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ABSTRACT 

The subject of this paper is the adjustment ("curve fitting") of 

data by the least squares method. Based on general formulas, which are 

derived in this paper, a new algorithm for the least squares method is 

established. It can be applied to cases where more than one observable 

contain observational errors and where the postulated relation between 

the observables is non-linear. Also taken into account are accuracies 

of the observations and correlations between the components of each 

observation vector. New formulas are derived for the estimation of 

the variance-covariance matrix of the fitted parameters. It is shown 

that the conventionally used estimation formula is theoretically wrong 

except for very limited special cases. Numerical tests of the algorithm 

demonstrate its accuracy and exceptional convergence characteristics. 

They also show that the conventional estimate of the variance-covariance 

matrix of the parameters is a very bad approximation to the theoretically 

correct estimate derived in this paper. 
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1. INTRf'lDlJCTJON 

Mathematical models of causal relations between measurable variables 

are often expressed in form of functional equations between the variables. 

Typically the functionals contain a number of parameters, the values of 

which are determined such that the corresponding relation between the 

variables agrees closely with experiments. (In case of only two variables 

this is often called "curve fitting".) A most common technique for the 

determination of the parameters is the method of least squares. In this 

paper we shall discuss an algorithm for a fairly general type of the 

least squares method, applicable to partially correlated observations~ 

non-linear functionals and finite residuals. Particularly for cases 

with finite residuals the theory of the least squares method has not been 

sufficiently developed. On the other hand, even linear curve fitting 

with errors in both variables cannot be correctly treated under the usual 

assumption of negligible residuals. 

Numerical techniques for problems similar to those considered here 

have been suggested by several authors. Non-linear problems with cor-
1** 2 

related data have been treated by Brown (1955) , Tienstra (1956) , and 

Grossmann (1961) 3• These authors linearize the constraint functionals by 

using a truncated Taylor expansion and treat the problem as one with 

linear constraints. As will be shown later, such an approach generally 

will not give a correct least squares solution, unless an iteration is 

included in the algorithm. Only Tienstra mentions the possibility of an 

iteration, but he does not derive the necessary formulas. 

Not correlated data with non-linear constraints are treated in seve­

ral textbooks, e.g., Demming (1944) 4, Arley & Buch (1950) 5 and Wolberg 

(1967) 6 • None of these authors consider the necessary iteration processes. 

Usually one iteration step or iteration of the parameters only is suggested. 

*The partial correlation considered is described in Section 2. 
**References are listed on page 53 • 
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For not correlated data and special forms of the constraint functionals 

different algorithms have been suggested in a number of publications. 

Some of the recent papers are by Wentworth (1965) 7 , Barieau & Dalton (1966) 8, 

York (1966) 9 , Williamson (1968) 10 , O'Neil et al. (1969) 11 , Southwell (1969) 12 , 

and Powell & Macdonald (1972) 13• Of these, Powell & Macdonald's algorithm 

has convergence properties superior to others. We shall, therefore, compare 

our numerical results with those reported by Powell & Macdonald. The most 

advanced theoretical basis for a computing algorithm for general non-linear 

constraints is given in the paper by Barieau & Dalton8• However, their 

theory is restricted to the case where only one observable contains obser­

vational errors. Moreover, the description of the iteration process is in 

Reference 8 not sufficiently clear. 

The estimates of parameter variances are seldom computed correctly. 

Of the authors mentioned abov~Barieau & Dalton, York, Williamson, and 

Southwell derive correct error expressions. However, these are applicable 

to the corresponding special cases only. 

In Section 2 of this paper we shall demonstrate the theoretical 

deficiencies of some widely used algorithms and derive necessary formulas 

for a simple iterative algorithm. The algorithm, which is described in 

detail in Appendix A is applicable to problems with general constraints, 

and it has convergence characteristics which are equal or superior to 

those of other algorithms published. The estimation of parameter variances 

is treated in Section 3. Section 4 contains examples for the application 

of the algorith~. Some results are compared in Section 4 with those 

of other authors. 

2. COMPUTATION OF RESIDUALS AND PARAMETERS 

Let the mathematical model be given by a functionalrelationship, 

F(~,e) • o, (1) 

where ~ is the n-dimensional position vector in the space of the obser­

vable variables and a is the p-dimensional unknown parameter vector. Let r 
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points X. (j = 1,2, .•• ,r) be observed in the sample space and r>p. Let 
J 

the observational errors of each point X. be characterized by a corres­
J 

ponding variance-covariance matrix R. with the dimension (nxn). That is, 
J 

we assume no correlation between the different observations X., and 
J 

known variances and covariances 

is to compute a "best estimate" 

with the given data X. and R .• 

of the components of each X.. Our aim 
J 

t of the parameter vector e, compatible 

J J 
value of e which is obtained by 

The "best estimate" we define as that 

a least squares analysis of the data. 6 

The least squares analysis is based upon an adjustment of the ob­

served data X.o Let x. be the adjusted values and 
J J 

x. =X. + c. 
J J J 

(2) 

The corrections (adjustments, negative residuals) c. and the best esti­
J 

mate t of the parameter vector are thereby defined as solutions of the 

following minimization problem with r constraints: 1•2, 3 

r T -1 
(3) w = 1: c. R. c. = min., 

j = 1 J J J 

F(X. + c.' t) = o, (j = 1,2, ••• ,r). (4) 
J J 

A commonly used technique for the solution of such a minimization 

problem makes use of Lagrange multipliers k., called also "correlates" 
J 

in the context of data adjustment1- 5• According to that technique one 

minimizes instead of W the functional 
r 

W =(1/2) 1: c: R: 1 c. 
j = 1 J J J 

r 

.I: 
J = 1 

k. F (X. + c. , t) , (5) 
J J J 

subject to the constraints (4). The correlates k. are determined 
J 

simultaneously with the other unknowns, c. and t. 
J 

For further discussion we need some assumptions about the functional 

F. Since we intend to linearize F by truncating its Taylor expansion, 

we assume that F can be expanded in a Taylor series within a finite 

neighborhood of each point (X., t). For obvious reasons these neighbor-
] 

hood regions must be sufficiently large to include the points (x.,t) as 
J 
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well. In all practical cases these assumptions are satisfied because 

the normal purpose of the adjustment is to Obtain a analytic relation 

between the ~-components. F is therefore usually chosen such that it is 

analytic at least within the above mentioned regions. 

Let A = grad~ F be the n-dimensional vector of the partial derivatives 

of F with respect to the components of ~ and B = grad6F be the p-dimen­

sional vector of the partial derivatives ofF with respect to the com­

ponents of e. We assume that neither A nor B vanish within the above 

mentioned neighborhoods of (X., t). This condition excludes some singu-
J 

lar problems (B=O) and singular points (A=O) from our considerations. 

We Obtain necessary conditions for a minimum of Wby setting its 

partial derivatives with respect to the components of c. and t equal 
J 

to zero. Using the symbols A and B these conditions can be expressed by 

R.awtac. = c. - k. R. A(X. +c., t) = 0, (j = 1,2, .•• r) (6) 
J J J J J J J 

and 

"' 
r 

awtat • t k.B(X. + c., t) = o. (7) 
j=l J J J 

Equation (6) is a system of n • r equations, while Equation (7) consists 

of p equations. Together with the r Equations (4) we have thus (n + l)r +p 

equations for an equal number of unknowns, namely, n•r components of the 

c., r correlates k. and p components oft. Usually the equation system 
J J 

(4), (6) and (7) is non-linear. 

In principle it can be solved by any numerical method designed for 

non-linear systems of equations. In practice such an approach is seldom 

considered because the number of equations is often very large (due to a 

larger). Instead, the equations are linearized and the solution obtained 

by an iteration process. The structure of the linearized equations 

makes such an approach particularly attractive. As will be shown later, 

the linearized equations can be manipulated in such a manner that most 

of the unknowns appear in explicit expressions. The only simultaneous 

equations remaining are those in a system of p linear equations. 
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The proper linearization process is the main subject of this section. 

We shall derive the linearized equations and show that their solutions 

converge indeed to the solutions of the original problem. In contrast, 

the usual linearized formulas 1- 6 yield wrong solutions, unless F is 

linear in ~ and B is independent of ~. 

We start our considerations by outlining the usual linearization pro­

cess and pointing out some of its errors. 

Let T be an approximation to t and, 

T = t - T 

Expanding Fin a Taylor series at the point (X., T) we obtain, 
J 

(8) 

T T 
F(X. +c., T + T) =F. +A. c.+ B. T + ••• , (9) 

J J JO JO J JO 

where F. = F(X., T), A. = A(X.,T), 
JO J JO J 

and 

B. = B (X., T). 
JO J 

The supremum of the error introduced by truncating the series after 

the linear terms is equal to one half of a maximum value of the second 

order terms. Let the matrices of the second order derivatives of F be 

denoted as follows, 

Ax = I at~::k ' 
l a2F 

Bt = taeiaek , 

, 

(10) 

i k i k where ~ , ~ , e , and a , are the components of~ and e, respectively. 

The error of the linearization is negligible, if 

T Tl T T T I lA. c.+ B. T >>lc.A c.+ 2c.AtT + T Bt• , 
J o J J o t J x J J max 

(11) 

whereby the second order derivatives on the right hand side of Equation 

(11) are evaluated at such a point between (X., T) and (X. + c., T + T), 
J J J 

which yields the maximum value for the expression. 
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The condition (11) is obviously satisfied if lc.l and 1•1 are 
J 

sufficiently small. Let us assume, that the parameters T and the adjustments 

c. are computed by an iterative process. If that process converges, then 
J 

T+t, that is T+O, while the c. approach their respective least squares 
J 

values. In the limit the linearization error 

I e
1

. I <1/21 c: A c. I . 1n - J x J max 

e
1

. is 1n then bounded by: 

(12) 

The right hand side of Equation (12) is zero only if F is a linear 

function of S• Hence only in that case we can be confident that the 

linearization of the constraints F = 0 does not affect the Equation (4). 

This result is insofar important as very often the constraint 

functionals F are linear in the parameters 8 but not in the observables 

We shall now consider cases where F is not a linear function of ~ 

and, moreover, make no assumptions about the size of the corrections 

c .• Particularly, we will not assume that, 
J 

II A. II >> II A c . II JO x J max (13) 

is satisfied, which condition would justify the linearization (9) in 

case Ax ,eo. The tradi tiona! assumption at this point is, that the II c j II 
are sufficiently small so that (13) is satisfied. We note in passing 

that (13) might not be satisfied even if the II c .11 are "small" because 
J 

that condition depends on the formulation of the constraint functional 

F. Thus, the same c.'s can satisfy (13) for one functional F and J . 
fail to satisfy (13) if F is formulated differently. 

An obvious way to reduce linearization errors is to expand F 

at a point which is closer to the solution than (X., T). This approach 
J 

has been suggested, for instance, by Tienstra2 without deriving the 

corresponding formulas. Powell & Macdonald 13 use the same idea for 

an algorithm which is different from ours. 
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Let C. be an approximation tot. and, 
J J 

x. =X.+ C.+~ .• 
J J J J 

( 14) 

Linearizing the equations (4) at (X. +C., T), we make the conventional 
J J 

assumption, that the second order therms are small compared to the linear 

terms. Let F.= F(X. +C., T), A.= A(X. +C., T) and B.= B(X. +C., T). 
J J J J J J J J J 

The linearization conditions we may express then by the following inequa-

lities, which we assume to be satisfied for j = 1,2,.oo,r: 

II A .II» II A £. + AtT II J x J max 
(15) 

and 

(16) 

whereby the maximum is to be taken between the points (X.+ C., T) and 
J J 

(X. +C. + £., T + T). Note that, unless A. and B. vanish, the inequalities 
J J J J J 

( 15) and (16) can be satisfied for sufficiently small e:., and T. (Ac­
J 

cording to our assumptions about F, the A. and B. do not vanish in a 
J J 

neighborhood of£, = 0 and T = 0.) 
J 

With (15) and (16) satisfied we reduce Equations ( 4), (6), and 

(7) to the following system of linear equations for e., k., and T: 
J J 

and 

F. 
J 

c. 
J 

r 
2; 

+ 

+ 

j = 1 

A~ e: . + B~ 
J J J 

e. k. R. 
J J J 

k. B. = 0 
J J 

T = 0, 

A. = 0, 
J 

(j = 

(j = 

1,2, •• ,r), 

1,2,,;o.,r), 

(17) 

(18) 

(19) 

We shall now simplify this system of equations. Let, 

1 
g. = T (20) 

J A. R. A. 
J J J 

be the "weight" of the observation j 
1' 2• Multiplying Equation (18) 

from the left by A: and subtracting the result from Equation (17) we 
J 

Obtain an explicit formula for the correlates k.: 
J 
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k. T c. F. B~ T) , (j 2, ••• , r) = g. (A. = 1, 
J J J J J J 

(21) 

Substitution of Equation (21) into Equation ( 19) yields, 

r 
T 

r 
T L: g.B.B T = .L: g. (A.C. - F.) B .• 

j = 1 J J J J = 1 J J J J J 
(22) 

Substitution of Equation (21) into Equation (18) furnishes an explicit 

formula for the corrections of the observations: 

T C. + ~. = g .(A. C. -F. - B.T)R.A. 
J J J J J J J JJ 

(j = 1, 2, ••• ,r). (23) 

Equation (22) corresponds to the "normal equations" in linear least 

squares problemso It furnishes the 

given. After the computation of T, 

correction T ofT, if C. and T are 
J 

the corresponding corrections C. + ~. 
J J 

of the Observations can be computed by Equation (23) and, after replacing 

T by T + T anc C. by C. + £ • , the process repeated. The correlates k . , 
J J J J 

if needed, can be computed by Equation (21) at each cycle. Particulars 

about an iteration algorithm based on Equations (21) through (23) are given 

in Appendix A and numerical examples shown in Section 4. Here we note 

only that we have found advantageous to iterate Equation (22) several 

times (by replacing T by T + T in all arguments) before using Equation 

(23). Also, Equation (23) should be iterated (by replacing C. by C. + ~.) 
J J J 

before returning to Equation (22). 

If the iteration converges then by definition C. + c. and T + t. 
J J 

The set of Equations (21), (22), and (23) is equivalent to the set of 

Equations (17), (18), and (19). Hence, at the limit c. and t satisfy 
J 

the equations 

F. = 0, 
J 

C.=k.R.A., 
J J J J (24) 

r 
L: k.B.=O. 

j = 1 J J 
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Therefore, the~., x. and tare indeed solutions of the original Equations 
J J 

(4), (6) and (7). The correlates converge thereby to the values 

T 
k. = g. A. c .• 

J 1 J J 
(25) 

When the iteration starts, then the C. = 0 and the right hand 
J 

side of Equation (22) is equal to - 2: g. F. B., that is, equal to the 
j J J J 

commonly used right hand side of normal equations. Ha.vever, as the 

iteration proceeds, the F.'s approach zero and the right hand side of 
J 

the normal equations approaches ~g.A:C.B., which is the expression in 
J J J J 

Equation (7). This is the main difference between the commonly used 

algorithms and ours. Of the cited references only Barieau & Dalton 

a right hand side corresponding to Equation (7). 

8 use 

The conventional normal equations for correlated observations are 1•2•3 

with 

T 
2: g. B. B. T = 
j JOJOJO 

k .. = 
J 

~ k. B. 
JO JO 

(26) 
j 

(27) 

The Equations (26) and (27) are iterated until T = 0. The adjustments 

are then computed with 

c.= k. R. A(X., t). 
J J J J 

(28) 

The difference between the results obtained by this process and by 

our algorithm can be readily seen if we compare the corresponding 

formulas for the correlates, namely Equations (21) and (27). These 

formulas are identical at convergence only if F is a linear function of 

~. The gradients A. are then independent of~ and the c., too, are 
J J 

computed by identical formulas (c£ Equation (24) and (28)). Ha.vever, 

instead of 1: k . B (X. +c., t) = 0, the iteration of Equations (26) and 
j J J J 

(27) furnishes I kjB(X.,t) = 0. Hence, unless F is linear in~ and 
. J --
J 

B is independent of~. the results will not satisfy Equations (7). 
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We note in passing that these conditions are met in the common 

case of "curve fitting with errors in one coordinate", whereby the 

constraints must be solved explicitly for that coordinate. The constraints 

have then the form, 

F(~ 1 6) = ~ ~ f(6) = 0 (29) 

The functionals f contain generally different constants (the error free 

coordinates) for different observations. Such a functional F is indeed 

linear in~ and the B. = grad6 f.(6) are independent of~. 
J J 

We have thus shown that while usual normal equations do not yield 

the least squares solution in the general case, only trival changes 

of these equations are necessary to insure correct solutions for finite 

corrections. Moreover the employment of the equation system (20) through 

(23) does not require any special form of the constraint functional F. It 

is also interesting to note that our equations do not contain higher than 

first order derivatives of F. 

The use of higher order derivatives is advocated by Powell & Macdonald13• 

It is claimed that such derivatives (but only, if they are computed numerically!) 

will increase the rate of convergence. According to the derivation of our 

equations, higher order derivatives can be retained either in Equation (18), 

or in Equation (19), or both, without making the problem non-linear in 

£ and •· Inclusion of the term Ax£ + At • in Equation (18) however, 

contradicts the assumption (15), which was made for the linearization 

(17) of F. Similarly the terms Bx£ + Bt• in Equation (19) can be neglected 

because of the assumption (16). Hence the inclusion of these terms, 

without using a second degree approximation for F, would introduce an 

inconsistency in the linearization process. Since it also leads to much 

more complicated equations we have not attempted to code and test the 

performance of such an approach. As far as the rate of convergence is 

concerned, our algorithm was found to perform equally good or better 

than that of Powell & Macdonald as shown by the examples in Section 4. 
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3. ESTIMATED VARIANCES AND COVARIANCES OF THE PARAMETERS 

An essential assumption which is usually made in error analysis is, 

that all variances are sufficiently small to permit a linearization of 

relations involving the variances. We shall carry out an error analysis 

for the least squares parameters under this assumption. In our case 

such an assumption contradicts in a sense the assumption made in the 

previous Section, namely that the estimated corrections c. are finite. 
J 

We note, however, that a similar contradiction is inherent in any least 

squares error analysis. Assuming, for instance, normal distribution of 

observation errors we admit the possibility of very large errors and 

yet estimate their effects using a linear model. In our case we did not 

impose any conditions on the sizes of the corrections c. in order to 
J 

obtain correct formulas for the least squares solutions. Once the cor-

rect solutions are obtained an error analysis may be very well based on a 

"small deviation" theory. As usual, the results will not be applicable 

to large uncertainities but they will correctly express the sensitivity 

of the results to observational errors. 

According to Equations (24) and (25) we have the following relations 

between the least squares values c . and t: 
r J 

T 
2; g.BA.c. = O, 

j=lJJJJ 

F.=O, j=l, ••• ,r 
J 

T c.= g.R.A.A. c., j = l, ••• r. 
J J J J J J 

(30) 

(31) 

(32) 

We are interested in variations dX. of the 
J 

observations X., corresponding 
J 

variations dt of the parameter t, and variations de. of the residuals 
J 

cj, such that the Equations (30) through (32) hold. We obtain the 

desired relations between dXj, dt and dcj by differentiating these 

equations and setting the differentials equal to zero. To simplify 

notation we shall omit the index j £rom our formulas. 
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Differentiation of Equations (31) yields thus, 

ATdX + ATdc + BTdt = O. (33) 

Differentiation of Equation (30) yields after some manipulation and 

use of Equation (25) 

2:{(-gBcTAt + kBx) (dX +de) + gBATdc~ + 

T 
~(-gBc At+ kBt) dt = 0 

(34) 

In order to estimate the variance of t we have to express dt in terms 

of the observation variations dX, that is, we have to eliminate de from 

the equations. The product ATdc can be eliminated from Equations (34) 

with the aid of Equation (33). The remaining terms containing de can 

be eliminated by making use of the differential of Equations (32), which 

is 

de = -kR(gAATR - 1) A (dX + de) + 
T f 

+ gRAA de_ kR(gAA R - 1 )Atdt. (35) 

After elimination of ATdc from Equation (35) with the aid of Equation (33) 

and rearanging of terms we obtain 

{I + kR(gAATR- 1)A) de= 

= R{-gAAT- k(gAATR -I)A }dX + 
X 

(36) 

+ R{-gABT- k(gAATR- I) At}dt. 

Equation (36) can be solved for the de if, 

det { I + k R ( gAA T R - 1 ) Ax~ t- 0 (37) 

The condition (37), replaces for our analysis the usual assumptions, 

or 

A = o 
X 

(38) 

(39) 

It is essentially a condition for the sizes of the residuals c, because 
T 

k = gA c, according to Equation (25). Let, 

G = I + k R ( gAA T R - I ) A , 
X 
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and 

r 2 = G-lR ~ -gABT -k (gAATR -1 )~J 

Equation (36) yields then under the assumption (37), 

( 41) 

(42) 

( 43) 

Elimination of de between Equation (33), (34), and (43) gives finally the 

desired relation between dt and dX: 

J T T T } I l gBB + gBc At - kBt + (gBc Ax - k Bx) r 2 dt = 

= I{-gBAT- (gBcTAx -kBx) ( 1 + r
1
)\ dX. 

This equation is of the form 
r 

9dt = .~ 
J = 1 

H. dX .• 
J J 

( 44) 

(45) 

with Obvious meanings of 9 and H .• We apply the general error propagation 

formulas 1
'
2

'
3 to Equation (45) i~ two steps. First, we compute the 

contribution M. of the observation X. to the variance estimate oft. M. 
J J J 

is according to our assumptions about the Observations equal to1 ' 2 : 

2 T M. = m H.R.H. 
J 0 J J J 

(46) 

where m2 is a proportionality factor to be discussed later. The estimated 
0 

variance-covariance matrix of the components of t is then equal to 
r 

V = m2 ~-l (I M.) (9-l)T. (47) 
0 j=l J 

It can be easily verified, that in case we neglect all second order 

derivatives in Equation (44), V becomes equal to the conventionally 

used variance-covariance matrix, 

v conv 
2 r 

= mo ( ~ 
j=l 

T -1 g.B.B.) 
J J J 

(48) 

which is proportional to the inverse of the normal equation matrix in 

Equation (22)~ 
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We note, however, that even if the constraint functional F(~, 8) 

is linear in both arguments, ~ and 8, the matrix A = BT does not 
t X 

vanish. Hence the conventional variance-covariance matrix V 1 V conv 
even in linear multi-dimensional adjustment problems. 

We pointed out in Section 2 that conventional least squares algorithms 

provide correct results (parameters and residuals) if the constraint 

functional is of the form, 

~ - f(8) = 0 (49) 

with one-dimensional ~. For the variance-covariance matrix V we obtain 

in that case the formulas, 

and 

T 
8 = 2: (gBB - k B t) , 

2 T MJ· = m g. B. B. 
0 J J J 

V 2 [ ( BBT k B ) ] -l ( BBT) J [ ~ (gBBT - k Bt) ] -l l T = mo 2: g - t 2: g 1 ~ r 

(SO) 

(51) 

(52) 

This matrix is equal to the conventional V of Equation (48) only if conv 
Bt = 0, that is, if the functional f(6) in Equation (49) is linear in 

e. 

In summary then the conventional least squares algorithms can be 

safely used only if the following conditions are all satisfied. 

(a) 

(b) 

(c) 

In each observation X. only one component is adjusted. 
J 

The constraint functional is of the form (49). 

The functional f(8) is linear in the parameter e. 

In all other cases Equation (47) should be used instead of Equation (48). 

Examples in Section 4 will show that in general the importance of the 

higher order derivatives cannot be assessed in advance. Either Equation 

(47) or Equation (48) can furnish larger diagonal elements of the matrix. 

Moreover, corresponding off-diagonal elements of V and V , respectively, conv 
can even have opposite signs. These facts makes V virtually use-conv 
less as an approximation to the estimated variance-covariance matrix. 
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The complexity of the formulas for V is of little practical con­

sequence, because these formulas are evaluated only once for each adjust­

ment problem. The establishing of the necessary second derivative 

expressions can be a more serious problem. That problem, however, 

might be attacked by using a symbol manipulation code for the computation 

of complicated derivatives. 

2 The proportionality factor m ("variance of weight one") should be 
0 

set equal to one, if the variances R. of the data are well known. Other­
J 

wise, mostly the value, 

.. 2 1 
m

0 
= -- W = r-p . 

1 r T -1 
1: c . R. c .• 

r-p j =1 J J J 
(53) 

is used1' 3 ' 4' 6 as an approximate to m2• Macdonald (1969) 14 has shown 
0 

that a better estimate of m2 is obtained 
0 

rected by a term, which 

an algebraic sum of the 

in his case (n = 

if W in Equation (53) is cor-

2, R. = 1) is the square of 
J 

weighted residual norms II c .11 • The sign of 
J 

each term is thereby assumed positive or negative, depending on the 

position of X. above or below the curve F = 0. In our case a corresponding 
J 

correction can be obtained by observing that W is the weighted sum of 

the correlate squares, namely, 

T -1 T -1 
W = 1: c R c = tk A RR RA. k = 

= 1:k2ATRA = 1:!_2 (54) 
g 

Following Macdonald we compute the algebraic average of the terms k . jig: by, 
J J 

and define m2 by 
0 

The correlates k. 
J 

= 

are 

k. = 
J 

1 
r k . 

k=- 1: ._L 
r . 1 vg:-. 

J= J 

1 
(W -

-2 rk ) • r-p 

related to the residuals by, 

T T 
grad~ F. • g. c.A. = g.c. 

J J J J J J 
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The sign of k. depends, therefore, on the location of the observation X. 
J J 

with respect to the hypersurface F=O: 

hypersurface the products C· grad~ F. 
J ~ J 

for all X. on one side of the 
J 

have equal sign, if we assume that 

the adjustments are such, that the straight line from X. to x. does not 
J J 

penetrate the hypersurface. (If it does, our solution is not the best 

least squares solution. Such singular cases we do not consider here.) 

Hence the sign convention in Equation (56) is the same as the one used 

by Macdonald for curve fitting. 

4. EXAMPLES 

In this Section we shall present some examples of computations by 

the method described in previous Sections. First, we shall compare the 

performance of our method with that· of Powell & Macdonald13 , second, we 

shall demonstrate the importance of correct variance estimates in an 

example of recent work at BRL and, third, we shall give an example of 

approximation by multivalued curves. For all computations presented 

her~ the computer code was used which is described in Appendix A. 

In the first group of examples polynomials are fitted in a two­

dimensional space to a data set of 10 points. Let the coordinates 

in the space of observables be called x andy, respectively. The 

polynomial constraints are then of the form, 

p i-1 
F (x ,y; e) = y - 1: e. x =O 

i=l 1 

The data (Table I) are taken from Reference 13. The coordinates of the 

d~ta points were originally given by Pearson (1901) 14 and the weights 

are due to York (1966) 9• For our calculations we computed the varianc~ 
covariance matrices R from York's weights by the formulas, 

rll = l/w 1 

r22 = l/w 2 

r12 = r21 = o, 
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where rik are the elements of R. We have also fitted Pearson's data 

assuming unit weights. In those cases all the R's were assumed to be 

unit matrices. 

Whenever it was possible, we have compared our results with those 

of Powell & Macdonald13• Those authors have shown that their algorithm 

is better for fitting Pearson's data than a number of other methods. 

Therefore, a comparison with Powell & Macdonald's results is a sensible 

test for our metho~ In the sequel we shall refer to Powell & Macdonald's 

method by calling it the PM algorithm. 

Table II displays the results of a.linear fit to Pearson 1 s data 

with unit weights. The ~rucial end condition for the iteration in this 

and all other examples was that the absolute changes of the parameters 
-7 between cycles become less than 10 times a "crucl.e standard error" of 

the corresponding parameter. (For particulars see Appendix A.) The 

"crude standard error" was thereby obtained by taking the inverse of 

the normal equation matrix times m2 as an approximation to the variance-a 
covariance matrix. These crude error estimates were computed at the 

end of every cycle for the sole purpose to check the end conditions. 

The final standard error estimates were obtained after completed iteration 

using the formulas derived in Section 3. The differences between both 

estimates show that second order derivatives have an effect on error 

estimates even in this rather trivial linear case. 

Another result which is typical for all our computations is the 

fact that W becomes stationary within computing accuracy (about 15 

decimal digits) before the end of the iterations. This indicates, that 

near its minimum W is relatively insensitive to small changes of the 

parameters. 

The results of the computation are displayed graphically in Figure 

la, where the observed points, corrected observations, the er~or ellipse 

for each observation, and the fitted line with its one standard error 

confidence limits are plotted. The error ellipses are circles in the 

present case with unit weights. The factor m , computed with Equation 
0 

(56), is included in the graphical as well as numerical results in this 

and other examples. 
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Table III and Figure lb show the results of a linear fit to Pearson's 

data with York's weights. This case can be compared with similar calcu­

lations by the AM algorithm!
3
the results of which are included in Table 

III. The comparison indicates a slightly better rate of convergence 

for our method. The respective final parameter values are equal within 

five places for both methods. There are, however, significant differences 

in the error estimates computed by our method and by Powell & Macdonald. 

Our estimates, which are computed using the formulas of Section 3, agree 

with those computed by Williamson (1968)
10 

and Southwell (1969) 12 • The 

estimates of the PM algorithm are obtained in the same manner as our 

"crude error estimates", that is, by inverting the normal equation matrix. 

The Powell ~ Macdonald error estimates differ from our crude estimates 

because the normal equation matrix of the PM method is different from 

ours. Elements of that matrix consist in the PM method of certain second 

order derivatives of W which are computed by numerical differentiation. 

No theoretical basis for the computation of error estimates in this manner 

is given in Reference 13. Moreover, in the PM algorithm certain derivatives 

are neglected in order to simplify the equations. We conclude, there-

fore, that the error estimates obtained by Powell & Macdonald are smaller 

because significant terms in the er~or equations have been neglected. 

Tables IV and V and Figures 2c and 2b give the results of fitting 

a cubic to Pearson's data. In case of unit weights the results can 

again be compared with those of the PM algorithm. The respective para­

meters computed by either method agree within the five places given in 

Reference 13. The rates of convergence are comparable. The error 

estimates are again different. Our formulas furnish estimates which are 

bigger than the conventionally computed crude estimates, while the 

estimates given by Powell & Macdonald are smaller than our crude ones. 

Tables VI and VII, and Figures 3A and 38 give the results of 

quintic fits to Pearson's data. The comparison with the PM algorithm 

in the case of unit weights (Table VI) reveals a weakness of that 

algorithm in addition to the inaccurate error estimates. This tmme the 
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parameter values computed by Powell & Macdonald are different from ours. 
-2 The relative magnitudes of the differences are as large as 2•10 • 

Differences of such magnitude are suspicious because the iteration end 

conditions in both algorithms required that the relative changes of 
-6 -7 the parameters between cycles be less than 10 (less than 10 for the 

PM algorithm). In order to find out which is the "better" parameter 

set we have recalculated the W value for the parameters of the PM 

algorithm. (Powell ~ Macdonald give that value with five places only.) 

The result, shown in Table VI, indicates that our parameter set produces 

a smaller W value. The reason why the PM algorithm fails in this case 

to converge to a minimum of W is likely to be found in the computation 

of derivatives of W by numerical differentiation. Since near its 

minimum W is rather insensitive to changes of parameter values, the 

numerically computed second derivatives have low accuracies. One would 

expect that this behavior of W has a detrimental effect on the results 

of the PM algorithm, particularly when the number of parameters is not 

very small. Our results, on the other hand, are not influenced by the 

above mentioned behavior of W, because the numerical value of W is 

not used in our calculations. 

Our next example illustrates the impurtance of accurate error 

estimation procedures. In this example the constraint functional has 

the form, 

F = a-a !._[~)n !.._]a • exp 
o fo \P fo 

1
- [~f tf . (kf" 

1-(k) m l ~" exp 

where, 
a,f and p are observables, 

ao, fo, p0 and a are parameters, 

and 

n = m = 0.44. 
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This approximation problem arises in the evaluation of acoustic amplifi­

cation measurements. (About the physical background of such measurements 

see lbiricu (1966) 16 .) The data set to be fitted is given in Table VIII 

and the results are shown in Table IX. The crude error estimates are 

in this case of the same order as our accurate estimates. However, 

comparing corresponding elements in the full variance-covaraince matrices 

we notice that one of the off-diagonal elements has a wrong sign in the 

inverted normal equation matrix. Hence the use of that matrix as an 

approximation to the variance-covariance matrix can lead to serious 

errors, even if the diagonal elements (i.e., parameter error estimates) 

are of the right order. If different methods for variance estimates 

are compared numerically, then obyiously the full variance-covariance 

matrices should be compared and not only the diagonal elements. Fitting 

the same functional to other data sets we Obtained in some cases parameter 

error estimates which were up to three times larger.than the corresponding 

crude estimates, while in other cases the crude estimates were larger. 

It is thus obvious that the conventional crude error estimates are 

practically useless, because one never knows whether they are too large 

or to small. Moreover, the signs of the crude off-diagonal covariance 

estimates can be wrong. 

Our next example demonstrates the usefullness of the general formu­

lation of the constraint functional in the case of multi-valued functions. 

In order to make the presentation of the results simple we have chosen 

a two-dimensional space of observables (x,y - plane) and fitted a 

generalized Cassinian curve. This example shows also how correlations 

between observables natuzally enter the calculations. 

We assumed that the distance r and the angles of sight ~ were 

measured independently and that the corresponding error estimates were 

er and e~, respectively. The cartesian coordinates of an observation 

(r,~) are then given by, 
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X = r COSY' 

y = r sin.p 

while the variance-covariance matrix for x andy is, 

2 2 2 . 2 cos ¥' + r e¥' s1n tp 2 2 2 ) (er- r e¥') sin¥' cos tp 

2 . 2 2 2 2 
er s1n tp + r etp cos tp 

R 2 2 - r e¥') sintp costp 
= 

The cartesian coordinates of the (assumed) observations and the error 

estimates er and e¥' are given in Table X. 

The constraint functional was formulated as follows, 

2 2 2 2 F = [ (x - x
1

) + (y - y 
1

) ] • [ (x -x2) + (y - y 2) • b] - a = 0 

This functional depends on six parameters, namely x
1

, y
1

, x2, y2, b and 

a. For b = 1 and a > 0 we have a regular Cassinian curve. A reformu­

lation of F = 0 in polar coordinates is not necessary because our 

method takes the correlations between x and y into account. 

The curves F = 0 are multiple valued for both coordinates, x and 

y. Since in our method the constraint functional need not be solved for 

one observable, no further manipulation of the constraint functional 

is necessary, except for the computation of derivatives of F. 

The results of the adjustment are shown in Table XI and in Figures 

4a and 4b. Comparing the estimated variance-covariance matrix with 

the inverted normal equation matrix we notice in this case again differences 

of signs of some off-diagonal elements. A consequence of these and other 

differences between corresponding elements can be seen by comparing 

the confidence curves in Figure 4a with those of Figure 4b. 

In order to test the significance of the correlations between 

x and y we have adjusted the same data assuming unit weights of obser­

vations. The results are given in Table XII and Figures Sa and Sb. As 

expected~ the final parameter values are different from those of Table XI. 
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The purpose of the last example was to illustrate the treatment of 

correlated data and to show the influence of the correlations on the 

results. Since the theory presented in this paper is restricted to 

constant variance-covariance matrices R., we have carried out all 
J 

calculations under that assumption. Constant R. are typical for situa-
J 

tions where the variances and covariances of the data are obtained 

by an analysis of the measurement process and/or by linear coordinate 

transformations. 

In the case described in the last example, however, such a treatment 

is strictly speaking, not correct. The R. were, namely obtained from the 
J 

original variance-covariance matrices (diagonal and constant in the 

example) by a non-linear coordinate transformation. One consequence of 

such a transformation is, that the elements of R. are not const.ants but 
J 

depend on the coordinates x and y, and are subject to change whenever 

x and y are corrected. A more serious consequence is that the basic 

equations of Sections 2 and 3 must be modified if non-linear coordinate 

transformations are involved. We intend to treat such transformations 

in a forth coiiiJili.ng paper. 
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TABLE I 

PEARSON'S DATA AND YORK'S WEIGHTS 

Nr x
1 

(=x) X2(•y) wl w2 

1 o.o 5.9 1000 .o 1.0 

2 0.9 5.4 1000 .o 1.8 

3 1.8 4.4 500.0 4.0 

4 2.6 4.6 800.0 8.0 

5 3.3 3.5 200.0 20.0 

6 4.4 3.7 80.0 20.0 

7 5.2 2.8 60.0 70.0 

8 6.1 2.8 20.0 70 .o 

9 6.5 2.4 1.8 100.0 

10 7.4 1.5 1.0 500.0 
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TABLE II 

LINEAR FIT TO PEARSON'S DATA WITH UNIT WEIGHTS 

Cycle 
Tl Nr. 

0 o. 

1 5. 761 185 19 

2 5.783 849 45 

3 5. 784 042 12 

4 5.784 043 76 

5 5. 784 043 77 

Standard 
0.1917 Error 

Crude 0.1899 St. Error 

w 8 0.618 572 759 437 

Last Change of W = 4•10- 16 

r2 = 8•10- 35 

m = 0.278 067 6 
0 

Variance-Covariance Matrix 

T2 

o. 

-0.539 577 275 

-0.545 510 327 

-0.545 560 765 

-0.545 561 193 

-0.545 561 197 

0.04277 

0.04223 

-3) -6.989•10 -3 
1. 830•10 ( 

-2 3. 673•10 
-6.9 89•10- 3 
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w 

154. 

0.620 119 

0.618 572 

0.618 572 

0.618 572 

0.618 572 

637 

871 

759 

759 

759 



TABLE III 

LINEAR FIT TO PEARSON'S DATA WITH YORK'S WEIGHTS 

Present Method Powell 13 
Cycle 

& Mac Donald 

Nr. 
Tl T2 Tl T2 

0 0 0 5.396 1 -0.463 45 

1 5.396 016 28 -0.463 441 754 5.398 2 -0.463 88 

~ 5,479 941 92 -0.480 540 364 5. 477 5 -0.479 98 

3 5. 479 909 72 -0.480 533 321 5.479 9 -0.480 53 

4 5.479 910 23 -0.480 533 409 5. 479 9 -0.480 53 

5 5. 479 910 22 -0.480 533 407 - -

Standard 
0. 3549 0.07004 0.252 0.0496 

Error 

Crude 
0.3585 0.07048 

St. Error 

w = 11.866 353 1941 w = 11.866 353 

Last change of W 3•10
15 

-2 4.573•lQ-.3 k = 

rna = 1.215 556 mo = 1.218 

Variance - Covariance Matrix 

( 1.259•10-
1 

-2.392 ,lo- 2 
-2.392oto- 2) 
4.9o5uo-3 
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TABLE IV 

CUBIC FIT TO PEARSON'S DATA WITH UNIT WEIGHTS 

Cycle Tl T2 
Nr. 

0 o. o. 

1 5.998 796 76 -1.004 987 63 

2 6.015 242 55 -1.000 068 79 

3 6.015 277 65 -0.999 855 467 

4 6.015 265 21 -0.999 837 200 

5 6.015 263 84 -0.999 835 470 

6 6.015 263 74 -0.999 835 356 

7 6.015 263 73 -0.999 835 347 

Standard 0. 3868 0.4400 Error 

Crude 0.3663 0.4098 St. Err. 

p & Ml3 
0.265 0.298 Sto Err. 

w = 0.485 152 486 927 

Last Change of W = 8• 10 -l7 

K2 = 1. 40 4 • 10- 7 

m = 0.284 356 3 
0 

Variance-Covariance Matrix Times 10
3 

(Upper Half Shown Only) 

140.9 35.59 
19 3. 6 - 56 • 8 7 

17.99 

- 2.637) 4.586 
- 1. 521 

0.1329 

43 

T3 

o. 

0.157 037 148 

0.152 558 564 

0.152 477 162 

0.152 472 109 

0.152 471 633 

0.152 471 604 

0.152 471 602 

0.1341 

0.1276 

0.0918 

T4 

o. 

-1.371 381 65•10 -2 

-1.324 759 43 

-1.324 093 64 

-1.324 056 72 

-1.324 053 08 

-1.324 052 87 

-1.324 052 86 

1.153·10-2 

1.121·10-2 

o.80·le-2 



TABLE V 

CUBIC FIT TO PEARSON'S DATA WITH YORK'S WEIGHTS 

Cycle 
Tl T2 Nr. 

0 p. a. ' , 

1 ~.028 421 70 -0.916 872 84 

2 
~.258 917 93 -1.256 138 96 

3 f>.l30 137 20 -1.095 986 50 

4 f>. 142 062 26 -1.108 148 28 

5 ~.142 213 53 -1.108 214 45 

6 f> .142 353 27 -1.108 387 74 

7 ~.142 316 13 -1.108 335 36 

8 ~.142 334 88 -1.108 360 68 

9 ~.142 326 99 -1.108 349 92 

10 ~.142 329 74 -1.108 353 56 

11 ~.142 329 38 -1. 10 8 35 3 17 

12 6.142 329 42 -1.108 353 23 

13 6.142 329 40 -1.108 353 20 

Standard 
1.028 o. 7692 Error 

Crude 
1.034 o. 8214 Error 

w = 10.486 904 057 7 

Last Change of W = Io- 14 

k 2 = 2. 35 2. 10- 3 

m
0 

= 1.320 567 

Variance-Covariance Matrix Times 10
3 

(Upper Half Shown Only) 

T.3 

o. 
0.085 556 903 

0. 203 086 978 

0.154 063 801 

0.157 130 861 

0.157 114 212 

0.157 166 014 

0.157 148 606 

0.157 156 748 

0.157 153 261 

0.157 154 414 

0.157 154 310 

0.157 154 333 

0.157 154 320 

0.1794 

0. 2102 

(

1058. - 730.8 149.6 - 9 334) 
591.7 - 133.4 8:984 

32.19 - 2. 305 
0.1753 

44 

T4 

o. 
--0.432 499 89·10 

-1.566 544 00 

-1.133 672 56 

-1.155 755 74 

-1.155 325 34 

-1.155 767 22 

-1.155 604 69 

-1.155 678 74 

-1. 155 646 83 

-1.155 657 20 

-1. 155 656 39 

-1.155 656 62 

-1.155 656 51 

1. 324·10-2 

1. 702 ·10-2 



i 

TABLE VI 

QUINTIC FIT TO PEARSON'S DATA WITH UNIT WEIGHTS 

Present Method 

1 

2 

3 

4 

5 

6 

Parameters t. 
1 

5.914 825 96 

-0.603 166 896 

-8.032 030 78•10- 2 

2.632 202 02•10- 2 

-8.277 185 40el0- 4 

-1.675 050 59•10- 4 

Number of Cycles: 10 

(Starting with T.: 0) 
1 

w = 0.450 325 667 217 

Last liT. 
1 

-6•10 -9 

5•10- 8 

-5•10 -8 

2•10- 8 

-3•10 -9 

1•10-10 

-16 Last Change of W = 3•10 

iC2 = 1.136~10- 8 

m = 0.335 531 50 
0 

Standard 
Errors 

0.411 9 

1. 748 0 

168.9•10 -2 

60.13•10- 2 

896. 8•10 -4 

47. 46•10- 4 

13 Powell & MacDonald 

Parameters t. 
1 

5.915 

-0.6034 

-8.003 •10 -2 

2.622•10 -2 

-8.119•10 -4 

-1.683•10 -4 

St-andard 
Errors 

0.288 

1.20 

117•10-2 

41.7 •10- 2 

623•10- 4 

33•10- 4 

Number oi Cycles: 10 
(Starting with Approxim. 

w = 0.450 329 283 54 
(Computed using (A-1), 

(A-2), and (A-4)) 

m = 0.33 55 
0 

Variance - Covariance Matrix Times 103 

(Upper Half Shown Only) 

0.6330 ~ 169 • 7 - 42 8. 5 316..1 
3056. 2869. 

2854. 

96.51 
977.3 -

1005. 
361.6 -

' I • 
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12.95 
139.6 
146.8 
53.62 

8.043 -

7.100 
7.583 

2.803 j' 
0.4241 2 
2.253•10-



TABLE VII 

QUINTIC FIT TO PEARSON'S DATA WITH YORK'S WEIGHTS 

Standard 
i Parameters t. Last 6T. Errors 

1 1 

1 6.029 451 86 2•10- 8 1.508 

2 -1.530 034 23 -2 o10-7 3.539 

3 0.817 877 33 2·10- 7 
2. 805 

4 -0.294 920 02 -7•10 
-8 

0.9164 

5 4.698 541 20 ·10-2 1•10- 8 13.16·10-2 

6 -2.666 420 13·10-3 -6•10- 10 6.876·10 
-3 

NUMBER OF CYCLES: 13 (Starting with T. - 0) 
1 

w = 9.505 013 741 86 

-14 Last Change of W = 9•10 

'k2 = 1.931·10- 3 

m0 = 1.539 944 

Variance-Covariance Matrix Times 10
3 

(Upper Half Shown Only) 

3861. 
12520. 

2268. 
- 9536. 

7869. 

602.3 
2934. 
2535. 

839.8 -

46 

74.09 -
397.5 
354.2 
119.7 
17.31 -

3.430 
19.71 
17.96 
6.159 
0.9006 -2 
4. 728·10 

Crude 
St. Errors 

1.503 

3. 419 

2.647 

0.8548 

12.30·10-2 

_7 

6.528•10 -



TABUl VIII 
INPUT FOR ACOUSTIC AMPLIFICATION PROBLEM 

e f[Hz] ef p[Pa] e a p 

14 2.1 500 20 1. 482 ·10
6 

0.08274•10
6 

29 3.5 1000 30 1. 482 •106 
0.08274"10

6 

57 3.4 2000 so 1. 482 ·10
6 

0.08274•10
6 

82 5.3 3000 60 1. 482 ·10
6 

0.08274•10
6 

103 7.2 4000 80 1. 482 ·10
6 

0.08274-10
6 

122 9.1 5000 100 1. 482 ·10
6 

0.08274"10
6 

133 10.6 6000 120 1. 482 •10
6 

0.08274·10
6 

135 11.4 7000 140 1. 482 ·106 
0.08274·10

6 

131 11.8 8000 160 1.482•10
6 

0 .08274•10
6 

125 11.9 9000 180 1.482•10
6 

0.08274•10
6 

117 11.7 10000 200 1. 482 •106 
0.08274"10

6 

8.5 1.3 500 20 2. 861·10
6 

0.1241•10
6 

18 2.1 1000 30 2. 861. 106 
0.1241•10

6 

37 2.2 2000 50 2. 861·10
6 

0.1241•10
6 

55 3.6 3000 60 2. 861•10
6 

0.1241•10 6 

73 5.1 .()00 80 2. 861" 10
6 

0.1241•10
6 

88 6.6 5000 100 2.861"10
6 

0.1241"10
6 

99 7.9 6000 120 2.861•10
6 

0.1241"10
6 

104 8.8 7000 140 2.861"10
6 

0.1241"10
6 

105 9.5 8000 160 2.861"106 
0.1241•10

6 
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TABLE VIII 

(con' t) 

a e f[Hz] ef p[Pa] ep a 
103 9.8 9000 180 2.861•106 

0.1241"106 

101 10.1 10000 200 2. 861"10
6 

0.1241"10
6 

13 1.0 2000 50 5.619 ·10
6 

0.2206•106 

24 1.6 3000 60 5.619 •10
6 

0.2206"10 6 

28 2.0 4000 80 5.619 ·10
6 

0.2206"10
6 
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TABLE IX 

PARAMETERS OF ACOUSTIC AMPLIFICATION PROBLEM 

P A R A M E T E R S 

Initial Last Standard 
Final Values Values Changes Errors 

ao 40. 39.854 580 8 9"10- 8 
3.165 

fo 725. 724.680 299 2"10-6 
63.13 

Po 1.93• 10
5 1,.903 796 24·10= 6•10-s 0.1200"10

5 

a 0.63 0.634 

Number of Cycles: 8 

W=l6.496 783 247 4 

854 

Last Change of W = 2"Io- 14 

r 2 
= o.oo768 

m0 = 0.881 Ill 5 

Variance··Covariance Matrix 
(Upper Half Only) 

133.0 
3986. 

890 

Crude Variance-Covariance Matrix 
(Upper Half Only) 

219.1 -
5873. 

1.10-9 0.03392 

0.09830 ) 
1.553 

51.08 
1.151·10- 3 

2.606 ( 13.71 
0.8234•10

4 

4.117• lOS 
I. 455•108 

0.1433 ) 

35.22 
1. 706·10- 3 
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Crude 
Standard 
Errors 

3. 703 

76.64 

0.1206•10 5 

0.04131 



TABLE X 

DATA FOR FITTING GENERALIZED CASSINIAN CURVE 

X y X y 

1.0 5.0 s.o 9.0 

2.0 3.0 3.0 8.0 

4.0 l.O 1.0 7.5 

6.0 1.0 -1.0 9.0 

7.0 3.0 -3.0 9.5 

8.0 6.0 -4.5 8.0 

7.5 8.0 -4.0 6.0 

6.5 9.0 -2.0 5.0 

Standard Errors of Observations 
2 2 er = 0.02 (x + y ) 

e"' = 0.08 

so 



TABl.E XI 

RESULTS OF FITTING PSEUDO- CASSINIAN CURVE TO CORRELATED OBSERVATIONS 

P A R A M E T E R S 

Initial Final Values Values 

xl -2. -3.246 408 5 

yl 7. 7.606 215 9 

x2 s. 5.097 509 9 

y2 4.5 3. 855 190 1 

a 200. 437.692 

b 0.25 

Number of Cycles: 21 

w = 3.469 719 340 38 

0.376 

-15 Last Change of W = 7•10 

~ = 1. 84•10- 3 

m
0 

- 0.586 531 8 

47 

844 6 

Crude 
Last Standard Standard 
Changes Errors Errors 

-4·10 -8 0. 4386 0. 4472 

8·10-9 0.1616 0.3261 

2 ·10-9 0.1929 0.2307 

7·10-9 0.2832 0. 3083 

6·10-6 48.76 99.06 

1·10-9 0.1324 0.09642 

Variance-Covariance Matrix (Upper Half Only) 

0.1924 - 4.213•10:; -5.487•10=~ -5.812•10:; 
2.612•10 2.153•10_2 3.820"10_3 

-0.1379 
0.6076 
8.487 

-0.9958 3 
2.377•10 

-2. 
-4.736"10_2 

1. 420 ·10 -3 
6.952"10 -2 
1.613•10 
2.130 

3.720·10 -3.611•10_2 
8.024·10 

Crude Varinace-Covariance Matrix (Upper Half Only) 

c-2000 _ 4.478"10- 2 -6.525"10- 3 

10.63•10-2 17.12•10-3 
5. 324·10-2 
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-2 
-5. 720. 10-2 
-2.015•10 

-15.57·10-3 
9.503·10- 2 

-30.94 
20.29 

14.88 
0.6343 3 
9.814•10 

1. 753·10- 2 

-0.389 ·Io-2 

1.700·10-2 

10.89 ·10-3 
-1.535 ·10- 2 

5.536 
0.929•10- 2 



xl 

yl 

x2 

y2 

a 

b 

TABLE XII 

RESULTS OF FITTING PSEUDO-CASSINIAN CURVE 
TO OBSERVATIONS WITH UNIT WEIGHTS 

P A R A M E T E R S 

Initial Final Values Last Standard 
Values Changes Errors 

-2. -2.887 709 0 -4~ 10-9 0. 8572 

7. 6.983 339 1 1·10- 8 0.1360 

5. 5.765 751 0 8.10-9 0.2297 

4.5 4.505 450 5 -5·10 -9 0.4386 

200. 414.933 17 -1·10 -6 45.89 

0.25 0.252 214 55 -2 ·10-9 0.1792 

Number of Cycles: 10 

w = 2.674 613 584 39 

Last Change of W = 4·10- 14 

i<2 = 5 • 7 5 • 10- 14 

m = 0.516 275 9 
0 

Variance-Covariance Matrix 

0.7348 - 3.641"10- 2 -
I. 850·10-2 

(Upper Half Only) 
-2 -2 7.694•10_3 8.775•10_2 

2.735•10_2 4.034•10_2 -
5.272•10 3.376•10_1 

1.924"10 -

Crude Variance-Covariance Matrix (Upper Half Only) 
-2 -2 -2 0.0993 - 0.261•10_2 1.384"10_3 1.671"10_2 

6.090•10 - 0.428"10_2 - 1.961•10_2 
5.528"10 0.468"10_1 

I. 323•10 

52 

Crude 
Standard 
Errors 

0.3152 

0.2468 

0.3351 

0.3637 

66.01 

0.0580 

1.195 
8.008·10-l 
7.652 
3.930 
2.106·103 

13.82 
20.22"10-l 

7.525 
0.0012 
4. 353•10 3 

-1 
1. 462 •10 -3 
5.392 "10 -2 
1.963•10 -2 
2.075•10 
1.250 
3;2!0 ·10- 2 

- 0.046"1~3 
I. 869 •10_2 
0.453·10-2 
0.553"10 
2.281 
0. 336"102 
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APPENDIX A 

Computer Program COLSGN 

The numerical solution of the least squares equations (22) and (23) 

of Section 2 can be implemented on a computer in different ways. In this 

Appendix we shall describe the implementation of the solution by the 

BRL Applied Mathematics Laboratory's code COLSGN (COrrelated Least 

Squares with General constraints), and give the rationale for the 

particular implementation chosen. 

The computation in COESGN are initiated by evaluating the following 

equations: 

1 g. = 
J T A. R. A. 

J J J 

T 
k. = g. (A. C. 

J J J J 

(j "' 1,2, .... ,r), 

F.) , (j = 1,2, ••• ,r), 
J 

r 

I: 
T r 

g.B.B. T = I: k.B .• 
j = 1 JJJ j=lJJ 

(A-1) 

(A-2) 

(A-3) 

These equations correspond to Equations (20), (21) and (22), respectively, 

whereby the Equations (21) for the correlates are slightly modified. 

Generally the C. = 0 at the beginning, but it was found adventageous 
J 

for some problems to provide an option to start the calculations with 

estimated non-zero values of the C .• 
J 

The Equations (A-3) are solved forT, the parameter vector T replaced 

by T + T in all arguments and a new T determined using Equations (A-1) 

(A-2) and (A-3). In other words, Equations (A-l), (A-2) and (A-3) are 

used for iteration of the parameters, keeping the residuals fixed. 

After that iteration has come to a halt (iteration end conditions 

will be discussed later), the residuals are computed by a modified 

Equation (23), namely, 
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C. + £. = k. R. A. (j = 1,2, ••• ,r) 
J J J J J 

(A-4) 

The C. are then replaced by C. + £. in all arguments and new C. + £. 
J J J J J 

computed using the Equations (A-1), (A-2) and (A-4). Thus, during 

this phase of computations, the residuals are iterated, keeping thereby 

the parameters fixed. The iteration is continued until an end criterion 

is satisfied. TI1is completes then one iteration cycle. The next cycle 

is started by a new computation of the parameters using the new 

values of C. and Equations (A-1), (A-2) and (A-3). 
J 

Let the three iterations which are involved in the computing 

process be called "parameter iteration", "residual iteration" and "cycle 

iteration", respectively. The end conditions for these iterations are purely 

numerieal in the COLSGN code and, therefore, arbitrary to a certain degree. 

They are established mainly by numerical experiments. 

One obvious criterion for the cycle convergence is that the weighted sum 

of the residual squares, namely, 
r T -1 

W = 2: C. R. C. (A-5) 
j=l J J J 

becomes stationary. Such a condition alone, however, is not suitable 

for numerical purposes, because in the vicinity of a minimum W is 

little influenced by small changes of the variables (C. and T). As a 
J 

second criterion, therefore, a requirement was introduced that the changes 

of the components of the parameter vector T between cycles become 

smaller than a threshold. That threshold was set arbitrarily at 10-
7 

of a crude estimate of the corresponding standard error. Particularly, 

COLSGN stops the cycle iteration, if all of the following conditions 

are satisfied: 

IAWI < l0- 12 • m
0 

W 

IATjl < 10-
7 

• m
0 

v'Qjj , j = l, ••• ,p 

(A-6) 

(A-7) 

where AW and AT. are the changes of W and T. , re~pecti ve ly, by the last 
2 J J 

cycle, m
0 

is the variance of weight one (see Equation (56), Section 3) 

and Q .. is a diagonal element of the matrix inverse to the normal equation 
JJ 
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matrix in Equation (A-3). As pointed out in Sections 3 and 4, m0~ JJ 
are poor estimates for the standard errors of parameters. Nevertheless 

they are used by COLSGN in its end conditions because the Q .. are 
JJ 

readily available during the iterations and because an error even by 

an order of magnitude would not have serious influence on the results. 

The conditions (A-7) are safer to apply than for instance, the 

requirements that the relative values I~T./T. I be less than a threshold, 
J J 

because some of the parameters might approach zero at convergence. 

(Such convergence criteria are used by Powell & Macdonald13). In all 

test examples computed,the conditions (A-7) were more stringent that 

(A-6), the latter being satisfied several cycles before (A-7). 

The iteration end criterion for the parameter iteration should 

merely insure that the nonlinear effects of the constraint functional 

are reduced by the iteration. This is the case, if the correction T 

of T is "sufficiently" small. During the first cycles, on the other hand, 

the end condition for the parameter iteration should not be too 

stringent, because the parameter values computed during theses cycles 

are only preliminary approximations. They wi 11 be corrected anyway in 

each subsequent cycle after the computation of new residuals. Finally, 

the "smallness" of T should be in some relation to the present accuracy 

of w. 

With these considerations in mind, the end condition for the parameter 

iteration was formulated as follows: 

with 

and 

T 
T 

r 
1: 

j=l 

w parameters 

-a k.B. < 10 • m • W 
J J o parameters 

r 
= 1: 

j=l 

a< min (12, Cycle Nr +2). 
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(A-10) 



The factor 10-a in (A-8) takes care of an increase in the accuracy 

requirement as the cycle number increases. W t is according to parame er 
Section 3 an approximation to w. (W cannot be computed by Equation 

(A-5) during the parameter iteration, because the C. do not change 
J 

The left hand side of Equation (A-8) is during that iteration.) 

roughly proportional to the change of W t due to the change T parame er 
of the parameter T. Renee, (A-8) requires that an estimate of the 

relative change of W due to T should be less than a threshold. 

The above mentioned relation between T and W can be parameter 
derived as follows. Neglecting the changes of A. (and, therefore, those 

J 
of g.) due toT we obtain from (A-2) for the changes~. of k., 

J J J 

Substituting (A-ll) into 

2 (k. + t:::.k.) 
2: J J 

gj 

T 
!:::. k. ~ -g.T B .• 

J J J 

(A-9) we obtain, 

T 
- 2t I k .B. 

J J 
+ 

T 2 
2: g. (T B.) , 

J J 

(A-ll) 

where the first term on the right hand side is twice the left hand side 

of the condition (A-8), with negative sign. Incidentally the expression 

TT~ k.B. is, because of Equation (A-3), equal to TT NT, where N is the 
J J 

positive definite normal equation matrix. Hence that expression can be 

considered as the square of a norm of t. Therefore, the condition (A-8) 

can also be interpreted as a condition for a norm of T. 

As the cycle number increases the condition (A-8) becomes more 

stringent. On the other hand, the corrections become smaller and, 

therefore, the linearized constraint functional an ever better approxi­

mation. Usually after a few initial cycles the condition (A-8) is satisfied 

by the first parameter iteration step. 

The initial guess T of the parameters can be quite different from 

the least squares solution t. Therefore, COLSGN carries out in the 

first c~cle at least three parameter iterations, regardless whether 
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(A-8) is satisfied or not. Experiments show that more than three 

parameter iterations are necessary in any cycle only if the current 

approximation Tis very bad. In those cases the system (A-1), (A-2) and 

(A-3) may even fail to converge at all. Convergence can then often 

be achieved, if the weights g. are kept constant during the iterations. 
J 

Therefore, the weights of the third parameter iteration are used 

for any futher iteration within each cycle. (Only (A-2) and (A-3) 

are used for the 4th, 5th etc. parameter iterations in each cycle.) 

For the residual iteration similar considerations hold as for the 

parameter iteration. Because for this iteration, W can be computed 

by Equation (A-5), also its change due to the E. can be computed 
J 

directly. The corresponding formula is, 
r T -1 t:,W = I: E. R. (2C. + E.) • (A-13) 

E j=l J J J J 

The iteration end condition for the residual iteration is accordingly 

(A-!4) 

where a is defined by (A-10). Usually after a few initial cycles this 

condition, too, is satisfied by the first iteration step. 

Estimates of the variances and covariances of the parameters are 

computed after completed iteration by a straight forward evaluation of 

the formulas of Section 3. 
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