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PREFACE

This book is the result of an intensive theoretical and

experimental effort performed by SIGNATRON, Inc., Lexington,

Massachusetts, for the Air Force Systems Command, Rome Air

Development Center, Griffiss Air Force Base, New York, under

Contract F30602-70-C-0008 entitled "Communications Receivers

Interference Modeling". Mr. John F. Spina was the cognizant

effort engineer at t•e Rome Air Development Center.

The objective of the contract was to develop reliable, re-

alistic, and useful mathematical models of communication receivers

that must operate in the presence of interfering signals. Major

emphasis was placed upon understanding basic phenomena and de-

veloping techniques needed to provide a capability of modeling

receiver structures for multi-signal inputs. During the study

considerable effort was placed upon modeling so that the effects

of co-channel and a writ channel interfering signals having

arbitrary modulations in the presence of receiver nonlinearitles

might be effectively investigated. Therefore, methods of inves-

tigating quasi-linear systems having significant frequency selec-

tivity have been developed. Matters relating to intermodulation

and crossmodulation distortion as well as gain compression, de-

sensitization, and dynamic range have been of primary concern.

The problem formulation and methods of attack have been guided

by the desire to develop practical methods that will be effec-

tive in an investigaflt of receiver performance degradation.

Associated with these developments has been a companion effort

to develop effective computer programs that wi•l permit efficient

practical application of the basic material presented in this

work.
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It has been necessary and convenient to make a distinction

between two types of modeling, namely, nonlinear system function

modeling and nonlinear circuit modeling. Nonlinear system func.-

tion modeling involves extensive application of the Volterra

series and the concept of nonlinear system canonic models to

develop simplified input-output relationships. Nonlinear cir-

cuit modeling and analysis provides a detailed circuit-oriented

model in terms of active devices and circuit components. Nonlinear

system functions fo*_• particular system can be determined either

by a nonlinear circuit analysis or by measurement. Much of the

material presented in this book should be viewed in many ways

as a research report. Further work continues in its development

and practical application. The book will be of interest to

communications system engineers and circuit design engineers.

Emphasis has been placed upon developing new and systematic

methods fo? investigating and, hopefully, designing equipments

intended to function more successfully in a multi-signal electro-

magnetic interfereneeenvironment.

The contributions of many individuals to the material pre-

sented in this book are gratefully acknowledged. The patient

and constructive criticism of our RADC sponsors, particularly

Mr. John Spina, Dr. Donald Weiner, and Mr. Jacob Scherer, is

appreciated. The work of several present and former SIGNATRON

personnel has been particularly helpful in the reparation of

the following chapters;

Chapter 2: S.A 9!•, N.Johnson

Chapter 3: P.A. Bello, C.J. Boardman, J.J. Busagang

Chapter 4t J.O'Donnell, S. Richman
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SIGNCAP, the nonlinear circuit analysis program used ex-

tensively in our work, was developed by G.J. Brown of SIGNATRON.

R. Neal performed most of the solid state device experiments

reported in the book. All experimental work on the HF receiver

and associated vacuum-tube experiments was performed by Atlantic

Research under subcontract to SIGNATRON. Mr. William Duff and

Mr. Thomas Roherty were particularly helpful. We also wish to

acknowledge the skilled contribution of Mrs. Rita Pavlica and

Mrs. Ilse Wegener 1h the preparation of the manuscript for pub-

lication.

Lexington, Massachusetts J.W. Graham
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MODELING AND ANALYSIS OF QUASI--LINEAR SYSTEMS

1 1 .:ntroduction

The radio and intermediate froquency stages of most

communications receiving systems serve to amplify the

desired signal and reject unwanted signals by employing high

gain and frequency selectivity. Thus, the output of an ampli-

fier should be linearly proportional to its input signal, while

a frequency converter, or mixer, which is nonlinear with respect

to interaction between the RF and local-oscillator inputs,

should have an IF output which is linearly proportional to the

RP input. Upon close inspection, however, most of these circuits

are actually mildly nonlinear. For small enough input signals

they appear to be linear, but, as the input signal level in-

creases, the input-output relationship deviates from linearity.

If the input signal becomek •sufficiently large, the circuit can

be driven into highly nonlinear regions of operation, such as

saturation and cutoff.

Two methods of analyzing nonlinear systems are developed

in this book. The first method is applied to mildly driven

nonlinear circuits. They are analyzed by a time-invariant
functional series known in mathematics as a Volterra series.

The Volterra series is characterized by a s't of time-domain

functions called nonlinear impulse responses, while in the fre-

quency domain, it is characterized by a set of frequency-domain

functions called nonlinear transfer functions. The nonlinear

transfer functions and the nonlinear impulse responses form



r'W .. ,,xY~rY¶ ~ ~ 'T rw~'~wnl"~r. W -m r* • ..wv' ~

Fourier trarnsform pairs, in the same manner as do the impulse

response and transfer function of a linear system. Circuit analy-

sis tecmniques bave been developed for determining the nonlinear

transfer functions of a circuit from its nonlinear equivalent

circuit model.

The second method is applied to strongly-driven nonlinear

circuits. They are analyzed by employing numerical integration

techniques to obtain time-&Main solution of the nonlinear differ-
ential equations of the circuit. One special case arises when the

circuit is driven by several signals of which only one is large

and also periodic. This case frequently arises in the analysis of

mixer circuits. The strongly-driven circuit can then be consid-

ered as being mildly driven by the remaining (small) signals and

the results interpreted to define time-varying nonlinear transfer

functions for the small signals.

Given the nornlinear-transfer functions for the circuit, it
is possible to determine the nonlinear input-output relationships

for an arbitrary set of small input signals through either a con-
volutionnl approach or a Fourier transform approach. Either of

these approaches can be time-consuming to implement, even on a

high-speed computer. System models have therefore been developed

for mildly-driven nonlinear circuits, which permit the circuit

output to be computed with a minimum of computational diffi-

culty. These system models are called nonlinear canonic models,
and are parameterized by quantities that depend on the nonlinear

impulse responses and/or the nonlinear transfer functions of the

circuit.

2
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1.2. Backaround to the Problem

The function of a communication receiver is to amplify a

desired radio-frequency signal and, through appropriate detec-

tors, demodulate the information carried by the signal and make

it available at the receiver output. The use of demodulation

makes the receiver an inherently nonlinear system. Two types of

detectors are usually found"Y? receivers. The first is the fre-

quency converter, or mixer, which is used to shift the center

frequency of the signal. Mixers can be either large or small-

signal nonlinear systems. Receivers usually have at least one

stage of conversion, but receivers with as many as three mixer

stages are found. Each rmixer is a deliberately nonlinear stage,

usually followed by an interaocdve bandpass filter tuned to the

mixer's desired output frequency.

The second type of deteat= in used to demodulate the

desired information. The structure of the demodulator is depen-

dent upon the modulation employed at the transmitter. Typical

demodulators include envelope detectors, coherent 'detectors or

product demodulators, and limiter-frequency discriminators for

FM demodulation. Frequency converters are often referred to as

first detectors while demodulators are fzequently called second

detectors.

The remaining stages of a. eceiver are normally designed to

be Linear. However, they are built with electronic components

such as transistcrs or vacuum tubes which are more or less non-

linear. Figure 1.1 shows a simplified block diagram of a single-

conversion communications receiver. It is divided into five stages:

RP amplifiermixer,IF preamplifierIF amplifierand second detector

3
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and two ancillary but important blocks, the local-oscillator and

the AGC system. The AGC controls the RF amplifier and !F pre-

amplifier gain generally by varying the operating points of one

or more active devices in each amplifier. The non23near charac-

teristics of the active devices also change as the operating

point is changed. This *40t must be included in an adequate

receiver model. The antenna gain and impedance are both functions

of frequency. This must also be taken into account in the model-

ing of a receiver.

Although a receiver is tuned to the desired signal frequen-

cy, the radio spectrum contains other signals beside the desired

one. Figure 1.2 shows typical signals which might be present at

the receiver input. The desired signal, 1, falls in the IF

pas&band. A co-channel interferer, 2, is also in the IF passband.

An adjacent channel interferer, 3, falls out of the IF passband

but in the pre-IF passband. Two out-of-band interferers, both

marked 4, fall out of the pre-IF passband but one is in the RF

and one is out of the RF band. Signals 1 through 4 are shown as

narrowband signals relative to the several receiver bandwidths.

The interferer 5 is a wideband interferer with a spectrum spanning

the range from out of the RF band to inside the pre-IF band.
Throughout our work we shall be much concerned with methods

for effe~ctive prediction an" accurate analysis of the distortion

generated in the receiving system by the nonlinear interaction of

mult.tple,-input signals in the physical nonlinearities inherent in

the electronic circuits constituting the physical receiving system.

• 5
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AMPLITUDE )
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CO-CHANNEL INTERFERENCE (•)
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Fig. 1.2 The Commuzications Interference Problem.
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The approach developed is to perform a frequency-domain

analysis of the receiver by using a Volterra functional series

(Volterra, 1930). The Volterra series was first applied to non-

linear circuit problems by Wiener (1942). Little application of

Wiener's work was made from 1942 until about 1967. At that time

Narayanan (1967), working at the Bell Telephone Laboratories,

appl8d the technique to the analysis of transistor amplifier

distortion. The work was then extended to the analysis of non-

linear systems with Gaussian inputs, (Maurer, 1968), distortion

in cascaded transistor amplifier (Narayanan, 1969), and distor-

tion in feedback amplifiers (Narayanan, 1970). H. Poon (1972)

has used Volterra analysis of the charge control transistor model

for third-order amplifier distortion studies, and Kuo and

Witkowski (1972) have developed a computer program for computing

the distortion of amplifier circuits by using Volterra techniques.

Volterra analysis has also been used in an experimental cross-

modulation characterization of amplifiers (Meyer, 1.972). From

the late 1950's on, there has been a continuous effort in the

application of Volterra analysis to nonlinear system theory. Much

of this work has focussed on the problem of noninteracting

systems. [Wiener (1958), Brilliant (1958), George (1960), Zames

(1960), Parente (1966), Bedrosian and Rice (1971)3.

Research in the electromagnetic interference and compati-

bility field has almost completely dealt with power-series analy-

sis of zero-memory nonlinear systems. When memory has been

included in the system, it has been through ad hoc introduction

of noninteracting input and output filters. (Ebstein, et.al.,

1967). It will be shown that the zero-memory nonlinear power-

series is a special case of the Volterra series. Although partial

7



results of the work leading to this book have been reported elsewhere,

CSIGNATRON (197.1), Bello (1972), Ehrman (1972), O'Donnell (1972),

Graham (1972)], this book presents in detail the techniques that have

been developed and the results achieved.

The method of analysis used in the study is primarily a

frequency domain analysis of the complete nonlinear circuit by

using accurate nonlinear device models and including all inter-

action. The resulting frequency-domain kernels, which we have

called nonlinear transfer functions, and their time-domain

counterparts, called nonlinear impulse responses, are then used

to parameterize nonlinear system models called canonic models.

The receiver response to an arbitrary input can be found in

either the time or frequency domain through use of the canonic

mod 1,. By building upon the theoretical and experimental

background developed since Volterra's initial work, a unified

system of modeling complete nonlinear systems has been developed,

implemented, and validated. The development, unification, and

application of these techniques to the communicatiO" receiver
modeling problem was first performed in the effort.leading to

the material presented in this book. The applicatAIon of complex

signals to the development of the nonlinear system canonic models

and the concept of time-varying Volterra series are also new

results.

_;.......The purpose of the original investigation was to develop

methods of modeling communication circuits in a multi-signal en-

vironment. Before this work, there were two primary means of

predicting the response of a receiver to an arbitrd.Y set of

input signals. The first was to use data available A.5 a set of

8



spectrum-signature measurements. Unfortunately, mudý of the

spectrum signature data can not be extrapolated•to the inter-

ference problem that must be solved. The second method was to

model the receiver by using power series and noninteracting

frequency-selective filters, and then perform an analysis of the

resulting model. Unfortunately the model is frequently a gross

over-simplification of the physical situation and does not and

can not be expected ft•A to accurate results.

1.3 Multiple Input Effects in Nonlinear Systems witkout Memory

In almost all cases of interest in communications system

analysis, the input to the system is the sum of a desired and one

or more interfering signals. These signals interact with the

nonlinearities to produce various types of responses. The most

common of these responses are given names so that they can be

easily referred to, e.g..intermodulation, crossmodulation, com-

pression, and desensit1rn6n. In this section we will catego-

rize and give examples of these effects. To begin, consider a

nonlinear system represented by the power series:

y(t) = Z a x(t)n. (1.1)n-i n

Tte system has no memory since the output at time t depends

only on the input at the same instant. Let the input, x(t),

be the sum of Sl(t), Q@ xed signal, and I 2 (t) and I3(t)

two interferences. The output, y(t) is then:

9



y(t) L1 s (t) + I (t) + M3(t))

2+ a2 Ls1 (t) .v 2(t) + z3 (t))

+ a3SI Mt) + 12(t) + 13 (t) 3

I (1.2)

1.3.1 ganQPU~ngdReaat ikat2

wow lot us speoialine Sq. (1.2) to certain cases. "First let

I2(t) 12 coo W2 t. (1.3)

1 3 (t) - 0.

That is, S1 (t) and 12 (t) are unmodulated tones.

Then

y(t) w a 0S0Cos w 1t + 12 cos W 2t3

+ aC 2 s Cos 2 V)t+I 2CS2 ko t2tSI~ CsW t cos w t]+aS2 1 2 2 2 12 12

+ aIs3 cos 3Wt+38O2 12coo 2Swt Cos XIt

2 2 3 3 O3l+
+ 3S1I2 cos 1 t, coo w2t + 12 cOo 2

3a 3a
a Ely + .,a + 2 = 2)cos t

1SI 4a1 1, 2a 1 2 1

4 terms at other frequencies. (1.4)

10



zEquation (1.4) demonstrates that the output at the signal

frequency is made up of three tern.,- The first term, of ampli-

tude a 81, Is t)'e desired linear response. The second term, of

amplitude a Sa3S1  is the third-order compression term. If the

sign of a3 is opposite that of a,, the desired signal output will

be smaller than that predicted by linear theory by the amount

3 3 3 2
3  The third term, of amplitude -a I S #is the third-a3 1 2 a3 2 1l stetid

order desensitimation term. if the sign of a3 is opposite that

of a1 the output will be smaller than that predicted by linear

theory.

1.3.2 Cr•oasmodmlatgo

Assume:

S (t) -S 1 Cos Wit,

I 2 (t) = 12 [1 + mlt)3 cos W2t m < , (1.5)

13 (t) = 0.

That is, S (t) is an unmodulated tone, and I Mt) is an amplitude
1 2

modulated signal. Then:

a a 3 2 + 3a3 2m() Cos W ty(t) •alSl[l +T-S1+ - 1 -- im O

y~t 4a 1 a a 2 j

+ terms at other frequencies. (1.61

Equation (1.6) includes the desensitization and compression terms

of Eq. (1,4) plus a new terin, (3a 3 /a 1)12 m(t). The new term

represents crossmodulation, that is, a transfer of the modulation

from the interference to the desirersignal has occurred.

-- 11
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1. 3.3 ZtqMgdulatim

Assumesa
SlitCo- W to

12(t) 12 coo W2 t, (1.7)

1 3 (t) - 13 can W3 t.

That is, the desired signal and two interferences are unmodulated

tones. Then

yt-a 1+ 3a 3 S2 + 3 a3- 2 + ] o
y(t) 1 4(2+ 1) cos it

+ a 21213 os (w2+W3 )t + cos (W2-W3)tJ

+ 3 a 2[ 3 cos(2"2 *W3.)t + I213cOs (23w3 :" 2 )

+ terms at otb,%.trequencies. (1.8)

The terms in Eq. (1.8) at frequencies W2 k W 3 are second-order

intermodulation terms. The terms at 2w2 :L W3 and 2W 3 :k W 2 are

third-order intermodulation terms. If any of the frequency
combinations fall in the system passband, they will be processed
by the remainder of the system following the nonlinearity in the
same manner as the desired signal. Third-order intermodulation

can be a serious problem if w2 and w3 are near the system

passband. Second-order distorti&• is usually a less serious

problem in a receiver, since either one or-both of the interfer-

ence frequencies must be far removed from the system passband

for w2 + W3 to equal w1i /

12
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"The examples given in this section have, for introductory ,

purposes, been in terms of real signals and a zero-meory power-

series nonlinearity. In the next section we will introduce the

Volterra series and show in later sections that the power-series
is a special case.

1.4 finalysis og NOlinsar Systeaus with Melory

The theory of functionals was developed by Vito Volterra

(1930). A series resulting from •a4,uticnal expansion is a

Volterra series. The difference between a function, as found

from a power series expansion, and a functional is, by analogy,

as follows: A function, f, operates on a set of variables, x,

to produce a new set of variables, f(x). A functional operates

on a set of functions to produce a new set of functions. Volterra

showed that the regular homogeneous functionals of degree n could

be written

bb b
FPnx(t)] S . I kn(0l1; 2 "''•n)X()x(C2)'''x(tn)dg1dt2"''dCn

a a a
(1.9)

and that every functional G[x(t)] continuous in the field of con-

tinuous functions can be represented by the functional series ex-

pansion:

13



Gtx(t)) - I P Ix(t)I
'o 0

k 0o+ j" ki(9) x({ d

a

+ 1bbk2(9l't 2 )x(Yl)x(Y2 ) dC1 d9 2a a

+ higher order terms. (1.10)

Sq. (1.10) is a Volterra functional series. Convergence condi-
tions have been discussed by Volterra (1930). Wiener (1942)

applied the Volterra series in an investigation of a nonlinear

circuit response by relating the system inpTt x(t) to the output

y(t) by a functional series given by

y(t) = yl(t) + y 2 (t) +

= Z Yn(t),
n=l (1.11)

where 0

yl(t) = xh1 (r) X (t-T) dT# (1.12)

Y2 (t) = j h2 ( 1T, T2 ) x (t-T 1 ) x (t- T) drld2',
-, (1.13)

and, in general,

= h 1.. x (t-Ti) d1ri.

i= (1.14)

14
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Eq. (1.1i) is the input-output functional representation of non-
linear systems upon which much of this book is based. It is a

general method and is useful provided the nonlinearities are not
excited so violently that the number of terms required become very

large. We thus refer to Eq. (1.11)-as being applicable to the

small-signal nonlinear case. When the required number of terms
becomes great we encounter the large-signal nonlinear case, and,

to proceed, must use an alternate method of solution based upon

tho nonlinear differential equations of the system.

The index of the terms of Equation (1.11). n, is called the

order of the term. The zero-order term is a DC output in the ab-

sence of an input, and can be ignored in our analysis as a fixed

bias offset. The first-order term will be identified as the con-

ventional linear response of the system. The higher-order terms

are the system nonlinear responses.

1.5 An Example of a NonlineaX-'4ystem with Memory

Before accepting the Volterra series as a suitable basis

for investigating nonlinear physical systems with memory and em-

barking upon further discussion about the practical applications

to communications receivers, it is interesting to consider a

simple example. The skeptic will certainly ask what possible

physical basis exists for expecting a Volterra series to be a

satisfactory input-output relationship for a physical nonlinear

system. The complicated term*_5if the series given by Eq. (1.14)

certainly suggest caution before embarking upon a lengthy mathe-

matical treatment. We address this issue by considering a very

simple physical example. Our objective is to derive from first

principles a series expansion for the input-output relationship

and investigate the result to see if it might in fact be a

•- 15



Volterra series. •f it is, our akeptic will be less unhappy and

be considraably more favorably inclined to accept a Volterra

sert*S as a "good" input-output relationphip. Of course, the

really "hard-nosed" skeptic will not be swayed by our arguments.

He will nut be convinced untl4 we show him some data from a
physical systww and compare the data with predictions dertved

frow the theory. Such validation experiments have been perfonlde.

We shall come to Oae details in later chAptars of this book.

Figure 1.3 shows a simple nonlinaar system with memory,
composed of the parallel connection of a current source, a linear

capacitor, and a nonlinear reoistor. The nonlinear resistor has

the no-memory current-voltage relation given by the power seriest
nir •knvn. (1.15)

nal

Figure 1.4 shows a signal flow graph of the system. The

signal flow will now be traced. The current enters at the left-

hand node. The capacitor current ic is integrated in the capa-
citor to give the charge qj the charge is multiplied by C to

give the node voltage v. The resistor current, ire is given by
the power series Eknvn# the first three terms of which are shown.

A feedback loop is created when i is subtracted from the inputr
current i, resulting in the capacitor current i

c
Let us next recognize that the resistor current ir diverted

through the resistance and subtracted from the input current i
to give the capacitor current'"I. can be interpreted as a set ofc
voltage-controlled current sources connected from the voltage
node to the ground reference node. Let us examine the system re-
sponse to an arbitrary input current i(t) with first the first-

order voltage-controlled current generator kiv present and subse-
quently examine how the output must be modified as each additional

16
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rig. 1.3 A Nonlinear System with Inargy Storage,,
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Fig. 1.4 Signal Flow Diagram of the Nonlinear System.
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order term is added. With just the first order current generator

Xv present we have the linear system shown at the top of the sig-

nal flow graph in Fig. 1.5. The forward path# relating capacitor

voltage to capacitor current, is linear. The first-order (linear)

output voltage is obviously given by the convolution integral

v1 (t) I W h(r)iM )d'r, (.16)

where h (T) is the voltage impulse response of the parallel com-

bination C and k to a current source and is given by

h (T) a xP -k. (1.17)

Equation (1.16) is identical in form to Eq. (1.12). WO hale

therefore established that the first term in the system voltage

response vl(t) is identical to the first term in the V lterra

series as given previously by Eq. (1.12)

Next, consider how the linear portion of the flow graph in

Fig. 1.5 must be modified if we add the second voltage-controlled

current source k 2v2 to the system and seek to determine ths ad•i.-
tional second order response v 2(t) at the output contributed only
by the first order voltage v.0 Clearly, a current source k2v1

must be added to the first ordW* linear system as shown in Fig.
1.5. This second order current source excites the linear system

at the resistor current node. Since the input current source i(t)

contains no high-order drive, it does not excite the second order

system and therefore does not appear. Therefore the second-order

output voltage is given by the convolution of the second-order cur-

rent source k 2v2 with gl('r), the output voltage impulse response
•~ 18
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of the network driven by the second-order current source. From

F ig. 1.5 it can be seen that

g1 - - hl(¶), (1.18)

4b•ch results in

v 2 (t) - k 2  vl(t-l)dq. (1.19)
-- 0

If we now substitute Sq. (1.16) for v into Eq. (1.19), we have

v 2(t) k 2~ khI (T3 )h1 (T1 )h 1 (r2)
.0

i t-(or T J~-(3+T )IdT d'r dT (.0• '13 2 1 2 3(1.20)

Letting. = I3'+i and 2y we have

v2 (t) = h h2 (ala 2 ))i(t-a 1 )i(t-c 2 )da1 da 2 , (1.21)

where the second-order impulse response is given by

h2 (o1 , 2 )= k2 h I hi('r3 ) hI(01 -T 3 ) h,(a 2 -.r 3 )dTr3 o (1.22)

We note that the second-order response v2 (t), as given by Eq.

(1.21), is identical in form to the second-order term in the

Volterra series as given in Eq. (1.13).

We next determine the third-order voltage response v3 (t).

1To second order, the voltage appearing at the output node is the

2 3sum of vI and v2 . The voltage-controlled current source k v +k v
2 3

driving the linear network is now

20



2 3 2k v + k k + k2l ++vV2 3  3 2 3VV2 1 2,

=2  1, 2 1v2  2

S3 2 2 3)

.k 3( 1- 3v÷ V2 + 2 3V . (1.23)

Equation (1.23) contains terms of many different orders in the

excitation i(t). For example, v2 is of second-order in i(t) and

has already been accounted for in the computation of the second-

order response of v 2 (t), while v 3tW is of sixth-orderv2(t is f sith-oderand would

be one of the terms used in computing the sixth-order response
3v6 (t). The third-order term is 2k 2 V2+k3v 1 The second-order

term k2 v12 has already been accounted for in the second-order

response v2 (t).

Now, from Eq. (1.16), we have

i (t-r 1 ) i(t-r 2 ) i(t-r 3 ) dId' 2d'r 3 ,

(1.24)

and, from Eqs. (1.16) and (1.21)

2k v v 2C(2 1 2 2 2  (1 Qr1 )h 2 (' 2 ' 3 )--u

Si (t-T 1) 1 (t-1T2) (t--23)dT OT 2,T 3
(1.25)

and we have, for third-order
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2k 2 v1 v2 + k 3 v~ V~ [2k 2hl (a,) h 2 (a 1~3  + k 3 h 1 a1)h% ( 2)h1 (Cr3)]

. i(t-al) i(t-a 2 ) i(t-a 3 ) dcyd 2da 3 . (1.26)

Equation (1.26) is the third-order current source in terms of the

system's first and second-order nonlinear impulse..eaponses h1 (,)

b 2d h2 (¶rI, 2 ), as well as the coefficients k2 and k This non-

linear source excites the linear network to produce the third-order

component of the output voltage

0 ~-

v3( - ''J 1 (a4) £21ch(, 2(a2'%73)

+ k3 h 1 (al)h1(a2 )h 1 (a 3 )]

. i[t-(a4 +01 )+ i Et-(o4+-2)1 i 3)]

d d a1d 2 d73 dd4 . (1.27)

If-we Let T1 -a4 +01$ T 2 4+a2 and ¶ 3=Ct 4 +a 3 , we have

v3lt( j h 31•Ti,•2, T31 (t-T 11 (t-T 21 (t-T 3)

dT dr2dT
1 2 ¶3 *

(1,28)

where
0

!-h3 'T , 2,.:.:• •.-, ';:7 4) 2*~hI ('-Ca4)h 2 (,r 2-•4 T -4)
'~~~4 3-3~t]

a ., hda (1.29)k 1 4( -4 )h 3 4 4)
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Once again comparison of Eq. (1.28) for the third-order term3

with the general Volterra series term for n=3 in Eq. (1.14)

reveals that it is formally identical.

Higher-order responses can be derived in a similar fashion.

The current sources of order n can always be written in terms of

a power series in voltage vi, imle2...n-l, and the coefficients

ki, i=l,2...n. For any given order response, the current excita-

tion is the sum of products of all lower-order excitations which

interact to form a source of the desired order. It should be

noted that, regardless of the order of the nonlinear response,

the response is always a convolution with a linear impulse re-

sponse. Furthermore, the response of any order is dependent

only on the responses of lower order. Thus, the analysis of

the nonlinear responses is a bootstrap operation, which allows

the determination of a response to be performed in terms of

already determined lower-order responses, and all-ows one to stop

the process when the desired order response is known. The non-

linear system model resulting from this process is a Volterra

series and is a sum of lower-order responses v(t) v n (t) -

vI 1tM +V 2 (t)+...

The argument presented in this section has been based upon

a single nonlinearity. We have shown that a nonlinearity des-

cribed by a Taylor series aud embedded in dn otherwise linear

network requires a Volterra series to represent the input-

output properties of the entire network. Although we have chosen

to develop this argument for a simple example, the ti 3ory is

general and applies to multiple nonlinearities as well as to

multiple-port excitation.
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S3..6 h1l9U~R~S 1OreIS Of t~e Voltetr'R Be•fle

ghe neral kernel of sq. (1.14)t bn-TO'2...•n), 'a called

a nonlinear impulse response of order rt. Its Fourier transform

toe the nonlinear transfer function of order n, or

H ( fl" "-jn 2 T(f +f 2 r2"4 ""+fr)

"I • dTld 2 .. .dTn. (1.30)

The n•Winear impulse response of order n is related"'to the

nonlinear transfer function of order n by the inverse Fourier
transformation%

hn(i +.• tn J• Hn (ff n J 2TY(f1'"1+f2'2" ... f•'n)++`,

n iO2**T n 2* n dfd"1dfdf 2 .*•dfn. (1.31)

The time-domain output, y(t), of a nonlinear system can be

found in turms of the nonlinear transfer functions and the

spectrum of .iis input signal. Equation (1.14) shows that t7e n-th
order term in y(t), yn (t), can be written as the n-th order convolu-
tion of the input, x(t), with the n-th order nonlinear impulse re-

sponse, hn (I, T2' ".T n). If Equation (1.31) is substituted into

Equation (1.14) and the integration performed over the Tie then

y(t) is given by

y(t) - P rJ'...fHn(fl,.. fn) X(fl)X(f 2 ) ...
n _.

X (f) 2 1n) dfI df 2 ... dfn, (1.32)

where x(f) is the input signal spectrum.

24

S. .... .... •-+++ .++,+.,++:++++++J++.++•++.++,+++ ~.++•+ -+ •+ ............ P+ + ++ • • .



The spectrum of y(t), Y(f), is the inverse Fourier trans-

orm of y(t) and is given by

~JSS~n~fi *f f)X (f )X (f2)X~n•,Y~ = n f12.. n 1) 12 2)...X)n (n

J 2TT (f •+...+fn)t -j2Ttft
Sdf. 1dfa 2  dfne dt (1.33)

jf.. ~2J *sn(fi'f2 ... fn)Xl('i)X2 (f2 ) ...Xn(fn)
n Lao

-j2v~f-f -f .. f~
1 dt df df *..df. (1.34)

However, the unit impulse 6(.) is defined by the integral relation

' .. -j2r(f -f- ...- fn)t

2 * edt 8(f-fl-f 2 ...- fn). (1.35)

Substituting Equation (1.35) into Equation (1.34) results in the

input-spectrum output-spectrum rationship

Y(f) E 5 jHn (fl' ffn)X(fl) ..X(fn)n_•

6(f-f 1 -f 2  -f)df df .. 0 df (1.36)

(ff-2 '_n 1 2 n

Equations (1.14), (1.32), and (1.36) are the key time and

and frequency-domain input/output relations for small-signal

nonlinear analysis. They also pWIde the link for relating

nonlinear transfer function analysis to power-series analysis.
If the nonlinear system has no memory, then its nonlinear

impulse responses and nonlinear transfer functions are given by
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•b hn 0l*2..n a an(,r)(-2) 6. (n,r (1.37) •
n~I2 n 2

n(f, ~f2...fn) . An, a constant, (1.38)
(f' 2 n n

The nonlinear impulse response is the product of a constant

multiplier an and n impulses, and the nonlinear transfeq function

is a constant An# independent of frequency. From (1.31), the

two constants an and An are equal. Substituting Eq. (1.37) into

Eq. (1.14) yields:

Sy(t) = Z ff...an 8(Tl)6(,r2)...8(¶n x(tW-l)x(t1'- 2 )...x(t-Tn)
n

i2" ""n (1.39)

K.. = a xn (t) ; no-memory system, . (1.40)
n n

and substituting Equation (I.38)*.k'.O Equation (1.32) yields

J2T (f+ f2 • +f n)t
y(.t) E f. I...J'anX(fl)x(f2)... X(fn)e 12*

df df 2 .• .dnf (1.41)

nE a xn(t) I no-memory system. (1.42)n nf

Thus, y(t) is the same as given by either Eq. 1.40) , ..° (1.42).

Furthermore, comparing Eq. (1.40)M'h Eq. (1.1), it is seen that

the zero-memory Volterra series coefficients an are equal to the

power-series coefficients an, thus establishing that the power-

series -9 the special case of the Volterra series for a n-memory

system.
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1.7 Multi-Tone Output Response in Terms
of Nonlinear Transfer Vungtions

"One of the most important multiple signal input waveforms
"for a nonlinear system characterized by a Volterra series is

the sum of several unmodulated tones. If we express these tones

in terms of exponentials of complex amplitude Am and froqXncy

f we havem

1 mx(t) E-- E A e . (1.43)2 m=l

Since x(t) must always be real, fm willinclude identical positive

and negative frequencies, and A for a negative frequency will be
the complex conjugate of Am for the positive frequency. A real

signal is the sum of a positive-frequency complex signal and
its negative-frequency complex conjugate. Alternatively,' a real

signal is twice the real part of either the positive frequency com-
plex signal or its negative frequeftoy iomplex conjugate. The

frequency spectrum of this x(t) is

X(f) E %6 F (f-f) (1.44)2  m m

where 6(f-fm) is a unit impulse at fmf in the frequency domain.m m

Now, we have shown that the system response y(t) may be

written in the form

y(t) E Yn (t), (1.45)
n

where the various y (t) are the individual terms in the Volterra

series of the system output. Our objective is to determine the
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various dord: responses y~ (t) in terms of the nonl1inear transfer

functions of the system. For example,

mwAl

by~ inpcto fHo (q. (14)wee isth1.n4rt 6nse

cansoccratimany fromeq.ec c(1bnato3s dep(f istendineaon theanumber

of comp1*loe nputs, M, and the order, n. A general expreii1.on for

the output frequency, denoted by fE is

fmM. (1.47) 2 .
ID m1 fl2 f2 *1MfM

where in1 , M2* are integers ranging from 0 to n, and

21

E M n. (1.48)

The vector m, defined as

M EMlm,, (1.49)

is used eAensively throughout the book. We shall show in

chapter 2 that,, for x(t) given by Eq. (1.43),

y (t) E S Iie)H (1.50)
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where m

vit M+,•nl1 A2 ,MM
W 2 ...1 2 ( )
n-l2 m ....•. I %I

Hu (1.52)
. n (f1 f1f2n ' f4.

mI times times

There are (see Feller, 1950, p. 52)

•, :M+nl1 ( M+n-1) I
n - n (Mn-l) !'(1.53)

distingwshable combinations of mi satisfying Eq. (1.48) so that
/M+n-l\ th

there will be M ) terms to sum in Eq. (1.50) for each n

order nonlinear response. For ple, if there are M-4 e~iponentials

in x(t) and we are interested in the n=2, or second-order response,

we can eTect to sum

5(4+2-1)1 ___1 0 (1.54)
21(4-1)1 2131

terms. For n=3, the third-order term, there will be 20 such

components•

The essential point to no-, 'here is that the complex amplitude

of each of the spectral components in Eq. (1.50) is given by the

product B (n) H where B , given by Eq. (1.51), is dependent
n n n

upon the input signal amplitudes Am and is independent of fre-

quency. The frequency dependence of the component is entirely
th

given by Hn, the n order nonlinear transfer function. It

should now be evident that the key step in characterizing the
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output terms of a nonlinear aystem with memory res ides in determin-

ing the magnitude and phase of the multi-dimensional transfer

function Hn. We shall exploit the properties of the nonlinear
n

transfer functions throughout this book. loom.

In Section 1.6 we have pointed out that - an. the coef-

ficients of a power-series, nonlinear system has no-

memory and can be satisfactorily characterized by the power-

series. It follows that the preceding discussion regardim,"the 4
nth order response components given by Eq. (1.50) applies to and

can be used to describe the output terms given by a power series

by simply replacing Hn by an-

1.8 Tw9:, one.Input Example

Multi-tone testing of quasi-linear systems is widely employed

to characterize the nonlinear distortion. The most important

case is two-tone testing. In this section we shall utilize Cbe

general results of the previous section and show by an example

how to obtain the output terms for a physical system excited

by two sinusoids. We have

j2Trf 1 tj21Tf 2 t
xl(t)= [e + A e

212
S i+ A1 + A2 IS (1.55)

, *

where we now identify M=4, A3=A1 , A4=A2; and f 3= -fl* f 4= "f2

by comparing terms in Eq. (1.55) with Eq. (1.43). Since M=4,

we have

M + m2 + m + m n, (1.56)
1 2 3 4
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to satie•fy for non-negative integer values of mi for each non-

linear order n. We expect there tCo be four o•ibinations for

nul, ten for n2o and twenty for nu3.

The first and socond-order output components are listed in

Table 1.1. The frequency co.bint•\, of m associated with

each response are noted. Not* tbat both negative and positive

Sfrequency terms are present and that the complex amplitude of

each negative frequency is the complex conjugate of each positive

frequency term. The type of nonlinear response is also indicated

in the last column of the table. rh of the n-i terms is a

linear response. Four of the n-2 components are second

harmoniqb and the r*maindez are second-order intormodulation

terms, Two of these are at DC.

The third-order output components are listed in Table 1.2.

Again the frequency, complex amplitude, and particular combi-

nation of mi associated with the response is noted. We have

also identified in the last column the type of response. Note

the presence of terms causing thir $Pder gain compression and

desensitization of the linear term at the input frequencies

f and f2. There is also a set of third-order intermodulation

products as well as a set of third harmonics. No DC terms are

generated by any. odd order n. Also note that for every positive

frequency term there is a corresponding negative frequency com-

ponent with a complex conjugate amplitude. The physical output
of such a system is one half the sum of both the positive and

negative frequency components and will always be a real time

function. Of course, one can take the real part of the positive
frequency terms and get the same result.
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A compact summary of the two-tone responses to third-order

is shown in Fig. 1.6. The frequency of the responses is noted

along the frequency axis. At the top of the figure we identify

the response order and indicate the presence of a response at

a particular order by a small circle along the frequency axis.

Note that there are multiple responses of various orders at

several frequencies. Noted in parentheses beside each circle

is the nonlinear order n of the response ancd combination number

from Tables 1.1 and 1.2. The response frequency spectrum is

illustrated as a function of frequency at the bottom of the figure.

The illustration is a suggestion of what would be observed in a

spectrum analyzer.

Finally, let us write out explicitly the terms at a particular

output frequency as a further illustration of the interpretation

of Fig. 1.6 and Tables 1.1 and 1.2. At frequency f2 # we have

six responses, three at positive frequencies and three at negative.

The positives are the linear response (1,2) and the two third-

order components (3,1) and (3,10). Hence, at frequency f2,

y(t) = !FA H (f)

3L 21 22 32 3(f 2 2H3 f2'-fl)

A AHJ(f f -f•) e f2t+ c.c. terms.
4 2A2H3 2,2,2) e

(1.57)

The notation "c.c. terms" indicates the complex conjugates,

necessary for a real output signal. Alternatively, y(k) is given

by

y(t) = ReILA2 H1 (f 2 ) + j JAll2 2¶A(f1'f2,-f1)

+ 2A2 H3 1fA, Jf2f e (1.58)
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The first term is the small-signal linear response, the second

_term is the desensitization at frequency f 2 caused by the Signal

at flo and the third term is the compression of the f2 term

generated by increasing the amplitude A2 .

1.9 FreguencV-Conversion as a Mild Nonlinearity

The process of frequency conversion is basic to communication

receivers. Many forward-biased diode, transistor and vacuum tube

mixers, and varacter up-CAWVerters can be modeled as mildly ex-

cited nonlinear devices. The nonlinear analysis described here

applies directly to such mixer circuits. Switched-mixers or
mixers with large local-oscillator drives are more efficiently

treated by large-signal, time-domain techniques.

l.S.1 Equivalent Amplifier Concept

The important difference between a mixer and an amplifier

is that the desired output of a mixer is due to the second-order

transfer function, and the dominant in-band distortion term is
due to the fourth-order transfer function. If the local-oscillator

is sufficiently small so that the mixer operates as a small-

signal nonlinear system, it can be fully analyzed using time-
invariant nonlinear transfer functions. The mixer can be con-

sidered to be a nonlinear amplifier with one extra signal, namely
the local-oscillator. Consider the case where the input signals

are Ai exp(jwit), where i = 1,2 for the signals, and 0 for the
local-oscillator. The desired output of the amplifier is at

frequency f1 or f2' while the desired output of the mixer is at

frequency f 0 -f 1 or f 0 -f 2 . For any frequency combination in the

amplifier, there will exist at the mixer output a similar fre-

quency combination shifted in frequency by f 0 , and, due to the

36
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nonlinearity, one-order higher than in the amplifier case. Thio

leads to the concept of an equivalent amplifier. A mixer can be

considered as an "equivalent amplifier" which incorporates a

frequency shift f 0 The nonlinear transfer functions of the

equivalent amplifier can be expressed in terms of those of the

mixer, and are functions of the local-oscillator amplitude and

frequency. If the mixer nonlinear transfer functions are denoted

by Hn+l(f 0 ,flif 2 ... , fn) then the corresponding "equivalent

amplifier" nonlinear transfer functions, Hn 1 2 * n f 0

are given by:

He~lfn 1 ' 2 fn" f0) 2 AoHn+l~f' 1 ' fn)(°9

The factor- A0 is a direct consequence of Equation (1.51).

Thus:

H2 q(flf AoH2(f 0,fl), (1.60)

H q(f ~f f0 A 0H ( (1.61)

H (f f 2 , f 3 f0 ) = 2A0 H4 (f 0 ,ff 2 ,f 3 ). (1.62)

The use of the equivalent amplifier concept can often simplify

receiver analysis.,

1.9.2 Mixer P.a Response

In the literature on mixers, one often finds reference to

the mixer p, q response. The p,q response is an interaction of

the pth multiple of the local-oscillator frequency f 0 and the

qth multiple of the signal frequency fl to form a mixer output

which falls in the IF passband. If both the signal and the

local, oscillator are harmonic free, the p, • response yP+q is
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W(t) W [pBq (m) Hp+q e i2 (pf0+Pf1)+ c.c.], (1.63)

where

a LqM) _ M.J_ Ao (1.64)
P~q 2~~p~qllq1 0 11

8pz j (fi . f0  f a 1 *(1.65)
P• Pq %LJ

p times q times

A0 complex amplitude of input local-oscillator
0 ,at f0.

A, complex amplitude of input signal at fl"

S~th
If the local-oscillator itself has a p harmonic component

of complex amplitude A(P) at frequency pf 0 ' then the mixer output
0

would be of q+l order:

A((+) Aq H (p)Oq f ... 0 00 . (1.66)
2 0 1 - q +1Pfo' f" f 1

q times

Since the outputs in (1.6'.-) and (1.66) are at the same

frequency, they will add coherently and the resulting amplitude

will depend on their relative phases. Thus, the phase of a

local--oscillator harmonic, or more fundamentally, the local-

oscillator waveform can have a significant effect in determining

the amplitude of a pq response.
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It should be cautioned that these results are only for

mixers which have a small local-oscillator. Large local-

oscillator mixers must be analyzed by other techniques. They

will be discussed in Chapter 4.

1.10 Determining the Nonlinear Transfer Functions
Hn for a Physical System

Fundamental to the successful application of the nonlinear

analysis methods developed in this bo* is a practical means for
determining the nonlinear transfer function Hn for specific systems

under investigation. Many communications systems and receivers

are relatively large electronic circuits with multiple nonlineari-

ties scattered at many places throughout the system. A systematic

nonlinear circuit analysis method designed to efficiently determine

H is developed in Chapter 2. Successful application of then
method requi~es adequate models of nonlinear devices and circuits

as well as access to a digital computer that has been programmed

to accurately solve the considerably -30plicated network equations.

The issue of system modeling for input signals of interest is also

developed in subsequent chapters. A computer program called

SIGNCAP has been developed which solves for the nonlinear trans-.

fer functions of an arbitrary circuit containing resistors,

inductors, capacitors, transistors, vacuum tubes, and diodes.

SIGNCAP is described in Appendix A.
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CHAPTER 2

SMALL SIGNAL NONLINEAR CIRCUIT ANALYSIS

2.1 Introduction

2.1.1 Frequency Domain Approach

Small signal nonlinear circuit analysis may be accomplished
by use of the Volterra series. The purpose of this chapter is to
describe a general technique for obtaining the input-output
representation by starting from the incremental nonlinear cir-

cuit models. The methods are applicable to any size network.

The time- invariant Volterra series input-output represen-
tation of a nonlinear circuit may be given either in the time-
domain or in the frequency domain. The frequency domain represen-

tation is

Y(f) = r . df ..... dfn 8(f-f-f
n=l -= _m

n
"Hn (fl f2f "*01 fn I X(f ), (2.1)

p=l

where 6(f] is the unit impulse at f=0, and X(f) and Y(f) are the
frequency spectra of the input x(t) and output y(t) respectively.

The Hn are the nonlinear transfer functions. The frequency domain
approach developed here will derive the nonlinear transfer func-

tions Hn (f 1 , f2 "" f n) by starting with the circuit nonlinear
differential equations. This approach was introduced in non-

linear circuit analysis by Weiner (1942). Deutsch (1962) made
this work more accessible, while Narayanan (1967) developed it

for distortion analysis of broadband amplifiers. We have
extended Narayanan's work so that both nominally linear systems
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(amplifiers, etc.) as well as nominally nonlinear and multi-
input systems (multipliers, mixers, etc.) can be analyzed.
"Other work concerned with the frequency domain representation
of general nonlinear systems has been preserted by Barrett (1963),
Flake (1963), Parente (1966). Lubbock and Bhansol (1969) and
more recently by Bedrosian and Rice (1971). The approach
emphasised in this book is to develop general nonlinear circult
analysis methods suitable for computer-aided analysis. ThusK. the objectives will be to go directly from the network circuit
model to the nonlinea.. transfer functions.

2.1.2 Sinusoidal Inputs

Nonlinear transfer functions can be applied directly in
the case of circuits excited by sinusoidal inputs l they are also
used to determine the parameters of the nonlinear canonic models
developed in detail in Chapter 3.

Consider a nonlinear system excited by the sum of two tones

J2Trft j2rrf 2t
x(t) = Re A1 e + A 2 e (2•2)

where A1 and A2 are complex amplitudes of the tones at frequencies
fland f 2 respectively. The output y(t) for the input x(t) is
given directly in terms of the nonlinear transfer functions as
the sum of the real part of terms such as:

a. A1 Hl(fl)e : Linear response.
1 2 J4iflt

b. 1 A1 H2(fl,fl)e 14 Second-order sum121response at 2fl.

c. IA I 12 2 (flf - fl) • Second-order
difference res-
ponse at D.C.
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J•, ~ 2tr 2e2(fl f 2) t

d. AIAH(ff e + Second-order sum22 2 e response at fl+f2.

"-! 3 2 *J2Tr(2fl-f2)t
e. 3 A 2 A*H((fI - f)2 1 2  3 Third-order in-4 1 2311 2 termodulation

response at
2fl - f 2 "

In Chapter 1 it was stated that for an input made up of the

sum of M tones at frequencies f 1lf 2 " "fM' the part of the numeric

coefficient of H (f lf ... f ) at frequency m f + m f2..+ mMfMn 12 n 1 1 2 2
which is independbnt of the input signal amplitude is

ni
n-C = , (2.3)S~~~n-11!2m!

2 mi1 ! m2 ...m14

where the m i are non-negative integers and

m + m2 + mM =n.

Equation (1.51, which defines the total coefficient, Bn(m) of

H n (f l'f2""fm)' is C multiplied by the amplitude factor

AmI A22..AMrM. The derivation of Equation (2.3) is straight-

forward. if the input x(t) is the sum of m complex exponentials

M j2rf t
x(t)=- 2 Ake k, (2.4)

2 k

where fk will include both positive and negative frequencies and
Ak for a negative frequency will be the complex conjugate of Ak

for the positive frequency in order to have x(t) real. The nth

order output Yn(t) is given by
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N

ef, V.N

Yn(t °" n '12 n ° x(t-Tr) d•i

no T2 2 7k
n M n 2 jrfk(t- r)

- ~ h(1,.remn) TLT 1: Ae k dhl.

-, ( 10T aT n 2 ,:4 .,.l

Mk ***A~k Hn (fk *fk **IC
k1 l 1 Nnol2 1 n 1 2 n

j2 (fk + "'k
12 •2• fk)t

1 2 .(2.5)

The time function yn(t) contains Mn terms. As the indices kit
k 2°*k vary over the range 1 through M, many of the terms will2 n
be at the same frequency, thus leading to the various nonlinear
responses such as intermodulation and h6monic responses, and
resulting in a varying number of terms at various particular fre-
quency combinations. For example, for the case M-6, the third-
order output at the frequency f +f 2 +f 3 is given by

Y3 (t) 2 +f31 [H 3 (f1 lf 2 *f 3)+H 3 (f 1 'f 3 'f 2 )

f l'f 2#f 3

+H3 (f 2 1'fl 1 f 3 )+H 3 (f 2 ,'f 3 'fl)+H3 (f 3 ,fl'f 2 )

) rJ2(fl +f2 +f3)
+H3 (f 3 ,f 2 ,f 1 )] aJ 1  2 3 + c.co (2.6)

In Equation (2.6), c.c. indicates the complex conjugate of the term

written out fully. In addition, it is assumed that the three fre-

quencies are distinct, that is, f I f 2 #f 3 o An intermodulation re-

sponse with a third-order output at the frequency 2fl+f2 is given by
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y 3 (t M 3~ A 1 A2 j[ 3 (fl'fl'f2 ) + H3'(fl'f 2 ,fl) + H3 (f2'fvofl) Sfl2f1 f2 22
2• j+2Tr(2f 1ýf2)t ..

S. e+ Ccoc. (2.7)

•i.•,•.•,Thus there are six terms at fl+f2+3 and three terms at 2fl+f2•.

at 3fI, one would find only one term. The nonlinear transfer

functions in Equations (2.6) and (2.7) differ only in the orderingI, of their arguments, and there are as many nonlinear transfer func-

tions as there are ways of ordering the arguments. If the other

terms in the expansion are formed, a similar result is found.

Namely, at frequency mlfl+m2 f 2 +o..+mMfM there are as many terms

as there are ways of forming m1 f 1+m2 f 2 .. .+mMfM. There is a result

fron combinatorial analysis which states (Feller, 1950, p. 32):

Let mlom2 °...mM be non-negative integers such that

I + m2 ... + MM = n. (2.8)

The number of ways in which n objects can be divided into m groups

of which the first contains mI objects, the second m2 objects, etc.,
is

n1 (2.9)
¶m 1Im ... m I

This quantity is called the multinomial coefficient, and is

denoted by (ni mlm 2 °...mM). The nonlinear transfer functions of

an electrical network are symmetric. As an example of symmetry,

consider an unsymmetric second-order nonlinear impulse response

It2 (r1,'2, for whic y 2(t) s J•drid T2 h2 (¶1 1,) x(t-'rl) x(t-¶ 2 ).
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By evaluating the integral twice, using the changes of variable.ltl, T2 and Tl-g2, T2•.l, respectively, a symm kernel

for the system can be shown to be [h2 ( 1 ,¶T2 ) + h2 (T2 ,¶l)3/2. For.- ' th
&Ln nth oer nonlinear impulse response, the symmetrization is
performed over the n! time permutations, and the sum is divided
by i!. The time-domain symmetrization applies also to the
frequency-domain nonlinear transfer functions, which are simply
multipie-dimensional Fourier transforms of the time-domain impulse
responses. in the case of the responses at fl+f2 +f 3 , and 2f 1 4f 2 ,

the y3 (t) reduce to

Stj =31AIA2 A3  j 21(f+f 2 +f 3 )t
flHf 3 2f+f3 21f3Y3t f 1' f2+f 3- 23-11 3• llo)

17' 291f 3l (2.10)

and
23[12A2 j2T (2f1+ f2t

Y3(t) 3 H3(flflof2) e + c.c. (2.11)2f 1 +f 2  2~ 2111 32

The output time function yn(t) is also twice the real part of the

first termor in general

n th-order
real output f - mlfl+m2 f 2 . o.mfM

efl# 2....JM
2n-l~ ~ ~ mI - mm2 51R A1 2 ...ýMHn(l-flfI-2-IM-M

2-mlum 2 !..rmM! 1 2 , " "',f°

m1 times m2 times iNtimes

*J 2YT (ml1fl1+M 2f2-. +rm K) t
et) (2.12)
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4. The numerical coefficient of the real part is Co noted in

Equation (2.3).

We now show the application oý.. Equation (2.3) to the five

terms given in examples (a) through (e) following Equation (2.2),,

where the coefficients mI, m2, i3, m4 relate to the frequencies

.f 2 -fl* -f 2 , respectively. This results in:

'Case n mI m m m4 C
1 2 3. N

a 1 1 0 0 0 11/(2 11010101) 1
2-1b 2 2 0 0 0 21/(2 21010101) - 1/2

2-1c 2 1 0 0 0 21/(2 11110101) , 1

d 2 1 1 0 0 21/(2 2-1 11110101) - 1

e 3 2 0 0 1 31/(2 3-121110101) 3/4

In the case of non-sinusoidal inputs, the canonic models

of the nonlinear system are employed. The canonic models in

Chapter 3 are based on a Volterra representation of a nonlinear

system, and the parameters of the canonic model are determined

from either the nonlinear transfer functions or the time-domain

kernels. Obtaining the nonlinear transfer function is the first

step in the small-signal nonlinear analysis of nonlinear networks.

2.1.3 Applicability of the Volterra Series

The Volterra series representation is useful only if the
series is rapidly convergent, so that only a few nonlinear trans-

fer functions need be determined. Nonlinear systems representable

by a convergent Volterra series are called analytic systems.

Analytic systems have been defined by Volterra (1930), Brilliant
(1958), Parente (1966) and others. An analyt+c system is one

which satisfies three properties: (i) It is deterministic, that
is, for a given input signal, the system can hive one and only
one corresponding output signal. (ii) It is time-invariant, and
(iii) the system cannot introduce any abrupt changes in its output.
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If such a change is present in the system output, it must be 4

due to a similar abrupt change in the input or its derivatives. .

The combinations of non-interacting analytic systems have

been studied extensively by Brilliant (1958), George (1959), and

Zames (1960). They have shown that analytic systems in cascade,

parallel or multiplicative combinations give an overall analytic

system. Feedback combinations of analytic systems are 4palytic

except when the feedback makes the system unstable.

In general, determination of analyticity is difficult. For-
tunately, in the circuit analysis of interest here we begin with

individual circuit elements that will be analytic. cased on the

algebra of Volterra systems we then know that with the exception
of the unstable feedback case, the overall network is also

analytic.

Networks with hysteresis elements (Brilliant 1959), *r

circuits in a limit-cycle mode are not analytic. However, for

a given range of input level, hysteresis elements may be ap-

proximated by a Volterra series model.

2.1.4 "Small" and "Larcre" Signal Criteria and Truncation Error

In a large network with many nonlinear elements the deter-
mination of the nonlinear transfer functions over fifth or
sixth order becomes inefficient. Given an analytic system and
a small enough input signal, the output can be closely
approximated by only the first few terms of the Volterra series.
An essentially linear or "mildly" nonlinear system also requires
only the first few order transfer functions. Thus, small signal
nonlinear analysis presented here refers to systems in which
only the first few order nonlinear transfer functions are sign-
ificant. Chapter 4 presents time-variant extensions of the
Volterra series And other methods for handling large signals and
abrupt or violent nonlinearities.
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The error in truncating the Volterra series of a nonli3 tar
circuit has been studied by Flake (1963), Parente (19§6), Volterra
(1930), Brilliant (1958). George (1959) with few generaI results.
Only ..n specific examples have useful bounds been obtained on the
truncation error, At present t1K only approach is a brute-force
"determination of a large number the higher order terms and
then observing their rate of convergence.

Closely related to the truncation error is the range of

validity of the nonlinear branch elements in the network. Given

a network -Qmposed of a variety of nonlinearities combined with

linear memory elements, the nonlinear circuit analysis begins

by representing the nonlinear elements by a series, usud?1ly a
Taylor series. The rate of convergence and the truncation error

of the network can often by id•hfhed by considering the trun-

cation error and the rate of convergence of the Taylor series of

the nonlinear elements. This argument extends to nonlinear ele-

ments with memory.

2.2 RNonl r Circuit Analysis

2.2.1 Intro&4t-ion

In the analysis of nonlinear systems presented in Chapter
l, the nonlinear transfer functic-t related general input-output
mathematical variables. However, when solving a circuit we have
to define whether the input and the output are currents or vol-
tage. Thus, the transfer function relating a voltage output
to a current input will be different from one relating a voltage-
output to a voltage-input.

It is important to note that the nonlinear transfer functions
always relate the output voltages or currents to Thevenin gen-
eratora,-.-or voltage excitations, or Norton generators for current
excitations. This point is quite important when analyzing cir-
cuits which load the sources aIdNie their terminal voltages
or currents different from their unloaded values.

48

. ....



- ..V.

Physical i~terpretation of the input and output variables
and the rn•2inear transfer function representation is especially

desirable since smaU.-signal nonlinear circuit analysis is an
extension of the conventional incremental analysis of electronic
circuits. The nonlinear circuit models employed here are in-
cremental models developed about a bias or operating point. It
will ala%-be found that the linearized equivalent circuit of the
network plays an essential role in determining the nonlinear
responses of the circuit.

To introduce the approach, first consider the simple cir-
cuit shown in Fig. 2.1. A clear understanding of this example
aids in1Understanding more complex circuits which may include
several different kinds of nonlinear elements. The circuit in
Fig. 2.1 is an incremental nonlinear circuit. All voltages and
currents are incremental quantities.

The nonlinear element may be a zero-memory device
described by

12 a K(V 2 ) * (2.13)

where I is the total current through the device and V is the
2 2

corresponding total voltage across it. To proceed with the

small-signal analysis, the function K(V2 ) is expanded about the

operating point V2 0 giving

S

i *KX v n (2.*14)

where Kn are %he Taylor series coefficients

K = L Bn Y(V 2= . .. (2.15)
n n1 61V n

V 2 0 V20
and i2 and v are the Incremental current and voltage.
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In some cases the nonlinear element may be expressed in

terms of the current 12 or

V2  R(1 2 ). (2.16)

In this case, the resulting expansion is about the operating

point 120

= E R in (2.17)
2 n=1 n

where

R 1 • (2.18)
n rn I n

12 = 120

Whether the nonlinearity is given in the form of Equation (2.13)

or Equation (2.16) depends on the model description. The form

Which the circuit analysis of this chapter takes is a voltage

input, voltage output nodal analysis. This has been chosen

because it is most convenient for the analysis of electronic

circuits, Which tend to have many more loops than nodes.

The starting point of the nonlinear analysis is the

incremental nonlinear circuit model, with the network structure

given, and the input and output variables identified. The

nonlinear branch elements in the network may be either zero-

memory or a nonlinearity with memory. Additionally, they may

be dependent upon variables other than their terminal voltages.

The procedure for handling both dependent and independent

nonlinearities are presented.
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2.2.2 Single Nonlinear Element Circuit

In the circuit shown in Fig. 2.1, the output is the voltage

v2 (t) and the input is the generator voltage v (t). The generator

internal admittance is Yg9f) and Yl(f), Y2 aM) and YL(f) are linear

non-zero memory networks. The purpose of the analysis is to
determine the nonlinear transfer functions relating v3 (t) and

v (t).
9

Let Cn(fI, f2l "' fn) denote the nonlinear transfer func-

tions for the output v3 (t) when the input is v (t). If v (t) is

the sum of the M unit amplitude exponentials

v (t) = e J2Tf 1 t+ e 2f 2 t + e 2 fMt (2.19)

the Cn(f 1 , .. n) can then be found in terms of the complex

amplitudes of the output at the frequency of interest. Several

methods exist for deriving the nonlinear transfer functions.

These methods would first reduce the input-output relation between
v 3 (t) and v (t) to a nonlinear differential equation. The
Volterra series for v3 (t) can then be substituted into the
differential equation and terms of equal order equated. The
various methods differ in whether the time-domain Volterra

representation is substituted or the frequency domain. The

frequency domain approach is the one usually used.

Our frequency domain approach is similar except for the

major difference that we are interested in numerical values of
the nonlinear transfer function, and want to minimize prelimin-

ary work such as reducing the total network to a single differen-

tial equation. In the approach used, due to the fact that non-

linear elements can appear at any node, we solve for all in-

dependent node voltages or branch currents. Thus we solve the
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single-output problem by using a multi-output formulation.

We will consider the following four type nonlinearities in

the circuit shown in Fig. 2.1:

(a) Nonlinear conductance

V2 -2 (Rv2 ). (2.20)
n=l

(b) Nonlinear resistance

F, .n i _ R(i 2)(o1v2 = .R 2
n= 1

(c) Dependent nonlinearity which is a function of not only
the voltage across it but also the voltage at another
node.

i= g v G(v, v (2.22)
m= 0 n-03 2 3

mydn= 0

(d) Nonlinearity with memory

0 Cf n
i 2 (t) = I ndl " drh n(1,..n) nT[ v2 (t-m )

n=1 -O -r- m=l m

(2.23)

and H (fl .. fn), the inverse transform of h , will be usedni n n
to denote the nonlinear transfer function of this element.

Following the conventional functional notation,Equation (2.23)
may be compactly written as

i 2 (t) A• H [v2 (t)], (2.24)

where the square bracket is used to denote a functional operation.
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2.2.2.1 Nonlinear Conductance K (v2 )

Kirchoff current and voltage laws apply to a nonlinear net-

work as well as to a linear network. Thus the circuit equations

may be written either as loop or node equations or as a mixed

set. When the nonlinearity of Fig. 2.1 is specified as a power

series in voltagc, the node voltages vl(t), v 2 (t) and v3 (t) are

independent voltages. Applying Kirchoff's current law, the cir-

cuit node equations in operational notation are:

Node 1

y (p) (V -V ) + Y (p) (Vl-V2) 0'

Node 2

'l1p (v2 -v 1 ) + K(v 2 ) + Y2 (p) (v2 -v 3 ) = 0 (2.25)

Node 3

Y2 (p) (v 3 -v 2 ) + Y (P) v3 - 0.

The three node equations in Equation (2.25) are time-domain

equations. Each equation states that the total current leaving

a node is zero. The p is a linear operator, and the various

Y(p) are combinations of terms such as Cp for a capacitor, G for

a resistor, and I/(Lp) for an inductor. When operating on a

voltage, v, they perform the time-domain operations:

C p v(t) = cy
dt"

G v(t) G v , (2.26)

1- V (t) v(t)dt.
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lI

The current through the nonlinearity, K(v 2 ), is not operated on

by any of the Y(p), and is considered separately.

Substituting the power series for K(v 2 ) into Equation (2.25)

and taking the second and higher-order terms to the right-hand

side together with the source term we get

Yg (p) vg

SY(p) v 2  4 n2 (2.27
n=2

v3 0

where [Y(p)] is the admittance operator matrix of the linearized

network

Y (p) +Y (p) "Y (p) 0

[Y(p)] = -Y 1 (p) K1 +Y1 (p) +Y2 (P) -Y 2 (P) . (2.28)

0 -Y 2 (p) Y (p)+Y (p)
L.22 L

Equations (2.27) and (2.28) are simply matrix restatements of

Equation (2.25). Equation (2.27) is still a time-domain equa-

tion. To derive the nonlinear transfer functions to third-order,

let v (t) be the sum of three exponentials of the form given by
g

Eq. (2.19). Denoting the nonlinear transfer functions for

v1 (t), v 2 (t), and v 3 (t) by An(flff2,..0fn), Bn(flof 2*.*fn)

and C n(f ,f 2 ,...fn ), respectively, we get in terms of transfer

functions A ,
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3 J 2Tfit j 4Trf it

vt M T{ "Al (f1 ) 0 + A2 (fi~fi) e

+A(ff ej 6"fit +3 J 21T(fi fJ t
+ A3 (fifif) e t+ I:A2 (fiffjf+e

j-I
joi

j21T (2fi + f )t
+ 3A 3 (fiffi~fj) j f

j 2.T (fl + f2 + f3)
+ 6A3 (ff 2 f 3 ) e 3) + 0(3), (2.29)

where 0(3) are terms of higher order than third.

Similarly for v2(t),

3 J 2•f it j4rfit J6TTfit

v2(t) E L Ble + B2e + B3 ei=1

3 j27T(fi + fj)t j2rr(2f + fj)t
+ E (B2 e + 3Be i)]

j=l
j~i

+6B 3 e 1 + f2 + f + 0(3). (2.30)

The frequency arguments of the transfer functions are not

indicated above since they are clearly defined by the multiply-

ing exponential. An equacion similar to (2.29) and (2.30) can

be written for v3 in terms of C Substitution of these
expansions on both sides of the node Equation (2.27) gives for

the left hand side
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:L I.

3 J2Trfit t4 j•2n(f 1 +f 2 +f 3 )t

E fAle .A.. +...1 +6A3 e

S3 j l2Tf it ft +6B 3 ej2(f +f 2 +f 3 )t

i-i

3 j2Trfit j4rTfit j2TT(f1 +f 2 +f 3 )t34 (C e +C e +..]+6C e

(2.31)

The right-hand side contains the source term and terms in-

volving various powers of the node voltage v 2 . Only terms up

to "third-order" exponentials are of interest in these products.

The only powers of v 2 contributing up to third-order terms in the

right-hand side are the second and third. Thus, squaring v 2 of

Eq. (2.26) and writing terms up to third-order gives.

3 j 2Tfit 3
v ilBe+ 4 E Bl(fi B2(fj~k

2 ~~~i, j,k-1I12l~k

J 2r(fi+fj+fk)t 3 j2•(fi+2fj)t
• e+2 r Bl(fi) B (fjf)e i+0(3).

i,J=l 2 jJe i

(2.32)

The first term on the right-hand side of Equation (2.32) contains

second-order terms at frequencies 2fi* and fi+f., where i p j and

i and j take on the values 1, 2, 3. The remaining terms on the

right-hand side are third-order terms.
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Similarly raising Eq. (2.30) to the third power gives the third-
3order term in v2 as

v 2
3  B1e + 0(3), (2.33)

Substituting these terms, the right-hand side column vector of

Eq. (2.27) up to third-order becomes

Yg (P) 3 e t

-----------------------------------------------

-K 3 BeJ 2Tf 1] _4K2 3 BI(fi) B2 (ff)e 2 ff:V

"•2 ki•1•1"i,j~k--l
ijj2

3 j 2A (fi+22j) j 2Tfi
-2K 2i l B1 (fi)B2 (fjIfj)e -K3 FIB e

L -------------------------------------------
0

(2.34)

To solve for any order transfer function, e.g., C2(fl,f2),
the coefficients of the terms eJ 2 7l(fI+f2 )t on both sides of the
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•/; j2 (f 1 + f 2 ) t

node equations are equated. Since terms in e also

arise in Qonjunction with A2 (flff 2 ) and B2 (flof 2 ) we therefore

get matrix equations for each order. Starting with first-order,

Eq. (2.31) and Eq. (2.34) give
r j2rfit

A (fig (p) e

J2•fit

[Y(p)) B(fi) e 0 1 1,2,3.

c (fi) 0 (2.35)

Equation (2.35) is a time-domain equation in operator form,

which relates the node voltages A1 (fi )e , B1 (fi)e ,¶

and C1 (fi)e Jfit, to the complex exponential excitation voltage

source Y (p)e J2fit. By noting that the operator p is d/dt,

Equation (2.35) can be transformed into the frequency-domain

for the three first-order nonlinear transfer functions

Al(fi)I Bi(fi), Ci(fi)-

The first-order transfer functions are then given by

"A1 ((fi) Y"g (fi) "

B1 (fi) = Ey(fi)3-I 0 i= 1,2,3.

1  (2.36)

In going from Equation (2.35) to Equation (2.36), the operator

p is replaced by j2rfi when operating on a signal at frequency fi"
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Carrying out the differentiation and integration consistent with

the operators p and l/p, the admittance operator matrix [Y(p)1

is replaced by [Y(fi)J, which is the network nodal admittance

matrix.

In the second-order case the left-hand side of the node

equations becomes

"2A2 (flff 2)

[Y(p)] 2B 2 (flif 2) ei21(f1+f2)t

2C2 (f lf2)

"A2 (flf

2eiJ2 T(fl+f2)t [Y(fltf 2 )1 B2 (fl f2 ) (2.37)

LC2 (fi fl f2 )

where the operator p has been replaced by j2T(f 1+f 2 )0 and f1 f2

In the right-hand side, the term at frequency (f l-f 2 ) is

Sj2rr (f 1+f 2) t
-Kv2 V11 -(2;1,1)K K2SI (fI) 1 (f 2 )e , (2.38)

f2+f12

12where the multinomial coefficient (2:1,1) = 2, so that the right-
hand side at frequency (fl+f 2 ) becomes
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"0

Right- j 21 (f 1 +f 2 )tI ~hand-K
handK (f *f )eside 2 2  1 2 (2.39)

1+f2

0

where we have defined K2 (f 1 'f 2) as

KK2 (f 1 f 2 ) 2 K2 B1 (fl) B1 (f 2 ). (2.40)

j 2TT(fl+f 2 ) t
Equating the two sides and cancelling 2e from both

sides we get the equations yielding the second-order transfer

functions of the network

"A2(f 'f 2 0

B 2(,f1Of2) - y [(f I+f 2) "- -2 (Filf 2 (2.41)

C :2 (f l3f 21 0

It can be easily verified that the equations for the frequency
2fi are the same as above with appropriate change in the fre-

quencies.

In the case of the third-order equations, consider the

frequency ff 1 +f 2+f 3 ), where f1 #f2 #f33 The left-hand side of

i.he node equations is now
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6A3 (f. of 2 ,f 3)"

j21T(fl+f 2 +f 3 ) t

Left- 6B (f f1 f
hand f(ffff2+f3 3 1 2F3)
side f +f +f23

6C 3 ( ,f2 .1 3)

(2.42)

2
while in the right-hand side K2v 2 contributes the following term

K2 v 2
2  = 2K 2 (B 1 (f 1 [B2(f2, f3)+ B2(f3'f2]

123 B f
1+ B(f 2 )[B 2 (ff 3 ) + id

+ B1 (f 3 ) [B 2 (fl f 2 ) + B2(f,

J2TT(f +f +f )t
S1 2 3 (2.43)

The bracket £ 3 term contains all permutations of the three fre-

quencies flf 2 and f3. This always occurs in physical circuits

since the nonlinear transfer function must be symmetric with

respect to all the frequencies. A compact notation for this

symmetrization is

B (f ) f (f B(ff
1 1 B2(f2 f3) 6 1ll L 2 2 f3 ) B2 (f3o z,

" +B 1 (f 2) 1B2 (fl, f 3 + B2 (f 3 Pf1)3

"+ BI(f 3) 1B2 lf 1 lf 2 + B2 (f 2 f •).

62 (2.44)
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Therefore

2 f 12 K2 B(fl)B 2 (f 2 f 3 )
K~v 1 ~ 2 3

A

wee6 K 23 B1 (f 1 B2 (f 2 If3)0 (2.45)
where

K23 -2K 2 B1 (f)B 2 (f 2 , f 3 ). (2.46)

r A

The term K23 is a third-order source resulting from an inter-

action between a linear and a second-order nonlinearity. Thus,
there will be third-order products ever• if the third-order non-

linearity, K3, were zero.

The only other term of frequency (f 1 +f 2 +f 3 ) comes from the

third-order nonlinearity K13 giving

3 ( 3j 2Tt (f i+ f2+f3 )t

K3v2
3  -(3,11,1) K3 TTB 1(fi • f

f 1+f 2+f 3 J2rr(f 1+f 2 +f 3)t
S6K (f f,f e) e , (2.47)

where (3Ol,I,l) - 6, and

A 3
K3 = K3 Bi (tl) . (2.48)

1.- 1

Combining Equations (2.42), (2.43), and (2.47) gives an

6quatiot. yielding the third-order transfer functions in terms of

23(fl, * f2,fY and K3 (f 1 f 2 ,fV). Thus,

63



"A3 (f 1f 2 'f 3 )

By (f- ' Kf23- K3 (f f3)f
B3 (flf 2 'f 3 ) = (f I+f2+f 3  -K2 3 (fllff 2 # 3

c3(f lf ,f 3) 0

(2.49)

The general nature of the analysis should now be apparent.

Higher-order nonlinear transfer functions can be similarly de-
th

rived. It may be noted that the n order transfer functions

depend on all the Taylor series coefficients from K1 -o Kn-

Additionally, it will be noted that only the first-order transfer

functions are required to determine the second-order. Only first

and second-orders are required to determine third-order, and in
th

general, only the first through n order nonlinear transfer

functions are required to determine the n+l order nonlinear

transfer function. The analysis determines the nonlinear trans-

fer functions for frequency combinations of the form fi+fj ***+fmo

ipjjm. In using the nonlinear transfer functions to determine

input-output relations, they must be evaluated at the frequency

combination of interest and premultiplied by the coefficient

B n(i) of Equation (1.51), corresponding to this frequency combi-

nation.

2.2.2.2 Current-Controlled xonlinearity

If the nonlinearity in Figure 2.1 is specified as a power

series in current instead of voltage, the node-voltage formulation

may again be employed. The nonlinear sources will appear as volt-
age sources in seriu with the linearized element, and can be

transformed into equivalent Norton current souces. This, it
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shoald be noted, is the same technique used to include linear

voltage generators in the node analysis. As an example consider

a nonlinear resistor. The power series between v 2 and i2 for

a current-controlled nonlinear resistor is

•n

R2  n In12 (2.50)S~n=l

As the first step, the linear network is solved for v 2 , resulting
in Bl(fi) being found from

Al(fi) Yg(fi)
-l

Bi(fi) iEY(fi)] 0 i-l,2*.. (2.51)

Cl(fi) 0

Next, the current through the linearized resistor is computed

j2Trf t
1 2 = B1 (fi)/R1 e ( ii,2... (2.52)

Using Equation (2.52) with (2.50) results in

21 B1 (f1 ) B1 (f 2 ) j2rr(f1 +f 2 )t
2= 2 2 e (2.53)

fl+ f 2

By analogy with Equations (2.38) - (2.41), a second-order voltage

source can then be defined at frequency f1 + f 2
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B (fB) (f2 J2TT(fl+f 2 )t
- R2 e2 (2.54)

21, 12
1v+lf ~2 R 1

and is inserted in series with the linearized resistor. This

can be converted into a second-order current source, K2 (flVr 2),

through use of Norton's theorem, or

K2 (f1• 1#f2 ) "•- v21 (2.55)
1 f 1+f2
R22
3 B1 (f 1 ) B1 (f 2 ). (2.56)

The second-order node voltages A2 (filfj), B2 (fi.fj), and

C2 (fifj) can be solved from

A2 (fl f2) 0

B2(flf 2 ) = ,(fI+f2 )] -K 2 (flf 2 ) . (2.57)

C2 (fl.f2) 0

With the second-order voltagea found, the snoond-order current

through the resia'tor is

12(fi + fj) B2 (fi~fj)/R1. (2.58)

Using Equations (2.58) and (2.52) in (2.50), the third-order

Norton current generator can be written as
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K23(fl2f 3) + K3(fl'f2,f3) 2R BI(f1)B2(f2,f3

R 3 3
+ Ti Bl(fi), (2659)

and the third-order node voltages solved from

A3 (f' 2'f3 0

-l A

B2(f1 If 2 f3) 1Y(f 1+f2+f) -K 2 3 (fle, f 3 )-K3 (f 1'f 2 " f 3 )

C3 (f1,f2, f 3) 0

(2.60)

The higher-order transfer functions are found in the same manner.

It is evident that the equations for the nonlinear transfer func-

tione are formally the same as for the voltage-controlled resistor

if the nonlinear current sources, e.g., K23 and K3, are properly

defined, as in Equations (2.56) and (2.59),

A current-controlled nonlinear inductance can be treated

in a similar manmer. In this case the functional relation is

between voltage and the flux derivative,

v -- (2.61)
2 dt'

where the flux ý is given by

§ (2.62)

Expanding f in a Taylor series in i 2 and inserting the

series into Equation (2.61) results in
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L =-L 12- LL d 1.2.32 1dt 2 2dt 2 3Ft2(2.63)

where the Li are the coefficients of the Taylor series expansion.

Using Equation (2.62) in place of Equation (2.50) and carrying

out the analysis operations results in nonlinear current sources
of the form:

A Z2 (fl+f2 ) Bl(fI) Bl(f 2 )
Second-Order K2 = Zifl+f2) ZI (fl) Z1 (:f2 ) " (2.64)

Third-Order

A A 2Z 2 (fZ+f 2 +f 3 )
K2 3 + K3  (f 1+f2+f3 )

B1 (f) B 2 (f 2 f 3 ) Z (fl+f +f 3 )

Zl(fI) Zl(f 2+f 3) z1 (f 1 +f 2+f 3 )

3 B-- l(fi)
IT fi (2.65)i=l z1(i

where

Z4(f i+f-- j2r(fi + fj :..)Lt. (2.66)

2.2.2.3 Zero-Memorv Dependent Nonlinearity

The nonlinearity given by Eq. (2.22) is a dependent non-
linearity since the (i 2 *v2 ) relation depends on another voltage
v 3. Applying the node equation formulation gives the [Y(p))

Yg(P) + Y1 (p) Y1 (p) 0

[Y(p)] = - (p) 910+Y1 (p)++52 (p) -Y2 (p)+g 0 1  , (2.67)

0 -Y2 (p) Y2 (p) +YL (P).
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where g10 and g01 are the linear terms in the power series

g(v 2 ,v 3) = g10v2 + g01v3 + g 2 0 v2
2 + g1 1V2v 3

+gO 2 v3
2 + gv 3 + gv 2  gvV 2 +302 3 30 2 + 21 2v3 g12 2v3 ÷ 03v3""

(2.68)

it should be noted that dependent nonlinearities cause numerical
asymmetry in the Y matrix. Grouping together the terms of order
n as gn(v 2ev 3 ) gives

2 2
g 2 (v2,v 3) • g 20v 2 + g 11 V2v 3 + g 0 2v 3

g3 (v 21 v3 ) g30v2 + g2 1 v2  g12v 2v 3 + g203V3

(2.69)

To obtain the second- and third-order transfer functions

the series v 2 and v3 are as usual substituted into g 2 (v 2.v 3 )
and g 3 (v2 ,v 3 ) and the coefficient of the frequency of interest
isolated. Thus# it can be showh that
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J21T(f +f )
g2 (v2 'v 3) "2e 1 20B2) t (•) B( f2) + g0 2 1 (f l )C (If)

(f 1 + 2 )

+ .g91 [Bl (fl) Cl(f2) + Bl C) c(flj)]) (2.70)

A

From Eq. (2. 701 a second-order current-source g2(fl,f 2 )

can be defined as

2 (f Vf2) A g 20 Bl(f 1 ) BI(f 2 ) + g 0 2C1 (f 1 )C1 (f 2)

+ g 11 B I(f 1)C1 f 2) . (2. 71)

The third order sources can be also defined as follows

g 2 (v 2 'v 3 ) If +f+f3 6eJ 2'T (fI+f 2 +f 3 ) t( 2 g 2 OBl (fl) B2 (f 2 ' 3)

+ 2g 0 2 C (f ) C2 (f2'*f3)

+ g 1 {B 1 (f 1 )C(f + %~(f 1 0f ) C (f)]

J2Zrlfl+f 2 +ef3 lt. 2 2
6 23 (flf 2 'f3 ) 2 13

' g3 .(v2 , v3 I) 26 ej2t(f 1  2(f 1 f) 2+f 3)t
%A 6T (f.• If f2.2

23 2 3

-2 j 2 +(fr+f 2 +f)) t

A 6  4 3 (f lef ef 3 ) e ( 2 ,,7 f1

where 4 2 3 l(f,f 2 ,f 3) and • 3 (f 1 0f 2 ,f 3 ) are defined by the above

equations.
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In terms of these nonlinear sources the second- and third-

order transfer functions are given by the solution of

A2 (fie f) 0

r~ -l
B 2(fi# fj (f + (f If.f) 1 (2.74)

C2 (fi' L 0

A 3 (fi' fjf fk) 0

B(f. 1 f. 1 f () +f g 3 (fi f.) 1 *(753 g3 fi' k

C3 f i fj (2.75.

Hence, the form of the transfer function equations are not much

more complex than that of the independent nonlinearity, the main

difference being the derivation of the nonlinearity sources

g2 ' g 2 3 " g.n, which becomes complicated with increasing n.

2.2.2.4 Nonlinearity with Memory

A nonlinearity with memory is analyzed by first considering

the nonlinearity as an isolated nonlinear system, and then finding

its interactions when embedded in the entire network. Thus, its

rnonlinearitransfer functions H1 (f), H2(fi, fj), H 3(fifj fk), etc.,

are first defined. Then, applying the node equation formulation

of Sec. 2.2,2.2, the first-order transfer functions a, given by

Eq. 2,36), with [Y(f)3 given by
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Yg + Yl(f) -Y0(f)

Y Y1 (f) H (f) + Y1 (f) + Y2 (f) -Y2 (f)

0 -Y 2 (f) Y2 (f) + YL (f)

(2.76)

Note the difference between [Y(.f)] here and in Eq. (2.28) is

that the conductance K1 is replaced by a frequency dependent ad-

mittance H (f).

The second-order transfer functions are given similarly by

"A (fie f ) 0

LC2 (fi' fj

where
A

H (f * f, 2 (f i f jB 1.f ) B 1(f ). (2.78)

and third-order by

"A3 (f•f. fk) 03 j
3(fi'f'f = [Y(fl+fj+fk)J ;2 (fff )"3(i jk

LC3(f, *fD i k 0L J

(2.79)
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where

A

H3 (fi fjf)Z H 3 (fiefjfk) Bl(fi) Bl(fj) Bl(f). (2.81)

Note that H( "k) is included in the symmetrization of Eq.
(2.80). Nonlinearities with memory occurring in electronic cir-
cuits are usually ncnlinear capacitors or inductors for which
the transfer functions H n(-) are found by inspection.

2.2.3 General Sinale-Input Analysis

2.2.3.1 Introduction

In the analysis of a general single-inpvt nonlinear network
the main extension from the previous section is the inclusion of
multiple nonlinear e.5Lements as well as an arbitrary number of
nodes. The approach used is the nodal equation formulation, and

the transfer function of interest is voltage-input, voltage-

output. Communication circuits are usually a ladder structure,

and the node equation approach is most efficient.

Given a nonlinear circuit, the assumption of weak excitation
of the nonlinearities permits the circuit elements to be repre-
sented by the first few terms of a Taylor series expansion
around their DC operating point. As the excitat!.on becbmes
stronger,thc number of terms necessary to characterize the sys-
tem increases making this approach ineffivient and the time-
domain approach more desirable.
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Given a nonlinear incremental circuit, we first derive the

incremental current i and voltage v relationships of the elements

of the circuit. The following four types of nonlinearities are

commonly encountered:

a. No Memory, Independent

i r- K(v) =n1 Kn v (2.82)

b. No Memory, Dependent

i = G(u,v) m mv (2.83)- n=0 gmnuv,28)

c. Capacitance Memory, Independent

i = Q(v)= - n d v (2.84)

d. Inductive Memory, Independent

S=)t
IN)vdt dt L n , (2.85)

where v is the incremental voltage across the element through
which the incremental current is i. Three of the above non-

linear elements (a), (c) and (d) are independent of voltages
and current elsewhere in the network. The nonlinearity (b), how-

ever, is a dependent nonlinearity where u is a voltage across

another element in the circuit. Such nonlinearities correspond to

dependent sources. The memory nonlinearities (c) and (d) are simple

forms of the nonlinearity given by the Volterra series of Section

2.2.2.4.
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The convergence of the Volterra series representation for

a network including only the above nonlinearities and intercon-

nected by linear networks depends ofl-4be convergence of the

series for each element. If each of the nonlinearities are

independently convergent, and the combined network is stable,

then the resulting transfer functions will be convergent. In

small-signal nonlinear analysis, network stability will seldom

be effected by the nonlinearities. If stability is established

for the linearized network, it may be assumed to hold for the

small-signal nonlinear model. Thus, the analyticity of the

network and hence the convergence of the resulting nonlinear

transfer functions is easily establighed by checking that each

of the element series are convergent.

2.2.3.2 General Procedure for Single-Input Network

In a nonlinear system with a single input v (t) and an

output vL(t), the nonlinear transfex functions H (f ) can be
oupu n -Ti

obtained by solving the network with v (t) a sum of exponentials

given by

•:n j2nf t
V(t) e ,(2.86)

where

f ,i' f f n components, (2.87)

and where vL(t) up to n'th order for the above input is given by
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n j 2TTft n J2Tr (fi+fj)t
VL(t) = H El(fi)e + Z E H(fifj)e

=1:1 j=1

n n n j 2T (fl+fJ+ f.) t
+ E E H 3 (fi fJ'fk)e +

i=1 Jul1 k1

n n j2-r fi+fj+fk...) t
ji I n.)

(2.88)

In our proc:edure it is of interest to know the coefficient

of a given frequency ft in the above series. Thus if fZ is given

by

1- m 1f + m2 f 2 .... + mnfn,

where

n
E m n; mi 0,1,2, n.. , (1.89)

the number of terms at frequency f in Eq. (2.88) can be shown
by the multinominal expansion (Abromovitz and Stegun, 1964)
to be

I'l/(ml2 .. mM)

For example the number of terms for exp~j2-r(f 1+f 2 +f 3 )t3 is 6, for
exp[j2-T(f 1+f 2 +f 3+f 4 )t3 i.s 24. For exp•j2r(4fi)t3 there is one term.

To solve for the nonlinear transfer functions of a single
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input and single output network, the general approach is to con-

sider all node voltages (vlv 2 ... vY) that control the currents

in the nonlinear elements as outputs, together with the actuial

output node. This means that many nodes connecting only linear

elements may be eliminated at a specific set of frequencies by

replacing them by their equivalent impedances. For example the

linear interstage between transistor amplifiers can be reduced

to a r network, eliminating all nodes of the interstage. Having

reduced the network to its minimum number of nodes, (N+l), we can

then represent it as a single input and N output nonlinear sys-

tem. We will denote by the N component vector Xn (fn) the n-th

order nonlinear transfer functions of the network. Thus Xn(fn)

and the correspondinj node voltage vector v(t) can be written as

An (ffn) v l(t)

n Jn
L v N(t)

The n-th order transfer function Hn (f n) of the desired output is

one of the components of X n(fn), usually the last in a typical

ladder structure, so that

Hn (f) 0 0 ... 0 1 X (f (2.91)

while A n(f ) is usually the transfer function of the voltage at

the input node.

Using this notation we can very quickly describe the general

procedure as three steps:
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Ste;) 1

Write the node equations of the network with the input a

sum of unit amplitude exponentials at the dummy frequencies

fl "" fn" .The node equations, assuming that only the four non-

linearities exist, could be writter.ini operational notation as

n j rf

L (p) v + K (y) + G (X) + p (3E) + p (M) 1 0;p (2.92)

where p is the differential operator d/dt, and

L(pl is a (NxN) admittance matrix due to the purely

linear elements in the network.

K(v) is an N vector composed of all the zero-memory

independent non-linearities of type (a).

G(y) is an N vector composed of all the zero-memory

dependent non-linearities of type (b).

.Q(1) is an N vector composed of all the nonlinear

capacitance-memory non-linearities of type (c).

§(X) is an N vector composed of all the nonlinear

inductance-memory non-linearitieb of type (d).

Z (p) is tho output impedance of the generator v (t) assumedg g
connected from the v terminal to the common node.
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Step 2

Separate the nonlinear terms into their linear parts and

their second- and higher-order parts. Thus the linear part of

each one is given by

Linear Part (K(v)} = KL,

Linear Part (G(v)] = GLV,
(2.93)

Linear Part (pQO(W) ]=pQL

Linear Part (1 (v)= M ) LV
p - pL

where KL, GLI QL and IL Lire NxN constant matrices but are func-

tions of the operating point about which the Taylor sercies

expansion was made.

Thus, the admittance operator matrix[Y(p)] of the correspond-

ing linearized network is

S[y(p) [L(p) + KL ÷GL+PQL +p L- . (2.94)

Thus, the node equations in terms of EY(p)l can be written

"as

E j2Te Vector of

i=1 I second and
0I higher-order

terms of
SK(v ,G(V ) 2.95)

0 It V-)

a J
The form of the nonlinear terms on the right-hand side depends on

79



whether they come from K(3) or G(M), etc. In each case they will

have the form given by the four types of nonlinearities. It

should be recognized that the nonlinear terms due to each non-

linear element in the network will be separable from nonlinear

terms due to any other element.

Step 3

Substitute the nonlinear transfer functions series for each

component of y in the above node equations and equate terms of

tho same exponential frequency on both sides of the equations.

The first order transfer functions are again simply the linear

solution, and are given by

First-Order Transfer Functions

1

Z (f.)

L Y[(f i) -1(f) = 0 ± = 1, 2, ... n. (2.96)

0

The second and higher order nonlinear transfer functions

are again given by the solution of the same linear network, but

driven by sources resulting from each nonlinearity. Since the

nonlinear terms due to each nonlinear element are separable,

multiple nonlinear elements result in a superposition of the

source terms due to each nonlinearity. Thus, the equation for

the second order can be written as

80



Second-Order Transfer Functions

U 2a •LX(fi)' A, (fj)' fi +fj ]

[Y(fi+fj) 3 2 (fi fj) U 2bIXl(fi), l(fj) fij+fj N

i,j - 1, 2, ... no (2.97)
A A

where U2a, U2b are seen to be quadratic functions of components
of X1 (fi), X1 (fj) and the frequency (fi+fj). In the case of a

1 j A A % A

single nonlinear element U2 ;, U2 b .. are zero or + X2 (fi.fj) as

in Sec. 2.2.2.2. For two oi more nonlinear elements U2 aU 2 b
will include the corresponding second-order sources for each

nonlinearity.

Third-Order Transfer Functions

Y(fi+fj+fk)] X = +3 3 EX1 (fi), Xl(fj), l(fk),

f +f

i,j,k = 1,2, o.. n, (2.98)

where both U2 3 and U3 are N vectors. The U2 3 terms are symme-

trized quadratic terms in X (fi) and X2(fj,fk) and come from the
first and second-order interactions in second-order nonlinearities.A

The ^ terms are cubic terms in Xl(f) X(f and X and
come from the third-order nonlinearities.
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Fourth-Order Transfer Functions

[Y(fi+fj+fk+fl)) ] U + 2 -2,XXX

i,j,k,4 - 1,2,3 ... n, (2.99)

where for the sake of simplicity the arguments of Xi(fi) have

been dropped. Similar to the previous orders we note that -U2 4
A

terms come from the second-order nonlinearitiesp Y34 from the
third-order and U4 from the fourth-order.

thnt -Order Transfer Functions

The fifth and higher.-order transfer functions are given by

similar relations. The important point to note is that to

determine X Ln ) only the lower order X n o,.X have to ben n th 1  X1 h etobt
determined. Additionally the n order transfer function

depends only on all the lower-order nonlinear coefficients.

Thus, in abbreviated notation we can write the general expression
thfor the n -order transfer function as

n

CY(fI + f2"+ f)3-n () - U 4n (2.100)

where

-nfn An. (2.101)
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The terms way be called the nthorder source terms. We
note again that the U function is the same for any frequency
combination of the nth-order. The only difference is the substitu-
tion in the expression for U.1n the appropriate lower-order trans-
fer functions. For example, the Un function for the two cases of
distinct frequenny combination (f 1+f 2+f 3 ... fn) and nf 1 are
given by

Frequency (f. + f 2 +"."+ fn)

-Unn 2 nnXl fl), K~l(f 2 ) 1  l(f3), l(fn) (2.102)

Frequency nf 1

S= U[X.(l),Xl~f), l~fl,..Xl~f)].(2.103)
Unn =U-nn --

Having completed the above three stepsthe nonlinear trans-
fer functions in general would be obtained by a numerical solu-
tion of the relevant matrix equations. It should be apparent

that the main difficult algebraic exercise in this procedure is

determining the source term U n.

2.2.3.3 An Example

To appreciate the general form of the nonlinear source terms

U n we will consider the bipolar transistor amplifier model shown

in Fig. 2.2. This model is developed in Chapter 5. The four

nonlinearities are shown as nonlinear current sources.
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K(V2) is the zero-memory exponential nonlinearity. yc(v 3 -v 2)

and y e(v 2) are the collector and emitter nonlinear capacitances.

The fourth nonlinearity g(v 2 ,v 3 - v1 ) is a zero-memory dependent

nonlinearity due to the h and avalanche tionlinearity in a
FE .72

bipolar transistor. The node equations of this circuit are in

operator notation

[Y (P)L1 2 ZgI L 0

0

t 2(gt'(V'V 3 -v )+PYc:tL(v 3 -v2 ) t-( ,+Y ~~ "
+

,-42 (g•v 2 'v 3 -vl) + Pyc:t,(v3 -v 2 )) (2.104)

where g•(v 2 ,v 3 -v1 ) is the tth order polyriomial-in v 2 and (V3-vI),

YC:• and ye:L are the tth order coefficients of Yc and y e, re-

spectively, and K. is the 4th order coefficient of K(v2)o

The vector U ,n is obtained by substituting the general non-

linear transfer function series of each vi into the Lth term of

the above summations and isolating the coefficient of

exp[j2rr(f 1+f 2+ ... fn)t]. Thus, following notation similar to

Section 2.2.2, the general nth order tý:ansfer function is given

).jy
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[Y(fl+f2 + --. fn)] X(fn) A + K
- -n- - -- - - - -

(44n2 + n)

(2.105)

where the Inn' coeff 4 - 1ents have also bten defined with a single

subscript, i.e. gn gnnetc.

In terms of the notation of the prev.us section the source

terms U for these cases are

0
•- - -• -- - -+ - - -2 -106)

-Un n Yc:. - tn - Ye:tn (2.106)

-g* n + Yc:-n)

Each of the terms K -Yeg4n , Y-c:,n_ and 4 n can be derived accord-

ing to the procedure of Sec. 2.2.2. We see that the terms con-

tributed by the various nonlinearities are additive. Thus the

form of the terms due to each nonlinearity is the same indepen-

dent of the number of nonlinearities in the network. Consequently,

the nonlinear source terms from the single-element network analy-

sis of Sec. 2.2.2 is applicable to a general nonlinear network by

substitution of the corresponding transfer functions.
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2.2.3.4 Tabulation of Nonlinear Source Terms

The nonlinear source terms up to fourth-order are listed

below. They are applicable to any othex network with similar

types of nonlinearities. Terms up to third-order are taken

directly from Section 2.2.2. The fourth-order terms can be

derived similarly.-

2.2.3.4.1 Zero Memory Source Terms Ktn

The source terms for the zero memory nonlinearity K(v ,

with B n(f) the nonlinear transfer function of v , are

2ff = K2 Bl(f 1 ) B(f 2 ) (2.107)

K2 3 (f 1 'f 2 f 3) 2K 2 B1 (f 1 )B2 (f 2 of 3 ) ' (2.108)

A 3
K3 (fil f 2 'f 3 ) = K3  B B1 (fi) (2.109)

i=

K2 4 (fl'f 2 'f 3,f 4) K2 (2B 1 (C1 )B 3 (f 2 "f3 'f 4 )

+ B2 (f 1 1 f 2 ) B2 (f 3 1 f4 ) Y (2.110)

K3 4 (f 1 Vf 2 ,f 3 ,f 4 ) = 3K3 Bl(fl)Bl(f2)B2(f3 Y (2.111)

A, 4
K4 (filf 2 'f 31 f 4 ) 3f K4 T B1 (fi) " (2.1!.2)

Note that K (f-) is the same as Knn(fn).
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2.2.3.4.2 Nonlinear Capacitance Source Terms Ytn

The source terms for the nonlinearity y(v 2 ) with Bn(-fn) the

- nonlinear transfer function of v2  are

A 2
Y2 (f5 f2 ) :.j21T (f 1+f 2 ) Y2_F B.(fi), (2.113)

2(flf2f3)=j4r(fl+f 2 +f 3 ) f 2 B (f )B (f ,f3)' (2.114)
2312#3 1ý23 21 1 2 2 3

3
Y3 (f 1 f 2Of 3 ) f j2r(fT+f 2 +f 3 )y 3  *- B1 (fi)1  (2.115)

i=1

Y2 4 (f f 2 f 3 f 4 ) j2¶T (fl+f2 +f 3+fr4 X 2  2Bl(fl)B3 (f 2 f 3 .f 4 )

+ B2 (flff 2 )B, (f3' f 4 )J (2.116)

Y•3 4 (f 1 1 f 2 ,'f 3 ,f 4 )- J6r(fl+f 2+f 3 +f 4 ) y3 •(f)B 1 ("f2 ) B2 (f 3 , f4Y),

(2.117)

4
Y4 (f 1 ' f 2 ' f 3 ' f 4 ) j2rr (fl+f 2+f 3+f 4 ) 74 B ( (2.118)1 2 34)Y4i=lII

In applying these expressions to the emitter capacitance

Ye (v2 ) we replace yn by ye~n, while for the collector caracitance
y~v3 -v 2 ) we replace yn by cn and B (fYn by Cc (fn) - B (f)J,

YP -2fncl -ýn n -n nn
where C n(f n) is the transfor function of 3.

The above nonlinear capacitance source terms could also be

derived by noting that a nonlinear capacitance is a cascade of

a nonlinear no-memory device followed by a linear differential

operator.
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2.2.3.4.3 Dependent Zero-Memory Source Terms g,,,

The source terms for n(v 2 ,V3 -V2 ) . are listed below. The

nonlinear transfer functions for v 2 and (v 3 -v 1 ) are denoted by

B nf n) and Tn (f),respectively. In the transistor circuit

analysis of Sec. 2.2.3.3,T (f ) is the difference FC (f )-A (f)].n nf n 1 n -h

2 _2

92 (f f 2)= g2 0 TF B1 (fi) + g 1 1 B1 (f1)T 1 (f 2 ) + g I02 11 T1 (fi)"i=l i=l

(2.119)

•23(• f )=2g20 B(f)B 2 (f2' f 202 1I( fl) 12 (f2'f3Y

+ g1 1 [1BI(fl)T 2 (f 2 ,f 3 )+ B2(fl+f2)T1(f3)J,

(2.120)

3.
3 ( f• f2, g3 o T7 B, (f) + go 3  T1 (fi)3 3i=l

(f )T (f) (f"...i•-. 2 1 3 g 1 2 B1 (f 1 )T 1 (f 2)T 1 (f 3),

ng B BB + g03 TTT + g B B BT

+ g 1 2 B TiT1 , (2.121)

where the arguments fi for the transfer functions have been

dropped. This simplifies writing the source terms especially

for the fourth order which are
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9241(flf2'f3'f4 = 20 13 I

"+ g TB + TB +T B
1 T3 31 2 2T

"+ g 2TT + T T B(2.122)
02L 1 3 2 2.)

A ff f T) BBT TT934 it 2' .31f4 3g 30 B1 B1B2 +3g 03 T1 1 2

+ g 21[B.B;T2 +-2 B 1B 2T 1]

+ g _[;FT + 2 B IT 1 T 2 ] (2.123)

A 4 (f1 1 f 21 .Q'f 4 ) = g4 0 B B B B1 + g0 4 T T T T1

+g 3 1 BIB1 B1 T1 + g 1 3 BITIT1 T1

+ g22 B1 BT1 T1 . (2.124)

2.2.4 Reca1rrence Relations for the Nonlinear Source Terms

The procedure presented in the previous sections for deriv-
A

ing the nonlinear source terms K n, g'n, etc., becomes increasing-

ly complex with increasing order. In this section a recursive

method for determining the source terms for the various non-

linearities is derived. We present tb#i t2od by way of the

transistor amplifier example of Section 2.2.3.3, and apply it

to obtain the fifth-order nonlinear transfer function.
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F

The three types of source terms CosAidered with reference

to the transistor circuit of Sec. 2.2.3 were K n and g^

Since these source terms are independent of one another thoy

will be derived separately.

The recurrence relation between the source terms is based

on the property that

E B Gm,nIn1 (2.125)
\k=1 n=m

where

n-m+l
Gmn B i m-1, n-i' "

N
E= 1 riG, n-i' n > N + m -1

= 0, n > no, (2.126)

and

GIn = B , n = 1,2, ... N

=0 n > N. (2.127)

To prove this relationship let

F B E G In. (2.128)
Sm % k 1 n-m m,n
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By the Taylor series theorem

dnF
G - 1*, (2.129)mnn n! din

I10

Since

Fm E ( l BkI FmI, (2.130)

the derivative of Fr eby Leibnitz's theorem for derivative of a

product, gives

d N--, (2.131)

din i=0 dIi k=1 d

Evaluating at I=0 gives

i 0n G(nn N= d~-'- k I d
IG = tn-i) I G  E B k

i=O
N1

E j 0 ( n) (fl-i)1Gin FJB~

giving N

G E BEG .(2.132)
m'n i=0 Gm-ln-ii( 32
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Since B is zero
0

N
G Z B G (2.133)

m,n i= i m-1, n-i"

The upper limits on i of Eq. (2.133) are established by noting

that

Bi = 0, i > N, and (2.134)

G = 0, n < m. (2.135)m,n

Eq. (2.134) reduces Eq. (2.133) to

N
G = Z B. G n > N+M-1. (2.136)
m,n i=l 1 m-,n-i

Equation (2.136) is only true if the last term in the summation
GlnN satisfies Eq. (2.135), i.e.

n - N - m- 1. (2.137)

This proves the second line of Eq. (2.126) If Eq. (2.137)

is not satisfied then the upper limit on i is given by

(A-i) ?: (rn-i)

(n-N) 5 m-i, (2.138)

i 1 n-m+1J

thus proving the first and third lines of the desired recurrence

relations, Equation (2.126). This relation is used in the following

sections to derive recurrence relations for the nonlinear sources.
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2.2.4.1 Zero-Memory Independent Nonlinearity

Let the vector m denote the frequency combination ot

interest f which was defined in Chapter 1 as

f m 1f1 + m2 f 2 + .. + mm fM' (2.139)

with
M
Em. = n; m. 0,1,2, ... n. (2.140)

i=1 1 1

The source term Ktn is given by substituting the general Volterra

series for v2 into Ktv 2, isolating the coefficient of e

and then dividing it by the number of terms at frequency fý which

is given by nl/(m i 2! ... m 1). Thus

K = -"'m! Coeff of e in

+J2fit M M J2Tr(fi+fj)t

Kt E B1 (fi)fe + M E B2 (fi, fj)eei=1 i-1 J=l

+ 0 0)1 (2.141)

where the B n(fn ) are the nonlinear transfer functions of the node

voltage v, (t). We use the Coeff of ej2"fIyt in ( ) to mean isolat-

ing the coefficient of the term eij2lfEt from the expression con-

tained in the brackets £ 3. In the absence of any memory, linear
A

or nonlinear, the B n(f ) would be frequency independent and K n

would be given by
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-/ j2Trft
Kml!m 2  ""'1) Coaff of e in

n M j2Tfjt i
KC(fEBtE (2.142)

We see the relatively simple form of the no-memory expression.

The approach we take is to derive K for the no-memory case.

It is then straightforward to convert the expressions to the

general memory case as shown below:

Order No-Memory Terms Memory Terms

1 B B fi

1 B1 (fi)

B. B3 B 3 (fitf f• 'k)
3 B1B B (f )B (f

2

21 2 1 B1 (fi)
i,J)

B 3  B (fiff)
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where the bar denotes symmetrization. The general nth order
term is similarly obtained.

Using the result of Eq. (2.125) we can write

n n
(E BiIi)L L G ,j, (2.143)

with

n eJ21it (2.144)i=1

where

J-4+l
BG J < n+L-1G, Z B~ k C-t-, J-k -

n
E Z BkG- j > n+t-l (2.145)

k=1

=0 j >tn

with

G J = 1,2... n

=0 j > n. (2.146)

Applying this result to Eq. (2.142) results in

KG = n Coeff of e in In,.

(2.147)
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Frow the property of multinominals

j 2 Tf~t! ,n n !
Coeff ofe in MI 1 Mm 2

1...%1 (2.14,3)

so that

We note that 34,n is a linear combination of similar coefficients

for lower values of n and 4. Thus the highc'r-order coefficients

can be obtained recursively as given by Eq. (2.145) and (2.146)

For example the fifth-order sources are

! K2 5 - K2 (2BB 4 + 2B2 B3 ),

i35 = K3 (3BIB 1 B3 + 3B1 B2 B2 )8
(2.150)

1K45 = K4(4B1B1B1B 2 ).

XK55 = K5 (BIBIBIBIBI)1

where the B. are compnted at the appropriate frequencies and the

exp4drions symmetrized.

2.2.4.2 CaDacitance-Memory Independent Nonlinearity

The form of the expressions for Yc.%n aiA y e:V n of Section
2.2.3 are identical. Thus considar Yc: Cn which is given by
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(c:n= l m 2 L...4j2•f Coeff of e in

X j2Trfit M M j2T(fi+fj)t

ST1 (fi)e + E Z T2 (fi, ) e
Yc:• i=1i=1 J=l

+ . (2.151)

where Tn L ) are the nonlinear transfer functions of the difference

voltage [v (t) - v (t)] and the factor j2afE results from differentiat-

ing ej2fE. Following the proceduze for Ktn and comparing Eq. (2.142)

with Eq. (2.141) shows that c differs from the K expression
A

by the factor j2nf•. Thus yc' n are given by the expressions for
K~n multiplied by j2rfV, with K1 Veplaced by yc:• and Bn replaced

by Tn"

The fifth-order expressions for yc:L5 are listed below

Yc:25 =j2TfE Yc:2 (2TIT4 + 2T2 T3)

1c:35 =j2rrfE Yc: 3 (3TITIT3 + 3TIT2TI,

9c:45 =j2rrfz Ec:4 (4T 1TITIT2 ),

Ic:55 =j2f 3 rcC:5(TITITITITI) (2.152)

where, for all terms in Equation (2.152),

f= fl+f2 +f 4 +f 5 . (2.153)

The ye:tn are given similarly with e replacing c.
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2.3 Cascading of Networks with Nonlinear Interaction

2.3.1 Introduction

The analysis techniques described in the previous sections

can be applied to any size network. However, the computations

to invert large admittance matrices grows with N 3, where N is

the number of nodes in a network. Therefore, to analyze a large

network it is often more efficient to divide the network into

segments, and to determine the nonlinear transfer function of

each segment separately. The nonlinear transfer function of

the overall network can then be found through the use of cas-

cading equations. Segmentation of a network is also desirable

in order to investigate the effects of individual stages on the

total network.

The maximum size network which can be analyzed on a given

computer without the use of cascading depends strongly on the

methods used for solving the matrix equations of the form H n

Y_ 1In, where the column vector I is the nth order nonlinear-n
current-source vector. By using sparse matrix techniques, such

as discussed by Berry (1971), and Hachtel et.at. (19I), much

larger networks can be analyzed than if classical matrix-inversion

techniques were used. In addition, sparse matrix techniques

result in a faster execution time for the matrix equation solution

than do classical techniques.

Considerable previous work has been carried out on the algebra

of systems represented by nonlinear transfer functions [Barrett
(1963), Parente (1966), Brilliant (1955), George (1959)]. Cascade,
parallel and feedback arrangements have all been tr-z.-tcd.
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Unfortunately this worl is based on the assumption of no inter-

actLon between systems. This considerably limits its applica-

tion. By returning to the basic nature of tJWVolterra analysis

= it has been possible to examine the significance of nonlinear

interaction, and determine when it is sufficiently small to be

neglocted. In many cases incorporation of all interaction makes

the cascade approach much more complicated then direct solution

of the whole network. Thus segmentation of stages in a network

shoul• ba done at points where nonlinear interaction is negligible.

In this section we consider the general nonlinear transfer

function model for interacting cascaded stag3i, The derivation

is for a two-stage cascade which can be extended to any number

of stages. The presentation emphasizes the concepts involved

in interaction.

Cascade relations for non-interacting systems will be

discussed and followed by a summary of the salient features

of the general network analysis of Section 2.2. The demonstra-

tion of the effects of linear and nonlinear interaction in a

cascade of two networks forms the main body c~ts section.

2.3.2 Cascade Relations for Non-Interacting Systems

In Figure 2.3 are shown two nonlinear systems with transfer

functions En (f,*** f n) and Fn(fll ,*fn). When the input to these

systems is x(t), their outputs may be expressed

p(t = E [x(t)], (2.154)

q(t) = F x(t)] (2.155)
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n ( --n

I I

(c) Two Stage Cascade LB (fl fn) is the Transfex Function

of the Overall System]

Fig. 2.3. Nonlinear Systems.
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where for convenience ECx(t)] is used as denoting the nonlinear

operation on x(t) of a system with transfer functions E (fI, .-. fn).

and similarly for F~x(t)].

Let H (f "''fn) be the nonlinear transfer functions of the

overall system when these two systems are cascaded, as shown in

Fig. 2,3(c). Thus, the output of the overall cascade z(t) may

be written as

z(t) = H Ex(t)J. (2.156)

If the two systems are non-interacting, then the output

of the first stage y(t) is still given by E[x(t)], while

the output z(t) may be written

z (t) P F (t)3 7 F [B .(t)g].

The non-interacting cascade relations are obtained by equating

Eq. ( 2.156) and (2.157). The derivation is carried out by sub-

stWtuting the Volterra series representation and equating terms of

equal order. The general derivation is cumbersome and hence here

we consider some special cases.

(i) First Stage is Linear

If the first stage is linear it is easily shown that

Hn (flo'''fn) = EI(f1)'.zE1(fn)Fn(fi'** fn)- (2.158)

(ii) Second Stage is Linear

When the second stage is linaar it is easily shown that

H n(fl ,...fn) = En(fl,.'"fn) F'lfI + ...+ f ) (2.1-59)
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(iii) Zero-MemorV Systems

If both stages are zero-memory eacb M I rcpresented

by a power series

p(t) = Z E.x (t), (2.160)
i= 1 1

q (t) F • Fix (t) (2.161)

and the cascade output becomes

z(t) E F. ( (t (2.162)i=1 I j=l

The overall cascade will also be a zero-memory system representable

as

00

z(t) Z Z H n (t). (2.163)
i=1

The coefficients Hn to third-order are easily obtained by truncat-

"ing the summations in Eq. (2.162) up to third-order and equating

terms of equal order givin9

H1 = FIElf (2.164)

2
H2 P E + F2El, (2.165)
2 1 2+ F2E

H3 = FB + 2F2FIE + P3 (2.166)
3 13 21 12 3 it
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(iv) General Cascade Relations

As in the no memory case the cascade relations for a general

nonlinear system with memory can be shown to be

H (f) = FI(f) E (f), (2.167)

H (ff2) = Fl(f+f2)E (fl'f) + A] I'f 2 )El (f )E (f
212 1 12 21 2 1 2211 1 2

(2.168)

H3 (ff 2 ,f 3 ) = Fl(f +f 2 +f 3 ) E3 (fi f2 , f 3 )

+ 2 F 2 (f1 lf 2+ f3 ) E1 (fI)E2 (f 2 ,f 3 )

3

+ F3 (flf 2 ' f3 ) B !(f). (2.169)

The general exprassion for Hn(f 11.fn) is difficult to obtain

and seldom required. However, it should be noted that there is

a close analogy between the zero-memory nonlinear systems and

the general nonlinear system with memory. This analogy can be

used to advantage in deriving and checking the general case.
2.3.3 Nonlinear Interactions in Cascaded Nonlinear Stages

In this subsection we consider the'general Volterra series

model for interacting cascaded stages. The derivation is for

a two stage cascade, which can be extended to any number of stages.

To introduce the interaction vroblem for nonlinear networks we
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first summarize the Volterra series analysis oi the previous

sections. Ba,sic linear circuit theory concepts are then used

to show the effecta of interaction on the cascade equations.

2.3.3.1 Nonlinear Transfer Functions of Cascade Stages

Figure 2.4(a) shows a circuit with a single nonlinear re-

sistive element whose incremental current id as a function of the

incremental voltage v 2 is given by

id K IV2 + 2v22 + K3v23 + Kv 4 + -.. , (2.170)

where K1(1 is the incremental linear resistance r The rest of
1e

the network is linear time-invariant.

Let us now consider the nonlinear transfer function

solution of this network using the methods of Section 2.2. We

are only interested in the three external voltages vl(t), v2 (t)

and v3 (t), and their corresponding nonlinear t;Lnsfer functions

A (-), B (.) and Cn() when the input is a voltage v
n n n g

The first-order transfer functions AI(f), Bl(f) and Cl(f)

are obtained by solving the linear network of Fig. 2.4(b) for a

unit amplitude input. Note that the nonlinearity in cte network

of Fig. 2.4(b) is replaced by its incremental resistance r e

The second-order transfer functions are obtained again as

a solution of the linear network of Fig. 2.4(b) but now the

source is a current source of amplitude K2 and frequency (fl+f2 )

as shown in Fig. 2.5, where K2 is given by
2

K2 = 2 17 sllf1 1)2.171)

i10
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TIME

Vg -v INVARIANT
_ - NETWORK 1
131

2FV2

i'd K, v2

(a) Single Nonlinear Element Network

vg(f)=lA(f) NETWORK 1 C f

re =1/K ,Q

(b) Circuit Determining the First-Order
Transfer Functions

Fig. 2.4. Incremental Equivalent Circuits for a
Network with a Single Nonlinear Resistive
Element.
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"Jul

Fig. 2.5. Circuit for Determining the Second-Order
Nonlinear Transfer Functions.
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The thiird-order transfer.,-ftnctions are next found by simply
replacing the second-order source K2 by thbethird-order source
A 2

K3 + K23' at frequency (fl+f2 +f 3 ), given by

A 3
K3 K 3 T B1 (fi), • ,172)

K2 2K2 B(f .B (f2 f3 ) (2.173)

Similarly, for any higher order, the linear network stays the
same and only the higher-order sources change. The effect of
other nonlinear elements is to introduce additional sourcea to
the linearized network. It is important at this stage to recog-
nize the implications of linearity; use can be made of iS•AVXs
circuit theory concepts such as Thevenin and Norton sources and
impedances at terminals.

The above outline shows that the basic nature of the small-
signal circuit analysis is that the linearized network determines
the relationhships between the nonlinear transfer functions of R
given order. Additionally, and more important from the point of
view of interaction , the nonlinearities manifest themselves as
sources without changing the linearized network structure•p. -t
should therefore be apparent that when nonlinear stages are
cascaded, the first-order functions must be those given by the
direct application of linear circuit theory. Hlence, non-interaction
of stagos as far as first-order transfer functions are concerned
implies th*khe driving stage output impedance should be much
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less than the. input impedance of the driven stage. For higher-

order transforms this linear interaction must also be taken into

account. Additionally, the nor.)2oar interaction requires the

addition of equivalent Thevenin sources from adjacent stages at

the terminals of the stage of interest.

2.3.3.2 Two Stage Cascade

In Fig. 2.6(a) a two stage.cascade is shown. The fJrst

stage is denoted as a and the second as 8. If interaction

between the stages were negligible,then the nonlinear transfer

functions H of this cascade are
n

H (f) = Ca(f)e8(f), (2.174)

• 2 (f 1 ,f 2 ) = cC(fl,f 2 )CS(f +f2 )

+C 1 (flC 1212 (ff 2 ) (2.175)

+ T( )C (f )c (O f1 (f2 ,7)

+ 2 r C lc•( f 3)C 0 (f1 ,f 2 +f3 ), (2476)

where C• are the nonlinear transfer functions of the a stage
with it load impedance given by the input impedance 8of the

0siage, whi'e C 8 are the nonlinear transfer functions of the
n

second stage with generator inpedance assumed zero.

The above equations hive a simple physical interpretation.

Assuming the two stages do not interact, the first-order transfer

function is simply the product of the two transfer functions.
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(a) Cascade of Two~ Nonlinear Stages

Vgma f):1zd L I

Lia

(b) Equivalent Circuit Giving the First-Order
Trans fer Function.

Fig. 2.6. Two Stage Cascade.
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The second-order cascade output will be two contributions:

(a) the linear outputs of the a-stage 'distorted' by the second-

order nonlinearity of the B-stage, (b) the second-order output

of the a-stage linearly transmitted by the P-stage.

-.4The third-order cascade output is similarly determined

by accounting for the first, secJnd, and third-order outputs
of the a-stage and their resulting transformations in the $-stage.

Thus the first-term in Eq. (2.176) is the third-order output

of the a-stage linearly transmitted by the P-stage. The second-

term in Eq. (2.176) is the P-stage third-order nonlinearity

distorting the linear outputs of the a-stage. Finally, the

third-term of Eq. (2.176) is the second-order nonlinearity of

the $-stage generating an interaction between the linear and

second-order outputs of the a-stages.

Interaction means that the transfer function of the a and

e-stages depend on each other. In the case a and $ are linear
networks we know that the non-interaction assumption implies

that the a-stage output impedance Z0 (f) should be much less

..Pan Z[ (f), the input impedance of the A-stage. Thus evey the

linear case, Eq. (2.174), requires modification for loading.

The effects of interac'tin on each order are considered by solv-

ing the combined two stages as a single network.

First-Order Cascade Relationships

The first-order transfer functions of the cascade are ob-

tained by solving the linearized circuit in Fig. 2.6(b), which

in turn can be obtained for each stage separately as shown in

Fig. 2.7. In Fig. 2.7(b), if the input V (f) were of unit am-
g

plitude, then the output voltage across the load would be the

first-order transfer function of the second stage. However, in

ill



Z.- Linear- +
VQ ~ ~ A (ft)ATI ized zC*(

(a) Linear Equivalent Circuit of the First Stage

Vg~) - zg0 Linear-

0G ZCa A-Stage zi

Lc,, -:-

z I

(b) Linear Equivalent Circuit of the Second Stage

Fig. 2.7. Linear Equivalent Circuits of
the First and Second Stages.
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Fig. 2.7(b) the input vcltage is C (z + z )'"Z the Thevenin

equivalent source to the left of the common terminal 1, with Z0

the source TNeviiin impedance. The reason this Thevenin source

is expressed in terms of output C M(f) rather than the input V (f)

-I is to relate the individual stage transfer functions, C MQ
00 n

and Cn * to Hn, the nonlinear transfer function, as has been done

in the non-interacting case. Thus denoting the nth order transfer

functions of the two stages by Cn and Cn 0 we see that the cascaden n

first-order transfer function is

H =f T 1ca cB (2.177)

where Zo(f) + z (f)

T (faZ8 (f) (2.176)

in Fig. 2.7(a) we have defined the transfer function at the

first stage input by A (f) when V (f) = 1. The corresponding

notation for the higher-order transfer functions will be A nn
Similarly, for the second stage of Fig. 2.7(b), the nonlinear

transfer functions at the input terminals for un~it input ampli-

tude will be denoted by 1n0. Thus the double superscripts am

and 00 refer to the nonlinear transfer functions of the individual

stages considered separately. The purpose of explicitly identi-

fying A and Ap is that these functions determine the level ofn n
interaction for the higher-order cascade.

Second-Order Cascade Relationships

Let us now consider the second-order transfer function of

the two stage cascade. Figure 2.8 shows the network Whose second-

order transfer function is to be found. Since the network is

linear, the two stages can be solved individually, with appropri-

ate sources replacing the adjacent stage as shown in Figs. 2.9(z)

and 2.9(b).
113

- - -.- r.~n.'±tW..~...



A-!Yii

Zgg Linearized 0Linearized +

Aa ^a

Fig. 2.8. Equivalent Circuit for the Second-Order
Transfer Function.
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In Fig.2.8 we have assum'ed three second-order nonlinearitiesI'I

in each stage as in our previous transistor model for the purpose

of pursuing the discussion with familiar parameters. Since each

nonlinearity supplies a source which is indepenf.a'!; of the other

sources of the same orders the existence of one or more sources

d'•; not effect the nature of the interaction. Thus we will re-

itclct ourselves to only the K nonlinearity in both stages. Figure

2.8 shows the network to be solved to obtain H2 (f, f 2 ), the

nonlinear transfer functions of the full network. The network

includes both linear and nonlinear interaction. Furthermore,

H2 (f 1 If 2 ) can be obtained by solving each stage separately as

shown in Figs. 2.9(a) and 2.9(b). To do this, the sources

eand 2 are determined as follows:

I.C. is the Norton equivalent current source of

the network to the right of terminal I in Fig. 2.9(b)

when I is set to zero.
2

I-is the Norton equivalent current source of the
2

network to the left of terminal I in Fig. 2.9(a)

when 12f is set to zero.

a A M O

The network and sources K2, g2 and 2of Fig. 2.9(a) with

I set to zero are the same network and sources that exist
2

when solving for the transfer functions of the a-stage. Thus,

it is easy to show that

•8 T 8 (f l+ f 2
as aC 1 2  a (fef2). (2.179)

Z 0 (f 1 +f 2 )

Similarly, in the case of Fig. 2.9(b) with I set to zero, the
2

network and sources, are, within a normalizing factor, the same
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(a) Equivalent Circuit of the First Stage

A R

Y2

IID

Linearized LH(f
2 + /3-Stage

(b) Equivalent Circuit of the Second Stage

Fig. 2.9. Equivalent Circuits for Each Stage in the
Cascade for Second Order Transfer Functions.
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as exist when solving for the- transfer function&- of the 0-stage

alone. The normalization necessary for second-order sources is

to multiply the individual $-stage second-order term by

2
T (f)cL (f (2.180)i=l1

which should be apparent since the first-order input to the

S-stage at the frequency f is T MclM, and the sources

K g 2 and are quadratic functions of the first-order terms.

Thus, recognizing the effect of Eq. (2.175), it"-s easily shown

that in Fig. 2.9(b) with 12 zero, the voltage at terminals I is

given by
2
YT T (fi)CaI(fi ) ( (fAf 2)] . (2.181)

The resulting value of I2O• is thus
2

O T (f 1 +f 2 ) 2 -0S= .. . . IT T (f )C ° ( A" (f1 ,f )],(2.18•2)
2 ZiO(fl+f2) i= LO11( 2 1'f

i 1 2~

where T (f 1 +f 2 ) is simply the reverse transfer function from 8

stage to a stage

Zg(f) + z(f) Z.(f
T (f) M *-- f. (2.183)

SThe Pecond-order nonlinear transfer funcWID of the cascade

is obtained from Fig. 2.9(b) by superposition as the sum of the

responses to 12 and internal sources of the S-stage as
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ITf1 f2  T (f )C (f ))3C (f1  2H2 (f Vf 2=) CI i1 1 2

Thevenin Equivalent
first-order inputs
from a stage

+ T (fl+f 2 )C~(fl ,f2 )C10(f +f).

Thevenin Equivalent
second-order input (2184)
from a stage

This result is the exact cascade formula for the second-order

case including interaction. This result is the same as would

be obtained by correcting for the linear loading effect of

T (f). Thus Eq. (2.194) can be obtained by replacing CnIC;
in the non-interacting cascado equations as indicated by

ClaT(f Tf )Cao,(f), f
•Oi

C 0a (, )o T 8(fI f)C2•(fi f2), %12.185)• C~~2 (f 2+f "

3 12'3 TOB(fl+f2+f3 )C3"'l'lf2'f3)-

Equation (2.1;35) simply expresses the relation that all outputs

of the a-stage go through a linear filter T a(f). As the third-

order case below will show Eq. (2..P.) is .. moification

to the non-interacting cascade ý,uations necessary to account for

linear loading or interxction.

It shou. z' Dbterved that the second-stage source 12
driving the first-stage is not involved in computing the second-
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order cascade formula. However, the second-oreer terms within

the a-stage are changed due to the feedback of 12 2 Since the

third-order sources due to each nonlinearity are a function of

the first and second-order transfer functions across that

nonlinearity, I has to be included to compute the a-stage
2

third-order output, which in turn determines the third-order

nonlinar transfer function H3 (flff 2 # f 3 ).

Third-Order Cascade Relationships

The third-order transfer functions of the cascade are given

by the circuit of Fig. 2.10, and the corresponding equivalent

circuits of each individual stage are given by Figs. 2.11(a) and

2.11(b). The interacting sources I3 2 and are again

determined in the same fashion as for the second-order, i.e.,

123 + I3$a is the Norton equivalent current source
2 33

of the network to the right of terminal I in Fig.

2.11(b) when I23 + 13 is set to zero*

I23 + I is. the Norton eouivalent current source23 13
of the network to the left of 'terminal I in Fig.

2.11(a) when I23 + Ia is set to zero.
e 23 3

Again, because of superposition and the independence of all third-

order sources the 123 terms depend only on the K23' A23 and 923

sources and 13 terms depend only on the K3. y3 and g 3 functions.
^aC ACL A

The network and sources K 23 + K 3. 93 + g 3 0 and Y2 of

Fig. 2.11(b) with I m + I set to zero is the same network
23 3

but different sources than used when solving for the transfer

functions of the a-stage alone. The d.ference is in the sources
ACL A~ M ACL

23' g 2 3 and y2 3 , due to an additional term from the second-order

current IaO from the second stage which drives the first stage.
2
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K2' 3 +K3 g?3+9 3 .3  K 3+ ?3+Q93

Figl. 2.10. Equivalent circuit for the Third-Order
Trans fer Functions.
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;NI,

With I zero we get
2

T T(%f +f +f 3 )c
2s + iap 2 Ca(f 1,f25 f 3 ). (2.186)'I23 3I2OC 0 ZM(f 1+f 2+f 3)3

"The effect of 12 O is to modify C (fl, f 3 ) by C(I128),i.e.

T + _ . +f+f3) 3c3a(ff ) +e(.
lp+ Ia P32

123 3(2.f+f+f_187)
Z0 (f1 +f 2 +f 3 )

The cascade third-order term H3 (flf 2 'f 3 ) is found from

the network of Fig. 2.11(b) by considering the contributions

of (I?5 + Iao) and the internal 8 stage sources separately.
o 3 - 3

The contribution to H3 (f 1 ,f 2 ,f 3 ) due to the internal $-stage

sources can be viewed as the third-order output resulting

from driving the 8 stage with the sum of exponentials given by

3 j21fit
S(t) = E T (fi)c (fi)e
g --

3 3 J21 (fi+f) )t
+ E T, (fi+fj)C (fi fj)e

i=1 1=1 (2.188)

and hence the output nonlinear transfer function in terms of

the transfer function of the 8 stage is given by

3

H (f. 1 1f 2 f 1 T ('( I••oTf(fi)c•(fi)c•8 l• .f 3 )

23 3

+ 2 T• (f)cc(fi) T (fj+f )ca(tj, f•)c•(ffi, +fQ.

(2.189)
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Finally including the contribution of I3 and we get

3
H3 (fl+f 2 +f 3 ) = T T I) 1 3 23

+ 2 T (f i)COim( fi)T L(fj+fk)C"(fj fk)C 0'(fi, fj+f,)

+ T (fl+f2 +f3 )fc (flf 2 .f 3 ) + C(0aj)] (2.190)

x C I (fl+f2 +f 3 )

This is the exact third-order transform of the two stage

cascade including interaction. This result, without the s(I2 )
term, is identical to the expression obtained by applying Eq.(2.185)

to Eq. (2.176). Therefore, accounting for only linear interaction

gives an error in the third-order transfer function.

The term e(I 2 ) is not expresuible in terms of the individual
input and output stage transfer functions as are the rest of the

previous cascade expressions. The reason is that 1(I ) results
2

from second-order interaction between the first-order responses
in the a-stage and the I2 current input at the intermediate

2• ter an e ndnt
terminal I. Thus, consider the vl23te anrolst B non-
nonlinear transfer function of the voltage acrors the K O non-

linearity. Then, Eq. (2.173) gives

2K~ B1 (f )B Tf2,tI,_ (2.191)

whileif Ia is neglected we get

23 a~ )cMff 21223 1)B 12 (2,f3) 212

12

123.
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where B are the nonlinear transfer functions of the voltage
n

across the K nonlinearity for the individual m-stage. Since

B1 (f) is the same as B (f) while B2 differs from B due to the
1 OM1 2 2

S cce I2 we can write

2K ~ ( f)B"c(f 2*f ) + Ba(f )'B'(f 2 1 f3 ] (2.193)

where BC(f2 ,f 3 ) is the voltage across the K• nonlinearity due

to the excitation 12 alone. Similar terms will exist in (

and and their combined effect manifested by e(IO2). If on$Y23 2$
knows the internal 'nonlinearities of each stage, 0(I can be

determined. However, as the discussion has indicated, it involves

determining the nonlinear transfer functions of the individual

networks Lor simultaneous excitation at each port.

2.3.3.3 Conclusions and Numerical Comparison
of Cascade Techniques

We have shown that the overall nonlinear transfer function

of a two-stage cascade cannot be exactly determined from the

'forward' nonlinear transfer function of the individual stages.

To determine the correct nonlinear transfer function of the

cascade requires solution of the overall network. However, the

overall netiWork can be subdivided into the two stages and solved

with equivalent Thevenin or Norton sources representing the

interaction.

In the case of mildly excited nonlinearities and high forward-
gain amplifiers, the nonlinear interaction will frequently be

negligible so that only linear interaction needs to be taken into

account.Table 2.1 shows computed results for the first three transfer
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functions of a common-emitter and common-base transistor

amplifier cascade with f1  16.6 MHz, f 2  15.2 MHz, a4

f3 14.5 MHz. This transistor model is given in Narayanan

(1967). The load and generator impedance were 75 ohms. The

full nonlinear equations of the cascade have been solved to

determine the exact cascade transfer functions. The approximate

cascade results in Table 2.1 include the effects of linear

interaction but neglect the nonlinear feedback. Comparing

the two results, it is seen that the first and second-order

functions are essentially in perfect agreement as predicted

in Section 2.3.3.2, while the third-order transfer functions

differ in magnitude by 0.80 dB and in phase by 0.17 radians.

Thus, the cascade equations with impedance corrections can be

used in many situations to reliably predict the nonlinear per-

formance of a chain of stages.

Table 2.2 presents the results of a comparison between the

non-interacting cascade approach, denoted as the zero-impedance

approximation, and the approximate cascade including linear

interaction. It is seen that the zero impedance non-laZacting

cascade differs by up to nearly six dB in the second and third-

order functions, showing the nd to include the impedance correc-

tion for interaction correction.

In conclusion, we note that nonlinear interaction, if

significant, is most easily handled by solving the total network.

The best approach in the nonlinear analysis of a complete com-

munication receiver is to segment the stages so that it is only

necessoýy to account for linear loading. In summary, Ore two
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i•k, important properties of nonlinear interaction that have been

derived in thi.i section area

1) The overall second-order transfer function
of a cascade is given corre.atly by the non-
interacting cascade expressions as modified
only by the linear loading effect.

"2) The 'forward' nonlinear transfer functions

C•Mfa U 1 000 fn) or Cnl (fl ... f ) do not

provide sufficient information to solve non-
linearly interacting systems.

2.4 Multiple-Input Nonlinear Circuit Analysis

The Volterra functional.,uaries of the output of a single
input port system has received more attention in the literature

than the case of multiple-input ports. However, a variety of

nonlinear systems have independent inputs from separate ports
or terminals. In this section we show how the nonlinear trans-

fer function analysis is also applicable to multiple port non-

linear networks.

2.4.1 Three Node Example

We show this by a simple physical argument. Equation 2.32

showed that the first-order transfer functions of a three-node
linear network were given by

A1 (f) Y (f

B (f) = Y(f.)] 0 i = 1,2,3. J2.194)

C1 (fi) 0
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The second-order nonlinear transfer functions were- shown by

T., Eq. (2.37) to be given by

A2 (f 1, f 2i 0
2l 2

B2 (fl, f 2 ) £Y(f +f 2 )] -K 2 1(ff 2) , (2.195)

c2 1(f1 ,f 2 . 0

where
K 2 fl, f2 = K2 B1 (f 1 )B1 lf 2 ). (2.196)

Higher-order equations could be written, but the argument which

will be developed for the second-order case applies directly to

the higher-order cases. Similarly, no loss of generaoity occurs

in discussing a tl.ree-node, single nonlinearity axample.

Equation (2.194) is of the proper form for describing the

linearized network when all sources are at node 1 and are of

unit amplitude. Now let us consider the case wher6wuc8rces are

at all three nodes with complex amplitudes V1 , V2 and V3 , and

admittances Ygl' Yg2' and Yg3 For this case, the formulation

of the first-order solution is

A1 (fiýý V V(fid)Y91 (f i

Bllfi) • [y(fi)]- V2 (fi)Yg2 (f() (2.197)

K (fi) V3 (fi)Yg 3(fi)

where the primed superscript on the first-order solutions denotes

the solutions are not the nonlinear transfer functions, per se.,
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but instead are scaled linear combinations of the nonlinear

transfer functions arising from the superposition of the responses

from each of the nodal generators. In addition, the Y matrix

would be modified from that of Equation (2.194) bytbe addition

of the generator admittance. As a simple example, one might

conEider that Rquation (2.117) represents a balanced amplifier,

with inputs at nodes 1 and 3, and output at node 2. In this

case the sum mode response to identical inputs VA) would be

given by:

"A (f V ( )y (f)

Bjfi) = ,Y(fi 0 (2.198)

SC1(fi) V s(f i)yg9 (fi

arnd the difference mode response to identical but opposite signed

inputs Vs(fi) would be given by

SAl(fi) V s(f i)yg9(f i

Bl(fi) = [Y(fi)]- 0 •rk (2.199)

• )...C1 (f ) -Vs(fi)yg (fi

Equations (2.195) and (2.196) show that the second-order re-

sponse is solely a function of the first-order voltages Bl(fl)

and Bl(f 2 ). From what port these voltages were established is

not of interest, as the first-order solution is linear and super-

position holds. It therefore follows that all the nonlinear

130

•.,O



transfer functions for a multiple input port circuit can be -*

computed by determining the linear solution with the right-

hand column vector of Norton generators appropriate to the port

excitations, and then proceeding with the conventional higher-

order analysis. If the generator amplitudes are not equal to

unity, the transfer functions will be scaled according to the

amO-i-tudes and the order of the transfer functionso•~2 Lhe

excitations are such that the same frequency does not appear at

two different ports, then the analysis can be .,ade with unit

amplitude generators, i.e., Vi(fi) = 1. If, on the other hand,

the same frequency appears at two or more generators, then -the

several V (f,) must have the proper phasing and amplitudes, so

that the linear response will represent the actual coherent

effects.

2.4.2 Two-Input Volterra Series

The Volterra series is a generalization of the Taylor series

expansion for representing a nonlinear system. Thus the Volterra

series for multiple-input systems is obtained by direct analogy

to the corresponding multi-variable Taylor series. A two-input

Volterra series is given by

c(t) = , M d ... d~m+h mn (l, 2 ''"•n.
m=0 n=O -o -W

mren=O

m m+n
1 r x(t- ri) T y(t- ¶j), (2.200)

i=l J-m+l
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where c(t) is the output and x(t) and y(t) the two inputs. The

corresponding frequency domain representation is

Go cc 0 CO

C(f) E T= df0 i fm+nH mn (fl-f 2 -
m-0 n=O -0,-

my~n=0 fr

m m+n
6 6(f -fl-f2 .. TTn X(fi Tr Y(fj)

1 +qi=1 J---m+1

(2.201)

where H (o) is the (m+n)--fold transform of h (-), and C(f),mn mn

X(f) and Y(f) are the transforms of c(t), x(t) and y(t) respec-

tively. Thi formulation for the case of three or more inputs

S.. similar. It should be noted in Eq. (2.201) that the first m

frequencies fit 00 fm correspond to frequencies of the input

x(t) and the following frequencies fm+l 0'" fm+n correspond to

the input y(t). To make this frequency relationship explicit

lot Pit P2 " ... represent the frequency variables associated with

x(t) and ql* q2 s ... the frequency variables associated with y(t).

Writing Eq. (2.201) in terms of Pi and qi gives

do OS CO C

C " J dpm dq...
m-0 n=0 n- _ -0 -

. mn(PlD PmI q" qn

m n

*6 (f-p 1 ... qPT1  X(Pi) IT Y(qi)
i• 31' isi

(2.202)
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We will denote by fmn the frequency vector

f =Um (Pi' qn) P m; q, soe q (2.203)

The most important two-input stage in a receiver is a mixer.

6; input is the signal and the other the local-oscillator as
shown in Fig. 2.12. An amplifier stage may also become a two-

input system when an extprnal interference enters the stage at

a node other than the input. In Fig. 2.12 x(t) is the input

signal and y(t) is the local oscillator.

To determine the nonlinear transfer functioiis H (fm) for a
mn -in=

given circ it, the node equation formulation for the single input

analysis can be applied directly. Each node voltz, -ist now

represented as a two-input Volterra series, e.g., A (fn)
mn inn

B (fn) ... etc. The resulting linear transfer functions
mn -inn

H1 0 (pl) and H0 1 (ql) are gd•en by the solution of the linearized

network excited at the appropriate ports by ej21plt and ej 2 aqlt,

respectively. The second and higher-order nonlinear transfer

functions are the solution of the lineaý:ized network excited
A

by sources such as K21 Y2 " etc. resulting from the non-

linearities.

n"2he similarity of the solution to the single-inp te case is

best seen by considering the example of Fig. 2.13. In Fig. 2.13

is shown a two-input netwQxw with a single zero-memory nonlinearity.

The transfer functions for the voltage v(t) across the nonlinearity

will be denoted by B (fn).
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Fig. 2.12. A Two-Input Mixer
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The two first-crder transfer functions H 10 (pl) and H01(ql)

are given by solving the network of Fig. 2.14. Note that H1 0 (pi)

is the complex amplitude across the load ZL when X(p1) , the

transform of x(t), has a unit amplitude at frequency pl. When

solving for H10 (pl) the voltage source y(t) is replaced by an

ideal short. H01(ql) is similarly obtained.

The determination of the higher-order nonlinear transfer

functions Hn(f4n) for a two-input nonlinear circuit is essentially

the same as the single-input case. The only difference in the two-

input analysis is that the first-order solutions are determined by

exciting the corresponding ports separately. In tho second and

higher-order cases the difference between one or more input port

circuits is only in the firet-order responses at the nonlinearities.

Thus, with the proper accounting for the frequencies originating

from each external source, the single-input nonlinear transfer

function analysis can be extended to the multiple-input case.

136



1/Kl

X(PO)m1 Network ZL 1-10 (p1)

+Yo (q1 ) -

4ra Lnsear 
+ nctions.

137r

-- - - -wor ZLC~



CHAPTER 3

CANONIC MODELS FOR NONLINEAR SYSTEMS

3.1 Introduction

The previous chapters have outlined the nonlinear transfer

function approach to the analyst.9 of nonlinear circuits and non-

linear systems. In the special case when the inputs to a time-

invaziant nonlinear system are discrete tones, the steady-state

output also contains discrete tones but at many more frequencies

since the nonlinearities generate additional frequency components.

For a purely resistive nonlinear -ircuit each such discrete fre-

quency component at the output would be weighted by a real coef-

ficient c•"racterizing the amplitude of the circuit response.

We have shown that for more general circuits, the conventional

power series expansion is inadequate. Complex coefficients are

needed to properly characterize the amplitudes of the various

frequency components. Furthermore, output components of the same
order but for different interacting frequencies will have dif-

ferent amplitudes and phases.

In this chapter we are concerned with a situation in which

the input to the nonlinear, time-invariant systems are not indi-

vidual tones but narrowband signals centered about discrete tones.

Realistically, this is the most common situation occurring in the

communications environment since signals appearing at the input

of the receiver are usually modulated on a carrier.

For input signals which are not discrete tones but occupy

a certain bandwidth about the carrier frequency, a simple set of

complex coefficients is not enough to characterize the behavior

of the circuit. The frequency behavior of the circuit may not be
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constant and may, in fact, vary across each band of interest.

In its full generality the computation of the output involves

a mu*i riate convolution of all the interacting inp% oth the

multivariate impulse response. Fortunately, in the case of

modulated bandpass signals, an approach of intermediate complexity

is possible. Broadly speaking, this approach entails representing

the nonlinear response by a simple expansion with terms in the ex-

pansion added as required to model the input-output behavior of

the system. The expansion itself can be interpreted as a specific

physical structure, hence this structure is called a canonic

model of the circuit (or system). The virtue of the canonic

model••0 that the same basic structure can be used for-all mem-

bers of a class of systems and a class of inputs. The model

parameters change from class member to class membeL. Thus only

a few specific quantities must be determined for the actual

system in order to properly label the structural elements of its

model. These parameters can be either theoretically or experi-

mentally determined. Thus, canonic modeling presented here is

an attempt to systematically reduce the information required to

characterize a nonlinear system. An important aspect of the

canonic modeling is that the models can be refined by adding

building blocks to improve the accuracy of the model or simpli-

fied by reducing tiLe number of building blocks.

Many canonic models can be developed for linear and non-

linear systems. It should be expected that only a few of these

will be of interest since the basis of any useful model is some

simplifying constraint on the impulse response duration, band-

width, or power of the input signals or the nonlinear system

respftbe. The use of a Volterra series with a small number of

terms implies a power constrained model.
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Among the possible models considered, two canonic models

haie been found particularly useful. These two canonic models*

the freguency power series model and the tapped delay line model,

will be developed and applied in this chapter. These Wmoels

incorporate the essential requirements of most systems with mildly-

excited nonlinearities. The fr#uency power series model makes

use of the bandwidth constraint, while the tapped delay line

model makes use of the impulse response constraint.

3.2 Nonlinear Response to a Sum of Narrouband Signals

In this section we extend the nonlinear transfer function

approach by Qonsideiing specifically the nonlinear resi, of

systems whose inputs are a sum of narrowband zonal signals.

In the analysis of the response of a linear system to zlarrow-

band signals it is convenient to use the complex representation

of signals. The signal is represented as a low-pass complex en-

velope modulating a "carrier" frequency. The carrier frequency

is for all practical purposes arbitrarily selected within the

band. The phase of the carrier tone is also arbitrary. Let the

input to the system, x(t), be the sum of K narrowband signals*

Kx (t) = • K ( (3.1)
1

In particular, one of these signals may be the desired signal,

and the others may be the interference.

tbThe narrowband representation of the k componentof the input

implies low-pass in-phase and in-quadrature components a(t) and

b(t) modulating a carrier at the center frequency of the band

which we denote by vk. Thus

The list of key symbols used in this chapter can be found in
TaIle 3-7 at the end of the chapter,
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xk(t) = k(t) cos 2 vvkt - b,(t) sin 2rk(t). (3.2)

It is convenient to define z (t), a slowly-varying complex enve-

lope of xk(t), such that

zk (t) = ak(t) + j bk(t)° (3.3)

With these definitions it follows that xk(t), which itself is

real, is the real part of the product of the slowly varying zk(t)

and a,;ý exponential varying at the carrier frequency

x (t) = Re 1zk (t) e }. (3.4)

The real part of a complex variable is also one half of -the sum

of the variable and its complex conjugate so that

ilz J2Ttkt +, t - J2Tvt (.5
xk(t) = iLzk(t) e + zk(t) e]. (35)

Correspondingly, the spectrum of xk(t) is given by the sum of

the positive and negative spectral components centered on Vk and

Vku

Xk(f) ; 2 [zk(f-vk) + zk(-f -'k)]D (3.6)

where Zk(f) is the spectrum of zk(t)

0 -j2Tft
Zk (f) z k 1(t) e dt. (3.7)
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Correspondingly

0+j22rft

zk(t) = Zk(f) e df. (3.8)

Let Z0 (f) - 0, and denote zk(t), Zk(-f) and -vk by Z-k(t),

Z-c(f) and v-k' respectively. In this notation, the input

spectrum becomes

X (f) = 2 _E z k(f-vk)0 (3.9)
-K

and the input itself can be written as:

1 K j 2T'vkt

x(t) = 2 _E Zk(t) e (3.10)
-K

We recall from Chapter 1 that the output of the nonlinear

system, y(t), can be expanded into a Volterra series

y(t) = y n(t) n=l,2,... (3.11)

in which yn (t), called the component of order n, or nth-order

output for short, is given by an n-fold integral

Yn(t) = . .. fh ( 0 r n .. )d 1""d n , (3.12)
- *

where h ( ) is the nth-order nonlinear impulse response.

Equivalently, Yn (t) is given by

Yn(t) "j " Hn(fl'"'°'fn) Xlfi)e dfi' (3.13)
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th
-w~iek'e Rn( ) is the n -order nonlinear transfer function.

With this notation the product of the n input spectra appearing

in Equation (3.13) becomes

nn K
-T X (f E Zk (fi\k), (3.14)

i- 2 i=l k--K

in which the right-hand side is, in fact, the n-fold sum of all

the different terms of the form

~~Ic~( (f~ 2 ~3.15)Zkl(1 1- )Zk 2(f 2-'ý.2)...'.n fn-%kn)'(.5

with each index ki ranging from -K to K. Substituting from

Equations (3.14) and (3.15) into Eq. (3.13), we thus have for

the nth-order component of the output

K KYn (t) = 2 ml- mnK1- E ... E #~• ,...,*Vkn (3.16)

is which the su'nmand is the multiple integral

P(t;vkl,...,vk) =H _"Hn(fl 'fn) 1Zk ifi-'ki

j 2Ynf i t
e dfi, (3.17)

with the n indices k1 in each such integral taking on any of the

2K 230-zero integer values from -K to K. The physical interpre-

tation of the integral P(tvkl...,vk) is as follows. In the

steady state, a nonlinear system, which has a sum of narrowband

zonal frequency components as its input, generates as its output
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new narrowband zonal signals centered at all carrier intermodu-

lation frequencies. The integral P(t•vkl*ooo*v ), also de-

noted P(t1_) for short, is then the waveform at vkl+vk+OOO+\k_

attributable to the intermodulation of input components centered

at "\klOOO, Akno The order of the output componentIs thus,

in fact, the number of intermodulating input zones generating

this component and can be also termed the order of intermodu-
thlation. To find the n -order output yn (t), all the intermodu-

lation components of order n must be summed. The sum in Equation

(3.16) thus consists of (2K)n such integrals. Any of these

integrals that have the same set of indices [k have the same

value regardless of the order of indices. Suppose that there are

M < n distinct \jki in the argument of P(tvkl,.OOvknl and each

such distinct Vki occurs mi times (mi = 0, 1, ... , n) so that

m =n. (3.18)
i=-K

There are then

I n! (nim -.0-,mK), (3.19)
mK mK+l! •mK!

such terms. Equation (3.19) is the multinomial coefficient

(n; miK,.o.m). Moreover, the different P(t7u) in Equation

(3.16) must occur as conjugate pairs in which each vj is replaced

by v so that the sum of terms making up Yn(t) is indeed real

even if its individual components P(t;), in general, are not.

We observe that the n-fold integral in Equation (3.17)

and its conjugate can be thought of as a waveform which contri-

butes to the frequency component in the vicinity of the sum

frequency
144

~ ~\ AUK-



IV'.

- .(3.20)

IV n 'kio

In general, the component of yn (t) located in the vicinity of

the frequency

-K ln

V E i" (3.21)
k=-K i= .

due to input at a set of frequencies _V=(v-l'vk2 'D..O vk), or any

permutation within that set, is given by*

Y (t) (nt + P_ (t,- -V.

(n-; m-K, .nK)
S 2n-l ReP(tt\)}. (3.22)

The order of permutation of the component frequencies of _V is

inmaterial since it does not affect the sum frequency v or the

value of P(tra). Two sets )I are then distinguishable in this

context if they have different comiponents. They are indistin-

guisbable if they have identical components regardless of the

order of components within the set. The number of distinguishable

sets of n intermodulating zones each of which can be picked out
./2K+n- i)

of 2K input componentu is i n-1

We note that terms of many orders and with different sets of

covponent frequencies can contribute near a particular carrier

frequency.

An alternative notation is yn (t;_Y) y n (t).
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For example, consider the input consisting of two narrow-

band components at vI and Y2 and the output generated by a non-

linear system in the vicinity of frequency v = 2 vI+j 2 . Let the

waveform corresponding to all the frequency components of the

output in the vicinity of V be denoted by y (t). We then have

Y y(t) = Y3a(t) + Y5b (t) + y5c(t) + -, (3.23)

in which V I + v, a = (vv, 2) +_ = (-vV

S= (-v 2 v•11 •vlv 2 v•v2) as mentioned, the order of permutation of

the component frequencies in the vectors a, b and c is immaterial.

The number of these permutations is taken , 1into account by the

value of multinomial coefficients (nt m K,,mK) which is (3;2,1)

-3 for a, (5;1,3,1) -20 for b, (5;I,2,2) =30 for c. Observe that

Y5b_(t) and y5c(t) represent two different contributions of order

five falling into the same frequency region. This indicates the

importance of carrying the vector V in the index oe the component

of the output.

A convenient way to represent the input-output relation Bao (3.16)

follows when we express the n-th order output yn (t) and the com-

ponent of yn (t) at frequency v due to the interaction between a set

of frequencies V in terms of their complex envelopes qn(t) and

%_v(t) respectively.* We have

Yn(t) - Re (qn(t)ei2Tt), (3.24)

YnV-(t) -Re(%(t) eij2r~t). (3.25)

A simple change of variables in Eq. (3.17) and substitution into

Equation (3.22) yields

An alternative notation is q n(t;V) qnv(t).
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-t "'n~ -j 2T§ t1**rr f .. fHU~+v jV 7 (,) dt

(3.26)

in Which 9+V denotes the vector • *,g,+ ). Suppose
1 n.

hn (t), the n-th order nonlinear impulse response, also has a

narrowband representation about the set of frequencies .

j 2T' t + tn))

h (t) = Re e (3.27)

The spectrum of the n-th order impulse response, H n(f), can be ex-

pressed as the sum o. baseband spectra centered about VJ and -y_,

in which GnV (t) is the Fourier transform of gn_ Wt!L=(tl,..,tn)

and f = (fl'.''fn)"

Hn(1+.) = I G_ (•) + G* (--)2 (3.29)

Suppose further that each zk(t) is bandlimited so that the

baseband spectra of the input components do not overlap with the

bais4band spectrum of the nth-order impulse response centered at

-2v, so that

, nGnv f2 )iZl (fi1) 0. (3.30)

1 47
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It then follows from Equation (3.26) that the Fourier trans-

form pair for the complex envelope of the n ti-order component of

the output referred to the set of carrier frequencies v is

Sq•(t) = J . G n v( _f) T . (f i)e Jdfit
- (t) TT -L K ) dfi, (3.31)2rmi..• • K ,In CO i=li

in which 2) is the set of frequencies which sum to V as specified

by Equation (3.21) and

Qnv(f) =L qn(t)e i df. (3.32)

These last two equations relate the complex envelopes of input

ant output signals and are central to the discussion that follows.

In addition, we have the relations between the n t-order envelope

components and the composite output envelope about v

q(t) = n
n=l - (3.33)

QV) = Z Qn (f)" (3.34)
n=l

V

We are using the notation of .2 under the summation to denote that

for each n, all the sets 2, that differ by other than permutation,

are included in the sum.
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3.3 Frequency Power Series Canonic Model

In linear analysis of communication ch&nnels and receivers,

efficiencies of characterization can be achieved through the use

of certain "canonic" models. A canonic model originates with

approximations to the full mathematical representation of the

input-output relationships. These approximations are then in-

terpreted in terms of suitable signal processing structures which

can serve as a canonic model for the class of actual systems de-

scribed by the model. Thus the canonic model will, in guneral,

have a different structure than the actual system but, When as-

signed proper parameters, will mathematically perform like the

actual system. The more restricted the class of systems being

modeled, and also the class of input signals, the simpler the

canonic model. Examples of canonic models of time-varying linear

systems can be found in the work of Zadeh[1950, Kailath [19551,

Gersho [19631 and Bello [1963].

in this section we generalize the linear canonic models

based on the Taylor series expansion of the linear transfer

function of a system about its operating frequency to the multi-

variate Taylor expansion appropriate to the nonlinea: systems.

We call this canonic model the Frequency Power Series Canonic

Model.

The simplest caý3e occurs when the nonlinear transfer fuiiction

H (f ... ,fn) can be treated as a constant about the set of fre-

quencies v. In such a case the Fourier transforms in Equation

(3.26) can all be carried out. Substituting fi = ýi+Vi in the

integrand of Equation (3.26) results in

nt nl J2TT(fi-i ) tq (t) = nnf Zk-fi-i)e df1

2 nlM_ K! ... i! MK - i= 1

149 (3.35)
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When Hn(f) is assumed constant and equal to Jtz value at the set
of center frequencies, v, we have

Hn(f) H (v)- (3.36)n n

For our purposes this relation needs to hold true only over the
region of frequencies for which the shifted spectra of the input
components, Zk (fi-vi), iil,...,n, are non-zero. Recognizing that
H n() is a constant and that the n-fold integral cf a product of
separable factors is the product of n individual integrals, we
get from the last two equations that the complex envelope of the
output component yn (t) is then

nIn j2T (f ii)tH( dfi•kfii~= 2 n- 1 1 I i=i 1 df-.

(3.37)

Since the region of integration is from -- to w, a linear change
of variables back to fi-Vi=9i conveniently allows each Fourier

transform to be carried out, or

j -Zk i(fi-Vi)e dfi = Zk. (t), (3.36)

so that the product of these n integrals is simply the product
of n out of the 2K input components with those components for which
vk appears mk times in the argument of Hn (j) also appearing mk

times, i.e,,

n 
K5
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We conclude that the complex envelope of yn (t) is

n )= H(() -iT n 7M(t) (3.40)
-- 2 -K inkI Kk--K

where v = 2 Vk '*..' vkn and v =vk+ ... + vkn. By virtue

of Equation b3.24? it follows that y (t) itself is given by

( t ) = n 1 R e ( ) ( t .( 3 . 4 1 )Yn9 t 1n - K! .in ! n
-- m_ -- .. kKI=nI--- K )3.1

If G (f), the baseband version of Hn (_), is bandlimited so thatn•n
the tail of the negative part of the spectrum does not extend

into the frequency region about 2 v, then it follows from Equation

(3.28) that

Hn() = 1 G (0, (3.42)
n 2 n~y-

in which 0 = (0,0,,...,0), so that the complex envelope of the
th

output can then be also given in terms of the baseband n -order

response Gn (_0),

n1K mokq (G (0) * Z M(t). (3.43)
2nmKIKI • m i Gn- k=-K

This equation can also be derived more directly from Equation

(3.31) by assuming that G (f) G (0). The G (0), similar

to the Hn (_), are complex coefficients denoting the spectral

density of the complex envelope at one set of frequencies.
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It should be noted that the index v on the spectrum of the

complex envelope is important as the indication of the set of

frequencies to which the envelope is referred. The coefficient,

G (0), has the argument 0 and would be ambiguous without this

subscript.

A simple example that effectively illustrates the applica-

tion of Eq. (3.28) is to the case of a signal s 1 (t) at center fre-

quency vl, and two interfering signals i 2 (t) and i 3 (t) at center

frequencies v2 and v3 ' respectively; i.e.,

x 1 (t) = Re (s 1(t)ej2 t 2

x 2 (t) = Re (i 2 (t)ej22t3 (3.44)

x 3 (t) = Re 3(te

Some of the more important comtponents specified by Eq. (3.28) for

this example are tabulated in Table 3-1. The first three columns

of tI'is table give the name of the component as used in interfer-

ence studies, its frequency region and its complex envelope. Note

that the coefficients Hn(10,.00,vn) in front of each product are

generally compler and are different for a different set of inter-

acting frequencies. This can be contrasted to the conventional

approach to a three-tone input in which one would have modeled the

nonlinear response by a power series with real coefficients of the

same value for components of the output of the same order:
yWt r j 21\ IR •A Jte J2Tr2t J 2Tr3 t,]n.

y(t) E [l n Ie A e +Aj2e +A 3]e (3.45)
n=l

152



-4~~~~ 14).- 4.-~) 0

NN . H 'j toM44 k

r4 N4 Nn .5 N .0444
to) to4 to (d to* M

44

0* .14 4N #M 41N 41M MM. fnNV 0 O

IA* N .- N M nN M NC NC4'

- -M ;0 '.4 404 )
.44 N7 MM - - - - -M

1 t 0 A Am m m m m 0i

r4N ~ ~ ' ~ ~ V V 4 N V N vj 144
N-n .- 4 4 NN1

id N

M~ +4 +. ~ ))
.4N M 04 m4 NM N -4 N M m ,- I -47 r-4

777 7 7 77 >77 > 7-N N 7 _ ;

$4

ad 4a.)w

. 4~1 
0 1 4 ) 4 ) 4 .

4 .$ H& * ý 00 VO4 41 *.-A
8 00 1 '4- ?

0r. 0) 0 )

- -H -0

3.53



The amplitudes of the three tones are AI, A2 , and A3 , and the

coefficient a 3 is typically opposite in sign to a1 , whence the

term "compression". The last column in Table 3-1 shows the

amplitudes of the various frequency components in this series

by way of comparison to the just discussed simple casa of fre-

quency power series with a constant nonlinear function.

If the variation of H n(flf 2 " "'fn) froia a constant value

in the regions around v lV2*- Vn is primarily linear, then Hn can

be expanded in a Taylor series containing only the first power of

each frequency, namely

bH (fbH(f
n(f) ) + (f 1-) +2 f2

f=V t-

n n (f
n

f=V

(3.46)

In Equation (3.46) we have again used the vector notation f and

for convenience, where

and a vertical bar signifies that the function is evaluated at

one point. Figure 3.1 shows a first-order nonlinear transfer

function H1 (f), and two spectral regions of center frequencies

Vi and v2 and bandwidths B1 and B2 . The tangents drawn to

Hl(f) at v, and V2 represent the two-term (i.e. constant plus
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H1'2 4f) at f 2f

IHo (f ).
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00 Bt

Fig. 3.1. Frequency Power Series Approximration
of HI()
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one derivative) frequency power series expansion of H (f) at

these two frequencies. It is seen that the curvature of HI(f)

is such that the two-term representation is better at v1 than

at v2 * A quadratic, or three-term, expansion might be required

to adequately represent H1 (f) at v2 when the signal bandwidth

is B
2-

Similarly, Gn_ (f) can be expanded in a Taylor series about 0

n bG (f)
Gn G () + E f nfi A- 00.. (3.47)

i~i
f=0

More generally, the p-th order term in the multivariate Taylor

series expansion of G n(f) can be shown in the abbreviated form

-.... fGnf) (3.48)
p [ 1 + f 2 + + fn n2f

f=O

in Which the factor in the square bracket operates on G n(.)).

When these operations are carried out individual terms are of the

form

1 P fP2 pn AP _n (flf2''0*9 fn)

pl I •. n fl "f 2 n -- .p. 0n(3.49)
2Plflb 1 fb 2 f Pnf

_f-.o
in which pi ranges over all integers from zero to p, and

pl + p 2 + 000 + Pn = p. (3.50)
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In general, the full multivariate Taylor series expansion of

Gn.(f) is then the multiple sum

P1 P2 Pn BG "1f n• n
G n (_i) = Z Ep 1p . f1 f2 n P1 p2 nPn pp=0 R P P2! " ' p'Pn "b 1n 0 *bpnfn

(3.51)

in which P denotes the summation over all the permutations of Pi

satisfying Equation (3.50). The total numiber of such permutation

is the number of ways in which p objects can be allocated into n

cells and is (n+p- 1. Thus there are three linear terms and four

quadratic terms in the expansion of the third-order nonlinear

response (p=2, n=3).

If we substitute for GnV(f) in Equation (3.31) its multi-

variate Taylor series expansion specified above, the integral

in Eq. (3.31) becomes

q qny(t) - X n f .... ..... .....
- p = p 2 P( i 1 0 0n,... I B 1 f . .mPB n f 1

,f='o
f P i j2nfit

! N (fe (3.52)

Note that the first factor in the integrand is r'ow a constant so

that the integrand becomes separable, i.e., the multiple integral

of Equation (3.34) becomes ncw a product of individual integrals

because each factor of Equation (3.52) depends only on fie

157



Taking time derivatives of both sides of the Fouric transform

relationship Equation (3.49), we observe the relationship

(2Tj) P -wfPZ(f)eJ2rftdf - dPz(t) = z (p) (t), (3.53)

df -pt,(.3

where z (p) M defines an abbreviated notation for the pth deri-

vative of z(t). Thus each of the n individual integrals arising

in Equation (3.52), after the constant in the integrand is
th

recognized, is proportional to the p derivative of the wave-

form zi (t) denoted by z (p) (t). With this notation, the complex

envelope of the n-order output component referred to v has the

6::pans ion

t) (n; rK, minK) .PGn I(f) nP

qp (t)ft z (t, )TTp=0 p 2np11 ...pn! b I flbP2 f 2***Z)n fn il(21Tj)Pi

f=0

(3.54)

in which the sum is over all the Pl***** Pn whose sum is p and

each pi ranges over all the integers from 0 to p. A great

simplification has occurred relative to Eq. (3.31) in that

instead of a multiple integration, we now can compute the complex

envelope of the n t-order output due to the intermodulation of

the input components at v as a sum of weighted products of various

derivatives of these input components. The weights are time-

independent coefficients evaluated at the center frequency of

the baseband envelope f1  0, ... , fn 0.
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I ,

This kind of an expansion structures the system as a series
(p)of differentiators (to form z (t)), and multipliers (to apply the

proper complex coefficients)for each product in the sum.

The utility of the frequency power series expansion is pre-

dicated c-n the convergence of the terms in p, so that just the

first few terms of the expansion may suffice in generating an

adequate approximation. As an example consider the frequency

power series canonic model structure for a two-tone input (K=2),

third order output (n=3) and a two-term nonlinear response (p-0,1)

using the expansion of H (_) about • = (v 1i, 1i, 2 ). In the interest

of further simplicity denote the first derivative dz(t)/dt =

z (t) by i(t).

For this example, if a linear dependence in each input fre-

quency regioh approximates H3 (L) sufficiently well, the third-

order complex envelope of the output component due to the inter-

modulation of input components at v is given by

q 3 (t) = 3 [H 3 (,viIVv 2 ) z2(t) z 2 (t)

2 bH3 (Vi V 1 V 2)
+ bf zl(t) 1 (t) z 2 (t)

SbH3 "VIIV' Vl V2) 2 )

2vj f3 z(t) 12(3.55)

where bH3 (vv 2 *2v3 )/bfi,iil,2,3, denotes that the derivative of

H3 (fl, f 2 ,f 3 ) is evaluated at fI=Vl, f 2 =Vi, and f 3 =V2, and from

Eqý (3.42) H (nf)=Gny (f)/2.

Figure 3.2 shows. in block diagram form., the canonic model of

Equation (C.55). The signal flow is from left to right. z 1 (t) is

differentiated to form " z• is multiplied by z2 and their
1V
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product is multiplied by a complex gain H3 (V1 ,V1 ,v 2), while
2.

z•l 2and z 2 are formed and multiplied by a complex gain

(l/2Tij)2 bH 3 (2)/hfI and (I/2rj)6H3 (•)•f 3 , respectively. The

three products are summed, multiplied by 3/4, shifted to the

intermodulation product frequency 2\ 1 +V2, and the real

part taken to form Y3•(t). The canonic model operations are

straightforward numerical processes, as contrasted to the triple

integration required if the full integral of Eq. (3.31) were to be

carried out. An examination of Equation (3.55) illustrates

the addition of perturbation terms to the first term which is a

simple intermodulation product with a complex coefficient. These

perturbation terms correct the first term to allow for the fact

that the spectrum of the multivariate impulse response is not con-

stant over the bandwidths of z 1 (t) and z 2 (t). The essence of the

canonic model representation is that for each _ we now need only

a set of coefficients to represent effects of a particular non-

linear circuit; the structure of the circuit itself need not be

known.

3.4 Tappod Delay Line Canonic Model

The nonlinear transfer function may change too much within

the frequency region corresponding to the bandwidths of the in-

put signals for the first few terms of th5 Taylor series expan-

sion to provide a useful approximation. Under these conditions,

we may find recourse to another canonic model based on the re-

presentaticn of the nonlinear impulse response of order n as

an expansion using multivariate sampling functions at suitably-

spaced periodic intervals. This model is called the Tapped De-

lay Line Canonic Model because the signdl processing structure
which relates the input components to the output signal, is a

tapped delay line.
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if r low-j.a.,s complex waveform g(t) is band-limited to the

frequency region Ifl< B/2, we denote the resulting band-limited

waveform 1,y g (t). The band-limited waveform can be expanded by

the sa.mpM theorem, as:

- ~ V jIn rB (t-rT).i (B (t-rT) (3.56)

in which 4(rT) ic ':he value of ,•(t) at trT, commonly known

as a sauple value, and T - I/B. We denote the interpolation

function Jn Sq. (3.56) by sinc B(t-rT)I that is

sinc y s(sin rTY/Ty. (3.57)

The Fourier transform of sinc Bt is (1/B) Rec'-(f/B)in which

Rect x M 1 (3.58)

L0 IxI > 1/2.

We shall germrally use a tilde (-) to denote a bandlimited version of

a function, so that

n
Gn (f) = Gn (f) T Rect (f /B). (3.59)n- i=l (i

Band-limited functions still follcw the Fourier transform relation

t) • / f f (f) en df. (3.69)

Similarly to Eq. (3.5W%,for a function of multiple variables,limited

in bandwidth along each frequency axis, we can use the n-dimen-

s!O.oiAl sampling theorem of Pederson and Middleton (1962).
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t n gvkiT n Tn) Ts [Bi (t i-r iTi

r1  rn -J i=

(3.61)

in which each ri assumes all integer values and the sampling

interval Ti is the reciprocal uf the bandwidth Bi in the i-th

coordinate, i.e., Ti=I/Bio The coefficient gn (r IT,'-" nTn)

is a sample value of the n-dimensional enivelope of the n-th

order impulse response at t =r Tl, t 2 =r 2T'2 etc. The virtue of

expanding gn(t) in this fashion is that in any n-fold integra-

tion in which it appears as a kernel, the kernel n- becomes

separable and the n integrations can be carried out individually.

Taking the multidimensional Fourier transform of both sides

of Eq. (3.61), we now get

n_ f j2Trr.TfG f gfi J2 2•ii~i (3.62)

Gnv (_f)= E (rT)T B (Rect a) e
r gn =- i 3I

in which f and rT denote (f 1 ,-.-,fn) and (rlTl,''-,rnTn)

respectively and the subscrript r under the summation

denotes the multiple sum over rI, r 2 ,''*°rn each ranging over

all integers.

Recall that the narrow-band representation of h n) defined

by Eq. (3.27) implies

H W +IG(fz,) +G . (3.63)
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Thus the integral P(t;_v) of Eq. (3. 171 which appears in the expression

relating the n-th order output yn (t) to an input x (t), consist-

ing of the sum of narrowband signals with complex envelopes

z (t), is
miO

S(t,_)) j1JLtn•-- +na ) e dfi,

(3.64)

or
"n ji JT 2(9i+vki) t

P(t;y) G ik Gnf ei d

Go j.. *T (4 J i-vki )t

2_f.-f Gn( i k (-ýi-2\i)e d) "

(3.65)

Assume that each input signal z. (t) is also bandlimited to a1

bandwidth no larger than Bi<<;i, so that

n n
'a () 1Zk (% G n (z)lT zk (s,(3.66)
and

Gn(••=Zi (-i-2,Vki 0. (3.57)

Substituting from Eq. (3.62) into (3.65) ar.d taking into account

the last two equalities, we get
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_ ,1 j 2 r~j i t n 1 fZJ2 (t-r i Ti

P~;V2TTr~ k= (t (3.68)2r -- i= 1 1f

Executing the multidimensional Fourier transform,

1~T V.e2_~ ~l (t-r T1 ) (3.69)rt' i=1 ý

Finally, substituting for P(t;v) in Eq. (3.16)

y (t) 1 K K [ gnT)In 1 (t-riT.i ei\

2 k=-K knK

(3.70)

The right-hand side of Eq. (3.70) contains conjugate component pairs
in k, which makes it a real function of time as is y(t). For a

specific frequency set v such that v = -m_KvK+...+, mKvK from Eq.

(3.25), the complex envelope of the output of order n referred to

v becomes

q (t) n Bn H (t-rkTk). (3.71)
N 2nm K!...m KI r B kc''-K

Again a great simplification has resulted relative to Eq. (3.31)

in that a multiple convolution is replaced by the sum of weighted

produuts of the intermodulating input components with various

time displacements relative to one another. The last expression

serves as the basis for the tapped delay line canonic model. In

this model the n-th order response is obtained by passing each

complex envelope of the narrowband components of the input through

a tapped delay line with taps uniformly spaced at l/Bi intervals,

where Bi is the bandwidth of the i-th input component.
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All the various products of such delayed envelopes are formed and

weighted by a suitable complex coefficient and then added to

form the complex envelope of the output of order n for the

frequency set y. Clearly, the utility of such a model depends

on the convergence of the multiple sum in Eq. (3.7-1) so that only

a finite number of taps need be used. In other words, the

coefficient gn (r T1,...,rnTn should decrease rapidly for all

ri as the absolute value of ri increases since the requirement

for long delays would render the model impractical. Thesa coeffi-

cients are frequency independent and are evaluated at discrete

sample points only.

The simplest example that illustrates the tapped delLy line

canonic model is, of course, the case in which the nth order non-

linear impulse response at a set of frequencies _ can be effec-

tively modeled by a single tap only. This occurs when the system

is not dispersive and its frequency response is a constant.

In this caje, the complex envelope of the n order output

in the frequency zone centered on v, generated by the input ex-

citations centered on V1•,• 2 *,., is given by

q (t) ni -K.Y I Id N (t - rkT-) (3.72)

2 1 .,% l2 an ko-K

Now, if the envelope of the n"t order nonlinear impulse response

is constant and bandlimited in each dimension, then the multi-

dimensional Fourier transform relation is found to yield

_ l (3.73)nv on- 2 .. G ()d ...Ba Gn(V

-= B1B2 -**B 22Hn
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so that Gn() = n (0)/BI -B n. Comparing Equation (3.73) for
the n-th order output from a single tap model to the Equations

(3.40) and (3.43) for a constant transfer function model, it fol-

lows that a single tap delay line model is identical to the one-

ternt frequency power series model. Both are applicable when t1he

nonlinear response is not frequency dependent over the respective

bandwidths of the input signals. In general, however, each delay
line in the model may have more than one tap. We denote the num-

ber of taps for zk by Nk7

Another example, a third-order two-tap canonic model for

V =(v•#Vlov 2 ); v = 2vi+V2 , is illustrated in Fig. 3.3. We assume

equal bandwidths B =B and taps at T I-T =T. The complex envelope
1 2 1 2

of the third order output for this case is explicitly

g 3 _(t) =

3T3 1 1 1
r-- 0 2= E ( r 2 T,r 3T)z (t-r T)z (t-r 2T)z 2 (t-r 3 T)8 rl1=0 Xr,2=0 r 3=0g93y 2 3t 11 T2 2

33
3T3 (00 0) z21 +2g3z (,0,0)?1
= • 3_) 100 ( 2(t (T(t-T)Zl(t)z2(t)

+ ÷ (.Oz2 tT t (,0 )z 2 (tzt-T)

+ 2g3 (T,0,T)zl(t-T)zl(t)z2 (t-1)+g3 (T,T,T)z•(t-T)z 2 (t.-T)J.

(3.74)
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3
Since n=3 and N I=N 2=2 there are 2 =8 terms to be aunmed in the
triple sum, but some of them are identical because the factor z (t)

occurs twice (kl=2) in the proc,"ct. We have the same situation as

if we were tossing two identical dic with two faces and one dif-

ferent dice with two faces and counting up distinguishable arrange-

ments; this number is six.

It can be seen that these models become rapidly more compli-

cated as the number of necessary taps is increased. In general,

if the delay line for Zk.i has Ni taps, then the sum over each ri

in Eq. (3.71) ranges only from 1 to NJ. Moreover, since permuta-

tions within the argument of gnV (]a) do not affect its value, some

of the terms in the multiple sum in Eq. (3.71) have the same value.

The number of ways of placing mk indistinguishable factors zk(t)

in one of the Nk tap positions is given by the combinatorial coef-

ficient

k (.3.75)

Thus if z. (t) occurs mk times in the iterated product, the num-

ber of distinguishable terms in Eq. (3.71) is

TT k)(3.76)

k=-K k

in Which each factor with = 1 is unity.
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3.5 Frequency Power Series Canonic Model:
Sinusoidally Modulated Signals

3.5.1 Crossmodulation and Desensitization

In this section we present the frequency power series

canonic model for the case of sinusoidally modulated desired

and interfering signals. Specifically, the distortion products

which are analyzed are the compression, desensitization, and

crossmodulation terms. The canonic model is developed using

the constant and first derivative terms. The desired signal

frequency is v1 with complex envelope zI (t), and the undesired

signal is at frequency v2 with complex envelope z2 (t). As-

suming that third-order nonlinearities are dominant, the output

complex envelope at frequency v, may be expressed as

q(t;vl) = ql(t;vl) + • q 3 (t;v'1 Vl 1 -vlI) + 1 q 3 (t;v 1%lv #-V

(3.77)

The first term of Equation (3.77) represents the linear resporne

to the desired signal, the second represents third-order effect'

involving only the desired signal, i.e.,compression, while the

last term gives the third-order nonlinear effects involving both

signals, i.e., desensitization and crossmodulation. It is

assumed for simplicity that the linear undesired signal response

at v2 is out-of-band and, therefore, can be neglected.. Including

only the first two terms of the frequency power series, the out-

put terms of Equation (3.77) may be represented as
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1 H1 (f) =l1

q1 (t; 1 ) H (vz z1 (t) + 2 (f ( (3.78)

q 3 (t;•viv 1,-vi) = H3 (v 1%#'V 1 -V) z1 (t) z 1 (t)f2

+ Tt t H-)-f H3 (-f)- If_" (t) z I (t)2

+ a-i-{2 Ha (f) 1 _ z(t) z(t) I 2

+ 'H 3 (f~v i(t) z 2(t)J' (3.79)

where v = vi,•1,-V1, and

q 3 (t , v ,i ' %2 *- %;2 ) H 3 (V O1 ' -• 2 ' - ; )z 1 (t ) j I 2 ( t) 2

1 H 3 (f) l 2

+ z (- i (t)Z*(t)bf 2)1 2

+ -nf-- _.&.,•zI (t) :2 (t) z2 (t)

+ Bf 3 _= 1 (t) 2 (t) 2 (t)(} 3.80)

where v v1i' v 2' -V2"
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The second terms on the right-hand side of the frequcncy

power series, Eqs. (3.78),-(3.80), contain derivatives of the

nonlinear transfer functions and the signals. They are signi-

ficant when the transfer functions cannot be considered flat

over the bandwidths of the signals involved, and additionally,

are the source of FM crossmodulation. Equations (3.78), (3.79),

and (3.80) are general expressions for arbitrary modulation on

the desired ard undesired signal. In the following sections

simple expressions for sinusoidal AM and FM combinations will

be developed and simplified for the particularly important

situations of small distortion at the post-detector output.

3.5.2 AM-AM Crossmodulation

3.5.2.1 Predetection Spectrum: AM-AM

we now specialize Equations (3.78) - (3.80) to the case

of sinusoidally amplitude-modulated desired and interfering sig-

nals. The complex env~elopes of these signals may be written as

z 1 (t) - AI ( + a cos 2vit), (3.81)

z 2 (t) = A2 (l + a2 cos 2rp 2 t). (2.82)

The symbols a 1 and a2 represent the modulation indexes of the

desired and interfering signals, while p, and p2 are th6 modu-

lating frequencies. With this notation, Eqs. (3.78) - (3.80)

may be evaluated explicitly in terms of the signal parameters.

In ecch case a number of frequencies are involved; both the

cophasal and quadrature components appear with complex coef-

ficients. Table 3.2 summarizes the frequencies involved in
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TABLE 3.2

FREQUENCIES APPEARING IN COMPONENTS OF q(t;Vl)

Frequency ql(t;v1 ) q 3 (t;v1 V *-Vl) q 3 (t ;ivi. 2 - 2

dc x x x

P1  x x x

2p 1 x

2p2 x

34, x

2 x
U• 42 x

i+ •2 x

•1- 2• x
'1 + 2 42 x

4.1. 2 P•2 x
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each of the terms ql(t;,vl), q3 (t;VlVI,-V1 ), and q3 (t;-V1 " 2 '-v2)

The equations for these three terms are given in Table 3.3.

We may represent q(t•vI) as a sum of the form

q(t=V1) 0 + jy0 + E (Xck + JYck) cos 2 vfkt

+ (xsk + jysk) sin 2rfkt]. (3.83)

The "k are the frequencies appearing in Table 3.2 and the coef-

ficients may be obtained by summing the appropriate coefficients

appearing in Table 3.3 according to Eq. (3.77). The real sig-

nal corresponding to the complex envelope q(t;v1 ) is given by

y(t) = Re qt )e j2.v 1t (3.84)

Inserting Eq. (3.83) into Eq. (3.84) and carrying out the neces-

sary trigonometric manipulations gives the signal structure at

the output of the system, or

y(t) x0 cos 2rv 1t - y0 sin 2v It

+ E x + cos 2 ,(v1 + fk)t
k

sk 2 1sk

+ 2 Y sin 27(v 1 + fk)t

+ 2 cos 2r(v 1 - fk)t

x k+ y ck 
--2 si 2r(v1 - f)t. (3.851
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The spectral structure of the signal may be obtained immediately

from this representation. The amplitude of the carrier is given

by

X! + y!o, (3.86)

the amplitude of the sideband at v + fk is given by

1 +yk)+ + (xsk - Yc) 2  (3.87)

while the amplitude of the sideband at v, - fk is given by

1(xk - ) + (xsk + Y 2. (3.88)

3.5.2.2 Post-Detection Spectrum: AM-AM

The output of an ideal envelope detector is the magnitude

of the complex envelope of the signal applied to the detector.

Exact calculation of the detector output corresponding to

Eq. (3.83) would result in a form unsuitable for spectral

analysis. However, an accurate approximation can bo made based

on the assumption that the distortion components are small e-

lative to the desired signal. Thus Eq. (3.83) is rewritten in

the form

q(tI 1V) (x0+ jyo) + (xcl + jycl) cos 2niTt + (xl+ jyl)

. sin 24,•t + el(t) + Je 2 (t), (3.89)
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where e (t) and e (t) are the low magnitude distortion terms.
1 ~ 2 1Yo

if we et tan- -1o this can also be written in the form
0

=~tvo () + (Xcl + jycl)e COB

-J o
+ (x + jy) e sin 2v-rit

si s

+ e el(t) + je E2 (t)]e e

(3.90)

The magnitude is

lq(t;•l)1= X2 + y2)½ + Re[(Jxc+ jyc)e }0 cos 2r lt

•,•+ Ret (Xs1 + jysl)e o sin 2¶.Lit + cl(t) cos 5O

+ 1 2 (t) sin0[ i (x + jyc)e )coo 22t
-iso

+ Im((x + jy )e" ] sin2lt

- i (t) sin 2o+ e2 (t) cos ]o)- " (3,91)

The cos inusoidal component at the signal frequency is predominant-
ly the linear component which is at the same phase angle as the

carrier. Thus the phase angle of the cosinusoidal signal,

179



frequency component is approximately equal to that of the

carrier:

-l cl
tan = o" (3.92)

x cl 90Xci

Thus the first term in the second bracket of Eq. (3.91) is small.

The second term in this bracket will be small as long as fre-

quency selective effects are a small part of the; linear transfer

function. Thus the second bracket in Eq. (3.91) contnirs only

small terms and its square may be neglected, giving

lq(t, vI) (X 0+ y 2 ) + Re[(xcl + jycl)e cos 2n 1 t

+ Ret(xs + jysl)e 0- sin 2TTpit+el(t) cos

+ C2 (t) sin .o" .(3.93)

These approximations are equivalent to retaining only those com-

ponents of Eq. (3.90) that lie in-phase with the carrier compo-

nent x + jy. Having established this result it is a simple

exere se to complete the spectral analysis of the AM detector

output. The amplitude of the desired signal is given by

(xclcOs 6 + Ycl sin o)2 + (xsl cos 6o + Y S, 2,

(3.94)

while the anmpl!Lude of the k'th distortion component i-
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:2

.(xckCos Jo + Yck sin ) 2 + (xsk cos o0 + Ysk sin ) 2.

(3.95)

3.5.2.3 Simplified Assumption Analysis: AM-AM

The analysis presented in the preceding section includes a

large number of distortion components. In many situations only

the crossmodulation component at the undesired modulation fre-

quency 42 will be of interest. Furthermore,there are situations

where frequency selectivity will not be sufficient to affect the

crossmodulation levels; in this case only the first term in the

frequency power-series model is required. Therefore, in this

section we repeat the analysis of the preceding section with

these simplifying assumptions.

Neglecting the second term of the frequency power-series,

the linear response may be written

q 1 (t;vl) A1 H1 (V1 ) + a 1A 1H 1 (v 1 ) cos 2niit. (3.96)

The third-order term involving only the desired signal (compres-

sion) q 3 (t-vl*1 1 ,-vl) will be neglected entirely; te third-

order crossmodulation term can be written as

q 3 (t I v1 2 ,-v 2 ) 2a 2 A 1 A 2 t2 Ia3 (IV,*v 2 ,-\ 2) cos 2,i2t.

(3.97)

All contributions from the second term of the frequency power-

series and all frequencies other than 42 have been ignored.

Combining these terms according to Eq. (3.77) gives
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q(t;•v) AI[HI(vI) + yHIH(vI) cos 2B it

+ 3c 2 jA2J 2 H3 (V8I,2,-V2 ) cos 2 (3.98)

Substitution of these coefficients into Eqs. (3.86), (3.87), and

(3.88) gives the spectral structure of the predi-cion signal,

as shown in Fig. 3.4a. Note that corresponding upper and lower

sidebands are equal because of the assumed absence of frequency

selectivity. The ratio of crossmodulation sideband amplitude

to carrier amplitude is given by

3cL2 A2 2IH3 (v 1 , 2 ,-'v 2) (3.99)

21HI (Vi)I(

These amplitudes, observed at intermeciate frequ*e~fbu, depend

on the magnitudes of HI(V 1 ) and H3 (v1 , 2i-v2, ) but not on their

phases.

The post-detection signal structure for this simplified

case may be obtained by substituting the coefficients of Equa-

tYM 13.98) into Eqs. (3.94) and (3.95). The results, normalized

by JAIH1 (Vi)I to give unit dc amplitude, are shown in Fig. 3.4b.

Note that in this case the relative phase of H1 (VI) and

H 3 (V1,2,-2 ) is significant in determining the cý odulation

level. Relative to the desired signal amplitude, the cross-

modulation level is

2? 2 H 3V*V v2

3(a)A 2 (Vl 1- e(3.100)
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IA, H,(v)i

2AA, £ H,(vj)

,,,, Ii H 3~ (P, V2 IVA)i

V1"It 2 V'1"A' VI V,+/k, I,+ f.,.

a) IF Spectrum

_____J a2 tt) 2 Re(H3~uvIz, !%1

b) Detector Output Spectrum

Fig. 3.4. Approximate AM-AM Crosemod~ulation Spectra.
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3.5.3 FM-AM Crossmodulation

3.5.3.1 Demodulated Spectrum

In this section a sinusoidally FM modulated desired signal

in the presence of a sinusoidally AM modulated-Interferer is as-

sumed. The complex envelopes of these signals may be written as

j sin 2Tlt
z1 (t) = Ale , (3.101)

and

z2 (t) = A2 (I + a2 cos 2n2t). (3.102)

The instantaneous frequency of the signal corresponding to zl(t)

is a 1 cos 2rrp±t; thus 1 is the peak frequency deviation and

(ai/41) is the modulation index. With these definitions, the

terms of the canonic model may be evaluated, as was done in

the AM-AM case. The results appear in Table 3.4. It should

• observed that all terms include the complex envelope zI (t)

of the desired signal as a multiplicative factor. Thus it is

natural to write the complex envelope in the form

q(t; 1 ) zI (t) Ix0 + Jyo + (Xck + J ck)O
k

+ E(Xsk + JYsk) sin 2rfkt]. (3.103)
k
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In this case the desired modulation appears in the factor z (t)

and all of the terms appearing in the bracket, with the excep-

tion of x0 + JYo , are the low-level distortion components.

The IF spectrum of the signal corresponding to q(t;v1 ) is

quite complicated due to the simultaneous pr-sence of frequency

and amplitude modulation, The output of an ideal FM demodulator

is more accessible. The complex envelope is first written in

the form

x +jy

q(tT~l = l(t) (xo~y) +ý , Xck+Jck cos 2rf t
1 0 0 k X o +JYo0

+ x sk+jy sin 2f k (3.104)
k +jy

Making use of the smalt i)?gle approximation this may be written
as x k+ jyck[jEa[ Im{ ' •o-• a'-j cos 2vfktl

q(t~l) 1 zl1(t)( (0o+ jyo0)e k1

j[• Im{~ + jys"x 2.+ fk]-[ omý + JYoj fsn2Y k

0e .O(3.105)

Thus the output of an ideal FM demodulator is

1 dTT AtG Eq (t iv1)~ a, coo 21T 1t

E f XoYck YoXck
+.. . sin 2rrfktk ik xo2 yO2

Xo sk- YoXsk
+ fk o +y~o cos 2.rfkt}. (3.106)
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The =mplitude of the desired signal is
" Yo_ 2 x ocl y xcl 2

12 x +2l 2 2  22 ') (3.107)

+ 0 y 0 X 0 + YO

and the amplitude of the k'th distortion component is

2 f 2 JXoyck Yox 2 + (xoysk yoxk) 2  (3.10)2 +
Xo 0+ Y

3.5.3.2 SiLplified Analysis: FM-AM

A simplified analysis of FM-AM crossmodulation will now

be made. Using the approximation made in the AM-AM crossmodu-

lation case, the complex envelor4 of the distorted signal may

be written as

q(t;Vl) = z (t) HI(vI)[I + 3• 2 tA2 I2 H3 (vJIA 2 e-v 2 ) o 212t).

(3.109)

The resulting discriminator output is

2 M3 ( 1 '2
C1cOS 2TLit - 3 2• 2 IA2 2 Im{H3(22-)211 sin 2¶ 2 2 t,

(3.110)

giving the post-detection spectrum shown in Fig. 3.5; the cross-

modulation amplitude relative to the desired signal is clearly
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Pig. 3.5. Post Detection Spectrum, AM-FM Case.
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CL '

2 2 3 1 2-2

rH l(vl~v 2) }" (3.111)

Just as in the cage of the AM detector output, the phase of

H 3(I,2,-%2 ) relative to H1 ('V1 ) appears in the final result.

3.5.4 AM-FM and FM-FM Crossmodulation

The two cases discussed previously both involve an AM inter-

fering signal. The first term on the right-hand side of the

frerquency power-series shows that crossmodulation arises from

a term containing Iz 2 (t)1 2; if z2(t) is the complex envelope

of an FM signal this reduces to a constant so that none of the

undesired modulation appears on the desired signal. However,

when frequency dependence of the third-order kernels is considered

this is no longer the case. Thus the derivative terms of the

canonic model will permit calculation of crossmodulation in cases

where the undesired signal is FM modulated. The importance of

this form ot crossmodulation as a source of degradation will

depend on the slope of the nonlinear transfer function of the

system. In this section we consider the case of an AM or FM

desired signal and an FM undesired signal; the next section

deals with the case where both signals are FM modulated.

The complex envelopes of the desired and interfering signals

may be written in the AM-FM case as

z (t) = A1 (I + aI cos 21T4 1 t), (3.112)
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and 2
s sin2

z2 (t) A2 e . (3.313)

As before, a is the AM modulaticn index, a is the peak FM

deviation, the ý's are the modulating frequencies and the A's

are (complex) amplitudes. Since the terms q1 (tvl) and

q3 (t- lv1, -V ) involve only z (t), they will be the same as

in the AM-AM case. The remaining term of the output complex

envelope, q3 (t-V1 , V2 ,-V 2 ), appears in Table 3.5. These terms

may be used to calculate the coefficients necessary to evaluate

the IF spectrum according to Eqs.(3.86), (3.87), and (3.88).

The output of an AM detector may also be calculated from Eqs.

(3.94) and (3.95).

In the case of FM-FM signals and interference, the complex

envelopes of the input signals are assumed to be

j - sin 2ri4t

1( = A le (3.114)

and
I•2j - sin 2•Tqkt

2 (t) A2 e (3.115)

The output terms ql(t-vl) and q 3 (t;, *,V -Vl) which depend only

on z 1 (t) will be the same as in the FM-AM case. The remaining

term, q3 h(t~l1 , 2 ,-v 2 ), has been evaluated and appears in

Table 3.6. These terms give the output of an FM detector, using

Eqs. (3.107) and (3.108).
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TABLE 3.6.

FREQUENCY POAER-SERIFS NONLINEAR CA.•ONXC
MODEL EXPRESSIONS FOR SINUSOIDAL MODULATiON

YP-FM CASE

q }.i• ~q 1 ltt 1 )-

- Same as in FM-AM case6
Sq3 (t• IV 1I,.•i)"l

q (t VL *,V2 ,_v 2 ) = q 3 (tt-)

21 (H3 + al bH (f)

+ a bfI3 (os jost
2[bf2  If~-bf 3Ifr 2J

where -v -
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3.6 Simplified Frequency Power Series Canonic Model

It is instructive to summarize the essential simplicity of

the fteuency power series canonic model for a particularly

simple yet highly important example. It is assumed that the

input to the quasi-linear system consists of a desired signal

Re[S 1 (t)eJ2•flt] together with two interfering signals

RerI 2 (t)eJ2 ]f2t) and Re[I 3 (t)eJ2 f3tJ. Each input is a modu-

lated carrier so the complex amplitudes for each are time-

varying. If we assume that the bandwidths are not excessive

compared to the frequency-selectivity of the system we can

retain thf significant portion of the canonic model for modu-

lated signals by simply retaining tle leading terms in the

frequency power series. The leading term can be readily ob-

tainod by letting the complex amplitude of the unmodulated

signals simply assume a time-dependence.

Summarized in Fig. 3.6 are the several linear and nonlinear

responses of our simplified model. The inputs to the system

shown in the diagram are the signal complex amplitude SI(t) and

the complex amplitudes 12 (t) and 13 (t) of the two interfering

signals!?-e also show internal equivalent noise referred to the

system input. It has been. assumed that second-order and terms

higher than third-order are negl2gible. These terms could be

added at the cost of conuiderable complication. It has also

been assumed that the signal component at fl is of prime interest

and attention is to be devoted to signal degradation at or near

f,, caused by the interference rather than degradation of the

interference by the signal. We, therefore, have omitted many

third-o•e~t terms contributing at or near f 2 tnd f 3 as well as

the gain compression term at fie
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Consider first the interference situation in a linear

system. Except for the receiver noise, the signal linear out-

put is then disturbed only by the linear response of the system

to the interference. The output can be written

y(t) = Re [Slct) H1(f1) ai2f 1 t

j2Trf 2t+ 12 (t) HI(f 2 ) e2

j2rrf tS....+ I3(W Hl(f) e ],(3.116)

where the first term is simply the amplified signal while the

last two terms are commonly referred to as co-channel and/or

adjacent channel interference. The signal path shows up in

Fig. 3.6 as the direct path through the middle of the signal

box. The interference is shown in the box next to the bottom

of Fig. 3.6. Many investigations of the effects of electro-

magnetic interference are based entirely upon the effects of the

linegi interfering terms. The transfer functions included through-

out this chapter, as well as those explicitly illustrated in

Fig. 3.6, include equivalent amplifier nonlinear transfer func-

tions (See Chapter 1, Section 1.9.1). If the demoduil-• de-

tector intended to recover the desired modulation contained in

s 1 (t) follows the system shown in Fig. 3.6, it is frequently

convenient to write Eq. (3.116) in the form

j2nflt

y(t) = Re[q(t) e ], (3.117)
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where the complex envelope q(t) is I

q (t) Slt HI(fl1

+ 12 (t) HI(f 2 )e 2

J21T(f 3- fI) t
+ 13 (t) H 1 (f 3 )ee . (3.118)

The characteristics of the demodulated signal including the

effects of the interference are examined by investigating the

properties of q(t). For example, y(t) might be the output of

a receiver IF amplifier, that is, the predetection r"Wir out-

put. The post-detection receiver output would be proportional

to the envelope of y(t), pr jq(t)l for an AM demodulator. The

output of coherent demodulators as well as frequency and phase

demodulators can be similarily investigated by examining other

mathematical operations upon q(t). These operations are frequent-

ly large signal nonlinear operations that can not be easily car-

ried out without the assumption of a large signal-to-distortion

ratio.

If we next introduce the third-order nonlinear modification

to the linear responses that become significant either in dis-

torting the desired signal or in making its detection more dif-

ficult in the presence of noise or interference we must add

the aditional signal and interference components illustrated in

Fig. 3.6. (As described earlier, we are illustrating only the

first term in the frequency power series canonic model).
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Consider first the signal. Instead of just the linear signal

we now have at the output at frequency fl.

y M Re{[S 1(M H (f 1)

+ III 2(t) 21 (t) WH 3 (fl 0f 2 ,-f 2 )

2 ~l 3( 12 31 t H fu 3 a-f3)le I.

(3.119)

This output component is shown in Fig. 3.6 as the output from

the signal box at the top of the diagram. .The phase of H 3

relative to H 1 is frequently sucn that the two interfering terms

subtract from the first term to reduce the total signal compo-

41% 1t fl" Hence, the term desensitization. It sometimes

happens, however, that the relative phase of H3 is such that

the resultant signal can increase rather than decrease. The

presence of modulation on the interference terms 12 (t) and 13 (t)

also introduces a transfer of modulations from the i t;ierence

to the signal via the t I2 (t)12 and 13 (t)(2 terms. Therefore,

both crossmodulation and desensitization nonlinear effects have

a common origin and are thus associated with the same box in

Fig. 3.6. Observe that the relative phase of H3 with respect

tov4 significant.

The presence uf the two interferers at frequencies f2 and

f3 near the signal frequency f1 frequently can mask the presence

of a weak signal by the third-order intermodulation di-6tortion
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terms at 2f -f or 2f -f These terms are contributed by
2 3 3 2

the box labeled third-order intarmodulation distortion in

Fig. 3.6. In particular, the output components are

y (t) =

3rd order

intermo-
dulation

3, j2TT (2f 2- f 3 )t
Re--34 172(t)l 23(t 3(f2#f2,-3)

+ I I2 (t)113 (t)1
2 H3(f 2 ,f 3 ef3 )e 3f2 (3.120)

If either of these terms is significant relative to the signal

term the signal is distorted or, if weak, may be completely

masked. A common criterion for adequately low intermodulation

distortion is that the intermodulation distortion power be no

larger than the receiver noise in some stated bandwidth. Ob-

serve that the phase of H3 in the intermodulation distortion

calculation is not of interest since the nonlinear responses

are not coherent with the signal at fl"

Finally, the demodulation detector output characiteristics

can be investigated by adding up the several linear and non-

linear components to generate a composite predetection signal.

The complex envelope q(t) of this signal can be examined to

investigate the post-detection properties of the demodulator

output. These ideas can be expanded to include additional

terms in the frequency power series or may also be applied to

the tapped delay line wideband signal canonic model. Both the
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time-domain and frequency-domain structure of the system demodu-

lator output can in principle be examined. Specific qxamples of

several practical situations are developed in associations with

the VHF receiver modeling work described in detail in Chapter 7.
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Table 3.7

The List of Key Symbols Used in Chapter 3

B bandwidth of the input component xl(t)

Bi bandwidth of the i-th input component x i(t)

I abbreviat;..orL for the vector (fl f2* "" "fn)

fi the i-th frequency coordinate

gny(t 1 ,*---tn) the slowly varying complex envelope of the n-th

order nonlinear impulse response to n intermodu-

lating carrier impulses with the ordinates

(tI,• , tn) centered on frequencies vi' 2'" ""n

gnL(t) abbreviation for q (i- l~o*,-tn)

"Gn (f 1,..,fn) multivariate Fourier transform of gn ( i.e.,

the n-fold spectrum of the complex envelope of

the n-th Qzrdr impulse response

"G n(f) abbreviation for G nj(fI, ••,f n)

4n (tl,*.--tn) the envelope gnU(t) after bandlimiting

!n(t) abbreviation for 'n (tl •,'*tn)

G n(f I--,f n the n-fold spectrum of g (t 1' *. i.e.,

the multivariate spentrum Gn (f) bandlimited in

qach ordinate to the set of bandwidths (B,.**.,Bn)

Gn (f) abbreviation for • (f • •,* f n)

hn(tVil*It n)P ythe multivariste impulse response of a nonlinear

hn(t) abbreviation for hn(tI, •• tn)

R n (f 1 o n) multivariate spectrum of the n-th order impulse
response with each input having its Dwn frequency

ordinate f,,"""'f

H n() abbre iation for Hn(fl ,...fn)

i index, ranging from I to n
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Table 3.7 (Continued)

k index identifying one of the K input components

in the one sided spectruml or the index of input

frequency zones, 2K in all, in the two-sided
spectrum

ki index of one of the n factos in the intermodu-

lation product wh.UA identifies one of the 2K

frequency zones

Mk N coefficient denoting the multiplicity of. each of

the 2K waveforms indexed by k, zk(t), in the

intermodulation product
M4 number of distinct frequency zones in the inter-

modulation product

n order of response, or the number of intermodulat-

ing zones

Ni number of taps in the delay line for each of the

• n input components in the intermodulation product

zkM(t)

... number of taps in the delay line for each of the

2K input components zk(t)

0 abbreviation denoting the vector (0,0,---,0)

p order of a term in the Taylor series expansion of

n-th order impulse veaponse spectrum

Pi order of the derivative with respect to f in the

term of order p in the Taylor series expansion
P(t: " *-,Vk ) product of intermodulation of the n input compo-

nents at Vkl',--'-kn as it appears et the output

in the frequency zone centered on the sum fre-

quency Vkl+.-.+Vk for a system with n-th order

impulse response spectrum Hn (fl'""'fn)
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Table 3.7 (Continued)

P(t;_Y) abbreviation for P(tjVk,..., vkn)

qq(t) (t1 slowly-varying composite complex envelope

at V.

qnY)= qn(t7 _V) slowly-varying complex envelope o•. the n-th
order nonlinear output component Yn (t) due to

intermodulation products of the inputs at _y
0nv(f) Fourier transform of %,(t)
ri ordering number of a tap in the delay line for

zi t)
l•ect x rectangular function defined to be unity for

'• txt<1/2 and zero elsewhere
sinc y (sin ry/(Try)

t abbreviation for the time coordinates (t,*..*,t)
T spacing between taps when all the delay lines

have the same tap spacings
Ti spacing between taps of the delay line of zi(t)

x (t) input waveform

xk(t) one of the K zonal components of the input wave-

•, form

XWf) spectrum of xWt)

Xk(f) spectrum of xk (t)

y(t) output waveform

Yn(t) n-th order output component of a nonlinear system
Y(f) spectrum of y(t)

Y n(f) spectrum of Yn (t)
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Table 3.7 (Continued)

yn•(t) = y(t•v) n-th order output component of a nonlinear sys-

tem arising out of the intermodulation of input

components centered .at VI. v2, V

,zk(t) complex envelope of xk(t)

i(t• the first derivative of zk(t)

M the p-th derivative of zk(t)

Z 1f) the spectrum of zk(t)
k
V sum frequency of all the intermodulatix-g carriers

V the set of carrier frequencies (v
V, carrier frequency of the k-th input component
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CHAPTER 4

LARGE EXCITATION NONLINEAR ANALYSIS

4.1 Introduction

The most significant nonlinearities which produce nonlinear

distortion in a receiver are found in electronic devices such as

transistors and vacuum tubes. The approach to distortion analysis

is conditioned by the extent to which the important device non-

linearities are excited. we distinguish between the two cases of

mild and strong excitation. Distortion analysis for mild excita-

tion is adequately determined by the use of time-invariant Volterra

series. For the determination of distortion under strong excita-

tion conditions we must utilize the total, instead of the incre-

mental small-signal, device models, as well as alternate analysis

methods. Four approaches to the analysis of strong-signal nonlinear

distortion are possible. These are:

1. Direct Time-Domain Approach

The nonlinear differential equatio0u of the circuit are
written, and the circuit is driven by the total input
signal. The equations are integrated for a sufficient
length of time for all transients to have decayed, and the
resulting waveform analyzed by numerical Fourier transform
techniques to determine the various frequency components.
If the total input signal is periodic, the numerical inte-
gration can be speeded up by using Newton-Raphson techniques
to find the periodic solution of the nonlinear differential
equations.
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2. Direct Freuency-Domain Aroacch (Periodic Solution)

By expressing all appropriate curfents and voltages in a
Fourier series, a set of nonlinear infinite matrix equations
may be written. There will be one set of equations for each
frequency component of interest with a nonlinear part of
each equation due to the circuit nonlinearity. Solving
the system by an iterative method, such as Newton-Raphson,
requires two Fourier transforms per step in addition to the
arithmetic associated with the iterative method. The method
requires the truncation of infinite matrices. Accuracy can
not be readily controlled and computation time is large.

3. Time-Variant Volterra Series Perturbation Method
(Time-Domain)

In many cases, the large excitation consists of the sum of
a number of small signals plus one large signal such as a
local oscillator waveform. The nonlinear differential
equations of the circuit are written, and the circuit is
driven by the large-signal alone. The resulting time-domain
response of the nonlinear circuit is found by numerical
integration. Then, using this solution as a time-varying
operating point, the small-signals are introduced in a
time-domain perturbation analysis of the nonlinear circuit,
and thbwM ialting linear differential equations solved in
the time-domain for the time-varying nonlinear transfer
functions.

4. Time-Variant Volterra Series Perturbation Method
(Frequency-Domain)

The nonlinear circuit is driven by the large-signal and the
operating-point response is determined by numerical inte-
gration identical to that doscribed in the previous method.
The nonlinear transfer functions are, however, determined in
the frequency-domain in a manner similar to the mild excita-
tion case. The resulting time-variant nonlinear transfer
functiOJW4Jre used to determine the total response to both
the strong-input and the small signal. The method requires
the truncation of infinite matrices. It has not proved to 4
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:be a yatisfactor technique because the accuracy of the
distortion solution can not be readily controlled, and
also because computation time is very large.

The important difference between the direct approach and the

* 4 ime-varying Volterra series approach is that the direct approach

attempts to solve the nonlinear state- equations for the total ex-

citation while the time-varying Volterra approach solves directly

for the small-signal nonlinear responses by a perturbation method.
Previous work in frequency-domain large local-oscillator pertur-

bation analysis, as typified by Peterson and Hussey (1939), and

Peterson and Llewellyn (1945), was limited to linear equivalent

circuits. Of the four approaches, only (1), the direct time-domain

and (3), the time-domain time-variant Volterra series, have the re-

quisite accuracy and compatibility to be considered for use in non-

linear distortion analysis. Their application is the subject of

this chapter.

Before0dbarking upon the mathematical. details necessary to

formulate and solve a general nonlinear problem it is helpful to

outline come preliminary requirement*. First, the circuit must

be described dynamically by a set of ordinary nonlinear differen-

tia:. equations in terms of the state variables of the system.

Fundamental introductory material relevant to the state formula-

tion of linear time-varying as well va nonlinear systems of o02di-

nary differential equations is given by Polak and Wong (1970),

Schwarz and Priedland (1965), Kim and Meadows (1971), and

Zadeh and Desoer (1963). The nonlinear state equations must

be numerically solved in order to find time-domain solutions.

The differential equations of electronic circuits are of the
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class called "stiff" equations" (Callahan, 1972) because they
have both long and short time constants. Techniques for solving 7W

systems qfE•-Z equations have been developed [Gear (1971)).

Many of the cases which will be discussed will involve determinn-

ing the periodic solution to nonlinear differential equations.
Solutions can be found by applying Newton-Raphson nonlinear

iteration techniques as developed by Aprille (1971, 1972).

4.2 Large-Excitat.on Time-Domain Formulation

The fundamental starting point for the analysis of strongly-
driven non]ýWWT circuits, or systems, is the set of nonlinear
differential equations, or state equations, characterizing the

nonlinear dynamical bebhvior of the system. For example, a
very simple single-loop nonlinear circuit involving a fixed
resistance R, fixed inductance L, and nonlinear resistance iz'
the form of a diode is shown in Fig, 4.1. The circuit stores
energy in the inductor magnetic field and, therefore, is a non-

linear circuit with memory. The source voltage u drives the
system to produce a loop current j with the instantaneous voltage
ud across th iode nonlinearily related to the instantaneous
diode current which is also the loop current J. Direct applica-
tions of Kirchoff's voltage law gives the nonlinear ordinary
differential, or state equation

¾. AJ n ud (j ) uSd j 0- + -- (4.1)
dt L L

Thus the single-loop circuit with a single energy storage element

results in a scalar state equation in one variable. Solution of
the circuit is understood to mean determination of the time-
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Pig. 4.1. Single-Loop Circuit with Energy Storage.

*Ap

U Ud

Fig. 4.2. Broadband or Resistive Single-Loop Example.
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dependent current j as forced by voltage source u for an initial

valu%,a Inductor current. The specific nonlinear relationshLp

between diode voltage and current must be known to obtain \the

solution. For example, for a semiconductor diode

dud~

It is understood that the excitation u is sufficiently large

that the problem is a large-signal problem and, therefore, that

small signal approximations to Eq. (4.2) are inadequate. A

smallni •Tial approximation inpies that aud <4 , "where ud is

the diode total instantaneous voltage.

4.2.1 Direct Solution by Numerical Intearation

The direct solution of Eq. (4.1) in the time-domain LInvolves
numerical integration performed on a digital computer with suf-
ficient precision to obtain the required result. We shall not
embark at this point upon a discussion of numerical solution

methods but, instead, will concentrate ipon alternative approaches
to the ttrongly-excited system. In the process of doing this we

shall subsequently recognize that the direct time-domain numerical

analysis methods are also needed to implement perturbation analysis
methods. We shall later in the chapter review and discuv&,,-w varie-

ty of numerical methods for obtaining solutions to the classes
of nonlinear differential equations that are of interest.

4.2.2 Power-Series Solution for a Memoryless Example

Small-signal Volterra series methods could be applied to
obtain a series solution to Eq. (4.1). A typical example of

the difficulties that arise for a strong excitation situation
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occurs for the 3.elfentar, circuit thown in Fig. 4.2. The system

is now memoryleas and the instantaneous relationship between

the inpuet voltage and response current is given by the trans-

cendental equation

"j - Le a'a")- 11. (4.3)

where we have assumed that Eq. (4.2) describes the nonlinear re-

lationship between diode voltage and current.

Power-series solutions to Eq. (4.3) have been obtained by

a number of investigators, e.g., Herishen (1967), and Lotsch

(1968). The procedure is to write Eq. (4.3) in the form

(j + I)eaRj Is ecu (4.4)

and expand the left-hand side in a Taylor series in j about

j=0. This step is followed by a series reversion [See Abramovitz

and Stegun, p. 16(1964)3 to obtain j as a power series in terms

of the source voltage u. The method has not proved adequate for

reasonable values of current J. The reason for this is that,

under normal interesting circumstances, mRj >> 1 and the power-

series expansion requires an enormous number of terms for ade-

quate convergence. For example, the requirement for a few terms

limits aRj 9 1 or

j * (4.5)

For semiconductor diodes, - 25 MV. If R 1000 0, the maximum

current is limited to 25 uA. .t is not unusual to drive a diode

in a mixer application with a peak current of 5 mA through a

resistive impedance of 100 ohms. For these values, •j - 20.
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4.3 Large-Signal Perturbation Method

Significant progress can be made towards an analysis of

strongly-excited nonlinear communications receivers by extending

the nonlinear transfer function concept to strongly-dri'en net-

works through recognizing that the large signal driving the sys,-

tern may be a known (and often periodic) excitation wb-Iht, the un-

known excitation will frequently be small. An important example

arises in the case of frequency-converters or mixers. The local-

oscillator level is frequently large while, over the range of sig-

nificant interest, the input signal is small and arises from a

multivaignal environment such that the signal components may con-

sist of several unknown waveforms. One is often interested in the

nonlinear distortion properties of a frequency-converter under

these circumstances. Typical questions needing to be addressed

include how the intermodulation products resulting from a two-tone
small-signal excitation depend upon the local-oscillator waveform

and drive level. A method is needed that is applicable when there

are significant frequency-dependent elements present in the non-

linear system.

"The circuit shown in Fig. 4.1 provides a simple example to
begin an investigation when the strong-excitation is known and

the small-signal excitation is arbitrary. The network has

frequency-dependent energy storage. The state equation-fE9cribing
the nonlinear and time-dependent dynamic characteristics of the

current j(t) resulting from the voltage excitation u(t) for the

nonlinear circuit was given in Eq. (4.1) which can be written in

the form

Ld j(t) = -Rj(t) - ud(j) + u(t)W (4.6)

where R and L are constants and ud(j) expresses the nonlinear

dependence of the diode voltage ud (t) upon the loop currer (t).
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We seek a steady-state forced solution of Eq. (4.6) under the

assumption that

u~t M v (t) + v tM,
IT. 0

where v (t) will ze assumed periodic and is the large excitation

voltage. Voltage v(t) is a weak excitation with arbitrary time

depe rc. Both v (t) and v(t) are real time functions. Let
0

the period of v (t) be T, so that

v 0 (t) = v 0 (t+T), (4.8)

4.3.1 State Equations for Strongly-Driven and
Weakly-Driv^.n Equivalent Systems

In this section we shall derive two state equations for the

system defined by Eq. (4.6). The first equation, called the

operat."n -point state equation, will characterize the current

i. resulting from the strong excitation vo. The second equation,

called the perturbation equation, will characterize the current

i resulting from the weak excitation v. It will be shown that

the weak-signal state equation depends strongly upon o0, the

solution of the operating-point state equation.

By hypothesis

j(t) = i (t) + i(t), (4.9)

where, as noted above, i (t) is the large-signal response and0
i(t) is the small-signal response. Also, let the diode voltage

ud(i° + i) u (i + Vd (4.10)
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where udi is the diode voltage due to the strong axLne v

and vd (t) is the additional diode voltage associated with the

weak excitation v(t). We may expand u d(i + i) in a Taylor

series expansion about the current i° to obtain

au d 1 a 2 I d 2
•7d'io+i) = ud (i°) + •--+." 2 U, 2j-2

o 0 b 21 bi2 .14. 1
J=i0 

0 0

We recognize immedia+.ely that vd is a nonlinear function of

current i given by

• vdU;i°) 0 U d (i°0+1) " u d(i°)

r 1 (t)i + r 2 t)i 2 + + rn(t)in + .. , (4.12)

where the coefficients of the Taylor series, given by

r C), (4.13)rn6t n! u d

are time-varying and depend upon the strong-excitation time-

varying current i .0

With these preliwinary resulte, we may now write the s-'stem

state equation in ;.O-. o:;

di di
L +L = -Ri Ri -d ) - vd (iio)÷,+o+v, (4.14)
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which may be separated into two differential equations which must

be simultaneously satisfied. They are the

Operating-Poiat Equation, WYE)
di

L t= -Ri - u (iU) + v (4.15)
dt o do0

and the

Perturbation Ecjuation (PE)

L = -Ri - v (iio) + v. (4.16)
dt d 0

Equation (4.15) is the operating-point equation .(OPE) whose

solution characterizes the time-varying state of the circuit

as driven by the strong excitation vo For example, if v (t)

is a periodic local-oscillator waveform for a mixer, the solution

i 0o(t) describes the periodic response to the local-oscillator

waveform. Note that Eq. (4.15) is a nonlinear dif£'rential

equaticn with time-invariant coefficients L and R. The desired

solution to periodic excitation v0 is the periodic response io.

The second differential equation given by Eq. (4.16) is the

nonlinear perturbation equation (PE) whose solution characterizes

the response i(t) of the network in Fig. 4.1 to a small-signal

excitation, v, while the network is simultaneously being strongly-

driven by voltage v°0 to produce strong-excitation current i.

In Fig. 4.3 we show a small-signal equivalent circuit whose

response i to voltage v is identical to the solution of the per-

turbation equation when the nonlinear dependence of the diode
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v t) Vd( t

jn r(t ),n

F'ig. 4.3. Small-Signal Equivalent Nonlinear
Time-Varying circuit.
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voltage vd is given by the time-varying Taylor series expansion

given by Eq. (4.10. The significant fact to observe is that the

unknown current i forced by the excitation v requires the solu-

tion of a time-varying nonlinear network oUftiaining an energy

storage element (the inductor). The time-variation is caused

by the time-dependent set of coefficients [r 1 , r 2 , ... # Vn' "'" "

The nonlinearity is caused by the dependence upon the current set

liu, i i , ... , i n.... We are interested i-P current i when the

set of coefficients [r 1 , r.,, r 3 , ... rn ... ] is periodically time-

variant and have beer previously determined from Eq. (4.13) by

having numerically solved the nonlinear operating-point equation

for i .
0

4.3.2 Power-Series Perturbation Solution Example

If we set L=O in both Eqs. (4.15) and (4.16) we have the

operating-point equation and perturbation equation applicable

to the resistive network shown in Fig. 4.2. For a semiconductor

diode characterized by Eq. (4.2), the operating-point equation

becomes

= I eav -R 0) . (4.17)

The solution of this transcendental equation for a known waveform

v (t) gives the diode operating-point current i (t).

For L=O, the perturbation equation becgos

v Ri + (io a 0 )

[R + rI(t)]i + r 2 (t)i 2

+ .+ r (t)in' + (4.18)n
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where rn (t) is,.ein by Eq. (4.13). For the semiconductor diode

we have

...... rn (t) -n 1 +7bnz
n a n1 bn

J=iOt (4.19)

The power series given by Eq. (4.18) can now be reverted [Ambramovitz

and Stegun, p. 16 (1964)3 to express the small-signal current i in

terms of small-'AJ. source v. The result is

i(t) = Ma (t) v (4.20)
q= q

with the first three time-varying coefficients given by

i +s
0 5

ac) 1 M I + aR(i + Ir) ' (4.21)

1 0 + I
a 2 (t) CL (4.22)

2! [I + mR(i +I

3 (i + I )[I - 2aR(i + I3
a 3 t) 3 M 3 5 (4.23)

3l + O (i + I

Eq. (4.20) is a solution of the nonlinear resistive diode circuit
and is valid for any value of current i obtained from the soal

0
for theoperating-PNMLEq. (4.17). If the large excitation v 0
peLiodic, i is also periodic. A good example arises when v is

0 0

the local-oscillator waveform for a diode mixer. It follows also
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that the time-varying coefficients a are also periodic and, there-
q

fore, have a Fourier series representationin terms of harmonics of,

the local-oscillator frequency. Then -•

i(t) - E' vq(t) a sin(2Trpf t +p (4. 24) ,,,,.
q-=l p=O o p

where a pI and %pq are the amplitude and phase of the Fourier ex-
pq thpansion of a q(t) for the p harmonic of the local-oscillator fre-

quency fo0

Figures 4.4, 4.5, and 4.6 show, on W2ormalized linear scale,

the coefficients a 1 (t), a2 (t) and a3 (t) for one period of a sinu-

soidal local-oscillator voltage waveform. Each of the coeffic-lents

has been evaluated for three values of local-oscillator peak cur-
rent, namely, 2.6 mA, 11.8 mA, and 21.6 mA. The effects of increas-

ing the local-oscillator drive are clearly evident. The first-order

coefficient, a1 (t), approaches a rectangular pulse, while the second

and third-order coefficients approach waveforms which have rapid,

impulsive and doublet-like waveforms at the tiL-.e intervals associ-
ated with the sinusoidal local-oscillat.'voltage passing through

zero. If the local oscillator were a square wave, aM(t) would be

a square wave and the spikes would have zero width. Thus the dif-
ference in distortion between a square-wave and a sine-wave local

oscillator drive is contained in the transi-tion regions. From these
waveforms one can clearly see the desirability of operating a diode

mixer with a large local-oscillator drive in order to make transi-

tion regions as narrow as possible.
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Figures 4.4 through 4.7 also clearly show the desirability of

using an integration algorithm which incorporates a variable s4 p

size when the nonlinear perturbation equation must be numerically

integrated. The time-varying waveforms are divided into regions

of little change in which large integration step sizes would be

appropriate but there are very significant short intervals in which

great activity takes place. A small step size would be needed in

such a region.

4.3.3 Separation of the Small-Sional Perturbation System into to
Time-Variant Linear Subsystems

If there is energy storage (L#O) in our simple example as

we have described in Section 4.3.1, the solution to the perturba-

tion equation (4.16) can not be written in a power series form as

we have done in Section 4.3.2, Sq. (4.18).

We have noted in Section 4.3.1 that the current i(t) is the

response of a time-variant nonlinear system having memory. The

fact that the circuit has memory necessitates the use of a difk-
ential equation approach. The current i(t) ran be expanded in a

time-variant Volterra functional series

i(t) - i i (t), (4.25)

n

where the first order, or linear, term is

(t) h (t, 'i v(t-r) IdT--
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The so•e9A3 der te•.m in

t ,
i 2 (t) . J 2 1tr l,, 2 ) v(t- Iv(t-,¶ 2)d IdT,2  (4.27)

and the general n'th order term is

t
in(t) =. j "" ''.In) v(t-,r ) ie. (4.28)

n -0 imi

ror the problem at hand, v is the small-signal input and the i n(t)

are the individual order nonlinear responses of the system ex-

pressed in terms of the time-variant Volterra kernels hn-

We shall now show, by employing a decomposition of currents

by nonlinear orders as given by Sq. (4.25), that the time-varying

nonlinear system can be decomposed into a series of linear time-

-7ariant subsystems Whoso solutions are the nonlinear responses of

individual order. This property depends only upon the additive

properties of Eq. (4.25) and does not require the use of th6 integral

time-variant expression for the individual terms as given by Eq.

(4.28).

We wish to solve the periodically time-varying nonlinear per-

turbation equation [See Eqs. (4.12) and (4.16)),

di R Er(ti k +v,, (4.29)

where

i E in (t). (4.30)
n
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* We shall seek the solution here for terms including up to third-

order nonlinearities. Hence* we are interested in the terms

3 k2 t3
3 r (t) i r (t) i + r 2 (t) i + r 3 (t) (4.31)

k-i

where, to third-order nonlinearities,

i iI + i 2 + i3V (4.32)

12 1 2 + 21l1 (4.33)

i3 = 3* 1(4.34)

To third-order nonlinearities, Eq. (4.29) now reduces to

di 1  di 2  diL
L dt . dt dt-

Ri - Ri2 - ;i3

1 2 3

SrliI - rli2 - r i

11 12 13
- ril - 2r~ii

- r 3 i 1
3

+ v. (4.35)

This result miy now be separated into a time-varying linear dif-

ferential equation for each order nonlinearity. For first-order,

we have
di1d-- £-[R+rl(t)) i+ v.
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For second-order

di2 2
L d - [R+r l(t)3i 2 - r 2 (t)il (4.37)

For third-order

S3 (4.38)
L Tt - rR+rl(t)1i 3 - 2r 2 (t) ili 2 -r 3 (t) il(4

For each order nonlinear component of current an equivalent linear

time-varying circuit can be drawn, as illustrated in Fig. 4.7.

Note the dependent source exciting the second-order circuit.

This source is known once the first-order system is solved. In

a like manner, the sources exciting the third-order system are

known from the solutions of the first and second-order. Note also

that intez•*ation between the first and second-order currents ox-

cites a third-order current.

4.3.4 Small-Signal Eguations for the Time-Variant
Nonlinear Transfer Functions

The time-varying nonlinear small-signal response problem has

now been reduced to a set of sub-problems involving the solutions

of linear time-varying networks. Since linearity now applies for

small signals, the problem can be formulated in a form suitable for

arbitrary waveforms. For example, for the linear component of

current, we have

.(t) h(t; i v(t-¶I) drI, (4.39)
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a. First-order linear equivalent circuit.

R

r,(t)

L r2(t)L12

b. Second-order linear equivalent circuit.

2r.( t) i 112

-r3( t) 1,3

%LP

c. Third-order linear equivalent circuit.

Fig. 4.7. Decomposition of the Nonlinear Circuit into
Linear Sub-Systems for each Order Nonlinearity.
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Swhere v(t) is the small-signal excitation.

Since

S° r 2T•ftdf

vit) = V(f) ej dfo (4.40)

it is convenient to determine Ii(f;t), the frequency spectrum of

il(t), by the product form

1 1i(f;t) = H (t; f) V(f)* (4.2)

where H1 (tf) is the first-order time-varying nonlinear transfer

function. Now il(t) can be determined by inversion to the time-

domain, or

iltW = J' H1(t~f)V(f)eJ2 •ftdfo (4.42)
--m

The question is, of course, how to obtain H 1 (t;f) and, for the

higher-order nonlinearities, the higher-order nonlinear trarake

functions Hn(tif lf 2 .*.fn). We shall nw show that the sub-

system differential equations for various nonlinearities, for

example Eqs. (4.36) to (4.38), can be put in a form from which

the required H can be obtained by numerical integration. The

solution Idikwn to be the periodic solution of a time-varying

linear ordinary differential equa%...,i.

4.3.4.1 First Order Transfer Function

v(t) U El (f)e j2ft. (4.43)

228



The first-order component of current for such an excitation is,

from Eq. (4.39),

il(t) = E1 (f)H 1 (t;f) eJ2Yft (4.44)

where

H (t'f) = J h 1 (t;I) ei 2¶rfl d¶I. (4.45)

Inserting the expression given by Eq. (4.44) into the first-

order system differential equation (4.36) and carrying out the

indicated differentiation results inl

L [d H, (t; f) + j2T~f H, (t;f)] E (f) e j2Tft

- [ + r (t)3 H 1 (t~f)EM(f)eJ2nft

+ E1 (f)e J2(ft (4.46)

Canceling common factors and re-arranging

L A- Hl(t;f) - .R+ rl(t) + j2nfL3 Hl(t;f) + I.
dt 111

(4.47)

Note that the bracketed term in the right-hand side of Equation

(4.47) is the time-varying linearized loop impedance. Equation

(4.47) is a linear state equation with a time-varying coefficient

r (t), the solution of which is tu time-varying transfer function

H (t;f). For the cise of interest, r (t) is periodic and known
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from the numerical solution of the operating point equation,

Eq. (4.15). Therefore, for any f and known R and L, H1 (t~f)

is simply the periodic solution of EquatiOn (4.47), a time-

varying ordinary linear differential equation. H is a complex

quantity, so both its real and imaginary periodic components are

required. Solutions are periodic since we have assumed the

strong-signal operating po'int equation to be periodic.

If the inductor L is zero, the circuit reduces to the

resistive diode circuit analyzed in Section 4.3.2, and, from

Xq. (4.47), H1(tf) is given by

H (t;f) 1 (4.48)
1 R + r1 (t)

For the semiconductor diode,

J(t) = siUs d - 1), (4.49)

or

ln[j(t) + IJ - ins = u d(t). (4.50)

Using Eqs. (4.13) and (4.50),

rl(t) = J +[ Is) (4.51)
1 =dr 1W =ýjlj~ji0'7 1 0+T81(.1

After substitution in Eq. (4.48), we finally have

a[i+Is]
H(t0f) (4.52)

1 l+ aR~iI 0 1
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This result is identical to the a (t) coefficient previously

found for the memoryless example in Section 4.3.2.

4.3.4.2 Second-Order Nonlinear Transfer Function

The differential equation giving the second-order nonlinear

transfer function can be found when the second-order •ystem is

excited by

v(t) = E ei 2 ,flt _r. + E2 eJ 2 rf2t. (4.53)

In particular, we are interested in the portion of the second-

order response containing the factor exp[j2r(fl+f 2 )t]. The re-

sponse is denoted by i 2 (t;f 1 +f 2 ). Inserting Eq. (4.53) into

Eq. (4.27) and retaining only the desired frequency term results

in

H2 (t;f+f 2 ) 2EIE H (t;fliff)e j2(fl1+f2) (4.54)

2 21 2 12 1 2where H 2 (t ; 'f f 2 ) t h 2 (t T,P, 2 )e -j J rf i rl e -j2 f2 T 2 d T 1d T 2"

(4.55)
2

From Eq. (4.37) we also need i (t) to complete the translation
12

to the frequency-domain. Again, only the components of i1 (t)

containing the factor exp[j2T(f 1 +f 2 )t) are of interest. For a

two-tone input,

i 1 Hl(t'fl1 )e j21Tfit + E2 H (t;f 2)ej2f 2 t (4.56)

from which
j2rr (fl+f2 ) t

il(tifl+f 2 ) = 2EIE2Hl(t;f )Hl(tif 2 )e . (4.57)
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Finally, substituting Eqs. (4.54) and (4.57) into Eq. (4.37),

we obtain

L d H2 (tfl, f 2 )- -rR + r 1 (t) + j2TI(f 1+f 2 )3I)H 2 (t*fl f2 )
dt

- r 2 (t) H1 (t;f1 ) H1 (t'f 2 ) . (4.58)

after common factors are cancelled. This equation is also a

linear ordinary differential equation with time-varying coefficients.

The periodic solution can be obtained by numerical integration for

known r 1 (t) and r2 (t) for frequencies f1 and f 2 "

The solution for L-0 is

H2 (t flf2) r(t) HI(t? fl) H (tI f£)
R 2 (rl(t) - " " (4.59)

Substituting Eq. (4.41) results in

.- r 2 (t)

H 2(t' filf 2 ) .r (t) 3" (4.60)
[R + r1(tW1

From Eqs. (4.13) and (4.50),

r 1 -1 (4.61)r 2 (t) - 1 0. +4 0 a

Putting r (t) from Eq. (4.51) and r2 (t) in Eq. (4.60) gives

2 i +Iu2 (titl 1 f 2 ) =•..---- 0 [+•i~S) 3"1.2
H (tIt SL_ 0 a(4.62)
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This result is the same as the a2 (t) coeffiefent of the second

term in the poer series solution given in Section 4.3.2.

4.3.4.3 Thir&.-Ordor nonlinear Transfer fynction

The third-order nonlinear transfer function for the system

describes the third-order system response when the system is

excited by

J 2rflt j 2Trf 2 t j 2f 3 t
v(t) = Ele + E2 e + E3 e (4.63)

In particular, we are interested in the portion of the third-

order response containing the factor exp[j21T(fI+f 2 +f 3 )t]. This

response is denoted by i 3 (tI f 1 +f 2 +f 3 ) . Inserting Eq. (4.63)

into the third-order term in Eq. (4.28) and retaining only the

desired frequency term results in

i.a(t;fl+f2 +f 3 ) 6E1 E2 E3 H3 (t; flf 2 ,f 3 )e 123 (4.64)

where

H trffffh -j 2TY (f 1 TI+f 2 r2 +f 3 'r 3 )
H3 (t, flf 2 ,f 3 ) j 3(t2l, 2 ,d 3 )e d 1dy2dT3

(4.65)

3

We also need iI, i 2 and iI, the driving terms of Eq. (4.38), to

complete the translation of the differential equation to the frequency

domain. Again, only components containithg the factor exp[j21T

(fl+f2 +f 3 )t3 are of interest. Since

233



Tr,

j 2Trflt j 2f 2 t
Sil(t) E1•Hl(t; fl) e + E2 H1 (t; f 2 ) e

+F 3 H(t f 3 e M, (4.66)

3

the required third4O~er component of i1 (t) is

i1
3 (t, fl+f2 +f 3 ) = 6 EIE2 E3HI(t, fl)Hl(tEf 2 )H (t;f 3 )

ji2i (f 1+f 2 + f 3 ) (47

NOW, if fi P fj 6 f, the component of i1 (t)i 2 (t) of interest is
j 2rr(fl+f2+f3) t

12E E3 Hl(t;fi)H2 (t;f ,fk) e 1 2 f (4.68)

where the overbar indicates a symmetrized nonlinear transfer func-

tion. Substituting Eqs. (4.64), (4.67), and (4.68) into Eq.

(4.38) results in

d•t H3 (t; fl, 2, 3) = - [R+rl(t)+2TTJ(fl+f 2 +f 3 )LI H3 (tT flf 2 ,f 3 )

-2r2(t) HI(t,- fl) H(tf2f

-r 3 (t)H 1 (tif1 )1l1 (t;f 2 )Hl (t, f 3 ). (4.69)
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Equation (4.69) is a linear ordinary differential equation with

time-varyin9 coefficients. An with H (tf) and H2 (tif 1 ,f 2 ),

•~~~ f2 2' 3)"
the solution for H3 (tI f1.f f3  with LO *fl be written expli-

3 2*
citly an in

3
-2r) H Wt H ,(t) r r(t) 1E1(t)

H 3 (t) (4.70)

where the frequency dependencies are omitted since the circuit is

broadband. From E-q. (4.59)

- r 2 ( t ) .2 .
(t) +(t) H It). (4.71)

2(t R +r I(t) 1

Substituting Eq. (4.71) into Eq. (4.70) and simplifying

2

2r 2 (t) - r 3 (t)Er 1 (t) + RI H 3(t)
23t)H 1.. Ct. (4.72)

3R + rl(t)]2

But

r 1 (t) M a(io+ Is) , (4.73)

r 2 Mt _ý 0 I..
2(io+ i ) (4.74)

r (t) - --.. . ,
3 31 (4.75)3M(io+ :1s 3•

0 2'
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Therefore -2

3 (i +T )[1-2aR(i +1 )3
H .(t)..0 A (4.76)SH3 t) 31 5s

' ~~~[1+LR (io+1sa.,"

Equation (4.76) is the same as the a (t) coefficient of the
3

third term in the power series solution found in Section 4.3.2.

4.3.3.4 Discus.S

Linear ordinary differential equations for the higher-order

nonlinear transfer functions may also be obtained by proceeding

in a similar manner. From Eqs. (4.47), (4.58), and (4.69), it
this seen that the differential equation for the general n -order •'

time-varying nonlinear transfer function takes the form

L d Hn(t;fl,f2 ... f -[R + rl(t) + 2lJj(fl+f...+f)LI

* Hn(tfl,f '2..fn)

+ nonlinear driving sources, (4.77)

where the nonlinear driving sources are given in terms of the

lower-order responses and the r n(t). The explicit form of the

nonlinear driving sources will obey the recurrence relations

derived in Section 2.2.4 for the time-invariant nonlinear trans-

fer functions.

To proceed fa•zP requires the solution of the linear

differential equations with time-varying coefficients derived

in this section. Once the transfer functions are found, the various

order linear and nonlinear components of current can be found
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from Eq. (4.44), (4.54), and (4.64). Our example throughout

this chapter has been a particularly simple single-loop situa-

tion. The method is, however, quite general but requires formu-

lation in a multi-variable matrix form to accommodate more

complex cases. We shall devote the remainder of this chapter

to outlining some of these matters as well as outlining several

approaches and considerations involved in the numerical solution

of the differential equations arising in the formulation.

4.4 Formulation of State Ecwuations

4.4.1 First Example

A more complicated nonlinear circuit example is illustrated

in Fig. 4.8. Both the diode current id and capacitor Cd are non-

linear functions of the voltage vd, or

i d ), (4.78)

Cd = Cd(vd)o (4.79)

An appropriate set of state variables for this network are the

capacitor voltage vd, the inductor current i3 and the capacitor

voltage v 2 . We now proceed to generate the state equations.

The nonlinear capacitor current is

dvd u -,(vd + v,2)
Cd ddtd R 1 id" (4.80)

The inductor voltage is
di3

Li2 v2 •%4.81)
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Vd

Cd R

U•) d Rp, L2 C2 v

Fig. 4.8. A Multiple-Node Nonlinear Circuit
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and, the current through capacitor C2 is

•,:.dv2 u -(v v2 v2
C2 -- 2 d 2 (4.82),2;- dt R1R R2

These three equations may now be written in matrix form

"0 0 0

13 _- i 3

. 1 _ 1. 1 _1 v2

V2  R 1Cz &2 C2  2 R1 R 2 2

Vd v 2  u

R RC R C R C
I d I d I d

+ 0 (4.83)

t1

R1 C2

where both id and Cd are nonlinear functions of the state variable

vd ani the overdot on the left-hand-side signifies the time deriva-

tive.

Equation (4.83) is in the form

=A x + f(x,u), (4.84)

where x is the state variable vector and A is a constant matrix.

The matrix ftWtlon f(x, u) accounts for the nonlinear terms. One

can absorb the first term and obtain the normal form of the state

equations in matrix form, or

• ' )v

where k is a matrix that is, in general, nonlinearly dependent

upon the state variables x and networXArcing function u-
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4.4.2 A Formal Method

We next present a more detailed description of how to generate

the state equations of more complex networks. The example leads

to a set of state equations of the form given by Eq. (4.85). We

follow the formal and general methods of Bashkow (1957), Bryant

(1962), and and Massena (1965) for writing the state equa-

tions of a network. Definitions required are:

i) A branch contains a single element only.

ii) A tree is a subgraph or subnetwork connecting all •
nodes but having no closed paths or loops.

iii) A set of links is the set of the remaining branches
of the network.

iv) A proper tree is a tree whose branches contain every
cap Xve element of the network plus some resistive
elements.

We note that a network may contain capacitors in a closed

loop or perhaps all trees containing every capacitor also contain

inductors. Any capacitor and/or inductor which prevents the w

formation of the proper tree-is called excess. In the state

variable network description for a network with excess elements

we add a capacitor across each excess inductor and an inductor

in series with each exceLs capacitor. These added elements

ultimatoly ai~Jgned zero value. Based on this formalism,

the procedure for writing the state equations follows.

i) Construct the proper tree for the network and remove
all sources by open-circuiting current sources and
short-circuiting voltage sources.
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ii) Assign current directions to each tree branch and to
each link.

Any link placed on the tree becomes part of a unique closed

path. Thus, each link current is equivalent to a mosh current

flowing in the path closed by the link, and it is possible to

form a ruXWT matrix relating the tree branch currents in terms

of the link currents as follows:

a) Label the tree branch current i and the link
current by I . a

b) If a tree branch is in a given mesh enter a +1(-l)
if the tree branch and link currents are in the
same (opposite) direction. Enter a zero if thetree branch is not in the mesh.

iii) Form the voltage matrix as follows:

a) Label the voltage across each link va and the voltage
across each branch by Va where the voltage drop is
positive in the same direction as the link currents.

b) If a tree branch is in a given mesh enter a +1(-l)
if the tree branch voltage drop is in the oppo;4te
(same) direction as the link voltage drop, Enter
a zero if the tree branch is not in the mesh.

iv) Form the combined voltage and current matrix using each
tree branch current ia written as CadVa/dt or Va/Ra and
each link voltage va written as LadI/dt or Ral..

This matrix still

a) contains unwanted terms proportional to Vk and it
on tb- left,

b) does not have the sources incorporated, and

c) has 'had no remodification due to augmentation.
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v) Eliminate unwanted variables.

vi) Remodify the matrix. Ncross each excess L there is
an added capacitor C. which has zero value. Setting
C. to zero,we in general have

ra
SI r v,/Ri + E k. Ij, (4.86)

and, since :L V - L

R (4.87)

it is possible to eliminate I and V using Vi and 1 in terms of

undifferentiated quantities. A similar procedure exists for the

link in ,V>'Ta L placed in series with the excess capacitor C a

4.4.3 A Second Example

As an example, consider the network of Fig. 4.9a. Orve

particilar proper tree which may be drawn is shown in Fig. 4.9b.

Capacitor C6 is excess, and the links are RI, R2 , R3 and L,

where L ha& been added in series with C6 . The current matrix

equation is formed using fhe branch currents as state variables.

In particular, meshes are formed by placing the links containing

I1, 12- 13 and IL into the circuit one at a time. The first

row of the current matrix defines the branch current i 4 , and

contains -1, 1, 0 and 0, since 11 and 12 are opposite and in the

same direction, respectively, as i4 and 13 and L are in ot)Bi

meshes. The total current matrix equation is given by
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R, R2 ¢

V
0  

.I R3

-. 4{C4 }C5 }07

(a) Given Circuit

+ v2 - +V 6 - + ..

R2  12 {i5  L IL 17 13

vi R, Vs 4 Cs V7 -C? R v3

(b) Proper Tree and Links (C6 is excess capacitor)

Fig. 4.9. Circuit.-ample.
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1 4 - 1 1 0 0 I
4 

1

i 0 -1 0 1 12

= (4.88)
i 0 0 0 1 1
6 3

i7 0 0 -1 -1 IL

Next the voltage matrix equation is formed. In particular,

closing the mesh with R2 rusults in V4 having the same polarity

and V5 the opposite polarity that v2 has, wblle V6 and V7 are out

of the mesh. Therefore, row 2 of the matrix contains -1, 1, 0, 0.

The total. voltage matrix equation is

v 1 0 0 0

V2  -1 1 0 0 V5

= (4.89)
v 30 0 0 1 V 6

vL 0 -1 -1 1 V7

The two matrix equations are now combined by substituting, in

general,i u -C Va or i = Va/R, v = L I or v a R I )
a a aa 

a. •L •

and including the source V (t). This results in
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4 4 C I -1 o0 0 V4

15 c5V 5  0 0 -1 0 1 V 5

1 66 0 0 0 1 V6

1 7 CV 7 0 0 -] -1 V7

Vl-V0(t RI1l-V0 1 0 0 0 T 1

v 2  R2 1 2  - 1 0 0 0 12

v 3  R3 1 3  00 oo 1 3

vL L IL 0 -1 -1 1 L

(4.90)

The state variables which are to be eventually retained are

V4 , V5 , and V7. P'irst, v 1 , v 2 , and v 3 are eliminated by setting

v! = RI1 = V4 + V0, (4.91

so that

I1 = GV + GIV0, (4.92)

where G is equal to 1/Ri. Similarly

12 = -G2V4 + G2V5, (4.93)

and

1 3 = G3V (4.94)
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so that the matrix differential equation reduces to

C4 V4  -(G 1 +G2) G2 0 0 0 V4  -G1

C5V5 G2 -G2 0 0 1 V5  0

C6 V 6  + 0 V0.

C7V7 0 0 0 -G -1 1 V7 0

L L 0 -1 -1 1 0 [IL 0

(4.95)
Next IL and V6 are eliminated. Since LI = -V5 -V6 +V7 and

L = 0, V6 = -V 5 +V7 which in used to eliminate V6 , Thus, using

IL = 6V6

V6 = IL/C6 -V5 + V7 (4.96)
6 6 5

which is used to eliminate I . Substituting Eq. (4.96) into Eq.

(4.95) results in

"C4V4 -(G1 + G2) G2 0 V 4 -G1

-c 6 7 + (C6+ C) V 5  G2 -G2 0 v 5+ 0 Vo.

+-C6 5 + (C6+ C7 ) V7  0 0 -G 3  V7  0

(4.97)

Finally the latter two equations
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-C 6 V7 + (C6 + C5 ) V5 = G2V4 - G2 V5  (4.98)

and

-C6V5 + (C6 + C7) V7 = -G3V7* (4.99)

are solved simultaneously for V5 and V7. Defining

D-- C5C6 + C5C7 + C6C (4.100)

the resulting state differential equations are-.

V4  -(CI +G2 )/C 4  G2 /C 4  0 V4  "-G1/C4

V5 G2 (C6 +C7 )/D -(C 6 +C7 )G2 /D -C G 3/D V5 + 0 V0.

V7  G2 C6 /D -G 2 C6/D -(G 3 C6 +G3 C5)/D V7  0

(4.101)

In order to show the effect of a nonlinearity, consider that

a 2 is a nonlinear function of V5 and V4  Then Equation (4.101 can

be writteii in the general matrix form

i(t) = A x(t) + G f(_x,u) + D u(t) =_x,u) (4.102)

where

x = V[5 (4.103)
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-G 1/V 4  0 0

A 0 0 -C6 G3 /D , (4.104)

16 3

C 4

G = (C6 +C 7 )/D r (4.105)

C6/D

f(x,u) d= (V4 -V 5 )G 2 , (4.106)

- G1/C4

D = 0 (4.107)

0

u(t) V0 . (4.108)

The matrices in Equation (4.102 have the following interpretation:

A is a square matrix, containing all the linear circuit elements,

while the vector f(xKu) accounts for all nonlinear elements. In

this case, there is only one nonlinearity, and the vector reduces

to a scalar. Vectors G and D, which are in the general case rect-

angular matrices, account for the way nonlinearities and inputs,

respectively, affect the state variables. The vector u(t), which

in this case is a scalar, is the vector of voltaga sources.
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Equation (4.102) can be also written in the normal form given

by Equation (4.85), that is, _• k(x,uh.

4.5 Multivariable Formulation of 4te PF•turbation Method.

In Section 4.3,W essential steps involved in determining

the small-signal responises of a nonlinear system which is also

excited by a strong periodic waveform have been presented in some

detail. The example developed was a single-loop circuit that

permitted formulation of the problem and its solution for a

system having memory in simple form. In the general case, how-

ever, nonlinear systems are not limited to single state variables.

Examples discussed in Section 4.4 are examples of multivariable

state equations. In this section we shall indicate the extension

of the formulation to circuits having many state variables. The

appropriate mathematical formulation is in terms of matrices, and

free use will be made of such formulation. As in the simpler

example from Section 4.3 we shall obtain an operating point

equation (OPE) and a small-signal perturbation equation (PE).

The OPE is nonlinear and has a periodic forcing function. The

PE is also nonlinear but can be decomposed into a set of linear

time-varying differential equations.

Very often the input to a receiver stage, or even the receiver

itself, is the sum of a strong signal and a much weaker signal.

For that particular case it is possible to break the network

solution into two solutions. The first solution, due to the

large signal, will result in a time-varying operating point while

the second solution, due to the small signal, will result in What

are called perturbations about the operating point.
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As is the case for all of the solution methods we must first

describe the particular network under analysis by a system of

state variable equations as given in Section 4.4. The general

form of the state differential equations for a time-invariant

nonlinear circuit as given by Eq. (4.102), is

_(t) = A x(t) + G f(x, u) + D u(t) = k(x, u). (4.109)

A is a matrix which accounts for all linear circuit elements while

the f(x, u) vector accounts for all of the-nonlinear elements

and vector u(t) for all the input or forcing functions. Very

often when the state variable equation is written A is time-

varying. Rectangular matrices G and D describe the way in which

nonlinearities and inputs, respectively, affect the state variables.

Equation (4.109) is converted into two sets by a perturbation

procedure. One set is formally identical to the original system

except that its solution gives the circuit operating locus. The

solution of the second set gives the small signal behavior, as

influenced by the operating locus.

In .)rder to avoid extensive complication we make the simpli-

fying assumption that all small-signal inputs appear at the same

input port and may therefore be lumped into one small input. For

example, this assumption is true for a mixer where the large sig-

nal may appear at a second input port. This assumption is made

in order to simplify the presentation and does not effect the

generality of the technique.

We begin the perturbation method by breaking up the input

u(t) into the small and large signal components. Formally, for

the general case, the input vector is written as
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u(t) u 0 (t) + t(t), (4.110)

so that the matrix D in Eq. (4.109) will have two corresponding

column vectors d2 and d and we may write

_D u(t) [9 IA_21 .0 (4.111)-2 -1

In the particular case where the small and la.vfe signals are u2 (t)

and ul(t), respectively, we have

Uo(t) = f (4.112)

and

T u(t) =[• (4.113)

The network solution vector x(t) is also written in the form

xl(t) = (otW + Ax_(t)* (4.114)

where tx(t) is the perturbation solution while x (t) gives the

time-varying operating point solution. Substituting Eq. (4.111)

and (4.114) into Eq. (4.109),
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R, M + t4t M ~ [ A et]

+ 9A ~t+3t~ a,() U(t)]

+ D (t) + AU_ (t)J (4.115)

Substituting the'4efinition of the differential of _f(x, u)

Lf Lo (t), IA-At) , u 0 (t) , AU (t)

_f x (t) + Ax (t)t ) M + Au- " _fix Ot), u .( Q).,
(4.116)

into Eq. (4.115), we may separate Eq. (4.115) into two equations:

_(t) _ -o (t) , u _ (t)] + A, u 0(t), (4.117)

which is the operating point equation (OPr) and

A((t) - AAt) M + G+ d2 A4f(t)D (4.118)

which is the perturbation equation (PE).

Equations (4.117) and (4.118) are the statement of the multi-

variable time-varying nonlinear transfer function problem. In the

OPE, only the strong excitation, which is applied to the original

circuit, is present. The OPE is a set of time-invariant nonlinear

equations, the solution of which is the system of time-varying

operating points about which the perturbations occur.
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The time-varying operating points applied to the perturba-

tion equation, Eq. (4.118), result in a system of time-varying

nonlinear equations. The solution to the perturbation equation

can be approximated by use of time-varying Volterra functionals,

the more terms of which are included, the better is the solution.

The solution of the multivariate perturbation equation follows

the same techniques as were used in solving Eq. (4.16), that is,

a Taylor series expansion is made of Eq. (4.118), vector driving

terms are inserted, and systems of equations of equal order are

formed.

Physically, the nth-order response of a network does not

depend upon the inclusion of higher-order re3ponses. For

example, the linear perturbation solution, which is the response

of the small-signal linear equivalent circuit, is the same no

matter how many terms are assumed in the mathematical expansions

of Af and ax. Similarly, the second-order response is independent

of any higher-order response through the second-order nonlinear

behavior of the circuit. Due to the choice of expansion in

Volterra functionals, each higher-order nonlinear response is

the result of excitation of the linearized system with inputs

which are created from combinations of lower-order responses.

Once again we remark that the linearized circuit is time-varying

due to and determined by the strong signal response, x (t). In

the case where the strong-signal input, u1 (t) is arbitrary, it

is not possible to explicitly determine the Volterra kernels.

However, in the special case where the strong-signal input is

periodic, although of an arbitrary known wavedhape, and the

small-signal input is a sum of sinusoids, Eq. (4.118) may be

converted to a form in which a vector of time-varying nonlinear
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transfer functions, Hk(t* fl "'', f ) are obtained as solutions.

The time-varying operating point solution, x (t), will be

periodic. x (t) can be found numerically either by the Newton-

Rhapson techniques (Aprille and Trick, 1972) or by integrating

Eq. (4.117) until the steady-state is reached. The order-sepa-

rated equations needed to determine the total perturbation solu-

tion will also be periodic as well as time-varying.The solution is

a direct matrix-vector analog of the techniques developed in

Section 4.3 for the single-loop case. While the derivation

is complex and will not be presented, the final result can be

easily stated.

The pertuibhtion equation for the single-loop network was

shown to be

di L Ul vd i ) + v
dt - L- L (4.119)

where v d(t) is the diode perturbation voltage due to the weak

excitation, v. From Eq. (4.12), vd(i, i0 ) was shown to be equal

to

vd(i, i) r 1 (t) i + r 2 (t) i 2 + -.. , (4.120)

with the result that

di (R r•(t)\ rn(t) (411

di +----- in + -. (4.121)
dt Lj n=2 L L

From Eq. (4.119), the time-varying linear differential equations

for the nonlinear transfer functions were found to be
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H (t- f) +- + i2,,Tf H(t f) + (4.122)1L L L

H(t; f 19 f 2  [R + r()+ i2TT(f 1+f 2 )]H 2 (t, f 1 ,ff 2 )

r 2 (t)
- - Hl(t;fl)Hl(t, f 2 ), (4.123)

f3 (t, ;ff ) 1 L 2 + 3 )JH3 (t' fit f2 # f3)

- 2  L H 1 (t' f1 ) H2 (t, f 2 8f 3 )

SM r 3t) H 1 (t' f i). (4.124)

L i-i

In the multistate case, the perturbation equation as given by

Eq. (4.118), is

Ak(t) - A Ax(t) + G Af (xo, Ax, u , AR) + d (4.125)

and the desired solution will be a vector time-varying nonlinear

transfer function, H n(t; fie f2**"fn)' where the components of

H are the time-varying nonlinear transfer functions of the state-n
variables. Associated with H will be the operating-point state-

-n
variable vector x • Coparing Equations (4.119) and (4.125),

we identify the analogous quantities

(iii) - 1/L vd(i, i) 1 __f (0_, x, , Au),

Uv) v/L"- _2 2u_(t),
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and state the differential equations satisfied-by the time-

Svarying nonlinear transfer functions to be

H (t, f) = [A + GFI(40) - j2nf~I Hl (t; fl) + d2' (4.126)

f 2 (t; f 1 ,f 2 ) = 2 A+G__ (o) - j2n (fl+f 2 ))] HL2 (t; flf 2 )

+ (x col [Hl, (t. f Hl,i(t; f 2 )]0 (4.127)

H3 (t; fl 1 f 2 ,f 3 ) = [A + GFIo - j2r(fl+f2 +f 3 ) I H3 (t; f 1 1 f 2 ,f 3 )

+2GF 2 (x) col [Hl (t; f1 ) H2 ,(t; f 2 ,f 3 ))

+GF N• col [-,I i(t- f) HI i(t; f) Hl (t; f).

(4.128)

Equations (4.126) through (4.128) can be formally derived. In
writing the equations, we have used the notation:

F (x_) - i-th coefficient matrix in the Taylor seriesexpansion of F((xo)
0

H n - i-th component of n-th order nonlinear transferfunction vector.

col C 1 = a column vector, the i-th row of which is
given by the term in the bracket.

I - identity matrix.
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Equations (4.126) through (4.128) are each a linear, time-

varying, periodic system of differential equations the solution

of vhbich is the vector time-varying nonlinear transfer function

of desired order. The equations for the higher-order nonlinear

transfer functions can be developed using these equations as a

guide, plus the recursion relations of Section 2.2.3 to define

the nonlinear sources.

Equations (4.126) through (4.128) also assume that each com-

ponent of af(x0 ) is a function of only one component of x, so

that each row of Fn (x o) has only one non-zero element. The effect

of this asaumption is shown in the post-multiplication by the

column vectors in the single components of H . In the most general

case, where this restriction is removed, the Taylor series ex-

pansion of H , and the subsequent analysis, would utilize appro---n
priately higher dimensional matrices and driving terms. The form

of the solution would, however, remain unchanged.
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4.6 Pirect %t•T•o-Diain Solution of Nonlinear State Eauations

in 9ection 4.4 ii- wan shown that the equations describing

nonlinear circuits could be formulated as nonlinear state equations.

One means of finding the large-excitation, multi-input signal re-

sponse of a circuit is to solve the nonlinear di-ferontial equations

with the circuit excited by all signals. The various spectral com-

ponants in the circuit output :an then be found by performing a

Fourier analysis of the time-domain solution to the differezitial

equations, The Fourier analysis can be performed using the fast

Fourier transform algorithm of Cooley and Tukey (1965). We will be

concerned next with the.. problem of numerically evaluating the solu-

tion of a nonlinear differential equation, and the related problem

of finding a periodic solution Ahen the input excitation is periodic.

4.6.1 NIerical Solution of Nonlinear State Equations

The equation

, , . X(p) = 0, (4.129)

is a differential equation of order p. A function x(t) such that:

K~t, x(t), xI (t), x"(t), x (t)] = 0, (4.130)

for all t over which F is defined is a solution of tho differential

equation. In order to have a unique solution to a p-order diffe:-

ential equation, p conditions are required. If the function x and

its first p-i derivatives are defined at one point, the problem of

finding x(t) is called an initial value problem* If x(t) and/or

some of thu derivatives are specified at several points, the problem

is called a boundary value Problom.
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The numerical evaluation of differential equations is done

through the use of numerical integration. The first important

attribute of an integration method is its order: a method is of

order k if the truncation error ip 0(h k+1) where h is the inte-

gration step size. Thus the higher the order of a method, the

more accurate the results for a fixed step size h.

Methods which essentially extrapolate from past values pro-

vide a formula which gives the next value of the state vector ex-

ilicitly. By contrast, implicit methods have formulas in which

x is given not only in terms of past values but also in terms of

* . A general implicit integration rule is given by [Gear 1970,-n
p. 112)

k
a ox•n - heoxn + r (Ljxn-j 4 h$ ijnj), (4.131)on on j=l i-

where a. 0 1, b is the stQ? size, and the subscript n denotes

the n-th time step. Thus, in implicit methods, B0 is non-

zero; in explicit methods, $0 is uniquely zero. An itera-

tive method must be used to solve for x n a formula which provides

a first approximation, x (C) , as a starting point for the integra-
-n

tion formula, is called a Predictor, while the integration formula

itself is called the corrector. Many schemes exist in which the

number of corrector iterations is fixed, or a modifier is used

after the predictor so that the corrector is evaluated only once.

Methods may be single step, or multistep, depending on whether

the method uses information from one or more previous mesh points.

The number of steps in Equation (4.130) is the index, k. kunge-

Kutta methods of any order are single step; iredictor-corrgctor
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methods are multistep. If the order of the predictor is q, and

the order of the corrector is r, then, after m iterations, the

error is O(hq+m+l) + O(h r). Thus, if q - r-l, only two cor-.

rector iterations are required before the predictor-corrector

accuracy is limited by the order of the corrector.

An extremely important aspect of an integration formula is

its stability, which can be determined only if the method is

linear. Because the integration method is a linear difference
approximation to the actual nonlinear differential equation,

there is a truncation, or discretization, error which is gene-
rated at each step. The total error in the solution can be shown

to be the solution of a linear difference equation with the trun-

cation error as a forcing function7 it is the stability cf the

error difference equation which must be guaranteed if the total
error in the numerical solution is to remain bounded. Because

the numerical integration scheme amounts to solving a linear

difference equation, it is possible, through choice of the dis-
crete time step size, to have -instable poles in the difference
equation without there being unstable poles in the original dif-

ferential equations. Since the numerical stability of an inte-
gration formula is dependent upon the properties of the system

being integrated, it is usual to assume a scalar test system of

the form

= -Xx. (4.132)

The philosophy is that for a sufficiently small time step h, the
dynamic behavior of x in x - f(x) is well approximated by

x = x(tn) + 6x, (4.133)

where

= bf 6x. (4.134)

X(tn)
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Thus, in the scalar case, we have

Mx I (4.135)

X(tn)

while, in the vector case, -X is the largest magnitude eigenvalue

of the matrix

bx1 n) P(4.136)
xl(tn)

The matrix A of Eq. (4.136) is the Jacobian matrix of the system.

For linear difference schemes, the poles of the total solution
error difference equation are functions of h%, and for a stable

formula, the conditions on hk such that all poles of the total
solution error difference equation are within or on the unit
circle must be determined.

The classic textbook by Henrici (1962) provides the funda-
mental background and details of most linear integration
schemes. The stability properties of the most well known linear

methods can be determined from the plots given by Lomax (1967),

which show that classical numerical integration methods tend to
have restrictively small stability regions, e.g., for fourth-

order Runge-Kutta, lhkt : 2.6 for stability, while for the
Hamming modified predictor-corrector, 1hXI _< 0.6. Systems of

equations with widely separated time constants are called "stiff

equations". These arise frequently in the analysis of electronic

circuits, where coupling networks may have long time constants,

while parasitic elements may cause short time constants. In in-,

tegrating stiff equations with these nethods, stability is insured

only by estimating the largest magnitude eigenvalue and restrict-

ing h in accordance with the stability boundary for the method.
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Besides the difficulty of performing this estimation, there is

the additional burden that the solution component represented by

this largest magnitude pole is frequently not of interest, as it

usually belongs to some high-frequency parasitic mode. Thus,

standard integration methods can be exceedingly inefficient. The

most desirable property of a numerical scheme would be numerical

stability for all stable X1 in this case h could be chosen to

satisfy some truncation error requirement on an import:ant solution

component w.thout the danger of inducing numerical instability due

to the high-frequency parasitic modes. Any method which possesses

numerical stability for all values of hk whenever X has a negative

real part is said to be A-stable (Dahlquist, 1963)1 no linear

multistep method of order greater than two can be A-stable, and

any linear A-stable method must be implicit. It is discouraging

that A-stable methods cannot be of order greater than two. The

need for higher-order methods arises from the relationship between

order and truncation error. Because the solution function is boing

approximated by a polynomial, there is, as in a Taylok's series
Ic+lapproximation, a truncation error which is 0(h+) where k is the

order of the method. Only by the use of higher order methods can

the step size h be made large and the truncation error small simul-

taneously.

By relaxation of the stability requJrement, Gear (1971) has

developed certain high-order implicit formulas for orders one

through s~x. Only the first and second order formulas are stable

for all h% > 0; the remainder are stable in the shaded region

shown in Fig. 4.10. They are called stiffly stable formulas in

order to differentiate them from A-stable formulas. Gear's form-

ulas are stiffly stable for D N 6 and 6 Pj 0.5. The basic justifi-

cation for the sufficiency of stiff stability lies in a • assumption
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/ /

Fig.4.1O. Regions of Stable :ntegration for
Gear's Higher-Order Integration
Formulas from (Gear, 1971, p.214).
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that large magnitude eigenvalues correspond to parasitic modes

which affect the total solution but little; it is not necessary

that the method be accurate for such parasitic modes, but only

that it be stable for such modes. On the other hand, high accur-

acy is desired for modes corresponding to smaller magnitude a's

so that h must perforce be smalli the resilt is that for h% small

in magnitude, the stability region need not be too large, since

accuracy is the dominant concern. In programming the formulas,

the step size and the order of the integration formula are changed

as needed. To minimize the running time it is desired to make h

as larý, as possible, consistant with the desired accuracy; for a

fixed 1, increased accuracy results from the use of a higher order

formula. Gear (1971) presents a complete discussion Of stiffly-

stable predictor-corrector techniques# and includes a FORTRAN

program for performing the nu•nerical integration of a set of N

ordinary first-order differential equations. As part of the pro-

gram, there is an algorithm which automatically changes the step

size and order :f the integration routine so that the error is

kept within a prescribed amount while maintaining a fast execu-

tion time. In apply:Lng the variable step, use is made of the

Nordseick vector (Nordseick, 1962). The predictor used in the

routine is a Pascal triangle, and the program allows for three

corrector iterations at the smallest step size before failure of

convergence is declared,
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4.6.2 Numerical Solution of the Dynamic Operating
Point Differential Equation

In the previods sections we have presented considerable

detail regarding the single-variable and multi-variable formu-

lation of a perturbation method of solving strongly driven

nonlinear networks. Two multi-variable differential equations

must be solved to obtain specific results for any particular non-

linear circuit example. First, the operating point must be de-

termined by obtaining a numerical solution of the nonlinear state

equations of the system when the system is strongly driven with

a periodic excitation. There are very efficient methods of de-

termining the periodic solution. This section describes the

Newton-Raphson iterative procedure of determining the time-

varying operating point, Xo(t), dhen the strong signal input,

U1(t), is periodic. After the periodic operating point has

been determined, the periodic derivative matrices (Taylor series

coefficient matrices), F.i, which are a function of x (t), can--o

be determined and hence the time-varying noniinear transfer func-

tions H n(t;f) may be computed. Numerical techniques for de-

termining H will be described in Section4.6.3. We now describe

A%.the method for obtaining the periodic solution of a set of non-

linear differential equations characterizing the system state.

The general nonlinear system state equations are given by

= f(xt). (4.137)

After presenting the method we will specialize the results to the

operating point equation. Our goal is to determine the periodic

solution of Eq. (4.137).
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Let a be the initial condition vector of the periodic solution

of period T. We must determine a such that one period later the

same initial conditions occur [i.e., x(t +T,ca) = x(to 0 ) = %].

We have selected t=t as the initial condition time and, for simpli-O

city, now set t 0= . We shall develop here the Newton-Raphson0

iteration procedure that is needed,

The problem is restated as follows. Given the initial con-

dition vector a at time t=t 0 , where we now arbitrarily choose

to=0, determine a such that the vector equation

c(a) = x(T,_) - _ = O , (4.138)

is satisfied. Physically, all (4.138) implies is that T seconds

after the initial time the solution is back to the initial

conditions.

Let us assume that ac is the k'th approximation to the root
_ eeriek k k

of c(a)=0. We wish to determine e such that c(Q +k )=O. Expand-k
ing c(a) about _ gives, to the first degree,

c(a + C k) =c (A ) + c (-Q )I (4.139)

where c (a ) is a matrix of the form

bc_1  bc_ _

C -=LO) 2  (4.140)

ak~ k

L j w C L
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k kIn order for a+ c to be a root, it is necessary for
k k k"

c(% +ke ) to be equal to zero. Thus e is obtained

by setting (4.139) equal to zero. We find that

_k C C (4.141)So

Since we only used the linear term to obtain Eq. (4.139) it is clear
k k

that a + e is not necessarily the desired root of c(_a) 0. It
k

is a closer approximation than _ , however, so that we make it the
k+lnext guess for _a, a. . The Newton iteration formula is thus

k+l k c(k 1 k (4.142)

Using (4.138) we find that

(c) (T,c2 )-I (4.143)

where the matrix x is given by

bXI1 (T,_%) bx I (T~a

b CL1 b CL2
k1X (TMa.) (4.144)

bx2 (T,a) bx2 (T,%)

A Ak

and the superscript k implies the k~th iteration.

267



The iteration relationship then becomes

k1 = k _ [x( .Iix- (T ,ak) _ k], (4.145)

which is the iteration relationship for the initial state vector.

Before the iteration procedure of (4.145.) may be used it is

necessary to develop a method for computing the matrix x (T,c) ).

We do this by means of a result from differential equation

theory [Coddington, 1955, p. 349). The original system differ-

ential equation _ = f(x,t) is rewritten as

, = _f[_x(t,),t], (4.146)

where we have shown explicit dependence upon t and the initial

condition a. Eq. (4.146) is clearly a vector equation.

However,taking b/6 of both sides and letting k gives

* t,( k(t k 1IlX t k (4.1,47)

which is now a matrix differential equation. The "chain"rule has

been applied here so that f is given by

bf1  bf 1

fm X *1 b (4.148)
bf 2  bf 2
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{..1

and (4.147) may alternately be written

bx bf bx 149)
-==_ . _-- (4.149

We observe tbh.t the matrix x (tL ) is a solution of the

matrix differential equation (4.147). Noting that

x (0,_ ) - I, (4.150)

since x(O,a) is the initial condition vector j, we conclude that

x (t, k) is by definition the state transition matrix of the

linear system

k)f = It,_ 5, )I - (4.151)

f is simply the first derivative matrix of f(x) given by --xIc -x

We therefore solve Eq (4.151) at time T to determine X_ (T,_ ).

We now consider the application of this iteration procedure

to the operating point equation. The period T is the period of

the strong ixtput function, u1 (t). Corresponding to the initial
kcondion Ao°(0)k =% , Eq.(4.117) is integrated for 0 _< t _< T, to

obtain x (t,_L ). The matrix linear system (4.151) to be integrateC.
-v -is

{ + G F ýXo (t, ))}. -(4.152)

By a suitable choice of integration method, the state transition

matrix of (4.152) can be obtained for 0 < t < T. We nead only
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the matrix evaluated at t=T, namely, bx o(T,_a)/a]•= •__ to per-
form the next Newton iteration, or

k+J. __ _ _

Lk1= k x 0 (T,•C) - _j , (4.153)

When the iteration has converged,the periodic operating point

x (t), corresponding to the strong periodic excitation, u1 (t),

has been obtained. This eolution will exist and be unique as

long as the derivative matrix sf x (T,_L) is non-singular. This

condition will occur as long as the linearized circuit has no

periodic solutions of the same period, T.

4.6.3 Numerical Solution of the Time-Varying Nonlinear 2rans2er
Function Perturbation Equations

There is one technique which must be presented so that all

of the cases we expect to encounter in the communications re-

ceiver can be handled efficiently. The task is to determine the

nonlinear transfer functions from the set of differential equa-

tions (4.126) through (4.128). In these equations we find

that, since there is direct dependence on the time-varying oper-

ating point, o(t), both the state matrix and the forcing functions

are periodic with period T. The periodicity of the state matrix

is due to the presence of F, Ex (t)3. The periodicity of the

forcing functions shall be demonstrated before concluding this

subsection.

Eanh nonlinear transfer function, H (ttf), is the solution
-n -

vectot of a system of linear periodic differential equations.

The forcing function is obtained from the solution of the system
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of equations of lower order. Thus each H n(tf) is obtained as

the periodic solution of a system of equations which may be put

in the general form

t= B(t)z(t) + v(t). (4.154)

Here v(t) is the complete set of forcing functions and the linear

circuit, represented by B(t), is time-varying. For example, if

we consider H3 (t;f) in (4.128) we see that B(t) and v(t) would be,

respectively, equal to

B(t) = LA+GFIX (01- j2I(f +f

v(t -2 G1 F(xt) col[Hi(t;f)H 2 i(tff 3 )

+hIlit~f2)H2,i(ttflf3) + H1 i(t'f 3 )H 2,(ttfl, 2

+ G_•F(x )colCH (t;f1 Hl(t;f2)Hi(t'f .

(4.156)

It is clear in (4.155) that, since x (t+T) = x (t) and, therefore,--o --o

C ~x o(t+T) F = ýL2(t) 1, we have

B(t+T) - 1(t). (4.157)
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We now reason the periodicity of the forcing function, v(t)... In

(4.126) the forcing function, v(t), is equal t-c -2. Since d2 is

constant it is trivially periodic. In (4.127) forcing function

is a function of F_2 (x), which is periodic with pVOiod T, an,-'

(t~f). But HI(t;f) is the periodic solution, of period T, from

the first order nonlinear periodic differential !kon.* There-

fore, combining L2 and HI maintains the periodicity and the forc-

ing function in this case is also of period T. In addition, the

solution to the equation H 2 (tf) is periodic with period T. Look-
ing at the forcing function in (4.156) we see dependence on F 2 ,

F3V g, and H2 , all of which are periodic with period T. Therefore,

we may now conclude, in general, that the forcing functions of

(4.126) through (4.1a8) are all periodic so that

v(t+T) = v(t). (4.158)

Since it is clear how B(t) and v(t) are determined from Eqs.

(4.126) through (4.128) we proceed to describe the method for

solving the general linear periodic system of differential equa-

tions described by Eq. (4.154).

Solution of linear equations is well known and may be given

in terms of the system transition matrix, j(t,T), which is deter-

mined by 1(t). The problem, however, which we consider is to have

an efficient method of solution for the periodic case. The known

solution is [Schwarz and Friedlander, (1965), p. 114).

t
(t) (t,t 0 )Z(tO) + j @(t, r)v(r)dr, (4.159)

0
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where t is the initial time. There are many techniques for de-0
termining the state transition matrix. However, in general,

_•(t,T) cannot be calculated analytically. In tha solution method

which we have chosen we seek that set of initial conditions,

z P(t ), such that z(t +T), one period later, is identical to the

initial conditions. In this fashion we determine the solution

with period T. If z(t +T) =Z (t ), then

t + T
zP (tO) 4(to+T,to) zP (to)+ 0 -(t-+T)(T)d0 0 0 0(4.160)

or, equivalently

t + T
-- (t)%[ - _(t0 +T ~t0 ) 0 J(t 0 +T, T)v(T)dT. (4.161)

t
0

In order for this solution to exist, the indicated matrix

inverse must exist. Physically, the staLe transition matrix

-(t,t ) describes the impulse responses of (4.154) when the sys-

tem is excited by a set of impulses at time t=t . Therefore,

each diagonal element of _(t,t ) is a solution function with

v(t) identically zero. Let us assume that, without the periodic

input v(t) applied, the unforced system has a solution of period

T. This would imply that _(t 0 +T,t 0 ) = !(tot to). By definition,

-(tcr) is equal to the identity matrix, so that _4 t) = z(t ) in
(4.159). As a result, the matrix C I - j(to+T,to)] is singular.

Therefore, the solution exists and is unique only if the unforced

periodic system has no solution of period T. Physically, we expect

the system described in general by (4.154) to have only damped

responses in the absence of any excitation. Thus, (4.161) will

give the periodic solution. The procedure is as follows:

273



i) With zero initial conditions, z(t)=0 O, obtain the state

transition matrix _(t,t ) for to<t<t +T by using numerical

integration. Simultaneously, we obtain the integral

t (t, T,)v(0)dr for t <t<t +T.to- 0- -

Since we are using numerical integretion on the computer we actual-

ly progress in time by steps. If h is the step size and is con-

stant then we would find _(kh,O) for k=0,1,...,T/h. Since the

numerical procedure uses variable step sizes we symbolically

write k-O-TA to mean _O(h,t ) is determined at the appropriate
0

time points between t=O and t=T.

ii) Using (4.161) find the solution z (t) . Actually,

the most efficient computational methods will solve

t o+T
(to+T,t o )] zP (to) 0 M +T,)I(idT (4.162)

0rather than find the actual inverse.

iii) Using z (to) and the time histories of Ct't

and t (t,T)X(T)dT, compute the periodic solution
0p P

vector z (to+t) for O<t<T. Actually, we find z (to+kh)

for kO-.T/h, as explained above.

Hence, knowing AP(kh) between t=O and t=T unrxqely defines the

total solution z (t).

As we indicated in the above subsections on time domain methods,

the step size, h, is variable and chosen automatically, according

to the particular integration method, in order to provide a de-

sired accuracy In Hn (t, f). By contrast, a frequency-domain

approach would require, somehow, the determination of the number

of Fourier coefficients to be used. Should H have a region
-n
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of rapid variation it would be necessary to solve for a

large i.umber of Fourier coefficients no matter how small that

region is. The time-domain solution would require a small

step size only in the region of rapid variation. In that region

computation would be slow. But the speed will be made up in

slow variation regions. The time-domain solutions which we

have described will therefore be both more accurate and more

efficient than a frequency domain solution approach.
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CHAPTER 5

ELECTRONIC DEVICE MODELING

5.1 Introduction to Electronic Device Nonli±Dbar Modeling

Fundamental to the successful application of the nonlinear

system modeling and circuit analysis methods developed in this

book are accurate nonlinear models for the active devices employed

in the system. Device models of most interest will be commonly

used in active regions where the device operation is quasi-linear

about an operating point established by circuit bias. It is ne-

cessary to make a distinction between total and incremental non-

linear circuit models. Total models interrelate the total instan-

taneous voltages, currents, and/or charges in the device. Such

models are required for operating point and large-signal circuit

analyses. They are also the starting point for the development

of incremental nonlinear models in a quasi-Al£Jar small-signal

analysis. In the development of the nonlinear incremental models

individual total instantaneous nonlinear relationships will be

expanded in a Taylor series in the time domain about circuit static

operating-points in order to form the nonlinear dynamic incremental

models. The leading term in the Taylor series is linear. A cir-

cuit model containing only the leading term for each nonlinearity

is the familiar linear incremental circuit model commonly utilized

in small-signal analysis and design. Additional terms from the

Taylor series can be added to form nonlinear incremental models.

For example, three terms from the series are needed for a third-

order model.

It is desirable to have device models that can be utilized

wherever they may be biased in the normal activE- region. This is
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accomplished primarily by seeking mathematical relationships re-

lating the device model parameters to the operating bias points.

The reason this objective is desirable is it enables the predic-

tion of nonlinear effects as the operating point may change, for

example, by an AGC control voltage. We shall also find that,

given a mathematical model, far fewer parameters will frequently

be necessary to characterize the nonlinear incremental model than

a complete set of Taylor series coefficients for every operating

point.

The models we seek must also be capable of accurately pre-

dicting distortion levels in the presence of much larger input

signals causing the distortion. For example, third-order effects

may be 60 dB below the input signals generating the distortion.

There are many possible electronic devices that may be em-
ployed in communication systems that introduce physical nonlini-

arities causing distortion and signal degradations. We shall be

primarily concerned with bipolar transistors and vacuum tubes.

5.2 Semiconductor Diode

It is the objective of this section to review the electrical

characteristics of semiconductor diodes and to present a reason-

ably accurate total as well as incremental nonlinear equivalent

electrical circuit for a physical diode. An excellent elementary

review of basic pn junction diode properties can be found in

Gray (1964). Our presentation begins with a summary of ideal

diode static and dynamic characteristics. Several examples of

characteristics for an actual metal-semiconductor junction diode

are shown. Examples of departures from the ideal diode for both

forward and reverse bias conditions are illustrated.
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5.2.1 Ideal Semiconductor Diode

5.2.!.1 Static Characteristics

The tctal static, or DC current I, through an ideal

semiconduictor junction diode is an exponential function of

the total voltage, V, across the junctioiand is given by
.4 QV

I = Isek - lip (5.1)

where

I = saturation current
5

q = magnitude of charge of an electron
1.602 x 10-1 coulomb

k = Boltzmann constant - 1.380 x 10-23 joule
per degree Kelvin

T = absolute temperature in degrees Kelvin.

At room temperature (T = 290 K), !- is 25 millivolts. Eq. (5.1)
q

is shown for low-level junction voltages on a normalized linear

current scale in Figure 5.1. The forward current characteristics

of the ideal diode are shown on a semi-log scale in Figure 5.2.

Note that the characteristics approach the straight line

exp- for large kT The straight line, intersects the normalized
current scale for V = 0 at the saturation current. This fact can

be useful in determining I from data measured in the forwards
current region of the diode.

5.2.1.2 Junction Depletion-Layer Capacitance

The semiconductor junction region of the ideal diode is a

space charge layer or dipole layer of charge density. The
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chargeý -tored in either half of this dipole layer depends upon

the bias voltege. Therefore, the junction capacitance is a func-

tion of the voltage applied to the junction as well as the dis-

tribution of charge for a fixed voltage. The theoretical value

of this capacitance for the ideal reverse-biased diode in terms

of the total voltage V at the junction is given by

c(V) = c(o) (5.2)

where
c(O) = capacitance for V = 0

V = total externally applied voltage

$ = internal barrier potential

1/2; abrupt junction

Ui/3; graded junction
1

In terms of elastance S -

1

' V -(5.3)

T.- ,- q. (5.2) is useful for determining the internal

pot• n•tiW aind the junction type. The value of 1/4 causing the

left hand side of Eq. (5.3) to plot linearly as a function of

junction voltage V establishes P. This is illustrated in Figure

5.3 for the abrupt junction. The intercept of the straight
V

line 1 - - with the horizontal axis of the curve qives the

internal potential 6.
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The space-charge-layer capacitance accounts for most of

the junction capacitance when the junction is reverse biased.

When the junction is forward biased, charge carriers are drawn

across the junction. If the lifetime of the carriers is much

greater than the period of the applied signal, the carriers

will appear to cause a second capacitance known as the diffusion

capacitance which is in parallel with the space-charge-layer

capacitance. The magnitude of the diffusion capacitance is

proportional to the diode current.

5.2.1.3 Avalanche Breakdown

Hot-carrier and pn junction diodes, when reverse-biased,

exhibit an effect known as avalanche breakdown or current mul-

tiplication. Avalanche current multiplication occurs when the

electric field in the space-charge-layer of the diode is large

enough so that carriers traversing the space-charge region

acquire sufficient energy to break covalent bonds. Defining a

multiplication factor M, the total reverse current becomes I Mm

instead of 1. . M has been experimentally found to be of the
form [Miller, 1965)

M = 1 0(5.4)
1 - (V/VD )

where VBD - breakdovm voltage. A ctrve of M for several values

of n as a function of V/VBD is shown in Figure 5.4. Avalanche

multiplication occurs only in a reverse-biased junction.
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5.2.2 Total Eguivalent Nonlinear Circuit Model
of a Semiconductor Diode

Total equivalent nonlinear circuits of semiconductor diodes

are summarized in this section. The total equivalent nonlinear

circuit f.,r a forward-biased diode is shown in Fig. 5.5. The

nonlinear voltage-dependent current source is the exponential

S.diode model with the quality factor n added to the exponent.

A fixed series resistance R. has been added. Inductance L is
s

internal lead inductance while C is case capacitance associated

with the diude package. The capacitarn.e C. is the sum of theJ
diffusion and the space-charge capacitances. The diffusion capac-

itance is absent inhot-carrier diodes. The model will frequently

be reduced to R in series with the current generator i(V). The

reve:se-biased total equivalent circuit is shown in Fig. 5.6.

The nonlinear voltage-dependent current source I(V) models the

effect of avalanche breakdown. Capacitance C(V) models the

depletion-layer capacitance. R is again a fixed series resistance.E

L and C are, respectively, lead inductance and package capacitance.

The reverse-biased total model also will frequently be simplified

to just R in series with C(V).s

Typical values for the Schottky-barrier diode are I lOnA,
s

n = 1.05, R 1= 0 n, C(0) = 0.8 pF, 0 = 0.45 V, 4 = ½, L = 3 nH,

C = 0.15 pF, with VBD = -35 V, so that C(V) is restricted to

reverse bias less than 35 V.

There are other important parameters associated with diode

molels which are of interest in receiver design. These include

the incremental circuit model parameters which are implicit in

the total model. Equivalent noise source models [Van der Ziel,
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1970] are of interest for dynamic range studies. The total

equivalent models in Figs. 5.5 and 5.6 do not include the effects

of minority carrier storage accounting for the current waveforms

for the pn junction when the diode is used in a switching mode.

The models presented here are satisfactory for hot-carrier diodes

used as switches because such diodes have very short switching

mode recovery times.

5.2.3 Incremental Equivalent Nonlinear Circuit
Model of a Semiconductor Diode

In this section we summarize the incremental equivalent non-

linear semiconductor model, based on the total models of Figures

5.5 and 5.6. In normal small-signal applications where the in-

creniental models are valid, diodes are either operated at a

forward-bias as in a biased-mixer, or at a reverse-bias, as in

a varactor converter. Thus, there are two distinct small-signal

semiconductor models.

In the case of the forward-biased diode, the primary non-

linearity is the exponential diode junction. This is a zero-

memory nonlinearity characterized by

I IsekT -I, (5.5)

where n is the ideality factor for the diode. The incremental

model for a forward-bias of V., an incremental voltage

of vd volts, a forward-bias current of ID, and an incremental

current of i is given by:

ID + Id 15[ nkT e nkT -i]. (5.6)
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As long as qvd/nkT is less than unity, the"exponential

can be expanded in a Taylors series and truncated after a small

number of terms:
qv- qv qvý 2 qv 3

e 1+n + 1 +nkT/ +I-3(nT "d " (5.7)

Substituting Eq. (5.7) into Eq. (5.6)

SFe /qVD
ID + id =sLe - -1]

qVD
+ 1s enk-+ e( a

(5.8)

The forward bias current, ID' is given by:
qVD

I= I[exP(n)l] D i nkT (5.9)

Therefore,

id=I vd + d 31\ V yd... (5.10

Equation (5.10) is the mathematical model of the incremental
nonlinear resistive diode. When a diode is to be modeled as

a linear resistamce rd, the value of rd is the reciprocal of the
coefficient of the linear term inEq. (5.10),or

A nkTr= =- (5.11)"d q .I D

Since n is of the order of unity and kT/q is approximately
2 5 mv at room temperature,
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rd 25 ohms, I in mA. (5.12)
d 1~D1  D

The forward-biased diode is generally operated sufficiently

below its cut-off frequency so that the nonlinearities associated

with the junction capacitance can be neglected, and the junction

capacitance can bw represented by a fixed capacitor. The increme,.l1

nonlinear circuit model of the forward-biased diode is shown

in Figure 5.7. The model shows the nonlinearities as controlled

current sources where

Kj i d (5.13)K¢ t, = •! n:T "

In the case of the reverse-biased diode, the primary non-

linearity is the nonlinear junction capacitance C(V). The

avalanche multiplication factor is of more importance in tran-

sistors than in conventional diodes, and will be considered in
greater detail in the transistor model. Capacitance C(V) is

given by

C(V) = I- C() (5.14)

The charge stored in the capacitor is

Q(V) Jo C(v) dv

c (o0) -l (5.15)
V1-l Pl 1 /

The Taylors series expansion of Equation (5.15) around
an operating point Vc is
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Fig. 5.7. Forward-Biased Incremental Nonlinear Circuit
of a Semiconductor Diode.
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}.t

V Q(v ÷4v(v.) ____

Q( vC ) C ( ) +c 21 (O-v)
t•. g W( •÷ )v 3

C

+ 31 (#-VT)2 "-'J" (5.17)

The incremental capacitor current i is the derivative

of the total charge with respect to time. Si.ice V is constant,C
the incremental capacitor current is given by the time derivative

of v in !Equiron (5.17). Hence

dv, P (V) dv 2  p (..)C (V) dv3

"" t + ($...V c dt +31(0-v ) dt

(5.18)

Equation (5.18) is the mathematical4del of the incremert-
al nonlinear capacitance current. The first term is a linear

capacitor of value C(Vc ), and the terms in v cn represent the
nth- order noyiinearities. The incremental nonlinear circuit

model of the reverse biased diode is shown in Figure 5.8.
The model shows the nonlinearities as controlled current sources,
with coefficients YV. From Equation (5.17) the y. are equal to

yW+ 1) W 4- 2) c(v) 4, > 2. (5.19)
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5.2.4 Examples of Semiconductor Diodes

There are three main categories of semiconductor diodes,

namelythe pn Junction diode, the point-contact diode, and

the Schottky barrier, or hot-carrier diode. Figure 5.9 shows

the idealized construction of these diodes. Th3 point-contact

diode, the first semiconductor diode to be developed, has little

application in coinmunication receivers. The pn Junction diode

is used in both mixers and detector circuits as well as a varactor.

The hot-carrier diode is a simple metal-semiconductor interface.

When forward-biased, current flows because of majority carrier

injection from the semiconductor into the metal. Hot-carrier

diodes are free of bcth the long reverse recovery time and

diffusion capacitance of the pn junction diode. Hot-carrier

diodes have electrical cbaracteristics that, in many respects,

come close to the ideal-diode properties described in Section

5.2.1. Hot-carrier diodes are also used externsively in receiver

mixers and detectors. Actual data from several diode devices

will be used in the remainder of this section to illustrate

various differences between ideal diodes and their physical

counterpart.

5.2.4.1 Forward Static Characteristics

Typical forward current versus forward voltage charac-

teristics of a hot-carrier diode are shown in Fig. 5.10. The

median curve differs from the ideal diode characteristic shown

ia Figure 5.2 in two significant ways. First, the

actual diode terminal voltage is not exponentially related

to terminal current, since the data deviates at high current

levels considerably from the straight line that is tangent to
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the low current data. In the example shown in Figure 5.10,

approximately 9 ohms of fixed series resistance accounts for the

extra voltage drop at the diode terminals. The slope of the

straight line drawn tangent to the low current data is

n - -

n LVI(5.20)

when the diode forward characteristic is expressed by

a 1`71i=i [ -k~ •1 (5.21)

For the data in Figure 5.10, n = 1.05. The factor n, called the

diode ideality factor, is a measure of the extent to which the

physical diode differs from the ideal diode fox which n- 1.

Tho saturation current I can also be estixrated from the5
forward current characteristic. For diode currents approximated

by the straight line region in Fig. 5.10 we have

I x exp[j V- (5.22)

For I - 10 uA and v - 200 mV, this gives I - 6.1 nA for the

HP 2302 diode.

The static characteristics of a junction diode are also
strongly dependent upon temperature. Illustrated in Fig. 5.11

are forward I-V characteristics for typical hot-carrier diodes

at three different temperatures. Thermal coefficients for

several fixed current levels are noted on the curves. Cizauit

models of diodes muLt include temperature dependence if they

are to accurately represent physical diodes over large environ-

mental temperatur,' ravages.
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5.2.4.2 Reverse Characteristics

5.2.4.2.1 Static Characteristics

Typical reverse-current static characterist~ls for the HP

2300 series hot-carrier diode are shown in Fig. 5,12. The data

are essentially linear on the semi-log graph which suggests an

exponential dependence upon reverse voltage. In Section 5.2.4.1.

. for the HP 2302 was estimated to be about 6.1 nA.5

The static reverse-voltage characteristic for the ideal diode

gives I as the reverse current. The data for the HP 2302 diodes

in Fig. 5.12 shows that reverse current varies exponentially

between 20 and 80 nanoamperes over the 0 to 15 V reverse voltage

range. Clearly, the ideal diode model is invalid for this

particular diode in the reverse bias region. Although it does

not show in the data on Fig. 5.12 ,the reverse breakdown voltage

for the HP 2300 series diodes is greater than 30 V.

5.2.4.2.2 Junction Capacitance

Typical junction capacitance as E, function of reverse

voltage data are shown in Fig. 5.13 for the HP 2300 series

hot-carrier diode. The hot-carrier diode is thoretically an

abrupt-junction diode. Data taken from Fig. 5.13 are plotte.:
2

in rig. 5.14 in the form of (elastance) versus reverse junc-

tion voltage to test the agreement with the ideal reverse voltage

junction capacitance discussed in Section 5.2.1.2. A straight

line reasonably fits the data,to confirm the abrupt junction

property. The internal barrier potential ts seen to be about

1.5 volts. It is evident that the ideal junction diode reverse

voltage capacitance reasonably models the actual diode junction

capacitance.
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5.2.4.3 Switching Characteristics of Junction Diodes

The switzhing characteristics of Junction diodes are not

generally adequately accounted for by the static I-V curves or

by the reverse Junction capacitance data such as tlat illustra-

ted previously in Section 5.2.4. Shown in Fig. 5.15 are sketches of

high speed oscilloscope traces of diode current response to sinu-

soidal voltage drive on a pn junction and on a hot-carrier diode.

Note that the turn-off current waveform is significantly different

than the turn-on transient for the pn junction diode. The hot-

carrier diode does not exhibit this effect since it has virtually

no storage of minority carriers. Diodes are sometimes deliberate-

ly designed to emphasize the storage mechanism to produce, for

some applications, desirable switching current impulses. Data

for a step-recovery diode is illustrated in Fig. 5.16. Step-

recovery diodes are abrupt-junction silicon diodes used for

harmonic generation applications.

Care must be exercised in modeling the semiconductor diode

if the application requires a model to account for the switching
transition region from forward to reverse-voltage conditions
under dynamic conditinns. Fortunately, the most commonly used

high-spaed diode for ".ers, the Schottky-barrier diode, exhibits

a very minimum of non-ideal switching characteristics.

5.3 Bipolar Junction Transistor Model

There are Ypany different transistor models that arc specia-

lized to different operating conditions. OnA4P the oldest models,

that of Ebers-Moll (1954), represents the transistor by two sets

of diodes and current generators, one for the base-emitter Junc-

tion, and the other for the base-collector junction. Other large

signal models which have been developed include the Linvill (1958)

lumped m.odel, and the Beaufoy-Sparkes (1957) charge-control model.
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A good review of these models can be found in Hamilton, et.al.
(1964). Zn 'general, large-signal models are used in the solu-
tion of transient or 'switching circuit problems.

Small-signal transistor models have been developed for
transistors over significant frequency ranges. The most com-

mon models ai. the hybrid-pi model and the T model. Discus.*
sions of these models can be found in Searle, et.al. (1964)o
Thortong et.al. (1966), and Gartner (1960). A review of micro-
wave transistors using both these models can be found in Cooke /

(1971). The charge-control model hao also been applied to
small-signal modeling, and good results have been reported by
Gunmel and Poon, (1970), Poon and keckwood (1972), and Poon

(1972). The nonlinear-T, utilizing a linear emitter capacitance,
was applied to amplifier distortion analysis by Narayanan (1967).
We shall use the nonlinear-T with the addition of a nonlinear

emitter capacitance.

In this section, we will review the incremental model of
the bipolar junction transistor, and note the physical source
of each of its components. As part of this, we indicate which
elements in the model are operating-point dependent. Following
this, we show the generalization of the linear incremental T
model to the nonlinear incremental model. For each of the ele-
ments in the nonlinear model we describe a method or methods of
experimentally detemuining numerical values. In addition, ex-
amples of numerical values obtained from transistor specifica-
tion sheets are described in Appendix B.

5.3.1 Linear Increental T Model

5.3.1.1 Linear T Parameters

The linear incremental T model of the bipolar junction
.tantistor is shown in Fig. 5.17. The linear incremental model
has nine parameters. These are:
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1. Base-Emitter Resistance re

The base-emitter resistance re represents the incremental

resistance of the forward-biased base-emitter junction. The

incremental resistance re is a nonlinear function of the emitter
ee'.•!! currentr re varies inversely with the emitt-er bias current.

2. Baie-Spreading Resistance, rb

Resistance rb is the base-spreading resistance due to the

finite resistivity of the base region. Resistance rb is known
to be frequency dependent and at. high frequencies tends to ap-

"proach a constant value. It is assumed constant and independent

of the operating point in our model.

3. 'Collector Resistance, r
c

Resistance r is the collectoistance. Physically

it arises as a base-width modulation effect produced by incre-

mental collector-junction bias. It is a large resistance which

generally takes on importance only for high frequencies or large

load impedances. It is assumed independent of the operating point.

4. Capacitance C1

Capacitance C is the header capacitance between the

base and emitter terminals. It is a amall capacitance, generally

on the order of several pF, and is ind•ncent of the transistoe

operating point.

5. Capacitance CD

Capacitance CD is the diffusion capacitc.nce associated

with the storage in the base region of minority charge carriers

injected into the base region by the forward-biased emitter junc-

tion. The diffusion capacitance is directly dependent upon the
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T.,

emitter bias current. Consequentlythe product r C is nearly
aeD

constant over a wide operating range ýnce re is inversely

dependent upon bias current. At sufficiently high current

levels* this product determines the transistor cut-off fro24 y.

6. Capacitance Cije

Capacitance C is the space charge layer capacitance asso-
jeciated with the forward-biased emitter junction, and is

equivalent to the diode capacitance described in Section 5.2.

It is dependent on the bias voltage, is independent of the

current, and, at sufficiently low current levels, may be greater

than CD. When this occurs, the product r C is the determininge je
factor for the transistor cut-off frequency.

7. Capacitance c

Capacitance C c often called the varactor capacitance,

is the reverse-biased collector junction capacitance. Cc

is nonlinearly dependent upon the voltage across the junction

as described in Section 5.2.1.2. C , as shown in the linear

equivalent circuit, is the first term in the power series ex-

pansion of the capacitance nonlinearity.

8. Capacitance C3

Capacitance C3 is physically odue to two effects, one
the collector-base header capacitance, .and the other the so-

called overlap capacitance. The overlap capacitance is physically

due to the portion of the collector-base junction capacitance

which lies outside of the active region of the base and is,

therefore not charged through the base impedance. Although, A

strictly speaking, C3 is a function of the operating point it

is considered a constant in the incremental model.
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.9. Current Gains a and hfe

The dependent current generator the collector circuit
of Fig. 5.17 has a value qoV/re. The parameter'o is the low-"02 e o
frequency small-.signal current gain, that is, the ratio of the
short-circuit incremental collector current to the incremental

S.. ~emitter current. It' is both current .d voltage dependent, and

"thus must be. evaluated at a specific operating point. The value
a used in the linear T model is the first term in its power
series expansion. It can alternatively be defined in terms of
the low-frequency small signal common-emitter current gain hfe,
and is equal to hfe/(l + hfe) .

The definition of the current source as %v2/re has an im-
plicit frequency dependence since v 2/re is the incremental cur-
rent through the emitter resistance re which is shunted by the

capacitances C and C e Thus, the voltage v2 will show theD jeo
frequency cut-off due to the re CD and reCje products. Alter-

nately the dependent current generator can be defined as

itad(l+jf/f )?, where ie is the sum oZ the incremental current
-1through re, CD, and C e, and f a is set equal to 2rr e(C+C e).

The two definitions are then equivalent. The frequency fa is

the current-generator half-power frequency. Related to f is
f,, the common-emitter half-power frequency, and fT' the frequency

at which the common-emitter current gain is unity. These fre-

quencies are related: f = fT = h fe f

These nine parameters determine the linear incremental

model of the transistor from a circuit point of view. However,

the transistor can be looked upon as a linear two-port network,

and described in terms of y, h, z, et., matrices. In particular,

the transistor device incremental measurements can be best made

in terms of the h parameters and the y parameters.
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5.3-1.2 2¶o-Port Linear Network Parameters

The linear incremental model of a transistor can be charac-
terized as a two-port four terminal Aftwork. As such, many

conventional parameter sets can be used to describe its behavior.
Consider the general linear network shown in Fig. 5.18 with
incremental input and output voltages v1  and v2 , and incre-
mental input and output currents iI and i2* The y-parameter
formulation is cviven by

1 Yiv + Yrv2 Y,.23)

i2  - V•2 + y2v2 , (5.24)

which can be written in matrix form as

[~ J[~][~ 1(5.25)
The y-parameters are:

Y , input admittance for short-circuited output

yr M reverse transfer admittance for short-
circuited input

yf - forward transfer admittance for short-
circuited output

y a output admittance for short-circuited
input

A second parameter set, the L-parameters, is given b2'$

V 1 hill + hv (5.26)

12 ffiI + hov 2 (5. 7)

310



44

+ LINEAR +
vi NETWORK V2

0-i -0
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or

(5.28)

[2 hfh V2 I
The h-parameters are-

hi = small-signal short-circuit input impedance,
hr small-signal open-circuit reverse voltage,

transfer ratio

hf small-signal short-circuit forward current
transfer ratio,

ho small-signal open-circuit output admittance.

The h- and y-parameters are related in the following

manner:

h /ih r =-rY

(5.29)
hf Yf/Yi ho A /Y i

where Ay yiYo - yryf

and

y. 1/b. y r hr/hi

, (5.30)

Yf = hf/hi Yo "1'/h3

where A = hh - hrhfh
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It is notationally more convenient to refer to parameters

by matrix notation, for which we redefine the parameter subscripts

i 411

r 12

f • 21 (5.31)

o 4 22.

or, for example, hi becomes hll hr becomes h12, f becomes h21'

and h becomes h 2 2 . Additionally, subscripts e, b, c are used

to denote common emitter, base, and collector parameters.

The input and output impedances of the linear incremental

model of the transistor terminatad in an impedance ZL and driven

from an impedance Z can be written from a knowledge of the h-g
or y-parameters. These impedances are:

l+y 2 2ZL b I1+AhZL
Zin Yll+y ZL (5.32)

Z +Y1 1 Zg h11+Z

Z - h11 + I (5.33)
out Y22 +AyZg Ah h2 2 Zg

The modeling of UHF transistors presents a new set of

problems. The frequercy range of interest extends to, at least,

1 GRz. Special test jigs and measurement techniques suitable

for use at UHF must be employed. Model parameterization re-

quires usc of S parameters. This comes about because the short

and open-circuit3 needed for y, z, or h-parameter measurements

cannot be reliably established in the region above 100 i&a.

The matched terminations of an S parameter measurement can be

established and maintained into the microwave region. Consider

the linear network shown in Fig. 5.19. The two sets of wave

variables, (a,, b,), and (a 2 , b 2 ), represent the incident and

reflected waves rt the terminals of the network, and are de-

fined by: 313
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bi ½ /].i. 1,2

where Z is positive real. The squares of a and bi have the

dimensions of power, and are known am power waves. They are
related by the scattering matrix elements as follows:

[bl ~ l s 1 %121 [all

,••,,.• •b2 [S s22 a

The parameters sl1 and s22 are the reflection coefficients at

the input and output ports, while s12 and s21 are the reverse

and forward transmission coefficients, respectively. The scat-

tering parameters sll and s21 can be measured by exciting the

two-port network with a 2 equal to zero, and s22 and a12 can be
measured by exciting the network with a1 equal to zero. Thus,

working in a matched system with the network connected to the
source and load by transmission lines of characteristic imped-

. nce Zo, the S parameter measurements can be made

S parameters, while simple to measure, do not lead directly

to device parameter vaues. However, the z, y, and h matrices,
from which device parameters can be determined, can be easily

written in terms of the S matrix. Computer programs can be

written to derive the desired parameter set in terms of the S

parameters. As an example, consider the measurement of fT for

a transistor. The frequency fT is defined as the frequency at

which the extrapolated value of incremental current gain hfe is

unity; fT is an inferred, not a measured, quantity, In the h
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matrix notation, hfe is the h21 component# measured in the

common-emitter connection, and can be expressed in terms of the

S-parameters as

h2 l -2 s221 (5.36)
[1-sll)[1+s223 + S12s21

Thus, if the common-emitter S parameters are measured as a func-

tion of frequency, h 2 1 can be computed at the same frequency

points at-d, finally, fT found.

5.3.2 Nonlinear Incrementail T Model

In this section, we describe the nol'A-n.aear incremental T

model for the bipolar junction transistor. This model is shown

in Fig. 5.20, anC is the basic transistor model used in this

book for small-signal nonlinear distortion analysis. The model

differs from the linear incremental model in the following

important aspects:

1. The base-emitter resistor re has been replaced by the

nonlinear 'Incremental current generator K(v 2 ) , for the

base-emitter junction exponential nonlinearity.

2. The collector capacitor Cc has been repleced by the

nonlinear incremental current generator Yc(V 3 -V2 ).
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3. The collector current source av 2 /re has been replaced

by the nonlinear incremental dependent current generator

g(v 2. v3 -v 1 ) , which includes both the h E nonlinearity

and the avalanche nonlinearity.

4. Capacitqxv Ca nd C have been combined into a non-
CD je

linear capacitor, represented by the nonlinear incre-

mental current generator Ve (v2)

We shall examine how the nonlinear elements in the model are

defined, and outline methods of determining the model parameters.

We begin with the nonlinear parameters using data taken in the

measurement of a 2N2950 transistor. The 2N2950 is a NPN silicon
annular transistor used for power and driver applications to 100
MHz. The particular 2N2950 which is used as the example in this
section is the mixer transistor in the VHF receiver which is

modeled in Chapter 7. The modeling of a 2N918, a NPN double-dif-
fused silicon planar epitaxial transistor used as a UHF oscil-

lator and amplifier is presented in Appendix B.

5.3.2.1 Base-Emitter Exponential Utonlinearity

The base-emitter junction is a semiconductor junction,

and, like the diode of Section 5.2, has an exponential current-

voltage relation. This relation is evident if one writes the

large-signal static equations for the transistor. A suitable
form are the Ebers-Mo.l equations, where we define:

A
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I - reverse saturation current of the emitter junction

.with the collector open. V2/T < < 1' 1ca 0

,,C reverse saturation current of the collector junction
with the emitter open, ql(V3-"V2)AT < < 1. iE - 0

an- current gain in normal operation
•:- current qain in inverted operation

Then the equations for I., the total emitter current, and IC
the total collector current, are:

.Eso 2 +I ~Vo

1-ON"

(5.37)

IV AT I e 3 -

(5. 39T'"

The Ebers-Moll model is shown in Fig. 5.21,. "xEaations (5.37)
and (5.38)are the Ebers-Moll equations for a NWN transistor
in a common-emitter connection. The Zbers-Moll model is a conto
venient total model of the transistor, as it shows the two

diodes which make up a junction transistor, as well as their

associated current generators. In the nonlinear T model shown
in Fig. 5.20, we have included the base resistor rb which is
omitted from the abers-Moll model. Under normal operating

conditions, qV2 /kA >0 and -q(V 3 -V2 )/kT<< -1, that is, the
emitter junction is forward biased and the collector junction

is reverse-biased. In this case, E reduces to
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Fig. 5.21. NPN Ebers-Moll Model (Conmon-Smitter).
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•[}i,,. ... zz " 1- ,% .- 1-• % •(5.39)

• •i.,'or

r qvX- Pl21 + B( (5.40)

The additive term B in Eq. (5.40) is normally very small and can

be neglected. In this case, Eq. (5.40) takes the same form as

Eq. (5.5), and, as shown in Section 5.2.3 the incremental emitter
current can be written as a power series in the incremental volt-
age v2 to give the nonlinear incremental current model

-ie - ) -(v Xv + K 2  + K 3  + (. 5.41)

In Equation (5.41), the positive direction for ie is defined from
the reference node to the base node. If B is not small, we still
get the same result for 1(v 2 ) since B is independent of v2 . The

* . coefficient of the first term, KI, is the linear incremental con-

ductance and is given by

KT' (5.42)

'Mere I is the emitter bias or operating point current. If
SEq. , •,ere truncated after the linear term, -I would be

Sint•.px ited r•s re, th ecuivalent incremental resistance of the
base-emitter diode. It should also be noted that K(v2 ) is de-
fined as the incremental current associated with the zero-memory

exponential nonlinearity, and does not include the incremental

current associated with C2C+C in Pig. 5.17.
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A diode ideality factor should also be introduced

into the em!.ter current Eq. (5.40) to account for imperfect

Junctions. At high current levels, a factor n-l±_m where m is

of the order of 0.4 can occur. The plus sign applies for a

pnp while tho minus sign applies to npn transistors. Imperfect

emitter junctions will have npl even at low current levels.

Therefore, the Taylor series coefficients K for the emitter

junction current IE are operating point dependent in a manner

identical with the semiconductor diode coefficients as given

-by Eq. (5.13), or

K = I (5.43)

where the emitter bias current IE replaces the diode Lias current

and n is t1• ideality factor. As a practical matter it is only

necessary to obtain the ideality factor n for the base-emiLter

junction characteristics to employ the incremental model. The

bias current I is known explicitly from a given collector bias
E

current IC and the DC beta given by hFEb B since

1+b3

I I i~F (5.44)IBCh

Measurements of the base-emitter static I-V characteristic

should be made at zero base current conditions to avoid voltage

drops in any DC base resistance that may be present. The internal

junction emitter-base voltage is the desired parameter. The base-

emitter junction static characteristi.- measured on the 2N2950

transistor are shown in Fig. 5.22. Note that experimental data

points lie on straight lines to confirm that the emitter current

is exponentially dependent upon the base-emitter voltage.
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Fig. 5.22. Forward-Biased Baae-Emitter Jm'nction
Characteristics of 2N2950.
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5.3.2.2 Avalanche Nonlinearity

The first nonlinear mechanism effecting the dependent

current source g(v 2 ,v 3 -vI) in Figure 5.20 is avalanche multi-
plication of collector current. The collector characteristics of

a transistor are modified at large collector voltages by avalanche

multiplication of charge carriers in the collector space-charge

layer.

In the common-base connection, the pre-breakdown avalanche

process is usually described in terms of a collector-current

multiplication factor M given by

_M (5.45)

where

"VCB = DC collector-to-base voltage - V3-VI for
the common-emitter connection,

"VCBO = avalanche voltage - collector-to-base breakdown
voltage for zero emitter current.

Figure 5.23 shows simplified common-emitter and common-base total

equivalent circuits for the NPN transigtor avalanche multiplication

effect. Thesn circuits have been derived from the Ebers-Moll model

of Fig. S.221 by replacing the base-emitter and base-collector diodes
by short-circuits and open-circuits respectively, which are active-

quadrant operating point idealizations. The multiplication factor

M defined by Eq. (5.45) is introduced in Fig. 5.23a as a multiplier

associated with the dependent total current generator M VE from the

Zbers-Moll .odel shown in Fig. 5.21. The factor 2 accounts for the
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Fig. 5.23. Simplifled NPN Total Circuits Including
Avalanche Multiplication.
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I

avalanche multiplication effect of V in the common-base col-

lector family. In oider to define the avalanche nonlinearity the

exponent q and the collector avalanche voltage VCBO must be mea-

sured. The most direct way to find the avalanche voltage is to

reverse-bias the base-collector junction (through a current-

limiting series resistor) and increase the voltage until avalanche

occursi this defines the breakdown voltage VCBO.

The avalanche voltage may also be found from measurements

of the common-emitter collector I-V family. The value of col-

lector-to-emitter voltage for which the CE collector family ap-

perrs to have a "breakdown" is not the avalanche voltage (which

is defined in terms of a CB measurement) but is called the sus-

taining voltage, VCEO' or the value of collector-to-emitter

voltage for which the common-emitter incremental forward-current-

gain at zero base current becomes infinite.

It is not sufficient, however, to know only VCEO. The de-

pendent current generator to be utilized in the nonlinear incre-

mental equivalent circuit for the transistor is developed in

terms of the avalanche voltage VCBO and the exponent r, so we must

have a simple relationship between data obtained from the com-

mon-emitter collector family and the avalanche factor M defined

by Eq. (5.45).

In Fig. 5.23b we have redrawn the total equivalent circuit

with avalanche effect included in a common-emitter configuration.

From the simplified Ebers-Moll circuit we have

IC (B + I MIE (5.46)

EliminatingIE, we have for the total collector current

IC IMc IB. (5.47)
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The incremental current gain

dl- -Ma (5.48)
dIB lI.McLN

becomes very large when McLN approaches unity. Thus

it is sufficient to examine the current ratio

aNI C l-x n VCB
-- (5 .4 9 )

I B I N VCBO
l_x•

or

II BN 1 (5.50)IC l-%N x

1--a-

The first factor inEq. (5.50) is the collector current in the

absence of avalanche and the second factor represents the effect

of avalanche multiplication upon collector current for the

common-emitter connection. The current gain is infinite when

L CBOJ

Since VCB ; VCE, the special value of VCE satisfying Eq. (5.51)

is the collector sustaining voltage VCEO. Solving for VCO,

we have

VCBO V cEO (l-) . (5.52)

The exponent n can be found by accurately fitting the second fac-

tor of Eq. (5.50)to a set of experimental collector curves.

327



It is to be noted that the transistor is-4ipt actually in

avalanche breakdown when the common-emitter collector voltage

is VCEo. Instead, the avalanche multiplication factor is

such to generate an infinite incremental current gain region for

moderately low VCE*

The measured common-emitter collector family for the

2N2950 in the avalanche multiplication region is shown in Fig.

5.24. A curve fit is shown near the IB - 1.0 mA curve. We

obtain the parameters VCBO - 140 V and r = 4.61r fxm this fit.

5.3.2.3 hFE Nonlinearity

The g(v 2 ,v 3 -v 1 ) nonlinearity in Fig. 5.20 also includes the

hFE nonlinearity,which is a relationship between Ic, the collector

current, and IB, the base current for low collector voltage in a

region free of avalanche effects. The ratio of these two quanti-

ties is

S A IChFE I I ( 5.53 )

The Ebers-Moll model for very small collector voltage predicts

that hFE is a constant since % is a constant. (See Eq. 5.47 for

M-i.) Experimentally it has been observed that hFE is not con-

stant and can be approximated by

I_ hFE m(5

1 + a 1 f

max
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Consequently, aN is dependent upon collector current IC. From

this relationship, hE peaks at :m equal to 1 ~ax,. and decreases

for larger and smaller values of IC4

The small-signal commnon-emitter current gain, hfe is given

by

idIc h PE

1. ..... =f - - =.
dB 2('::1 + a lo I 2a log e log I

C Cmax max

Equation (5.55) shows that, while hfe equals hFEmax atI C

equal to I , xp in general hfe is not equal to FE* The

maximum of hFE generally occurs at a value of I at which

high-level injection becomes important, e.g., when the m discussed

in relation to the exponential nonlinearity assumes a nonzero

value. The' current ratio hFE can be measured in at least

two ways. The first technique is to simply measure the static

conunon-emitter characteristics on a transistor curve tracer,

and then plot hFE (or I C/IB ) from these measured characteristics.

The measurement of hYE must be made at a sufficiently low voltage

for avalanche effects to be negligible. The second technique is

to make a pulsed measurement of h F. This has the advantage that

higher peak currents can be measured, which may be necessary to

find IC•2c while keeping the temperature ellects to a minimum.

Again, the measurement should be made at a low collector voltage.

The temperature sensitivity of hbE should be considered in de-

fining receiver experimentm. Measured data from the 2N2950 are

shown ini Fig. 5.25. Observe that several points obtained by
fitting the algebraic expression for hFE to the data are shown.
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The parameters h 8.2, I = 150 mAh and a = 0.125
FEmax Cmax

provide an accurate fit except at very large collector current

values.

5.3.2.4 Nonlidefar Incremental Current
Generator g (v 2 1 v3 -vI)

The discussion of the h nonlinearity in Section 5.3.2.3

and avalanche multiplication factor M in Section 5.3.2.2 has

introduced the constants associated with the h and M expressions
FE

given by Equatiors (5.45) and (5.54). The dependent current genera-

tor g(v 21 v 3 -v 1 ) contains both the hFE and avalanche nonlinear

effects directly and the K(v 2 ) nonlinearity indirectly through

tbh dependence upon the emitter current. The method of combining

these three nonlinearities to give the multi-variable Taylor

series expansion and, thus, the incremental nonlinear current

generator g(v 2 ,v 3 -v 1 ) from the

I -M_ýNIE, (5.56)

total dependent '.urrent generator in the modified Ebers-Moll

model is outlined in this section. The Ebers-Moll generator

(See Fig. 5.21 and 5.23b) has been modified by introducing the

avalanche multiplication factor M which ie a nonlinear function

of V 1 - Vil the DC collector-to-base voltage. It has also been

modified by recognizing that

h (I
SN = l+h (z)'

FE c
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is not a constant, but is nonlinearly - dspendent upon the collector

current Ice Our objective is to determine i, the incremental

component of T. The dependent generator g is simply the in-

cremental component i which we shall show can be expressed in
c

terms of the incremental node voltages v2 and v3 -v 1 .

First, we recognize that we can re-arrange Eq. (5.56) by

making use of Eq. (5.57)to obtain

I+h (I

"C h (I) -VIE. (5.58)
FE CE

The left hand side of this equation is dependent upon IC and can

be expanded in a Taylor series about the DC operating bias ICO

to obtain

I+hFE 1+hFE (ICO)
hc---- c (Ice
hFE hFE CO)

+ Z a in (5.59)
n=l n

where

1 n I l+h FEia _ n--c" (5.60)
n ni 71n IC b E

The total emitter current can also be decomposed into its

operating point value IE0 and the incremental component iea or

IO + , (5.61)
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and, ;imilarly,

r• MM" o ÷m, (5.62).
-where is the operating-bias value CD& • and m is the nc:e-

0

mental variation in M caused by variation in the collector-to-

base operating-point voltage V3 -VI. It follows that

I+h (IC)
FE Co n

CO hE(IC0) n- n nc

-MO IEO I O+ Mi. (5.63)

Equating incremental terms, we obtain

O n-:_ a ani n - Z , (5.64)

where

z - - [mIEO + Mi.3, (5.65)

and
I an EO I IE C CO
1E0 Ij. *(5.66)

• Mo. V3 - V1

Also,
M Mi (v3-v1 (, 5.67)

il 3 1
where

"- i, •(v~v i.(5.68)i
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TheTayorseresexpansion in Eq. (5.64) can now be reritten

as a power series in current (Abramowitz and Stegun, 1964, p.16)

to get a series for the incremental current generator

X q1 qA g g(v2 1 3 -v) (5.69)

where the first-three coefficients a. are
4W. q

a

-a 2 (5.70)

2 3'
a1

2a -_a 1a3

a1

The a coefficients are given by Eq. (5.60). The first three

terms of the expansion are of the form~

g(x,y)= g(v2 ,v3 - v) g g1 + g 2 + g3  (5.*71i)

where

g1 (V2 v IV V)- gv + g (V3  v1  (5.72)
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g 2(v 2 'v 3-vl) 1 2 yv2 3 1 21yy 12 1

g3vv- 1)-1 2 1 2

3 ~ ~ - g2',v3-v 1) 2 Jy23 12%,.v 31

S g (v"vl)3 + gxj v . (5.74)

The various g coefficients are partial derivatives which can be

worked out directly from the expansion coefficients given in

Eqs. (5.43), (5.60), (5.68), and (5.71).

Higher-order terms may be added if they are of interest. In

the practical application of the nonlinear incremental model, only

the constants given as h , I , etc., are required as inputs

to the computer program used to determine the input/output dis-

tortion characteristics of a transistor amplifier.
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5.3.2.5 Collector-Capacitance Nonlinearity

* The other nonlinear incremental current generator in the
collector circuit is the collector capacitance current source

y ( 3V) YJ (v -v ) + Y (v3-v ) 2+ .0~ (5.75)

The first coefficient is the first derivative of the nonlinear

charge characteristic of the reverse-biased collector junction at

the operating point and is, therefore, the collector-junction

capacitance, Cc.

In Section 5.2.3, Eq. (5.14) for the voltage-variable junc-
tion capacitance of a reverse-biased junction diode was given.
In the normal reversed-bias mode of collector operation, the
magnitude of the junction voltage IvI is much greater than the
barrier voltage $. Eq. (5.14) then becomes

U

C(V) C(0) (5.76)

Sk IVi • (5.77)

where k m C(O) $• - C IVI - 1). It follows that the collector-

base junction capacitance for the bipolar transistor is given by

cc = -= klV 3-V 2 1 IV3 -v 2 >> 0, (5.78)

where V3 - V2 is the reverse-bias voltage across the collector-
to-base junction. This will be very nearly V CE at the operating
point bias. An incremental measurement of the linear current
through the base-collectox capacitor will determine Cc. To re-
late this to conventional transistor measurements, consider the
h-parameter set. In particular, if h 2 2 b, the conimon-base h 2 2

is measurb, it will be approximately

2 - 2 + j2 rf (Cc + C3 ). (5.79)h22 -rc
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The measurement should be made at a frequency such that the
impedance of Cc is of the same order as rc. Thus

c - s(h C (5.80)a 2 rf ( 22b C3 .

If -m(h2 2b) is measured for a range of collector-base voltages
and Cc is plotted on logarithmic paper, L is the slope of
the graph and kc is the value (extrapolated if necessary) at V
equal to ona volt. Experimental data for the collector-to-base
capacitance Cc nonlinearity of the 2N2950 are shown in Fig. 5.26.
Also shown is a curve fit for the theoretical functional depend-
ence expected. From this data we have the parameters k = 25.0 pF,

0.4 V, and P w 0.348. The value of g is seen to be suffi-
ciently small at aormal operating voltages that it can be set
equal to zero.

5.3.2.6 Em-itter-Capacitance Sonlinearity

The last nonlinear, parameter to be evaluated in the non-

linear incremental equivalent circuit model is the nonlinear

base-emittercapacitance source 7 (ve ) . The base-emitter capa-

citance is the parallel combination of the diffusion capacitance

and the space-charge layer, capacitance. It can be determined

by measuring Or., the frequency at which the extrapolated common-

emitter current gain goes to unity, or f., the frequency at

which the common-base current gain goes to 0.707. The two cutoff
frequencies fT and fa are essentially the same. The frequency

cutoff mechanism in the model is the reC2 product, and C2 is

given by

c (5.81)
Te
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The space-charge layer capacitance is a function of the

base-emitter voltage. In forward bias, this voltage remains

nearly constant over a wide current range. Thus the space-charge

layer capacitance is nearly a constant. At low-to-moderate

values of emitter current, the diffusion capacitance varies linearly

with the emitter current. Since r varies inversely with the eiuittere

current, as long as the diffusion capacitance is much greater than

the space-charge capacitance, the cutoff frequency will be constant

independent of the emitter current. At sufficiently low currents,

when the diffusion capacitance is less than the space-cbarge

capacitance, the cutoff frequency will vary linearly vith the

emitter current. At high values of emitter current th', diffusion

capacitance can increase faster than the emitter current, thus

causing the cutoff frequency to decrease. The cutoff frequency

is also a function of collector bias, which is not included in

this model.

Figure 5.27 shows the measured emitter capacitance of the

2N2950 transistor. The capacitance of the forward-biased emitter

junction is seen to have a linear slope of 60 pF/mA and an inter-

cept of 330 pF. The 330 pF represents the space-charge capacitance.

The total emitter junction capacitance can be written as

C = Cj + C 1 (5.82)
2 je 'E' 5.2

where Cje is the space-charge capacitance, and CA is the pro-

portionality factor relating diffusion capacitance to emitter

current.
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: 5.3.2.7 Base Resistance rb

The remaining two resistive elements in the nonlinear

incremental model are essentially independent of operating

point bias values and will be limited to the linear term in the

incremental model.

Resistance rb is the incremental linear base-spreading re-

sistance due to the finite resistivity of the base region, and

can be determined from h-parameter measurements. rb will show

a slight variatiin with collector voltage and may change under

high injection current conditions and should therefore be mea-

sured at the desired operating point. Using the subscript b

to represent common base:

h = retic + rb (I-), (5.83)
llb e 2 + b '-

SkT
where r ee qJI EI

II = means "in parallel with".

a= 00 /(1+jw/w).

Therefore, rb can be found from hllb measured at a sufficient-

ly high frequency that rb(l-) >> r C2 . Since h 1l/yYll, a

y-parameter measurement can also be used to determine rb. Either

technique may be complicated by the existance of parasitic capa-

citance. For the 2N2950, ri s 10.1 ohms.

High frequency transistors, which have narrow base regions,

tend to have large base resistances, and the accurate determina-

tion of rb by the measurement of high frequency parameters may

be difficult. An alternate technique,which has been used with

good results ,consists of inserting the transistor into a test
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amplifier and in measuring its low-frequency insertion gain.
If all circuit parameters except rb are 'kown, rb can be de-

duced from the circuit model and the measured insertion gain.

5.3.2.8 Collector Resistance rc

Resistance rc is the collector resistance. Physically it
arises as abase-width modulation effect produced-by incremental

collector junction bias. It is a large resistance which gene-
rally is important only at high frequencies or large load im-
pedances. rc can be determined from common-base h-parameter

measurements:

rc = I/Re(h 2 2b). (5.84)

For the 2N2950, r is 635 kn.

5.3.2.9 Capacitances C1 and C3

C1 is the header capacitance between the base and emitter

terminals. Iv is a small capacitanceof the order of several
pF, and is indepeadent of the transistor operating point. Capa-

citance C3 is physically due to the portion of the collector
which woverlaps* the emitter, hence the name "overlap capacitance".

C3 may have some voltage dependence.,

C3 can be determined by measurement of the common-emitter

reverse transfer admittance for incrementally short-circuited

input, Y1 2e" By definition

di1  . (5.85)

Yl2e ' dv I

At a sufficiently high frequency, somewhat above the 0 cutoff

frequency, the transistor is short-circuited by C3 , and

Yl2e -jWC 3  (5.86)
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This region can be found by plotting 1yl2ef as a function of

frequency and examining asymptotic slopes.

Capacitance C1 can be determined by a measurement of Ylle'
the input admittance for incrementally short-circuited output.
The measurement should be made at the desired operating point

and at a frequency somewhat higher than that required to measure

C3.

The definition of Ylle is

di(
Ylle m d (5.87)

V2 = 0

and, at sufficiently high frequency,

Ylle 2 jw(C 1 + C3 ). (5.88)

As with C3 , the asymptotic region can be found by plotting I Ylle
as a function of frequency. I I

For the QN2950, C1 is negligible and C3 is 1.5 pF.

5.3.2.10 Parasitic Elements

A transictor may have parasitic elements, e.g. series in-
ductance or shunt capacitance depending on the construction of

the transistor. The 2N2950 is fabzicated in a TO-102 case, has

three leads and a stud mounting. The collector is connected to

the case; the mounting stud is insulated from the case. This
results in a parasitic capacitance of 4.0 pF between the collec-

tor and the stud.
5.3.2.11 Summary of the Bipolar Transistor Nonlinear Incre-

mental Model

In summary, the nonlinear T incremental model for the bi-

polar transistor has five sources of nonlinearities which are
included as four sets of incremental controlled current gene-
rators. These are:
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K (v 2) Base-emitter exponential nonlinearity,

g(v2V3-Vl) 1 Avalanche and h,, nonlinearity,

Yc (v3-v 2 ): Collector capacitance nonlinearity,

e 2(v2 ): Emitter capacitance nonlinearity,.

Each of these can be . -panded in a Taylor series in an

equivalent circuit forr. a•t 2hown in Fig. 5.UB. Each of the

current generators has "-a• decomposed into three palrallel gen-
erators for the linear, second-order, and third-order current

sources. Higher order nonlinearities may be included as fur-

ther generators. The circuit model emphasizes the fact that we
are concerned with the normal active quadrant, that is, neither
in cutoff nor in saturation.

The linear incremental T model of a transistor is shown in
Fig. 5.29. The model includes the case-stnd capacitance CCG'

found in the 2N2950. A comparison of Figs 5.28 and 5.29 shows
that the linear model contains only the first term of the ex-

pansion of each nonlinear generator.

A summary of the parameters necessary to characterize the
nonlinear and linear frequency dependent incremental model of
the bipolar transistor are listed in various categories in
Table 5.1. She numerical values are for the 2N2950 sample

evaluated at TA = 25 0 C. Linear parameters are evaluated at the
Vc= 10 volts, IC = 10 milliamperes operating point. Note that
17 parameters are involved in the nonlinear model while 9 are

necessary in the linear model.

It is also sometimes possible to characterize the nonlinear

parameters of a bipolar transistor from manufacturer's specifi-
cation data sheets. An example is worked out in Appendix B for
the 2N918 transistor.

345



$0E-

$4 4

~0

> rd

540
>, >44j _IAL

v CY) L 41ou

- N ow

H

0 0

"04

-AF

346



03

VIC.

r3

Base Collector

ICC

Emitter Heat

Sink. Stud.

Figure 5.29. :Linear Incremental Equivalent
Circuit of 2N2950.

347



NN

0O 0 000)dr

r. 0 (N1 0u u

0 LA . WN

04 0
1,-4 ;O NO dN 0

0 40

00

0 Qv-I 4 C

0 0 0 0.- I

U MI a-
0 H 0o If 10 IfI

0.

I (a m

m ~ 8)( r

0 toi

0 02

Nq I I

N- 0)

_ _ _ 1 _ _ _ d _ _ _

30u048

0 1



5.4 Nonlinear Models of Field-Effect Transistors

The state of the art in modeling field effect transistors,
both MOSFET and JFET, is less advanced than is bipolar junction

transistor modeling. This is due to several factors:

1) Extensive availability and use of PET's is a relatively
new phenomenum;

2) The first-order theory of the device predicts no (or
rery little) important distortion effects at the normal

frequencies of use;

3) The important effects (which do experimentally show up)
therefore arise from primarily more complicated second-
order physical factors which tend to be structure-
sensitive;

4) There is a large variety of physical structure, from
JFETS through MOSFETS, over Which the second-order
parameters vary greatly;

5) It may not be possible to find a single "generic
model" (like the Integral Charge-Control Model of
Gummel and Poon, 1970, for bipolar transistors), out
of which all the important cases can be selected merely
by measuring a limited number of critical parameters.

As a consequence, at the present time there are no well-developed

theoretical nonlinear PET models ready for immediate use. How-

ever, experimentally developed models are available. Good re-

sults in distortion prediction have been achieved in the VHF and

low UHF bands. It is generally agreed that the first-order large

signal theoretical models are inadequate for the prediction of

third-order nonlinear distortion.
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Miller and Meyer (1971) do, however, obtain excellent re-
sults for the prediction of crossmodulation at frequencies up

to 450 MHz on the basis of a 30 poirt measurement of incremental
transconductance as a function of gate-to-source voltage VGS.

The measured data was fitted by an 0 th-order Taylor series and
integrated analytically to obtain a nonlinear relationship be-
tween the static drain current ID and gate voltage VGS. Fifth.

order terms were found to be significant. The large signal
total model employed by Miller and Meyer is shown in Fig. 5.30

Where the total static drain current ID = f(VG)
depends nonlinearly upon VG. The gate-to source capacitance
CGS(VG) was found to be voltage dependent and experimentally
approximated by

CGF = CGS(O) El + bVG), (5.89)

wheta CGS(0) and b are constants. Both R and C were observed

to be nearly constant.

Miller and Meyer's use of the model involved Fourier analy-
sis of the large-signal time domain solution for a resistive em-
bedding of the model. Application of the Volterra series analy-
sis was not attempted but it is clear that straightforward ap-

plication of the device modeling techniques will give the non-
linear incremental equivalent model. Fair (1972) recently in-
vestigated harmonic distortion in JFET's by employing a power-
series equivalent circuit model. Lindholm (1971) has employed

charge-control theory in modeling field-effect transistors.

5.5 Nonlinear Charge-Control Model of Bipolar Transistors

There are two physical phenomena not included in the non-

linear T bipolar transistor model presented in Section 5.3 of po-

tential importance at higher power levels which should be added

to the model. These are:
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1) At large collector voltage swings* the base narrows
as the collector space charge layer widens toward the
emitter junction to add a current-dependence to both
the collector resistance and the collector capacitance.
Alternatively, base transit time decreases with In-
creased voltage. This effect is known as the Early
effect.

2) At large collector currents the base push-out effect,
which effectively widens the base into the collector

... ody region (or, alternatively increases base transit
time with increased current), is a result of the in-
creased neutralizing charge of minority carriers in-
jected into the collector space-charge layer.

Both of these effects tend to produce, on one hand, a curvature
of the collector characteristics before the avalanche multipli-
cation process sets in to produce similar variations at higher
voltages? and, on the other hand, a variation of output capaci-
tance with current that is not expected from the previous models.
In addition, fT is made voltage, as well as current dependent. Ac-
cordingly more distortion may well be expected from these processes
at lower load impedance levels than would be anticipated otherwise.

In order to include these effects in a consistent manner,
it is also expectad that modification should be made of some of
the other nonlinearities presently included in the model. Ac-
cordingly it becomes most reasonable to adopt a rather differ-
ent and considerably more complete model of the transistor; in
particular the so-called Integral Charge-Control Model of
Bipolar Transistors, described by Gummel and Poon (1970). The
model has been applied very successfully to the calculation of
second and third order distortions (including intermodulation)
at output frequencies as hig1% as 75 MHz in a resistively termi-
nated transistor with fT w 2 GHz.

The essence of the model (which is analytical rather than

topological) is the recognition that in the modern bipolar junc-
tion transistor the dominant "longitudinal" current Xcc from emit-
ter body to collector body, composed of carriers which are minori-
ties in the base region (electrons for r& NPN transistor), is
practically unaffected by the slight amount of recombination

352



involved in the structure. It contains, however, many of the

major device nonlinearities. By neglecting recombination, Gunnel

showed for a one dimensional transistor that Icc is proportional

exp (qV' ebAT) exp(qVI cb/kT)

to .. . . (5.90)

where %b and Vý b are the voltages at the "internalm emitter-base
and collector-base contacts, and Qb is the entire base charge

given by

Qb - Obo + Oe + Qc + B'rf If + ,r Ir (5.91)

Obo is the equilibrium total stored charge in the base, 0e
the emitter junction stored charge, 0c the same for the collector
junction, BTfIf represents a forwazd diffusion-capacitance charge

storage, and TrIr, correspondingly, an inverse storage. The
factor B describes base push out, which in the normal active re-

gion of operation increases with Id and decreases with IVcb .

Equation (5.90) becomes the usual Ebers-Moll result when

b = Obo' but otherwise Ob provides the mechanism for including

many of the important nonlinearities which are less violent than

the exponentials.

The base current " does not have as simple a form as I
and is much more structure-sensitive:

-b "be + be + Xbc "A~ (5r.92)

1 2

The various components, as well as Icc, are shown in Fig. 5.31.

Generally,
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(a) Ibe" [exp(qVe' AT) -11

(b) Thbe2 "exp(Vb/nekT) -13; 1 < ne < 2 (5.93)

(c) Ibc " [exp(qVb/nckT) -1; 1 < nc _< 2

and IA is based on analysis of the avalanche multiplication

phenomenon.

The net result of the integral charge control model is that
equations can be written for the collector current, base charge,
and base current:

f(V' )V' Q, Ic eb' cb' c

( g(Veb' Vb, 1c). (5.94)

Ib h(Veb', Vcb', Ic)

Unlike our previous device models, the equations ire implicit
and cannot be used to represent individual elements in the de-

vice model. However, the transistor can, through the use of
Eq. (5.94), be represented as a nonlinear two-port. The linear
y-parameters are, as usual, the first derivative terms. The
current sources in the higher-order nonlinear representation
are found through utiliziug higher-order terms of the Taylor's
series expansion of (5.94), along with the same nonlinear cir-
cuit analysis techniques outlined in Chapter 2. The integral

charge-control model employed by Gummel and Poon is, as might

be expected, conside:ably more complex than the nonlinear T
model outlined in Section 5.3. For example, some 31 parameters

are required to characcerize the model instead of the 17 for

the nonlinear T.
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5.6 Vacuum Tube Nonlinear Models

There are still many communication systems in use that em-

ploy vacuum tubes. Our model of such devices is a modified form

of the classical space-charge limited 3/2 power law.

The 3/2 power law model states that the current-voltage
relation for a vacuum diode is

is =G e3 / 2, (5.95)

where

is = total space current (cathode current),

G = a "constantw called the perveance,

e - plate-cathode total voltage.

The incremental model is found by expanding Eq. (5.95) in

a Taylor series around the operating bias. The first term in
the series represents the linear model, and the higher-order

terms represent the nonlinear terms of the model. Multi-grid
tubes are modeled by replacing the voltage e by eeq, an equiva-

lent diode voltage. Corrections must be made in the model for
the space-charge potential and the operating-point dependence
of some of the so-called constants of the tube. Good supple-

mentary background material can be found in Spangenberg (1948),

and M.I.T. E.E. Staff (1943).

5.6.1 Vacuum Diodes

The instantaneous total plate currGnt ib of a vacuum diode
in the space-charge limited region is related to the instantan-

eous total plate-to-cathode voltage eb by

ib G% 3/2, (5.9b)
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where G, a constant called the perveance, is dependent upon the

tube geometry. If the diode is biased at the operating point

(0'I %0). we have

'bO + ip = G(EbO + ep) 3/2, (597)

where i and e are the incremental plate current and plate volt-
p P

age relative to the operating bias point. Expanding in a Taylor
series about the operating point and solving for the incremental

plate current, we have

ip e p + K2ep2+ K3ep3 + Ke p4 + , (5.98)

where

K -G E 1/2
1 2 bO

K12 = G Eb0 1 / 2•2 8 b"/ (5.99)

K = G Ebo-3/2
3 16 Gb

K4 = 128 G

The vacuum diode in the 3/2 power-1-w wpace-charge limited
region is equivalent to a nonlinear asistor. The general form

of the coefficient is

K L 3 [2 3.. (n])GW(3/2n) (5.100)

The nonlinear incremental circuit model for the diode is shown
in Fig. 5.32. A plate-to-cathode capacitance Cpk has been added

to model the high-frequency vacuum diode.

A triode, with the signal qrid connected to the cathode,

is electrically a diode. Similarly, a pentode, with the sig-
nal grid and suppressor connectel to the cathode, and the screen
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connected to the plate, is a diode. Fig. 5.33 shows the m~as-
ured diode-connected plate characteristics of a 12AT7 tr'iode
and three pentodes, the 6DO6, 6AH6, and 5763 with the current
axis being the two-thirds power of current; the two-thirds ex-
ponent serves to remove the curvature caused by the 3/2 power

law. From Fig. 5.33 it is seen that the 3/2 power law
is valid. Two of the curves, the 5763 and the 12AT7, go through

the origin of the graph. The 6AH6 and 6DC6, however, have zero
current intercepts of 7.5 volts and-7.Ovolts, respectively.

This offset is due to the effects of the space-charge of the
tube, and can be modeled by defining a potential • which is
added to the diode plate-cathode voltage or

b = G(eb+ )3/2 (5.101)

The potential eb + $ is referred to as an equivalent diode
voltage.

5.6.2 Vacuum Triode

5.6.2.1 Vacuum Triode Theory

The total space current of an ideal vacuum triode (see Fig.
5.34) operated in the normal space-charged limited region is
given by

is = G(ec + eb 3/2, (5.102)

where G perveance, a parameter dependent upon geometry,

is = ic + i - total space current, the sum of gridcurrent and plate current..

ec = total grid-to-cathode voltage,

eb = total plate-to-cathode voltage,

S= amplification factor, a constant dependent upon
geometry.
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Fig. 5.34. Vacuum Triode.
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Normally, the triode is operated in the negative grid region

and grid current is negligible. The space current is then en-

tirely plate current and

G e = /+e )3/2 ec S 0. (5.103)

if V and G are essentially constant in the normal operating

region, the primary nonlinearity is the 3/2 power law. Since

both the grid voltage and plate voltage are variable, the total

plate current ib given by Eq. (5.103) must be expanded in a two-
variable Taylor's series about the operating bias point to deter-

mine the incremental plate current ip dependence upon incremental

grid voltage e and incremental plate voltage e p If the opeat-

ing point plate voltage is Ebo and grid voltage Ec0 , thel the

related plate bias current is given by

Ib G[E 0  EbO 3 / 2  (5.104)

The incremental plate current ip becomes

n 3/2

p Gn,1 leg e e lec+eb/. I

e = Ec0
c cO
eb E.o

The partial derivative operator can be expanded in a bi-
nominal series to give

C + e 6 ]n=
[ e e-"c p "

n nj=• (j)[e , -;3 ]n-Jec a 3_ J~e . (5.106)
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Using Eq. (5.106) to expand Eq. (5.105) produces a general

two-variable Taylor series expansion of the incremental plate

current. The nonlinear as well as linear dependence

upon incremental grid and plate voltages is then established.

The first four terms of the triode plate current expansion are

given in Table 5.2, under the assumption that G and 4 are con-

stant.

The first term of the incremental plate current is given

by

i = ei + .1 e (5.107)
P Pr p

where the transconductance g. = (3/2)GEE + b]/2 and plate

resistance r = i/g m Eq. (5.107) is the linear incremental
relationship describing the triode and leads directly to the

familiar linear incremental equivalent circuits illustrated

in Fig. 5.35. If we add the interelectrode capacitances of the

triode to the linear low-frequency equivalent circuit we obtain

the familiar high-frequency equivalent circuit illustrated in

Fig. 5,36.

The nonlinear incremental equivalent circuit to the fourth
order for the ideal vacuum triode is illustrated in Fig. 5.37.

The low-frequency nonlinear model is represented by the series

of controlled current sources that are given in Table 5.2.

These sonrces are dependent upon the incremental grid and plate

voltages eg and e We have also added the intezelectrode
9 p

capacitances to the model to obtain the high-frequeucy form of

the nonlinear incremental model. The nonlinear incremental
equivalent circuit has three nodes, i.e., the grid, plate, and
cathode. All incremental voltages have been def.ned with re-
spect to the cathode.
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Fig. 5.35. Low-Fraquency Linear Incremental
Equivalent Circuit of a Vacuum
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5.6.2.2 Vacuum Triode Measurements

A 12AT7 triode was measured in the laboratory in order to

examine the applicability of Eq. (5.102). The measured charc-

teristic curves are shown in Fig. 5.38 for one section of the

tube. An inspection of the curves shows that they are relatively

parallel for ib > 2.5 mA, indicating nearly constant parameters

for higher currents. However, for lower currents the curves be-

come non-parallel and increasingly more horizontal as the grid

voltage becomes more negative. Thus the tube parameters are

changing in these regions.

As a further investigation of the triode, one can plot2/3
ib as a function of %. From Eq. (5.102)

c2/3 G2/3 %/ (e (5.108)

Therefore, in the range in which G, and ý. are constant, there
2/3

is a linear relation between i2 and eb. 'igure 5.39 shows

the '2/, ) relation for one section of the 12AT7.

The (b 2/3, e curves are straight lines for ib greater than

about 2.5 mA, confirming our assumption of constant parameters

in this range. However the curves are not parallel.; they seem

to have a decreasing slope as ec decreases. Since tne slope is

G 2/3/, the inference is that either G decreases with e , or 1

increases with ec . The data of Fig. 5.39 are somewhat coarse,

as the grid voltage curves are taken at 1 volt

intervals. One can, however, estimate the perveance from the

data if we assume that G and P are locally constant. Thus,
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from Eq. (5.102), G can be estimated in two ways or

Aec /eb constant, (5.109a)

and

G b = constant. (5.109b)

G, evaluated through the use of both techniques for the data shown in

Fig. 5.38 is shown on Fig. 5.40. It is seen that the perveance

is, indeed, linearly-dependent on the grid voltage, and takes the

form

G 3.35 x 0-3(- ec/Ec (5.110)

where Ec - 6.2V.
max

This result shows that there is another nonlinearity

to be considered in triode analysis over and above the 3/2 power

nonlinearity; that is, G must be considered as a variable in

Equation (5.105).

Returning now to Fig. 5.39, we note a second point of

interest, namely that the ec = 0 curve does not go through the

point e ic = 0, as required by Eq. (5.103). Instead, it is

offset by approximately 5 volts. This is due to the space-charge

voltage of the tube. In Equation (5.103) it is assumed that the

emitted electrons start with zero velocity from a point of zero
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potential. In space-charge limited operation the electrons

leave the cathode with a Maxwellian distribution of ve.ocity

and, near the actual cathode, a virtual cathode is formed which
acts like an ideal cathode. The effects of this can be added

to Eq. (5.103) by defining a potential, •, which is added to

the grid voltage, resulting in

ib =G(ec + /)+/. (5.111)

Given a consistent set of (ib,eceb), Eq. (5.111) contains

three unknows, G, $, and i. Thus, if (IbEcEb) are measured at

three reasonably close points, we might make the assumption that

G, 0, and p are locally constant and solve the set of simultan-

eous equations. If we denote the measured points by a subscript

i, i--1,2,3, the solution for G, d, 4 is given by:

F2/3 2/3
"2 k/3 2/Z3 (Eb- %2b) -(Eb- b3)

bl b2

i2/3 2/3
bl -

-(Ecl- Ec2) 2/3 .2/3+(EclE c3)#

bl -b2
(5.112a)

[(E b Eb2 )
4/ + (Ecl- E 2 )]

22//3 2/3
Oil "b2 ' (5.112b)

• -c - E1 + (Il/G) 2/3" (5.112c)
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Equations (5.112a-c)were solved for several operating reqions

of the 12AT7. The resulting values of U,G,o are shown in Fig.5.38

in the triangle formed by the 3 points used to solve Eq. (5.112-c).

It is seen that at higher currents, p is indeed nearly constant,

while G is less so. The value of 6 varies, but is small. For the
lower current ranges, G,$, and p vary considerably. Thus, the re-

quired triode model nonlinearities are the 3/2 power law, the vary-

ing perveance, and a nonzero potential j6 based on the operating point.

5.6.3 Vacuum Pentode

5.6.3.1 Vacuum Pentode Theory

The schematic symbol for a vacuum pentode is illustrated in

Fig. 5.41. Electrode total voltages and currents are defined in
the diagram. The suppressor is normally tied to the cathode. The

screen grid is normally biased positively while the control grid is

negative with respect to the cathode. The generalized 3/2 power

law relationship is

is mG (eeq) 3/, (5.113)

Where

is total spaze current icl+ic2+ic3 et (5.114)

G = a parameter called the perveance,

eeq equivalent diode voltage for a pentode,

e
=e +e-+ -+ (5.115)

c 1 2  P13  4Ib

The several Ws are ideally constants. In particular

Plj = voltage gain between grids 1 and j,

b = voltage gain between.grid 1 and plate.

Since the screen grid is positive with respect to grid 1,

part of the space-curiWt is intercepted by the screen.
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The ratio of the plate to screen grid current, i b/ic2' is

empirically given by

ib eb
1  []] (5.116)

where D and m are parameters of the tube.

Note that icl = ic3 = 0 when the control grid voltage is

negative and the suppressor voltage is less positive than the

screen voltage, Combining the pentode equations we find that

the total plate current ib is given by

b Cm

=G cl + ec2 +c3 +bJ [e12 (5.117)
i+ D [ýb -

tc2J

If we connect the suppressor grid to the cathode,then ec 3 = 0.

Note that the physical effect of the screen grid is to make the

plate current nearly independent of plate voltage since

ec/2/P12 >> eb/lb. Therefore
m

' e-2

in the negative grid region of a pentode whose

suppressor grid is connected to the cathode. Total plate

current is d function of three voltage variables, ecl, ec2 , and
eb.The parameters are G, c 12, D, and m.
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If we now assume that each total voltage is given by

e E + e (5.119)
cl 10 gi

ec2 E20 + e g2 (5.120)

eb =Ebo + ep (5o121)

where eg 1 , eg 2 , and e are incremental voltages and El 0 , E
g g2p 10 20'

Ebo are bias voltages, the total plate current now becomes

ib T %0 + iP, (5.122)

where

Ib0 = plate bias current

E 2
G[E + 3/2 [

1 G 0 +m2..... (5.123)

and

i plate current
p

n

e -.L-e + e~ll Cl.el 6Ge g2 be2 a

e + . ... ./2 1%W(5.124)

1 + r I

c~20
3 ec = 10

e c2 E E20
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Normally, the screen grid of the pentode is well by-passed

at desired responses so that the incremental voltage eg2 is

zero. However, if the screen should not be adequately by-

passed at a frequency generated by nonlinear interaction, or

the screen is utilized as a local-oscillator input in a mixer

application, we should retain the effects of incremental varia-

tion in screen voltage.

An additional factor which must be considered occurs in

the so-called variable 4 pentode. In this case, the control

grid is deliberately constructed so that 12' instead of be-

ing a constant, is a function of ecl. This is a possible

source of distortion.

These conside.-ations lead to Eq. (5.124) as a representa-

tion of the pentode incremental nonlinear plate current.

Equation (5.124) is complicated by two factors - namely,

the appearance of ep and e in both factors of the operand,
p g2

and the occurrence of P1 2 (ecl) in the denominator of the first

factor. Symbolically, they are controll3d-current sources, that

is,

ip =gl(ei 1 , eg 2, ep) + g2 (egl, eg2' ep) +

+ gl eg2 ep), (5.125)

where
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n
gn(e e e) e-. e - +e
n gl. g2 p n! eg1 be + g2 be 2  p

3/2 D 4me 1 0 m-
" G lecl + Pec2--m

L 12 1+D[de c1 10e[c 2•=E0
l+D ' e l

ec2 20

(5.126)

The first term represents the linear incremental current

source and the plate resistance while the higher-order terms

contribute nonlinear responses.

Typically, m << 1, so that the plate and screen currents

have only a slight dependence on the plate voltage. This accounts

for the nearly infinite plate resistance of a pentode. The de-

pendence of the current division on the total plate and screen

voltages is, however, a source of nonlinear distortion which

must be considered in pentode analysis.

The screen currant similarly has the incremental non-

linear representation:

n
g2 r n I be g2 aec 2  p a

n-e12 l 3/2

"G eI + e -3/2 1 (5.127)

1 + D: e•,, =
e3c2 7 20
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The nonlinear incremental equivalent circuit to third order

for the pentode as impli£d by Eq. (5.125) and (5.127) is

illustrated in Fig. 5.42. The series of current sources g
are in the plate circuit, They are dependent upon the control

grid voltage *1 and screen gr-id voltage eg 2 when the screen.

is inadequately by-passed. The series of current sources kn

are in the screen circuit. They are depeurdent upon the control

grid voltage eg. and the incremental screen voltage e *
92 -

in Fig. 5.43 we illustrate the pentode linear incremental

equivalent circuit with tb un-bypassed screen. Interelectrode

capacitances may be added to the equivalent circuit to create

a useful high frequency model.

5.6 .3.2 Vacuu. Pentode Measurements

As with the vacuum triode, Equation (5.113) is an approxi-
mation to the actual pentode characteristic. Experimental data,
which we shall show in this sec'.i-n, indicates both that the
perveance depends cn the screen voltage and that there is a
non-zero space-charge voltage. Thus, for the pentode, one can
write:

is n Go[l - eC/Ecmax3[g + ec + e 2/] 3/2, (5.128)

where ea is grid 1 voltage and e2 is screen voltage.

Laboratory measurements were performed on a number of pen-
todes in order to test the validity of Equation (5.128). In
this section we will examine in detail the results of the meas-

urements on one pentode, a 6AH6, and summarize tho results of
measurements on two other types, the 6DC6 and the 5763.

The 6AH6 is a sharp-cutoff pentode. The measured plate
characteristics of a 6AH6 are shown in Fig. 5.44, for a screen
voltage of 100 volts. Note the almost horizontal curves for
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constant grid voltage, indicative of a very high plate resistance.

The triode-connected characteristics of this tube, that is, screen

connected to plate, are shown in Fig. 5.45. As a further investi-

gation of the pentode, one can plot (b+i 2 )2/3 as a function of eb,

as shown in Fig. 5.46. It is seen that the 3/2 power law holds

down to 1 mA, well into the curved regions of the triode curves.

The zero bias curve does not go through the origin, indicating a

need to add a correction for the effect of space-charge potential.

The variation of perveance with contral cgrid voltage is shown in

Fig. 5.47. This variation is seen to be linear, with cutoff at

about -5 volts. The current division between screen and plate cur-

rents in the triode connection is plotted in Fig. 5.48. The divi-

sion of currents is seen to be nearly independent of grid voltage.

The current division in the pentode connection is shown in Fig.

5.49; a slight dependence is seen on the grid voltage and the ratio
of the plate-to-screen vol"Age.

Figures 5.44 - 5.49 show that the three-halves power law

model, when modified for the non-constant perveance and the effects

of space-charge potential, is a good model for the 6AH6 pentode.

The results found in modeling the 5763 and 6DC6 were similar.

Table 5.3 summarizes the parameters measured for these three tube

types. The operating points at which these were modeled are also

shown. In the electrode capacitance values are also included.
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Table 5.3

Pentode Model Parameters

Parameter 6AH6 16DC6 15763 Units

Operating Points

-2.0 -1.0 -6.0 V

%0 129.6 91.2 187 V

•20 135.8 84.0 203 V
1b0 5.7 8.9 3.9 mA

120 0.15 3.1 0.47 mA

Model Parameters

G 0 6.85 x 10- 33.95 xlO- 32.0x 10-3AV-3/2

S38.5 39.4 13.8

D 4.0 2.8 9.0

m 0.088 0.11 2.0

E -2.0 -1.0 -6.0 V

S-5.0 -7.6 48.0 Vc
max

-0.04 0.98 0.6 V

E 135.8 84.0 203 V

129.6 91.2 187 V

C 12 6.5 9.5 pF

Cpg 0.02 0.02 0.3 pF

Cpk 4.7 2.0 4.5 pF
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CHAPTER 6

MULTIPLE--TONE INPUT APPLICATIONS

6.1 Introduction

One of the most important applications of the nonlinear

transfer function is the prediction of the nonlinear distortion

responses of a quasi-linear system that has been excited by

multiple unmodulated input tones. By far the most commonly em-

ployed method of investigating and evaluating a quasi-linear

system involves excitatiou of the system by two equal amplitude

tones. In this chapter we shall concentrate upon a fairly com-

plete study of multiple-tone excitation analysis with particular

attention focused upon formulating the problem in terms of

practical engineering quantities. We shall be most concerned

about decibel power relationships and the practical prediction

and interpretation of a nonlinear system output as measured

by a spectrum analyzer. VariouL simple examples have been worked

out with the theoretical predictions compared with laboratory

measurements from the actual modeled circuit. Emphasis is

placed upon simple circuits so that confidence in the methods

and the validity and limitations of the electronic device

models introduced in Chapter 5 can be obtained. Most of our

concern will be with intermodulation distortion nonlinear re-

sponses although gain compression, desensitization, and spurious

responses for unmodulated tonal inputs are relevant. Matters

concerned with modulation distortion and the transfer of modula-

tion to other tones (cross-modulation) are more properly studied

in association with r_ linear canonic model applications.

Although most of this chapter is devoted to small-signal

excitation, we also describe in some detail the results of a

large-signal time-duain analysis of a simple test amplifier
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circuit and compare the time-domain analysis results with both

measurements and predictions based upon the nonlinear transfer

function determined from a model analysis using SIGNCAP.

6.2 Power Relationships for Multi-Tone Input Applications

In this section we shall examine the intermodulation distor-

tion power relationships describing the output power from a quasi-

linear system characterized by nonlinear transfer functions. The

formulation will be for multitone small-signal excitation with

particular emphasis placed upon the important two and three tone

input cases. The special case of equal-power two-tone inputs

will be of particular practical interest.

In Fig. G.* ve list several responses for a nonlinear am-

plifier excited by two tones in terms of nonlinear transfer func-

tions. Observe that the input is the open-circuit voltage

source vs (t) behind the source impedance ZS. The output is v0 (t)

across the loac impedance ZL. It is assumed that the source ard.

load impedances are linear. The source and load impedances must

be used to determr.ne the nonlinear transfer functions..

6,2.2,1 First-Order Response

The first-order output voltage for a sinusoidal open-circuit

excitation V •mplitude V is V H where H (f) is the fist-
1 1 1 1(fisteir-

order transfer function. It is readily demonstrated 'hat the

power p1 delivered to load impedance ZL is given by

P = gTpa (6.1)

where I L L+2

Pi 4 1Z I 2Z I 01l Ii I 2
1 _____

= 4 = source available power,P• 4 Zs+Zs*

transducer gain • delivered power

T available power

~L+Z 2 (z+ ! H1I. (6.2)

Z9LI

392

S~.s~:.~h.2Z........ ...\



-J

4-)

d)
~44

S.4r

$4

4-4

.444

3) 0

a '37

IE-

a~~ * C\

w 4

C.))

zz
VN u

393~ ;



91

It im frequently desired to express power in decibels relative

to a refer*ence power pr. if the reference power is 1 milliwatt,

then the decibel power unit is dBm. Thust defining

p

' ~Pr
P 10 log :.a (6'03)

-- Pr

where Pr * watts, results in

P 1 "- Pa + GT (dBm),(.)

where

GT 4iC lOg1o gT (dB)

=20 log ~1 I,
(zL+zL*) (zs-Zs*)

+ JOlog~ 0 L 12(6.6)
IZL¶'

The special case ZL = = 50 ohms is commonly encountered

in practical measurements. Under these circumstances trans-

ducer gain GT reduces to insertion gain G1 and we have the useful

result

P1  I (dBm), (6.7)

where

G 20 loglo 6 dB (6.8)

Identical relationships apply to each output linear response

for multiple tone inputs.
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6.2.2 Second-Order Response

The amplitude of a typical second-order response at f +f2

in terms of the second-order nonlinear transfer function is
VIV22 It is readily demonstrated that p the second-order

response power delivered to the output load ZL at f 1 +f 2 is

given by

P2 m2 Pal Pa2" (6.9)

where
Pal. available power (watts) from

source at frequency f1 ,

Pa2 available power (watts) from
source at frequency f 2 '

= 41Hi1(Z+Z (zs+Zs*) Z.LzL * (watts)-'.m22

S. ... ( 6 . 1 I 0 )

Our objective now is to cast Eq. (6.9) in a decibel
form with the reference power p set equal to one milliwatt

so that the result will be a suitable expression with power

expressed in dBm. Special care must be exercised to properly

interpret such a form. We begin by defining

P A 10 log0 Pr

P2 =0 o10 Prs
p

S10 log 0 p (6.12)
r

Pa ~10 log1  9a2, (6.13)
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S2 = 10 log Prm 2 P (6 . 4)

and note that Eq. (6.9) can be written in the form

S (Prm2 ) (;r kf7)' (6.15)Pr r/ Pr

where p is the reference power level. It follows from ther
definitions that

P2 = Pal + Pa2 + M (6.16)

Let us now further note that we may write

IVr1
2

Pr =Z r+Z r (6.17)

where V is a reference voltage and Zr a reference impedance.
rr

For example, let us select the reference power level pr at 10

watts and the reference voltage level at 1 volt. The reference

ilppdance term Z +Z* is then IVrl 2 /pr = 103 ohms.imsdnc t rm r rr

Utilizing Eqs. (6.10) and (6.17), we have

SM2 = 20 logo10 lVrI IH2 1 + 6.02

(Z +og*0 (Zr+Zr*) IZLIIf2

Note that the logarithmic operations are upon dimensionless

quantities by virtue of defining the reference voltage Vr and im-

pedance Zr For Pr chosen as 1 mW,
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P2=al + a2 + 20 log 0 (1)iH2n + 6.02

+10 logf 2 Z +2 dBm. (6.19)
10~ ~ 1031ZL 2

This form is valid for power expressed in decibels relative

to one milliwatt (dBm).

If we specialize now to ZS= ZL = 50 ohms, we note that

M2 = 20 logl 0 (l) H2 1 + 2.04, (6.20)

and

P2 = Pal + Pa2 + 20 logl 0 IH2 1 + 2.04 dBm. (6.21)

The notation (l1IH 2t has been dropped and replaced by II2- but
a 2M volt reference is implied.

One further comment is appropriate. When H2 is evaluated

using the nonlinear circuit analysis software, the quantity (1) 2
v(its has been evaluated since unit voltage exponentials are the
assumed excitation. The (1)2 factor has been surpressed. If we
refer to IH21 in decibels, we mean 20 logl 0 IH2 1.

6.2.3 Third-Order Response for Two-Tone Input

We have from Fig. 6.1 the voltage amplitude 3/4 V 2 V2 *H3

for the third-order intermodulation response. with two-tone ewcita-
tion. In a manner similar to that for second-order delivered

output power, we find that the third-order output power P3 de-
livered to load ZL at frequency 2f 1 -f 2 can be written in the form

P3 = m3 Pal2 Pa2' (6.22)
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where
l power avilable in watts from the

al source at frequency f,,

•a= power available in watts from the

Pa2 source at frequency f2 0

m3 = 32 1H312 (Zs+Zs*) 2 1 (Zs+Zs*)I (ZZL2) (watts) 2

f2  L I -'f 2

(6.23)

If we now introduce the reference power Pr =(z +z *) Eq. (6.22)
can be written in the form r r

•r=Pr M3 _12 ;) (6.24)
p3  2 pr p

Defining

P 3
P 3  10 log10 Pr " (6.25)

'a2 (6.27)
Pal 10 logo10 pr

PaI Pa2 1 0 ioglo P-r (6.27)

M -4 10 in32 (6.28)
3 ~ 10 Px "

we have, from Eq. (6.22)
. -2.....+M

Pal a2 + M3' (6.29)

where
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1.3 20 1 0 IVr12 131+ 9.54

(z~s)21 (Z~z

I~ f 2f -• .• + 1 0 l o g o . .. . . .. 1 - - ` 2

(Zr+Zr IZL
21 -f (6.30)

Eqs. (6.29) and (6.30) can now be specialized to give dBm
by letting Pr = 10-3 watts, setting IVr 1 volt, and again

noting that +Zr* = 10 ohms for these references. .
Z•. Z"

For the special case = ZL 50 ohms, we finally
obtain

2Pal + Pa2 + 20 loglOIH31 - 4.44 dBm, (6.3)

where the reference voltage V I volt is suppressed in the
r

notation and all powers are expressed in decibels relative to

one milliwatt, or dBm.

6.2.4 Fourth-Ordsr Response for Three-Tone Input

The procedure for expressing the output delivered power

* in decibels relative to one milliwatt is now clear. The final

situation of interest at this time is the fourth-order response
for three-tone inputs at frequencies fl,f 2 and f 0 . Three-tone
inputs are shown in Fig. 6.2. The response at f 0 -(2fl-f 2 ) is
the ecqaivalent third-order intermodulation response term for a

small-signal mixer with the local oscillator at frequency f
0

From Fig. 6.2, the voltage amplitude of such a response is

3/2 V (V 20 1 2 H4
By inspection we can write for the power p4 delivered to

an output load impedance ZL,
2 "

P4 = m4 Pal Pa2 Pa0' (6.32)
...

where
= power in watts available from source

al rt frequency f 1 .
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• z p * "o 1og o 3 IH41 + 1 I,6
(Z +~~sZs a (ilil+lli)

(zs+zs) z (I+ZLJ I

IZL12

If..(2f -f
1o 1 • . 2) ,,

(6.39)

SPecializing for refereice power level pr t milltwatt at ref.-
erenae voltage level Vr 1 1 volt an4 terminating impedance
Z ZL a 50 ohms, we obtain

P4  2Pa ÷ a2 + 20 logi 0jH 4f -2.40 dBm.
V.(6.40)

94ch power is now in dBm -, we again have suppreased the
volt factor in theOirf involving IH,11.
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6. 2.•. ,,5 &mmary -foL XgMA.•o4 e Twq Ie Tegt•.V•

It in useful to further simplify the results of the pre-,

vious Jections to snea.ialiae them for equal power two-tone

testing of an amplifier and for two-tone testing of a mixer
where the local oscillator plays the role of the third tone.
The following recults are valid for 50 ohm source and loatl

• ,impedance only.

6.2.5.1 Two._Tone Test of, an AmplifWer

It will be assumed that the input tones have equal avaiJ.-
able power P.0

From Eq. (6.7) and (6.8),

P= Pa + 20 log 1 H01  + 6 dBm. (6.41)

S cond-Order

From Eq. (6.21),

P 2  
2 Pa + 20 logI 0tH 2 1 + 2.04 dBm. (6.42)

Third-Order

From Eq. (6.31),

P3 = 3Pa + 20 iog, 0 1H3 1 - 4.44 dBm. (6.43)

These equations are shown graphically in Fig. 6.3 which shows
the delivered output power for a nonlinear system excited by

: the sum of equal power tones as a function of the available
input power in each tone. When plotted on a dB scale, the
separate order outputs will have slopes equal to their orders,
e.g., a third-order output will have a slope of three up

to a certain input power, called Plime Above Plim' higher-
order effects will cause the response to deviate from this
line.
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If the straight lines are extended, the higher-order terms
will intercept the first-order term. The output power at which
the (extended) nth-order term intercepts the (extended) first-

th"order is called the n -order intercept, In* The intercept is
based on %n extrapolation of the well-behaved small-signal re-
gion into the large-signal effects region. Also sh•,wn in Fig.
6.3 are levels P these are the output powers for 0 dBm•,, 63 a~ leves 1I P28 P31

input power. Specific values for these intercepts and 0 dBm ordi-

nates are given in Table 6.1 Cor 50 ohm source and load impedances.

Tablo 6.1

Significant Parameters of Two-Tone
Intermodulation Nonlinear Responses

for a 50 Ohm System

Zero dBm Input Ordinates

a) First Order

P0 2 iH 1 1 +6 dBm

b) Second Ordero 20 102+lP2 = 2g0 dBm

d) Third Order
0P3 - 20 log1  IH31 -4.4 dBm

Intercepts

a) Second Order

12 = 40 logio 1H11
-29 log 1 0 112 1 + 10 dBm

b) Third Order

213  6U loglo1 H0 Iu

-20 log1 0 1aR 22.4 d~m
314
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6.2.5.2 Two-Tone Test of a Small Local Oscillator Mixer

It will be assumed that each of the two-tone input signals

have equal availrable power Pa' that the local oscillator available

power is Pa and that Z = Z - 50 ohms.
aC S L

Ecnzivalent First-Order (Seoofd-Order)

From Eq. (6.21)for each input tone,

P1 W Pa + PaO + 20 logl 0 JH2 1 + 2.04 dBm. (6.44)

The mixer conversion (transducer) gain is the Pa = 0 d~m input

intercept.

Equivalent Third-Order (Fourth-Order)

From Eq. (6.40) with two-tone excitation,

P 3 = 3Pa + PaO + 20 log1 0 IH41 - 2.40 dBm. (6.45)

These equations are illustrated graphically in Fig. 6.4. The
"0 dBm input" output power levels are noted. They are linearly
dependent upon the available local-oscillator power for a small-

local oscillator mixer. Finally, note again that these simple
results are valid for source and load impedances equal to 50 ohms.

6.2.5.3 General Case for n th-Order Output

th_In the general case for an n o-rder output with multi-

tone excitbtior, one can wr'.te:

n +PO0 dBm,
Pn iil Pai d n (6.46)

where
p 0 20 lo9 1 H I + C

and Cn is a constant which depends on the source and load im-

pedance and the frequency combination. Taule 6.2 shows Cn (for

a 50 ohrm system) computed for commonly found frequency combina-

tions.
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Fig. 6.4. Graphical Presentation of Equal-Power
Two-Tone Testing Output Response for a
Small Local-Oscillator Mixer.
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iTable 6.2

Some Common Coefficients C for a 50 Ohm System

_Fregency combination Cn (dB)

+ 6.0

2 21 +f 2  + 2.0

2 2f 1  - 4.0

3 fl+f2 +f 3  + 1.6

3 2f +f - 4.4
1 2

3 3f -14.0
1

4 .l+f2+f3+f + 3.6

4 2fl+f+f - 2.4
1 2 3A

4 2f +2f - 8.4
1 22d.1

4 3f +f, -18.0

4 4f -24.0
401

408



6.2.6 Output Powers for High Input Impedance Nonlinear Amplifiers

For pj:actical purposes the input impedance of certain elec-

tronic circuits is so high that it may be assumed infinite. In

addition, such circuits have nonlinear transfer functions that
are independent of the sourcu impedance. Vacuum tube and field-
effect transistor amplifiers are examples. It is, therefore, of
interest to express the power delivered to a load at the various
order nonlinear responses in teý4;--Of the input RMS voltage
E. The system under study is shown in Fig. 6.5. It is readily
demonstrated that the output powers at f 1  fl-f2' and 2f 1 -" 2 , re-
spectively, are given for a 50 ohm load, by

First Order at f = fl

P 20 log H (f)I + 20 log I + 13 dBm,1111011 lOIN1

(6.47)

Second Order at fl-f2

• P2 = 20 lOglo jH 2 (f 1 , - f 2 )j + 40 lOgl 0 sEINI + 16 dBm,

(t. 48)

Third Order at 2f 1 -f 2

3= 20 logl 0 1H 3(fief 1,-f 2 )I + 60 log1 0 1E.INl + 16.5 dm.

(6.49)
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Fig. 6.5. Nonlinear System with Very High Input
impedance.
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6.3 Small-Signal Input Limit

In conjunction with Fig. 6.3 we have referred to a small-

* signal input power Plim below which the small-signal quasi-linear

system theory is an accurate representation of the physical systema.

At input signal levels greater than Plim' higher-order terms are

needed. For example, third-order and higher odd-order terms

are needed to correct the linear response. This leads to the

introduction of desensitization and compression effects. Similarily.
third &r intermodulation components need to be correeted with
fifth and higher odd-order terms. Second-order effects need to
be corrected with fourth and higher even-order terms. There are
at least two distinct methods of establishing an approximate
value for Plim* First,the model for the physical nonlinearity
can be examined to determine an approximate value for the signal
level above which the Taylor series expansion can not be expected
to converge rapidly. If such a level can be found the input power
generating the level can be established from the first-order linear
model. We shall examine such an approach in this section. An
alternteve approach is to evaluate the correctin term-in terms
of the higher-order nonlinear transfer function by an analysis
"of the complete system nonlinear incremental model. For example,
one might establish that the input signal power for which 0.5 dB
of gain compression is incurred is a suitable measure f4- Plim
We shall also examine this possibility later in this chapter.

The small-signal nonlinear transfer function analysis is
based on two assumptions. The first is that the input excitation
is sufficiently small that the number of terms used in the Volterra
series WpnAsion is adequate to characterize the systero../ The
second assumption is that the nature of the nonlinearity remains
constant over its entire operating range. We will examine these
assumptions separately.

First, consider the assumption that the number of terms is
sufficient to characterize the system.. We will not consider the

411
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convergence properties of the Volterra series. Instead, we con-
sider the Taylor's series expansion of a nonlinear device used
in the circuit analysis by noting that an nth order Volterra
series expansion requires that all nonlinearities be expanded to
thn -or r. For bipolar transistor circuits the rasistive non-

linearity of the base-emitter junction is the dominant nonlinearity.
Thus, the junction voltage can be used as a measure of the small-
"signal limit. From Chapter 5,F4. (5.41) we have the Taylor series
expansion of the emitter junction incremental current in terms of
the junction inc-'emental voltage v 2 given by

.(• 2/cT-
-i K(v.2 ) = IE e.)

e/

+ 2

+ (' T + (6.50)

If the series is truncated after the nth term the error in the

approximation to K(v 2 ) becomes of interest. The normalized
truncation error is defined as the remainder R. of the series

divided by the value of the function being expanded. The K(v 2 }

nonlinearity is a function of qv2 /AT, where kT/q is approximately

25 mV at room temperature and v 2 is the junction voltage. Curve.s

of normalized truncation error are shown in Fig. 6.6 for trunca-
tion after three and four terms. Note that the error at 25 mil-

livolts is approximately 10 percerA, for three terms and about

7 1 percent fo= iour terms. Normalized truncation errcr is quite
sensitive to qv2/kT. It provides a positive measure of the maxi-

mum levels of emitter-junction voltage permissible for a reason-
able expectation that a given order. of approximation can ade-
quately account for a component nonlinearity when small-signal

distortion estimates are of interest. One would expect that,
at v 2 - kT/q - 25 millivolts, the Volterra series representation

4 1 2-ý
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would begin to require the inclusion of terms of higher-order than
the third or fourth. Experimental data supports this expectation.
The normalized truncation errors for othew? noiJlinearltiee in the
device nonlinear incremental model could aloo be detormined in
a similar manner.

Next consider the second assumption, namely, that the nature
of the nonlinearity remains constant over the entirý,drating

Srange. If a circuit is driven into cutoff or saturation, this
assumption is violated unless rcutoff or saturation is part of the
device model. In order to incltidO such, effects the Taylor series
expansion must include an impractically large number of terms.
There is no reason to expect satisfactory results witkwhard non-
linearities, or with piecewlse-linear circuit models. Instead,
an alternate analysis technique must be used.

The one technique which can be used for both small-signal
and large-signal analysis and allows for even the most 'ilent
of norý._Oarities is the large signal time-domain solution out-
lined in Chapter 4. Time-domain solutions involve the numerical
integration of state-variable d4 -tial equations. A compari-
son of such an approach with the mad1l-signal quasi-linear ap-
proach will be presented later in this chapter.
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i.6.4 Splnle-St•ge Untuned. Ttanmisitor Am4ifie•r

In Chapter 5 the parameters characterizing the nonlinear

T model of a particular bipolar transistor, the 2N2950, **ea

developed from theoretical models of individual nonlinear physi-

cal processes. Specific values f the 17 needed parameters, do-

termined from measurements On'ai'H950 sample, have been listed

in Table 5.1, In this and subsequent sections we shall use the

2N2950.,,,ipolar transistor that has been modeled in a variety of

circuit applications to illustrate how the nonlinear transfer

functions are used to determine nonlinear responses of a physical

circuit. In part•ftlar, we shall show in detail how to determine

the small-signal quasi-linear responses of a single-stavUen-

tuned amplifier used both as an amplifier ani as a small-local

oscillator mixer. A detailed 4•Wxison of predicted responses

based upon the theory will be made with actual values determined

from laboratory measurements. A fairly extensive two and three-

tone ekcitation analysis of the amplifier will also be presented

for large signal excitation. Figure 6.7 shows the test circuit

for which the analysis and measurements to be described were made.

The operating-point collector voltage is 10 V, collector cixrrent

is 10 mA, and the 2N2950 model parameters are those git1 in

Table 5.1. The source and load impedances are 50 ohm~s. Other

linear elements are noted in t.WJ it diagram. The incremental

circuit model for the amplifier is shown in Fig. 6.8. Element

values and node numbering for a computer-aided analysis using

SIGNCAP I fow tone inputs at 2.5 and 3.0 MHz are given in
Table 6.3. Further details regarding SIGNCAP are included in

Appendix A. Transfer functions for a third-order nonlinear

415
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Table 6.3.

SIONCAP I Coding for Single-Stage
Amplifier. (fl -2.5 MHz, f 2

3.0 MHz, f 3 =3.0 MHz).

*START SEGMENT
*GENERATOR

NODE 1
FR 1 -2.5E6
FR 2 3..0E6
FR 3 3.0E6

SIM 50.
*PASSIVE COMPONENTS
C 1 2 bO0.E-12
R 2 20.2E3
R 4 1.98E3
C 4 6 8100.E-12
R 6 50.
R 5 .01
C 4 4.E-12
*TRANSISTOR
NODE 2

4.6 9.27 140. .348
.0100 .150 .125 08.2

25.O•-12 1.03 330.E-12 60.E-09
10.1 635.E3

0. 1.Io5E-12
*END SEGMENT

*END
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analysis are listed in Table 6.4. The linear responses and

second-order difference term as well as a third-order intermod

and gain compression term are included in the table. Similar

results for a third-order analysis with two-tone inputs at 30

and 51.4 MHz are given in Table 6.5.

6.4.1 F4.rst-Order Linear Response

The first test of a circuit model is the small-signal

single-tone frequency respmnse. This can be most conveniently

examined by comparing the predicted and measured insertion gain

of the amplifier. From Eq, (6.8) and the value for H1 tabulated

in Tables 6.4 and 6.5, we have

12.7 + 6 = 18.7 dB; f = 2.5 MHz,

12.4 + 6 = 18.4 dBi f = 3.0 MHz,

G = (6.51)

1.6 + 6 = , dI f = 30 MHz,

-2.6 + 6 = 3.4 dB; f = 51.4 MHz

These values together with other predicted values based upon the

linear model can be compared with experimentally measured valuas

of insertion gain as presented in Fig. 6.9. The linear frequency
response is fairly broadband with a low-frequency 3 dB cut-off at

about 300 kHz and a high-frequency cut-off near 9 MHz. There is

excellent agreement between measured and predicted insertion loss

from below 100 kHz to over,4W1z. The linear frequency response

could also be predicted from any linear circuit analysis program

capable of analyzing the linear equivalent circuit 0?T &he ampli-

fier. A manual calculation is, of course, also possible.

419
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6.4.2 Second and Third-Order Intermodulation Distortion for

Two-Tone Excitations

6.4.2.1 Amplitude Dependence

The second and third-order intermodulation distortion non-

linear transfer functions are listed in Table 6.4 for excitation

at -2.5and 3.0 MEz. If we assume equal strength two-tone excita-

tion we have,from Eq. (6.42) ,the second-order power at 0.5 MHz

given by

P2  2P + 15.5 +.2.02 = a

= 2P + 17.5 dBm, (6.52)
a

and the third-order at 3.5 MHz, from Eq. (6.43), given by

P3 = 3 Pa + 27.8 - 4.4

= 3P + 23.5 dBm. (6.53)a

Eq. (6.52) and (6.53) together with the linear response power

at -2.5 MHz, given by

P1 =a + 12.7 + 6

= P + 18.7 dBm, (6.54)a

are sbown in Fig. 6.10 as theoretical results. Also plotted in

the figure are measured values of the delivered output power for

the linear, second, and third-order intermodulation components.

The second and third-order intercept values are noted in

Fig. 6.10. Equations for predicting Intercept have been given

in Table 6.1. For the second-order intercept
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12 = 2 (12.7) - 15.5 + 10

:,,.,, = 19. 9 dBi,(6 55

and third-order intercept

1 = 3 (12.7) - 27.8 + 22.4

= 16.4 dBm. (6.56)

Similar theoretical predictions and measured data for two-tone

excitations at -30 and 51.4 MHz are presented in Fig. 6.11.

The theoretical curves shown in the figures are not straight

line fits to the experimental data but are mathematical predic-

tions based upon nonlinear circuit model analysis of the actual

power output at the particular frequencies of interest. The pre-

dictions were made by direct analysis of the nonlinear incre-

mental circuit model of the nonlinear amplifier. Nonlinearities
to third-order were included in the prediction. The agreement

between measurement and prediction is excellent over the range

of model validity. For the mid-band data shown in Fig. 6.10, the

model ceases to make accurate predictions at inputs above about

-16 dBm, while for the data in Fig. 6.11 the model ceases to

make accurate predictions above inputs at about -5 dBm. We have

previously noted in Section 6.3 that a reasonable criteria for

validity range is the input signal level for Which the base-

emitter junction incremental voltage exceeds kT/q or about 25

millivolts at room temperature. Figure 6.12 presents a set of

curves showing the peak value of the first-order or linear terms

for a single-tone input at the sevcral frequencies of interest.

Observe that the 25 millivolt level is reached at -16 dBni input

425
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Fig. 6.11. Comparison of Predicted and Measured
Two--rone Distortion Products for
2N2950 Common-Emitter Amplifier.

(f =30 MHz , f 2 =51.4 MHz)
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at 3 MHz. This value is noted in Fig. 6.10. Also shown on

Figure 6.10 is the measured single-tone Input power at which

0.2 dB compression occurs in the amplifier. It is quite close

to the power corresponding to the 29wacriterion. Abova these

input levels the experimental data deviates significantly from

the small-uigaal prediction. A similar conclusion can be-reached

for two-tone excitations at 30 and 51.4 MHz. The 30 MHz tone

reaches the 25 millivolt level at -5 dBm input. The data pre-

sented in Fig. 6.11 ceases to follow the small-signal theory

prediction above about such an input level.

6.4.2.2 Freauencv Dependence

-The dependence of second and third-order responses upon

the input available power has been examined and compared with

measurement in the previous section. It is also important to

determine the frequency-dependence of the intermodulation as the

input tones are moved about in frequency. One simple way to

explore this is to measure the output intermodulation power in

the small-signal region as the frequencies f and f 2 are changed,

and deduce from the measured output power what the appropriate

nonlinear transfer function must have been. For example, if we

write Eq. (6.42) fon second-order intermod in the form

20 logl 0 1H2 1 = P2 - 2 Pa - 2.0 dB, (6.57)

an experimental estimate of 1H2 1 (in dB) can be found by utiliz-

ing measured values of P2 (dBm) obtained from the small-signal

region for known values of available input power Pa (dBm). A

comparison of measured and predicted values of the second-crder

nonlinear transfer function 1H2 1 obtained by this method is

shown in Fig. 6.13. The two-tones exciting the single-stage

untuned amplifier were separated by 0.5 MHz as they moved zvross

the range of f2 4
428
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The third-order intermod transfer function JH3  (da) i2 n

similarly be estimated from experimental measurements by Yutt itg

Eq. (6.43) in the form

20 log 0I[H3I = P 3 Pa + 4.4 dB# (6.58)

and measuring P3 in the small-signal region for known values of

input P.a The results for such an experiment on the untuned

single-stage amplifier are shown in Fig. 6.14. Both the third

and second-order transfer functions are in good agreement with

predictions based upon the circuit incremental model.

6.4.3 Excitation of the Untuned Amplifier as a Small-Local

Oscillator Mixer

Amplifier stages can frequently be used as frequency con-

verters, or mixers, by adding the local-oscillator waveform

to the input stgnal and utilizing the inherent nonlinearities

in the stage to generate desired conversion products. If the

local-oscillator drive level as well as the input signal level

are confined to the small-signal excitation region the output

nonlinear responses will be predictable from the small-signal

nonlinear transfer functions. In particular, if f 0 is the

local-oscillator frequency at 51.4 MHz, and f and f are in-

put signal frequencies at 30.0 and 29.8 M•z, respectively, the

second-order responses at f - f = 21.4 MHz and f - f =
0 1 0 2

21.6 MHz are desired mixer responses while fourth-order responses

at f 0 - (2f 1 - f 2 ) 21.2 MHz and f 0 - (2f 2 - fl) = 21.8 MHz

are undesired intermodulation distortion term3.

The second-order response is given by Eq. (6.44) and the in-

termodulation term is given by Eq. (6.45). A comparison be-

tween predicted and measured responses for the untuned 2N2950
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Fig. 6.14. Third-Order Nonlinear Transfer Function
for the CE 2N2950 Amplifier.
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singla-stage circuit is shown in Fig. 6.15. The local-oscil-

lator available power at 51.4 MHz was held constant at

-5 dBm to insure small-signal level excitation which, from

Fig. 6.12, can be expected to be exceeded at about 0 dBm for

51.4 MHz. The prediction is seen to be in good argument with

measurement.

6.4.4 Emitter Capacitance Nonlinearity

In Chapter 5, Section 5.3.2.6,the emitter junction capa-

citance of the bipolar junction was noted to be primarily a dif-
fusion capacitance nonlinearity dependent upon emitter junction

current. The nonlinear distortion predictions for the untuned

amplifier have been made with this nonlinearity part of the

device model. It is interesting to examine the specific effects
of this particular nonlinearity by predicting the nonlinear trans-
fer functions of the untuned 2N2950 amplifier in its absence,

and comparing the results to those obtained including it. Below

the 3 dB high-frequency cut-off region its effects are small
since the diffusion current is very small. Above the 3 dB cut-off
frequency its effects are significant, particularly with respect to

even-order nonlinear effects of importanco in mixer applications.

A list of transfer function magnitudes, expressed in dB, is presented
in Table 6.5. The first three entries are values of the first-order,

or linear transfer functions. The linear responses are, of course,

not dependent upon the nonlinear model. The second and fourth-

order transfer functions H and H are significantly influenced
2 4resgiiatyifund

by the diffusion capacitance nonlinearity while the third-order
transfer function H3 is only influenced in a minor manner.

Since the small local-oscillator mixer output and third-order
intermodulation distortion are directly dependent, respectively,
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upon H2 an H4 , the nonlinear diffusion capacitance is of spe-
cial importance in transistpl "nixer circuits. It is interest-

ing to note that adding the diffusion capacitance nonlinearity

to the circuit model results in a decrease in the evew-Order

transfer functions H2 and H C

6.4.5 Gain Compression/Expansion

Gain compression or expansion is an effect which may be

observed in amplifiers. It is possible to predfit this

phenomenon using small-signal theory involving third-order

nonlinear transfer functioflNS• Pe first review the relevant

theory and then compare prediction with measurement for the

2N2950 single-stage amplifier.

According to the small-signal nonlinear theory outlined

in Section 1.8, the complex amplitude of the output signal of

a system excited by a single tore of amplitude A at frequency

f is

A Hl(f) + 3 AIAI 2 H3 (f, ,_-) + ... (higher order terms).

(6.59)

The observed gain is the ratio of output amplitude to input

amplitude. From Eq. (6,59) the magnitude of this ratio is

'1H M ll I + -1 JA 2 R fe ~ .1} 2  l 21/

(6.60)

Gain compression or expansion appears as the second factor in

Eq. (6.60). In many cases H3 is real and it will be possible

to drop the last term of the second factor so that the gain

"compressionw factor becomes
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LA R f A (6.61)

The initial effect obsej.ved as signal level is increased will

bo expansioir if the sign of Re[H3 /H I is positive and compres-

sion if the sign is negative. The cases in which the approxi-

mation involved in (6.61) is inaccurate are those where H3 (f,f,-f)

ard 1iI(f) are nearly in quadrature.

Equation (6.61) pernits calculation of predicted compres-

sion/expansion for small-signal levels.

The gain compression/expansion factor in dB, x, is

20 log10 [I.+ 23 JA 2 Re H (6.62)

whor 'the arguments of U3 are f, f, -f, and of H is f. Equation

(6.62) can be expressed as a natural logarithn, and then expanded

under the assumption that x is small. Thus:

x 8.68 n1 + AI Re -j2} 8.68 IAI 2 Re " (6.63)
fW1 1 6.3

The factor A in Equation (6.63) is the peak voltage amplitude of

the open-circuit source, i.e., the Thevenin source voltage driving

the nonlinear circuit. The available power from that generator,

assunming a 50 olim source impedance, is then
A2

P = A watts. (6.64)
a 400

Inserting Equation (6.64) into Equation (6.63), and solving for

p in-terms of x results in
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Pa= x r3 mW. (6.65)

2.604 Re

Expressing pa in dBm,

P = 10 log10 Pa'

I0 log,0 [x Re 4.2 dm. (6.66)1 LH f, f°_fj -. (.1
3

The error in calculating P from Equation (6.66) is about 1/4 dB

for 1 dB compression or expansion.

The gain compression characteristics of the single-stage

untuned amplifier example have been measured and compared with

prediction for both in-band and out-of-band excitation. The

results for in-band at 3 MHz are shown in Fig. 6.16. The theo-

retical curve was calculated using the nonlinear transfer func-

tion data from Table 6.4. Compression characteristics for the

amplifier at 51.4 MHz are shown in Fig. 6.17. The theoretical

curve was calculated using the nonlinear transfer function

values from Table 6.5. The theoretical results predict reason-

ably well the actual compression values for small amounts of

compress ion.
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6.5 Two-Stage Tuned Amplifier

6.5.1 Description of the Two-Stage Amplifier

The single-stage untuned amplifier example of multi-tone

testing described in detail in Section 6.4 illustrates the

basic application of two and three-tone testing to small-si•e

nonlinear amplifiers. The untuned amplifier is an example of

a nonlinear device imbedded in a network in which only a minor

frequency-dependent interaction occurs with the imbedding net-

work. In this section we examine in some detail a two-stage

tuned amplifier where the intaraction with the frequency-de-

pendent networks is strong. The circuit for the amplifier is

shown in Fig. 6.18. The first stage id 2N2950 common-emitter

amplifier driving a low-pass interstage network. The second

stage is a SA395 common-base amplifier driving a tuned load.

The insertion gain of the amplifier is shown in Fig. 6.19. The

bandwidth is about 2 MHz. Both measured data and theoretical

predictions from the linear circuit model of the amplifier are

in good agreement. Model parameters for the two transistors

at their DC operating points are given in Tables 6.6 and 6.7.

Observe that the 2N2950 operating poin • different from that

employed in the single stage amplifier. Other circuit values

needed in the analysis are given in the schematic. The source

and load impedances were 50 ohm. SIGNCAP I coding for linear

as well as nonlinear analysis to determine the nonlinear

transfer functions will not be given here but sufficient in-

formation is given in Fig. 6.18 and Tables 6.6 and 6.7 for the

analysis to be accomplished. Selected results from such an
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analysis are listed in Table 6.8. For example, the midband

insertion gain from Eq. (6.8) and Table 6.8 is

G = 28.0 + 6.0 = 34.0 dB. (6.67)

6.5.2 Second and Third-Order Intermodulation Distortion

The frequency dependence of the second and third-order

intermodulation distortion nonlinear transfer functions for the

two-stage tuned amplifier is quite different from the uwtnned

amplifier example discussed in Section 6.4. The theoretical

values of H2 and H3 for several different two-tone input fre-

quency combinations are given in Table 6.8. These values to-

gether with additional values calculated by SIGNCAP can be

compared with experimental estimates of H2 and H3 . The experi-

mental estimates were obtained from distortion measurements

and reduced as previously described in conjunction with Eq.

(6.57) and (6.58).

The second-order nonlinear transfer function is most con-

veniently determined by a two-tone test in which tones of fre-

quencies f and f2 are used to drive the amplifier, and the

response at f +f is measured. Figure 6.20 shows the second-
17-- 2

order nonlinear transfer function of the two-stage tuned ampli-

fier under the condition that fl±f2 was equal to 19.75 MHz,

the center frequency of the amplifier. The transfer function

varies by some 35 dB over the 750 KHz to 80 MHz range, peaking

at 10, 30, and 55 MHz, and having minima at about 20 anxx 42 MHz.

At low-frequency, the transfer function has a 20 dB/decade slope.
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The points pl.otted below 19.75 Mz are associated with sum

frequency terms, i.e., f1 + f2* Since the designations f1 and

f2 are arbitrary for a sum frequency, the value of the second-
order nonlinear transfer function will be symmetrical about

19.75/2 = 9.975 P 10 MHz.

The null at 19.75 MHz has a simple explanation. Since the

f1 input tone is 19.75 MHz at this frequency, f 2 must be zero

and the lack of a DC response causes the null. The null near

f = 42 MHz is caused by an internal resonance associated with

the interstage network.

The third-order nonlinear transfer function is also con-

veniently determined by a two-tone test, in which tones at

frequencies fI and f 2 are used as inputs, and the nonlinear

response at frequency 2f 2 + fI is measured.

The measured and predicted third-order nonlinear transfer

functions for the two-stage tuned amplifier are shown on Fig.

6.21. The transfer function covers a 50 dB interval with good

agreem6nt between measured and predicted values throughout the

range. The measurement was made by varying f and f2 so that

2f2 ± fl = 19.75 MHz. For frequencies below 19.75/2 MHz, the

zresponse is a sum response, that is# 2f2 + f = 19.75 MHz. At

f 2= 19.75/2 Miz f is again zero and the null occurs because

of the lack of a DC response in the linear transmission. The

null at about 28 MHz is caused by the internal resonance asso-

ciated with the interstage network.

The conclusion one can reach is that the model does

successfully predict the rather complicated frequency dependence

of both second and third order intermodulation distortion. Al-

though we have not presented here curves similar to Fig. 6.10
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Ctir outlnplitude &podaono amch roaulto have been found to

boin good agrountont .~p diation and are, in fact, the

aouvoo of diat~a uptod to mxperimuntally ea~timaLte U nd1

"6.5, t

Unused on the aiuocoasa in pradicting the third-order ii'ter-

moduldtion diptortion of the two-stago ampi'giier, one would

wx)aut that detionnitization, also a third-order effect, can

ba prodiated witil good aocruay. Inl thlia section we exaudiine

tha nleakaure and prediated values of deaenuitization, and die.-

aumu the reaults ane implication.

If the input to a nionlivioar oyatonm be the aunt of a desired

signul of frequency f 1 and complex onvelope S,8 and an undeal red

signal of frquenoy f 2 and Complax envelope I12f then V0 the

cmplax onvolope of tho output of th~e ayatowu at frequency f,,

is, f!rom Section 1.6.

V0  1 H 1(f) 1 + 'ý'2 1121

whare H13 ia the third-order desensitimation termi.

If Is 3 is 100 out cC phase with Hl will decrease with

inCredwing I,.* This lo the desenmitigation effect# wheroby the

raone.' of ~a system at the desired frequaency f I is decreasud

by the component at f 2 It is a third-Ordex: eftect, 111t it is

also sonsitive to the phase of 11,3 roaltive to I-lit If H13 and H I
QrQ inl PIaSe, 01h1n there Will be oXpa~nwiOn inStead Of a desensi-

tization,

An axperitnent was riun using the two-staqo tuned amiplifia.ý

with Wia -to,,.rod &i9nal an ujuaodulated toine at .-55 d~ut at the
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center tuned frequency 19.75 M1Hz, and the second input also an

unmodulated tone varied in both power and frequency. Figure

6.22 shows the desensitizatlon of the amplifier at 19.75 MHz

for inputs at frequencies of 24.75, 29.75, 34.75, 39.75, and

49.75 MHz. Both measured (solid curve) and predicted desonsi-

tization data are shown. It is seen that the onset of desensi-

tizati.on is wll predicted for the 24.75, 29.75 and 34.75 MHz

cases. It is further seen that at 39.75 M,1z, an expansion, not

a desensitization, is predicted? a desensitization is, however,

measured. The predictions were made using the transfer function

from Table 6.8. Four vertical lines are shown on Vig. 6.22,

correspond~ ng to the input power at which the base-emitte.

voltage of the second stage transistor (SA395) is 25 miV at the

second input frequency. This represents the boundary between

ur,6all and large-signal effects. For powers someWhat lower than

that which produces 25 mV, small-signal theory is applicablo

while large signal analysis is required for higher power. The

onset of desensitization is in the small-signal region and is

predicted well. For 24.75, 29.75, and 34.75 Mz, predicted

desensitization of 1 dB corresponds approximately to the 25 mV

bounda..y. Thus, the desensitization predictions above this

region are not expected to be valid. This example shows the

interaction batween amall and large bignal effects, as well as

showing the applicability of the simple 25 mV criteerion. It

also illustrates that prediction of desensitization must be

undertaken with care. The onset of the effect is predicted

but the amount of desenritization,When significant,way be a

large signal nonlinear effect.
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6.6 Intermodulation Distortion in Vacuum T'ubes

6.6.1 Untuned Triode Amplifier

Two-tone testing of a triode "a a useful technique for

establishing the validity of trio~e model parameters in addi-

tion to providing a technique for measurement of intermodulation

distortion. The triode test circuit is shown in Fig. 6.23.

One half of a 12AT7 triode was utilized in the measurements in

a relatively broadband untuned test circuit. Model predictions

and laboratory measurements were made with 50 ohm sources and

loads. The nonlinear incremental circuit model is shown in

Fig. 6.24. The triode nonlinear model was developed in

S~ction 5.6.2.1. Parameters for the 12AT7 as well as the

operating point are listed in Table 6,9. The triode is the

samne unit whose static characteristics were previously des-

cribed in Section 5.6.2.2.

The linear voltage gain, or IHl(f)I, the first-order transfer

function magnitude, is shown in Fig. 6.25 together with measured

data at selected frequencies. Model prediction and measuranment

are seen to be in good agreement.

A comparison of predicted and measured intermodulation

distorclon output power for two-tone excitation at 100 and 330 kHz

is shown in Fig. 6.26. The predictions are seen to be in rela-

tively qood agreement with meaAurements. Note that the input

tone level is expressed in RMS voltage rather than available

source power. The RMS voltage E.N is noted in Fig. 6.24 as

the incremental RMS grid voltage. FOr practical purposes EIN

is the open-circuit Theveniii sourcu voltiige at 100 antl 300 kIIz
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TABLE 6.9

12AT7 Triode Model Parameters

Operating Point

Ec= -1.0 V

0 136 V

I = 4 .43 mA
bO

Model Parameters

GO 0 3.35 x 10- 3ampere (volt)- 3/2

= 53.4

Ecmax= -6.2 V

Eco = -1.0 V

= 136 V

0 = -0.09 v

Cgk 2.2 pr

C 1.5 pF

pg
Cpk = 1.5 pF
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since the grid input impedance is so high for the triode. Under

these circumstances one can readily relate the delivered out-

put power to the computed nonlinear transfe" function H1, H2 ,

and H and the RMS input voltage EIN through Eq. (6.47) -

(6.49) which have been developed specifically for this purpose.

Application of the triode model in other circuits is straight-

forward. Transfer functions are readily determined by employing

SIGNCAP as outlined in Appendix A.

6.6.2 Untuned Pentode Amplifier

In this section we shall briefly review the results of

a prediction and comparison with measurement of intermodulation

distortion for three different vacuum pentodes. A relatively

broadband untuned test amplifier circuit was employed to reveal

the device nonlinear characteristics without the masking effects

of tuned loads. Results for tuned load, situations will be im-

plicit in a later chapter devoted to modeling of vacuum tube

receivers. The test circuit used for the untuned amplifier

is shown in Fig. 6.27. Circuit element values for the three

different pentodes that were modeled are noted in Table 6.10.

We have previously given in Table 5.3 the model parameters and

operatir•g-bias points utilized in the study.

The measured and predicted ir, ermodulation output power

for the first three nonlinear responses of the three pentodes
are shown in Figs. 6.28 through 6.30. All measurements were

made with two equal-power input tones, one at 100 kHz and the

other at 330 kHz. It is seen that the prelictions are in fair

agreement with the measurements for the 6AH6 and 5763, as well
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TABLE 6.10

Pentode Test Circuit Element Values

Type
6DC6 5763 6AH6

Component

R1 102.6 kO 103.5 k 1 100 ko

R2 9.99 kQ 1.61 kn 9.85 kn

R3 31.1 kN 9.94 kO 30.1 kO

R4 9.84 kn 9.69 kn 10.04 kn

R5  50 0 50 ' 50 0

C1  0. 95 4F 0.96 F 0. 99 IF

C2  0.048 IF 0.0406 WF 0.05814F

C3  0.01134F 0.0098 tI' 0.01205W

Cw 5 pF 5 pF 5 pF
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as for the first and second-order responses of the 6DC6, but

are unsatisfactory for the third-order response of the 6DC6.

The reason for this is uncertain. It is interesting to note

that the first and second-order responses of the 6DC6 are

essentially independent of the current-division parameter m,

while the third-order response depends strongly upon m.

This is shown in Table 6.11 where the experimentally determined

values of H1 , and H2 , and H3 are compared with predictions for

several values of m, the exponential factor in the current

division nonlinearity. It is evident that near m = 0.11, the

value of m found in the analysis of the 6DC6 characteristics

(see Table 5.3, Chapter 5), the third-order response is pre-

dicted to have a null. For smaller values of m, e.g. m-=0, and

larger values, e.g. 0.2 or 0.5, the agreement between the

measured and predicted third-order nonlinear transfer function

is much better. This result illustrates the fact that caution

should be employed when using the pentode model in tne vicinity

of a distortion null region.

6.7 Large-Signal Multi-Tone Input Time-Domain Analysis

In Section 6.4 we illustrated the application of small-signal

analysis methods to determine the nonlinear transfer functions of a

single-stage bipolar transistor (2N2950) amplifier. We found that

model predictions agreed well with experimental predictions over a

wide range of frequencies provided the input tones exciting the net-

work were not too strong. The circuit studied was shown in Fig. 6.7.

Typical mid-band intermodulation distortion levels were compared with

prediction in Fig. 6.10. In this section we present further results

complementing the small-signal modeling and analysis by extending the
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TABLE 6.11

Effect of m on 6-'6 rsntode Nonlinear Transfer Functions

1H 1 (fq 1 IH 2 (f 1.-f 2)1 IH3 (qfl'fi-f 2)1

Measured -16 dB ...--34 dB -41.5 dB

Predicted

m = 0 -15.50 dB. -28.56 dB -58.51 dB

.05 -15.49 -28.79 -64.88

.10 -15.48 -29.01 -85.08

.11 -15.48 -29.06 -75.20

.20 -15.46 --2D.5O -57.86

.50 -15.41 -31.17 -46.14
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model to large signals and describing the results of a large-signal

time-domain analysis. Both two and three-tone excitation examples

have been investigated. The two-tone results presented in Section

6.7.1 extend the small-signal results of Section 6.4.2 while the

* three-tone results presented in Section 6.7.2 extend the results of

* Section 6.4.3 to include a mixer with a large local-oscillator.

6.7.3 Twc--Tone Time-Domain Analysis

The two-tone intermodulation distortion products for the 2N2950

untuned test circuit (Fig. 6.7) have been presented earlier in this

chapter in Figs. 6.10 and 6.11. The distortion products were found

to be predicted accurately by small-signal nonlinear theory in t'ne

small-signal range. Predictions based upon small-signal analysis

in the large-signal region were found to be poor. In Chapter 4 we

examiit.ed several large-signal analysis methods and, particularly,,

noted that the nonlinear state equations for a system could be numer-

ically integrated and large-signal performance predicted provided

effective numerical integration techniques were used. This time-domain

method has been used to predict the large-signal performance of the
2N2950 test circuit. Figure 6.31 shows the nonlinear total circuit

model used in the analysis. The two inductors were included to model

the test fixture parasitic inductance. The four nonlinearities in-

cluded in the analysis were the base-emitter resistive nonlinearity

k(v 2), the base-emitter diffusion capacitance C2 (v 2) , the collector

current generator nonlinearity g(v 2) , and the nonlinear collector

capacitance C (v . The avalanche effect was not included in the

model. The hFE nonlinearity,included in Fig. 6.31 by the dependent

current generator g(v 2 ) , is given in the implicit form

g(v 2 ) k(v 2 ) . 9.2 (6.69)
9 2 g (v2 )9.2 +1logl 0.5

8 10  0.150
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After some experience with the computational results, it was observed

that there,"Was no significant effect on the predicted distortion

levels when a constant hFE was used. Accordingly, all results to be

reported were obtained with

h FE 0.882, @.0

and

g(v 2 ) = 0.892 [k(v 2) .3 (6.71)

Figure 6.32 shows the measured and predicted results for two equal

tones at 2.5 and 3.0 MHz, while Fig. 6.33 shows the results for two

equal tones at 30.0 and 51.4 MHz. To obtain the results, the state

equations were integrated for 2 psec after the driving voltage was

applied in order to allow the transients to settle, and theu inte-.

grated for an additional time to achieve the desired spectral resolu-

tion. Because the numerical integration technique used a nonuniform

time step, the set of time samples obtained was converted by inter-

polation into a set of uniformly spaced samples before the spectral

analysis was performed.

The data shown in the figures illustrate the results which

careful modeling and numerically-accurate large-signal analysis

can achieve. Three sets of data are shown on each figure. The solid

lines are the theoretical results predicted by small-signal theory.

The measured output powers (shown by the circles) and the predicted

output power using the large-signal theory (triangles) are shown in

ths figures. It is seen that the agreement between the measurements

and both small and large-signal predictions is quite good in the

small-signal region. In the large-signal region, the large signal
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predicted output power tracks the measured output power well. One

should not jump to the conclusion that small signal methods are not

needed, however. The small-signal accuracy and computer solution

time as well as ease in formulating the problem and obtaining a

solution are far more attractive. A

6.7.2 Three-Tone Time-Domain Analysis

The results presented next apply to three-tone test conditions

identical to the situation described in Section 6.4.3 for mixer

operation but now for a large local oscillator at 51.4 MHz. Two

tones at 29 and 30 MHz were maintained at the same input level, while

a third-tone, the local oscillator was varied in level. Because

numerical computation of spectral information is accomplished by

a Fourier series analysis, all output products will be harmonics of

some fundamental frequency whose period determines the duration of

the computed time-domain waveform. To keep computation time to a

reasonable value, 1.0 MHz was selected as the fundamental. With an

allowance of 2.0 !" ,f steady-state behavior to be analyzed, a

single run of 'ignal time-domain program covered 3.0 Psec

of circuit t> %c: ,:,•ct the frequency range of interest, and to

provide the 1.0 rkz Jzi•damental, the two signal tones were set at

29 MHz and 30 M~z,respectively, and the local oscillator was set at

50 MHz.

Time-domain predictions of output power from the model as well

as measured values from the test-circuit are tabulated in Table 6.12.

Included in the table are first-order responses at 29, 30 a4id 50 MHz,

second-order responses at 1, 20, and 21 MHz, and a third-order term

at 2(50)-30 = 70 MHz. Various combinations of input levels are in-

cluded. Levels span the range from large to small signal excitation
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at 50 MHz While the excitation at 29 and 30 MHz was maintained below

the large signal region. Inspection of the tabulated data suggests

good agreement over most of the table entries. For example, in Fig.

6.34 the output at 29 MRz is plotted as a function of input 50 MHz

power. There is good agreement between measured and the time-domain

prediction. Observe the gain reduction (desensitization) at 29 MHz

caused by increasing the !0 MHz drive. Also showr n the figure is

the small-signal prediction using SIGNCAP with the third-order desen-

sitization correction included.

In Fig. 6.35 the output at 50 MHz is shown as a function of 50

MHz input drive. Again measurement and time-domain prediction are

in good agreement. Note the gain-compression onset occurring at

about -5 dBm input that is well predicted by the time-domain analysis

but not well predicted in the large signal region by the small signal

result. Similar observations are noted for the second-order

output at 21 MHz shown in Fig. 6.36 and third-order output at

70 MHz shown in Fig. 6.37.

6.7.3 Comprison of Small-Signal Time-Domain Solution Prediction
with Nonlinear TransferFunction Prediction and ExnLerimental
Measurements

A suitable basis fcr comparing small-signal predicted and meas-

ured distortion products for a nonlinear system for relatively large

quantities of data can be based upon the general n-tone result given

earlier in this chapter in Eq. (6.46), or

S+ P(672)in i n.
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thh
•!• Pnis the nth-order output power in dam, "•Pa is the sum of the input

powers contributing to the nth order output and Po is the "0 dBm"-
n

input output power characterizing the nonlinear system for the small-

signal region. For both experimental data and time-domain solutions

for particular output spectral responses, p0 can be estimated from
n

9 - i P dBai ,- (6.73)"•n n i= 1 i

while for predictions of PO from thte small-signal nonlinear transfer
n

function analysis we have the theoretical relationship

P0 = 20 log 1 %IH I + Cn dB, (6.74)

Where H is the nonlinear transfer function for the spectral compo-
n

nent in question and C is given in Table 6.2.

For three-tone excitation at 29, 30, and 50 MHz, there are a

great many output products from the 2N2950 test circuit.

The raw data for the time-domain derived values p0 are given inn
Table 6.13. The 0.00 entries in the table represent points which

wwre edited out ax being in error, primarily due to background noise

in the computed spectrum of the timb-domain wa~veform. In addition,

it was determined from the computed results, all of Which are not

included in Table 6.13, that a 50 MHz local-oscillator level of

-5 dBm with both signals at -10 dBm represents the limit of the

mild axcitation regime; stronger local-oscillator drives cause

the transistor to be in a large-signal state.
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Table 6,13

Time-Domain Predicted PO Used to Obtain Results of Table 6.15n
Input Input Available Power (dBm)

Freq.
_ _ _ I -

50 MHz -5 -10 _-10
30 MHz -20 10 o -1o -2o

i-Utput Freq. pO (dBm)

n _ _ _ n_....
1 0.00 -4.70 -3.22 -4.98 -6.66
8 -14.21 -15.08 -13.82 -15.11 -14.83
9 -5.32 j-9.17 -8.45 -9.25 0.00

10 0.00 '-15.44 -15.23 -15,47 -15.15
19 -16.51 -16.13 0.00 -14.69 0.00
20 -8-00 -8.15 -8.46 -8,26 0.00
21 -7.72 -7.87 -8.17 -7.99 0.00
22 -15.30 -15.3' -13.29 -14.16 0,00
28 0.00 -9.34 -9.45 -9.35 -9.27
29 8.24 8.13 8.44 8,22 8.59
30 7o97 7.85 8.17 7.94 8.32
31 -9,66 -9.64 -9.76 -9.66 0.00
38 -16.80 -15.99 -14.75 -15.56 0.00
39 -14.20 -16.77 -13.03 -15.77 0.00
40 -24.78 -'.404 -20.41 0.00 0.00
41 -19.75 -21.37 -20.91 -20,38 0.00
49 -5.11 -8515 -8.25 -8.16 -8.59
50 3.86 3.59 3.97 3.64 4.10
51 -8.21 -8.18 -8.52 -8.14 0.00
58 -8.41 -8.78 -9.20 -9.02 0.00
59 -2.74 -3.27 -3.46 -3.54 -4.72
60 -9.06 -9.28 -9.67 -9.51 0.00
70 -18-54 -19.07 -18.68 -18.48 -18.88
71 -18,36 -18.86 -18.52 -18.11 -18.93
78 -14.68 -15.02 -14.87 -14.11 0.00
79 -7,36 -7.29 -7*82 -7.42 0.00
80 -7.65 -7.51 -8.09 -7.65 0.00
81 0.00 -14.85 -14,57 -14.11 0.00
87 -18.85 -18.75 -17.82 -18559 -18583
88 0.00 -9.43 -8.59 -9.48 -10*32
89 -8.43 -9.73 -9.21 -9.73 -10.40
90 -18,02 -19.65 -19.84 -19.35 -19.99

100 -18.03 -17.57 -18.43 -17.61 -19.39
108 -13.20 -13.55 0.00 -13,56 -14.05
109 -7.16 -7.88 0.000 -7.89 -8.70
110 0600 -14.18 0.00 1-14.01 -14.49
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iV,

L, Table 6.14 we list in detail the calculation of Po for eachn

of the many output frequencies when Eq. (6.74) is utilized to deter-

mine p0 from an analysis using SIGNCAP to calculate the nonlinear
n

transfer functions Hn . The component frequencies as well as the

order of the product are noted in the table listings.

Finally, in Table 6.15 we bring together the results in Table

6.13 and 6.14 to obtain a comparison of p0 for each output productn
obtained by the time-domain solution and the nonlinear transfer func-

tion method.

The time-domain results were analyzed to obtain P for several
ndifferent input power levels. Because the large number (five) of

mild excitation conditions for which time-domain computation was

performed, the mean-and standard deviation 0 of the resulting P0
n

were computed. The results are displayed in Table 6.15 Where the

oDe-sigma interval is bounded by mean-plus-sigma and mean-minus-

sigma values. The maximum discrepancy between SIGNCAP predicted P0

n
and time-domain mean values is 2 dB, with many predictions agreeing

to within loss than 0.5 dB.

The laboratory measurement results were processed in the same

fashion as the time-domain prediqttions to produce mean values for

the nonlinear response Pn. The results are displayed in Table 6.16.
n

6.7.4 Distortion Dependence UDon Local OscillatoX Level

We turn now from comparisons of small signal results to an in-

terpretation of the data supplied by the time-domain solutions,

particularly, for large LO drives. From e many time-domain computer
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Table G. 14

'0 dBm' Input Distortion Power P0 from SIGUCAP

His FROM CONSTAIP-v O
PRODUCT COMPONENT SIGNCAP C t n ORDER

FREQ. FREQUENCIES ANALYS •3 n OF
(K'Hz) (MHz) (dB) (dB) (dB) PRODUCT

1 30-29 -5.92 +2.04 --3.88 2
8 29+29-50 -10.17 -4.44 -14.61 3
9 29+30-50 -10,49 +11.58 -8.91 3

10 30+30-50 -10.49 -4.44 -14.93 3
19 29-30-30+50 -12.07 -2.38 -14.45 4
20 50-30 -11.13 +2.04 -9.09 2
21 50-29 -10.88 +2.04 -8.84 2
22 50+30-29-29 -11.87 -2.38 -14.25 4
28 29+29-30 -G.55 -4.44 -10.99 3
29 29 2.22 +6. +8.22 .1
30 30 1.94 +6. +7.94 1
31 30+30-29 -6.86 -4.44 -11.30 3
38 29+29+30-50 -11.76 -2.38 -14.14 4
39 30+30+29-50 -12.02 -2.38 -14.40 4
40 50+50-30-30 -16.47 -8.4 -24.9 4
41 50+50-29-30 -16.22 -2.38 -18,60 4
49 29+50-30 -11.06 +1.58 -9.48 3
50 50 -2.38 +6. +3.62 1
51 30+50-29 -11.08 +1.58 -9.50 3
58 29+29 -6.85 -4. -110.85 2
59 29+30 -7.13 +2.04 -5.09 2
60 30+30 -7.41 -4. -11.41 2
70 50+50-30 -15.58 -4.44 -20.02 3
71 50+50-29 -15.32 -4.44 -19.76 3
78 50+29+29-30 -12.18 -2.38 -14.56 4
79 50+29 -11.52 +2.04 -9.48 2
80 50+30 -11.80 +2.04 -9.76 2
81 50+30+30-29 -12.45 -2.38 -14.83 4
87 29+29+29 -6.52 -14. -20.52 3
88 29+29+30 -6.81 -4.44 -11.25 3
89 30+30+29 -7.09 -4.44 -11.53 3
90 30+30+30 -7.37 -14. -21.37 3

100 50+50 -16.23 -4. -20.23 2
208 29+29+50 -11.24 -4.44 -15.68 3
109 30+29+50 -11.53 +1.58 -9.95 3
110 30+30+50 -11.81 -4.44 -16.25 3
139 50+30+30+29 -13.06 -2.38 -15.44 4

This constant modification factor (C ) is based on a 50 ohm
system. (See Table 6.2). d
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Table 6.15

Comparison of Time-Domain and szGNCAP

P rePti0ons

P from Time Domain Analysis n FROM
n

FREQUENCY (dBm) SIGNCAP ANALYSIS
(MHZ) ONE-SI(OMA INTERVAL MEAN (dBmj

1 ( -6.11 P -3.67 ) -4.89 -3,8
8 C -15.12 , -14.10 ) -14.61 -14.61
9 4 -9.21 -8.38 ) -3"80 -8.91

10 C -15.46 * -15.19 ) -15.32 -14.93
19 C '16.56 * -14.99 ) -15.78 -14,45
20 C -8039 --5,05 ) -8.22 -9.09
21 C -8.10 , -7.77 ) -7*94 -8*.4
22 C -15,36 * -13.67 ) -14.51 -14.25
28 C -9.42 --9.29 ) -9.35 -10,99
29 C 8.16 • 8.49 ) 8,32 8,22
30 C 7,88 8 8.29 ) 8.05 7'94
31 C -9.73 * -9.63 ) -9*68 -11.30
38 ( -t6,52 . -15.03 ) -15.77 -14.14
39 ( -16.38 # -13.51 ) -14.94 "14.40
40 ( -24.99 * -21,17 ) -23.08 -24.90
41 ( -21.20 P -20,02 ) -20.61 -18.60
49 C -8.43 # -8,08 ) -8.25 -9.48
50 C 3.64 # 4.03 ) 3.83 3,62
51 C -8.41 # -8,11 ) -8.26 -9.50
5s C -9.15 , -8,56 ) -8.85 -10,5
59 C -4.20 * -2.90 ) -3.55 -5.09
60 ( -9,61 * -9.15 ) -9.38 -11.o41
70 C -18,95 * "1q,51 ) -18.73 -20,02
71 ( -18.86 a -18.25 ) -18,56 -19.76
78 ( -15*02 . -14*,Z2 ) -14,67 -14.56
79 C -7.68 * -7,2" ) -7.47 -9.48
80 C -7.94 , .7*51 ) -7.73 -9.76
81 C -14,82 --14.20 ) -14.51 -14.83
87 ( -18.95 • -18518 ) -18.57 -20.52
88 C -10,07 * -8.84 ) -9.45 -11,25
89 C -10.15 * -5.85 ) -9.50 -11.53
90 C -20.08 * -18.66 ) -19,37 -21.37
100 ( -18,88 * -17,54 ) -18.21 -20.23
1o0 ( -13.89 P -13.29 ) -13.59 -15s68
109 C -8.45 a -7o36 ) -7.91 -9.95
110 C -!4.43 A -14.03 ) -14.23 -16.25
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Table 6.16

Measured P0 and SIGNCAP Predictions
n

bIGICAP
9UTPUT MEASUREMEN DEii VED po 0

FREQUENCY (dBmDerived
CMHZ) ONE-SIGSMA INTERVAL MEAN (dDm)

I C -1.60 , -1.20 ) -1.40 -3.88
20 ( -9.79 A -8.73 ) -9.26 -9.09
21 C -9.79 , -8.73 ) -9.26 -8.84
22 ( 21.50 ,*-&)*50 ) -21.50 -14.25
29 C 7.60 , 7.84 ) 7.72 8.22
30 C 7.33 , 7.63 ) 7.48 7.94
50 C 2.75 * 3.37 ) 3.06 3.62
70 C -23.63 j -22.37 ) -23,00 -20.02
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runs which were done, twenty cases were selected for analysis. Be-

cause in each case there was available the complete output spectrum

(dc to 512 MHz in steps of 1 MHz) it was possible to select only

those distortion products, up to fourth-order, which were present to

a significant degree in each of the twenty cases. It must be realized

that for low enough levels some of the third and fourth-order products

were swamped by the background computational noise, and that for the

higher signal levels there would te significant fifth and higher-order

products. Nevertheless, in order to avoid undue complexity it was

decided to consider only producte up to fourth-order, and limited to

110 MHz (products above 110 MHz are chiefly related to harmonics of

the 50 MHz LO and hence appear mostly at higher LO levels.

The raw numbers, culled from the time-domain computed spectra,

are presented in Table 6.17. Each of these predictions of a distor-

tion product level is readily converted to PO with the result given
n

in Table 6.18. By analysis of the behavior of P0 we can appreciate
n

the role of the LO drive level.

In order to better display the results listed in Table 6.18,

they have been grouped according to the order of the distortion pro-

duct and plotted as a function of LM level. We have selected the

results for 29 and 30 MHz at -10 dBm, used Eq. (6.73) to extra-

polate the data to equivalent 0 dBm input signal levels for com-

puting P n, and plotted P as a function of the 50 MHz level in
n nFigures 6.38, 6.39 and 6.40. First we note that the apparently

anomalous behavior of the 90 MHz output distortion Pn in Fig. 6.39
n

is due to a strong fifth-order distortion product composed as

(50+50+50-30-30) and due to the strong LO drive. In fact, in

the computed spectrum for 50 MHz at +5 dBm, and 29 and 30 MHz

at -10 dBm, there were equally strong fifth-order products at
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Table 6.17

Time Domain Predictions of Ortput Distortion Power

Input
Feq. ,Input Available Power (dim)

0 MRS +6 0 -5 -10 -20

0Oft -10 -20 -10 -20 -10 -20 , -10 -20 =-10 -20

utput
Prze. Output Delivered Power ( m)
(MHz)

1 -26.61- -42.21 -21.q7 -43.21 -24.1t -4?.69 -24.70 -43,2 -24.98 -46.6,6
8 -47.65 -64.36 -37.15 -5i.18 -4n.21 -59.21 -45.08 -63.82 "55.1) -74.83
9 -41,70 -61.67 -30.73 -49.32 -34.30 -53.32 -3q.17 -58.45 -49.25 -71.38

10 -48.82 -62.4g -3*.12 -55.77 -40.84 -59.25 -45.44 -65.23 -55.47 -75.15
19 -4q9.40 -66.59 -56.26 -77.25 -53.65 -81.51 -56.13 -90.15 -64.69 -85.21
20 -11.62 -21.31 -16.66 -27.74 -2P.86 -3A.010 -2A.15 -58.4m -3A.96 -4Q.74
21 -11.33 -21.04 -16.37 -27.45 -P..57 -32.72 -27.47 -?i.17 -37.q4 -49.41,
2P -48.60 -71.49 -59.21 -73.90 -52.40 -9n.30 -5'1).3 -83.29 -64.16 -82.68
26 -6n.31 -64.21 -44.33 -70.62 -39.56 -68.57 -39.34 -6q.45 -19.35 -6Q.P7
29 -4.94 -14.85 -2." -12.36 -2,08 -11.76 -1.87 -11.56 -1.78 -11.41
30 -5.21 -15.12 -3.s4 -12.64 -2.36 -12.03 -2.15 -11,83 -2.06 -11.68
31 -59.83 -79.22 -45.06 -71.00 -39.95 -69.6h -3q.64 -69.76 -39*.M -70.53
38 -47.56 -67.95 "60.92 -7q.19 -53.43 -81t.A -Sq.9q -R4.75 -65.56 -86.5R
39 -48,57 -66,46 -56.38 -86.38 -54.68 -7q.20 -56.71 -83.03 -65.77 -90.61
40 -39.16 -60.#8 -61.78 -6q.89 -5q.62 -74.7R -64.04 -80.41 -75.87 -69.44
41 -32.91 -52.60 -60.51 -60.9q4 -53.30 -69.78 -61.37 -80.91 -80.38 -84.78
49 -39.48 -52.51 -29.9q -47.87 -33.29 -53.11 -38.15 -05.25 -48.16 -6A.59
50 7.17 7.41 2.93 3.54 -1,54 -1.14 -6.41 -6.03 -16.36 -15.q0
51 -39.35 -54.00 -30.05 -48.17 -33.29 -53.21, -38.18 -58.52 -4A.14 -69..?6
58 -31.25 -51.23 -27.53 -47.49 -PA,34 -48.41 -28.78 -49.20 -29.02 -510.46
59 -25.60 -49.45 -21.56 -41.69 -22.71 -42.74 -91.27 -43.46 -23.154 _44&.71.
60 -31.62 -52.47 -28.10 -48#20 -P9,87 -4q906 -29.28 -49.67 -P9.51 -51.01
70 -27.88 -35.72 -30.60 -3A.74 -39.38 -48.54 -49.07 -58.68 -68.4q -7A.84
71 -27.63 -350P -30.24 -389.% -39.03 -48,36 -48.86 -58.52 -68.11 -?78.3
78 -47.82 -87.44 -57.50 -85.57 -52.04 -7Q.68 -jiS.0•2 -fl.. -At-.41 -Aq.51
79 -10n68 -20.39 -15.q0 -P6.83 -21.97 -32.36 -P7.09 17.82 -37.42 -48.94
80 -10.95 -20.65 -16,16 -27.11 -2",22 -32.65 -P7.51 -3R.09 -17.65 -49.•4
411 -47.77 -78*Aq -60.51 -71.72 -52,11 -76#70 -54.85v -84,57 -64.11 -8,1.61
87 -6S.02 -76,27 -54.86 -79.05 -49.63 -78.M 5 -4A.75 -77,82 -48.9q -78.83
8O -56.29 -72.87 -44.39 -70.67 -39q71 -67.35 -39.43 -68.59 -39.48 -70.32
89 -59.78 -72.96 -44.80 -70.85 -40.11 -68.43 -N9.73 -6q.21 -39.73 -70.40
90 -43*64 -9*.02 -5*,33 -64.60 -50.92 -7R,02 -4q.6l -q,84 -49.35 -7Q.0'*
In() -4#36 -3.83 -16.41 -17.68 -27.36 -24.03 -37P57 -38.41 -57.61 -59.54
108 -45.68 -64.M4 -35.71 -53.65 -39.87 -581.20 I43.1511 NA -53.56 -74.08
109 -40.69 -62.91 -29.31 -47.7q -32.95 -5P.161 -117.81S NA -47.89 -68.7n
110 -45.48 -61,49 -36.36 -54.51 -39.44 -%7.7qj -4".18 N -514.01 -74.49

Xntria. in table atreoutput level in dBm for
50 M1z L.O. and tones at 29 and 30 M. @Int
levels are in d•m available. Out@ that 39 and
30 M. are always at the same level.
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Table 6.18

Time Domain Prediction of P0
n

InputInpu. Input Available Pou.r (dim)

50MKr +6 0 -o-10 -20
29 end -10 -2u -10 -20 -10 -20 -10 -20 -10 -20
30 

-1z

Output 0
Freq.' P dB(•) n

1 -6.b1 -2.21 -1.97 -3.21 -4.11 -2.69 -4.70 -3.a -4.98 -6#6,,
8 -'33o65 -30.36 -17,•5 -15.18 -15.21 -14.21 -15.08 -13.82 -15.11 -14.839 -27.70 -27.6? -10.73 -9.32 -9.30 -8.32 -9.17 -8.45 -9.25 -31.38

10 -34.82 -28.49 -18.12 -1j.77 -15.84 -14.25 -15.44 -15.23 -15,47 -15.15
19 -25.,O -12.59 -26.26 -17.25 -18.65 -16.51 -16.13 -20.15 -14.69 -5.2120 -7.62 -7.31 -6.66 -7.74 -7.86 -8.00 -8.15 -8.46 -8.26 -9.7421 -7.33 -7.04 -6.37 -7.45 -7.57 -7.72 -7,87 -8.17 -7.94 -9.4422 -24.60 -17.49 -29.21 -13.90 -17.40 -15.30 -15.31 -13,29 -14.16 -2.6828' -30.31 -4.21 -14.33 -10.62 -9.56 -8.S7 -9.34 -9.45 -9.35 -Q.27
29 5.06 5.15 7.16 7.64 7.92 8.24 8.13 8.44 8.22 8.5930 4,79 4.86 6.8 7.36 7.64 7.7 7,85 8.17 7.94 8.3P
31 -29.83 -t9.22 -15.06 -11.0(1 -9.q5 -9.6(s -q.64 -Q.76 -q.6f' -10.5r38 -23.56 -13.95 -30.92 -19.19 -18.43 -16.A(3 -15.9q -14.75 -15.56 -6.5239 -24.57 -12.46 -26.38 -26.38 -19.68 -14.20 -16.77 -13.03 -15.77 -10.6840 -31,16 -32.18 -4..78 -25.89 -29.62 -24.17 -24.04 -20.41 -19,87 -q.4441 -24.91 -24.60 -40.51 -0.,9n -23.30 -19.78 -21.37 -20.91 -20.38 -4.?8
49 -25.48 -18.51 -_909 -7.87 -8.P9 -8.11 -8.11 -8.25 -8.16 -4.5950 1.17 1.41 2.93 3.54 3.46 3.66 3.59~c 3.q7 3.64 4.1051 -25.35 -20.00 -10.05 -8.17 -8.29 -8.P1 -8.18 -8.9p -8,R4 -90•6
58 -11.25 -11.23 -7.53 -7.49 -8.34 -8.41 -6.78 -9.20 -9,02 -10.4659 -5.60 -5.45 -1.56 -1.69 -2.71 -2.74 -3.27 -3.46 -3.54 -4.7260 -11.62 -12.47 -8.10 -8.0n -8.07 -q9.6 -Q.P8 -q.6? -9. 9 1 -11.0170 -29.81A -27.72 -20.60 -18.74 -19.38 -18.54 -1q907 -18.6K -18.411 -1•."11
71 -29.63 -27.52 -20.24 -18.50 -19.03 -18.36 -18.86 -18.52 -10.11 -I".9378 -23.82 -33.44 -27.50 -25.57 -17.04 -14.68 -15.02 -14.97 -14.11 -9.51
79 -6.68 -0.39 -5.90q -6.83 -6.97 -7.36 -7,29 -7.82 -7.42 -1.94
80 -6.95 -6.65 -6,16 -7.11 -7.22 -7.5 -7.,51 -8t_09 -7.65 -9.19
81 -23.77 -V489 -30.51 -17,7? "'17.11 -11.70 -14,P•9 -14.57 -t4.11 -8.61
87 -35.02 -16.27 -2' .86 -"1.m -01.6 - 18.A4 -18.75 -17.82 -18.59 -1868388 -26.29 -12.87 -14.39 -10.67 -9,77 -7.35 -9,43 -8,'q -9.48 -10.3989 -29.78 -12.96 -14.80 -10.85 -10.11 -8.43 -9.73 -Q.9l -9.71 -10.40
90 -13.84 0.98 -25,33 -24.60 -90.q9 -18.02 -19.69 -1Q.84 -19.36 -Iq.Q.100 -16.36 -15.63 -16.41 -17.6A -17.36 -18.03 -17.57 -18.43 -17.61 "|q.3q
too -31.68 -30.84 -15.71 -13.65 -13.87 -13.90 -13.91 NA -13.56 -14.05
109 -26.09 -26.21 -9,31 -7.715 -7.9% -7.16 -7,8A1 N -7.89q -R. 70110 -31.48 -27.49 -16.35 -14.51 -14.44 -12.79 -14,18 NA -14.01 -1..4-
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91 = 50+50+50-30-29 and 92 = SO+50+50-29-29 MHz. Some of the obser-

vations relative to Figs. 6.38 to 6.40 as the local-oscillator leval

is increased are:

1. There is an expected gain compression for first order.

2. The second-order curves show expansion followed by

compression.

3. There is a uniform and large decrease for all third-order

products, and a large decrease for fourth-order followed

by a significant increase.

4. The grouping of products is related to the

frequency sets,i.e., (fl ± f 2 ) and (2f or 2f

constituting different groups
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CHAPTER 7

COMMUNICATIONS RECEIVER APPLICATIONS

The nonlinear transfer function theory and the device

modeling of the preceding chagtoms allow the nonlinear modeling

of complete communications receivers. In this chapter two re-

ceivers are modeled. The first receiver is a solid-state single-

conversion VHF receiver. The second receiver is a triple-conver-

sion vacuum tube HF receiver.

7.1 Solid-State VHF Re-eiver

The block diagram of the receiver is shown in Figure 7.1.

Figure 7.2 shows a detailed block diagram of the tuning head,

which includes the RF amplifier, mixer, local-oscillator, and

21.4 MHz preamplifier. The nominal tuning head characteristics

are listed in Table 7.1.

In signal-flow order, the tuner contains four transistors,

i.e., Ql, Q2, Q4, and Q3. Transistors Ql and Q2 provide RF

amplification while Q4 and Q3 form a cascode mixer-amplifier.

Q5 is the local oscillator, the frequency of which'a is above the

signal frequency. Transistors Q3 and Q4 are the same transistors

used in the two-stage amplifYer of Section 6.5. The schematic

of the tuner is shown in Figure 7.3. There are five interstage

networks in the signal path. Interstage network 1, from the

RF input to the base of Q1, is a mechanically tunable double-

tuned RF preselector network. Interstage network 2, between Q1

and Q2, is a fixed low-pass network which cuts off at about 100

1MHz. It serves to further reject high frequency interference.

Interstage network 3, between Q2 and Q4, is again a mechanically
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3?AOLN 7.1
Solid State Receiver Tuning Head Characteristics

frequency Coverage o . . o . . . 30,A00 No

NRi&* F'igUxo.......... 4.5 dB maximum (30 to 90 Mtc)
5.5 dB maxium (90 to 100 me)

Intermediate Prequenoy..... 921.4 N4c .o ,'CA

te Rejection. . ... .. .. . 56 dB minimum below 40 He
60 dB minimum above 40 No

Image Meject�ton. • • • . • . . 60 d8 mtinimum

adjustable double-tuned RF filter. This network, along with

interstage 1, provides the principal tunable selectivity over

the 30 to 100 MHz band. Since mixing is accomplished in Q4t

the desired output of 04 in at the 21.4 MHz IF. Thus interstage

network 4, between 04 and Q3, is a low-paas network which cuts
off near the intermediate frequency. Since the local-oscillator
is 21.4 MHz above the desired signal, this filter also decreases
local-oscillator feedthrough iato subsequent stages. The last
network, interstage number 5, is between the output of Q3 and the
IF output. It is a fixed-frequency double-tuned circuit tuned to
the 21.4 MHz IF. -:

The schematic diagram of the preamplifier is shown in
Fig, 7,4. The amplifie•r contains four transistors. The in-
pn t network provides a resistive broadband load -o the RF tuner
output. Broadband RC networks are also used to couple the CE
and CB stages of the two cascode amplifiers, involving 01, 02,
and Q3, 04. Frequency selectivity is provided by the tuned 4
circuits between 02 and 03, and at the output ot 04.
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• ~~There are two diodes, CR1 and CR2* In the collector circuit ,•l

-of Q4. *eso diode# form a sy*metric clippers and prevent over- ,

i' •, driving of subsequent stages due to large signals. The diodes •

" ~are unbiased and te• diode currents therefore# in extremely •

.- )] • ~ ~ maral.1. Un•less the vol't.age across thi'e diodes in, many times ]

A ' I 1 . '

SkT/q, they can be omitted. This has been confirmed experimen-

i, ~tally,.

Whe preamplifier is physica'lly looated on• the Rr, tuner
Thassise and wass as an inpCt signal, the output of the mixer.

Its output, in turn, if the inpfut to the IF amplifier. it will

be sdon in a later analysis of the IF amplarger that the input

network to the IF amplifier is a resistive network, similar to
that at the i nagO the preamplifier. ie st s

'The preamplifier ias AGc applied to two e ommon-emitter sta-

gas, 01 and Q3. The AGC voltage is developed from the AM detec-
tor output, and tu increasingly positihe for a signal of increa-

ntosing power. Since pi and Q3 are NrN transistors, the AGC is

a forward-acting AGC. The AGC applied to two co the two comon

base stages, Q2 and Q4. They are DC deco'2pled from the common-

emitter stages by capacitors C3 and Cll.

The IF ampter which was used in the recolver had a

500 KHz bandwidth and 21.4 Ma center frequency. A block

diagram of the IF amplifier circuit modulo is shown in

Fig. 7.5. In addition to the two-stage IF amplifier, the AM

detector and FM limiter-discriminator are contained on the

module. The schematic of the amplifier is shown in Fig. 7.6.

The entire .'F wmplifier is fabricated on one printed circuit

module. The module contains ten transistors, all of them being

498



v--

0 41

j~L. 4

F- 44

~.iI 0

521 U

In
44

CLl2
I .

L

LL

2ijj 499



r ---- ----. -. -- A---

~' *1
44.

ad

ItI

it

5000



Oil

specially designated by the manufacturer as SP8675. Measure-

ments indicate them to be medium-gain, medium-frequency tran-

sistors with betas of about 40, and alpha-cutof- frequencies

of about 100 MHz. Transistors Q0-Q2, and Q3-Q4 form cascode

pairs. The input network to Q1 is a broadband RC network

which serves as a constant impedance load to the IF preampli-

fier. Two tuned interstage networks, one between Q2 and Q3

and the other at the output of Q4, provide the IF selectivity.

The AM detector is composed of the peak-detector CR1 and emitter-

follower Q5. The FM detector is composed of two stages of cas-

code limiting, Q6-Q7 and Q8-Q9, a discriminator (the network

between Q9 and QI0) and an emitter-followe--Clo.

7.2 Modeling of the Solid-State Receiver

7.2.1 An Overview of Experimental Modeling

In this section we outline the steps involved in modeling

the receiver. Bear in mind that the information about the

tuner available at the outset is normal instruction manual data.

The tuner is also available for physical measurements.

To model the interstage networks, it is necessary to

establish values for each of the network elements. The sche-

matic diagrams give the nominal values of the components. Tie

values of the tunable elements are not shown. In addition,

paraoitic elements that may be present are not shown. Measure-

ments are needed, therefore, to permit the networks to be para-

meterized.

There are a number of ways in which the networks could be

parameterized. First, each element coull be removed from the

receiver and measured on an appropriate RF bridge. This approach
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could result in network misalignment and possible destruction of

the components being measured. It was not attempted. A second

approach is to consider each interstage network as an entity,

and measure its transmission parameters in situ. This has the

distinct advantage that the networks undergo a minimum of

dissection in their analysis, and that the networks can be

measured by familiar techniques. Some of the measurements which

"might be made are:

a. insertion gain

b. Y or Z parameter

c. scattering parameters.

Insertion gain measurements are an attractive technique since

the basic network structure is known. If insertion gain is

measured as a function of frequency, the unknown elements can be

determined by choosing values for the unknown elements, pre-

dicting the network insertion gain using a linear network ana-

lysis program, and refining the estimate until the predicted in-

sertion gain is sufficiently close to the measured. The Y and

Z parameters are more difficult to measure. They require that

short and open ci=_.its be established at the network ports.

Scattering parameters may also be used to characterize lumped

networks. The insertion gain technique is preferred, at least

through VHF, The measurement is made in two steps. First,

the generator is calibrated by measuring Pip the delivered

power to a 50 0 load from a 50 0 generator. The generator is

connected to the load through a 50 0 cable, so the load need

not be right at the generator terminals. Next, the network un-

der teat is connected to the generator, and its output brought

through a 50 0 co0Axial cable to a 50 0 termination. P2 ' the

power delivered to the load by the network is then measured.
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The inuortion gain is P P assuming that the powers are in a
2 1

consistont set of logarithmic units such as dBm' s. It was

found that the network topology is well represented by the

schematic diagrams in the design range of the network. Out

Of band, however, responses are measured which require the

inclusion of parasitic elements. These can be modeled with

reasonable effectiveness if the analyst takes sufficient care.

An example of this is discussed in Section 7.2.2.

Each of the signal-processing transistors - twelve in all -

was unsoldered and reitoved from the receiver, and its parameters

oteasured. As a check on the correctness of the transistor param-

eterization, two-tonu, measurements were made of the second and

third-order nonlinear transfer functions of all transistors, as

well as their insertion gains. All of the measurements were

made in 50 ohm test fixtures. Predictions of the nonlinear

transfer functions were made with SIGNOAP. Upon confirmation

of the modeling, the transistors were resoldered into their

circuits. The removal and replacement of the transistors was

non-destructive, and easily accomplished by a skilled electronics

technician.

With the interstage networks and the transistors modeled,

the next step was the modeling of the three sections of the

receiver, Using 50 ohm sources and loads, insertion gain and

swept frequency two-tone nonlinear transfer function measure-

ments were made of the tuner, IF preamplifier, and IF amplifier.

The basic instruments used to measure the available and delivered

• powers were a vector voltmeter and a spectrum analyzer. Input

tones were combined by means of a 50 ohm hybrid junction.

The points at which the outputs were measured were the Cll-C12
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junction of the tuner, 2i4-C16 junction of the preamplifier, and

the input to Q6 of the IF amplifier. The last point was selected

instead of the more obvious selection of the AM detector input,

because the detector input is a high-impedance point which does

not provide a convenient monitoring point for the laboratory

-measurements. Predictions of the various nonlinear transfer

functions were made using SIGNCAP. When needed, measurements

and predictions were also made at interior points in the Qircuits.

It was generally found that slight adjustments had to be wade

to the previously modeled network parameters in order to match

predicted overall responses with moasured responses. Transistor

parameters, however, were left unchanged.

When the modeling of the tuner, IF preamplifier, and IF

amplifier was completed, the three units were connected and

measurements made on the overall receiver. Predictions of the

overall receiver were made using the SIGNCAP predictions* of

the three units, combined with simple cascading theory.

During all of the measurements, the receiver was tuned to

45 MHz on the front dial. Sinre the intermediate frequency is

21.4 MHz, the nominal local-os.cillator frequency is 66.4 MHz.

The sinusoidal local oscillator amplitude at the collector

of Q5 was measured to be 2.9 volts RMS. Analysis shows that

this causes the mixer to operate in the borderline region be-

tween small and large local-oscillator mixer tlvory since the

peak local-oscillator voltage across the mixer transistor

internal base-emitt02t-jVnction is computed to be 29.4 milli-

volts. All measurements were made with the AGC grounded.

Complete SIGNCAP coding for the VHF receiver is included in
Appendix A.
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7.2.2 Interstage Network Modeling

The purpose of this section is to describe in mire depth

some experimental techniqueS@ which have been developed in model-

ing receiver interstage networks. The techniques use a combina-

tion of insight and experience, and allow the analyse,- to achieve

a good circuit model with very few iterations of the modeling

process. By a model of an interstage network we mean a circuit

diagram, with explicit component values, such that the predicted

effect of the interstage when placed in the remainder of the cir-

cuit will be the same as that due to the physical circuit. It is

thus necessary not only to model the elements which have been

intentionally designed into the circuit, but also the parasitic

elements, primarily series inductance and shunt capacitance,

which are unintentionally part of the circuit.

In this section we will limit the discussion to two port

interstage networks such as illustrated in Fig. 7.7. These

networks are assumed to be linear passive and bilateral and

available for measurements to be made on. Two basic techniques

are discussed in this chapter for characterizing the interstage

networks, depending on their intended use. For networks used

to couple transistor circuits, where the source and load impe-

dances are typically low, the only measurements which were made

are the insertion losses in a 50 ohm system. This has been dis-

cussed in the previous aection. For networks used to couple

vacuum tube circuits, where the source and load impedances are

typically high, the input impedance and the voltage t "ssion

ratio between a 50 ohm generator and an open-circuit • can

be measured. This will be further discussed in Section 7.9.

In both cases, the measurements are made over the entire fre-

quency range it is desired to characterize the network.
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Once the measurements are preormed, an initial circuit

mtndel can be made of the network based on the nominal values of

the network's reviatori, inductores and capacitors. There will

be, in many casesi unknown parameters due to variable inductors

and variable capacitors. initial guesses can be made of theme

component values, baseJ on the measured frequency &euponsess

and the theoretical relations between the resonant frequenciee

and the circuit parameters.

The next step in the circuit modeling is to take the initial

circuit model and, using a linear circuit analysis program, pro-

dict the same paraeinters as were measured. The input impedance

can be predicted by driving the network with a one-ampere our-

rent source: the input impedance is the resulting voltage at the

input terminals, in magnitude and phase. The insertion lose of

the network in a 50 ohm system can be predicted by driving the

.... network with a two-volt, 50 ohm generator, and terminating the

networlt with a 50 ohm loadi the insertion loss in dB is 20 logl0

times the voltage across the 50 ohm load. The voltage transmis-

sion ratio between a 5ýhm generator and an open circuit load

is the network's predicted output voltage when driven by a one-

volt, 50 ohm generator.

The predicted and mea3ured parameters can then be compared

over the entire frequency range. Usually several iterations

will have to be made on tuned interstages before the skirt slopes

and major resonant frequencies are in agreement. At this point

it is appropriate to insert rasistance in parallel with inductors

so that the resonant circuits will have the proper Cf as indi-

cated by correct paiameter values in the vicinity of resonance:

usually the Q has little effect away from reqonanco.
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A a•a tial atop# t'Ile aiutsd and HASUro d on Aro•A0toere oan

be exwttnod for the effects of pamAsiticl Geaealitus O"rfi1"O
the mout imprtnt p~ai~aties are movies induotance and ahuait

ciapacit~ance, although one imy also nieed to aunsider eerie@ ro-

*ist•loe at tules. Tle offeots of par•aitica are usually easy'

to identifyi a paasitic inductance in aerie* with a capacitor

will cause ano r,•ease in transmission if the capacitor is iin

series witha the inWt--out•put path, or a decrease in transmission

if the oapaoitor is in shunt between the input-output path and

ground. 'Phase remonancee are usually hig4h Q, and the value of

the parasitic nan be initially estimated from the resonant fre-

quenay and the value of tho capacitance. A parasitic aapauitance

in paraalll with am inductance will cause the opposite of the
above effects, i.e., a parallel resonance in series with an

input-output arm will cause a decrease in transmission, and an

increase in ti•namission when in a shunt arm.

An example of interstage z-etwork modeling will now be given

to illustrate these principles.

7.2.2.1 ,nterstalqe NXetwgork Modeling Examele

Figure 7.8 is the schematic diagram of the third interstage

network in the tuner of the V.lF receiver. Inductor L2C and L2D

tune the stage over the 30-100 MHz frequency range. Inductors

L8 and L9, an capacitors C19 and C22 are trimmers which are .

adjusted by the manufacturer so that the tracking of the tuner

is satisfactory over the frequency range. The primary selectivi-

ty of the stage is due to the parallel resonances of C18, C19,

L8, L2C, and C22, C23, L9, L2D, with C20 and C21 providing the A

coupling' between the stages. If L8 and L9 were, in fact, zero,
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the interstage would be a claasic capacitance coupled double-

tuned interstage network, the insertion gain of which decreaseas

monot~nically towards zero at low frequencies, and tends towards :

a constant value above resonance.

Figure 7.9 shows the insertion gain measured for this

network in a 50 ohm4ysetem, when the receiver was tuned to 45 MX

on the front panel. Ihe low frequency slope is monotonic, as

expected, and the network peaks at 47 MH.z The insertion gain

tends towards a constant value of -26 dB in the 60-100 MHz region,

but then has an unexpectedly low loss at 245 MHz, and a high loss

at 400 MHz.

An examination of the schematic shows that if L8 and L9 are

much smaller than L2C and L2D, the possipility exists of a higher-

than-tuned-f requ ,e•. •ries resonance between LBO L9, and C21,

which would account for the low losa at 245 MHz. The high loss

at 400 MHz may be due to a series resonance between C18 and a

parasitic series inductance, and C23 and a parasitic load in-

ductance. With these clues, the first step in the modeling is

to find network values such that the main response is well

modeled. A network for which this is so is shown in Fig. 7.10,

and its predicted insertion gain is shown in Fig. 7.11. The

network is seen to resonate at the correct frequency, and to

have a reasonably-constant insertion gain above resonance.

The next step is 1o reapportion the total inductance of

L8 and L2C (and L9 and L2D) so that the main resonanice is un-

changed, but the second resonance occurs at 245 MHz. It is

found that this occurs with LS equal to 0.0565 h, 'and L2C

equal to C.29 4h. The series resonance at 400 MHz can be

modeled by lumping C18 and C19 together, and C22 and C23 together, i1
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and inserting 0.008 Vh in series with each of them. The result-

ing circuit model is shown in Fig. 7.12, and the measured and

predicted insertion gains are shown in Fig. 7.13. It is evident

that the circuit model is a gcod representation of the network.

A close look at Fig. 7.12 shows that RII was changed from 4.7K

to 2K. This was done so that the predicted peak insertion gain

is the same as the measured insertion ga4 .n.

As a final point, it should be noted that there is a slight

detuning between the prediction and measurement in the 400 MHz

region. If necessary, a slightly different choice of the para-

sitic inductor values would improve this match. It was not felt

necessary, however, for this application.

In Section 7.9 comparisons are shown between predicted and

measured network input impedances and voltage transfer ratios

for vacuum-tube interstage networks. The network models were

formed using the same techniques as described here.

7.3 •iner Modeling

The analysis of the tuner is from RF inputs at al to IF

outputs at J2. The mixer was modeled as a small local-oscil8lar

mixer, with the desired difference frequcncy the result of a

second-order mix. The local oscillator was measured to have an

amplitude of 2.9 volts rms, which results in a predicted internal

base-emitter voltage in the mixer transistor of 29 mW. Thus, the

mixer is operating slightly above the 25 mV breakpoint which was

taken in Section 6.3 to be the transi.tion from small to large

local-oscillator drives. Three nonlinear transfer functions are

considered in•.is section.
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The second-nrder nonlinear transfer function describes the

mixing of the input signal and the local oscillator to produce

the intermediate frequency. In the Luner, the local-oscillator

is nominally 21.4 MHz higher in frequency than the signal to give

an IF of 21.4 MHz. The receiver will have an image response

21.4 Miz above the local oscillator frequency, or, alternatively*

42.8 Wiz above the desired signal frequency. Measurements and

predictions of the second-order nonlinear transfer function will

be presented. The second-order nonlinear transfer function is

d•escribed as the eQuuivalent first-order nonlinear transfer function.

The third-order and fourth-order nonlinear transfer func-

tionis of the tuner are defined with one frequency equal to the

local oscillator frequency, and the remaining two and three fre-

quencies, respectively, variable. Thus, the third-order and

fourth-order transfer functions can be measured with conventional

two-tone probing siTials at f and f 2* Measurements and predic-

tions will be shown for ta case of f1 1 f2 and 2f - f2 set

equal to 45 MHz, the tuned frequency. These inputs result in.

intermodulation products at the intermediate frequency. The

third •nd fourth-order nonlinear transfer functions are inter-

preted as the eguivalent second and third-order nonlinear -trans-

fer functions for the tuner.

7.3.1 Second-Order Nonlinear Transfer Function (Equivalent
First-Order Nonlinear Transfer Function)

The second-order response of the tuner is its desired cutput

frequency response. If the input signal is at a frequency flo

then the output is at a frequency fLO - f 1 , which is a seccnd-

order mixer response. The equivalent first-order transfer

function is:
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H eq(-flfO = '2-f l'rx fL) (7.1)
1 1' LO 2 1 LO

where
f, signal frequency,

f LO =local-oscillator frequency,

A local-oscillator amplitude in peak volts.

"Tlhe measurement of H- eq1 is performed by a single tone test.

The input signal available power and the difference frequency

delivered power are measured. The difference, in dB, between

the two is the (equivalent) insertion conversion gain of the

tiner. This is 6 dB higher than the (equivalent) first-order

t"Ansfer function. Figure 7.14 shows the measured and predicted

gains. It is noted that they are in excellent agreement over

the measured range 30 to 100 MHz, with the exception of a slight-

ly low prediction at 44 MHz, and high prediction at 48 MHz.

Several points should be noted with regarC to the predictions.

They cover a 120 dB range, and are in basically good agreement

over the entire range. The fourth-order corr'ection term was not

included in the predictions. The secondary peak which occurs in

the neighborhood of 88 MHz is the image response of the receiver,

which occurs when the input signal frequency is f IF + f LO Since

fIF c 21.4 MHz, and f = 66.6 Mrz, the image frequency should be
88 MHz. The prediction of the image response is quite good. The

null at 66.6 MHz is a zero-beat, which occurs when the signal

frequency is the same as the local-oscillator frecquency.
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7.3.2 Third-Order Nonlinear Transfer Function (Hquivalent
Second-Order Nonlinear Transfer Function)

The third-4.it*x nonlinear transfer function of the tuner was

measured in a two-tone test. Two tones, at freq,•encies fI and

f2' with f, * f 2 equal to 45 MHz, were inputa, and the IF output

signal at fLO - (flif 2 ) was measured. Since the input was a

two-tone, with the third frequency being the local-oscillator,

it was decided to characterize the third-order nonlinear transfer

function as an equivalent second-order nonlinear transfer func-

tion, H2 eq, given by:

2 l'2 LO) 3 (fl'f2'fLO) (7.2)

where A is the peak amplitude of the local-oscillator, and

H3 (-fldf 2 ,fLO) is the actual third-order nonlinear transfer

function of the tuner for the three input frequencies, fl, .f2 ,

The equivalent second-order nonlinear transfer function

was measured in the laboratory, and predicted with the SIGNCAP

software. The experimental data and predictions are shown in

Fig. 7.15. The equivalent second nonlinear transfer function

peaks in the 80 to 100 MHz range. Since f "f2 is equal to

45 MHz, f2 varies from 35 to 55 MHz, which covers a range of

peak insertion gain, and causes the peaking of the equivalent

second-order nonlinear transfer function. Thus f2 is an in-

band signal over the significant range of the equivalent second-

order response, and one might expect the co-channel interference,

which is a liuear rcsponse, to be more significant than the inter-

ference due to the equivalent second-order response.
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It in meon that the equivalent second-order nonlinear

tranesfor fnation covers a range of about 60 da for the fre-

quancy range of 60 to 100 MHz. The prediction error is in the

order of 4 to 6 dB over this range.

7.3.3 Pourt -Ordr oninea Trnsfer at io ~ivalent
TirL- Order I~Nq; oa Trnsr Zinction

The final nonlinear transfer function which was measured

and predicted in the fourth-order. This transfer function was

measured by means of a two-tone test, in which two tones at

frequencies f1 and fY, with 2f, - f2 = 45 MHz, were injected

at the receivor input, and the fourth-order intermodulation

response at fTIC - (2fI-f f) was measured at the IF output. As

with the other transfer functions, it is convenient to consider

an equivalent third-order nonlin~ear t'ansfer function,

H q ("fl- f 'f If), instead of the fourth-order transfer

function, H (-f )i the two are related by:
4~ 1-f' - fl ' f2 ' fLO) A4( l'-f 2'fO 73
4 l'-fl'Yf'LO N( l 1f'L

The measured and predicted equivalent third-order nonlinear

transfer futntions are shown in Fig. 7.16. It is seen that the

prediction is in good basic agreement with the measurement, a.4,.

from a slight frequency shift and the point at 44 MHz. It should

also be noted, in evaluating Fig. 7.1 6, that the frequency of the

second tone, f 2 , covers a wide range, as 2f, - f = 45 MHz. Thus,

for the range 35 MHz < fl< 80 MHz, we find 25 MHz < f 2.- < 115 MHz;

the equivalent third-order nonlinear transfer function exercises

the model over a much wider range than does the equivalent second-

order transfer function.
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7.4 IF Preamplifier Modeling

The response of the IF preamplifier was also measured by

means of one and two-tone tests in a 50 ohm system. The one-

tone test was used to measure insertion gain, and the two-tone

test to measure the second and third-order nonlinear transfer W-

functions.

7.4.1 First-Order Transfer Function Measurement
and Prediction

The irsertion gain of the preamplifier in a 50 ohm system

is 6 dB higher than the first-order nonlinear transfer function.

The measured and predicted insertion gains are shown on Fig.

7.17. Observe that the preamplifier has a maximum response

around the nominal 21.4 MHz center frequency, and a bandwidth-:

of the order of 2 MHz. The peak insertion gain is 27 dB, with

the gain at half and double the tuned frequency of the order of

-60 dB. The predicted insertion gain is in good agreement in

"the frequency range around the intermediate frequency, and

somewhat above the measured insertion gain at lower and higher

frequencies.

The measurements shown in Fig. 7.17 were made with the

limiter dioe.es, CRI and CR2 of Figure 7.4, removed from the

circuit. Measurements made with the diodes in the circuit show

their principal effects to be a slight decrease in the resonant

frequency and a lowering of the high-frequency gain by a few

dB. Thus the diodes can be weli represented simply by fixed ca-

"pacitors provided they are not being driven by a signal large with

respect to kT/q volts.
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7.4.2 Second-Order Nonlinear Transfer Function

i•T~-econd-order nonlinear transfer function was measured

by means of a two-tone test. Two tones at frequencies f and

f with fl • f2 = 21.4 MHz were used as the input signal. 1The

output at 21.4 MHz was measured.

The measured and predicted second-order nonlinear transfer

functions are shown on Fig. 7.18. They are seen to be in excel-

lent agreement over the range 3.4 MHz < f, < 90 MHz. The trans-

fer function is relatively flat over this wide frequency range.

except for the null at the tuned frequency of 21.4 MHz. This
response-ls quite understandable. The input network to Ql is a
broadband resistive network, with a DC decoupling capacitor Cl.

For all frequencies between the cutoff of this RC network, and

the high-frequency limitations of Q1 itself, the distortion pro-

duced by 01 should be relatively constant. Due to the selectivity

of the Q2-Q3 interstage, Q3 should generate little second-order

distortion. Thus, the main contributor to the second-order non-

linear transfer function of the preamplifier should be Q1, which

will result in a constant second-order transfer function except
for a null at f near 21.4 MHz, for which f2 is 0 Hz, and a grad-

ual roll-off at high-frequencies due to the cutoff of Q1.

7.4.3 Third-Order Nonlinear Transfer Function

The third-order nonlinear transfer function was also measured

by means of a two-tone test. 'To tones of frequency fl and f2,

with 2f1 .1 f 2 = 21.4 MHz, were used as the input signal and the

output at 21.4 MHz was measured. The third-order nonlinear trans-

fer £Ltaion was then computed from the measured output power

at 21.4 MHz and the known input powers at fI and f2"
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Results and theoretical predictions are shown on Fig. 7.19.

In contrast to the second-order transfer function, the

order is extremely frequency sensitive. It peaks at the tuned

frequency, and drops sharply on either side. This behavior

shows that the second stage, Q3-Q4, is the source of the third-

order nonlinear distortion for signals close to the intermediate

frequency. The explanation of this is that when the tones are

near the center frequency of the preamplifier, they are ampli-

fied by the first stage, Q1-Q2. The resulting stronger signals

then cause significant third-order intermodulation to be pro-

duced in Q3-Q4. When the tones are away from the center frequen-

cy, the selectivity of the first stage attenuates the signals

applied to the second stage, and thus only the first stage inter-

modulation is then significant. The agreement between the pre-

dicted and measured third-order transfer functions is again good

for both in-band and out-of-band interference.

7. , IF Amplifier Modeling

"The measurements and p-edictions presented in this section

are those of the first order (linear) transfer function and the

third-order nonlinear transfer function of the IF amplifier.

No second-order data are presented, as the receiver selectivity

preceding the IF amplifier precludes the generation of signifi-

cant second-order products in the IF amplifier.

The IF amplifier has the narrowest bandwidth and highest

impedanc levels and gains of the three receiver modules. As

such, the modeling of the IF amplifier presented some problems

which were not present in the tuner or IF preamplifier. The

two tuned interstage networks were modeled by means of insertion
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loss measurements in a 50 ohm system, followed by transmission

measurements in the IF amplifier. .. e rationale for this two-

step modeling is as follows. The networks are high Q, narrow-

band networks. Both interstage networks are double-tuned net-

works, with the two tuned circuits coupled by small capacitoza.

Each of the interstages has a capacitive divider on its output, used

for impedance transformation. For the frequency range of inter-

est, input. impedances of the interstage networks are high compared

to 50 ohms, ar. insertion loss measurements in a 50 ohm system

serve primarily to model the transfer characteristics of the

coupling capacitor and the output tuned circuit. If the network

is then driven by a known transistor, the input tuned circuit

can be readily modeled. This procedure was followed for the two

interstage networks. Figure 7.20 shows the model for the first

interstage network.

A comparison of Figure 7.20 with the IF amplifier schema-

tic shows that the schematic diagram alone does not sufficiently

model the tuned interstage. It was necessary to shunt the induc-

tors with resistors in order to 'nave the correct risonant impe-

dancei this is simply control of the circuit Q. It was also

necessary to modal an interesting parasitic effect. Consider

Fig. 7.21, the photograph of the IF amplifier circuit board.

Two arrows are shown on the figure, one pointing to the -Input

of the first tuned interst.ge notwork, and the other to the out-

put 01 the first tuned interstage network. It is seen that the

input and output are quite close together, and are thus effective-

ly coupled togethur by a small capacitive impedance. Figjure 7.20

shows that this capacitor is modeled as being 0.22 pf.

Figure 7.22 shows the measured insertion loas of this network.
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Fig. 7.21 IF Amplifier and Detector Card.

532

A



AA

-25

ZZ

--0- MEASURED

-30 A / PREDICTED FROM
SCHEMATIC

0 PREDfCTED FROMi CIRCUIT MODEL

-35

Z

-5-'40 --

AA

-401

z

z 0l

'--45 -

-50 A 02 0 35 4 55
Fig 7.2 InetoZ ano Fitrtg ewr I

0

-60 .. I I I I II
15 20 25 30 ;35 40 45 50

FREQUENCY IN MHz

• Fig. 7.22 Insertion gain of IF interstage network 1..

S~53 3



Also shown on Fig. 7.22 are two predicted insertion losses for

the network, one based on the circuit diagram, and the other on

the circuit model of Fig. 7.20, which includes the 0.22 pf

parasitic capacitor and the shunt resistors. The effect of the

capacitor is striking - without it the high frequency loss in-

creases rapidly with frequency, while with the capacitor the high

frequency loss decreases rapidly with frequency. Effects such

as this can be readily observed and modeled when working on the

circuit level.

In modeling high-Q, narrow-band tuned circuits, it was also

found that simply matching transmission gains, while adequate

for modeling of the first-order response, might prove inadequate

for nonlinear response. This occurs when nonlinearities in the

collector circuit enter into the distortion generation. In

this case it is also necessary to match the linear response

at internal points in the amplifier circuitry, as well as just

at the input-output terminals. This matching can be conveniently

done by means of a linear circuit analysis program.

7.5.1 First-Order Transfer Function Measurement
and Prediction

The measured and predicted insertion gains of the IF ampli-

fier are shown in Fig. 7.23. The IF amplifier appears to be

critically tuned, with a 21.4 MHz center frequency, midband-gain
of 16 dB, and 500 kHz bandwidth. The frequency range of Fig.

7.23 is 20.5 to 22 MHz and the insertion gain varies over a
40 dB range. The IF amplifier is tuned to its 21.4 MHz center

frequency, and the bandwidth is the desired 500 kHz. The agree-

ment between prediction and measurement is considered acceptable

over the entire range. It should be noted that the prediction
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is across a 50 ohm load at the first limiter (Q6-Q7) input. The

input to the AM detector would be approximately 39 dB higher

than shown in Fig. 7.23, as the 50 ohm load in series with R27

causes a 15 dB loss, while the C18-C19 capacitive divider causes

a 24 dB loss. It should also be noted that the AM detector diode

was disconnected when these measurements were made. The AM de-

tector input is a high impedance point and does not provide a

convenient monitoring point for the laboratory measurements.

The input to 06, however, is a lower impedance point. Therefore,

measurements of the overall IF transfer functions were made with

the input at the RI-R2 junction, and the output at the R27-R30-

R3 junction with Q6 disconnected. The effect of the diode will

be considered in detail in Section 7.7.

7.5.2 Third-Order Nonlinear Transfer Function

A spot check of the 2f -f2 transfer function was made at

three different values of fl, with 2fl-f 2 held constant at 21.4

MHz. Table 7.2 shows the measured and predicted values of the

TABLE 7.2

IF Amplifier Third-Order Nonlinear
Transfer Functions

1H3 (f 1 f'-f 2 ) I(dB)
fl(MHz) f2 (MHz) Measured Predicted

2!1.3 21.2 84.4 78.9

21.5 21.6 70.4 65.9

22.5 23.6 6.4 6.4
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third-order nonlinear transfer function for the three points.

The first point, fl = 21.3 MHz and f = 21.2 MHz, is a case
1 2

of in-band interference. The measured third-order nonlinear

transfer function is 84.4 dB; its large magnitude is due to the

fact that the distortion is produced in the Q3-Q4 pair, and has

the full gain of Ql-Q2 and the first tuned interstage network.

The second point, f = 21.5 MHz and f = 21.6 MHz, is on the edge
1 2

of the first interstage's passband. While the distortion is

still primarily in Q3-Q4 its amplitude is down 14 dB from that

of the first point. The final point, f, = 22.5 MHz, f 23.6 MHz,

is out-of-band with respect to the IF tuned circuits, and the

distortion is produced in the Ql-Q2 pair. The third-order nonlinear

transfer functions are considered to be in sufficiently good agree-

ment with the measured data to confirm the modeling of both the

transistors and the passive networks.

7.6 Detector and AGC Effects

In this section we present experimentally determined detector

and AGC characteristics. The predictions and measurements of the

previous four sections were all made with the AGC circuit grounded,

and the AM detector diode disconnected. In actual operation, of

course, the detector diode would be connected and the AGC would

be operative. Since the SIGNCAP transistor model has, as input

parameters, the operating points of the transistors, the effect

of varying input levels of signal and interference can be taken

into account by an iterative analysis which deetermines a consistent

solution to the closed loop system of the nonlinear receiver and

its AGC and detector characteristics.

537



7.6.1 The AM Detector

The I° amplifier has been analyzed so far with the output

taken at the FM limiter input, and CR1, the AM diode detector,

disconnected. In actual operation, of course, the diode is in

place, and-will load the second t1'..aed interstage network. In

order to determine the extent oa4 t!jgts loading, the diodo was

reconnected and the IF amplifiar oeaavrements repeated. In the

course of the measurements it becwhs evident that the insertion

gain of the IF amplifier was not a unique, repeatable quantity

for a given frequency. Further investigation showed that the

insertion gain was, in fact, a function of the amplitude of the

signal being detected, with the gain decreasing with smaller

siqnals.

Figure 7.24 shows the measured insertion gain under three

conditions, namely (1) the AM detector diode disconnected, (2)

the AM detector diode connected and the signal across a 50 ohm

load at the Q8 input set at -30 dBm, and (3) the diode connected

and the signal set at -50 dBm. It is seen that as the signal

level decreases the peak insertion gain decreases both in amplitude

and the frequency at which it occurs.

Tn order to find a physical explanation for this, we return

to the circuit diagram, Fig. 7.6. The AM detector diode, CR1,

goes between a high impedance point (the junction of L4 and C18),

and its filter and buffer amplifier, R24, C20, and Q5. If the

input impedance of CR1 were level dependent, then the variable

insertion gain would be understood. Table 7.3 shows the DC

voltage measured at the cathode of CR1, and the peak AC voltage

computed at the anode of CR1 for several power levels defined

at the limiter input. The AC voltage was computed, not measured,
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TABLE 7.3

CR1 DETECTOR VOLTAGES AT 21.4 MHz

Power in Peak Anode DC Cathode
50 ohms at Voltage, CR1 Voltage, CR1

Q6 Input (Computed) (Measured)

None 0.000 V -0.0964 V

-50 dBm 0.086 V -0.0890 V

-40 dBm 0.272 V 0.000 V

-30 dam 0.860 V +0.4052 V

as the act of measuring would, in itself, change the voltage

being measured. The computation was based on the predicted

voltage transfer function between the limiter input and the AM

detector input. The table shows that at -30 dBm there is a peak

forward voltage across the diode of about 0.46 volts. During

most of the cycle the voltage is less than thisl indeed, the

diode is reverse biased for approximately 67% of the cycle.

For a -50 dBm level, however, the diode is never reverse biased,

and has a peak forward bias of 0.175 volts. It is thus reasonable

to expect the detector to present a signal level dependent impe-

dance to the interstage network.
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With this insight into the AM detector operating points,

we now seek ,reasonable models for the input terminal behavior

of the detector. Figure 7.25 shows the experimental data of

Fig. 7.23, along with two predicted curves. in one set of

predictions, the detector circuitry is replaced by a parallel

combination of 1.25 pF and 10 K ohms to ground; this is seen

to model reasonably well the detector behavior at -30 dBm. The

second set of predictions are for the detector circuitry replaced

by a parallel combination of 2.0 pF and 3.0 K ohms; this is seen

to model the -50 dBm results.

The linearity of the AM detector was measured by thu follow-

ing exp riment. The IF amplifier was tested as an isolated unit,

with an AM signal used as its input. The modulation frequency

was kept at 4 KHz, and the input carrier level was kept at -42

dBm; This produces an output carrier level of -30 dBm at the limiter

input monitor point. The modulation index was varied over a wide

range, and the AM detector output voltage was measured with an

audio v6ltmeter, which was calibrated in dBm relative to a

600 ohm load. Figure 7.26 shows the measured transfer function.

It is seen that the detector has at least a 30 dB linear range,

corresponding to a modulation index of slightly greater than

30%. In a second test, the modulation index was kept constant

at 30%, and the modulation frequency varied from 100 Hz to

60 KHz. The detwctor output was essentially flat up to 20 Kfz,

and down 3 dB at 60 KHz.

7.6.2 FM Detector

The FM detector consists of two stages of bandpass limiting

in transistors Q6-Q7, and Q8-Q9, followed by a diode discrimina-

tor. The discriminator output is buffered by 0l0, an emitter
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Zollower. The measured discriminator response is shown in

Fig. 7.27. In taking the data, the input was a tone, kept

at a constant amplitude of -30 dBm at the input to 06. The

linear range of the discriminator is seen to be 21.1 to

21.7 MHz, and the sensitivity is 11.6 volts/MHz, or, equiv-

alently, 11.6 mv/KHz.

7.6.3 AGC

The input to the AGC amplifier is the AM detector output

of the IF amplifier. The output of the AGC amplifier is the

delayed AGC to the RF tuner, and the normal AGC to the pre-IF

amplifier. Figure 7.28 shows the measured relevant AGC

characteristics of the receiver. The abcissa is available input

power, in dBm, to the RF tuner. The left-hand ordinate are the

AGC voltages, and the right-hand ordinate is the power measured

in 50 ohms at the FM limiter input, our conventional monitoring

point. The measurements were made with an input which was a

45.5 MHz tone.

The AGC is inoperative for inputs below approximately -94

dBm. For input levels lcwer than -94 dBm, the receiver output

power increases approximately as the 1.5 power of the input

power. This is due to the previously noted level-dependent in-

put impedance of the AM detector diode. For inputs between

-94 dBm to about -90 dBm, the receiver is in a transition state,

with the AGC beginning to operate. For inputs greater than

-90 dBm the outpxit is about -23 dBm. The output cannot be

exactly constant, of course, or there would not be an error

signal to feed back to the AGC circuitry. The slope of the out-

put curve is approximately C..0225 dB output/dB input.
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7.7 Complete Predetection Receiver

The complete predetection portion of the VHF receiver was

modeled by considering the RF tuner, pre-IF amplifier, and IF

amplifier as separate segments for analysis purposes. These

segments, or receiver subsystems, are shown in Fig. 7.29. Source

and load impedances as well as interstage output and input im-

pedances are noted in the figure. The three segments were ana-

lyzed to determine the overall nonlinear transfer functions by

utillzlng the cascading theory with linear interaction correc-

tions as discussed in Chapter 2, Section 2.3. This approach con-

serves computer effort within the limitation of SIGNCAP. The

cascade calculation can be either accomplished manually or by

using the cascading options in SIGNCAP. Division of the receiver

at the interfaces described is natural and can be expected to be

quite successful since the tuner, pre-IF, and IF amplifier inter-

faces all have source and load impedances that are essentially

resistive and broadband over the frequency regions of concern.

In the following sections we shall outline the theoretical

approach to determining the equivalent first, second, and third-

order nonlinear transfer functions. Predictions will be compared

with overall measured responses. We shall also write out expli-

cit relationships relating the predetection receiver output to

multitone input signalp -o illustrate the detailed use of tranj-

fer functions and their cascades. Table 7.4 summarizes the no-

tation used for the individual nonlinear transfer functions.

Observe that wc have used the equivalent amplifier concept (See

Chapter 1) in describing the RF tuner since it contains the in-

put signal down-conversion process. The local oscillator has

been assumed sinusoidal with complex arplitude A.
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Table 7.4.

Nonlinear Transfer Functions for the
Predetection VHF Receiver Segments

RF Pre-IF IF
Tuner Amplifier Amplifier

FiL st-Order Hleq(T) (T)P) H(1F)

SecondOrder_ ~ eq(T) =I H(T) H (P) H (IF)
SeodOdr2 2 3 2 2

Third-Order Heq(T) w 2 AH4(T) HPHP) (IF)
3 4 3_ 3

7.7.1 Equivalent First-Order Nonlinear Transfer Function

The predicted and measured equivalent nonlinear transfer

functions for the desired and image responses are shown in Figs.

7.30 and 7.31, respectively. The modeling of both the desired

and image responses are good in both amplitude and frequency.

Note that the peak values of the desired and image responnes

differ by about 65 dB in both measurement and prediction.

The prediction is based upon the first-order equivalent

transfer function given by
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Y t.

H e (f;f H aq (T) f~ f)

LO L

(T) MP

S( z (f.0 -f)

(P) (IF)Z0  (f° f) + Z(F (7.4)
O i(OF) (ffo (I

where the impedance ratios account for the linear interaction

(See Chapter 2, Section 23.) between the tuner and the pre-am-

plifier and also between the pre-amplifier and the IF amplifier.

It follows that the desired signal at the IF amplifier output is

given by the real part of

Sj2( LO- f) (f) (ff j2rr(f LO- f)t
VOUT 1 LO

where V(f) is the amplitude of the input signal. The actual

prediction is shown in Fig. 7.30 and was made using SIGNCAP.

The image response shown in Fig. 7.31 is predicted by evaluating

,H (fl-fO) since the input frequency f is higher than the local
1 1.0

oscillator frequency f..

7.7.2 Eqaivalent Second-Order Nonlinear Trapsfer Function

The predicted and measur3d equivalent second-order nonlinear

transfer function for the complete reci.ver is shown in Fig. 7.32.

As mentioned in previous sections, the response is measured in a
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two-tone test, with Ifl-f 2t being set equal to the tuned fre-

quency of the receiver. The predicted and measured nonlinear

transfer functions are, again, in reasonably good agreement.

Again SIGNCAP was used to obtain the theoretical prediction by

using its cascading capability.

7.7.3 Equivalent Third-Order Nonlinear Transfer Function

The predicted and measured equivalent third-order nonlinear

transfer function for the complete receiver is shown in Fig.7.33.

Although the equivalent first and second-order nonlinear trans-

fer functions were predicted using the SIGNCAP cascade capabil-

ity, the equivalent third-order nonlinear transfer function was

predicted by a manual cascade calculation. The reason for not

using SIGNCAP I in its existiug form to perform the equivalent

third-order prediction is that a complete sixth-order analysis

would have been required. It was recognized that the required

time to compute all products to sixth-order would not be justi-

fied since a manual calculation of the dominant terms should be

more than adequate.

The equivalent third-order nonlinear transfer function for

the complete predetection receiver relates the receiver IF am-

plifier output at fL O(2f 1 -f 2 ) to the RF tuner inputs at f and

f2" In particular, the output is given by the real part of

j2rfLOf-(2f 1 -f 2 ) )It

3 2.°e j 2Tr[ f (2f -f2 )It-;A (fl)A2 (f (_flV_f0 If, 'f )e
4 1t 12 312 S

(7.6)
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where H q• is to be determined in terms of the nonlinear transfer
3functions (Table 7.4) of the individual cascaded subsystems ap-

propriately corrected for linear interaction as described in

Chapter 2, Section 2.3. The amplitudes of the input tones at

f and f2 are, respectively, given by A1(f1) and A1(f2).

The experimentally determined third-order equivalent non-

linear transfer function illustrated in Fig. 7.33 strongly sug-

gests a particularly simple approach to evaluating the cascaded

third-order intermodulation term. There are many contributing

terms that are present but the dominant distortion in the IF

amplifier passband arises from the following three principal cas-

cade cases: I

1. Equivalent Third-Order RF Tuner - Linear Pre-IF Ampli-

fier - Linear IF Amplifier.

2. Equivalent First-Order RF Tuner - Third-Order Pre-IF

Amplifier - Linear IF Amplifier.

3. Equivalent First-Order RF Tuner - Linear Pre-IF

Amplifier - Third-Order IF Amplifier.

Case i requires a conventional fourth-order analysis while

Cases 2 and 3 are specific terms in a sixth-order analysi3 of the

complete receiver.

Case 1: RF Tuner

At RF tuner output frequencies outside the pre-IF and IF

amplifier passbands, the dominant nonlinearity in the RF tuner

is excited by the two input tones at frequencies f and f 2 The

equivalent third-order intermodulation distortion output at fLO -

(2f -f 2) = fIF is then simply amplified by the pre-IF and IF am-

plifiers. For this situation we have
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H q (- "f fo eq(() (-ff ff)

Zo(fI) + Z (IF) (P)

(fIF)() (I.7)_ IF (f i•.)

where

H eq(T) (-fi-flfw) H k•T) (- -,ff (7.8)

if we recognize that the interfacing source and load impedances

between the subsystems are essentially frequency independent and

equal, we may further reduce Eq. (7.7) to

Heq e(T) (P) (IF) (79)
3 = H 3 23 1 2•1

Making use of the relationship between insertion gain and the

first-order transfer function (See Chapter 6, Section 6.2.1) we
obtain

20 logl 0 JHeI = 20 10og Hq(T)j

S(P) _(IF)
+ (fI) + G (fI). (7.10)

I IF I IF

But, the mid-band insertion gain of the pre-IF amplifier is 16 dE

while the value for the IF amplifier is 28 dB. Hence, the
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contributicns from the RF tuner to the output equivalent third-

order intermodulation distortion is

20 log10  IHqI = 20 loglo 1Ieq(T)j + 44 dB., (7, A)

This result has been plotted in Fig. 7.33 by the triangular uzi"o•.

points. Observe that this result fits the measured distortion

quite well When input frequency fI is outside th5 range 44-48 MHz.

Case 2: Pre-IF zmplifier

As the RF tuner output frequency moves within the pre-IF

amplifier passband, the dominant nonlinearity passes from the

R? tuner to the pre-IF amplifier. The third-o=rder intermodula-

tion distortion 1rom the pre-IF amplifier, as excited by the two

tones at f LO-f and fLo-f2, now dominates. Thi.s distortion is

then simply amnplified by the IF amplifier. The receiver input

tones at f and f2 have also been amplified by the RF tuner

equivalent amplifier gain. Using the third-order cascade results

from Chapter 2, Section 2.3, we can write

H eq(-
S(-fl'-fl' f2; LOI) q

rz (T) (f -f )+Z(P) f - f 20(T) (P)_ L 1

Zo(P (fI,+IP (f-f~) 1•)fL-l -f'LO+£)I•F fF

(P) )(hf)_

Z _(T) (f f +7(Po-) (
ai fIF (7.12)

558



If we now recognize that the interfacing impedances are broad-

band resistive and equal, we can cimplify further to obtain

H4 (2 1eq T~' 2 H 4T
3 12 , ~ ~ T

MP (IF)2H H1 3 I (7.13)

Using the insertion gain relationships for linear stages, we

can now write

20 lo H 2 G'(T (-f if
log 0  3 1W O

+ G(T) (-f f)
2II

_(IF)
+ GI (fIF

I IF

+ 20 logo 1H (7.14)

where GI(T) is the equivalent-amplifier insertion gain (conver-

sion gain) of the RF tuner. If we assume A-•t the two input

tones at f and f2 are within the passband of the RF tuner, whose
insertion gain is nearly flat at 30 dB over the region of interest,

we have

20 log 0 Il 1 2 • 30+ 30 +16 + 20 log1 0  MI

520 log 9 IH(P) 106 B. (7.15)
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This result has also been shown in Fig. 7.33 by the data points

indicated by squares. Observe that these points fit the measured

data well in the region indicated as pre-IF distortion.

Case 3: IF Amplifier

As the pre-IF amplifier outputs at f L0-f and f l-f2 move

within the IF amplifier passband, the dominant nonlinearity moves

from the pre-IF amplifier to the IF amplifier. The third-order

intermodulation distortion from the IF amplifier now will domi-

nate. The RV tuner and pre-IF amplifier now serve only to lin-

early amplify the two input tones at f W-f and fLO-f2. Using

the results of cascading analysis and assuming equal resistive

broadband interfacing impedances, we can write, by analogy,

20 log 10JH e, 2 rGe((f 1 'ff1 ) + G~ M (f~l

+ [G'~ 2?f + G (f10~f2)

+ 20 log10 IR(IF) I. (7.16)

Again assuming fL0 -f 1 and fLo-f2 are within the passband of the

pre-IF amplifier whose insertion gain is 28 dB, we have

20 logl 0 JeqeI = 2[30 + 283 + E30 + 28) + 20 log0,IH'F I
31 3

= 20 log 0 tHIF) + 174 dB. (7.17)

This result has been shown as the data points plotted as diamonds

in Fig. 7.33. These data points fit the eperimental measure-

ments quite well.
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We note that the initial assumption regarding the signifi-

cant contributions to the third-order equivalent nonlinear trans-

fer function have been confirmed. The agreement between the

predicted and measured third-order transfer functions are based

upon a simple cascade argument with linear interaction correc-

tions is good. The result confirms that there is little non-

linear interaction between the three principal subsystemu of the

predetection receiver*

We have also shown that, although the receiver is analyzed

as an equivalent third-older system, it actually contains sig-

nificant sixth-order terilts when the pre-IF amplifier and the IF

amplifier distortion is 1ominant. The cascade technique used in

this section utilizes th: significant sixth-order components in

deriving the equivalent 'ld'rd-order nonlinear transfer functions.

7.8 Gain Compression/Eýpansion in the VHF Receiver IF Amplifier

In a linear amplifier, the output signal at the input signal

frequency varies linearly with the input gignal amplitude, that

is, the gain of the ampl.ifier is constant with respect to input

amplitude. Gain compression occurs when the odd-order distortion

products at the signal frequency subtract from the desired sig-

nal, thus apparently de-reasing the gain. In broadband circuits,

Hl(f) and H3 (f,f,-f) ari normally out-of-phase, causing gain com-

pression. It is less *nown, however, that in frequency-selective

circuits the relative •hases of Hl(f) and H3 (f,f,-f) may be highly

frequency-dependent. tn this case, the odd-order products may

add to, rather than sulotract from, the desired signal, thus caus-

ing gain expansion. 9xperimentally obtained broadband gain com-

pression has been discussed in Section 6.4.5 of Chapter 6. In
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this section we illustrate, both theoretically and experimentally,

the transition from expansion to compression as a function of

frequency by using the VHF receiver IF amplifier model as an ex-

ample.

Figure 7.34 shows the measured available input-output de-

livered power characteristics of the IF amplifier at 21.4 MHz.

It is seen that expansion occurs for input signal levels below

approximately -30 dBm. At higher input signal levels,, the ampli-

fier apparently limits, and small-signal analysis is no longer

valid. One concludes that in this case, small-signal nonlinear

modeling is applicable in the region of expansion, but not of

compression.

Figure 7.35 shows the same amplifier input-output, measured

power for 20.0 MHz operation. In this case it is seen that the
system exhibits compression. The compression is gradual, indi-

cating that small-signal nonlinear effects are predominant, and
the input signal level can be even higher than -10 dam without

lazge-iignal compression. The large difference in the linearity
range at 21.4 MHz and at 20 MHz is due to the frequency selec-

tivity of the amplifier.

Figure 7.36 shows computed gain dependence based on the

small-signal nonlinear circuit model of the IF amplifier. These
curves were computed using Eq. 6.60 together with nonlinear trans-

fer functions derived from SIGNCAP. Curves are shown for a set

of frequencies 100 kHz apart. Note that for the lower frequen-

cies, the nonlinear model predicts expansion, but for the higher

frequencies, compression is predicted. This is due to the fact

that the angle of H3 (ff,-f) relative to HM(f) rotates from a
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value less than 900 to a value more than 900. At 21.3 MHz this

phase is almost exactly 900 so that the output component due to

H 3(f,f,-f) does not significantly modify the output level. Thus,

at this frequency, the amplifier input-output characteristic

appear to have an extended linear .ange. The theory thus pre-

dicts that both compression and expansion may be observed at a

single frequency as the input level is varied. Furthermore, even

if the measurement indicates that the receiver appears to be

linear at a particular frequency, a two-tone intermodulation dij-

tortion measurement might show the receiver to be quite nonlinear.

This behavior suggests that intermodulation measurements rather

than compression measurements should be used in experimentally

determining the region of validity of the small-signal nonlinear

model.

5.16

4.'.

•4
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7.9 Cr ssmodulation in the VHF Receiver IF Amplifier

The modeling of the VHF receiver IF amplifier has been pre-

sented earlier ia. this chapter. Both pre- and post-detection

crossmodulation experiments have been performed on the IF ampli-

fier, and the measured results cov ed with predictions based

on the first term of the trequency power series canonic model

developed in Chapter 3. These results are discussed in this

section.

We first consider the predetection experiment. In this

case, the desired signal was an unmodulated tone at 21.3 MHz,

While the undesired signal was a sinusoidally amplitude mr(du-

lated signal, with 0.3 modulation index, 4 kHz modulation fre-

quency, and 10 MHz carrier frequency. The amplitude of the de-

sized signal was set to give -30 dBm at the IF amplifier pre-

detection output, thus assuring that the IF amplifier is ope-

rated in the small-signal region. The complex envelopes z1 (t)

and z 2 (t) of the desired and undesired signals are then

z1 (t) = A1  (7.18)

and

z 2 (t) = A2 (1 + m2 cos 2( 2 t). (7.19)

Since the modulation frequencyIa small compared to the IF

amplifier baidwidth, the derivative terms of the canonic model

can be neglected, resulting in the ratio of first crossmodula-

tion sideband amplitude to carrier amplitude given in Chapter 3

by Eq. (3.99), or

S3 12 H3 11 2'-%j2)

a2 2122 . (7.20)
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Table 3.3 shows that in addition to the first sideband, located

L2=4 kHz away from the desired carrier, there will be a second

sideband located 2 P2=8 kIz away from the desired carrier, the

amplitude of which is a2/4 times that of the first sideband.

Figure 7.37 shows the measured delivered output power in

these crossmodulations sidebands. and the predicted delivared

power based on the circuit model and the canonic model. The in-

put is the available carrier power in the undesired signal. It

is seen that the measured crossmodulation power has the second-

order slope predicted by theory, and that the agreement between

predicted and measured crossmodulation power is excellent for

both tbe first and second order sidebands.

Next, we consider the post-detection experiment, for which

both the desired and undesired signals were sinusoidally ampli-

tude modulated tones, of complex amplitudes

z 1 (t) = A1 (1 + a, cos 2Tv, t). (7.21)

and

z 2 (t) = A2 (! 4. cos 2rijt2 t). (7.22)

Tne desired signal .. 0 -trý,;iency was 21.3 MHz, P was 1 kHz,

and ai was 0.2. 2> r 'ignal carrier frequency was

varied over the raný. )0 to 70 1*1z, p was 3 kHz, and • was 0.2.

The desired input level A '%as got to give -30 d~m at the IF

amplifier pre-detection test point, while A2 was set so that the

available power from the undesired signal was -10 dBm.

The post detection ratio of the first crossmodulation side-

band to the desired signal sideband, as given by Eq. (3.300), is
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3a -J A2  Re§3 ( ) (7.23)

Figure 7.38 shows this ratio, in dB, as a function of the car-

riar frequency of the undesired signal. The measurement was

made with an audio frequency distortion analyzer, and the agree-

ment between theory aad measurement is good.

7.10 Waveform Distortion Due to Crossmodulation, VHF Receiver
IF Amplifier

The frequency-power-series model can be used to predict

crossmodulation distortion of time waveforms. In this section

we present two such examples. In both cases the output wave-

form is calculated and compared to corresponding measured wave-

forms. The nonlinear circuit is the VHF receiver IF amplifier

followed by the AM detector. The input consists of two tones.

In the first example one tone is modulated. Both are modulated

in the second example.

The IF amplifier described in previous sections is suffi-

ciently wideband that for modulating frequencies in the audio

range the first and third-order responses suffice and no deriva-

tive terms neea be included in the canonic model to obtain ac-

curate predictions. Therefore, the coml.lex envelope of the

output may be written

q(t) HI(vl)zI(t) + " H3 (vv 2 ,-( 2 )zz(t) z (t) 2. (7.24)

where zI(t) and z 2 (t) are the complex envelopes of the desired

and interfering signals, respectively. As before, H (N 1) and

570



0 4

00

V0

00

V P4

e04

WO 09
-*pP NO.dUawS00 OL310dS

571-

C_



H3 (Vl, V2 ,-v 2 ) are the first and third-order transfer functions

evaluated at the appropriate frequencies.

7. 10.1 Unmodulated Siqnal; AM Interference

The first example is that of an unmodulated desired signal

and an interferer amplitude modulated by a periodic tri&ngulaz

waveform. The triangular waveform was selected to easily show

that distortion of the envelope zl(t) depends on 1z 2 (t)1 2 as

indicated by Eq. (7.24).

The complex envelope of the interferr is

z 2 (t) = A2 1l + a2 m(t)3. (7.25)

The triangular waveform m(t) is shown in Fig. 7.39. Since the

modulation waveform is periodic and possesses odd symmetry, it

is sufficient to consider m(t) only over its half-period inter-

val (-T/4, T/4):

m(t) = - T/4 <t < T/4. (7.26)T

Substituting Eqs. (7.25) and (7.26) into Eq. (7.24) yields

-T/4 < t<T/4. (7.27)

The first term contributes a DC term to the AM detector output.

This in not of interest. The AM detector7utput, assuming the

second term is small relative to the first term, is, except for

a scale factor, given by
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8Mt 226 2
2 CL~2t1 + - + T/4< t < T/4. (7.28);•i T T 2-- -"

T

1 2
Removing the DC component in Eq. (7.28), (which is 1 + j a 2 ), we%2 we
find that the crossmodulation time waveform at the AM detector

output as predicted by Eq. (7.24) is

2 2 2

m M-+ .. + (7.291

This result is plotted in Fig. 7.39 for two values of the

modulation index, a2 = 0.385 and 1.00. It can also be seen from

Eq. (7.29) that foL 0 = 1.00, the waveform has a zero deriva-
tive at t = -T/4,

An experiment was conducted in which the actual crossmodu-

lation waveform was observed for the values of the modulation

index 2, used in calculating Fig. 7.39. Photographs of the de-

tector output voltage are shown in Figs. 7.40 and 7.41. For

this experiment the desired carrier was at 21.3 Mz with output

power level at -30 dBmT the interferer was at 26.0 M!z and an

input power level of -10 dBm. Tha repetition rate of the tri-

angular waveform was 1000 Hz.

Comparing Figs. 7.39, 7.40, and 7.41 the observed wave-

forms are found to be in good agreement with the calculated

waveforms. For a2 = 1.0, the case of 100% modulation on the

interferer, .the zero slope at t - T/4 predicted by the theory

is, in 'fact, clearly visible in Fig. 7.41.
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Fig. 7.40. Observed Waveformsa

Top: Modulation on Interferer;
k, Bottom: Cros~modulation, (a2= 0.385)
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$A

Fig. 7.41. Observed Waveforms

Top: Modulation on interferer
Bottom: Crosemodulation (a 2 1.00)
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4 7.10.2 AM Desired Signal - AM Interference

The secuid example of a distorted output waveform to be

""l examined is the case of a signal at ,. th square-wave AM modu-

lation and an interferer at v with AM sinusoidal modulation

frequency L2" For moderate distortion levels, the resulting do-

tector output1will be the desired square-wave modulation with a

superimposed crossmodulation distortion which is roughly a sinu-

-.. soidal waveform. The purpose of using a square-wave modulation

is to allow the eye to readily distinguish the effects of cross-

modulation when the output deviates from a square-wave. If we

let s (t) be the square wave (with amplitudes + 1) then the com--

"plex envelopes of desired and interftZQg signals are

z(t) A1 A + als(t)] (7.30)

z2 (t) =A 2 L + a2 cos 2172t1M (7.31)

Substitution in Eq. (7.24) gives the complex envelope of the

* .output

-', :•,, q(t) = AHI(Vl ) 1- als(t) 2 2 N 3#
1 2 1 2 3I~v 2V

a2
22 2

•i•; •,a [ 1 +•1s It)][1 + +0'2•2~ •t+2 coo 4Tr 12.3

(7.32)

r, 7
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Equation (7.32) caa be rewritten as.

q(t) A]HI(V )[I + OIs(t)] ÷ 3_ 1A21 H3 (V f _V2 )

•,I;~~~~ "A 2 H (2+2VOS..- OS42 .[ 2 2 f
I + 2a2 cos 2TrI'±2  co 4 (7.33)

2 p¶t 2 tJ].

Assuming that the distortion given by the second term in Eq.

(7.33) is small, the envelope detector output, Iq(t)I, is ap-
proximately given by

SI(t)I AlA 1 (vl) [I + as(t)J

+11+A 2I Re .. (V 1 + + 2ycos 2VP2t

2

a2 ++ v+cos 4f2 (

2

12 3 2c'-V '
+ [ (+ + +IA•I Re(e,,2 +(t)

+ 2 �1 R 1(l-) f2 cOS 2r 2t + 2 o W 2

+ [I + 3 1R(t)]) (7 34) 2

•,•A,2 '2 R
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The first term on the right-hand side of Eq. (7.34) is 'an un-
ft• interesting DC term which can be ignored. Similarly, the factor

a 1A 1H1 (vI) is common to all terms and will drop out in a cross-

modulation ratio calculation. Thuo, tb. output of an envelope

detector would be proportional to 4i
,v V 2

+~' 12 Re-722'(+~)ste W {, +,, ,A + o(
AM(t 2 H s((t

2k 212 C3 112*

+{2-1 A Re,.CL

+ +2(2 cos 21 2 t + + (7.35)

(+ 4,aut I LaSt

The first term of Eq. (7.35) is the desired modulation (square

wave) at the output as affected by desensitization while the

second is the distortion due to sinusoidal crossmodulation.

It is convenient to examine tho peak value and various up-

per and lower levels of the envelope of. the detector output.

Assume that the period of the distorting sinusoidal modulation

at is smaller than the period of the square wave modulation

on the desired signal. Prom Eq. (7.35) it can be seen that the

interferer modulation and its second harmonic generate a sinu- , 4

soidal perturbation on the top and bottom of the square wave en-

velope s(t). The four amplitude levels (A, D, C, and D) of the

detector output waveform are defined in Fig. 7.42. From Eq.

(7.35) it is seen that these quantities are given by

57/9
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Fig. 7.42. Amplitude Levels of Detector output
Waveform.
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A+B C+D + 3 -2A 2  3 1 2 2
(1 + ) A L Re (7.36

II

A- L3 (1 0'(2 2 2 r~ 3 (v 1 V 2 -V2)•:1"+T)IA 2  . f1 ( •) "

C-D = 3 U i - )(2 + 2) 2 ( (Re3 .2 2

(1 " H3 - M (7.38)

Thus, it is possible to find a, ratio of amplitude differences

• :C-D1
F A-B 1 + a

This ratio is independent of both the interferer level and the non-

linear transfer function H3 (v, 2,-V 2 ). It depends only on the

modulation index ct. This ratio can be readily measured.

Experimental results were obtained with the VHF receiver IF
'amplifier using the same carrier frequencies and power levels as

in the example of Section 7.10.1. Photographs of the results are

shown in Fig. 7.43. The repetition rate of the square wave modu-

"lation on the desired signal was 5 k1z and the modulation index 01

• was 1/3. The sinewave modulation on the undesired signal was at

10 kHz with a modulation index -21/3. For the value of l, the
predicted ratio (C-D)/(A-B) is 1/2 which was also observed expari-

mentally.

The accuracy of calculated values of H3 (V11 ;v2 *-V2) may be

checked by comparing calculated and measured values of the ratio
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Fig. 7.43. OutPut Waveforms Showing
Crossmodulation Distortion4
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A-B 1 ReEH3
2 (-74 1

A+B 1 +kRe[H (VI,,-2)/H(I)) (7.40)
2 3 12'-2 1 1

where kI and K are constants independent of frequency. The
1 2

calculated value of this ratio for the IF amplifier was 0.192.

The valuw observed was 0.18.

7.11 Predetection TaPped Delay Line Canonic Modeling,
VHF Receiver RF Tuner

In this section we present two examples of the application

of the t,,wpped delay line canonic model in computing crossmodula-

tion distortion. The first example is a hypothetical case, for

"which the crossmodulation distortion can be computed exactly

using the frequency power series canonic model. The results

are compared with those predicted using the tapped delay line

model, thus bringing out some of the practical limitations of

the latter canonic model. The second example compares predicted

and measured crossmodulation in the RF tuner of the VHF receiver,

,or an unmodulated desired signal and a frequency modulated un-

desired signal.

7.11.1 A Known Test Case

The Irequency power series canonic model is useful when

the Taylor series expansion of the nonlinear transfer functlon

over the signal bandwidths of interest is rapidly convergent.

A specific case occurs when the 60flinepr transfer function can

be exactly represented by a two-term expansion; in this case,

an exact ,-Qputation can be made for the nonlinear effects of

the circuit. In particular, corsider a circuit with the third-

order nonlinear transfer function.

583



H3 (fl, 2 '2f3) K + (f2- 2)K2 + (f3+2 )K3 (7.41)

This transfer function is simple enough so that it is possible

to compute analytically an exact prediction of crossmodulation.

Observe that this transfer function is independent of fl and

depends only in a linear fashion on f 2 -v 2 and f 3 +v 2 . Thus the

derivatives of the nonlinear transfer function are

- •H3f = 0, (7.42)

Bf-- = K2 , 
(7.43)

f-- = K. 
(7.44)

From Equations (3.54) and (3.42), the complex envelope of the

third-order output component referred to v - (Vi 9v 2 ,-v 2 ) hos the

expansion

S(t)2 zl IZ2(t) I

i+ H (V" ) ,

+ - 1 t M z (t) Z *(t)

- z (t) dj 2J

+ higher derivativo terms. (7.45)
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Substituting- uations (7.42) - (7.44) into Equation (7.45),

and evaluating tho multinomial coefficient results in

-q 3 (ti~ 1 - [,K 1 It)I• 2 t) 12

3 2;

+ K3 z£(t) z 2 (t) M 2 (t)}]. (7.46)

eoxt. consider that the desired signal is an unmodulated

tone at \j and the undesired signal is a sfolaidally frequency

modulated tone centered at '2 Therefore,

z (t) - A! (7.47)
CL2and j -q Cos 2TTj2t

z (t) - A e P2 (7.48)

2 2

Substituting Equations (7.47) and (7.48) into Equation (7.46),

and evaluating the derivative of Equation (.;8) results in

q3 (t;N) A1[ + A2 c2 (I3-K2) sin 2i2t] (7.49)

The real third-order signal is therefore given by

j2 rit 3 2t
Re13 (t iy) e-AA'KCoo2T

Rq3 2 2

4~ ~2 2 A1 3  210 2i(Vl+ P2) t +o ¶~ 1 ~Lij

(3.50)S~~585 .



IThe first term on theright-hand sieof Equat ion (7.50) i

a desensitization term, while the second term contains the

No tbe crssmdultio siebadswill be present. In passing,

we note again that the predicted PHI crossmodulation arises from

the derivative terms of the frequency power series canonic model.

There is no contribution from the leading term in the series.

As a numerical ex-imple, consider the parametors

KI (5.0 + j0.0), (7.51)

K2 =(2.5 + j2.5)/W, (7.52)

K =(2.5 -j 2.5)/W, (7.53)
3

where W 2.8 MHz. From Equation (7.41) this results in

H 3 (f11 f 2 f 3  5.0 + 2.5 (f2+f3)A/W + j2.5( f2 -' 3 -2" 2 )/W

(7.54)

H (flf 2, 3 was evaluated numerically for f,=V1 =45 MHz,

I2= 50 MHz, and v 3=-V 2 *Thus the crossmodulation is centered

orn vi. Numerical values were computed fox.H 3 at 100 kflz inter-

vals of f2 and f P centered on v2 and r3 esulting in a fro-

quency domain grid of 33 x 33 samples of H. This computedH

was then weighted along both frequency axes by a simple window

function of the form 3

1/4, 3/4o 1, ... , 1, 3/4# 1/4, (7.55)
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and the end elements averaged together to form a collapsed

,,2 x 32 sampled array of H3 (vl 9 f 2 ,f 3 ) that had been band-

limited in the f2 and f coordinates. Next a two-dimensional2 3
Fourier transformation was used to generate samples of the

third-order nonlinear impulse response.

A tapped-delay-line canonic model of the system was then

programmed on a digital computer, using as weights the third-

order nonlinear impulse response samples. Two computations were

run, one for the peak frequency deviation m being 100 kHz, and
2

one for a2 being 300 kHz. In both cases the modulation frequency

112 was 5 kHz. Since s 2/»>>l, the bandwidth of the frequency

modulated signal is 2 a 2 , or 200 kHz and 600 kHz, respectively.

The sideband level given by the tapped-delay-line canonic model

for these two cases is shown as a function of the total number

of of delay-line taps in the model in Figures 7.44 and 7.45.

Also shown on the figure is the level of the first and only

crossmodulation sideband level, as given 'y Equation (7.50).

With the 100 kHz frequency deviation, the tapped delay line

canonic model accurately computes the intermodulation sidebands

at v I2, (the first sideband in Fig. 7.44) provided seventeen

or more taps were used in the model. Equation(7.50) shows that

these sidebands should be the only ones present. However, the

results generated by the computer indicate the appearance of

hig~her order sidebands that are labeled the second and third-
order sidebands in the figure. The levels of these sidebands

provide a measure of the model error. Th7'Second-order side-

band is significant even at the largest number of taps examined.

Thus, the model can be considered poor when a2=100 kHz.
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It can be seen, however, that the accuracy improves slowly

with the number of taps. In the case of the 300 kHz peak
frequency deviation, the higher sidebands decrease much more

rapidly. With thirteen taps the higher-order sidebands pre-
dicted by the tapped-delay-line model are 20 dB down from the

trxu sideband, and are decreasing rapidly as more taps are

added.

7.11.2 Wideband Crossmodulatio, in the VHF Receiver Tuner

We now consider the case of widekand crossmodulation in

the tuner section of the VIM receiver. Companion laboratory

measurements have been made and compared with the predictions

ccmputed from a tapped delay canonic model. We first describe

the predictions and proceed to the measurement. The interfering
signal chosen in this example is a 50 MH.z carrier, frequency

modulated at 5 kHz rate with peak deviation of 1 MHz. The

desired aignal is at 45 MHz, the nominal frequency at which the

tuner has been modeled.

In calculating crossmodulation effects we will be inter-
ested in the third-order response q3 (tl'v v 2 #-v 2 ) 2 given by

Equation (4.71) as

-- ':,•, q(tl,2.) I-3 BIB2E Z (Tl(t- rTllz (t-r2T2)z (t-r3T2
3 3

r

(7.58)

where Ti is the sampling interval of tbe ith signal. For the

application this will be further specialized to the case of a

sinusoidally-modulated interferer, and an unmodulated desired

carrier, so that
A 590
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r11 V2VVvlw.- Tht) - Ai, (7.5?) sdi

i•j '•,•,j co tt t

z/... 2 (t:) = A2 e ~ . ( 7.58) •

The inte~fei'ing signal will be expanded in the familiar Bessel :

function expansion:

Sz2 (t) A2  L J j cos 2r4o2 t, (7.59)

where

2..o.

With these substitutions Eq. (7.56) becomes

2
q 3 (t lv2,-v 2 1 = BIB2  r

c Ej cos 2 (t-r 2T cos 2titS2 (t-r 3 T2 ).

"- t=0 m=O 4

(7.61)

7 '7 This equation is not in a form suitable for analyzing the spectral

str-cture of the interference. To achieve this it will be neces-

sary to expand the product of trigonometric functions appearing A

in Eq. (7.61) and collect terms apprdPaily. To simplify the A

presentation of the result we make the following definition:
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'00

'pq31 V 2""2 0 + JYo E : 1 n +yn) con 2wnp2t

'+ (Xn + jysn) sin 2rn•2t. (7.62)

After making the necessary substitutions and performing consider-

able algebra, sq. (7.61) gives the following spectral decompo-
• ~sitidn for n _> 1 •

3 A I1 a Q'i
: ~~~2 Xa ~n=(ln 2 '-••

xt (r-r 4) a '

•cn C O 2•rT 1A &-_ n(763

12

9 3 sn con 2rT 2T2  (r-2-r 3) + nr3) *'JI

+ 01 2 e~~~J+i (j a
z. Iz

coo 2Trp2TL (rr -r nr> (7.63)

X~~~~n~ 3~~~I2 -) fj )3 (3)

• -_ 1 S 2  -•

•'•sin 2TrI. 2 T 2 t•(r 2 -r 3 ) - nr 3 )}. (7.67) i
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Basically, this is the ras*4lt which will be used for calcula-h
tions. How-ever, it is possible to significantly reduce the
necessary computation by replacing g3 (LE) with an equivalent
two-dimensional transform.

we have assumeud an unmodulated desired signals oocupy'ing
zero spectral width. Therefore the variation-of 0 (f 1 ff)
for changes in f 1 will, not affect the result, In fact we Wa

represent this function by its valulm at flusQ,

%~j( 1 ,f 2 *f3 ) .Root (7.65

Where the bandwidth B~ is arbitrary but non-zero, Transforming
this gives

sin irB T
9 (r1 ,¶ 2 P¶3 ) g(¶ 2 .r (7.66)

where the function 93 -r2 . is defined as the two-dimensional

trans form of "G (0o Now if we aillow S~ to become infinite-

ly large in Eq. (7.66) we have

4

g 3) 3~ 0 1
B 44)112

When this is substituted into Eqs. (7-63) and (7.64) the triple

summations reduce to double suirnat io:



111 M, I*n 1 "11,01 -I

A 2

\b

3•.U 21 3 3

Ei 93. (0) con I(r2-r3) nr* (7.68
~*

:i! lh .pLL:ueo£ 'Ih :~eadltUL+nli LIgle y

+! + jy 2n)(

an cn en2 n (x(U-Yn2 (.i

28- 2&No1'2

r 3"2ý J2

4=02

E 9., ET si 2Tp22U~l-r r,)33 (7.69)

The amplitude of the sideband at vi+ n~iA is given by.

1/ 2 2 (.0
jI(x cn +y )$ +( N.Ye)(.0

while

~ (x0  ~ + (x5 + (7.71)
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The czrosemodulation cmcaponents in the tuner arise from

equivalont third-order o!esponso,. in order to apply the tapped-
dola-lin caonicmodl, w 4gin bginwihte nons linea:ra
transer fuctionwwit

f v45 Miz#

f 50 MHz + k f t k integer,

f 50 M4Hz + k fm I k integer, .

(7.72)
fm f 45 MHz +f.

4 4 fLOIF

1 M.I'lz.2

The crosamodulation products to be examined occur at the fre-

quencies

f + k f k- kf m (7.3)

with the first pair of sidebands at f : 5 k1~z. The nonlinear

transfer function of interest in this case is the fourth-orderj

transfer function

4 (~vhf~af 3 f~o)(7.74)
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It is this trans.er function which predicts the crossmodulation 4
components at f • k 5 kHz (k 3  1,2....). Using SIGNCAP,

the fourth-order transfer funct1,•' 0f the tuner was evaluated

at 64 points over a two-dimensional frequency region extending

1.4 MHz to either side of the interfering frequency, and t•en

interpolated to a 32 x 32 windowed grid. The magnitude of the

transfer function over this region before windowing is plotted

in Figure 7.46. This data was processed, and the first four

crossmodulation sideband levels (k3  1,2,.1,4) calculated. The

results corresponding to 0 dBm desired and interfering signals

are shown in Fig. 7.47.

Laboratory measurements of the first two sidebands were

made for a range of interferer input levels, with the desired

signal now held constant at -50 dBm. These are plotted in

P Figs. 7.48 and 7.49. Third and higher sidebands were not at a

* level great enough to permit accurate measurement. In each

case the predicted values have also been plotted. Fig. 7.48

* shows the data for the first set of sidebands, and Fig. 7.49

the sacond set. Both figures show similar rusults. For inter-

ferer available power lower thanii-45 dBm, the measured side-

bands have a second-order slope, which is the correct slope for

crossmoalation. For input signals greater than -45 dBm, et)a

behavior of all sidebands becomes anoinolous, the slopes change,,

large separations open between upper and lower sidebands, etc.

The significance of -45 dBm input power can be explained by

referring to the desensitization values shown with the curves

in Fig. 7.48 and 7.49. At -45 dBm, -40 dBm, and -35 dBm, the 4
ri~y measured desensitization of the desired 45 MHz signal by the

50 MHz interference is 0.1 dB, 0.3 dB, and 0.8 dB, respectively.
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Thus, the anomolous crossmodulation is ,Xelated with the ,

onset of desensitization and can be attributed to large signal

effects.

It is seen that the tapped delay line model provides a

reasonable prediction of crossmodulation in the small signal

region, 'but is not accurate in the large signal region. it
should be noted that at 45 MHz the insertion gain is 30 dB, and

the -50 dfm input signal causes a -20 dai output signal. At

the 0.1 dB compression point, the cros ml-•tion sideband power

is about -85 dfm, 65 dB lower than the desired carrier. Thus

the crossmodulation ia this case can only be predicted accurately

by the third-oeder model when it causes a small interference

effect. Similar effects have been found on desensitization

experiments, which result from the same form of the nonlinear

transfer function.

7.12 Nomina. Receiver Modeling•

It may be necessary, in certain praS I applications, to

model a communication receiver without having a receiver phy-

sically available for experimental purposes. In this case, it
is necessary to"'use available material tuch as is found in a

manufacturer's manual or a military technical order to paramete-

rize the circuitry. A receiver which is modeled in this fashion
Eis iknown as a nominal receiver. In this section we apply the

nominal receiver concept to the VHF tuner described in Sectior

7.3. The data in this section come from Spina et. al., (1972.

S7.12.1 Pajramqterixincf of the Nominal Tuerid

Two eaources of data were used to find the circuit param-

esear for the n6minal timer. The first source was the manufac-

turer' s instruction manual, which contained schematic diagrams
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4 of tha tuner uircuitry, operating point information and detailed

alignment prccedures for the bench testing of the tuner. The

second source was measurements performed on samples of the same

type of transiators an Were in the tuner. The parameters gound

in this manner could be expected to ba representative of the

type tuner, but not to represent any specific serial numbered V
tuner.

The alignment procedure specified in the instruction manual

called for an input frequency of 100 NHz, corresponding to a

local-oscillator frequency of 121.4 MH:. Inductors LA through
L are used for variable tuning in t"_ -eceiver, while capacitors

C3e C5, C1 9 , C22 are fine-tuning components used to obtain

symmetry in the tuner response. Inductors L5 and L6 tune the

mixer collector circuit to the 21.4 MHz intermediate frequency.
The alignment procedure was simulated on the computer, using

SIGNCAP to predict the desired second-order response. Accord-

ing to the manual, the tuner should have a nonminal 3 dB band-

width of 5 MHz, but this may vary from 3 to 7 MHz, depending

on the frequency. The nominal receiver had a bandwidth of 6

2MHz after alignment. Figure 7.50 shdO •the resulting predicted

equivalent (first-order) insertion gain of the nominal tuner at
100 MHz.

7.12.2 Nominal Tuner Results

Once the tuner was aligned at 100 izH, inductors L2A'

through L2D were retuned together to an input frequency of 45

MHz, and the local oscillator was changed to a frequency of

66.4 MHz. The retuning was accomplished by varying L2A through

L2 D together for a maximum 21.4 WIz r•fe at the IF output

port J2. This did vot, in fact, guarantee a symmetric response

at 21.4 MHz. AVZNCAP was then run to predict the second through
fourth nonlinear transfer functions, and the predictions were
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I

compared with the measured nonlinear tramsfer functions. FiguresA

7.51 through 7.53 show the nominaLhA, r-ted and actual measured

equivalent nonlinear transfer functions.

The equivalent insertion gain, which is due to the second.

order nonlinear transfer fur.ction, is shown in Fig. 7.51. The

prediction is quite good in terms of the skirts and the imnaqe

response, but the predicted peak gain is about 4 dB too high,

and the predicted pass-band response does not have the flat

response found in the measured data. This is probably due to
the fact that when the tuner wus ".ir-•d" to 45 MHz, it was tuned

for a peak at 45 MHz, instead of a flat response in the 45 MHz
ii

region.

The equivalent second-order nonlinear transfer function,

caused by the tuner's third-order nonlinearities, is shown in

Fig. 7.52. The nominal predicted response is about 10 dB high,

and at a slightly lower frequency than the maeasured transfer

function.

The equivalent third-order nonltmaar. trnsfer function,

caused by the tuner's fourth-order nonlinearities, is ahown in

Fig. 7.53. The nominal predicted response is about 20 dB too

high, and, as with the first and second order transfer functions,

occur at a slightly lower frequency than the measured equivalent 4
third-o..ezr nonlinear transfer function.

V •To summarize the comparisons between the nominal predictions

and the measured responses, one could expect, based on this case,

that a meaningful nominal model could be formed from limited

_ i• design data. The quality of the modea would depend in some

degree on the experience which the analyst has with the actual

receiver.
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7.12.3 EoMinal Receiver_ aramete2 Variaioins

As part of the nominal r*0i•W•t study, systematic changes

were ma4e in various linear and nonlinear parameters of the

tuner, and thoir effects on the several nonlinear transfet func-
F , tions noted. Table 7.5 summarizes th* results of this s.udy.

Tiamount of data in ts n table is limited* but it indicates
that the excessive accuracy in parameter values, i.e., 1% know-

ledge of the parameter, is not necessary for reasonable predic-

tion purposes; a 5% accuracy would seem to give acceptable re-

suits. This is encouraging, asn scatter is to be expected in

the parameter of various receivers of the same type.

Table 7.5.

VHF Tuner Parameter Variation

Changes in Nonlinear
Transfer Function for a:! ~~~~Nonlinear _ .. ,

Parameter Transfer .1% 5% 1 0%
Varied Function Variation Variation Variation

S-S Resistive H 2 i~w4 1.0 dB3
Nonlinearity H4  0.2 43 2.0 d

B-B Capacit'..0 H2 1.0 dB 1.5 dB
Nonlinearity 2.0 43 4.0rib

h Nonlinearity H2 2.0 d3 0.4 dB

H4  n.4 4E 1.0 dB

All Resistor 92s0.2 dB
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7.13 HPReeve ogd4OU.M

7.13.1 Introdtactign

Th eane of th~is chapter is concerned with the modgk~in of j
the RW Translatorp a part of the front-end of a vacuum-tube type

HPreceiver., hii translator consists of several amplification

an mixing stages including both pentodes and triodes.. Additionally,

sxhigh-0 linear interstage networks interconnect the vacuum tubes.

The modeling of the linear passive interstages follows the4

procedures used for the solid-state ~Wver. The modeling of4

the vacuum tube amplifier stLges is based on the smail-signal

time-.invariant Volterra series using the 3/2 power-law models..

However, the vacuum tube mixers of this receiver operate in re-

gions 'where the small-signal theory A s not valid. Thus, the mixers

require a large-signal approachl they were characterized by fre-

quency-invariant power series coefficients measured with the tubes

operating with broadband resisthive loads.* The overall response of

the translator was predicted by usi; &:.tGNCAP to predict the non-

linear transfer functions of the RP stages, and non-interacting

cescade theory to predict the response of the mixer tgs h

predicted and measured nonlinear t~ransfer functions of the complete

tran~slator axe Phown to be in good agreement. .

CA
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j 7. 15 MHz bandpass filter FLI is the load of V6. It

-is centered at 15 MHz and has a 1 MHz bandwidth.

Its output is connected to the grid of V4.

8. ReceiVe 15 MHz mixer V4 is a 6AH6 pentode. The input

signal is applied to the gtid, and the local oscillator

.- " to the cathode. Its output frequency lies betw~een

2.001 MHz and 3.000 MHz.

9. 2-3 MHz variable IF is load of V4. It is tuned

to the output frequency of V4. Its output is connected

to the grid of Vl.

10. Receive LF mixer VI Is a 6AH6 pentode. The input

signal is applied to the grid, and the local oscillator

to the cathode. its output frequency is 500 kHz, wbich

"*-is the input to the IF module.

The nominal characteristics of '-e translator are listed in

Table 7.6.

7.13.2 Circuit Model of the Translator

The modeling of the translator was divided into two parts,

namely:

(a) Modeling of vacuum tubes.

(b) KModeling of the linear passive interstages.

The vacuum tubes were removed from.'cg unit and their character- 4

istics measured. These data are summarized in Chapter 5 and Sec-

tion 6.6. The major portion of this section covers the results of

modeling the linear interstages. The operating point measurements

and local oscillator waveforms are presented in this section. All
tests and modeling reported in this chapter are for the translator

tuned to a received frequency of 5.000 MHz.
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Tab1u 7.6

RV' Translator Characteristics

Frequency range 2.000 to 29.999 megacycles

Number -c~annels 28,000

Channel spacing One kilocycle apart on integral
kilocycles

Frequency control Phase locked to frequency standard.
Standard may be either internal or
100-kc external.

Passband response Within 1.0 dB for +6 kc from selec-

ted frequency in transmit and receive.

Sensitivity AM: 2.5ýV for not less than 10 dB
s+n/n ratio.

Image re~~8e (Receive) Not lcss than 80 dR below
response to selected frequency be-
low 20.0 mc; 60 dB, below 20.0 mc.

Spurious response (Receive) Not less than 60 dB below
response to in-oand signals.

Intermodulation distortion (SB3 Receive) All intermodulation
products at IF output not less than
45 dB down from one of two equal
test signals applied to antenna
termial at 100-pV level.
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Thu interstage network measurements were made with all vacuum

tubes removed, To model an interstage, two sets of measurements

were made. First, the input impedances of the networks were mea-

sure. Next, each network was excited by a 50 obm generator, and

the open-circuit output voltages of the networkes were measured.

Based on these measurements and the data available in the instruc-

tion manual, the .aetworks were modeled using a linear circuit

analysis program, and the input impedances and voltage transfer

ratios compared with the measurements. It is to be noted that the

interstaq.. network modeling procedures differed between the VHF

solid-state receiver, and the HF vacuum-tube receiver. The VHF

receiver interstages were modeled by only measuring their insertion

losses, while, for the HF receiver interstages, both input impedance

and voltage transfer ratio were measured . The reason for the extra

measurements in the case of the HF receiver is the higher Q associ-

ated with vacuum tube circuitry; in order to properly characterize

the networks near resonance, their impedance levels must be estab-

lished. The impedance measurement is of greater. importance for

networks which couple high-impedance devices, such as vacuum tubes

and FETs, than for low-impedance devices, such as bipolar junction

transistors.

Following the network measurements, operating point measure-

ments were made on all signal processing vacuum tubes, and the

amplitudes and spectra of all local-oscillator outputs were measured

under both unloaded and loaded conditions. One and two-tone mea-

surements were made to find the first- second- and third-order

transfer functions of individual stages and then of the complete

translator.
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7.13.2.1 Linear Passive Interstages

There are six passive interstages to be modeled from the an-,-,.

tenna to the receiver IF amplifier. With reference to Fig. 7.54,

these interstages are:

Interstage 1: antenna input to grid of V7/V8 parallel

pentode amplifier.

Interstage 2: V7/V8 to V9/VlO parallel pentode amplifier.

Interstage 31 V9!VlO to V6 triode first mixer.

Interstage 4: V6 to V4 pentode second mixer.

Interstage 5: Vl to VI perntode third mixer.

Interstage 6: Vi to receiver IF.

The results of modeling each interstage, followinq the two

step procedure described above, are presented next.

The first network to be analyzed connects the antenna input

to the grid of V7. It couples to the antenna via an autotransformer,ý

and has a low source impedance. Therefore, in modeling it, only the

voltage transfer ratio was measured.

The measured and predicted transmission characteristic for

this interstage is shown in Fig. 7.55. The interstage is seen to

be sharply tuned, peaking at 5.2 MHz to a peak transmission 5 dB

higher than at 5.0 MHz. The predicted transmission is in good

agreement with the measurements except for the region below 1.5

MHz. Here, the prediction is monotonic with frequency, while the

measurement is oscillatory. It is interesting to note that the

predictions are in good agreement with the minima of the transmis-

sion ripple. i

The second interstage network connects V7/A8 with vg/V1O. The

input impedance of the network is shown in Fig. 7.56. The impedance
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peaks at 4.05 Nz,, and decreases monotonically on both sides. It

should be partLoularly noted that the input impedance is quite low

"at 4 MHs, and, indeed, is still decreasingr this is due to an input

ci cuit series resonance which occurs at about 3.3 ZM4e. The voltage

transfer characteristic of the network is shown in Fig. 7.57. Here

"the input resonance is quite evident, with a sharp null appearing at

3.3 MHz. The circuit has a broad transmission maximum around 5 NMz,#

and then another null near 230 MHz. Both figures show excellent

agreement between prediction and measurement.

The third interstage network connects V9/VlO to the first

mixer, V6. The imput impedance is shown in Fig. 7.58. It is seen

to peak at about 5.3 MHz. The transmission characteristic is shown

in Fig. 7.59. The transmission is seen to be broad, nearly flat

from 4 to 6 MHz. There is a sharp null at about 35 MHz, caused

by a series resonance to ground of capacitor and a parasitic in-

ductor in series with it. The predicted and measured input imped-

ances are seen to be in good agreement. The predicted transmission

is in good agreement with the measured above about 1.5 MHz, but

somewhat high below 2.5 MHz.

The fourth interstage network interconnects the first and

second mixers, V6 and V4. It is an interesting network, in that

it contains two transformers and therefore provides o distinctly

different modeling problem than the other interstages. In the

model, the transformiers were replaced by their pi equivalent cir-

cuits. The circuit parameters were determined through impedance

measurements made at the transformer terminals, as well as by

using a linear circuit analysis program to match input impedance

and transfer characteristics of the entire interstage.
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Fig. 7.59. Voltage Transfer Ratio Interstage Network #3: V9-V6
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The input impedance of the interstag. network is shown in

Fig., 7.60. The single maximUm in t, p impedance should be

noted. Normally, the input impedance of a double-resonant trans-

former has a double-humpi in this filter, the lower maximum is

supp:essed by a series resonance between the mutual inductance and

a coupling capacitor.

"The voltage transfer characteristic of the interatage network

is shown in Fig. 7.61. it has a 1 Mxlz bandwidth and I'15 MZ center,

frequency. It is seen that the network is overcoupled, as the re-

sponse has a double-hump. The respplne does not fall off rapidly

at higher frequencies, i.e.. in the 18 - 24 MHz range. This is due

to the fact that the measurements were made with V6 and V4 removed

from the receiver. If V4 were in the receiver, its input capacity

would cause a more rapid fall off in the high frequency character-

istic, as well as slightly increasing the peak value of the trans-

fer characteristic.

Interstage network 5 is a variable-tuned network which connects

the second and third mixers, V4 and V1. For the 5 M.Ez input sig-

nal, the network is tuned to 3 MHz, & has a bandwidth of about

100 kHz. The input impedance of the network is shown in Fig. 7.62.

The network is seen to have an input impedance zero at about 1.5

MHz, and a peak at about 3 MHz. Details of the peak impedance are

shown in more detail in the insert on the figure.

The voltage transmission characteristic is shown in Figs.

7. 63 and 7.64. Figure 7.63 shows the transfer characteristic

over the range 1-10 MHz. The network is seon to have an extremely

sharp resonance, the details of whid-rare shown in Fig. 7.64.

rFrom these figures it is seen that the circuit model is quite good.
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The final interstage network connects the third mixer to the

roceivor's XF amplifier. The interstage is fixed-tuned as the

500 4Hz IF is constant, independent of input frequency. It is

made up of a piir of capacitively coupled high-Q tuned networks,

with a capacitive divider on the output. The capacitive divider

allows the network to feed a 50 ohum load with no further impedance

matching required. The input impedance of the network is shown

in Fig. 7.65, and the transfer characteristic is shown in Fig. 7 66.

Good agreement exists between measurement and prediction in this
network.

7. 13.2.2 Operating Point Data

The purpose of this section is to collect, in one place, data

pertaining to measured operating points and local-oscillator sig-

nals which have bec.n measured in the RP translator. These data

were used in deriving the circuit parameters for the translator.

The vacuum tube parameters have been given previously.

The vacuum tube operating points are given in Table 7.7.

Mixer operating points were measured with the mixer tubes being

driven by their local-oscillators. Note that the 6AH6 mixers, Vl

and V4, have the same DC bias on the screen as on the plate.

TABLE 7.7.

VACUUM TUBE OPERATING POINTS (VOLTAGE)

Voltage ql V4 V6A V6B V7 V8 V9 V10

Plate 116.5 118.3 115.6 115.6 96.9 96.9 235.0 235.2

Screen 116.5 118.3 - - 99.1 99.4 223.0 223.3

Grid #1 -3.32 -3.05 -1.95 -2.00 -1.33 -1.33 -6.25 -5.94
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The spectral data for the local-oscillator are given in

Table 7.8. These data were measured with the mixers being driven

by the local-oscillators, Voltages were measured at the cathode

of the mixers, which is the local-oscillator injection point, and

are rms voltages. Spectral data were taken at the referenced test

points, using a 50 ohm input impedance spectrum analyzer connected

in series with a 20K resistor; the spectral data in the table are

therefore 52 dB below the level existing at the test points. The

local-oscillator drives to V6, the HF mixer, and V4, the 15 MHz

mixer, are both relatively clean, with second harmonics 20 dB

below the fundamental. The local-oscillator for Vl, the LF mixer,

is however, not as good, with significant harmonic distortion.

Table 7.8.

LOCAL OSCILLATOR HARMONIC POWER IN dBrn

V6 V4 vl
9.5 MHz 17.5 MHz 3.5 MHz

Mixer 0.79V rms 0.99V rms 1.40V rms
Harmonic J5 J2 Jl

(dBm) (dBm) (dBm)

1 -39.5 -36.5 -34.0

2 -61.0 -59.5 -49.0

3 -70.5 -70.0 -57.0

4 -92.5 -82.0 -68.0

5 -94.0 -88.0 -70.0

6 -86.5 -69.0

7 -82.0 -74.0

8 -85.5 -77.5

9 -91.0 -83.0

10 -83.0

S1' -86.5

630



7.13.3 Mixer Performance

The'nonlinear performance of the three mixers in the re-

ceiver were'measured with the mixers functioning in the receiver

and the receiver tuned to 5.000 MHz. In the tests the mixer

control grids were excited by one and two-tone inputs,ýand the

outputs were measured by means of resistive divider networks

connected across specified points in the mixer plate networks.

The three mixers are operated in regions where the small-signal

theory is not valid, and therefore the SIGNCAP 3/2 power-law

vacuum-tube software is not applicable. There is thus little

likelihood of the mixers being characterized analytically, by

the 3/2 power law which is applicable to the vacuum tube ampli-

fiers.

However, it was shown through measurements that the current

delivered by the vacuum tube mixers can be characterized by

means of a zero-memory power series, that is, one can write the

plate-current, grid-voltage by the series:

ip = a 1 eqeg + a2eqeg 2 + a 3 eqag 3 -.. , (7.75)

Where

i = incremental plate currentp

e = incremental grid voltageg

a.eq = is the equivalent i-th order mixer power series coef-ficient for a given Local Oscillator (L.O.) waveform

e (t)

The equivalent i-th order nonlinearity, aieq is actually due

to the (i+l)th order nonlinearity ai+1 of the mixer if the L.O. is

considered as external to the mixer. That is, if the mixer tube

is truly zero-memory, then for a sinusoidal local oscillator for
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srwall enough signal and local-oscillator levels a will be

proportional to VL ai+I. Howevev ÷ here we do not attempt to

present a relation between L.O. i:z, 'orm and aieq; the equiva-

lent nonlinear coefficients for :Jt• given L.O. waveforms, simply

written as a. eq with an L.O. waveform implicit.

In Table 7.9 the ae for the three mixers in the receiver

are given. These coefficients were determined through measurements

of intermodulation output power for sinusoidal signal inputs. The
zero-memory assumption for a. was experimentally shown to be

valid by observing little variation in output distortion with sig-
eq

nal frequency. The determination of the a through measurement

is a departure from the purely theoretical approach used with the
transistor circuits and the vacuum tube circuits operating in the

well-behaved region. It is, however, a legitimate approach,, due

to both the wide bandwidths of the vacuum tubes, and the isolation

between stages provided by the vacuum tubes.

Table 7.9.

Mixer Equivalent Power-Series Coefficients

Tube eq (mho) eq(mho/v2

12AT7, V6 1.16 x 10- 5.5 x 1-5

6AH6, V4 1.15 X 10-3 2.4 x 10-4

6AH6, Vl 3.96 x 10-4 4.16 x 10-
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7.13.4 RF Amplifier Performance

The RF amplifier portion of the translator consists

of the portion of the translator between the antenna output and

the grid of V6, the first mixer. The circuitry and components

which make up the RE amplifier consist of four pentodes and the

first three interstages. One and two-tone tests were performed to

measure the first three nonlinear transfer functions of the RF

amplifier, and predictions of these transfer functions were made

* using the 3/2 power law SIGNCAP model. The measurements and

predictions are presented in this section. The measurements
and predictions were made at a 5KQ - 500 divider on the grid

of V6.

The predicted and measured insertion gain of the RF stages

are shown in Fig. 7.67. The agreement is quite good below res-

onance, and seen to be somewhat high at and above resonance.

The interpretation which should be given to this data is that

there are two simultaneous effects being observed. First, the

overall predicted gain is several dB too high. Second, above

resonance the predicted transmission of the linear networks,

particularly the antenna -V7 network, is some 5 dB too high.

The latter is confiimed by Fig. 7.55.

The predicted and measured third-order nonlinear transfer

functions are shown in Fig. 7.68. The agreement is good over

the range 4.8 MHz - 5.4 MHz for f covering an 80 dB variation

in amplitude and being off only 10 dB in the peak value. In the

4.0 - 4.8 MHz range the prediction iw for a continually decreas-

ing nonlinear transfer function, %4hile the measurement shows

much less variation. This is attributed to the modeling of the

first two pentodes in the RP amplifier which are the 6DC6's shown
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RIP
in Section 6.6 to predict lower than measured third-order non-

. linear transfer functions. If the frequency range below 4.8 Mz

corresponds to the range in which the primary distortion comes

from the first-two pentodes (6DC6's), while the range above 4.8

MHz corresponds to the primary distortion coming from the second

two pentodes (5763's), then the behavior is explainable in terms

of the known pentode model behavior.

7.13.5 Complete R' Translator Response

With the modeling of all of the parts of the RF translator

completed, we now present the measured and predicted nonlinear

transfer functions of the entire RF translator section. The mea-

surements were made with inputs applied to thie antenna input, andt

outputs measured at the third mixer output with a spectrum ana-

lyzer. The first and third-order nonlinear transfer functions were

measured by means of one and two-tone tests, with the available

power per tone being -40 dBm in all cases. The second-order non-
linear transfer function wzs too small to be measured. The pre-

dictions presented in this section were made with the RP section

analyzed by means of SIGNCAP's 3/2 power pentode model, and the

mixers modeled by means of the a and 1 series coeffi-
1 3

cients from Table 7.9 and the interstage network models.

7.13.5.1 Simplified Power-Series Modeling of Vagu=m Tube Staoes

To illustrate the use of equivalent power-series coefficients
and the simplified network models to vacuum-tube receiver modeling

consider the circuit shown in Fig. 7.69. This is a typical stage

in a cascaded vacuum tube receiver. The voltage vo is the input

voltage across a very high input impedance. The vacuum-tube

electron device is characterized as a zero-memory nonlinear in-
cremental current generator, i (vO) which drives the linear inter-

stage network, the z parameters of which are z1 , z1 2, z21, and
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E.,

z 22" These relationships are shown in Fig. 7.69b. The inter-

stage network input and output voltages vl, v2. and currents i,

i are related by

v: :.v z1

[Z: :: L:i (7.76)

!::,: 2 z21 z22j 2j

The voltage v 2 is the input voltage to the next vacuum tube.

Since vacuum tube input impedances are assumed infinite, i =0,

and

v 2 =21 .77

The interstage network input current i is given in terms1
of aeq and aeq by the power series for the vacuum tube as

1 3

eq eq 3 (.8i1 -i - aI v° - a3 Vo(7 78

where it has been assumed that the vacuum tube is adequately

modeled as a nonlinear current source. Thus, v2 , the output

voltage at the infinite impedance load (i 2=0) is given by

eq q (779v -z i 1- , a o + a 37.79)2 21 p 921 3 1-0

since there is no drop in z2 2. Equation (7.79) can be applied

on a stage-by-stage basis, using the correct power series coef-

ficients for each stage. The transfer impedance z 21 must be

evaluated at the frequency combinations of interest.
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c. Effective Nonlinear Incremental Model

Pig. 7.69. Simplified Nonlinear Incremental Model for a

Vacuum Tube Stagt,.
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ilk- .The complete nonlinear analysis of the mixers in the HF
receiver translator was computed by a systematic application of

Eq. (7.79). Only the equivalent first and third-order responses

were calculated, as the equivalent second-order responses were

found experimentally to be so small as to be unmeasurable.

7.13.5.2 Translator Nonlinear Transfer Functions

The desired RP translator output is centered around the

500 kHz intermediate frequency. Since the receiver is a triple

ccnversion system, the response is actually a third-order re-

sponse at the frequency fs + fL wfL3.Where f. is the

signal frequency and the remaining frequencies are the three

local oscillator frequencies. However, consistant with our use

of equivalent power-series coefficients, (aq and ar), the de-

sired response is interpreted as an equivalent first-order re-

sponse. Thus, we can also refer to the equivalent insertion

gain of the complete translator as the difference between the

output delivered] and available input powers at the output and

input frequencies. 'Me predicted and measured eq%,ivalent inser-

tion of the RF translator are shown on Fig. 7.70. The figure

covers the frequency range 4.88-5.18 MHz, and shows good agree-

ment between the predictions and measurements. The insertion

gain varies over a -'i dB range, and the primary difference be-

tween the predictioi, and measurement is a slight detuning of

tho peak region of the predicted insertion gain.

The predicted and measured equivalent third-order nonlinear

transfer functions of the translator, H'q(fI, i3 1 ,-2; L01' fL02'

-f L03), are shown in Fig. 7.71. Again we find good agreement

with the primary difference being a detuning effect. The param-

eters of the receiver are swich that, over the frequency range
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shown, the source of the third-order intermodulation distortion

is the first mixer, V6 The second and third mixers do not

cause significant intermodulation distortion, and the third-

order distortion of the RF stages is sufficiently small that

it also does not contribute siqnificantly to the RP translator

d' stortioit in this frequency range.
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APPENDIX A

SIGNCAP I - NONLINEAR CIRCUIT ANALYSI', COMPUTER PROGRAM

A.1 Introduction

The SIGNATRON Nonlinear Circuit Analysis Program, known as

SIGNCAP I, allows the engineer to determine the nonlinear transfer

functions of an electronic circuit. SIGNCAP utilizes a set of

standard electric circuit elements, and can analyze networks made

up of interconnections of these elements.

SIGNCAP is written in FORTRAN IV, and has been implemented

on two computers, the IBM 1130 with 8K of core and the Honeywell

635. The IBM 1130 version can directly analyze networks contain-

ing up to 30 nodes, while the Honeywell 635 version can directly

analyze networks containing up to 50 nodes. Larger networks can

be analyzed by segmenting the network into subnetworks, and then

utilizing SIGNCAP's cascading option.

Structurally, SIGNCAP solves the nonlinear network problem

by fotming both the nodal admittance matrix (Y matrix) ,or the

entire network, and the first-order generator (current-source)

excitation vector, for all of the linear sources in the entire

network. The generators can be located at any node in the network,

and can have any desired frequency, amplitude, and phase. The

usual procedure of premultiplying the generator vector by the in-

verse Y matrix results in the first-order nodal voltage vectbr for

the network, the elements of which are the first-order transfel

functions at all nodes in the network at the given excitation fre-

quency. In the event that there is more than one generator at a
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given frequency, the first-order transfer function will be the

total transfer function due to the superposition of the generators

since the first-order transfer function is a linear function.

The higher-order transfer functions are solved iteratively, using

the analysis techniques descriLed in Chapter k..

SIGNCAP is simple to employ. The user enters a description

of the circuit to be analyzed, as well as the frequencies and order

of the analysis. SIGMYCAP interprets the input statements, per-

forms the nonlinear analysis, and outputs the results in printed

form. There are five types of inputs which are needed to describe

a given circuit. The input statements define t~he topology of the

circuit, the circuit element values, the linear and nonlinear

devices used in the circuit, the circuit excitation and the order

of the analysis, and the desired output.

This appendix is designed so that the reader will be able to

use SIGNCAP after reading it. It does not contain an in-depth

discussion of the various subroutines which make up SIGNCAP, nor

does it contain detailed program flow charts or program listings,

as they are not necessary for an understanding of SIGNCAP. Section

A.2 provides a user-oriented discussion of the SIGNCAP analysis

techniques and program interaction. %,he circuiG elements and

models which are used in SIGNCAP are described in Section A.3. and

the input statement structure is described in Section A.4. Section

A.5 deals with the use of SIGNCAP in typical examples. Examples

are also given in the other sections when a particular point is

to be illustrated.
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A.2 SIGNCAP Analysis Techniques

A.2.1 Nodal Admittance Analysis

The purpose of SIGNCAP is to determine the nonlinear transfer

function of a network. We use the convention that the nonlinear

transfer functions are voltage transfer functions, that is, they

relata an output response voltage to one or more input excitation

voltages. It ip thus both natural and convenient to perform the

nonginear circuit analysis on a nodal basis, where the independent

variables are the known voltages and the dependent variables are

the unknown nodal voltages. As a simple example, consider the

linear Pi network of Fig. A.la. The nodal equations for this

network are:

V (_-4-__) -V2 -=
1Z Z2 2 1 (A.la)

1 2 2

V1  12, (A.lb)
1 Z2 v2 z2 + 3

which can be written in matrix form awn

1P 1

"1 '2 Z2

= . (A.2)
1 L+ lvi

22 3

Equation (A.2) is conventionally wr. ten as:

IY] IV) = [I]. kA. 3)
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(a) A Passive Linear Pi Network

VS V, ZI Z3 V Zzs ii

(b) An Excited Lizear Pi Network

Fig. A.I. Illustrating Nodal Analysis.
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where:

[Y] = nodal admittance matrix,

[V] = nodal voltage vector,

CI] = nodal current vector.

The nodal admittance matrix is a property of the network itself,

and can be constructed independently of external source and load

constraints. It is a square matrix, the elements of which are

equal to:

y = negative of admittance between node i and node j
ij iyj

Yii = sum of all admittances between node i and all
other nodes including ground.

If the passive network of Fig. A.la is embedded in a larger

networ~k, constraints are placed on the terminal voltages and cur-

rents. In particular, consider the embedding of Fig. A.lb,

where node 1 is driven by a voltage source V with Thevenin imped-

ance ZS, and node 2 is terminated in a passive impedance ZL.

The termL~inal constraints are:

Ii = (VS V1 1 (A.4a)
Sg 1 1

I = -V vL" (A.4b)

2 2 6z
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Substituting (A.4) into (A.1) results in:

V __ + + _V Vs - (A.5a)1Z + Z S 2 Z 2 S

1( I + +) = 0, (A,5b)
2 2 z 3  zL

which can be written in matrix form as:

+ z2  zs z2 + S

_ ___ _z z L__ o1 2 2 3 L

(A.6)

Equation (A.6), the current-voltage matrix equation for the

embedded pi network, is seen to be closely related to Eq.(A.2),

the current-voltage matrix equation for the isolated pi network.

The differences are:

1. The admittance between node 1 and ground has been1
increased by 1-, the source admittance.

S
2,, The admittance between node 2 and ground has been

1
increased by-L, the load admittance.

zL

3. I1 has been replaced by the Norton current source11

VS " ,' and 12 has been set equal to zero.

648

ki,



Thus, the network equations are now in the form of a known voltage

excitation, VS, and two unknown response voltages, V1 and V2 .

The unknown voltages can be solved for by matrix inversion:

II -+ -L

z 1 2 S V s

2Jz 2z 2 z 3 z02 2 72 Z3 ZL

(A.7)

In the case of a linear network, Eq. (A.7) is the desired result.

It shows that the desired nodal response can be found in terms of

the known current source vector and the admittance matrix of the em-

bedded network. In fact, if VS = 1, V I and V2 are numerically

equal to the first-order nonlinear transfer functions at nodes 1

and 2, respectively. This can be written in matrix form as:

1Hl 1 CY I [I], (A. 8)

where:

[HI] = first-order;nonlinear transfer function vector

[Y] = nodal admittance matrix of entire network,
including source and load impedances

[i1 = current excitation vector.
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If the voltage excitation can be written as the sum of n

sinusoids, and the Y matrix is frequency selective over their

frequencies, Eq. (A.8) must be solved n times in order to deter-

mine the first-order nonlinear transfer functions at all ii fre-

quencies.

The solution of the Jinear network problem is, given the Y

matrix, seen to be straightforward. We now turn our attention to

the nonlinear network problem. We have shown in Chapter 2 that

the method of solution of the small-signal nonlinear network is

centered around the Taylor's series expansion of the network's

nonlinear element's current-voltage relation around their operating

points, that is:

i = a1 v +a 2v +a 3 v (A.v9)

For a linear element, a, is the element's admittance, and all

the a. are zero for i greater than one. The incremental voltage,
1

v, can be either the nonlinear element's terminal voltage for an

independent nonlinearity, or the voltage across some other point

in the circuit, for a dependent nonlinearity. The solution for

the first-order nonlinear transfer function, at a frequency fi,

is, from (A.8), given by:

[H1 (fi)] = [Y(f.)] [i(fi). (A.10)

In Eq. (A.10) we have explicitly shown the frequency dependence

of the Y matriA. The current vector I is made up of all indcspen-

dent sources of frequency f., and all nonlinear elements in the

circuit are replaced by the first term in their Taylor's series for
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ththe first-order analysis. If an n order nonlinear analysis is

to be performed, and the input i viven by

n
v (t) - E Ai exp (j2rtfit). (A. 11)

i-i1

Equation (A.10) must be evaluated for all combinations of -Che n

input frequencies, taken one at a time, or (I) times to find the

set of n first-order nonlinear transfer functions, [H1 (f 1 ),Hl(f 2 )

H (fnl.

Once the first-order nonlinear transfer functions have been

evaluated, the second-order nonlinear transfer functions can be

evaluated. This can be represented in matrix form as:

[H2 (fi 1 f.)] = EY(fi+fj)3 1 [12 (Hl (fi),HI(fj))). (A.12)

Equation (A.12) says that the second-order nonlinear transfer

function vector. H2 , evaluated at the sum frequency fi+fj, is the

product of a second-order current vector 12, and the inverse of the

Y matrix, both evaluated at fi+fj* 12 is a function of H1 (f) and

H1 (fj), the first-order transfer functions evaluated at frequencies

f. and f.. The exact functional form of 12 is determined by the

types and locations of the nonlinearities, as described in Chapter 2.

In an nth -order analysis, the input is again the sum of n expo-

nentials and fq. (A.12) must be evaluated for all combinations of
n frequencies taken two at a time, or (2) times.

The third-order nonlinear transfer function can be represented

in terms of the first and s-.cond-order nonlinear transfer functions

as:

CH3 (fifj)) = (Y(fi+fj+fk)01 -1 3 (Hll(fi),H(fj)1Hl(fk))

+ I3 (H (f)H (fj+f, 3. (A.13)
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Equation (A.13) is in the same form as Eq. (A.12). Specifically

the third-order nonlinear transfer function vector, H3 , eve2-

uated at frequency fi+fj+fk, is the product of a third-order cur-

rent vector, 13+123' and the inverse of the Y matrix, both eval-

uated at frequency fi+f +fk. The current vector is made up of two

types of terms, namely the direct third-order currents given by 13I

and the third-order currents given by an interaction of first-order

and second.order terms, I23* The exact functional form of I3+I23

is determined by the types and locations of the nonlinearities, as
th

described in Chapter 2. In an n -order analysis, Eq. (A.13)

must be evaluated for all combinations of the n input frequencies

taken three at a time, or (3) times.

The solution for higher-order nonlinear transfer functions

follows the same form as described above. In general, the solu-
th th

tion for the m -order nonlinear transfer function in an n -n
order analysis, m < n, requires the solution of ( ) equations of

th m
the form of Eq. (A.13). Thus, in a complete n -order analysis, the

number of matrix inversions which are required is:

n) + (n) . .. + (n) = 2n _ . (A.14)
1 2 2n1

Equation (A.14) provides a fundamental insight irto the

solution time of SIGNCAP's nonlinear transfer function analysis.
th

As a general rule, an n -order analysis of a given circuit will

require 2n-I times the running time of a first-order analysis of

the circuit. To give a benchmark speed, the analysis of a 27 node,

4 transistor, IF amplifier on the Honeywell 635 required 9.35

seconds per output frequency term. Thus a fourth-order analysis

cf this circuit would take approximately 140 seconds.
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A.2.2 Segmentation and Cascade Analysis

As is shown in Eq. (A.3), the nodal admittance matrix for aS~2

r node network has r elements. Since these are in general com-

plex elements, the storage of the matrix in the computer requires

2r2 words, e.g., 200 words for a ten nodo circuit and 20,000 words

for a hundred node circuit. It is evident that for any size com-

puter there will be a maximum size circuit which can be analyzed as

a single unit. For circuits which exceed this size, it is conven-

ient to break the circuit up into smaller circuits, called segments,

analyze each segment separately, and then determine the nonlinear

transfer functions of the complete circuit through the use of the

cascade equations of Chapter 2.

The procedure of segmentation and cascading is familiar in

linear circuit theory, where the Thevenin source is the open-

circuit output voltage of a segment, and the Thevenin impedance is

the output impedance of a segment. In the case of ionlinear trans-

fer function analysis, the nonlinear transfer function3 of each

segment are computed with each segment driven by a source which has

the same impedance as the Thevenin impedance of th. previous qeg-

ment, and loaded by an impedance equal to the input impedance ot

the succeeding segment. Both the input and output impedance are

evaluated at the frequency combination used for the nonlinear trans-

fer function being evaluated.

SIGNCAP allows the circuit analyst to arbitrarily divide the

circuit into segments, and then .erforms the computation of the

input and output impedances of each segment for all frequency com-

binations. The analyst riust make sure that the number of nodes in
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each segment is no greater than the maximum number of nodes which

the particular SIGNCAP implementation can analyze. It is best to

avoid segmenting at a point where significant nonlinear interaction

is present, so reasonable common-sense should be used in choosing

the segmentation points.

A secondary advantage of segmentation and cascading is there

is a decrease in running time for a given circuit. The matrix

inversion in SIGNAP I uses the standard Gauss-Jordan method of in-

version, which, for a matrix of order r has a computation time
3

proportional to r . Now, consider the analysis of a r node circuit

which has been segmented into S segments, each containing r/S

nodes. For this we see that the matrix inversion computation time
3

per segment is decreased by S , and, since there are S segments,

the matrix inversion computation time for the complete circuit is
2 2

decreased by S2. while the full decrease of S will not be real-

ized due to subsidiary computations, it is seen that segmentation

should be computationally efficient. To give a benchmark, a cas-

caded second-order analysis of a complete communications recei-c-r

containing 85 nodes and twelve transistors was performed on the

Honeywell 635. The receiver was sagmented into three segments.

The analysis took 70 seconds per output frequency. Based on the 9.35

secondo per frequency benclmark for the 27 node circuit, the analy-

sis of % single R5 node network would tah:e 280 seconds. Thus the

segmenting decreased the running time by a factor of 4, as compared

to a maximum nossible decrease of 9. This shows that segmentation

is, indeed, efficient in terms of running time.
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A.2.3 SIGNCAP Processing

SIGNCAP contains over 90 subroutines, and nothing would be

gained in this section by shr.wing their interactions. 11owever, the

SIGNCAP user should have some idea of the concept of the processing

which takes place in SIGNCAP. In this section we therefore discuss

the processing which takes place in SIGNCAP independently of the

actual flow of subroutines.

The processing flow shown in Fig. A.2, is made up of nine
phases, numbered from zero to eight. The first phase, phase 0, is

the data input phase. The circuit coding is read into the ccmputer,

and a disk data file is set up which contains all of the circuit

elements and parameters. At the end of the data input phase, con-

trol is passed to phase 1, in which the order of the analysis, the

2 n-i analysis frequencies, and the parameters of all of the non-

linear elements are computed. The partial Y matrices, which are

the Y matrices less the input and output impedances, are formed in

phase 2; 2 n-1 partial Y matrices are formed for each segment, one

for each of the analysis frequencies, and they are all stored on

disk. The input and output impedances of each segment at each of

the 2 n_ 1 frequencies are computed in phase 3 and stored on disk.

These impedances are added to the partial Y matrices in phase 4,

and the resulting Y matrices are inverted and stored on disk. All

of the Y matrices for all of the segments are inverted at this time.

The computation of the nonlinear transfer functions takes place in

phase 5. Cascading is performed in phase 6 and printout in phase 7.

If any parameters are to be modified, the bookkeeping for the modi-

fication is computed in phase 8, and control is returned to phase 1.

If there are no modifications, the program exits after phase 8.
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Fig. A.2. SIGNCAP Processing.
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It should be noted that SIGNCAP makes use of disk storage for

communication between phases, as well as for data storage. Sufficient

disk space must be allocated by the user to store the 2n-1 Y matrices

for each segment, plus the requirements for storing printout and

data files. The latter two requirements are small compared to the

Y matrix storage requirements; for example, the fourth-order analy-

sis of a fifty node network requires seventy-five thousand words of

disk to store the fifteen Y matrices. The use of disk stwo/e is

dynamicaly-controlled by the program, and, provided the user has

sufficient disk space allocated, the program handles allallocation

problems.

A.2.4 SIGNCP Data Preparation

The nonlinear transfer function analysis performed by

SIONCAP requires the user to specify the circuit to be analyzed

and the order of and frequencies at which the nonlinear analysis

will be performed. SIGNCAP recognizes the following circui%.

elements:

0 Resistor

Capacitor

Inductor

0 Y Parameter Passive Networks

0 Bipolar Junction Transistor

Semiconductor Diode

* Vacuum Diode

S• %cuum Triode

• Vacuum Pentode

Voltage Sources

SIGNCAP can analyze any circuit made up of interconnections of these

basic elements.
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As has been noted earli.er, the SIGNCAP analysis is performed

on a nodal basis. The input data structure has been designed with

this in mind. The first step in the analysis of a cikdUlt is the

drawing of its complete circuit model. This rmodel should include

all of the parasitic circuit elements which can be identified.

Next, the circuit nodes are identified and numbered. The signal

ground is defined 46.nade 0, and the numbering of the remaining

nodes starts with 1 and continues sequentially until the last node

has been numbered. There is no requirement that adjacent nodes be

assigned sequential node numbers, but no numbers in the sequence

can be skipped. The node numbering of SIGNCAP elements which have

more than two nodes, namely the bWpolar junction transistor, vacuum

triode, and vacuum pentode, is done according to a specific conven-

tion described in detail in Section A.3. Once the node numbers

have been assigned, the circuit elements can be coded for entry

into SIGNCAP, as described in Section A.4.

As nonlinear transfer functions are defLied in terms of volt-

ages, the SIGNCAP software includes independent voltage sources.
Their definitions include the nodes they are connected to,

their impedances, frequencies, and amplitudes of their real and

imaginary components. Voltage sources can be connected to any

node in the circuit, and a single source can generate an arbitrary

number of frequencies. The order of the analysis which will be

performed on a given segment is equal to the total number of fre-

quencies generated by all the generators in the segment. The

analysis will be performed at all of the 2 n- 1 frequency combinations

of the n input frequencies. For example, if it is desired to per-

form a third-order analysis, with input frequencies fl' f2D f3,

and *eaak amplitudes El, E2 , E3 , SIGNCAP will analyze and printout

the seven scaled nonlinear transfer functions given by:
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Scaled Nonlinear Transfer Function Frequency

E2 H1 (f 2 ) f 2

E3 H (f 3 ) f

E3E 2 H2 (fl f 2 ) f +f

EE 3 H2 (fl 1 f 3 ) f +f

EE H(ff) 2 3f
2E3 2 2 3 f2+f3

E,1 E2 E23H3 (f 1 f2 'ff) f1 +f 2+f3

These nonlinear transfer functions are called "scaled" because

they are premultiplied by the input signal amplitudes or products

of the amplitudes. If the input amplitudes are all set to unity,

the scale factors become unity, and the SIGNCAP output is the actual

nonlinear transfer function. Scaling may be desired, for example,

in the analysis of receivers which include mixers. The local oscillator

amplitude is a fixed value for the receiver, and can be automatically

included in the analysis by entering it as the amplitude of the

local-oscil-lator generator in the circuit model.

SIGNCAP also has a modify feature, as shown by phase 8 of

Fig. A.2. By using this feature, circuit element values or analy-

sis frequencies can be changed, and the same circuit re-analyzed

without re-inputting the entire circuit description. As many mod-

ifications as desired can be made. Thus, for example, a given non-

linear circuit can be analyzed for a number of input frequencies in

one computer run, greatly decreasing the amount of time needed to

analyze a circuit.

A..3 Circuit Elements and Models

The circuit elements which SIGNCAP recognizes are shown in

Table A.1, along with either their defining characteristics or
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Table A. 1

SIGNCAP Elements Definitions

Element Symbol Current-Voltage Relation

emrn R Ie em-en
Resistor R

Capacitor &Q --. C iwo (em-en)

Inductor T.,° (er-On)

Y-Parameter n

Bipolar Junction
Transistor m See Ch. 5

Semiconductor , See Ch. 5 for AC.
Diode Exponential diode for OC,

Vacuum Diode b (=Ge• 2

See 0,. 5

Vacuum Triode em-+ _ b Genet llized V2 power law
See Ch. 5

Vacuum Pentode 3Generolled WI2 power low
See Ch. 5

(ERe+jElm)8 j
2 rf

Voltage Source •-~ Frequency $ f HzAmplitude 
* ER,+] Elm

Impedance R+4IX

a u node number m
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references to the chapter in which they are fully discussed. All

nodes are shown on the chart as®, where m is the node number.

The first three elements are the conventional linear resistor,

inductor and capacitor. A linear circuit made up of an arbitrar\,

interconnection of these can be analyzed with SIGNCAP. However,

linear circuit theory tells us that from an input-output point of

view, a complex RLC network, containing many nodes can be replaced

by a pi network. SIGNCAP accepts the Y parameters of the pi net-

work. The use of the pi network can thus result in a large saving

in the effective nu- ýr of nodes in a circuit, as an interstage pi

network goes between two already defined active device nodes. How-
th n

ever, for an n - order analysis, 2 -_ sets of pi parameters must

be entered, whereas the RLC input description is frequency inde-

pendent and need be entered only once. The input and output nodes

of the R, L, C, and pi need not be sequentially numbered.

The nonlinear devices which SIGNCAP utilizes are the next

four elements of Table A.l. The bipolar junction transistor

model is the four-node nonlinear T described in Chapter 5. Three

of the nodes are external, and the fourth, the base-emitter junc-

tion, is internal. The convention is used that the base, collector,

* and emitter nodes are numbered m, m+2, m+3, respectively. Thus

only the base node number need be given when specifying the loca-

tion of a transistor in a circuit.

The semiconductor diode uses the model described in Chapter 5.

It can be either forward biased, in which case it is represented

by a nonlinear resistor in parallel with a diffusion capacitance,

or back biased, in which case it is represented by a varwktor capac-

itor in parallel with a fixed resistance. The two nodes need not

be sequentially numbered.
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The vacuum diode, triode, and pentode models use the gener-

alized 3/2 power law vacuum tube models of Chapter 5. They are

represented as two, three and four node devices, respectively.

The node numbering on the diode need not be sequential. The tri-

ode grid, plate and cathode nodes are numbered m, m+l, m+2, re-

spectively. The pentode signal grid, screen grid, plate, and

cathode are numbered m, m+l, m+2, m+3, respectively. The pentode

suppressor grid is assumed to be at cathode potential.

The last circuit element which SIGNCAP uses is the indepen-
dent voltage generator. It is defined by the terminals it is be-

tween, the magnitude of its in-phase and quadrature Thevonin volt-

age components, output impedance, and frequency in Hertz. The

frequency can be set equal to zero, in which case the generator

becomes a battery. The generator impedance is specified by its

real and imaginary parts, R and X.

A.4 SIGNCAP Data Input Structure

A.4.1 The SIGNCAP Input

The user communicates with SIGNCAP through the SIGNCAP data

input structure. The input allows the circuit configuration, order

of and frequencies of analysis, and output format, to be specified

by the analyst. There are six categories of input data. These are:

1. Comment
2. Command
3. Linear Elements
4. Nonlinear Elements
5. Solution Control
6. Output Control

The input data are punched on cards, or an equivalent time-sharing

input, according to a specific, easy to learn, format. In. this

section we discuss the data categories and describe their individ-

ual formats. In the description, all formats are given in terms of

punched card inputs.
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A.4.1.1 Comment

The comment card can be introduced at any place in the

data input. It is printed on the computer output for infor-

mational purposes, but is not processed further by the program.

The comment card has an asterisk in columns 1 and 2, and can

have any desired text in the remaining columns. An example

of the comment card is:

** THIS IS A COMMENT CARD

A.4.1.2 Command

The command cards control the segmenting and length of

the circuit being analyzed. All control cards start with

an asterisk and are immediately followed by one or more

alphabetical words. There is no space between the asterisk

and the start of the first word, but successive words on a

control card are separated by blanks. The control cards

are described as follows.

*START SEGMENT

This card is a delimiter which indicates that all cards

following until the appearance of *END SEGMENT are to be pro-

cessed as one segment of an analysis.

*END SEGMENT

This card is a delimiter, which indicates that all cards

* between it and the previous *START SEGMENT card are to be pro-

cessed as one segment of an analysis.
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*M31•CADE

This card is the first input card in the cascade analysis

of a circuit. It alerts the softw4are that there will be more

than one data segment to be analyzed, and that after all their

nonlinear transfer functions are found separately, they should

be cascaded to determine the nonlinear transfer functions of

the complete circuit. In a cascade analysis it is necessary

to indicate the input and output nodes of each seqment. This

I.s done by means of two control cards, each of which is followed

by a card which gives the number of the input or output node.

The two cards are:

*OUTPUT

This card is followed by a NODE card which gives the number

of the node which is to be the output node of the segment. The

two cards may appear anywhere in the segment. The asterisk is

in column 1, and OUTPUT starts in column 2. The NODE card which

follows the *OUTPUT card has NODE in columns 1 through 4, and the

node number in integer format, 15, right justified in column 10.

* GENE R.A'T I.

This .. ,>! in all segments except the first to

indicate .hir:.,,•:: node of a sogment. It is followed by a

NODE card w>½¾ i ivt: the number of the node which is to be

the input node of the aegment. Computations will be made at

the frequencies associated with the previoum segmaut, with

the output impedanoes of the previous stage at these frequencies

and GENERATOR starts in column 2. The NODE card which follows
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the *GENERATOR card has NODE in columns 1 through 4, and the

node number in I5 format, right justified in column 10.

The two cards may appear anywhere in the segment.

*END

This card is the last card in any SIGNCAP data input.

It indicates the end of all data, and switchethe program

from Phase 0 to Phase 1.

A.4.1.3 Linear Elements

SIGNCAP recognizes four types of linear elements, the

resistor, capacitor, inductor, and pi network. The program

recognizes that the linear elements are either one of the

first three or a pi network by means of two cards, each start-

ing with an asterisk, namely *PASSIVE COMPONENTS and *PI.

These cardL,, in turn, are followed by cards wh±Ch contain the

R,L,C component values, or the pi parame1 .ers. The details

of these cards are:

*PASSIVE COMPONENTS

This card indicates that all cards following until the

next card starting with an asterisk denote resistive, induc-

tive, or capacitive linear components. The asterisk is in

column 1, and PASSIVE starts in column 2.

Following the *PASSIVE COMPONENTS card are cards which

describe the connection of a particular resistor, inductor,

or capacitor to a pair of circuit nodes. These cards all

take the form:
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L xx yy zz

C

where R, L, or C denotes a resistor, inductor, or capacitor,

going from node xx to yy, and of value zz ohms, henrys, or

farads. If yy is blank it is interpreted as being node 0,

the reference or ground node; xx cannot be blank. R,L, or

C appears in column 1, the (integer) node numbers are right

justified in columns 5 and 10, and the component value is in

real format, E10.5, in columns 11 to 20.

*PI

This card indicates that all the cards following until

the next card starting with an asterisk contain the Y param-

eters of a pi network. The asterisk is in column 1, and PI

starts in column 2. Following the *PI card are cards which

describe the nodes to which the pi is connected and give

the parameters of the pi.

The card used to define the nodes to which a pi network

is connected takes the form:

NODE xx yy

where xx and yy, the two nodes which define the pi input and

output, are right justified integer format in columns 10 and

15. This card follows the *PI control card. The common node

of the pi is assumed to go to AC ground.
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The Y'-1pameter cards contain the values of Yll, Y12,

and Y22 used in a Y parameter analysis. Since the Y parameters

are in general frequency dependent, there must be one Y paraia-

eter card for each frequency in the analysis. As has been shown,

for N frequencies. 2 -1 Y parameter cards will be required.

These cards follow immediately after the node card for the

particular pi network. The format of the Y parameter cards is:

YP xx YII YI2 Y22

where YP appoz in columns 1 - 2, xx defines the frequency combl-

nations and is integer format, 15, right justified in column 10,

and YIl, Y12, Y13 are the three Y parameters. Yll, Y12, and Y13

are in polar form and appear in columns 11 - 20, 21 - 30 for Yl1,

31 - 40, 41 - 50 for Y12, and 51 - 60, 61 - 7.0 for Y22.

A.4.1.4 Nonlinear Elements

SIGNCAP recognizes five types of nonlinear elements, the

semiconductor diode, bipolar junction transistor, vacuum diode,

triode, and'"•Dtode. The mathematical models for these elements

are those described in Chapter 5. These models are built

into SIGNCAP. The data input structure oý SIGNCAP calls up

the desired model and inputs the required parameters. The

structure of these data inputs are all similar. The appropriate

model is called up by a card starting with an asterisk. This

is then followed by cards which contain node numbering data
and model parameter data. The details of these cards follow.
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A.4.1.4.1 z9:onductor Diode

The semiconductor diode has been incorporated into

SIGNCAP with a forward-biased diode being represented by an

exponential resistive non-linearity in parallel with a dif-

fusion capacitance, and a reverse biased diode by a varactor,

or nonlinear capacitor, in parallel with - resistor. Four

cards are required to define a semiconductor diode, the first

being a control card, the second ,% NODE card, and the remain-

ing two being di-de parameter cards. They are, respectively: k'

*SEMICONDUCTOR DIODE

NODE XX YY

I N C. C!o 3
V K R

The asterisk is in column 1, SEMICONDUCTOR starts in column

2, and there is a single space between SEMICONDUCTOR and DIODE.

NODE starts in column 1, and XX and YY the plate and cathode

nodes numbers, _r• in 15 format right justified in columns 10 •

and 15. The third and fourth cards contain the diode parameters.

The third card has the forward-biased diode parameters -- the

bias current Io, non-ideality factor N, forward-biased junc-

tion capacitance extrapolated to zero current Ci, and derivative

of junction bias with current C;. If the diode is reverse

biased, the third card is blank. The fourth card has the

reverse biased diode parameters. The varactor capacitance is

defined as

C (V) =KV

6568



where K is the value of the varactor capacitor at 1 volt

reverse bias. K, V, and p are the first three entries on

the fourth card, and R, the parallel reverse biased leakage

resistance of the diode, is the fourth entry. If the diode

is forward biased, the fourth card is blank. Both the third

and fourth cards are in real format, El0.5, when non-blank

A.4.1.4.2 Bipolar Junction Transistor

The bipolar junction transistor is modeled as a nonlinear

T. Since the node numbering convention is built into the

transistor model, the location of the transistor in the

circuit is defined by giving the number of the external base

terminal, XX. The circuit coding must be such that each of

the external terminals, i.e., XX, XX+2, XX+3, is con-

nected to some other node in the circuit. The transistor

parameters are given on five cards. The card sequence for

defining the bipolar junction transistor is:

*TRANS ISTOR

NODE XX

-5 Parameter Cards -

The *TRANSISTOR Card indicates t)'at the six cards between

it and the next card starting with an asterisk describe a

bipolar junction transistor. The base node, is number xx

in the card NODE xx, and the five following cards, excluding

comment card3.., give transistor linear and non-linear parameters.

The NODE card is standard, with NODE appearing in columns 1 - 4,

and XX, the number of the base node, in integer format, 15, right

justified in column 10. The data on the five cards are in El0

format, structured as follows:
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Card Column Parameter Usage

1 1 - 10 avalanche exponent

1 11 -20 VCB collector-base bias voltage

1 21 -30 VCB0 avalanche voltage

1 31 - 40 L collector capacitance
-exponent

2 1 - 10 I Collector bias currentc

2 11 -20 1 collector current at
cmax maximum D.C. current gain

2 21 - 30 a h nonlinearity coefficientFE

2 31 - 40 h maximum D.C. current gain
FEmax

3 1 -1,0 k collector capacitor scale

factor

3 11- 20 n diode nonideality factor

3 21- 30 C base-emitter junction space
je charge capacitance

3 31 - 40 C2  derivative of base-emitter
diffusion capacitance

4 1 - 10 rb base resistance

4 11 - 20 r collector resistance
c

5 1 - 10 Cl base-emitter capacitance

5 21 - 30 C3 base-collector and overlap
capacitance

A.4.l.4,3 Vacuum Diode

Three cards are required to define a vacuum diode. The

first is a control card, the second a NO1E card, and the last

is a tube parameter card. They are, respectively,

*VACUUM DIODE
NODE XX YY

G Ebo0
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-The asterisk is in column 1, VACUUM starts in column 2, and.,

there is a single space between VACUUM and DIODE. NODE starts

in column 1, and XX and YY, the plate and cathode node 'numbers,

are in I5 format, right justified in columns 10 and 15. On

the third card, the perveance G, plate-cathode bias voltage

and plate-cathode capacitance Cpk, are in El0 format.

A.4.1.4.4 VaNM0 Triode

The coding for the vacuum triode is defined by the five

card sequencet

*VACUUM TRIODE 7
NODE XX

oG MU E
0 Cmax

E co Eb

CgjcOrpq Ck

The asterisk is in column 1, VACUUM starts in column 2. and

there is a single space between VACUUM and TRIODE. NODE

starts in column 1, and XX, the grid node number, is in

I5 format, right justified in column 10. The parameters on

the remaining cards are in El0 format.

A.4.1.4.5 Vacuum Pentode

The coding fmthe vacuum pentode is defined by the six

card sequence:
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I.I

S V_ *VACUUMJ3 PENTODE

NODE XX

Go mu D M

2oC Cmax
420" %o

4 gk Cpg Cpk

The asterisk is in column 1, VACUUM starts in column 2, '

and there is a single space between VACUUM and PEWTODE.

NODE starts in column 1, and XX, the signal grid (grid number 1)

node number, is in 15 format,. right justified in column 10.

The parameters on the remaining cards are in El0 format.

A.4.1.5 solxktion Control

A.4.1.5.1 Freguency Control

In order to determine a nonlinear transfer function it

is necessary to define the parameters of the input signals--•..

and the frequencies at which the analysis is to be performed.

The input signals are considered to be generated by sinusoidal
voltage generators, defined by their impedance, peak amplitude

phase, and frequency. They are entered on 2+n cards, for an

n'th Qrder. •~s, asd follows:.

• " • *GENERATOR :

This card indicates that allancards between it and the

next control card describe a Thevenin voltage generator whiG0.)

connected between a specified node and ground. The asterisk is

'in column 1, and GENERATOR starts in column 2. The next card in

672

Ow-



a NODE card, telling to which node the generator is connected.

The nods card takes the form:t

NODE Xx

The word NODE appears in columns 1 - 4, and xx, the node number,

in integer format, 15, rightjustified in.column 10.

The definition of a generator includes the specification of
the generator's frequency and amplitude. These are provided on
frequency cards.. %hete must be. one frequency card for each fre-
quency which a generator generates, and there must be as many fre-

quency cards as there are total defined frequencies. Each definfeAX

frequency is assigned an identification number, which the software
uses to keep-track of frequency combinations in the processing.

* If there are N frequencies# the identification numbers run from 1

through N, with their assignment being .-abitrary. The frequency
cards follow directly after the node card for a given generator.

The format otA frequency card is:

FR xx yyI•RA IMA

wg'here FR appears in columns 1 - 2, xx I.s the identification number,
an integer right-justified in column 10, yy is the generator fre-
quency, in .V f6 t right justified in columns 11 - 30, and REA and

.IMA are the, (.signed) peak amplitudes of the in-phase and quadrature "
generator voltages, in E format right Ju46fied in columns 31 - 50
and 51 - 70 respectively. As a default, if REA and IMA are left

blank, a one-.MQ•. in-phase generator with no quadrature component is

4 P T,
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assumed. It is important to note and understand that the order

of the nonlinear analysis which the program will carry out

is equal to N, the total-number of defined frequencies in

the circuit. For example, if there are three defined fre-

quen~cies, fl, f2 and D , the program will carry out the foLlow-

iing anaA~

first order 1 f

second order .fl+f2, fl+f3, C2+2~3

third order flI+f2+f 3

In-general, there will be 2 -1 frequencies-at which the

nonlinear transfer functions will be analyzed. If n'th har-

monic analysis is desired, there must be ni frequency cards,

each containing the fundamental frequency, and each defjnse,&

a diff erAMw 4equency. Thus, for example, a second harmonic

analysis of a ftequency of 1 MHz would have frequency cards:

FR 1 l.0E6

FR 2 l.0E6

while for a third-order intermodulation analysis of two tones

at 1 M11z and 1.5 M4Hz, where the product of interest is twice

the first frequency minus the second frequency (0. 5 MHz

2 x 1. 0 Miz -1.5 +MIz), the frequency cards would-bet

F~1 L.0E6

FR 2 l.0E6

FR 3 -1.5E6

In these examples, the I volt default values have been used.
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Two more points must be made concerning the frequentc:Cards.

First, in certain circumstances, coherent generators may appear

at different nodes of the network. In this case, the frequency

in hertz going with a ,particular.,Identification number need only

be defined the -first time the identification number appears.

Thereafter, only the identification number need be used.

Secondly, a given U.ircuit may have several generators, located

at different nodes. This occurs, for example, in the analysis

of multiple conversion receivers. where each local oscillator

.it modeled as a separate generator with its own distinct

frequency or frequencies. If there are I separate generators

in the circuit, each generating N, ieparate frequencies, then

the order of the analysis will.be 1e NS~~i=lNi

The final specification of a generator is its Thevenin

impedance. This is provided for by the impedance cards.

Impedance cards follow the frequency cards. There must be

one impedance card for each frequency at which the circuit
is being analyzed. Thus, for N generator frequencies, thered"

must be 2NX-I'rpedance cards. The format of the impedance

card is:

IM xcx yy ZZ

where IM is in columns 1-2,xx, denoting the frequency combina-

tions for this impedance, is .an integer variable right justified

- in column 10, and yy and zz are the real and imaginary parts

', of the generator impedance in E format in columns 11 - 20 and

21 - 30 respectively. The integer variable defining the freo.•

quency combinations is defined quite simply, if the frequency

is made up of the combination of fm+fn+fp, then the frequency
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combination is mnp. Thus, for example, for the third-order

frequency fl+f2+f3, the quantity xx would be the integer

variable 123.

As a default, if the generator impedance is constant for

* all frequencies, only one impedance card need be used, and

the parameter xx should be left blank. This default option

finda wide use in the case where a standard signal generator

is the signal source. In this case the impedance is the signal

generator's impedance, typically 50 ohms.

A.4.1.5.2 Solution Modification

In most nonlinear modeling applications it is necessary

to analyze a basic circuit over many frequencies or frequency

combinist2ons. It is also often desired to rerun a circuit

analysis with certain component values changed, in order

to determine the circuit sensitivity to component variation.

In SIGNCAP solution modification is performed by means of the

*MODIFY cards which allows a set of data to be changed, and

then an analysis automatically rerun with all unmodified

parameters as they were in ibWprevious run. Both component

values and generator frequencies can be modified. The format

c.ard is:

*MOD IFY

The asterisk is in column 1, and MODIFY begins in column 2.

The *MOD•I•Y card can be followed by R,L,CPIPFR, and IM

cards. If there are multiple *MODIFY cards in a given circuit

analysis, they will be processed sequentially, that is, first

all the modifications associaý9d with the first *MODIFY will

be performed, then those associated with the second *MODIFY,

and so on.
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Modification is destructive, in that any modified param-

eter retains its last modified value, and does not return to

its originally defined value subsequent to the modification.

Furthermore, in order to modify a parameter, the paramete6r

must have been defined in the original circuit; new circuit

* elements cannot be inserted in the middle cf an analysis.

"A.4.1.6 Output Control

Th4Autput of SIGNCAP, printed on the computer's line

printer, contains a large amount of information. The output

structure is divided into three main groups, namely:

1. Images of all input cards

2. All circuit parameters, both linear and nonlinear

3. All scaled nonlinear transfer functions

of all frequencies and orders, for all nodes. The scaled

nonlinear transfer functions are printed, one node to a line,

in two Os, namely cartesian, and log polar. The Cartesian

form consists of the real and imaginary parts of the scaled

nonlinear transfer functions while the log polar form consists

of 20 log1 0 of the magnitude of the scaled nonlinear transfer

function and its angle in degrees.
In the event the *MODIFY option is used, the original

printout is followed by a listing of the modified parameters,

and all scaled nonlinear transfer functions are again printed

out, onw*e to a line, for all frequencies, orders, and

nodes.

In the event the *CASCADE option is used, the printout

occurs for each segment.
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It is evident that an analysis of a large network can

generate an inordinateky large amount of printout. The

PRINT SELECT control cards allow the analyst to specify the

nodes and orders which are to be printed out, and suppress

the remaining ones. The card structure is as followa. The

control card is:

*PRINT SELECT

with the asterisk in column 1, PRINT starting in column 2,

and a space between PRINT and SELECT. To print selected

nodes, the *PRINT SELECT card is followed by a multiple

node card:

NODE XC YY ZZ

where NODE starts in column 1, and the nodes to be printed,

XOC, YY, ZZ, etc., are in 15 format, right justified .mnd

utWPUY in field 11-15. As many NODE cards as desired can

be used sequentially, but the first blank field ends the node

definition. The order to be printed use the same format as

the NODE card, but the first ten columns are blank, i.e.,

NODE is omitted. The *PRINT SELECT control cards may appear

anywhere in a segment. If *PRINT SELECT control cards do

not appear in a segment, but do appear in a prior segment,

then the printing will be controlled by the cards in the

pri• •ent. Absence of either or both card(s) in all

segments will, by default, cause a complete printout of all

nodes and/or non-linear transfer functions of all orders.

Regardless of what *PRINT SELECT cards are used in the seg-

monts of a cascade analysis, the non-linear transfer functions

of all orders are printed for the output node of the cascade.
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One more, output control option is available to the analyst,

namely the capability of suppressing the printout of all

circuit data except for the parwieters associated with the

generators. This is accomplished by inserting the following

card:

OFF

where OFF starts in column 1, directly after the *PRINT

SELECT card. The use of the OFF card does not affect the

selection of the nodes and orders it is desired to print out.

A.5 Examples

In this section two examples of SIGNCAP coding and output

are presented. The first example, in Section A.5.1, Ls similar

to 4i_ single-stage 2N2950 transistor amplifier analyzed in Chap-

ter 6. In this example, the complete input and output are shown.

The second example is the coding of the complete VHF receiver of

Chapter 7. This coding shows the use of multiple generators,

cascading, and printout control.

A.5.1 Single-Stage Transistor Amplifier

In this section we show the use of SIGNCAP in analyzing a

2N2950 transistor amplifier with a high impedance load,*e ex-
ample•Was run on the Honeywell 635 computer, under the CARDIN sys-

tem. Figure A.3 shows the circuit model used in the analysis. It

is similar to the circuit of Fig. 6.7, with the coupling capacitors
replaced by AC short circuits and a 5.1 kilohm resistor inserted

between the collector and the 50 ohm output. The node numbering

is shown on the figure, and the transistor parameters are given in

Chapter 5.
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Fig. A.3. A 2N2950 Transistor Circuit.
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In running sioNCAP, all output was put into a file named

P 0TPTO. Table A.2 shows the first 66 lines of this file, which

Constitute the input data for the problem. Line 4 is a comment

line, which identifies the problem. Line 6 is the *START SEGMENT

statement, and line 64 is the *END SEGMENT statement; all lines

in betwen them define the circuit and analysis of the segment.

As only one segment is to be analyzed, line 64 is followed by

line 66, *END. Returning now to the iintermediate coding, lines

0 and 9 show that onlyf the output at Node ,5 is to be printed.

Lines 11, 12, and 16 show that there is a 50 ohm generator at

node 1. Lines 13, 14, and 15 show that a third-order analysis is

to be performed at frequencies fl = 4.5 MHz, f 2 = 4.5 MHz, and

f3 = -5.0 MHz, resulting in an intermodulation product at 4.0 MHz.

This set of frequencies is followed by six *MODIFY statements,

each defining a new set of frequencies; these statements run

front lines 18 through 46. Lines 48 through 54 define the passive

oomponents of the circuit, while lines 56 through 62 define the

transistor parameters; node 1 is given as the base node. Lines

53 and 54 are of interest. Line 53, a 0.001 ohm resistor between

the emitter and ground, is a default value. No node of either

the transistor or the vacuum tubes can be grounded directly, so

that if a node is grounded in the physical circuit, a small re-

sistor is inuerted in the model. Line 54 is a parasitic collector-

to-ground capacitance of the 2N2950, discussed in Chapter 5. It

is coded as a separate element.

Table A.3 shows thPWOxt step in the SIGNCAP output, which

- ,is an analysis of input data and a printout of parameter data

for the analysis being performed. Line 68 indicates that the
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44L Table A. 2

2N2950 Input Coding

SYSTEM ?SCAN
FILE?U@0UT PT0
FORM?U
CODE?
EDIT?Y
?P A
#0001
40002

#0003
** HIGH IMPEDANCE 2N2950 #0004
#0005
"*START SEGMENT #0006
#0007
*•PRINT SELECT #0008

NO 5 #0009
#0010
*GENERAT•k #0011
-NODE 1 #0012
FAk I 4,5E6 #0013
FR 2 4*5E6 #0014
Ft 3 -5.0E6 #0015
IM 50. #0016
#0017
*Mo #0018
PFik I 6.5E6 #0019
P FR 2 6.5E6 #0020
FA 3 -7.0E6 #0021

,, #0022

*MO #0023
FA I 9,5E6 #0024
Fk 2 9.5E6 #0025
Fk 3 -10.OE6 #0026
#0027
*Mo #0028
FIR I 19,5E6 #0029
FR 2 19,5E6 #0030
FR 3 -20.OK6 #0031#0032
*MO #0033

FA I 29,5E6 #0034Fk 2 2995E6 #0035

FR 3 -30.0E6 #0036
#0037
*MO #0038
FX I 39,5E6 #0039
FR 2 39,5E6 #0040 f
FX 3 -40.0E6 #0041
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Al .e A. 2 (Coniiwxed)

#0042
"*MO #0043
FR I 4995E6 #0044
FH 2 49*5E6 #0045
FR 3 -50*OE6 #0046
#0047
*PASSIVE COMPONENTS #0048
R 1 0 20,2E3 #0049
R 3 0 2,0E3 #0050
R 3 5 5,1E3 #0051
R 5 0 50o #0052
R 4 0 001 #0053
C 3 0 49E- 12 #0054
#0055
*TRANSISTOR #0056
NODE 1 #0057
4.6 5*2 140. .348 #00S8
.0024 .150 .125 8.2 #0059
21.E-12 1.0 340*E-12 59.E-9 #0060
10.1 635.E 3 #0061
0.0 1,5E-12 #0069
#0063
*END SEGMENT #0064
#0065
*END #0066
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interpretation f-input q~Olng.

#0067
SEGMENT I1 #0068
#0069
#0070
#0071
GENERATOR* NODE 1 #0.072,W
#0073 a
#0074
FREQUENCY AMPLITUDE #0075'
#0076
I' O.4500000E 07 0.1000000E 01 0. #0077
2.0.45O0000E 07 0.*IO00000E 01 0. #0078
3 -0*5000000E 07 0.1000000E 01 0. #0079
#0080
FREQUJENCY ADMITTANJCE #008 1
0 002000000t-01 0. #0082
#0053
#0084
#0085
#0056J;
COMPONENTS #0087
NODE 1# 0 X = 0.2020000E 05 #0088
NODE 3. 0 X' = 0*2000000E 04 #0089
NODE 3, 5 k = 0*5100000E 04 #0090
NODE 5# 0 kt = 0. 5000000E 02 #009 1
NODE 4# 0 X a0.10IOOOOOE-02 #0092
NODE* 3# 0 C = 0.4000000E-11 #0093
#0094
#0095
#0096
THtANSIST0N, NODE 1 #0097
#0098
N a4.60 VCR = 5.2 VW,0-- f 140.0 MU U0.348 #0099
IC =0.0024 IGMAX 0.'1500 A = 0. 1250 HFEMAX =8.2 #0100
K =0*2100000E-10 REF = 1.00000 C(J) = 0*3400E-09 CCPhIME) 0,59
OOE-07 #0101
RB -infl. 10 aC 635000.0 800 0.O #0102
CI 2 O C2 a 0-50582-98E-09 C3= . 0.500000E-11 #0103
10104
#0105
HMO0 001000000E 01 #0106
HMI 0.2334431E-06 ALPHAI = 0,8715039E 00 KI 0,1081029E 00 GAM

MAI u0*1183175E-10 #0107
HM2 =098000729E-07 ALFHA2 =0.2486754E 01 K2 =-O.2078901E 01 GAM
MA2 =-O.3959096E-12 #0105
HM3 a01-69 07ALPHA3 =-0*3828569E 03 K3 =0.2665258E 02 GAM

MA3 =0*3421065E-13 #0109
#0110
IC/HMO = 0*2399999E.02 kEI 0@9250449E 01 IE 0.2810674E-02 #0111
RBI = 0*9900989t-01 EtCl = 0.1574503E-05 #0112
SC00 0. 0C2#0) =095058298E-09 C(2#1) =095900000E-07 #0113
#0114

684



-. data are, associated with segment 1, which is the only segment

in this example. Lines 72 through 82 define the generator In

the analysis, which is connected to node 1, of frequencies 4.5,

4.5, and -5.0 MHx, amplitudes 1 + jO volts, and admittances 0.02,'4

mhos for all frequencies. The components and their node con-

nections are echoed in lines 87 through 93, and the transistor

and its input parameters echoed in lines 97 through 103. Lines

106 through 113 print various nonlinear coefficients derived by

the program. The HMs are the Taylor series coefficients of the

avalanche nonlinearity, the ALPHAs of the HFE nonlinearity, the

Ks of the base-emitter resistive diode nonlinearity, the GAMMAs of

the collector capacitance nonlinearity, and the C(2,0) -and C(2,l1)

on line 113, the emitter capacitance. The remaining parameters

of lines 111 and 112 are the collector bias current divided by

the zero-order avalanchecoefficient IC/HMO, the linearized emitter

resistance REI, the emitter bias current IE, and the reciprocals .

of the base and collector resistances RBT and Rci. The parameter

SC0 of line 113 is not used. in the present transistor model.

.k Table A.4 shows lines 115 through 163 of the output. Lines

116 through 155 give the seven nonlinear transfer functions of

node 5, namely Hl(fl), Hl(f 2 ), Hl(f 3 ), H2 (flf 2 ), H2 (flf 3 ),

H2 (f 2 ,f 3 ) and H3 (flf 2 ,f 3 ). The format of all of these is the

same, and only one tranopx function will be discussed. Lines

134 through '137 pertain to H2 (fl4f 2 ), at a frequency of 9 MHz.

This is shown by the data on line 134. Line 136 shows the meanning;

of the numerical data printed on line 137, namely that they are

successively:

(a) node number .S

(b) real part of nonlinear transfer function
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Table A.4
""W1Un eta Transfer nctio, ou ,utw

• -•:" '# 011is

- RDER I FREQUENCY a 0.o450001E 07 (1) #0116
00117 '

NODE RIIEAL IMAG* MAGo DO ANGLE #0118
5 0 -0.5630833E,01 Oo.'400808r 00 -0%1216830E 02 010320Q6E 03 #0119 2

!i; ,,••i••' #02ORDEN• u1 F'REQUENCY a -O,500001E 07 (0) #,0,1228•

#0123

• (BtJ•DE1I a I. •RE1UENOY 0.O,900001E 07 (2,) #0132 '

NODE REAL IMAG# MAG. DB ANGLE #0134
IF- 5 0 .0. 630938E-301 0,9400521E 00 -O*121605OE 0, 0*1032026E 03 0013 7

"#0126
#0197
ORhDER 1 2 FREQUENCY = -0,500001E 07 (3) #0128
#0109
NODE REAL IMAG. MAG. 08 ANGLE #0130
5 0 -0,4086849E.1 1 -0,..o0619E 00 -0.1299043E 02 -0,1005068E 03 #0131

#0133
08•DER a2 F3REQUENCY a 0%9-00001E 07 (1,2) #0134
#0135
NODE REAL IMAG. MAH. D8 ANGLE #0136
5 0 0,1039890E01 097696153E-01 -0,2219594E' 0 * O8230491E 02 #0137
#0138
#0139
H(DEk 32 FREQUENCY -09500001E 06 (1.3) #0140
*0141
NODE HEAL IMAG. MAG. DB ANGLE 00142
5 0 -096971810E 00 -0*210462SE 00 -0*2758.32SE 01 -0#1632022E 03 #0143
#0144
#0145
0XDER e FREQUENCY -068OOOOIE 06 (2.3) #0146
#0147
NODE REAL IMAG. MAG. 6) ANGLE #0148
5 0 -0.697.1811E'00 '0...I046P,9E 00 -0*27543256E 01 -0*1,632O041E 03, #0149

#010 " ,4t

40-151

ORDER 3 FFkE(UENCY =0*400001E 07 (.23-0S
#01S3
OD•E REAL IMAG*. MAG OB ANGLE OQ154
50 0,3449190E 00 -0*1161751E 01 0*1667711E 01 -097349580E 02 #0155
#0156
SEGMENT -1 #0,157
#0158

N0011 016
#0163.4
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()imtaginar'y part of nonl3inear transfer funtiLon
(d) 20 iloq1 0 (magnitude of nonlihear transfer function)

(0) -Phse of nonlinear transfer function in degrees,.

It the *PRZNT 8IULNUT statement hPL4 not been use~1, the nonlinear

transfer functions for'all nodes would hayorbson printed; by
us±ing the statement, only hiode 5 was prinited.

Line 157 iw- beinn fte intout for the second

set of frequencies. Inatead of ropeatinq all of the printout,

the ompterwasintrruped nd etunedto the monitor level

after line 163. Table A*5 shows the output printed by using

the EDIDT feature of the time-sh~riflg system to print only those

lines pertaining to node 5, The 49 nonlinear transfer functions
(seven nonlinear transfer functiaons pe'r freq ay set., for seven

frequency sets) are printed in toompact form. After the lost

transfer function is printed on line 503, the system reaches an

6nd-of-filoo and-110i printout is finished.

. IV A,5.2 =,Reciver

Table A.6 shows the input coding used to analyto a complete

VHF receiver. The analysis in the talgle in a fourth-order analysie'. R

V using two genurators, The first generators at nods I# has three
input uenciduf *12 30. 4HV,l _441 _g 5 Ml. _"be socond

generator# at node 28, is the local-koscilat'or at f -66.4 MoI.f4
fTb.fourth-order intermodulation product is at-2A.41Uzo 'wbichs iA

V61in the reaeivexist*474 passband. The -node I. generator has a 50 ohiui

Limpedancea, while the local-oscillator, which was Itnown to have

a low output iMpeda~nces was given a default value of- 001 ohmT
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SYSTO M SAN

5 0 -005630833K-01 099 0082af 00 -Out 16230C 02 0010300M6t 00 00110
5 0 -Oo5630833E-01 0*2400921K 00 -0. W16930L 00 Ov1032026C 03 001I8S
S 0 -0#4038649C-s01 u0.8203612C 00 -0*1399043E 00 -0*1005068E 03 #0131
5 0 0*10398909-01 0%7696153t-0l -0. I195959 02 0. 230401C 02 #0137?
5 0 -0*9. 0n 00I". -092.1046HO 00 -0927S4ilI5b 01 -091630OR8NE 03s 001435
5 0 -096971811K 00 -048t04629tU 001 -Oog*743259,01 "0*63Q001E 03 00149
1 0 O.3441dl9OIC 00 -0911617519~ 01 0.16.67711E 01 -0*7349580t- 02 E00V5
6 0 -0*.113793E-O1 0*17A5513E 00 -0. 151397'VE 00 0*940553-S1 00 #0-611
8 0 -0.18375299t-O 0*174551HE 00 -0*15139?77 02 0.94055365: 09 00183
5 0 - 0 9646 49 34r-00 'm0,%1626736t~ 00 '.0o.7661305 02 -0.99875845: 09 '006

50-093695295t-02 0*83068l84i-01 -0*016O342E 02 0.9943007E: 02 00196
5 0 -O.49UA940C 00 -0# I3954629: 00 -O.6813333E~ 01 -O.1641862E 03 #0801
5 0 -094906940t: 00 "0.13954635: 00 -065813333C U -01 1641862C 03 #0007

V I5 0 0*130847141:w01 -0,5037046E: 00 "0 45i39518E 01 -. t$1901775: 02 #021-3
5 0 OtIO53746E'.01 0.11%07005: 00 inO.1&435615: 02 0.84951055: 02 #023b
5 0 0. IC 7455:-01 0.11907005: 00 -0.18435fi15 U2 0. t951055: 00 002,41
5 0 0.124560995-01 -0.11 84905: 00 -Os.387465: 08 -0.83701185: 02 #0947
5 0 0%7169647E-02 O.713296OC-w01 -02291785: 09 098405968E: OR #0253
5 0 -0.37106435: 00 -0.10092885 00 "OH0. 01035: 01 -0o164783E85 03 #0eS9 ý
5 0 -0.31106435: 00 -0. 1009080K 00 -0*83010485: 01 -0.16478385: 03 90065
5 0 -04890001M5-02 -0,29845,52t 00 -0,10508222E 02 -000383915E 09 #0271
5 0 0*9208241R:-01 0.491435SE-01 -0*253719S5: 00 0.65803475: 02 #02W4'
5 0 0*22000405:-Ot Q-4943555:-Ol "0.25371985C 02 0.65803475: 08 #oeW'
5 0 0.02OA044E-O't,,,wO.473679O5:u01 -0.25639175: 02 -0.65047985: 00 00305
5 0 0*23048875:-Ol 0*30447175:.0l -0.88369415: 02 0AS2881025: 08 403*11
5 0 -0.24399925: 00 -096374652E:-01 "0.13966485: 02 -0t16535835: 03 #0~317
s o -0.24399925: 00 -096374652E-01 -0*119654BE5 02 -0.16535835: 03 #0323
5 0 u.0*3417670r:.0l -0o84039155:"01 -0.20845675: 02 -0.11213045: 03 #0329
5 0 0.3908637C-01 0.85115265:-Ol -0*0021485: 0k 0.52766945: 08 #035f

y5 0 0.1908636E-01 0.251152SE-01 -0i300214$5: 02 OsS276694F' 02 #0357
5 0 0,18SUM35-01 -0*2 355095:-0l -0.062R4085: 02 -0,5221383M 02 #0363
5 0 0*19051595:-QI 0*99917855:-02 -0.33346085: 02 0#2767519E: 02 #0369
5 0 "0.18064395: 00 -064644466E:-01 -0.14585545: 02 -0.16558125: 03 #0375
5 0 -0.,1806439E: 00 -,0*46,44466E-01 -0.14585545: 02 -0.16558121E 03 #0381
5 0 -0,2516039E:-01 -0.3O93341E-01 -0 27905697E 02 -o0.129ie268 03 #0307
5 0 041SQ7926kE01 0*140937SE-:01 "0.33707865: 02 9,4307853K:02 00409
s 0 0.x507eg65-oi 0.1-4093785:-Ol -0.,337.0786E: 02 0. 4307854ý0 on
5 0 0*1488569E5: 01,--Q1371760Z:-01 "0*33874745 02 -0,42~66495: 02 4&i~lf5 00.12660 0iV'9327736:-O2 -0.37387515: 02 0*871677'3 01 4047

50 -0.'13529015: 00 -063442339L'0.1 -0.171098b5E 0fd -0.16519465E 0.3 #0-433
5 0 -0,13,59901E: 00 -0.3442339LE-Ol -0*1710e24E 02 -0.i6570405: 03 #0439
5 0 -O.1503B99C-01 -0*1201329:-Ol *'0#3425789E 02 -0.14166675: 03 0044.5

V qs n 0#01174010-010 0*84360535:-02'-0.36798575: 62 M.3699655: 02 #0467
S 0 0,,1174O165:-01 0oS4360585:-02 "0.36798575: 02 003560945t 02 #0473-- A
5 0 0,1105895E901 -0*8e34,Q82E-02 -0*369408,QE 02 ..0.3537$03k5 02 #0479
5 0 0.19189635:-02 -0.7544041K:-03 -0.41987405: 02 -0*54418905: 01 #0485
5 0 -0.1927375E: 00 "0*959S82095-01 -0419496785E 02 -0.16582325: 03 00491
5 0 -0. 10273755: 00 -0,2595229E:-01 -0*19;496785: 02 -0.165332325: 03 .#0497.

50-0*88387585:"02 -0*4944296E:.02 -0.396889845: 02 -0.1507.7885 03 #0503
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051 0 6 

.
C 1.1417 5 e 0 5 3

*9 o l? . _ 4 E- q 056053

R in ...... .... .. o00 -

_061.
L 14 15 Sol!9 062
C 1~ 320-8 063

~ 1~ 064

C 17 "p a -_ ............ .... . . ... 06"
.C _* 17 30F-12 070ff T.F071
SA *7,OE-12 C72c I I 9od1213

S........... ..

C- IT 2.(1 7

,, -. '~....o.--...... .. . .. .... .. C76,
1?Il 4.0E-12 ~ 378

C L e-- 0 . • - . 080

084

101 149 * 1EV4 00
,9 . •..... .~... •.090
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II

*PASSvE COMP0NEN92

C 21 1.01-09 ____ 0.94
C 2m 271-s-12 095
C .1 096__ __ _ _ _ .~ ...

L2-1 25 97.1-08

4NOD 099i$y9. _

** ~~1PARA%¶ETgRS _______

4.5 8.73 506 .086 101

1#4F-12 1.0 isOE-12 7.SE-910

101i
..!±aOF .- 03 ARANf4~tLR&. _______ 1C6

*lPAS.%!VF COMPONENTS 10
R 2).01 ~ _ _ _ _ - . ~ .~8
C 24 26 1.91-12 109
L U4 29 soooe-6 - U -L9

C 24 20.01-1211
L 6 R 3*00F-6 .... _ _ __ _ __ _ _ ... 112
4 2A 29 1.01.0411

~J~il ~ -_____114

C 27 91.1-12 115
-- 20 1.0*E1. .116

Q 20 #OE+S117

C 2#6 29-*~DE1 119
__±_____ 120

NO 27
*0WTUT~tJ ________
NJODE 27 j

*STAQT SEGN'ENT
NODEN~0 129

*PAS!v~co~b~~s - ~130
-R 1. . 2 _ _ 20# 132

R 0 150. 134 7

0 ISO*137

R 4 139

IMF-
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D *TA~!SSO~140

*"1 0'4FAY0L F IER 142
*4 0! IF DEA'¶PLIFER 143

-.. -144

.8QE'-12148
**!Nt¶ 11 PqEAuPIPI~ER 149
*DASA!I;E COMPONENTS 150
q 7 0, 24tl0. 151

C 7 0 X#F-912

C & 8 ISR-9154

R 0 1222 0 o1
156

%I 0f . 158

y9.. . 159
1 IFPR0EAVOLtFIER10

5.0 7.2n' 200. .33 163
1*45 F-34*2 E-1110 72 162

*'50-12100 *060 7o5-
1.0 l44S+6 .164

P8EAML!W!~165

*PASAIVIF COYP'ONENS 167
'1 01 168

11 26 3100.O IAQ
.J.11 26 2*SF-6 .17.1

Q26 n, 1500. 171
C P C le.-9 172

C 1 0 18.,E-12 173
C 11 13 2*2f~z-1Z 174
-4 11 ' 4'? 1). 175
L * 1' 0 2.AF-6 176
*C '~14 22~1 177
C *14 0 68oE-12 178
q 14 15 470s 179
q 15 0 47.00. Inc

* T qAVR e TO
NODlE 5 Q

6 fJ{ -EA WOL~ IE 143
*0' tP PRAM~OLI..IE1 4 .'

g, 1. lq 700. 013 185
4.P.~1'9 E-00114. 8

V19
01 PQAMP~P~~q190
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4PASý!IN CMPý eT 191
q 1$ 0 J j...... .- 192
C 1i 0 1,[-9 193
q 17 0 10000 194
C 17 19 1#F4 9
R 10 23 4706 196

NCD `4 199

04 201

-,, +.:._ R1A S o _202

.17 , ._..00 .. ... .. 203
2 5- E-! 5 - 2C-4

3_, - 1_.62E6 205

. .+?_ •_~zv?__o.gaoQy•m s....... ........- -c**ENPý 14 02~MZ~ItA707
*PASSIVECOYPONENTS - .2CS

2 0 01 209
,++C V• 0 15o[-12 210

L 27 ff 2a8E-.6 211

R 22 27 100000 212

C 2C _ 2 7o0.- 1.. . . . .214,
C 27 24 2#4.-lP 215

. 24 . 22#E-12 ... 16

q 24 25 4700.
L _24 ~. _ iE-6 ZIA

"_ P±QJT SELECT.. 22C
NO(rDE 2r 221
.OuTnWT .27
N, jODE 25 223S+)•** M.-pUT N9.2_E JS* _..* .L.. .**.... .... 224

"*vD SFGVENT 225
?,1.4 HZ IF AWPLIF!FR 226

* . INPUT NODE 15 * 140* . 227
.*STAgT SEG ,!... ... 228

" FN TOQ . .. .... 229
23C

*PAS91'VF COM4PONENTS 231
S -.. . 1,0 . .. 32
S1 2I AA s31

R 0 1100,. 234
C ' 3 100•-9 235

R 1 0 190E4

... , .'_._+. _ ___L _ . . " 3A"P40

* IF AMPLIFIER 01 241

'i -- _.J.,.+?'+L_..jO. Z,•4-. .. .+ 33+•-. . ......... .. ,, +4
i-.5L,?F-3 1.l~om- 0.2948l 32.44

•:. m. 45.79 2.5E6 u ,

247
.* eND IF AMPLIFIER 01 247

E 1J.E4.JL FIEPR .Q.L 4

6 93
• • ............ 6 3 '



*PASSIVE COM¶PONENTS 249
47 250

9 1 2.2FI 251
S. 7 .i.. - 7

7.53

** ! AvOLAFIER 12 4

-....-- 256
**IF AM.PLIFIFr 02 251

ýýi SF3 ?p44.4 759

7soe 2 *5 S ?6
0. 1039F-12 . 262

w** '*I? FAMLFIR0 763
** I :F A'ADLIF!F9 02 P64

*DS i ýCCVP0NENTS 265
9- - s ý -0- --_ _.1.. . . . . .- .- - -- .. -- , ...- - -- 266

c I" f, 1 . 2-1 2 267
V, l 12 2091SF-6?6

9 1~12 2.*E'* .. .269

.2 15. P-12 2^
CL 1-f 27 1

R 1' 1 .g 77i
(* 114 0 15.E-12 774

L114 14 3098F-6 7
R 1l 14 1 GE5 276
C 14 (0 150*d-12 777

14 0 7 279
914% 01 1.F4 28C1

vv D OF K'IRST HALF OF IF A"DLPER 281
*TRANIS!STOR ZP2

NODF 15 /A
%FAMPLIP:Fl ~11 A

4073 pnof #1378A
1,64F-3 00130 0'463 41.Fh 2FP7

4.609V-12 1.08 3*24F-11 2*4F-9 7 0
".141 2o5E6 9

0* 1.0r)F12.-290
z.iv ~ F 'AMWLF IE 291

F*k* I F A4PLIFER 03 292
*I'ASqNF'C0~b0NENYS 293
a It 19 47* 294
Q 1IQ 295
C 1j 0 1.- ... .296
R f7 23 297

*TRANtATOR29R
*0 10 AMPLIFERd 04 299
NODE 20 0

So 12.00.) po .33 3C2

I#',"2. .0 *6P-11 .2*4E-R 0

Of 1*35E-12 3U~6
IFAW)LV9 04 307

**END IF AMPL.IFIER 04SU
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4PRIA IvwCQ'IPQNVO a 309
4 0'h 310

24 .Y))~314

0 ~ I. 313

16 la.eA .2 -12 117

~ A 0 304E) 1
C PA S 3~~. 20

27 2z at~
4 "Is 0 3230

N0 ~ 28 326

*CooT 2"U 327

'40 i'TOUT NME 15 329
*PNID 5rQMFrNT 330
*FNO 33)

33
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ý7 ,. VT,

The receiver analysis uses the SIGNCAP cascade software.

-Me first data card is the *CASCADE. Cards 1 through 125 define

he first segment, 126 through 225 the second segment, and 226

through 331 the third segment. The *AND card, 332, terminates

the data input. Each segment has a *PRINT SELECT, which selects

the output node as the only one to be printed, and an *OUTPUT

card to define the output node. These are coded in lines

120-123, 220-223, and 3000 , for segments 1, 2, and 3, respect-

ively. Segments 2 and 3 have their inputs defined by the

*GENERATOR cards, lines 129-130, and 229-230, respectively.

The remainder of the coding is straightforward, being

divided into passive components and transistors.

69
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APPENDIX B

NONLINEAR MODELING FROM TRANSISTOR
SPECIFICATION DATA

Much of the information needed to paramdterize a transistor

model is available in the specification sheets for the transistor.

It must be recognized from the outset that the quality of speci-

fication sheets is variable, some being exhaustive and some con-

taining virtually no useful modeling information. It must also

be recognized that a specification sheet represents a "typical"

transistor of a certain family, and there is no reason to assume

that a given transistor of this type will conform to the typical

in detail.

In addition to specification sheets, parameter information

is available in specialized handbooks. One such source is the

Transistor and Diode Model Handbook, compiled for the Air Force

Weapons Laboratory by IBM (Cordwell, 1969).

In this appendix we will model a 2N918 NPN bipolar transistor

using typical specification data. Specification data is shown

in Figs. B.1 - B.4. These data are an example of specification

data containing a large amount of useful information. From the

data one can model almost the complete transistor. The model

"parameters derived from the specification data will be compared

with 2N918 parameters listed in the Transistor and Diode Handbook.

Where parameters are not available from the specifir 4Fon data

.but are available in the handbook, the handbook v& . ..l be

used.
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rvA,'

41,

"Ph s•• •I QiO tion dat~a does not give the balle,,Itte diode

currnt-voltage curve# no the diode nion-tWea1iy factor? 061111tli 'w

be derived. As a default value it aun bo se1 equal to unity*

Whe hanidbookc has t~he r~e3atiollohip

OC~T

I.TAkill tile tomperatuve T to bo 250CC 1T/q 25 29 MV and A
1.02. (B.2

Who default vl•lu of unity can also be used..,,

B.2• hip• Nonlindarity ,

Curves of b Va. X are shown for temperatures of -55°C,
0 4 025 Co and 1000C on Figure B.3. At 25 C it is seen that

b- 49, (D.3)

IC - 7 mA. (S.4)
cmax

Z, 38a 1 *loOmA.(8)

iBased on theme values from 9q. (5.54), It

x'A

a a
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&VTho value odhf* is also 49 at 104c and# frm q (5.55), 49.3
at I M~. The handboolt referonoe (Cordtwell, 1969) given %w. 069777#
Whieh implies an h~ of 44. Table 2,1 showa the value. of h
ta~cen from~ V'iure li.3 and qiiputed using Eq. (5.54). The match

is4o t egodoerterange 0.1 mh to 10 PA. 3,)

Fhrw is te (5,49) -emitter (S.52) igvltg ndV i

Equation~~~(B (B7)anb eritna

The data needed to solve Eq. (B.8) for n~ are found on the common
emitter collector curves in Figure B.1. The sustaining voltage i

seen to be about 18-ygts. Furthermore, at 16 volt VCE' the ratio

of the collector current to the extrapolated collector current,

at 0 volt V... for a constant base cuirrent, is approximately

2..72. *Thereford:

-1 2.72. (B. 9)

1 .88. (p,.10)
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Tab< s.1. 4

MIS3 b Values.

0a~.405# 1 mA

max

PE
Colleoctor ro from

Fjq(S 8.§a,(,4) AA

L~~ .. MA. 1820.6

~ :.. 5 30 32

138 38

5 48 .45

10 48 45

VA
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R4Collector Capacitanoa Lonxi~rt

The coo~latozr-base capacitance is shown as a function Of

coll.ector bias on"'kigura B.31 the curve markced "guarded measure-

men~ft" in the degIred junction capacitance. It is seen to have

alow-volt ae value of 1.3, pr., a-0.3 volt, value of 1. 2 p!P, and

a 30 volt value of.0.5 VP. Using Squa,ýLon '(5..14)

'A~~~ (0)). ~.l

results in

C c(0) - 1. 3 pp. (B. 12)

Fuirthermores it can be seen that for voltages greater than 1 Volt,

the slope of the capacitance-voltage curve is constant. There-
fore, we find:

0.26# (B. 13)

with C(0) and 4. kcnown, 0 can be determined by using the 0.3 Volt

capacitance value, or

- 0.30 -~--------- =0.78 Volt. (B. 14)

Lr(bý J-3

Cordwell (1969) has ýi 0.2, 0-1.0 Vs and C(0) 2.4 pF.
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3.5 'Emitter Capaciac N-Linear "t

Figure B.2 has contours of constant fT' plotted as a falnc_

tion of I and V *From Equation's (5.81) and (5.42),
C CEO

I -3
Y"C _77..~6 l x 0 ' (B.15).2 2vf r f 2nkTfE

T e T T

where Iis "in" milliamperes. C can be found directly from
thi fdata, and is. shown as a fuziction of I for V -10 Volts

on Figure B.5. From this it is seen that .-

4 C pF-, (B.16)
je

C 6.57 pF/niA. (B. 17)_

For currents greater than 16 mPL the increase of 2 is faster

than linear, and higher-order terms would have to be added to

the C 2 Taylor series to model the C 2 nonlinearity in this region.

B.6 Base Resistance

The base resistance can be found from the y,, data in

Figure 3.4. At low frequencies

~ie r +bf re

From Figure~ 3.4, at 10.7 NMz and 10 ha,~ is 1. 9 M~ho. Since

bf is approximately 50

rb yi eX

-395 ohms. (B.20)

Cordwell (1969) has -b 280 ohms.
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B.7 Collector Resistance

The collector resistance can be found from the common-

emitter collector curves. In the absence of avalanche effects,

the slope of the common emitter family is r (1-a ) ohms. While
C 0

;r is assumto be independent of the operating point, it actu-

ally is operating point dependent. As a typical value, taking
a to be .98, which is consistant with an h of 50, the .02 mA

0 fe
base-current common-emitter curve of Figure B.1 gives:

r 1.5 Megobms. (B.21)

B.8 Capacitances C and C
1 3

These parasitic capacitances can be found from the y-parameter
data. Using the 500 MHz data and Equations (5.86) and (5.88)

-Im (Yl2e)
C3  2trf f=5xl08  (B.22)

= 1.1 pF, (B.23)

c +C Im(Ylle) (B.24)
1 3 21Tf jf=5xlO8

= 3.82 pF. (B.25)

Therefore:

C1  2.72 pP. (B.26)

B.9. Summary of 2N918 Parameters

A summary of the 2N918 parameters derived in this Appendix

is shown in Tabln B.2.
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S, GLOSSARY OF: PRIN~CIPAL SYMBOLS

4 Following is a list of the principal symbols that appear
W ~

in this book, along with identification as to where the symbol

is-'first used. Most of the symbols appear throughout the book.

Certain symbols which are used only in the development of more

general relations in one section are not included. A few con-

ventions followed throughout the book are:

1.* E indicates summation-over the index k
kc

2. TT indicates multiplication over the index kc
kc

3. indicates a complex conjugate

4. '~indicates bandlimiting of a function

5. an underbak;ý., indicates a vector quantity.

In addition to this glossary, Table 3.7, pp 201-204, lists

the key symbols used in Chapter 3, Canonic~ Models for Nonlinear

Systems.
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GLOSSARY OF PRINCIPAL SYMBOLS

A a constant matrix (Eq. 4.84)
An(f 1 f 2 ...fd) a nonlinear transfer function of

order n (Eq. 2.29)

A1 ,A2  amplitudes of interfering tones (Eq. 1,3)
a • 2-onlinearity parameter (Eq. 5.54)
Sa(t) in-phase component of a complex

signal (Sec. 3.2)
a power-series coefficient (Eq. 1. 1)
n

eq thae nequivalent n -order power seriesn coefficient (Eq. 7.78)

a Fourier expansion amplitude of aq(t) (Eq. 4.24)
pqq

Sdiode exponential parameter (Eq. 4.2)

aj integration rule coefficient (Eq. 4.131)
Qo transistor small-signal common-baselinear current gain (Sec. 5.3.1)

a'1 2  modulation amplitudes (Eq. 3.81)

B bandwidth of a signal (Eq. 3.56)
B (f 0.f a nonlinear transfer function of (Eq. 2.30)order n
B n(i) nonlinear product coefficient (Eq. 1.50)

b(t) Voýxature component of a complex
-signal (Sec. 3.2)
intugration rule coefficient (Eq. 4.131)

C h numerical coefficient (Eq. 2.3)
C transistor base-emitter header1 capacitance (Sec. 5.3.1)
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C transistor fixed collector-base
capacitance (Sec. 5.3.1)

Cc transistor collector capacitance (Sec. 5...6W

C transisto~r diffusion capacitance (Sec,. 5.3.1)
I*. D

Ct derivative of C with reahWot to I (Sq. 5.82)* d 2B

C -'ý-.ranisistor space charge layer
capacitance (Sec. 5.3.1)

c~ f1 ~ 2.. f) a;'nonlinear transfer function of
order n (Sec. 2.2.2)

Cth-order transfer function of a.
nstage (Eq. 2.174)

C nthorder transfer function of 0
nstage (Eq. 2.174)

Ccoc complex conjugate (Eq. 2.6)

D pentode current division ratio (Eq. 5.116)

6()unit impulse (Eq. 1.35)

e .plate-cathode voltage (Eq. 5.95)

Ba perveance cutoff voltage (Eq. 5. 110)0max

8n(f I f2..fn nt odrnonlinear transfer function (Eq. 2.154)

avalanche coefficient (Eq. 5.4)

1' £ )regular homogeneous functional of
ndegree n (Eq. 1.9)

ifn(flof 00-fn nth-order nonlinear transfer function (Eq. 2.155)

f frequency in hertz (Eq. 1.30)
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f two-input frequency vector (Eq. 2.203)

f(xu) a nonlinear matrix (Eq. 4.84)

f a transistor common-base half-power
frequency (Sec. 5.3.1)

f general output frequency (Eq. 1.47)

transistor common-emitter half-
power frequency (Sec. 5.3.1i1

G perveance (Eq. 5.95)

G insertion gain (-q. 6.7)

Gn(_f-,O) n•arrowband !owpass nonlinear (Eq. 3.28)
transfer function

G(v2 "v3 ) zero-memory voltage dependent
nonlinearity (Eq. 2.22)

G[x(t)] functional series expansion (Eq. 1.10)

transconductance (Eq. 5.107)

zero-memory voltage dependent
nonlinearity coefficients (Eq. 2.22)!i ^ n~thore
n -order current source (Eq. 2,71)

Smth-order interaction current source (Eq. 2.72)

narrowband lowpass nonlinear impulse
response (Eq. 3.27)
transducer gain (Eq. 6.1)

• ¥charge power series coefficients (Eq. 2.84)

SHm+n m+n order two-input nonlino~r trans-
fer function (Eq. 2.201)s• • n n~th ° de
n -order current source (Eq. 2.81)

Hn(fl~f2..fn) nonlinear transfer function of order
nn n (S2q. 1.30)
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A7

no mth-order interactive currant source (Eq. 2.80)

Hn (t11) nth-order time-varying noalinear
transfer function (Eq. 4.42)

Heq(fl f2.. "i 0 ) equivalent n t-order nonlinear
transfer function (Eq. 1.59)

h integration step size (Eq. 4.131)

hPE ratio of DC collector-to-base
current (Eq. 5.44)

hfe transistor small-signal linear
common-emitter current gain (Sec. 5.3.1)

hi,hr,hf,h H parameters (Eq. 5.26)

h m+n th-order two-input nonlinear
impulse response (Eq. 2.200)

h n(t) n th-order time-varying nonlinear
impulse response (Eq. 4.39)

hn(,•,2.T3 n th-order nonlinear impulse response (Eq. 1.12)

identity matrix (Eq. 4.162)

1 Cmax collector current for maximum h ,E (Eq. 5.54)

nth-order intercept (Fig. 6.3)In

I diode saturation current (Eq. 4.2)

1 11 (t), 2 (t) interfering signals (Eq. 1.2)

I MO Norton current source (Eq. 2.179)
2
1 0 operating-point current (Eq. 4.9)

r r resistor current (Eq. 1.15)

i Space charge current (Eq. 5.95)

i(t) perturbation currentr. (Eq. 4.9)

j loop current (Eq. 4.1)
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K zero-memory voltage nonlinea~rity
coefficients (Eq. 2.14)

A 
tK nth-order current source (Eq. 2.40)An th or e

K m interactive current source (Eq. 2.46)fnm
K(V) zero-memory voltage nonlinearity (Eq. 2.13)
k Boltzman's constant (Eq. 5.1)
k nonlinear resistor coefficients (Eq. 1.15)n
k(x,u) a nonlinear matrix (Eq. 4.85)

k n (1' g2" "n) n th -order Volterra kernel (Eq. 1. 9)

X Eigenvalue (Eq. 4.132)

M avalanche multiplication factor (Eq. 5.4)
m pentode parameter (Eq. 5.116)
m vector of index variables (Eq. 1.49)
m. index variable (Eq. 1.48)1

m(t) amplitude modulation (Eq. 1.5)
semiconductor capacitance exponent (Eq. 5.2)

Svacuum tube amplification factor (Eq. 5#102)

ýi' 2 modulation frequencies (Eq. 3.82)

n diode ideality factor (Eq. 5.5)
n order of a nonlinearity (Eq. 1.1)

(nmlm2 . .- mM) multinomial coefficient (Sec. 2.1.2)
V a center frequency (Eq. 3.21)
V a vector of center frequencies (Sec. 3.2)

V center frequency of a narrowband
signal (Sec. 3.2)
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radian frequency (Eq. 1.3)

thn -order delivered power, dBm (Eq. 6.5)0n

n n -order output power for 0 dBmn inputs (Eq. 6.72)

P(t;v) intermodulation waveform (Eq. 3.17)

Pa source available power (Eq. 6.1)

Pn n t-order delivered power (watts) (Eq. 6.1)

Pr a reference power (Eq. 6.3)

(pq) mixer (p,q) response index (Sec. 1.9.2)

flux (Eq. 2.62)

_N(t) transition matrix (Eq. 4.159)

internal diode barrier potential (Eq. 5.2)

0 a vacuum tube potential (Eq. 5.101)

00 phase (Sec. 3.5.2.2)

0 flux power series coefficients (Eq. 2.85)n
0 pq Fourier expansion phase of a q(t) (Eq. 4.24)

Qb charge control model base charge (Eq. 5.90)

Q n(f) spectrum of q n(t) (Eq. 3.32)

QO() capacitance charge (Eq. 2.84)

q electron charge (Eq. 5.1)

qn(t) complex envelope of yn (t) (Eq. 3.24)

qn_(t) complex envelope of yn2(t) (Eq. 3.25)
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. ... Re ]the real-part of (Eq. 2.2)
R(1) zero-memory current nonlinearity (Eq. 2.16)

R zero-memory current nonlinearity

n coefficients (Eq. 2.18)

rb transistor base spreading resistance (Sec. 5.3.1)

r transistor collector resistance (Sec. 5.3.1)

r transistor base-emitter resistance (Sec. 5.3.1)
e

rp plate resistance (Eq. 5.107)

S. elastance (Eq. 5.3)

$1 amplitude of desired tone (Eq. 1.3)

} S parameters (Eq. 5.35)

s22

Sl(t) desired signal (Eq. 1.2)

Stime-domain variable (Eq. 1.22)

T absolute temperature (Eq. 5.1)

T impedance correction factor (Eq... (2.178)

T time-domain variable (Eq. 1.12)

U nnth order quadratic functions (Eq. 2.97)

U nnth order quadratic function vector (Eq. 2.98)
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••U large-signal source voltage (Eq. 4.1)

Ud voltage across a diode (Eq. 4.1)

u (iU) operating-point diode voltage (Eq. 4.10)

:.;,.

VD avalanche breakdown voltage .(Eq. 5.4)

VCBO sustaining voltage (Eq. 5.45)

v element voltage (Eq. 1.15)

vd diode perturbation voltage (Eq. 4.10)

v (t) Thevenin generator voltage (Eq. 2.19)
g

X(f) voltage spectrum of x(t) (Eq. 1.32)

Xo Xcksk spectral amplitudes (Eq. 3.85)

x(t) system time-domain input (Eq. 1.1)

Y(f) voltage spectrum of y(t) (Eq. 1.33)

Y(p) admittance operator (Eq. 2.25)

admittance operator matrix (Eq. 2.27)

Yioyryf,yO Y parameters (Eq. 5.23)

Yo'Yck'Ysk spectral amplitudes (Eq. 3.85)

y(t) system time-domain output (Eq. 1.1)
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Z(f) Mspectrum of z(t) (Eq. 3.7)

Sinput impedance of • stage (Sec. 2.3.3.2)',

0ii • .* ooutput, impe', ,ce of • stage (Eq. 2. 178)

z.(t) complex e,.pe of x(t) (Eq. 3.3)
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.SUBJECT IbDEX.

Adjacent channel, 5, 153 VHF, 492, 537
2C Admittance ma-trix, 55 Detector,'537

AGC, 5, 277, 537,*544 IF amplifier, 498, 528, 561,
Alpha, 309 "567, 570
Analytic system, 46 Image response, 549
Antenna, 5 Modeling,-501
A-stable, 262 Pre-IF amplifier, 496, 524
Avalanche breakdown, 2'83,:324 RP tuner, 492,.514, 590
Avalanche noniinearity, SIGNCAP coding, 689

transistor, 85, 324 Complex signal, 27, 41
Compression, 9, 10,31,153,435,561
Convolution, 19

Base resistance, 342 Corrector, 259
Branch, 239 Crossmodulation, 9,11,153,170,567,
Breakldown.voltage, 283 570, 590

* Current controlled nonlinearity, 64
Cutoff frequency, 309

Cascade, 99, 552, 636
C Canonic model, 2, 41, 139,

583 Demodulator, 3 ,
Frequency power series, Detector, 537,538,541

140,149,194,583 Dependent nonlinearity, 53,68
AM-FM, 172 Depletion layer capacitance,
FM-AM, 184 278,308
AM-FM, 190 Desensitization, 9,10,31,170,450
FM-FM, 190 Diffusion capacitance, 285,307

Tapped delay line, Diode, 208,277
140,161,590 Ideality factor, 297,322

Circuit analysis, small Junction, 277, 288
signal, 40,48,73 Vacuum, 356

Cochannel, 5, 153
Coherency, 38
Collector capacitance, 337 Ebers-Moll, 303,319
Collector resistance, 343 Eigenvalue, 261
Communications receiver, 3 Emitter capacitance, 338,340

HF, 609 Equivalent nonlinear transfer
Equivalent power function, 37,517,549,631

series, 631 Excess elements, 239
Interstage networks, Explicit integration, 259

614 Exponential nonlinearity, 85,318,411
Mixers, 630
"Operating points, 627
RF amplifier, 633
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Fourier transform, 1,25,147, Memory, 7,9.13,25,49
163,258 Memory nonlinearity, 53,71

N Funxctional, 13 Mixer, 3,36,403,430,
* Frequency conversion, 36 (p,q) response, 37

Frequency dimain, 52, 506 Multinomial, 44,60,97
Multiple.input nodes, 128

. - Multiple- signals, 5,8,30
. H parameters, 310

Hysteresis, 47
hpE nonlinearity, 85,328 Narrowband, 5

. hfe, 309, 330 4,nal. 140
9.,4toki-:Rhapson, 205, 263
.1omfml receiver, 601,697

"IF, 37 No6Yd near
Image response, 549 capacitance, 85
"Impedance,. 5 Circuit, 1,8,15
Implicit integration, 259 Conductance, 53,54
Inband, 5 Current generator,
Incremental model, 276 transistor, 332
Input impedance, 614 Differential equations., 207
Insertion gain, 394,505, Impulse response, 1,8,20,23,

524,534 142
Interaction, 99 Inductance, 67
Intercept, 405,423 Resistor, 16,53,65
Intermodulation, 9,12,31,43, System, 1

144,153,423,445,458,459 Transfer function, 1,8,55,105,
Interstage network modeling, 142,421,445,517,526,535,

505 549,609
Numerical integration, 1,210,258

Jacobian, 251
Operator, 54
Operating point, 227

Kirchoff's voltage law, 208 Equation, 213,248
Order, 15,259
Out-of-band, 5

Large signal, 2,47,205,208,
210,465,609

Link., 239 Parisitic parameters, 510
Local oscillator, 38,219,504 Periodic solution, 206,270
Loop 4kqM~tion, 208 Perturbation, 206,212

Perturbation equation, 21:3,224,
248,270

Phase, 38
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v".Qwer Amplifier
Available, 392 large-signal, 465
Delivered, 392,403,409 single-stage, 415
Series, 7,9.26,210,636 two-stage, 440
Small signal limit, 403, Model

411 charge-control bipolar, 350
field effect, 349
bipolar nonlinear T, 83,305,

Recurrence, 90 316,344
Reversion of series, 218,335 Parameters

2K918, 708
Spntom12N2950, 345,415
II Sampling theorem, 162 SA395, 444 -
&,parameters, 313 Tree, 239
SIGNCAP, 38,552,609,643 Truncation, 47
Small signals, 2,47,403,411,

425
Specification sheet modeling, Unit impulse, 25,27

697
Spectrum, 24,147

Signature, 9 Vacuum tube, 3,356
Stability, 260 Amplifier
State equation, 207,236 triode, 453
Step size, 259 pentode, 459
Stiff equations, 207,261 Diode, 359
Strongly drive, see large Parameters, 39Q,456,461

signal Pentode, 374
Sustaining voltage, 327 Triode, 359
Symmetric, 45,62 Vector-matrix differential

equation, 238,268

Taylor series, 23,49,64,154, Volterra series, 7,14,24,46,205

211,276
Thevenin, 114 Waveform distortion, 570
Time Wideband, 5

domain, 205
varying coefficients, 217
varying linear differen- Y parameters, 310

tial equation, 225
... arying Volterra series,

205,223,226,265 Z parameters, 637
Total model, 276,467
Transducer gain, 392
Transistor, 3,303
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