluation Reports was selected by the Navy Personnel Research and Development Center, representing a cross section of the kinds of reports included in the overall experimental design for the cross validation and generalization samples. In each of these 48 Evaluation Reports the evaluation section was separated from the justification section so that the narrative comments for each section were not considered together. This resulted in a group of 96 randomized pieces of narrative text to be indexed in the reliability study.

Four individuals participated in the reliability study: (1) the experienced indexer who also indexed the pilot study sample, the cross validation sample, and the generalization sample; (2) the principal investigator; (3) an inexperienced indexer (inexperienced indexer A) with two years of college in the liberal arts; and (4) another inexperienced indexer (inexperienced indexer B) with executive secretary experience. To this end a training manual was prepared by the experienced indexer and the principal investigator to assist the two neophyte indexers in understanding their assignment. Six intensive training sessions were conducted by the experienced indexer in order to try to bring all four indexers up to a common level of expertise before beginning the actual study. Obviously, this objective could only be met partially in view of the varying educational backgrounds of the four reliability indexers and their different levels of previous exposure to the indexing dictionary.

In all of the agreement statistics that were computed, assignment of the index terms was considered to be a separate intellectual task from assigning the corresponding weights based on the modifying adjectives and adverbs. The kappa statistic was the measure of agreement used in analyzing the index terms assigned by the four reliability indexers. The best agreement in selecting index terms was obtained between the experienced indexer and inexperienced indexer A, a kappa of .88 where the maximum kappa possible in this instance was .97. Of the six possible pairwise comparisons between the four reliability indexers, the value of kappa ranged from .71 to .88, with .71 probably representing the lower limit of reliability achievable in a study of this kind. The kappa analysis revealed that the major area of confusion in indexing the reliability data base resided in whether or not to index supposedly factual statements describing the job duties and the qualifications needed for the position that the ratee occupied rather than the ratee's actual performance in this position. All three of the less experienced indexers tended to index these statements as describing the ratee's performance whereas the experienced indexer whom the other three indexers were trying to emulate treated these statements as factual descriptions of the job duties and the qualifications needed for the position. Additional training aimed at clarifying this area of confusion most likely would markedly reduce this type of disagreement and raise the magnitude of kappa.

Analysis of the level of agreement among the four reliability indexers in assigning numerical weights to each index term selected, based on the modifying adjectives and adverbs, was performed differently than the analysis of the level of agreement in selecting the index terms themselves, because the numerical weights assigned to the index terms constituted an ordinal scale whereas the index terms themselves formed a nominal scale. In the six pairwise comparisons between the four reliability indexers, six product moment correlation coefficients were computed as well as another agreement statistic, weighted kappa, in order to determine if weighted kappa agreed with the results of the correlational analysis. In the correlational analysis, once again the best agreement in assigning numerical weights to each index term selected was obtained between the experienced indexer and inexperienced indexer A, a correlation coefficient of .80. These findings corroborate each other in suggesting that an individual without a research background in only six training sessions can be taught not only how to select the most appropriate index terms but also how to consistently assign weights to these terms based on the modifying adjectives and adverbs. The other five correlation coefficients were lower, but none less than .64.

As was expected, the weighted kappa values were similar in magnitude to their correlation coefficient counterparts. Again, the best agreement as measured by weighted kappa was obtained between the experienced indexer and inexperienced indexer A, a weighted kappa of .78. If the area of confusion involving overindexing on the part of inexperienced indexer A was ignored in the analysis, the value of weighted kappa increased to .82. The gain in the value of weighted kappa is not very large for the comparison between the experienced indexer and inexperienced indexer A when weighted kappa was recomputed in this fashion. However, the gain was quite substantial in the other comparisons between the experienced indexer and the principal investigator and between the experienced indexer and inexperienced indexer B. This suggests that with additional training to clarify this area of confusion and with more indexing experience, the level of agreement among the four reliability indexers could possibly be raised to a value of .80 to .85 as measured by any of the three agreement statistics employed in this study. However, values in the .90's are the ultimate objective.

In conclusion, it might be of interest to point out that the initial expectation in beginning this reliability study was that it would be extremely difficult to train nonresearch-oriented individuals to consistently index the narrative sections of Evaluation Report forms using the complex content analysis methodology that had been developed in the pilot study. The surprising • result is that in only six training sessions a quite respectable level of agreement was achieved. Moreover, one of the inexperienced indexers showed a higher level of agreement with the experienced indexer than the principal investigator did, and the other inexperienced indexer agreed with the experienced indexer almost as well as the principal investigator. The intuitive feeling that the reliability indexers had after completing the reliability study was that the most difficult part of learning to index consistently was over and that with additional practice and some review training sessions they could improve their indexing skill.

SECTION 1. INTRODUCTION

A goal of on-going research being conducted by the Navy Personnel Research and Development Center, San Diego, is to develop Navy enlisted performance evaluation formats which will be effective in holding down the pile-up of marks at the high end of the marking scale and in achieving a distribution of marks which tapers off sufficiently at the high end of the scale to permit greater differentiation among ratees, making evaluations more useful, especially when small selection opportunities are involved.¹ Thus far the narrative sections of Evaluation Reports have not been exploited to any great extent in the design of experimental forms because narrative text tends to resist easy analysis. However, in a pilot investigation of the narrative sections of Navy performance evaluations for senior enlisted personnel in pay grade E-7 conducted by R-K Research and System Design, it was determined by content analytic techniques that it is possible to differentiate between the performance of typical and superlative chief petty officers based on the substantive content of Evaluation Reports.² The results of this pilot study strongly suggested that there are stable differences among the performance characteristics of chief petty officers in the various portions of the upper half of the marking scale on Performance of Duty that are reflected in narrative statements written by evaluators. These differences are both identifiable and quantifiable. In the pilot study the significant differences resided in the superiority of the uppermost criterion group with respect to managerial skills and abilities, particularly as demonstrated in the areas of organization, initiative, cooperation, leadership and directing, professionalism, productivity and achievement, more awards and fewer punishments, more drive, more superlative attributes, and fewer qualified statements reflecting fair performance.

The findings from the pilot study were considered to be provocative enough to warrant further investigation. Therefore, a second study was embarked upon to attempt to cross validate the pilot study results on new Evaluation Reports for senior enlisted men in the same two occupational ratings that were represented in the pilot study sample and to extend the content analysis to Evaluation Reports for senior enlisted men in two different occupational ratings than those investigated in the pilot study in order to test the generalizability of the content analytic techniques developed earlier. As a further refinement, the cross validation and generalization samples of Evaluation Reports were to be analyzed without any knowledge of the ratee's relative position in the upper half of the marking scale on Performance of Duty (the criterion variable). In the pilot study the criterion data were made available early in the study, thus introducing the possibility that this knowledge subconsciously might have influenced the content analysis that was performed on the narrative sections of the Evaluation Reports. This factor was controlled for in the second study by withholding the criterion information until the content analysis of the narrative text had been completed.

Also of concern in the pilot study were the issues of reliability and trainability, although the scope of the small initial research effort did not permit these aspects to be studied in any substantial way. Therefore, in designing the second investigation these issues were dealt with by including a reliability study whose objectives were twofold: (1) to determine the level of agreement among four individuals all of whom independently would perform a content analysis of the same corpus of Evaluation Reports, and (2) to investigate if nonresearchers could be trained successfully to apply the complex content analysis methodology developed in the pilot study.

The second study attempting to cross validate and generalize the pilot study results and to elucidate the issues of reliability and trainability was conducted during the contract year March 1, 1972 to February 28, 1973. This technical report presents the findings resulting from this follow-on investigation. Section 2 of this report describes the nature of the cross validation and generalization samples. Section 3 presents the content analysis methodology that was used in both the pilot study and the second study. Section 4 discusses the statistical methodology that was used to analyze the data and the results that were obtained. Section 5 describes the design of the reliability study and presents the results achieved. In Section 6 future areas of investigation are delineated.

SECTION 2. NATURE OF THE PILOT STUDY SAMPLE AND THE CROSS VALIDATION AND GENERALIZATION SAMPLES

As a result of research conducted at the Navy Personnel Research and Development Center, San Diego, to develop experimental forms for evaluating personnel in pay grades E-7 (Chief Petty Officer), E-8 (Senior Chief Petty Officer), and E-9 (Master Chief Petty Officer), a new evaluation report form---NAVPERS 1616/8---was introduced into operational use in January 1969 (see Figure 1).* This form had been demonstrated as effecting a substantial improvement in the distribution of operational evaluation marks over the previously used form, NAVPERS 792, as reflected in a reduced pile-up of marks at the high end of the marking scale and greater differentiation among ratees.¹

Section 19, Evaluation Section, of Evaluation Report Form NAVPERS 1616/8 is designed to permit the rater (evaluator) to compare the ratee with all others of his rate known to the rater on 13 specific aspects of on-job performance. Ratings are made by marking the column of the rating distribution into which the rater evaluates that the ratee falls for each of the 13 specific aspects of on-job performance plus an overall evaluation of the ratee (for example, top 1% for superlative performance). Section 19R of this form provides space for the rater to write narrative evaluation comments to describe further the ratee's performance and qualifications. Section 19S of this form provides space for the rater to write narrative justification comments and is required to support any marks assigned to the top or bottom 10, 5, or 1% columns of Section 19.

Sections 19R and 19S are referred to as the narrative text of the Evaluation Report since they are the only portions of the report where the rater uses his own words to assess the on-job performance of the senior enlisted man that he is rating. Thus far the narrative evaluation and justification sections of the Evaluation Report have not been exploited systematically in making personnel decisions because narrative text tends to resist objective analysis and interpretation.

In the earlier pilot investigation, the Navy Personnel Research and Development Center (NPRDC), San Diego, selected a sample of 225 Evaluation Reports for senior enlisted personnel in pay grade E-7 taken from a pool of approximately 1,000 performance evaluation report forms for two occupational ratings---Aviation Electronics Technician (AT) and Boilerman (BT). All 225 Evaluation Reports were drawn from the top half of the marking scale on 19A-PERFORMANCE OF DUTY located in the upper right quadrant of Evaluation Report Form NAVPERS 1616/8. The 19A-PERFORMANCE OF DUTY category was used in preference to 19N-OVERALL EVALUATION because standard scores (T Scores) were available only for 19A. The use of standard scores rather than raw marks permitted a more refined selection to be made of the three criterion groups used in the study. Since raw marks on 19A correlate very highly with raw marks on 19N, it was felt that little was sacrificed by not using the overall evaluation and

This form subsequently has been replaced by another form that can be scanned by an optical character reader; however, the content of the two forms is essentially the same.

Figure 1. Evaluation Report Form NAVPERS 1616/8 (a 75 percent photo reduction of the original form)

4

that much was gained by using the purified T Scores on 19A. Only those Evaluation Reports from commands spreading their marks and submitting eight or more E-7 and E-8 reports were considered.

The pilot study sample of 225 Evaluation Reports was divided equally into three criterion groups---Upper, Middle, and Lower---corresponding to three continuous segments of the upper half of the marking scale on 19A-PERFORMANCE OF DUTY. Table 1 shows the range of raw marks on 19A for each of the three criterion groups in the pilot study sample as well as the range and mean of T Scores. These standardized scores have a mean of 50 and a standard deviation of 10. Standardization was accomplished by setting each unit command mean equal to 50 and standardizing the total of E-7 and E-8 marks for each unit command. No cases from the bottom half of the marking scale on 19A were included in this study since there is no difficulty in differentiating these cases from the better performing personnel.

Table 2 shows the distribution of the 225 pilot study Evaluation Reports among the three criterion groups for each of the two occupational ratings and for both occupations combined. After the pilot study sample had been selected and analyzed, it was discovered that one Evaluation Report for an Aviation Antisubmarine Warfare Operator (AW) had erroneously been coded as an Aviation Electronics Technician (AT). This case was removed from the analysis by specific occupation but was left in the analysis for the total pilot study sample.

In the second study, NPRDC also selected the sample of Evaluation Reports to be analyzed. The same general procedures described above for selecting the pilot study sample were followed also in selecting the cross validation sample and the generalization sample, except that the forms were selected from a

TABLE 1

RANGE OF RAW MARKS, RANGE OF T SCORES, AND MEAN OF T SCORES ON 19A-PERFORMANCE OF DUTY FOR THE THREE CRITERION GROUPS IN THE PILOT STUDY SAMPLE

Criterion Group	Range of Raw Marks	Range of T Scores	Mean of T Scores
Upper	In the top 5% column or the top 1% column	59.3 to 74.2	64.68
Middle	In the top 10% column only	48.0 to 54.1	51.79
Lower	In the top 50% column or the top 30% column	33.8 to 39.7	38.85

TABLE 2

Occupational	Criterion Group			Total
Rating	Upper	Middle	Lower	N
AT	49	39	56	144
AW*	0	1	0	1
BT	26	35	19	80
Total Sample	75	75	75	225

DISTRIBUTION OF THE 225 PILOT STUDY EVALUATION REPORTS AMONG THE THREE CRITERION GROUPS FOR EACH OF THE TWO OCCUPATIONAL RATINGS AND FOR BOTH OCCUPATIONS COMBINED

This case erroneously was coded as an AT initially.

subsequent year's data pool. The cross validation sample consisted of 222 Evaluation Reports from the same two ratings that were used in the pilot study, that is, Aviation Electronics Technician (AT) and Boilerman (BT). In addition, a generalization sample consisting of 222 Evaluation Reports was selected by NPRDC from two different ratings in order to ascertain the generalizability of the content analytic methodology developed in the pilot study. The two ratings from which the generalization sample was drawn were Commissaryman (CS) and Radioman (RM).

The cross validation sample of 222 Evaluation Reports and the generalizazation sample of 222 Evaluation Reports were both divided equally into the same three criterion groups as the pilot study sample---Upper, Middle, and Lower. Table 3 shows the range of raw marks on 19A for each of the three criterion groups in the cross validation sample (AT's and BT's), the range of T Scores, and the mean of the T Scores for each criterion group. These same data for the generalization sample (CS's and RM's) are presented in Table 4. Tables 5 and 6 show the distribution of the 222 cross validation sample Evaluation Reports and the 222 generalization sample Evaluation Reports among the three criterion groups for each of the two occupational ratings represented in each sample and for both occupations combined. Actual criterion group membership for the cross validation sample and the generalization sample was known only to NPRDC until the content analysis of the narrative text had been completed. Consequently, the content analysis of these two samples was conducted in the blind without benefit of knowing to which criterion group each Evaluation Report belonged.

TABLE 3

RANGE OF RAW MARKS, RANGE OF T SCORES, AND MEAN OF T SCORES ON 19A-PERFORMANCE OF DUTY FOR THE THREE CRITERION GROUPS IN THE CROSS VALIDATION SAMPLE

Criterion Group	Range of Raw Marks	Range of T Scores	Mean of T Scores
Upper	In the top 5% column or the top 1% column	61.2 to 71.9	64.23
Middle	In the top 10% column only	48.2 to 55.9	52.54
Lower	In the top 50% column or the top 30% column	30.3 to 42.0	38.48

RANGE OF RAW MARKS, RANGE OF T SCORES, AND MEAN OF T SCORES ON 19A-PERFORMANCE OF DUTY FOR THE THREE CRITERION GROUPS IN THE GENERALIZATION SAMPLE

Criterion Group	Range of Raw Marks	Range of T Scores	Mean of T Scores
Upper	In the top 5% column or the top 1% column	61.2 to 74.8	64.33
Middle	In the top 10% column only	48.2 to 56.2	52.50
Lower	In the top 50% column or the top 30% column	34.5 to 41.5	38.56

TABLE 5

DISTRIBUTION OF THE 222 CROSS VALIDATION SAMPLE EVALUATION REPORTS AMONG THE THREE CRITERION GROUPS FOR EACH OF THE TWO OCCUPATIONAL RATINGS AND FOR BOTH OCCUPATIONS COMBINED

Occupational	Criterion Group			Total
Rating	Upper	Middle	Lower	N
AT	45	44	49	138
BT	29	30	25	84
Total Sample	74	74	74	222

TABLE 6

DISTRIBUTION OF THE 222 GENERALIZATION SAMPLE EVALUATION REPORTS AMONG THE THREE CRITERION GROUPS FOR EACH OF THE TWO OCCUPATIONAL RATINGS AND FOR BOTH OCCUPATIONS COMBINED

Occupational	Criterion Group			Total
Rating	Upper	Middle	Lower	N
CS	19	16	25	60
RM	55	58	49	162
Total Sample	74	74	74	222

SECTION 3. CONTENT ANALYSIS METHODOLOGY

Conceptual Approach

In the pilot study, the narrative portions of the 75 Evaluation Reports for each of the three criterion groups were read in their entirety before formalizing the method of content analysis to be used. In this review the evaluation section and the justification section (19R and 19S) were considered separately. Borrowing from the field of information science, it seemed most appropriate to regard each narrative section as a short document that had been written by the ratee's senior officer in order to communicate to a selection board or to a detailer the potential that the ratee had for promotion and increased responsibility. Considered in this framework, the analysis task then becomes one of ascertaining what the *document* is about (content analysis), specification of the content by a set of descriptive labels (indexing), and organization of an indexing vocabulary (controlling the form and semantics of the descriptive labels by lexicon and/or rule).^{3,4} In order for the content analysis to be valid, Fairthorne⁵ cautions that two aspects must be taken into consideration: (a) what the document is about, and (b) the circumstances of the expected uses of the content analysis with respect to a particular task or problem. Fairthorne's advice was attended to in the design of the content analysis methodology in that the indexing vocabulary which was developed relates strongly to the ultimate use to which performance evaluations are put, that is, the selection for promotion of outstanding chief petty officers in the face of limited promotional opportunities.

The Indexing Vocabulary

In reading the narrative portions of the 75 Evaluation Reports for each of the three criterion groups in the pilot study sample, it became apparent that the attributes and characteristics being evaluated for a ratee related primarily to his potential as a manager and supervisor. Consequently, five references in the area of managerial behavior and practice^{6,7,8,9,10} were consulted as an aid to the development of the indexing vocabulary used in this study. An initial vocabulary containing 41 descriptive labels was devised and used to test the adequacy and manageability of the indexing method on 20 Evaluation Reports not included in the pilot study sample but similar to them in content. As a result of this experience, the original set of 41 labels was condensed into a more generic set of 29 index terms. The indexing form, incorporating the final vocabulary that was used in both the pilot study and the second study, is shown in Figure 2.

The top line of the indexing form carries fields for an identifying number for each ratee, which criterion group he belongs to (used only in the pilot study since criterion data were withheld in the second study until the indexing had been completed), and whether the section being indexed is an evaluation section (19R) or a justification section (19S). The indexing form itself is divided into three major parts: MANAGEMENT FUNCTIONS, SKILLS AND ABILITIES, and PRODUCTIVITY AND ACHIEVEMENT. Under each of these headings there are more detailed terms, providing the indexer with a 3-level hierarchy of descriptive labels from which to choose.

D No.	Criterion Group	Section	
	Index Term		Freq.
	MANAGEMENT FUNCTIONS		
	CONTROLLING		
	LEADERSHIP AND DIRECTING		
	ORGANIZATION		
	PLANNING		
	REPRESENTATION		
	STAFFING		
	USE OF COMMUNICATION		
	SKILLS AND ABILITIES		
	COMMUNICATION		
	CONDUCT, INTEGRITY, AND PRIDE		
	COOPERATION		
	ENDURANCE		
	FLEXIBILITY		
	GROOMING AND ATTIRE		
	INITIATIVE		
	INTELLECTUAL FUNCTIONING		
	PROFESSIONALISM		
	RELIABILITY AND DEPENDABILITY		
	RESOURCEFULNESS		
	RESPONSIVENESS		
	TECHNICAL SKILLS		
	PRODUCTIVITY AND ACHIEVEMENT		
	AWARDS AND PUNISHMENT		
	DRIVE		
	SERVICE MOTIVATION		
	POTENTIAL		
	REPUTE		
	ASSET TO THE NAVY		
REQUE	ENCY COUNTS: 5, 4, 3	, 2, 1	
IOT AT		NDED OF THEFY WEDNO	

Figure 2. Indexing Form Used in Performing the Content Analysis

The first section of the indexing form includes seven specific MANAGEMENT FUNCTIONS that many authorities on management practice agree are the characteristic duties of all managers.^{6,7,8,9,10} Although some authorities believe that there are more, less, or different functions performed by managers, these seven functions were selected because they are representative of the duties that chief petty officers actually perform.

The second section of the indexing form contains index terms for 13 specific SKILLS AND ABILITIES considered to be important by Navy supervisory personnel in performing effectively as a chief petty officer. While some authorities on management practice consider making a judgment about whether or not an individual possesses a skill, quality, or ability to be a subjective process, Navy evaluators do repeatedly call out these specific qualities in their narrative evaluations because many of these qualities are dimensions on which they rate the ratee in Section 19 of the Evaluation Report. The first section of the indexing form---MANAGEMENT FUNCTIONS---deals with how a ratee performs his managerial functions and is result oriented, while the second section---SKILLS AND ABILITIES---contains index terms that relate to an individual's characteristics and qualities which, if used, may help him achieve good results.

The third section of the indexing form---PRODUCTIVITY AND ACHIEVEMENT--is the most result-oriented section of the indexing hierarchy. Here are included the measures of overall performance. DRIVE and SERVICE MOTIVATION (a specific type of drive) are included in this section since drive is considered to be one of the more important variables leading to success. POTENTIAL also is included here since potential is a measure of future performance. AWARDS AND PUNISHMENT, REPUTE, and ASSET TO THE NAVY represent acknowledgments of an individual's performance, either positive or negative acknowledgment.

Each sentence of narrative text in the pilot study sample and the cross validation and generalization samples was read carefully and, where appropriate, divided into segments corresponding to the assignment of specific index terms. However, it is not enough to simply label a narrative statement with the most appropriate index term since the statement may have been a highly positive, quite positive, neutral, quite negative, or highly negative one. For example, in order to differentiate between the ratee who plans superbly and the ratee who plans inadequately, a weighting scale was devised to be applied to each index term that is used (see Table 7). The weighting scale contains five numerical values ranging from 5 (the positive end of the scale) to 1 (the negative end of the scale). Under each numerical value in Table 7 there are listed samples of adjectives or adverbs that may be used by the rater to describe a ratee's performance. These lists of words provide clues to the indexer as to which numerical value to assign to an index term. As a simple example, if the rater commented that the ratee was highly cooperative, this statement would be indexed as COOPERATION and assigned a weight of 4 since highly is listed as an example under numeral 4 in Table 7.

The weighting scale developed for this content analysis research bears a marked resemblance to the quality rating scale developed by Harrington in rating narrative statements contained in letters of recommendation regarding candidates for secondary level teaching positions.¹¹ Harrington's quality rating scale was based upon the proposition that the favorableness of the modifying

5	4	3	2	1
excellent	good	average	poor	poorest
superlative	comparative		comparative	superlative
best	better than most	average	not as good as most	worst
		EXAMPLES		
above reproach beyond reproach boundless exceptional extra- ordinary extremely finest flawless greatest highest ideal little to be desired limitless maximum most never outstanding paramount perfect profound sterling superb superior surpassed by none top/topnotch unimpeachable unique unlimited unmatched utmost without equal without exception 100%	above average better comendable complete deep definitely easily effective efficient eloquent eminent exceeds excels excels excels excels experienced expertise extensive favorable great high/highly immaculate immensely impeccable impressive innate inspires instills invaluable keen laudable leading marked meticulously model much noteworthy particularly rapidly	adequate aptly capable competent generally moderate satisfac- tory sufficient- ly usually	declining quality deficiency detrimental fair in need of insufficient lack of lower than average lowering of negatively spotty unfortunate unwisely weak in with the ex- ception of	bottom least lowest

TABLE 7 WEIGHTING SCALE

NOTE: AWARDS AND PUNISHMENT is assigned a weight of either 5 or 1.

.

terms used by the writer of a recommendation is an index of his enthusiasm in recommending the candidate and, therefore, of the quality of the recommendation. The rationale for the weighting scale used in this study was similar to Harrington's proposition. A long list of adjectives and adverbs found to occur in a large corpus of Evaluation Reports were classified into five degrees of favorableness/unfavorableness in modifying terms. There is a great deal of overlap between the adjectives and adverbs contained in Harrington's quality rating scale and those contained in the weighting scale used in this research shown in Table 7. There also is a high degree of correspondence in the relative positioning of the adjectives and adverbs along the two scales. The existence of the fairly ancient Harrington monograph was not discovered until after the weighting scale used in this research had been devised and the research being reported had been completed. It is interesting that two research efforts conducted 30 years apart each independently developed a similar conceptual framework for performing a content analysis of narrative recommendations or evaluations. Harrington's procedure was identical to the one followed in the research being reported here. The narrative text of each Evaluation Report was read, segmented into distinct statements, and each statement was then assigned one or more index terms from the set of 29 possible choices shown in Figure 2. Each term selected was also assigned a numerical weight from 1 to 5 depending upon the nature of the adjectives or adverbs used as modifiers in the statement. The following examples will make more explicit the indexing procedure that was followed.

Example 1. "BTC has an excellent working and practical knowledge of the PMS System/but has a tendency to be lax in the administrative phase of the system."

This sentence was segmented into two parts. The first part was indexed as TECHNICAL SKILLS and assigned a weight of 5. The second part was indexed as MANAGEMENT FUNCTIONS and assigned a weight of 2.

Example 2. "Chief XX was relieved of his duties as the ship's Oil King after serving in the capacity for approximately two months./ He was removed from this billet because of his lack of professional knowledge/and technical know-how in the art of refueling."

This portion of narrative text was divided into three segments for indexing purposes. Segment 1 was indexed as AWARDS AND PUNISHMENT and assigned a weight of 1. Segment 2 was indexed as PROFESSIONALISM and assigned a weight of 2. Segment 3 was indexed as TECHNICAL SKILLS and assigned a weight of 2.

Example 3. "He is able to direct the efforts of Line Personnel in an efficient and effective manner;/this is reflected in the ratee by a multiple of exceptional qualities."

This sentence was segmented into two parts. The first part was indexed as LEADERSHIP AND DIRECTING and assigned a weight of 4. The second part was indexed as SKILLS AND ABILITIES and assigned a weight of 5.

Example 4. "His natural abilities/and responsible approach to recruiting/have enabled the ratee to outperform his contemporaries." This sentence was segmented into three parts. The first part was indexed as SKILLS AND ABILITIES and assigned a weight of 3. The second part was indexed as RELIABILITY AND DEPENDABILITY and assigned a weight of 3. The third part was indexed as PRODUCTIVITY AND ACHIEVEMENT and assigned a weight of 4.

Figure 3 shows an example of the complete narrative text written in an evaluation section. The index terms that were selected by the indexer have been recorded above each segment of text and the indexing weights that were assigned appear directly after each term. Factual statements requiring no indexing were enclosed in brackets. The number of words in the narrative text were counted and recorded at the bottom of the text by the indexer.

After all of the narrative text for either an evaluation section or a justification section of an Evaluation Report was indexed, the weights corresponding to each term were written onto the indexing form to the right of the appropriate index term (see Figure 4). Thus there may have been two instances of mention of the ratee's INTELLECTUAL FUNCTIONING, the first mention given a weight of 3 and the second a weight of 4. To the right of INTELLECTUAL FUNC-TIONING on the indexing form for this ratee would be written the following string of weights: 3,4. Then to the far right on the indexing form under the column headed "Freq." would be written "2", indicating that this index term had been used two times in indexing that particular section of narrative text.

At the bottom of the indexing form there is a line labeled FREQUENCY COUNTS. After all of the weights assigned to the index terms selected for a section of narrative text (19R or 19S) had been entered on the indexing form, all of the 5 weights were counted and the sum was entered to the right of 5 on the FREQUENCY COUNTS line. The same procedure was followed for entering the frequency count of 4 weights, 3 weights, 2 weights, and 1 weights. The final step in completing the indexing form was to transfer the total number of words written at the bottom of the narrative text and to count the total number of index terms selected from the set of 29 possibilities.

In order to increase the likelihood of consistent usage of the indexing vocabulary, a definition was written for each of the 29 index terms. Koontz and O'Donnell's Principles of Management⁷ was relied upon heavily in defining the management-oriented terms listed in Figure 2. Also contributing to the formulation of the definitions for the 29 index terms was the way that Navy evaluators actually referred to these concepts in narrative text. These definitions were consulted frequently during the indexing process. Indexing of the pilot study sample and the cross validation and generalization samples was performed by one experienced indexer who also had conceptualized the content of the indexing vocabulary and had prepared the definitions of the 29 terms. As part of the concomitant study to ascertain the reliability of this content analysis methodology, a training manual was developed for use by the four reliability indexers participating in the study. This training manual is included in its entirety in Appendix A and incorporates an alphabetical dictionary of the 29 index terms. The dictionary definition for each term is followed by extensive examples of correct indexing usage of the term and the proper assignment of weights.
As Baxendale has so cogently articulated, "The core problem of content analysis concerns language in both its connotative and denotative aspects-a Pandora's box of semantic and psychological complexities and unknowns."¹² Acknowledging these obstacles to a perfect representation of the content of a particular segment of narrative text, numerous examples of indexing usage have been included in the alphabetical dictionary of index terms, primarily as a means of illustrating the level of objectivity and consistency that can be achieved in this type of content analysis, but also to demonstrate the intractable problems that still reside in any effort to organize and objectify the domain of linguistic discourse.

INT FUN 3 MAN FUN 4 PROD T ACH 5 Ratee is an intelligent and proficient Petty Officer, who performs his duties PLAN 3 ORE 3 OKG 3 4+23 in an outstanding manner. His ability to plan, organize, coordinate and super-AROD + ACH 3 vise have been ably demonstrated by his performance as Recruit Company Command-REL + JEP 3 RELYDER3 er. Ratee is dependable, trustworthy, and exhibits mature judgment in dispos-INT FUN 4 ing of problems which occur within his company. Ratee's military appearance CATAT 3 60 7RID 4 COND 3 and neatness of person and dress denote great pride. He is cheerful, highly CATAT 3 COND 3 DAIY 4 6000 5 motivated, and gets along exceptionally well with others. Ratee's command of to comm 4 the English language, both orally and written is above average. Ratee is high-POT 4 ly recommended for E-8. Ratee has been in Water Survival and Hygiene Division POT 4 only for a short period of time. He has shown a great potential towards being PRIV 3 120 a swimming instructor. Ratee is practicing on his own time to qualify for Senior Life Saver. T = 135

Figure 3. Example of the Narrative Text for An Evaluation Section Showing the Indexing Decisions That Were Made. Factual Statements Requiring No Indexing Are Enclosed in Brackets. T = Total Number of Words in the Narrative Text.

ID No. 1000 Criterion Group Unknown a	t time Section Eva	L. (19 R
Index Term		Freq.
MANAGEMENT FUNCTIONS	4	1
CONTROLLING		
LEADERSHIP AND DIRECTING	3	1
ORGANIZATION	3.3	2
PLANNING	3	1
REPRESENTATION		
STAFFING		
USE OF COMMUNICATION		
SKILLS AND ABILITIES		
COMMUNICATION	4	1
CONDUCT, INTEGRITY, AND PRIDE	4.3	2
COOPERATION	5	1
ENDURANCE		
FLEXIBILITY		
GROOMING AND ATTIRE	3	1
INITIATIVE		
INTELLECTUAL FUNCTIONING	3, 4	2
PROFESSIONALISM		
RELIABILITY AND DEPENDABILITY	3,3	2
RESOURCEFULNESS		
RESPONSIVENESS		
TECHNICAL SKILLS		
PRODUCTIVITY AND ACHIEVEMENT	5.3	2
AWARDS AND PUNISHMENT		
DRIVE	4.3	2
SERVICE MOTIVATION	/	
POTENTIAL	4,4	2
REPUTE		
ASSET TO THE NAVY		
FREQUENCY COUNTS: 5 2, 4 7, 3 11	, 2, 1	
TOTAL NUMBER OF WORDS 135 TOTAL NU	MBER OF INDEX TERMS /.	3

Figure 4. The Indexing Form As It Was Filled Out to Record the Indexing Decisions Made in the Example of Narrative Text Shown in Figure 3

SECTION 4. STATISTICAL ANALYSIS AND RESULTS

A set of 67 quantitative variables was derived from the indexing form used in the content analysis (see Table 8). The first 29 variables reflect the simple frequency with which each index term was used to index a particular section of narrative text. Variable 30 is the sum of these 29 frequencies. Variables 31 through 59 represent the *weighted* frequency of each index term used to index a particular section of narrative text. For example, suppose that the index term CONTROLLING was used twice. The first time that it was used it was assigned a weight of 4; the second time that it was used it was assigned a weight of 3. The weighted frequency then for CONTROLLING would be $4 \times 1 + 3 \times 1 = 7$. The simple frequency for this same example would be 1 + 1 = 2. Variable 60 is similar to Variable 30 in that it is the sum of the 29 weighted frequencies.

Variables 61 through 65 represent the frequency counts over the entire indexing form for all 5 weights, 4 weights, 3 weights, 2 weights, and 1 weights. Variable 66 is the total number of words in the section of narrative text that was indexed. Variable 67 is the total number of index terms of the 29 available that were used to index the section of narrative text.

Profiles or vectors of these 67 values then were prepared for all of the Evaluation Reports contained in each sample. Separate profiles were compiled for the evaluation and justification sections of each Evaluation Report. If certain index terms were not used at all in indexing the evaluation section narrative or the justification section narrative, they were given a value of zero in the profile. This practice raised an important theoretical issue. Is it more damaging not to say anything about a ratee's performance in a particular area than to damn him with qualified praise? A statement such as the following was assigned a weight of 2: "With more time and conscientious effort, he should realize a greater potential." This evaluation of the ratee's potential seems more negative than not to have commented at all about his potential.

As a result of these considerations, the weighting scale that had been used in the indexing of Variables 31 through 59 was transformed in order to place no comment between positive comments and negative comments. Table 9 shows the conversion that was used. A constant of 10 was added to the weighted frequency of Variables 31 through 59 in order to avoid the incidence of any negative input values in the subsequent statistical computations.

All profiles were transformed to the new weighting scale and entered onto IBM coding forms in preparation for keypunching. The criterion data and occupational rating codes were known for the pilot study sample and were included on the coding forms. However, all of the coding forms for the cross validation sample and the generalization sample were sent to the Navy Personnel Research and Development Center in San Diego where the criterion data and occupational rating codes were added to the coding forms and then returned to R-K Research and System Design for keypunching at UCLA. Card decks for each of the three samples were assembled in six parts: (1) Upper Criterion Group -Evaluation Section, (2) Middle Criterion Group - Evaluation Section, (3) Lower Criterion Group - Evaluation Section, (4) Upper Criterion Group - Justification Section, (5) Middle Criterion Group - Justification Section, and (6)

DEFINITION OF THE 67 QUANTITATIVE VARIABLES DERIVED FROM THE INDEXING FORM

Number of Variable Description of Variable 1 Frequency of Mention of MANAGEMENT FUNCTIONS 2 Frequency of Mention of CONTROLLING 3 Frequency of Mention of LEADERSHIP AND DIRECTING 4 Frequency of Mention of ORGANIZATION 5 Frequency of Mention of PLANNING 6 Frequency of Mention of REPRESENTATION 7 Frequency of Mention of STAFFING 8 Frequency of Mention of USE OF COMMUNICATION 9 Frequency of Mention of SKILLS AND ABILITIES 10 Frequency of Mention of COMMUNICATION 11 Frequency of Mention of CONDUCT, INTEGRITY, AND PRIDE 12 Frequency of Mention of COOPERATION 13 Frequency of Mention of ENDURANCE 14 Frequency of Mention of FLEXIBILITY 15 Frequency of Mention of GROOMING AND ATTIRE 16 Frequency of Mention of INITIATIVE 17 Frequency of Mention of INTELLECTUAL FUNCTIONING 18 Frequency of Mention of PROFESSIONALISM 19 Frequency of Mention of RELIABILITY AND DEPENDA-BILITY 20 Frequency of Mention of RESOURCEFULNESS 21 Frequency of Mention of RESPONSIVENESS 22 Frequency of Mention of TECHNICAL SKILLS 23 Frequency of Mention of PRODUCTIVITY AND ACHIEVEMENT 24 Frequency of Mention of AWARDS AND PUNISHMENT 25 Frequency of Mention of DRIVE 26 Frequency of Mention of SERVICE MOTIVATION 27 Frequency of Mention of POTENTIAL 28 Frequency of Mention of REPUTE 29 Frequency of Mention of ASSET TO THE NAVY 30 Sum of Variables 1 through 29 Weighted Frequency of Mention of MANAGEMENT 31 FUNCTIONS 32 Weighted Frequency of Mention of CONTROLLING 33 Weighted Frequency of Mention of LEADERSHIP AND DIRECTING 34 Weighted Frequency of Mention of ORGANIZATION 35 Weighted Frequency of Mention of PLANNING 36 Weighted Frequency of Mention of REPRESENTATION

(Continued)

TABLE 8 (CONT.)

DEFINITION OF THE 67 QUANTITATIVE VARIABLES DERIVED FROM THE INDEXING FORM

Number of Variable	Description of Variable
37	Weighted Frequency of Mention of STAFFING
38	Weighted Frequency of Mention of USE OF
	COMMUNICATION
39	Weighted Frequency of Mention of SKILLS AND
	ABILITIES
40	Weighted Frequency of Mention of COMMUNICATION
41	Weighted Frequency of Mention of CONDUCT, INTE- GRITY, AND PRIDE
42	Weighted Frequency of Mention of COOPERATION
43	Weighted Frequency of Mention of ENDURANCE
44	Weighted Frequency of Mention of FLEXIBILITY
45	Weighted Frequency of Mention of GROOMING AND ATTIRE
46	Weighted Frequency of Mention of INITIATIVE
47	Weighted Frequency of Mention of INTELLECTUAL
	FUNCTIONING
48	Weighted Frequency of Mention of PROFESSIONALISM
49	Weighted Frequency of Mention of RELIABILITY AND DEPENDABILITY
50	Weighted Frequency of Mention of RESOURCEFULNESS
51	Weighted Frequency of Mention of RESPONSIVENESS
52	Weighted Frequency of Mention of TECHNICAL SKILLS
53	Weighted Frequency of Mention of PRODUCTIVITY AND
54	Weighted Frequency of Mention of AWARDS AND
	PUNISHMENT
55	Weighted Frequency of Mention of DRIVE
56	Weighted Frequency of Mention of SERVICE MOTIVA- TION
57	Weighted Frequency of Mention of POTENTIAL
58	Weighted Frequency of Mention of REPUTE
59	Weighted Frequency of Mention of ASSET TO THE NAVY
60	Sum of Variables 31 through 59
61	Total Number of 5 Weights
62	Total Number of 4 Weights
63	Total Number of 3 Weights
64	Total Number of 2 Weights
65	Total Number of 1 Weights
66	Total Number of Words in Narrative Text
67	Total Number of Index Terms Used

TRANSFORMATION OF WEIGHTING SCALE

Original Weights	Transformed Weights
5 (Excellent) 4 (Good) 3 (Average)	3 (Excellent) 2 (Good) 1 (Average) 0 (No Comment)
2 (Poor) 1 (Poorest) 0 (No Comment)	-1 (Poor) -2 (Poorest)

Lower Criterion Group - Justification Section. Duplicate card decks were sent to NPRDC.

In order to better visualize the nature of the distributions of the 67 variables for each of the three research samples, computer runs were made at the UCLA Health Sciences Computing Facility* using Program BMD01D of the library of Biomedical Computer Programs.¹³ Program BMD01D - Simple Data Description computes arithmetic means, standard deviations, standard errors of means, maximum values, minimum values, ranges, and sample sizes for a set of input variables. The output from these computer runs for the cross validation sample and the generalization sample is presented in Appendix B. The output from the computer run for the pilot study sample was included in an earlier technical report,¹⁴ and since it is rather voluminous, it is not repeated in this report.

Some interesting comparisons can be made from the descriptive statistics compiled in Appendix B. Tables 10 and 11 present the data on Variable 66, total number of words contained in the narrative text of the evaluation and justification sections of the Evaluation Report, Table 10 for the cross validation sample and Table 11 for the generalization sample. The results for the evaluation sections of Tables 10 and 11 are different from those found in the pilot study¹⁵ where the nearer that the criterion group was to the top of the distribution of T Scores on 19A-PERFORMANCE OF DUTY, the longer the narrative text written to evaluate the performance of the ratee. In the pilot study sample approximately 89 words were written on the average to evaluate ratees in the Upper criterion group. This average dropped to approximately 76 words in the Middle criterion group and to approximately 67 words in the Lower criterion group. This decreasing trend is not apparent in Tables 10 and 11 for the evaluation section. Instead, in the cross validation sample the trend is just the opposite, with the average length of the narrative text of the evaluation section becoming longer as the criterion group moves farther away from

Computing assistance was obtained from the Health Sciences Computing Facility, UCLA, sponsored by NIH Special Research Resources Grant RR-3.

DESCRIPTIVE STATISTICS ON VARIABLE 66: TOTAL NUMBER OF WORDS IN NARRATIVE TEXT FOR THE CROSS VALIDATION SAMPLE

Evaluation					
Section	Mean	<u>S.D.</u>	Max.	Min.	Range
Upper	78.3376	49.0724	212	0	212
Middle	86.5808	42.8689	214	0	214
Lower	87.1889	46.2204	287	0	287
Justification					
Section	Mean	S.D.	Max.	Min.	Range
Upper	201.4052	146.3721	896	35	861
Middle	146.5944	124.8155	820	17	803
Lower	17.6754	27.2311	112	0	112

TABLE 11

DESCRIPTIVE STATISTICS ON VARIABLE 66: TOTAL NUMBER OF WORDS IN NARRATIVE TEXT FOR THE GENERALIZATION SAMPLE

Evaluation					
Section	Mean	<u>S.D.</u>	Max.	Min.	Range
Upper	98.1754	83.3072	530	0	530
Middle	84.5132	53.0552	293	0	293
Lower	100.2835	54.5660	353	0	353
Justification					
Section	Mean	S.D.	Max.	Min.	Range
Upper	228.2968	155.7997	881	17	864
Middle	133.0268	96.9929	442	0	442
Lower	27.4051	40.0231	172	0	172

the top of the distribution of T Scores on 19A. In the generalization sample the average length of the narrative text of the evaluation section drops from the Upper criterion group to the Middle criterion group but then rises even higher for the Lower criterion group than for the Upper criterion group. These unexpected findings for the cross validation and generalization samples can be explained by the presence of a few atypically long evaluation sections in the Middle and Lower criterion groups that markedly influenced the mean length for these two criterion groups. This explanation is further corroborated by examining the maximum total number of words contained in the narrative text of the evaluation section for the Lower criterion group as shown in Tables 10 and 11. A minimum of zero words resulted from evaluation sections not being written at all for a handful of cases in the various criterion groups.

In the pilot study the trend of longer narrative text for criterion groups near the top of the distribution of T Scores on 19A-PERFORMANCE OF DUTY prevailed also for the justification section, but the effect was even more pronounced than for the evaluation section. This same outcome resulted for the justification section in the cross validation and generalization samples, and can be explained partly by the requirement to write an individual justification in Section 19S for any mark given in the top 10, 5, or 1% columns of Section 19. When a justification section was written, on the average it was longer than the evaluation section in the Upper and Middle criterion groups of all three samples.

Tables 12 and 13 also extract data from Appendix B and present descriptive statistics for all three criterion groups in the cross validation and generalization samples on Variable 67, total number of index terms used of the 29 available to index the evaluation and justification sections of the Evaluation Report. The results shown in Tables 12 and 13 are correlated to those presented in Tables 10 and 11 in that the number of index terms used is a function of length of the narrative text. As the evaluator uses more words to describe the ratee, he is more likely to comment on a wider variety of specific areas of the ratee's performance. This tendency is mirrored in the number of different index terms selected by the indexer to encompass the narrative content. It is interesting that on the average in the evaluation section of either the cross validation or the generalization sample only a half dozen substantive areas of the ratee's performance were described of the 29 possibilities. This was also the finding in the pilot study.¹⁶ Even in the justification section where longer expositions were written, on the average only 11 or 12 of the 29 content areas were mentioned in the Upper criterion group (nine areas in the pilot study Upper criterion group¹⁶). This finding, consistent across all three samples, suggests that the evaluators may be victims of habitual ways of formulating and phrasing the narrative sections of the Evaluation Report. Of the richness of information that could be used to describe the performance of ratees in the Upper criterion group, on the average only a partial representation is utilized. All of the 29 index terms were used at one time or another to index the evaluation sections or the justification sections of the three criterion groups in all three samples. Therefore, one can conclude that although only a partial representation of the 29 substantive areas may be utilized to describe a particular ratee, over a sample as large as any one criterion group (N=74 or 75), all 29 areas of performance do get mentioned at one time or another.

DESCRIPTIVE STATISTICS ON VARIABLE 67: TOTAL NUMBER OF INDEX TERMS USED FOR THE CROSS VALIDATION SAMPLE

Evaluation					
Section	Mean	S.D.	Max.	Min.	Range
Upper	5.6081	3.3508	14	0	14
Middle	7.1621	3.2011	15	0	15
Lower	6.5135	2.9759	16	0	16
Justification					
Section	Mean	<u>S.D.</u>	Max.	Min.	Range
Upper	11.6081	4.8224	27	4	23
Middle	9.1621	4.3132	19	1	18
Lower	1.6081	2.4372	9	0	9

DESCRIPTIVE STATISTICS ON VARIABLE 67: TOTAL NUMBER OF INDEX TERMS USED FOR THE GENERALIZATION SAMPLE

Evaluation Section	Mean	S.D.	Max.	Min.	Range
Upper	6.3378	4.7637	22	0	22
Middle	5.8648	3.3365	14	0	14
Lower	6.3648	2.8020	14	0	14
Justification					
Section	Mean	<u>S.D.</u>	Max.	Min.	Range
Upper	12.4730	4.6852	22	1	21
Middle	8.4730	4.2819	18	0	18
Lower	1.8648	2.5660	10	0	10

From the duplicate deck of punched cards for the cross validation and the generalization samples that was sent to NPRDC, correlation matrices were computed at the computing facility of the Naval Electronics Laboratory Center in San Diego. Correlations among all 67 variables for the evaluation section and for the justification section were computed for each sample as well as the matrix correlating the evaluation section with the justification section on all 67 variables. These results are displayed in Appendix C. The reader is referred to Table 8 for a definition of each of the 67 variables.

The overall picture that emerges from a scrutiny of these six matrices is that there are very few high correlations except for the correlations between Variables 1 through 30 and Variables 31 through 60 which are shown in italic type. These two sets of variables are the same except for the method of weighting that was used. The other variables that showed a consistently high correlation in the evaluation section and also in the justification section for both samples were Variable 30 (Sum of Variables 1 through 29) and Variable 60 (Sum of Variables 31 through 59) with Variable 61 (Total Number of 5 [New 3] Weights), Variable 62 (Total Number of 4 [New 2] Weights), Variable 63 (Total Number of 3 [New 1] Weights), Variable 66 (Total Number of Words in the Narrative Text), and Variable 67 (Total Number of Index Terms Used). Variable 67 (Total Number of Index Terms Used) is a focal variable, correlating highly with Variable 30 (Sum of Variables 1 through 29), Variable 60 (Sum of Variables 31 through 59), Variable 61 (Total Number of 5 [New 3] Weights), Variable 62 (Total Number of 4 [New 2] Weights), Variable 63 (Total Number of 3 [New 1] Weights), and Variable 66 (Total Number of Words in the Narrative Text). Correlations among the variables having to do with the 29 index terms per se were notably low, indicating that these 29 dimensions are relatively orthogonal and represent independent aspects of managerial performance. In the correlation matrix for the evaluation section versus the justification section, no high correlations were evident in either the cross validation sample or the generalization sample, demonstrating that these two narrative sections of Evaluation Report Form NAVPERS 1616/8 are quite independent and should be treated separately. An early decision in this research project was to treat these two narrative sections separately; in retrospect this determination appears to have been a wise decision.

Since the system that was used for weighting Variables 31 through 59 has been highlighted by the correlational analysis as an important aspect of the content analysis methodology, it is of interest to see the distribution of index weights used for each of the three criterion groups in the cross validation and generalization samples. These results are presented in Tables 14 through 17. Tables 14 and 15 show the distribution for the cross validation sample, first for the evaluation section and then for the justification section. Comparable distributions for the generalization sample are shown in Tables 16 and 17. A chi square test of common distribution was calculated for all pairwise criterion group comparisons in Tables 14 through 17 in order to test the hypothesis that the distributions of index weights used for each pair of groups were drawn from the same population. This hypothesis was rejected beyond the .001 level of probability for five of the six comparisons made for the cross validation sample (see Table 18). For the comparison of the Upper versus Middle criterion groups on the justification section, the hypothesis was rejected beyond the .01 level of probability. These results replicate the

DISTRIBUTION OF TOTAL NUMBER OF 5 WEIGHTS THROUGH 1 WEIGHTS USED IN INDEXING THE EVALUATION SECTION (19R) OF THE CROSS VALIDATION SAMPLE FOR ALL THREE CRITERION GROUPS

	Criterion Group			
Weights	Upper	Middle	Lower	
5 (New 3) Excellent	203	157	84	
4 (New 2) Good	270	324	314	
3 (New 1) Average	144	261	234	
2 (New -1) Poor	0	14	71	
l (New -2) Poorest	0	0	1	

TABLE 15

DISTRIBUTION OF TOTAL NUMBER OF 5 WEIGHTS THROUGH 1 WEIGHTS USED IN INDEXING THE JUSTIFICATION SECTION (19S) OF THE CROSS VALIDATION SAMPLE FOR ALL THREE CRITERION GROUPS

	Criterion Group			
Weights	Upper	Middle	Lower	
5 (New 3) Excellent	508	265	48	
4 (New 2) Good	738	486	71	
3 (New 1) Average	528	408	38	
2 (New -1) Poor	0	2	2	
1 (New -2) Poorest	0	0	1	

DISTRIBUTION OF TOTAL NUMBER OF 5 WEIGHTS THROUGH 1 WEIGHTS USED IN INDEXING THE EVALUATION SECTION (19R) OF THE GENERALIZATION SAMPLE FOR ALL THREE CRITERION GROUPS

	Criterion Group			
Weights	Upper	Middle	Lower	
5 (New 3) Excellent	220	137	115	
4 (New 2) Good	327	287	317	
3 (New 1) Average	199	205	211	
2 (New -1) Poor	1	17	54	
l (New -2) Poorest	0	0	1	

TABLE 17

DISTRIBUTION OF TOTAL NUMBER OF 5 WEIGHTS THROUGH 1 WEIGHTS USED IN INDEXING THE JUSTIFICATION SECTION (19S) OF THE GENERALIZATION SAMPLE FOR ALL THREE CRITERION GROUPS

.

4

	Criterion Group			
Weights	Upper	Middle	Lower	
5 (New 3) Excellent	451	231	46	
4 (New 2) Good	783	444	105	
3 (New 1) Average	579	385	51	
2 (New -1) Poor	5	3	3	
1 (New -2) Poorest	0	0	0	

RESULTS OF THE CHI SQUARE TESTS OF COMMON DISTRIBUTION OF INDEX WEIGHTS USED FOR EACH PAIR OF CRITERION GROUPS IN THE CROSS VALIDATION SAMPLE

Criterion Group Comparison	Value of Chi Square	Degrees of Freedom	Probability Level
Evaluation Section			
Upper vs. Middle	44.9757	4	P < .001
Middle vs. Lower	61,1906	4	P < .001
Upper vs. Lower	140.9668	4	P < .001
Justification Section			
Upper vs. Middle	18.4300	4	.001 < P < .01
Middle vs. Lower	21.3217	4	P < .001
Upper vs. Lower	35.4408	4	P < .001

TABLE 19

RESULTS OF THE CHI SQUARE TESTS OF COMMON DISTRIBUTION OF INDEX WEIGHTS USED FOR EACH PAIR OF CRITERION GROUPS IN THE GENERALIZATION SAMPLE

Criterion Group Comparison	Value of Chi Square	Degrees of Freedom	Probability Level		
Evaluation Section					
Upper vs. Middle	29.0438	4	P < .001		
Middle vs. Lower	21.7997	4	P < .001		
Upper vs. Lower	83.9246	4	P < .001		
Justification Section					
Upper vs. Middle	6.7782	4	P > .05		
Middle vs. Lower	15.0797	4	.001 < P < .01		
Upper vs. Lower	12.6617	4	.01 < P < .05		

Note: $\chi^2_{\cdot 001}$ with 4 degrees of freedom = 18.465.

findings in the earlier pilot study.¹⁷ For the generalization sample the hypothesis was rejected beyond the .001 level of probability for all three comparisons made for the evaluation section (see Table 19). However, in the justification section the difference between the distributions of weights for the Upper versus Middle criterion groups was not statistically significant. The other two comparisons (i.e., Middle vs. Lower and Upper vs. Lower) were statistically significant. The conclusion that can be drawn from Tables 14 through 19 is that the higher the criterion group, the more excellent and good attributes that are mentioned by the evaluator. The lower the criterion group, the work are cited by the evaluator.

In the pilot study the Mann-Whitney U test was used to test the null hypothesis that there were no differences between each pair of criterion groups on each of the 67 quantitative variables derived from the indexing form. The nonparametric Mann-Whitney U test was used in preference to the parametric t test of difference between two means because very few of the 67 variables were normally distributed and the t test assumes normality and common variance. However, since the t test is very robust, it was decided subsequently to also compute t tests of mean difference for the pilot study sample using Program BMDP3D in the library of Biomedical Computer Programs¹³ at the UCLA Health Sciences Computing Facility. The results of these computer runs agreed substantially with the results obtained using the Mann-Whitney U test, primarily because the sample size of the various criterion groups in the pilot study sample was equal and large (N=75). The probability level of these two statistical tests differed occasionally and only when the result fell near the boundary of the various bench marks of statistical significance (e.g., the t test might be significant between the .01 and .001 probability levels and the Mann-Whitney U test might be significant between the .05 and .01 probability levels).

As a consequence of the pilot study experience, both the Mann-Whitney U test and the t test of mean difference were computed on each of the 67 variables for the cross validation and generalization samples. These computations were made for each pair of criterion groups in both the evaluation and the justification sections. The Mann-Whitney U tests were performed at the computing facility of the Naval Electronics Laboratory Center in San Diego under the supervision of NPRDC. The t tests were performed at the UCLA Health Sciences Computing Facility. The results of these computer runs are presented in Appendix D. This appendix reports the number and name of the variable, the value of U, its associated absolute z value (approximately a normal deviate), and the corresponding probability level for a 2-tailed test. The convention that was followed in the Mann-Whitney U tests was to enter data into the computer program first for the lower criterion group in the comparison. For those z values that achieved statistical significance, the direction of the difference is that the higher criterion group evidenced a greater frequency or greater weighted frequency of the variable. The Mann-Whitney U test probability level in Appendix D is followed by the value of t and its probability level for a 2tailed test. Thus the reader can compare the results of the two statistical tests for each variable.

Those variables resulting in a statistically significant difference in each pairwise criterion group comparison have been extracted from Appendix D

and summarized in four tables --- Tables 20 through 23. Only those variables showing a significant difference on both statistical tests have been extracted. Table 20 lists the statistically significant variables for the evaluation section of the cross validation sample. The easiest discrimination to be made should be between the Lower and Upper criterion groups since they are the most widely separated on the criterion variable 19A-PERFORMANCE OF DUTY. Table 20 reveals that eight of the 67 variables showed a statistically significant difference between the Lower and Upper criterion groups. Seven of these eight variables also showed a statistically significant difference between the Lower and Upper criterion groups in the pilot study sample, 18 the exception being Total Number of 3 (New 1) Weights (Average). In evaluating the performance of outstanding chief petty officers as compared to average CPO's, the significant differences reside in the superiority of the top criterion group with respect to professionalism, managerial know-how, more awards and fewer punishments, more superlative attributes, and fewer qualified statements reflecting fair or poor performance.

By comparison Table 20 shows that there were eleven statistically significant differences between the Lower and Middle criterion groups of the cross validation sample on the evaluation section. Only one of these eleven variables showed a statistically significant difference between the Lower and Middle criterion groups in the pilot study sample---Total Number of 2 (New -1) Weights (Poor).¹⁸ In the cross validation sample the areas of performance that differentiated average CPO's from those who are marked as somewhat superior in performance of duty were professionalism, cooperation, responsiveness, resourcefulness, and productivity and achievement. Ratees in the middle criterion group were described with more superlatives and with fewer qualified statements of fair or poor performance.

The most difficult discrimination to be made is that between the Middle and Upper criterion groups. Table 20 shows that despite this difficulty, eight statistically significant differences resulted from the comparison on the evaluation section. Only two of these eight variables showed a statistically significant difference between the Middle and Upper criterion groups in the pilot study sample----f of COOPERATION and wf of COOPERATION.¹⁸ In the cross validation sample the characteristics that differentiated outstanding CPO's from their slightly less qualified colleagues were cooperation, grooming and attire, resourcefulness, and productivity and achievement. A wider range of index terms was used to index the Evaluation Reports of outstanding CPO's which also resulted in more 3 (New 1) weights being assigned to this criterion group.

Moving now to a consideration of the justification section for the cross validation sample (Table 21), all but five of the 67 variables showed a statistically significant difference between the Lower and Upper criterion groups and all but eight of the 67 variables showed a statistically significant difference between the Lower and Middle criterion groups. This plethora of significant results is an artifact occasioned by the requirement to write an individual justification for any mark in the top 10, 5, or 1% columns of Section 19. Despite this built-in bias, five of the 67 variables were not statistically significant for the Lower versus Upper criterion group comparison: f of FLEXIBILITY, wf of FLEXIBILITY, wf of ORGANIZATION, Total Number of 2 (New -1)

0
2
ы
П
29
\triangleleft
H

STATISTICALLY SIGNIFICANT VARIABLES RESULTING FROM PAIRWISE CRITERION GROUP COMPARISONS ON THE EVALUATION SECTION (19R) FOR THE CROSS VALIDATION SAMPLE

Middle vs. Upper	<pre>f of COOPERATION*** wf of COOPERATION** f of CROOMING AND ATTIRE* f of RESOURCEFULNESS* wf of RESOURCEFULNES* wf of RESOURCEFULNES</pre>
Lower vs. Middle	<pre>f of COOPERATION* wf of COOPERATION* f of PROFESSIONALISM* wf of PROFESSIONALISM* f of RESPONSIVENESS* wf of RESPONSIVENESS* f of PRODUCTIVITY AND ACHIEVE MENT* wf of RESOURCEFULNESS* Sum of Variables 31 through 5 Votal Number of 5 (New 3) Weights** Total Number of 2 (New -1) Weights**</pre>
Lower vs. Upper	<pre>c of PROFESSIONALISM** f of PROFESSIONALISM** f of AWARDS AND PUNISHMENT** f of AWARDS AND PUNISHMENT** f of MANAGEMENT FUNCTIONS* f of MANAGEMENT FUNCTIONS* cotal Number of 5 (New 1) Weights** otal Number of 2 (New -1) Weights**</pre>

* .01 < P < .05 ** .001 < P < .01 *** P < .001

	TABLE 21	
STATISTICALLY SIGNIFICA ON THE JUSI	ANT VARIABLES RESULTING FROM PAIRWIS) FIFICATION SECTION (19S) FOR THE CRO	E CRITERION GROUP COMPARISONS SS VALIDATION SAMPLE
Lower vs. Upper	Lower vs. Middle	Middle vs. Upper
<pre>f of MANAGEMENT FUNCTIONS*** wf of MANAGEMENT FUNCTIONS*** f of CONTROLLING*** wf of CONTROLLING***</pre>	f of MANAGEMENT FUNCTIONS*** wf of MANAGEMENT FUNCTIONS*** f of CONTROLLING*** wf of CONTROLLING***	f of SKILLS AND ABILITIES** wf of SKILLS AND ABILITIES** wf of COMMUNICATION* f of ENDURANCE*
f of LEADERSHIP AND DIRECT- ING***	f of LEADERSHIP AND DIRECT- ING***	f of PROFESSIONALISM* wf of PROFESSIONALISM*
wf of LEADERSHIP AND DIRECT- ING***	wf of LEADERSHIP AND DIRECT- ING***	f of RESPONSIVENESS* f of TECHNICAL SKILLS**
f of ORGANIZATION* f of PLANNING***	f of ORGANIZATION** wf of ORGANIZATION*	wf of TECHNICAL SKILLS*** f of PRODUCTIVITY AND ACHIEVE-
wf of PLANNING***	f of PLANNING***	
I OI SIAFFING** wf of STAFFING**	wf of Planning*** f of STAFFING*	wf of PRODUCTIVITY AND ACHIEVE- MENT***
f of USE OF COMMUNICATION* wf of USE OF COMMUNICATION*	wf of STAFFING* f of SKILLS AND ABILITIES***	f of POTENTIAL* wf of POTENTIAL**
f of SKILLS AND ABILITIES*** wf of skTLLS AND ABILITIES***	wf of SKILLS AND ABILITIES***	f of ASSET TO THE NAVY*
f of COMMUNICATION***	wf of COMMUNICATION*** f of CONDUCT, INTEGRITY.	Sum of Variables 1 through 29** Sum of Variables 31 through 59***
f of CONDUCT, INTEGRITY,	AND PRIDE***	Total Number of 5 (New 3)
AND PKIDE*** wf of CONDUCT, INTEGRITY,	Wf of CONDUCT, INTEGRITY, AND PRIDE***	Weights* Total Number of 4 (New 2)
AND PRIDE*** f of COOPERATION***	f of COOPERATION***	Weights** Total Number of Words in
wf of COOPERATION*** f of ENDURANCE*** wf of ENDURANCE**	f of GROOMING AND ATTIRE*** wf of GROOMING AND ATTIRE**	Text** Text** Total Number of Index Terms Used**
* .01 < P < .05 ** .001 < P < .01 *** P < .001		(Continued

TABLE 21 (CONT.)

STATISTICALLY SIGNIFICANT VARIABLES RESULTING FROM PAIRWISE CRITERION GROUP COMPARISONS ON THE JUSTIFICATION SECTION (19S) FOR THE CROSS VALIDATION SAMPLE

Lower vs. Upper

wf of GROOMING AND ATTIRE*** wf of INTELLECTUAL FUNCTIONf of GROOMING AND ATTIRE*** f of INTELLECTUAL FUNCTIONf of PROFESSIONALISM*** wf of INITIATIVE*** f of INITIATIVE*** ING** *DNI

of RELIABILITY AND DEPENDA-

ME

f of RELIABILITY AND DEPENDA-

BILITY***

wf of PROFESSIONALISM***

f of PROFESSIONALISM***

wf of INITIATIVE**

of INITIATIVE***

44

wf of RELIABILITY AND DEPENDAf of RELIABILITY AND DEPENDA-BILITY***

wf of PROFESSIONALISM***

BILITY***

f of RESOURCEFULNESS***

wf of RESOURCEFULNESS***

f of RESPONSIVENESS***

wf of PRODUCTIVITY AND ACHIEVE-

wf of AWARDS AND PUNISHMENT*

MENT***

f of PRODUCTIVITY AND ACHIEVE-

MENT***

wf of TECHNICAL SKILLS***

f of TECHNICAL SKILLS***

wf of RESPONSIVENESS**

wf of RESOURCEFULNESS**

f of RESPONSIVENESS**

f of RESOURCEFULNESS**

BILITY***

wf of RESPONSIVENESS***

f of TECHNICAL SKILLS***

f of PRODUCTIVITY AND ACHIEVEwf of TECHNICAL SKILLS***

wf of PRODUCTIVITY AND ACHIEVE-MENT ***

wf of SERVICE MOTIVATION*

wf of POTENTIAL***

f of POTENTIAL***

f of SERVICE MOTIVATION*

wf of DRIVE*** f of DRIVE***

> f of AWARDS AND PUNISHMENT* MENT ***

wf of AWARDS AND PUNISHMENT**

.01 < P < .05 P < .01 v .001 -K

P **

< .001 ***

(Continued)

Lower vs. Middle

Middle vs. Upper

TABLE 21 (CONT.)

STATISTICALLY SIGNIFICANT VARIABLES RESULTING FROM PAIRWISE CRITERION GROUP COMPARISONS ON THE JUSTIFICATION SECTION (19S) FOR THE CROSS VALIDATION SAMPLE

Sum of Variables 31 through 59*** Sum of Variables 1 through 29*** Total Number of Index Terms Total Number of 4 (New 2) Total Number of 5 (New 3) Total Number of 3 (New 1) wf of ASSET TO THE NAVY* Total Number of Words in Lower vs. Middle f of ASSET TO THE NAVY* f of REPUTE*** wf of REPUTE** Weights*** Weights*** Weights*** Text*** Used*** Sum of Variables 31 through 59*** Sum of Variables 1 through 29*** wf of SERVICE MOTIVATION*** Total Number of Index Terms wf of ASSET TO THE NAVY*** f of SERVICE MOTIVATION*** f of ASSET TO THE NAVY*** Total Number of 5 (New 3) Total Number of 4 (New 2) 3 (New 1) Total Number of Words in Lower vs. Upper wf of POTENTIAL *** f of POTENTIAL*** Total Number of wf of REPUTE*** f of REPUTE*** wf of DRIVE*** Weights*** Weights*** Weights*** f of DRIVE*** Text*** Used***

* .01 < P < .05 ** .001 < P < .01 *** P < .001

Middle vs. Upper

Weights (Poor), and Total Number of 1 (New -2) Weights (Poorest). No 2 or 1 weights were used in indexing the Upper criterion group and only two 2 weights and one 1 weight were used in indexing the Lower criterion group (see Table 15). Eight of the 67 variables were not statistically significant for the Lower versus Middle criterion group comparison: f of ENDURANCE, wf of ENDURANCE, f of FLEXIBILITY, wf of FLEXIBILITY, f of AWARDS AND PUNISHMENT, wf of INTEL-LECTUAL FUNCTIONING, Total Number of 2 (New -1) Weights (Poor), and Total Number of 1 (New -2) Weights (Poorest). Only two 2 weights and no 1 weights were used in indexing the Middle criterion group compared to two 2 weights and one 1 weight for the Lower criterion group (see Table 15).

The only really cogent comparison for the justification section is between the Upper and the Middle criterion groups because both of these groups required justification comments. Table 21 shows that 21 of the 67 variables evidenced a statistically significant difference between these two criterion groups, eight of which also showed a statistically significant difference between the Upper and Middle criterion groups in the pilot study sample --- wf of SKILLS AND ABILITIES, f of PRODUCTIVITY AND ACHIEVEMENT, wf of PRODUCTIVITY AND ACHIEVEMENT, Sum of Variables 1 through 29, Sum of Variables 31 through 59, Total Number of 5 (New 3) Weights, Total Number of Words in Text, and Total Number of Index Terms Used.¹⁹ When the evaluator is required to justify his marks in evaluating a ratee, he apparently calls out certain areas of performance that distinguish the ratee in the Upper criterion group from his slightly less qualified colleague in the Middle criterion group. In the cross validation sample skills and abilities as well as productivity and achievement were the differentiating areas of performance. The ratee in the Upper criterion group also had bestowed upon him more superlative adjectives and adverbs. All three criterion group comparisons on the justification section of the Evaluation Report showed significant differences on both Total Number of Words in Text and Total Number of Index Terms Used.

Table 22 lists the statistically significant variables for the evaluation section of the generalization sample. Again, the easiest discrimination to be made should be between the Lower and Upper criterion groups since they are the most widely separated on the criterion variable 19A-PERFORMANCE OF DUTY. Only four of the 67 variables showed a statistically significant difference between the Lower and Upper criterion groups---f of AWARDS AND PUNISHMENT, wf of AWARDS AND PUNISHMENT, Total Number of 5 (New 3) Weights (Excellent), and Total Number of 2 (New -1) Weights (Poor). All four of these variables also showed a statistically significant difference between the Lower and Upper criterion groups on the evaluation section of the cross validation sample.

By comparison Table 22 shows that there were six statistically significant differences between the Lower and Middle criterion groups of the generalization sample on the evaluation section. Only one of these six variables also showed a statistically significant difference between the Lower and Middle criterion groups on the evaluation section of the cross validation sample---Total Number of 2 (New -1) Weights (Poor). Four statistically significant differences resulted from the comparison between the Middle and Upper criterion groups on the evaluation section of the generalization sample---f of POTENTIAL, wf of PO-TENTIAL, Total Number of 5 (New 3) Weights (Excellent), and Total Number of 2 (New -1) Weights (Poor). None of these four variables overlapped with those

STATISTICALLY SIGNIFICANT VARIABLES RESULTING FROM PAIRWISE CRITERION GROUP COMPARISONS ON THE EVALUATION SECTION (19R) FOR THE GENERALIZATION SAMPLE

Lower vs. Upper

wf of AWARDS AND PUNISHMENT ** f of AWARDS AND PUNISHMENT* Total Number of 2 (New -1) Total Number of 5 (New 3) Weights*** Weights**

f of MANAGEMENT FUNCTIONS* Lower vs. Middle

wf of MANAGEMENT FUNCTIONS**

f of COMMUNICATION**

Total Number of 2 (New -1)

Weights*

wf of POTENTIAL** f of POTENTIAL*

Middle vs. Upper

Total Number of 2 (New -1) Total Number of 5 (New 3) wf of POTENTIAL* f of POTENTIAL* Weights* Weights*

> .01 < P < .05 .001 < P < .01 ** *

P < .001 ***

that were statistically significant for the Middle versus Upper criterion group comparison on the evaluation section of the cross validation sample. These results may indicate that the findings in the cross validation sample may not map particularly well onto the findings in the generalization sample, probably because of the differences in the occupational ratings represented in these two samples. This issue will be dealt with more thoroughly later in this section when the results of the stepwise discriminant analyses are discussed.

Moving now to a consideration of the justification section for the generalization sample (Table 23), all but nine of the 67 variables showed a statistically significant difference between the Lower and Upper criterion groups. Four of these nine variables also showed a lack of statistical significance between the Lower and Upper criterion groups on the justification section of the cross validation sample---f of FLEXIBILITY, wf of FLEXIBILITY, Total Number of 2 (New -1) Weights (Poor), and Total Number of 1 (New -2) Weights (Poorest). All but 15 of the 67 variables showed a statistically significant difference between the Lower and Middle criterion groups on the justification section of the generalization sample (Table 23). Five of these 15 variables also showed a lack of statistical significance between the Lower and Middle criterion groups on the justification section of the cross validation sample---f of FLEXIBILITY, wf of FLEXIBILITY, f of AWARDS AND PUNISHMENT, Total Number of 2 (New -1) Weights (Poor), and Total Number of 1 (New -2) Weights (Poorest).

As pointed out earlier, the only really cogent comparison for the justification section is between the Upper and the Middle criterion groups because both of these groups required justification comments. Table 23 shows that 38 of the 67 variables evidenced a statistically significant difference between these two criterion groups in the generalization sample, 17 of which also showed a statistically significant difference between the Upper and Middle criterion groups in the cross validation sample. This finding suggests that there is partial overlap between these two samples. The nonoverlapping areas may be attributed to a difference in the nature of the occupational ratings represented in the cross validation and the generalization samples and/or to unreliability in the indexing procedure, although the results of the reliability study presented in Section 5 suggest that differences among the four occupational ratings provide a more reasonable explanation for these results than unreliability. Both of these issues will be discussed more fully later in this report.

In every pairwise criterion group comparison shown in Tables 20 through 23, one or more of the five variables involving Total Number of 5 (New 3), 4 (New 2), 3 (New 1), 2 (New -1), or 1 (New -2) Weights proved to be significantly differentiating. This finding supports the results of the correlational analysis presented in Appendix C in which the system used for weighting Variables 31 through 59 was highlighted as an important aspect of the content analysis methodology.

Thus far in this report the 67 quantitative variables derived from the indexing form have been considered individually as potential discriminators among the three criterion groups in the evaluation and justification sections of the various samples. However, it is of considerable interest to learn how well this set of variables, used in optimal combination, can classify each of

STATISTICALLY SIGNIFICANT VARIABLES RESULTING FROM PAIRWISE CRITERION GROUP COMPARISONS ON THE JUSTIFICATION SECTION (19S) FOR THE GENERALIZATION SAMPLE

Lower vs. Upper

wf of MANAGEMENT FUNCTIONS*** wf of SKILLS AND ABILITIES*** of MANAGEMENT FUNCTIONS*** f of SKILLS AND ABILITIES*** wf of LEADERSHIP AND DIRECTf of LEADERSHIP AND DIRECTwf of CONDUCT, INTEGRITY, f of CONDUCT, INTEGRITY, wf of COMMUNICATION*** f of COMMUNICATION*** wf of REPRESENTATION* wf of CONTROLLING*** f of REPRESENTATION* wf of COOPERATION*** f of CONTROLLING*** wf of ORGANIZATION* f of COOPERATION*** f of ORGANIZATION* wf of PLANNING*** wf of ENDURANCE** f of PLANNING*** AND PRIDE*** f of ENDURANCE** AND PRIDE*** XXXSNI XXXX *** SNT 44

Middle vs. Upper

f of CONTROLLING*

wf of CONTROLLING*

wf of MANAGEMENT FUNCTIONS***

of MANAGEMENT FUNCTIONS***

4

Lower vs. Middle

f of LEADERSHIP AND DIRECT-ING***

wf of LEADERSHIP AND DIRECT-ING**

f of SKILLS AND ABILITIES**

wf of LEADERSHIP AND DIRECT-

f of LEADERSHIP AND DIRECT-

TNG***

wf of CONTROLLING**

f of CONTROLLING**

wf of SKILLS AND ABILITIES**

f of COMMUNICATION***

wf of COMMUNICATION***

f of CONDUCT, INTEGRITY, AND PRIDE*

wf of SKILLS AND ABILITIES***

f of CONDUCT, INTEGRITY,

AND PRIDE***

f of SKILLS AND ABILITIES***

wf of PLANNING***

f of PLANNING***

***9NI

wf of CONDUCT, INTEGRITY,

AND PRIDE**

f of COOPERATION***

wf of CONDUCT, INTEGRITY,

AND PRIDE*** f of ENDURANCE*

wf of COOPERATION**

f of INITIATIVE**

wf of INITIATIVE**

f of PROFESSIONALISM**

wf of GROOMING AND ATTIRE**

f of GROOMING AND ATTIRE**

wf of ENDURANCE*

f of INTELLECTUAL FUNCTION-

wf of INITIATIVE***

f of INITIATIVE***

f of PROFESSIONALISM*** wf of PROFESSIONALISM**

> < P < .05 < P < .01

÷ ** ***

.001 .01

< .001

A

*UN1

wf of PROFESSIONALISM**

f of RELIABILITY AND DEPENDA-BILITY*

of RELIABILITY AND DEPENDA-BILITY** WF

f of RESOURCEFULNESS*

wf of RESOURCEFULNESS**

(Continued)

FABLE 23 (CONT.)

STATISTICALLY SIGNIFICANT VARIABLES RESULTING FROM PAIRWISE CRITERION GROUP COMPARISONS ON THE JUSTIFICATION SECTION (19S) FOR THE GENERALIZATION SAMPLE

Lower vs. Upper

wf of PRODUCTIVITY AND ACHIEVEof PRODUCTIVITY AND ACHIEVEof RELIABILITY AND DEPENDAf of RELIABILITY AND DEPENDAwf of GROOMING AND ATTIRE*** of INTELLECTUAL FUNCTIONof GROOMING AND ATTIRE*** of INTELLECTUAL FUNCTIONwf of TECHNICAL SKILLS*** wf of PROFESSIONALISM*** f of TECHNICAL SKILLS*** wf of RESOURCEFULNESS*** of RESOURCEFULNESS*** of PROFESSIONALISM*** wf of RESPONSIVENESS** f of RESPONSIVENESS** wf of INITIATIVE*** of INITIATIVE*** BILITY*** BILITY*** MENT*** ING*** X*SNI WF ME 44 44 4 44 4

Lower vs. Middle

of RELIABILITY AND DEPENDA-BILITY*** 44

44

- of RELIABILITY AND DEPENDA-BILITY*** Mf
 - f of RESOURCEFULNESS***
 - wf of RESOURCEFULNESS**
 - f of RESPONSIVENESS**
- wf of RESPONSIVENESS**
- f of TECHNICAL SKILLS***
- wf of TECHNICAL SKILLS***
- f of PRODUCTIVITY AND ACHIEVE-
 - MENT***
- of PRODUCTIVITY AND ACHIEVE-MENT *** Wf
- f of DRIVE***
- wf of DRIVE***
- wf of SERVICE MOTIVATION* f of SERVICE MOTIVATION*
 - f of POTENTIAL**

 - wf of POTENTIAL**
 - f of REPUTE**
- wf of REPUTE**
- f of ASSET TO THE NAVY***
- wf of ASSET TO THE NAVY***

MENT ***

Middle vs. Upper

Sum of Variables 31 through 59*** Sum of Variables 1 through 29*** wf of PRODUCTIVITY AND ACHIEVE-Total Number of Index Terms wf of TECHNICAL SKILLS*** wf of SERVICE MOTIVATION* 2) Total Number of 5 (New 3) Total Number of 3 (New 1) wf of ASSET TO THE NAVY* Total Number of Words in of TECHNICAL SKILLS*** f of SERVICE MOTIVATION* f of ASSET TO THE NAVY* Total Number of 4 (New wf of POTENTIAL*** f of POTENTIAL** wf of DRIVE*** Weights*** f of DRIVE*** Weights*** Weights* Text*** Used*** MENT*

TABLE 23 (CONT.)

STATISTICALLY SIGNIFICANT VARIABLES RESULTING FROM PAIRWISE CRITERION GROUP COMPARISONS ON THE JUSTIFICATION SECTION (19S) FOR THE GENERALIZATION SAMPLE

Sum of VAriables 31 through 59*** Sum of Variables 1 through 29*** Total Number of Index Terms Total Number of 5 (New 3) Total Number of 4 (New 2) Total Number of 3 (New 1) Total Number of Words in Weights*** Weights*** Weights*** Text*** Used*** Sum of Variables 31 through 59*** Sum of Variables 1 through 29*** wf of SERVICE MOTIVATION*** Total Number of Index Terms wf of ASSET TO THE NAVY*** f of SERVICE MOTIVATION*** f of ASSET TO THE NAVY*** Total Number of 4 (New 2) Total Number of 5 (New 3) Total Number of 3 (New 1) Total Number of Words in Lower vs. Upper wf of POTENTIAL*** f of POTENTIAL*** wf of REPUTE*** wf of DRIVE*** f of REPUTE*** Weights*** Weights*** Weights*** f of DRIVE*** Text*** Used***

* .01 < P < .05 ** .001 < P < .01 *** P < .001

Lower vs. Middle

Middle vs. Upper

the research samples into correct criterion group. Therefore, the three samples were also analyzed by Program BMD07M in the library of Biomedical Computer Programs¹³ at the UCLA Health Sciences Computing Facility. This program performs a multiple discriminant analysis in a stepwise manner. At each step one variable is entered into the set of discriminating variables or a variable is deleted if its F value becomes too low. At the option of the user, a classification matrix is computed and printed after those steps specified by the user. This option permits the user to determine if the classification process tends to converge to perfect classification or to maximize at some midway step and then disintegrate as more variables are added to the discriminant function.

A special feature of Program BMD07M allows new cases to be classified by the discriminant functions generated on the original sample. This feature was used to perform two cross validation studies of the AT's and BT's combined and also of the AT's and BT's considered separately. In the first study, the cross validation sample and the pilot study sample were both classified using the cross validation sample discriminant functions. In the second study, the pilot study sample and the cross validation sample were both classified using the pilot study sample discriminant functions. Figure 5 portrays the accuracy of classifying the cross validation sample and the pilot study sample into correct criterion group using the cross validation sample discriminant functions for the evaluation section (19R). For the first three steps of the discriminant analysis the curves for the two samples are very close. Then, as the discriminant analysis progresses step by step, the two curves begin to separate with the accuracy of classifying the pilot study sample being considerably less than the accuracy of classifying the cross validation sample. It was expected, of course, that classification of the pilot study sample using the cross validation sample discriminant functions would be less accurate than classification of the cross validation sample itself. Nonetheless, the pilot study sample curve tracks the behavior of the cross validation sample curve quite faithfully and even drops off precipitously at Step 64 as classification of the cross validation sample disintegrates. Figure 6 portrays the accuracy of classifying the cross validation sample and the pilot study sample into correct criterion group using the cross validation sample discriminant functions for the justification section (19S). As in Figure 5 the curves for the two samples remain very close for the first five steps after which they begin to diverge. Again, less accuracy was achieved in classifying the pilot study sample using the cross validation sample discriminant functions than in classifying the cross validation sample itself. However, it should be noted that for both samples better classification accuracy was achieved on the justification section than on the evaluation section. This is more clearly shown in Table 24.

Table 24 displays the best classification that was achieved on the evaluation section and the justification section of the cross validation sample and the pilot study sample using the cross validation sample discriminant functions. The underlined diagonal elements of the four classification matrices portrayed in Table 24 represent agreement between the statistical classification into criterion group and actual criterion group membership; the offdiagonal elements represent disagreement. The total number of statistical classifications matching actual classification is obtained by summing the diagonal elements of each matrix, shown in Table 24 as the underlined diagonal sum. The step in the discriminant analysis at which this best classification

BEST CLASSIFICATION INTO THE THREE CRITERION GROUPS USING THE CROSS VALIDATION SAMPLE DISCRIMINANT FUNCTIONS

EVALUATION SECTION - 19R

CROSS VALIDATION SAMPLE (N=222)

		Classification by Discriminant Analysis						Classification by Discriminant Analysis		
tual Criterion Sup Membership	ep 64	UPPER	MIDDLE	LOWER	ū	. Criterion Membership s	ep 3	UPPER	MIDDLE	LOWER
	UPPER	<u>63</u>	5	6	teric		UPPER	54	19	2
	MIDDLE	10	52	12	Crit		MIDDLE	35	23	16
	LOWER	9	11	54	tual	dno	LOWER	23	16	36
AcGr		Diag	gonal Sum	= 169	Ac	Gr		Diag	gonal Sum	= 113

JUSTIFICATION SECTION - 195

CROSS VALIDATION SAMPLE (N=222) PILOT STUDY SAMPLE (N=224)

PILOT STUDY SAMPLE (N=224)

		Classification by Discriminant Analysis				Classification by Discriminant Analysis		
cual Criterion oup Membership on	tep 40	UPPER	MIDDLE	LOWER	Step 4	UPPER	MIDDLE	LOWER
	UPPER	58	15	1	tersting the state of the state	43	21	11
	MIDDLE	8	61	5	HIDDLE	15	45	14
	LOWER	0	4	70	LOWER	0	5	70
Act		Diag	gonal Sum	= <u>189</u>	Ac Gr	Diag	gonal Sum	= 158

was achieved is also shown in Table 24 and corresponds to the maximum point on the curves shown in Figures 5 and 6. Of the 222 cases in the cross validation sample, 189 (85%) were classified correctly at Step 40 in the discriminant analysis of the justification section of the cross validation sample. Of the 224 cases in the pilot study sample, 158 (71%) were classified correctly on the justification section with the cross validation sample discriminant functions, this maximum classification accuracy occurring at the fourth step. It should be pointed out that this presentation of the discriminant analysis results assumes that the criterion of actual group membership is perfect where in fact the possibility does exist that some of the members of the sample were given inflated marks on 19A-PERFORMANCE OF DUTY, and consequently, were assigned to an incorrect criterion group. Also, it is possible that narrative comments and evaluation marks may tap different aspects of performance.

Figures 7 and 8 portray the accuracy of classifying the pilot study sample and the cross validation sample into correct criterion group using the pilot study sample discriminant functions. Figure 7 shows these results for the evaluation section (19R) and Figure 8 shows them for the justification section (19S). As in the reverse cross validation shown in Figures 5 and 6, the two curves remain close together for the first five steps or so and then they diverge with the pilot study sample being classified more accurately on its own discriminant functions than the cross validation sample. Once again better classification accuracy was achieved for both samples on the justification section. This is shown more clearly in Table 25. Of the 224 cases in the pilot study sample, 200 (89%) were classified correctly at Step 42 in the discriminant analysis of the justification section of the pilot study sample. Of the 222 cases in the cross validation sample, 149 (67%) were classified correctly on the justification section with the pilot study sample discriminant functions, this maximum classification accuracy occurring at the third step.

It was hypothesized that better classification would be achieved in using Program BMD07M if the two occupational ratings represented in each of the three research samples were analyzed separately. The skills needed to achieve superior performance may be quite different for Aviation Electronics Technicians than for Boilermen. Therefore, two cross validation studies also were conducted for the AT's and for the BT's. Figures 9 and 10 portray the accuracy of classifying the cross validation AT's and the pilot study AT's into correct criterion group using the cross validation AT's discriminant functions. Figure 9 shows these results for the evaluation section (19R) and Figure 10 shows them for the justification section (19S). In both of these figures the two curves remain close together in the earlier steps and then diverge with the cross validation AT's being classified more accurately on their own discriminant functions than the pilot study AT's. As in the total cross validation and pilot study samples, better classification accuracy was achieved for both samples on the justification section. Table 26 shows this more clearly. Of the 138 cross validation AT's, 129 (93%) were classified correctly at Step 46 in the discriminant analysis of the justification section for the cross validation AT's. Of the 144 pilot study AT's, 96 (67%) were classified correctly on the justification section with the cross validation AT's discriminant functions, this maximum classification accuracy occurring on the first step.

BEST CLASSIFICATION INTO THE THREE CRITERION GROUPS USING THE PILOT STUDY SAMPLE DISCRIMINANT FUNCTIONS

EVALUATION SECTION - 19R

PILOT STUDY SAMPLE (N=224) CROSS VALIDATION SAMPLE (N=222)

		Class	sification minant Ana	n by alysis		Clas Discri	sification minant Ana	n by alysis
St	ep 42				Step 4			
d 0		UPPER	MIDDLE	LOWER	F 0	UPPER	MIDDLE	LOWER
terior ership	UPPER	PPER <u>49</u> 17 9 Lisi	rship nbbe	R <u>34</u>	25	15		
Crit fembe	MIDDLE	15	44	15	IDDIM en t	LE 24	26	24
ual bup h	LOWER	7	11	57	LOWER	8	14	52
Act		Diag	gonal Sum	= 150	Act	Dia	gonal Sum	= 112

JUSTIFICATION SECTION - 195

PILOT STUDY SAMPLE (N=224) CROSS VALIDATION SAMPLE (N=222)

		Class Discrim	sification Minant Ana	n by alysis			Classification by Discriminant Analysis		
ership s	ep 42	UPPER	MIDDLE	LOWER	St	ep 3	UPPER	MIDDLE	LOWER
	UPPER	62	11	2	cerio	UPPER	36	36	2
Crit	MIDDLE	5	64	5	Crit Membe	MIDDLE	14	50	10
cual bup h	LOWER	0	1	74	tual oup 1	LOWER	0	11	63
Gro		Diag	gonal Sum	= 200	Act		Diag	gonal Sum	= 149

BEST CLASSIFICATION INTO THE THREE CRITERION GROUPS USING THE CROSS VALIDATION AT'S DISCRIMINANT FUNCTIONS

EVALUATION SECTION - 19R

CROSS VALIDATION AT'S (N=138) PILOT STUDY AT'S (N=144)

	10	Classification by Discriminant Analysis				0	Classification by Discriminant Analysis		
E A	ep 48	UPPER	MIDDLE	LOWER	u di	ep Z	UPPER	MIDDLE	LOWER
erio ershi	UPPER	38	3	4	teri(ersh:	UPPER	26	10	13
Crit	MIDDLE	7	34	3	Cri Memb	MIDDLE	17	1	21
tual oup h	LOWER	7	4	38	tual oup	LOWER	10	8	38
Act		Diag	Diagonal Sum = <u>110</u>				Dia	agonal Sur	n = 65

JUSTIFICATION SECTION - 195

CROSS VALIDATION AT'S (N=138) PILOT STUDY AT'S (N=144)

		Class Discrim	ification	n by alysis		Classification by Discriminant Analysis		
St	ep 46	UPPER	MIDDLE	LOWER	Step 1 등 위	UPPER	MIDDLE	LOWER
ceri(UPPER	41	3	1	trer under the state of the sta	21	16	12
Crit	MIDDLE	3	40	1	MIDDLE	11	20	8
up N	LOWER	0	1	48	Lower	0	1	55
Act Gro	Diagonal Sum = 129				Ac Gr	Dia	igonal Sum	<u>1 = 96</u>

The results of the reverse cross validation for the pilot study AT's and the cross validation AT's are shown in Figures 11 and 12. Figure 11 portrays the accuracy of classifying the pilot study AT's and the cross validation AT's into correct criterion group on the evaluation section using the pilot study AT's discriminant functions. Figure 12 depicts parallel results for the justification section. It now seems abundantly clear that the two curves remain close together over the first five steps or so and then diverge. The curve for the sample classified by its own discriminant functions continues to rise to some maximum point of classification accuracy, usually between Steps 40 and 50. The best classification accuracy for the sample being classified by the other sample's discriminant functions is achieved very early, typically before Step 5 after which the classification accuracy begins to deteriorate and the two curves diverge. Comparing Figure 11 with Figure 12 it can be seen again that better classification accuracy was achieved for both samples on the justification section. Table 27 presents the classification matrices illustrating this outcome more clearly. Of the 144 pilot study AT's, 137 (95%) were classified correctly at Step 58 in the discriminant analysis of the justification section for the pilot study AT's. Of the 138 cross validation AT's, 91 (66%) were classified correctly on the justification section with the pilot study AT's discriminant functions, this maximum classification accuracy occurring on the third step.

Two cross validation studies also were conducted for the cross validation BT's and the pilot study BT's, and the results from these studies continue to support the picture that has already emerged. Figure 13 portrays the accuracy of classifying the cross validation BT's and the pilot study BT's into correct criterion group on the evaluation section using the cross validation BT's discriminant functions. Parallel results for the justification section are shown in Figure 14. Perfect classification accuracy was achieved on the justification section at Step 46 for the 84 cross validation BT's using their own discriminant functions (see Table 28). Of the 80 pilot study BT's, 54 (68%) were classified correctly on the justification section with the cross validation BT's discriminant functions, this maximum classification accuracy occurring at Step 8.

In the reverse cross validation for the pilot study BT's and the cross validation BT's classified by the pilot study BT's discriminant functions, the results are similar. Figure 15 portrays the curve of classification accuracy for the evaluation section and Figure 16 depicts the classification accuracy curve for the justification section. Table 29 presents the four classification matrices corresponding to Figures 15 and 16 in which the best classification achieved is portrayed. All 80 pilot study BT's were classified correctly on the justification section by their own discriminant functions. Of the 84 cross validation BT's, 55 (65%) were classified correctly on the justification section with the pilot study BT's discriminant functions, this maximum classification accuracy occurring at the first step.

The results of the two cross validation studies were very similar for the total cross validation sample and the total pilot study sample, for the cross validation AT's and the pilot study AT's, and for the cross validation BT's and the pilot study BT's. These findings support the expectation held at the outset of this investigation that it would be possible to index the cross

Figure 12. Accuracy of Classifying the Pilot Study AT's (N=144) and the Cross Validation AT's (N=138) into Correct Criterion Group Using the Pilot Study AT's Discriminant Functions (Justification Section - 19S)

BEST CLASSIFICATION INTO THE THREE CRITERION GROUPS USING THE PILOT STUDY AT'S DISCRIMINANT FUNCTIONS

EVALUATION SECTION - 19R

PILOT STUDY AT'S (N=144) CROSS VALIDATION AT'S (N=138)

		Class Discrim	sification minant Ana	n by alysis			Classification by Discriminant Analysis			
St	ep 50	UPPER	MIDDLE	LOWER	St	ep 3	UPPER	MIDDLE	LOWER	
ceric	UPPER	35	8	6	eric	UPPER	22	7	16	
Crit	MIDDLE	3	28	8	tual Crit	MIDDLE	22	3	19	
tual	LOWER	8	6	42		LOWER	7	2	40	
Aci		Diag	gonal Sum	= 105	Act		Di	agonal Sur	n = <u>65</u>	

JUSTIFICATION SECTION - 195

PILOT STUDY AT's (N=144) CROSS VALIDATION AT's (N=138)

		Class Discrin	ification ninant Ana	n by alysis			Class Discrim	sification minant Ana	h by alysis
Sto	ep 58	UPPER	MIDDLE	LOWER	St.	ep 3	UPPER	MIDDLE	LOWER
teri(ersh:	UPPER	45	2	2	ter1(ersh:	UPPER	<u>19</u>	20	6
Crit Membe	MIDDLE	2	36	1	Cr1	MIDDLE	8	30	6
tual oup	LOWER	0	0	56	tual oup	LOWER	1	6	42
AcGr		Diag	gonal Sum	= 137	AcGr		Dia	agonal Sur	n = 91

BEST CLASSIFICATION INTO THE THREE CRITERION GROUPS USING THE CROSS VALIDATION BT'S DISCRIMINANT FUNCTIONS

EVALUATION SECTION - 19R

CROSS VALIDATION BT's (N=84)

Classification by Classification by Discriminant Analysis Discriminant Analysis Step 62 Step 8 UPPER MIDDLE LOWER UPPER MIDDLE LOWER Actual Criterion Group Membership Actual Criterion Group Membership 0 UPPER 7 UPPER 29 0 17 2 MIDDLE 2 28 MIDDLE 12 9 0 14 0 0 5 2 LOWER 25 LOWER 12 Diagonal Sum = 82 Diagonal Sum = 38

JUSTIFICATION SECTION - 195

CROSS VALIDATION BT's (N=84)

PILOT STUDY BT's (N=80)

PILOT STUDY BT's (N=80)

		Class Discrim	ification	n by alysis			Class Discri	sification minant Ana	n by alysis
St	ep 46				St	ep 8			
d h		UPPER	MIDDLE	LOWER	uo Į b		UPPER	MIDDLE	LOWER
teri ersh	UPPER	29	0	0	terí	UPPER	<u>19</u>	3	4
Cri Memb	MIDDLE	0	30	0	Cri Memb	MIDDLE	11	16	8
tual	LOWER	0	0	25	tual oup]	LOWER	0	0	19
AcGr		Dia	igonal Sur	$n = \underline{84}$	AcGr		Dia	agonal Sur	n = 54

BEST CLASSIFICATION INTO THE THREE CRITERION GROUPS USING THE PILOT STUDY BT'S DISCRIMINANT FUNCTIONS

EVALUATION SECTION - 19R

PILOT STUDY BT's (N=80) CROSS VALIDATION BT's (N=84)

		Class Discrim	sification ninant Ana	n by alysis			Class Discrim	ification ninant Ana	n by alysis
S	tep 50				Step	0 1			
ц Q	4	UPPER	MIDDLE	LOWER	E C		UPPER	MIDDLE	LOWER
iterior	UPPER	24	2	0	terio ershi	JPPER	14	3	12
Crit	MIDDLE	0	35	0	Criti	AIDDLE	10	9	11
tual C oup Me	LOWER	1	0	18	tual. Dup h	OWER	6	3	16
Act		Dia	agonal Sur	$n = \frac{77}{7}$	Act		Dia	igonal Sur	n = 39

JUSTIFICATION SECTION - 195

PILOT STUDY BT's (N=80) CROSS VALIDATION BT's (N=84)

		Class Discrip	sification ninant Ana	n by alysis		Classification by Discriminant Analysis		
St	UPPER MIDDLE LOWER				UPPER	MIDDLE	LOWER	
teri ersh	UPPER	26	0	0	teri adan naber	22	7	0
Crit Membe	MIDDLE	0	35	0	CLI MIDDLE	14	13	3
tual	d LOWER O	0	<u>19</u>	Tower roup	1	4	20	
AcGr		Dia	agonal Su	m = 80	Gr	Dia	agonal Sur	n = 55

validation sample in the blind, without knowledge of criterion group membership, and achieve as good classification accuracy as was achieved with the pilot study sample where criterion group membership was known to the indexer. Further, it can be concluded that better classification into the three criterion groups using an optimum combination of the 67 quantitative variables is achieved when the two occupational ratings represented in the pilot study sample and the cross validation sample are treated separately. The superior classification accuracy achieved for the BT's compared to the AT's indicates that the Aviation Electronics Technician rating may represent a more varied amalgamation of technical activities than the Boilerman rating. These findings suggest that classification procedures based on the content analysis methodology developed in this research should be tailored to specific occupations. In all of the results presented thus far, better classification was achieved in the discriminant analyses of the justification section compared to the evaluation section. In the various cross validation runs reported, it appears that the best classification accuracy that can be achieved on a second sample using discriminant functions developed on the first sample is 65 to 70 percent. This level of accuracy is achieved early in the stepwise discriminant analysis procedure, typically by the fifth step. This finding suggests that the variables selected by the discriminant analysis program at the first five steps are crucial variables. Later in this section the variables selected for the first 15 steps in each of the cross validation runs will be enumerated. But before turning to this enumeration, the results in classifying the generalization sample (CS's and RM's) will be discussed.

Discriminant analyses also were performed for the CS's and RM's combined (the total generalization sample) as well as for each of these two occupational ratings separately. The accuracy of classifying the generalization sample into correct criterion group is shown in Figures 17 and 18, first for the evaluation section and then for the justification section. Better classification accuracy was achieved for the justification section (see Table 30) than for the evaluation section where 190 of the 222 cases (86%) in the justification portion of the generalization sample were classified correctly.

When the CS's and RM's were considered separately, better classification accuracy was achieved. Referring to Table 30, 58 of the 60 generalization CS's (97%) were classified correctly on the evaluation section. All 60 generalization CS's were classified correctly on the justification section. The curves depicting the accuracy of classifying the CS's on both the evaluation section and the justification section are shown in Figures 19 and 20. The 162 RM's in the generalization sample were not classified as accurately as the CS's, although better classification accuracy for the RM's was achieved on the justification section where 144 cases were classified correctly (89%). These results are shown in Table 30. The curves portraying the accuracy of classifying the RM's on both the evaluation section and the justification section are shown in Figures 21 and 22. Again the superiority of the justification section in providing discriminating narrative comments is demonstrated. On the justification section all 60 CS's were classified correctly by their discriminant functions and 89 percent of the RM's were classified correctly by their discriminant functions. Eighty-six percent of the total generalization sample was classified correctly on the justification section by the discriminant functions based on CS's and RM's combined. This suggests that the occupational rating,

BEST CLASSIFICATION INTO THE THREE CRITERION GROUPS FOR THE GENERALIZATION SAMPLE

EVALUATION SECTION - 19R

CS's & RM's COMBINED (N=222)

St	ep 62	Class Discri	sification minant Ana	n by alysis
eric		UPPER	MIDDLE	LOWER
rit(mbe	UPPER	52	18	4
1 C	MIDDLE	7	60	7
tua	LOWER	5	11	58
Ac Gr		Diag	gonal Sum	= <u>170</u>

JUSTIFICATION SECTION - 195

	CS's &	RM's	COMI	BINED	(N=2)	22)
Sto	ep 54	(Dis	Class Scrin	sifica ninant	tion Ana	by lysis
sh1		UPI	PER	MIDE	LE	LOWER
Member	UPPER	1	59	13	5	2
	MIDDLE		9	60)	5
dn	LOWER		0	~	3	71
Gro			Diag	gonal	Sum	= <u>190</u>
	Group Membership G	CS's & Step 54 UPPER MIDDLE LOWER	CS's & RM's Step 54 (dis UPPER 1 MIDDLE di LOWER	CS's & RM's COMI Step 54 Class Discrin UPPER UPPER 59 MIDDLE 9 d. LOWER 0 Diag	CS's & RM's COMBINEDStep 54ClassificaDiscriminantUPPERUPPERMIDDLE9MIDDLE960003Diagonal	CS's & RM's COMBINED (N=2)Step 54ClassificationDiscriminant AnaUPPERMIDDLEUPPER59MIDDLE960LOWER03Diagonal Sum

		CS's (1	N=60)				CS's (1	N=60)	
on ip s	tep 44	Classification by Discriminant Analysis			St u di	ep 35	Classification by Discriminant Analysis		
erior		UPPER	MIDDLE	LOWER	eric shi		UPPER	MIDDLE	LOWER
rit	UPPER	19	0	0	rite aber	UPPER	19	0	0
1 Cr Mem	MIDDLE	1	15	0	L Ст Меп	MIDDLE	0	16	0
tua	LOWER	1	0	24	cual	LOWER	0	0	25
AcGr		Dia	agonal Su	m = 58	Act		Di	agonal Sur	m = 60

RM's (N=162)						<u>RM's (N=162)</u>			
St uo	ep 63	63 Classification by 5 Discriminant Analysis 5		St uc	ep 40	Classification by Discriminant Analysis		n by alysis	
eric rsh:		UPPER	MIDDLE	LOWER	erí(rsh:		UPPER	MIDDLE	LOWER
rit(mbe)	UPPER	47	7	1	ri to mbei	UPPER	48	5	2
1 Ci Mei	MIDDLE	8	46	4	l Cr Men	MIDDLE	6	48	4
cua. oup	LOWER	3	8	38	tua	LOWER	0	1	48
Aci		Diagonal Sum = 131					Diag	gonal Sum	= 144

Number of Cases Classified Correctly

Radioman, may be more heterogeneous and require a greater variety of skills than the Commissaryman rating just as the Aviation Electronics Technician rating may represent a more varied amalgamation of technical activities than the Boilerman rating. The case for treating each occupational rating separately seems to be supported additionally by the classification results for the generalization sample. Moreover, it is evident that the content analysis methodology developed initially on the pilot study sample consisting of AT's and BT's was generalizable to a new sample consisting of two different occupational ratings, viz., CS's and RM's.

A most interesting set of results is revealed by an examination of which variables were selected by the stepwise discriminant analysis program for the first 15 steps in each of the computer runs that were made. Tables 31 and 32 show the results for the total cross validation sample (AT's and BT's combined) and the total pilot study sample (AT's and BT's combined). The results are presented separately for the evaluation section and the justification section. If the variable was one of the first 15 variables selected in both of the samples for each section considered separately, it has been flagged with an asterisk in Tables 31 and 32. Therefore, it can be determined quickly that six of the first 15 variables selected by the stepwise discriminant analysis program in the cross validation sample and the pilot study sample for the evaluation section were the same, namely, Total Number of 5 (New 3) Weights, Total Number of 2 (New -1) Weights, f of COOPERATION, wf of AWARDS AND PUNISHMENT, f of LEADERSHIP AND DIRECTING, and wf of TECHNICAL SKILLS. Furthermore, Total Number of 5 (New 3) Weights was the first variable selected in both samples for the evaluation section, with Total Number of 2 (New -1) Weights being the second variable selected in the pilot study sample and the third variable selected in the cross validation sample. It appears that the incidence of superlative adjectives and adverbs describing excellent performance (5 Weights) and the incidence of negatively comparative adjectives and adverbs describing inadequate performance (2 Weights) constitute key discriminating variables in analyzing the content of narrative comments written for the evaluation section in these two samples.

Of more interest is the justification section since without exception better classification was achieved in the content analysis of the narrative comments written for the justification section. Four of the first 15 variables selected by the stepwise discriminant analysis program for the justification section in the total cross validation sample (AT's and BT's combined) and the total pilot study sample (AT's and BT's combined) were the same. Total Number of Index Terms Used was the first variable selected in both samples. Sum of Variables 1 through 29 was the second variable selected in the cross validation sample and the fourth variable selected in the pilot study sample. wf of PRODUCTIVITY AND ACHIEVEMENT was the third variable selected in the pilot study sample and the fourth variable selected in the cross validation sample. f of DRIVE was the fifth variable selected in the pilot study sample and the seventh variable selected in the pilot study sample and the seventh variable selected in the pilot study sample and

Similar tables of results also were prepared for the AT's and BT's considered separately in the cross validation and pilot study samples. Tables 33 and 34 show the first 15 variables selected by the stepwise discriminant analysis program for the cross validation AT's and the pilot study AT's in the evaluation and justification sections. As in Tables 31 and 32, an asterisk

VARIABLES SELECTED BY THE STEPWISE DISCRIMINANT ANALYSIS PROGRAM AT STEPS 1 THROUGH 15 FOR THE CROSS VALIDATION SAMPLE

Step	Evaluation Section	Justification Section
1	Total Number of 5 (New 3) Weights*	Total Number of Index Terms Used*
2	Total Number of Index Terms Used	Sum of Variables 1 through 29*
3	Total Number of 2 (New -1) Weights*	wf of ORGANIZATION
4	f of COOPERATION*	wf of PRODUCTIVITY AND ACHIEVE- MENT*
5	f of PRODUCTIVITY AND ACHIEVE- MENT	f of ENDURANCE
6	wf of RESOURCEFULNESS	wf of TECHNICAL SKILLS
7	f of PROFESSIONALISM	f of DRIVE*
8	wf of AWARDS AND PUNISHMENT*	f of INTELLECTUAL FUNCTIONING
9	Total Number of 4 (New 2) Weights	f of ASSET TO THE NAVY
10	f of LEADERSHIP AND DIRECTING*	wf of POTENTIAL
11	wf of RESPONSIVENESS	f of TECHNICAL SKILLS
12	f of TECHNICAL SKILLS	f of CONDUCT, INTEGRITY, AND PRIDE
13	f of POTENTIAL	wf of AWARDS AND PUNISHMENT
14	wf of TECHNICAL SKILLS*	f of LEADERSHIP AND DIRECTING
15	f of RESPONSIVENESS	wf of LEADERSHIP AND DIRECTING

* Also selected by the stepwise discriminant analysis program for this section in the pilot study sample.

VARIABLES SELECTED BY THE STEPWISE DISCRIMINANT ANALYSIS PROGRAM AT STEPS 1 THROUGH 15 FOR THE PILOT STUDY SAMPLE

Step	Evaluation Section	Justification Section
1	Total Number of 5 (New 3) Weights*	Total Number of Index Terms Used*
2	Total Number of 2 (New -1) Weights*	Sum of Variables 31 through 59
3	f of LEADERSHIP AND DIRECTING*	wf of PRODUCTIVITY AND ACHIEVE- MENT*
4	wf of TECHNICAL SKILLS*	Sum of Variables 1 through 29*
5	Total Number of 1 (New -2) Weights	f of DRIVE*
6	wf of AWARDS AND PUNISHMENT*	Total Number of 3 (New 1) Weights
7	wf of MANAGEMENT FUNCTIONS	wf of STAFFING
8	f of SERVICE MOTIVATION	f of RESOURCEFULNESS
9	f of COOPERATION*	wf of SERVICE MOTIVATION
10	Total Number of 3 (New 1) Weights	f of REPUTE
11	wf of REPRESENTATION	wf of ASSET TO THE NAVY
12	wf of CONTROLLING	wf of FLEXIBILITY
13	wf of COMMUNICATION	wf of GROOMING AND ATTIRE
14	wf of INITIATIVE	f of AWARDS AND PUNISHMENT
15	f of INITIATIVE	wf of CONTROLLING

Also selected by the stepwise discriminant analysis program for this section in the cross validation sample.

VARIABLES SELECTED BY THE STEPWISE DISCRIMINANT ANALYSIS PROGRAM AT STEPS 1 THROUGH 15 FOR THE CROSS VALIDATION AT's

Step	Evaluation Section	Justification Section
1	f of COOPERATION*	Total Number of Index Terms Used*
2	Total Number of 5 (New 3) Weights*	wf of TECHNICAL SKILLS
3	f of TECHNICAL SKILLS	wf of PRODUCTIVITY AND ACHIEVE- MENT
4	f of LEADERSHIP AND DIRECTING	wf of SKILLS AND ABILITIES
5	Total Number of 2 (New -1) Weights*	f of COMMUNICATION
6	wf of RESPONSIVENESS	wf of ORGANIZATION
7	f of RESOURCEFULNESS	wf of ASSET TO THE NAVY
8	f of PRODUCTIVITY AND ACHIEVE- MENT*	wf of REPUTE
9	f of SERVICE MOTIVATION	wf of AWARDS AND PUNISHMENT
10	wf of TECHNICAL SKILLS	f of INTELLECTUAL FUNCTIONING*
11	Total Number of 4 (New 2) Weights	wf of POTENTIAL
12	f of AWARDS AND PUNISHMENT	f of REPRESENTATION
13	f of PROFESSIONALISM	Total Number of Words in Text
14	Total Number of Index Terms Used*	wf of RESPONSIVENESS
15	Total Number of Words in Text	f of RESPONSIVENESS

* Also selected by the stepwise discriminant analysis program for this section in the pilot study AT subsample.

VARIABLES SELECTED BY THE STEPWISE DISCRIMINANT ANALYSIS PROGRAM AT STEPS 1 THROUGH 15 FOR THE PILOT STUDY AT's

Step	Evaluation Section	Justification Section			
1	Total Number of 5 (New 3) Weights*	Total Number of Index Terms Used*			
2	Total Number of 2 (New -1) Weights*	Total Number of 5 (New 3) Weights*			
3	wf of AWARDS AND PUNISHMENT	f of CONDUCT, INTEGRITY, AND PRIDE			
4	f of COMMUNICATION	f of INTELLECTUAL FUNCTIONING*			
5	f of PRODUCTIVITY AND ACHIEVE- MENT*	wf of INTELLECTUAL FUNCTIONING			
6	f of COOPERATION*	wf of GROOMING AND ATTIRE			
7	wf of MANAGEMENT FUNCTIONS	f of TECHNICAL SKILLS			
8	wf of PRODUCTIVITY AND ACHIEVE- MENT	f of REPUTE			
9	wf of SERVICE MOTIVATION	wf of FLEXIBILITY			
10	Total Number of Index Terms Used*	f of PRODUCTIVITY AND ACHIEVE- MENT			
11	wf of USE OF COMMUNICATION	Sum of Variables 1 through 29			
12	f of USE OF COMMUNICATION	wf of ENDURANCE			
13	wf of REPRESENTATION	wf of SERVICE MOTIVATION			
14	wf of GROOMING AND ATTIRE	wf of CONTROLLING			
15	wf of DRIVE	f of ENDURANCE			

* Also selected by the stepwise discriminant analysis program for this section in the cross validation AT subsample. denotes variables within each section that were selected in both samples. On the evaluation section, five of the first 15 variables selected were the same for the cross validation AT's and the pilot study AT's. As expected, Total Number of 5 (New 3) Weights and Total Number of 2 (New -1) Weights were among these five variables. On the justification section, two of the first 15 variables selected were the same for the cross validation AT's and the pilot study AT's. Again, Total Number of Index Terms Used was the first variable selected for both the cross validation AT's and the pilot study AT's.

Tables 35 and 36 show the first 15 variables selected by the stepwise discriminant analysis program for the cross validation BT's and the pilot study BT's in the evaluation and justification sections. Again, an asterisk denotes variables within each section that were selected in both samples. On the evaluation section, two of the first 15 variables selected were the same for the cross validation BT's and the pilot study BT's. Total Number of 5 (New 3) Weights was the first variable selected for both the cross validation BT's and the pilot study BT's. On the justification section, five of the first 15 variables selected were the same for the cross validation BT's and the pilot study BT's. As with the two AT subsamples, Total Number of Index Terms Used was the first variable selected for both the cross validation BT's and the pilot study BT's.

The key discriminating variables for the cross validation and pilot study samples as well as for the AT and BT subsamples were Total Number of 5 (New 3) Weights and Total Number of 2 (New -1) Weights in the evaluation section. In the justification section without exception the key discriminating variable was Total Number of Index Terms Used. What are the results like for the generalization sample? Table 37 shows that these same three variables were those selected first in the stepwise discriminant analysis of the generalization sample. Total Number of 2 (New -1) Weights and Total Number of 5 (New 3) Weights were selected first and second in the evaluation section. Total Number of Index Terms Used was selected first in the justification section.

When the two occupational groups comprising the generalization sample are considered individually, the results are not quite unanimous. Neither Total Number of 5 (New 3) Weights nor Total Number of 2 (New -1) Weights was selected in the evaluation section for the generalization CS's (see Table 38). However, Total Number of Index Terms Used was the first variable selected in the justification section for the generalization CS's. In Table 39 showing the results for the generalization RM's, Total Number of 2 (New -1) Weights was selected as the first variable in the evaluation section and Total Number of 5 (New 3) Weights was selected as the fifth variable. Again, Total Number of Index Terms Used was selected first in the justification section.

Two findings are striking. Without exception better classification was achieved in the content analysis of the narrative comments in the justification section, and without exception the first variable selected in the various stepwise discriminant analyses for the justification section was Total Number of Index Terms Used. This variable reflects the variety of specific areas of a ratee's performance that the evaluator chose to comment on, and is measured by the number of different index terms selected by the indexer to encompass the narrative content. It appears that the range of skills and abilities that a chief petty officer possesses may be a key factor in his superior performance.

VARIABLES SELECTED BY THE STEPWISE DISCRIMINANT ANALYSIS PROGRAM AT STEPS 1 THROUGH 15 FOR THE CROSS VALIDATION BT's

Step	Evaluation Section	Justification Section
1	Total Number of 5 (New 3) Weights*	Total Number of Index Terms Used*
2	Total Number of Index Terms Used	wf of LEADERSHIP AND DIRECTING
3	Sum of Variables 31 through 59	Sum of Variables 1 through 29
4	wf of RESOURCEFULNESS	f of PRODUCTIVITY AND ACHIEVE- MENT*
5	f of COOPERATION	wf of CONDUCT, INTEGRITY, AND PRIDE
6	f of RESOURCEFULNESS	f of DRIVE
7	Total Number of Words in Text	wf of SERVICE MOTIVATION
8	f of AWARDS AND PUNISHMENT	f of INITIATIVE*
9	f of ORGANIZATION	f of RESPONSIVENESS
10	f of TECHNICAL SKILLS	f of ASSET TO THE NAVY*
11	f of ASSET TO THE NAVY	wf of DRIVE
12	wf of ASSET TO THE NAVY*	wf of RESOURCEFULNESS
13	wf of FLEXIBILITY	f of RESOURCEFULNESS*
14	wf of REPUTE	f of PROFESSIONALISM
15	f of STAFFING	f of REPRESENTATION

* Also selected by the stepwise discriminant analysis program for this section in the pilot study BT subsample.

VARIABLES SELECTED BY THE STEPWISE DISCRIMINANT ANALYSIS PROGRAM AT STEPS 1 THROUGH 15 FOR THE PILOT STUDY BT's

Step	Evaluation Section	Justification Section		
1	Total Number of 5 (New 3) Weights	Total Number of Index Terms Used*		
2	Total Number of 2 (New -1) Weights	wf of PRODUCTIVITY AND ACHIEVE- MENT		
3	f of LEADERSHIP AND DIRECTING	f of AWARDS AND PUNISHMENT		
4	wf of PROFESSIONALISM	Sum of Variables 31 through 59		
5	f of RESPONSIVENESS	f of REPUTE		
6	wf of GROOMING AND ATTIRE	f of RESOURCEFULNESS*		
7	wf of TECHNICAL SKILLS	f of PRODUCTIVITY AND ACHIEVE- MENT*		
8	wf of CONTROLLING	wf of CONTROLLING		
9	f of SKILLS AND ABILITIES	f of SERVICE MOTIVATION		
10	wf of RELIABILITY AND DEPENDA- BILITY	f of ASSET TO THE NAVY*		
11	wf of MANAGEMENT FUNCTIONS	f of ENDURANCE		
12	wf of USE OF COMMUNICATION	Total Number of 3 (New 1) Weights		
13	wf of ASSET TO THE NAVY*	wf of REPUTE		
14	f of MANAGEMENT FUNCTIONS	f of USE OF COMMUNICATION		
15	wf of STAFFING	f of INITIATIVE*		

* Also selected by the stepwise discriminant analysis program for this section in the cross validation BT subsample.

VARIABLES SELECTED BY THE STEPWISE DISCRIMINANT ANALYSIS PROGRAM AT STEPS 1 THROUGH 15 FOR THE GENERALIZATION SAMPLE

Step	Evaluation Section	Justification Section		
1	Total Number of 2 (New -1) Weights	Total Number of Index Terms Used		
2	Total Number of 5 (New 3) Weights	f of COOPERATION		
3	wf of POTENTIAL	wf of STAFFING		
4	f of COMMUNICATION	wf of COMMUNICATION		
5	wf of MANAGEMENT FUNCTIONS	wf of PLANNING		
6	f of RELIABILITY AND DEPENDA- BILITY	wf of POTENTIAL		
7	f of INTELLECTUAL FUNCTIONING	f of PRODUCTIVITY AND ACHIEVE- MENT		
8	wf of SERVICE MOTIVATION	wf of PRODUCTIVITY AND ACHIEVE- MENT		
9	f of ORGANIZATION	Sum of Variables 31 through 59		
10	f of RESPONSIVENESS	wf of GROOMING AND ATTIRE		
11	wf of INITIATIVE	f of ENDURANCE		
12	wf of PLANNING	f of REPUTE		
13	wf of RELIABILITY AND DEPENDA- BILITY	wf of INTELLECTUAL FUNCTIONING		
14	f of REPRESENTATION	f of RESPONSIVENESS		
15	wf of STAFFING	wf of REPUTE		

VARIABLES SELECTED BY THE STEPWISE DISCRIMINANT ANALYSIS PROGRAM AT STEPS 1 THROUGH 15 FOR THE GENERALIZATION CS's

Step	Evaluation Section	Justification Section			
1	wf of CONTROLLING	Total Number of Index Terms Used			
2	wf of ASSET TO THE NAVY	f of PROFESSIONALISM			
3	f of MANAGEMENT FUNCTIONS	f of INITIATIVE			
4	wf of SKILLS AND ABILITIES	wf of COMMUNICATION			
5	Total Number of Index Terms Used	wf of REPRESENTATION			
6	f of ENDURANCE	wf of COOPERATION			
7	Sum of Variables 31 through 59	f of CONTROLLING			
8	wf of ORGANIZATION	f of POTENTIAL			
9	wf of POTENTIAL	f of PRODUCTIVITY AND ACHIEVE- MENT			
10	wf of PLANNING	wf of SKILLS AND ABILITIES			
11	f of SERVICE MOTIVATION	wf of PLANNING			
12	f of PLANNING	Total Number of Words in Text			
13	Total Number of 3 (New 1) Weights	wf of PROFESSIONALISM			
14	f of LEADERSHIP AND DIRECTING	f of SKILLS AND ABILITIES			
15	f of INITIATIVE	f of RELIABILITY AND DEPENDA- BILITY			

VARIABLES SELECTED BY THE STEPWISE DISCRIMINANT ANALYSIS PROGRAM AT STEPS 1 THROUGH 15 FOR THE GENERALIZATION RM's

Step	Evaluation Section	Justification Section
1	Total Number of 2 (New -1) Weights	Total Number of Index Terms Used
2	wf of AWARDS AND PUNISHMENT	Sum of Variables 31 through 59
3	wf of POTENTIAL	wf of PRODUCTIVITY AND ACHIEVE- MENT
4	wf of MANAGEMENT FUNCTIONS	f of PRODUCTIVITY AND ACHIEVE- MENT
5	Total Number of 5 (New 3) Weights	f of COOPERATION
6	f of RELIABILITY AND DEPENDA- BILITY	wf of GROOMING AND ATTIRE
7	f of COMMUNICATION	wf of STAFFING
8	f of POTENTIAL	wf of ENDURANCE
9	wf of REPUTE	f of STAFFING
10	f of REPUTE	wf of PLANNING
11	f of INTELLECTUAL FUNCTIONING	Total Number of 4 (New 2) Weights
12	f of RESPONSIVENESS	f of POTENTIAL
13	wf of RESPONSIVENESS	f of INITIATIVE
14	wf of SERVICE MOTIVATION	wf of TECHNICAL SKILLS
15	wf of PRODUCTIVITY AND ACHIEVE- MENT	f of REPUTE

Another important finding is that better classification was achieved when each of the four occupational ratings studied in this research project was considered individually. In addition to Total Number of 5 (New 3) Weights, Total Number of 2 (New -1) Weights, and Total Number of Index Terms Used, a number of specific index terms among the first five selected should be called out as potential key variables in discriminating between superior chief petty officers and their slightly less qualified colleagues. For the cross validation AT's these variables were COMMUNICATION; COOPERATION; LEADERSHIP AND DIRECTING; PRODUCTIVITY AND ACHIEVEMENT; TECHNICAL SKILLS; and SKILLS AND ABILITIES. For the pilot study AT's these variables were AWARDS AND PUNISHMENT; COMMUNICATION; CONDUCT, INTEGRITY, AND PRIDE; INTELLECTUAL FUNCTIONING; and PRODUCTIVITY AND ACHIEVEMENT. The potential key variables for the cross validation BT's were CONDUCT, INTEGRITY, AND PRIDE; COOPERATION; LEADERSHIP AND DIRECTING; PRODUC-TIVITY AND ACHIEVEMENT; and RESOURCEFULNESS. For the pilot study BT's these variables were AWARDS AND PUNISHMENT; LEADERSHIP AND DIRECTING; PRODUCTIVITY AND ACHIEVEMENT; PROFESSIONALISM; REPUTE; and RESPONSIVENESS. The potential key variables for the CS's were ASSET TO THE NAVY; COMMUNICATION; CONTROLLING; INITIATIVE; MANAGEMENT FUNCTIONS; PROFESSIONALISM; REPRESENTATION; and SKILLS AND ABILITIES. For the RM's these variables were AWARDS AND PUNISHMENT; COOP-ERATION; MANAGEMENT FUNCTIONS; POTENTIAL; and PRODUCTIVITY AND ACHIEVEMENT. These same specific index terms were also the variables achieving statistical significance beyond the .001 level of probability in the Mann-Whitney U test as well as the t test of mean difference for the comparison on the cross validation and generalization samples between the Middle and Upper criterion groups, the most difficult discrimination to be made between any two of the three criterion groups (see Tables 20 to 23).

Ten of the 29 index terms do not appear to lend as much assistance in the discrimination task as the key variables cited above. These less useful terms are the following: DRIVE; ENDURANCE; FLEXIBILITY; GROOMING AND ATTIRE; ORGANI-ZATION; PLANNING; RELIABILITY AND DEPENDABILITY; SERVICE MOTIVATION; STAFFING; and USE OF COMMUNICATION. However, all but two of these ten terms were selected as one of the sixth to the tenth variables in at least one of the stepwise discriminant analyses performed. The two exceptions were FLEXIBILITY and USE OF COMMUNICATION, the least useful terms used in this study. These findings suggest that a smaller number of dimensions than the full complement of 67 quantitative variables derived from the indexing procedure can be used to identify superlative CPO's whose superior performance recommends them as candidates for promotion to a higher level of responsibility.

SECTION 5. RELIABILITY STUDY

A comprehensive reliability study was conducted whose objectives were twofold: (1) to determine the level of agreement among several individuals all of whom independently would perform a content analysis of the same corpus of Evaluation Reports, and (2) to investigate if nonresearchers could be trained successfully to apply the complex content analysis methodology developed in the pilot study.

A set of 48 Evaluation Reports was selected by the Navy Personnel Research and Development Center, representing a cross section of the kinds of reports included in the overall experimental design for the cross validation and generalization samples. In each of these 48 Evaluation Reports the evaluation section was separated from the justification section so that the narrative comments for each section were not considered together. This resulted in a group of 96 randomized pieces of narrative text to be indexed in the reliability study. To each of these 96 pieces of narrative text was appended the corresponding sections 4A and 4B of the Evaluation Report form. These two sections provide a description of the ratee's primary and collateral duties and should be read as background information before beginning to index the narrative text. Each of these 96 minidocuments was assigned a 4-digit identification number by NPRDC, Xeroxed in multiple copies, and sent to R-K Research and System Design to be used as the data base in the reliability study.

Four individuals participated in the reliability study: (1) the experienced indexer who also indexed the pilot study sample, the cross validation sample, and the generalization sample; (2) the principal investigator; (3) an inexperienced indexer (inexperienced indexer A) with two years of college in the liberal arts; and (4) another inexperienced indexer (inexperienced indexer B) with executive secretary experience. To this end a training manual was prepared by the experienced indexer and the principal investigator to assist the two neophyte indexers in understanding their assignment. The training manual in its entirety is included in this report as Appendix A. The version of the training manual shown in Appendix A is not the original version that was used to train the four reliability indexers, but rather is an updated version that includes voluminous examples of how to handle difficult indexing decisions and which also attempt to eliminate areas of confusion brought to light in analyzing the results of the reliability study.

Six intensive training sessions were conducted by the experienced indexer in order to try to bring all four indexers up to a common level of expertise before beginning the actual study. Obviously, this objective could only be met partially in view of the varying educational backgrounds of the four reliability indexers and their different levels of previous exposure to the indexing dictionary. The study itself proved to be a traumatic experience for the three reliability indexers who had not spent the past year doing the actual indexing of the cross validation and generalization samples, probably because they were still in the early stages of their learning curves. The task given to each participant was extremely difficult and can be likened to a take-home, openbook final examination without a time limit. However, given the experience of participating in the study, all four of the reliability indexers now feel that they are better qualified to function as regular indexers and could perform this assignment in a consistent manner.

When all four reliability indexers had completed indexing the 96 pieces of narrative text, their indexing decisions were recorded side by side on work sheets for each segment of narrative text indexed. These work sheets provided the data base for computing agreement statistics. In all of the statistical computations reported subsequently in this section, assignment of the index terms was considered to be a separate intellectual task from assigning the corresponding weights based on the modifying adjectives and adverbs. There is good justification for analyzing the reliability study results in these two contexts. When an indexer studied a segment of narrative text, the first step was to select an appropriate index term or terms from among the 29 possibilities that best described the substantive content of the text. Once the indexer had completed this first phase of the content analysis, then the segment of narrative text was rescanned to identify the adjectives and adverbs that defined the numerical weight to be assigned to each index term chosen. Considering these judgments as two sequential decision processes also made the results of the reliability study more amenable to statistical analysis as will be shown in the subsequent discussion.

As early as 1960 Cohen, in introducing a new agreement statistic called kappa, pointed out that for most problems in nominal scale agreement between two judges or decision makers, many investigators compute a contingency chi square as a test of the hypothesis of chance agreement, and some investigators have gone on to compute the contingency coefficient, C, as a measure of degree of agreement.²⁰ However, Cohen concluded that the use of chi square (χ^2), and therefore, the C which is based on it for the evaluation of agreement is indefensible. When applied to a contingency table, χ^2 tests the null hypothesis with regard to association, not agreement. Therefore, χ^2 and C are inappropriate statistics for measuring agreement since they will be inflated quite impartially by any departure from chance association, either disagreement or agreement. In order to remedy this situation, Cohen suggested a new coefficient, kappa, to measure the degree of agreement in nominal scales, and to provide means for testing hypotheses and setting confidence limits for this coefficient.

Quoting from Cohen's 1960 article [20, pp. 39-40], "...for any problem in nominal scale agreement between two judges, there are only two relevant quantities:

 p_{o} = the proportion of units in which the judges agreed

 p_{α} = the proportion of units for which agreement is expected by chance.

The test of agreement comes then with regard to the $1 - p_C$ of the units for which the hypothesis of no association would predict disagreement between the judges. This term will serve as the denominator.

"To the extent to which nonchance factors are operating in the direction of agreement, p will exceed p; their difference, $p - p_c$, represents the proportion of the cases in which beyond-chance agreement occurred and is the numerator of the coefficient.

"The coefficient κ is simply the proportion of chance-expected disagreements which do not occur, or alternatively, it is the proportion of agreement after chance agreement is removed from consideration: $\kappa = \frac{p_o - p_c}{1 - p_c} \quad ."$

The significance of an obtained κ is determined by dividing κ by σ_{κ_0} where $\sigma_{\kappa_0} = \sqrt{\frac{p_c}{N(1 - p_c)}}$. The resulting critical ratio is referred to the

normal curve. However, Cohen has pointed out that it is generally of as little value to test κ for significance as it is for any other reliability coefficient ---to know merely that κ is beyond chance is trivial since one usually expects much more than this in the way of reliability in psychological measurement. However, the size of the critical ratio does provide some immediate feedback concerning the magnitude of the agreement achieved beyond the level expected by chance. Probably a more useful way to interpret the significance of an obtained κ is in terms of the maximum value of κ . The theoretical upper limit of κ is +1.00, but this limit can only be reached if the off-diagonal (disagreement) cells in the agreement matrix are all zero. This in turn demands that the marginal probabilities for each diagonal (agreement) cell must be identical. Perfect agreement between two judges is rarely achieved, and therefore, the marginal distributions in any agreement matrix are not identical. This means that in practice the upper limit of κ is never +1.00 but rather some lesser value. The maximum value of κ is set by the marginal distributions in any particular application of the kappa agreement statistic, and it can be calculated. A comparison of the obtained K with its maximum upper limit computed from the marginal distributions provides the investigator with a more useful index of how closely the agreement level that was achieved between two judges approached the maximum level of agreement that was possible.

The kappa statistic was the measure of agreement used in analyzing the index terms assigned by the four reliability indexers. For each segment of narrative text, each indexer chose a term or terms from the list of 29 possibilities, or the decision was made that no term should be used. From a careful analysis of these indexing decisions for each pair of reliability indexers, six pairwise agreement matrices were constructed. These were 30 by 30 matrices, with the 29 index terms representing 29 of the 30 nominal categories and No Index Term Used representing the 30th nominal category. The pairwise indexing decisions for each segment of narrative text analyzed across all 96 documents in the reliability study data base were tabulated into the appropriate cell of the agreement matrix for the particular pair of indexers being compared. The 30 diagonal cells of the agreement matrix denote agreement between the two indexers in assigning index terms; all of the off-diagonal elements in the matrix represent instances in which the two indexers disagreed in their selection of terms. The total number of entries in these six matrices varied slightly among the six pairwise comparisons between the four reliability indexers, but in all instances they were very large, ranging from 1,230 tallies to 1,389 tallies. Consequently, the size of the reliability study data base can be considered to be large enough to provide a stable measure of the level of agreement achieved in performing this complex intellectual task.

Table 40 shows the results of the kappa analysis of the six pairwise comparisons between the four reliability indexers in selecting index terms for

RESULTS OF THE KAPPA ANALYSIS FOR THE SIX PAIRWISE COMPARISONS BETWEEN THE FOUR RELIABILITY INDEXERS IN SELECTING INDEX TERMS FOR THE ENTIRE RELIABILITY STUDY DATA BASE

Pairwise Comparisons				
Between Each Pair of		σκ	*	к
Reliability indexers	K	0	Z	max
The experienced indexer vs. the principal investigator	.73	.0065	111.82	.90
The experienced indexer vs. inexperienced indexer A	.88	.0072	123.49	. 97
The experienced indexer vs. inexperienced indexer B	.72	.0068	106.24	.90
The principal investigator vs. inexperienced indexer A	.73	.0065	111.82	.89
The principal investigator vs. inexperienced indexer B	.71	.0064	111.06	.90
Inexperienced indexer A vs. inexperienced indexer B	.78	.0068	115.56	.92

A z of 3.29 is significant at the .001 level of probability. Therefore, all of the z values reported in this table are extremely significant and lead to rejection of the null hypothesis that the obtained κ does not exceed the chance level of agreement.

the entire reliability study data base. The second column in this table shows the value of κ ; the third column shows the standard error of κ ; and the fourth column lists the normal deviate, z, obtained by dividing κ by its standard error. All of the z values are very large, and consequently, extremely significant, indicating that in all six comparisons the null hypothesis that the obtained κ does not exceed the chance level of agreement can be rejected. The last column in Table 40 provides the maximum possible value of kappa for each of the six pairwise comparisons. These values can be used as an upper limit for comparing the level of agreement actually achieved with the maximum level possible given the marginal distributions. Thus, in the first comparison between the experienced indexer and the principal investigator, the κ obtained was .73 compared to a possible maximum value of .90. The best agreement in selecting index terms was obtained between the experienced indexer and inexperienced indexer A, a κ of .88 where the maximum κ possible in this instance was .97. This is a heartening finding, suggesting that an individual without a research background in only six training sessions can be trained to apply

the complex content analysis methodology developed in this research project. With additional training and further experience, this individual could be expected to apply these indexing skills in an even more consistent manner.

The other values of κ in Table 40 are not as large as the one for the comparison between the experienced indexer and inexperienced indexer A. However, they all range between .71 and .78, with .71 probably representing the lower limit of reliability achievable in a study of this kind. With additional training in those areas where there was confusion in the minds of the reliability indexers as they wrestled with the task of selecting the most appropriate index term, the expectation would be that better agreement could be achieved among these same four individuals if they were to replicate this experiment. All four reliability indexers have expressed their concordance with this expectation.

A careful perusal of the six agreement matrices from which the statistics presented in Table 40 were derived was very instructive. Most of the offdiagonal cells were empty. When there were tallies, they were sporadic and scattered with only one or two tallies appearing in an occasional cell off the diagonal. However, two areas of confusion were prominently displayed in these six matrices. One minor area of confusion was between PRODUCTIVITY AND ACHIEVE-MENT and MANAGEMENT FUNCTIONS, although this confusion could not be considered to be extensive. The revision of the training manual included in Appendix A has attempted to clarify the points of confusion between these two index terms.

The other area of confusion is major and deserves special comment. In the six training sessions it was pointed out that certain statements in the narrative text describe the job duties and the qualifications for the position that the ratee occupies rather than the ratee's actual qualifications for and performance in this position. When such a factual statement of the requirements for the position were included in the narrative text, it was not to be indexed since it told nothing about the ratee's qualifications and performance per se. Therefore, it was not considered to be an evaluative statement. Unambiguous examples of this type of narrative statement taken from the training material are the following:

Example 1. As the Quality Control Chief he is responsible for the continuous updating of a number of SOP's as well as implement-ing the new ones that are required.

Example 2. Chief XX is presently serving in an RMl billet. This is because he made Chief Petty Officer in November 1970.

However, when confronted with indexing the reliability study data base itself, this indexing convention was frequently misconstrued by the three reliability indexers who had not had the extensive indexing experience that the experienced indexer had had. The following two examples illustrate where the confusion arose.

Example 3. Ratee's assignment demands particularly delicate tact, due to his working among civilians upon whom he must depend for cooperation. The experienced indexer did not assign any index terms to this sentence, concluding that it was a statement defining the requirements of the job position rather than how the ratee performed in the job. All of the other three reliability indexers inferred that the individual evaluating the ratee was actually referring to the fact that the ratee possessed tact in interfacing with the civilian community. The principal investigator used the terms CONDUCT, INTEG-RITY, AND PRIDE and REPRESENTATION to index this sentence, as did inexperienced indexer B. Inexperienced indexer A used only CONDUCT, INTEGRITY, AND PRIDE. There was substantial agreement among the three less experienced reliability indexers, but none of them matched the indexing decision of the experienced indexer that they were trying to emulate. Another example of this type of disagreement is the following:

Example 4. Additionally, he must supply satisfactory solutions to the many problems of the Company Commanders in connection with these services.

Again the experienced indexer considered this comment to be a statement defining the requirements of the job position whereas the other three reliability indexers attributed the skill required to the ratee. The principal investigator and inexperienced indexer B called the skill CONTROLLING; inexperienced indexer A called it PLANNING.

Disagreement in which the experienced indexer did not assign any index terms and the other three reliability indexers did assign one or more terms is very noticeable in studying the three agreement matrices in which the three less experienced reliability indexers are compared with the experienced indexer. This type of disagreement also occurred in the three comparisons among the less experienced indexers, emphasizing the general confusion that existed in how to handle statements of the type shown in Examples 3 and 4 above. Additional training aimed at clarifying this area of confusion most likely would markedly reduce this type of disagreement and raise the magnitude of κ .

Analysis of the level of agreement among the four reliability indexers in assigning numerical weights to each index term selected, based on the modifying adjectives and adverbs, was performed differently than the analysis of the level of agreement in selecting the index terms themselves. Selection of the index terms in this reliability study constituted a nominal scale whereas assignment of a numerical weight to each index term selected was an indexing decision involving an ordinal scale. Therefore, more powerful agreement statistics could be employed. Since numerical weights on a scale from 1 to 5 (New -2 to New 3) were assigned to each index term selected, it was possible to compute a product moment correlation coefficient between each pair of reliability indexers. The new transformed weights were used in these computations since this ordinal scale provided a more justifiable way of measuring the situation in which one indexer did not select an index term but the other indexer did (see Table 9).

In addition to computing these six product moment correlation coefficients, another agreement statistic, weighted kappa, was also calculated in order to determine if it agreed with the results of the correlational analysis. In 1968 Cohen published another article generalizing the kappa statistic to the situation in which disagreements of varying gravity can be weighted accordingly.²¹
Application of weighted kappa to quantifying the level of agreement in psychiatric diagnosis was also shown by Cohen and his colleagues.²²

Weighted kappa is an agreement statistic corrected for chance agreement, to be used when different kinds of disagreement are to be differentially weighted in the agreement index. The desired weighting is accomplished by an a priori assignment of weights to the r by c cells of the agreement matrix, and must be done very carefully because the weights assigned are an integral part of how agreement is defined, and therefore, how it is measured with weighted kappa (κ). Table 41 shows the weighting algorithm that was used in computing κ, for assessing the level of agreement in assigning numerical weights, based on the modifying adjectives and adverbs, to the index terms selected in the reliability study. The first step in computing κ was to construct a 6 by 6 agreement matrix between each pair of reliability indexers that encompassed all of the pairwise numerical weights that were assigned to index terms based on their modifying adjectives and adverbs. These numerical weights were tabulated in the agreement matrix across all 96 documents in the reliability study data base. Using the first row of Table 41 as an example, if Reliability Indexer I and Reliability Indexer II both had assigned a numerical weight of 3 to the index term that they had selected, it represented perfect agreement in their interpretation of the superlativeness of the adjective or adverb modifying the index term. Therefore, the 3,3 cell was given an a priori weight of zero in computing $\kappa_{\rm m}$ since perfect agreement should receive no penalty. If one indexer had assigned a numerical weight of 3 to the index term selected

TABLE 41

THE WEIGHTING ALGORITHM USED IN COMPUTING WEIGHTED KAPPA FOR ASSESSING THE LEVEL OF AGREEMENT IN ASSIGNING NUMERICAL WEIGHTS TO THE INDEX TERMS SELECTED IN THE RELIABILITY STUDY

87

and the other indexer had assigned a numerical weight of 2, they only disagreed by one position on the ordinal scale, and therefore, the 3,2 cells were given an a priori weight of one in computing κ , penalizing this mild disagreement only slightly. In the extreme case, "if one indexer had assigned a numerical weight of 3 to the index term selected and the other indexer had assigned a numerical weight of -2, they disagreed by five positions on the ordinal scale, and therefore, the 3,-2 cells were given an a priori weight of five in computing κ , penalizing this extreme disagreement the maximum possible. This same logic was applied in determining the weights to be used in computing κ throughout the remainder of the matrix. All of the diagonal cells were given a weight of zero since in no case should perfect agreement be penalized. All cells immediately off the diagonal were penalized by a weight of two; and so on out to a penalty weight of five for the case of worst disagreement.

$$\kappa_{\omega} = 1 - \frac{\sum_{ij}^{w} ij^{p} oij}{\sum_{ij}^{w} ij^{p} cij}$$

where w_{ij} = a priori weight in cell ij
p_{oij} = observed proportion in cell ij
p_{cij} = chance proportion in cell ij

The standard error of $\kappa_{(j)}$ is equal to

$$\sigma_{\kappa_{\omega0}} = \sqrt{\frac{\Sigma w_{ij}^2 p_{cij} - (\Sigma w_{ij} p_{cij})^2}{N(\Sigma w_{ij} p_{cij})^2}}$$

A significance test of κ_{ω} , that is, a test of H : Population κ_{ω} - Observed κ_{ω} = 0, is accomplished by evaluating the normal curve deviate

 $z = \frac{\kappa_{\omega}}{\sigma_{\kappa}}$

Table 42 shows the results of the correlational analysis and the weighted kappa analysis for the six pairwise comparisons between the four reliability indexers in assigning numerical weights to each index term selected, based on the modifying adjectives and adverbs, for the entire reliability study data base. The results of the correlational analysis are shown first in Table 42. The best agreement in assigning numerical weights to each index term selected was obtained between the experienced indexer and inexperienced indexer A, a correlation coefficient of .80. The best agreement in selecting index terms themselves was also achieved between this same pair of indexers (see Table 40). TABLE 42

FOR THE SIX PAIRWISE COMPARISONS BETWEEN THE FOUR RELIABILITY INDEXERS RESULTS OF THE CORRELATIONAL ANALYSIS AND THE WEIGHTED KAPPA ANALYSIS IN ASSIGNING NUMERICAL WEIGHTS TO EACH INDEX TERM SELECTED FOR THE ENTIRE RELIABILITY STUDY DATA BASE

Pairwise Comparisons	Product Moment Correlation	2	Weighted Kappa	
Between Each Pair of Reliability Indexers	r_{pm}^{*}	** ۳	a K wo	*** 2
The experienced indexer vs. the principal investigator	.67	.63(.73)	.0457	13.85
The experienced indexer vs. inexperienced indexer A	°80	.78(.82)	.0539	14.41
The experienced indexer vs. inexperienced indexer B	.64	.60(.68)	.0474	12.61
The principal investigator vs. inexperienced indexer A	.70	. 64	.0465	13.78
The principal investigator vs. inexperienced indexer B	.64	.61	.0449	13.55
Inexperienced indexer A vs. inexperienced indexer B	.69	.66	.0494	13.32

×

A product moment correlation coefficient of .104, based on an N of 1000, is significantly different from zero at the .001 level of probability.

** The values of k shown in parentheses take into account only those instances in which both indexers selected an index term and exclude those instances in which the experienced indexer did not select an index term but the other less experienced indexer did.

A z of 3.29 is significant at the .001 level of probability. Therefore, all of the z values reported in this table are highly significant and lead to rejection of the null hypothesis that the obtained $\kappa_{_{\rm UD}}$ does not exceed the chance level of agreement.

89

These findings corroborate each other in suggesting that an individual without a research background in only six training sessions can be taught not only how to select the most appropriate index terms but also how to consistently assign weights to these terms based on the modifying adjectives and adverbs. The other correlations reported in Table 42 are lower, but none is less than .64. All six correlation coefficients are significantly different from zero well beyond the .001 level of probability.

On the weighted kappa side of Table 42 the first column shows the value of κ_{ω} ; the second column shows the standard error of κ_{ω} ; and the last column lists the normal deviate, z, obtained by dividing κ_{ω} by its standard error. All of the z values are large, and consequently, highly significant, indicating that in all six comparisons the null hypothesis that the obtained $\kappa_{\rm c}$ does not exceed the chance level of agreement can be rejected. As was expected, the κ_{ω} values are similar in magnitude to their correlation coefficient counterparts. Again, the best agreement as measured by weighted kappa was obtained between the experienced indexer and inexperienced indexer A, a κ_{ω} of .78. The three values shown in parentheses after the first three κ 's listed in Table 42 were computed in order to determine the level of ω agreement achieved if those instances were excluded where the experienced indexer did not select an index term, and consequently, did not assign a numerical weight but the other less experienced indexer did select an index term and assigned a weight to it. This proved to be the area of major confusion in executing the reliability study as pointed out earlier in this section in discussing the results of the kappa analysis of level of agreement in selecting the index terms themselves. Instances where the experienced indexer did not assign a weight but the other indexer did form one row in the weighted kappa computational matrix. This row can be omitted from the computation, resulting in a value for K that ignores this major area of confusion and takes into account only those Instances where both indexers selected an index term, and consequently, assigned a weight. The gain in the value of κ_{ω} is not very large for the comparison between the experienced indexer and inexperienced indexer A when $\kappa_{\rm c}$ was recomputed in this fashion. However, the gain was quite substantial in the other comparisons between the experienced indexer and the principal investigator and between the experienced indexer and inexperienced indexer B. This suggests that with additional training to clarify this area of confusion and with more indexing experience, the level of agreement among the four reliability indexers could possibly be raised to a value of .80 to .85 as measured by any of the three agreement statistics employed in this study. However, values in the .90's are the ultimate objective.

In conclusion, it might be of interest to point out that the initial expectation in beginning this reliability study was that it would be extremely difficult to train nonresearch-oriented individuals to consistently index the narrative sections of Evaluation Report forms using the complex content analysis methodology that had been developed in the pilot study. The surprising result is that in only six training sessions a quite respectable level of agreement was achieved. Moreover, one of the inexperienced indexers showed a higher level of agreement with the experienced indexer than the principal investigator did, and the other inexperienced indexer agreed with the experienced indexer almost as well as the principal investigator. The intuitive feeling that the reliability indexers had after completing the reliability study was that the most difficult part of learning to index consistently was over and that with additional practice and some review training sessions they could improve their indexing skill.

SECTION 6. FUTURE AREAS OF INVESTIGATION

In the subsequent 10-month period of this research project beginning March 1, 1973 and concluding December 31, 1973, additional studies of the 225 Evaluation Reports in the pilot study sample and the 444 Evaluation Reports in the cross validation and generalization samples will be carried out in order to devise valid, short-cut methods of indexing the narrative content of these reports based on the more lengthy and complex content analysis methodology that has already been developed. The issues of trainability and reliability in indexing this type of narrative text will be studied further. The following specific tasks are being undertaken:

A. Short-cut Indexing Methods

Efforts are in progress to develop valid, short-cut methods for indexing the narrative content of Evaluation Reports by capitalizing on the findings resulting from the various stepwise discriminant analyses that have been performed. The variables that are entered into the discriminant function at the first five to ten steps in the analysis appear to be the key variables in discriminating among the three criterion groups. These variables then form one target for study, i.e., how to extract this differentiating information from the narrative text in a simple but reliable fashion that will achieve as good or nearly as good classification accuracy as the longer, more complex indexing methodology. This approach is being used to develop optimum streamlined classification algorithms for all four ratings represented in the research data base studied thus far, i.e., AT's, BT's, CS's, and RM's.

In addition, the literature is being searched for work that may be relevant to the objective of developing valid, short-cut methods for indexing the narrative content of Evaluation Reports.

B. Extension of the Inter-indexer Reliability Study

An extension of the reliability study is being conducted using four reliability indexers. Two of the original reliability indexers (inexperienced indexers A and B), after refresher training using the updated version of the training manual, will independently index a different set of 48 Evaluation Reports than that used in the original reliability study and their indexing decisions will be compared to the judgments of the experienced indexer. The level of agreement between each of the inexperienced indexers and the experienced indexer after a second exposure to reliability indexing will be calculated to determine if the level of agreement can be improved with additional training and experience. In addition, two new reliability indexers will be trained, and they will independently index the original set of 48 Evaluation Reports. Their indexing decisions will be compared to those of the experienced indexer to determine if the level of agreement achieved is comparable to that found in the first reliability study.

REFERENCES

- Robertson, D. W. Source documents for the automated enlisted performance evaluation system. Research Memorandum SRM 72-10, March 1972, Naval Personnel and Training Research Laboratory, San Diego, California 92152.
- Ramsey-Klee, Diane M. A content analysis of the narrative sections of Navy performance evaluations for senior enlisted personnel. Technical Report No. 2-71, October 1971, R-K Research and System Design, Contract Nonr N00014-70-C-0291 - Project NR 153-316, Office of Naval Research.
- Baxendale, Phyllis. Content analysis, specification, and control. In C. A. Cuadra (Ed.), Annual Review of Information Science and Technology, Volume 1. New York: Interscience Publishers, 1966, pp. 71-72.
- Taulbee, O. E. Content analysis, specification, and control. In C. A. Cuadra (Ed.), Annual Review of Information Science and Technology, Volume 3. Chicago: Encyclopaedia Britannica, Inc., 1968, p. 106.
- Fairthorne, R. A. Content analysis, specification, and control. In C. A. Cuadra (Ed.), Annual Review of Information Science and Technology, Volume 4. Chicago: Encyclopaedia Britannica, Inc., 1969, p. 76.
- Koontz, H. Appraising Managers As Managers. New York: McGraw-Hill Book Co., 1971.
- 7. Koontz, H. and O'Donnell, C. Principles of Management. (5th Ed.) New York: McGraw-Hill Book Co., 1972.
- 8. Likert, R. New Patterns of Management. New York: McGraw-Hill Book Co., 1961.
- Newman, W. H., Summer, C. E., Jr., and Warren, E. K. The Process of Management. (2nd Ed.) Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1967.
- 10. Sayles, L. Managerial Behavior. New York: McGraw-Hill Book Co., 1964.
- 11. Harrington, W. Recommendation quality and placement success. *Psychological Monographs*, 1943, 55(4, Whole No. 252).
- 12. Baxendale, Phyllis. Op. cit., p. 75.
- 13. Dixon, W. J. (Ed.) BMD: Biomedical Computer Programs. Los Angeles: University of California Press, 1973.
- 14. Ramsey-Klee, Diane M. Op. cit., pp. 69-81.
- 15. Ibid, pp. 19-20.
- 16. Ibid, pp. 20-21.

REFERENCES (Continued)

- 17. Ibid, pp. 42-43.
- 18. Ibid, p. 40.
- 19. Ibid, p. 41.
- 20. Cohen, J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 1960, 20, 37-46.
- Cohen, J. Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. *Psychological Bulletin*, October 1968, 70(4), 213-220.
- 22. Spitzer, R. L., Cohen, J., Fleiss, J. L., and Endicott, Jean. Quantification of agreement in psychiatric diagnosis: A new approach. Archives of General Psychiatry, July 1967, 17, 83-87.

APPENDIX A

TRAINING MANUAL FOR INDEXING THE NARRATIVE SECTIONS OF NAVY PERFORMANCE EVALUATIONS FOR SENIOR ENLISTED PERSONNEL

PURPOSE	96
BACKGROUND	96
RATEES AS MANAGERS	98
QUANTIFYING THE INDEX TERMS	98
SPECIAL INDEXING CONSIDERATIONS	100
REFERENCES	104
ALPHABETICAL DICTIONARY OF INDEX TERMS	109

PURPOSE

The purpose of this manual is to train nonresearchers in the content analysis techniques developed in a personnel research study to analyze the narrative sections of Navy performance evaluations for senior enlisted personnel in pay grades E-7 (Chief Petty Officer), E-8 (Senior Chief Petty Officer), and E-9 (Master Chief Petty Officer).¹ The objective of this study was to provide personnel decision makers (e.g., selection boards and detailers) with a standardized way of detecting valid and discriminating indicators of on-job performance in narrative evaluation comments.

BACKGROUND

Section 19, Evaluation Section, of Evaluation Report Form NAVPERS 1616/8* is designed to permit the rater (evaluator) to compare the ratee with all others of his rate known to the rater on 13 specific aspects of on-job performance as well as to make an overall comparative evaluation of the ratee's performance (see Figure A-1). Ratings are made by marking the column of the rating distribution into which the rater evaluates that the ratee falls (for example, top 1% for superlative performance). Section 19R of this form provides space for the rater to write narrative evaluation comments to describe further the ratee's performance and qualifications. Section 19S of this form provides space for the rater to write narrative justification comments and is required to support any marks assigned to the top or bottom 10, 5, or 1% columns of Section 19.

Sections 19R and 19S are referred to as the narrative text of the Evaluation Report since they are the only portions of the report where the rater uses his own words to assess the on-job performance of the senior enlisted man that he is rating. Thus far the narrative evaluation and justification sections of the Evaluation Report have not been exploited systematically in making personnel decisions because narrative text tends to resist objective analysis and interpretation. However, results from a content analysis study of the narrative text¹ strongly suggest that there are stable differences among the performance characteristics of chief petty officers that are reflected in the narrative statements written about them by evaluators. Furthermore, these differences are both identifiable and quantifiable. The remainder of this manual presents a set of explicit and detailed guidelines for identifying, indexing or labeling, and quantifying (by means of a weighting scale) the concepts and ideas represented in the narrative text of Navy performance evaluations for senior enlisted personnel. These quantified labels have been shown to discriminate or differentiate between superior ratees and their slightly less qualified colleagues.

This form subsequently has been replaced by another form that can be scanned by an optical character reader; however, the content of the two forms is essentially the same.

Figure A-1. Evaluation Report Form NAVPERS 1616/8 (a 75 percent photo reduction of the original form)

-1

RATEES AS MANAGERS

Senior enlisted personnel in pay grades E-7/8/9 are all managers in the sense that they all are responsible for the supervision of other enlisted men whose work they direct. Therefore, the unifying focus in this manual is on the assessment of a chief petty officer (ratee) as a manager. The operations of a manager may differ from one organization or from one institutional setting to another; however, the functions of a manager are common to all. The task of the manager is one of selecting goals and designing and maintaining an environment that makes possible the performance of individuals working together in a group to attain these goals. Chief petty officers in pay grades E-7/8/9 are junior level managers, and as such, they must perform technical as well as managerial functions. Table A-1 shows a hierarchy of 29 index terms or labels that can be used to characterize the on-job managerial performance of chief petty officers. These index terms are the terms to be imposed onto the narrative text to give it objective structure and to systematize the way that this text is analyzed and interpreted. Note in Table A-1 that the 29 index terms are divided into three sections. The first section contains seven specific MANAGEMENT FUNCTIONS that many authorities on management practice agree are the characteristic duties of all managers. 2,3,4,5,6 Although some authorities believe that there are more, less, or different functions performed by managers, these seven functions were selected because they are representative of the duties that chief petty officers actually perform.

The second section of Table A-1 contains index terms for 13 specific SKILLS AND ABILITIES considered to be important by Navy supervisory personnel in performing effectively as a chief petty officer. While some authorities on management practice consider making a judgment about whether or not an individual possesses a skill, quality, or ability to be a subjective process, Navy evaluators do repeatedly call out these specific qualities in their narrative evaluations because many of these qualities are dimensions on which they rate the ratee in Section 19 of the Evaluation Report. The first section of Table A-1---MANAGEMENT FUNCTIONS---deals with how a ratee performs his managerial functions and is result oriented, while the second section---SKILLS AND ABILI-TIES---contains index terms that relate to an individual's characteristics and qualities which, if used, may help him achieve good results.

The third section of Table A-1---PRODUCTIVITY AND ACHIEVEMENT---is the most result-oriented section of the hierarchy. Here are included the measures of overall performance. DRIVE and SERVICE MOTIVATION (a specific type of drive) are included in this section since drive is considered to contribute to successful performance. POTENTIAL also is included here since potential is a measure of future performance. AWARDS AND PUNISHMENT, REPUTE, and ASSET TO THE NAVY represent acknowledgments of an individual's performance, either positive or negative acknowledgment.

QUANTIFYING THE INDEX TERMS

It is not enough to simply label a narrative statement with the most appropriate index term since the statement may have been a highly positive, quite positive, neutral, quite negative, or highly negative one. For example, TABLE A-1

HIERARCHY OF INDEX TERMS

MANAGEMENT FUNCTIONS

CONTROLLING LEADERSHIP AND DIRECTING ORGANIZATION PLANNING REPRESENTATION STAFFING USE OF COMMUNICATION

SKILLS AND ABILITIES

COMMUNICATION CONDUCT, INTEGRITY, AND PRIDE COOPERATION ENDURANCE FLEXIBILITY GROOMING AND ATTIRE INITIATIVE INTELLECTUAL FUNCTIONING PROFESSIONALISM RELIABILITY AND DEPENDABILITY RESOURCEFULNESS RESPONSIVENESS TECHNICAL SKILLS

PRODUCTIVITY AND ACHIEVEMENT AWARDS AND PUNISHMENT DRIVE SERVICE MOTIVATION POTENTIAL REPUTE ASSET TO THE NAVY in order to differentiate between the ratee who plans superbly and the ratee who plans inadequately, a weighting scale was devised to be applied to each index term that is used (see Table A-2). The weighting scale contains five numerical values ranging from 5, the positive end of the scale, to 1, the negative end of the scale. Under each numerical value in Table A-2 there are listed examples of adjectives or adverbs that may be used by the rater to describe a ratee's performance. These lists of words provide clues to the indexer as to which numerical value to assign to an index term. As a simple example, if the rater commented that the ratee was highly cooperative, this statement would be indexed as COOPERATION and assigned a weight of 4 since highly is listed as an example under numeral 4 in Table A-2.

However, in many cases the indexer will have to exercise his own judgment. Some of the words that will require such a judgment are the following: abnormally, absolutely, all, always, consistently, constantly, fully, immeasurable, intense, no doubt, obvious, totally, unquestionably, and uppermost. An indexer will encounter many more words than those enumerated above that will require good judgment in choosing the most appropriate weight to use. For example, consider the following statement: "He is always resourceful." This statement would be indexed as RESOURCEFULNESS 4, because the statement could have been worded in a stronger way. The rater could have said, "He is always fully resourceful." This stronger statement would have been indexed as RESOURCEFUL-NESS 5. The words always and fully in most cases indicate the use of a 4 on the weighting scale; yet in the above example where they appear together, the statement is made so strongly that a weight of 5 is the correct indexing decision. However, there are other 4-weighted modifiers that when used in combination still remain a 4, for example, remarkably well or highly effective, because the modifying phrase could have been worded even more strongly, for example, extremely well or most effective. It is important to remember when using the weighting scale that the indexer should ask himself, "Could this statement have been phrased in another way by the rater that would have made it a stronger or a weaker statement?" The indexing convention to be followed for the modifier quite is to consider it to have a positive connotation and to give it a weight of 4 as in the following example: "He has been quite resourceful in making do with available parts." RESOURCEFULNESS 4. However, there may be instances in which the indexer would assign a 2 weight to the modifier quite if the context was sufficiently negative to warrant it as in the following example: "His tendency to be quite overweight detracts from his overall appearance." GROOMING AND ATTIRE 2. Note that AWARDS AND PUNISHMENT is given either a 5 or a 1 weight since there is no degree of variance. Either the ratee was given an award or not, or was punished (disciplined) or not.

SPECIAL INDEXING CONSIDERATIONS

An alphabetical dictionary of the 29 index terms appears at the end of this discussion. For each term in the dictionary, a definition is given, examples of narrative text indexed with the term are cited, and usage rules to guide the indexer in choosing this term or another term are supplied. Careful study of the dictionary will instruct the new indexer in how index terms and their numerical weights should be assigned in order to ensure a systematic and objective application of the indexing procedures explained in this manual. TABLE A-2 WEIGHTING SCALE

5	4	3	2	1
excellent	good	average	poor	poorest
superlative	comparative		comparative	superlative
best	better than	average	not as good	worst
	most		as most	
		EXAMPLES		
above	above average	adequate	declining	bottom
reproach	better	aptly	quality	least
beyond	commendable	capable	deficiency	lowest
reproach	complete	competent	detrimental	
boundless	deep	generally	fair	
exceptional	definitely	moderate	in need of	
extra-	easily	satisfac-	insufficient	
ordinary	effective	tory	lack of	
extremely	efficient	sufficient-	lower than	
finest	eloquent	1y	average	
flawless	eminent	usually	lowering of	
greatest	exceeds		negatively	
highest	excels		spotty	
ideal	exemplary		unfortunate	
little to be	expeditious		unwisely	
desired	experienced		weak in	
limitless	expertise		with the ex-	
maximum	extensive		ception of	
most	favorable			
never	great			
outstanding	high/highly			
paramount	immaculate			
perfect	immensely			
profound	impeccable	4-good (Cont.)		
sterling	impressive	rare		
superb	innate	remarkable		
superior	inspires	significantly		
surpassed by	instills	skillful		
none	invaluable	smoothly		
top/topnotch	keen	solid		
unimpeachable	laudable	strongly		
unique	leading	surpassed		
unlimited	marked	thorough		
unmatched	meticulously	tremendous		
utmost	model	truly		
without equal	much	unstinting		
without	noteworthy	valuable		
exception	particularly	vast		
100%	rapidly	very		

NOTE: AWARDS AND PUNISHMENT is assigned a weight of either 5 or 1.

Although some indexing examples may not always seem logical to the new indexer, each indexing decision has been meticulously and thoroughly considered. The examples presented in the alphabetic dictionary represent a distillation of two years' of indexing experience and constitute a self-instructional compilation of crucial indexing rules and conventions that the new indexer needs to know in depth in order to be able to index the narrative text of Evaluation Reports accurately and consistently.

There are several indexing considerations that should be kept in mind as they will assist the indexer in maintaining consistency and will help resolve indexing dilemmas. Sections 4A and 4B of Evaluation Report Form NAVPERS 1616/8 provide a description of the ratee's primary and collateral duties. These sections should be read as background information before beginning to index the narrative text. An example of these two sections is shown below:

4A. DESCRIPTION OF PRIMARY DUTIES DURING THIS REPORTING PERIOD

Ratee is assigned as supervisor of Intermediate Level Maintenance on communications, navigation, and radar systems installed in the EA-3B, EP-3B, and EC-121M aircraft.

4B. DESCRIPTION OF COLLATERAL DUTIES AND/OR SPECIAL ASSIGNMENTS DURING THIS REPORTING PERIOD

Ratee is assigned on a rotational basis as the Avionics Supervisor at the squadron detachment in Danang, RVN. He also stands Assistant Squadron Duty Officer watches.

Information about a ratee's job duties is needed when indexing because a statement about an individual's achievement may not be in terms of performing a managerial function but rather in terms of his overall performance. Consider the following statement from the narrative text: "Ratee's supervision of maintenance of the communication and radar systems has been outstanding." This statement would be indexed as PRODUCTIVITY AND ACHIEVEMENT 5 because it is an assessment of the ratee's overall job performance as a supervisor of intermediate-level maintenance rather than performance of the controlling function of maintaining equipment in order to assure accomplishment of plans.

Another consideration to keep in mind is that when a description of a job or job duties is included in the narrative text, this description is not indexed since it is a factual statement describing the qualifications needed to perform a specific job or the duties of that job. Therefore, the statement is about the job itself and not about the ratee. Even if such a statement is modified by adjectives or adverbs, it still is not indexed if it refers to how a job should be performed and not to how the ratee actually performs a job. As an illustration of this convention, if planning is mentioned as one of the ratee's duties, this is a factual statement since it is the duty of all managers to plan and no index term would be assigned to this statement. For example, "Chief XX is required to develop procedural methods of accomplishing the division workload." Even if an adjective or adverb is added to this statement---"Chief XX is required to develop effective and efficient procedural methods of accomplishing the division workload," the statement is still about a specific

job duty or requirement and the modifiers refer to how the job should be performed. The modifiers do not refer to the ratee per se and, therefore, this statement should not be indexed since it is not evaluating the ratee. However, if a statement is a qualitative statement and refers to the ratee, then it becomes a statement of evaluation and is indexed. If the rater said that the ratee plans well on the job, then a value judgment has been rendered about what kind of a planner the ratee is. For example, "Chief XX has developed effective and efficient procedural methods of accomplishing the division workload"; this statement would be labeled PLANNING 4. The statement no longer is a factual one but has become an evaluative comment about the ratee rather than a statement describing a job requirement. "Chief XX has developed procedural methods of accomplishing the division workload," would be labeled PLANNING 3 since the rater thought it worthwhile to mention this information and the statement, therefore, evaluates the ratee although no modifying adjective or adverb was used. Always keep in mind that indexing decisions are made in terms of the qualifications that a ratee actually possesses that can aid him in performing a job, in terms of how a job is performed by a ratee, or in terms of the results achieved.

Also keep in mind that in deciding on which numerical weight to use, modifying adjectives and/or adverbs must be associated with the idea or concept being indexed and not with another idea or concept in the same sentence. For example, consider the following statement: "His resourcefulness in completing his tasks in the most efficient and thorough manner is noted." Most is associated with the manner in which the ratee performs his tasks and, therefore, qualifies PRODUCTIVITY AND ACHIEVEMENT as a 5. The ratee's resourcefulness is not modified but it is stated that he possesses that characteristic. It helped to make the 5 weight possible for PRODUCTIVITY AND ACHIEVEMENT, but the first part of the statement is only indexed as RESOURCEFULNESS 3. To be given a 5 weight, the statement would have had to have been, "His outstanding resourcefulness in completing his tasks in the most efficient and thorough manner is noted." When there is no modifier given for an evaluative statement, a 3 weight is assigned to the index term selected (e.g., "His planning efforts have led to ... " would be labeled PLANNING 3). Also, if a modifying adjective or adverb that falls at the 3 position on the weighting scale is included in the evaluative statement, the index term selected still would be given a weight of 3 (e.g., "His competent planning has led to ... " would also be labeled PLANNING 3). Each statement indexed has to be regarded as a separate entity lest confusion and inconsistency result. Always remember the rule: How else could this statement have been worded?

However, if an adjective occurs before a string of words and phrases, this adjective modifies each word or phrase in the string until there is a clear break in the sentence structure, or until the adjective could not logically and/or grammatically be associated with a particular word or phrase. For example, "His outstanding technical knowledge and organizational ability have contributed to..." would be indexed as TECHNICAL SKILLS 5 and ORGANIZA-TION 5. The adjective *outstanding* modifies both phrases. Note that organization in the above example is referred to as a skill; yet it is placed under MANAGEMENT FUNCTIONS in the hierarchy of index terms. It is often difficult to differentiate between the performance of a function and the function as an actual skill that an individual may have. For example, there is a definite ability to lead or skill of leadership; yet it also is a very important function performed by managers. These subtleties in word meaning and usage are part of the expressive fabric of the English language and continue to plague those who strive to achieve precision in systematizing the information content of written discourse. At some point arbitrary rules have to be imposed. In this content analysis scheme, both organization and leadership are considered to be principally management functions rather than skills an individual may possess.

It is also important to remember when indexing and applying the weighting scale to be careful to take note of the words that are actually contained in the definition of an index term. Consider the definition of COMMUNICATION: COMMUNICATION refers to the expression of thoughts and feelings through the spoken or written word in a clear and concise manner. Therefore, the indexer should regard the ability to communicate in a clear and concise manner as an average ability and index any statement phrased similarly as COMMUNICATION 3. If a ratee is said to communicate in a very concise manner, then this statement would be indexed as COMMUNICATION 4.

Every attempt has been made to present the information contained in this manual in as explicit and lucid a form as possible. However, indexing remains more of an art than a science for all of the reasons alluded to previously. As an indexer you will encounter segments of narrative text for which only your considered judgment can help you arrive at the final decision. It is important, though, that you try to keep your judgments as consistent as possible. The best way to assure consistency is to keep records of difficult or marginal decisions and, if possible, of the basis on which these decisions were made. Table A-3 presents a glossary of indexing decisions that were made by one experienced indexer to handle the appearance of ambiguous or troublesome words and phrases in narrative text. Use this table as an extra indexing guide.

It is recommended that the new indexer become thoroughly familiar with this training manual before attempting to index the narrative sections of Evaluation Reports. If he can compare his independent trial indexing decisions with those of an experienced indexer, this procedure will serve to pinpoint areas of confusion in his understanding of the indexing rules and conventions. Frequent rereading of the manual will help to guarantee that the rules are applied the same way from day to day.

REFERENCES

- Ramsey-Klee, Diane M. A content analysis of the narrative sections of Navy performance evaluations for senior enlisted personnel. Technical Report No. 2-71, October 1971, R-K Research and System Design, Contract Nonr N00014-70-C-0291 - Project NR 153-316, Office of Naval Research.
- 2. Koontz, H. Appraising Managers As Managers. New York: McGraw-Hill Book Co., 1971.
- 3. Koontz, H. and O'Donnell, C. Principles of Management. (5th Ed.) New York: McGraw-Hill Book Co., 1972.

- 4. Likert, R. New Patterns of Management. New York: McGraw-Hill Book Co., 1961.
- Newman, W. H., Summer, C. E., Jr., and Warren, E. K. The Process of Management. (2nd Ed.) Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1967.
- 6. Sayles, L. Managerial Behavior. New York: McGraw-Hill Book Co., 1964.

TABLE A-3

GLOSSARY OF WORD CLUES TO THE USE OF INDEX TERMS

Acts with ease = CONDUCT, INTEGRITY, AND PRIDE Aggressive = DRIVE Agreeable = COOPERATION Alert = INTELLECTUAL FUNCTIONING (See Also RESPONSIVENESS) Amiable/Affable = COOPERATION Appraisal (assessment) of personnel = STAFFING Background in rate = TECHNICAL SKILLS Bearing = CONDUCT, INTEGRITY, AND PRIDE Can-do attitude = DRIVE Common sense = INTELLECTUAL FUNCTIONING Congenial = COOPERATION Constant = RELIABILITY AND DEPENDABILITY Coordinate = ORGANIZATION Decisiveness = SKILLS AND ABILITIES* Delegate = ORGANIZATION Deliberate = SKILLS AND ABILITIES* Demeanor = CONDUCT, INTEGRITY, AND PRIDE Deportment = CONDUCT, INTEGRITY, AND PRIDE Devoted (dedicated) to duty or the Navy = SERVICE MOTIVATION Devotes (dedicates) long hours = DRIVE Diligent = DRIVE Disposition = CONDUCT, INTEGRITY, AND PRIDE Dynamic = DRIVE (his) endeavor = DRIVE Expediently = RESPONSIVENESS Expeditious = RESPONSIVENESS Expertise = TECHNICAL SKILLS Forceful = DRIVE Forcefulness of expression = COMMUNICATION Foresight = SKILLS AND ABILITIES Friendly = CONDUCT, INTEGRITY, AND PRIDE Genial = CONDUCT, INTEGRITY, AND PRIDE Humor = CONDUCT, INTEGRITY, AND PRIDE Imagination = RESOURCEFULNESS Ingenuity = RESOURCEFULNESS Innovative = RESOURCEFULNESS (has) instituted = INITIATIVE Inventory = PLANNING + CONTROLLING Judgment = INTELLECTUAL FUNCTIONING Logical (keen) mind = INTELLECTUAL FUNCTIONING Mature = RELIABILITY AND DEPENDABILITY New ideas = INITIATIVE

If ratee is decisive (deliberate) in his thinking, index as SKILLS AND ABILITIES. If ratee is decisive (deliberate) in his behavior, index as CONDUCT, INTEGRITY, AND PRIDE.

TABLE A-3 (CONT.)

GLOSSARY OF WORD CLUES TO THE USE OF INDEX TERMS

Original thinking = INITIATIVE Perseverance = ENDURANCE Recommended changes = INITIATIVE Sincere = CONDUCT, INTEGRITY, AND PRIDE Stable = RELIABILITY AND DEPENDABILITY Suggestion making = INITIATIVE Supervising men = LEADERSHIP AND DIRECTING Supervising tasks = MANAGEMENT FUNCTIONS Tactful (used alone) = CONDUCT, INTEGRITY, AND PRIDE Tactful with men or subordinates = LEADERSHIP AND DIRECTING Talent = SKILLS AND ABILITIES Traffic flow pattern = PLANNING + CONTROLLING Versatile = SKILLS AND ABILITIES Vigor = DRIVE Zeal = DRIVE

ALPHABETICAL DICTIONARY OF INDEX TERMS

Format: The name of each index term is shown in all capital letters at the beginning of the definition of the term. The definition is followed by a SEE ALSO entry if there is one. The last section of the format presents a number of examples of how each term in the dictionary was used. The number following each index term is the weight assigned to it by the indexer. Additional indexing clues may also be given. ASSET TO THE NAVY refers to the worth or value of having an individual continue his career in the Navy.

EXAMPLES:

Ratee	has	been	an	exceptionally	ASSET	TO	THE	NAVY	5
fine	asset	to:	this	command.					

He has been a great asset to ASSET TO THE NAVY 4 DESCOL and the Navy.

Ratee has proven to be a definiteASSET TO THE NAVY 4asset with his outstanding pro-PROFESSIONALISM 5fessional and instructional abilityCOMMUNICATION 5in a relatively short time.COMMUNICATION 5

He is an asset to the ship and ASSET TO THE NAVY 3 the naval service.

Additional Indexing Clues:

One of the most outstanding men in the Navy today.	ASSET	TO	THE	NAVY	5
He is an outstanding military man.	ASSET	то	THE	NAVY	5
Valuable asset to the service	ASSET	то	THE	NAVY	4
Great value to the U.S. Navy	ASSET	TO	THE	NAVY	4
Asset to this command	ASSET	TO	THE	NAVY	3
Valuable to any command	ASSET	TO	THE	NAVY	3
Credit to the Navy	ASSET	ТО	THE	NAVY	3
Credit to the squadron	ASSET	TO	THE	NAVY	3
Asset to the command of the Navy	ASSET	то	THE	NAVY	3

ASSET TO THE NAVY is to be used only when the individual himself is considered to be an asset and not one of his traits. If one of his traits is an asset to the Navy, use asset as a qualifier for the trait. However, if his trait is an asset in performing a specific function, asset then qualifies the index term assigned to the function. For example, "His cooperative nature is a great asset to the Navy." COOPERATION 4. However, "His cooperative nature is a great asset in the performance of his coordinating responsibilities with Facilities Control and the Receiver Site," would be indexed as COOPERATION 3; ORGANIZATION 4. AWARDS AND PUNISHMENT are measurements of an individual's job performance as reflected in his receiving official commendatory recognition or penalty, or his being recommended for such an award or penalty.

EXAMPLES:

BTC was recommended for an achieve- AWARDS AND PUNISHMENT 5 ment medal for his leadership efforts during the 1969 WESTPAC Cruise.

Awarded the Navy Commendation Medal for meritorious service while attached to Fighter Squadron ONE FIVE ONE embarked in USS CORAL SEA (CVA-43) during combat operations from 10 October 1968 to 30 March 1969.

He was awarded an oral admonition. AWARDS AND PUNISHMENT 1

Additional Indexing Clues:

Reported	in	a commendatory	way	AWARDS	AND	PUNISHMENT	5
Relieved	of	duties		AWARDS	AND	PUNISHMENT	1

Use AWARDS AND PUNISHMENT only once no matter how many awards a ratee received if they are all mentioned in one statement. For example, "He won five awards for outstanding performances last year," would be indexed as AWARDS AND PUNISHMENT 5.

Use this term even if the award is given to a ratee's squadron, command, or other such unit. For example, "He contributed directly to the annual OP-EVAL award of 'Outstanding' given this division by the DCA Inspection Team during their recent visit to this Command." AWARDS AND PUNISHMENT 5.

Do not index that part of the sentence following the award statement which tells about the performance for which the ratee won the award. This is all considered to be part of the award statement. For example, "Ratee was recommended for and received the Navy Achievement Medal for his outstanding professional performance during this reporting period," would be indexed simply as AWARDS AND PUNISHMENT 5.

NOTE: AWARDS AND PUNISHMENT is assigned a weight of either 5 or 1.

COMMUNICATION refers to the expression of thoughts and feelings through the spoken or written word in a clear and concise manner. Includes *public speaking*, *reports*, *records*, and *letters*.

The ability to communicate is reflected in the choice of words or vocabulary, the organization of the expressed thoughts, phrasing, sentence structure, paragraphing, and overall clarity and forcefulness of expression.

SEE ALSO: USE OF COMMUNICATION

EXAMPLES:

His use of the English language is COMMUNICATION 5 excellent and he expresses himself COMMUNICATION 5 exceptionally well, both orally and in writing.

Ratee's ability to correctly speak COMMUNICATION 5 the English language is outstanding.

He utilizes a well-rounded vocabulary COMMUNICATION 4 to very effectively express himself.

He possesses an average command of COMMUNICATION 3 the English language both orally and in writing.

He is capable of expressing himself COMMUNICATION 3 clearly and adequately.

He is soft spoken but speaks well; COMMUNICATION 4 however, his written work, particularly spelling, could use improvement.

Additional Indexing Clues:

Excellent knowledge of English language	COMMUNICATION 5
Command of language superb	COMMUNICATION 5
Grammar excellent	COMMUNICATION 5
Vocabulary excellent	COMMUNICATION 5
His reports are accurate.	COMMUNICATION 4
Expresses well in writing	COMMUNICATION 4
Expresses well orally	COMMUNICATION 4
Expresses well orally and in writing	COMMUNICATION 4
Speaks with ease	COMMUNICATION 4

COMMUNICATION (Continued)

Can converse easily	COMMUNICATION	4
Eloquent speaker	COMMUNICATION	4
Relaxed group speaker	COMMUNICATION	3
Is at ease when speaking	COMMUNICATION	3
Presents matter in a comprehensive and interesting manner	COMMUNICATION	3
Speaks correctly	COMMUNICATION	3
Speaks logically	COMMUNICATION	3
Verbal expression is compre- hensive	COMMUNICATION	3
Capable in expressing himself	COMMUNICATION	3
Difficulty speaking to large groups	COMMUNICATION	2

A ratee's ability to communicate may be expressed by the evaluator with one or more descriptive phrases, but this part of the sentence should be treated as a single entity and labeled only once with COMMUNICATION. For example, "He utilizes a well-rounded vocabulary to very effectively express himself." COMMUNICATION 4.

Instructor would be indexed with COMMUNICATION unless it was the ratee's job title or main job duty. In this case it most likely would be labeled MANAGEMENT FUNCTIONS or PRODUCTIVITY AND ACHIEVEMENT, depending upon the statement.

CONDUCT, INTEGRITY, AND PRIDE refers to the way that one acts and to the mental activities and attitudes that influence behavior, such as integrity and pride. Integrity refers to one's moral principles, honesty, and sincerity. Pride is the sense of one's own dignity or worth.

For the assessment of integrity we would look at an individual's use of time and expense reports, dealings with others, probity in handling assignments, sincerity about his work, and his attitude toward life.

EXAMPLES:

CONDUCT, INTEGRITY, AND PRIDE 5 His conduct and personal appearance **GROOMING AND ATTIRE 5** are always superb. **GROOMING AND ATTIRE 4** He maintains an exemplary military appearance, and has high moral CONDUCT, INTEGRITY, AND PRIDE 4 standards and sound sense of values. CONDUCT, INTEGRITY, AND PRIDE 4 CONDUCT, INTEGRITY, AND PRIDE 3 Ratee reflects pride in his position as a Chief Petty Officer and pro-CONDUCT, INTEGRITY, AND PRIDE 5 **GROOMING AND ATTIRE 5** vides an outstanding example through his exceptionally fine personal habits and dress under all circumstances.

His even disposition has proven an asset in maintaining an open channel of communication between instructor and student.

The ratee has the potential to become an outstanding chief but has problems controlling his drinking while on the bench, resulting in tardiness at the expiration of liberty and his absence during working hours.

Excesses in alcohol have led to tardiness and a question of his dependability.

Additional Indexing Clues:

He provides an excellent example for his men.

Chief XX's conduct is never questioned.

Exemplary behavior

CONDUCT, INTEGRITY, AND PRIDE 3 USE OF COMMUNICATION 3

POTENTIAL 5 CONDUCT, INTEGRITY, AND PRIDE 2 CONDUCT, INTEGRITY, AND PRIDE 2 CONDUCT, INTEGRITY, AND PRIDE 2

CONDUCT, INTEGRITY, AND PRIDE 1 CONDUCT, INTEGRITY, AND PRIDE 2 RELIABILITY AND DEPENDABILITY 2

CONDUCT, INTEGRITY, AND PRIDE 5

CONDUCT, INTEGRITY, AND PRIDE 5

CONDUCT, INTEGRITY, AND PRIDE 4

CONDUCT, INTEGRITY, AND PRIDE (Continued)

Professional behavior	CONDUCT, PROFESSIO	INTEGRITY, DNALISM 3	AND	PRIDE	4
He is always correct and proper in all relationships.	CONDUCT, CONDUCT,	INTEGRITY, INTEGRITY,	AND AND	PRIDE PRIDE	4
Quick humor	CONDUCT,	INTEGRITY,	AND	PRIDE	4
Gentlemanly	CONDUCT,	INTEGRITY,	AND	PRIDE	3
At ease with superiors and sub- ordinates	CONDUCT,	INTEGRITY,	AND	PRIDE	3
Tactful	CONDUCT,	INTEGRITY,	AND	PRIDE	3
Friendly	CONDUCT,	INTEGRITY,	AND	PRIDE	3
Not afraid to offer criticism	CONDUCT,	INTEGRITY,	AND	PRIDE	3
Bordered on insubordination	CONDUCT,	INTEGRITY,	AND	PRIDE	2

It is important to remember that no matter how positive a trait may be, it is impossible to be consistent in weighting these traits; therefore, the weight is determined by the adjective which further qualifies the type of trait that a ratee possesses. For example, cheerful or cheerful personality would be given a weight of 3, while very cheerful or a very cheerful personality would be given a weight of 4.

Also included in this term are personality traits and attitudes. The following in their present form would all be indexed as CONDUCT, INTEGRITY, AND PRIDE 3: optimistic attitude; pleasant attitude; takes pride in himself; pride in his performance; dignified; self-confident; upright; honest; sincere; does not procrastinate; spends not excessive time "visiting"; perfectionist; quiet; unselfish; firm; courage; composed; calm; courtesy; disposition; obedience; loyalty to his superiors; friendly.

Good humor and a good example for contemporaries both would be indexed as CONDUCT, INTEGRITY, AND PRIDE 4 because of the word good.

The word *pride* often appears in the narrative text in conjunction with the way that a ratee feels about the Navy. Under these circumstances, use the index term SERVICE MOTIVATION.

115

CONTROLLING is the measurement of performance against established standards, correcting deviations, and assuring accomplishment of plans. In simple terms, controlling makes certain that what is done is what is intended. Forward-looking control prevents deviations from occurring by anticipating that they will occur unless action is taken now, such as maintenance of equipment.

Any activity which involves feedback is a controlling function in that it helps to ensure the successful accomplishment of goals (e.g., checks and balances, bookkeeping, accounting systems, traffic flow, and inventory).

EXAMPLES:

His ability to seek out potential CONTROLLING 5 problems and correct them before failure occurred has been extremely beneficial.

He is consistently capable of **CONTROLLING** 4 resolving problem areas before a critical situation can develop.

In his capacity as water chief tender he has enforced a strict and professional water chemistry program.

His analysis of divisional problems, both functional and administrative, and the execution of corrective measures have been very conducive to a smooth and highly effective division.

Because he never examined the fireroom equipment during the 10 days in port, the unsatisfactory condition of the boilers went

PRODUCTIVITY AND ACHIEVEMENT 4

CONTROLLING 4

PLANNING 3

CONTROLLING 3

CONTROLLING 1

Additional Indexing Clues:

unchecked.

CONTROLLING 3 Prevents problems Corrects difficulties CONTROLLING 3 Overcomes obstacles **CONTROLLING 3**

Maintenance is a controlling function because it helps to assure accomplishment of plans. However, if an individual's job title or main job duty is maintenance, then this usually would be indexed as PRODUCTIVITY CONTROLLING (Continued)

AND ACHIEVEMENT since maintenance is the performance of his total job function.

If the correction, problem solving, or prevention is of a technical nature and is performed solely by the ratee instead of by a group of his subordinates, it should be regarded more as a technical function or the demonstration of a technical skill rather than considered to be a controlling function, and would be labeled TECHNICAL SKILLS. For example, "Ratee's knowledge of the P-3 aircraft electronic systems and his ability to expeditiously correct the most complex electronic problem is outstanding." TECHNICAL SKILLS 5; RESPONSIVENESS 3; TECHNICAL SKILLS 5. The modifying adverb outstanding belongs to both phrases of this sentence.

The words assure and ensure should serve as a clue that the phrase which follows probably will be indexed as a controlling function.

COOPERATION is acting or working together with others or another for a common purpose. Includes congenial, amiable, or agreeable attitudes which enhance the act of working together.

COOPERATION 5

COOPERATION 5

COOPERATION 5

COOPERATION 3 REPUTE 4

COOPERATION 3

COOPERATION 3

PRODUCTIVITY AND ACHIEVEMENT 5

EXAMPLES:

He always cooperates fully with his seniors and accomplishes his duties in an outstanding manner.

He is always willing to help others in any way he can.

Ratee exemplifies the perfect officer-chief relationship.

Ratee is very cooperative with his COOPERATION 4 seniors and his contemporaries, SERVICE MOTIVATION 5 always putting the interests of the Navy first.

He is cooperative and well liked.

He is a pleasure to work with.

He will nevertheless listen to the ideas, beliefs, and suggestions of others.

Additional Indexing Clues:

Never hesitates to fully cooperate	COOPERATION 5	
Works well with superiors and subordinates	COOPERATION 4	
Gets along well with others	COOPERATION 4	
Continuous cooperation in all aspects	COOPERATION 4	
Complete cooperation	COOPERATION 4	
Congenial	COOPERATION 3	
Amiable	COOPERATION 3	
Cooperative	COOPERATION 3	
He will compromise.	COOPERATION 3	
Cooperative with superiors and subordinates	COOPERATION 3	
Assists others	COOPERATION 3	
Uncooperative	COOPERATION 2	

Usually a ratee's interpersonal relationship with his subordinates would be indexed as LEADERSHIP AND DIRECTING. However, when a statement has to do with a ratee's cooperative attitude in working with others, whether superiors or subordinates, then it should be labeled COOPERATION. DRIVE is the desire or personal motivation to achieve a purpose. Includes the desire for self-improvement or the desire to manage, achieve a purpose, and improve output through the teamed effort of subordinates. Includes conscientious, energetic, enthusiasm, forceful, and interest.

EXAMPLES:

He is an exceptionally dedicated and hard working Chief, readily accepting and expeditiously solving problems.

Always works to his fullest potential.

This highly energetic and enthusiastic young petty officer has performed all aspects of his duties in an outstanding fashion.

Ratee performs with vigor.

He is conscientious and is always extremely dependable.

Although the tasks assigned to the personnel under his supervision are always completed efficiently and in an excellent to outstanding manner, his superiors feel that he is capable of getting more out of his men and of putting more of himself into the job.

Ratee is not as aggressive as he could be which subsequently detracts from him reaching his full potential.

Additional Indexing Clues:

He continually strives for perfection.

Always driving to do the best job possible

Completely dedicated

Attempts to achieve perfection Volunteers for jobs DRIVE 5 DRIVE 5 RELIABILITY AND DEPENDABILITY 4 CONTROLLING 4

DRIVE 5

DRIVE 4 DRIVE 4 PRODUCTIVITY AND ACHIEVEMENT 5

DRIVE 3

DRIVE 3 RELIABILITY AND DEPENDABILITY 5

PRODUCTIVITY AND ACHIEVEMENT 5 LEADERSHIP AND DIRECTING 2 DRIVE 2

DRIVE 2 POTENTIAL 2

DRIVE 5

DRIVE 5

DRIVE 4

DRIVE 4

DRIVE 3

1

DRIVE (Continued)

1

The following words and phrases would be indexed as DRIVE 4: unflagging effort; works very hard at his job; spends many extra hours at his job; dedicates or devotes long hours; tireless; chief is tireless in his efforts to improve his equipment, personnel, and records; always willing to work long hours whenever necessary; continuously strives; taking courses in off-duty hours.

The following words and phrases would be indexed as DRIVE 3: intent on doing job well; determined; works hard; applied himself; strives for improvement; drive; working long hours; aggressive pursuit of duties; can-do spirit or attitude; diligent; dynamic; ambitious; zeal; endeavor.

When a statement about drive is part of how a ratee is performing a specific function or skill, then the statement is used as a qualifier for that function or skill. For example, "Ratee works very hard at motivating his men to improve their performance," would be indexed as LEADER-SHIP AND DIRECTING 4, and DRIVE would not be used. However, a statement such as, "Ratee is constantly seeking to improve the productivity of the work center," would be indexed as DRIVE 4 since there is no indication that this objective has been achieved and there is no mention of any specific function or skill. ENDURANCE is the ability to complete tasks under conditions of fatigue, distress, stress, and/or pain.

EXAMPLES:

His endurance is outstanding.

ENDURANCE 5

ENDURANCE 4

ENDURANCE 4

ENDURANCE 3

RESPONSIVENESS 4

CONDUCT, INTEGRITY, AND PRIDE 3

During the previous deployment he demonstrated his ability to function smoothly and effectively under adverse and demanding conditions for extended periods.

His ability to maintain an inner calm and to function efficiently during periods of great confusion and stress suit him ideally to his present assignment.

He uncomplainingly responds when called upon to meet unscheduled commitments, frequently under adverse conditions.

Additional Indexing Clues:

Performs well under stressENDURANCE 4His persistence (tenacity) in
the face of adversityENDURANCE 3FortitudeENDURANCE 3IndefatigableENDURANCE 3Tested and proven under hostile
fireENDURANCE 3PerseveranceENDURANCE 3

FLEXIBILITY is the quality of being adjustable or adaptable to change; capable of modification.

EXAMPLES:

His keen mind is alert to all possible circumstances, and he succeeds brilliantly in adjusting to new environments.

Overall, he is a highly adaptable individual who exhibits unlimited potential and continuing high value to the U.S. Navy.

He is a mature, stable Chief Petty Officer, intelligent, adaptable, and reliable. INTELLECTUAL FUNCTIONING 4 FLEXIBILITY 5

FLEXIBILITY 4 POTENTIAL 5 ASSET TO THE NAVY 4

RELIABILITY AND DEPENDABILITY 3 RELIABILITY AND DEPENDABILITY 3 INTELLECTUAL FUNCTIONING 3 FLEXIBILITY 3 RELIABILITY AND DEPENDABILITY 3

Additional Indexing Clues:

Adjusts quickly

Able to handle varied jobs and hence is a very valuable Chief

Flexible

Open minded

Open mind to criticism

FLEXIBILITY 4

FLEXIBILITY 3 ASSET TO THE NAVY 4

FLEXIBILITY 3

FLEXIBILITY 3

FLEXIBILITY 3
GROOMING AND ATTIRE is the way in which a person cares for his physical appearance and clothing.

EXAMPLES:

Neat and polished appearance is in keeping with the highest Navy standards and serves as a criteria of excellence among the men with whom he comes in contact.

Ratee's personal appearance is always correct and proper.

He is always neat in appearance and his conduct is exemplary.

He is tidy, intelligent, and obtains the best results from his men.

His tendency towards being overweight greatly detracts from his overall appearance.

Additional Indexing Clues:

GROOMING AND ATTIRE 5 His impeccable appearance leaves nothing to be desired.

Wearing of uniform excellent

Always impeccable

His appearance is immaculate at all times.

His appearance and dress is always correct, smart, and impressive. His uniform is consistently

immaculate.

His appearance is good and sets an example for all.

His dress is impressive, and is worn with care.

Uniform (or dress) immaculate

Grooming impeccable

He takes pride in his appearance.

Attention to his appearance

Appearance military

Shined shoes

GROOMING AND ATTIRE 5

GROOMING AND ATTIRE 4

GROOMING AND ATTIRE 4 CONDUCT, INTEGRITY, AND PRIDE 4

GROOMING AND ATTIRE 3 INTELLECTUAL FUNCTIONING 3 LEADERSHIP AND DIRECTING 5

GROOMING AND ATTIRE 2

GROOMING AND ATTIRE 5

GROOMING AND ATTIRE 4 **GROOMING AND ATTIRE 4**

GROOMING AND ATTIRE 4

GROOMING AND ATTIRE 4

GROOMING AND ATTIRE 4

GROOMING AND ATTIRE 4

GROOMING AND ATTIRE 4

GROOMING AND ATTIRE 4

GROOMING AND ATTIRE 3

GROOMING AND ATTIRE 3 **GROOMING AND ATTIRE 3 GROOMING AND ATTIRE 3** INITIATIVE is the ability to recognize and originate necessary or appropriate tasks on one's own without being asked.

EXAMPLES:

His personal appearance, cooperative attitude, and initiative leave vir- tually nothing to be desired.	GROOMING AND ATTIRE 5 COOPERATION 5 INITIATIVE 5
He is extremely reliable and never fails to take the initiative in difficult situations.	RELIABILITY AND DEPENDABILITY 5 INITIATIVE 5
He displays an outstanding example . in initiative.	INITIATIVE 5
Ratee displays considerable initia- tive in accomplishing each task assigned.	INITIATIVE 4
Ratee possesses a keen mind, is capable of original thinking, and expresses his thoughts well and decisively when communicating with others.	INTELLECTUAL FUNCTIONING 3 INITIATIVE 3 COMMUNICATION 4
Ratee is proficient in anticipat- ing situations in his area of responsibility and initiates action to cope with it.	CONTROLLING 4 INITIATIVE 3
Ratee undertakes his duties will- ingly but lacks the initiative that is required of the very best in his rate.	RELIABILITY AND DEPENDABILITY 4 INITIATIVE 2
However, at times he lacks the initiative and drive that is neces- sary to produce these results.	INITIATIVE 2 DRIVE 2
Additional Indexing Clues:	
Provided Division officer with many ideas	INITIATIVE 4
Volunteering his own views	INITIATIVE 3
Making suggestions (recommendations)	INITIATIVE 3
An original thinker	INITIATIVE 3
Institutes	INITIATIVE 3

"He has shown initiative by repairing the probe refueling hose and fixing the main feed pumps in the forward fireroom." INITIATIVE 3; PRODUCTIVITY AND ACHIEVEMENT 3. Here the index term PRODUCTIVITY AND ACHIEVEMENT is used rather than TECHNICAL SKILLS because the indexer cannot be certain whether the ratee had the skill to do this himself or whether he actually managed or directed others to accomplish this task. CONTROLLING is not used here because the ratee's main job duty was maintenance. INTELLECTUAL FUNCTIONING is the ability to learn or understand from experience, and the ability to analyze, reason, and perceive relationships and differences.

A measurement of intellectual functioning would be a scholastic record.

EXAMPLES:

He completed all courses with very
high grades, usually leading his
class.INTELLECTUAL FUNCTIONING 5Ratee is extremely intelligent.INTELLECTUAL FUNCTIONING 5

INTELLECTUAL FUNCTIONING 4

INTELLECTUAL FUNCTIONING 3

LEADERSHIP AND DIRECTING 4

INTELLECTUAL FUNCTIONING 3

LEADERSHIP AND DIRECTING 5

PROFESSIONALISM 4

TECHNICAL SKILLS 4

GROOMING AND ATTIRE 3

DRIVE 3

PRODUCTIVITY AND ACHIEVEMENT 4

PRODUCTIVITY AND ACHIEVEMENT 5

He learns quickly and applies his training and experience effectively.

He is a forceful and intelligent Career Petty Officer who has such command of the basic professional techniques that he can direct his actions to job perfection and the well-being of his subordinates.

He is tidy, intelligent, and obtains the best results from his men.

Additional Indexing Clues:

Learned quickly INTELLECTUAL FUNCTIONING 4 Coherent mental organization **INTELLECTUAL FUNCTIONING 3** Coherence of his thoughts **INTELLECTUAL FUNCTIONING 3** Intelligence **INTELLECTUAL FUNCTIONING 3** INTELLECTUAL FUNCTIONING 3 Keen minded Common sense **INTELLECTUAL FUNCTIONING 3** INTELLECTUAL FUNCTIONING 3 Judgment Insight **INTELLECTUAL FUNCTIONING 3**

Alert would be indexed as INTELLECTUAL FUNCTIONING 3. However, if the ratee is alert to a command or an order, it would be indexed as RESPON-SIVENESS 3.

Analytical mind would be indexed as INTELLECTUAL FUNCTIONING 3. Sometimes intellectual functioning, planning, and controlling become confused. It is important here to keep in mind whether the rater was referring to the function of planning or controlling or whether he was making a statement about the ratee's intellectual functioning, i.e., his general analytical ability, his ability to proceed logically, or his problem-solving ability. For example, "His imagination allows him to find new and different solutions to problems which others do not seem to be able to solve," would be indexed as RESOURCEFULNESS 3 and INTELLECTUAL FUNCTIONING 4. LEADERSHIP AND DIRECTING represent motivating, guiding, and supervising of subordinates to accomplish a job and work towards improved performance. Includes encouraging subordinates in cooperative endeavors and also in self-development through counseling. A measure would be morale.

LEADERSHIP AND DIRECTING also would be creating an atmosphere that makes teamwork possible, such as improving working conditions.

EXAMPLES:

His excellent leadership qualities LEADERSHIP AND DIRECTING 5 were especially manifest when he was assigned to lead the maintenance efforts on CQ. detachments in CONSTELLATION and INDEPENDENCE.

Ratee handles his men in an effec-LEADERSHIP AND DIRECTING 4 LEADERSHIP AND DIRECTING 4 tive manner and always gets good results from his subordinates.

Ratee's knowledge of the S-2E Electronic System is outstanding, and he is able to utilize this exceptional knowledge through skillful management of shop personnel and an innate ability to pass along what he knows to others.

He spent a great deal of extra time with his men and turned out well trained, well motivated men for the fleet.

Ratee has the ability to solve problems and motivate people.

His loyalty was shown in the conscientious manner in which he attended to the problems of his men.

He appears to be indifferent to the personnel administration of his men especially in regard to special requests and advancement.

Although the tasks assigned to the personnel under his supervision are always completed efficiently and in an excellent to outstanding manner, his superiors feel that he is capable of getting more out of his men and of putting more of himself into the job.

TECHNICAL SKILLS 5 TECHNICAL SKILLS 5 LEADERSHIP AND DIRECTING 4 COMMUNICATION 4

LEADERSHIP AND DIRECTING 4 STAFFING 4 LEADERSHIP AND DIRECTING 4

INTELLECTUAL FUNCTIONING 3 LEADERSHIP AND DIRECTING 3

CONDUCT, INTEGRITY, AND PRIDE 3 LEADERSHIP AND DIRECTING 3

LEADERSHIP AND DIRECTING 2

PRODUCTIVITY AND ACHIEVEMENT 5 LEADERSHIP AND DIRECTING 2 DRIVE 2

LEADERSHIP AND DIRECTING (Continued)

Additional Indexing Clues:				
Gets most out of them	LEADERSHIP	AND	DIRECTING	5
Best results from men	LEADERSHIP	AND	DIRECTING	5
Consistent in direction of personnel	LEADERSHIP	AND	DIRECTING	4
High shop esprit	LEADERSHIP	AND	DIRECTING	4
High regard for men	LEADERSHIP	AND	DIRECTING	4
Aggressive leadership	LEADERSHIP	AND	DIRECTING	4
Molded crew into competent and effective team	LEADERSHIP	AND	DIRECTING	4
Directs men well	LEADERSHIP	AND	DIRECTING	4
High expectations from men	LEADERSHIP	AND	DIRECTING	4
High regard for team concept	LEADERSHIP	AND	DIRECTING	4
Promotes harmony and accord	LEADERSHIP	AND	DIRECTING	4
Men cheerful	LEADERSHIP	AND	DIRECTING	3
Led the shop	LEADERSHIP	AND	DIRECTING	3
Encourages and guides subordinates	LEADERSHIP	AND	DIRECTING	3
Helped men advance in rate	LEADERSHIP	AND	DIRECTING	3
Leads by setting the example	LEADERSHIP	AND	DIRECTING	3
Leadership ability	LEADERSHIP	AND	DIRECTING	3
Men trust him/loyal to him	LEADERSHIP	AND	DIRECTING	3
Finds time to direct and counsel young men	LEADERSHIP	AND	DIRECTING	3
Skilled at managing his men	LEADERSHIP	AND	DIRECTING	3
Tact in handling subordinates	LEADERSHIP	AND	DIRECTING	3
His men are hard working	LEADERSHIP	AND	DIRECTING	3
No disciplinary problems	LEADERSHIP	AND	DIRECTING	3
Mindful of his position as a leader	LEADERSHIP	AND	DIRECTING	3
Lack of leadership	LEADERSHIP	AND	DIRECTING	2
Needs more forceful approach to leadership	LEADERSHIP	AND	DIRECTING	2

Many experts in the field of management feel that the connection between performance and possession of traits is doubtful. But practically every study has found successful managers to be strong leaders. Leadership is not only an ability or trait but it is also a very important function of

LEADERSHIP AND DIRECTING (Continued)

management. To direct his subordinates, a manager must motivate, communicate, and lead. Directing is a function that includes all those activities which are designed to encourage subordinates to work effectively and efficiently. A manager must be concerned for human feelings and morale. For example, "He is tactful with his subordinates." It can be seen here that interpersonal relations between a ratee and his subordinates is important to the leadership and directing function. The rapport that a ratee has with his divisional personnel would be indexed with LEADERSHIP AND DIRECTING. However, a ratee's interpersonal relationship with his peers or superiors probably would be indexed by one of the following terms: CONDUCT, INTEGRITY, AND PRIDE; COOPERATION; REPRE-SENTATION; or RESPONSIVENESS. There is one exception to this rule. When the statement has to do with a ratee's cooperative attitude in working with others, superiors or subordinates, use the index term COOPERATION. The rapport that a ratee has with other organizational units enhances his division's work and, therefore, the index term REPRESENTATION would be used.

A manager must act his part and be conscious of the impact of his behavior on his men. For example, "He leads by example."

A manager also must look after the individual needs of his subordinates and provide a challenge for them. He must be responsive to their needs and to their ideas and suggestions.

The words *supervising* or *directing* can apply to tasks, men, or both. The indexer has to judge what the rater means. It usually can be assumed that supervising refers to the overall managerial functions or tasks (MANAGE-MENT FUNCTIONS), unless stated or inferred otherwise.

MANAGEMENT FUNCTIONS are those job duties which are characteristic of all managers. Though operations may differ from one organization to another, the functions of the manager are common to all.

EXAMPLES:

He is an excellent manager and organizer who is willing to accept any assignment no matter how difficult.

Chief XX has made a prime contribution to the ship through his excellent supervision of the Fuel Oil and Water Testing Laboratory and the Oil Kings.

Ratee's superior leadership capabilities and overall knowledge of management greatly contributed to this division receiving a grade of 4.0 during the annual administrative inspection.

He is well versed in the 3-M System and always exhibits sound management practices.

His administrative knowledge and ability to supervise and coordinate the efforts of other instructors enabled this command to develop all the material required for realistic support of the E2B Aircraft.

BTC has an excellent working and practical knowledge of the PMS System but has a tendency to be lax in the administrative phase of the system.

Additional Indexing Clues:

Proficient Petty Officer

The words supervising or directing can apply to tasks or men. The indexer has to judge what the rater means. It usually can be assumed that supervising refers to the overall managerial functions or tasks, unless stated or inferred otherwise. If the statement refers to the supervising or directing of men only, then use LEADERSHIP AND DIRECTING.

TECHNICAL SKILLS 4 MANAGEMENT FUNCTIONS 4

PRODUCTIVITY AND ACHIEVEMENT 4

LEADERSHIP AND DIRECTING 5

MANAGEMENT FUNCTIONS 4

MANAGEMENT FUNCTIONS 3 LEADERSHIP AND DIRECTING 3 ORGANIZATION 3 PRODUCTIVITY AND ACHIEVEMENT 4

TECHNICAL SKILLS 5 MANAGEMENT FUNCTIONS 2

MANAGEMENT FUNCTIONS 4

PRODUCTIVITY AND ACHIEVEMENT 4 MANAGEMENT FUNCTIONS 5

ORGANIZATION 5 RELIABILITY AND DEPENDABILITY 5

MANAGEMENT FUNCTIONS 5

ES:

MANAGEMENT FUNCTIONS (Continued)

E-7/8/9 Evaluation Reports describe the on-job performance of junior level managers. Managers at a junior level have technical as well as managerial functions. This should be remembered when indexing a statement that includes the ratee's job title. For example, if the statement claims that the ratee is an "excellent Radioman or Boilerman," we would assume that the rater was referring to his technical skills and label it as such. But on the other hand, if a statement claims that the ratee is an "excellent Chief Petty Officer or Supervisor," it would be assumed that the rater is referring more to the ratee's managerial functions and would be labeled accordingly. Also remember that if *Instructor* is a ratee's job title, a statement regarding his instructing would be labeled as MANAGEMENT FUNCTIONS, whereas if the reference is to how a ratee instructs during the course of his other duties, use the label COMMUNICA-TION.

In evaluating a ratee, the indexer should be interested in how the ratee performs his managerial functions. These functions are the means by which the manager proceeds to accomplish his job. When a statement refers to how he performs these overall tasks, use MANAGEMENT FUNCTIONS. However, when a statement refers to the results accomplished from performing these tasks, use PRODUCTIVITY AND ACHIEVEMENT.

130

ORGANIZATION is the establishment of an intentional structure of roles through the determination and enumeration of activities required to achieve enterprise goals such as grouping activities and roles, delegating authority, and coordinating authority relationships.

EXAMPLES:

He does an excellent job of planning, organizing, and carrying out his job.

He has developed an extremely tightly knit division which has an uncommon amount of pride in its work.

He is a highly motivated and aggressive individual with a good sense or organization and administrative ability.

Ratee spends a very limited time in the shop but has exerted a spirit of independence in his First Class, the result being a well organized and efficient shop.

His ability to assign workload in a smooth fashion is noteworthy.

He is a professional administrator and understands the principles of delegation.

The ratee's ability to work with others, his capacity for organization and stimulating enthusiasm makes him a valuable asset to any unit.

He reorganized the work center.

His initiative at times lags, and he tends to undertake too many tasks alone rather than delegating them to subordinates.

Additional Indexing Clues:

Excellent organizer ORGANIZATION 5 Excellent job setting up the ORGANIZATION 5 operation

PLANNING 5 ORGANIZATION 5 PRODUCTIVITY AND ACHIEVEMENT 5

ORGANIZATION 5 LEADERSHIP AND DIRECTING 5

DRIVE 4 DRIVE 4 ORGANIZATION 4 MANAGEMENT FUNCTIONS 4

DRIVE 2 LEADERSHIP AND DIRECTING 4 ORGANIZATION 4 PRODUCTIVITY AND ACHIEVEMENT 4

ORGANIZATION 4

PROFESSIONALISM 3 MANAGEMENT FUNCTIONS 4 ORGANIZATION 3

COOPERATION 3 ORGANIZATION 3 DRIVE 4 ASSET TO THE NAVY 4

ORGANIZATION 3

INITIATIVE 2 ORGANIZATION 2 ORGANIZATION (Continued)

Set up a file on each item	ORGANIZATION	3
Ability to coordinate	ORGANIZATION	3
Coordinates work centers	ORGANIZATION	3
Coordination of work duties	ORGANIZATION	3

If a ratee sets up a *liaison* with another organizational unit or division within the Navy or an outside organization, the index term ORGANIZATION would be used. However, if a ratee uses the *liaison* or organizational structure that is already set up to enhance his division's working relationship with other organizational units, the index term REPRESENTATION would be used. If a *liaison* is used as a channel of communication, then the index term USE OF COMMUNICATION would be used.

PLANNING is a decision-making process involving the selection among alternatives of objectives, policies, and programs and the procedures for achieving them.

Types of plans include objectives, policies, methods or procedures, rules, programs, budgets, strategies, schedules, traffic flow patterns, and inventory.

EXAMPLES:

He does an excellent job of planning, organizing, and carrying out his job.

He is methodical, deliberate, and able to develop effective and efficient procedural methods of accomplishing the division workload.

Ratee's resourcefulness in setting up a procedure to instruct 150 recruits daily in this very difficult operation was largely responsible for the efficient operation of the matches.

He had the ability and initiative to plan and assign work to personnel under his direction to ensure that the end results are of the highest quality.

His analysis of divisional problems, both functional and administrative, and the execution of corrective measures have been very conducive to a smooth and highly effective division.

Additional Indexing Clues:

Found new ways to improve the security of the Communications building

Good decision makerPLANNING 4Improves plansPLANNING 4Has alternate plansPLANNING 3

PLANNING 5 ORGANIZATION 5 PRODUCTIVITY AND ACHIEVEMENT 5

SKILLS AND ABILITIES 3 SKILLS AND ABILITIES 3 PLANNING 4

RESOURCEFULNESS 3 PLANNING 4 PRODUCTIVITY AND ACHIEVEMENT 4

INITIATIVE 3 PLANNING 3 ORGANIZATION 3 CONTROLLING 5

PLANNING 4

PLANNING 3 CONTROLLING 3 PRODUCTIVITY AND ACHIEVEMENT 4

133

POTENTIAL refers to the capacity and/or recommendation for an individual to assume a higher rank or added responsibilities.

EXAMPLES:

- Chief XX has demonstrated the POTENTIAL 5 potential to be an outstanding leader.
- He would be most valuable in an POTENTIAL 5 instructor billet assignment.

There is nothing that can arise in POTENTIAL 5 his present position or next assignment that ratee cannot cope with.

- He is highly recommended for advancement.
- Chief XX is highly recommended for POTENTIAL 4 advancement and retention in the Naval Reserve.

He is qualified to assume the greater responsibility of the next higher pay grade.

Ratee is fully qualified for advancement in rate.

Ratee is very knowledgeable in the supply system and is recommended for E-8.

With more time and conscientious POTENTIAL 2 effort, he should realize a greater potential.

Additional Indexing Clues:

Outstanding potential for added responsibility

Highly recommended for advancement

Strongly recommended for promotion

Eminently well qualified for advancement

Expected to improve

Capable of assuming more responsibility POTENTIAL 5

POTENTIAL 4

POTENTIAL 3

POTENTIAL 3

POTENTIAL 3

SKILLS AND ABILITIES 3

SKILLS AND ABILITIES 4

TECHNICAL SKILLS 4

POTENTIAL 4

POTENTIAL 4

SKILLS AND ABILITIES 4 POTENTIAL 3 POTENTIAL 3

POTENTIAL 3

PRODUCTIVITY AND ACHIEVEMENT refers to the successful accomplishment of a desired result in terms of an individual's performance of his job duties (managerial functions). Use this descriptor term unless a specific function is mentioned in the narrative content of the Evaluation Report.

EXAMPLES:

Every assignment is performed with PRODUCTIVITY AND ACHIEVEMENT 5 unusual accuracy and effectiveness. Ratee's performance is outstanding **PRODUCTIVITY AND ACHIEVEMENT 5** in all aspects. Performance in both his primary and **PRODUCTIVITY AND ACHIEVEMENT 5** secondary billets has been outstanding in all aspects as marked in block 19. Under his supervision the shop has PRODUCTIVITY AND ACHIEVEMENT 4 met and surpassed the accepted norms of productivity. Production over the past six months PRODUCTIVITY AND ACHIEVEMENT 3 has been about average for a twoman station. His technical competence and re-**TECHNICAL SKILLS 3 RESOURCEFULNESS 3** sourcefulness contributes to ships PRODUCTIVITY AND ACHIEVEMENT 3 in tending to maintain operational readiness. His performance has been commen-**PRODUCTIVITY AND ACHIEVEMENT 3** surate with his rate. **PRODUCTIVITY AND ACHIEVEMENT 2** While he was acting as ship's Oil King, the ship witnessed three oil spills while refueling. His extremely poor performance PRODUCTIVITY AND ACHIEVEMENT 1 of his duties led directly to the ship's boilers not being in a state of operational readiness.

Additional Indexing Clues:

Never allowed shop to wanePRODUCTIVITY AND ACHIEVEMENT 5Outstanding performancePRODUCTIVITY AND ACHIEVEMENT 5Handled duties in an outstanding
mannerPRODUCTIVITY AND ACHIEVEMENT 5Impressive discharge of dutyPRODUCTIVITY AND ACHIEVEMENT 4

PRODUCTIVITY AND ACHIEVEMENT (Continued)

Performed remarkably well	PRODUCTIVITY	AND	ACHIEVEMENT	4
Success in a difficult task	PRODUCTIVITY	AND	ACHIEVEMENT	3
Assignments are completed or completes assigned tasks	PRODUCTIVITY	AND	ACHIEVEMENT	3
Has seen these tasks through to their successful completion	PRODUCTIVITY	AND	ACHIEVEMENT	3
Effort brings a success	PRODUCTIVITY	AND	ACHIEVEMENT	3
Statements of improvement should be inde MENT. For example:	exed as PRODU	CTIV	ITY AND ACHIE	EVE-
Made significant improvements	PRODUCTIVITY	AND	ACHIEVEMENT	4
Made improvements	PRODUCTIVITY	AND	ACHIEVEMENT	3
Enabled him to improve	PRODUCTIVITY	AND	ACHIEVEMENT	3

Yielded benefits

Room for improvement

PRODUCTIVITY AND ACHIEVEMENT 2 It is important to make certain that the achievement was not a personal

PRODUCTIVITY AND ACHIEVEMENT 3

technical accomplishment in which case TECHNICAL SKILLS would be used.

If a statement refers to the successful accomplishment of a maintenance effort and it is not the controlling function of ensuring the accomplishment of a plan, but rather the performance of a ratee's total job function, use PRODUCTIVITY AND ACHIEVEMENT. This can be determined by looking at the ratee's job title or main job duty as stated in Section 4A.

The following modifiers can serve as clues to labeling a statement or a phrase as PRODUCTIVITY AND ACHIEVEMENT: contributed greatly to (4), contributed immensely to (4), significant increase in (4), contributed materially to (4), directly responsible for (3), directly contributed to (3), has been instrumental in (3), directly instrumental in (3).

If a statement of personal achievement (e.g., advancement in rate) is made in a matter-of-fact manner, do not index it. However, if it is stated as an accomplishment, use PRODUCTIVITY AND ACHIEVEMENT. For example, "Ratee's performance in the past was responsible for his selection from every first class and chief petty officer in this command as Command Career Counselor." PRODUCTIVITY AND ACHIEVEMENT 5.

An ability in performing a task would be indexed as PRODUCTIVITY AND ACHIEVEMENT because it tells how the ratee is performing and, therefore, is a type of measure of his performance. However, an ability or skill to perform in a certain way suggests a future performance and would be indexed as SKILLS AND ABILITIES. For example, "His thoroughness in performing his duty is outstanding," PRODUCTIVITY AND ACHIEVEMENT 5; "Outstanding in his work," PRODUCTIVITY AND ACHIEVEMENT 5; "Chief XX is a performer," PRO-DUCTIVITY AND ACHIEVEMENT 3; "He performs in a capable manner," PRODUCTIVI-TY AND ACHIEVEMENT 3; "He has the ability to perform in an outstanding manner," SKILLS AND ABILITIES 5.

PROFESSIONALISM is the quality of being worthy of the high standards of the managerial profession and having much experience and great skill in this role. Use only when the word *professional* or *professionalism* is applied to the ratee and/or his performance and only when it is mentioned specifically in the narrative content of the Evaluation Report.

EXAMPLES:

Ratee has consistently demonstrated his outstanding professional qualifications.

These accomplishments were achieved through high professionalism, enthusiasm, and superior decisionmaking ability.

As an Airborne Communications Supervisor, ratee's professional competence has contributed to flight operations, excellent mission performance, and praise for his division.

His performance reflects competence and professionalism.

Chief XX was relieved of his duties as the ship's Oil King after serving in the capacity for approximately two months. He was removed from this billet because of his lack of professional knowledge and technical know-how in the art of refueling.

Additional Indexing Clues:

Professional	attitude	PROFESSIO CONDUCT,	INTEGRITY,	AND	PRIDE	4
Professional	behavior	PROFESSIC CONDUCT,	ONALISM 3 INTEGRITY,	AND	PRIDE	4
Professional	administrator	PROFESSIO MANAGEMEN	ONALISM 3 NT FUNCTIONS	5 4		
Professional	skill	PROFESSIO	ONALISM 3			

When the word *professional* modifies a *specific* skill, ability or function, it automatically gives a weight of 4 to that skill, ability or function.

When the word *professional* modifies skill or ability, use only the index term PROFESSIONALISM since this term is more specific than SKILLS AND ABILITIES and falls under SKILLS AND ABILITIES in the hierarchy of index terms.

PROFESSIONALISM 5

PROFESSIONALISM 4 DRIVE 4 PLANNING 5

PROFESSIONALISM 3 PRODUCTIVITY AND ACHIEVEMENT 5

PRODUCTIVITY AND ACHIEVEMENT 3 SKILLS AND ABILITIES 3 PROFESSIONALISM 3

AWARDS AND PUNISHMENT 1 PROFESSIONALISM 2 TECHNICAL SKILLS 2 RELIABILITY AND DEPENDABILITY is the combined quality of being counted upon to do what is expected or required without direct supervision or monitoring. Connotes levelheadedness or steadiness; includes trustworthy, responsible, constancy, stability, and mature.

EXAMPLES:

He is completely reliable and has never showed case by action or word to the contrary.

He is conscientious and is always extremely dependable.

Fully realizes his responsibilities and at all times consciously acts to fulfill them.

Ratee is very reliable.

Ratee is punctual and can be depended upon to perform well regardless of the amount of supervision.

He can be depended upon to "get the job done" with a minimum of supervision.

Ratee's inability to satisfactorily discharge his financial obligations shows a lack of responsibility.

Additional Indexing Clues:

Always ready to accept additional responsibility

Willing to assume or accept added responsibility

Works well on his own

Completely reliable

Job done without supervision

Can work without direction

Requires no supervision

Dependable

RELIABILITY AND DEPENDABILITY 5

DRIVE 3 RELIABILITY AND DEPENDABILITY 5

RELIABILITY AND DEPENDABILITY 4 RELIABILITY AND DEPENDABILITY 4

RELIABILITY AND DEPENDABILITY 4

CONDUCT, INTEGRITY, AND PRIDE 3 RELIABILITY AND DEPENDABILITY 4

RELIABILITY AND DEPENDABILITY 3

CONDUCT, INTEGRITY, AND PRIDE 2 RELIABILITY AND DEPENDABILITY 2

RELIABILITY AND DEPENDABILITY 5

RELIABILITY AND DEPENDABILITY 4

RELIABILITY AND DEPENDABILITY 4

RELIABILITY AND DEPENDABILITY 4

RELIABILITY AND DEPENDABILITY 3

RELIABILITY AND DEPENDABILITY 3

RELIABILITY AND DEPENDABILITY 3

RELIABILITY AND DEPENDABILITY 3

RELIABILITY AND DEPENDABILITY (Continued)

Stable	RELIABILITY	AND	DEPENDABILITY	3
Trustworthy	RELIABILITY	AND	DEPENDABILITY	3
Responsible	RELIABILITY	AND	DEPENDABILITY	3
Constancy	RELIABILITY	AND	DEPENDABILITY	3
Does not need to be supervised	RELIABILITY	AND	DEPENDABILITY	3
Performs without supervision	RELIABILITY	AND	DEPENDABILITY	3
Accepted responsibilities and authority	RELIABILITY	AND	DEPENDABILITY	3
Assumes added responsibilities	RELIABILITY	AND	DEPENDABILITY	3
Mature	RELIABILITY	AND	DEPENDABILITY	3
Reluctance to assume new tasks	RELIABILITY	AND	DEPENDABILITY	2
Need for direction and checkup by superiors	RELIABILITY	AND	DEPENDABILITY	2
Relinquishes responsibility	RELIABILITY	AND	DEPENDABILITY	2

It is important to remember when indexing that the concept of responsibility belongs under RELIABILITY AND DEPENDABILITY. REPRESENTATION is the creating of an image of an organization to the external or internal environment.

EXAMPLES:

He is an outstanding representative REPRESENTATION 5 of the Navy in all respects.

Ratee has been very successful in REPRESENTATION 4 improving his Branch Station's relations with local high schools and youth organizations.

He takes an active part in church REPRESENTATION 4 and civic programs, helping to uphold the Navy image in the community.

The appearance of this building is REPRESENTATION 4 a fine example and reflection of the Navy to the visiting civilians.

Additional Indexing Clues:

Active in extracurricular activities	REPRESENTATION 4	
Takes part in extracurricular activities	REPRESENTATION 3	
Public relations for his branch	REPRESENTATION 3	
Status of his branch or job area	REPRESENTATION 3	

Remember that if a ratee's job title or main job duty is public relations, then the term PRODUCTIVITY AND ACHIEVEMENT would be used rather than REPRESENTATION since the statement would be referring to the performance of his total job function.

Some management experts do not consider REPRESENTATION to be a separate managerial function. However, in this dictionary it is considered to be a separate function because of the importance given to relating to the civilian community by Naval personnel.

If a ratee sets up a *liaison* with another organizational unit or division within the Navy or an outside organization, the index term ORGANIZATION would be used. However, if a ratee uses the *liaison* or organizational structure that is already set up to enhance his division's working relationship with other organizational units, the index term REPRESENTATION would be used. If a *liaison* is used as a channel of communication, then the index term USE OF COMMUNICATION would be used. The *rapport* that a ratee has with other organizational units also enhances his division's work, and the index term REPRESENTATION would be used. The *rapport* that a ratee has with his divisional personnel would be indexed with LEADER-SHIP AND DIRECTING. REPUTE is the position or standing of an individual in his relationships to subordinates, peers, and superiors.

EXAMPLES:

He possesses the character, person-CONDUCT, INTEGRITY, AND PRIDE 3 ality, and desire that commands CONDUCT, INTEGRITY, AND PRIDE 3 the highest respect and admiration DRIVE 3 from his associates. **REPUTE 5** This action has generated the **REPUTE 5** highest degree of trust and confidence with his superiors. He readily obtains the confidence **REPUTE 4** of all who come in contact with him. He is well liked and highly re-**REPUTE 4** spected by juniors and seniors CONDUCT, INTEGRITY, AND PRIDE 3 alike, and his easy-going manner **COOPERATION** 4 and pleasant congeniality make FLEXIBILITY 3 him at home in any surroundings. Ratee is highly regarded by all **REPUTE 4** of his men. He expresses himself clearly and COMMUNICATION 3 logically and his views are re-**REPUTE 3** spected by those with whom he works. Additional Indexing Clues: He has their full respect and gets **REPUTE 4** it. He is highly regarded by his men. **REPUTE 4** Gains the genuine respect **REPUTE** 4 **REPUTE 4** Praised **REPUTE 3** Inspires respect Justified others' confidence in him **REPUTE 3** Commands respect and gets it **REPUTE 3 TECHNICAL SKILLS 4** Expertise widely acknowledged and respected by others **REPUTE 3**

His advice is sought by others because of his technical skill.

REPUTE 3 TECHNICAL SKILLS 3 REPUTE (Continued)

Merits the respect	REPUTE	3
Generates respect	REPUTE	3
Respected by	REPUTE	3
Popular	REPUTE	3

Many of the feelings that a ratee's peers and superiors have for him would be indexed as REPUTE (e.g., being liked or trusted by his superiors). However, if it is the ratee's subordinates who have these same feelings, it would indicate the ratee's leadership abilities and be labeled as such (e.g., being liked or trusted by his men). If the words *respect* or *regard* are used, then automatically label this statement with REPUTE. For example, "His concern for his men has won the respect of his subordinates." LEADERSHIP AND DIRECTING 3; REPUTE 3.

The concept of a ratee's repute may appear in the narrative text under the guise of one or more descriptive phrases, but this segment of text should be treated as containing a single concept and be labeled only once with REPUTE. For example, "He is well liked and highly respected," would be treated as one phrase or concept and would be indexed only once with the index term REPUTE. RESOURCEFULNESS is the innovative or creative ability to make effective and efficient use of men and materials resulting in improved performance.

EXAMPLES:

He has consistently demonstrated exceptional resourcefulness in dealing with especially complicated projects.

He makes the best use of all the resources at his command.

A direct indication of the Ratee's resourcefulness is indicated in the fact that he insists on obtaining maximum utilization of the Navy's training material.

Since the turnover of these modules is high, this represents a significant savings to the Navy's resources.

He has demonstrated a remarkable ability for substituting components or test equipment that might be temporarily unavailable.

In his area of responsibility he requires that consumable modules be repaired and reused.

Chief XX is a resourceful man and his potential is great to become an even better Chief.

His imagination allows him to find new and different solutions to problems which others do not seem to be able to solve.

Additional Indexing Clues:

Always resourceful Fully utilizes his men Inventiveness Imagination Ingenuity

RESOURCEFULNESS 5

RESOURCEFULNESS 5

RESOURCEFULNESS 3 RESOURCEFULNESS 5

RESOURCEFULNESS 4

RESOURCEFULNESS 4

RESOURCEFULNESS 3

RESOURCEFULNESS 3 POTENTIAL 4

RESOURCEFULNESS 3 INTELLECTUAL FUNCTIONING 4

RESOURCEFULNESS 4 **RESOURCEFULNESS** 4

RESOURCEFULNESS 3

RESOURCEFULNESS 3

RESOURCEFULNESS 3

RESPONSIVENESS is the quality of reacting promptly, readily, accurately, and alertly to suggestion, instruction, or orders.

EXAMPLES:

Ratee is extremely cooperative in all his undertakings when given any task, and completes it in the most expeditious manner.

He is quick to respond to any situation or problem and to find a solution.

He uncomplainingly responds when

called upon to meet unscheduled

commitments, frequently under

adverse conditions.

RESPONSIVENESS 4

INTELLECTUAL FUNCTIONING 3

RESPONSIVENESS 4 ENDURANCE 3

COOPERATION 5 RESPONSIVENESS 5

He is responsive and agreeable to demands upon him and constantly seeks ways of improving working conditions and morale.

RESPONSIVENESS 3 COOPERATION 3 LEADERSHIP AND DIRECTING 4

Additional Indexing Clues:

Alertness is usually considered to be a part of intellectual functioning. However, if a statement refers to a ratee's alertness to an order, then consider it to be a responsive gesture on the part of the ratee.

When in doubt about whether a statement constitutes a cooperative or responsible attitude as opposed to responsiveness on the part of the ratee, use either COOPERATION or RELIABILITY AND DEPENDABILITY rather than RE-SPONSIVENESS.

Always use the index term RESPONSIVENESS whenever the word *responds* is used in a statement.

The time element is an important clue to the use of this term and, therefore, would be used to label the following examples:

In a minimum of time	RESPONSIVENESS 5
He carries out all assignments expediently and efficiently.	RESPONSIVENESS 4 PRODUCTIVITY AND ACHIEVEMENT 4
He meets his responsibilities and quotas in a timely manner.	RESPONSIVENESS 3
Ratee presented material to the students in an expeditious manner.	RESPONSIVENESS 3

SERVICE MOTIVATION refers to a serviceman's contentment with life in the Navy, or to his desire or lack of desire to fulfill his commitment to his job duties in the Navy.

EXAMPLES:

He is extremely dedicated to his SERVICE MOTIVATION 5 division, department, and ship.

He is an active Navy promoter and is the first to step forward to educate subordinates on Navy policy, procedures, or benefits. SERVICE MOTIVATION 4

- Ratee always wears his uniform with SERVICE MOTIVATION 4 pride, both on and off the ship.
- He exhibits pride in being part of
this command and is a definiteSERVICE MOTIVATION 3
ASSET TO THE NAVY 4
asset to the Naval service.
- He is a dedicated career man whoSERVICE MOTIVATION 3displays pride in the Navy and theSERVICE MOTIVATION 3Squadron.Service MOTIVATION 3

Additional Indexing Clues:

The ratee always has the best SERVICE MOTIVATION 5 interests of the Navy in mind.

SERVICE MOTIVATION 3

SERVICE MOTIVATION 3

SERVICE MOTIVATION 3

SERVICE MOTIVATION 3

Pride in the Navy SERVICE MOTIVATION 3

Pride in his unit

Dedication or devotion to duty

Loyal to duty and men

Enjoying his work

SKILLS AND ABILITIES are those qualities that influence the producing of a desired result in an efficient and effective manner.

LEADERSHIP AND DIRECTING 4

SKILLS AND ABILITIES 5

SKILLS AND ABILITIES 5

SKILLS AND ABILITIES 4

SKILLS AND ABILITIES 4

SKILLS AND ABILITIES 4

SKILLS AND ABILITIES 4 SKILLS AND ABILITIES 4

POTENTIAL 3

EXAMPLES:

He is able to direct the efforts of Line Personnel in an efficient and effective manner; this is reflected in the Ratee by a multiple of exceptional qualities.

This man is extremely competent.

Above average in all areas, he is fully qualified to assume the greater responsibility of the next higher rank.

He daily demonstrates all of the highly desirable traits of a Chief Petty Officer.

Ratee is very meticulous and thorough.

His natural abilities and responsi-
ble approach to recruiting have
enabled the ratee to outperformSKILLS AND ABILITIES 3
RELIABILITY AND DEPENDABILITY 3
PRODUCTIVITY AND ACHIEVEMENT 4
his contemporaries.

Additional Indexing Clues:

Exceptionally well qualified	SKILLS	AND	ABILITIES	5
Outstanding individual	SKILLS	AND	ABILITIES	5
Well-qualified Supervisor	SKILLS	AND	ABILITIES	4
Efficient	SKILLS	AND	ABILITIES	4

Any mention of managerial or administrative abilities would be labeled MANAGEMENT FUNCTIONS.

SKILLS AND ABILITIES is used as a catchall term for those skills and abilities which do not fit any of the more specific index terms that come under SKILLS AND ABILITIES in the hierarchy. The following terms would be labeled under SKILLS AND ABILITIES since there is no other more specific index term that would describe them: qualities, skills, traits, attention to detail, meticulous, thorough, methodical, competent, capable, decisiveness, deliberate in thinking (deliberate in action would be indexed as CONDUCT, INTEGRITY, AND PRIDE), and talented. STAFFING is the manning of and keeping manned the positions provided for by the organization structure. Includes training and the appraisal or assessment of personnel.

EXAMPLES:

His instructions are presented in such a manner that maximum training is accomplished in the time alloted.

He spent a great deal of extra time with his men and turned out well trained, well motivated men for the fleet.

He is continually researching the

that assigned personnel have what

available training and ensuring

LEADERSHIP AND DIRECTING 4 STAFFING 4 LEADERSHIP AND DIRECTING 4

STAFFING 4 CONTROLLING 4

COMMUNICATION 3

STAFFING 5

Ratee has tutored division person- STAFFING 3 nel in all aspects of the Navy publications system.

Additional Indexing Clues:

Men re-enlist

is needed.

STAFFING 3

The manning of and keeping manned the job positions would involve selection, training, and the compensation of personnel in order to keep them in the Navy. It is important to remember that if the main job duty is recruiting, then usually a statement about manning of and keeping manned positions in the Navy would be the result of a ratee's total management function, and hence would be indexed as PRODUCTIVITY AND ACHIEVEMENT. TECHNICAL SKILLS refer to the understanding and demonstration of techniques which one applies to a task.

EXAMPLES:

The ratee has an outstanding knowledge of all Electrical Drone Systems in the squadron aircraft.

BTC has an excellent working and practical knowledge of the PMS system but has a tendency to be lax in the administrative phase of the system.

He is well versed in the 3-M System and always exhibits sound management practices.

Ratee single-handedly tore down and rebuilt an engine in 16 hours so the ship would be ready for the cruise.

He is a very knowledgeable technician who attempts to keep constantly abreast of current changes by devoting his off duty time to the study of technical and nontechnical material through evening college courses.

His technical competence and resourcefulness contribute to ships in tending to maintain operational readiness.

Chief XX was relieved of his duties as the ship's Oil King after serving in the capacity for approximately two months. He was removed from this billet because of his lack of professional knowledge and technical know-how in the art of refueling.

Additional Indexing Clues:

Expertise widely acknowledged	TECHNICAL SKILLS 4 REPUTE 4
Professional knowledge	PROFESSIONALISM 3 TECHNICAL SKILLS 4

TECHNICAL SKILLS 3 RESOURCEFULNESS 3 PRODUCTIVITY AND ACHIEVEMENT 3

AWARDS AND PUNISHMENT 1 PROFESSIONALISM 2 TECHNICAL SKILLS 2

TECHNICAL SKILLS 5

TECHNICAL SKILLS 5

TECHNICAL SKILLS 4

TECHNICAL SKILLS 4

TECHNICAL SKILLS 4

DRIVE 5

MANAGEMENT FUNCTIONS 4

MANAGEMENT FUNCTIONS 2

TECHNICAL SKILLS (Continued)

The following would be indexed as TECHNICAL SKILLS 3: background, knowledge of the responsibility of the rate, technical skills, technical knowledge, understanding of job duties, experience, understanding of work, "know-how."

The technical skills that a ratee possesses may be referred to by the evaluator with one or more descriptive phrases, but this part of the sentence should be treated as a single entity and labeled only once with TECHNICAL SKILLS. For example, "...his lack of professional knowledge and technical know-how in the art of refueling...." PROFESSIONALISM 2; TECHNICAL SKILLS 2.

If the skill or knowledge is in managing or in one of the specific managerial functions, just use MANAGEMENT FUNCTIONS or the specific function as the label. For example, "He is skilled at managing his men," would be indexed as LEADERSHIP AND DIRECTING 3.

In the original version of this dictionary there was a term FUND OF KNOW-LEDGE which was replaced by TECHNICAL SKILLS since managers at a junior level have technical as well as managerial functions. This is the reason why such phrases as "understanding of job duties, experience, and understanding of work" are labeled as TECHNICAL SKILLS. It is important to keep this term in mind and to discriminate between managerial functions and productivity or achievement as opposed to the demonstration of a technical skill.

When a ratee is in the process of acquiring new knowledge or a new skill, it would be an indication of his drive and be labeled as such. The indexer should not use TECHNICAL SKILLS unless the ratee has finished the course and, therefore, already has the knowledge or skill. USE OF COMMUNICATION is the use an individual makes of the opportunities for information exchange within an organization.

MANAGEMENT FUNCTIONS 5

USE OF COMMUNICATION 5

USE OF COMMUNICATION 5

USE OF COMMUNICATION 4

USE OF COMMUNICATION 3

LEADERSHIP AND DIRECTING 4

SEE ALSO: COMMUNICATION

EXAMPLES:

He is an excellent administrator and a skillful supervisor, and he keeps himself and his superiors fully informed of all facets of his branch's operation.

He always keeps his superiors informed of any problems and the status of work in progress.

Ratee always consults with his Division Officer concerning his wishes on a matter, unless time is essential.

He keeps his seniors alerted to pending problems.

Additional Indexing Clues:

Keeps superior well informed USE OF COMMUNICATION 4

Uses communication to arouse interest, convince, and produce desired results

This term is used *not* to indicate how a ratee communicates, but whether or not he uses his ability to communicate for the purpose of information exchange.

If a ratee sets up a *liaison* with another organizational unit or division within the Navy or an outside organization, the index term ORGANIZATION would be used. However, if a ratee uses the *liaison* or organizational structure that is already set up to enhance his division's working relationship with other organizational units, the index term REPRESENTATION would be used. If a *liaison* is used as a channel of communication, then the index term USE OF COMMUNICATION would be used.

APPENDIX B

OUTPUT FROM PROGRAM BMDOID - SIMPLE DATA DESCRIPTION FOR THE CROSS VALIDATION AND GENERALIZATION SAMPLES

The output of this computer program lists the arithmetic mean, the standard deviation, the standard error of the mean, the maximum value, the minimum value, and the range for each of the 67 variables derived from the content analysis. The output is presented in six parts for each of the two samples. First is shown the output for the Upper, Middle, and Lower criterion groups on the evaluation section of the Evaluation Report. This is followed by the output for the Upper, Middle, and Lower criterion groups on the justification section of the Evaluation Report. 151

CROSS VALIDATION SAMPLE (AT's and BT's) UPPER CRITERION GROUP (N=74) 19R-EVALUATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.3649	0.5382	0.0626	2	0	2
2	0.1351	0.5054	0.0588	3	0	3
3	0.5946	0.9920	0.1153	4	0	4
4	0.0811	0.2748	0.0319	1	0	1
5	0.0541	0.2277	0.0265	1	0	1
6	0.0811	0.3208	0.0373	2	0	2
7	0.0676	0.2527	0.0294	1	0	1
8	0.0135	0.1162	0.0135	1	0	1
9	0.4459	0.6650	0.0773	3	0	3
10	0.1757	0.4490	0.0522	2	0	2
11	0.6486	1.1157	0.1297	5	0	5
12	0.0946	0.2947	0.0343	1	0	1
13	0.1216	0.3291	0.0383	1	0	1
14	0.0541	0.2277	0.0265	1	0	1
15	0.0811	0.3208	0.0373	2	0	2
16	0.1486	0.3946	0.0459	2	0	2
17	0.2297	0.6092	0.0708	3	0	3
18	0.2838	0.5618	0.0653	3	0	3
19	0.2973	0.6133	0.0713	3	0	3
20	0.0676	0.2527	0.0294	1	0	1
21	0.0811	0.4898	0.0569	4	0	4
22	0.6216	0.9320	0.1083	3	0	3
23	1.3108	1.2488	0.1452	4	0	4
24	0.2297	0.4839	0.0563	2	0	2
25	1.1622	1.4807	0.1721	6	0	6
26	0.2297	0.5376	0.0625	3	0	3
27	0.3649	0.5631	0.0655	2	0	2
28	0.2297	0.6092	0.0708	3	0	3
29	0.0676	0.2527	0.0294	1	0	1
30	8.2027	5.4446	0.6329	23	0	23
31	10.9594	1.4471	0.1682	15	10	5
32	10.2838	1.0793	0.1255	17	10	7
33	11.2838	2.1677	0.2520	19	10	9
34	10.1757	0.6050	0.0703	13	10	3
35	10.0676	0.3021	0.0351	12	10	2
36	10.1757	0.6896	0.0802	14	10	4
37	10.1757	0.6896	0,0802	14	10	4
38	10.0135	0.1162	0.0135	11	10	1
39	10.8243	1.2091	0.1406	14	10	4
40	10.3919	1.0179	0.1183	15	10	5
41	11.3378	2.6394	0.3068	23	10	13
42	10.2027	0.6617	0.0769	13	10	3
43	10.2027	0.6189	0.0719	13	10	3

CROSS VALIDATION SAMPLE (AT's and BT's) UPPER CRITERION GROUP (N=74) 19R-EVALUATION SECTION (Continued)

		S.E. of			
Mean	<u>S.D.</u>	Mean	Max.	Min.	Range
10.0946	0.4432	0.0515	13	10	3
10.2027	0.8755	0.1018	16	10	6
10.2838	0.8027	0.0933	13	10	3
10.4324	1.2172	0.1415	15	10	5
10.5000	1.0885	0.1265	16	10	6
10.6216	1.4306	0.1663	18	10	8
10.1216	0.5222	0.0607	13	10	3
10.1216	0.6815	0.0792	15	10	5
11.3784	2.1752	0.2529	19	10	9
13.0811	2.9319	0.3408	21	10	11
10.6892	1.4517	0.1688	16	10	6
12.1621	3.0611	0.3558	25	10	15
10.4594	1.1842	0.1377	17	10	7
10.6216	1.0028	0.1166	14	10	4
10.5000	1.3574	0.1578	17	10	7
10.1351	0.5570	0.0648	13	10	3
306.1311	17.0533	1.9824	336	201	135
2.7432	2.4942	0.2899	11	0	11
3.6486	2.7718	0.3222	12	0	12
1.9459	2.0197	0.2348	7	0	7
0.0000	0.0000	0.0000	0	0	0
0.0000	0.0000	0.0000	0	0	0
78.3376	49.0724	5.7045	212	0	212
5.6081	3.3508	0.3895	14	0	14
	<u>Mean</u> 10.0946 10.2027 10.2838 10.4324 10.5000 10.6216 10.1216 10.1216 10.1216 11.3784 13.0811 10.6892 12.1621 10.4594 10.6216 10.5000 10.1351 306.1311 2.7432 3.6486 1.9459 0.0000 0.0000 78.3376 5.6081	MeanS.D. 10.0946 0.4432 10.2027 0.8755 10.2838 0.8027 10.4324 1.2172 10.5000 1.0885 10.6216 1.4306 10.1216 0.5222 10.1216 0.6815 11.3784 2.1752 13.0811 2.9319 10.6892 1.4517 12.1621 3.0611 10.4594 1.1842 10.6216 1.0028 10.5000 1.3574 10.1351 0.5570 306.1311 17.0533 2.7432 2.4942 3.6486 2.7718 1.9459 2.0197 0.0000 0.0000 0.0000 0.0000 78.3376 49.0724 5.6081 3.3508	MeanS.D.Mean 10.0946 0.4432 0.0515 10.2027 0.8755 0.1018 10.2838 0.8027 0.0933 10.4324 1.2172 0.1415 10.5000 1.0885 0.1265 10.6216 1.4306 0.1663 10.1216 0.5222 0.0607 10.1216 0.6815 0.0792 11.3784 2.1752 0.2529 13.0811 2.9319 0.3408 10.6892 1.4517 0.1688 12.1621 3.0611 0.3558 10.4594 1.1842 0.1377 10.6216 1.0028 0.1166 10.5000 1.3574 0.1578 10.1351 0.5570 0.0648 306.1311 17.0533 1.9824 2.7432 2.4942 0.2899 3.6486 2.7718 0.3222 1.9459 2.0197 0.2348 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 78.3376 49.0724 5.7045 5.6081 3.3508 0.3895	MeanS.D.MeanMax. 10.0946 0.4432 0.0515 13 10.2027 0.8755 0.1018 16 10.2838 0.8027 0.0933 13 10.4324 1.2172 0.1415 15 10.5000 1.0885 0.1265 16 10.6216 1.4306 0.1663 18 10.1216 0.5222 0.0607 13 10.1216 0.6815 0.0792 15 11.3784 2.1752 0.2529 19 13.0811 2.9319 0.3408 21 10.6892 1.4517 0.1688 16 12.1621 3.0611 0.3558 25 10.4594 1.1842 0.1377 17 10.6216 1.0028 0.1166 14 10.5000 1.3574 0.1578 17 10.1351 0.5570 0.0648 13 306.1311 17.0533 1.9824 336 2.7432 2.4942 0.2899 11 3.6486 2.7718 0.3222 12 1.9459 2.0197 0.2348 7 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0895 14	MeanS.E. ofMeanMax.Min. 10.0946 0.4432 0.0515 13 10 10.2027 0.8755 0.1018 16 10 10.2838 0.8027 0.0933 13 10 10.4324 1.2172 0.1415 15 10 10.5000 1.0885 0.1265 16 10 10.6216 1.4306 0.1663 18 10 10.1216 0.5222 0.0607 13 10 10.1216 0.6815 0.792 15 10 11.3784 2.1752 0.2529 19 10 13.0811 2.9319 0.3408 21 10 10.6892 1.4517 0.1688 16 10 12.1621 3.0611 0.3558 25 10 10.4594 1.1842 0.1377 17 10 10.6216 1.0028 0.1166 14 10 10.351 0.5570 0.0648 13 10 306.1311 17.0533 1.9824 336 201 2.7432 2.4942 0.2899 11 0 3.6486 2.7718 0.3222 12 0 1.9459 2.0197 0.2348 7 0 0.0000 0.0000 0.0000 0 0 0.0000 0.0000 0.0000 0 0 0.0000 0.0000 0.0000 0 0 0.13576 49.0724 5.7045

÷.

CROSS VALIDATION SAMPLE (AT's and BT's) MIDDLE CRITERION GROUP (N=74) 19R-EVALUATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.3108	0.5471	0.0636	2	0	2
2	0.2162	0.5040	0.0586	2	0	2
3	1.0000	1.2928	0.1503	4	0	4
4	0.2297	0.5376	0.0625	2	0	2
5	0.1216	0.3291	0.0383	1	0	1
6	0.0811	0.2748	0.0319	1	0	1
7	0.0676	0.3021	0.0351	2	0	2
8	0.0405	0.1986	0.0231	1	0	1
9	0.3919	0.7552	0.0878	4	0	4
10	0.3108	0.5951	0.0692	3	0	3
11	1.1892	1.9492	0.2266	9	0	9
12	0.4595	0.7437	0.0865	4	0	4
13	0.1081	0.3126	0.0363	1	0	1
14	0.0946	0.3380	0.0393	2	0	2
15	0.2297	0.4235	0.0492	1	0	1
16	0.2162	0.4145	0.0482	1	0	1
17	0.3649	0.7134	0.0829	3	0	3
18	0.2162	0.4463	0.0519	2	0	2
19	0.3514	0.6066	0.0705	2	0	2
20	0.2568	0.5748	0.0668	3	0	3
21	0.0405	0.1986	0.0231	1	0	1
22	0.7162	0.7855	0.0913	3	0	3
23	0.9189	0.9029	0.1050	3	0	3
24	0.0946	0.2947	0.0343	1	0	1
25	1.0135	1.1526	0.1340	5	0	5
26	0.3378	0.5558	0.0646	2	0	2
27	0.4459	0.6853	0.0797	3	0	3
28	0.2432	0.5442	0.0633	2	0	2
29	0.1486	0.3582	0.0416	1	0	1
30	10.0811	5.6052	0.6516	25	0	25
31	10.7027	1.2576	0.1462	15	10	5
32	10.4054	0.9497	0.1104	14	10	4
33	11.9189	2.6881	0.3125	19	10	9
34	10.4054	0.9640	0.1121	14	10	4
35	10.2297	0.6313	0.0734	12	10	2
36	10.1486	0.5150	0.0599	12	10	2
37	10.1351	0.6688	0.0777	15	10	5
38	10.0811	0.4303	0.0500	13	10	3
39	10.7297	1.5641	0.1818	20	10	10
40	10.6081	1.1799	0.1372	16	10	6
41	11.6351	2.8649	0.3330	22	5	17
42	10.8919	1.7405	0.2023	20	10	10
43	10.2432	0.7367	0.0856	13	10	3

(Continued)

CROSS VALIDATION SAMPLE (AT's and BT's) MIDDLE CRITERION GROUP (N=74) 19R-EVALUATION SECTION (Continued)

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
44	10.1351	0.5811	0.0675	13	9	4
45	10.3919	0.7907	0.0919	13	10	3
46	10.2838	0.6086	0.0708	13	10	3
47	10.6621	1.3677	0.1590	17	10	7
48	10.4324	1.0347	0.1203	16	10	6
49	10.4459	0.9529	0.1108	14	8	6
50	10.4054	0.9054	0.1052	13	10	3
51	10.0405	0.1986	0.0231	11	10	1
52	11.2973	1.5055	0.1750	17	10	7
53	12.0270	2.0672	0.2403	17	10	7
54	10.2838	0.8840	0.1028	13	10	3
55	11.8243	2.1155	0.2459	20	10	10
56	10.5540	0.9951	0.1157	14	10	4
57	10.8784	1.4893	0.1731	18	10	8
58	10.4054	0.9351	0.1087	14	10	4
59	10.2703	0.7639	0.0888	13	9	4
60	308.4282	10.3687	1.2053	337	289	48
61	2.1216	2.0604	0.2395	12	0	12
62	4.3784	3.1740	0.3690	13	0	13
63	3.5270	2.7259	0.3169	11	0	11
64	0.1892	1.0813	0.1257	9	0	9
65	0.0000	0.0000	0.0000	0	0	0
66	86.5808	42.8689	4.9834	214	0	214
67	7.1621	3.2011	0.3721	15	0	15

CROSS VALIDATION SAMPLE (AT's and BT's) LOWER CRITERION GROUP (N=74) 19R-EVALUATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.2703	0.5047	0.0587	2	0	2
2	0.1892	0.4586	0.0533	2	0	2
3	0.7973	1.2048	0.1401	8	0	8
4	0.2162	0.5304	0.0617	3	0	3
5	0.1216	0.3291	0.0383	1	0	1
6	0.1081	0.3906	0.0454	2	0	2
7	0.1081	0.3537	0.0411	2	0	2
8	0.0270	0.1633	0.0190	1	0	1
9	0.3108	0.5471	0.0636	2	0	2
10	0.2297	0.4547	0.0529	2	0	2
11	1.0946	1.5891	0.1847	7	0	7
12	0.2027	0.4048	0.0471	1	0	1
13	0.0946	0.2947	0.0343	1	0	1
14	0.0541	0.2277	0.0265	1	0	1
15	0.2027	0.4373	0.0508	2	0	2
16	0.2297	0.5114	0.0595	3	0	3
17	0.1757	0.5063	0.0589	2	0	2
18	0.0676	0.2527	0.0294	1	0	1
19	0.4730	0.6667	0.0775	3	0	3
20	0.1081	0.3906	0.0454	2	0	2
21	0.1622	0.4388	0.0510	2	0	2
22	0.9459	1.3838	0.1609	7	0	7
23	1.3513	1.1033	0.1283	5	0	5
24	0.0541	0.2815	0.0327	2	0	2
25	0.9189	1.2688	0.1475	5	0	5
26	0.1757	0.4785	0.0556	2	0	2
27	0.5135	0.6462	0.0751	2	0	2
28	0.1757	0.4174	0.0485	2	0	2
29	0.1351	0.3442	0.0400	1	0	1
30	9.5135	5.1398	0.5975	26	0	26
31	10.4865	1.0758	0.1251	14	9	5
32	10.2703	0.8648	0.1005	14	9	5
33	11.0270	1.8798	0.2185	19	8	11
34	10.2027	0.8273	0.0962	13	7	6
35	10.2297	0.6733	0.0783	13	10	3
36	10.2027	0.7211	0.0838	14	10	4
37	10.1216	0.6400	0.0744	14	9	5
38	10.0270	0.1633	0.0190	11	10	1
39	10.4189	0.8760	0.1018	14	9	5
40	10.3784	0.8712	0.1013	13	9	4
41	11.3243	2.4049	0.2796	25	9	16
42	10.2973	0.6565	0.0763	13	10	3
43	10.1757	0.6050	0.0703	13	10	3

CROSS VALIDATION SAMPLE (AT's and BT's) LOWER CRITERION GROUP (N=74) 19R-EVALUATION SECTION (Continued)

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
44	10.0405	0.3070	0.0357	12	9	3
45	10.2432	0.6582	0.0765	13	9	4
46	10.2162	0.8321	0.0967	15	9	6
47	10.3108	0.9352	0.1087	15	10	5
48	10.1081	0.4553	0.0529	13	10	3
49	10.5676	1.0609	0.1233	14	7	7
50	10.1216	0.6611	0.0769	15	9	6
51	10.2973	0.8231	0.0957	14	10	4
52	11.6621	2.3366	0.2716	20	10	10
53	12.2973	2.2618	0.2629	18	9	9
54	10.0946	0.8137	0.0946	16	8	8
55	11.3919	2.1696	0.2522	19	8	11
56	10.3108	0.9641	0.1121	15	10	5
57	10.7973	1.3546	0.1575	15	9	6
58	10.2027	0.7018	0.0816	14	9	5
59	10.2297	0.6313	0.0734	13	10	3
60	304.0640	8.6142	1.0014	329	290	39
61	1.1351	1.4835	0.1724	6	0	6
62	4.2432	2.7339	0.3178	11	0	11
63	3.1621	2.5537	0.2969	13	0	13
64	0.9595	2.0703	0.2407	12	0	12
65	0.0135	0.1162	0.0135	1	0	1
66	87.1889	46.2204	5.3730	287	0	287
67	6.5135	2.9759	0.3459	16	0	16

CROSS VALIDATION SAMPLE (AT's and BT's) UPPER CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.4459	0.7242	0.0842	3	0	3
2	0.7703	1.3902	0.1616	8	0	8
3	1.9459	1.9295	0.2243	8	0	8
4	0.1757	0.4785	0.0556	3	0	3
5	0.4054	0.7570	0.0880	3	0	3
6	0.1216	0.3684	0.0428	2	0	2
7	0.2568	0.7034	0.0818	4	0	4
8	0.0946	0.4111	0.0478	3	0	3
9	0.8378	1.0207	0.1187	4	0	4
10	1.1757	1.3279	0.1544	5	0	5
11	2.0676	1.9885	0.2312	7	0	7
12	0.5541	0.8299	0.0965	3	0	3
13	0.2838	0.5369	0.0624	2	0	2
14	0.0946	0.3763	0.0437	2	0	2
15	0.7432	1.1234	0.1306	5	0	5
16	0.6351	0.8533	0.0992	4	0	4
17	0.4324	0.8771	0.1020	5	0	5
18	0.5270	0.7257	0.0844	3	0	3
19	1.0000	1.0598	0.1232	5	0	5
20	0.5676	0.8614	0.1001	3	0	3
21	0.5135	0.7629	0.0887	4	0	4
22	1.5270	1.7059	0.1983	8	0	8
23	2.5676	2.2639	0.2632	14	0	14
24	0.1081	0.3537	0.0411	2	0	2
25	2.2162	2.2224	0.2583	10	0	10
26	0.3784	0.6559	0.0762	3	0	3
27	1.1622	1.0207	0.1187	4	0	4
28	0.3649	0.6939	0.0807	3	0	3
29	0.4189	0.6826	0.0793	3	0	3
30	22.3916	14.7358	1.7130	91	5	86
31	11.0270	1.7039	0.1981	18	10	8
32	11.3919	2.3456	0.2727	23	10	13
33	13.9054	3.8327	0.4455	28	10	18
34	10.2297	0.6313	0.0734	13	10	3
35	10.8243	1.5907	0.1849	18	10	8
36	10.2838	0.8840	0.1028	15	10	5
37	10.4459	1.2836	0.1492	18	10	8
38	10.1216	0.4953	0.0576	13	10	3
39	11.5405	2.0419	0.2374	17	10	7
40	12.4730	2.7708	0.3221	20	10	10
41	13.8513	3.6440	0.4236	23	10	13
42	11.1486	1.8408	0.2140	18	10	8
43	10.5000	1.1257	0.1309	16	10	6
CROSS VALIDATION SAMPLE (AT's and BT's) UPPER CRITERION GROUP (N=74) 195-JUSTIFICATION SECTION

4

		S.E. of			
Mean	S.D.	Mean	Max.	Min.	Range
10.1757	0.7468	0.0868	15	10	5
11.5811	2.4214	0.2815	20	10	10
11.0000	1.5170	0.1764	17	10	7
10.7162	1.6346	0.1900	19	10	9
10.9459	1.3936	0.1620	15	10	5
11.9594	2.1672	0.2519	18	10	8
10.9865	1.5746	0.1830	17	10	7
10.6892	1.3742	0.1597	20	10	10
13.1216	3.4915	0.4059	28	10	18
15.5811	4.6435	0.5398	39	10	29
10.3243	1.0612	0.1234	16	10	6
14.0946	4.1814	0.4861	28	10	18
10.5946	1.0844	0.1261	15	10	5
12.4730	2.3827	0.2770	19	10	9
10.5676	1.0990	0.1278	15	10	5
10.7703	1.2985	0.1510	15	10	5
333.3606	27.1629	3.1576	449	299	150
6.8648	10.7707	1.2521	91	0	91
9.9730	8.5303	0.9916	59	0	59
7.1351	6.7221	0.7814	44	0	44
0.0000	0.0000	0.0000	0	0	0
0.0000	0.0000	0.0000	0	0	0
201.4052	146.3721	17.0154	896	35	861
11.6081	4.8224	0.5606	27	4	23
	<u>Mean</u> 10.1757 11.5811 11.0000 10.7162 10.9459 11.9594 10.9865 10.6892 13.1216 15.5811 10.3243 14.0946 10.5946 12.4730 10.5676 10.7703 333.3606 6.8648 9.9730 7.1351 0.0000 0.0000 201.4052 11.6081	MeanS.D. 10.1757 0.7468 11.5811 2.4214 11.0000 1.5170 10.7162 1.6346 10.9459 1.3936 11.9594 2.1672 10.9865 1.5746 10.6892 1.3742 13.1216 3.4915 15.5811 4.6435 10.3243 1.0612 14.0946 4.1814 10.5946 1.0844 12.4730 2.3827 10.5676 1.0990 10.7703 1.2985 333.3606 27.1629 6.8648 10.7707 9.9730 8.5303 7.1351 6.7221 0.0000 0.0000 0.0000 0.0000 201.4052 146.3721 11.6081 4.8224	MeanS.D.Mean 10.1757 0.7468 0.0868 11.5811 2.4214 0.2815 11.0000 1.5170 0.1764 10.7162 1.6346 0.1900 10.9459 1.3936 0.1620 11.9594 2.1672 0.2519 10.9865 1.5746 0.1830 10.6892 1.3742 0.1597 13.1216 3.4915 0.4059 15.5811 4.6435 0.5398 10.3243 1.0612 0.1234 14.0946 4.1814 0.4861 10.5946 1.0844 0.1261 12.4730 2.3827 0.2770 10.5676 1.0990 0.1278 10.7703 1.2985 0.1510 333.3606 27.1629 3.1576 6.8648 10.7707 1.2521 9.9730 8.5303 0.9916 7.1351 6.7221 0.7814 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 201.4052 146.3721 17.0154 11.6081 4.8224 0.5606	MeanS.D.MeanMax. 10.1757 0.7468 0.0868 15 11.5811 2.4214 0.2815 20 11.0000 1.5170 0.1764 17 10.7162 1.6346 0.1900 19 10.9459 1.3936 0.1620 15 11.9594 2.1672 0.2519 18 10.9865 1.5746 0.1830 17 10.6892 1.3742 0.1597 20 13.1216 3.4915 0.4059 28 15.5811 4.6435 0.5398 39 10.3243 1.0612 0.1234 16 14.0946 4.1814 0.4861 28 10.5946 1.0844 0.1261 15 12.4730 2.3827 0.2770 19 10.5676 1.0990 0.1278 15 10.7703 1.2985 0.1510 15 333.3606 27.1629 3.1576 449 6.8648 10.7707 1.2521 91 9.9730 8.5303 0.9916 59 7.1351 6.7221 0.7814 44 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.0000 0	MeanS.D.MeanMax.Min. 10.1757 0.7468 0.0868 15 10 11.5811 2.4214 0.2815 20 10 11.0000 1.5170 0.1764 17 10 10.7162 1.6346 0.1900 19 10 10.9459 1.3936 0.1620 15 10 11.9594 2.1672 0.2519 18 10 10.9865 1.5746 0.1830 17 10 10.6892 1.3742 0.1597 20 10 13.1216 3.4915 0.4059 28 10 15.5811 4.6435 0.5398 39 10 10.3243 1.0612 0.1234 16 10 14.0946 4.1814 0.4861 28 10 10.5976 1.0990 0.1278 15 10 10.5966 1.0703 1.2985 0.1510 15 10 33.3606 27.1629 3.1576 449 299 6.8648 10.7707 1.2521 91 0 9.9730 8.5303 0.9916 59 0 7.1351 6.7221 0.7814 44 0 0.0000 0.0000 0 0 0 0 0.0000 0.0000 0 0 0 0 0.12781 17.0154 896 35 11.6081 4.8224 0.5606 27 4

CROSS VALIDATION SAMPLE (AT's and BT's) MIDDLE CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.3919	0.5690	0.0661	2	0	2
2	0.5135	1.0369	0.1205	7	0	7
3	1.5540	1.9525	0.2270	7	0	7
4	0.2162	0.5040	0.0586	2	0	2
5	0.3784	0.8227	0.0956	4	0	4
6	0.1622	0.5740	0.0667	4	0	4
7	0.1486	0.4588	0.0533	3	0	3
8	0.0676	0.3021	0.0351	2	0	2
9	0.3919	0.6583	0.0765	2	0	2
10	0.7973	1.3846	0.1610	9	0	9
11	2.0000	2.1390	0.2487	9	0	9
12	0.4595	0.7797	0.0906	3	0	3
13	0.0946	0.2947	0.0343	1	0	1
14	0.0811	0.2748	0.0319	1	0	1
15	0.6081	0.8730	0.1015	4	0	4
16	0.3919	0.6153	0.0715	2	0	2
17	0.2568	0.5250	0.0610	2	0	2
18	0.2838	0.5618	0.0653	2	0	2
19	0.7432	0.9801	0.1139	4	0	4
20	0.4730	1.1494	0.1336	9	0	9
21	0.2703	0.6259	0.0728	3	0	3
22	0.7432	1.0076	0.1171	5	0	5
23	1.4865	1.4358	0.1669	7	0	7
24	0.0405	0.1986	0.0231	1	0	1
25	1.6892	1.7354	0.2017	7	0	7
26	0.2162	0.5304	0.0617	2	0	2
27	0.7838	0.9107	0.1059	3	0	3
28	0.2703	0.6036	0.0702	3	0	3
29	0.1757	0.4174	0.0485	2	0	2
30	15.6890	9.5657	1.1120	44	1	43
31	11.0270	1.4709	0.1710	15	10	5
32	10.9594	1.9120	0.2223	23	10	13
33	12.8919	3.7106	0.4314	25	10	15
34	10.3919	0.9482	0.1102	14	10	4
35	10.6216	1.3619	0.1583	17	10	7
36	10.3784	1.3314	0.1548	19	10	9
37	10.2297	0.7503	0.0872	15	10	5
38	10.1216	0.5722	0.0665	14	10	4
39	10.6216	1.1312	0.1315	14	10	4
40	11.5946	2.6062	0.3030	23	10	13
41	13.6081	3.6067	0.4193	26	10	16
42	10.9324	1.7621	0.2048	19	10	9
43	10.2162	0.7266	0.0845	13	10	3

CROSS VALIDATION SAMPLE (AT's and BT's) MIDDLE CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION (Continued)

and a set of the set o

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
44	10.1351	0.5054	0.0588	13	10	3
45	11.3243	1.8215	0.2118	17	10	7
46	10.5811	1.1468	0.1333	16	9	7
47	10.4459	0.9672	0.1124	14	10	4
48	10.5270	1.0882	0.1265	14	10	4
49	11.3378	1.8820	0.2188	17	10	7
50	10.8513	1.8556	0.2157	23	10	13
51	10.4459	1.1121	0.1293	16	10	6
52	11.2297	1.7324	0.2014	17	10	7
53	13.1486	3.2966	0.3832	25	10	15
54	10.1216	0.5957	0.0692	13	10	3
55	12.9594	3.4855	0.4052	27	9	18
56	10.4054	1.0326	0.1200	15	10	5
57	11.4594	1.7532	0.2038	17	10	7
58	10.4459	1.0222	0.1188	15	10	5
59	10.3243	0.8775	0.1020	15	10	5
60	319.3337	17.1500	1.9936	371	292	79
61	3.5811	2.7548	0.3202	13	0	13
62	6.5676	4.4846	0.5213	21	1	20
63	5.5135	4.7405	0.5511	18	0	18
64	0.0270	0.2325	0.0270	2	0	2
65	0.0000	0.0000	0.0000	0	0	0
66	146.5944	124.8155	14.5095	820	17	803
67	9.1621	4.3132	0.5014	19	1	18

CROSS VALIDATION SAMPLE (AT's and BT's) LOWER CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.0541	0.2815	0.0327	2	0	2
2	0.0135	0.1162	0.0135	1	0	1
3	0.2027	0.6406	0.0745	4	0	4
4	0.0405	0.1986	0.0231	1	0	1
5	0.0405	0.1986	0.0231	1	0	1
6	0.0270	0.2325	0.0270	2	0	2
7	0.0135	0.1162	0.0135	1	0	1
8	0.0000	0.0000	0.0000	0	0	0
9	0.0270	0.1633	0.0190	1	0	1
10	0.1757	0.5578	0.0648	3	0	3
11	0.2838	0.6728	0.0782	3	0	3
12	0.1081	0.4242	0.0493	3	0	3
13	0.0270	0.1633	0.0190	1	0	1
14	0.0135	0.1162	0.0135	1	0	1
15	0.1892	0.6553	0.0762	5	0	5
16	0.0676	0.3021	0.0351	2	0	2
17	0.1081	0.4553	0.0529	3	0	3
18	0.0135	0.1162	0.0135	1	0	1
19	0.1081	0.4242	0.0493	2	0	2
20	0.0676	0.3021	0.0351	2	0	2
21	0.0270	0.1633	0.0190	1	0	1
22	0.1216	0.3684	0.0428	2	0	2
23	0.0946	0.3380	0.0393	2	0	2
24	0.0135	0.1162	0.0135	1	0	1
25	0.1351	0.4480	0.0521	2	0	2
26	0.0405	0.1986	0.0231	1	0	1
27	0.0946	0.3763	0.0437	2	0	2
28	0.0135	0.1162	0.0135	1	0	1
29	0.0405	0.1986	0.0231	1	0	1
30	2.1621	3.5809	0.4163	16	0	16
31	10.1216	0.6611	0.0769	15	10	5
32	10.0135	0.1162	0.0135	11	10	1
33	10.3919	1.3830	0.1608	20	10	10
34	10.0946	0.5012	0.0583	13	10	3
35	10.0676	0.3445	0.0400	12	10	2
36	10.0676	0.5812	0.0676	15	10	5
37	10.0270	0.2325	0.0270	12	10	2
38	10.0000	0.0000	0.0000	10	10	0
39	10.0540	0.3661	0.0426	13	10	3
40	10.3513	1.2212	0.1420	16	9	7
41	10.5946	1.5432	0.1794	17	9	8
42	10.2297	0.8528	0.0991	15	10	5
43	10.0676	0.4165	0.0484	13	10	3

(Continued)

CROSS VALIDATION SAMPLE (AT's and BT's) LOWER CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION (Continued)

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
44	10.0405	0.3487	0.0405	13	10	3
45	10.4730	1.5280	0.1776	21	10	11
46	10.1081	0.5381	0.0625	14	10	4
47	10.2162	0.9547	0.1110	17	10	7
48	10.0270	0.2325	0.0270	12	10	2
49	10.2703	1.0765	0.1251	16	10	6
50	10.1351	0.6265	0.0728	14	10	4
51	10.0540	0.3265	0.0380	12	10	2
52	10.2162	0.6677	0.0776	13	10	3
53	10.1621	0.5974	0.0694	13	10	3
54	9.9730	0.2325	0.0270	10	8	2
55	10.2297	0.7503	0.0872	14	10	4
56	10.0811	0.3971	0.0462	12	10	2
57	10.1486	0.6123	0.0712	14	10	4
58	10.0405	0.3487	0.0405	13	10	3
59	10.0676	0.3822	0.0444	13	10	3
60	294.1848	6.8917	0.8011	324	287	37
61	0.6486	1.2212	0.1420	7	0	7
62	0.9595	1.8464	0.2146	10	0	10
63	0.5135	1.0500	0.1221	5	0	5
64	0.0270	0.1633	0.0190	1	0	1
65	0.0135	0.1162	0.0135	1	0	1
66	17.6754	27.2311	3.1656	112	0	112
67	1.6081	2.4372	0.2833	9	0	9

GENERALIZATION SAMPLE (CS's and RM's) UPPER CRITERION GROUP (N=74) 19R-EVALUATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.2973	0.5163	0.0600	2	0	2
2	0.3378	0.8802	0.1023	4	0	4
3	0.9054	1.4634	0.1701	7	0	7
4	0.1351	0.3819	0.0444	2	0	2
5	0.2703	0.6884	0.0800	4	0	4
6	0.0676	0.2527	0.0294	1	0	1
7	0.1081	0.3126	0.0363	1	0	1
8	0.0135	0.1162	0.0135	1	0	1
9	0.3243	0.7043	0.0819	4	0	4
10	0.2703	0.6682	0.0777	3	0	3
11	1.0405	1.7629	0.2049	10	0	10
12	0.2973	0.6353	0.0738	3	0	3
13	0.0405	0.1986	0.0231	1	0	1
14	0.0541	0.2815	0.0327	2	0	2
15	0.1757	0.4490	0.0522	2	0	2
16	0.2162	0.5040	0.0586	2	0	2
17	0.2027	0.5229	0.0608	3	0	3
18	0.3919	0.8246	0.0959	5	0	5
19	0.2297	0.4839	0.0563	2	0	2
20	0.1351	0.4776	0.0555	3	0	3
21	0.0811	0.3610	0.0420	2	0	2
22	0.7703	1.0142	0.1179	4	0	4
23	1.5000	1.5011	0.1745	7	0	7
24	0.2703	0.4768	0.0554	2	0	2
25	0.9459	1.2038	0.1399	5	0	5
26	0.1622	0.4388	0.0510	2	0	2
27	0.3514	0.6288	0.0731	3	0	3
28	0.2838	0.5857	0.0681	3	0	3
29	0.2162	0.4760	0.0553	2	0	2
30	10.0946	9.6927	1.1268	63	0	63
31	10.6621	1.2306	0.1431	15	10	5
32	10.6892	1.7511	0.2036	19	10	9
33	11.7973	3.0965	0.3600	29	10	19
34	10.2973	0.9025	0.1049	15	10	5
35	10.5540	1.3461	0.1565	17	10	7
36	10.1486	0.5657	0.0658	13	10	3
37	10.1892	0.5893	0.0685	13	10	3
38	10.0270	0.2325	0.0270	12	10	2
39	10.6216	1.3619	0.1583	18	10	8
40	10.5946	1.5253	0.1773	18	10	8
41	11.7703	3.3085	0.3846	32	10	22
42	10.5811	1.2497	0.1453	16	10	6
43	10.0676	0.3822	0.0444	13	10	3

164

(Continued)

GENERALIZATION SAMPLE (CS's and RM's) UPPER CRITERION GROUP (N=74) 19R-EVALUATION SECTION (Continued)

No. of			S.E. of			
Variable	Mean	<u>S.D.</u>	Mean	Max.	Min.	Range
44	10,1081	0.5630	0.0654	14	10	4
45	10.3784	1.0942	0 1272	16	10	6
45	10 3649	0 9872	0 1148	15	10	5
40	10.3513	0.8980	0 1044	14	10	1
48	10.8378	1 6719	0 1 9 4 4	10	10	9
40	10 4594	1 1003	0 1279	16	10	6
50	10 2162	0 7811	0.0008	15	10	5
51	10.1081	0.5120	0.0505	12	10	2
52	11 50/6	2 0669	0.2402	10	10	ر ٥
52	12 5/05	2.0000	0.2403	21	10	0
53	13.3403	3./900	0.4414	31	10	21
54	10.8108	1.4304	0.1663	10	10	6
55	11.6892	2.2141	0.2574	20	10	10
56	10.3108	0.9641	0.1121	16	10	6
57	10.6757	1.2939	0.1504	17	10	7
58	10.5000	1.1849	0.1377	17	10	7
59	10.4865	1.1133	0.1294	15	10	5
60	310.5364	21.1002	2.4528	445	290	155
61	2.9730	4.0102	0.4662	32	0	32
62	4.4189	4.2716	0.4966	19	0	19
63	2.6892	3.4240	0.3980	16	0	16
64	0.0135	0.1162	0.0135	1	0	1
65	0.0000	0.0000	0.0000	0	0	0
66	98.1754	83.3072	9.6843	530	0	530
67	6.3378	4.7637	0.5538	22	0	22

GENERALIZATION SAMPLE (CS's and RM's) MIDDLE CRITERION GROUP (N=74) 19R-EVALUATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.4595	0.6862	0.798	3	0	3
2	0.3514	0.8012	0.0931	4	0	4
3	0.8649	1.1387	0.1324	5	0	5
4	0.0946	0.2947	0.0343	1	0	1
5	0.1622	0.4064	0.0472	2	0	2
6	0.1486	0.5150	0.0599	3	0	3
7	0.2027	0.5229	0.0608	2	0	2
8	0.0405	0.1986	0.0231	1	0	1
9	0.2297	0.4547	0.0529	2	0	2
10	0.1622	0.4973	0.0578	3	0	3
11	0.6351	1.2002	0.1395	5	0	5
12	0.2027	0.4676	0.0544	2	0	2
13	0.0135	0.1162	0.0135	1	0	1
14	0.0541	0.2277	0.0265	1	0	1
15	0.1216	0.3684	0.0428	2	0	2
16	0.1892	0.3943	0.0458	1	0	1
17	0.0946	0.3380	0.0393	2	0	2
18	0.2838	0.5369	0.0624	2	0	2
19	0.4189	0.7216	0.0839	3	0	3
20	0.1216	0.3684	0.0428	2	0	2
21	0.2027	0.4676	0.0544	2	0	2
22	0.6892	1.1339	0.1318	6	0	6
23	1.3243	1.4440	0.1679	8	0	8
24	0.1622	0.4064	0.0472	2	0	2
25	0.9865	1.2219	0.1420	5	0	5
26	0.0541	0.2277	0.0265	1	0	1
27	0.1622	0.4064	0.0472	2	0	2
28	0.1757	0.4490	0.0522	2	0	2
29	0.1216	0.3291	0.0383	1	0	1
30	8.7297	5.5967	0.6506	26	0	26
31	11.0135	1.4571	0.1694	15	10	5
32	10.5811	1.5439	0.1795	18	7	11
33	11.5946	2.1891	0.2545	19	10	9
34	10.2162	0.7075	0.0822	13	10	3
35	10.2838	0.7498	0,0872	13	10	3
36	10.2973	0.9613	0.1117	14	10	4
37	10.3513	1.0782	0.1253	16	9	7
38	10.0811	0.3971	0.0462	12	10	2
39	10.3648	0.8205	0.0954	13	10	3
40	10.2973	1.0301	0.1197	15	9	6
41	10.8649	1.5644	0.1819	16	10	6
42	10.2703	0.6682	0.0777	13	10	3
43	10.0270	0.2325	0.0270	12	10	2

GENERALIZATION SAMPLE (CS's and RM's) MIDDLE CRITERION GROUP (N=74) 19R-EVALUATION SECTION (Continued)

No. of Variable	Mean	S.D.	S.E. of Mean	Max.	Min.	Range
44	10.1081	0.4553	0.0529	12	10	2
45	10.2838	0.8524	0.0991	14	10	4
46	10.3513	0.7840	0.0911	13	10	3
47	10.1351	0.4776	0.0555	12	10	2
48	10.4865	0.9826	0.1142	14	10	4
49	10.6216	1.1786	0.1370	15	9	6
50	10.2027	0.6617	0.0769	14	10	4
51	10.2567	0.6424	0.0747	13	10	3
52	11.4324	2.3059	0.2681	22	10	12
53	12.7162	2.9633	0.3445	26	10	16
54	10.4865	1.2191	0.1417	16	10	6
55	11.7432	2.2638	0.2632	20	10	10
56	10.0811	0.3971	0.0462	13	10	3
57	10.1892	0.5893	0.0685	13	9	4
58	10.2567	0.6837	0.0795	13	10	3
59	10.2567	0.7034	0.0818	13	10	3
60	305.8467	10.0993	1.1740	338	290	48
61	1.8513	1.7570	0.2043	7	0	7
62	3.8784	3.0608	0.3558	11	0	11
63	2.7703	2.5831	0.3003	11	0	11
64	0.2297	0.8687	0.1010	6	0	6
65	0.0000	0.0000	0.0000	0	0	0
66	84.5132	53.0552	6.1675	293	0	293
67	5.8648	3.3365	0.3879	14	0	14

GENERALIZATION SAMPLE (CS's and RM's) LOWER CRITERION GROUP (N=74) 19R-EVALUATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.2297	0.4547	0.0529	2	0	2
2	0.3649	0.6532	0.0759	3	0	3
3	0.8378	1.1229	0.1305	6	0	6
4	0.1486	0.4279	0.0497	2	0	2
5	0.2432	0.4320	0.0502	1	0	1
6	0.0270	0.1633	0.0190	1	0	1
7	0.1622	0.4388	0.0510	2	0	2
8	0.0135	0.1162	0.0135	1	0	1
9	0.2703	0.5311	0.0617	2	0	2
10	0.4324	0.7038	0.0818	3	0	3
11	0.8378	1.1229	0.1305	5	0	5
12	0.1892	0.4277	0.0497	2	0	2
13	0.0000	0.0000	0.0000	0	0	0
14	0.1216	0.4038	0.0469	2	0	2
15	0.1757	0.4785	0.0556	3	0	3
16	0.1351	0.3819	0.0444	2	0	2
17	0.0946	0.3380	0.0393	2	0	2
18	0.2162	0.4463	0.0519	2	0	2
19	0.4189	0.7586	0.0882	3	0	3
20	0.1757	0.4785	0.0556	2	0	2
21	0.1351	0.3442	0.0400	1	0	1
22	0.6486	0.9280	0.1079	4	0	4
23	1.6621	1.5374	0.1787	7	0	7
24	0.1081	0.3537	0.0411	2	0	2
25	0.9865	1.1878	0.1381	4	0	4
26	0.1216	0.3684	0.0428	2	0	2
27	0.3784	0.6127	0.0712	3	0	3
28	0.1622	0.4388	0.0510	2	0	2
29	0.1351	0.3442	0.0400	1	0	1
30	9.4324	5.0965	0.5925	29	0	29
31	10.4189	0.9364	0.1089	13	9	4
32	10.5676	1.0479	0.1218	14	10	4
33	11.0946	2.1592	0.2510	23	7	16
34	10.2838	0.8196	0.0953	14	10	4
35	10.4730	0.8793	0.1022	13	10	3
36	10.0676	0.4165	0.0484	13	10	3
37	10.2838	0.8027	0.0933	14	10	4
38	10.0270	0.2325	0.0270	12	10	2
39	10.3919	0.9189	0.1068	14	9	5
40	10.6081	1.1915	0.1385	15	9	6
41	11.1486	2.0385	0.2370	19	8	11
42	10.3108	0.8264	0.0961	13	9	4
43	10.0000	0.0000	0.0000	10	10	0

(Continued)

GENERALIZATION SAMPLE (CS's and RM's) LOWER CRITERION GROUP (N=74) 19R-EVALUATION SECTION (Continued)

MARK DOCUMENT

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
44	10.0811	0.5675	0.0660	13	8	5
45	10.3784	1.0689	0.1243	17	10	7
46	10.1757	0.6487	0.0754	14	9	5
47	10.1486	0.5410	0.0629	13	10	3
48	10.3378	0.7635	0.0888	13	10	3
49	10.7432	1.4340	0.1667	17	10	7
50	10.2703	0.7816	0.0909	14	10	4
51	10.1757	0.4785	0.0556	12	10	2
52	11.1351	1.7698	0.2057	18	9	9
53	13.1757	3.3407	0.3884	22	8	14
54	10.2567	1.0476	0.1218	16	8	8
55	11.3378	2.0155	0.2343	18	8	10
56	10.2027	0.6617	0.0769	13	10	3
57	10.7567	1.4026	0.1631	17	9	8
58	10.2162	0.6677	0.0776	14	10	4
59	10.2432	0.6582	0.0765	13	10	3
60	305.5764	9.0569	1.0528	333	290	43
61	1.5540	1.5362	0.1786	7	0	7
62	4.2838	2.6767	0.3112	16	0	16
63	2.8513	2.4700	0.2871	9	0	9
64	0.7297	1.5641	0.1818	9	0	9
65	0.0135	0.1162	0.0135	1	0	1
66	100.2835	54.5660	6.3432	353	0	353
67	6.3648	2.8020	0.3257	14	0	14

169

10.00 17.1

GENERALIZATION SAMPLE (CS's and RM's) UPPER CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.5135	0.8951	0.1041	4	0	4
2	0.8243	1.3381	0.1556	8	0	8
3	2.0811	1.9846	0.2307	9	0	9
4	0.2568	0.6633	0.0771	3	0	3
5	0.6081	1.0831	0.1259	6	0	6
6	0.1622	0.5241	0.0609	3	0	3
7	0.1757	0.3831	0.0445	1	0	1
8	0.0946	0.2947	0.0343	1	0	1
9	0.9189	1.1196	0.1302	5	0	5
10	1.2567	1.8061	0.2100	9	0	9
11	2.4865	2.7411	0.3186	14	0	14
12	0.8784	0.9209	0.1070	4	0	4
13	0.1486	0.3946	0.0459	2	0	2
14	0.0811	0.2748	0.0319	1	0	1
15	0.8784	0.8101	0.0942	4	0	4
16	0.8649	0.8809	0.1024	4	0	4
17	0.3649	0.6739	0.0783	2	0	2
18	0.5946	0.8263	0.0961	3	0	3
19	1.4189	1.3650	0.1587	6	0	6
20	0.6351	0.8848	0.1029	4	0	4
21	0.2838	0.5369	0.0624	2	0	2
22	1.4054	1.5955	0.1855	6	0	6
23	2.5270	2.0555	0.2390	8	0	8
24	0.0135	0.1162	0.0135	1	0	1
25	2.6757	2.4220	0.2815	10	0	10
26	0.4595	0.6660	0.0774	3	0	3
27	1.1351	1.1387	0.1324	4	0	4
28	0.2973	0.5669	0.0659	2	0	2
29	0.5135	0.7070	0.0822	3	0	3
30	24.5673	15.3846	1.7884	75	2	73
31	11.2027	2.0804	0.2418	20	10	10
32	11.4189	2.3815	0.2768	24	10	14
33	14.0540	4.0776	0.4740	27	10	17
34	10.4594	1.1958	0.1390	16	10	6
35	11.0811	1.8635	0.2166	20	10	10
36	10.3378	1.0634	0.1236	16	10	6
37	10.3108	0.7389	0.0859	13	10	3
38	10.1621	0.5496	0.0639	13	10	3
39	11.7567	2.2071	0.2566	20	10	10
40	12.5811	3.5654	0.4145	27	9	18
41	14.6621	4.2500	0.4940	29	10	19
42	11.7027	1.9705	0.2291	20	10	10
43	10.2703	0.7457	0.0867	13	10	3

(Continued)

GENERALIZATION SAMPLE (CS's and RM's) UPPER CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION (Continued)

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
44	10.1621	0.5974	0.0694	13	10	3
45	11.9594	1.7629	0.2049	17	10	7
46	11.3648	1.4858	0.1727	16 .	10	6
47	10.5811	1.1104	0.1291	14	10	4
48	11.0946	1.6316	0.1897	16	10	6
49	12.6081	2.6266	0.3053	22	10	12
50	11.1757	1.6163	0.1879	16	10	6
51	10.3784	0.7711	0.0896	13	10	3
52	12.7838	3.3445	0.3888	23	10	13
53	15.8647	4.6855	0.5447	30	10	20
54	10.0405	0.3487	0.0405	13	10	3
55	14.5811	3.8924	0.4525	23	10	13
56	10.7432	1.2612	0.1466	16	10	6
57	12.2838	2.3671	0.2752	18	10	8
58	10.5000	1.0102	0.1174	14	10	4
59	11.0135	1.4665	0.1705	15	10	5
60	337.1443	28.4735	3.3100	423	294	129
61	6.0946	4.5183	0.5252	20	0	20
62	10.5811	6.9420	0.8070	32	1	31
63	7.8243	6.8012	0.7906	31	0	31
64	0.0676	0.4778	0.0555	4	0	4
65	0.0000	0.0000	0.0000	0	0	0
66	228.2968	155.7997	18.1113	881	17	864
67	12.4730	4.6852	0.5446	22	1	21

GENERALIZATION SAMPLE (CS's and RM's) MIDDLE CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
1	0.3108	0.6395	0.0743	2	0	2
2	0.3919	0.8246	0.0959	3	0	3
3	1.0946	1.6232	0.1887	7	0	7
4	0.2027	0.6617	0.0769	4	0	4
5	0.4324	0.7417	0.0862	3	0	3
6	0.1081	0.5381	0.0625	4	0	4
7	0.1622	0.4690	0.0545	3	0	3
8	0.0405	0.2585	0.0301	2	0	2
9	0.4865	0.7806	0.0907	3	0	3
10	0.4324	0.8289	0.0964	4	0	4
11	1.5676	1.7910	0.2082	7	0	7
12	0.4054	0.7199	0.0837	3	0	3
13	0.1892	0.5893	0.0685	3	0	3
14	0.0811	0.3208	0.0373	2	0	2
15	0.7973	0.9506	0.1105	4	0	4
16	0.4730	0.6458	0.0751	3	0	3
17	0.1892	0.4875	0.0567	3	0	3
18	0.2297	0.5376	0.0625	3	0	3
19	0.8919	0.9871	0.1148	4	0	4
20	0.3649	0.7508	0.0873	3	0	3
21	0.2703	0.5563	0.0647	2	0	2
22	0.5811	0.9509	0.1105	5	0	5
23	2.0270	1.8870	0.2194	11	0	11
24	0.0000	0.0000	0.0000	0	0	0
25	1.4324	1.6393	0.1906	7	0	7
26	0.2162	0.5304	0.0617	3	0	3
27	0.5405	0.7251	0.0843	3	0	3
28	0.1622	0.3711	0.0431	1	0	1
29	0.2838	0.5369	0.0624	3	0	3
30	14.3648	9.8961	1.1504	49	0	49
31	10.7567	1.5860	0.1844	16	10	6
32	10.6621	1.4456	0.1680	16	9	7
33	12.1351	3.2449	0.3772	27	10	17
34	10.3243	1.0351	0.1203	16	10	6
35	10.8108	1.5141	0.1760	16	10	6
36	10.1892	0.9017	0.1048	16	10	6
37	10.2838	0.9583	0.1114	17	10	7
38	10.0541	0.3265	0.0380	12	10	2
39	10.8513	1.4304	0.1663	15	10	5
40	10.8513	1.6021	0.1862	16	10	6
41	12.7567	3.0780	0.3578	21	10	11
42	10.7973	1.5168	0.1763	16	10	6
43	10.2973	0.9754	0.1134	16	10	6

(Continued)

GENERALIZATION SAMPLE (CS's and RM's) MIDDLE CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION (Continued)

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
44	10.1351	0.5318	0.0618	13	10	3
45	11.8108	2.3035	0.2678	21	10	11
46	10.6892	0.9782	0.1137	14	10	4
47	10.3513	0.9131	0.1061	15	10	5
48	10.3919	1.0313	0.1199	16	10	6
49	11.5000	1.8672	0.2171	19	10	9
50	10.5135	1.1010	0.1280	15	10	5
51	10.3784	0.8392	0.0975	14	10	4
52	11.0811	1.7102	0.1988	19	10	9
53	14.2297	4.1266	0.4797	33	10	23
54	10.0000	0.0000	0.0000	10	10	0
55	12.4324	2.9381	0.3415	23	10	13
56	10.3649	0.9447	0.1098	15	10	5
57	11.0540	1.6124	0.1874	16	10	6
58	10.2567	0.6424	0.0747	13	10	3
59	10.5676	1.1236	0.1306	16	10	6
60	316.5225	18.2112	2.1170	374	290	84
61	3.1216	2.7843	0.3237	14	0	14
62	6.0000	4.7571	0.5530	25	0	25
63	5.2027	4.5510	0.5290	19	0	19
64	0.0405	0.1986	0.0231	1	0	1
65	0.0000	0.0000	0.0000	0	0	0
66	133.0268	96.9929	11.2752	442	0	442
67	8.4730	4.2819	0.4978	18	0	18

GENERALIZATION SAMPLE (CS's and RM's) LOWER CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION

No. of Variable	Mean	<u>S.D.</u>	S.E. of Mean	Max.	Min.	Range
1	0.0135	0.1162	0.0135	1	0	1
2	0.0676	0.3021	0.0351	2	0	2
3	0.1351	0.5318	0.0618	4	0	4
4	0.0405	0.1986	0.0231	1	0	1
5	0.0541	0.2815	0.0327	2	0	2
6	0.0135	0.1162	0.0135	1	0	1
7	0.0676	0.3445	0.0400	2	0	2
8	0.0270	0.1633	0.0190	1	0	1
9	0.0405	0.2585	0.0301	2	0	2
10	0.2432	0.6985	0.0812	4	0	4
11	0.3514	0.8182	0.0951	4	0	4
12	0.2297	0.6092	0.0708	3	0	3
13	0.0135	0.1162	0.0135	1	0	1
14	0.0270	0.1633	0.0190	1	0	1
15	0.3243	0.9524	0.1107	5	0	5
16	0.0811	0.4898	0.0569	4	0	4
17	0.0541	0.2815	0.0327	2	0	2
18	0.0135	0.1162	0.0135	1	0	1
19	0.1216	0.4038	0.0469	2	0	2
20	0.0541	0.2277	0.0265	1	0	1
21	0.0676	0.2527	0.0294	1	0	1
22	0.1216	0.4668	0.0543	3	0	3
23	0.1757	0.5819	0.0676	4	0	4
24	0.0000	0.0000	0.0000	0	0	0
25	0.1216	0.4668	0.0543	3	0	3
26	0.0541	0.2277	0.0265	1	0	1
27	0.2027	0.5729	0.0666	2	0	2
28	0.0135	0.1162	0.0135	1	0	1
29	0.0405	0.1986	0.0231	1	0	1
30	2.7703	4.0798	0.4743	21	0	21
31	10.0270	0.2325	0.0270	12	10	2
32	10.1081	0.4845	0.0563	13	10	3
33	10.2567	1.0476	0.1218	18	10	8
34	10.0405	0.1986	0.0231	11	10	1
35	10.0946	0.4731	0.0550	13	10	3
36	10.0270	0.2325	0.0270	12	10	2
37	10.1351	0.6688	0.0777	14	10	4
38	10.0540	0.3661	0.0426	13	10	3
39	10.0676	0.4165	0.0484	13	10	3
40	10.4189	1.4046	0.1633	18	9	9
41	10.8513	1.9492	0.2266	19	10	9
42	10.5135	1.4069	0.1635	17	10	7
43	10.0135	0.1162	0.0135	11	10	1

(Continued)

GENERALIZATION SAMPLE (CS's and RM's) LOWER CRITERION GROUP (N=74) 19S-JUSTIFICATION SECTION (Continued)

No. of			S.E. of			
Variable	Mean	S.D.	Mean	Max.	Min.	Range
44	10.0405	0.2585	0.0301	12	10	2
45	10.6892	2.1062	0.2448	21	9	12
46	10.1351	0.8492	0.0987	17	10	7
47	10.1216	0.6183	0.0719	14	10	4
48	10.0270	0.2325	0.0270	12	10	2
49	10.2162	0.7266	0.0845	14	10	4
50	10.1351	0.5811	0.0675	13	10	3
51	10.0946	0.3763	0.0437	12	10	2
52	10.1892	0.7706	0.0896	15	10	5
53	10.2703	0.9260	0.1076	16	10	6
54	10.0000	0.0000	0.0000	10	10	0
55	10.2567	0.9225	0.1072	15	10	5
56	10.0676	0.3021	0.0351	12	10	2
57	10.4054	1.1811	0.1373	15	10	5
58	10.0270	0.2325	0.0270	12	10	2
59	10.0676	0.3445	0.0400	12	10	2
60	295.3472	7.4695	0.8683	323	289	34
61	0.6216	0.9751	0.1133	4	0	4
62	1.4189	2.2514	0.2617	12	0	12
63	0.6892	1.5432	0.1794	9	0	9
64	0.0405	0.1986	0.0231	1	0	1
65	0.0000	0.0000	0.0000	0	0	0
66	27.4051	40.0231	4.6526	172	0	172
67	1.8648	2.5660	0.2983	10	0	10

APPENDIX C

CORRELATIONS AMONG THE 67 VARIABLES

CROSS VALIDATION SAMPLE - AT'S AND BT'S COMBINED (N=222)

EVALUATION SECTION (19R)	178
JUSTIFICATION SECTION (19S)	184
EVALUATION SECTION (19R) VS. JUSTIFICATION SECTION (19S)	190

GENERALIZATION SAMPLE - CS's AND RM's COMBINED (N=222)

EVALUATION SECTION (19R)	199
JUSTIFICATION SECTION (19S)	205
EVALUATION SECTION (19R) VS. JUSTIFICATION SECTION (19S)	211

Table 8 (pages 20-21) contains a definition for each of the 67 variables. Variables 1 through 30 are the same as Variables 31 through 60 except for the method of weighting that was used. Therefore, these two sets of variables are highly correlated within the evaluation section and the justification section of both samples. These 30 correlation coefficients are shown in italic type in each correlation matrix for the evaluation section and the justification section.

£23	11.	.07	.12	03	.02	.04	.07	00	01	.06	01	•0.	.03	01	.02	.12	11	.07	.07	.03	.17	.10	
E22	.17	.14	.08	.05	.02	08	02	.04	08	11.	.10	05	02	02	.18	.08	60°	.18	.13	01	04		
£21	.03	.08	.16	.03	. 23	.24	.12	04	07	.16	02	01	.03	.07	02	06	10	.03	02	03			
E20	04	.05	.13	.17	01	09	.05	.14	05	.13	.06	.06	.22	05	10.	.18	.06	.14	.08				
E19	.07	.05	.05	10.	.04	10	.03	.03	.08	. 23	.23	.16	02	.01	.10	.14	.18	11					
E18	.03	.07	.12	.01	04	10.	60.	07	.17	.06	00	12	.08	11	01	03	01						
E17	90°	°03	60°	.13	90.	07	11	.07	.10	.11	.21	.17	.02	.11	.06	.05							
E16	08	.15	.10	60.	.26	06	.02	.18	01	.13	60.	08	.11	.04	.06								
213	·00	.10	.20	.06	.16	05	04	07	.03	.38	.24	.22	00	02									
E14	.17	.05	11	10.	.03	.03	01	04	.03	.05	.11	.07	03										
E13	04	-, 04	.17	.15	07	05	.10	06	09	.04	06	00											
E12	.02	.05	.05	60°	04	.10	04	.03	.10	.09	.37												
113	60.	.12	.14	.02	11.	04	+.04	00.	.06	.26													
ElO	.14	.12	.08	60.	.17	08	- 01	.03	10.														
63	.03	00	05	60	.11	10.	•03	.07															
63	.06	. 05	. 03	.00	.04	05	04																
E7	60.	.05	.25	. 22	10.	- 03	÷																
E6	11	.04	10.	04	09																		
53	60.	. 25	.07	.10																			
24	.21	.08	.35																				
E3	.13	.19																					
22	90°																						
21																							
	El	E2	23	EA	ES	26	E7	83	E 3	EIO	E11	E12	E13	£14	EIS	E16	E17	E18	£19	£20	E21	E22	£23

EA	06	0	.08	.14	2	0	- 0	.10	0	1.	.00	05	.19	.02	- 01	.8.	.03	.01	.04	.16	05	.02	.03
EAS	.09	.07	.22	60.	90.	03	+0	06	.03	.29	.23	.13	.02	03	.83	00	.02	.06	90°	.05	07	.25	02
E44	.05	.05	.06	.05	.10	.02	.01	.03	.02	.04	.12	.07	.03	.76	.04	.07	.22	.08	•00	.02	.08	10.	.03
243	02	90	- 50 -	.21	08	- 50	02	- 05	10	90	03	.02	16	03	.02 -	11	07	- 80	- 00	23 -	01	- 60	02
42 E	- 90	1 80	02	14	05 -	- 60	. 40	- 10	10 -	. 80	27	93	00	- 60	16	. 80	17 .	12	14	. 90	01	05	04
1		2 .	. 6	5			-	-	1	5		~	-		-	2(5	i m	-4		2 .(2
0 54	1, 0	. 1	9.0	4 - °0	2 .0	6.0	2 - 0	10	1.1	1 .2	2 .7	0 .2	4 - 0	-0	с.	° 9	1 .2		0. 6	° .	50		8 - · 0
73	.1(0.	0.	.0	.1	0(0	.0.	0	.9	-2	.1(.0	.0		0.	п.	.06	.19	.1(.1(.0.	0
E39	.03	00	03	.08	.12	06	.05	.07	.90	.03	.02	.05	- 09	.05	.04	04	.06	.11	.05	06	10	07	05
238	.01	.01	.05	02	.01	04	04	.89	.06	01	.02	.02	05	04	06	.08	.13	06	.07	.07	04	00.	04
E37	.15	.05	.14	.05	.06	02	.86	04	.01	04	+0	03	90.	.02	03	01	09	.12	.04	.02	.21	02	.13
E36	10	.04	•04	03	09	86.	03	05	00.	07	•v0 •-	.08	07	.04	05	08	07	01	10	09	.23	08	.02
E35	.07	.26	.05	.07	\$6.	60.	.03	.05	.16	.19	.12	.03	.06	.04	.15	.28	.01	88	.07	.03	.17	8	.01
534	.24	.07	60.	.68	.12	- 90.	- 10.	.02	•04	.15	10.	- 11 -	.07	.04	.07	.14	.17	- 05	.02	.20	90.	.15	- 60 -
33	14	15	80	10	11	- +0	13 -	03	- 00	11	12 -	08	12	10	18	12	60	12	07	18	13 -	8	07 -
32 E	08	. 16	19	10	25 .	05	02 .	03	. 00	12 .	10	07	04	- 90	. 80	. 11	. 00	. 11	04	05	. 60	07	07
E			. 4	. 6]	. 01	. 60	. 80	80		. 91	. 80	02	00	. 40	. 10	. 60		. 90	. 10	. 20	5	. 60	. 80
0	2	9. 6	6 .]	4	2 .1	2(Э.	1 .(2 .(2 • 1	4 .(4 .(5(5 .(5.0	9 - 6	4.	э.	-	3 - (9. 6	9 .(3 .(
3			.5		L .2	2 .0	1			3 .4	5.	ç. 3		0.	5.3	1				2		. 3	
E23	02	.0	.0	- 0	.11	- 00	0	- 0	0	- 0	.0	.00	0.	04	.13		- 0	8.	.0	.0	- 0	.13	.0
E28	.14	.15	.20	.10	.06	.04	08	.04	03	.21	.08	.08	03	.02	.02	03	.26	02	00.	04	.07	.05	.06
E 27	.14	10	.12	.12	.01	04	00.	.06	.09	01	40.	04	.03	15	01	02	00	60.	.10	.13	01	10.	05
E26	01	03	.22	.03	07	03	.10	.03	.08	02	¥0°	.07	.14	09	.06	13	03	.13	.05	.04	.08	05	00.
E25	.08	05	.17	.16	08	.01	.05	.08	.03	.10	.11	.08	.11	06	01	13	.19	10.	.13	02	05	.14	.07
E24	*0*	.08	.00	.05	.03	60.	.03	.06	07	.02	.13	.00	.12	.05	90	.10	14	+0		.00	.23	.15	.06
	-	2	-	1	2	9	2	0	, 6	10 -	- 11	12 -	- 13	14	15 -	16 -	17 -	18	- 61	20 -	21	22 -	23
	1	ш	843	2	ы.	(L)	64	(a)	61	843	<u>112</u>	ы	<u>ل</u> م	(m)	543	EL.	A	61	(m)	ы	613	ini.	ίω) Ι

E46	04	05	10	04	02	.17	.13	04	.12	.13	.20	.25	07	04	.08	07	.07	04	06	.22	.16	00	
E45	04	.06	.05	.06	06	.03	.32	.10	.08	.22	.11	.06	03	03	05	.06	.29	.37	.10	.07	01		
E44	04	04	07	15	.07	.02	60°	.08	.06	05	.08	11.	02	.05	03	.02	00	.12	90°	.03			
E43	11	.14	.13	.13	03	.10	.19	01	06	60.	90.	08	07	03	05	10	.06	.03	00.				
E42	.02	.06	.06	02	.08	01	.29	• 05	.10	.05	.14	06	.08	03	00	.08	.09	.19					
EAl	09	.18	60°	.07	.05	01	.45	.16	.11	.12	02	60.	.01	02	03	.08	.25						
E40	*0 *	.12	.02	.01	.18	05	.38	.12	.05	.12	60°	.11	05	01	02	.03							
239	05	.08	.05	.08	05	.10	.10	.08	01	.02	03	.15	05	.03	.05								
E38	05	.10	.06	.03	.13	05	.10	.02	00.	.07	01	.01	04	03									
E37	.11	.01	.05	03	04	+0	.13	.16	.03	.21	11.	.01	02										
236	.12	.02	02	04	.07	03	.03	07	.06	.06	02	09											
235	06	08	07	04	.05	.14	.20	.08	.26	.08	.10												
E34	04	90.	12	.05	.15	.02	.23	.23	.09	.25													
E33	90°	.07	.17	.08	.23	.13	.47	.16	.17														
E32	06	04	04	09	.11	.05	.26	.05															
E31	00	.09	.01	.12	.15	10	.30																
E30	07	44.	.24	.21	.30	.15																	
E29	09	01	.04	.08	10																		
E28	.02	.12	.12	12																			
E27	03	.10	.13																				
E26	.03	.21																					
E25	12																						
E24																							
	E24	E25	E26	E27	E28	E29	E30	E31	E32	E33	E34	E35	E36	E37	238	E39	E40	EAL	E42	E43	E44	E45	E46

E67	.28	.28	14.	.28	.29	.03	.17	.13	.22	.46	.39	.31	.18	.06	.39	.29	. 28	.25	.36	.25	.18	.29	.29
E66	.24	.30	.51	.31	.16	.14	.21	.13	.03	.32	.32	.21	.18	01	.27	.20	.15	.12	.27	.20	.24	.34	.40
E65	04	03	05	03	02	02	02	01	.06	.10	00.	03	02	.23	03	03	03	03	.07	02	.15	05	01
E64	.01	.02	.23	.24	05	01	.19	01	-, 12	.03	.32	.02	.03	60.	.05	.12	07	09	.23	.01	.07	80.	.14
E63	.19	.19	.31	.21	.23	08	.02	.13	.19	.29	69.	.25	.05	.03	.26	.20	.33	.13	.32	.21	.15	.27	.15
E62	.26	.30	.48	.26	.24	.08	.11	.07	.13	.30	.33	.32	.06	.02	.26	.16	.26	60.	.21	.10	.12	.31	.26
E61	.22	.08	.24	.10	03	.03	.10	.03	.11	.28	.16	.10	.21	.01	.17	-,02	.14	. 28	.11	.17	.07	.15	.21
E60	.22	.22	.40	.20	.16	.05	60°	.08	.19	.35	.32	.26	.15	.01	.27	.10	. 28	.24	.22	.19	.12	.19	.28
E59	09	60.	.12	03	.15	03	04	05	.10	07	03	.03	60.	-, 06	.10	.10	-, 02	.03	10.	.02	06	.12	.02
E58	.10	.12	.18	.06	02	.06	07	.05	03	.15	.05	.09	04	.02	04	07	. 25	.01	01	06	.06	.07	.08
E57	.10	10	.14	.17	.03	02	.03	.05	10.	.02	.06	.03	.11	16	.02	01	£0°	.12	.06	.20	01	01	10
E56	06	02	.20	.04	07	.02	.07	.06	.06	06	.05	.06	.17	09	.02	13	03	.10	.06	.02	.05	05	03
E55	90.	04	.10	.14	08	.03	.02	.11	.07	.13	.10	.10	.08	05	03	13	.18	.02	.11	03	06	.07	.04
E54	03	07	.01	04	03	.10	.04	05	09	05	13	.01	11	02	05	09	13	03	13	10.	.18	14	.07
E53	•13	.05	.03	09	00.	.00	.05	00.	.03	.12	08	.06	.05	01	.02	.05	10	90.	.06	.00	.11	.00	.88
252	.13	.17	.13	.05	.02	07	.01	.03	06	.11	.10	07	.02	01	.17	.13	.10	.22	.13	.03	04	.93	.10
251	01	.07	.21	.08	.16	.30	.12	04	08	.13	03	.02	80.	.05	02	03	10	01	02	02	.95	07	.19
ESO	05	.03	.08	.13	02	08	04	.07	05	.19	00.	00	.18	05	.01	.12	90.	.17	.04	.85	+0	°03	90°
E49	.04	.03	.08	01	.03	07	.05	01	·00	.16	.02	.08	.02	10	.05	.05	.15	06	.74	.05	00	.07	.00
E48	.05	.07	.13	.01	+00	01	60.	06	.14	.07	02	11	.12	10	.04	04	01	.93	08	.20	.02	.15	.07
E47	.04	.05	.05	.12	.06	06	11	.05	.12	.08	.18	.16	00	.11	.03	.05	.96	02	.18	*0.	09	.11	11
	El	E2	E 3	E4	ES	E6	EJ	83	E9	EIO	E11	E12	E13	E14	E15	616	E17	£18	E19	E20	E21	E22	E23

E67	- • 03	.32	.28	.22	.29	.20	.89	.28	.25	44.	.26	.28	.04	.18	.12	.18	.43	.38	.26	.19	.07	.32	.23
E66	.03	.34	.25	.25	.18	.05	.81	.20	.30	.39	.12	.13	.13	.17	.11	10.	.28	.29	.19	.22	00	.26	.12
265	.16	05	.10	05	03	02	00	04	02	04	02	02	02	02	01	.02	.10	01	03	02	.13	02	02
E64	08	.05	.05	.06	02	03	.27	07	06	16	22	05	02	06	.01	12	00	07	02	.09	06	03	10
E63	16	.25	.06	.13	.19	.15	.67	.12	.16	.27	.21	.23	08	90 °	.12	·06	61.	.36	.17	10.	90°	.14	.12
E62	09	.38	. 28	.12	.29	.14	.77	.24	. 29	.51	.28	.22	.08	.14	.03	.13	.26	.34	. 28	.08	.10	.24	.15
E61	.18	.30	.18	.19	.14	.02	.48	.31	.11	.27	60.	04	90°	.12	.06	.16	.37	.36	.15	.29	.03	.33	.07
E60	.04	.37	.24	.20	.26	.12	.73	.23	.24	.46	.25	.14	.06	.15	.07	.19	.36	.44	.26	.19	60°	.32	.15
E59	- 60	01	. 07	.06	07	.89	.12	09	.11	.14	.01	.17	05	03	05	.11	09	06	03	.14	02	.03	.16
E58	.03	.14	.13	10	66.	09	.27	.12	.08	.21	.11	.02	60.	03	.14	04	. 20	.04	.10	03	.05	06	06
E57	03	.16	.17	.89	12	.10	.24	.12	07	·00	.04	03	02	03	10.	10.	.02	.10	.04	.22	11	11.	.04
E56	00	.23	.94	.15	.06	.02	.21	04	03	.11	16	06	.02	-,01	.11	.05	03	.08	.06	.16	07	.03	09
255	09	.93	.24	.10	.14	03	.39	.07	01	.03	.04	06	·07	03	.14	.10	.16	.18	60.	.13	90	.05	03
E54	.96	10	00	01	.03	08	07	.01	06	.07	03	06	.12	.11	05	06	10.	09	.03	10	08	04	03
E53	.11	.06	00	02	90.	.03	.25	.11	.10	.11	04	-,03	.01	.14	+0	.02	:13	02	.07	01	.03	.00	.04
ES2	15	.12	07	00	.05	.14	.37	.10	.10	.13	.17	.01	07	.01	00	03	.10	.13	06	.07	.01	.25	.06
E51	.19	04	60.	00	.04	04	.19	.02	.08	.10	12	.11.	. 29	.13	04	11	.13	04	.04	.07	.05	08	04
E50	• 05	01	.06	.10	04	01	.18	03	.03	.14	.24	10.	08	.01	.02	07	.21	02	.01	.20	03	.05	.15
E49	07	.16	.13	.07	.06	.09	.28	.05	*0 *	.11	00.	.05	07	.08	.02	.07	.13	.08	.06	.06	01	.05	.10
248	02	02	.14	.12	03	03	.13	.10	.11	.12	.01	08	03	.13	06	.08	60.	.11	10	.13	08	.11	01
E47	13	.18	03	03	.27	03	.31	.05	.02	.05	.16	.07	06	09	.09	.08	.06	.18	.16	.04	.22	02	.06
	E24	E25	E26	E27	E28	E29	E30	E 31	E32	E33	E34	E35	£36	163	E38	E39	E40	E41	E42	E43	E44	E45	246

E67	.24	.24	.27	.22	.17	.32	.25	05	. 29	.23	.22	.24	.19	.72	.46	.72	.65	.12	.05	.71	
E66	.13	.15	.22	.17	.27	.31	.31	.04	.31	.24	.25	.18	.04	.61	.44	.65	.46	.29	03		
E65	03	03	.03	02	. 20	05	01	14	05	.04	04	02	02	04	06	03	.06	02			
E64	06	06	14	05	.16	60.	12	08	02	.10	01	05	06	12	06	10.	.05				
E63	.31	.12	.19	.14	.12	.19	.06	17	.14	00	.13	.11	.07	.42	.04	.35					
E62	.25	.04	.24	. 08	.09	.31	. 22	08	.36	.24	.14	.28	.17	.62	.17						
E61	.10	.34	.23	.21	.08	.26	.33	.20	.37	.21	.26	.20	•0•	.62							
E60	.25	.24	.30	.19	.10	.22	.33	.05	.38	.22	.24	.27	.13								
653	02	02	.05	02	06	.16	*0.	09	.00	. 05	90°	07									
E58	.27	01	.05	05	.03	.07	.08	.04	.17	.07	09										
E57	01	.15	.14	.11	00	03	06	02	.16	.20											
E56	+0	.11	.14	.04	. 08	05	04	02	.27												
E55	.17	00	.17	01	05	.05	.08	07													
ES4	13	02	07	.06	.13	14	.11														
£53	11	.05	.11	.03	.11	.01															
E52	.10	.20	.07	.07	07																
E51	10	01	02	03																	
E50	.05	.22	.02																		
249	.14	02																			
E48	03																				
247																					
	247	E48	6 M3	E50	E51	E52	E53	E54	E55	E56	E57	E58	E59	E60	E61	E62	E63	E64	E65	E66	E67
	-															-	_	-	-		

RRELATIONS AMONG THE 67 VARIABLES ON THE JUSTIFICATION SECTION (19) FOR THE CROSS VALIDATION SAMPLE - AT'S AND BT'S COMBINED (N=222)	(S	
RRELATIONS AMONG THE 67 VARIABLES ON THE JUSTIFICATION SECTION FOR THE CROSS VALIDATION SAMPLE - AT'S AND BT'S COMBINED (N=22	(19	2)
RRELATIONS AMONG THE 67 VARIABLES ON THE JUSTIFICATION SIFOR THE CROSS VALIDATION SAMPLE - AT'S AND BT'S COMBINED	SCTION) (N=22
RRELATIONS AMONG THE 67 VARIABLES ON THE JUSTIFICATION FOR THE CROSS VALIDATION SAMPLE - AT'S AND BT'S COMBI	I SI	INEL
RRELATIONS AMONG THE 67 VARIABLES ON THE JUSTIFIC FOR THE CROSS VALIDATION SAMPLE - AT'S AND BT'S	CATION	COMB
RRELATIONS AMONG THE 67 VARIABLES ON THE JUSTII FOR THE CROSS VALIDATION SAMPLE - AT'S AND BT	FIC	0
RRELATIONS AMONG THE 67 VARIABLES ON THE JU: FOR THE CROSS VALIDATION SAMPLE - AT'S AND	STI	BT
RRELATIONS AMONG THE 67 VARIABLES ON THE FOR THE CROSS VALIDATION SAMPLE - AT'S	JU 5	AND
RRELATIONS AMONG THE 67 VARIABLES ON FOR THE CROSS VALIDATION SAMPLE - AT	THE	ŝ
RRELATIONS AMONG THE 67 VARIABLES FOR THE CROSS VALIDATION SAMPLE -	NO	AT
RRELATIONS AMONG THE 67 VARIABLE FOR THE CROSS VALIDATION SAMPLE	S	1
RRELATIONS AMONG THE 67 VI FOR THE CROSS VALIDATION	AR IABLE	SAMPLE
RRELATIONS AMONG THE 67 FOR THE CROSS VALIDATIC	V	NO
RRELATIONS AMONG THE FOR THE CROSS VALIDA	67	TIC
RRELATIONS AMONG FOR THE CROSS V	THE	ALIDA
FOR THE CH	AMONG	V SSOX
FOR THE	SN	CF
FOR	VT IOI	THE
3	CORREL	FOR

J 23	.33	.39	.39	.33	.36	.05	.30	.18	.45	.39	.34	.16	.31	.30	.22	.42	60°	.35	.44	.29	.39	.48	
322	.25	.31	.38	.20	.21	10.	. 28	.16	.37	.35	.26	.33	.23	60.	.18	.27	.37	.40	.34	.33	.19		
J21	.26	.33	.28	.18	.27	.03	. 29	.12	.31	.27	.26	.18	.31	61.	.13	.08	.08	.14	.32	.20			
J20	60.	65.	.18	.17	.46	.07	.13	.24	.20	.22	.18	.15	.15	.05	.15	.32	.12	.20	. 23				
319	.30	.37	.39	.24	.25	00	.12	.22	.40	.38	.52	.37	.28	.37	.29	.34	.17	.23					
318	.30	.23	.23	.17	.17	06	.09	.21	.23	.32	.17	.09	01	.12	.07	.15	.17						
117	.21	.10	.29	.22	.18	.10	.20	.18	.24	.39	.15	.21	.02	.11	.07	.12							
J16	.16	.25	.33	.20	.35	01	.12	.24	.24	.37	.26	.12	.20	.07	.16								
115	.14	.13	.21	60°	.24	.13	06	11.	.11	.30	.41	.31	.21	.08									
314	.19	-25	.21	.31	.20	02	.20	.29	.23	.20	.24	.13	.13										
113	.19	.19	.31	.19	.26	.08	.16	90.	.40	.23	.27	.33											
J12	.14	.13	.38	.12	.12	.07	.06	.01	.29	.21	.39												
111	.28	.27	.37	.10	.35	.13	00.	.20	.30	.37													
310	.32	.31	.36	.25	.42	.07	.11	.26	.35														
39	.25	.32	.34	.37	.21	.02	.15	.14															
J.8	.17	.29	.16	.16	.31	.03	.07																
11	.19	.25	. 28	.38	EL.	05																	
36	00.	07	03	.02	.09																		
35	.27	. 52	.26	.31																			
34	.32	.35	.38																				
13	.36	.39																					
32	.37																						
Iſ																							
	If	J 2	13	34	35	36	17	38	39	110	111	J12	J13	114	315	J16	317	318	319	J20	J21	J22	J 23

346	.16	.20	.33	.16	.33	04	.11	.22	.24	.40	.20	.08	.17	.04	.21	.92	.10	.14	.34	.30	8	.26	.36
345	.10	.11	.19	.04	.21	.10	60	.10	60.	.26	.39	.29	.21	.03	<i>86</i> .	.13	.08	.05	.24	.12	.10	.14	.17
344	.23	.32	.25	.33	.19	03	.25	.21	.26	.21	.24	.17	.22	16.	.08	.03	.10	.10	07.	.07	.27	.10	.33
343	.15	.22	.32	.19	.21	.03	11.	.05	.35	.22	.22	.28	.92	.14	.21	.13	01	.00	.24	60°	.27	.15	.22
342	.12	60.	.36	.06	.07	90°	.03	02	.24	.22	.34	.95	.33	.11	. 28	.13	.15	60°	.37	.12	.15	.33	.12
141	.23	.24	.32	.06	.34	.14	00	.17	.26	.37	.95	·34	.24	.20	.38	.25	.14	.17	.48	.18	.23	.24	.34
140	.24	.30	.31	.17	. 38	90°	.12	.20	.30	.95	.37	.17	.24	.18	.27	.34	.34	.28	.37	.21	.30	.34	.41
139	.24	.32	. 34	.37	. 21	10.	.12	.19	.95	.30	.28	. 28	.37	.25	.13	.25	.25	.24	.37	.19	.27	.35	.41
138	.14	. 29	.14	.16	.31	.05	11.	.94	.14	.24	.20	.03	.10	. 29	.14	.15	.18	.18	.23	.24	.19	.16	.21
137	.17	.23	.26	.36	.11	04	96.	.07	.15	.11	.01	.08	.16	.20	06	.13	. 22	60°	.13	.11	.27	.26	.29
336	10.	07	03	00.	.11	66.	05	.02	10.	.06	.12	.06	.08	02	.12	01	60.	07	02	.06	.03	10.	90.
135	.29	.55	. 28	.35	. 97	.10	.16	.33	.25	. 43	.36	.12	.27	. 28	.25	.34	.19	.20	.30	.41	.32	.24	. 43
134	.30	. 22	.30	.89	.25	10.	. 25	.07	. 29	.17	.08	.07	.13	.24	.08	.13	. 26	.13	.16	.10	.07	.11	.22
133	.33	.37	.97	.32	. 26	04	.25	.16	.31	.34	.34	.33	.32	.21	.20	.33	.30	.23	.37	.17	.26	.35	.38
J32	.34	. 99	.41	.31	.50	07	.23	.28	.32	.30	. 27	.17	61.	.23	.14	.22	11.	.24	.35	.51	.32	.33	.37
131	.98	.33	.35	.32	.24	.01	.16	.16	.24	.31	.27	.13	.15	.18	.14	.17	.23	.31	.29	.10	.22	.24	.30
060	.50	. 58	.67	.45	.56	.11	.31	.33	. 59	.63	.65	67.	44.	.37	. 43	.48	.39	.42	.67	.45	.46	.64	.72
329	.39	.19	.19	.11	.07	.05	.14	.05	.23	.17	.23	.18	.16	. 20	.19	.13	01	.14	. 38	60.	.14	.19	.24
J28	.28	.35	. 38	.35	.40	.06	60.	.12	.31	.31	.26	.37	.29	.18	.10	.23	.19	. 24	.27	.35	.23	.40	.36
J27	.30	.25	.37	.22	.24	.03	.13	.13	.46	.40	.48	.27	.25	.17	.32	.39	.14	.20	. 38	.16	.16	.36	.45
326	.23	.24	. 38	.25	.27	.05	.17	.31	.27	.27	.41	.31	.22	. 38	.32	.22	.15	. 23	64.	EL.	.28	.27	.39
J25	. 28	.25	.36	.21	.36	11.	.13	.15	.38	.30	.37	.37	.27	.23	.22	.18	.38	.29	.42	.22	. 28	.46	.39
324	10.	.07	.07	.14	01	.17	.16	.02	.05	02	00	10.	.02	.08	.16	.05	01	.06	.05	·03	.02	60.	.27
	lſ	J2	13	34	15	36	17	J8	19	110	111	J12	113	J14	315	J16	117	318	91C	J20	J21	J22	J23

1.12.0

.10 346 .02 .18 .19 .37 .16 .17 .45 .18 .17 .34 11. .30 -.04 .12 .13 .24 .35 .19 80. 8 .19 345 .12 .21 .30 .29 -.09 .13 .11 .37 .26 .22 .03 .07 .16 11. .12 .19 .05 .20 .08 .23 .38 .16 344 . 23 .35 .18 +0.-.25 .20 .24 .12 .25 .19 .40 .21 .30 .25 .25 . 28 .24 .27 .18 .02 .10 .19 343 .15 .26 .25 .13 .22 . 22 60. .32 .23 .27 8 .17 .37 .12 .33 .14 -.02 342 -.01 .29 .30 .05 . 23 .18 .30 . 34 .26 .33 .18 44. 11. .13 10. .07 .04 141 -.01 .35 .40 .19 .17 .25 .39 . 43 .22 .60 .21 .24 .31 .34 .14 .02 90. 340 -.05 .39 .29 .26 .16 11. .21 .26 .25 .59 .23 . 29 .30 11. .41 .06 339 .05 .36 .31 .41 -.01 .12 .16 . 29 . 22 .57 .22 .33 .32 .29 .25 138 8 .14 . 26 .13 .13 03 .33 Π. . 28 .15 .03 .34 .04 н. -.05 .15 .12 .13 .30 .15 .17 .08 .12 .15 .22 .24 .24 137 -.07 -.01 136 .15 н. .03 .02 .03 .10 -.04 .12 .07 10. .26 **J**35 .40 . 25 .40 . 60 .52 . 29 .03 .31 11. . 25 134 .05 .19 .19 .18 .25 60 .33 .32 .20 . 28 **J**33 .06 .36 .37 .34 .15 .33 .38 .34 99. 332 .06 .25 .16 . 58 .31 .24 .26 .37 .21 .48 131 8 .27 .28 .29 .37 330 .13 .65 .56 .55 .37 .61 **J29** .23 .32 .25 .01 .13 **J28** .15 .37 .16 .23 .40 90. .24 327 -.02 **J**26 .30 -.03 **J25** 324 J30 340 325 326 327 328 **J29** 131 **J**32 133 134 **J**35 **J**36 137 338 139 141 342 343 344 345 324 346

367	.52	69.	.63	.41	.50	.10	.29	.27	.58	.61	.59	.46	.45	.27	.40	.50	.39	.43	.62	.40	.44	.57	.65
366	.45	.58	.64	.42	.58	.13	.30	.32	.57	.61	.60	.45	.46	.35	44.	.48	.31	.36	.62	0÷.	.42	.64	.75
365	04	03	05	02	03	02	02	01	04	+0	02	04	02	02	04	04	03	03	+0	03	03	+0	05
164	.04	10.	02	.03	05	03	.03	02	02	+0	07	.02	+0	.07	06	.02	.08	05	07	05	05	07	08
363	.48	.58	.61	.51	.51	.05	.36	.33	.56	.54	.58	.46	.38	.35	.33	.38	.31	.35	.61	.43	.50	.58	.64
362	.38	.43	.51	. 28	67.	.15	.16	.27	.45	. 58	.56	.40	.32	.27	.38	.57	.36	.37	.55	.36	.30	. 50	.62
J61	.17	.27	.30	.15	.27	.01	.13	.10	.32	.42	.26	.13	.21	.16	.15	69.	.23	.27	.38	.23	.17	.29	.54
360	69.	.56	.67	14.	.54	.12	.30	.31	.59	.63	.64	.46	.45	.36	.43	.48	.39	.43	.66	.44	44.	.64	.72
359	.34	.11	.14	.13	-0	.06	.16	.08	.22	.13	.23	.13	.13	. 21	.15	.17	.02	.15	.33	.07	60.	.20	.21
J58	.25	.31	.31	. 24	.39	.07	.04	.13	. 29	.28	.24	.35	.32	.13	.09	.20	.18	.17	.21	.35	.15	.40	.28
357	. 29	.25	.40	.19	.20	.03	. 08	.12	14.	.36	.42	.24	.23	60°	.30	.37	.12	.18	.32	,16	.17	.36	.43
156	.16	.17	.29	.21	.26	.07	.14	.28	.25	.22	.38	.21	.17	.28	. 28	.23	11.	.17	.34	.12	.26	.22	.32
J55	.22	.22	.32	.22	.35	.11	.11	.16	.40	.26	.34	.34	.27	.26	.20	.18	.35	.28	19.	.22	.22	.45	.38
154	.03	.08	.10	.16	00.	.18	.17	.03	90.	01	00.	.03	.03	60.	.18	.06	.01	.07	.07	.05	.04	11.	.30
J53	.33	.39	.40	.30	.35	.05	.29	.18	.46	.39	.35	.15	.32	.33	.20	.38	.13	66.	.46	. 28	.38	.45	.97
352	. 26	.30	.37	.20	.19	00	.30	.14	.39	.30	.21	. 28	.24	.08	.16	.26	.34	.40	.34	.33	.23	.96	.46
151	.24	.38	.27	.28	.30	10.	.36	.16	.26	.27	.21	.15	.27	.31	.11	.09	60.	.17	.33	. 23	.92	.22	.44
350	60.	.45	.18	.14	.47	.05	.08	.18	.21	.24	.18	.16	.17	.02	.20	.34	.07	.19	.23	.95	.18	.31	.30
349	.30	.30	.40	.21	.25	10.	.09	.18	.35	.40	67.	.38	.29	.31	.29	.36	.20	.19	.95	.22	.25	.33	.39
348	.26	.19	.19	.09	.12	06	.06	.21	. 23	.27	.15	.05	03	.07	00	.11	.17	£6°	.16	.24	.11	.37	.27
347	.21	.10	.26	.18	.17	.10	.16	13	.20	.37	.12	.16	.00	.11	.10	.08	.97	.14	.14	.11	60.	.33	.06
	If	32	13	34	35	36	17	38	95	110	111	312	113	314	315	316	117	318	319	320	121	322	J23

187

	J58 J59	J57 J58 J59	J56 J57 J58 J59	J56 J57 J58 J59	YEL BEL YEL OEL CEL ACL	YOU ACL ICL OCL CCL PCL CCL	ACT BCT ICT DET CET BET CET 701	100 000 100 000 000 000 000 VIN VI				
.12	.10	.08 .10	05 .08 .10	0305 .08 .10	. <i>90</i> 0305 .08 .10	.20 .900305 .08 .10	.11 .20 . <i>90</i> 0305 .08 .10	9 .11 .20 . <i>90</i> 0305 .08 .10	0 .09 .11 .20 . <i>90</i> 0305 .08 .10	.00 .09 .11 .20 .900305 .08 .10	.02 .00 .09 .11 .20 .900305 .08 .10	.05 .02 .00 .09 .11 .20 .900305 .08 .10
33 .24		.23 .	.27 .23 .	.96 .27 .23 .	01 .96 .27 .23 .	.4301 .96 .27 .23 .	44 .4301 .96 .27 .23 .	25 .44 .4301 .96 .27 .23 .	: .25 .44 .4301 .96 .27 .23 .	.23 .25 .44 .4301 .96 .27 .23 .	.42 .23 .25 .44 .4301 .96 .27 .23 .	.23 .42 .23 .25 .44 .4301 .96 .27 .23 .
.15 .33		.34	46. 94.	.30 .94 .34	01 .30 .94 .34	.4001 .30 .94 .34	28 .4001 .30 .94 .34	23 .28 .4001 .30 .94 .34	23 .28 .4001 .30 .94 .34	.11 .23 .28 .4001 .30 .94 .34	.37 .11 .23 .28 .4001 .30 .94 .34	.18 .37 .11 .23 .28 .4001 .30 .94 .34
. 22 . 28		P6.	₽6. EE.	.22 .33 .94	.08 .22 .33 .94	.46 .08 .22 .33 .94	.35 .46 .08 .22 .33 .94	10 .35 .46 .08 .22 .33 .94	.10 .35 .46 .08 .22 .33 .94	.17 .10 .35 .46 .08 .22 .33 .94	.36 .17 .10 .35 .46 .08 .22 .33 .94	.17 .36 .17 .10 .35 .46 .08 .22 .33 .94
.9401		.22	.09 .22	.37 .09 .22	.16 .37 .09 .22	.34 .16 .37 .09 .22	41 .34 .16 .37 .09 .22	29 .41 .34 .16 .37 .09 .22	5 .29 .41 .34 .16 .37 .09 .22	.36 .29 .41 .34 .16 .37 .09 .22	.25 .36 .29 .41 .34 .16 .37 .09 .22	.19 .25 .36 .29 .41 .34 .16 .37 .09 .22
.01 .93		- 12.	.27 .21 -	.22 .27 .21 -	.14 .22 .27 .21 -	.24 .14 .22 .27 .21 -	.20 .24 .14 .22 .27 .21 -	12 .20 .24 .14 .22 .27 .21 -	· .12 .20 .24 .14 .22 .27 .21 -	.06 .12 .20 .24 .14 .22 .27 .21 -	.38 .06 .12 .20 .24 .14 .22 .27 .21 -	.11 .38 .06 .12 .20 .24 .14 .22 .27 .21 -
.48 .34		.57	. 47 .57	.62 .47 .57	.16 .62 .47 .57	.72 .16 .62 .47 .57	.61 .72 .16 .62 .47 .57	i7 .61 .72 .16 .62 .47 .57	· .47 .61 .72 .16 .62 .47 .57	.44 .47 .61 .72 .16 .62 .47 .57	.64 .44 .47 .61 .72 .16 .62 .47 .57	.35 .64 .44 .47 .61 .72 .16 .62 .47 .57
.26 .33		.27	.14 .27	.21 .14 .27	.02 .21 .14 .27	.31 .02 .21 .14 .27	.26 .31 .02 .21 .14 .27	21 .26 .31 .02 .21 .14 .27	0 .21 .26 .31 .02 .21 .14 .27	.10 .21 .26 .31 .02 .21 .14 .27	.29 .10 .21 .26 .31 .02 .21 .14 .27	.28 .29 .10 .21 .26 .31 .02 .21 .14 .27
.33 .09		.26	.16 .26	.23 .16 .26	.07 .23 .16 .26	.37 .07 .23 .16 .26	.31 .37 .07 .23 .16 .26	16 .31 .37 .07 .23 .16 .26	i .36 .31 .37 .07 .23 .16 .26	.46 .36 .31 .37 .07 .23 .16 .26	.29 .46 .36 .31 .37 .07 .23 .16 .26	.21 .29 .46 .36 .31 .37 .07 .23 .16 .26
.28 .11		.40	.27 .40	.31 .27 .40	.09 .31 .27 .40	.40 .09 .31 .27 .40	.34 .40 .09 .31 .27 .40	24 .34 .40 .09 .31 .27 .40	1 .24 .34 .40 .09 .31 .27 .40	.18 .24 .34 .40 .09 .31 .27 .40	.39 .18 .24 .34 .40 .09 .31 .27 .40	.20 .39 .18 .24 .34 .60 .09 .31 .27 .40
.18 .13		.16	.16 .16	.19 .16 .16	.07 .19 .16 .16	.20 .07 .19 .16 .16	.10 .20 .07 .19 .16 .16	12 .10 .20 .07 .19 .16 .16	0 .12 .10 .20 .07 .19 .16 .16	.10 .12 .10 .20 .07 .19 .16 .16	.16 .10 .12 .10 .20 .07 .19 .16 .16	.05 .16 .10 .12 .10 .20 .07 .19 .16 .16
.37 .07		.20	.28 .20	.39 .28 .20	.04 .39 .28 .20	.42 .04 .39 .28 .20	.21 .42 .04 .39 .28 .20	37 .21 .42 .04 .39 .28 .20	1 .37 .21 .42 .04 .39 .28 .20	.41 .37 .21 .42 .04 .39 .28 .20	.28 .41 .37 .21 .42 .04 .39 .28 .20	.14 .28 .41 .37 .21 .42 .04 .39 .28 .20
.08 .04		.02	.05 .02	.11 .05 .02	.16 .11 .05 .02	.06 .16 .11 .05 .02	.01 .06 .16 .11 .05 .02	1101 .06 .16 .11 .05 .02	: .0101 .06 .16 .11 .05 .02	.05 .0101 .06 .16 .11 .05 .02	01 .05 .0101 .06 .16 .11 .05 .02	0601 .05 .0101 .06 .16 .11 .05 .02
.04 .16		.07	.14 .07	.10 .14 .07	.16 .10 .14 .07	.28 .16 .10 .14 .07	.28 .28 .16 .10 .14 .07	12 .28 .28 .16 .10 .14 .07	, .32 .28 .28 .16 .10 .14 .07	.07 .32 .28 .28 .16 .10 .14 .07	.10 .07 .32 .28 .28 .16 .10 .14 .07	.07 .10 .07 .32 .28 .28 .16 .10 .14 .07
.12 .04		.12	.23 .12	.15 .23 .12	.05 .15 .23 .12	.22 .05 .15 .23 .12	.13 .22 .05 .15 .23 .12	14 .13 .22 .05 .15 .23 .12	.24 .13 .22 .05 .15 .23 .12	.17 .24 .13 .22 .05 .15 .23 .12	.18 .17 .24 .13 .22 .05 .15 .23 .12	.17 .18 .17 .24 .13 .22 .05 .15 .23 .12
.26 .21		.36	.29 .36	.39 .29 .36	.07 .39 .29 .36	.44 .07 .39 .29 .36	.37 .44 .07 .39 .29 .36	23 . 37 . 44 . 07 . 39 . 29 . 36	0 .23 .37 .44 .07 .39 .29 .36	.20 .23 .37 .44 .07 .39 .29 .36	.33 .20 .23 .37 .44 .07 .39 .29 .36	.26 .33 .20 .23 .37 .44 .07 .39 .29 .36
.22 .12		.37	.22 .37	.26 .22 .37	03 .26 .22 .37	.4303 .26 .22 .37	.29 .4303 .26 .22 .37	28 .29 .4303 .26 .22 .37	: .28 .29 .4303 .26 .22 .37	.22 .28 .29 .4303 .26 .22 .37	.40 .22 .28 .29 .4303 .26 .22 .37	.25 .40 .22 .28 .29 .4303 .26 .22 .37
.20 .19		.39	.39 .39	.32 .39 .39	.02 .32 .39 .39	.35 .02 .32 .39 .39	20 .35 .02 .32 .39 .39	17 .20 .35 .02 .32 .39 .39	0 .17 .20 .35 .02 .32 .39 .39	.19 .17 .20 .35 .02 .32 .39 .39	.46 .19 .17 .20 .35 .02 .32 .39 .39	.15 .46 .19 .17 .20 .35 .02 .32 .39 .39
.31 .14		.24	.19 .24	.32 .19 .24	.00 .32 .19 .24	.11 .00 .32 .19 .24	.29 .11 .00 .32 .19 .24	11 .29 .11 .00 .32 .19 .24	1 .11 .29 .11 .00 .32 .19 .24	.13 .11 .29 .11 .00 .32 .19 .24	.38 .13 .11 .29 .11 .00 .32 .19 .24	.05 .38 .13 .11 .29 .11 .00 .32 .19 .24
.29 .09		.24	.11 .24	.13 .11 .24	.05 .13 .11 .24	:23 .05 .13 .11 .24	.15 :23 .05 .13 .11 .24	24 .15 :23 .05 .13 .11 .24	0 .24 .15 :23 .05 .13 .11 .24	.10 .24 .15 :23 .05 .13 .11 .24	.25 .10 .24 .15 ;23 .05 .13 .11 .24	02 .25 .10 .24 .15 :23 .05 .13 .11 .24
.20 .16		.11	.24 .11	.23 .24 .11	.13 .23 .24 .11	.35 .13 .23 .24 .11	.11 .35 .13 .23 .24 .11	19 .11 .35 .13 .23 .24 .11	139 .11 .35 .13 .23 .24 .11	.03 .39 .11 .35 .13 .23 .24 .11	.32 .03 .39 .11 .35 .13 .23 .24 .11	.04 .32 .03 .39 .11 .35 .13 .23 .24 .11
.07 .12		.29	.28 .29	.19 .28 .29	.13 .19 .28 .29	.15 .13 .19 .28 .29	.13 .15 .13 .19 .28 .29	06 .13 .15 .13 .19 .28 .29	06 .13 .15 .13 .19 .28 .29	.17 .06 .13 .15 .13 .19 .28 .29	.25 .17 .06 .13 .15 .13 .19 .28 .29	01 .25 .17 .06 .13 .15 .13 .19 .28 .29
.14 .21		36	35 06	31 20 1C	31 30 34	25 VC 16 60 66	70 VC 10 00 00 10					

s

188

_

36	Ċ.		.6	4.	ę.	5	.6	1.	5.	4.	\$	4.	÷.	6.	4.	2.	00	0.1	0	60	
366	.28	.30	.59	.48	44.	.61	.73	.22	.57	.45	.53	.49	.34	.96	.48	.79	.87	05	05		
365	03	03	04	03	03	04	05	20	05	03	05	03	03	08	04	06	05	.40			
164	.12	05	07	05	04	07	08	10	08	04	10.	04	04	07	03	05	07				
163	.25	.27	.54	.38	.51	.53	.60	.21	. 48	.39	.42	.46	.30	.84	. 29	.61					
362	.34	.29	.55	.35	.28	. 48	. 62	50.	.53	.38	.56	.35	.26	. 83	.73						
161	. 23	.21	.42	.22	.19	.30	.59	60.	.29	.19	.49	.18	.13	.55							
160	.36	.37	.65	.45	44.	.62	.74	.16	.64	14.	.59	.47	.34								
159	01	.13	.34	.05	.06	.23	.22	.14	.25	.30	.21	02									
J58	.15	.14	.18	.36	.19	.41	.27	.11	.33	.11	.20										
157	60°	.15	.32	. 18	.10	.35	.44	.10	.20	.29											
356	.11	.15	. 29	.11	.18	.23	.32	04	.27												
J55	.34	.23	.41	.24	.21	44.	.43	01													
154	03	.07	•0•	.02	.10	.13	.22														
153	.10	.31	- 43	. 29	. 43	. 44															
152	.29	.37	.33	.32	.25																
151	.11	.13	.26	.22																	
350	.07	.21	.23																		
349	.17	.14																			
348	.14																				
347																					
	147	348	149	150	151	152	153	154	155	156	157	358	159	160	161	362	163	164	165	166	167
	- 7	. 7	1	2		,		,	,	,							,	8	,	,	.,

CORRELATIONS AMONG THE 67 VARIABLES ON THE EVALUATION SECTION (19R) VS. THE JUSTIFICATION SECTION (19S) FOR THE CROSS VALIDATION SAMPLE - AT'S AND BT'S COMBINED (N=222)

	J23	.10	10.	06	09	13	03	.04	.04	.04	07	11	12	00	03	03	03	04	.15	.03	.03	08	.05	60.
	322	.03	04	02	06	11	.02	.01	04	.03	.04	11	07	.01	06	.02	.02	.04	.15	.01	00	07	03	.07
	J21	.16	03	.15	.06	05	05	.10	03	05	01	60	04	.08	.03	90	02	08	.16	.07	.06	07	.02	.12
	J20	.05	00.	.06	.08	.04	.01	•0•	.01	00	.16	. 05	.01	.03	10.	10	.05	.17	90°	.09	.03	60.	.05	60.
	916	.09	.03	- 03	- 05	- 90.	- 10-	.08	- 04	.16 -	.04	- 90.	.06	- 11	10.	.04	.12 -	.12	.10	.08	.05	- 90.	- 05 -	80.
	318	60.	.05	- 60 -	.05	- 11	•0•	.05	.03	.04	- 05	- 08	.02	.02	- 03 -	- 10.	- 13	60.	.17	.02	- 10.	- 90.	- 90-	.01
	17	04	- 50	02 -	- 90	- 40	10 -	- 40	03 -	00	90	08	- 40	- 90	- 80	- 00	03 -	04	03	10	- 10	- 10	03	07 -
	6	2				2		i H	i m		i H	-	2			2 -			2	i vo				i m
	Ir	0.	0.1	- 1	1	0	0	0.	0.	0.		0.	0	0.	0.	0.	0	0.	0	0.1	0.1	1	0	- 0
	115	00.	03	00.	08	09	00	05	00	.03	09	06	03	.01	.01	14	07	.07	.01	01	.05	05	03	15
	114	04	08	.03	09	08	.14	•05	04	08	04	01	.04	.03	06	06	10	10	02	.05	04	01	.04	.03
1	113	.08	08	.01	01	08	.05	.06	.01	.06	10	05	10	10°-	05	06	11	05	07	02	.05	.04	11	06
	J12	.03	00.	90.	10	03	10	.11	01	.07	02	.05	.11	.02	04	.01	06	06	90.	- 08	.10	05	02	10
	111	.14	.03	•00	90	90*	.02	.00	60.	10.	.02	.03	.07	.07	.12	.02	•0	60.	60.	.01	.14		- 03	60
	110	.10	.08	- 10		.12	.03	- 10-	.10	10.	.13	.10	.03	.01	10.	10.	.12	.08	•04	- 60*	.07	.07	88	.03
	61	11.	- 00 -	.01	- 04 -	- 04	.01	.12 -	.02	.05	- 04 -	- 00.	.00	.02	- 10	00.	.08	- 60.	.06	- 02 -	- 10.	. 07	- 02 -	- 04
	8	90	07	- 60	- *0	- 90	- 00	02	- 60	01	- 01	- 80	- 03	- 13	02	00	- 10	- 00	- +0	- 10	- 90	- 90	- 02 -	- 10
		. 10	1 -	5	5	3 -)5	. 40	5	12	10	99	8	1		1	40	- 90	02	02)S		02	14
	1			1	0		·0		0		0	- 0	0		0	- 0		(i			
4	36	.04	07	12	.03	.06	.06	07	·0	- 00	- 0	- 10	0.	0.1	.0	- 00	.0	- 0	11	11	.14	01	16	04
	35	.15	.03	02	08	05	05	.09	.10	.03	02	09	06	.01	.02	01	.01	.06	.04	04	.10	01	10.	05
	14	.08	04	.17	01	.03	.10	.16	06	.03	04	06	08	.02	09	.07	11	06	.02	.05	10.	00	80.	.04
	13	.15	.07	.18	.03	01	01	.11	90.	.08	03	.01	.12	.03	03	02	05	60°	.12	04	.08	.05	08	+00
	32	.23	90.	.02	06	02	90	.12	04	.03	.08	06	00	.02	60°	.01	03	.12	90.	.10	03	•00	.05	.10
כ	Ir	.12	.03	90.	03	04	02	.07	.01	.02	.02	06	.02	.07	04	.03	05	90.	.11	03	.14	.02	*0 *	05
		1	2	5	4	S	9	2	90	•	10	11	12	13	9T	15	16	17	18	19	20	21	22	23
		(PI)	(PL)	543	(A)	[a]	(m)		P.	[A]	[A]	P1	[A]	(A.)	[pi]	[A]	64	P-1	(a.)	[6]	[m]	[L4]	P.I	(24)

(19R) VS. THE JUSTIFICATION (N=222) BT's COMBINED THE 67 VARIABLES ON THE EVALUATION SECTION (19S) FOR THE CROSS VALIDATION SAMPLE - AT'S AND AMONG SECTION CORRELATIONS

-.05 -.01 -.09 -.07 -.04 10'-00.-.05 .03 .12 .05 .02 -.02 .05 323 -.11 8 .06 -.07 .01 -.11 .02 -.01 .04 -.05 -.06 -.04 322 .12 -.07 -.07 -.12 -.02 -.06 -.06 -.07 .06 .06 10. 8 10. 10 3 8 .03 .03 .05 8. -.03 -.06 -.03 -.05 321 8 .04 10 .11 03 .06 18 10 .21 .13 .14 1.04 -.03 1.04 -.06 .01 -.01 8 8 320 -.05 -.13 .10 -.02 -.04 -.03 -.03 .15 8 -.02 00. -.02 .05 -.01 8 10.-.05 .02 -.01 10 90 -.02 90 -.02 -.05 -.06 90. .10 .03 90. -.00 .10 -.04 119 60. .08 .03 -.02 .05 80 .14 .14 -.03 10 .09 .11 10. -.12 -.06 -.09 -.03 .03 -.11 -.01 -.08 -.03 .03 -.02 -.04 -.01 318 .03 10. -.08 -.00 .11 8 -.01 .05 .10 .05 -.09 10.-317 .10 -.08 -.02 -.08 .08 -.04 .08 -.02 -.07 -.04 -.01 -.05 -.00 -.05 .05 .06 60 8 10. .07 10. 316 .11 .10 -.05 60. -.02 .03 -.04 -.06 -.07 -.03 8 -.09 -.01 .02 10. -.01 10 .11 -.02 80. 8 .07 8 315 -.06 -.03 -.08 -.03 -.10 -.03 -.05 -.05 -.02 -.12 -.02 .02 11. -.01 .07 -.03 -.01 10 .04 3 03 8 90 .10 -.06 -.03 -.04 00.-+0.--.08 114 -.06 -.01 -.04 80.--.07 -.03 -.07 -.02 -.05 .02 .07 -.07 .11 .03 5 8 -.09 -.09 -.02 -.03 -.06 -.09 -.07 -.09 -.01 -.10 10.--.05 113 .20 -.01 .14 .05 .05 60 .10 8 -.02 -.08 10. -.10 -.01 -.02 +.04 112 .13 .10 .02 10. -.03 10. -.01 .03 -.07 -07 .14 .03 50. .15 60. .10 .14 10. .04 -.02 -.04 .10 -.09 .16 .08 10 .13 .05 .04 111 .11 80. 10. 60 .05 .11 10. 10. .08 .14 02 04 80 -.02 -.09 -.12 -.10 310 -.08 .11 90. -.06 -.09 10.--.05 -.03 +0.-00.-80.-.07 .05 .12 .02 -.07 .07 .04 80. -.03 -.10 -.00 -.11 -.05 -.02 -.04 -.08 -.03 -.08 .16 .02 .03 .16 .13 --03 -.04 .11 8 10 11. .02 .03 65 00.--.07 -.06 -.06 8.--.03 .02 -.02 .04 -.06 -.07 -.02 ET . .12 .02 .09 .03 8 80 .06 .08 -.04 10. 85 -.03 -.05 +0.-. 20 -.04 -.03 .08 .11 -.02 8 .10 .02 .18 .02 10 .08 -.10 80. -.03 -.06 -.05 -.06 .04 5 60 ---.06 -.16 .05 .05 -.05 -.07 -.05 -.12 -.08 -.08 10. 60. -.09 .05 -.04 -.06 -.11 .08 .08 8 .01 .07 36 -.06 00.--.06 -.05 .10 -.02 -.05 -.05 -.01 .06 -.04 .18 .03 10. -.06 .03 -.08 10. .10 10. .04 .02 .04 35 -.09 -.08 60.--.03 -.05 -.02 -.05 8 11. 90 .12 .17 8 -.07 8 .06 8 .21 02 8 10 80. -.08 37 .16 .11 -.04 .17 -.07 60 .22 01 .27 .12 -.02 8 .19 .08 .12 10 .03 .17 10 .02 .04 .17 10 5 -.02 -.03 -.02 -.05 -.03 -.08 -.07 .06 -.04 -.06 -.01 .05 .07 .24 .07 .17 .04 8 -.03 .02 8 .11 .02 22 +0.-8 .05 .03 .03 60. 10. ..15 .05 11. 03 -.05 .02 .12 .02 .02 50 90 .05 02 -.02 .10 10 F E46 E29 E30 235 E40 542 EV3 E44 E45 E24 E25 E26 E27 228 E31 20 633 \$63 236 2 803 E39 541

CORRELATIONS AMONG THE 67 VARIABLES ON THE EVALUATION SECTION (19R) VS. THE JUSTIFICATION SECTION (19S) FOR THE CROSS VALIDATION SAMPLE - AT'S AND BT'S COMBINED (N=222)

J23	01	.13	.19	.04	09	60.	.19	.06	.08	01	06	02	02	.09	.23	02	15	19	05	.03	07
322	.04	.13	.13	.06	08	00	.10	.13	06	05	03	.10	07	.04	.14	04	10	12	04	60°	06
121	09	.13	.18	.04	06	.10	.14	.04	01	01	.04	.10	01	60.	.20	.03	01	12	03	.07	.05
J20	.20	.06	.12	.07	10	02	.13	90.	02	01	11	.10	04	.08	.08	.03	02	12	03	.03	10.
119	.12	.11	.17	.03	05	01	.13	.10	.02	.08	.05	.01	02	.16	.22	00	10.	16	04	60.	.06
318	.12	.17	.03	10.	05	.04	.03	05	.08	01	10	.03	07	00	.14	10	.04	07	03	01	04
117	.05	.03	03	.11	.01	10.	07	.11	07	01	.05	.04	05	14	.12	07	11	09	03	04	09
116	.11	03	.03	02	11	07	90.	.12	.02	.11	02	02	60.	.06	.07	00	04	14	+0	03	01
115	.08	00.	.03	.10	06	01	11	05	.02	.03	00.	.15	04	11	.02	05	06	12	04	07	07
J14	09	00.	.16	00	00	90.	90.	.10	03	.03	01	05	02	.02	.05	.02	12	06	02	90.	06
113	02	08	.04	.06	.01	08	04	.21	09	.01	04	04	04	01	.05	09	10	10	02	03	13
312	05	.07	00	.12	07	01	00.	.14	10	00	03	.10	01	.10	.11	.01	.02	14	04	.08	.02
111	.08	.08	.07	.16	12	01	02	01	01	11.	04	.09	06	.06	.12	.03	02	15	02	10.	.02
110	05	.04	00.	03	07	08	.04	.08	02	.01	05	.12	.06	08	.04	07	09	13	04	12	10
19	06	02	.11	.06	08	10.	02	.08	01	.11	08	.01	10	.01	.11	03	12	13	04	.02	09
38	10.	04	.03	06	04	00	.05	02	.02	.11	.06	.05	06	.02	.05	.01	09	05	01	.01	04
17	07	.02	.13	03	.05	.06	.04	.20	04	06	05	.14	.01	90.	.14	03	04	08	02	.04	05
36	09	09	12	.11	03	15	04	.10	07	07	.05	04	08	11	10	12	09	07	02	09	16
15	.06	10.	.05	.05	04	.02	00	10.	06	.03	.03	.05	10.	02	10	.02	10.	10	03	.02	00
34	06	10.	.14	.08	02	.12	.05	·04	12	.04	03	.01	08	. 08	11.	10.	00	09	02	.07	.02
13	.12	.10	.04	.12	.02	10	10.	.19	12	.10	00	.19	04	.20	.28	.04	02	16	05	.07	.08
J 2	.15	.04	.19	03	.04	.10	.14	02	09	07	·04	.06	02	90.	.19	10.	.03	11	03	.13	.02
Ir	60.	.15	.02	60.	00	.07	03	00	05	°04	.02	.04	06	.03	.16	04	01	09	+0	.06	00.
	EA7	873	E49	ESO	E51	E52	E53	E54	E55	E56	E57	E58	E59	E60	E61	E62	E63	E64	E65	E66	E67

(19R) VS. THE JUSTIFICATION (N=222) BT's COMBINED THE CROSS VALIDATION SAMPLE - AT'S AND 67 VARIABLES ON THE EVALUATION SECTION THE FOR AMONG (19S) CORRELATIONS SECTION

-.10 -.10 -.03 -.09 10 -.00 346 60. +0.--.05 10.-02 Ц 10 07 90 -.03 -.02 -.02 -.04 -.08 -.08 8 -.04 -.10 -.09 -.15 --18 345 -.00 -.01 -.01 -.09 10---.05 8 -.05 -.03 -.00 -.07 -.00 -.04 -.05 -.03 03 8 -.01 01 -.03 -.10 -.05 344 -.08 -.07 .14 80 -.04 -.05 -.05 -.09 -.09 +0.-60. -.05 80 6.0 90 10 .04 90. 10.-10 -.10 -.10 343 90. -.02 -.12 -.06 .05 02 04 -.02 -.07 -.01 -.06 -.11 10.-80. .08 02 90 -.02 -.02 10 60. -.03 -.05 --03 -.06 -- 05 **J**42 -.02 -.01 -.03 0% --03 02 12 02 .03 8 8 8 -.07 •0. -.08 .05 10 10 -.12 341 11. .10 .05 -.04 -.00 .07 -.03 -.06 -.09 -.03 .05 .02 -.03 01 11--.04 02 90 .07 -.01 8 10 140 -.12 -.10 -.03 -.10 -.12 -.06 -.11 -.10 -.06 -.09 -.01 -.07 --03 -.14 -.02 -.09 11. .04 10.--.01 .09 -.07 8 -.05 -.05 -.06 -.06 -.05 339 -.06 -.01 -.06 -.11 -.08 -.03 -.01 80 .05 -.01 8 .11 8 8 8 10.--.07 .02 -.01 -.07 -.05 -.06 -.02 -.03 -.03 -.03 -.03 -.06 +-04 --03 338 02 -.07 .09 03 8 60 03 01 -.05 -.01 8 137 8 .13 -.05 .02 -.04 .03 -.04 -.12 -.04 -.07 -.07 8 -.07 10. -.05 .03 .03 -04 90 -.03 -.06 -.04 10. -.06 -.13 .06 -.07 .13 -.07 -.05 -.13 -.09 90 -.09 -.11 -.15 .15 -.00 -.14 -.04 336 .02 90. 8 -.08 .03 3 -.03 -.10 -.03 -.06 -.03 00.--.01 335 .17 .01 -.07 -.04 -.04 11. 60. -.08 -.01 03 02 8 .02 0.1 60 -07 -.09 -.00 134 -.06 -.01 .12 -.06 -.05 -.07 60. -.02 -.08 -.02 -.02 -.01 .02 .13 .02 .14 .02 -.08 90. .08 .05 133 .14 02 -.03 8 90 90 90 10 10 8 -.07 90 .10 60. .05 -.10 -.06 .13 .04 80 60. .13 -.06 .10 -.02 01. **J**32 .22 10. 60. .02 .02 13 80 02 .05 08 .03 90. --08 -.04 03 -.04 10 02 8 .05 -.02 -.05 -.01 10.--.04 -.06 -.03 .12 -.07 180 90. 02 -.02 60 .12 80 .05 50 0% 60 8 10 .02 -.01 080 --11 -.12 -.00 -.09 -.03 .15 10.--.07 -.03 -.02 +0.-.06 -.07 -.02 -.01 10 08 **602** 90. 8 .14 10 0 -.15 -.10 -.07 -.09 -.08 -.06 -.03 -.04 -.11 -.02 **J29** 8. -.01 -.12 .07 -.07 .04 10. -.07 .25 10 80 .03 90. -.00 --03 -.05 .02 .16 -.02 -- 03 -.05 11. -.05 .10 -.01 00.-**J28** .03 -.08 10 .03 -.07 .06 ..02 00. -.07 00. -.05 00 ---.15 -.12 -.10 -.03 -.00 -.08 -.07 -.07 -.09 -.02 .01 40 .05 -.01 .05 .18 327 80. -.04 3 .07 -.01 -.02 -.08 -.05 -.10 -.13 --03 -.05 -.03 -.07 -.01 -.11 -.02 -.11 -.04 11. -.13 .08 .02 -.01 .11 -.01 10. 326 .07 -.10 -.14 -.09 --03 -.04 02 60 -.09 10---.04 -.07 -.02 **J25** .03 8 .04 0.2 02 11. .14 .06 ..06 .06 --04 +0.-90 10.--.03 +0.--.02 10 3 .02 80 .05 13 03 6 324 8 10 --01 .06 -.04 -.02 3 03 10 EIO £12 E16 E18 E19 E20 113 EIJ E14 EIS 217 E21 222 523 63 89 83 E. E2 1 Z 3 E

VS. THE JUSTIFICATION (N=222)BT's COMBINED (19R) 67 VARIABLES ON THE EVALUATION SECTION - AT's AND THE CROSS VALIDATION SAMPLE FOR CORRELATIONS AMONG THE (19S)SECTION 346 -.00 -.04 .10 -.02 8 80 .02 60 -.03 90. -.02 10 -.03 -.06 -.05 .02 .03 08 -.09 60 03 90 -.04 345 -.06 -.05 -.10 -.03 -.11 -.03 -.05 -.13 -.03 02 10.--.02 -.01 .05 1.04 -.02 60 -.01 8 .02 .04 10 8 -.00 -.07 9 -.03 -.03 -.03 -.03 344 10. 8.1 -.04 60. -.07 .12 -.03 .09 8 -.01 10.--.07 -.03 -.07 -.07 80. -.10 -.10 -.00 -.00 -.05 343 23 -.06 -.02 -.06 -.07 11. -.08 80 03 -.07 .12 13 -. 03 90 -.08 -.04 -.00 0. 90.-342 60 -.09 03 +0.-.12 -.01 -.01 -.01 11. 8 -.06 8 -.04 80 -.02 10 .14 10 -.03 .03 10. 8 -.06 -.03 -.02 .10 10 -.03 10 -.07 80 10 .14 80 60 04 05 03 08 10 141 01 30 8 0 01 -.10 340 08 -.02 -.11 -.06 -.07 -.09 -.12 -.06 -.03 -.05 -,05 -.06 10 90 .07 .07 .13 8 0% .03 10 -.04 -.10 139 .08 -.05 .1202 -.12 90 .12 .03 .04 -.00 +0.-.02 14 -.05 90 -.03 -.02 10 60. 10 80 -.01 -.07 -.10 -.06 -.06 -.03 90.--.02 -.03 -.09 8. 338 02 8 .02 90 01 3 -.01 -.01 .03 .07 .05 3 -.00 -.00 -.02 -.05 -.03 .16 -,01 -.10 -.05 137 .19 60 .06 -.05 90.-.09 8 .04 .05 -.04 -.01 -.04 8 10 -.16 -.06 -.09 -.12 .10 -.09 -.05 -111 -.05 -.05 -.08 10. 336 90 -.05 .06 .04 .07 .08 90 -.06 10 .07 80.--.02 -.05 .02 -.05 .13 -.06 -.07 -.09 -.02 -.06 -.02 335 8 .07 .02 04 .03 .19 10. -.05 -.04 .03 .03 .11 -.07 -.10 -.00 -.05 -.05 -.00 -.07 -.07 -.02 .05 .18 .08 .02 13 .16 -.04 -.07 8 134 0% .03 .03 80 -.02 -.16 .20 -.02 -.08 .05 -.05 -.03 -.02 .03 08 .17 .21 02 .13 .17 08 60 10. .14 .02 **J**33 .21 10. 02 -.09 -.09 -.02 -.02 -.03 -.08 -.05 .10 -.02 8. **J**32 -.01 .07 80. 22 80 08 10. .14 02 3 03 H. · 04 -.01 -.07 03 .08 .04 -.06 8 .12 -.03 -.05 -.05 131 90 .06 .01 .11 5 .11 03 .05 .03 8 .07 .07 -.03 -.12 -.02 -.03 -.02 330 11. 01 60 60 08 . 20 .02 0.03 10. .15 .03 05 .04 03 Π. .03 10 10. -.10 -.05 . 20 -.05 -.07 -.11 -.07 -.09 -.09 329 -.05 -.05 90 -.05 -.02 .06 .04 03 -.07 -.06 .15 -.06 .02 -.02 -.10 -.05 -.04 -.03 -.02 -.08 .10 -.02 -.01 -.03 -.00 -.02 .02 .07 .01 -.01 .08 6. 328 02 .02 -.01 .17 60 -.17 -.06 -.07 -.11 -.04 327 .07 .05 .10 60. 10 .04 .02 90 .02 .08 08 .05 .05 -.05 80 .02 10. -.01 .10 -.10 -.05 -.10 -.09 -.00 -.00 -.11 -.00 -.03 - 09 -.01 -.04 -.02 -.08 -.09 **J26** .02 -.04 .11 .04 .02 80 90. -.06 --11 -.09 -.02 8 .05 8 .05 .03 .02 10 .10 60 -.01 90 -.01 125 02 .02 .02 .03 60 60 04 -.00 -.10 -.03 -.00 .03 -.03 00. .11 124 02 05 03 -.02 -.08 10. .02 .07 .06 -.03 8 10 30. -.00 -.04 E29 230 103 232 1 E34 E35 E36 E39 E40 **E**42 EAS E46 E24 225 E26 E27 E28 10 E.38 241 E43 E44
CORRELATIONS AMONG THE 67 VARIABLES ON THE EVALUATION SECTION (19R) VS. THE JUSTIFICATION (N=222) BT's COMBINED - AT's AND THE CROSS VALIDATION SAMPLE FOR (195) SECTION

-.10 346 -.12 .12 -.01 50. -.02 -.09 .03 60. 02 .10 -.05 8 .06 .05 10.-.07 02 .02 -.03 -.03 -.10 -.09 345 00.--.14 -.02 60. 60. -.15 -.12 -.04 10.--.05 -.02 -.05 02 10 .14 02 8 01 90 -.02 -.05 344 -.08 -22 -.03 8 01 01 .13 .02 -.03 -.02 8 -.12 -.01 .07 -.05 02 8 10 -.06 -.12 543 .03 -.09 -.04 -.09 -.05 -.02 -.05 8.--.07 -.07 -.09 -.02 -.03 -.07 .02 03 .05 24 10 .05 -.10 -.02 -.02 .10 -.01 342 -.01 -.13 -.03 .02 -.09 -.05 80 9 -.00 90 .03 ..01 .07 .05 -.01 10. --11 -.00 .10 -.05 8 341 .05 90 08 .12 -.04 --01 10 .07 .04 .02 .13 10. -.04 -.14 -.07 -.01 -.01 -.08 -.12 -.13 -.14 -.12 340 -.08 0. 03 -.06 -.09 01 10 --01 -.03 8 8 -.09 02 -.08 10.--.09 966 -.06 .15 04 06 -.02 .14 -.09 10 -.02 -.15 .12 -.03 .02 03 10 8 8 02 -.11 02 -.10 -.00 -.02 -.06 -.03 -.07 338 -.03 -.05 .03 80. .02 90. .07 .06 8 -.05 -.01 .06 ..01 10. .05 -.06 -.07 -.03 -.04 -.06 -.03 -.04 -.05 -.07 -.02 337 .10 6 02 8 5 .19 60 .03 Π 90 .14 -.16 -.09 -.09 .10 -.15 -.07 -.10 -.12 -.09 -.07 -.02 -.09 **J**36 -.12 -.02 -.03 .11 -.08 .05 -.04 -.08 -.11 -.03 -.03 -.03 -.03 -.09 -.03 335 60. 10. .11 .03 04 6 02 -.07 02 05 10 -.01 10 10 .04 -.03 -.00 -.09 -.04 -.02 -.09 -.02 134 90. 50 .16 -.00 60 10 02 -.11 .02 .02 90 .13 .03 10. -.02 -.15 -.05 133 .14 .02 -.13 .20 40. -.04 11. 13 -.03 8 .21 0.7 10 .17 .28 80. 40° 10 -.03 .16 10 .14 8 60 .08 .19 02 .04 -.11 .03 **J**32 8 .17 .02 .05 04 .07 10 8 .14 -.00 -.04 -.03 -.08 -.04 131 13 .16 10 60 10.-05 05 0.5 10 .07 40. 04 .15 01 .05 .02 130 -.09 11 +0.-.13 .05 -.03 -.10 -.24 -.06 -.05 -.06 .14 .13 .12 50 08 90 -.05 02 .23 50 -.10 -.04 -.11 -.12 -.03 129 -.08 -.07 -.03 .28 0 60 07 02 8 .21 -.01 .04 -.01 -.04 .14 -.11 -.09 -.06 -.07 --11 -.03 --03 **J28** .14 8 03 03 03 10 .13 6 05 02 .07 70. 03 0 - 08 -.06 -.10 -.00 -.10 -.05 20 .10 -.12 .13 .15 -.03 -.17 -.01 327 .07 0 11 -.00 80 .07 .04 .05 -.05 -.16 -.11 +.04 -.11 326 -.14 .06 .18 ..03 60 8 11 .08 .03 5 -.03 -.13 08 -.03 01 -.07 -.03 -.02 -.09 -.16 -.05 .05 325 -.03 14 02 08 .07 10 02 04 .02 70. -.02 60 04 11.-.13 ..10 60 26 -.01 .05 03 05 02 8 90 01 80 90 .02 324 50 .17 3 07 07 10. 3 E50 E55 E56 E58 E59 E60 E62 E93 E64 E65 266 E47 E48 E49 E51 E52 £53 E54 ES7 E61 E67

367	.12	02	01	08	09	.03	.04	02	.07	05	12	.00	.07	.01	05	12	.06	.15	11	.07	03	07	05
J66	.15	.01	00.	08	13	00.	.08	.07	.03	03	11	03	•04	02	03	09	.03	.11	.01	.08	07	03	01
365	+.04	03	05	03	02	02	02	01	90.	.10	00.	03	02	.23	03	03	03	03	.07	02	.15	05	01
164	07	+0	.07	04	04	.05	.15	02	02	.00	00.	00	04	.08	60.	05	05	.08	02	+0	11.	.03	04
163	.16	05	60.	03	08	.01	.17	.04	.08	01	12	01	.04	00.	.04	04	.04	.16	.02	.11	06	.02	.07
J62	.16	01	08	06	10	03	02	.04	.05	05	06	00.	· 03	.01	06	10	10.	.07	08	.02	09	03	02
161	60°	.01	03	07	09	.02	.02	04	90.	05	.03	07	.02	04	07	08	.00	.04	-,03	01	03	-,01	.08
160	.13	.01	01	07	12	.02	.06	.01	.04	04	12	03	90°	01	06	11	.04	.13	03	.05	07	03	03
159	02	01	14	09	10	04	.02	07	.04	.01	15	11	10.	07	-,11	06	08	.26	05	°04	00	.04	10.
J58	01	04	01	09	-,06	.03	.11	00	04	.05	03	.11	.07	06	.05	03	.14	08	05	10.	08	01	00.
157	* 0*	.03	.05	02	08	60.	.04	03	.03	13	11	09	.03	.03	03	04	.07	.17	60°	.01	06	00	05
J56	60.	.01	05	.03	11	10.	06	01	-,11	03	05	01	.10	10	11	.01	10	.04	06	.11	04	.05	03
355	02	01	07	07	10	•04	.03	.07	.08	.00	15	11	.10	01	07	07	02	60.	08	.04	08	•0•	05
J54	.03	07	.03	03	00	.00	.07	03	05	08	04	02	01	10	•00	00	.07	04	.10	02	03	90.	.03
J53	.08	.03	07	11	13	03	.03	.04	.03	05	13	14	00.	03	06	05	06	.15	00	.03	08	.03	.08
J52	.03	01	01	07	12	.01	01	07	.01	.08	10	07	.04	09	.03	.02	.04	.12	.07	02	07	10	90.
151	.16	04	.16	.04	05	06	.11	04	04	.01	05	02	.05	.03	05	03	03	60.	.13	10.	06	.03	.16
350	.05	.05	04	08	05	02	.01	.00	01	.12	02	.05	01	.02	.05	05	.19	.07	.06	.02	10	03	.07
149	.07	.05	04	.05	05	.02	.08	00	.17	02	06	.07	.12	.00	03	14	.07	.12	.03	06	.01	08	.06
148	60°	01	10	05	10	.00	07	05	.02	.08	.06	02	.00	02	01	13	60.	.17	00.	.02	05	.02	01
147	.05	05	.02	03	03	.08	7.06	02	02	08	09	03	.05	07	04	04	.05	00	11	.02	.01	02	06
	E1	E2	1	53	ES	26	L3	28	63	E10	El 1	E12	E13	214	E15	E16	E17	E18	E19	E 20	E21	E22	E23

67 VARIABLES ON THE EVALUATION SECTION (19R) VS. THE JUSTIFICATION (N=222)BT's COMBINED (19S) FOR THE CROSS VALIDATION SAMPLE - AT'S AND CORRELATIONS AMONG THE SECTION

-.05 -.09 -.10 .07 -.07 -.06 .19 02 11. -.04 .16 80. 8 .04 60. .05 90 .02 367 .14 -.01 -.02 -.01 8 -.10 -.02 366 .12 60. 60. -.08 20 60 -.13 -.02 .05 -.04 8 10 08 03 10. 10 14 8 -.04 -.01 8 365 .16 -.05 10 -.05 -.03 -.02 -.00 -.04 -.02 -.04 -.02 -.02 -.02 -.02 -.01 .10 -.01 -.03 -.02 -.02 -.02 .02 1 -.09 -.08 -.06 -.04 -.04 -.03 -.02 -.02 -.04 -.04 Π. Π. 10 9 10. 90 14 -. 04 8 03 .03 364 01 8 -.03 -.04 -.00 -.05 -.10 -.08 .03 163 .10 .03 .21 .18 .05 .23 .05 .07 03 60 8 -.05 01 .02 8 90 -.10 362 -.02 -.04 8 10. 10 -.02 .06 -.06 -.04 .17 80. 8 .01 -.04 8 8 08 -.04 8 6 .02 8 03 .13 8 -.01 .05 .02 .03 -.02 -.09 .03 -.03 -.05 -.04 8 .07 .02 02 .05 8 -.04 80 -.04 .02 361 -.08 360 .12 -.09 -.09 -.05 .10 .02 -.13 -.03 -.03 8 .03 -.01 -.03 90 .11 .18 03 .13 10. 90 90 3 -.10 -.10 -.03 -.05 -.06 -.04 -.07 -.14 -.04 -.11 -.05 -.06 -.09 -.08 -.02 -.05 159 .15 90 02 .07 3 03 10 -.07 -.07 -.01 -.03 -.06 -.05 -.00 -.01 -.01 158 04 .14 -.03 02 02 .03 .12 .02 -.01 60 11. .01 02 .05 -.15 -.03 -.11 -.03 .06 357 90 0. 60 .14 -.01 .07 05 .12 .06 01 .10 .08 .02 \$0. -.07 03 05 .03 -.06 -.00 -.11 -.07 -.12 -.03 -.02 -.09 -.01 10.--.08 -.07 .10 J56 8 .02 .13 03 .07 .02 .02 8 -.07 10. 11. -.02 -.08 -.09 -.00 -.11 -.10 -.03 -.05 .05 -.01 -.02 -.04 J55 .02 .03 05 .02 03 08 .04 10. -.08 .07 -.05 -.02 -.08 -.01 -.07 -.06 .05 -.03 -.07 -.03 -.03 .08 0. 10. 50 .01 10. -.07 .12 10. J54 10. .07 10. -.06 -.12 -.05 -.01 -.09 -.07 -.07 -.04 10.-8.1 --11 -.03 153 .07 10. 11. 90 10. -.01 .07 90 .02 10. .02 -.06 -.02 -.07 .0 -.12 -.05 -.04 152 60 60. .07 8 02 .02 07 10 03 03 05 02 90 8 .05 .04 .03 -.05 \$O. .15 +.04 80 .10 -.06 -.05 .13 -.04 8 -.02 -.03 04 -.02 151 -.01 .17 -.02 .21 -.03 90 -.05 -.08 -.05 -.12 -.02 -.04 -.03 10.--.02 -.04 .03 +0.-J50 .15 02 90 00 07 .10 60 .02 .02 02 10 03 -.05 90 -.07 -.08 .12 .02 -.01 -.04 6. .16 .10 -.02 -.02 349 11. .04 60 8 10. .04 .14 -.01 .02 .11 -.10 -.09 -.09 -.12 348 -.06 .02 .03 8 .13 .03 -.09 10.-8. -.05 -.04 .02 .06 .07 -.02 -.03 8 .05 .04 147 10 -.09 -,04 80 8 .-.08 60 8 03 .05 01 -.05 00.--.02 -.06 -.04 8 -.01 8 -.04 03 04 -.03 E30 603 E40 546 E25 E26 E29 **E**31 E32 E33 E35 E36 E37 E38 E41 E42 233 E44 EAS E24 E27 E28 E34

THE JUSTIFICATION (N=222)BT's COMBINED (19R) VS. 67 VARIABLES ON THE EVALUATION SECTION (19S) FOR THE CROSS VALIDATION SAMPLE - AT'S AND THE AMONG CORRELATIONS SECTION

.07 .17 .04 .14 -.06 -.01 .05 .18 -.00 .05 -.05 .12 -.03 .28 -.07 -.12 -.28 -.06 -.01 -.06 367 .07 -.09 -.03 -.11 -.21 -.05 -.06 366 .05 .16 .02 -.06 -.05 .13 -.05 .20 .05 11. .11 01 .13 8 .05 -.05 -.03 1.00 -.03 .05 -.03 -.02 .20 -.05 -.14 -.04 -.02 -.02 -.06 .06 -.02 365 -.03 .03 -.04 -.01 .04 +0.--.03 -.01 -.08 -.07 -.00 -.05 -.03 40 -.03 364 .02 -.03 .15 .04 -.04 · 09 10. .13 .04 .03 .08 -.07 .10 -.02 -.05 -.03 +0.--.20 -.05 363 90. .15 .17 .17 .08 11. 90. .05 11. .20 .07 .11 .05 -.19 -.11 -.05 -.10 -.06 -.06 -.01 -.08 362 8 8 .04 -.01 60. .02 8 00 60. .02 .20 .07 .05 +0.--.01 -.00 -.06 -.07 -.02 -.12 -.04 -.03 .03 -.03 .04 191 05 .05 90. 18 08 .12 .08 .07 23 -.10 -.06 -.13 -.07 360 .10 .03 -.04 -.05 .15 -.05 -.24 -.08 0.1 .14 .13 03 14 .05 07 24 .02 -.12 359 -.09 .30 -.02 .16 -.02 -.05 -.07 -.04 -.14 -.11 -.11 -.03 -.05 :13 .06 .04 8. Π. 10. 04 -.04 -.09 -.06 -.05 -.07 -.11 -.03 **J58** .16 -.01 -.01 8 .08 .03 -.05 10. .02 .02 02 -.01 .17 .05 -.03 -.09 -.16 -.05 -.07 -.09 357 60 .19 .01 .03 .03 -.01 08 08 60. .18 0% .03 .18 00. .02 -.08 -.12 -.03 .16 -.06 -.02 -.04 -.00 -.09 -.13 -.01 -.14 -.11 -.03 -.03 356 .03 .07 60. .02 10. .05 -.08 -. 02 -.09 -.01 -.04 .10 -.06 -.11 -.06 -.11 -.15 -.05 **J**55 .11 .03 10. .03 60. .02 .07 .07 .04 -.03 -.06 -.04 -.13 -.05 -.20 -.04 .07 .16 -.03 .10 .05 -.06 .08 .10 **J**54 .09 .05 .02 .07 .04 10. -.09 -.19 -.19 -.09 -.03 .13 .06 -.07 -.00 -.03 -.06 -.05 **J53** .17 80. 19 60 .07 8. .07 .25 10. -.03 -.05 -.09 -.12 04 .12 -.09 -.05 -.02 -.04 .13 -.04 .10 **J**52 .21 .03 .03 .10 .10 .08 .04 .16 -.00 -.06 -.03 -.10 -.03 .05 -.05 -.01 .04 -.03 8 151 .11 .27 60. .17 04 14 .12 18 .01 .12 -.10 J50 .23 .10 .06 -.01 -.02 -.11 -.02 -.00 -.12 -.03 .03 .12 .01 .17 .09 80 .06 .04 .04 01 -.15 -.02 -.04 -.02 .10 -.01 349 .12 .13 .04 .04 -.01 .14 10.-+00.-.06 .05 80 .13 11. .02 .21 -.10 -.03 -.00 -.06 -.05 -.08 -.08 -.06 -.03 348 .12 .19 .05 .02 10. .07 00. .04 .02 .13 .04 -.01 -.08 347 90 8 .06 .12 .04 .05 Π. -.08 .06 -.04 -.18 -.06 -.12 -.09 -.03 -.05 .02 -.03 .03 .11 E48 E49 E50 E52 E23 E54 E55 E56 ES7 E58 E59 E60 E62 E63 E64 E65 E66 E67 EA7 E51 E61

	E23	EL.	.30	.07	.21	.11	.07	.19	01	.11	.14	.11	.07	02	.12	00	.19	.05	.05	06	.31	.04	.17	
	E22	.01	.38	.37	60.	.10	.16	.21	.04	.12	.15	.14	.16	.03	.07	.02	90.	.22	.27	.16	.06	.04		
	221	00	.01	.08	.06	.02	.05	.06	.02	.01	.11	90	.06	- 05 -	90	02	07	05	10	.05	0%			
	20	1 80	32 -	23 -	16 -	29 -	16	12	05	- 60	- 60	13 -	15	03 -		02	36	. 20	17	01	Ľ			
	6		0				5.		-	-	5	. 9		5	2	2	-4	1		•				
	18 E1	08 .0	12 .1	35 .2	г. п	0. 60	0. 10	04 - 0	02 .0	1. 52	. 11	\$4 .2	19 .2	15 .0	070	. 1	26 .1	22 .1	.2					
	7 2	. 1	1	0	0	. [(. [1(5(0	6			1(. 4	7 .							
	6 E1	0.	2 .0	1	5 .1	00	10	1.1	10	2 .0	6 .2	1. 1		0.	70		.1							
	13	0.	.2	. 2	.2	.3(0	0°-	0.	.2.	.1		1.	.16	H	.1								
×.	E15	.05	.08	.22	.13	04	06	.01	06	.08	.34	.33	.14	.11	.08									
	E14	.01	.02	.05	.15	.06	.07	.14	04	.21	60°	01	.28	03										
	E13	.04	02	.12	05	.07	03	05	02	.23	.05	.36	.20											
	E12	.07	.07	.16	.06	.11	.07	.02	01	.23	.18	.30												
	E11	.09	.16	.37	.27	.00	10	03	05	.19	.33													
	E10	.04	.21	.17	.13	.01	02	.03	07	.02														
	E9	.04	.02	.03	.03	90.	• 04	07	02															
	E3	60.	.13	.03	.19	.05	. 04	. 02	•															
	E7	- 03	.20	- 20	.07	.20	- 90 -																	
	9	60	02	10	03	05	I																	
	E C	05	25 .	33	. 91	٠																		
	61		9	2																				
	12	0	.1	.2																				
	13	.12	. 29																					
	E 2	.06																						
	EI																							
		E	E2	53	12	23	E6	57	83	E9	E10	Ell	E12	E13	E14	EIS	E16	E17	E18	613	E20	221	E22	E23

THE EVALUATION SECTION (19R) RM's COMBINED (N=222) FOR THE GENERALIZATION SAMPLE - CS'S AND CORRELATIONS AMONG THE 67 VARIABLES ON

.10 .20 E46 .28 .25 .28 10. -.07 .02 .23 .18 .40 .14 28 8 .15 .91 .18 .37 · Io .36 -.06 .05 .14 EAS 60 .16 -.06 10 -.08 10 -.05 10. 02 .37 34 .15 60 .12 .97 .15 03 11. 03 .06 .01 .21 13 -.00 -.05 E44 .10 -.03 .06 .03 .03 -.03 -.05 -.03 -.05 90. .07 .27 .02 -.03 .69 .13 .06 .02 .03 -.02 .21 -.03 -.05 -.05 E43 .08 10 .11 -.04 .11 -.03 -.02 .1324 .22 . 90 6 .12 .11 8 08 .04 80 .04 .05 E42 .19 .05 .11 .04 -.06 8 .25 .93 .23 . 22 10 .19 90 .14 80 08 .24 .34 .17 .17 .25 .14 -.08 -.05 -.04 -.03 .20 .11 E41 .22 38 6.0 .39 .30 .45 -.04 .14 .08 .37 .17 .87 .27 .32 .31 .17 13 -.10 EAO .20 .05 -.06 .12 .20 .17 .03 .25 24 .03 . 02 83 \$€. .38 . 22 .17 01 .22 . 23 .21 21 80 -.03 -.03 -.05 E39 80. -.01 . 22 60. .05 .02 .05 .09 16. 8 .18 . 24 .29 .09 . 23 6. .26 .11 ..05 10 1.00 -.09 E38 .13 .03 .19 .05 -.04 .02 -.02 -.07 -.05 -.01 -.04 -.06 -.05 -.02 .05 02 -.01 -.02 10. 10. .04 -.06 .02 -.05 60. -.03 00. -.02 .13 E37 10. .17 60 .06 .28 .91 .21 -.09 .12 8 .04 -.01 -.01 -.01 .17 -.04 -.10 -.03 -.02 96 -.06 -.03 -.06 00. 8 60. .05 90. -.04 .05 60 02 90 E36 8 90 .14 .17 8 -.01 +0.-E35 31 .16 96 .08 .13 .05 90. 8 -.02 .13 .12 90 .27 .02 .04 .11 .04 .33 .08 80 .34 00.-.17 22 96 02 .18 -.02 .16 .27 .04 -.04 .12 .11 11. .14 .16 -.07 8 .22 E34 .17 30 .24 .14 E33 .11 90 .36 .16 .11 .16 43 .20 89 .28 .28 .02 60 8 -.01 .21 .05 . 22 .25 .27 6 .34 .11 .10 -.06 .20 -.00 .20 -.05 -.06 .16 .26 . 22 .12 6 .32 .37 .17 E32 .87 16 .25 .05 .08 -.01 .17 .11 -.03 -.06 -.09 90 10.--.01 00.-.89 -.01 90. .06 02 02 60 6 60. 90 03 .02 E31 .07 90. .04 02 .20 .46 E30 69 36 -.01 32 .42 .43 90 48 .28 99. 53 24 19 ·34 .12 .21 .64 .21 52 36 8 E29 .12 . 20 -.02 -.06 .11 .22 .26 · 04 6. -.06 .15 .33 .18 -.03 .27 .07 .03 .08 .04 .03 07 .08 60 .20 -.00 -.02 -.00 -.02 -.10 .10 60. .10 . 23 .26 -.01 .13 .15 60 60. 60. 228 .26 10. .14 .17 80 5 -.08 -.03 .10 -.03 .03 . 19 .20 .05 .15 .34 . 29 .15 .17 .14 . 23 .13 .21 .23 .11 .23 E27 .11 .05 0% -.02 -.05 -.08 90. ·04 8 .18 .16 .15 .19 03 .10 **E**26 8 .05 .21 .27 .24 .04 . 24 .05 . 28 .14 -.05 -.07 E25 .15 11. 29 10 . 22 11. 0% .17 .06 .23 .24 8 .17 08 .20 .05 .13 .16 .13 5 .23 80 .03 10 .10 +0.-.10 .15 E24 .14 .08 .02 10 07 -.08 03 -.08 03 .11 .07 .07 04 30 03 6 -.01 E10 ELS E19 E20 E12 **E13** E14 E16 E17 E18 £22 E23 EII E21 23 53 1 E5 E6 27 8 63 EI

E46	.13	.17	.23	.26	.08	.21	.51	.06	.23	.29	.26	.30	.02	08	. 02	.27	.27	.42	.23	.19	.11	.17	
245	06	.08	.22	.17	.01	.07	.31	-05	.13	.22	.15	06	06	01	05	.14	.42	.33	.19	•06	.17		
244	00.	.10	.08	.04	.03	03	.10	.03	07	.02	.04	03	.13	.01	03	.27	60.	.02	.29	02			
E43	.07	00.	.21	.18	.02	01	.16	.11	.02	.10	04	.03	03	.04	02	.18	.02	.22	.23				
E42	.14	.23	.20	.17	.15	. 60.	.45	.05	.11	.20	- 04	.13	.03	. 05	00.	.26	.29	.35					
E41	.11	.10	.25	.34	.24	.29	.61	.06	.28	. 43	.40	.01	.08	.03	•04	.19	.43						
073	.01	.07	.16	.36	.17	.23	.50	.03	.29	.31	.23	.06	- 02 -	- 03	- 90.	.09							
E39	- 90 -	.17	.21	.15	. 25	11.	.30	.03	.01	.04	.00	.07	02	.03	- 10.								
E38	.01	.07	.05	.03	00.	90.	.01	60.	- 10 -	.03	.18 -	.02	.04	- 02 -	6								
E37	.03	.02 -	- 04	- 20.	- 90-	- 80.	- 11 -	- 50.	.17	- 11.	.05	.18	- 0.										
E36	- 02 -	.10	- 05 -	60°	.07	- 60.	.11	.05	.05	.00	.05	60.											
E35	60.	.24	10.	- 18 -	.02	00.	.34	90.	.27	.24	.19												
£34	.14 -	.00	- 02 -	.18	.03	- 11 -	.35	.01	.18	.29													
E33	.02	.24 -	.20	.14	- 15 -	.24	.61	- 11.	.34														
E32	90.	.12	.03	.06	.28	.15	47	.06															
163	10	13	.04	60	.02	.02	.15	1															
530	.12 -	67	31	41	- 96.	.36																	
529 1	.05	16	.17	.16	.14																		
228	.08	.13	10	.07																			
:27	02	60	13																				
:26	.02 -	60																					
25 2	04																						
24 E	i																						
94J	4	2	9	7	00	6	0	1	2	3	4	5	9	7	60	6	0	1	2	3	4	\$	9
	E2	E2	23	E2	E2	E2	1	3	E3	E3	53	23	23	E3	1	E3	12	2	2	EA	54	EA	72

E67	.25	.36	69.	.32	.35	.13	.27	.02	.36	.37	.53	.45	.21	.24	.33	.42	.30	.45	.38	.32	.11	.45	.31
E66	.16	.53	.46	.36	.31	.12	.28	.06	.21	.41	64.	.27	.13	.21	.25	.40	.21	.35	.22	.40	.01	.46	.63
E65	.08	.06	05	02	03	02	.13	01	03	.08	10.	03	01	02	.13	03	02	03	.07	.13	02	05	.07
E64	.14	.16	.10	04	.01	07	.08	05	.08	.04	.16	05	04	11.	10.	.06	10.	08	02	90.	.02	.10	.26
E63	.19	.32	69.	.16	.26	.08	.24	05	.25	16.	.48	. 44	.14	.16	.21	96 .	.21	.39	. 28	.25	.09	.40	.28
E62	.13	.44	.52	. 28	.28	.18	.18	.04	.34	16.	.48	.36	.22	.20	.27	64.	.25	.39	÷34	.31	.03	.50	.35
E61	.20	.34	.40	.43	.24	.03	•0•	00.	.10	.37	.50	.23	.14	.07	.21	.34	.20	.48	.22	46.	03	.31	.35
E60	.20	.47	.57	.43	.33	.12	.15	.03	.25	.42	.61	.39	.21	.15	.29	.46	.28	.55	.35	.39	.02	.48	14.
E59	•00	.15	.22	.13	00	.05	07	06	.06	.24	.25	.00	01	06	.07	.13	.05	. 29	.16	.10	03	.27	60.
£58	.02	.19	.01	02	03	.03	.06	10.	.25	.08	.27	.15	.10	03	02	•00	.13	.15	.08	02	07	.16	.08
E57	*0	.07	.10	.21	.21	05	.05	.01	.11	.26	.25	.12	.14	.11	.10	.22	.13	.19	.07	.23	03	.11	.25
E56	.02	01	.19	.01	00.	.04	04	04	.13	.08	.18	.08	.15	.03	.13	.12	.04	.27	.15	06	.05	60.	12
255	.18	.11	.29	.03	.25	.14	.00	06	.17	.05	.24	.25	.04	.17	.05	.23	.04	.14	.19	.13	. 03	.22	.03
254	.01	.03	02	.15	08	.03	.03	10.	.05	10	.07	.11	.11	03	12	.08	.11	.11	09	.12	.07	00.	.05
253	.10	. 28	60.	.27	.11	.06	.10	.03	.07	.17	.16	.07	02	.08	.03	.21	.07	.09	00.	.31	01	.13	.93
E52	02	.35	.34	.10	.09	.14	.22	.06	.13	.15	.13	.16	01	.06	.04	.07	.23	. 23	.15	.02	.05	.96	.12
E51	.01	00	06	05	.02	.02	.07	.01	03	11	04	.05	04	.05	04	06	90.	01	90°	03	.97	90.	.02
E50	.07	.29	. 20	. 14	.27	.14	.08	05	08	•00	.08	.12	.05	.04	02	.34	07	.14	02	.96	05	.03	.25
E49	.02	.13	.19	.15	.02	.05	10	.05	.13	.15	.34	.27	.10	02	.15	.15	.12	.25	.91	.05	.01	.13	05
248	90.	.10	.33	.10	.11	00.	06	04	.20	.17	. 43	.21	.19	05	.04	.22	.25	.95	.20	.18	.03	.23	.06
E47	.07	.03	.14	.13	01	02	.07	05	.05	.21	.20	.07	.06	01	•00	.18	.92	.26	.14	04	.03	.26	.05
	II.	E2	E3	E4	53	E6	E7	E 8	E9	EIO	E11	E12	E13	£14	EL5	£16	217	ElS	E19	E20	E21	E22	E23

E67	.12	.49	.33	.39	.34	.33	.90	.24	.36	.48	.30	.36	.13	.23	.02	.37	141	64.	.44	.19	.16	.32	.43
E66	.15	.33	.22	44.	.28	.26	.87	.08	.48	.45	.36	.32	.10	.24	.06	,19	67.	. 48	.29	.08	.05	.27	.40
E65	.13	.11	02	04	.11	.15	.07	.07	.02	04	02	03	02	.06	01	03	,13	06	03	01	01	.11	02
E64	00.	.17	.02	.02	06	00	.19	07	07	14	04	.04	08	.03	05	10	05	07	12	04	17	00.	04
E63	04	.47	.29	.27	.34	.22	.76	.13	.27	.45	.10	.25	.06	.17	05	.21	.32	· 39	66.	.10	.10	.20	.32
E62	.11	44.	.17	.28	.32	.34	.84	.10	.46	.51	.26	.30	.16	.17	•0•	.37	.37	.45	.37	.16	.07	. 28	44.
E61	.21	.18	.27	.43	.16	.29	.69	.16	.39	.54	64.	.25	.05	.03	.00	.15	.50	.65	.33	.14	.12	.26	.45
E60	.16	.38	.29	.45	.31	.38	\$6.	.16	.51	.66	.45	÷34	.12	.13	.03	.30	.54	.67	.45	.17	.13	.32	.54
E59	.05	.17	.18	.18	.11	.96	.37	.03	.19	.27	.15	.01	*0 *	07	06	•06	.26	.30	.05	-,03	03	90.	.18
E58	.07	60.	.08	.05	•6.	.11	.28	00.	.21	.06	03	02	.03	.02	.01	.28	.11	.24	.13	• 03	10.	.00	.08
E57	02	.07	60°	16.	.04	.18	.38	.07	60.	.12	.21	.21	06	.05	10.	.11	.34	.31	.15	.18	.02	.12	.25
E56	00.	.07	06.	.03	.02	.13	.21	01	03	. 18	02	.01	.07	06	+0	.18	.07	.14	.11	.11	.07	.11	.14
E55	.00	.89	.10	60 .	.13	.18	.47	.14	.13	.27	.03	.27	.14	.01	06	.19	.07	.14	.27	.04	.13	•06	.20
ES4	. 96	07	.02	01	.05	.01	.10	03	.05	.03	.14	08	.02	04	.01	.07	04	.13	.15	.08	00.	60	.14
ES3	90.	•00	07	. 28	.07	60.	.45	02	.20	.16	.29	.12	.04	.07	.03	.03	.21	.20	.08	02	02	.05	.20
E52	00	.22	.14	.12	.17	.22	. 50	00.	.36	.35	.10	.11	.15	.18	.06	.12	.19	.15	.15	04	10.	.08	.06
E 51	.06	.04	.08	01	10	01	.05	.04	06	06	07	.01	.03	.00	10.	01	10	06	.05	04	.06	07	05
E50	.16	.09	06	.17	.01	:03	.31	.02	.28	.16	.12	.33	.14	60.	05	03	.11	.13	.12	.06	.01	01	.33
6 73	07	.16	.16	.09	.18	.17	.37	:03	.15	.22	.14	.03	.07	.08	20 .	.13	.21	. 28	.24	.11	.03	.13	.22
E48	.11	.11	.30	.24	.15	.26	64.	.04	.14	.40	.13	.10	10.	02	04	.24	.22	44.	.27	.12	03	.07	.34
E47	60.	.05	.07	.14	.10	.08	.30	.09	.06	.19	.15	.01	01	.00	05	.05	.23	.20	.11	10.	.02	.07	.21
	E24	E25	E26	E27	E28	E29	E 30	101	E 32	E33	E34	235	236	E37	538	239	E40	143	E42	243	244	245	246

E67	.31	44.	.38	.27	.12	.45	.29	.09	67.	.24	.34	.29	.31	.83	.56	.80	.71	.10	.12	.76	
E66	.24	.33	.23	.32	.03	. 42	.60	.13	.31	.13	.41	.23	.28	.82	.62	.74	.59	.24	.07		
E65	02	03	.13	.07	02	05	04	14	.08	02	03	.05	.13	.00	.05	00	.03	.23			
E64	03	08	03	.02	90.	.01	.11	06	.05	.02	.02	06	00	06	06	.10	. 02				
E63	.18	%E *	.27	.18	.08	.36	.22	05	.38	.19	.18	.27	.18	.61	.32	.48					
E62	.28	.36	.35	.28	.05	.47	.34	.11	.43	60.	.26	.28	. 33	.78	.39						
E61	.25	.51	.25	. 28	03	÷34	.47	.20	.28	.22	.48	.14	÷34	.85							
E60	.31	.54	.37	.32	.02	67.	48	.16	.43	.20	.45	.26	0 7 .								
E59	.08	.24	.14	.05	01	.24	.12	.01	.19	.14	.21	.08									
E58	.08	.14	.17	02	07	.13	.06	.06	.10	.03	.04										
ES7	.15	.21	.11	.17	02	.12	.30	02	.08	.02											
E56	¥0°	.32	.14	07	.06	.12	11	.01	.11												
ESS	.03	.14	.17	.11	.06	.22	.03	02													
E54	.10	.11	11	.14	90°	.01	.07														
E53	.07	.10	.01	.27	02	60°															
E52	.28	.27	.13	00.	.06																
E51	.02	01	00.1	05																	
E50	06	.16	.01																		
E49	.11	.23																			
E48	.31																				
EA7																					
	E47	E48	673	E 50	ESI	E52	E53	E54	E55	E56	E57	E58	E59	E60	E61	E62	E63	E64	E65	E66	E67

323	.23	.36	.55	.30	.45	.10	.17	.17	.47	.22	.41	64.	.27	.10	.13	64.	.17	.32	.42	.40	.40	.31	
322	.32	.30	.47	.15	.32	.12	.24	.05	.19	.33	.31	.26	•00	.07	.20	.38	.22	.40	.37	.20	.08		
121	.17	.14	.27	.04	.19	.04	*0.	02	.27	.15	.28	.34	.06	.22	.19	.28	60°	.11	.32	.17			
J20	.05	.28	.39	.30	.37	.05	.26	.10	.30	.35	.38	.29	.31	05	.13	.37	.12	.20	98.				
319	.20	.39	. 58	.22	.33	.04	.29	.05	.38	.31	.53	.37	.32	.13	.15	14.	.32	.30					
318	.20	.22	.35	.06	.25	.04	.10	.02	.19	.24	.36	.22	. 08	03	60°	.28	.16						
117	.12	.29	:33	04	.21	60°	90.	90.	.23	.36	.37	.18	.12	.04	.12	.21							
J16	.10	.36	44.	.24	.46	00.	.29	.11	6E°	.25	.33	.34	.25	10.	.15								
315	.20	.03	.22	01	.15	.15	.02	.04	.20	.27	. 28	.21	.02	.07									
114	.16	.07	.08	.05	.02	01	.09	.02	.12	01	.09	.21	.02										
113	02	.21	.30	.26	.13	04	.09	.03	.18	.12	.26	.33											
J12	.29	.24	.45	.21	.27	.08	.03	.16	16.	.30	.47												
111	.30	.23	.52	.19	.37	.06	.11	.08	66.	.45													
J10	.17	46.	.37	60.	.38	.10	.14	.13	.26														
6ſ	.13	.14	.46	.15	.21	60.	.10	04															
J8	.13	.23	.25	.13	.15	•00	03																
37	.16	.16	.25	.16	.11	02																	
36	.05	.01	.11	05	00.																		
35	.16	. 38	.33	.31																			
34	.11	.22	.25																				
13	.37	.32																					
32	.18																						
Iſ																							
	11	J2	53	34	15	16	37	J8	65	310	111	312	113	314	315	316	117	318	319	320	121	322	323

21.6	057	.10	.28	.43	.22	.37	00	.30	.06	.43	.22	.30	.34	.22	.08	.14	.93	.19	.26	.46	.38	.23	.39	.47
77.6	0 * 7	.20	.05	.23	04	.15	.11	10.	*0°	.21	.24	.29	.22	00	.09	.97	.18	.14	.10	.18	.15	.19	.21	.15
12.4	447	.15	.07	90°	00	.01	03	.11	01	.13	00	.08	.16	02	-94	•0•	00.	02	03	.14	02	.23	.05	60°
6.74	547	00	.21	.35	.23	.10	03	.11	*0*	.18	.10	.29	.38	\$6.	02	.00	.28	.17	.10	.33	.36	.05	.07	.31
671	746	. 24	.21	.40	,14	.24	. 60.	.03	.13	.29	.30	.42	.95	.33	.20	.20	.35	.17	.16	.36	.24	.35	.23	.46
1.7.4		.35	.23	. 50	.16	.30	.04	.10	11.	07.	64.	.95	64.	.25	.13	.29	:33	. 33	.35	.48	.32	. 29	.30	.42
071	0.40	.17	÷34	.39	60°	.38	.10	.13	.11	.29	- 97	.45	.29	.13	.02	.25	.27	.38	.21	• 33	.35	.13	.33	.23
0.11	751	.12	.12	.42	.15	.16	.12	.07	.04	- 94	.22	.40	.33	.14	- 13 -	.16	.37	.17	.11	.41	.28	.27	.16	44.
0	20	60	.27	20	.17	.21	05	.02	- 06	.02	01	90	16	04	.07	03	13	08	03	02	12	02	90	20
	10	11	16	26	14	8	5	95 -	04	10 -	60	. *0	03	10	80	01	24	08	07	29	23	02	19	12
20	20	. 90	03		. 90	. 10	97	. 40	- 60	. 8	. 61	. 10	- 11	. 40	. 10	lá	. 00		05	24	. 40	74 ·	. 41	12 .
i.	, 0	7 .(2 .(0 (7 .(-	9 - 0						2(-	2(2 .()• 6	9.0	. 0		7 .1
C.F			ę.	<u>د</u> .		6.	0.	0.		2			.2	.1	0.	(4.	.1	.2	2		.2	.2	4. (
101	5	.11	.19	.28	. 93	.24	04	.18	.11	.15	.07	.20	.21	.23	.00	.00	.19	-,02	.06	.23	.29	.04	.14	.30
	5 C P	.40	.30	.97	.26	.31	.10	.24	.22	.49	.35	.48	.45	.28	.09	.22	.44	.31	.35	,57	.37	.31	.44	.59
0.61	7 7 0	.21	.98	.30	.21	.35	.01	.16	.20	.12	.32	.21	.25	.19	.07	00	.34	.28	.20	.38	.25	.15	.30	.32
121	TCr	.96	.15	.36	.03	60°	.05	.14	.14	.12	.17	.29	.27	04	.15	.22	60.	.14	.19	.22	.03	.15	.27	.18
OCT.	000	14.	.51	.78	.33	.56	.16	.29	.21	.58	.57	.73	.62	.34	.14	.35	.62	44.	.44	.69	.56	.41	.57	.73
001	67 P	.19	.26	.35	.11	.31	60.	.21	·00	.32	.30	.26	.26	.09	.07	.22	.32	.16	.06	.29	.26	.33	.16	.40
130	070	.05	.16	44.	.10	.13	.17	.14	04	.30	.26	.34	64.	.21	.08	.08	. 28	.21	.32	.36	. 29	.27	.37	.44
6.01	170	.11	.34	.37	.25	.31	* 0*	.14	.27	.45	.31	.38	.34	.16	.02	.13	.41	.31	. 20	.33	.39	.14	.25	.47
761	076	.18	.15	.29	.03	.11	.06	03	.07	.25	.13	.18	.30	.12	.08	.15	.16	.10	.07	.15	.18	.17	.14	.30
3 6 1	C7r	.34	.28	.53	.17	:33	.20	.21	.18	.46	07.	.53	44.	.19	.10	.26	.40	.39	.25	44.	.38	.30	.42	.48
YOL	9.44	.07	03	.04	02	03	01	02	02	04	.02	.02	.04	02	02	.02	.05	.10	03	.01	.06	03	.18	02
		1	2	9	4	- 2	. 9	- 2	80	6	10	11.	12	- 11	14 -	15	16	17	18	19	20	21 -	22	23 -
		2	2	2	~	2	2	2	2	2	5	~	5	2	7	~	2	5	7	5	2	2	ſ	5

346	.07	40	.17	.40	.32	.27	.59	.10	.28	.44	.16	.35	00.	.25	60.	.42	.25	.31	.35	.23	.07	.16	
345	.05	.25	.15	.15	.10	.23	.36	. 22	.01	.24	03	.14	.11	02	.04	.17	.24	.31	.21	02	.06		
344	02	.08	.07	02	.02	.08	.12	.15	.08	.07	03	.02	02	60.	.02	.14	01	.12	.15	04			
143	02	.22	.10	.20	.25	.10	.37	03	.19	.33	.22	60.	03	.11	•06	.15	.12	.27	.36				
342	.08	.42	.31	.35	64.	.27	.58	.21	. 22	.41	.13	.24	.12	02	.15	.32	.29	.46					
141	10.	. 50	.23	.39	.34	.30	.71	.34	.21	67.	.18	.29	.06	.02	.08	.39	.44						
140	.05	.40	.15	.33	.25	.31	.58	.18	. 32	.38	.07	.32	.13	60.	.05	.26							
139	04	.45	.30	.39	.31	. 29	.55	.13	.10	.46	.16	.18	.11	.08	02								
138	01	. 20	.06	.28	06	.08	.21	.08	.23	.19	.14	.21	.11	04									
137	02	.18	00	60.	.14	.20	.24	.10	.16	.27	.18	.03	05										
136	02	.25	.07	.06	.17	.10	.19	.07	.03	.13	06	.01											
135	03	.34	.13	.31	.13	.29	.53	.10	. 29	.30	.23												
134	02	.21	.11	.20	60.	.10	.33	.03	.18	.30													
133	.02	.53	.32	.36	.45	.39	.77	.39	. 28														
J 32	03	.28	.15	.31	.16	.25	.48	.18															
131	.10	.32	.18	.11	.07	.18	.38																
130	.05	.76	.36	.60	.53	67.																	
329	03	. 38	.18	.31	.24																		
J28	03	.39	.32	16.																			
327	.10	.42	.19																				
326	.22	.33																					
J25	.02																						
324																							
	J 24	J25	326	J 27	J28	J29	130	131	J 32	133	134	335	136	337	138	139	340	141	342	143	344	345	346

167	.40	.47	.69	.30	.51	.11	.30	.18	.57	67.	.62	.59	.31	.20	.38	.61	.40	.43	.66	.51	.38	. 53	.67
366	.36	.55	.72	.33	.58	.21	. 28	.22	.54	.58	.66	.60	.33	.13	.33	.60	. 39	.40	.66	.56	.41	.55	.74
165	00.	00.	00.	00.	00.	.00	.00	00.	00.	.00	00.	00.	00.	.00	00.	00.	.00	00.	00.	.00	00.	00.	00.
364	04	.06	.03	05	.16	03	05	03	.01	.01	.19	.11	+0	.02	60.	.02	.05	.07	02	02	.05	+.04	.01
J63	.37	.50	.67	. 38	.55	.12	.30	.22	44.	.56	.69	69.	.36	.13	.29	.54	64.	. 38	.59	.54	.35	.56	.60
J62	.35	67.	.76	.30	.59	.19	.31	.18	.56	.56	.66	.59	.33	.11	.33	.58	. 39	44.	.67	.53	. 38	. 52	.68
161	. 38	.30	. 63	.17	.25	.11	.11	.16	.55	.36	.55	.58	.17	.16	.32	.51	.34	• 33	. 55	.38	.35	.41	.66
160	.41	.47	.78	.30	.51	.16	.26	.20	.60	.54	.71	.64	.31	.15	.36	.62	.42	.44	.69	.53	.41	.55	.74
159	.15	.23	.38	.13	.30	.10	.16	.12	.35	.28	.23	.25	.05	.05	.20	.37	.17	.08	16.	.22	.31	.16	.41
158	.02	.17	.41	60.	.12	.12	.19	05	.25	.25	.33	.42	.24	.03	.04	.29	.17	.35	• 39	.28	.26	.34	.41
157	.05	.30	.35	.23	.25	•00	.10	. 23	47.	.24	.37	.32	.18	01	.11	.41	.31	.21	.34	.39	.14	.21	.43
J56	.15	.12	.28	.00	.07	.07	02	.01	.25	.10	.18	.33	. 20	. 90.	.10	.23	.12	.04	.20	.14	.18	.12	.29
355	.32	.28	.53	.18	.31	.17	.19	.16	94.	.35	.51	44.	.17	.11	.23	. 42	.40	.27	.47	.40	.31	.39	.48
154	.07	03	.04	02	03	01	02	02	04	.02	.02	•00	02	02	.02	.05	.10	03	10.	.06	03	.18	02
153	.21	. 34	.55	. 26	44.	.13	.13	.16	.47	. 25	.43	.50	. 26	.10	.17	.47	.18	• 33	. 43	.38	. 39	.32	96
J52	.37	. 27	.47	.11	. 29	.15	.20	.05	.21	.34	.34	. 29	.04	.09	.22	.35	.23	.45	.38	.22	.10	.95	.32
151	.11	.11	.26	.10	.15	.03	*0*	.04	.26	.08	.23	.31	.06	.15	.12	.25	.05	.05	.28	.21	.93	.03	.38
150	.03	.24	.38	. 28	16.	.08	.21	.11	.35	.30	.32	.29	. 22	06	.16	.37	.12	.15	.37	.93	.17	.17	.37
149	.16	.31	.53	. 20	.30	.03	.26	.04	.39	. 26	.48	.36	. 28	.10	.15	.48	.25	.27	.94	.34	.25	.32	.39
348	.21	.18	.27	.05	.18	.01	.07	.06	.19	. 20	.29	.24	.03	.03	.11	.26	.13	.90	.22	.12	.13	.36	.31
347	.12	.21	. 29	06	.17	60.	.04	.04	.21	.33	.32	.14	.07	.02	.08	.15	.95	.14	.25	.14	.05	.18	.13
	11	J2	13	34	35	16	37	18	19	110	111	112	113	J14	J15	316	117	J18	119	120	J21	J22	323

367	.10	.69	.41	.58	69.	.47	.92	.38	.45	.69	.30	.50	.13	.27	.18	.53	.50	.63	.53	.32	.18	.39	.59
366	.05	.73	.36	.59	.51	.51	.97	.32	.52	.72	.33	.56	.23	.23	.23	.51	.58	.66	.57	.35	.10	.34	.56
365	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	00.	00.	00.	00.	.00	00.	00.	00.	00°	00.	.00	00.	00.
364	01	00	05	08	03	05	•0•	05	90.	03	05	.10	04	05	03	.03	06	60°	.01	04	.02	.08	01
363	02	.70	.24	.56	.45	.43	.90	.31	.48	.63	.35	.51	.14	. 23	.21	.38	.55	.63	44.	.39	60°	.28	.47
362	.07	.71	.35	.54	.50	.45	96 .	.30	.46	.75	.30	.57	.20	.27	.19	.53	• 56	.64	.56	.36	.10	.33	.56
191	.10	.61	.41	.48	67.	.45	.79	64.	.29	.69	.20	.26	.15	.10	.16	.58	.41	.63	.56	.21	.15	.36	.54
160	.07	.75	.40	.59	.54	.50	66.	.40	.45	62.	.31	64.	.19	.22	.21	• 59	•56	.71	.61	, 35	.13	.38	.61
159	03	.34	.20	.27	.25	\$6.	.48	.16	.20	44.	.12	. 29	.11	.17	.11	.34	. 29	.26	.26	.07	.06	. 22	.32
158	02	. 38	.28	.31	.95	.27	.51	.03	.16	64.	.10	.11	.12	.19	06	.26	.24	.32	64.	.30	10	90°	.33
157	.10	.40	.16	.95	.31	.32	.56	.06	.27	.34	.18	.25	.05	.07	.22	-42	.27	.39	,34	.21	03	.12	.42
156	.18	.32	.92	.20	.38	.20	.35	.17	.13	.31	90°	60.	60°	10.	.00	.32	.12	.24	.36	.20	90 °	11.	.26
155	.05	.97	.34	. 42	. 38	.35	.75	.31	.28	.53	.22	.32	.21	.16	.19	.46	.36	.48	14.	.21	.08	.23	.42
154	1.00	.02	. 22	.10	03	03	.05	.10	03	.02	02	03	02	02	01	04	.05	10.	.08	02	02	.05	.07
153	02	69.	.34	.45	.45	.40	.73	.18	.30	. 59	.27	.47	.15	.08	.19	.46	. 26	.45	.47	.30	60.	.18	.45
352	.24	.42	.13	.22	.37	.14	. 57	.33	. 26	.45	.10	.26	.17	.14	.05	.18	.35	.34	.26	.06	.07	.24	.36
151	03	.28	.18	.13	.24	. 28	.36	.10	.11	.29	.12	.17	.03	.04	.10	. 28	.07	.24	.31	.07	.17	.13	.21
150	.08	. 38	.23	.37	.24	.23	. 52	.03	. 22	.37	. 28	.31	.07	.21	.14	.34	.31	.29	.24	.25	04	.17	.41
349	.05	.44	.17	.31	.34	.27	.63	.18	.30	.54	.22	.27	•0•	.28	.07	44.	. 29	44.	. 38	.29	.10	.18	.47
348	03	.21	.05	.16	. 29	.05	.38	.21	.17	.28	.04	.16	.03	.04	00	.11	.16	. 29	.17	.03	.02	.12	.26
347	.12	.35	.10	.29	.21	.13	.37	.14	.20	.26	05	.13	.12	.06	.03	.14	.35	.29	.12	.12	03	.10	.15
	324	325	326	327	J28	329	130	131	J 32	133	134	135	136	137	138	139	140	141	342	343	344	345	346

367	.36	.40	.62	.50	.33	.54	.67	.10	. 68	.37	.54	.45	.46	.92	.76	.87	.81	.05	.00	.88	
366	.34	.34	.61	.52	.36	.56	.75	.05	.71	.35	.55	.50	.50	96.	.76	66,	.86	.05	.00		
365	00.	00.	00.	.00	00°	00.	00.	00°	00.	.00	.00°	00.	00.	00.	.00	00.	00.	00.			
J64	.06	60°	02	03	°04	04	00	01	.02	05	07	02	05	00.	05	.08	00				
163	.34	.31	87.	.43	.29	.52	.57	02	.64	.20	,48	.42	.37	.82	.54	.78					
J62	.33	.35	.63	.52	46.	.52	.69	.07	.70	.34	.52	67.	.45	£6°	.66						
161	16.	.36	.59	.43	.33	64.	.71	.10	.65	44.	64.	44.	69.	.87							
360	.37	.39	.66	.53	.37	.57	.76	.07	.76	.40	.57	.52	.50								
359	.13	.08	.31	.21	.27	.16	.41	03	.33	.24	.30	.27									
358	.17	.29	.38	.22	.23	.34	.42	02	.36	.36	.31										
157	.29	.17	.33	.39	.12	.19	.42	.10	.42	.18											
J56	.12	.02	.22	. 18	.18	.12	.33	.18	• 33												
355	.38	.24	. 48	.41	.30	.40	.50	.05													
354	.12	03	.05	.08	03	.24	02														
J53	.14	.32	.42	.37	.37	.33															
352	. 20	. 43	.32	.19	•0•																
151	.01	.07	.22	.24																	
J50	.15	.10	.36																		
349	.20	.20																			
348	.11																				
347																					
	347	348	349	150	151	352	J 53	154	355	356	157	J58	J 59	160	161	J62	163	364	365	366	367

THE JUSTIFICATION SECTION (19S) FOR THE GENERALIZATION SAMPLE - CS'S AND RM'S COMBINED (N=222) EVALUATION SECTION (19R) VS. CORRELATIONS AMONG THE 67 VARIABLES ON THE

8 10.--.03 -.06 .05 -.09 80. .07 -.06 -.05 -.05 -.02 -.09 -.01 -.04 --11 -.02 .20 **J23** 10 .05 60. 8. -.04 -.06 -.02 -.10 -.03 10.-00. 60. -.01 .12 -.08 -.03 -.09 -.07 **J22** 8 10. .05 .06 05 .08 05 .11. .01 10 -.10 -.10 -.07 -.07 -.01 -.05 -.06 -.05 -.02 321 8. -.08 .06 .12 .03 10. .06 .03 8 10 90. 8 10. .06 -.05 -.02 -.07 -.10 320 .03 8 8 .14 -.04 .07 03 .03 .12 -.09 -.00 .19 02 .04 10 10 8 08 8 -.06 916 6 -.00 03 -.04 -.07 -.06 -.05 .13 .05 02 8 80 -.02 10. .02 10 .02 .02 05 80 02 8 -.10 -.06 -.11 -.02 -.05 J18 -.04 -.08 .15 .16 -.02 -.06 8 .13 .05 .07 -.07 -.05 3 -.04 .15 .02 60. -.07 -.02 -.06 -.05 -.06 117 11 .15 02 .03 .02 -.04 .11 .08 -.01 .07 03 02 .12 .13 .11 24 08 8 10 -.06 -.06 -.07 -.10 316 -.04 -.09 90. -.01 .07 -.09 -.04 -.07 -.04 -.05 .07 -.00 90 8 -.07 .02 02 .03 .04 -.05 -.04 315 .04 8 -.07 -.06 .13 -.01 -.01 .08 -.05 .01 -.07 -.03 8 03 -.03 11. -.09 .05 .16 8 -.05 -.03 -.01 -.04 -.09 -.06 -.02 10.-8.--.06 -.08 -.07 -.08 114 .07 -.02 .04 6.0 .14 .10 60. 8 .12 .03 EL . -.00 -.01 .15 02 -.07 .03 .03 .02 -.04 -.07 00.-.20 .12 113 .18 01 .07 80 .23 60 03 90 10 -.07 -.06 00.-312 10 -.00 .02 -.06 60. .11 -.01 -.03 .06 .04 64 11. 02 .05 .07 .04 5 .03 -.02 10. 11. -.08 -.10 -.09 -.06 .03 -.05 -. 08 -. 03 .05 -.01 -.08 -.11 -.03 -.01 111 90 .03 10 10 .02 .18 90 02 .04 110 .16 -.04 -.05 -.08 -.08 -.06 .12 .14 -.03 .06 90 .10 -.08 60 -.04 10. .02 10. -.04 .04 90 02 .08 -.05 -.07 .02 .02 .02 -.01 -.04 .02 .10 -.03 8 .02 80 03 -.01 .06 .04 -.04 -.03 .05 .04 -.06 .03 96 -.10 -.08 -.03 -.04 -.00 -.07 -.06 .02 .05 .06 .05 .11 -.05 .13 .05 .09 -.08 -.01 .06 10. -.08 10. 10 g -.09 -.00 -.08 -.03 -.05 -.03 -.09 .02 -.01 .03 .02 .07 .11 -.01 8 -.03 -.01 02 5 10. 02 .13 10. 11 -.08 -.08 -.02 -.06 -.00 -.02 -.04 .07 -.01 08 .12 10 50 .45 .02 -.02 .08 .05 0 10 .13 60 .05 36 -.09 -.01 -.08 -.08 -.08 -.07 .03 -.07 .03 -.06 8 8. -.02 -.09 -.02 .06 04 .02 10 .13 .02 0 10. 35 -.05 -.10 -.03 -.03 -.10 -.09 -.03 -.14 -.04 -.02 -.03 -.03 -.08 -.02 10.--.05 02 10. 8 -.11 .02 10 3 14 -.07 8 -.03 10 8.-10. .05 .06 -.06 .10 03 60. 5 8 .04 -.03 .07 .02 .03 03 .02 -.07 .08 S -.10 -.04 -.09 8. -.06 -.13 .10 .10 .05 80. -.03 -.02 -.09 8. 10. .05 -.06 03 11. -.03 10 0 04 32 -.03 -.09 -.09 02 -.03 60 5 10 10 -.06 -.06 -.07 40 -.01 5 00.---11 -.04 -.08 8 02 04 8 5 E10 113 E19 E12 11 E14 **<u>č</u>15</u>** E16 113 E18 E20 E22 £23 E21 3 E6 83 63 23 3 12 53 E

-.06 -.05 -.03 -.00 -.00 8. .05 -.10 8. .10 -.02 8 **J23** .11 10 .07 .07 .01 -.04 -.02 -.03 -.03 -.02 .07 322 -.02 -.02 -.01 -.01 -.09 -.06 .06 .03 .08 90 -.05 .05 -.08 8 10 .02 .02 .05 .03 90 .02 10. .07 -.03 10.--.03 -.02 -.08 -.09 -.06 -.07 -.05 **J**21 -.07 8 -.08 -.05 80. .02 .03 -.06 8 -.01 8 -.04 .07 .08 .13 -.05 -.06 320 10 .04 08 -.01 8 -.07 -.06 -.07 -.01 10. 3 10. 04 8 -.05 .07 .03 90 .02 .02 319 .12 90 19 60. 00. -.02 -.07 -.00 90 -.04 -.01 -.00 .08 90 03 .12 11 5 11. .04 .05 02 03 -.05 -.11 -.03 -.04 -.09 -.02 .18 318 .10 .02 -.08 90 60 0 11 02 8 60 .03 8 .17 10 15 80 -.02 -.02 -.11 -.06 -.06 317 .23 -.01 03 60 14 14 .12 16 60 8 8 02 11 -.01 02 8 8 .13 -.03 -.00 -.08 -.06 316 20 -.01 -.07 .19 8 -.05 -.05 80 -.02 .07 80 02 60. -.01 -.01 -.01 .07 .02 10.--.10 -.08 -.06 -.05 .10 -.07 -.01 -.08 -.12 -.05 315 8 8 -.02 .02 .12 8 -.04 .07 .03 .07 .07 .03 8 -.05 -.07 -.02 +.04 -.09 8 .14 .12 -.05 -.03 .10 -.01 -.02 8. -.07 11 02 114 90 -.04 .14 .01 02 -.01 -.03 -.07 .12 -.03 .18 -.00 .21 .03 .05 .05 .03 00 -.03 -.05 -.01 313 .14 .10 80 .14 .16 10 01 04 .10 **J12** .12 -.02 .12 90 .13 10. -.05 -.06 .10 .16 -.03 03 .01 04 80 .01 04 .06 .02 .07 .07 80 -.09 -.09 +0.-.10 -.03 -.05 -.07 -.02 -.00 -.00 -.01 -.04 111 -.03 -.02 .04 00. .03 10. .07 .08 8 10 04 -.09 -.02 -.07 -.09 -.08 -.05 110 80 -.04 -.04 .10 -.07 .02 03 .02 .03 60. .03 5 -.07 .07 .14 8 0% -.02 -.06 -.14 .16 -.01 60 60. .02 .03 90. -.01 -.04 10. -.00 .08 50 .08 .07 5 8 02 90 .02 6 -.03 -.07 -.12 -.11 -.04 -.07 -.07 -.03 -.06 -.01 02 .10 -.01 .02 01 03 -.01 .04 03 6 8 8 .14 30 .02 -,05 -.01 -.00 -.07 .05 .02 90. -.03 03 -.01 .02 0.1 -.04 -.08 -.01 3 .05 -.01 -.02 -.07 90 +0.-5 -.01 -.00 .05 .05 -.07 .05 60. -.00 -.04 .06 .05 -.02 -.02 .06 90. .02 .11 .14 .45 -.06 10 -.01 08 36 -.02 -.06 -.05 -.06 -.01 -.05 -.07 -.08 -.04 -.02 .02 .04 10. .03 .21 .02 .03 -.07 -.01 .02 .08 .02 .08 35 -.03 -.10 -.02 -.01 -.05 -.09 +0.--.10 -.05 -.08 -.01 .02 -,02 -.12 -.09 +0.--.04 10 .07 .02 10 .02 10 14 -.05 .10 -.06 01 .05 8 10 .15 10 90 02 6 -.08 -.03 02 02 10 8 8 03 10 .04 01 5 -.08 -.02 -.01 -.10 -.06 .03 -.08 -.05 -.08 .10 03 .03 8 02 80 8 90 80 .07 8. 10. .05 10 2 -.06 -.01 -.03 60. .11 .02 60. 8. 90. 8 -.07 -.06 -.03 05 3 6. 10 60 -.11 .03 10. -.01 .04 E E34 E35 E38 603 E40 **Z25 E26** 227 E29 E30 E36 E37 EAL E42 243 245 246 224 E28 E32 533 E44 E31

THE JUSTIFICATION SECTION (19S) FOR THE GENERALIZATION SAMPLE - CS'S AND RM'S COMBINED (N=222) CORRELATIONS AMONG THE 67 VARIABLES ON THE EVALUATION SECTION (19R) VS.

.

-.05 -.04 -.08 -.12 -.05 -.01 .24 .12 -.01 -.02 -.04 10 8 8 .18 -.06 .06 .02 8 -.11 323 -,01 00.--.02 -.12 -.04 -.02 -.01 -.03 .12 -.01 60 05 .05 .03 322 03 90 11 90 .12 6 02 90 -.03 -.02 -.06 -.03 -.02 -.06 -.02 -.05 -.08 03 -.07 8 8 3 321 -.03 -.04 -.07 8 -.01 60 3 -.01 .10 8 80 60 60 90 02 8 320 .12 -.13 -.02 .10 20 60 10 07 60 90 .12 10 -.14 916 -.06 -.04 15 .13 60 10 02 .15 .24 .16 .17 11. 8 -.05 .10 .07 10 80 0 8 -.04 -.12 -.03 -.04 -.03 -.06 -.06 -.04 -.00 60 .10 -.05 .03 8 .02 3 90. 04 10 318 60 8 .10 .10 .16 .12 .16 .12 .04 8 .12 60 .20 .03 20. .15 .19 .02 10 16 .02 10 117 90 -.02 -.13 -.04 -.01 -.01 +0.--.01 05 02 .03 02 21 10 24 5 316 02 03 8 8 03 3 -.05 -.05 -.10 -.02 -.09 .04 .05 -.10 03 3 .18 02 6 03 10 10 315 10 -.03 5 -.04 10 -.07 -.02 -,05 00.-.13 .03 -.03 -.02 -.01 -,02 -.01 -.06 -.02 -.11 -.05 -.08 114 8 .04 -.08 .14 .07 -.03 -.01 .16 1 .12 60 90. 20 .15 21 90 10 -.02 .10 03 22 14 21 313 .27 -.07 8 -.03 -.13 +.04 .12 .10 .11 11 20 8 08 8 .14 .12 02 .11 04 8 **J12** 11. 10 -.04 03 -.02 -.10 -.05 -.01 -.02 .10 -.02 -.03 8. .10 -.05 .05 -.12 .08 .22 10 .02 -.03 80 03 .02 115 .05 -.05 -.01 -.03 .05 -.04 -.07 02 08 .07 110 60. .12 -.00 -.08 .11 .10 03 10 .13 .05 10 -.06 -.04 -.00 -.02 .10 .02 02 -.02 .11 Я. .12 .17 04 .14 117 80 .02 .04 ..07 .02 .07 6 -.03 -.02 -.06 -.10 -.00 -.01 -.03 .03 -.00 .02 60 8 8 -.05 -.01 .08 -.07 .03 ..07 10 -.01 8 -.10 .02 -.07 -.09 -.02 .03 -.02 -.01 -.02 -.09 03 .05 .04 80. 8 -.01 -.01 .02 03 8 11. 1 -.07 -.01 90. -.00 -.00 .04 -.03 .10 8 .10 11 07 10 .02 -.01 -.03 .06 90 02 60. П. 95 -.02 -.03 -.02 -.07 00. 10 05 .02 .02 .03 .22 05 90 8 -.07 -.02 03 10. .13 -.01 10. 35 -.10 -.02 -.06 -.00 -.02 -.06 -.04 -.06 -.03 -.04 -.14 -.08 -.07 .02 .02 .07 8 -.09 .02 10 8 34 -.14 -.05 -.03 60. 10 12 П 60 .04 -.04 -.08 .04 -.03 08 11. .06 90. 11. .14 6 .02 E -.05 8.--.06 -.03 -.08 .06 10. -.10 -.11 8 02 .02 .07 -.01 80 .03 60 03 .03 11. .11 32 -.10 -.06 -.12 -.03 -.05 -.08 -.09 -.08 -.11 -.00 -.02 -.03 -.11 -.08 -.08 0% -.04 03 .13 01 .03 F E63 E65 266 E67 **Z60** E64 E50 E51 E52 ES3 ES5 E56 ES7 E58 259 E61 E62 E49 E54 E47 E48

THE JUSTIFICATION SECTION (19S) FOR THE GENERALIZATION SAMPLE - CS'S AND RM'S COMBINED (N=222) CORRELATIONS AMONG THE 67 VARIABLES ON THE EVALUATION SECTION (19R) VS.

-.02 -.02 -.06 -.07 -.03 -.03 -.03 -.08 -.07 -.04 -.08 -.08 -.01 -.11 -.05 346 .03 .02 .08 .07 · 04 90. .02 90. -.09 345 .07 -.06 -.07 11. -.06 -.04 -.01 8 -.03 -.03 8 -.06 .02 -.07 11. -.04 .03 10. 5 -.01 10. .17 -.00 -.08 00.--.10 344 -.03 .11 -.04 -.04 -.05 -.02 -.01 8 8 -.08 -.07 -.08 -.09 .06 -.02 8 Π. .11 .02 343 .10 .18 .17 90 .05 00. 10. -.07 .27 .03 .21 02 60. -.06 5 .01 .05 -.04 .02 11. .08 -.06 90. -.00 342 .05 -.01 .11 8. -.02 .05 -.02 .11 60. .01 8 ..01 .06 -.05 -.07 8 8 -.03 .05 -.04 -.01 .05 -.11 -.10 -.06 -.00 -.06 -.10 -.11 141 -.01 -.03 -.07 90. 8 .05 80. .03 -.01 .07 -.07 .04 .17 02 -.02 .07 -.08 -.05 340 .02 -.03 -.03 -.03 -.08 -.05 .12 -.06 -.07 -.02 60. .16 10. 50 14 04 90 10 8 .11 0% -.08 966 00 -.03 -.07 60. 8 -.05 -.03 -.05 1.04 -.01 90. 8 10 90 50 10. .05 0 -.01 5 .04 90. -.10 -.07 -.08 -.03 -.03 -.01 -.05 .14 -.06 -.07 -.08 60. -.08 -.02 138 -.01 8 .02 -.01 02 8. .07 10. 10. 00.--.04 -.00 -.03 137 .02 .03 .08 60 +0.-.06 8 -.04 -.04 -.08 -.01 .04 -.07 10. 10. 02 8 .12 .01 -.00 -.02 -.02 8.03 -.02 -.08 60. -.06 -.02 336 60. 60. .13 10. -.08 14. .02 .12 .05 10. Π. .07 10. .03 -.07 -.00 135 -.05 -.07 .05 -.05 10. .04 -.08 -.07 .03 -.05 8 -.08 -.06 -.03 -.00 .14 6.03 -.06 -.04 10. 8 -.00 -.04 -.07 -.10 -.02 -.06 -.06 -.01 -.13 -.10 -.04 -.02 -.02 -.10 -.07 -.06 -.01 134 90. .02 .02 .02 .05 .02 00.--.10 00.-**J33** -.02 90. -.04 8 -.08 -.04 -.04 .12 6 60. .04 .02 .03 8 10 8 .08 .02 10 90. -.10 -.01 -.00 -.01 -.02 -.09 -.06 -.03 -.08 -.06 -.07 -.13 -.03 **J**32 .02 .06 .05 .02 90. .08 -.00 02 .12 .05 -.02 -.09 -.05 -.02 -.07 -.06 -.07 -.04 -.05 -.01 -.00 -.13 -.04 -.08 -.01 -.08 131 .03 10. .08 .02 10. .04 .12 -.10 -.03 -.04 -.10 130 .03 6. .08 -.01 •0. .03 -.03 20. .03 .05 .06 02 .07 8 -.05 -.08 .01 8. .13 -.02 -.05 -.04 -.06 -.08 00.--.07 -.02 -.05 -.04 **J**29 .07 10.-.03 .05 60. -.01 03 .02 .02 .03 .03 .14 10. -.03 **J28** -.03 -.06 -.03 -.09 -.09 -.02 .03 80. .02 .10 .05 80 .03 8 .02 .04 .06 .04 00. .08 .06 .01 -.02 -.02 90.--.02 -. 04 -.04 -.11 -.05 327 .05 .03 10. .14 -.02 .02 .07 .02 .05 .10 .09 .14 10. .05 .17 -.00 00.-8 -.03 -.07 10.--.05 -.01 -.02 -.01 326 8 .08 .10 .09 .18 .07 .05 -.01 .02 60. 10. .13 .16 -.08 -.03 -.09 -.02 -.05 **J25** .06 90 .07 .03 .06 .06 .02 -.01 .12 8 .14 .18 -.01 .03 .05 8 .14 .10 -.05 -.02 -.03 -.02 -.03 +.01 -.03 -.03 -.03 -.02 -.03 -.03 -.02 -.03 -.04 -.02 -.02 324 8 03 10.-.09 .02 10. E10 E13 E14 EIS 219 E20 113 E12 E16 E17 E18 E21 E22 E23 93 27 3 63 3 ES 13 1 3

345	8														1								
		.0	09	03	07	.08	.03	.01	08	.07	05	05	.08	09	04	08	.12	07	05	04	09	02	04
346	90.	.10	.08	02	08	02	05	.09	02	01	.03	.04	.10	03	04	08	06	*0 .	.03	.19	.03	03	06
143	.15	.10	02	02	.08	.12	.19	10.	.23	.18	.07	.08	07	.01	.04	.01	.03	.07	.04	03	05	.01	.14
342	.03	.01	05	.12	.05	04	.08	.08	.07	.11	.02	.07	02	03	07	.13	90.	.05	.12	03	•00	.05	03
341	.03	.06	03	.05	06	.03	.01	90.	10	.09	• 04	07	• 00	.10	.10	05	.08	.01	.05	.01	.01	00.	. 06
140	.04	.02	- 0.	.06	- 60 -	.05	. 07	.05	. 03	.13	.03	.03	.06	- 60 -	.08	.02	.06	60.	.03	.10 -	.08	.02	.03 -
139	.12	.01	.01	- 13 -	- 10.	.08	.05	• 04	- 06	.05	.10 -	.05	- 90 -	- 90.	- 10.	- 04	.07	.07	.02	.03	- 13 -	- 05 -	.00
138	•0*	.03	.07	.11	- 03 -	.08	.03	11.	.00	.07	.07	.02	- 90	- 01 -	.03	10.	.03	.01	00.	.02	- 97	.14 -	- 90 -
137	07	- 10	- 03	- 80	02	05	- 02	- 03	- 90	101	- 90	00	90	- 00	- 60	90	02	.07	90	90	- 60	90	- 50
36	05	01 -	. 10	02	07	02	07 -	60	01	12	16 -	05	05 -	07	41	05	- 00	11 -	90	- 50	02	05 -	08
35 J	02	05	03	03	02	21	04	02	03	. 60	05	01	. 60	05	07 .	07 .	03	03	07	. 90	. 70	02	02
L 26	02		- 10	. 10	. 90		. 80	02	02	. 90	- 01	03	. 20	03	02	02 .	00 -	п.	- 60	04	06	03	- 10
5			- 9	- 2	-			2(-	ï	-	-		0				1	- · ·	0		- 0	
13.	. 10	.0	0		.0	0.	0	0	.1.	.1	0.	0.	.0	1(- 0	.0	0	.0	0	0	0	0	0.
J 32	.10	.02	.05	07	.01	. 08	.01	.07	.03	.03	00	01	10	06	.06	- 00	07	.06	.03	05	07	.01	•00
151	.01	.10	10	11	01	.03	06	.05	00	.03	05	.03	.09	01	06	01	02	04	.03	-,02	.03	.05	.06
130	.12	.04	01	01	.01	.09	.08	.06	.08	.13	00.	.01	.03	11	04	.06	.03	.05	.05	.01	06	.04	.05
329	02	.01	02	12	00.	02	00.	•00	.04	.01	01	.09	.05	08	60.	02	03	07	00	03	03	03	.02
328	01	.07	.03	.05	.04	04	.07	01	.04	.07	.10	06	03	07	.02	.12	03	.09	60.	00	.01	.06	.04
J27	.14	.03	02	.02	07	.05	.08	02	.07	.02	90.	04	01	05	+0	.17	·04	.04	60°	01	60	.08	.07
J26	.11	02	.05	.06	.20	.03	.14	.02	.07	.10	.14	.01	.10	02	07	.03	01	.19	02	.01	05	.06	00
125	.10	.05	04	.04	.02	.03	.13	.10	.12	.12	.07	.10	.07	11	03	•0•	•0•	.11	.11	.12	04	.17	.03
324	03	00.	02	04	.11	.15	00	.13	03	04	02	03	02	02	01	03	03	.02	03	01	01	02	02
	E24	225	226	E27	E28	E29	E30	103	E32	E33 ⁻	F34	E35	E36	E37	E38	239	E40	E41	E42	E43	E44	EAS	E46

346	03	01	08	05	.07	.02	.03	.22	.00	02	02	.01	.20	.04	.06	.02	03	13	04	.05	01
345	01	06	.04	09	04	.02	.19	.02	.04	08	03	09	.10	.02	.02	.01	.04	.05	05	.05	05
344	07	-,11	.03	07	.11	08	10	.06	.10	.01	02	08	.01	02	.01	04	05	06	02	04	04
343	.30	.09	- , 08	.02	.08	.25	.12	.16	.09	02	10.	.05	.18	.21	.18	.21	.05	00.	02	.16	.16
342	60°	01	02	02	.05	.14	.12	•0•	.05	05	.11	.06	.01	.14	.18	.05	.03	13	04	.12	.08
141	.20	.09	.01	12	02	.11	°0%	.04	05	01	.06	08	.07	.05	.11	03	04	11	05	01	04
140	.02	.12	03	08	.12	01	.11	.05	.01	.12	04	07	.07	.06	.02	.08	.07	01	03	.06	•05
139	10.	.07	02	07	.05	.03	.10	.13	.06	01	.15	.04	.13	.11	.20	01	04	08	+0	.07	.01
139	07	00	07	.02	07	01	.08	.04	01	06	10	.03	.07	02	01	.01	07	01	01	.02	04
137	02	.10	02	02	08	.02	.01	.08	05	·04	03	.09	+0	00	01	02	.03	60°-	02	01	.01
136	.03	.08	60°	.00	03	.05	01	.05	.04	00	00	.12	01	.11	.13	\$0.	.02	07	02	.05	.07
135	01	.14	10.	06	+0	00	.11	.03	.06	00.	.03	.03	. 23	.07	.08	.03	00	06	03	.02	03
134	.05	.10	03	05	03	.03	.02	.03	02	•0•	05	05	.03	04	01	05	11	08	02	•••06	08
133	.02	.01	06	04	05	60.	.17	.12	60.	04	+0	.07	.10	.12	.13	.08	.02	14	04	.08	.02
J 32	.02	.03	-,10	11	.12	01	.07	.11	.03	.06	04	.02	.09	•04	.03	.05	03	11	03	.05	00
131	03	13	+0	07	09	.02	04	.02	.15	09	11	.01	.03	01	.05	06	07	12	03	10	06
130	.09	.11	06	09	.01	.12	.18	.14	.06	.02	10.	.05	.14	.15	.18	.07	.01	15	- • 06	.09	.03
329	01	.04	06	01	. 03	.06	.18	01	.02	02	13	.06	01	.04	.03	04	.03	14	03	.07	03
J 28	01	.05	.06	05	.01	.11	.10	00	.06	.03	.08	.07	03	.12	.14	.05	.02	12	03	.03	.02
327	.11	.16	10	01	06	.09	.19	.15	°0%	00	.03	04	.08	.13	.13	.12	05	06	05	.15	°04
326	.20	.11	.06	04	04	.12	.15	.12	.00	.05	90.	.25	.06	.17	.19	.10	.07	04	03	.14	.10
J25	• 06	. 08	.03	02	06	.17	.15	.11	.08	04	.06	.07	90°	.19	.23	.08	.05	14	05	.12	.10
324	02	03	03	02	02	.05	.06	03	.01	02	03	.13	.21	.02	.05	00	04	02	01	.01	. 02
	547	E48	E49	E50	E51	E52	E53	E54	ESS	E56	E57	258	E59	E60	E61	E62	E63	E64	E65	E66	E67

J67	.04	.03	.07	04	01	.04	07	05	.02	09	.05	.06	.02	09	.06	.06	.08	.03	06	07	00	.10	.09
J66	.03	.03	90.	-,02	03	.03	-,12	-,01	01	04	.03	01	.02	10	.05	.05	.04	.08	06	08	01	.06	.14
365	8.	00.	.00	00.	00.	00.	.00	00.	00.	.00	.00	00.	00.	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.
164	.14	00.	05	05	.01	04	06	02	.02	07	09	04	02	10.	06	00.	05	03	00°	05	02	80 -	.01
163	.02	.01	.06	08	-,01	.02	05	+00 -	.05	05	.07	.04	.07	07	.11	.05	11.	.11	00	09	.02	.07	.08
362	.02	·0*	.09	02	.01	.04	10	02	.02	04	.02	.02	.03	13	.02	00.	.07	.10	08	09	02	60.	.13
J61	. 02	:03	.06	.06	03	.04	13	06	01	.03	.04	.01	.04	04	. 02	.10	02	02	07	03	•0•	.07	.13
360	.02	.04	.08	00	02	*0.	11	04	.02	02	.04	.03	.05	10	.05	.05	.05	.06	07	07	10.	·00	.14
159	.04	.06	.04	.01	.06	-05	04	.09	02	08	06	.02	01	+0	05	•05	03	00	05	00.	90*	.03	.12
159	02	.01	.04	. 05	05	05	09	.03	.12	11	.02	.10	00	01	.04	.02	04	.05	.04	03	00	90.	.04
157	01	.05	00.	*0*	04	. 02	03	04	.15	00.	00.	.06	•00	05	.05	.09	.11	.12	13	.03	05	.06	.16
J56	.01	.08	60.	.17	01	.08	03	06	10.	05	.14	01	.02	.01	.01	03	*0*	.08	01	01	.02	.18	.16
J55	.06	.05	.07	.05	*0*	•00	07	04	02	10.	.10	.08	.10	10	.18	00	.02	.02	04	01	05	.14	.12
154	.08	03	05	02	03	02	03	01	03	03	.01	03	01	02	03	03	02	03	04	02	02	.09	.02
J53	.03	.06	.02	.02	08	.07	09	.01	.02	-,02	00.	07	01	10	10.	.07	03	.06	09	20	01	01	.20
J52	07	8.	02	07	04	.01	04	08	02	10	.04	02	.13	09	01	01	+0	.03	05	08	.07	.11	09
J51	.02	07	.03	09	08	60°	06	06	00	.02	07	02	06	04	.05	05	-,02	05	03	07	00.	*0*	.06
150	.02	.02	.05	.04	.13	00.	04	07	01	60.	00	.04	07	11	.03	.03	.11	.06	10	.04	.07	.02	. 20
349	*0.	.10	.06	.02	.05	01	07	00	.03	.07	.03	.06	+0	03	00	.03	.01	.08	03	02	90 .	.13	.08
348	10	03	01	02	12	06	11	04	.13	06	.14	.06	11.	.04	60°	.13	02	.05	08	05	*0°-	03	06
347	.10	.06	.15	.10	02	*0.	05	06	06	02	.14	03	.10	00.	.04	.11	.21	.05	.07	.02	60.	.09	.08
	EI	22	1	· E4	ES	Ξ6	27	58	63	EIO	Ell	E12	E13	E14	EIS	216	E17	E18	E19	E20	E21	E22	223

367	.19	.0	0	0	.04	.0.	.0	.08	·0·	.13	00	.01	.0	05	0	.06	01	.07	.07	01	-•03	.05	.0
366	.10	00.	00.	02	00°	.10	.06	90°	.07	.11	.01	00.	.02	12	01	.03	.01	°0%	.02	02	06	·07	.05
365	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.	.00	00.	00.	00.	00.	00.	00.	00.	00.	00.	00.
164	03	07	05	.04	-,04	06	07	.11	08	+0	05	00.	+0	05	02	03	06	08	02	02	.02	05	01
163	°05	.05	00	+0	02	.05	.08	.07	•06	.08	07	01	10.	07	04	.08	01	.02	.05	.02	06	.08	•0•
362	.16	.05	02	00.	.08	60.	.08	.06	.10	.15	.01	.03	.03	11	02	.06	.01	.05	.03	.01	10	10.	.01
161	.12	02	01	:03	+0	.10	.06	.03	.06	.11	.11	00.	.03	13	06	10.	.10	.09	.05	01	.04	.04	.10
360	.14	.03	01	.01	.02	.10	.08	.05	.08	.14	.04	.01	.03	12	04	.05	.05	.07	.05	00.	04	°04	.06
159	.03	.01	00.	12	.07	.01	.03	.05	°00	.03	.02	.13	.05	07	•00	.01	04	05	.02	03	00	06	°04
358	04	.09	.04	.03	.06	07	.05	00	.03	.06	.07	04	05	08	.03	.14	06	.05	.10	02	.03	.06	.04
357	.15	.02	01	.06	07	.05	60.	01	.08	.04	.07	01	00.	05	04	.18	90°	* 0*	.09	.01	05	·00	60.
356	.13	02	.02	.07	.20	.05	.15	.02	.11	.12	.23	10.	.09	02	06	.04	01	.19	03	01	06	.04	03
355	.11	.07	03	.05	.02	.04	.12	.10	.10	.11	60.	.08	*O*	10	04	.01	.06	.11	.12	60.	+0	,18	.03
J54	03	.00	02	04	.11	.15	00	.13	03	04	02	03	02	02	01	03	03	.02	03	01	01	02	02
J53	.11	07	03	.01	00	.03	.03	.02	.07	.10	.06	05	.07	10	.01	90°	.02	.04	04	03	03	.02	.09
352	.08	.03	.06	04	*0*	.07	02	02	.06	.02	06	03	.00	05	08	.02	06	.04	03	.07	08	04	00
151	07	00	06	02	01	10	04	.07	04	.03	07	07	.07	06	06	.03	.02	06	02	05	00	.02	05
J50	.14	00	02	.06	.04	.11	.10	02	02	.08	.04	.13	01	07	07	00	.12	.03	.03	06	08	10.	.03
349	.14	.06	.07	.12	.14	.22	.14	.06	.15	.11	.05	.06	03	06	00	.07	.12	.08	.08	04	.03	00	.11
348	*0*	.03	°00	.03	.03	04	.01	09	.01	.03	+0	12	04	11	04	.17	00	.14	.10	.05	.09	.13	.14
347	. 22	.03	.02	03	00	.10	16	.11	.10	.16	.13	00.	.03	08	06	06	.06	.12	.02	.03	*0*	.04	.14
	E24	Z 25	E26	E27	E28	E29	E30	E 31	E32	E33	£34	235	£36	E37	238	E39	EAO	E41	E42	E43	244	E45	246

J67	.08	.12	09	08	.00	.12	.15	.17	.10	02	02	.07	.15	.15	.19	.05	. 02	16	06	.08	10.
366	.05	.10	06	09	01	.09	.19	.12	.03	.04	00	.04	.15	.13	.17	.05	02	16	05	.10	.01
365	.00	00.	00.	00.	00.	00.	.00	00.	00.	00.	00.	.00	.00	00.	.00	.00	.00	00.	00.	00.	00.
164	05	+0	02	05	00.	08	00	03	+0	04	60.	+0	06	07	01	09	08	.05	01	06	08
163	.10	.13	02	08	.03	.10	.11	.07	.05	.03	04	00.	.08	.10	.07	60°	.06	-, 11	06	.07	.06
362	.10	.12	07	10	02	.11	.18	.17	.07	10.	.03	11.	.15	.16	.18	.08	00.	17	07	60°	.03
191	00	.01	06	04	.03	.11	.19	.13	.05	.00	.03	01	.15	.15	.26	00.	04	13	02	.10	02
160	.07	60.	06	09	10.	.12	.19	.15	.06	.01	.02	.05	.15	.16	.21	.06	00	16	05	.10	.02
159	05	.02	06	.02	.06	.05	.15	*0 *	.03	.01	12	.13	10.	.06	60.	02	.06	13	03	60.	.00
J58	01	.03	.06	05	.01	.10	.07	03	.07	.05	.05	.10	06	60.	.09	.05	.03	11	02	10.	.03
157	.14	.15	13	10.	05	.10	.18	.16	.05	.01	.07	05	.08	.15	.16	11.	03	10	04	.16	.05
356	.05	.09	.05	03	01	.19	.15	.13	.01	.03	.08	.25	.10	.20	.23	.12	.04	04	03	.15	.12
355	.06	.05	02	02	06	.17	.16	.12	.09	04	.06	.06	.08	.19	.24	.08	.04	15	05	.12	.09
154	02	03	03	02	02	.05	.06	03	.01	02	03	.13	.21	.02	.05	00	04	02	01	.01	.02
153	00.	.08	09	03	02	.03	.26	.12	02	00	01	.01	.07	.11	.23	03	07	11	05	80-	05
J52	05	.02	04	10	.08	.13	04	.08	.07	.11	03	.06	.10	.03	.04	.01	04	12	04	05	04
J51	.01	04	07	08	00	.07	.03	06	.02	05	02	.03	08	02	10.	07	.01	08	03	03	07
J50	.12	.10	12	.01	.08	.01	.22	.11	00	.01	90.	.06	.16	.12	.14	.06	.05	01	·13	.13	.04
149	.05	.11	01	02	.04	.14	.12	.15	.10	.10	.11	.16	.28	.21	.24	.13	.02	15	05	.14	60.
348	00	· 04	05	07	02	02	00	.05	.03	.06	.02	.04	+0	.05	60.	03	.02	11	03	06	06
147	.16	.04	.01	.01	.12	.10	.10	.17	01	.00	.02	02	.11	.16	.16	.13	.06	90.	.19	.17	.14
	E47	E48	673	E50	E51	E52	ES3	E54	E 55	E56	E57	E58	E59	E60	E61	E62	E93	E64	E65	E66	Z67

APPENDIX D

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES

CROSS VALIDATION SAMPLE

EVALUATION SECTION

LOWER	VS.	UPPER	222

LOWER VS. MIDDLE 225 MIDDLE VS. UPPER 228

JUSTIFICATION SECTION

LOWER VS.	UPPER	231
LOWER VS.	MIDDLE	234
MIDDLE VS.	UPPER	237

GENERALIZATION SAMPLE

EVALUATION SECTION

LOWER VS.	UPPER	240
LOWER VS.	MIDDLE	243
MIDDLE VS.	UPPER	246

JUSTIFICATION SECTION

LOWER VS.	UPPER	249
LOWER VS.	MIDDLE	252
MIDDLE VS	. UPPER	255

The convention that was followed in the Mann-Whitney U tests was to enter data into the computer program first for the lower criterion group in the comparison. For those z values that achieved statistical significance, the direction of the difference is that the higher criterion group evidenced a greater frequency or greater weighted frequency of the variable. MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE EVALUATION SECTION (19R)

No of			Value	Absolute	Drohshilitv	Value	Drohahilitu
NO. 01			AUTUC	ATTO	TTODADTTTC	ATTR	TTODADTTTC
ariable		Name of Variable	ofU	of z	Level	oft	Level
I	f of	MANAGEMENT FUNCTIONS	2486.0	1.223	P > .05	1.10	P > .05
2	f of	CONTROLLING	2529.0	1.413	P > .05	0.68	P > .05
3	f of	LEADERSHIP AND DIRECTING	2369.5	1.593	P > .05	1.12	P > .05
4	f of	ORGANIZATION	2473.0	1.752	P > .05	1.95	P > .05
5	f of	PLANNING	2553.0	1.447	P > .05	1.45	P > .05
9	f of	REPRESENTATION	2699.0	0.329	P > .05	0.46	P > .05
7	f of	STAFFING	2661.5	0.620	P > .05	0.80	P > .05
00	f of	USE OF COMMUNICATION	2701.0	0.581	P > .05	0.58	P > .05
6	f of	SKILLS AND ABILITIES	2468.0	1.271	P > .05	-1.35	P > .05
10	f of	COMMUNICATION	2563.5	0.998	P > .05	0.73	P > .05
11	f of	CONDUCT, INTEGRITY, AND PRIDE	2315.5	1.818	P > .05	1.98	P = .05
12	f of	COOPERATION	2442.0	1.842	P > .05	1.86	P > .05
13	f of	ENDURANCE	2664.0	0.528	P > .05	-0.53	P > .05
14	f of	FLEXIBILITY	2738.0	0.000	P > .05	-0.00	P > .05
15	f of	GROOMING AND ATTIRE	2409.5	2.172	.01 < P < .05	1.93	P > .05
16	f of	INITIATIVE	2555.0	1.080	P > .05	1.08	P > .05
17	f of	INTELLECTUAL FUNCTIONING	2661.5	0.494	P > .05	-0.59	P > .05
18	f of	PROFESSIONALISM	2252.0	2.967	.001 < P < .01	-3.02	10. > T > 100.
19	f of	RELIABILITY AND DEPENDABILITY	2310.0	2.025	.01 < P < .05	1.67	P > .05
20	f of	RESOURCEFULNESS	2696.0	0.354	P > .05	0.75	P > .05
21	f of	RESPONS IVENESS	2482.0	2.001	.01 < P < .05	1.06	P > .05
22	f of	TECHNICAL SKILLS	2399.0	1.442	P > .05	1.67	P > .05
23	f of	PRODUCTIVITY AND ACHIEVEMENT	2605.0	0.529	P > .05	0.21	P > .05
24	f of	AWARDS AND PUNISHMENT	2298.5	2.974	.001 < P < .01	-2.70	.001 < P < .01
25	f of	DRIVE	2524.5	0.891	P > .05	-1.07	P > .05
26	f of	SERVICE MOTIVATION	2599.5	0.830	P > .05	-0.65	P > .05
27	f of	POTENTIAL	2418.0	1.439	P > .05	1.49	P > .05
28	f of	REPUTE	2726.0	0.073	P > .05	0.63	P > .05
29	f of	ASSET TO THE NAVY	2553.0	1.357	P > .05	1.36	P > .05
30	Sum	of Variables 1 through 29	2451.0	1.103	P > .05	1.51	P > .05

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE EVALUATION SECTION (19R)

			Aben 1 to			
No. of		Value	Value	Probability	Value	Probability
Variable	Name of Variable	of U	of z	Level	oft	Level
31	wf of MANAGEMENT FUNCTIONS	2296.0	2.121	.01 < P < .05	-2.26	.01 < P < .0
32	wf of CONTROLLING	2673.0	0.439	P > .05	-0.08	P > .05
33	wf of LEADERSHIP AND DIRECTING	2681.0	0.244	P > .05	-0.77	P > .05
34	wf of ORGANIZATION	2696.5	0.274	P > .05	0.23	P > .05
35	wf of PLANNING	2544.5	1.512	P > .05	1.89	P > .05
36	wf of REPRESENTATION	2702.0	0.304	P > .05	0.23	P > .05
37	wf of STAFFING	2665.5	0.587	P > .05	-0.49	P > .05
38	WE OF USE OF COMMUNICATION	2701.0	0.581	P > .05	0.58	P > .05
39	wf of SKILLS AND ABILITIES	2321.0	1.941	P > .05	-2.34	.0. > T > 10.
40	wf of COMMUNICATION	2653.5	0.482	P > .05	-0.09	P > .05
41	wf of CONDUCT, INTEGRITY, AND PRIDE	2621.0	0.506	P > .05	-0.03	P > .05
42	wf of COOPERATION	2469.0	1.668	P > .05	0.87	P > .05
43	wf of ENDURANCE	2668.0	0.498	P > .05	-0.27	P > .05
44	wf of FLEXIBILITY	2664.5	0.719	P > .05	-0.86	P > .05
45	wf of GROOMING AND ATTIRE	2530.0	1.405	P > .05	0.32	P > .05
46	wf of INITIATIVE	2634.5	0.608	P > .05	-0.50	P > .05
47	wf of INTELLECTUAL FUNCTIONING	2661.0	0.497	P > .05	-0.68	P > .05
48	wf of PROFESSIONALISM	2248.0	2.982	.001 < P < .01	-2.86	100. > q > 100.
49	wf of RELIABILITY AND DEPENDABILITY	2508.5	1.075	P > .05	-0.26	P > .05
50	wf of RESOURCEFULNESS	2703.5	0.291	P > .05	-0.00	P > .05
51	wf of RESPONSIVENESS	2483.0	1.992	.01 < P < .05	1.41	P > .05
52	wf of TECHNICAL SKILLS	2505.0	0.986	P > .05	0.76	P > .05
53	wf of PRODUCTIVITY AND ACHIEVEMENT	2373.0	1.429	P > .05	-1.82	P > .05
54	wf of AWARDS AND PUNISHMENT	2233.0	3.416	P < .001	-3.07	.00. > 4 > 100.
55	wf of DRIVE	2396.5	1.420	P > .05	-1.77	P > .05
56	wf of SERVICE MOTIVATION	2585.5	0.912	P > .05	-0.84	P > .05
57	wf of POTENTIAL	2641.0	0.428	P > .05	0.90	P > .05
58	wf of REPUTE	2600.5	0.837	P > .05	-1.67	P > .05
59	wf of ASSET TO THE NAVY	2557.5	1.322	P > .05	0.97	P > .05
60	Sum of Variables 31 through 59	2305.5	1.660	P > .05	-0.93	P > .05

223

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED Z VALUES AND & TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE EVALUATION SECTION (19R)

et a a a a a a a a a a a a a a a a a a a	Rotal Number Fotal Number Fotal Number Fotal Number Fotal Number	of Variable of 3 Weights of 1 Weights of 1 Weights of -2 Weights	Value of U 1570.5 2418.5 1909.0 1924.0 2701.0	Absolute Value of z 4.598 1.234 3.228 5.046 1.000	Probability Ievel P < .001 P < .001 P < .001 P < .001 P < .001	Value of t -4.77 1.31 3.29 1.00	Proba P < P < P < P <	//////////////////////////////////////
[Total Number	of Words in Text	2478.0	0.997	P > .05	1.13	A A	.05
[H	Total Number	of Index Terms Used	2422.0	1.218	P > .05	1.74	^ Å	.05

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON THE CROSS VALIDATION SAMPLE ON THE EVALUATION SECTION (19R) OF

.05 .05 Probability .01 < P < .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .01 .05 .05 .05 .05 .05 .05 .01 < P < .05 .05 .05 .05 .05 .01 .05 .05 .05 .05 .05 Level --۲ ۲ < 4 - d Λ \wedge lf \wedge Λ \wedge ٨ 8 Λ ٨ \wedge ٨ ٨ Λ ٨ \wedge \wedge Δ Δ \wedge Δ ٨ 4 4 4 2 24 4 ρ. 4 4 a 4 م ۵. a ۵. 2 4 ۵. 2 4 2 2 4 م -2.49 0.49 -0.45 -0.32 -1.86 0.00 -1.90 Value 4 -0.47 -0.34 -0.99 -0.15 0.75 -0.75 -0.93 -2.61 -0.27 -0.86 -0.38 0.18 1.16 -1.84 1.24 -0.86 -0.47 0.62 -0.85 -0.23 2.17 2.61 -0.64 of .05 .05 .05 .05 .05 .05 Probability .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .01 < P < .01 < P < .01 < P < .05 .01 < P < .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 • 01 < P < .01 < P < .05 Level < 4 - d < d < 4 < d P > P > - d < d < d ~ d ~ d ~ d < d ٨ Λ Λ Δ \wedge ٨ Λ \wedge Λ \wedge d. d d 4 4 d. 24 2 2 A Absolute 0.049 0.453 Value 0.598 0.000 0.654 0.255 0.670 0.158 1.286 2.048 2.418 1.274 1.028 0.893 0.064 0.924 1.911 2.077 0.233 2.281 0.528 0.235 0.940 0.408 0.248 0.287 2.221 0.271 0.557 2.411 of z 2493.5 2732.0 2701.0 2612.0 2677.0 2286.0 2701.0 2662.0 2709.0 2403.0 Value 2657.0 2727.0 2738.0 2679.5 2635.5 2459.5 2410.0 2476.0 2682.0 2312.0 2537.0 2701.0 2696.0 2594.5 2628.5 2365.5 2135.5 2593.5 2488.5 2647.0 ofU CONDUCT, INTEGRITY, AND PRIDE RELIABILITY AND DEPENDABILITY PRODUCTIVITY AND ACHIEVEMENT 29 LEADERSHIP AND DIRECTING INTELLECTUAL FUNCTIONING Sum of Variables 1 through AWARDS AND PUNISHMENT MANAGEMENT FUNCTIONS USE OF COMMUNICATION SKILLS AND ABILITIES Name of Variable GROOMING AND ATTIRE SERVICE MOTIVATION ASSET TO THE NAVY TECHNICAL SKILLS PROFESS IONAL ISM RESOURCEFULNESS RESPONSIVENESS REPRESENTATION COMMUNICATION ORGANIZATION CONTROLLING COOPERATION FLEXIBILITY INITIATIVE ENDURANCE POTENTIAL PLANNING STAFFING REPUTE DRIVE of Variable No. of 3 N H 5000 10 12 14 15 18 4 5 13 17 27 28 29 11 30

225

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE EVALUATION SECTION (19R)

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE EVALUATION SECTION (19R)

No. of Variable	Name of Variable	ما	Value of U	Absolute Value of z	Probability Level	Value of t	Prob	ability evel
61	Total Number of 3 Weight	ts	1882.0	3.396	P < .001	-3.34	P =	100.
62	Total Number of 2 Weight	ts	2706.5	0.122	P > .05	-0.28	~ d	.05
63	Total Number of 1 Weight	ts	2505.0	0.903	P > .05	-0.84	P ~	.05
64	Total Number of -1 Weigh	hts	2091.0	3.686	P < .001	2.84	.001 <	P < .01
65	Total Number of -2 Weigh	hts	2701.0	1.000	P > .05	1.00	~ d	.05
99	Total Number of Words in	n Text	2665.5	0.278	P > .05	0.08	< 9	.05
67	Total Number of Index Te	erms Used	2282.5	1.756	P > .05	-1.28	< 9	.05

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE EVALUATION SECTION (19R)

OL U OI Z Level 2570.5 0.801 $P > .05$ 2491.0 1.631 $P > .05$ 2491.0 1.631 $P > .05$ 2467.0 1.951 $P > .05$ 2467.0 1.791 $P > .05$ 2467.0 1.791 $P > .05$ 2704.0 0.287 $P > .05$ 2703.5 0.320 $P > .05$ 2703.5 1.010 $P > .05$ 2534.0 0.953 $P > .05$ 2443.5 1.616 $P > .05$ 2396.5 1.487 $P > .05$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2704.0 0.287 P > .05 2703.5 0.320 P > .05 2664.0 1.010 P > .05 2534.0 0.953 P > .05 2443.5 1.616 P > .05 2396.5 1.487 P > .05
2703.5 0.320 P > .05 2664.0 1.010 P > .05 2534.0 0.953 P > .05 2534.0 0.953 P > .05 2443.5 1.616 P > .05 2396.5 1.487 P > .05
2664.0 1.010 P > .05 2534.0 0.953 P > .05 2443.5 1.616 P > .05 2396.5 1.487 P > .05
2534.0 0.953 P > .05 - 2443.5 1.616 P > .05 2396.5 1.487 P > .05
2443.5 1.616 P > .05 2396.5 1.487 P > .05
2396.5 1.487 P > .05
2014.0 3.833 P < .001
2701.0 0.257 P > .05 -
2662.0 0.670 P > .05
2302.5 2.709 .001 < P < .01
2524.0 1.244 P > .05
2481.5 1.422 P > .05
2620.5 0.623 P > .05 -
2592.0 0.734 P > .05
2360.5 2.442 .01 < P < .05
2736.5 0.017 P > .05 -
2399.5 1.438 P > .05
2318.5 1.685 P > .05 -
2435.0 1.884 P > .05 -
2726.5 0.047 P > .05 -
2444.5 1.508 P > .05
2629.5 0.502 P > .05
2642.0 0.565 P > .05
2516.0 1.583 P > .05
2255.5 1.854 P > .05

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE EVALUATION SECTION (19R)

f		Name of Variable	Value of U	Absolute Value of z	Probability Level	Value of t	Probability Level
	wf of]	MANAGEMENT FUNCTIONS	2510.5	1.076	P > .05	-1.15	P > .05
	wf of	CONTROLLING	2497.0	1.591	P > .05	0.73	P > .05
	wf of	LEADERSHIP AND DIRECTING	2361.0	1.629	P > .05	1.58	P > .05
	wf of	ORGANIZATION	2477.5	1.720	P > .05	1.74	P > .05
	wf of	PLANNING	2541.5	1.536	P > .05	1.99	.01 < P < .05
	wf of	REPRESENTATION	2708.5	0.249	P > .05	-0.27	P > .05
	wf of	STAFFING	2699.0	0.361	P > .05	-0.36	P > .05
	wf of	USE OF COMMUNICATION	2663.0	1.024	P > .05	1.30	P > .05
	wf of	SKILLS AND ABILITIES	2520.0	1.007	P > .05	-0.41	P > .05
	wf of	COMMUNICATION	2466.0	1.487	P > .05	1.19	P > .05
	wf of	CONDUCT, INTEGRITY, AND PRIDE	2557.0	0.786	P > .05	0.66	P > .05
	wf of	COOPERATION	2040.0	3.677	P < .001	3.18	.001 < P < .01
	wf of	ENDURANCE	2715.5	0.156	P > .05	0.36	P > .05
	wf of	FLEXIBILITY	2732.5	0.048	P > .05	0.48	P > .05
	wf of	GROOMING AND ATTIRE	2315.0	2.623	10. > T > 100.	1.38	P > .05
	wf of	INITIATIVE	2551.0	1.083	P > .05	0.00	P > .05
	wf of	INTELLECTUAL FUNCTIONING	2484.5	1.403	P > .05	1.08	P > .05
	Jo. Jw	PROFESS IONAL ISM	2635.0	0.543	P > .05	-0.39	P > .05
	wf of	RELIABILITY AND DEPENDABILITY	2713.5	0.123	P > .05	-0.88	P > .05
	wf of	RESOURCEFULNESS	2363.5	2.418	.01 < P < .05	2.34	.01 < P < .05
	wf of	RESPONSIVENESS	2735.0	0.034	P > .05	-0.98	P > .05
	wf of	TECHNICAL SKILLS	2488.5	1.040	P > .05	-0.26	P > .05
	wf of	PRODUCTIVITY AND ACHLEVEMENT	2229.0	2.007	.01 < P < .05	-2.53	.01 < P < .05
	wf of 1	AWARDS AND PUNISHMENT	2435.0	1.884	P > .05	-2.05	.01 < P < .05
	wf of 1	DRIVE	2666.0	0.291	P > .05	-0.78	P > .05
	wf of	SERVICE MOTIVATION	2470.0	1.367	P > .05	0.53	P > .05
	wf of	POTENTIAL.	2594.0	0.658	P > .05	1.23	P > .05
	wf of	REPUTE	2663.0	0.441	P > .05	-0.49	P > .05
	wf of	ASSET TO THE NAVY	2586.0	1.082	P > .05	1.23	P > .05
	Sum of	Variables 31 through 59	2550.0	0.722	P > .05	0.99	P > .05

229

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE EVALUATION SECTION (19R)

	ty	1							.01
1	bili	vel	.05	.05	.001	.05	.05	.05	P V
	oba	Le	٨	٨	V	٨	٨	٨	V
	Pr		р	Ч	Ч	Ч	64	A	100.
	Value	oft	-1.65	1.49	4.01	1.51	1.51	1.09	2.88
	Probability	Level	P > .05	P > .05	P < .001	.01 < P < .05	P > .05	P > .05	.001 < P < .01
Absolute	Value	of z	1.310	1.181	3.774	2.267	0.000	1.124	2.741
	Value	of U	2401.5	2432.0	1767.0	2553.0	2738.0	2445.0	2027.5
		Name of Variable	Number of 3 Weights	Number of 2 Weights	Number of 1 Weights	Number of -1 Weights	Number of -2 Weights	Number of Words in Text	Number of Index Terms Used
			Total	Total	Total	Total	Total	Total	Total
	No. of	Variable	61	63	29	79	59	66	67
MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

	ty		_ *	-		.05	-		.01								-		.01		-	-				.05	-		-			
	bili	vel	.001	.001	.001	P <	.000	.05	P <	.05	.00.	.00.	.00.	.00.	.00.	.05	.001	.00.	P <	.000	.000	.000	.001	.000	.001	P <	.001	.00.	.001	.000	.001	.000
	oba	Le	V	V	V	V	V	^	v	11	V	V	V	V	V	^	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
	Pr		д	4	д	.01	Р	д	100.	P	Р	P4	A	Р	Ч	Р	Ч	Р	.001	Р	Р	Р	Р	A	Ч	.01	A	A	Ч	P	q	д
	alue	oft	4.34	4.67	7.38	2.24	4.01	1.87	2.93	1.98	6.75	5.97	7.31	4.12	3.94	1.77	3.66	5.39	2.82	6.01	6.72	4.71	5.36	6.93	9.29	2.19	7.90	4.24	8.44	4.30	4.58	1.48
	N		I	I	I	I	I	I	1	1	I	I	1	1	1	1		I	I	I	1	1	ł	I	I	1	1	I	1	I	1	T
	lity	1	100	100	100	< .05	100	< .05	< .01	< .05	10(100	100	100	100)5	100	100	100	100	10(10(100	100	100	< .05	100	100	100	100	100	100
	babj	Leve). V	· · ·	· ·	ч Х	· · ·	ч Ч	4 V	P V)• v	· · ·)· v	· ·). v). v). >). v). v). >). v	· ·). v	· · ·	A V	· · ·	× .0	· · ·)• v)• v). v
	Prol		Ч	A	A	.01	P	.01	100.	.01	P4	P4	д	A	P4	A	A	A	д	4	A	Рч	сı	4	Ч	.01	P	P1	A	P1	р	24
lute	de	N	68	04	75	50	04	66	96	67	58	66	83	93	48	72	03	14	98	29	41	86	47	27	38	78	35	87	37	67	06	82
Abso.	Valu	of	4.5	5.7	7.4	2.2	3.9	2.3	3.1	2.2	6.7	5.7	6.6	4.1	3.8	1.6	3.9	5.7	3.3	5.8	6.7	4.78	5.4	7.2:	9.7	2.1	8.0	4.14	7.6	4.4	4.4	10.01
	lue	D	6.5	5.0	0.6	0.5	7.0	2.5	0.6	3.0	5.0	6.0	0.9	3.5	3.0	0.6	5.0	1.5	1.5	1.0	5.0	2.0	2.0	8.0	6.0	5.5	4.0	7.5	3.5	2.5	2.0	9.5
	Va	of	192	169	98	244	209	248	232	255	135	147	115	194	214	258	194	159	215	166	126	184	173	108	38	251	86	202	101	203	195	14
		Name of Variable	f of MANAGEMENT FUNCTIONS	f of CONTROLLING	f of LEADERSHIP AND DIRECTING	f of ORGANIZATION	f of PLANNING	f of REPRESENTATION	f of STAFFING	f of USE OF COMMUNICATION	f of SKILLS AND ABILITIES	f of COMMUNICATION	f of CONDUCT, INTEGRITY, AND PRIDE	f of COOPERATION	f of ENDURANCE	f of FLEXIBILITY	f of GROOMING AND ATTIRE	f of INITIATIVE	f of INTELLECTUAL FUNCTIONING	f of PROFESSIONALISM	f of RELIABILITY AND DEPENDABILITY	f of RESOURCEFULNESS	f of RESPONSIVENESS	f of TECHNICAL SKILLS	f of PRODUCTIVITY AND ACHIEVEMENT	f of AWARDS AND PUNISHMENT	f of DRIVE	f of SERVICE MOTIVATION	f of POTENTIAL	f of REPUTE	f of ASSET TO THE NAVY	Sum of Variables 1 through 29
	No. of	Variable	1	2	e	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

231

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

Probability Level	P < .001	P < .001 P > .05	P < .001	P > .05	.01 < P < .05	P < .001	P < .001	P < .001	P < .001	10. > F > 100.	P > .05	P = .001	P < .001	.01 < P < .05	P < .001	P < .001	P < .001	P < .001	P < .001	P < .001	10. > F > 100.	P < .001	P < .001	P < .001	P < .001	P < .001	P < .001
Value of t	-4.26	-7.42	-4.00	-1.76	-2.11	-6.16	-6.03	-7.08	-3.90	-3.10	-1.41	-3.31	-4.77	-2.27	-5.59	-6.00	-4.32	-3.87	-7.03	-9.96	-2.78	-7.83	-3.83	-8.13	-3.93	-4.47	-12.03
Probability Level	P < .001	P < .001 .01 < $P < .05$	P < .001	.01 < P < .05	.01 < P < .05	P < .001	P < .001	P < .001	P < .001	P < .001	P > .05	P < .001	P < .001	P < .001	P < .001	P < .001	P < .001	P < .001	P < .001	P < .001	.001 < P < .01	P < .001	P < .001	P < .001	P < .001	P < .001	P < .001
Absolute Value of z	4.586	7.599 2.184	3.945	2.366	2.267	6.704	5.924	6.660	4.113	3.777	1.650	3.679	5.689	3.315	5.797	6.593	4.729	5.321	7.341	9.824	2.863	8.104	4.108	7.748	4.411	4.498	10.191
Value of U	1921.5 1688.5	956.0 2449.0	2090.0	2482.5	2553.0	1360.5	1446.0	1157.0	1957.0	2153.0	2591.0	1989.0	1591.0	2165.0	1663.5	1291.0	1850.5	1753.0	1055.0	358.0	2445.5	845.5	2039.5	979.5	2040.5	1948.5	121.0
Name of Variable	wf of MANAGEMENT FUNCTIONS wf of CONTROLLING	wf of LEADERSHIP AND DIRECTING wf of ORGANIZATION	wf of PLANNING	WE OF REPRESENTATION	wf of USE OF COMMUNICATION	wf of SKILLS AND ABILITIES	wf of COMMUNICATION	wf of CONDUCT, INTEGRITY, AND PRIDE	wf of COOPERATION	wf of ENDURANCE	WE OF FLEXIBILITY	wf of GROOMING AND ATTIRE	wf of INITIATIVE	WE OF INTELLECTUAL FUNCTIONING	wf of PROFESSIONALISM	wf of RELIABILITY AND DEPENDABILITY	WE OF RESOURCEFULNESS	wf of RESPONSIVENESS	wf of TECHNICAL SKILLS	wf of PRODUCTIVITY AND ACHIEVEMENT	wf of AWARDS AND PUNISHMENT	wf of DRIVE	wf of SERVICE MOTIVATION	wf of POTENTIAL	wf of REPUTE	wf of ASSET TO THE NAVY	Sum of Variables 31 through 59
No. of Variable	31	33 34	35	36	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	09

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

	Probability	Level	P < .001	P < .001	P < .001	P > .05	P > .05	P < .001	P < .001
	Value	ott	-4.93	-8.88	-8.37	1.42	1.00	-10.62	-15.92
	Probability	Tevel	P < .001	P < .001	P < .001	P > .05	P > .05	P < .001	P < .001
Absolute	Value	0I Z	9.362	9.523	9.126	1.419	1.000	10.167	10.103
	Value	OT O	358.5	314.5	446.0	2664.0	2701.0	127.0	145.5
	of Woodah 1 a	ATTADTA TO	of 3 Weights	of 2 Weights	of 1 Weights	of -1 Weights	of -2 Weights	of Words in Text	of Index Terms Used
	Momo	Mame	al Number	al Number	al Number	al Number	al Number	al Number	al Number
	No. of	ATTADLE	61 Tot	62 Tot	63 Tot	64 Tot	65 Tot	66 Tot	67 Tot

233

,

1. THE T.

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

1				Abcolto			
No. of			Value	Value	Probability	Value	Probability
Variable		Name of Variable	ofU	of z	Level	oft	Level
Г	foi	E MANAGEMENT FUNCTIONS	1895.5	4.686	P < .001	-4.58	P < .001
2	f o	F CONTROLLING	1847.0	5.167	P < .001	-4.12	P < .001
3	f o	F LEADERSHIP AND DIRECTING	1394.0	6.029	P < .001	-5.66	P < .001
4	f o	F ORGANIZATION	2363.5	2.668	.001 < P < .01	-2.79	.001 < P < .01
2	f o	F PLANNING	2175.5	3.561	P < .001	-3.43	P = .001
9	f o	F REPRESENTATION	2481.5	2.375	.01 < P < .05	-1.88	P > .05
7	f o	E STAFFING	2441.5	2.615	.001 < P < .01	-2.46	.01 < P < .05
80	f o	F USE OF COMMUNICATION	2590.0	2.021	.01 < P < .05	-1.92	P > .05
6	f o	F SKILLS AND ABILITIES	1991.0	4.473	P < .001	-4.63	P < .001
10	f o	E COMMUNICATION	1915.0	4.120	P < .001	-3.58	P < .001
11	f o	F CONDUCT, INTEGRITY, AND PRIDE	1120.0	6.789	P < .001	-6.58	P < .001
12	f o	F COOPERATION	2065.0	3.688	P < .001	-3.41	P = .001
13	f oi	E ENDURANCE	2553.0	1.714	P > .05	-1.73	P > .05
14	f o	E FLEXIBILITY	2553.0	1.930	P > .05	-1.95	P > .05
15	f o	E GROOMING AND ATTIRE	1931.5	3.948	P < .001	-3.30	P = .001
16	f o	E INITIATIVE	2000.0	4.157	P < .001	-4.07	P < .001
17	f oi	E INTELLECTUAL FUNCTIONING	2341.0	2.514	.01 < P < .05	-1.84	P > .05
18	f o	E PROFESSIONALISM	2144.0	4.018	P < .001	-4.05	P < .001
19	f o	F RELIABILITY AND DEPENDABILITY	1639.5	5.407	P < .001	-5.12	P < .001
20	f o	F RESOURCEFULNESS	2001.5	4.150	P < .001	-2.93	.001 < P < .01
21	f o	F RESPONSIVENESS	2254.0	3.357	P < .001	-3.24	.001 < P < .01
22	f o	F TECHNICAL SKILLS	1699.0	4.998	P < .001	-4.98	P < .001
23	f o	F PRODUCTIVITY AND ACHIEVEMENT	927.5	7.890	P < .001	-8.12	P < .001
24	f o	F AWARDS AND PUNISHMENT	2664.0	1.010	P > .05	-1.01	P > .05
25	f o	f DRIVE	881.5	7.958	P < .001	-7.46	P < .001
26	f o	F SERVICE MOTIVATION	2399.0	2.484	.01 < P < .05	-2.67	.001 < P < .01
27	f o	F POTENTIAL	1511.0	5.895	P < .001	-6.02	P < .001
28	f o	E REPUTE	2218.0	3.703	P < .001	-3.59	P = .001
29	f o	F ASSET TO THE NAVY	2403.5	2.453	.01 < P < .05	-2.52	.01 < P < .05
30	Sum	of Variables 1 through 29	268.0	9.622	P < .001	-11.39	P < .001

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED Z VALUES AND & TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

.05 .05 10. 10. < P < .05 < P < .05 < P < .01 < P < .01 < P < .05 .001 < P < .01 .001 < P < .01 Probability .001 = .001 .001 100. P < .001 P < .001 P < .001 < .001 .05 < P < .05 < P < .05 .05 < P < .001 < P < P > .05 Level ч 4 ۲ ۷ ٨ v v ٨ ٨ .001 .01 р. .01 .001 .01 ρ. 4 .001 р 64 ρ. .01 10. 24 ρ. ρ. ρ. -3.09 -5.43 -3.39 -3.08 -1.45 -3.15 -6.59 4 -4.83 -4.25 -2.38 -1.84 -2.22 -3.72 -1.53-1.33-3.21 -3.87 -4.24 -2.91 -4.70 -7.67 -2.00 -3.23 -2.31-11.70 -6.61 -2.52 -6.07 Value -1.83 -4.11 of P < .05 < P < .05 .01 < P < .05 P < .01 .01 < P < .05 .01 < P < .05< P < .05 10. > T > 100. Probability .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 100. 100. P < .001 .001 100. 100. P < .001 P < .001 < .001 .05 .05 Level v д - A v d V v d v d **ч** ≻ d ~ d ~ d ~ 4 ~ d V P V v V V v .01 .01 100. .01 24 ρ. **P**р. ρ. -Absolute 6.045 4.320 2.000 Value 2.375 2.596 4.430 6.796 .708 ..903 2.482 4.007 3.319 4.870 2.472 5.973 4.760 2.622 3.557 3.592 3.741 7.937 7.604 3.654 5.203 3.811 5.271 2.461 9.672 2.021 4.121 of z 1387.0 0.7601 1873.5 957.0 254.5 2591.5 2072.0 Value .839.0 2443.5 2590.0 1115.0 2080.5 2553.5 2555.5 1955.5 2345.5 2145.0 1664.0 2004.0 2259.0 .721.0 910.0 2402.0 879.5 2369.5 2175.5 2481.5 2400.5 490.5 2224.5 of U CONDUCT, INTEGRITY, AND PRIDE RELIABILITY AND DEPENDABILITY PRODUCTIVITY AND ACHIEVEMENT LEADERSHIP AND DIRECTING Sum of Variables 31 through 59 INTELLECTUAL FUNCTIONING AWARDS AND PUNISHMENT USE OF COMMUNICATION MANAGEMENT FUNCTIONS SKILLS AND ABILITIES ATTIRE Name of Variable SERVICE MOTIVATION ASSET TO THE NAVY TECHNICAL SKILLS RESOURCEFULNESS PROFESSIONALISM REPRESENTATION RESPONSIVENESS COMMUNICATION GROOMING AND ORGANIZATION CONTROLLING COOPERATION FLEXIBILITY INITIATIVE ENDURANCE POTENTIAL PLANNING STAFFING REPUTE DRIVE 40 JO 40 of of J O of J O of 40 40 of of JO 40 of of 40 of of 9 F of of of 9 F of of yo of WF M WF ME WF 4M WF WF 4 HA WF 4M WF WF WF E F 3 WF WF M 3 EF. 4M 4M EF. HA J. WF H E F Variable No. of 35 40 45 46 48 49 50 55 55 39 32 33 34 37 38 41 42 43 44 47 52 22 58 59 60

235

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

robability Level	P < .001	100. > 9	100. > 9	P > .05	P > .05	P < .001	P < .001
Value P of t	-8.37	-9.95	-8.86	-0.00	1.00	-8.68	-13.12
Probability Level	P < .001	P < .001	P < .001	P > .05	P > .05	P < .001	P < .001
Absolute Value of z	8.080	9.164	8.673	0.566	1.000	9.823	9.474
Value of U	698.5	401.5	565.0	2702.0	2701.0	215.5	307.5
Name of Varlable	Total Number of 3 Weights	Total Number of 2 Weights	Total Number of 1 Weights	Total Number of -1 Weights	Total Number of -2 Weights	Total Number of Words in Text	Total Number of Index Terms Used
No. of Variable	61	62	63	64	65	66	67

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

No. of			Value	Absolute Value	Probability	Value	Probability
Variable		Name of Variable	of U	of z	Level	of t	Level
1	f o	E MANAGEMENT FUNCTIONS	2731.5	0.030	P > .05	-0.50	P > .05
2	f o	E CONTROLLING	2506.5	1.038	P > .05	-1.27	P > .05
S	f o	E LEADERSHIP AND DIRECTING	2302.5	1.720	P > .05	-1.23	P > .05
4	f oi	E ORGANIZATION	2655.5	0.494	P > .05	0.50	P > .05
ŝ	f o	E PLANNING	2654.0	0.421	P > .05	-0.21	P > .05
9	E O	E REPRESENTATION	2733.5	0.032	P > .05	0.51	P > .05
7	f o	E STAFFING	2615.5	0.776	P > .05	-1.11	· P > .05
8	f o	E USE OF COMMUNICATION	2701.0	0.343	P > .05	-0.46	P > .05
6	f o	F SKILLS AND ABILITIES	2063.5	2.936	.001 < P < .01	-3.16	.001 < P < .01
10	f o	E COMMUNICATION	2230.5	2.115	.01 < P < .05	-1.70	P > .05
11	f o	F CONDUCT, INTEGRITY, AND PRIDE	2662.5	0.296	P > .05	-0.20	P > .05
12	f o	E COOPERATION	2588.5	0.682	P > .05	-0.71	P > .05
13	f o	E ENDURANCE	2320.5	2.463	.01 < P < .05	-2.66	.001 < P < .01
14	f o	F FLEXIBILITY	2707.0	0.262	P > .05	-0.25	P > .05
15	f o	E GROOMING AND ATTIRE	2680.0	0.252	P > .05	-0.82	P > .05
16	f o	F INITIATIVE	2317.5	1.859	P > .05	-1.99	.01 < P < .05
17	f o	F INTELLECTUAL FUNCTIONING	2532.0	1.045	P > .05	-1.48	P > .05
18	f o	F PROFESSIONALISM	2247.0	2.303	.01 < P < .05	-2.28	.01 < P < .05
19	f o	F RELIABILITY AND DEPENDABILITY	2328.0	1.687	P > .05	-1.53	P > .05
20	f o	F RESOURCEFULNESS	2525.0	0.969	P > .05	-0.57	P > .05
21	f o	F RESPONSIVENESS	2215.5	2.503	.01 < P < .05	-2.12	.01 < P < .05
22	f oi	F TECHNICAL SKILLS	1964.5	3.136	.001 < P < .01	-3.40	P = .001
23	f o	E PRODUCTIVITY AND ACHIEVEMENT	1834.0	3.543	P < .001	-3.47	P = .001
24	f o	F AWARDS AND PUNISHMENT	2588.5	1.318	P > .05	-1.43	P > .05
25	f o	F DRIVE	2397.0	1.338	P > .05	-1.61	P > .05
26	f o	F SERVICE MOTIVATION	2380.0	1.872	P > .05	-1.65	P > .05
27	f o	F POTENTIAL	2154.0	2.367	.01 < P < .05	-2.38	.01 < P < .05
28	E O	E REPUTE	2554.0	0.952	P > .05	-0.88	P > 05
29	E O	F ASSET TO THE NAVY	2269.5	2.403	.01 < P < .05	-2.62	P = .01
30	Sum	of Variables 1 through 29	1981.0	2.906	.001 < P < .01	-3.28	P = .001

237

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

No. of			Value	Absolute Value	Probability	Value	Probability
Variable		Name of Variable	of U	of z	Level	of t	Level
31	wf oi	MANAGEMENT FUNCTIONS	2658.5	0.361	P > .05	-0.00	P > .05
32	wf oi	CONTROLLING	2502.5	1.051	P > .05	-1.23	P > .05
33	wf oi	E LEADERSHIP AND DIRECTING	2218.0	2.039	.01 < P < .05	-1.63	P > .05
34	wf oi	E ORGANIZATION	2636.5	0.607	P > .05	1.22	P > .05
35	wf of	PLANNING	2620.0	0.590	P > .05	-0.83	P > .05
36	wf oi	E REPRESENTATION	2732.5	0.039	P > .05	0.51	P > .05
37	wf oi	STAFFING	2609.5	0.812	P > .05	-1.25	P > .05
38	wf oi	USE OF COMMUNICATION	2703.0	0.324	P > .05	0.00	P > .05
39	wf oi	SKILLS AND ABILITIES	2023.5	3.078	.001 < P < .01	-3.39	P = .001
40	wf oi	COMMUNICATION	2215.0	2.167	.01 < P < .05	-1.99	.01 < P < .05
41	wf oi	E CONDUCT, INTEGRITY, AND PRIDE	2639.5	0.383	P > .05	-0.41	P > .05
42	wf oi	COOPERATION	2580.5	0.714	P > .05	-0.73	P > .05
43	wf oi	E ENDURANCE	2344.0	2.316	.01 < P < .05	-1.82	P > .05
44	wf oi	FLEXIBILITY	2707.0	0.261	P > .05	-0.39	P > .05
45	wf oi	GROOMING AND ATTIRE	2727.0	0.047	P > .05	-0.73	P > .05
46	wf oi	INITIATIVE	2261.5	2.078	.01 < P < .05	-1.89	P > .05
47	wf oi	INTELLECTUAL FUNCTIONING	2558.5	0.907	P > .05	-1.22	P > .05
48	wf oi	PROFESSIONALISM	2259.0	2.228	.01 < P < .05	-2.04	.01 < P < .05
49	wf oi	RELIABILITY AND DEPENDABILITY	2267.5	1.905	P > .05	-1.86	P > .05
50	wf oi	E RESOURCEFULNESS	2558.0	0.811	P > .05	-0.48	P > .05
51	wf oi	RESPONS IVENESS	2273.0	2.215	.01 < P < .05	-1.18	P > .05
52	wf oi	TECHNICAL SKILLS	1793.5	3.782	P < .001	-4.18	P < .001
53	wf oi	E PRODUCTIVITY AND ACHIEVEMENT	1702.0	4.003	P < .001	-3.67	P < .001
54	wf oi	E AWARDS AND PUNISHMENT	2588.5	1.318	P > .05	-1.43	P > .05
55	wf oi	E DRIVE	2257.5	1.867	P > .05	-1.79	P > .05
56	wf oi	E SERVICE MOTIVATION	2404.0	1.740	P > .05	-1.09	P > .05
57	wf oi	POTENTIAL	2076.0	2.637	.001 < P < .01	-2.95	.001 < P < .01
58	wf oi	REPUTE	2558.5	0.925	P > .05	-0.70	P > .05
59	wf oi	ASSET TO THE NAVY	2264.0	2.417	.01 < P < .05	-2.45	.01 < P < .05
60	Sum (of Variables 31 through 59	1872.5	3.320	P < .001	-3.76	P < .001

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE CROSS VALIDATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

						Absolute				
No. of					Value	Value	Probability	Value	Proba	bility
ariable		Name	of	Variable	ofU	of z	Level	oft	Le	vel
61	Total	Number	of	3 Weights	1825.0	3.522	P < .001	-2.54	× 10°	P < .0
62	Total	Number	of	2 Weights	1957.0	3.004	.00. < P < .01	-3.04	.001 <	P < .0
63	Total	Number	of	1 Weights	2316.0	1.624	P > .05	-1.70	^ ፈ	.05
64	Total	Number	of	-1 Weights	2701.0	1.000	P > .05	1.00	~ Ч	.05
65	Total	Number	of	-2 Weights	2738.0	0.000	P > .05	1.00	~ d	.05
66	Total	Number	of	Words in Text	1990.0	2.869	.001 < P < .01	-2.45	> 100.	P < .0
67	Total	Number	of	Index Terms Used	1956.0	3.007	.001 < P < .01	-3.25	н Ч	.001

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE EVALUATION SECTION (19R)

No. of				Value	Absolute Value	Probability	Value	Probability
Variable			Name of Variable	ofU	of z	Level	oft	Level
Ч	f	of	MANAGEMENT FUNCTIONS	2584.0	0.792	P > .05	-0.84	P > .05
2	f	of	CONTROLLING	2480.5	1.345	P > .05	0.21	P > .05
e	f.	of	LEADERSHIP AND DIRECTING	2595.0	0.605	P > .05	-0.32	P > .05
4	f	of	DRGANIZATION	2733.5	0.030	P > .05	0.20	P > .05
2	4	of	PLANNING	2617.0	0.649	P > .05	-0.29	P > .05
9	ų	of	REPRESENTATION	2627.0	1.158	P > .05	-1.16	P > .05
7	f	of	STAFFING	2656.0	0.555	P > .05	0.86	P > .05
8	F C	of	USE OF COMMUNICATION	2738.0	0.000	P > .05	0.00	P > .05
6	f.	of	SKILLS AND ABILITIES	2699.5	0.200	P > .05	-0.53	P > .05
10	4	of	COMMUNICATION	2350.0	1.966	.01 < P < .05	1.44	P > .05
11	ц Ч	of	CONDUCT, INTEGRITY, AND PRIDE	2714.5	0.100	P > .05	-0.83	P > .05
12	4	of	COOPERATION	2602.0	0.756	P > .05	-1.21	P > .05
13	ц.	of	ENDURANCE	2627.0	1.744	P > .05	-1.76	P > .05
14	F O	of	FLEXIBILITY	2590.5	1.300	P > .05	1.18	P > .05
15	ц Ч	of	GROOMING AND ATTIRE	2733.5	0.028	P > .05	-0.00	P > .05
16	F F	of	INITIATIVE	2583.0	0.963	P > .05	-1.10	P > .05
17	f	of	INTELLECTUAL FUNCTIONING	2515.5	1.505	P > .05	-1.49	P > .05
18	ц.	of	PROFESSIONALISM	2524.5	1.107	P > .05	-1.61	P > .05
19	4	of	RELIABILITY AND DEPENDABILITY	2475.0	1.347	P > .05	1.81	P > .05
20	Р.	of	RESOURCEFULNESS	2628.0	0.763	P > .05	0.52	P > .05
21	E E	of	RESPONSIVENESS	2526.0	1.603	P > .05	0.93	P > .05
22	f C	of	FECHNICAL SKILLS	2550.5	0.799	P > .05	-0.76	P > .05
23	F.	of	PRODUCTIVITY AND ACHIEVEMENT	2563.5	0.688	P > .05	0.65	P > .05
24	F	of	AWARDS AND PUNISHMENT	2300.0	2.545	.01 < P < .05	-2.35	.01 < P < .05
25	f.	of	DRIVE	2667.0	0.293	P > .05	0.21	P > .05
26	F C	of	SERVICE MOTIVATION	2661.0	0.521	P > .05	-0.61	P > .05
27	F C	of	POTENTIAL	2643.0	0.453	P > .05	0.26	P > .05
28	4	of	REPUTE	2480.0	1.475	P > .05	-1.43	P > .05
29	ЧU Ч	of	ASSET TO THE NAVY	2580.0	0.948	P > .05	-1.19	P > .05
30	Sur	0	F Variables 1 through 29	2697.5	0.156	P > .05	-0.52	P > .05

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE EVALUATION SECTION (19R)

ity																		.05						10.						
abil	.05	.05	.05	.05	.05	.05	.05	.05	.05	.05	.05	.05	.05	.05	.05	.05	.05	P	.05	.05	.05	.05	.05	р р	.05	.05	.05	.05	.05	.05
Prob	A	~ 4	<u>ч</u>	ч Ч	P	P A	<u>л</u>	ч Ч	A A	P A	ч Ч	4	P	Р ~	P ~	P ~	ч Ч	> 10	ч Ч	4	4	ч Ч	P A	> 10	4	ч Ч	P	ч Ч	л Д	∧ ₽
																		•						0.						
ue	35	51	60	10	43	66	82	00	20	90	38	55	52	29	00	38	99	34	35	42	83	45	62	69	10	80	37	79	62	86
Val	-1.	-0-	-1-	0-	-0-	-0-	0	0	-1-	0	-		1.	-0-	0.	-1-		-2.	1.	0	0	-1-	-0-	-2.	-1-	-0-	0.	-1.	÷ -	-1-
A																								10						
ilit el	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	~	05	05	05	05	05	05
Lev	^	^	^	^	^	^	^	•	^	^	^	^	^	^	^	^	^	^	^	^	^	•	^	A V	^	^	^	•	^	^
Pro	d	Ч	4	4	4	4	4	4	P	24	24	4	4	Р	24	2	4	4	4	А	4	2	4	001	4	4	4	Р	4	4
																								•						
lute ue z	14	16	07	07	37	42	51	00	45	78	69	46	44	04	22	67	37	96	52	45	25	34	42	15	14	30	67	02	67	89
Abso Val of	1.2	0.9	1.0	0.0	0.5	1.1	0.5	0.0	0.7	1.0	1.1	1.1	1.7	0.0	0.0	I.3	1.5	1.3	1.2	0.7	1.6	1.4	0.4	2.9	0.8	0.5	0.2	1.6	1.0	1.6
a) I	0	0	0	0	2	5	5	0	S	2	0	0	0	2	5	2	5	0	5	10	0	0	2	0	0	5	0	0	5	0
/alu	000.	550.	500.	737.	537 .	528 .	556.	738.	593 .	524 .	464.	531.	527.	737.	734.	517.	510.	467.	492.	530.	523.	399.(524.	236.	540.	559.	575.	457.	559.	298.
10	25	2	2	2	26	26	26	2	2	2	21	5	2(2	2	2	2	21	24	26	2	2	26	2	2	26	26	21	2	2
											RIDE								LITY	8			ENT							
			SNG								DP						DND		ABI				SVEM							59
	SN		ECTJ					NO	ES		, AI				Я		IONI		PENI				CHIF	ENT						ugh
ible	OIL		DIR					CATI	ITIL		YTIX				CTIR		INCT	L.	DE	10		S	AD A	[SHM		LION			TUY	hro
aria	FUNC		AND	N		NOI		INN	ABII	NO	TEGI			1011	D AJ		LE	LISN	ANI	NES	ESS	KILI	Y Al	FUNI		IVAJ			E NI	31 0
f V	TW	DNIT	HIP	VIIO	r D	TAT	5	MMOC	IN	CATI	IN	LION	E	ALL	AN 5	LVE	CTUA	LONA	ALL	SFUL	LVEN	T S	LUIT	GUN		MOT	T		HI (les
me	GEME	ROLI	ERSH	NIZ!	NIN	ESEI	FINC	0F (LS	DINI(UCT	ERA'	RANC	IBII	MIN	IAT.	LLE(ESS3	ABII	URCI	UNS	NIC	UCTJ	DS /	PA	ICE	NTI/	TE	T T	labl
Na	MANA	CONT	LEAD	ORGA	PLAN	REPR	STAF	USE	SKIL	COMM	COND	COOP	ENDU	FLEX	GROO	TINI	INTE	PROF	RELI	RESO	RESP	TECH	PROD	AWAR	DRIV	SERV	POTE	REPU	ASSE	Var
	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	of	1 of
	wf	wf	wf	wf	Wf	wf	Wf	wf	Wf	wf	wf	wf	Wf	wf	wf	wf	wf	wf	wf	wf	Wf	wf	wf	wf	wf	wf	wf	wf	WF	Sun
of ble																														
No.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60

241

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE EVALUATION SECTION (19R)

			Absolute			
No. of		Value	Value	Probability	Value	Probability
Variable	Name of Variable	of U	of z	Level	of t	Level
61	Total Number of 3 Weights	1946.5	3.092	.001 < P < .01	-2.84	.001 < P < .01
62	Total Number of 2 Weights	2580.0	0.610	P > .05	-0.23	P > .05
63	Total Number of 1 Weights	2354.5	1.494	P > .05	0.33	P > .05
64	Total Number of -1 Weights	1954.5	4.768	P < .001	3.93	P < .001
65	Total Number of -2 Weights	2701.0	1.000	P > .05	1.00	P > .05
99	Total Number of Words in Text	2589.0	0.572	P > .05	0.18	P > .05
67	Total Number of Index Terms Used	2708.5	0.114	P > .05	0.04	P > .05

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE EVALUATION SECTION (19R)

.05 .05 10. Probability V A .05 .05 .05 V d .05 .05 .05 .05 .05 < P < .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 Level > 10 ^ d v ^ д ۸ م ~ d Λ ~ ۸ ط ~ d Δ ٨ ٨ Λ ٨ ٨ ٨ ٨ ٨ ٨ ٨ Δ Δ ٨ ٨ Δ ٨ ٨ 100. ρ ρ. 4 ρ ρ. **P**-1 ρ P p. P. ρ. ρ. ρ. A 10. ρ. ρ. μ ρ. 24 ρ -1.94 oft -0.15 06.0 1.18 0.50 2.70 1.06 -0.18 -1.00 1.25 -0.85 0.00 -0.86 -0.19 Value 2.40 -0.51 -1.01 0.77 -0.00 0.77 -1.00 -0.24 1.38 0.00 1.34 2.53 0.24 0.80 0.11 .01 .05 .05 Probability ~ Д V d .05 .05 V d .05 Level 05 .05 ۸ م ~ V > 100. v ч Ч л д ~ d ^ 4 ٨ ^ d ٨ ٨ ٨ ٨ ^ ^ Λ ۸ ٨ ٨ \wedge ٨ ٨ \wedge ٨ Λ \wedge ٨ Λ .01 ρ. ρι p. ρ ρ p. ρ. 24 ρ. μ 10 P4 ρ. ρ. μ ρ. ρ. P4 μ ρ μ Absolute 1.458 0.015 1.010 0.970 0.000 0.225 0.049 2.523 Value 0.796 0.577 1.393 1.741 0.291 0.278 2.960 1.581 0.038 1.000 0.727 1.087 0.660 0.548 0.739 0.197 0.988 1.216 0.228 0.245 0.805 2.138 of z 2252.0 2702.0 2701.0 2701.0 2726.0 Value 2178.0 2382.0 2623.0 2560.0 2738.0 2613.5 2657.0 2617.0 2369.5 2588.0 2296.0 2581.0 2734.5 2657.0 2488.0 2550.0 2692.0 2664.0 2685.5 2731.5 2628.0 2691.0 2693.0 2592.0 :528.5 ofU CONDUCT, INTEGRITY, AND PRIDE RELIABILITY AND DEPENDABILITY PRODUCTIVITY AND ACHIEVEMENT Sum of Variables 1 through 29 LEADERSHIP AND DIRECTING INTELLECTUAL FUNCTIONING AWARDS AND PUNISHMENT MANAGEMENT FUNCTIONS USE OF COMMUNICATION SKILLS AND ABILITIES Name of Variable GROOMING AND ATTIRE SERVICE MOTIVATION ASSET TO THE NAVY TECHNICAL SKILLS RESOURCEFULNESS PROFESSIONALISM REPRESENTATION RESPONSIVENESS COMMUNICATION ORGANIZATION FLEXIBILITY COOPERATION CONTROLL ING INITIATIVE ENDURANCE POTENTIAL STAFFING **PLANNING** REPUTE DRIVE of 44 L. 1..... -44 44 44 44 1.... 114 1 44 Variable No. of t O O H 5 9 5 00 5 10 12 13 14 15 16 17 18 19 H

243

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE EVALUATION SECTION (19R)

		Value	Absolute Value	Probability	Value	Probability
	Name of Variable	ofU	of z	Level	oft	Level
of	MANAGEMENT FUNCTIONS	2196.5	2.596	.001 < P < .01	-2.95	.001 < P < .01
of	CONTROLLING	2572.0	0.847	P > .05	-0.06	P > .05
of	LEADERSHIP AND DIRECTING	2384.5	1.470	P > .05	-1.40	P > .05
of	ORGANIZATION	2664.5	0.523	P > .05	0.54	P > .05
0	E PLANNING	2475.0	1.458	P > .05	1.41	P > .05
0	E REPRESENTATION	2550.0	1.741	P > .05	-1.89	P > ,05
0	f STAFFING	2717.5	0.130	P > .05	-0.43	P > .05
0	E USE OF COMMUNICATION	2664.0	1.010	P > .05	-1.01	P > .05
0	E SKILLS AND ABILITIES	2729.0	0.048	P > .05	0.19	P > .05
0	f COMMUNICATION	2285.5	2.383	.01 < P < .05	1.70	P > .05
0	f CONDUCT, INTEGRITY, AND PRIDE	2630.0	0.481	P > .05	0.95	P > .05
0	f COOPERATION	2694.5	0.252	P > .05	0.33	P > .05
0	f ENDURANCE	2701.0	1.000	P > .05	-1.00	P > .05
0	F FLEXIBILITY	2703.0	0.295	P > .05	-0.32	P > .05
0	F GROOMING AND ATTIRE	2693.5	0.651	P > .05	0.60	P > .05
0	F INITIATIVE	2476.0	1.595	P > .05	-1.49	P > .05
0	F INTELLECTUAL FUNCTIONING	2736.0	0.016	P > .05	0.16	P > .05
0	f PROFESSIONALISM	2601.5	0.719	P > .05	-1.03	P > .05
0	OF RELIABILITY AND DEPENDABILITY	2706.0	0.152	P > .05	0.56	P > .05
0	F RESOURCEFULNESS	2661.5	0.517	P > .05	0.57	P > .05
0	1 RESPONSIVENESS	2623.5	0.698	P > .05	-0.87	P > .05
0	of TECHNICAL SKILLS	2651.5	0.378	P > .05	-0.88	P > .05
0	IF PRODUCTIVITY AND ACHIEVEMENT	2576.0	0.632	P > .05	0.89	P > .05
0	F AWARDS AND PUNISHMENT	2524.0	1.448	P > .05	-1.23	P > .05
0	f DRIVE	2476.0	1.072	P > .05	-1.15	P > .05
0	F SERVICE MOTIVATION	2586.5	1.228	P > .05	1.36	P > .05
0	f POTENTIAL	2212.0	2.711	10. > P > 100.	3.21	.001 < P < .01
0	f REPUTE	2691.5	0.294	P > .05	-0.36	P > .05
0	OF ASSET TO THE NAVY	2713.5	0.162	P > .05	-0.12	P > .05
1.000	of Variables 31 through 59	2671.0	0.257	P > .05	-0.17	P > .05

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE EVALUATION SECTION (19R)

lity	10	10	10	< .05	10	10	10
ab1] eve]	0.	0.	0.	р. С	0.	0.	.0
1 Cob	^	^	^	V	^	^	^
P	н	per la		.00	H	page 1	
Value of t	-1.10	0.86	0.20	2.40	1.00	1.78	0.99
ability evel	.05	.05	.05	P < .01	.05	.05	.05
Prob	Ρ >	P >	P >	.001 <	P >	P >	P >
Absolute Value of z	0.891	1.153	0.293	3.041	1.000	1.814	0.833
Value of U	2511.5	2439.5	2662.5	2189.0	2701.0	2265.0	2522.0
me of Variable	er of 3 Weights	er of 2 Weights	er of 1 Weights	er of -1 Weights	er of -2 Weights	er of Words in Text	er of Index Terms Used
Nan	11 Numbe	11 Numbe	Il Numbe	11 Numbe	11 Numbe	11 Numbe	11 Numbe
	Tota	Tota	Tota	Tota	Tota	Tota	Tota
No. of Variable	61	62	63	64	65	66	67

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE EVALUATION SECTION (19R)

					Absolute			
No. of				Value	Value	Probability	Value	Probability
Variable		141	lame of Variable	ofU	of z	Level	oft	Level
T	f	of MANA	AGEMENT FUNCTIONS	2445.0	1.379	P > .05	1.62	P > .05
2	f o	of CONT	ROLLING	2640.0	0.543	P > .05	0.10	P > .05
3	f o	of LEAL	ERSHIP AND DIRECTING	2609.5	0.546	P > .05	-0.19	P > .05
4	f	of ORGA	NIZATION	2660.5	0.552	P > .05	-0.72	P > .05
2	f	of PLAN	DNING	2616.5	0.716	P > .05	-1.16	P > .05
9	f	of REPE	RESENTATION	2656.5	0.661	P > .05	1.22	P > .05
7	fo	of STAF	FING	2611.0	0.839	P > .05	1.34	P > .05
8	f	of USE	OF COMMUNICATION	2664.0	1.010	P > .05	1.01	P > .05
6	f	of SKIL	LLS AND ABILITIES	2648.0	0.472	P > .05	-0.97	P > .05
10	f	of com	IUNICATION	2581.0	0.974	P > .05	-1.12	P > .05
11	f	of CONL	DUCT, INTEGRITY, AND PRIDE	2373.5	1.618	P > .05	-1.64	P > .05
12	f	of C001	PERATION	2609.5	0.714	P > .05	-1.03	P > .05
13	f	of ENDL	JRANCE	2664.0	1.010	P > .05	-1.01	P > .05
14	fo	of FLEN	(IBILITY	2703.0	0.365	P > .05	0.00	P > .05
15	f	of GROC	MING AND ATTIRE	2624.5	0.750	P > .05	-0.80	P > .05
16	f	FINI PC	TLATIVE	2722.0	0.092	P > .05	-0.36	P > .05
17	fo	ITNI JC	SLLECTUAL FUNCTIONING	2515.5	1.505	P > .05	-1.49	P > .05
18	f	of PROF	7ESSIONALISM	2646.0	0.463	P > .05	-0.95	P > .05
19	f	of RELI	CABILITY AND DEPENDABILITY	2418.0	1.610	P > .05	1.87	P > .05
20	fo	of RESC	DURCEFULNESS	2706.0	0.235	P > .05	-0.19	P > .05
21	f	of RESF	ONSIVENESS	2414.0	2.247	.01 < P < .05	1.77	P > .05
22	f	of TECH	INICAL SKILLS	2504.5	1.001	P > .05	-0.46	P > .05
23	f	of PROL	DUCTIVITY AND ACHIEVEMENT	2552.5	0.737	P > .05	-0.73	P > .05
24	fo	of AWAE	UDS AND PUNISHMENT	2446.0	1.606	P > .05	-1.48	P > .05
25	f o	of DRIV	7E	2682.5	0.230	P > .05	0.20	P > .05
26	fo	of SERV	/ICE MOTIVATION	2512.0	1.709	P > .05	-1.88	P > .05
27	f	of POTE	ENTIAL	2356.0	2.046	.01 < P < .05	-2.17	.01 < P < .05
28	f	of REPU	TE	2515.5	1.254	P > .05	-1.26	P > .05
29	f	of ASSE	2T TO THE NAVY	2544.0	1.184	P > .05	-1.41	P > .05
30	Sun	n of Va	iriables 1 through 29	2605.5	0.509	P > .05	-1.05	P > .05

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE. ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE EVALUATION SECTION (19R)

					Absolute			
No. of				Value	Value	Probability	Value	Probability
Variable			Name of Variable	ofU	of z	Level	oft	Level
31	wf o	of MA	NAGEMENT FUNCTIONS	2438.5	1.394	P > .05	1.58	P > .05
32	wf c	of CO	NTROLLING	2719.0	0.105	P > .05	-0.40	P > .05
33	wf c	of LE	ADERSHIP AND DIRECTING	2648.0	0.381	P > .05	-0.46	P > .05
34	wf c	of OR	GANIZATION	2663.5	0.530	P > .05	-0.61	P > .05
35	wf c	of PL	ANNING	2598.0	0.823	P > .05	-1.51	P > .05
36	wf c	of RE	PRESENTATION	2653.5	0.685	P > .05	1.15	P > .05
37	wf c	of ST	AFFING	2680.5	0.379	P > .05	1.14	P > .05
38	wf c	of US	E OF COMMUNICATION	2664.0	1.010	P > .05	1.01	P > .05
39	wf c	of SK	ILLS AND ABILITIES	2588.5	0.788	P > .05	-1.39	P > .05
40	wf c	of CO	MMUNICATION	2516.0	1.376	P > .05	-1.39	P > .05
41	wf c	of CO	NDUCT, INTEGRITY, AND PRIDE	2322.0	1.843	P > .05	-2.13	.01 < P < .05
42	wf c	of CO	OPERATION	2567.0	0.947	P > .05	-1.89	P > .05
43	wf c	of EN	DURANCE	2664.5	1.003	P > .05	-0.78	P > .05
44	wf c	of FL	EXIBILITY	2703.0	0.365	P > .05	0.00	P > .05
45	wf c	of GR	OOMING AND ATTIRE	2636.0	0.673	P > .05	-0.59	P > .05
46	wf c	of IN	ITIATIVE	2695.0	0.245	P > .05	-0.09	P > .05
47	wf c	of IN	TELLECTUAL FUNCTIONING	2507.0	1.561	P > .05	-1.83	P > .05
48	wf o	of PR	OFESSIONALISM	2592.5	0.728	P > .05	-1.56	P > .05
65	wf c	of RE	LIABILITY AND DEPENDABILITY	2514.0	1.120	P > .05	0.87	P > .05
50	wf c	of RE	SOURCEFULNESS	2706.0	0.234	P > .05	-0.11	P > .05
51	wf c	of RE	SPONSIVENESS	2412.0	2.260	.01 < P < .05	1.56	P > .05
52	wf c	of TE	CHNICAL SKILLS	2514.0	0.954	P > .05	-0.45	P > .05
53	wf c	of PR	ODUCTIVITY AND ACHIEVEMENT	2422.0	1.241	P > .05	-1.47	P > .05
54	wf c	of AW	ARDS AND PUNISHMENT	2446.0	1.606	P > .05	-1.48	P > .05
55	wf c	of DR	IVE	2711.0	0.111	P > .05	0.15	P > .05
56	wf c	of SE	RVICE MOTIVATION	2509.5	1.726	P > .05	-1.90	P > .05
57	wf c	of PO	TENTIAL	2257.5	2.561	.01 < P < .05	-2.94	.001 < P < .01
58	wf c	of RE	PUTE	2507.0	1.298	P > .05	-1.53	P > .05
59	wf c	of AS	SET TO THE NAVY	2535.5	1.233	P > .05	-1.50	P > .05
60	Sum	of V	ariables 31 through 59	2328.0	1.575	P > .05	-1.72	P > .05

247

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE EVALUATION SECTION (19R)

Probability Level	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 P > .05
Valu of		-0-
Probability Level	01 < P < .05 P > .05 P > .05 01 < P < .05 01 < P < .05	P > .05
Absolute Value of z	2.227 0.232 1.150 2.197	0.610
Value of U	2166.5 2678.0 2443.5 2513.5 2738.0	2537.5
of Variable	of 3 Weights of 2 Weights of 1 Weights of -1 Weights	of Nords in Text of Index Terms Used
Name	Number Number Number Number	Number Number
	Total Total Total Total	Total
No. of Variable	61 63 64 64	66 67

MANN-WHITNEY U TESTS WITH ASSOCIATED *z* VALUES AND *t* TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

				Absolute			
No. of			Value	Value	Probability	Value	Probability
Variable		Name of Variable	of U	of z	Level	oft	Level
1	f of	MANAGEMENT FUNCTIONS	1882.5	5.034	P < .001	-4.77	P < .001
2	f of	CONTROLLING	1650.0	5.504	P < .001	-4.75	P < .001
e	f of	LEADERSHIP AND DIRECTING	851.5	8.093	P < .001	-8.15	P < .001
4	f of	ORGANIZATION	2397.5	2.495	.01 < P < .05	-2.69	.001 < P < .01
S	f of	PLANNING	1847.5	4.875	P < .001	-4.26	P < .001
9	f of	REPRESENTATION	2477.5	2.412	.01 < P < .05	-2.38	.01 < P < .05
7	f of	STAFFING	2381.0	2.544	.01 < P < .05	-1.80	P > .05
00	f of	USE OF COMMUNICATION	2553.0	1.714	P > .05	-1.73	P > .05
6	f of	SKILLS AND ABILITIES	1331.0	6.808	P < .001	-6.58	P < .001
10	f of	COMMUNICATION	1519.5	5.473	P < 0.001	-4.50	P < .001
11	f of	CONDUCT, INTEGRITY, AND PRIDE	925.0	7.450	P < .001	-6.42	P < .001
12	f of	COOPERATION	1563.5	5.263	P < .001	-5.05	P < .001
13	f of	ENDURANCE	2404.5	2.814	.001 < P < .01	-2.83	.001 < P < .01
14	f of	FLEXIBILITY	2590.0	1.449	P > .05	-1.45	P > .05
15	f of	GROOMING AND ATTIRE	1429.5	5.712	P < .001	-3.81	P < .001
16	f of	INITIATIVE	1156.5	7.316	P < .001	-6.69	P < .001
17	f of	INTELLECTUAL FUNCTIONING	2143.5	3.689	P < .001	-3.66	P < .001
18	f of	PROFESSIONALISM	1659.0	5.831	P < .001	-5.99	P < .001
19	f of	RELIABILITY AND DEPENDABILITY	977.0	7.646	P < .001	-7.84	P < .001
20	f of	RESOURCEFULNESS	1680.0	5.414	P < .001	-5.47	P < .001
21	f of	RESPONSIVENESS	2249.5	2.981	.001 < P < .01	-3.13	.001 < P < .01
22	f of	TECHNICAL SKILLS	1218.0	6.859	P < .001	-6.64	P < .001
23	f of	PRODUCTIVITY AND ACHIEVEMENT	452.5	9.371	P < .001	-9.47	P < .001
24	f of	AWARDS AND PUNISHMENT	2701.0	1.000	P > .05	-1.00	P > .05
25	f of	DRIVE	675.5	8.734	P < .001	-8.91	P < .001
26	f of	SERVICE MOTIVATION	1840.0	4.811	P < .001	-4.95	P < .001
27	f of	POTENTIAL	1361.5	6.116	P < .001	-6.29	P < .001
28	f of	REPUTE	2107.0	4.170	P < .001	-4.22	P < .001
29	fot	ASSET TO THE NAVY	1728.5	5.341	P < .001	-5.54	P < .001
30	Sum	of Variables 1 through 29	161.5	9.969	P < .001	-11.78	P < .001

249

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

10 05			Value	Absolute	Prohah114tv	Value	Prohabilitv
NO. OI			ALLEY	SULTER	TLUUGUTTEL		
Variable		Name of Variable	ofU	of z	Level	OI t	Level
31	wf c	E MANAGEMENT FUNCTIONS	1878.0	5.057	P < .001	-4.83	P < .001
32	wf c	E CONTROLLING	1649.0	5.498	P < .001	-4.64	P < .001
33	wfc	F LEADERSHIP AND DIRECTING	860.5	8.037	P < .001	-7.76	P < .001
34	wf c	F ORGANIZATION	2388.5	2.560	.01 < P < .05	-2.97	.001 < P < .01
35	wf c	F PLANNING	1846.0	4.876	P < .001	-4.41	P < .001
36	wf c	F REPRESENTATION	2476.5	2.421	.01 < P < .05	-2.46	.01 < P < .05
37	wf c	f STAFFING	2385.5	2.509	.01 < P < .05	-1.52	P > .05
38	wf c	F USE OF COMMUNICATION	2554.0	1.704	P > .05	-1.41	P > .05
39	wf c	F SKILLS AND ABILITIES	1326.0	6.816	P < .001	-6.47	P < .001
40	wf c	F COMMUNICATION	1509.5	5.497	P < .001	-4.85	P < .001
41	wf c	f CONDUCT, INTEGRITY, AND PRIDE	982.5	7.191	P < .001	-7.01	P < .001
42	wf c	E COOPERATION	1598.0	5.078	P < .001	-4.23	P < .001
43	wf c	E ENDURANCE	2401.5	2.838	.001 < P < .01	-2.93	.001 < P < .01
44	wf c	F FLEXIBILITY	2588.0	1.468	P > .05	-1.61	P > .05
45	wf c	E GROOMING AND ATTIRE	1401.0	5.761	P < .001	-3.98	P < .001
46	wf c	F INITIATIVE	1156.0	7.265	P < .001	-6.18	P < .001
47	wf c	F INTELLECTUAL FUNCTIONING	2158.0	3.596	P < .001	-3.11	.001 < P < .01
48	wf c	F PROFESSIONALISM	1661.5	5.806	P < .001	-5.57	P < .001
49	wf c	F RELIABILITY AND DEPENDABILITY	968.5	7.647	P < .001	-7.55	P < .001
50	wf c	F RESOURCEFULNESS	1700.0	5.293	P < .001	-5.21	P < .001
51	wf c	F RESPONSIVENESS	2254.5	2.944	.001 < P < .01	-2.85	.001 < P < .01
52	wf c	F TECHNICAL SKILLS	1200.0	6.922	P < .001	-6.50	P < .001
53	wf c	F PRODUCTIVITY AND ACHIEVEMENT	375.0	9.644	P < .001	-10.08	P < .001
54	wf c	F AWARDS AND PUNISHMENT	2701.0	1.000	P > .05	-1.00	P > .05
55	wf c	f DRIVE	698.5	8.624	P < .001	-9.30	P < .001
56	wf c	E SERVICE MOTIVATION	1831.0	4.838	P < .001	-4.48	P < .001
57	wf c	f POTENTIAL	1356.0	6.119	P < .001	-6.11	P < .001
58	wf c	f REPUTE	2110.0	4.146	P < .001	-3.92	P < .001
59	wf c	ASSET TO THE NAVY	1721.0	5.358	P < .001	-5.40	P < .001
60	Sum	of Variables 31 through 59	151.5	10.005	P < .001	-12.21	P < .001

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

Probability Level	P < .001	P < .001	P < .001	P > .05	P > .05	P < .001	P < .001
Value of t	-10.19	-10.80	-8.80	-0.45	-0.45	-10.74	-17.08
Probability Level	P < .001	P < .001	P < .001	P > .05	P > .05	P < .001	P < .001
Absolute Value of z	9.646	9.439	9.179	0.435	0.000	9.693	10.019
Value of U	278.5	307.5	420.0	2702.5	2738.0	232.0	149.5
Name of Variable	otal Number of 3 Weights	otal Number of 2 Weights	otal Number of 1 Weights	otal Number of -1 Weights	otal Number of -2 Weights	otal Number of Words in Text	otal Number of Index Terms Used
No. of Variable	61 T	62 T	63 T	64 T	65 T	66 T	67 T

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

01		Name of Variable	Value of U	Absolute Value of z	Probability Level	Value of t	Probability Level
	ų	MANAGEMENT FUNCTIONS	2179.5	3.871	P < .001	-3,93	P < .001
	4	CONTROLLING	2247.5	3.103	.001 < P < .01	-3.18	.001 < P < .01
	ч	LEADERSHIP AND DIRECTING	1652.0	5.248	P < .001	-4.83	P < ,001
	щ	ORGANIZATION	2511.5	1.836	P > .05	-2.02	.01 < P < .05
	щ	PLANNING	2032.0	4.154	P < .001	-4.10	P < .001
	ч	REPRESENTATION	2626.0	1.372	P > .05	-1.48	P > .05
	ч	STAFFING	2486.5	1.966	.01 < P < .05	-1.40	P > .05
	F	USE OF COMMUNICATION	2737.0	0.014	P > .05	-0.38	P > ,05
	f	SKILLS AND ABILITIES	1889.5	4.841	P < .001	-4.66	P < .001
E P	ч	COMMUNICATION	2382.0	1.947	P > .05	-1.50	P > .05
E P	H	CONDUCT, INTEGRITY, AND PRIDE	1471.5	5.440	P < .001	-5.31	P < .001
	f	COOPERATION	2378.0	1.922	P > .05	-1.60	P > .05
E 2	ч	ENDURANCE	2440.5	2.623	10. > T > 100.	-2.52	.01 < P < .05
E 2	Ŧ	FLEXIBILITY	2626.0	1.168	P > .05	-1.29	P > .05
	F	GROOMING AND ATTIRE	1765.0	4.433	P < .001	-3.02	.001 < P < .01
	F	INITIATIVE	1750.0	5.234	P < .001	-4.16	P < .001
	÷	INTELLECTUAL FUNCTIONING	2409.0	2.412	.01 < P < .05	-2.06	.01 < P < .05
	F	PROFESSIONALISM	2256.0	3.534	P < .001	-3.38	P = .001
	H	RELIABILITY AND DEPENDABILITY	1419.5	6,080	P < .001	-6.21	P < .001
	H	RESOURCEFULNESS	2208.0	3.290	P = .001	-3.41	P = .001
_	f	RESPONS IVENESS	2321.0	2.641	.00. < P < .01	-2.85	.001 < P < .01
	E	TECHNICAL SKILLS	1860.0	4.500	P < .001	-3.73	P < .001
	F	PRODUCTIVITY AND ACHIEVEMENT	653.5	8,681	P < .001	-8.06	P < .001
	H	AWARDS AND PUNISHMENT	2738.0	0.000	P > .05	-8.06	P > .05
	F	DRIVE	1182.0	6.984	P < .001	-6.62	P < .001
	f	SERVICE MOTIVATION	2401.0	2.338	.01 < P < .05	-2.42	.01 < P < .05
	f	POTENTIAL	1978.0	3.746	P < .001	-3.14	.001 < P < .01
	F	REPUTE	2331.0	3.184	10. > T > 100.	-3.29	P = .001
10 March 10	H	ASSET TO THE NAVY	2144.5	3.692	P < .001	-3.66	P < .001
and 178	O	f Variables 1 through 29	478.0	8.753	P < .001	-9.32	P < .001

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

No of			1.1.1.	Absolute	Destation 14 +	11-1-11	Dar 1 - 1 - 1
Variable		Name of Variable	of U	of z	Level	of t	Level
31	wf o	E MANAGEMENT FUNCTIONS	2177.0	3.887	P < .001	-3.92	P < .001
32	wf o	E CONTROLLING	2313.5	2.684	.001 < P < .01	-3.13	10. > T > 100.
33	wf o	F LEADERSHIP AND DIRECTING	1639.5	5.300	P < .001	-4.74	P < .001
34	wf o	E ORGANIZATION	2505.5	1.884	P > .05	-2.32	.01 < P < .05
35	wf o	E PLANNING	2034.0	4.138	P < .001	-3.88	P < .001
36	wf o.	E REPRESENTATION	2626.0	1.372	P > .05	-1.50	P > .05
37	wf o.	E STAFFING	2491.0	1.930	P > .05	-1.09	P > .05
38	wf o.	E USE OF COMMUNICATION	2738.0	0.000	P > .05	-0.00	P > .05
39	wf o	F SKILLS AND ABILITIES	1889.0	4.836	P < .001	-4.53	P < .001
40	wf o	F COMMUNICATION	2310.5	2.335	.01 < P < .05	-1.75	P > .05
41	wf o	f CONDUCT, INTEGRITY, AND PRIDE	1559.0	5.047	P < .001	-4.50	P < .001
42	wf o	F COOPERATION	2390.5	1.852	P > .05	-1.18	P > .05
43	wf o	F ENDURANCE	2439.0	2.636	10. > T > 100.	-2.49	.01 < P < .05
44	wf o	F FLEXIBILITY	2625.0	1.178	P > .05	-1.38	P > .05
45	wf o	F GROOMING AND ATTIRE	1735.5	4.543	P < .001	-3.09	.001 < P < .01
46	wf o	f INITIATIVE	1751.0	5.203	P < .001	-3.68	P < .001
47	wf o	F INTELLECTUAL FUNCTIONING	2414.0	2.373	.01 < P < .05	-1.79	P > .05
48	wf o	f PROFESSIONALISM	2258.0	3.516	P < .001	-2.97	.001 < P < .01
65	wf o	F RELIABILITY AND DEPENDABILITY	1439.5	5.961	P < .001	-5.51	P < .001
50	wf o	F RESOURCEFULNESS	2231.0	3.143	.001 < P < .01	-2.61	P = .01
51	wf o	F RESPONSIVENESS	2324.0	2.619	.001 < P < .01	-2.65	.001 < P < .01
52	wf o	F TECHNICAL SKILLS	1839.0	4.584	P < .001	-4.09	P < .001
53	wf o	F PRODUCTIVITY AND ACHIEVEMENT	614.0	8.805	P < .001	-8.05	P < .001
54	wf o	F AWARDS AND PUNISHMENT	2738.0	0.000	P > .05	-8.05	P > .05
55	wf o	f DRIVE	1223.0	6.781	P < .001	-6.08	P < .001
56	wf o	F SERVICE MOTIVATION	2395.0	2.377	.01 < P < .05	-2.58	.01 < P < .05
57	wf o	f POTENTIAL	1972.5	3.757	P < .001	-2.79	.001 < P < .01
58	wf o	f REPUTE	2333.5	3.160	10. > P > 100.	-2.89	.001 < P < .01
59	wf o.	F ASSET TO THE NAVY	2137.5	3.724	P < .001	-3.66	P < .001
60	Sum	of Variables 31 through 59	523.0	8.576	P < ,001	-9.25	P < .001

253

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE LOWER VS. MIDDLE CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE JUSTIFICATION SECTION (198)

						Absolute						
No. of					Value	Value	Probability	Value	Pr	ob	ab1.	lity
Variable		Name	of	Variable	ofU	of z	Level	of t		- Al	eve	
61	Total	Number	Of	3 Wetchts	0.46	7,088	P < .001	-7.29	¢	V	0	10
									e 1			1 .
29	Total	Number	OH	2 Weights	144.0	/./08	T00 > 4	-/.49	4	V	ō.	TO
63	Total	Number	of	1 Weights	762.5	7.914	P < .001	-8.08	P.	V	ŏ.	01
64	Total	Number	of	-1 Weights	2738.0	0.000	P > .05	0.00	9	Λ	0.	5
65	Total	Number	of	-2 Weights	2738.0	0.000	P > .05	0.00	9	٨	0.	10
99	Total	Number	of	Words in Text	569.0	8.396	P < 001	-8.66	4	V	.0	10
67	Total	Number	of	Index Terms Used	466.0	8.806	P < .001	-11.39	9	V	0.	01

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

				Absolute			
No. of			Value	Value	Probability	Value	Probability
Variable		Name of Variable	ofU	of z	Level	oft	Leve1
1	f of	MANAGEMENT FUNCTIONS	2440.0	1.467	P > .05	-1.59	P > .05
2	f of	CONTROLLING	2155.0	2.668	.001 < P < .01	-2.37	.01 < P < .05
ę	f of	LEADERSHIP AND DIRECTING	1812.0	3.692	P < .001	-3.31	P = .001
4	f of	ORGANIZATION	2625.5	0.712	P > .05	-0.50	P > .05
2	f of	PLANNING	2556.5	0.837	P > .05	-1.15	P > .05
9	f of	REPRESENTATION	2593.0	1.175	P > .05	-0.62	P > .05
7	f of	STAFFING STAFFING	2633.5	0.638	P > .05	-0.19	P > .05
Ø	f of	USE OF COMMUNICATION	2556.5	1.681	P > .05	-1.19	P > .05
6	f of	SKILLS AND ABILITIES	2126.0	2.617	.001 < P < .01	-2.73	.001 < P < .01
10	f of	COMMUNICATION	1838.5	3.862	P < .001	-3.57	P = .001
11	f of	CONDUCT, INTEGRITY, AND PRIDE	2123.0	2.413	.01 < P < .05	-2.41	.01 < P < .05
12	f ol	COOPERATION	1903.5	3.585	P < .001	-3.48	P = .001
13	f oi	ENDURANCE	2712.5	0.169	P > .05	0.49	P > .05
14	f of	FLEXIBILITY	2704.0	0.287	P > .05	0.00	P > .05
15	f of	GROOMING AND ATTIRE	2474.5	1.089	P > .05	-0.56	P > .05
16	f ol	INITIATIVE	2041.0	2,950	.001 < P < .01	-3.09	.001 < P < .01
17	f oi	INTELLECTUAL FUNCTIONING	2444.5	1.588	P > .05	-1.82	P > .05
18	f ol	PROFESSIONALISM	2096.0	3.067	.001 < P < .01	-3.18	.001 < P < .01
19	f of	RELIABILITY AND DEPENDABILITY	2143.5	2.390	.01 < P < .05	-2.69	.001 < P < .01
20	f of	RESOURCEFULNESS	2223.0	2.364	.01 < P < .05	-2.00	.01 < P < .05
21	f of	RESPONSIVENESS	2676.0	0.325	P > .05	-0.15	P > .05
22	f of	TECHNICAL SKILLS	1894.0	3.495	P < .001	-3.82	P < .001
23	f ol	F PRODUCTIVITY AND ACHIEVEMENT	2366.5	1.459	P > .05	-1.54	P > .05
24	f of	AWARDS AND PUNISHMENT	2701.0	1.000	P > ,05	-1.00	P > ,05
25	f of	DRIVE	1867.0	3.411	P < .001	-3.66	P < .001
26	f of	SERVICE MOTIVATION	2180.0	2.740	.00. < P < .01	-2.46	.01 < P < .05
27	f of	POTENTIAL	1947.0	3.271	.001 < P < .01	-3.79	P < .001
28	f of	REPUTE	2492.0	1.351	P > .05	-1.72	P > .05
29	f of	ASSET TO THE NAVY	2282.5	2.119	.01 < P < .05	-2.23	.01 < P < .05
30	Sum	of Variables 1 through 29	1502.5	4.742	P < .001	-4.80	P < .001

255

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

No. of			Value	Absolute Value	Probability	Value	Probability
Variable		Name of Variable	of U	of z	Level	of t	Level
31	wf of	MANAGEMENT FUNCTIONS	2443.5	1.447	P > .05	-1.47	P > .05
32	wf of	CONTROLLING	2128.0	2.781	.001 < P < .01	-2.34	.01 < P < .05
33	wf of	LEADERSHIP AND DIRECTING	1847.5	3.530	P < .001	-3.17	.001 < P < .01
34	wf of	ORGANIZATION	2620.5	0.743	P > .05	-0.74	P > .05
35	wf of	PLANNING	2534.5	0.934	P > .05	-0.97	P > .05
36	wf of	REPRESENTATION	2592.5	1.179	P > .05	-0.92	P > .05
37	wf ol	STAFFING	2625.0	0.688	P > .05	-0.19	P > .05
38	wf ol	USE OF COMMUNICATION	2555.0	1.695	P > .05	-1.45	P > .05
39	wf of	SKILLS AND ABILITIES	2086.0	2.762	.001 < P < .01	-2.96	.001 < P < .01
40	wf of	COMMUNICATION	1875.5	3.680	P < .001	-3.81	P < .001
41	wf of	CONDUCT, INTEGRITY, AND PRIDE	1976.5	2.960	.001 < P < .01	-3.12	.001 < P < .01
42	wf of	COOPERATION	1917.5	3.489	P < .001	-3.13	.001 < P < .01
43	wf of	ENDURANCE	2704.0	0.224	P > .05	0.19	P > .05
44	wf of	FLEXIBILITY	2701.0	0.312	P > .05	-0.29	P > .05
45	wf of	GROOMING AND ATTIRE	2425.0	1.252	P > .05	-0.44	P > .05
46	wf of	INITIATIVE	2007.0	3.007	.001 < P < .01	-3.27	P = .001
47	wf ol	INTELLECTUAL FUNCTIONING	2470.0	1.447	P > .05	-1.37	P > .05
48	wf of	PROFESSIONALISM	2087.0	3.094	.001 < P < .01	-3.13	10. > T > 100.
65	wf of	RELIABILITY AND DEPENDABILITY	2019.5	2.836	.001 < P < .01	-2.96	.001 < P < .01
50	wf of	RESOURCEFULNESS	2141.5	2.720	10. > T > 100.	-2.91	.001 < P < .01
51	wf of	RESPONSIVENESS	2680.0	0.303	P > .05	0.00	P > .05
52	wf of	TECHNICAL SKILLS	1919.0	3.348	P < .001	-3.90	P < .001
53	wf of	PRODUCTIVITY AND ACHIEVEMENT	2100.0	2.463	.01 < P < .05	-2.25	.01 < P < .05
54	wf of	AWARDS AND PUNISHMENT	2701.0	1.000	P > .05	-1.00	P > .05
55	wf of	DRIVE	1808.5	3.617	P < .001	-3.79	P < .001
56	wf of	SERVICE MOTIVATION	2197.0	2.636	.001 < P < .01	-2.07	.01 < P < .05
57	wf of	POTENTIAL	1930.0	3.294	P < .001	-3.69	P < .001
58	wf of	REPUTE	2488.0	1.367	P > .05	-1.75	P > .05
59	wf of	ASSET TO THE NAVY	2294.0	2.040	.01 < P < .05	-2.08	.01 < P < .05
60	Sum o	of Variables 31 through 59	1405.0	5.113	P < .001	-5.25	P < .001

(Continued)

MANN-WHITNEY U TESTS WITH ASSOCIATED z VALUES AND t TESTS OF MEAN DIFFERENCE ON ALL 67 VARIABLES FOR THE MIDDLE VS. UPPER CRITERION GROUPS COMPARISON OF THE GENERALIZATION SAMPLE ON THE JUSTIFICATION SECTION (19S)

bability Value Probability Level of t Level	<.001 -4.82 P < .001	<.001 -4.68 P <.001	< P < .05 -2.76 .001 < P < .01	> .05 -0.45 P > .05	> .05 -0.45 P > .05	<pre>< .001 -4.47 P < .001</pre>	< .001 -5.42 P < .001
Pro	д	A	.01	Д	P-I	P4	A
Value of z	4.817	4.477	2.498	0.435	0.000	4.539	4.990
Value of U	1491.0	1574.0	2088.5	2702.5	2738.0	1554.5	1440.0
Name of Variable	f 3 Weights	f 2 Weights	f 1 Weights	f -1 Weights	f -2 Weights	f Words in Text	f Index Terms Used
	mber o	mber o	mber o	mber o	mber o	mber o	mber o
	Total Nu	Total Nu	Total Nu	Total Nu	Total Nu	Total Nu	Total Nu
No. of Variable	61	62	63	64	65	99	67

DISTRIBUTION LIST

NAVY

- 4 Dr. Marshall J. Farr, Director Personnel & Training Research Programs Office of Naval Research Arlington, VA 22217
- 1 Director ONR Branch Office 495 Summer Street Boston, MA 02210 ATTN: C. M. Harsh
- 1 Director ONR Branch Office 1030 East Green Street Pasadena, CA 91101 ATTN: Dr. E. E. Gloye
- Director
 ONR Branch Office
 536 South Clark Street
 Chicago, IL 60605
 ATTN: M. A. Bertin
- 6 Director Naval Research Laboratory Code 2627 Washington, DC 20390
- 12 Defense Documentation Center Cameron Station, Building 5 5010 Duke Street Alexandria, VA 22314
- 1 Chief of Naval Technical Training Naval Air Station Memphis (75) Millington, TN 38054 ATTN: Dr. G. D. Mayo
- 1 Chief of Naval Training Naval Air Station Pensacola, FL 32508 ATTN: Mr. Ray Williams
- 1 Mr. Lee Miller (AIR 413E) Naval Air Systems Command 5600 Columbia Pike Falls Church, VA 22042

- 1 Dr. Harold Booher NAVAIR 415C Naval Air Systems Command 5600 Columbia Pike Falls Church, VA 22042
- 1 Special Assistant for Manpower OASN (M&RA) The Pentagon, Room 4E794 Washington, DC 20350
- 1 Dr. Richard J. Niehaus Office of Civilian Manpower Management Code 06A Department of the Navy Washington, DC 20390
- 1 CDR Richard L. Martin, USN COMFAIRMIRAMAR F-14 NAS Miramar, CA 92145
- 1 Research Director, Code 06 Research and Evaluation Department U.S. Naval Examining Center Great Lakes, IL 60088 ATTN: C. S. Winiewicz
- 1 Commanding Officer Naval Medical Neuropsychiatric Research Unit San Diego, CA 92152
- 1 Technical Reference Library Naval Medical Research Institute National Naval Medical Center Bethesda, MD 20014
- 1 Chief Bureau of Medicine and Surgery Research Division (Code 713) Department of the Navy Washington, DC 20372

- 1 Dr. John J. Collins Chief of Naval Operations (OP-987F) Department of the Navy Washington, DC 20350
- 1 Technical Library Bureau of Naval Personnel Department of the Navy Washington, DC 20360
- 1 Head, Personnel Measurement Staff Capital Area Personnel Office Ballston Tower #2, Room 1204 801 N. Randolph Street Arlington, VA 22203
- 1 Technical Director Naval Personnel Research and Development Center San Diego, CA 92152
- 1 Dr. Norman Abrahams Naval Personnel Research and Development Center San Diego, CA 92152
- 1 Dr. Bernard Rimland Naval Personnel Research and Development Center San Diego, CA 92152
- 1 Superintendent
 Naval Postgraduate School
 Monterey, CA 92940
 ATTN: Library (Code 2124)
- 1 Technical Library
 Naval Ship Systems Command
 National Center, Building 3
 Room 3S08
 Washington, DC 20360
- 1 Dr. William L. Maloy Principal Civilian Advisor for Education and Training Naval Training Command, Code 01A Pensacola, FL 32508
- 1 Mr. Arnold Rubinstein Naval Material Command (NMAT-03424) Room 820, Crystal Plaza #6 Washington, DC 20360

ARMY

- 1 U.S. Army Research Institute Commonwealth Building, Room 239 1300 Wilson Boulevard Arlington, VA 22209 ATTN: Dr. R. Dusek
- 1 Mr. Edmund F. Fuchs U.S. Army Research Institute 1300 Wilson Boulevard Arlington, VA 22209
- 1 Dr. Stanley L. Cohen Work Unit Area Leader Organizational Development Work Unit Army Research Institute for Behavioral and Social Science 1300 Wilson Boulevard Arlington, VA 22209

AIR FORCE

- 1 Research and Analysis Division AF/DPXYR Room 4C200 Washington, DC 20330
- 1 AFHRL/MD 701 Prince Street Room 200 Alexandria, VA 22314
- 1 Personnel Research Division
 AFHRL
 Lackland Air Force Base
 Texas 78236
- 1 AFOSR(NL) 1400 Wilson Boulevard Arlington, VA 22209

MARINE CORPS

- 1 Commandant, Marine Corps Code A01M-2 Washington, DC 20380
- 1 Dr. A. L. Slafkosky Scientific Advisor (Code Ax) Commandant of the Marine Corps Washington, DC 20380

- 1 COL George Caridakis Director, Office of Manpower Utilization Headquarters, Marine Corps (A01H) MCB Quantico, VA 22134

OTHER DOD

- 1 Lt. Col. Austin W. Kibler, Director Human Resources Research Office Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209
- 1 Dr. Ralph R. Canter Director for Manpower Research Office of Secretary of Defense The Pentagon, Room 3C980 Washington, DC 20301

OTHER GOVERNMENT

- 1 Dr. Lorraine D. Eyde Personnel Research and Development Center U.S. Civil Service Commission, Room 3458 1900 E. Street, N.W. Washington, DC 20415
- 1 Dr. Vern Urry Personnel Research and Development Center U.S. Civil Service Commission Washington, DC 20415

MISCELLANEOUS

- 1 Dr. Richard C. Atkinson Stanford University Department of Psychology Stanford, CA 94305
- 1 Century Research Corporation 4113 Lee Highway Arlington, VA 22207
- 1 Dr. Rene' V. Dawis University of Minnesota Department of Psychology Minneapolis, MN 55455

- 1 Dr. Robert Dubin University of California Graduate School of Administration Irvine, CA 92664
- 1 Dr. Marvin D. Dunnette University of Minnesota Department of Psychology N492 Elliott Hall Minneapolis, MN 55455
- 2 ERIC Processing and Reference Facility 4833 Rugby Avenue Bethesda, MD 20014
- 1 Dr. Victor Fields Department of Psychology Montgomery College Rockville, MD 20850
- 1 Dr. Edwin A. Fleishman American Institutes for Research 8555 Sixteenth Street Silver Spring, MD 20910
- 1 Dr. Harry H. Harman Educational Testing Service Division of Analytical Studies and Services Princeton, NJ 08540
- 1 Dr. Richard S. Hatch Decision Systems Associates, Inc. 11428 Rockville Pike Rockville, MD 20852
- 1 Human Resources Research Organization Division #3 P.O. Box 5787 Presidio of Monterey, CA 93940
- Dr. Lawrence B. Johnson Lawrence Johnson and Associates, Inc.
 200 S Street, N.W., Suite 502 Washington, DC 20009
- 1 Dr. Frederick M. Lord Educational Testing Service Princeton, NJ 08540

- 1 Dr. E. J. McCormick Purdue University Department of Psychological Sciences Lafayette, IN 47907
- 1 Dr. Joseph W. Rigney Behavioral Technology Laboratories University of Southern California 3717 South Grand Los Angeles, CA 90007
- 1 Dr. Leonard L. Rosenbaum, Chairman Department of Psychology Montgomery College Rockville, MD 20850
- 1 Dr. Arthur I. Siegel Applied Psychological Services Science Center 404 East Lancaster Avenue Wayne, PA 19087
- 1 Dr. David J. Weiss University of Minnesota Department of Psychology Minneapolis, MN 55455