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SUMMARY

The objective of the work reported herein was to investigate the
effect of temperature on the elastic and viscoelastic properties of char-
coal granite and Dresser basalt under uniaxial tension and compression.
Also, the effect of the difference in tensile and compressive properties
on the stress analysis, in general, and on the stress and strain distribu-
tion of a beam under bending and a disk under diametral compression, in
particular, were anaiyzed.

Uniaxial compressive and tensile tests on charcoal granite and Dresser
basalt at elevated temperatures were conducted. For charcoal granite under
uniaxial compression, the results indicate that at lower temperature (75°F
to 500°F) the stress-strain relation are time-independent; above that, the
stress-strain relations become time-dependent. Under uniaxial tension,
charcoal granite is elastic though the elastic modulus depends on tempera-
ture. Results of uniaxial tension and compression tests on Dresser basalt
indicate that both the tensile and compressive stress-strain relations
exhibit time-dependency only at higher temperature (about 450°F).

A general bilinear elastic and viscoelastic theories were formulated
and some interesting results as the consequence of the bilinearity were ob-
tained. Three boundary value problems, a beam under pure bending, a circular
opening under internal pressure and a disk under dimetral compression were
analyzed. Tne results indicate that when tensile modulus is smaller than
the compressive modulus, the critical tensile stresses in these problems
tend to be decreasing.

Diametral compression and ben:iing tests were conducted on charcoal
granite. The experimental results of maximum tensile and compressive strain

in the beam and the tensile and compressive strains at the center of the

disk seem can be predicted from the Tinear eiastic solutions.

X




The results obtained in this study will add to the understanding of the
time-dependent properties of rocks and the effect of the time-dependent
properties of rocks to the stability of the underground structures, particularly

under severe high temperature environment.
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1.0 INTRODUCTION

The requirement for improving the safety of underground structures
for obtaining minerals deep in the earth such as mine pillars, for the
economic storage of food, chemicals, medical supplies, etc., for the civil
work such as dams, subways, transportation tunnels, and for underground
military installations, a better understanding of the fundamental mechanical
properties of rocks is needed. In general, rocks are considered to be an
elastic material under relatively short duration of loading at normal temper-
atures. The creep behavior of rock appears to be significant under loading
which acts over a long period of time or for short as well as long term
1oading under elevated temperature. Therefore, if underground structures
are expected to be in service for a long period, the time and temperature

dependent properties of rock materials need to be inve:tigated more thoroughly.

Many tests have been performed on a large number of rock types under
different loading and environmental conditions in an attempt to determine
the time-dependent deformation and to develop the constitutive equation
relating strain as a function of stress state, time, temperature and other
related variables such as water content, loading rate, etc. It is found that
most of the observed creep test results for a number of rock types can be

expressed in the following form:
€= gyt € + Bt

where €e is the elastic strain, Bt is the steady-state creep and € is the
transient or primary creep. Tertiary creep is not included because laboratory
studies indicate that its duration is usually so short that, once it is
initiated, failure cannot be arrested. Griggs [1]* indicated that the tran-

sient creep in Solenhofen 1imestone specimen, loaded for 550 days in uniaxial

*Numbers in brackets refer to references.
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compression at approximately 50% of its crushing strength, was logarithmic

and could be expressed by

e=(6.1+5.21 log t) 107

Not only is tertiary creep not included but also a term for steady state
creep was either absent or negligible. However, under confined pressure,
it was found that the creep rate in the same limestone should include a

steady state term and the departure from strictly logarithmic creep was

observed within 10 minutes after start of the test. However, in relating
to the design of rock structure, this duration is too short to be consid-
ered. Hofer [2] measured the lateral deformation in pillars in a number
of German potash (halite plus sylvite) mines and showed that the lateral
deformation rate was constant for periods ranaing from 63 days to nearly
10 years and strain rates up to 4 per cent per year. Micro-seismic inves-
tigation indicated however that there is a period of accelerated movement
of in-situ rock preceding failure [3]. This period may range from a few
hours to several weeks depending on the size of the rock. Thus it can be
interpreted that in-situ rock exhibits varying degrees of transient creep,
steady-state creep and tertiary creep.

Results from previous reports [1,4,5,6] indicated that the time-
dependent behavior of rock is strongly affected by temperature. Hokao
(7] measured the change of the strength and Young's modulus, in tension

and compression, of rocks caused by temperature changes. Photomicrographs

indicated that decrease in the strength at elevated temperature might be

caused by the expansion of minerals, especially the quartz component at its a-8




transition temperature, in which many cracks were being observed. Le Comte

[5] performed creep experiments at constant load on polycrystalline halite

and showed that it is also possible to induce large permanent strain without
confining pressure provided that the temperature is sufficiently high.
Byerlee [8] indicated that at higher confining pressure and at elevated
temperature, intracrystalline deformation mechanisms can also occur. In

the study of the short time thermoviscoelastic behavior of Charcoal granite
and Dresser basalt at elevated temperatures (up to 1000°C), Fischer and
Cheung [9] found that the creep compliance data could be treated as a thermo-
rheologically simple material in which time-temperature superposition
principle is applicable.

In uniaxial compressive, creep tests of rocks, many researchers [10,11,
12,13] observed that ocks deformed more in the initial stage of loading.
Brace [11] showed that the strain-stress behavior of rock is strongly non-
linear at low stress. Morgenstern [13] found, for sandstone, that when the
sum of the principal stresses is greater than about 1600 psi, the modulus
of rigidity becomes a constant and the stress-strain relation is nonlinear
when the stress is below that level. A similar stress-strain relation was
mentioned by Prager [14] from testing living soft tissues, granular materials
and show which deform more freely under small stress until a certain strain
level is reached after which the stiffness of the materials increase rapidly.

Most creep results available for rock are from compression tests.

There have been very few results of creep in tension. It is known that the
tensile strength of rocks is very small. in comparison to its compressive
strength and that the modulus of rocks in tension is different from that in

creep compression. Also, the time-dependent properties of rocks under tensile




stress are relatively unknown. Although many rock structures are designed

tuch hat stress states in an entire structure are compressioned, situations
do occur in which part of the structure is subjected to tensile stress, and,
under this situation tensile properties of rocks are extremely important.

If the stress-strair. relations under tension and compression are different,
the conventional linear elastic and/or linear viscoelastic solutions of
various boundary value problems relating to the rock structures can introduce
erratic results as indicated by Harmson and Tharp [15]. Under this condition,
the bilinear behavior, in which the tensile modulus (ET) and compressive
modulus (Ec) are considered to be different, should be incorporated in
the theoretical analysis. The tensile and compressive Young's moduli of
certain rock types are shown in Table I.

Very little literature can be found at the present time in the area of
bilinear analyses. Ambartsumyan and Khachatryan [16] have presented the
basic formulations of bilinear elastic theory. Herrmann [17], Haimson and
Tharp [15] and Blatz and Levinson [18] investigated the problem of thick-
walled cylinders.

The objective of the research carried out herein are:

(1) Experimental investigations of the time and temperature

dependent properties of rocks with emphasis on investigating
the different response under tensile and compressive stresses;

(2) Theoretical investigation of the stress-strain distribution

of a beam, a diametrically loaded disc of rocks using bilinear
stress-strain relations; and

(3) Comparison of the theoretical predictions of the beam and the

diametrally loaded disc with the experimental results.




TABLE I - YOUNG'S MODULI IN TENSION AND COMPRESSION

Rock Type Et Ec ¢2 = Et/Ec
(10% psi) (106 psi)
Westerly gram‘te8 2.5 10.5 0.24
Austin Timestone® 1.7 2.3 0.74
Carthage 1imestone® 5.1 9.2 0.55
Indiana 1imestone® 1.6 3.9 0.4
Indiana limestone7 2.5 4.9 @51
Georgia marb]e8 3.4 6.1 0.56
Tennessee marb]e8 7.7 1.1 0.69
Russian marble® 1.3 3.0 0.43
Star Mine quartzite8 11.0 11.0 1.00
Arizona sandstone® 1.7 6.6 0.26
Berea sandstone9 0.50
Millsap sandstone® 0.1 1.9 0.05
Tennessee sands tone® 0.2 2.4 0.08
Russian sandstone] 1.7 8.3 0.21
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2.0 BILINEAR ELASTIC AND VISCOELASTIC THEORIES

The constitutive relations governing an isotropic linear elastic

material can be expressed by the following equations:

oij = kekkdij + ZGeij (M)

The constant A and G are called Lamés constants, where

G = (T (2)

is the modulus of elasticity in shear, E is the elastic modulus (Young's

modulus), v is the Poisson's ratio, and

. EV _ 26
hE o) (T-2v)  T-2v ’ (3)

Inverting (1) to solve for the strain tensor €4 yields

(4)

I LAY Vg8
€7 " F % " E %kk®ij

It can be shown, such as (3) and (4) that there are only two material constants

for a linear elastic material.

For (isotropic) linear viscoelastic materials, the following governing

constitutive relations can be obtained:

' 3y (€) ' 9%4
0 0

or alternatively,

l - t 30y, (£) i 30, (€)
0 0

Again, there are only two independent time functions K(t), G(t), or J](t) and

Jz(t) or their equivalent forms for a linear viscoelastic niaterial.




Equation (1), implies that under the infinitesimal uniaxial tension
and compression strain, the magnitude of the stress output are the same.
This fundamental assumption has been verified experimentally to be true or
nearly so for most of the materials. Based on this assumption, theories
of linear elasticity and linear viscoelasticity have been developed.

Strictly speaking, nowever, almost every material behaves differently
in tersion and compression. This is particularly true for composite mate-
rials, such as rocks, concrete, soil, asphalt concrete, solid propellants,

etc., as the mechanisms of deformation induced by tensile and compressive

stresses are different. Therefore, the stress-strain relations under teasion

and compression are different. Because of this, the linear elastic and
viscoelastic theories which assume a unique modulus for tension and compres-
sion may not be able to describe the stress and strain distribution
accurately.

It is the objective of this chapter to explore the theoretical impli-
cations of bilinearity derived from the behavior of materials. The term
“bi-linear" is used in this report to refer to the behavior of materials
having different linear stress-strain relations under tension and compres-

sion, see Figure 1.

2.1 Bilinear Elastic Constitutive Relations

For a bilinear elastic material subjected to uniaxial tension and
compression tests as shown in Figure 2, four material constants Er» Ec, VT

and v. are obtained. These four constants are defined as follows:

C
o=
L &
T
g
E=_(.:.
C Cc
br - b
& T o]/
Ve = = | ———=|/e
T [bo T
b -b»b (7)
= _l ¢ 0
VC'[T]I%

Y]
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FIGURE 1 Linear Elastic ¢nd Bilinear Elastic Stress-Strain Relations
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where subscript T and ¢ denote for tension and compression respectively.
For linear elastic materials, as mentioned at the beginning of the chapter,
there are only two material constants, say £ and v, and the other material
constants can be expressed in terms of these two constants. For example,
(2) relates the shear modulus G to E and v. Similarly, for bi-linear
elastic materials, the other material constamts associated with different
Stress states mav be expressed in terms of tlie four constants defined

in (7). Before going into such details, the derivation of the
bilinear stress-strain relations under triaxial principal stress states is
in order. Let 91> Ty and 03 be the principal stresses at a given material
point of the body as shown in Figure 3. Due to the fact that the principal
stresses 0ys O and 0y at any point can be either positive or negative, the
deformed body may be divided essentially into four zones with their ccrres-

ponding stress-strain relations given in the following:

(1) Zone (1): 9 >0, g, >0, o3>0
]+\)T VT
€ = e gy - E;-(c]+02+c3) » permutation 1, 2, 3,
1-2\)T (c]+02+o3)
eptepte, = ET (o]+02+o3) = T (8a,b,c)
Ey
where 3K. = y—— (8d)

(2) Zone (11): o3>0, o,>0, 93< 0
©1TE TE % TE % (%a)

(9b)

LT eTe




FIGURE 3 Triaxial Principal Stress State
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3 ET ET Ec
1-2\)T 2 2v
5 | e A
g tete, = (g,*0,%0,) +-(--- = + - )o
123ET 17273 EcET E; E./ 3
1-2v
T 1 1
=——(o+o+o)+(""'—)° (9d)
E; 1723 E. E;/) 3
\V v
where =- = £
€

(3) Zone (III): g, >0, g, <0, 03<0

9 V9o Y
€] S 7= -~ —d— =~ =0 (10a)
1 ET Ec Ec 3
V19 9% Y
€p = =~ ——— +t =— = —g¢0 (10b)
2 ET Ec Ec 3
V.0 v o
T1 c 3
€, = ~ - ==0, + == (10c)
3 ET Ec 2 Ec .
1-2v 2v 2v
il 1 gL 5 ¢ Sip
Erteyte; E, O *optos) + (ET E_ Y e )°1
1-2v '
C 1 1
= ———= (g,+0,+0,) + (— - -—-)J (10d) 1
Ec 17273 ET Ec ] ,.
(4) Zone (IV): 7, <0, °2<0’ 03<0
1+vc Ve
€ = 0, - = (o,+0,+0,), permutation 1, 2, 3 (11a,b,c)
1 Ec 1 l—:c 17273
1-2v (o,+0,40,)
= C . 17273
€.|+€2+€3 = —*;:— (O-I+02+0'3) = _3-Rc—— (]]d)
Ec
where 3K. = 1:-2-\?
] Ve V1 )
1 = F can be argued from the postulation of the strain-energy density
3 c T
function.
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This shows that the designated zones based upon stress and strain are

not necessarily the same. In other words, "bi-1inearity" has two definitions;

one is based upon stress and the other one is based upon strain. These two
definitions are illustrated in Figure 4. In Figure 4a, whenever the stress-
strain curve crosses the zero stress points, the siope (modulus) changes
from Ec to ET or ET toc . In Figure 3b, the modulus will change whenever
the stress-strain curve crosses the zero strain points. Biaxial tests are
required in order to determine which one of the criteria will fit closer to
the actual behavior of a given material. Perhaps an even more general bi-
linear state can exist in which the "crecss-over" point can occur at stress
and strain anywhere.

In our study we will concentrate on the more restricted cate in which
the cross-over point occurs at the zero stress state; that is, the stress-
strain relation shown in Figure 4a.

In the stress zone I and IV, the stress-strain relations (8a,b,c,d)
and (1la,b,c,d) are identical to the scress-strain relations of 1inear

elasticity (4), except Eps Ve and E_, v are used respectively, for tension

(o
and compression. Therefore, the basic equations, the stress analysis tech-

niques and the results from linear elasticity can be used directly in

these two stress zones. In the stress zones II and III, however, the stress-

strain relations are different from (4) and that is where the bi-linear

elastic theory deviates from the linear elastic theory.

Solving (8), (9), (10) and (11), for stress components after simplifying

yields:
(1) Zone (I)

E-r E-r\)-r
9 = Ty © * (T (1-2v,) (eyteptes)

permutation 1, 2, 3 (12a,b,c)

e . e

T Te————

e oo
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(2) 1Zcne (11): o >0, 0, >0, 03 <0
Er
o = (H"’T)“'v'r'szch [(]-vTvc)e:] + vT(1+vc)e:2 + vc(]+v.r)e3]
(13a)
Ey
0, = (H\’T)(]'vT'?‘vTch [vT(]+vc)e] + (]-v.r\)c)e2 + vc(]+vT)€3]
(13b)
E.
%3 " Tvp-zopoy Dorlegregrey) + (1-2up)e;] (13¢)
(3) 1Zone (1I11): oy >0, 9, < 0, 03< 0
Er
o, = (1'vc'2vTvé) [vc(e]+52+e3) + (]-Zvc)e]] (14a)
Ey
o, = (]+"c)(]"’c'2vc"T) [vT(]+vc)e] + (]-vTvc)e:2+ vc(]+vT)e3]
(14b)
| e [vr(1+v )er + v (14vo)e, + (T-vv e, ]
3 (]+vc)(1-vc-2vch) T Ve’ ¢\ Vg V1V /E3

(14c)

- (4) Zone (1V): g, <0, 9, <0, 03 <0
I E. Ec"c

T T B TR (eq+eyte;)

permutation 1, 2, 3 (15a,b,c)

Notice that the four zones specified above are based on the sign of
the principal stresses. The corresponding principal strains €15 €25 €3

however, do not have to have the same sign combination. For example, in

Zone 1, the €y could be in compression if g, and/or o3 are much larger than oy-




Once the stress-strain relations have been established under principal
Stress states, the stress-strain relations under general stress state can

be derived by applying the method of transformation. For the sake of
cimplicity, the plane stress state (03 = 0) instead of a general three-
dimensional stress state is considered in the following. In this case there
are only three zones: (1) gy >0, 0, >0, o3 =0; (2) gy >0, 0,< 0, o3 =03

(3 o,<0,0, <0, Oy = 0. Zone (1) and Zone (3) are identical to the

1 2

linear elastic problem provided Ers vy and Ec, v, are used instead of E and

v in Zone (1) and Zone (3), respectively. Hence, only the general stress-

strain relations in Zone (2) are to be derived in the following:

V1 M | Ve
E3 = - -E7 o'] = q 02 z . g(o'.l"'o'z) s - ‘E—c(0]+02) (]7C)

In order to obtain the general stress-strain relations between €., ey,

Yy as the function of Oy Oy Yxy®

relations of (17), the following procedures will be taken. From the geometric

from the principal stress-strain

relation the transformation will be performed to obtain the strain €y Eyo
Yy with respect to x-y axes as the function of € and €y with respect to

the principal axes 1 and 2 and the results are shown in the following:

2, = (e] + ez) + (e] - ez) cos 2y (18a)

ZEy (e] + ez) - (e] - ez) cos 2y (18b)

ZExy = - (e] - ez) sin 2y (18c)




o_+o o, -0 g to
and 0= S5L+ Esdcos 2y + Opy STN 20 = + g' (19a)
g +0 o, -0 o %o \
X X T -
0, = 3 Y 5 Y cos 2y - Oyy SN 20 Tl % (19b)
] where
‘ 21 €
2y(x,y) = tan”! = fg = éjfz (20)
Xy

is the principal direction as shown in Figure 5 for stress and strain because
of isotropy. Substituting (19a),(19b) into (17a) and (17b) and the resulting

equation into (18a), (19b) and (19c), yield the stress-strain relation in

4

x-y coordinates as follows:

B A D e Rl . 15 B b T, ey W S i

(21a)

(21b)

(21¢)

(21d)




FIGURE. 5 Transformation of Stress Components




2 v 2
2, = (%— L El - ]—'3— cos Zw)(cx+oy)
T T T
+ l—-1-393-+ 1l 1193 cos 2y - XI cos 2y)[(o -0 _)cos 2y
ET 2 ET 2 ET Xy
+ 2°xy sin 2y] (22a)
2 -‘ ]_MZ -\j-l—hﬁz—cos ) (o -0 ) + J—%-LZ- ] l?—gtos 2y
€y Er 2 Er "2 X "y E E
\Y)
- E%-cos 2%)[(ox—cy)cos 2y + 2°xy sin 2y] (22b)
2. =-L11 : (o, 0.) sin 2y
xy "E Xy
- l__l_QE + 21 [(0,-0 )cos 2y + 20 sin 2y] sin &
ET 2 ET Xy Xy
E
where o0 = (22¢)
c
Inserting (20) into (22), after rearranging terms, yields
2 2 2
2 v 2 (o, -0 )+Q
11+ T 1 1-¢ X Y
& © E _7g— % - E 9 * E; 4 Q (23a)
2 2 2
v 2 2 (o, -0,) +Q
I 1 1+ 1 1-¢ X ¥
e, - ET g, + ET 5 cy + ET 7 3 (23b)
| :
€, * €3 % - g (cx+cy) (23c)
2 2 (o,40.) o
1 (14 ) 11-¢ x_Yy' “xy
“xy T Er (‘EL = U (Zoxy)+F.|. 2 q (234)
 xTEy ez Er \ 2 V1] 9%M9y E; 2
2 - 2 2
where Q" = (°x'°y) + (20xy) (23e)
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if ET<Ec and decrease if ET>EC. Furthermore, the shear modulus can be obtained

Equation (23a, t, c, d, e) contain essentially two parts: the linear
and nonlinear parts. The linear part is essentially identical to the correspond-
ing linear elastic stress-strain relation provided the coefficients are modified
to take into consideration the bilinear elastic moduli. It can he shown easily
that (23a---e) become the familiar constitutive equations of linear elasticity
by imposing the conditions of ET = Ec =E, vp Y Y ¢2 = ET/Ec =1,
Imposing this condition 1into (23a---e) the nonlinear stress terms vanish.
Equation (23a---e) point out several interesting features. The deviatoric

stress-strain relations (23d) and the dilational stress-strain relations (23e)

are not separable. Under pure shear stress state, which is equivalent to

1011 = 1021 R
o 21 1-¢% | (24a)
X E. 2 Xy
T
¢ = =z A8 (24b)
y T Xy
€, =0 (24b1)
2
_ 1 149
Exy = -E_'[—' (—2—— + \)T) (dey) (24C)
V.
= 1 L+ T+ \)C o
= — FoAly X
(ET Ec T f: Y
] 2 ] ]
+ + = 2= {1- ={— . 1 244
e te te, » (1 ¢ )(2°xy) (ET EC)(Z(xy) (24d)

The axial stresses are induced as given in (24a) and (24b) and the shear strain
is linearly proportional to shear stress. Eq. (24d) also indicates that apply-

ing pure shear stress would induce volume change. The volume will increase

(25)

B

from (24c) as follows

]
gxy +vT T*vc
ET EC %
-20- 3
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2.2 Bilinear Viscoelastic Constitutive Relations

Referring to (5), (6), and (17a, b) the bilinear viscoelastic constitutive
equations under biaxial tension and compression stress state, o](t)>o and

oz(t)<0, can be written in the following form

t t
18 = [ arteee)d, (epa - [ sct-em 0,00 (263)
t * *
eplt) = - fo Ip(t-E)v (-£)5, (€)de + f I (B (E)dE . (26b)

Under constant stresses input,

o](t) = o]H(t)

oz(t) = ozH(t)

where % and g, are independent on time and H(t) is the Heavyside unit junction,

(26a, b) become

e](t) = JT(t)o] - Jc(t)vc(t)o2

(27a)

! ez(t) = - JT(t)vT(t)o] + Jc(t)oz . (27b)
Jps Jes Vp and v, are defined as follows ; i
1
1 . er(t) 1
+ J(t) = Ena (28a) ;} j
i
€ (t) ‘}j
a =C :
Jc(t) = -;izr- (28b) : %

vr(t) = - e}(t)/eT(t) (28c)




ve(t) = - e ' (t)fe (t)
ap(tv ()
Jc(t)vc(t) =

These terms are shown in Fig. 6.

Taking the Lanlace transformations of (26a, b) with respect to time yield

the following results

E](s) = sﬁ}(s)&}(s) - sJCZsivc(s)oz(s) (29a)

Eé(s) = -3 JTISSvT(s)o](s) + SEE(S)Eé(S)

(29b)

where a superscript slash over a symbol indicates that the quantity has been

transformed and s is the transformed variable. Again, for the postulation of

the strain-energy density function

JTlsjvT(s) = JCISSvC(s)

and the inverse Laplace transformation of (30a) becomes

JT(t)vT(t) = Jc(t)vc(t) = JTc(t)

Under uniaxial tension and compression, (26a, b) become

t
ET(t)"JLJT(t'g)GT(g)dg
t

e (t) = 9 (t-£)5 (e)e




ja— by, —o .‘——tk
by el
yyyyEsy r/1//{/11/// g_uu{ (L LSS ,;uw
! ] I I
E : ’ I : :
) ' |
Ao o |
NI -
|1 L
b
°’T
Er(t)=[11(t)"lo]/»€o 8.((t>=[£¢(t) "Io]/[o
Ertr=(butr- B/ b, Et)=C etr- b)/be
Jrcty= Er )/ J (try= E.ctu /o
Yr(t)= = EL(1)/Ex(t) e (t) = =ELt)/E t)
Jr () Yett) = = €7ty /b4 Jecvr Wty =~ £ 1)/
o Oc

L ‘_—_t
&f&é
#/ff”###,ﬁﬁiil____ 3
FIGURE 6 Definitions of JT(t). Jc(t), vT(t), vc(t)
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for creep formulation and the corresponding constitutive relation for relaxation

formulation can be written as follows

t
or(t) = [ Erlt-0)e (e (322)
o]

t
o) = [ £ (002 (et (32)
0

where ET(t) and Ec(t) are the stress relaxation moduli for tension and com-

pression. Applying the Leplace transform to (31a) and (32a) yield

E}(s) = sJ}(s)E}(s) (33a)

6}(5) = sE}(s)E}(s) (33b)

Eliminating oy and € from (33a, b) yield

T (s)E(s) = L5 (34)

w

Applying the inverse Laplace transforms to (34) yields

t
fJT(t-E)E(E)dE =t (35)

o]

Similarly, Jc and Ec are related by

t
f J (t-E)E (€)dE = ¢ (36)
0

Thus, from (35) and (36), the relaxation modulus can be determined if the

corresponding creep compliance is given and vice versa.

-24-
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By using the elastic viscoelastic corresponding principle to the bilinear
viscoelastic problem, many results derived in Section 2.1 for bilinear elastic

theory can be used directly to the bilinear viscoelastic theory.

2.3 Beam Under Pure Bending

In the previous sections, the ronsiitutive relations governing the bilinear
elastic and viscoelastic materials have been presented. The next step will be
to show how these constitutive relations may be used to solve stress analysis
problems in bilinear elastic and viscoelastic materials. In this section the
stress analysis of a simple beam under pure banding will be discussed. The
following assumptions are made for the analyses of the problem : (a) plane
secticns before bending remain plane after bending, (b) bilinear viscoelastic
stress-strain relations of (26a, b) and (30b) hold, (c) the effect due to
shear is negligible.

A simply supported bilinear viscoelastic beam as shown in Fig. 7 is
subjected to a known pure bending moment M(t) and the stress and strain distribu-
tions and the deflection are sought. Assumption (a) that plane sections be-
fore bending remain plane after bending implies that strains are linearly
proportional to the distance from the neutral axis whose location is to be

determined. Therefore

e(t, y) = k(t)y (37)

where € represents the axial strain, positive for tension and negative for
compression, y is the distance measured positive downward from the neutral

axis and k is the curvature.

Assumption (b) implies that (31a, b) or (32a, b) can be used to represent

the constitutive relations under tension and compression. Inserting (37)

-25h-
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into (32a, b) yields
t .
op(t) = nyT(t-s)k(a)da » Y0 (38a)
0

t :
5,(t) = y[ E(tDkiE)E , yeo (38b)
o]

The equilibrium conditions yield the following relations

C (0dA = o (39)
A

oJ o

[ (o d2 = M(t) (40)
A} Y

Equation (39) is the balance of the resultant force of the axial stress

on the cross section of the beam and (40) is the balance of the internal
moment of the axial stress on the cross section of a portion of the beam
with the external applied moment M(t) on the same portion. In (37), (40),

A signifies the area of the cross-section. Inserting (38a), (38b) into (39)
and (40), yields two simultaneous equations for two unknowns, curvature K(t),
and position of the neutral axis e(t). For a rectanqular beam of width b

and depth d these equations are

~e(t) [d‘e(t)]
bf O (t,y)dy + bI op(t.y)dy
o 0
or
c ¢ +[d-e(t) t
bI U Ec(t-e:)li(s)ds]ydy + bI I ET("‘E)".(E)“E](”‘“’ To
-e(t)%% 0 g

-27-
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t . [d-e(t)] ¢ .t
fec(t-a)k(e)de]yzay + bf L[ ET(t-s)k‘(e)de]yzdy = M(t),
- o O

(42) E

where e(t) represents the position of the neutral axis as measured from the

top surface. Integrating of (41) and (42) with respect to y yield

t t
2 4
-belt) ! £ (t-€)k(g)de + %[d-e(t)]zf E(t-£)k(g)de = 0 (43) ﬂ'
0 }
and |
t t
Ib e(t)3£ E (t-€)k(E)dE + %[d-e(t)fLsT(t-e)i(s)ds = M(t) . (44) |

Equations (43) and (44) are two coupled integral equations for two unknowns,
the position of the neutral axis e(t) and the curvature k(t). ‘The solution of
e(t) and k(t) from (43) and (44) can be attained by means of numerical method
which will be used in the future. There are several special cases in which
exact solutions can be obtained. For example, if .he tensile and compressive

creep compliances and relaxation modulus have the following relation

_ 2
Ec(t) = a ET(t)
or

3 (8) = 5 ap(t) (45)

o

where ag is a constant. Equation (45) implies that, although both tensile and
compressive properties are time dependent, the ratio between ET and Ec are

constant. Inserting (45) into (43) after integration yields

t
%lbmﬁﬂz-%eﬁﬁijqﬁ{ﬁﬂhg=0 (46)
0

-28-
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Since ET(t) is an arbitrary function and k(t) is not zero, (46) implies

[d - e(t)]? - af) e(t)? =0 (47a)
or
e(t) = 7o (47b)
[0}

Inserting (47b) into (44) yields

2 t
3/7a C
bd E+(t-€) k(&)dE = M(t 48
(*30)[T( ) k(£) (t) (48)

Applying Laplace transformation to (48)

2
3 = - o=
gg_(i‘go) s E;(s)k(s) = M(t)

and using (34), yields the solution of the curvature in the Laplace transform

domain as follows

2
bd3< % )F(s) = sH(s)T,(s) (49)
3 i+a0

Taking the inversion of (49) yields

2 t
&3(.&_) k(t) =IJT(t-€)f4(£)d£ (50)
3 l+ao A
t
RIS Iy PPN T  (s0a)
) 0
where
2
I = !Efi(:ﬁl_)
e 3 ]+a0

-29-




is the moment of inertia of the rectangular cross-section with respect to the
neutral axis. The strain distribution can be obtained by inserting (50a)
into (37)

t
c(t.y) = {—jaT(t-s)Mmds (51)
e

0
and the stress distribution can be obtained by substituting (50a) into (38a)
and (38b) in the Laplace transform domain and then applying the inverse

Laplace transform which yields

op(e) = MYy (52a)
e
aon (t)y
o.(t) = I P (52b)

For small deflections the strain,e , and deflection, w, are related by the

following equation
2
clt, y) = y Selpxd (53)
X

(see any book on strength of materials.)

Inserting (51) into (53) yields

t

2
iﬁ%ﬂ = k(t) = }—JJT(t-s)ﬂ(E)ds (54)
X e
0

Thus, the deflection can be ca]cu]ated(f;om (54) for a given set of boundary
Jo(t
T

s . 2 _
conditions and given J(t) and a, = E:TET




The effect of bilinearity can be shown from this simple analysis. For
example, three beams having identical geometry and subjected to the same
bending moment Mo and assuming that the material properties for the three

beams are as follows

Beam #1 Jc =J, JT = J, a, = 1,
Beam #2 J_ = J—J Jr = J a2 =4
C 4’ T 9 o 1]
Beam #3 J =4 Jo = 4) a =4
o T i () i

Inserting these material properties into (47b), (50a) and (51) and normalizing
the strains by assuming that the maximum tensile and compressive strain for
beam #1 equal g 1, the resultant neutral axes and the normalized strain
distributions of the beams are shown in Figure 8a. For Beam #3 where the
tensile creep compliance is four times proportionally larger than Beam #1,
and the compressive creep compliance remaing the same as that of Beam #1, the
resultant maximum tensile strain at the bottom of Beam #3 is three times the
corresponding maximum tensile strain in Beam #1, and the maximum compressive
strain in Beam #3 is 1.5 the maximum compressive strain in Beam #1. The
maximum tensile stress in Beam #3 is actually reduced as shown in Figure 8b.
These results point out the fact that in interpreting the bending test results
of bilinear elastic or viscoelastic materials care must be exercised, parti-
cularly in evaluating the tensile strength from flexure test.

The actual theoretical and experimental results of the strains of beams

under pure bending are shown in Section 3.7.
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2.4 Formulation of Plane Stress Problems

In the analysis of stress and deformation, three kinds of equations are

needed; equilibrium equations, kinematic (compatibility) equations and

i il G s G R

constitutive equations of the material, plus the boundary conditions. The

first two kinds of equations are the same for linear elastic as well as for
bilinear elastic problems. The main feature which differentiates the bilinear
elastic from linear elastic problems is in the constitutive equations. In the
following, the governing equations used in the solution of stress analysis

problems for bilinear elastic material are formulated briefly.

(A) Equilibrium Cquations

90 9T
S—XL""WXX b 0 (55&)
9T 90
Wty 70 (550)
(B) Compatibility Equations ;
%
825 825 aze :
‘25 * 2y ) axgy w3 i
Yy X y ]

(C) Bilinear Constitutive Equations b

(C-1) Region 1 9y >0, op> 0

b R

{ £, = %; (o, - vTox] (57a) |
§ ;
i a1
€y = £ [oy - vTox] (57b)
2(1+v.)
e = L (57¢)

Xy ET Xy




L & - o -
— R R ——

o)
n

(c'f,(-c'fy)2 + (2°xy)2 (23d)

(C-3) Region 3 oy <0, 0,<0

2
I N
e, = E [ox vcoy] (58a)
=,
€ E [oy vcox] (58b)
2(1+v )
€. = L1 (59c)

Xy EC Xy

Because of the difference in the constitutive equations in these
three regions, the characteristic of the solutions for each region will
be different. In regions 1 and 3, the constitutive equations (57) and
(58) are identical to linear elastic problems, provided that ET’ vy and

EC, Ve respectively, are used in regions 1 and 3 instead of E and v.

Therefore in these two regions the characteristics of the solutions should

be similar to that of the linear elastic solution. For example, intro-

ducing a stress function as defined in the following:




oy = g (59a)
3y
a2
o, = ;_%. (59b)
X
0%y
Txy = ° IXJy (59¢)

It can be shown readiiy that the solution of a two-dimensional problem

in these two regions reduce to finding a bi-harmonic function,

4 4 4
3 d 3

+ 2—2—‘22- + —% =0 , (60)
X X dy 3y

which satisfies appropriate boundary conditions.

In region 2, however, the solution will be much more difficult due
to the nonlinear constitutive equations in this region. Methods of
solving the problem in this region will be discussed in detail in the
next section.

The difficulty in solving the problem in region 2 is only a part of
the whole problem in solving a general plane stress problem for a bi-
Tinear elastic material. If the boundaries separating these three
different types of regions are known, in prior, then in principle the
solution on each region can proceed independently and the solution in
each region should satisfy both the prescribed exterior boundary conditions
and the stress and strain across the interface between two regions must
be continuous. Unfortunately, the boundaries separating these three
different types of regions are not known in prior to most problems. This

will further complicate the solution of a general plane stress problem.
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2.5 Stress Analysis of a Circular Opening under Internal Pressure

Due to the fact that the geometry of the boundary and the loading
are axially symmetric, the solution of this class of problem can be
formulated by means of polar coordinates (r,0) and that the solution
should depend only on r. Furthermore, as shown in Figure 9, the whole

body can be separated into two regions. In the inner region (region 1)

the radial stress is in compressfion and the tangential stress is in tension;

in the outer region (region 2) both axial and tangential stress are
compression. The interface separating these two regions is undetermined
but is dependent only on a single parameter (r = R) due to the axially
symmetric condition. Because of this, the solution of this class of
problem becomes possible. Although the solution of this problem is
available elsewhere [15, 17, 18], a brief discussion of this problem

is ' “esented in this section to illustrate the techniques for solving
this type of problem which may help to gain an insight into the solution
of the more complex general two dimensional problems one of which is to
be discussed in the next section.

The equation of equilibrium for this axially symmetric problem is

given by:

= —==— & 0 (61)

where Oppe and Tpg are the radial and tangential stresses. In the
following, only the plane stress problem (0zz = 0) 1is considered.

The strain-displacement relations are given by

_ du _u
€er T dr €0 = ¥ (62)

o b
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FIGURE 9  Thick Walled Cylinder Under Internal Pressure




where ¢ . and €g

- g are the radial and tangential strains; u is the

radial displacement which depends on r only.
The stress-strain relations for regions I and II are as follows:

Region I:

v
C 1 5 .
£ S e = + =—0 (63)
66 Ec rr ET 066
Region II:
€ = 1 [o V_ Ol
rr Ec rr c 66
€nn = L (6., - v. o ] (62}
66 Ec 696 crr J

For Region I, solving stresses O ceein terms of strains Ban and

€gg and using (62), the stress Ones Ogg Can be expressed in terms of

radial displacement u as follows:

E
- c du 2 y
cr‘r"]\)22 [dr tve ¢ ?]
-v_“¢
c
2
¢°E
- c d u
°ee']—_v—z;2—["ca%+F] (65)
c
Vi Ve 2 &
In (65) the following relations T and ¢ = £ have been
| c o
used. Inserting (65) into (61) yields
d2u 1 duy 2 u
Zirat 770 (66)
r r




The general solution of (66) is
Ury =Ar® +8r? (67)

Inserting (67) into (65) yields the following stresses in Region I

E
S T LT [A(o#vce?) v 1-B(g-v 02) + 07T (68a)
c .
2 |
¢ Ec ¢-1 -¢-1
Ogg = - 2¢2 [A(1+vc¢) r +B(1-vc¢) r ] (68b) |
(o

The stresses in Region II can be cbtained readily from linear elastic

solution [19] as Tollows:

_C
O'rr = :2- + D (693)

=_ L :
0'ee = - —2-+ D (69b)

r { 3
The following boundary conditions are used to determine the four constants

A, B, C, D and the interface r = R which separates the two regions.

(in Region I)

aaa

Top = 0 at r

o,, =0 atr
8b (in Region II)

y
y

g..=-P_ atnr

{1
’! b




gt S

In Region I (r<R), the following stresses can be obtained:

Ry2¢ 1
a fF
0. =-p. (5)¢ (7a)
rr 1 ta (g) ¢, 1
R\2¢
0.0 = 0P (5)® (71b)
08 1'a (_) ¢ + 1
a
In Region II (r>R) the following stresses can be obtained:
(B2 +1
0 = - —
TP (71c)
: B2
0 =
o B2y (71)
where R can be determined from the last boundary conditions.
Ry2¢
Ro-1 (B *1 P
(E) T (7e)

As the external boundary become very large in comparison with the
internal boundary (E- 1) and Po = 0, the effect of bilinearity on the

maximum tangential stress becomes

Ogg = Pi¢ = Pi/r:l (72)
C
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2.6 Solutions of a Circular Disk under Diametral Compression

A circular disk under vertical diametral compression as shown in
Figure 10 yields a biaxial tension and compression stress field along the
vertical and horizontal diameters. Because of this unique feature, a
single test of the disk readily reveals strengths in both tension and
compression of the material concerned. This type of test becomes popular
particularly for testing the tensile properties of brittle materials.

Although the linear elastic solution of this problem is available [19]
the solution of this same problem for bilinear materials is nevertheless
very involved. The basic equations for plane stress problems are presented
in Section 2.4. Because of the highly nonlinear constitutive
equation, (23a, 23b, 23c), in Region II it is doubtful that an exact
analytical solution can be obtained. In the following, the solution of the
bilinear problem is explored, using:

(1) a finite difference approximation

(2) orthotropic plate solution using finite element technique.

Finite Difference Approximation

In formulating the solution it is assumed that the entire region of
the disk belongs to stress zone 2, i.e., o]>0, 02<0, g = 0. This
assumption is reasonable in light of the linear elastic solution of
the same problem.

Substituting the stresses in terms of the stress function as defined
in (59a, 59b, 59c) into the bilinear stress-strain relations (23a, 23b,
23c), and then substituting the stress-strain relations into the compati-
bility equation (56) yields the folluwing fourth order partial differen-

tial equation for the stress function
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FIGURE 10 A circular Disk Under Diametral Compression

-43-

=X




e B - — R R T

B S e e e e e M, e s i . s

i;%g+ zaxg:j:? + zj‘g - L_T l:gf Ky (73)
where Kw contains all the nonlinear terms
| . [M] [_y__i_] ol |
, 5 L © Ly ¢ XX Q Xy
E E 02 = (ox-oy)z + (20xy)2 (74)
E : and the stresses Oy oy and Oxy in (74) have to be expressed in terms of

] the stress function as defined in (59a, 59b, 59c). When ¢2 =1, (73)

reduces to the biharmonic function and therefore, reduces to the solution

of the corresponding 1inear elastic problem.
Equation (73) is solved by means of successive iteration using finite

difference methods

(n) -+ L) 1_-_33 Kx(pn-]) (75)

(n)
¥ 21"’xxyy sYYYy v

lJ”xxxx

i

where Ki"']) is the solution obtained from the jteration.
When n = 0, K&"']) = 0 and (75) reduces to a biharmonic function. Thus,
) 0

the linear elastic solution of the stresses Oy » Oy s "xyo [19] as shown in

the following serve as the initial input for the iteration.
2 2
c9=_2P ( gR-zgx + §R+x;x . %ﬁ]
LN "2
y u R

3 2 2
i 5 0= fr_p[(k-y% X (R+y3 X] (76)
1
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ryt = X% + (Rey)? (76)

For the purpose of approximating derivatives of the stress function

p by finite differences, a square grid of size h = 0.08R is laid on one
quarter of the circular disk (Figure 11). This gives a total of 135
interior grid points and 26 boundary points. The grid size selected is

such that, based on an analysis of the linear elastic case, it yields a
fairly good approximation to the derivatives of the stress function by finite
differences. Equation (75), which mu.t be valid throughout a circular

disk under diametral compression, is written for each of the 135 interior
grid points, by way of approximating the derivatives of the stress function
by finite difference. For those interior points close to the boundary the
distances between adjacent points may not be equal. In such cases, different
derivation of finite difference equations for the irregular grid has

to be used [20].

The following iterative process is used to solve (75). First, material

properties and the numerical values of the linear elastic solution (76)

are substituted into (74) and then to the right hand side of (75) for each
of the 135 equations corresponding to the 135 grids. Thus, the solution

of the problem reduces to the solution of 135 simultaneous linear equations
with zero stress boundary conditions. This set of equations is solved‘
using the Gauss-Seidel iterative method [21]. The result from the first
teration is then used to construct a new stress field for the disk. This
stress field is substituted into (74) for calculating the K¢ for each grid
and the process is repeated until the ratio of the difference of the tensile
stress at the center from the successive iterations to the tensile stress is

less than one percent. The results are shown in Figure 12.
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FIGURE 11 A Square Grid Laid Upon the First Quadrant of the

Circular Disk
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Orthotropic Plate Solution using Finite Element Techniques

If the circular disk is an orthotropic plate having moduli of ET
in the horizontal direction and of Ec in the vertical direction, the stress-

strain relations become

X ET X Ec y
A"
T ]
€, T ~F-0, +t=—o0
y ET X EC y
T V. \Y)
X ] ] T c
€. = -EX- = (=t =+ ==+ =5 1
Xy ET Ec ET EC Xy

and the corresponding compatibility equation in terms of stress function

becomes

4 4 4

] 2 ] ]
e A

ax ox "3y ay4

Making use of Wilson's computer program [22], the solution of an
orthotropic circular plate under diamétral compression is obtained and

plotted in Figure 12 for compression.

Comparison Between Linear, Bilinear and Orthotropic Solutions

The linear elastic solution [19], the bilinear and orthotropic
solutions obtained in this section are shown in Figure 12. For ET< Ec’
the tensile stresses at :he center and along the horizontal diameter of
the disk in the bilinear solution and orthotropic solution are both less

than the result ohtained from the 1inear elastic solution, through the

bilinear elastic solutions lie between the Tinear elastic and orthotropic
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solution. The compressive stresses at the center and along the horizontal
diameter are higher than the corresponding stresses obtained from the
Tinear elastic solution. Again, the bilinear elastic solutions lie

between the linear elastic and orthotropic solutions.
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3.0 EXPERIMENTAL INVESTIGATION
The objectives of the experimental investigation are twofold; (1) to

investigate the time and temperature dependent properties of two rock types,

S : ki el

Charcoal granite and Diesser basalt, with emphasis or investigating the

vl

different response under tensile and compressive siresses, (2) to investi-
gate the strain distributions of beams under bending and disks under dia-
metral compression of the two rock types.

3.1 Materials and Specimens

Two 1' X 1' X 1' blocks of Charcoal granite and one 1' X 1' X 1

block of Dresser basalt used in the tests were supplied by Twin Cities

N F ey

Mining Pesearch Center, Twin Cities, Minnesota. Information pertaining to 11

these two rock types are given in Table 2.

Compression specimens of 1 1/2" diameter and approximately 3 in.

T ——

long were used. The specimens were cored by a 1 1/2" diamond core drill.

Ends were machined parallel to within 0.001 in. The tension specimens of ;;
1.404 in. diameter and approximately 6 1/2 in. long were used. The 1

specimen surfaces were polished.

For the beam bending tests, the specimens used were 3" X 3/4" X 15".
For the diametral compression tests, the specimens used were 4 in. diameter
and 3/4 in. thick.

3.2 Compression Apparatus and Testing Procedures

An 80,000 pound capacity uniaxial compression testing device was
designed and constructed in the course of this study. As shown in rig. 13,
% the apparatus consisted of four major parts: a main frame, a hydraulic

loading system, a heating device and an axial strain measuring device.
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TABLE II -

MATERIAL PROPERTIES

Charcoal Granite

Dresser Basalt

Sources St. Cloud, Minnesota Dresser, Wisconsin
Mineral Fledspar 60% Feldspar 50%
Content Quartz 16% Augite 40%
(percent by wt) Hornblende 20% (including
Eiotite 3% altered material)
Other 1% Magnetite 8%
Other 2%
Average
Grain Size 0.46 mm 0.10 mm

Pad ool e i e o
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FIGURE 13 Compression Apparatus
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Schematic Diagram of Compression Test Apparatus
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The hydraulic loading system as shown schematically in Fig. 14 consisted
of a hydraulic pump, an accumulator, a solenoid and a double acting cylinder.
In addition, a hand pump was also connected to the system. The relationship
between the pressure of the system and the load generated from the cylinder
was calibrated by a 100,00<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>