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DISCLAIMERS

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other authorized

documents.

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the
Government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner \icensing the holder or any
other person or corporation, or conveying any rights or permission, to
manufacture, use, or cell any patented invention that may in any way be

related thereto.

Trade names cited in this report do not constitute an official endorse-
ment or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the
originator.
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ABSTRACT

This report covers the design and development of a hydrofluidic
servoactuator, The objective of the program was to demonstrate the
feasibility of a servoactuator utilizing a hydrofluidic amplifier cascade
input stage which replaces the bellows-flapper-nozzle of a conventional
servovalve, a fluid feedback transducer, and an actuator, The servo-
actuator was designed to utilize U, S, Army aircraft hydraulic fluid,
meeting specifications of MIL-H-5606, and to meet the performance of
a UH-1 helicopter,
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FOREWORD

3 This document is the final report on the development program of a

] hydrofluidic servoactuator authorized by the Eustis Directorate,

¥ U.S. Army Air Mobility Research and Development Laboratory

| (AMRDL), Fort Eustis, Virginia, under Contract DAAJ02-72-C-0017,
The technical monitor on this program was Mr., George Fosdick,

3 The objective of this program was to design and develop a hydro-
fluidic servoactuator, with increased reliability and reduced cost,
by utilizing hydrofluidic amplifiers and fluid feedback to replace the
conventional servovalve flapper-nozzle first-stage and mechanical

i feedback, The work effort presented was conducted over a period

: from 18 November 1971 to 31 October 1972,
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LIST OF SYMBOLS

ACD - Apparatus Control Division

d -  Spool dia,, in,

db - Decibel - 20 log (output/input)

KA - Actuator gain, in,/in, 3

Kpp - Feedback gain, psi/in,

Ky - Spool valve gain, in, 3/sec/psi

K, - Preamplifier gain, psi/psi

K, - Power amplifier gain, psi/psi

4 -  Depth of capiliary, in,

LP - Length of capillary, in,

Lr - Restricted length of spool, in,

N -  Spool threads per inch

PF - Feedback transducer supply pressure, 1b/in, 4
PFB - Feedback transducer output pressure, lblin.2
PS - Servoactuator supply pressure, lb/in, .
Povs - Control system supply pressure, 1b/in, <
S - LaPlace operator

T - Time constant, sec

X -  Actuator displacement, in,

W - Natural frequency, rad/sec

5 - Damping ratio

AP - Pressure differential, lb/in.2

i - Viscosity, lb/sec/in.2



SECTION I
SERVOACTUATOR DESIGN

The program consisted of the design and development of a hydrofluidic
servoactuator laboratory model utilizing high-pressure fluidic ampli-
fiers to replace the flapper-nozzle of a conventional servovalve, and

designed to meet the performance requirements of a UH-1 helicopter.

DESIGN REQUIREMENTS

The objective of the hydrofluidic servoactuator design is to provide a
more reliable, lower cost unit than the conventional bellows, flapper-
nozzle, spool valve, and mechanical feedback configuration., The de-
gsign technique consists of replacing the bellows-driven flapper-nozzle
valve with a hydrofluidic amplifier cascade which drives the spool
valve directly, Fluidic summing is provided in the feedback loop,
eliminating the mechanical feedback linkage used on present devices,
Figure 1 shows a circuit schematic of the system. Design and perfor-
mance requirements are based on the performance requirements of a
UH-1 helicopter and the utilization of MIL-H=-5606 hydraulic fluid,

INPUT FROM CONTROL SYSTEM

/ Psys

RETURN PRESSURE J_ ~CONTROL SYSTEM
~~ REFERENCE PRESSURE
\\ PREAMP |~
CASCADE

\

[

POWER AMP |

| AND SuMMER
é L py ]
) -
Al 7/;]@'{‘,
_ B = i ———
v d SIS s sl T
FEEDBACK TRANSDUCER SPOOL VALVE AND
ACTUATOR

Figure 1. Circuit Schematic.

1



The following performance requirements were used as design goals for
the series servoactuator:

Quiescent control pressure Gfg psig above return
Quiescent control flow 0.1 in?/sec
Input range +4 psid
Supply pressure 1500 psig
Quiescent power flow 1.5 in?/sec (0. 39 gpm)
Actuator piston stroke 10.375 in,
Slew rate 10 in, /sec
Static gain 0.093 in, /psi
Response
Amplitude ratio +2 db max, -6 db max
attenuation at 10 Hz
Phase lag 90 deg max at 10 Hz

RESPONSE ANALYSIS

The block diagram for the mechanization of the servoactuator is shown
in Figure 2 where

K,, K, - Amplifier cascade gain (psi/psi)

1’ 72

Kv - Spool valve flow-pressure gain (in.3/sec/psi)
T 3

K A” Actuator gain (in./in")

KFB - Feedback transducer gain (psi/in)



SPOOL ACTUATOR
PRE AMP [POWER AMP VALVE PISTON

K
AP 2 K
—p K _A
IN 1 '? " Tse1 Kv 3

FEEDBACK
TRANSDUCER

Kea

Figure 2, Servoactuator Mechanization.

Typical values for present UH-1 components are as follows:

Spool Valve

K 0. 0066 in3/sec/psi

A%

n

Diameter 0.187 in,

700 1b/in, (400-700 lb/in.)

Spring rate

Gain = 168 in. 3/sec/in.

Capacitance = 1,09 x 1076 in, 3/ psi
Actuator

Ka = 6,06 in./in.3

Piston area = 0.165 in, é

Stroke = £0, 375 in,

A IRNENE



Assume K_ = 10 psi/psi

2
w = 94 rad/sec (15 Hz)
T = 0.007 (Approximate lag between amplifier and
spool valve)
-X-=KZKYKA=_ K, Ky K, o
/r'
AP S(TS+1) S{(1S+1) + KZKVKAKFB
1+K2 KV KA KFB
S(TS+1)
x KK Ry . KKKy ©)
AP 2 T
TS"+S +K, K, K, K
2°VTATFB 2.5 Kk KK, K
T 2 'V 'A 'FB
T
The damping ratio becomes
1
2 6w = T
(3)
5 = - ; = 0.76
T 20T~ 2(94) (0.007) ~
and the feedback gain becomes
o Ky Ky KyKgp
v T
(4)
Koo T (9920000 oo
FB =~ K, Ky K, ~ T0(0.0066) (6.08) psi/in.

The spool valve gain (Ky) and amplifier gain (Kg) can be varied by

changing the spool valve centering spring rate and number of ampli-

fiers, respectively, thus providing for a variation in the feedback gain
Figure 3 shows the required response envelope and that cal-

(K B)-
cuEated from the design parameters.,

The saturation range requirements of the preamplifier and power ampli-
fier cascades are determined from the maximum slew rate required for

the servoactuator,



RS AET

‘juauraJdInbay asuodsay °¢ aandiyg

(ZH) ADNINDI NS

(8Q) OlLvy 30NLINdWY

05 ot s 0T
| |
09t et 1 — ]
o ININIHIND3Y
ISVHL WNNIYN
o
>
“ 08- P ISSSEREYy UNGREEESY oot |4 S
phi
>
o
S
o
Q oy =
m
m
14
Hl”lf...ur-.lll’l._"
0 41 ]
|

ZH 0T LV Q3MIND3IN
LINIT 30NLITdNY

L1 1 L ]




Maximum flow rate into spool valve

Power amplifier range

Preamplifier range =

Max slew iate
Actuator gain (KX)

10 in, [sec

6.06 in, /in.ﬁs

1,65 in, 3/sec

Max flow raie into spool valve
Spool gain (KV)

1,65 in, ) sec
0. 0066 in, °/sec/psi

= 250 psid

Power amplifier range

Power amplifier gain (KZ)

250 . .
To 25 psid



SECTION I
HARDWARE DESIGN AND FABRICATION

GENERAL

Hardware design was directed at providing hydrofluidic preamplifier
and power amplifier cascades which could be manifolded and mounted
directly to the servovalve mounting surface of a servoactuator, The
servoactuator (85112010, SN0O06) is one previously used on the Three-
Axis Fluidic Stability Augmentation System Flight Test (USAAMRDL
Technical Report 71-34), This actuator was also modified to accept a
fluidic feedback transducer, No attempt was made to miniaturize the
hardware, with the main emphasis being on the demonstration of feasi-
bility and ease of manufacture. The assembled unit is shown in Fig-
ure 4, Figure 5 shows the amplifier manifold removed from the spool
valve centering spring housing. Figures 6 and 7 show the main and
individual amplifier manifold blocks, The servoactuator schematic is
shown in Figure 8,

COMPONENT DESIGN

Amplifier

Amplifier design utilized for this application required a configuration
which operated at higher differential pressures (500 psid) than in the
past. Based on tests on various amplifiers, the amplifier configura-
tion chosen was one developed by Apparatus Control Division (com-
mercial) of Honeywell Inc, for high-pressure fluidics activiiy. Two
basic amplifiers were used: a single-input amplifier (ACD-1) and a
summing amplifier (ACD-2). Both amplifiers have a 0, 020- x 0, 020-
inch power nozzle (Figure 9),

Feedback Transducer

The feedback transducer was designed using a capillary threaded spool
for providing a push-pull linear differential pressure output to the sum-
ming amplifier. The null flow and pressure level was designed for
approximately 600 psi level at a flow of 0.25 in3/sec and pressure dif-
ferential of 100 psid to match the requirements of the summing
amplifier.

Design parameters were determined by the use of the capillary flow
equation
o p Gty 2w)? i
F - PpR= (tw)® (5)
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AMPLIFIER MANIFOLD ASSEMBLY

Figure 4. Servoactuator Assembly,

ECOND STAGE OF
RVO-VALVE

FEEDBACK TRANSDUCER

Figure 5. Servoactuator With Amplifier Manifold Removed.,

A




SUMMING AMPLIFIER

POWER CASCADE

PORTING MANIFOLD

Figure 6. Amplifier Manifold Block.

Figure 7. Typical Amplifier Manifolding.

9 Reproduced from
best available copy.
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CONTROL SYSTEM
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— — 8
/. Y,
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FEEDBACK TRANSDUCER SPOOL VALVE AND
ACTUATOR

Figure £ Servoactuator Schematic.
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Pp = Supply pressure (lb/'m.z)

PFB= Output pressure (1b/in, 2)
QFB= Flow (in. 3/sec)

b = Viscosity (Ib-sec/in. %)

L p = Length of capillary (in.)
L = Depth of slot (in,)

w = Width of slot (in.)

If a square slot is used,

L = w
and o . 48QFB wl o, "
F "FB ~— &
Lp = mdNL,

where

d = Spool diameter (in.)

N = Threads /in,

Lp= Restricted length of spoo) (in,)

Substituting in Equation (6) gives

418 Q prdNL
- FB r
Pp-Pppg = A (7)

The groove size required to accommodate the amplifier flow at null is
determined from

4 48QFB R, dNLr

w =
PF—P

(8)

FB

12



For
Q..= 0,25 in.3/sec
B
b = 0.161 x 10”2 1b-sec/in, 2
d = 0,375 in,
N = 20
t, = 0.5 in,
PF = 1000 psi
PFB = 600 psi

w - 5\/48 (0.25) (0. 161 x 107°) (3. 14) (0.375) (20) (0. 5)

1000 - 600
4\/4. 057 x 1075

With a selected feedback gain (Kppg) of 100 psi/in,, the gain for each
half of the spool will be 50 psi/in.; and for a stroke of +0. 375 in., the
pressure differential from null to full stroke will be

w

0.0275 in,

50 (0.375) = 18, 8 psi

Therefore, the pressure at the summing amplifier (Ppg) will be 18,8
psi less, or 581 psi. Correspondingly, the flow through the amplifier
will be less., To determine the threads per inch (N) required for this
position,we have

4

N = (9)
48 QFB pnd{.r
where
PFB= 581 psi \
QFB= 0.225 in, Y /sec
Lr = 0,375+0.5 = 0,875 in,

13
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N = (1000 - 581) (0, 027)*
48 (0.225) (0. 161 x 10™°) (3. 14) (0. 375) (0. 875)

5

N = 0.000124 x 101° = 12.4

i

A sketch of the feedback transducer is shown in Figure 10. The assem-
bled unit and the spool are pictured in Figures 5 and 11,

PrB1

1 1 I
| | 5.

0.375 DIA 25 =y | —

f

0.027 x 0.027 GROOVE
13 THDS PER INCH

Figure 10. Feedback Transducer.

Servovalve and Actuator

The servovalve and actuator are units used previously on the Three-
Axis Fluidic Stability Augmentation System Flight Test Program
(USAAMRDL Technical Report 71-34), The first-stage flapper nozzle
section is removed from the servovalve, with only the spocl valve
section utilized and driven by the power amplifier output, Two extra
sets of spool valve centering springs with lower spring rates (140 1b/
in, and 230 1b/in,) were fabricated for increasing the forward loop gain.
Figure 5 shows the servovalve, actuator and feedback transducer as a
subassembly, An exploded view of the spool valve and centering
springs is shown in Figure 12,

14



CAPILLARY METERING GROOVES

Figure 11, Feedback Transducer Spool.

SPOOL

CENTERING SPRING

~ Figure 12, Servovalve Spool and Centering Spring.




SECTION III
DEVELOPMENT TESTING

Development testing consisted basically of three phases: (1) component
development, (2) servoactuator development, and (3) servoactuator
noise study., The testing was directed toward developing a servo-
actuator to meet the design goal requirements as stated in the Servo-
actuator Design section,

COMPONENT DEVELOPMENT

Amglifier

Various amplifier and amplifier cascades were tested to determine
operation at various pressures and cascade combinations. Three basic
amplifiers were chosen for this mechanization: a 0,015- x 0, 020-inch
power nozzle amplifier (IA), to be used mainly as an interface amplifier
between the input and the cascade; a 0.020- x 0, 020-inch power nozzle
amplifier (ACD-1); and a 0.020- x 0, 020-inch power nozzle summing
amplifier (ACD-2). Final configuration, however, utilized only the
ACD-1 and ACD-2, Tests were run using the IA amplifier as a lower
pressure (100 psig) interface amplifier between the input and the down-
stream power amplifiers. However, the recovery output of the 1A was
too high to accommodate the power amplifier (ACD-1) control input
level, and thus was used as a passive input device (no power input).
The ACD-1 amplifier was found to operate as well as the [A amplifier
in a passive application, and thus the 1A amplifier was eliminated.

Amplifier testing was performed by providing a differential input to the
amplifiers with a flapper-nozzle-type electrical-to-fluid (E/F) valve
and recording the input and output differential pressures on an x-y
plotter. External plumbing was used on the original amplifier cascade
testing.

Figure 13 is a curve showing the ACD-1 amplifier operated at various
control port-to-power nozzle mass flow ratios (MR) at a power nozzle
pressure (Pc) differential of 500 psid. An 1A and an ACD-1 amplifier
were cascaded, with the IA operated at 100 psig and the ACD-1 at 500
psig. Satisfactory results are shown in Figure 14, with one curve
showing the ACD-1 amplifier only, and the other curve showing the two-
stage cascade,

Preliminary testing indicated that direct control port summing could
be utilized; however, the adverse effect of gain reduction and input
interaction increased the difficulty of providing sufficient input range
to obtain the required output stroke without an excessive forward loop
gain, Therefore, the summing amplifier (ACD-2) was incorporated to

16
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GAIN = 6.0

GAIN = 6,75

50 PSt

4P IN

/ ¢ APOUT

Pe NULL = 69 PSIG
Pg NULL - 250 PSIG
Pg = 500 PSIG
MASS RATIO = 0.36

Pc NULL = 44 PSIC
Po NULL = 244 PSIG
PS = 500 PSIG
MASS RATIO = 0.30

Pe NULL - 28 PSIG
PO NULL = 242 PSIG
PS = 500 PSIG
MASS RATIO = 0.22

Figure 13. 0,020 x 0. 020 Power Amplifier (PA), Dead Ended Output -
MIL-H-5606 Hyd. Fluid at 100°F.

0.015 x 0.020 INTERFACE AMP (1A} (P
0.020 x 0.020 POWER AMP ACD-1 (Pg~ 500 PSIG)
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facilitate the summing function. Shown in Figure 15 are curves of the
ACD-1 and ACD-2 cascade at 500 psig supply pressure with input com-
mand in either set of summing control ports.

LOWER SUMMING PORT COMMAND UPPER SUMMING PORT COMMAND
PS = 500 PSI 4+ 250 Pe 500 PSI
GAIN = 21 GAIN 19

LP QUTPUT (PSID)

" ! - ——
5 10 15 20
AP INPUT (PSID)

t -50

=100

=150

200

Figure 15, SA and PA Cascade, Dead Ended Qutput -
MIL-H-5606 Hyd. Fluid at 100' F; ZQpp
on Summing Port = 0,54 in,"/sec,

To determine amplifier gain effects with supply pressure, two ACD-1
amplifiers were cascaded together and operated at various supply pre -
sures. Figure 16 shows the results with supply pressures from 500 to

200 psig.

A four-stage cascade consisting of [A, ACD-1, ACD-2, and ACD-1
amplifiers was tested as a typical cascade. The IA was used as a pas-
gsive element to reduce control pressure level into the second stage.
Figure 17 shows the results, with curve i the first two stages and curve

2 the total cascade,

From the amplifier test data obtained, a preliminary amplifier circuit
and power supply configuration for interfacing to the servoactuator was
selected and is shown in Figure 18, The last ACD-1 amplifier was
added to provide a higher forward-loop gain and thus reduce the feed-
back gain to facilitate adequate input range for full-stroke operation,
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MIL-H-5606 Hyd, Fluid at 100°F,
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All amplifiers are powered from the control system reference pressure
of 550 psig except the first stage, which will operate as a passive-type
element with zero supply pressure, Thus, the servo actuator system
requires no added flow above that of the control system, except for the
spool valve flow,

Feedback Transducer

The feedback transducer operation was determined by checking the dif-
ferential pressure output versus spool position, Figures 19 and 20
show the gain at 100 and 200 psig supply pressure, respectively, with
the output loaded into the summing amplifier (ACD-2) operating at

500 psig supply pressure. The required stroke is +0, 375 inch,

SERVOACTUATOR DEVELOPMENT

Interface testing was done using an interface manifold between the
amplifiers and the servoactuator., External lines were run between the
feedback transducer output and the summing amplifier, Figure 21
shows the test setup used in the servoactuator system testing,

Initial Configuration Tests

[nitial performance of the servoactuator system is shown in the output
gain curve of Figure 22 and the dynamic response in Figure 23. The
output gain is shown to be 0. 046 in. /psi and output stroke 0.58 in, as
compared to the required gain of 0. 093 in. /psi and stroke of 0. 75 in.,
which indicates that the forward loop gain should be increased and
feedback gain reduced to provide added gain and range,

The initial response results, Figure 23, indicated the response to be
considerably lower than the loop characteristics indicated; also, the
amplitude ratio of -11 db at the 90-degree phase lag frequency was not
characteristic of a second-order system of approximately -3 db for a
damping ratio of 0.7, Various gain adjustments were made by changing
amplifier gain, spring rates of the spool valve centering springs, and
feedback transducer gains, without satisfactory results,

A check was made of the feedback output response with respect to the
system input and compared to the system output response as shown in
Figure 23 and indicates a feedback lead, which effectively results in a
system lag. The feedback output response was also checked versus

actuator stroke, for two different feedback gains, and found to have a
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lead as shown in Figure 24, This lead was found to be caused by a
slight decrease in the feedback spool diameter at the seal ends,

causing a pumping action due to the change in volume. The decreased
spool diameter provided cutter relief for the capillary metering grooves
and also served as a stop. Modifying the spool by eliminating the
decreased diameter, as shown in Figure 25, corrected the response
problem, Two sets of spool valve springs, 140 l1b/in, and 230 1b/in,,
were tried in an effort to increase the valve gain, allow reduced feed-
back gain and provide increased output range of the system., Figure 26
shows the response before and after the modification using the 140 1b/
in, spool valve centering springs.
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Figure 25, Feedback Transducer With Modified Spool,

To decrease the response to within the required band, as shown in Fig-
ure 3, the spool valve centering springs were changed to 230 1b/in, and
the forward loop gain was reduced. Also, the preamp gain was increased
to increase the range, The resulting response, shown in Figure 27, has
a 90-degree phase lag and -6-db amplitude ratio at 14 Hz. The system
gain of the actuator output versus amplifier input is 0. 063 in, /psi, as
shown in Figure 27,

Final Configuration Tests

In the final circuit configuration the system output gain was increased
by adding an amplifier in the forward loop and resistors in the last-
stage amplifier output and in the summing amplifier supply pressure
port. The feedback gain was decreased by decreasing the supply pres-
sure ‘o the feedback transducer., The frequency response for this
circuit is shown in Figure 28 and has a phase lag of 90 degrees and a
-5-do amplitude ratio at 15 Hz, Output gain and noise level are shown
in Figure 29 to be 0,075 in. /psi and 4 percent of total stroke, respec-
tively.
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The frequency and output gain shown are considered satisfactory for
this program and indicate the capability of attaining the required re-
sponse. Further feedback and/or amplifier gain adjustments can be
made to more closely match the performance to the design goals, if
desired.

Noise was reduced from 8, 5 percent to the 4 percent shown in Figure 29
by providing an accumulator in the power supply line to the flapper-
nozzle signal generator to reduce the command signal noise. Further
noise reduction was attempted by varying feedback gain and modifying
the manifold porting, without significant improvement, More compre-
hensive noise study is covered in the following Servoactuator Noise
Study of this section,

Temperature Tests

Temperature effect on response was checked with oil temperature con-
trolled from 70°F to 180°F, Response, gain, and output noise were
relatively constant fror.' 110°F to 180°F as shown by the response
curves of Figures 28 and 30 and the output-noise curves of IFigures 29,
31, and 32, The amplifier circuit used for Figures 28 through 32 was
the same except that the 0,014«in, =diameter orifices used in the ampli=
fier output stage of Figure 28 were changed to 0. 025 in, diameter for
Figures 30, 31, and 32. Temperature effects became more prevalent
at the lower temperatures,where at 70°F (the lowest temperature run)
the output gain was 0. 375 in. /psi (2 psi input for full stroke) and the
noise was 25 percent. No investigation was made into the low-
temperature sensitivity; however, the oil viscosity effect on the feed-
back transducer gain (decrease) may be a cause for the high output
gain and noise,

Servoactuator Noise Study (SNS)

After obtaining satisfactory performance from the servoactuator in
terms of response, gain, and linearity, it was determined that a noise
reduction investigation would be needed. Noise of +8 percent of the
actuator stroke was observed, which is considered to be in excess of
the desirable level,

This investigation was aimed at locating the cause of the noise, and re-
ducing or eliminating it, if possible, within the total system of servo-
actuator constraints. These constraints included the response and
pressure requirements of the servo loop.

The noise study began with an evaluation of the noise caused by each

amplifier. Some data was already available,but none with the ampli-
fiers mounted on the experimental manifold. Data was then taken on
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individual amplifiers and cascades to determine if the noise could be
caused by a single amplifier, possibly operating under adverse condi-
tions,

The first tests were run on the servoactuator preamp. Gain curves are
shown in Figure 33 (1, 2 and 3). These amplifier cascades are the
same ones operating under the same conditions as used in the final
performance tests of the servoactuator (Figure 33-2), Figure 33-1
shows the input-versus-output plot of the inpnt stage only, This model
is an ACD-1 (built by Apparatus Control Division of Honeywell) ampli-
fier operating with a blocked power supply. Figure 33-2 shows the gain
curve of the first two stages,and Figure 33-3 shows the gain curve of
all three stages before the summing amplifier, Stages two and three
are operating with a power supply pressure Pg = 500 psid, These
curves show that all stages are contributing to the noise but that the
first stage is creating more noise than the other two. For this reason
it was decided to try a few other amplifiers or conditions for the first
stage to reduce the noise contribution of the first stage, In Figure 34,
curves 1 and 2 show the gain curves of the input amplifier and then the
input amplifier plus two stages, respectively, These curves show the
performance of the best alternative approach to a preamp that was
found, The noise in this case is less than on tke comparable curves
(Figure 33-1 and -2); however, the gain is significantly less., To bring
the gain up again, another stage would have to be added with a resulting
increase in noise and power consumption. The indicated result would be
no improvement in noise hut an increased power consumption,

The preamp as tested in the final performance tests of the servoactuator
is considered to be the best one that could be built with presently avail-
able amplifiers.

The amplifiers in the forward loop were evaluated by the same method
as above; again it was concluded that with the present amplifiers, noise
had been reduced as far as possible without changing the power supply
pressure to the amplifiers,

Reduction of tae amplifier power supply is a basic and attractive method
for reducing amplifier noise. In this case one of the servoactuator con-
straints restricts the level of the power supply. The differential pres-
sure required to move the control valve spool a particular distance is
established by the end area of the spool and the spring rate of the
springs at the end of the spool, This valve spool and its springs are
shown in Figure 12, A desired maximum ram velocity of 10 in, /sec
dictated the maximum required control valve position and therefore the
differential pressure needed to position the spool. Several sets of
control valve springs were tried, The lowest rate springs (140 1b/in,
each) were tried again to evaluate actuator noise, The low rate springs
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made it possible to operate the amplifiers at 300 psid instead of the
original 500 psid. As shown in Figure 35 (curves 1, 2, 3, 4, and 5),
the noise of the full cascade of amplifiers decreased with power pres-
sure and, in addition, the gain increased, The high-frequency compo-
nents of the noise were reduced; however, the low-frequency noise was
as strong as ever,

An amplifier was being developed on an iniernal development program
which showed promise for a high-pressure application with lower noise
level, This amplifier was built in a high-pressure version and used for
the final tests on this program, An electroform:d amplifier of this type
is shown in Figure 36. The design of the amplifier can be perceived by
the external shape of the plated surface, This amplifier was only avail-
able in a 0, 025- x 0, 025-in, power nozzle size with a single set of
control input ports, A summing amplifier would be needed for this
application for a final design, Figures 37 through 39 show the input-
versus-output relationship of the three amplifiers used, The power
supply used, 200 psid, with these amplifiers gives an output range
about the same as the old amplifiers with 300 psid power supply. To
obtain +10 in. /sec ram velocity with the 140 1b/in, springs in the con-
trol valve, about +110 psid is needed from the power amplifier, As
shown in Figure 39, the amplifier output range approaches t150 psid;
therefore, sufficient range is available. The amplifier noise is obviously
improved over previous curves shown of the old amplifier design noise;
however, there are still improvements to be made, as observed in the
nonlinearity shown in Figure 38, These problems could probably have
been solved if more time had been available, since a rionlinearity of this
type is usually caused by adverse amplifier loading,

Since the amplifiers showed such significant improvement, it was felt
that they should be hooked up with the actuator, at least in a breadboard
circuit., The actuator, control valve, feedback potentiometer, and
amplifier cascade were connected as shown in the block diagram of
Figure 40, A three-stage cascade of new aniplifiers was assembled
and connected to the actuator with hard plumbing as short as possible,
A circuit schematic is shown in Figure 41, The springs in the control
valve were 140 1b/in, each, with the amplifier power supply 200 psi
above the reference pressure, which was maintained at 50 psi. The
gain of the amplifier cascade in this case was 37,5 psi/psi,and the feed-
back potentiometer gain was 110 psid/in, This provides a loop gain
about 1,5 times the loop gain used in the earlier actuator tests.

The servoactuator was tested for its response and noise, The frequency
response is plotted in Figure 42, The amplitude ratio is plotted in
decibels and holds within 0.5 db to 10 Hz, This response would satisfy
the original requirements, The servoactuator noise can be observed in
Figure 43, which is a recording trace of the actuator input and output
with a sine wave input function, The stroke is 10, 150 in, or 0, 300 in,
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peak to peak, The noise is estimated at 2 mm peak-to-peak average
while a stroke of 0,300 in. is 42 mm, The percentage of noise is thus cal-
culated as follows:

4-22- x 0.300 in. = 0.0143 in,

peak-to-peak noise 0. 0143 in, _
full stroke 0. 750 In. x 100 = 1.9%

The results of these tests obviously must be extrapolated to show the
performance of a hydraulic input actuator with the required summing
amplifier. The earlier results showed the feasibility of the fluid ampli-
fier approach to a servoactuator; this study has shown that noise can
also be reduced significantly with improved amplifier design,
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Figure 41. Circuit Schematic.
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Figure 42. Hydrofluidic Servoactuator With 3-Amp
Cascade.
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ACTUATOR NOISE EVALUATION

Actuator Noise Evaluation.
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SECTION IV
CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The servoactuator developed under this program demon-
strates the feasibility of using a high-pressure amplifier
cascade to drive a conventional spring-centered spool
valve and fluid summing in the feedback loop.

The most efficient feedback summing utilizes a two-input
summing amplifier.

An improved method is needed for interfacing between the
high-pressure output signal from the SAS and the servo-
actuator amplifier control input level, The present fluid
amplifier (ACD-1) can be used as a passive element (no
supply pressure) for interfacing, but with low efficiency.

Output noise can be reduced significantly with improved
amplifier design.

RECOMMENDATIONS

An improved method of interfacing between the SAS output
and servoactuator input amplifiers should be investigated.
This could significantly reduce the number of amplifiers
required.

With feasibility demonstrated, a servoactuator package
design program to meet a specific installation envelope is
recommended. This should include improved amplifier

and feedback transducer manifolding, and utilize the latest
amplifier design and fabrication techniques as demonstrated
in the Noise Study.
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