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SUMMARY 

The objective of the work reported herein was to investigate the 

effect of temperature on the elastic and viscoelastic properties of char- 

coal granite and Dresser basalt under uniaxial  tension and compression. 

Also, the effect of the difference in tensile and compressive properties 

on the stress analysis, in general, and on the stress and strain distribu- 

tion of a beam under bending and a disk under diametral compression, in 

particular, were analyzed. 

Uniaxial comprtssive and tensile tests on charcoal granite and Dresser 

basalt at elevated temperatures were conducted.    For charcoal  granite under 

uniaxial compression, the results indicate that at lower temperature (750F 

to 500oF) the stress-strain relation are time-independent; above that, the 

stress-strain relations become time-dependent.    Under uniaxial tension, 

charcoal  granite is elastic though the elastic modulus depends on tempera- 

ture.    Results of uniaxial  tension and compression tests on Dresser basalt 

indicate that both the tensile and compressive stress-strain relations 

exhibit time-dependency only at higher temperature (about 450oF). 

A general  bilinear elastic and viscoelastic theories were formulated 

and some interesting results as the consequence of the bilinearity were ob- 

tained.    Three boundary value problems, a beam under pure bending, a circular 

opening under internal pressure and a disk under dimetral compression were 

analyzed.    Tne results indicate that when tensile modulus is smaller than 

the compressive modulus, the critical  tensile stresses in these problems 

tend to be decreasing. 

Diametral compression and    bemiing tests were conducted on charcoal 

granite.    The experimental resultr. of maximum tensile and compressive strain 

in the beam and the tensile and wOmpresswe strains at the center of the 

disk seem can be predicted from the linear elastic solutions. 
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The results obtained in this study will add to the understanding of the 

time-dependent properties of rocks and the effect of the time-dependent 

properties of rocks to the stability of the underground structures, particularly 

under severe high temperature environment. 
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1.0 INTRODUCTION 

The requirement for improvinq the safety of underqround structures 

for obtaining minerals deep in the earth such as mine pillars, for the 

economic storage of food, chemicals, medical supplies, etc-, for the civil 

work such as dams, subways, transportation tunnels, and for underqround 

military installations, a better understanding of the fundamental mechanical 

properties of rocks is needed.  In aeneral, rocks are considered to be an 

elastic material under relatively short duration of loading at normal temper- 

atures. The creep behavior of rock appears to be significant under loading 

which acts over a long period of time or for short as well as long term 

loading under elevated temperature. Therefore, if underground structures 

are expected to be in service for a long period, the time and temperature 

dependent properties of rock materials need to be invrtigated more thoroughly. 

Many tests have been performed on a large number of rock types under 

different loading and environmental conditions in an attempt to determine 

the time-dependent deformation and to develop the constitutive equation 

relating strain as a function of stress state, time, temperature and other 

related variables such as water content, loading rate, etc. It is found that 

most of the observed creep test results for a number of rock types can be 

expressed in the following form: 

e = e + e + Bt e  c 

fci   ,| 

where ee is the elastic strain, Bt is the steady-state creep and e is the 

transient or primary creep. Tertiary creep is not included because laboratory 

studies indicate that its duration is usually so short that, once it is 

initiated, failure cannot be arrested. Griggs [1]* indicated that the tran- 

sient creep in Solenhofen limestone specimen, loaded for 550 days in uniaxial 

♦Numbers in brackets refer to references. 

-/- 
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compression at approximately 50% of its crushing strength, was logarithmic 

and could be expressed by 

E = (6.1 + 5.21 log t) lO'5 

Not only is tertiary creep not included but also a term for steady state 

cr^ep was either absent or negligible. However, under confined pressure, 

it was found that the creep rate in the same limestone should include a 

steady state term and the departure from strictly logarithmic creep was 

observed within 10 minutes after start of Ihe test. However, in relating 

to the design of rock structure, this duration is too short to be consid- 

ered. Höfer [2] measured the lateral deformation in pillars in a number 

of German potash (halite plus sylvite) mines and showed that the lateral 

deformation rate was constant for periods ranging from 63 days to nearly 

10 yearr and strain rates up to 4 per cent per year, ^icro-seismic inves- 

tigation indicited however that there is a period of accelerated movement 

of in-situ rock preceding failure [3]. This period may range from a few 

hours to several weeks depending on the size of the rock. Thus it can be 

interpreted that in-situ rock exhibits varying degrees of transient creep, 

steady-state creep and tertiary creep. 

Results from previous reports [1,4,5,6] indicated that the time- 

dependent behavior of rock is strongly affected by temperature. Hokao 

[7] measured the change of the strength and Young's modulus, in tension 

and compression, of rocks caused by temperature changes. Photomicrographs 

indicated that decrease in the strength at elevated temperature might be 

caused by the expansion of minerals, especially the quartz component at its a-6 
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transition temperature, in which many cracks were beinq observed. Le Comte 

[5] performed creep experiments at constant load OP polycrystalline halite 

and showed that it is also possible to induce large permanent strain without 

confining pressure provided that the temperature is sufficiently high, 

Byerlee [8] indicated that at higher confining pressure and at elevated 

temperature, intracrystalline deformation mechanisms can also occur. In 

the study of the short time thermoviscoelastic behavior of Charcoal granite 

and Dresser basalt at elevated temperatures (up to 1000oC), Fischer and 

Cheung [9] found that the creep compliance data could be treated as a thermo- 

rheologically simple material in which time-tempera cure superposition 

principle is applicable. 

In uniaxial compressive, creep tests of rocks, many researchers [10,11, 

12,13] observed that .-ocks deformed more in the initial stage of loading. 

Brace [11] showed that the strain-stress behavior of rock is strongly non- 

linear at low stress. Morgenstern [13] found, for sandstone, that when the 

sum of the principal stresses is greater than about 1600 psi, the modulus 

of rigidity becomes a constant and the stress-strain relation is nonlinear 

when the stress is below that level. A similar stress-strain relation was 

mentioned by Prager [14] from testing living soft tissues, granular materials 

and show which deform more freely under small stress until a certain strain 

level is reached after which the stiffness of the materials increase rapidly. 

Most creep results available for rock are from compression tests. 

There have been very few results of creep in tension. It is known that the 

tensile strength of rocks is very small in comparison to its compressive 

strength and that the modulus of rocks in tension is different from that in 

creep compression. Also, the time-dependent properties of rocks under tensile 

^M MH^M_ ■ '    — - 
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scress are relatively unknown. Although many rock structures are designed 

such hat stress states in an entire structure are compressioned. situations 

do occur in which part of the structure is subjected to tensile stress, and. 

under this situation tensile properties of rocks are extremely important. 

If the stress-strair relations under tension and compression are different, 

the conventional linear elastic and/or linear viscoelastic solutions of 

various boundary value problems relating to the rock structures can introduce 

erratic result:, as indicated by Harmson and Tharp [15]. Unrier this condition, 

the bilinear behavior, in which the tensile modulus (ET) and compressive 

modulus (Ec) are considered to be different, should be incorporated in 

the theoretical analysis. The tensile and compressive Young's moduli of 

certain rock types are shown in Table I. 

Very little literature can be found at the present time in the area of 

bilinear analyses. Ambartsumyan and Khachatryan [16] have presented the 

basic formulations of bilinear elastic theory. Herrmann [17], Haimson and 

Tharp [15] and Blatz and Levinson [18] investigated the problem of thick- 

walled cylinders. 

The objective of the research carried out herein are: 

(1) Experimental investigations of the time and temperature 

dependent properties of rocks with emphasis on investigating 

the different response under tensile and compressive stresses; 

(2) Theoretical investigation of the stress-strain distribution 

of a beam, a diametrically loaded disc of rocks using bilinear 

stress-strain relations; and 

(3) Comparison of the theoretical predictions of the beam and the 

diametrally loaded disc with the experimental results. 

-4- 
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TABLE I - YOUNG'S MODULI IN TENSION AND COMPRESSION 

Rock Type 
Et 

no6 psi) 

Ec 

do6 psi) 
*2 ' Et/Ec 

g 
Westerly granite 2.5 10.5 0.24 

Austin limestone 1.7 2.3 0.74 

Cartnage limestone 5.1 9.2 0.55 

Indiana limestone 1.6 3.9 0.41 

Indiana limestone 2.5 4.9 Q51 
o 

Georgia marble 3.4 6.1 0.56 

Tennessee marble 7.7 11.1 0.69 
o 

Russian marble 1.3 3.0 0.43 
a 

Star Mine quartzite 11 0 11.0 1.00 

Arizona sandstone 1.7 6.6 0.26 
g 

Berea sandstone 0.50 

Mi 11 sap sandstone 0.1 1.9 0.05 

Tennessee sandstone 0.2 2.4 0.08 

Russian sandstone 1.7 8.3 0.21 

-   ■ .UMMIHai^aMMMk 
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2.0 BILINEAR ELASTIC AND VISCOELASTIC THEORIES 

The constitutive relations governing an isotropic linear elastic 

material can be expressed by the following equations: 

aij s Xekk6ij + 2Geij 

The constant X and G are calle-l Lames constants, where 

(1) 

G = JU^T 

is the modulus of elasticity in shear, E is the elastic modulus (Young's 

(2) 

modtlus), v is the Poisson's ratio, and 

^ Ev 2G 
X = (l+v)(l-2v) " T^T 

(3) 

Inverting (1) to solve for the strain tensor e^ yields 

e.    ■ —F— Oj j - F 01.1,0^ 
(4) :ij '-r^j ■ Eökkoij 

It can be shown, such as ,3) and (4) that there are only two material constants 

for a linear elastic material. 

For (isotropic) linear viscoelastic materials, the following governing 

constitutive relations can be obtained: 

aij(t) = 36 

or alternatively. 

ij       K(t-0-f-cK+2     G( (5) 

r1       9akk^)      f .   ^ a0ij(o 
d^ (6) 

Again, there are only two independent time functions K(t), G(t), or J^t) and 

0 (t) or their equivalent forms for a linear viscoelastic Material. 

MMMBfl 
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Equation (1), implies that under the infinitesimal unlaxial tension 

and compression strain, the magnitude of the stress output are the same. 

This fundamental assumption has been verified experimentally to be true or 

nearly so for most of tha materials. Based on this assumption, theories 

of linear elasticity and linear viscoelasticity have been developed. 

Stricfy speaking, nowever, almost every material behaves differently 

in tension and compression. This is particularly true for composite mate- 

rials, such as rocks, concrete, soil, asphalt concrete, solid propellants, 

etc., as the mechanisms of deformation induced by tensile and compressive 

stresses are different. Therefore, the stress-strain relations under tension 

and compression are different. Because of this, the linear elastic and 

viscoelastic theories which assume a unique modulus for tension and compres- 

sion may not be aMe tc describe the stress and strain distribution 

accurately. 

It is the objective of this chapter to explore the theoretical impli- 

cations of bilinearity derived from the behavior of materials. The term 

'bi-linear" is used in this report to refer to the behavior of materials 

having different linear stress-strain relations under tension and compres- 

sion, see Figure 1. 

2.1 Bilinear Elastic Constitutive Relations 

For a bilinear elastic material subjected to uniaxial tension and 

compression tests, as shown in Figure 2, four material constants Ej, E , v j . 

and vc are obtained. These four constants are defined as follows: 

Er'? 
°l 
c^bT - b 

■■ ■ i^h 
-7- 
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where subscript T and c denote for tension and compression respectively. 

For linear elastic materials, as mentioned at the beginning of the chapter, 

there are only two material constants, say E and v, and the other material 

constants can be expressed in terms of these two constants.    For example, 

(2) relates the shear modulus G to E and v.    Similarly, for bi-linear 

elastic materials, the other material constatits associated with different 

stress states mav be exoressed in terms of f'.\e four constants defined 

in (7).     Before going   into   such   details,    the   derivation   of   the 

bilinear stress-strain relations unHer fiaxiol principal stress states is 

in order.    Let o^, o2 and a3 be the principal stresses at a given material 

point of the body as shown in Figure 3.   Due to the fact that the principal 

stresses o1, a2 and a3 at any point can be either positive or negative, the 

deformed body may be divided essentially into four zones with their corres- 

ponding stress-strain relations given in the following: 

(1) Zone (I):    o1 > 0 ,    a2 > 0 ,    a3 > 0 

l+v-r V. T T 
1 = ~i—ö1 - |- (o^+c^+Oj)  ,    permutation 1, 2, 3, 

l-2v 

l+e2+e3 = "T-T (VV^ —SKJ:— 

where 3KT = ,  ' 
T  l-Zvj 

(8a,b,c) 

(8d) 

(2) Zone (II): o, > 0 , a9 > 0 , o,< 0 

VT v. 
(9a) 

c    _  
VT01 t 

02  vc 
(9b) 

-10- 
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c3 -ir-Tr*^ 

l+e2+e3 = "IT" (öl+ö2+a3) +(^ 
1 +
2vT 

» 

'"2vT /1   1 \ 

where ET " E 
c 

(9c) 

(9d) 

(3) Zone (III): a1 > 0 , a2 < 0 , a- < 0 

e -ai  Vc02  V^ 

Vl  a2  vc 
TT + r - r a3 i c   c 

Vl  vc    ö3 

2v_  2v, 
:l+e2t£3 ■ -T^'l^^' + (l7 " i; + E^- " E^Vl 

l-2v /     v 
= __ (0i+a2+a3) + ^l_ . 1^ 

(10a) 

(10b) 

(10c) 

(10d) 

(4) Zone (IV): a1 < 0 , a. < 0 , a- < 0 

1+vc    vc 
^1 = -g— cri " E

-
 (ai+ö2+03)' permutation 1, 2, 3 

c 

l-2v. (a +0 +a ) 
el+e2+e3 = T— (al+a2+ö3) =   3k 

(lla.b.c) 

(lid) 

where 3K c = T^T 

vc_ ^ 
F- = r-   can be argued from th? postulation of the strain-energy density 

c       T 

function. 
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This shows that the designated zones based upon stress and strain are 

not necessarily the same. In other words, "bi-linearity" has two definitions; 

one is based upon stress and the other one is based upon strain. These two 

definitions are illustrated in Figure 4. In Figure 4a, whenever the stress- 

strain curve crosses the zero stress points, the slope (modulus) changes 

from E to ET ot T- to t . In Figure 3b, the modulus will change whenever 

the stress-strain curve crosses the zero strain points. Biaxial tests are 

required in order to determine which one of the criteria will fit closer to 

the actual behavior of a given material. Perhaps an even more general bi- 

linear state can exist in which the "cress-over" point can occur at stress 

and strain anywhere. 

In our study we will concentrate on the more restricted case in which 

the cross-over point occurs at the zero stress state; that is, the stress- 

strain relation shown in Figure 4a. 

in the stress zone I and IV , the stress-strain relations (8a,b,c,d) 

and (11a,b,cd) are identical to the scress-strain relations of linear 

elasticity (4), except Ej, v and Ec, vc are used respectively, for tension 

and compression. Therefore, the basic equations, the stress analysis tech- 

niques and the results from linear elasticity can be used directly in 

these two stress zones. In the stress zones II and III, however, the stress- 

strain relations are different from (4) and that is where the bi-linear 

elastic theory deviates from the linear elastic theory. 

Solving (8), (9), (10) and (11), for stress components after simplifying 

yields: 

(1) Zone (I) 

Ej        EJVJ 
al = Th^ el + (l+vT)0-2vT) 

(El+e2+e3) 

permutation 1, 2, 3  (12a,b,c) 

-13- 
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Stress criterion 

Strain criterion 

FIGURE 4 Stress and Strain Criteria of Bilinear Stress-Strain Relations 
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(2)    Zcne (II):    o, > 0 ,   a, > 0 ,   a, < 0 

a, = 
1 = (l+vT)(l-vT-2vTvc)  t(l-Vc,Cl + VT(1+Vc)e2 + Vc{1+VT,£3] 

E (13a) 

02 = ll+vT)(l-vT-2vTvc) tvT(1+vc,el + <1-vTvc)e2 + ^^^T^S^ 

E (13b) 

03 = (l-vT-2vTvc) tvT(el+e2+e3) + ^-^j)^ (13c) 

(3)    Zone (III):    a1 > 0 ,   a2 < 0 .   o- < 0 

(14a) Gl = (l-vc-2vTvc) t^l+V^ + O-^c^l^ 

ö2 = (l+vc)(l-vc-2vcvT)  CV1+vc,el + 0-vTvc)e2+vcll+vT)e3] 

E (14b) 

03 = (l+vc)(l-vc-2vcvT) CVT(1+Vc)el + vc(1+vT,e2 + H-Vc^ 

(14c) 

i 

(4) Zone (IV):  (^ < 0 , o2 < 0 , a3 < 0 

a, = 
Ecvc 

1 = ^T '1 + (l+vc)(l-2vc) ^l
+e2+e3) 

permututlon 1. 2, 3  (15a,b,c) 

Notice that the four zones specified above are based on the sign of 

the principal stresses. The corresponding principal strains e,, e?, e,, 

however, do not have to have the same sign combination. For example, in 

Zone 1, the e1 could be in compression if a2 and/or 03 are much larger than o. 

-15- 
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Once the stress-strain relations have been established under principal 

stress states, the stress-strain relations under general stress state can 

be derived by applying the method of transformation.    For the sake of 

simplicity, the plane stress state (a3 = 0) instaad of a general three- 

dimensional stress state is considered in the following.    In this case there 

are only three zones:  (1) o1 > 0, a2 > 0, 03   =0;    (2) o1 > 0, a2<   0, 03   =0; 

(3)   ö1 < 0, o2 < 0, CJ3 = 0.    Zone (1) and Zone (3) are Identical to the 

linear elastic problem provided ET, vT and E. u   are used instead of E and IT c     c 
v in Zone (1) and Zone (3), respectively.    Hence, only the general stress- 

strain relations in Zone (2) are to be derived in the following: 

e-, = 7- ET "1      Ec ^2 (17a) 

VT 1 
Ep+E^2 (17b) 

E70I -r02 
I c 

- ^(a1+ö2) 
c 

(17c) 

In order to obtain the general stress-strain relations between e , e , 
A   y 

Yxy as the function   of ax, a , Yxy. from the principal stress-strain 

relations of (17), the following procedures will be taken.    From the geometric 

relation »-he transformation will be performed to obtain the strain   e , e , 
x  y 

Yxy with respect to x-y axes as the function of e^ and e2 with respect to 

the principal axes 1 and 2 and the results are shown in the following: 

2ex * ^el + e2^ + ^el ' e2^ cos ^ 

2e = (e1 + e2) - (e- - e2) cos 2ip 

2exy = - UT - e9) sin 2^ 1  ^ 

(18a) 

(18b) 

(18c) 

■16- 
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1 
and 

where 

o+a       o-o 0x+0v     0 
o1 = -^-^ + -=5-^ cos 2\ii + o     sin 2^   ■ —JT1 ♦ 7 1     ~^2~ ' ^T 

a.+o.,     0-0 0.+0. 

■ -^ - -^ cos 2^ - oxy sin 2^   = -^ " J 

2^(x.y) = tan"1 ^JL. =-^ 
0-0       t -e x   y       x   y 

(19a) 

(19b) 

(20) 

is the principal direction as shown in Figure 5 for stress and strain because 

of isotropy.    Substituting (19a),(19b) into (17a) and (17b) and the resulting 

equation into (18a), (19b) and (19c), yield the stress-strain relation in 

x-y coordinates as follows: 

el ' 
1    r0,  +0 nl      v   ro +0 -T 

{21a) 

e-. :ir^ ♦ ?[^^]^[^-ri '2      E-J      2 (21b) 

-■^-[^-ZW^^y (21c) 

ere2 ^^w^^^)" (21d) 
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FIGURF; 5 Transfomation of Stress Components 
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.2      v. 

1   J^- + 1     ^- cos 2^ - ^1 cos 2^[(ox-oy)cos 2^   . 

+ 2oxy sin Mi] (22a) 

- ^cos aÄC(ox- 

os Zii 

-ay)cos 2^ + 2oxy sin 2^] 

(^•?) [(ov-oJcos 2^ + 2o¥u sin 2*] sin 2* 

where ♦ - t 

Inserting (20)  into (22), after rearranging terms, yields 

i    1x^2 vT T    i A2    (o2    - a2 ) + Q2 

-x      ET    2     üx      ET 
uy     ET   4 

e..= 
VIa   +±hla   . 1    I-.2 -(ox2 - 0v2) + Q2 

y     ET   x      ET    2     uy     ET   4 

'xy 

e +e +e    = x   y    z (•x^+^¥-' 
where Q2 = (ax-ay)2 + (2axy)2 

(22c) 

(23a) 

(23b) 

(23c) 

(23d) 

(23e) 

■19- 
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Equation (23a, b. c, d, e) contain essentially two parts:    the linear 

and nonlinear parts.    The linear part is essentially identical  to the correspond- 

ing linear elastic stress-strain relation provided the coefficients are modified 

to take into consideration the bilinear elastic moduli.    It can he shown easily 

that (23a—-e) become the familiar constitutive equations of linear elasticity 

by imposing the conditions of ET = E    = E , vT = v   = v , (|»2 = ET/E   = 1. 
it* i        c re 

Imposing    this condition    into (23a—e) the nonlinear stress terms vanish. 

Equation (23a—-e) point out several  interesting features.    The deviatoric 

stress-strain relations  (23d) and the dilational stress-strain relations (23e) 

are not separable.    Under pure shear stress state, which is equivalent to 

lo,l  =   lOpl   , 

x     ET    2       xy 
(24a) 

i   iV 
T v    ;jr"axy (24b) 

e2 = o 

'xy 

e    + e    + e x       y       z 

(24bl) 

(24c) 

(24d) 

The axial stresses are induced as given in (24a) and (24b) and the shear strain 

is linearly proportional to shear stress. Eq. (24d) also indicates that apply- 

ing pure shear stress would induce volume change. The volume will increase 

if E
T
<E

C 
and decrease if ET>EC. Furthermore, the shear modulus can be obtained 

from (24c) as follows 

= 2M. = (25) 

•20- 
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2.2   Bilinear Viscoelastic Constitutive Relations 

Referring to (5),  (6). and (17a, b) the bilinear viscoelastic constitutive 

equations under biaxial  tension and compression stress state, ^(t^o   and 

o2(t)<0, can be written in the following form 

f 
^(t) -^^(t-Oo^Od?- jf Jc(t-Ovc(t-Oa2(€)dC 

:2(t) = -J* ^(t-Ov^t-Oo^Od^ +jrJc{t-Oa2(5)d? 

(26a) 

(26b) 

Under constant stresses input, 

^(t) = o1H(t) 

• 

oz{t)  = 02H(t) 

where o1 and o2 are independent on time and H(t) is the Heavyside unit junction, 

(26a, b) become 

E^t) = JT(t)o1 - Jc(t)vc(t)a2 

e2(t) = - JT(t)vT(t)o1 + Jc(t)o2 

Jj. Jc. Vj and V, are defined as foil ows 

■Mt) 
eT(t) 

(27a) 

(27b) 

(28a) 

W - "fir 
c 

(28b) 

vT(t) ■|(t)/eT(t) (28c) 

-21 
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vc(t).-cc'(t)/cc(t) {28d) 

JT(t)vT
(t)   = -eT'(t)/o° 

Jc(t)vc(t) :'«)/'? 

(28e) 

(28f) 

These tenns are shown in Fig.  6. 

Taking the Lanlace transformations of (26a, b) with respect to time yield 

the following results 

e^s) = sJT(s)a1(s) - sJc{s)vc(s)a2(s) 

e2(s) = - s JT{s)vT(s)a1(s) + SJC(S)ö2(S) 

(29a) 

(29b) 

where a superscript slash over a symbol indicates that the quantity has been 

transformed and s is the transformed variable.    Again, for the postulation of 

the strain-energy density function 

and the inverse Laplace transformation of (30a) becomes 

(30a) 

JT(t)vT(t) = Jc(t)vc(t) = JTc(t) (30b) 

Under uniaxial tension and compression, (26a, b) become 

eT(t) = 1 JT(t-5)oTU)d? 
o 

ec(t) = J Jc(t-5)ocU)d5 

•22- 
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l^^f 

^      iTffl 
^T 

8r(t) = LiT(t)-io]/io 

eT<t)-Cb1<t>- bj/bo 

Jrft)-   triV/cfr 

)Jr<t)'-er(f>/er(t) 

J-r(t))JT(t)~~ey(t)/a'r 

6c(t)=Cicft)-A]/A 

Jc (t)-   ScftVcTc 

^c Ct)- -6e(t)/et(t) 

sX<t;Uft)--6eVt)/o'c 

6T#^ 

♦ t 

C. 

et^gc 

FIGURE 6 Definitions of JT(t), Jc(t), vT(t), vc(t) 
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for creep formulation and the corresponding constitutive relation for relaxation 

formulation can be written as follows 

o 

ac(t) = J Ec(t-5)ec(OdC 

(32a) 

(32b) 

where ET(t) and Ec(t) are the stress relaxation moduli for tension and com- 

pression. Applying the Leplace transform to (31a) and (32a) yield 

eT(s) = s7T(s)aT(s) 

aT(s) = srT(s)eT(s) 

(33a) 

(33b) 

Eliminating aT and eT from (33a, b) yield 

JT(s)ET(s) - ^ 

Applying the inverse Laplace transforms to (34) yields 

rJT(t-C)E(€)dC- t 

Similarly, J    and E^ are related by 

OEc(OdC ■ t 

(34) 

(35) 

(36) 

Thus, from (35) and (36), the relaxation modulus can be determined if the 

corresponding creep compliance is given and vice versa. 

-24- 
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By using the elastic viscoelastic corresponding principle to the bilinear 

viscoelastic problem, many results derived in Section 2.1   for bilinear elastic 

theory can be used directly to the bilinear viscoelastic theory. 

2.3    Beam Under Pure Bending 

In the previous sections, thp '•on^titutive relations governing the bilinear 

elastic and viscoelastic materials have been presented.    The next step will be 

to show how these constitutive relations may be used to solve stress analysis 

problems in bilinear elastic and viscoelastic materials.    In this section the 

stress analysis of a simple beam under pure binding will be discussed.    The 

following assumptions are made for the analyses of the problem :   (a) plane 

sections before bending remain plane after bending, (b) bilinear viscoelastic 

stress-strain relations of (26a, b) and (30b) hold, (c) the effect due to 

shear is negligible. 

A simply supported bilinear viscoelastic beam as shown in Fig.  7 is 

subjected to a known pure bending moment M(t) and the stress and strain distribu- 

tions and the deflection are sought.    Assumption (a) that plane sections be- 

fore bending remain plane after bending implies that strains are linearly 

proportional  to the distance from the neutral  axis whose location is to be 

determined.    Therefore 

E(t, y) - k(t)y (37) 

where e represents the axial strain, positive for tension and negative for 

compression, y is the distance measured positive downward from the neutral 

axis and k is the curvature. 

Assumption (b) implies that (31a, b) or (32a, b) can be used to represent 

the constitutive relations under tension and compression. Inserting (37) 

-25- 
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into (32a, b) yields 

rt 
aT{t) ■ yj ET(t-c)k(5)d5    ,   y>o (38a) 

o 

ac(t) ■ yj Ec(t-C)k(c)dc    .   y<o 

The equilibrium conditions yield the following relations 

W3dA = o (39) 

(38b) 

« 

O dA = M(t) (40) 

Equation (39) is the balance of the resultant force of the axial stress 

on the cross section of the beam and (40) is the balance of the internal 

moment of the axial stress on the cross section of a portion of the beam 

with the external applied moment M(t) on the same portion.    In (37),  (40), 

A signifies the area of the cross-section.    Inserting (38a),  (38b) into (39) 

and (40), yields two simultaneous equations  for two unknowns, curvature K(t), 

and position of the neutral  axis e(t).    For a rectangular beam of width b 

and depth d these equations are 

v-eU) rCd-l(t)] 
bj .ac(t.y)dy + bj ^^ 

o o 

or 

bj J Ec(t-OkVjdsLy + bj Tf ET(t-OkU)dd(y)dy = o    (41) 

.27- 
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and o 

bj J   Ec(t-Ok(OddyZcy + bj |   ET{t-Ok(C)d£   y2dy = M(t). 

(42) 

where e(t) represents the position of the neutral axis as measured from the 

top surface.    Integrating of (41) and (42) with respect to y yield 

t t 
b e(- 

2 

and 

^ j Ec(t-OkU)^ ♦ |[d-e(t)]2 f tjit'ÜkUfä = 0 (43) 

c1 t 
^be(t)3j   Ec(t-Ok(Od^ +|[d-e(t)]3 f ET(t-Ok(Od? = M(t)    .      (44) 

o Jo 

Equations  (43) and (44) are two coupled integral equations for two unknowns, 

the position of the neutral  axis e(t) and the curvature k(t).   'The solution of 

e(t) and k(t) from (43) and (44) can be attained by means of numerical method 

which will be used in the future.    There are several special cases in which 

exact solutions can be obtained.    For example, if ehe tensile and compressive 

creep compliances and relaxation modulus have the following relation 

te(t) • 4 ET(t) 
or 

Jc(t) =ITJT(t) (45) o 

2 
where a0 is a constant. Equation (45) implies that, although both tensile and 

compressive properties are time dependent, the ratio between ET and E are 

constant.  Inserting (45) into (43) after integration yields 

11 [d-e(t)]2 - a*  e(t)2 j j E^t-OKOdC - 0 (46) 
o 

-28- 
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Since ET(t) is an arbitrary function and k^v is not zero,  (46) implies 

[d - e(t)]' 4 e(t)2 = 0 
or 

e(t) = 
l+a_ 

(47a) 

(47b) 

I 

Inserting  (47b) into (44) yields 

bd ^jV« ^ MOd« ■ M(t) 
Applying Laplace transformation to (48) 

(48) 

/*   \2 
bd!^2_^   s ET(s)k(s) = M(t) 

and using (34). yields the solution of the curvature in the Laplace transfo 

domain as follows 

rm 

bd 
3 Vo/ 

s)JT(s) (49) 

Taking the inversion of (49) yields 

or 

where 

■%)«•' ■ f 

Mt) ■ jl fjT{t-e)Ä(c)di 

JT(t-€)A(e)d5 (50) 

(50a) 

r       M Le "    3 
^) 
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is the moment of inertia of the rectangular cross-section with respect to the 

neutral axis.    The strain distribution can be obtained by inserting (50a) 

into (37) 

Jvt. e(t.y) ■ HJT(t-€)M(e)d€ (51) 

and the stress distribution can be obtained by substituting (50a) into (38a) 

and (38b) in the Laplace transform domain and then applying the inverse 

Laplace transform which yields 

aTU) • ^   .     y<o 

a (t) - *<> " (t)y ac(t) j  y<o 

(52a) 

(52b) 

For small  deflections the strain,e , and deflection, u, are related by the 

following equation 

e(t. y) --y±J*ih*l 
dx r (53) 

(see any book on strength of materials.) 

Inserting (51) into (53) yields 

2 f1 

l^xi - lc(t) - 1   L (t-OÄCOd? 
dx' J-el   ' 

Jn 

(54) 

Thus, the deflection can be calculated from (54) for a given set of boundary 
o     JT(t) * 

conditions and given JT(t) and a   = rrrrx   . 
o      J_tt; 

-30- 
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The effect of bilinearity can be shown from this simple analysis. For 

example, three beams having identical geometry and subjected to the same 

bending moment M and assuming that the material properties for the three 

beams are as follows 

/ 

Beam #1 

Beam #2 

Beam #3 

Jc ■ J. JT = J. 4". 
Jc=iJ' JT ■ J. 

2      - 
a0 - 4. 

JC = J JT = 4J. 
*o = 4' 

Inserting these material properties into (47b), (50a) and (51) and normalizing 

the strains by assuming that the maximum tensile and compressive strain for 

beam #1 equal - 1, the resultant neutral axes and the normalized strain 

distributions of the beams are shown in Figure 8a. For Beam #3 where the 

tensile creep compliance is four times proportionally larger than Beam #1, 

and the compressive creep compliance remains the same as that of Beam #1, the 

resultant maximum tensile strain at the bottom of Beam #3 is three times the 

corresponding maximum tensile strain in Beam #1, and the maximum compressive 

strain in Beam #3 is 1.5 the maximum compressive strain in Beam #1. The 

maximum tensile stress in Beam #3 is actually reduced as shown in Figure 8b. 

These results point out the fact that in interpreting the bending test results 

of bilinear elastic or viscoelastic materials care must be exercised, parti- 

cularly in evaluating the tensile strength from flexure test. 

The actual theoretical and experimental results of the strains of beams 

under pure bending are shown in Section 3.7. 
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2.4 Formulation of Plane Stress Problems 

In the analysis of stress and deformation, three kinds of equations are 

needed; equilibrium equations, kinematic (compatibility) equations and 

constitutive equations of the material, plus the boundary conditions. The 

first two kinds of equations are the same for linear elastic as well as for 

bilinear elastic problems. The main feature which differentiates the bilinear 

elastic from linear elastic problems is in the constitutive equations. In the 

following, the governing equations used in the solution of stress analysis 

problems for bilinear elastic material are formulated briefly. 

(A) Equilibrium Tquations 

3x 
8T 

ay 
XJt (55a) 

8Txv  aay 
9x    9y (55b) 

(B) Compatibility Equations 

!4x + !% = ^ 
^    7X     3x3y (56) 

(C)    Bilinear Constitutive Equations 

(C-l) Region 1     a-. > 0 ,   a« > 

ex = l^ax - Vx1 

ey = 17 [ay ' VTax] 

2(l+vT) 

'xy lxy 

(57a) 

(57b) 

(57c) 
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(C-2) Region 2  a1 > 0 ,  o2 < 0 

r - 1 lü2    VT    M2 ^x2-Gy^ + Q2 ex-E7-^öx-E7üy+Jr W  

xy ET\ 2 7    xy      ET 2   5 

O2 - (Vay)
2 + (2axy)

2 

(23a) 

(23b) 

(23c) 

(23d) 

(C-3) Region 3  a1 < 0 ,  o2 < 0 

ex = I7 tVvcay] 

ey = ^ CVvcax] 

2(Hvc) 
e  = —=—=• T 
xy   Er  ^xy 

(58a) 

(58b) 

(59c) 

Because of the difference in the constitutive equations in these 

three regions, the characteristic of the solutions for each region will 

be different. In regions 1 and 3, the constitutive equations (57) and 

(58) are identical to linear elastic problems, provided that E,, v, and 

Ec, vc respectively, are used in regions 1 and 3 instead of E and v. 

Therefore in these two regions the characteristics of the solutions should 

be similar to that of the linear elastic solution. For example, intro- 

ducing a stress function as defined in the following: 
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ax = ^1 {59a) 

°y - *J (59b) 

92 
Txy = " 8x8y (59c) 

It can be shown readily that the solution of a two-dimensional problem 

in these two regions reduce to finding a bi-harmonic function, 

4 * 2 -|V 4 = 0 ■ (60) 
9XH      ax^    9y4 

which satisfies appropriate boundary conditions. 

In region 2, however, the solution will be much more difficult due 

to the nonlinear constitutive equations in this region. Methods of 

solving the problem in this region will be discussed in detail in the 

next section. 

The difficulty in solving the problem in region 2 is only a part of 

the whole problem in solving a general plane stress problem for a bi- 

linear elastic material. If the boundaries separating these three 

different types of regions are known, in prior, then in principle the 

solution on each region can proceed independently and the solution in 

each region should satisfy both the prescribed exterior boundary conditions 

and the stress and strain across the interface between two regions must 

be continuous. Unfortunately, the boundaries separating these three 

different types of regions are not known in prior to most problems. This 

will further complicate the solution of a general plane stress problem. 
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2'5 Stress Analysis of a Circular Opening under Internal Pressure 

Due to the fact that the geometry of the boundary and the loading 

are axially symmetric, the solution of this class of problem can be 

formulated by means of polar coordinates (r,G) and that the solution 

should depend only on r. Furthermore, as shown in Figure 9, the whole 

body can be separated into two regions. In the inner region (region 1) 

the radial stress is in compression and the tangential stress is in tension; 

in the outer region (region 2)  both axial and tangential stress are 

compression. The interface separating these two regions is undetermined 

but is dependent only on a single parameter (r = R) due to the axially 

symmetric condition. Because of this, the solution of this class of 

problem becomes possible. Although the solution of this problem is 

available elsewhere [15, 17, 18], a brief discussion of this problem 

is ' -esented in this section to illustrate the techniques for solving 

this type of problem which may help to gain an insight into the solution 

of the more complex general two dimensional problems one of which is to 

be discussed in the next section. 

The equation of equilibrium for this axially symmetric problem is 

given by: 

f? *  ^ ■   o „„ 
where arr   and oee are the radial and tangential   stresses.    In the 

following, only the plane stress problem    (o     = 0)    is considered. 

The strain-displacement relations are given by 

du u 
err " (F   ' ee0 = r (62' 
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FIGURE 9  Thick Walled Cylinder Under Internal Pressure 

-38- 

— - - ^ ^mmammmamm^      



. ■r-w 

where err anH eee are the radial and tangential strains; u is the 

radial displacement which depends on r only. 

The stress-strain relations for regions I and II are as follows: 

Region I: 

err " Ec 
arr " Ej   aee 

-ee ' " EC 
arr ET 

aee (63) 

Region II: 

err = r Cörr " vc aee] 
c 

ee8= r Caee " vc arr] c 
(6^} 

For Region I, solving stresses a , creein terms of strains e and 

ee0 and using (62), the stress a , aee can be expressed in terms of 

radial displacement u as follows: 

E. 

y rr 
Ec  fdu x  .2 u1 

*h. 
TV? h 'I+^] (65) 

V,   V, T        c 2        T 
In (65) the followim relations F-= "T" an<' $   = F-   'iave been 

T       c c 
used.    Inserting (65) into (61) yields 

d  u .  1    du      ^2 u n (66) 
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The general solution of (66) is 

U(r) = A r*   + B r"* (67) 

Inserting (67) into (65) yields the following stresses in Region I 

2x    <H ^    -«D-l arr = r-TT tAU+vc^) r^'-BU-v^) r"*"'] (68a) 

♦2
E, 

80 
,♦-1 -(j,-l. 

l-vc'* 
fyCAd+v^) r^'+BO-v^) r^"1] (68b) 

The stresses in Region II can be detained readily from linear elastic 

solution [19] as follows: 

rr " "7 r 
+ D (69a) 

ee r 
(69b) 

The following boundary conditions are used to determine the four constants 

A, B, C, D and the interface r = R which separates the two regions. 

0rr — - "i 
aee 

= 0 

09e 
= 0 

0rr 
= - Po 

.    at r = a ) 

at r = R ) 

at r = R | 

at r ■ b ) 

(in Region I) 

(in Region II) 

a^=a^)atr=R (70) 
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In Region I (r<R), the following stresses can be obtained: 

rr 
.1    (i)2*+l 

(V* + 1 
(71a) 

r .-1 ^ - ] 

(71b) 

In Region II (r>R) the following stresses can be obtained: 

arr = " Po (^)2 + 1 

(f)2 - 1 
öee = po "TO  

where R can be determined from the last boundary conditions. 

•1 (F)2'+1   P
O (f)*' W*T 

(71c) 

(71d) 

(71e) 

As the external boundary become very large in comparison with the 

internal boundary (^ 1) and Po = 0, the effect of bilinearity on the 

maximum tangential stress become? 

69 •i*-'tfe (72) 
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2-6   Solutions of a Circular Disk under Diametral Compression 

A circular disk under vertical diametral  compression as shown in 

Figure 10 yields a biaxial  tension and compression stress field along the 

vertical and horizontal diameters.    Because of this unique feature, a 

single test of the disk readily reveals strengtns in both tension and 

compression of the material concerned.    This type of test becomes popular 

particularly for testing the tensile properties of brittle materials. 

Although the linear elastic solution of this problem is available [19] 

the solution of this same problem for bilinear materials is nevertheless 

very involved.    The basic equations for plane stress problems are presented 

in Section 2.4.      Because of the highly nonlinear constitutive 

equation, (23a, 23b, 23c), in Region II it is doubtful that an exact 

analytical solution can be obtained.    In the following, the solution of the 

bilinear problem is explored, using: 

(1) a finite difference approximation 

(2) orthotropic plate solution using finite element technique. 

Finite Difference Approximation 

In formulating the solution it is assumed that the entire region of 

the disk belongs to stress zone 2, i.e., a^O, a2<0, o    = o.    This 

assumption is reasonable     in     light of the linear elastic solution of 

the same problem. 

Substituting the stresses in terms of the stress function as defined 

in (59a, 59b, 59c)    into the bilinear stress-strain relations (23a, 23b, 

23c), and then substituting the stress-strain relations into the compati- 

bility equation (56) yields the foiljwing fourth order partial differen- 

tial equation    for the stress function 
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FIGURE 10  A circular Disk Under Diametral Compression 
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,4, ,      ,..2 

9xH ax^ay^       9yH VT       H 
(73) 

where K. contains all the nonlinear terms 

2  2.n2 •[^.-l1^]^?^],. 
Q2 - (ox-0y)

2 ♦ (2axy)2 (74) 

and the stresses o . o and o  in (74) have to be expressed in terms of x  y    xy 
2 

the stress function as defined in (59a, 59b, 59c).    When ^   =1, (73) 

reduces to the biharmonic function and therefore, reduces to the solution 

of the corresponding linear elastic problem. 

Equation (73) is solved by means of successive iteration using finite 

difference methods 

^'xxxx       ^'xxyy     syyyy      vT     4     \b (75) 

where K (n-D i 

When n = 0, K 

s the solution obtained from the iteration. 

(n-1) 0 and (75) reduces to a biharmonic function.    Thus, 

the linear elastic solution of the stresses o 0, o 0, r       [19] as shown in x       y        xy 

the following serve      as the initial  input for the iteration. 

L     rl r2 -I 

^ o - 2P IVy|2x  .   (*HM (76) 
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r,2 = x2 ♦  (R-y)2 

r2
2 = x2 +  (R+y)2 (76) 

For the purpose of approximating derivatives of the stress function 

$ by finite differences, a square grid   of size h = 0.08R is laid on one 

quarter of the circular disk (Figure 11).    This gives a total of 135 

interior grid points and 26 boundary points.    The grid size selected is 

such that, based on an analysis of the linear elastic case, it yields a 

fairly good approximation to the derivatives of the stress function by finite 

differences.    Equation (75), which mun be valid throughout a circular 

disk under diametral compression, is written for each of the 135 interior 

grid points, by way of approximating the derivatives of the stress function 

by finite difference.    For those interior points close to the boundary the 

distances between adjacent points may not be equal.    In such cases, different 

derivation of finite difference equations     for the irregular grid     has 

to be used [20]. 

The following iterative process is used to solve (75).    First, material 

properties and the numerical values of the linear elastic solution (76) 

are substituted into (74) and then to the right hand side of (75) for each 

of the 135 equations corresponding to the 135 grids.    Thus, the solution 

of the problem reduces to the solution of 135 simultaneous linear equations 

with zero stress boundary conditions.    This set of equations is solved 

using the Gauss-Seidel  iterative method [21].    The result from the first 

iteration is t^en used to construct a new stress field for the disk.    This 

stress field is substituted into (74) for calculating the K. for each grid 

and the process  is repeated until the ratio of the difference of the tensile 

stress at the center from the successive iterations to the tensile stress is 

less than one percent.    The results are shown in Figure 12. 
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FIGURE 11  A Square Grid Laid Upon the First Quadrant of the 
Circular Disk 
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FIGURE 12  Comparison of Linear, Bilinear and Orthotropic Solutions 
of A Disk Under Diametral Compression 
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Orthotroplc Plate Solution using Finite Element Technique 

If the circular disk is an orthotroplc plate having moduli of E, 

in the horizontal direction and of E   in the vertical direction, the stress- "c 
strain relations become 

ex=^x-^y 

iET     Ec      ET     VV 

and the corresponding compatibility equation in terms of stress function 

becomes 

3*        9x£3y^   3y4 

Making use of Wilson's computer program 122], the solution of an 

orthotroplc circular plate under diametral compression is obtained and 

plotted in Figure 12 for compression. 

Comparison Between Linear. Bilinear and Orthotroplc Solution« 

The linear elastic solution [lg], the bilinear and orthotroplc 

solutions obtained in this section   are shown in Figure 12.    For E <   E 
T       c* 

the tensile stresses at   :he center and along the horizontal diameter of 

the disk in the bilinear solution and orthotroplc solution are both less 

than the result obtained from the linear elastic solution, through the 

bilinear elastic solutions lie between the linear elastic and orthotroplc 
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solution. The compressive stresses at the center and along the horizontal 

diameter are higher than the corresponding stresses obtained from the 

linear elastic solution. Again, the bilinear elastic solutions lie 

between the linear elastic and orthotropic solutions. 
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3.0 EXPERIMENTAL  INVESTIGATION 

The objectives of the experimental investigation are twofold;  (1) to 

investigate the time and temperature dependent properties of two rock types, 

Charcoal granite and Diesser basalt, with emphasis or, investigating the 

different response under tensile and compressive suosses,  (2) to investi- 

gate the strain distributions   of beams under bending and disks under dia- 

metral compression of the two rock types. 

3.1 Materials and Specimens 

Two V  XT   XT  blocks of Charcoal granite and one 1'   XT  X 1' 

block of Dresser basalt used in the tests were supplied by Twin Cities 

Mining Research Center, Twin Cities, Minnesota.    Information pertaining to 

these two rock types are given in Table 2. 

Compression specimens of 1  1/2" diameter and approximately 3 in. 

long were used. The specimens  were cored by a 1  1/2" diamond core drill. 

Ends   were machined parallel  to within 0.001  in.    The tension specimens of 

1.404 in. diameter    and approximately 6 1/2 in.  long wen. used.    The 

specimen surfaces were polished. 

For the beam bending tests, the specimens used were 3"  X 3/4" X 15". 

For the diametral compression tests, the specimens used were 4 in. diameter 

and 3/4 in.  thick. 

3.2    Compression Apparatus and Testing Procedures 

An 80,000 pound capacity uniaxial compression testing device was 

designed and constructed in the course of this study.    As shown in Kig.  13, 

the apparatus consisted of four major parts: a main frame, a hydraulic 

loading system, a heating device and an axial strain measuring device. 
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"ABLE II - MATERIAL PROPERTIES 

Sources 

Mineral 
Content 
(percent by v.t) 

Average 
Grain Size 

Charcoal Granite 

St. Cloud, Minnesota 

Fledspar 
Quartz 
Hornblende 
Eiotite 
Other 

0.46 mm 

60% 
16% 
20% 
3% 
1% 

Dresser Basalt 

Dresser, Wisconsin 

Feldspar 50% 
Augite 40% 
(including 
altered material) 
Magnetite 8% 
Other       2% 

0.10 mm 
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FIGURE 13  Compressiün Apparatus 
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FIGURE 14     Schematic Diagram of Compression Test Apparatus 
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The hydraulic loading system as shown schematically in Fig. 14 consisted 

of a hydraulic pump, an accumulator, a solenoid and a double acting cylinder. 

In addition, a hand pump was also connected to the system.    The relationship 

between the pressure of the system and the load generated from the cylinder 

was calibrated by a 100,000 pounds capacity proving ring and the total  load 

exerted on the specimen was read directly from a Heise Pressure gage. 

In order to perform creep tests above room temperature, a temperature 

regulating system was used.    The specimen was heated in an electric   split- 

tube furnace which was maintained at constant temperature by an API's temp- 

erature    controller.    An iron-constantan thermocouple was used to measure 

the temperature.    Power was supplied at 220 volts through a variac to the 

furnace.      The temperature variation along the gage length was 8'F. 

The strain measurement was accomplished by using two pairs of rods 

attached to the upper and lower gage points of the test specimen to transmit 

the motion of the gape points to a linear variable displacemnnt transformer 

(LVDT).    The gage length is about 2 1/2 in.    Relative motion of the upper 

and lower gage points during the test caused an output of the LVDT which 

was directly related to the strain.    The output from the LVDT was amplified 

and demodulated and a permanent record was made by a strip-chart recorder. 

The sensitivity of strain measurement was 20 X 10'0 in./in.      The transverse 

strain was measured by means of a Micro-Measurement's WK-06-250BP-120 

high temperature strain gage.    A strain indicator was used to monitor this 

strain output. 

During the set-up the rock specimen was placed between the upper and 

lower loading heads.    To prevent excessive heat transfer through the loading 

head, which would cause uneven temperature distribution in specimen, two 1/8 

in.  asbesto sheets and two 1/2 in. thick stainless steel discs were used. 
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The asbesto sheets were placed directly against the loading heads and the 

steel discs were placed between the asbesto sheets and specimen ends.    This 

arrangement provided proper insulation to achieve a uniform temptrature 

distribution along the gage length and over the cross section and yet 

prevented intrusion failure of the rock sample which would have resulted 

had the asbesto been placed directly against the specimen end. 

During each of the tests, the rate of heating was controlled at about 

50F.  per minute.    After reaching the test temperature, the specimen was 

maintained at that temperature for about one hour before loading.    It was 

found that the temperature at the center of the   specimen reached the test 

temperature in approximately 30 minutes after the surface reached the test 

temperature.    The temperature was then maintained at selected constant 

value throughout the duration of the test. 

During loading, the hydraulic pump was used to precharge the accumulator 

first to about 200 psi higher than the desired pressure and then to charge 

the cylinder.    When the desired pressure was reached in the cylinder, the 

pump was shut off.    The accumulator then was used to supply and regulate 

the pressure in the cylinder.    If additional pressure was desired in order 

to raise the compressive load, the pump was turned on again to precharge 

the accumulator first; then the same process followed. 

In performing the constant stress creep tests, the specimen   was 

loaded in a stepwise   manner to each desired creep load within about 30 

seconds.    Owing to the creep of the specimen, which would cause a slight 

decrease in pressure, a hand pump was used to adjust and maintain the 

desired pressure.    Although using the accumulator could accomplish the 

same objective, the use of a hand pump was easier particularly 

in making a fine adjustment. 
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In perfonning the test for determi-nng the Young's modulus and 

Poisson ratio, the load was increased slowly in small steps and the 

corresponding axial and transverse strain at each load were recorded. 

After a linear stress-strain relationship was obtained, the load was 

then decreased slowly in small steps and the corresponding strain were 

recorded. 

3-3 Tension Apparatus and Testing Procedures 

The tension machine was designed to test cylindrical specimens 

under uniaxial tensile load. The tensile load was produced by dead 

weights through a 1:20 ratio lever arm. The heating and the axial 

strain measuring device were identical to the or)?,  described in Section 

3.2 except the silica glass (vycor) rods, instead of stainless steel 

rods were used for the extensometer rods. This material has a very low ther^ 

mal expansion coefficient (about 10"12in./in./oF.) and therefore could 

minimize the error induced in the tens.le strain due to change in temper- 

ature of the rods. Figure 15 shows the apparatus and Figure 16 is a 

schematic diagram of the testing system. 

It took a considerable amount of time to resolve the specimen grip- 

ping problem. For an enlarged ended specimen, gripping is relatively 

simple. Unfortunately, for hard rocks such as the ones used in this 

study, an enlarged ended specimen is very difficult to make and is very 

costly. For these reasons it was decided to use cylindrical specimens 

which could be obtained at a relatively low cost as this type of specimen 

can be obtained directly using a core drill. Gripping of a straight 

cylinder-type specimen becomes a problem. The problem of gripping was 

further compounded by high strength and high temperature required during 

testing. After trying several, different types of grips, a friction grip 
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FIG.   ig     Tension Apparatus 
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was found to be quite satisfactory. The grip, as shown in Figure 17, 

consisted of a stainless steel collar, a connecting rod, and a tapered 

circular spring wedge with diamond spikes welded on the inner side of 

the spring. When assembled, the inner side of the spring with diamond 

spikes contacted the lateral surface of the rock specimen around the 

ends. When tensile loads were applied to the specimen through the grips, 

the grips had the tendency to slide out inducing lateral pressure against 

the surface of the rock sample and further tightening the grips on the 

specimen. This grip design proved to be quite satisfactory. Of the ten- 

sile tests conducted using this kind of grip, only a few specimen failed 

in or near the grips. 

During testing, the heating procedure was identical to the one used 

in the compression tests. The loading procedure was relatively simple, as 

dead loads were applied to one end of the lever arm. 

3.4 Diametral Compressing Bending Testing Apparatus and Procedures 

An Instron tester with a temperature chamber was used for carrying 

out the diametral compression tests and beam bending tests. Although 

Instron tester is in general a deformation controlled testing machine, 

the fact that the creep phenomenon is negligibly small for the testing 

temperature up to 400oF permits one to conduct these tests using this 

apparatus. 

For the diametral compression tests the vertical and horizontal 

strains at the center of the disk were measured by means of a micro- 

measurements WK-06-250WT-120 Tee rosette high temperature 0 strain gage. 

The previous uniaxial compression test results indicate that this type 

of strain gage can be i.sed only up to 450oF, although according to the 
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manufacturer's specification, this type of gage can be used up to 600oF. 

Because of this reason, the testing temperature for the diametral 

compression tests and beam bending tests was held below 400oF. 

During the tests, a cross head spaed of 0.02 in./min. was used. 

The load exerted on the specimen as well as the longitudinal and the 

transverse strain at the center of the disk were simultaneously recorded 

until maximum load was reached; and the specimens were fractured 

diametrally. 

For the beam bending tests, the maximum tensile trains and the 

maximum compressive strains of the beam under a two-points loading were 

measured by means of tvio strain gages attached to the top and bottom 

surfaces of the beam. 

3.5 Experimental Results of Charcoal Granite 

Compression Tests 

The compression test program is summerized in Figure 18. These 

tests consisted of determination of Young's modulus, Poisson's ratio and 

step loading tests for determining the creep properties. Six tests were 

conducted, each at a different temperature (730F, 2240F, 3560F, 45rF, 

and 8190F), for determining Young's modulus and Poisson's ratio as a 

function of temperature. The results of the axial stress-strain curves 

are shown in Figure 19. It can be seen from these stress-strain curves 

that the material at low stress has lower stiffness than at higher stress 

When the stress was increased gradually, the material gradually stiffened 

as shown in each curve, until a certain stress was reached. Beyond this 

stress, the stress-strain relation became linear. It was speculated 
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that the existence of this stress might be due to the "preconsolidation" 

effect of the material before it was taken from the underground site, 

Casagrande's technique for predicting the preconsolidation pressure of 

soil was used to determine the stress and strain at the threshold and 

the typical result is shown in Figure 20. Plotting tnreshold stress 

(a0) at each test vs. temperature, as shown in Figure 21, indicated that 

the threshold stresses were linearly proportional to the temperature. 

The threshold strains were found to be independent of temperature and 

had the magnitude of about 0.00084 in./in.. 

The Young's modulus of the rock was determined from the straight 

line portion of the stress-strain curves shown in Figure 19. However, 

because of the fact that not all the strain is completely recoverable, 

the stress-strain relation should be further divided into recoverable 

and unrecoverable portions so that a true Young's modulus may be deter- 

mined from the recoverable portion of the strain. A complete determination 

of the uniaxial stress-strain relation including recoverable, irrecoverable 

and time-dependent components is presented later in this section. 

The transverse strain during each test was recorded. Two Poisson's 

ratios were calculated for each test, one Poisson's ratio was obtained 

from the loading portion of the test results by dividing the total mea- 

sured transverse strain by the total axial strain; the second Poisson's 

ratio was obtained from the unloading portion of the test results by 

dividing the recoverable transverse strain by the recoverable axial 

strain. These two Poisson's ratios versus test temperature are shown 

in Fig. 22. 

The step loading tests which were used for the determination of 

time independent as well as time dependent behavior of the material are 
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shown in Figure 18.    Two loading histories were used.    The first loading 

history involved a step-wise increasing stress from zero to 10,000 psi, 

to 15,000 psi, to 20,000 psi and then a reverse of this by decreasing 

the stress in step-wise from 20,000 psi, to 15,000 psi, to 10,000 psi 

and to zero.    The loading time on each step was 30 minutes and 20 minutes, 

respectively, for each step-up and step-down period.    The results of 

these tests are shown in Figure 23.    The second loading history, as 

shown in Figure 18, had a single step of loading and unloading followed 

by a step-up and step-down loading history.    The results of these tests 

are shown in Figure 24. 

Results shown in Figure 23 and Figure 24 indicate that Charcoal 

granite, under uniaxial compressive stress, exhibits time-dependent 

strain as well as time-independent strain, and also that the time-inde- 

pendent strain consists of recoverable and irrecoverable parts. 

From the results of the second testing period and the last testing 

period (both are under zero stress) shown in Figure 24, it indicated that 

the irrecoverable strains depend only on the maximum stress level  in the 

entire stress history and are independent on the stress history.    The 

results shown in the last period of Figure 23 indicated that the irre- 

coverable strains depend on temperature.    Also, in Figure 23 by comparüon 

of the difference of the total strains between the first period and the 

fifth period, and the second and the fourth period (both pairs have the 

same stress increment can be determined.    For example, at 10,000 psi stress 

increment the irrecoverable strain at different temperatures can be obtained 

from Figure 23.    These are shown in Figure 25.    The fact that the results 

show a linear relation between the irrecoverable strain and the temperature 

indicates that 
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10 ^2 = 1.18 (T - 475)xl0",ü x o. (77) 

In this expression it is assumed that when the test temperature, T, is 

below 4750F there will be no measureable irrecoverable strain. 

After »epara^rg the irrecoverable strains from the total incremental 

strains obtained from each loading step, the elastic strain (e,) and creep 

strain (E-J) were obtained in the same way. The results are: 

e1 = ö/E1 ; E1 = 12.5 x 106 psi 

^3 = a x (O.OllxlO'6) x (T-475) tn 

n = 0.214 

(78) 

(79) 

where t is in minutes and T in 0F. 

Using the strains e-j, z^  and ^3 obtained from the previous procedures, 

together with total strain obtained in the first, step of the tests whown 

in Figure 23 and Figure 24, it was found that in order to use K, , e2 and £3 

developed in this section to describe the actual stress-strain relation 

accurately, an initial strain (eo) had to be added. Using the experimental 

results from the first period of the test programs shown in Figure 23, 

and Figure 24, it was found that this strain is dependent on temperature 

as shown in Figure 26. The following relationship may be obtained: 

c0 = 4.6 x 10'
4 + 1.25 x 10"6 (T - 475) (80) 

where T is 0F. 

The existance of the initial  strain t   may be illustrated by Figure 

27 and materials having the stress-strain relations of this kind are 

called "ideal  locking material" [14]. 
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FIGURE 28  A Compression Model for Charcoal Granite 
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A mechanical model as shown in Figure 28 was developed to describe 

the stress-strain relationship of the material under uniaxial compressive 

stress. This model consisted of four elements: a confined spring with 

small spring constant resting on a rigid support (which allows the spring 

to deform to e for stress larger than o ), a recoverable spring, an 

irrecoverable spring and a generalized Maxwell model. These four elements 

were connected in series. Using this mechanical model the stress-strain 

relation can be described as: 

e = eÄ + e-, + e,, + e-> i for a > a O   I   <:   3 o (81) 

This expression is "exact" when the applied stress is greater than o 

The followinci equation may be used to estimate the strain when a < o : 

E ■ (a/öo) c0 + e-, + £2 + e3 (82) 

where o , e0, c,, e« and ^3 can be obtained from Equations 77, 78, 79, 

and 80 respectively. 

For both cases, during unloading, the strain can be obtained from 

Equation 81 and Equation 82 provided that tp = 0' 

The predication of the strain responses of the material, under 

multi-step uniaxial compressive stress at different temperatures using 

Equation 81, are shown by the dashed lines in Figure 29 to Figure 36. 

The results compare very favorably with the experimental results (in 

solid line). 
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Tension Tests 

Several  tension tests under step loads at several temperatures were 

conducted.    It was found that there is no measureable time-dependent 

strain and that the time-independent strain is almost completely recover- 

able.    This is due mainly to the fact that the material  is extremely 

brittle even at the elevated temperature (up to 700oF) and thit the tensile 

strength is very small, less than 4% of the compressive strength. 

From these tests the Young's modulus of the material was found. As shown 

in Figure 37, the Young's modulus depends on temperature. 

e = o/E-j- 

ET = 12.1   X 106 - 17.3   (T-75) x 103 

where T is 0F. 
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3-6 Experimental Results of Dresser BasaU 

Compression Tests 

Ten compression creep tests under constant stresses at five 

temperatures were conducted. All the cests were loaded under constant 

stresses for 300 minutes and the specimens were unloaded. The test 

program and results are shown in Table 3. The strain-time curves for 

each test are shown in Figure 38 and Figure 39. From these creep curves, 

it indicates that at room temperature the strains of Dresser basalt under 

unconfined compression are time-independent, at least up to five hours 

after loading and at the stress up to 12,000 psi which is about 50 to 

60 percent of the ultimate compressive strength of the material; at 

elevated temperatures (above 4550F), the strains are time-depend°nt. 

Also, the instantaneous strains upon application of loading are always 

larger than the instantaneous recovery strain upon unloading. This 

indicates that the instantaneous strains consist of recoverable and 

irrecoverable strains. The determination of the instantaneous strains 

during loading will be discussed later in this section. 

The determination of the elastic modulus is made use of the 

instantaneous recoverable strains and the applied stresses at each 

test. The results are shown in Table 3 and Figure 40. The dependence 

of the elastic modulus upon temperati re is clearly indicated. However, 

because of insufficient test data, no attempt is made here to develop 

an equation to express the relacion between them. 

The transverse strain under compressive stresses were also 

recorded for the first rour specimens. At higher tc.perature, the strain 

gageswere inoperative and henceforth, no transverse strains were available. 

The Poisson's ratio for eacn cf the first four specimens, as determined 

frnn the instantaneous recoverable axial and transverse strains, is about C.31 

ttMrtMan i i ii \ it—  '- - 
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TABLE 3.    COMPRESSION CREEP TEST RESULTS FOR DRESSER BASALT 

i 
Specimen 

No. 

Input Conditions 
Strain Outputs 

n 
Elastic 
modulus 

(1) 

Poisson 
ratio 

(2) 

s e  =  E0 + Ct 
Stress 
1000 psi 

Temp. 
0F sol 10"6in/in C, 10"6in/1n n 

BC-1 10 72 5.66 0.32 1880 
BC-2 12 73 5.35 0.29 2360 _ . 

BC-3 8 455 5.22 0.31 1650 20 0.126 
BC-4 8 455 4.93 0.31 1750 22 0.126 
BC-5 8 550 4.51 - 1950 41 0.144 
BC-6 8 550 4.73 - 1900 40 0.144 
BC-7 8 675 4.27 - 2120 51 0.173 
BC-8 8 675            4.31 - 2120 52 0.173 
BC-9 8 810        !   3.82 - 2450 80 0.195 
BC-10 8 810 4.11 2320 72 0.195 

(1) Determined from the instantaneous recoverable strains. a/ee. 

(2) Determined from the instantaneous recoverable axial and diametral strains. 

: 

i 
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The log-log plots of the loading portion of the creep curves are 

shown in Figure  41.    The nature that the creep curves can be approximated by 

straight lines indicates that the time-dependent behavior of Dresser basalt 

under unconfined compressive stresses can be represented by a power law time 

function. 

e  =  e0 + ct" 

The values of v c and n of each test are summerized in Tab;- 3, The dependence 

of £0, c and n on temperature is clearly indicated. 

Upon unloading, the total strains accumulated during the leading period 

were partially recoverable and partially irrecoverable and the recoverable 

strains consist of instantaneous recoverable strains and time-dependent re- 

coverable strains. As showi in Figure 39. all these three types of strains 

are temperature dependent. 

Tension Tests 

Four constant stress tension creep tests were conducted at four 

temperatures. In addition, a constant stress creep test was conducted at 

room temperature, -he test results as shown in Figure 42 indicate that 

Dresser basalt exhibits time-dependent behavior at elevated temoeratures 

while at room temperature. The time-dependency is negligible. Results shown 

in Figure 42 also indicate that the material exhibits a certain amount of 

irrecoverable strain upon unloading from the constant stress creep tests. 

The amount of irrecoverable strains depend on the temperature. 

3.7 Diametral Compression Beam Bending Test Results 

Si.ice the reliable tensile and compressive moduli of Dresser basalt 

are not available for temperatures between 75° to 400°. the diametral 

compression and beam bending tests were conducted on charcoal granite only 

where the compressive modulus and tension modulus can be ob^ned fro^ 

Figure 19 and Figure 37 respectively. 
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For the diametral compression tests on charcoal granite, the results 

of tensile strains and compressive strains at the center are shown in 

Figure 43 and Figure 44 for temperature at 200oF and 400oF. Figure 45 

shows the tensile and compressive strains as resulted from the beam bending 

tests of charcoal granite at 200oF and 400oF. 

In carrying out the theoretical predictions, the linear elastic solutions 

are chosen instead of the bilinear solutions. This is due to the fact that for 

temperatures between 750F to 400oF, the elastic modulus of charcoal granite 

under compression and tension are nearly the same as the results shown in 

Figure 19 and Figure 37 indicate. Figure 19 shows that at the small stress 

(less than the threshold stress ao), the Young's modulus is smaller due to the 

"preconsolidated effect". The actual maximum compressive stresses in the 

diametral compression tests and the beam bending tests are estimated to be 

smaller than this threshold stress. Because of this, the actual moduli for 

tension and compression are approximately the same. Using E = E. = 7 x 106 psi, 
6 c   t ' 

and Ec = Et = 5 x 10 psi at temperatures equal 200oF and 400oF, together with 

the Poisson's ratio equals 0.21, the linear elastic solutions of the strains 

at the corresponding positions were obtained and the theoretical results 

are shown in Figure 43, Figure 44 and Figure 45. The comparisons between 

the theoretical predictions to the experimental results are quite satisfactory. 
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4.0 CONCLUSIONS 

On -he basis of results obcained from this study, the following 

conclusions are drawn: 

1. A survey of literature on different tensile and compressive 

strengths and moduli of different rock types, indicates that the ratio of 

tencile modulus to compressive modulus ranges from 0.05 to 1.00. In order to 

solve problems involving these materials, the difference of moduli in tension 

and in compres; ion must be taken into consideration. Henceforth, 

a bilinear elastic theory was developed. The bilinear elastic theory differs 

from the classical linear elastic theory in that two Young's moduli, one for 

tension and one for compression, are assumed for bilinear analysis while for 

linear analysis a common Young-s modulus is used. It was proven that 

dilatational and deviatoric stresses and strain, are interrelated, a fact 

which Is not indicted in the classical tneory of elasticity. This inter- 

relation was investigated for pure shear stress state which indicates that 

applying pure shear stress gives use to a nonvanishing axial strain and 

dilatational strain. 

2. Three different boundary value problems, a beam under pure bending, 

a circular opening under Internal pressure, and a disk under diametral 

compression, were analyzed. The results indicate that when Et < Ec the 

critical tensile stresses developed in these three problems are reduced. 

However, the critical tensile strain for a beam under bending is increased. 

These results point out the fact that when these three types of tests were 

used for the characterization of the "ten.ile strength" of bilinear materials, 

care must be exercised in the interpretaticn of the test results. 

3. Results of unconfined compressivo tests on charcoal granite at 

different temperatures indicate that at lower temperature (75-F to 500oF) 
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the stress-strain relations are time-independent; above that temperature, the 

stress-strain relations become time-dependent.    The results also indicate that 

at lower stress, the stiffness of the material  is relatively low and the 

stress-strain relations are nonlinear.    As the applied stress increases, 

the slope of the stress-strain curves increase until threshold stresses 

are reached; beyond that stress, the stress-strain relations for each temperature 

become linear. 

4. Results of uniaxial  tension tests on charcoal  granite at elevated 

temperature (up to 700oF) show that the material is almost elastic, no 

measureablc time-dependent strain and no irrecoverable strain. 

5. Results of uniaxial tension and compression tests on Dresser 

basalt indicate that the material exhibits creep at elevated temperature 

(about 450oF).    The corcpressive Young's modulus of Dresser basalt is found 

to be dependent on temperature.    The modulus decreases from about 5.5 x 106 psi 

to 4.0 x 10   psi for temperature increase from 730F to 810oF. 

6. The results of the maximum tensile strains and compressive strains 

measured during the diametral compression tests and beam bending tests on 

charcoal granite can be predicted fairly accurately by using linear elastic 

solutions.    This is due to the fact that the compressive modulus at small 

stress  (as defined by the slope of the stress-strain curves) is smaller and 

is nearly equaled to the tensile modulus.    Although, at higher stress level 

(about 4,000 psi and higher) the compressive modulus is higher than the 

tensile Young's modulus.    The ultimate tensile strengths of charcoal granite 

as determined from uniaxial  tension tests, beam bending tests and diametral 

compression tests are about 800 psi, 1400 psi. and 1800 psi, for temperature 

ranged from 720F to 400oF. 
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