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DISCLAIMERS

The findings in this report are not to be construed as an official Depart-
ment of the Army position unless so designated by other authorized
documents.

st s e

When Government drawings, specifications, or other data are used for .
any purpose other than in connection with a definitely related Govern-
ment procurement operation, the U.S. Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the
Government may have formulated, furnished, or in any way supplied

the said drawings, specifications, or other data is not to be regarded

by implication or otherwise as in any manner licensing the holder or

any other person or corporation, or conveying and rights or permission,
to manufacture, use, or sell any patented invention that may in any way
be related thereto.

Trade names cited in this report do not constitute an official endorse-
ment or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUC TIONS

Destroy this report when no longer needed. Do not return it to the
originator.
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V/STOL drive systems must incorporate an overrunning (freewheel)
clutch unit so that in the event of engine malfunction, the
aircraft can safely autorotate or, in the case of multiengines,
proceed on single-engine operation. Current overrunning cpeeds
are limited to approximately 12,000 rpm or less, depending on
the torque transmitted. The objective of this program was to
evaluate spring-type clutches operating at engine input
conditions of 26,500 rpm and 1500 hp.

Appropriate technical personnel of this Directorate have
reviewed this report and concur with the conclusions contained
herein.
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SUMMARY

e Ry 2

The purpose of this program was to investigate the performance of high«
speed overriding spring clutch assemblies fur use in a multiengine
helicopter application., The design operating conditions were 3,570 inch-
pounds torque transmitted at 26,500 rpm, Two clutch configurations
were evaluated, On design A, the input member of the clutch is a drum
S into which a variablecross-section spring is expanded., The large end of
the spring butts up against a lug on an output shaft through which the
torque is transmitted, The spring is mechanically energized on its small
b end, and during overriding the small end ratchets past the energizing de-
vice, Design B has both an input and an output drum connected by an
expanding variable-cross-section spring. The small end coils of the
spring are raised slightly and are always in contact with the drums, The
: clutch is energized by friction between the drum and spring end, and
3 during overriding rubs at this interface,

An extensive test program was conducted as follows:

E 1, Full-Speed Dynamic Clutch Override Test - Operation at zero input

speed and 26, 500 rpm output speed for 5=hour runs at each of five
g levels of oil flow
v

2, Differential Speed Dynamic Clutch Override Test - Operation at
output speed of 26, 500 rpm and input speeds of 13,250 (50 percent
normal rated), 17, 755 (67 percent normal rated) and 19, 875 (75
percent normal rated) rpm

3. Dynamic Engagement Test - Simulated high-speed engagements

4, Static Cyclic Torque Fatigue Test - Operation at 7, 140 + 900 inch~
pounds for 107 cycles

5. Static Overload Test - Torque application to 18, 000 inch-pounds

Measurements of drag torque and metal and oil temperatures were made
during the dynamic testing,

R RO v s con sy e
]

Results of the test program indicated that design A clutch had several
failings and would require redesign and extensive development to operate
successfully, The design B clutch completed all tests with no significant

difficulties.
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This program was conducted for the Eustis Directorate, U.S5. Army
Air Mobility Research and Development Laboratory under Contract
DAAJ02-71-C-0035, DA Project 1G162207AA72. The period of
performance was 15 April 1971 through 6 December 1972,

U.S. Army technical direction was provided by Mr. R. Givens and
Mr. D. Lubrano.

Acknowledgement is made to the engineering staff of Curtiss-Wright
Corporation for their assistance in this program.
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INTRODUCTION

The purpose of this program was to advance the technology of
overriding spring clutch units to allow for reliable and efficient
operation at speeds and loads commensurate with advanced aircraft
turboshaf* engines. The design operating conditions for this
program were 26, 500 rpm and 3, 570 inch-pounds torque.

The overriding clutch is a critical helicopter component that
transmits engine torque in normal operation and allows the rotors

to autorotate in case of engine malfunction., With the advent of
multiple engine configurations, the overriding clutch assumes an

even greater role since the aircraft must be capable of operation

with an engine shut down or with engines operating at different speeds.

Current transmission designs locate the clutch after the first or
second gear reduction stage from the engine in order to eliminate
problems associated with high-speed operation; however, this
practice is costly in terms of component size, weight, and oil
flow. To achieve the lightest configuration, the overriding clutch
must be located on the high-speed shaft before or in combination
with the first gear reduction,

Difficulties associated with high-speed overriding clutches fall into
two categories:

e Fatigue and overload capability
2, Problems associated with high-speed overriding operation

Also, clutch engagement and disengagement at high rates of speed
and acceleration with attendant shock loads are a potential source
of difficulties.

The approach taken to investigate these problems and to advance
the technology of overriding spring clutches in the subject program
follows:

1. An analytical study was conducted to arrive at the spring
clutch configurations best suited for high-speed aircraft
operation., The configuration chosen, designated design A,



features a variable lead spring that expands into an input
shaft drum and drives the output shaft at the heavy end of

the spring through a lug., This spring clutch configuration
minimizes the space required and is lightweight. A drawback
of design A is that all output torque must pass through the

lug end.

A second clutch configuration, designated design B, was made
available for evaluation by the U.S. Army Air Mobility Research
and Development Laboratory. Design B features a variable lead
spring that expands into drums on both the input and output shafts
to transmit torque from one to the other. This configuration
overcomes the problem of transmitting all the torque from the
spring tu a connection on the output shaft.

A computer program was developed to provide an analytical
tool for the analysis of high-speed spring clutches of the
design A configuration.

An extensive test program was conducted on both design A
and B configurations as follows:

a. Full-Speed Dynamic Clutch Override Test - Operation
at zero input speed and 26, 500 rpm output speed for
5-hour runs at various oil flows

b. Differential Speed Dynamic Clutch Override Test -
Ope ration at output speed of 26, 500 rpm and input
speeds of 13,250 (50 percent normal rated), 17,755
(67 percent normal rated), and 19, 875 (75 percent
normal rated) rpm

c. Dynamic Engagement Test - Simulated high-speed
engagement

d. Static Cyclic Torque Fatigue Test - Operation at
7,140 + 900 inch-pounds for ten million cycles

e. Static Overload Test - Torque application in increments
to 18, 000 inch-pounds (Design B only)
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DESIGN AND ANALYSIS

DESCRIPTION OF CLUTCH OPERATICN

The principle of spring clutch operation is presenied in simplified form
in Figure 1, Figure 1(A) shows a contracting con‘iyuration where a
spring is wrapped around two shafts with an interference fit; Figure
1(B) shows an expanding configuration with a spring pressed into the
bores of two drums.

Rotation of the input shaft or drum in one direction grips the spring and
transmits torque into the output shaft or drum. In the case of the shaft=
mounted configuration, Figure 1(A), the spring is in tension, whereas

in the drum-mounted configuration, Figure 1(B), the spring is in com-=-
pression while transmitting torque.

Rotation in the opposite direction will produce slippage between the
spring and the shaft or drum,

The coils carry an increasingly greater load along the spring, Ir the
case of the clutches pictured in Figure 1, the coil with the highest load
is at the crossover. Because the load in th: spring coils varies ex-
ponentially, it is efficient to vary the coil cross section in order to
achieve constant stress along the spring, This action will reduce the
size and weight of the clutch,

The clutches pictured in Figure l are actuated through frizcion between
the spring and shaft or drum, It is possible to actuate the clutch mechan-
ically by means of an obstruction placed in the path of the end coil, The
end coil transmits only a small portion of the total torque; therefore,

the energizing force required is low,

DESCRIPTION OF TEST CLUTCHES

Two clutch designs suitable for use in aircraft applications were evalua-
ted, They are designated '"'clutch design A' and ''clutch design B, !

Clutch De sijn A

Clutch design A is shown in cross section in Figure 2. An input drum
(1) contains an energizing spring coil (2) through which the clutch is
activated, (See Figure 3,) The eight-coil torque transmittal spring (3)
drives the output shaft (4) through the torque transmittal lug (5). The
output shaft is supported by a roller bearing (6) on the lug end and a
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Figure 1. Principle of Spring Clutch Operation.
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ball bearing (7), which locates the assembly axially, The spring is
mounted onto the output shaft with a press fit, and in the assembled con-
dition there is clearance between the spring outside diameter and drum
inside diameter.

.
k
I\

e

For the driving mode of operation, the input drum (engine) drives clock-
wise as shown in Figure 2, The energizing coil rotates with the drum,
When the input lug on the energizing coil butts up against the torque 5
spring end, load is transmitted thruoea the spring, thus driving the out-

put shaft, Figure 4(A). As the torque is increased, the first active coil

of the torque spring unwinds into the drum. Torque is now being trans-

mitted through the energizing end face of the spring and through the

outside diameter of the spring via friction, Figure 4(B). As more torque

is transmitted, more coils unwind into the drum until at some point before

the design point torque is reached, all of the coils are unwound from the

shaft and wrapped into the drum, Figure 4(C). The energizing end coil

i carries a small amount of the torque, and each succeeding coil carries

a proportionately larger share. At the torque transmittal end of the

spring, all of the torque must now pass through the lug cross section,

A constant-height variable lead spring was chosen for this program.

The energizing end has the smallest cross section to reduce the amount

of torque needed for energization., The axial thickness of the spring

3 increases towards the torque delivery end because more torque is

§ being transmitted through each succeeding coil. Pertinent clutch

geumetry is listed in Table I.

AR

TR ST M T AT o gt

Overriding occurs when the input shaft speed goes to zero (engine is shut
i dcwn) while the output shaft continues to rotate at constant speed. The
spring will now wind down off of the drum since torque is no longer being
transmitted by friction through the drum. At the design point overriding
speed of 26,500 rpm, the spring was designad to rest lightly on the output
shaft, centrifugal force on the spring overcoming the assembled press
fit of the spring on the shaft, and the spring maintains clearance with
the drum, The energizing end lugs of the springs will ratchet past each
other,and the energizing spring coil that is attached to the drum can
recede axially into a slot provided for in the adapter (Figure 3). Since
§ the clutch is designed t» operate with clearance at the spring outside
diameter during overriding, the only components in direct contact will
be the energizing ends that ratchet past each other, Lubrication has
been provided for in this area to reduce heat generation and wear.

Lubrication for design A clutch components is provided centrifugally by
holes drilled through the clutch output shaft (Figure 5). The lubrication
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TABLE I. CLUTCH GEOMETRY
_jm
Design A  Design B
Drum Dimensions
Outside diameter (in,) 3,120 3, 16%
Inside diameter (in.) 2. 200
Concentricity 0. 0005
Surface finish (AA) 20
Shaft Dimensions
Outside diameter (in,) 1, 465
Inside diameter (in, ) 1. 000
Concentricity 0. 001
Surface finish (AA) 32
Torque Spring Dimensions
Outside diameter, free (in,) 2.163
Mean diameter, free (in.) 1.803
Inside diameter, free (in.) 1,443
Outside diameter, assembled (in. ) 2.183 1. 380
Mean diameter, assembled (in,) 1,823
Inside diameter, assembled (in. ) 1.463 0. 875
Radial height (in. ) 0. 360
Axial length, energizing end (in,) 0. 050
Axial length, torque end (in. ) 0. 250
Axial length overall, nominal (in. ) 1. 350 3.120
Number of coils 8 36
Hand of spring left
Concentricity 0, 001
Surface finish (AA) 32
Energizing Coil Dimensions
Outside diameter (in.) 2.189
Inside diameter (in,) 1,473
Axial length (in. ) 0. 050
Number of coils 1
Hand of spring left
Overall Clutch Length (in, )
End of input spline to end
of output spline 4, 30 9. 75
Clutch Weight (1b) 7.8 8.0
*  Maximum outside diameter at output end. See Figure 6.
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and scavenge paths for the clutch components are depicted with arrows,
Clutch lubrication is accomplished with two 0. 032- to 0.035-inch-diameter
jets drilled radially through the clutch output shaft as shown in Section
C-C of Figure 6, The forward bearing, not shown, is lubricated cen-
trifugally by the oil reservoir developed in the circular groove area of

‘ Section D-D, Three 0, 023- to 0.025-inch-diameter holes drilled through
; the roller bearing inner race provide the lubrication path through the
bearing. It is noted that the bearing race is positioned over the grooved
E section of the clutch output shaft so that only two holes carry the oil to
the roller bearing, The third hole was added to the bearing race to
ensure two-hole lubrication in the event relative motion occurred between
the bearing race and output shaft. The aft bearing was lubricated with
two 0, 032- to 0,035-inch-diameter jets drilled through the clutch output
shaft at an angle of 45 degrees as shown in Section C-C,

Ample scavenge ports for the clutch assembly were provided by drilling
eight 0, 190-inch-diameter holes in two places through the clutch input
shaft. The clutch scavenge ports were positioned between the spring
clutch and the bearings, This arrangement prevents clutch particles
from contaminating the bearings and eliminates oil churning in the bear-
ings. Axial grooves, machined in the output shaft, extend to the forward
bearing and away from the feed oil so as not to starve this area in case

: of low oil flow.

R R Rl

€ The test program was designed to evaluate oil flows from 33 to 300

percent of design flow, A design flow of 0, 8 gpm (376 pph) was selected
: as being reasonable for this type of transmission component, Fifty-nine
percent of the flow lubricates the clutch bearings, and the remainder
lubricates the spring clutch assembly.

The forward roller bearing is 40-68-15 MM of ABEC 5 quality. It
incorporates a one-piece bronze retainer, straight-through outer race,
and flanged inner race. The aft ball bearing is a 40-68-15 MM of the
Conrad configuration. The retainer is a riveted phenolic. The bearing
was not preloaded.

Clutches were dynamically balanced to 0.25 inch-grams prior to opera-
tion, This procedure is standard for high-speed rotating components.

To afford the minimum size and weight configuration, hardening was
required for all torque transmitting surfaces to take advantage of the
higher allowable stresses. The torque capacity of a spring clutch is a
function of the cross section of the wire, the ultimate strength of the
wire, and the mean radius of the coil. Clutch materials are chosen on

11
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the basis of hoop stress and shear stress, respectively., The materials
data are listed in Table II,

Clutch design A components are shown in Figure 7,

TABLE II, TEST CLUTCH MATERIALS, DESIGN A

Shaft and Drum

Material specification AMS 6265
Heat treatment Carburize
Case depth - (in.) . 050 -, 065
Max, stock removal (after heat treatment) = (in,) .010

Case hardness R, 60-63
Core hardness R¢ 32-40

Torque Spring and Energizing Coil

Material specification Vasco 350
Heat treatment Thru hardened
Surface hardness R¢ 56-60

0il MIL-L-23699

Clutch Design B

Clutch design B is shown in cross section in Figure 8, The clutch is
composed of an input housing (1) and an output housing (2), which are
held in relative position by a preloaded duplex bearing (3). The torque
element is a one-piece double-ended spring (4) with wide coils at the
center and progressively narrower coils approaching each end of the
spring. One end of the spring fits into a counterbore in the input housing
while the other end {its into a similar counterbore in the output housing,
Three coils at each end of the spring are larger in outside diameter than
the remainder of the spring, and they fit their respective counterbores
with a small amount of interference. The three end coils are silver
plated at the outside diameter to reduce wear, The central portion of
the spring does not contact the inside of the counterbores unless the
clutch is transmitting torque.

A central mandrel (5) is piloted and pinned (6) in the input housing., The
mandrel fits the inside diameter of the spring and holds it in the center
of the housing bores to reduce overriding drag torque. Friction during
overriding is thus limited to the sliding between the outside diameter of
the three end coils of the spring and the inside diameter of the output
housing.

13
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During engagement, the torque applied to the spring through the friction
on the end coils causes the spring to enlarge progressively until the
entire spring fits tightly in the bores of the housings. The spring then
acts as a common pilot in the counterbores of the input and output
housings, thus providing the reaction to the shear load between the
housings, This relieves the duplex bearing of the moment related to
the shear forces caused by any driving torque above 600 inch-pounds,

Lubrication and cooling of the duplex bearing are provided by oil paths
between and through the bearings. Lubrication and cooling paths at
the end of the spring are provided by reliefs in the face and outside of
the output washer, grooves in the end coils of the spring, and holes in
the housings.

The lubrication and scavenge paths for the clutch components are shown
in Figure 9,

Two 0.026- to 0,027-inch-diameter holes lubricate the back-to-back
bearings, and the remainder of the flow passes through scallops and
lubricates the spring clutch assembly.

Twenty-four percent of the flow lubricates the clutch bearings,and the
remainder lubricates the spring clutch assembly.

Design B geometry is listed in Table I, and test clutch materials are
listed in Table III, Design B clutch components are shown in Figure 10,

TABLEIII. TEST CLUTCH MATERIALS, DESIGN B

Spring, Output Housing, Input Housing

Material specification H-11

Heat treatment Thru hardened

Hardness R, 54-56

Spring end coils surface treatment Silver plate
Arbor

Material specification SAE 4340

Heat treatment Thru hardened

Hardness R¢ 32-40

Input and Output Spacers

Material Phosphor
bronze

16

S LIRS

32t e



B At

INPUT OUTPUT
SHAFT SPACER
SUPPORT
BEARING oo BACK-TO-BACK
BEARINGS
T ; OIL
| G R 7 "
il T izl S - o
L\f oo
SN \\ a
" e N F
\ ’/gl% A ouLe
OUTPUT \SUPPORT
INPUT SHAFT CLUTCH BEARING
SPACER SCAVENGE
ENERGIZING TYP. (8) PLACES
ColL
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CLUTCH ANALYSIS, DESIGN A

The successful design of a high-speed overriding spring clutch requires
consideration not only of the load-carrying capability but also the energy
losses during overriding and differential speed operation.

The critical parameters for load-carrying capability are hoop stress

in the drum, shear stress in the shaft, and compressive and tensile ]
stresses in the spring, For the override and differential speed modes

of operation, the critical parameter is the drag torque developed as

the energizing end faces of the springs ratchet past each other. These

modes of operation assume, of course, that the outside diameter of

the torque spring does not make contact with the drum, A computer

program was developed, Appendix I, and trade=-off studies were con= !
ducted to optimize the system design,

Following is the analytical approach of the spring system design, the
results of which are listed in Table IV for the design point of 3570
inch-pounds at 26,500 rpm.

1. Calculate the growth of the free torque spring due to centrifugal
force at the design point speed.

-13 5 2, *
AD = 2x10 " (DMp ) (m)
hl
where DMF = mean diameter of the free spring in the free state,
in,
]
n = design point speed, rpm
h = gpring radial height, in.

2x107 13 (1. 803)° (26, 500)°
(. 36)%

AD= =, 02065 in,

The torque spring is designed to have a 0.020-inch interference
fit with the output shaft at assembly. At overriding speed, there-
fore, the torque spring will unwind from the shaft to reduce the
press fit to zero. For any speed above this value, the torque
spring will unwind further and also grow radially outward.

* For derivation, refer to Appendix II.

19
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TABLE IV, CLUTCH DESIGN PARAMETERS, DESIGN A

Design Point: 3, 570 in. -lb at 26, 500 rpm

Speed Parameters

Diametral spring growth, ii. . 021
Spring actuation angle, deg 32,61
Spring energizing moment, in,-lb 193.1
Drum Clearance Parameters
Diametral clearance, drum to spring, in. . 017
Spring actuation angle, deg 26, 60
Spring energizing moment, in. -lb 155.7
Stresses
Total energizing moment, in.-1b 348.8
Total stress at energizing end lug
due to energizing moment, psi
Inner surface 86, 611
Outer surface -128, 727
Total stress at output end lug
at design point torque, psi
Inner surface 64, 569
Outer surface -150, 769
Torque through outer surface of
output end coil, in, -1b i, 665
Drum hoop stress, psi 38, 450
Shaft shear stress, psi 7, 386
Overriding Parameter
Drag torque at energizing end, in.-lb 0.22

!
]
.
!
3

20



e

For assembly, assume a diametral clearance (ACL) of 0,017
inch between the torque spring outside diameter and drum inside
diameter.

2. Calculate spring actuation angle and energizing moment required
to reduce the initial press fit to zero.

5. =N|ZAD | (gee App 1)
D D, 4D

where GD = actuation angle to reduce press fit to zero, deg
N = number of coils in torque spring
_ 2rr (. 02065) _
fp= 8 [1.803+.02065 Al el
eD = 32.61 deg
3
Mp = fbéwnh N ‘32]3 (See! App II)
D L MF
where MD = energizing moment to reduce press fit to zero,
in. -1b
bM = mean coil width, in.
h = sgpring radial height, in,
E = modulus of elasticity of spring, psi
6 3
M = 29x10 (. 150) (.36)"  32.61
D 6.6(1.803) (8) 360
M_ = 193.1in, -1b

D

3. Calculate spring actuation angle and energizing moment required
to reduce the drum clearance to zero.

5 - N 2T ACL
CL DME+ACL

21
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where QCL = actuation angle to reduce drum clearance to zero,
deg
ACL = initial drum clearance, in,
DME = mean diameter of the spring as assembled onto

the output shaft, in,

-

O 15 BI.M] = . 46424 rad

1.823+.017

eCL = 26, 60 deg

3
9
Mo, = E;)blfh N er
.6D N " 360

~ 29x10° (.150) (.36)> | 26.60
CL ~ 6.6 (1.823) (8) 360

MCL = 155.7 in, -1b

If the system is started from rest, it will require Mp + Mc1, =
348. 8 inch-pounds of torque to unwrap the spring off of the shaft
and into the drum. In a twin-engine installation with one engine
already operating, only Mcp, = 155. 7 inch-pounds of torque

will be required for energizing because the output shaft is
already overriding at speed when the second engine is being
started up; the speed of the output shaft provides the centrifugal
force necessary to reduce the press fit to zero; hence, Mp
need no longer be supplied by the second engine.

These calculations have assumed a mean coil axial thickness
(byy,) for the energizing moment equations, and as such they are

somewhat conservative.

If the energizing end coil width is used, the energizing moments
would be one-third of the values just calculated.

Calculate the maximum stresses in the spring. See Figure 11
for derivations,

a. Energizing lug end

22
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Drum 1.D. - Quter Surface

Inner Surface

Spring stess due to load P consists of bending plus compressive stresses.

M, & bh
5o = p

where Sy = bending stress

M, = bending moment required to unwrap spring off of shaft
and into drum, in.-lb

oM,
= bh?
P 27 1
T TR T Tome W
where Sc = compressive stress
P = applied force, Ib
Outer_Surface
S,o = bending stress - compressive stress
. 6M, 27
Yo bhZ Dpobb

S,o = total stress, outer surface, psi

Inner Surface
6M, 27

bh? - Dpmobh

S, =+

where S,i = total stress, inner surface, psi

Note: + = Tension
~ = Compression

Figure 11. Bending and Compressive Stress Derivations,
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bending stress, psi

€
-3
o
~
o
0
1}

1b

g

MD + MCL' in, -

o
"

1

___6(348.8)
b (., 050)(. 36)4

S

2T

5 = ———

where Sc compressive stress, psi

T , in, -1b

MD+ MCL

TP RY " ST

b. = width of energizing end coil, in,

107, 669 psi

D, .= mean diameter of the spring when unwrapped into

the drum = - h, in.

d,
i

d = drum inside diameter, in.

2(348. 8)

Sc * [2.201 - .3h) (.05) (. 36)

wn
"

107, 669 - 21, 058 = 86, 611 psi

St =-107, 669 - 21,058 - -128,727 psi

£
o
o
o]
o
wn
(o d
"

wn
"

b, Torque transmittal lug end

24

= 21, 058 psi i

total stress at the inner surface of the spring, psi

total stress at the outer surface of the spring, psi
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S, = 107,669 psi

Once the spring has been unwrapped into the drum, any
further increase in load being transmitt ed will not affect

the bending stress.
ZTT

c DMobh

where TT = design point torque, in, -1b

b

bN = width of the lug end coil, in.

_ 2( 3, 570)
¢ (2.201 - .36) (.250) (. 36)

St =107, 669 - 43,100 = 64, 569 psi
i
St = -107, 669 - 43,100 = -150, 769 psi
o
The maximum tensile stress in the spring occurs at the inner
surface of the energizing end, while the maximum compressive
stress occurs at the outer surface of the torque transmittal end.

S = 43,100 psi

B

e S e A

.a;t
}
.

5. Check spring life for cyclic fatigue test.

In the cyclic fatigue test, the spring will operate at 7, 140 + 900
inch-pounds of torque for ten million cycles. From the computer
program output, Appendix I, the maximum stress variation will
occur at either the energizing or output lug end. The total

stress at the inner and outer surfaces is tabulated below for

both ends.

Total Stress
Energizing Lug End Output Lug End

S T L LT SR TG o N SO

Inner Outer Inner Outer
Torque Surface Surface Surface Surface
(in. -1b) (psi) (psi) (psi) (psi)
6, 240 105,200 -110,100 32,300 -183,000
7,140 104,800 -110,500 21,500 -193, 900
8,040 104, 500 -110, 900 10, 600 -204,700

25
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Calculation of average and fluctuating components is now
necessary for plotting a Goodman diagram.

St + St .
S - max min
AV 2
where SAV = average stress component, psi
St = maximum total stress component, psi
max
St = minimum total stress component, psi
min
S - S
tmax tmm
S =
r 2

where Sr = fluctuating stress component, psi

Tabulation of these calculated stress values is shown below:

Energizing End Output End

Inner Outer Inner Outer

Surface Surface Surface Surface
SAV (psi) 104,850 -110,500 21, 450 -193, 850
Sr (psi) 300 400 10, 850 10, 850
Point Designation
for Plot (Fig. 12) A B C D

The fatigue endurance limit (S, = 120, 000 psi)* for one-hundred
million cycles and the ultimate strengths (S - 365, 000 psi)*
are shown in Figure 12 as ordinate and abscissa, respectively.
The plotted points A through D fall within the triangle, showing
that the spring design is adequate for the cyclic fatigue test.

* Vascomax 350 material manufactured by Vasco, Latrobe,
Pennsylvania.
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6. Calculate the maximum hoop stress that occurs at the inner

surface of the drum. The following equation includes the
centrifugal effect of the spring and the rotational stress of the
drum.

B o (0]

where S = maximum hoop stress at drum inside diameter,

R psi

dd = drum outside diameter, in.
o

dd. = drum inside diameter, in.
i

v = Poisson's ratio = 0, 25

5 = weight density constant - . 282 lb/in, 2

g = acceleration due to gravity - 386.4 in, /sec

n = design point speed, rpm

Po = internal pressure at drum inside diameter due

to transmitted load plus centrifugal force of
the spring, psi

F + F

* Shigley, J. E., MACHINE DESIGN, New York, McGraw-Hill,
1956, p. 446 Equation (14-7), p. 475 Equation (14-21),
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