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PROPERTIES OF UNIFORM COHERENT 

FREQUENCY-JUMP WAVEFORMS 

Abstract 

A frequency-jump burst wa^form is a sequence of pulses each 

having the same complex envelope Dut a different center frequency. When 

transmitted and received coherently, such a sequence has a range resolu¬ 

tion which corresponds to the total bandwidth of the waveform, which may 

be much greater than that of the receiver IF and video circuitry. Frequency- 

jump burst waveforms which consist of linear FM pulses uniformly spaced 

in time and center frequency are considered. Their resolution and ambiguity 

properties are derived and certain error sources analyzed. In particular, 

waveforms which are implementable in TRADEX are proposed and evaluated. 

Accepted for the Air Force 
Joseph J. Whelan, USAF 
Acting Chief, Lincoln Laboratory Liaison Office 
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1.0 INTRODUCTION 

In certain applications there is a need for radar waveforms having 

very fine range and/or velocity resolution. Many waveforms can be de¬ 

signed to provide the required resolution, but not all are realizable since 

the hardware performance of existing radar systems places constraints 

upon the implementation of fine resolution waveforms. Therefore, it is 

within such constraints that practical waveform design must be carried 

out. 

Generally, high resolution waveforms have been mainly limited by 

the time-bandwidth (TW) product permitted by the hardware technology. 

The waveform design process can then be loosely described as one whose 

objective is to achieve sufficiently large values of T and W to satisfy 

requirements for velocity and range resolution respectively while remain¬ 

ing constrained to an achievable TW product. 

A severe constraint on any radar system is the bandwidth of the 

circuitry. Large bandwidths required for fine range resolution may not 

be practical. An alternative to a wideband system is a narrowband 

system with the capability of shifting its pass-band sufficiently to cover 

the required bandwidth. By transmitting a coherent sequence of narrow- 

band pulses with frequency shifts between pulses, a range resolution 

capability similar to that for a single pulse with the same overall band¬ 

width can be achieved. 

The use of coherent sequences of pulses is a straightforward 

technique for controlling the TW product of a waveform. Such coherent 

sequences are studied in this report. In particular, attention is given to 

coherent pulse trains having uniform time and frequency spacings. After 

giving a qualitative description of some pertinent waveform properties in 

Section 2.0, the quantitative information that is pre-requisite to choosing 

satisfactory waveforms is provided in Section 3.0. Further, certain 

system considerations which are critical to the implementation of these 

waveforms are analyzed in Section 4. 0 for the purpose of establishing 

1 
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operating requirements. A summary of the salient features of this study 

is presented in Section 5.0. The Appendices of Section 6.0 contain rele¬ 

vant mathematical developments and a summary of properties of frequency- 

jump burst waveforms implementable in TRADEX. 
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2.0 WAVEFORM PROPERTIES 

In this section, a qualitative discussion of some fundamental 

signal properties is given in the framework of the design of fine resolution 

coherent waveforms. In order to preserve some generality, the concepts 

of range resolution and velocity resolution are replaced with the equiva¬ 

lent notions of time resolution and frequency resolution. When these 

concepts are applied to the problem of measuring range and velocity, the 

relationships between time and range and between frequency and velocity 

are established on a physical basis. 

2. 1 Resolution Properties 

The time resolution capability of a signal can be quantita¬ 

tively expressed in several ways. A useful measure that has practical 

importance is based upon the autocorrelation, 0 (t), of the signal, s(t). 

(2. 1) 

The utility of (2. 1) is due, in part, to the fact that for most radar systems 

the received signal is passed through a filter having nearly the same time 

response as the signal. Thus, the output of the radar receiver is <p (t). 

It is easy to show, using the Schwarz inequality, that ¢ (t) 

achieves its greatest magnitude when t=0. This property enables one of 

the correlating signals to be located in time when the time reference of 

the other is known. How well the time location can be measured will 

certainly depend upon the sharpness of the peak of 0 (t) about t = 0. The 

radius of curvature of the peak may be used as a measure of the time 

resolution capability of the signal. The radius of curvature of Q (t) at 

t * 0, which is the reciprocal of the second derivative of 0 (t) 

evaluated at t = 0, is 

(2.2) 

3 



The second integral is obtained using integration by parts. The third 

integral follows from Parseval's formula where S(co ) is the Fourier trans¬ 

form for (t). The last integral in (2.2) is recognized as the mean-squared 

(MS) bandwidth of^.(t) . The immediate conclusion is that for the measure 

postulated, the time resolution capability of a signal increases directly as 

the MS bandwidth. 

The absolute bandwidth of a strictly bandlimited signal is 

sometimes used to give a measure of the time resolution property of a 

signal. In general, this bandwidth does not imply anything about the re¬ 

solving property of signals except when dealing with particular classes of 

signals. The MS bandwidth is often much smaller than the square of 

the absolute bandwidth. One reason for the significance of the MS band¬ 

width as a measure of resolution capability is that it is also a measure 

of the spectral distribution of signal energy, as can be observed from the 

last integral of (2.2). If a significant portion of the signal energy is con¬ 

centrated at extreme frequencies, the MS bandwidth will be relatively 

large among the class of signals with the same absolute bandwidth. The 

resolving capability of the signal will then be relatively high. 

The duality of the Fourier transform pair enables one to 

make a similar argument for frequency resolution. Thus, the frequency 

resolution increases directly as the mean-squared time duration, 
OO 

Z 
dt. 

- 00 

2. 2 Uniform Coherent Pulse Trains 

Based upon a reasonable measure of resolution capability 

it has been shown that the mean squared bandwidth and time duration of a 

signal are parameters of fundamental importance. The mechanism by which 

uniform coherent pulse trains can be used to achieve fine resolution is now 

considered. First, a few preliminaries will be set down. 

1.a(í) is a unit energy signal i. e., 

(dt = 1 
-Oo 

4 
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Throughout this report, the only signals that will be con¬ 

sidered are linear FM pulses. A representation of a linear FM pulse is 

o(t) = • Sr 
o 

JTT 
e T 

a t- 
|t| - 
U I 2 

r 
2. 
T 
2 

where B is the instantaneous bandwidth in Hertz and T is the time duration 

in seconds. 

Let 

“A (t) = cj(-t~AA¿)e 
¿2n ¿Aft 

(2-3) 

be a time -delayed and frequency-shifted representation of the basic pulse 

w (t) with frequency shift and time shift &A¿ . A coherent train of 

N pulses can then be written as 

fr-f) 

2 
4 

(2.4) 

where.for convenience, N is assumed to be odd. The pulse train (2.4) is 

a sequence of pulses uniformly spaced in time and frequency. The time 

spacing is and the frequency spacing is Af • The restriction to uniform 

time and frequency spacings is made here for three reasons. First of all, 

the TRADEX frequency-jump burst waveform is initially planned to be 

uniform in this manner. Second, this is the case which is most easily 

understood, since it is in many ways a discrete analog of the ordinary 

linear FM waveform. Third, it is easily analyzed since the ambiguity 

function (see Section 2. 3) can be written in closed form. A qualitative 

examination of the time resolving properties of s(t) follows. 

Assume that s(t) has been time shifted an amount Z to 

produce s(t -T). 

(H->) 
2 

(N-t) 

A(t-x)= N Z (N_0 co^(t-r) - l £ 

4 = 4 = 
-(N-t) 

, t S j irràAft -jirriAf X 
cj(t-Z-*At)e ■ e 

(2.5) 

5 



The delay, z , is manifest through the phase factor e'-'2" T , When 

the shifted signal s(t- T ) is correlated with the reference signal s(t), as 

in (2. 1), it follows from (2. 1), (2. 4), and (2. 5) that 

»(rh/.«uît-r) dt - l a(t. .r.^tUtt {z b) 

’ 2 |r I < - r 
It has been assumed in arriving at (2. 6), that the pulse spacing, At , is 

greater than the pulse duration, 7 , so that the pulses do not overlap in 

time. The range of r is restricted so that adjacent pulses do not correlate. 

Comparing the integral in (2. 6) with equation (2. 1) shows 

that the integral is the autocorrelation function for the basic pulse and is 

independent of k. The variation of the integral due to changes in r will 

bj2nÍ8/rfrded COmPared WÍth the effect o£ vacations in the phase factors 

’( ~ ~z »"•»-j— J. Then, (2. 6) can be approximated as the sum of 

equal amplitude phasors, . With this approximation ie 

periodic in r . with period This period, which depends on only 

the interpulse frequency spacing, corresponds to a coarse time-range side- 

lobe. This will be shown later. 

There are additional periodicities in <p(r) that depend upon 

the number of pulses or, equivalently, the total bandwidth occupied by the 

N pulses. In (2. 6),the interpulse phase is the same for all successive 

pairs of pulses. Let this phase be ô = and consider the sum of 

equal amplitude phasors as shown in Figure 2. 1. 

Figure 2.1 SUM OF PHASE TERMS OF 0( 7 ) 
AT A PARTICULAR 7 ( 0 ) 



It is easily shown that the locus, as a function of 0 , for the tip of the 

resultant phasor, r, is as it appears in Figure 2.2. 

VERSUS V ( Q ) 

The locus in Figure 2.2 gives an approximate representation for the magni¬ 

tude of 0 (z) . The locus passes through the origin N-l times, defining a 

time sidelobe each time. It is easy to see that as the number of pulses 

increases, the variation of r in Figure 2.1 will be more rapid. This re¬ 

presentation graphically establishes the connection between the bandwidth 

and the time resolving property of <t> (t) (recall that 9 is a linear function 

of 7 ). Again, equivalent properties exist for frequency resolution. 

2. 3 Waveform Autocorrelation Function 

The two dimensional time-frequency autocorrelation function 

for s(t) is now developed. It expresses the time and frequency resolution 

characteristics jointly. 

A signal, s(t), which has its spectrum translated up in 

frequency by ^(Hz) can be written s(t)e . A two dimensional auto¬ 

correlation function can be obtained by inserting the factor e ¿nt0 

the integral in (2. 1). There are several ways to define the autocorrelation 

function. The most common definition will be used here: 

7 



(2.7) 

i I 

0fr,v)=f ^{t(t + $)eJZnVt dt 

For pulse trains of interest in this report, the time spacing 

between pulses is greater than the pulse duration. In addition, the time 

shift will always be small enough so that adjacent pulses of s(t) will not 

correlate. Then, from (2.3), (2.4), and (2.7), 

v)=0o(z, v) 
NTr (TAf +At v) 

H Su*, 7T (r Af + A±v ) 

(2.8) 

where 0o(ry)is the autocorrelation function for the waveform w(t). Inserting 

w(t) for s(t) in (7) gives 

<P0 (T, v) = 
\7i(BT-t-VT)(l- ■^P)] 

rr(BT+ VT) 

O 

\j \ ±T 

\r \ > T 

(2.9) 

The autocorrelation function (2. 8), in conjunction with (2. 9), 

forms the basis for this report. All the waveform parameters appear in 

(2.8) and (2.9). Section 3.0 will discuss the selection of these parameters 

for designing waveforms with desired resolution properties. 

0(t, v0 has been called the time-frequency autocorrelation 

function. In radar work it is normally called the ambiguity function. In 

that usage, range and velocity are the variables that usually appear as 

arguments. Target range and velocity manifest themselves as time delay 

and frequency shift respectively. It is shown in Appendix 6. 1 that the 

time-range and frequency-velocity transformations are 

2 r 
C 

(2. 10a) 

v = L!L f 
V c ^ (2.10b) 

where r is the target range, v is target velocity, fc is the radar carrier 

frequency and c is the speed of light. 

8 
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3.0 WAVEFORM DESIGN 

This section begins with an analysis of the structure of <fr (t, v) . 

Sidelobe weighting techniques are then discussed and design formulae for 

uniform coherent pulse trains are established. 

3. 1 Ambiguity Function Structure 

The expression of interest is the magnitude of the auto¬ 

correlation function ¢(1,1) . Combining (2.8) and (2.9), this can be 

written in terms of the product of two factors. 

I $ (r, V)\ = 
n(Bri-i>T)(f ~ ¿on N-nfr Art A■ , 

f 7 IT I 
n(sr + vt) /V 77-frAf + Ar t') 1 1 

£ At- T 
(3.1) 

The structure of the left factor, hereafter called the pulse factor, is 

examined first. This factor is dependent on only the basic pulse para¬ 

meters B and T . In general, for practical radar waveforms, the values 

of &,T and V are such that the denominator (Ær + fT) becomes very large 

before the factor (/- y-') differs significantly from unity. Therefore, a 

good approximation to the pulse factor in (3. 1) is 

, A¿n\n(BT+VT)(l-^)\ ¿usn TT ( BT + Vf) 

$o(r, y) = rr(8T + 1>T) rr (&T + l?T (3- 2) 

This function is zero whenever AT* VT =-/7, where 77 = 1,2, ... It has 

its peak value of unity where BT+VT - 0. These features are illustrated 

in Figure 3. 1 which shows, as dashed lines, the loci of the zeros of <p0 

in the ( T, V) plane. Between each pair of dashed lines is a ridge or lobe. 

The main lobe passes through the center of the coordinates and has a width 

2/ß in the T direction. 

The structure of the right factor is similarly examined. 

This factor, hereafter called the array factor, is zero where (rAf+ At 0 ) 

= j|_ for all integer values of £ except those for which ¿/V is an integer. 

The magnitude of the array factor is unity when (r*-Atp) = - <7, n = 0, 7,2,.., 

It is periodic in r with period tf)= and periodic in with period 

= 1¡At . It also has zeros with r-periodicity i/yVA^aud ^-periodicity 

l/VAt . The loci of the unity values for the array factor are shown as 

the straight lines in Figure 3. 1. The loci of the zeros are not shown, but 

9 
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would appear as N-l lines uniformly spaced between each pair of straight 

solid Imes. The signal behavior illustrated in Figures 2. 1 and 2.2 is 

manifest in (3. 1) as the array factor. 

The structure of the array factor along the 7-axis ( P-0) is 

shown in Figure 3.2. Similarly shown is the structure of the pulse factor 

in (3.1). 

PULSE FACTOR ARRAY FACTOR 

Figure 3.2 FACTORS OF THE AMBIGUITY FUNCTION 

The parameters e,r,A^,At and N will generally be such that the array 

factor will have a much finer lobe structure than the pulse factor. When 

this situation prevails, it is convenient to view the array factor as a 

sampling function that is modulated by the pulse factor in order to give 

<f>(r,V). With this interpretation of the behavior of the two factors in 

equation (3. 1), the resultant | <p(r, t>)|can be sketched in Figure 3. 1. 

Figure 3. 1 shows, as the solid ellipses, the principal lobes 

of These lobes represent the sampling of the pulse factor with 

11 
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the main lobes of the array factor. The resultant structure is seen to be 

dominated by the array factor. That is,the time-frequency coupling is 

determined largely by parameters affecting only the array factor. 

Figure 3.2 shows that ¡0í?,yj¡ possesses many sidelobes 

in the vicinity of the main lobe. For a waveform to be most effective in 

typical radar environments, it should ideally be unimodal. Within practical 

constraints it is not possible to obtain a unimodal 0(^,1/) . It is possible, 

however, to reduce sidelobe strength relative to the main lobe strength 

so that sidelobe problems are greatly minimized if not eliminated. The 

next section discusses a technique for reducing sidelobes. 

3. 2 Single-Pulse Sidelobe Suppression 

The most common of the techniques for reducing sidelobes 

makes use of what is called a transversal filter or transversal equalizer. 

The transversal filter, -A (i) , can be characterized by its impulse response: 

4 (t) = z a^óft-bj) (3.3) 

where á[-t) is the unit impulse. For Hamming weighting,/^1 = 1, (2/- <2, = 

0.426, Q-0- \,bQ-0 , and bj- - b_f . Taylor weighting uses M > 1, = (2^ 

and 6$- Taylor weighting and Hamming weighting produce very 

similar results; therefore, only Hamming weighting will be considered . 

The transversal filter exploits the periodicity inherent in 

the waveform sidelobe structure. This can be illustrated by example for 

a signal consisting of a single linear FM pulse. Let the autocorrelation 

for the signal be 

¢0 (T, V) 
.¿¿n nÇBZ-huT) 

ttCbt + UT) (3.4) 

(3.4) is obtained from (3.2). A profile of this function for constant V is 

shown as a solid curve in Figure 3.3. When (3.4) is Hamming-filtered 

with , the weighted or equalized function, 0OW(T, is) . is 

12 



Figure 3.3 HAMMING WEIGHTING 

<t>ow(r,v) = 0.+2(. <pc(z+ -z- ,v) + <Po(*> v)+ o. + zu <pc (r-¿ ; v) 
(3.5) 

The amplitude-scaled and T -translated waveforms are shown as the dashed 

curves inFigure 3. 3. It is apparent that the technique of equalization is to 

use adjacent sidelobes for cancellation. It is also apparent that the width 

of the central lobe of 0OVi,fr, also shown in Figure 3. 3,is approxi¬ 

mately twice that for This is the penalty for reducing sidelobes. 

The weighting constant a, - 0.426 is chosen for weighting 

a —— structure. The result is that all sidelobes of é(Xtv) beyond the 

first are suppressed by at least 40 dB. Taylor weighting can be used to 

achieve a more uniform sidelobe level than Hamming weighting with a 

slightly narrower central lobe. The differences are small however. It 

should be noted that when a waveform does not have a structure, 

but does have periodic sidelobes, the weighting constant <2/should be 

adjusted from its nominal Hamming value to give the most desirable 

results. The autocorrelation function for the linear FM pulse given by 

equation (2.9) differs from the ——form but, as was pointed out, for 

13 



typical values of pulse and target parameters, the approximation (3.2) is 

very good and Hamming weighting can be applied without alteration. 

3. 3 Sidelobe Suppression for Coherent Pulse Trains 

The coherent pulse train has an autocorrelation structure 

that is more complex than that of a single pulse. Therefore, it is not 

possible to remove the unwanted sidelobes of the coherent pulse train as 

simply as for the single pulse. The same fundamental techniques are 

used in both cases however, and in this section a technique for weighting 

coherent pulse trains will be illustrated. 

Equation (2.8) shows that the autocorrelation function for 

the coherent pulse train is a product of two factors, the first being the 

autocorrelation for the single pulse and the second, an autocorrelation 

function for a coherent sequence of uniformly spaced sinusoids. It is the 

second factor, the array factor, that reflects the properties of the "train. " 

In many situations of interest and, in particular, for cases of interest 

here, parameters will be such that the array factor in (2. 8) will vary 

much more rapidly than the pulse factor. Looking at Figure 3.2, this 

means that the product, 0 (r, is), will possess approximately the same 

structure as the array factor in the vicinity of the central lobe of the array 

factor. This is the region of greatest interest. The sidelobe weighting 

required for this region of is therefore the same as that required 

for weighting the array factor alone. Figure 3. 2 also shows that the side- 

lobes of the pulse factor will appear in 0/r, pjbecause of the sampling of 

the pulse factor sidelobes by the array factor. These sidelobes can 

easily be reduced by weighting the pulse factor separately. This has 

negligible effect in the region of the central lobe of $(r, is) because, under 

present assumptions, this region is dominated by the characteristics of 

the array factor. 

The assumption that the array factor varies much more 

rapidly than the pulse tactor is essential to the success of the weighting 

technique to be employed. It implies that the array factor and pulse 

factor can, in effect, be weighted separately and the resultant weighted 

14 
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autocorrelation function for the pulse train will possess the same behavior 

in the region of the central lobe as the weighted autocorrelation function 

for a single pulse. Hence, "optimum" Hamming weighting can be achieved 

for the coherent pulse train. 

To verify the applicability of Hamming weighting to the array 

factor, it should be shown that the array factor given in equation (2.8) 

closely approximates the S1^ — form in the vicinity of its main lobe. 

This can be seen easily when N is large, as will be assumed. In this 

case, the argument ( TA^-t-A^. V) will be very small in the region of the 

main lobe, as determined by the numerator in (2.8). Then, the denominator 

can be approximated by tt (tAf + A-^v) 2: Tr(t A_p + Af v) 

The pulse train is weighted by first weighting the individual 

pulses as in equation (3. 5). When the pulses are weighted before the co¬ 

herent summation, the resultant sum can be written as in equation (2.8). 

(p'(r,v)= v) 
N fr (z Af+A± p) 

A/ n (tAj +A^v) 
, |T| < A* -T (3.5) 

The sidelobes of 4>0 v) are suppressed at least 40 dB. 

fio# can be rePresented in Figure 3. 1 by removing all the dashed 

straight lines except those crossing the T-axis a.tT=±-g . These parallel 

lines represent the approximate loci of the zeros defining the central and 

only significant lobe of 

The second stage of weighting removes the sidelobes of 

fiow (7, v) in the vicinity of the central lobe. As shown previously, the 

structure of Q'fz ,l>) near its central lobe will be approximately the same 

as the structure of the array factor. Thus, the weighting applied to 4>'(z,v) 

will be the same weighting as would be applied to the array factor in 

equation (3. 5). 

0w(r,v) = 0.+2(. , v) + $'(?> »)+ 0.+2(. <f> (r + ^ , V) (3.6) 

the final result. It is characterized with a central lobe and 

adjacent sidelobes suppressed approximately 40 dB. 

15 
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3. 4 Near-Range Ambiguity Characteristics 

In order to design a pulse train with desirable properties, 

it is necessary to quantitatively relate the pulse train parameters to the 

dimensions of C?, ^) . The necessary relationships are developed here. 

In Figure 3. 1, the dashed ellipses represent the principal 

lobes of (P(z,v) which is given by equation (3. 5). The final stage of 

weighting requires T -shifts of t ~ These shifts extend the extremes of 

the lobes in the T direction by approximately î . For sufficiently 

large, the extension will be very small and within the approximation that 

the main lobe of the pulse factor is doubled in extent when the individual 

pulses are weighted. The coordinates indicating the exte ts of the main 

lobe and first ambiguous lobe are approximated as the points of intersection 

of the appropriate straight lines shown in figure 1.3: 

Vo = 

ro = 

4 = 

r/ = 

2Af 
B&t - AfT 

-2 At_ 
BAt-A4T 

B - 2 Af 

t'AfT BAu 

ZAj-T 

8At-AfT 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

Notice that the number of pulses, N, has no effect on the extent of the 

principal lobes. N does however affect the width of the lobes. The null- 

to-null width of the central lobe of <j> (t, p) along the Z axis is . This 

width is approximately doubled when weighting is applied to v) so 

tr.e resultant null-to-null width for v) is 

Wr - _L 
(3.8a) 

Similarly, the null-to-null width of <pw (r, v) along the f-axis is 

WV = HAt 
(3.8b) 
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For design purposes, equations (3.7) and (3.8) completely specify the auto¬ 

correlation function in terms of the pulse train parameters. The use of 

these expressions for the calculation of autocorrelation properties of 

pulse trains for the TRADEX system appears in Appendix 6.4. 

3. 5 Far-Range Ambiguity Characteristics 

In this section, additional properties of the coherent pulse 

train are considered. 

The analyses and properties previously developed apply to 

the case where TáA^-T . For t beyond this range, the results obtained no 

longer apply. The critical problem that arises when T>A¿-T is that strong 

ambiguous range sidelobes appear. This is because,for certain values of 

V there will be cross correlation between pulses when the pulses overlap 

in frequency. This characteristic can be illustrated with the help of 

Figure 3.4, which is a schematic representation of the pulse train. The 

straight line segments represent the individual pulses. 

Figure 3.4 shows two pulse trains, one marked by solid 

lines and the other marked by dashed lines. When one train is shifted an 

amount T = , it; is apparent that there will be strong correlation 

between adjacent pulses. This correlation appears as an ambiguity lobe 

> 

Figure 3.4 ORIGIN OF FAR-RANGE AMBIGUITIES 



far beyond the T range included in figure 3. 1. Additional range ambiguities 

will appear at multiples of Z= until T is sufficiently large that pulse 

spectra can no longer overlap. The ambiguous delay interval is then given 

very closely as 

(3.9) 

The existence of these extended range ambiguities limits the use of coherent 

pulse trains to environments where the target extent is less than Ta . 

A seemingly obvious cure is to increase the frequency spac¬ 

ing so that these extended range ambiguities can be removed entirely. To 

see that this is not an acceptable remedy refer to figure 3.1. Notice that 

the central lobe and its adjacent ambiguity lobe may overlap in V or, 

equivalently, doppler; that is, In fact Uf <0 is possible. This is not 

desirable because it means that targets can exhibit ambiguous responses. 

To prevent these ambiguity problems, it is necessary to have ^>0 and 

certainly sufficient to have ± V0 . From the first condition and equation 

(3.7c), : from the second condition and equations (3.7a) and (3.7c), 

±- . Thus, the frequency spacing between pulses will necessarily be 

less than the pulse bandwidth and extended range ambiguities will exist. 

Equation (3.9) provides another design relation that is useful when the 

locations of the extended ambiguities can be a problem. 

18 
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4.0 SYSTEMS CONSIDERATIONS 

This chapter examines a few systems problems that arise in the 

implementation of coherent pulse trains. In particular, the effects of 

the quantization of pulse data samples and non-uniform pulse sampling 

are investigated. 

4. 1 Quantization Errors 

In certain radar systems the video or matched filter output 

is sampled and subsequent signal processing is performed with these data 

samples. When the signal processing is done digitally, as is often the case, 

the question of quantization errors arises naturally. The manner in which 

the quantization occurs is unimportant with respect to its consequences. 

It will be assumed that all the quantization occurs in the digitization of the 

video samples. The effects of these quantization errors on the structure 

of <PW (T, v) are then calculated. It will not be necessary to work directly 

with <PW (r, v) . Instead,the effects of quantisation on the structure of 

Qowft, v) are evaluated. The extension of these results to is 

straightforwar d. 

The complex low-pass video is 0ow(z,v) . This can be represented 

in terms of its amplitude and phase, 

(4. 1) 

The video includes the amplitude and phase factors, so that two samplers 

are operating simultaneously. The sampling interval is and is assumed 

to be the Nyquist interval. The sampled signal is 

When quantized, the resulting quantized samples can be 

written 

19 
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where €a(-n~ç) a.nà £6(nTs) are the amplitude and phase quantization errors 

respectively. In order to study the effects of the quantization errors it 

will be assumed that $ow(nTSt») undergoes a reconstruction process to 

recreate 0Ow(t, l>) . The reconstruction process applied to $aw(nTs, p) 

is the same process which, when applied to 0o„(»T5>v) , will reproduce 

0o»,(T, v) without error. The error between 0o„(r,v) and the recon¬ 

struction from 0O[/v(nTs^) is used to qualify the effects of quantization. 

The assumption regarding the quantization errors are that: 

1) amplitude and phase quantization errors are 

independent, 

2) amplitude and phase quantization errors are zero 

mean and independent from sample to sample 

3) <C^s) = (r¿ 

¿l(”Ts) = 

where (•) denotes expectation, 

4) phase quantization errors are small (less than, say, 

0. 1 rad.). 

With these assumptions, it is shown in Appendix 6.2 that the mean squared 

error between 0a^(v, u) and 0ow(t,u) , the reconstruction based upon 

(y>r5, v) > is 

\e(r^)\l = \ 
co ^ = - L -I (4.4) 

^="00 L J 
where U(nTs) - 1 wherever Q.(>tTs) is non-zero, and zero elsewhere. 

It is also true that 

I W| = \<t>ow(z, v)\¿ + \e(r, (4 

indicating that the error is in quadrature with <pow(Z, u). 

Equation (4.4) shows that the quantization error depends 

upon the signal structure. In particular, the phase quantization results 

! 

Í 
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in an error component whose structure is directly related to a(V, is). 

In order to gain some quantitative measure of quantization 

effects it has been assumed that 0OVV (t, v) has a raised cosine shape 

in T . In particular, 

and 

-- a(T) 

n r ,¡Tlél 

O jdU&urtvLnjZ 

u(r) 
/ ,)tI * t 

O jJUjujjÁjuijl 

(4.6a) 

(4.6b) 

The error terms in equation (4.4) were evaluated separately and plotted 

in Appendix 6.2 as the normalized mean square error due to amplitude 

quantization = o)|2 |(r0=ö) and normalized mean square error due to 

phase quantization (e^Cr) = ~ 0 T*16 value oi7s is which is 

considered adequate for reconstructing a(T). 
z 

(4.7a) 

(4.7b) 

eW-Z U(»TS) 
7l = -o» 

”{ts " ") 

”(%--) J 

¢.--) 7Tl 

irfe-y) _ 

As long as (4.6) represents a good approximation to the actual aft) , the 

curves of e* frj and CgCt) may be applied universally to evaluate 

average errors for any system when and CTe are known. When the 

quantization intervals have widths A a. and A© for amplitude and phase 

respectively and the quantization errors are assumed to be uniformly 

distributed within the intervals: 

O a/ 
12 

ÍA0)2 
1Z 

(4. 8a) 

(4.8b) 

A0 is understood to be in radians and A a is the normalized quantization 

interval (normalized to the peak of a(z) ). 
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It has been found that for 4 0 ar 0. 1 radian and 4a = 0. 1 (a 

rather coarse quantization), the effects of quantization on ^0vv ( T , V) are 

no worse than a few dB increase in range-time sidelobes that are on the 

order of -40dB. 

The effect of quantization errors upon the autocorrelation 

function <$w(T,v) is easily calculated. If the quantization errors are 

assumed independent from pulse to pulse, when the pulses are coherently 

summed the respective errors will be summed as though they are in¬ 

coherent. The resultant pulse amplitude is N times that of the single 
2 

pulse and the resultant pulse power in N times that of the single pulse. 

Because the errors add incoherently their resultant average power is N 

times that of a single error. Thus, there is a relative error power 

decrease of 1/N when going from a single pulse to the coherent train. 

The structure of the resultant error pattern is the same as that indicated 

by equation (4.4) so calculations are readily performed. 

4. 2 Sampling Errors 

A system problem that is peculiar to certain data processing 

systems concerns the sampling procedures. This problem is not peculiar 

to the implementation of coherent pulse trains; rather, it is a fundamental 

problem in sampling. 

The video output, v) , is sampled before further pro¬ 

cessing is performed. When the bandwidth of 0o(z,v) is large, it is 

difficult to build samplers that can operate as fast as the required Nyquist 

rate. A means for avoiding this construction problem is to build lower 

rate samplers and interleave them so that, in effect, the required sampl¬ 

ing rate is achieved. This solution creates an additional problem, namely; 

What does one do when the samplers are incorrectly synchronized so the 

samples are not uniformly spaced? Fortunately this problem has a simple 

solution. When the relative offset between the samplers is known, there 

is no information lost in the sampling sequence and a uniformly spaced 

sample sequence can be generated from the original sample sequence. 

The particular case of interest is that in which two samplers are used, 

each operating at one half the Nyquist rate. 
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The sampling interval for each sampler is T0 . The output 

of the first sampler is (the ^“dependence is suppressed here for brevity) 

t, M Z t°(-"T0)J(r-nT.) (4.9a) 

The second sampler is delayed 4 seconds with respect to the first and 

provides the output 

00 

0o(»Ta + A)é(T-A-»To) 
77 = -00 

(4.9b) 

The Nyquist interval is Ts = % . In Appendix 6. 3 it is shown that ^Cz) 

can be reconstructed without error from the sequences ¢(,, (r) and 0C2{r) 

and that the reconstruction process is given by 

*o(r) =Z 
Tim-OO 

, N ¿¿nnfe-zn) ^ , , in) 
(”To) --V + *o(*r0TA) [JT 

"fê - 2 ”) 
(4. 10) 

- Zn ) . y&yvn2- ^ (- in) 
_ / r f- -to(”-roi-A) - * -r- 
- 

The conclusion is that no matter what the offset A,4>0(r) can, in principle, 

be recovered without error. The term in square brackets in (4. 10) can be 

regarded as the error correction due to non-uniform sampling. Indeed, 

when this term is zero. Since 0Q(z) can be recovered without 

error it is possible, when digitally processing, to use (4. 10) to regenerate 

a uniformly spaced sample sequence by evaluating (4. 10) at z = mTs , m=oy 

+ i *2 •• • • • - ' i c i 
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5.0 SUMMARY 

A detailed analysis of the properties of uniform coherent pulse 

trains was presented. The restriction to uniform inter pulse shifts in 

time and frequency permitted simple formulae to be derived for the 

dimensions of the ambiguity function in terms of fundamental parameters. 

The pulse train was shown to have resolution properties equiva¬ 

lent to a single pulse with the same overall time duration and bandwidth. 

Unlike a single FM pulse, the pulse train exhibited extended range ambi¬ 

guities. The suppression of these ambiguities was not discussed, except 

to show why a seemingly obvious suppression technique would not be 

satisfactory. A possible approach to the suppression of these ambiguities 

is to phase code the pulses in the train. This can be a subject for further 

study. 

The analyses also showed that the gross structure of the waveform 

ambiguity function is determined by the array factor which is a function 

of the pulse repetition interval, the frequency step, and the number of 

pulses. The time-frequency coupling for the waveform is the time- 

frequency coupling for the array factor, 7 = ^ alteration of the 

time frequency coupling was not discussed. This is an important problem 

because if the velocity of the target can not be adequately determined, 

then neither can the range; consequently, the range error will be deter¬ 

mined by the degree of time-frequency coupling. This problem is mini¬ 

mized if the waveform is insensitive to doppler or frequency shift. In¬ 

creased insensitivity could be obtained by altering the time-frequency 

shift pattern of pulses in the train; this alters the array factor. A 

detailed study of this technique is another subject for future study. 

The systems problems considered were rather specific and well- 

defined. The sensitivity of the reconstruction technique for non-uniformly 

spaced samples was not considered. It is expected that the technique is 

sensitive to quantization errors when the offset, A , is very large (a^To) 

or small (a&o) . This should be an unlikely situation. If it proves to be 

otherwise, an analysis of the quantization effects can be readily performed. 
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6.0 APPENDICES 

6. 1 Properties of the Return Signal 

The time delay-range and doppler shift-velocity relation¬ 

ships are formalized on a physical basis. The meaning of equation 2.7 

is thereby established. 

Consider a radar target which, at time t = 0, is at a range R 

from the radar and moving with constant velocity V"toward the radar. 

If an impulse is transmitted at time t, it can be easily shown that it will 

be returned to the radar Zj seconds later where 

(6.1) 
r+v/c / + v/c 

Define 

(6.2a) 

(6.2b) and 

T _ 2 fit 
^ “ t+fi 1+fi 

so that 

The point target can be characterized by its impulse response which is 

simply a delay. The response at time t to an impulse transmitted at 

time t is denoted -h(t, t') . Then 

waveform can be written 

(6.3) 

Substituting (6. 1) into (6. 3) and integrating, 

(6.4) shows that the return is an amplitude-scaled, time compressed and 

delayed replica of the transmitted signal. The amplitude factor can be 
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disregarded because it has no effect on the structure of the autocorrelation 

function (its presence is proper, however, and it has been shown to be 

relativistically correct). The effect of time compression must be examined. 

If has a time duration T then the time duration of v(t') 

is Tr where (~~)Tr = T . The time compression of sM is T - T- = 
' 7 ' 1 + /8 

This compression can be significant. To see when it can be disregarded 

recall that the return rftjwill be correlated with a replica of $(t) . Now, 

if s(t) has absolute bandwidth W , it cannot change significantly in a 

time period ¿r . Therefore, to preserve the structure of the correlation 

function it is necessary for the time compression to be less than 

2iaT i 

zpt ~ TT^r <* <6-5> 

or rw < 1 

When (6.5) is satisfied, as it almost always is, r(i) is approximated very 

closely as a time delayed and frequency translated replica of sft) . 

Condition (6.5) is called the quasi-stationary condition and is tactitly 

assumed in most radar analyses. It is equivalent to making the inconsistent 

assumptions that the target maintains a fixed range and a fixed velocity 

during the period of interaction with the radar pulse. This inconsistency 

simplifies analyses and is usually perfectly acceptable. As can be seen 

from 6. 5, the validity of the quasi-stationary assumption becomes more 

questionable as the TVJ product of the waveform increases. This point 

is labored here because current technology permits the generation of 1VJ 

products which violate the quasi-stationary assumption. In particular, 

the coherent pulse trains studied in this report have very high TVproducts. 

A typical coherent pulse train of -nterest will have 7 = 50 /¿sec, <✓= 240 Mhz. 

If the target velocity V= 7 km/sec, then 2/?7V= 0.42, indicating that the 

quasi-stationary assumption is barely met. 

The transformations (2. 10a) and (2. 10b) can now be readily 

established. In (6.4), the amplitude factor can be assumed to be unity. 



Since /3 << f , the approximations 1 + an^ ~jTj¡¡ z ftP are very g00^- 

Applying these approximations to (6.4) gives 

r(t)~ 5 \(t-r)+ * pt] 

Since = U/fij , the return becomes 

/ d\ T / \ ~ T') J 2 /3 cJc ~t 
r{f) = w[(t~r) + 2/3tje c 

where W(*) is a low pass signal (the complex envelope of s(t) ) with a 

bandwidth much less than cJ£ . In this case, as long as the time duration 

Tw of w(t) is not very long, the low pass signal will suffer negligible 

distortion due to time compression ( 2/8 Ww << 1 fa W(t)) where Tw and 

^ are the time duration and bandwidth respectively for W (t) ) and the 

additional approximation is valid: 

(6.6) 

(6.7) 

w ft-r)c ¿¿¿Met JcJcf*’7) (6.8) 

Then, from (6.8) can be written 

r(t¡* s(t-z)eJ*,rvttJ> ^ 

where — : -2— and ? is constant. Subject to proper assumptions it is 
^ A • j j 

apparent that the radar return can be regarded as a time delayed and 

frequency shifted replica of the transmitted waveform. The correlation 

between s(i) and rft) ia clearly represented by equation (2.7). Notice that 

the absolute phase of the return is not preserved, but since this phase is 

subjec. to many uncertainties, including the target scattering character¬ 

istics and propagation effects, it is not useful to preserve this quantity. 

6. 2 Analysis of Quantization Errors 

The error expressions for quantization errors are derived. 

When the phase quantization error is small, the exponential 

term in (4. 3) can be approximated as c ~ t + ¿ (^) • Then (4- 3) 
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can be rewritten as 

0OW (”**,»)= a(”Ts» v) eJQ(*Ts)t [€a(»Ts)+j(a(»Ts)ee(?>rs)+£a(„Ts)ea(»rseje^T^ ^ 

(6.10) 

= tow (^S > v) * [£a^Ts )+jfa(”rs )£efr Ts)*eJ-nTs )€q(7> t£ ))] eje^ ^ 

The error term is clearly evident in (6. 10). 

Any function xfr) can be reconstructed from its samples 

x(yiTs) > when Ts is the Nyquist interval for x(r) and x(t) satisfies 

some other mathematical requirements that are of no concern here. The 

reconstruction process is specified below: 

r-?5 ¿¿vi ffÍT~ ~ v) 
'(*) = 7 Xfa) —Lis / (6.11) 

>7- - 00 

Applying the reconstruction process to (6. 10) gives 

$ow(Tf V) = to^Cr,[e*(»Ts)+j(a(”rs) e0(*Ts)+ea (y>rs)e& (»rs)/^ß_'^ 
n=-a> V(rs'y') 12) 

From (6. 12) , the mean squared error | <poyN(r, v)- $ow(t, v)\* is found and 

is given by equation (4.4). 

If the summation term in (6. 12) is written as e(r, v) (6. 12) 

gives 

yj|2 = ! <t>a* (r> Wl + e(T,v)t'0„(x,v) 

+ e'er, V) 0otv fr, v) + \e{T, u)\ 

From (6. 12) and the assumptions regarding the quantization errors, it 

follows that e(x, p) = o and equation (4.5) results. 

(6. 13) 

In Figures 6. 1 and 6.2, the normalized mean square error 

due to amplitude quantization and due to phase quantization are given for 

the raised-cosine signal described in Section 4. 1, equations (4.6), for a 

sampling rate which is 1/4 the null-to-null width, a value considered 

adequate for reconstructing the signal. The quantities given in the figures 

are normalized to the variances of the quantization errors, which are 

themselves small quantities, i.e. typically 
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0¿* - 0.0033âí(ô) for ± 0. la,(0) amplitude quantization (AÄ = 0.2) 

c^2 = 0. 0037 (rad)1 for ±6° phase quantization (Ae = 12°) 

so that, in each case, a value of unity on the figure corresponds to an 

error which is about 24. 5 dB smaller than the peak of the signal. 

time m 

Figure 6.1 NORMALIZED MEAN SQUARE ERROR DUE TO AMPLITUDE 
QUANTIZATION (INDEPENDENT OF SAMPLE SHIFT) 

J 



TIME lx) 
c) SAMPLES TAKEN AT A SHIFT OF 1/4 

Figure 6.2 NORMALIZED MEAN SQUARE ERROR DUE TO PHASE QUANTIZATION. 
(EVALUATED AT SEVERAL TIME-SHIFTS OF SAMPLING POINT WITH 
RESPECT TO SIGNAL PEAK LOCATION) 

30 

IBÉaBMÉi J .. 



b|*\v 

6. 3 Analysis of Sampling Errors 

The reconstruction formula (4. 10) is derived, 

Let the Fourier transform of 0oOr) be §((u>) . §o(^) is 

assumed to be bandlimited to t % rad/sec so that the Nyquist interval is 

Ts = sec. It can be shown ^ that the Fourier transforms of 

and QotC*) are 

$0, (“) = /T Z + 
v 77- CO 

co j ÎZHA 

$02 (”) = T Z e ^ 
27r n 

) 

(6. 14a) 

(6. 14b) 

■n-a> 

$ (u) and §oz (co) are the sums of shifted spectra. The magnitudes 

of the component spectra in §0} fa) and $02fa) are illustrated in Figure 

6. 1. 

I f0<H 

Figure 6.3 SPECTRUM OF SIGNAL SAMPLED AT 1/2 NYQUIST RATE 

(1) A. Papoulis, "The Fourier Integral and Its Application, " New York: 
McGraw-Hill, 1962. 
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The spectrum of $0(z) is wholly contained in the interval \-B/z , %] 

However, the adjacent shifted spectra interfere with § (cu) in this inter¬ 

val. Notice that the component spectra in (co) are distinguished from 

the corresponding component spectra in (^) the presence of the 

exponential phase factors. This tact can be exploited to recover §a(u>) 

in the interval s' , . Without laboring over detail, the technique 

is outlined. 

Consider the restrictions of §0f(<*>) an^ $02 (u>) to the 

interval . These restrictions are 

= T; $0(v) + t0 1 0 ± cj ± % (6.15a) 

Ta£0 ro 75 â('co-~);OûcO±y'2 (6.15b) 

(6. 15a) and (6. 15b) can be solved simultaneously to give g (co) in terms 

of only $o1fa) and $oz(<¿>) . This solution is valid only for The 

restriction of (6. 14a) and (6. 14b) to the interval [-¾ , o] are then used 

in the same way to obtain $0(ùj) in that interval. When the components of 

§0(*) thus obtained are combined, the entire spectrum is found, and 

can be written 

2 T< 

where 

r’ ; \^-% \ è % 

o JLÍ*JLUrf\4J\JL 

"fH = 

L O JL¿A&urt\jtsi£. 

H((o) = Hf (oj) + H2(u) = I 0 
f i \ (o\ ± &/z 

(6. 16) 

(6. 17a) 

(6. 17b) 

(6.17c) 

and the filters H(co), Ht (co) and are used to obtain the appropriate 

restrictions. Equations(6. 16) and (6. 17) provide the essential result, that 

is, the spectrum of ®0(t) expressed in terms of the spectra of 0 , (z) 

and ^02(1) • To find the equivalent operation in the T-domain,(6. 16) is 

transformed. The result is equation (4. 10). 
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6. 4 Coherent Frequency-Jump Burst Waveforms for TRADEX 

The properties of several coherent pulse trains are cal¬ 

culated using the results in Sections 3.4 and 3.5. The parameters apply 

to the TRADEX system. The results are expressed in meters and km/sec 

using the transformations (2.10a) and (2.10b). Results are presented in 

Table 6.1. 

In particular, the coordinates of extreme nulls for the 

main lobe and first ambiguous lobe are of importance in determining 

possible ambiguous responses for reentry targets. Assuming that one 

wishes to resolve scattering regions on the body itself, one would adjust 

the doppler-parameter to the body velocity. Referring to Table 6. 1, with 

the body at a zero doppler-offset ( V =0), one finds that, with waveform 1, 

the wake (typically at velocities of 5 to 7 km/sec with respect to the body) 

would not be observed (since there is no response at all for velocities 

between and if )• For waveforms 3 and 4, however, the 

return from the wake through the first ambiguous lobe may interfere with 

the body return. This might be avoided, at some sacrifice in the amplitude 

of the body return, by "detuning" the processing of a doppler-shift which 

is somewhat less than that of the body. 

Constant-velocity profiles of waveforms 1 and 3 are given 

in Figures 6.5 and 6.6. 
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