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Mixing and Combustion Processes in Jet Engines. A. G. Prudnikov,
M. S. Volynskiy and V. N. Sagalovich. "Mashinostroyeniye," Moscow,
1971. 356 pp.

The book consists of two parts.

Part One 1s concerned principally with the physics of the inter-
action of droplets or solid particles with a gas stream in the presence
of heat and mass exchange and with the influence of these factors on
the characteristics of the engine. The problems of liquid injection
(the basic parameters of the fuel-supply system and methods of meas-
urement) are considered, dimensionless relationships are cited for
spray spectra 1n a supersonic stream, and ranges and vaporizabillities
in fuel sprays are determined.

Part Two describes the process of turbulent mixing for various
boundary conditions with or without evolution of heat on the basis of
a consistent method of calculation; the relationships obtained can be
used to calculate turbulent mixing in the cases of free jet, Jjet at
& wall, a jJet in a nozzle, etc.

Generalizing empirical relationships are given for the dispersion
of the Jet on the initial and the main sections as a function of the
initial conditions (ratio of velocities and densities, Mach number,
ete.). 3
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B B o Y,

Analytical relations that determine the temperature and velocity
profiles in a turbulent flame jet and the completeness of physical
combustion of the fuel are derived, with a discussion of examples in
which model combustion chambers are designed for rocket-ramjet engines
with a single fuel jet or grouped delivery of fuel jets in the gaseous
state,

The book is intended for scientific workers and engineers in the
aviation industry, but may also be found useful by students in senior
courses and graduate students at the higher educational institutions
who are specializing in the field of turbulent flow with phase trans-
itions and reactions.

With 10 tables, 205 illustrations, and a bibliography of 171

references.

Reviewer: Doctor of Technical Sciences, V. S. Zuyev
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FOREWORD
The present volume consists of two parts.

Part One, which was written by M. S. Volynskly, 18 corcerned with
mixing in sprays of liquids and the laws of two-phase flow.

Chapter I 1s devoted to the theory of one-dimensional two-phase
flow with vaporization. The method proposed takes account of the
interaction of the gas and the liquid particles in the process of heat
and mass transfer, and interaction that affects the elementary pro-
cesses of mixing and the gasdynamics of the flow. Generalization of
the calculated results on a computer yields physically and technically
interesting relations, for example, for the vaporization interval and
other parameters in subsonic and supersonic flows.

The results of Chapter I are used to construct the theory of the
spray jet with phase transitions in supersonic flow. This theory 1is set
forth in Caapter II and 1is based on dimensionless coefficient relations
that have been accumulated in experimertal study of injection into a
stream for M > 1 (shapes of spray jet and shock vave, coarseness of
spray).

To the best of our knowledge, this 1s the first such development
of an approximate theory. It defines, among other things, the exis-

tence region of subcritical two-phase flow on injection into a super-
sonic flow. The method and approximate calculations based on this

FTD-HC-23-1339-72 111
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theory indicate the possible existence of short vaporization intervals
in a combustion chamber with flow at M > 1.

The results of the theory are compared with experimental data for
the fuel spray and indicate satisfactory agreement.

Part Two of the book was written by A. G. Prudnikov jointly with
V. N. Sagalovich, V. L. Zimont, and N. A. Zamyatina, and is devoted
to turbulent-mixing processes of gases and the turbulent combustion
of gaseous fuel and oxidizer components in jet engines.

Chapter I sets forth the basic physical concepts and definitions,
describes models of turbulent mixing, and develops the mathematical
formalism that makes it possible to calculate the turbulent mixing of
flows with different parameters. The method proposed in this chapter
for investigation of turbulent jets, while borrowing certain details
from the theory of jets known to the reader from the works of G. N.
Abramovich and L. A. Vulis, at the same time makes extensive use of
the famlliar results of statistical turbulent-diffusion theory.

Chapter II presents results of comparison between theory and
experiment. It is shown that a broad range of problems of practical
interest can be examined consistently within the framework of the
proposed approach: mixing of free Jets with different temperatures
and densities, wall jets, problems of wake pressure, etc.

Empirical data on the diffusion parameters of turbulent jet flows
that have been obtained by processing a large amount of experimental
material are collected in Chapter III. Many of these data were
obtained by the authors themselves, some for the first time, (mixing-
homogenrity characteristics of nonisothermal jets, mixing with large
pressure gradients). Knowledge of these parameters forms a sound basis

for engineering calculations using the methods developed in Chapter II.

iv
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In Chapter IV, the ideas and methods set forth in the previous
chapters are applied to problems of homogeneous combustion in turbu-
lent flow.

It is shown that convective turbulent transport, which is deter-
mined by the turbulence of the free stream, is the dominant factor in
the combustion zone, and that the rate of turbulent combustion at
large Reynolds numbers is determined by the local structure of the
turbulence.

Chapter V sets forth methods for calculation of single, open
diffusion-tyre sprays and methods for calculating the combustion
efficiency and chamber length for various combusticn-process designs.

Chapter V contains specific examples of calculations for model
rocket-ramjet engine chambers with single central fuel jet and for
the case in which fuel 1s delivered in a group of Jets at an angle to
the main flow. It is shown that the variation of combustion efficiency
as a function of various experimentally observed geometrical and
physico-chemical factors can be predicted qualitatively by calculation.

The authors are indebted to Prof. V. S. Zuyev, on whose initiative
this monograph was written, and to Prof. Ye. S. Shchetnikov, I. F.
Shebeko, and I. V. Bespalov for a number of valuable suggestions and
remarks.

The authors also thank G. A. Malogorskaya and O. S. Sakina for
their great help in preparation of the manuscript.



NOMENCLATURE

1. Dimensionless Numbers and Quantities
M — Mach number;
Re =—- Reynolds number;
Nu — Nusselt number;
Pr -~ Prandtl number;
We — Weber number;
Fr — Froude number;
Sh — Strouhal number;
k — ratio of specific heats;
¢ — intensity of turbulence (e=—:—');
2, — vaporizability;
g — concentration of liquid;
Cy — drag coefficient;
~ concentration;
g — concentration by weight;
p — probability density distribution;
P — probabillity;
n — combustlion efficlency; dynamlc viscosity;

vi
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m — ratlo of longitudinal velocity;

n — density ratio of two gases being mixed;
N = %? — degree of mixing homogeneity;

Ly — stoichiometric ratio;

ap — excess-alr ratio.

2. Geometric Characteristics and Time

X, ¥, 2 — Cartesian coordinates;
t, T — time;
a — diameter of droplet or particle;
ap — average radius of Jet;

o=(y—yn — variance of turbulent transverse deflection of jet
volume;

c; — variance of microturbulent ("grey") mixing of gus
volumes;

d — diameter of nozzle orifice;
F — cross-sectional area of flow;

X, — interval of total vaporization;
A — scale of dissipavion; thermal conductivity coefficient;
§ — characteristic thickness of layer;

a_ — spray angle;

Oy — Mach angle;

! — characteristic length; heat of vaporization of liquid.

3. Working-Fluid Parameters

T — temperature;
¢ — density;

Y — specific gravity;

vii
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p—-

W — longitudinal velocity of stream in one~dimensional two-

u, v, w —

<
I

UV ——

o <
.

pressure;

phase flow;

stream velocity components;

absolute value of average stream velocity;

average longltudinal velocity;

absolute velocity of drop;

relative veloclty of drop;

Ve¥-«' — rms fluctuations of velocity components;
gas constant;

mass flow rate;

sound veloclity;

flow rate of entraining stream in kg/sec (air, oxidizer,
etec.);

flow rate of jet in kg/sec;
enthalpy;

entropy.

4. Physical Constants

molecular weight;

Iinematic viscosity;

surface tension; pressure recovery coeffliclient;
diffusion coefficlent;

heat capacity at constant pressure;

heat capaclty at constant volume;

efficiency of fuel;

vapor tension.

viii




5. Subscripts

liquid;
vapor;

initial cross section of stream; 1 — parameter of
entraining stream; 2 — parameter of jet;

mixture of vapor and gas (air);
thermal, turbulent, fuel

wave;

air;

microturbulent;

stagnation parameters;

gas;

combustion.

ix
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INTRODUCTION

The combustion chambers of jJet engines, and in particular, air-
breathing jet engines exist in a wide variety of designs. However,
the working processes in the combustion chambers, such as atom-
ization and mixing, turbulent diffusion, and fuel combustion
have many physical essentials in common for engines of different
types and are often subject to consistent relationships.

The present monograph is devoted to the physics of the working
processes in the chambers and nozzles of jet engines and to the devel-
opment of appropriate calculation techniques. Nevertheless, much of
the material is directly or indirectly applicable to other types of
reaction engines [Liquid Rocket Engine (LRE), Solid Rocket Engine
(SRE), Rocket Ramjet (RRJ), and others]. The results that are sub-
mitted may also be useful for industrial boiler and firebox instal-
lations running on liquid and gaseous fuel, for anti-pollution systems
used on exhaust gases and combustion products, chemical equipment,
various types of cooling systems, etc. The present state of develop-
ment of jet engines (JE) 1s characterized by more penetrating analysis
of the elementary processes (atomization, vaporization, turbulent
diffusion, and turbulent combustion) and by the accumulation of exten-
sive theoretical and experimental materials.



On the other hand, the data obtained arv being synthesized to
create whole series of sometimes rather complex methods for calcu-
lation of the working process and its specific stages (two-phase flows
in the chamber and nozzle, gaseous-jet flows, homogeneous combustion,
diffusion combustion, etc.) using electronic computers. The extensive
use of computers has made it possible to present a more accurate and
complete mathematical description of the working process. It has
become possible to include in the computation numerous relationshlps
for individual elementary processes that had previously presented
insurmountable computational difficulties.

A whole series of elementary processes makes its appearance when
a 1liquid or gaseous fuel is fed into a subsonic or supersonic stream
in a combustion chamber (the latter case is of interest for the cham-
bers of hypersonic engines [1]). It is convenient from the methodo-
logical standpoint to examine them one after another. In reality,
the individual processes may overlap, and sometimes they unfold
simultaneously. For a number of combustion chambers used in existing
JE, the initial process is mixing (Part One), whose purpose 1s to
produce a combustible mixture with an appropriate distribution of con-
centrations in the chamber volume.

After delivery of the fuel by the system of atomizers, a two-
phase flow makes its appearance, and vaporization takes place in 1t
under the conditions of a complex interaction between the liquid and
gaseous phases. Turbulent diffusion usually becomes the decisive
process after vaporization of the bulk of the fuel. 1In some cases,
the stages are divided among different units — atomization and
vaporization may be handled in a separate generator, and diffusion
of the gaseous components may occur in a mixing chamber. The process
in the chamber culminates in turbulent combustion, which must take
place with adequate efficiency. A similar sequence of processes 1s
characteristic for delivery of liquid or gas into the exhaust nozzle
of a Jet engine to control the thrust vector or thrust.




In this respect, the present monograph takes up where a number
of other works left off; we refer here fn narticular to (1], in
which some of the authors collaborated. Here we make extensive use
of computer results, rational and efficient application of which
imposes high requirements on the physical model of the phenomenon
that has been "built into" the computer program. For this reason,
speclal attention is given to the construction and legitimacy of the
physical models in both parts of the monograph.

Two types of two-phase flows with phase transitions (vaporigation)
are characteristic for the processes that take place in Jet engines.
They are of substantial interest from the fundamental and engineering
standpoints. The first type is a flow of gas and liquid particles
within a channel with various initial conditions and drop sizes.
Hence, the importance of establishing relationships for the parameters
at the transition through the critical regime M; = 1 when thelr
nature changes abruptly in accordance with the inversion law of gas-
dynamics as it applies to phase transitions.

The second type 1s the more complex flow of a supersonic streanm
in a spray Jet. Some of the difficulty of the problem is assoclated
with finding the initial gasdynamic parameters in the frontal zone of
the spray (with its high particle concentration), which usually have
a decisive influence on the subsequent development of the process and
determine the total-vaporization interval. These parameters (W, 7, p)
differ substantially from the corresponding quantities in the free
stream.

The model construction for the flow in the spray and the method
of determining an equivalent one-dimensional two-phase flow are used Ior
the first time in the form in which they appear here. This makes 1t
possible to create a closed theory of the spray Jet in a supersonic
stream that agrees satisfactorily with experiments.

.
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The diffusion model of the mixing and burning of the gaseous
turbulent-stream components makes it possible to develop a general
calculation method for various problems in the internal gasdynamics
of the engine.

On the basis of the relations of statistical turbulent-diffusion
theory, the authors' results can be used to determine the empirical
constants that appear in the well-known solutions of the semi-empirical
theorles for various boundary conditions.




Part 1

Mixing Processes and Two-Phase Flows

CHAPTER T

THEORY OF ONE-DIMENSIONAL FLOW OF A TVWO-PH/SE
MIXTURE WITH PHASE TRANSITIONS

The theory of two-phase gas flows with evaporating druoplets has
recently been developed extensively in its one-dimensional idealization
for various engineering calculations. It is a further development of
the theory based on the single-drop model, which is described in
detail in the literature® [1]. It is assumed in this model that the
evaporation of the 1liquid particles has 1little influence on the
conditions of the surrounding flow, i.e., only the influence of the
gas on the drops 1s considered, and not that of the drops on the gas.
As a rzsult, no account is taken of the effects of inverse variation
of the flow parameters (temperature, vapor concentration, etc.) on
the kinematics of the drop or on the rates of the phase transition.

#*This simple scheme was found most helpful in the development of
the first jet-engine chambers.



The theory of two-phase flows set forth in the present chapter
takes into account the interaction between the two media, i.e., the
effect of heat- and mass-transfer during vaporization of the particles
on the gasdynamics cf the stream. It describes not only the behavior
of the drops, but also the variation of the gas parameters, e.g.,
cooling due to evaporation, acceleration of the stream as a result of
diversion of energy to entrain drops, etc. This, in turn, changes
the rate of the vaporization itself.

Problems of this kind arise in the calculation of processes in
numerous devices, especially those involving supersonic flows. They
include delivery of fuel into a combustion chamber at M > 1 [1] two-
phase flow in the exhaust nozzle of a solid-fuel engine (2], liquid
injection into the supersonic section of an engine nozzle to control
its thrust vector [3], injection of water to cool subsonic and super-
sonic streams, etc.

in general, high particle concentrations appear in real super-
sonic-stream spray jets (see Chapter II for greater detail) as a
result of the relatively short range of liquid jets. There are seg-
ments of the flow in which the phase-interaction effect has a
deci ive influence on the nature of the flow farther downstream.
Significant changes in the physical constants (molecular weight, heat
capacity of the gas, etc.) usually take place in a two-phase flow
as a result of vapor influx and changes in the composition of the
gaseous phase; they are taken into account in the corresponding
equations. The present theory is, in particular, applicable to the
flow of a gas with solid non-vaporizing particles (for example, in
an engine exhaust nozzle). The calculation procedure then becomes
much simpler.

In some of the problems posed by modern engineering, the one-
dimensional flow model is found to be too crude. However, it can be
used successfully in practice for flows with phase transition where
the main parameter is the rate at which the transitions take place
or the total-vn,orization interval x. [4].




Let us turn to a discussion of the basic assumptions adopted in
construction of the two-phase flow theory.

1. The flow is assume¢ to be one-dimensional, and the liquid
particles are distiibuted uniformly throughout the volume of the gas.
In ea.n c1o.: section of the stream, an elementary portion of vapor 1s
mixed instantaneously and to full homogeneity with the surrounding medium,

2. All processes are regarded 88 quasl-stationary, and the
stationary equations of gasdynamics, heat and mass exchange, and drop
motion are used. The gas is subject to the Clapeyron equation of
state. Generally speaking, the theory also admits of more complex
equations of state.

3. The mixture is assumed to be monodisperse, 1.e., to contain
drops of equal diameter a. This constraint is not fundamental. A
variant of the theory that takes into account the arbitrary particle
sizes is possible. It involves increasing the number of initial
equations and complication of these equations.

b, The particles do not interact with one another and do not
collide, and no coagulation takes place in the stream. The drops do
not influence one another aerodynamically or thermally.®* To take
coagulation into account would result in unjustified complication of
the model, since the role of coagulation during rapid vaporization is
quite unclear at the present time (it 1s known that the flowoff of
vapor from drops prevents them from merging).

5. The decrease in the volume of the gas and in the cross-
sectional area of the flow due to the presence of the drops 18 neglec-
ted, as is admissible under the flow conditions considered. This
fector can be taken into account by introduction of a special shadowing
factor.

*This applies ‘or a distance § 2 10a between drops; it must be
remembered that é/a increases rapidly as the drops are vaporized.

—t



6. There are no losses of energy through the walls of the
channel, and no friction against the walls.

7. Chemical transformations, decomposition of vapor,and
dissociation do not occur in the system.

The constraints imposed under the last two points are not
mandatory. They need not be used if the law of friction against the
channel walls, the heat losses, and the laws governing the chemical
transformations are known.

This theory can be extended to the combustion processes of a
heterogeneous mixture with consideration of heat release and the
corresponding chemical reactions. In it, each fuel particle must
be regarded as an isolated seat of combusfion and heat source,

This generalization is possible within the framework of the
present rough idealization if we have reliable relationships for the
combustion of an 1solated drop or solid particle in the gas stream
(in particular, the laws of flame stabilization on the washed particle).

As a rule, the present chapter will not give consideration to
the broad and independent field of liquid-particle combuation.

§1. Equation System of Two-Phase Flow

Let us write the system of initial equations determining the
flow of a two-phase mixture in a certain channel (Figure 1.1). We
shall consider the motion of gas and drops along the x axis, i.e.,
neglect the deviation of the streamlines and particle trajectories
from the direction of the channel axis (in the case of a cylindrical
pipe, these directions coincide exactly). The x coordinate is reck-
oned from cross section 1-1. The initial flow variables of the gas
and drops Wy, p1, T1, 01, J1i, 81, V1, Tl” and z, are given in this
cross section, and the shape of the channel is known, being assigned
in the form F/F; = f(x), where F and F, are the present and initial

B W,



cross-sectional areas of the
channel. Here zv is the frac-

tion of vaporized material, put
equal to zero for simplicity;
in the 1initial cross section

2, = 0; x =0; 19 =0,

The unknowns are W, T, p,
e, J, a, V, Tl' 2, and x as

L IR
functions of time 1. Two addi-
tional (auxiliary) unknowns are
Figure 1.1. Dilagram of one- attached to the parameters of

dimensional two-phase flow.
the problem®: the momentum

J(J1) of the two-phase system and the vaporizability Zy* Thus, we

obtain a system of ten unknownt. The parameters in the total~-

vaporization cross section, where z_ = 1, are important for many

v
practical problems: wv, Tv’ ..., and especially the length of the

vaporization interval and the vaporizati>n time, X, and Ty
The complete system of ten initial equations consists of:

(1) three differential equations describing the motion, vapori-
zation, and heating of the drops and the law of motion, which connects
the x coordinate and the time T;

(2) three equations of conservation of the flow rate, energy,
and momentum of the two-phase mixture, the equation of state of the
gas, an expression for the momentum of the two-phase mixture, and an

expression for the fraction z, of vaporized material as a functiun of

v
drop size. The appropriate relationslips for the physical constants

8Since the equations can be solved only numerically, e.g., on
electronic computers, an increase in the number of unknowns by two
is not of any particular significance. There are a minimum of seven
independent variables: W, p, T, a, V, Tl’ X.
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(viscosity of gas, heat capacity, diffusion coefficient, heat of
vaporization, and density of 1iquid, etc.) inust be attached to the
fundamental equations.

Equation of Motion of the Drop

The drop will be regarded as a nondeformable body of variable
mass. If we assume that vapor flows off the liquid surface uniformly
at all of its points (in accordance with the spherically-symmetrical
mass-flux scheme in the convential theory of vaporization [1]), we may
use the usual equation of motion of a ripgid sphere® in a medium that
offers resistance to it (the weight of the drop, which is usually an
order of magnitude smaller than the other forces in operation, can
be neglected):

Vel lwoyT="
dt lr'o. w-Vi s ' (1.1)

where ¢, ¢, are the densities of the free-stream gas and the droplet
1

and |W - V| 1s the absolute difference between the velocities of the
g8 and the drop.

The drag coefficient Cy is generally expressed as a function of

the Reynolds and Mach numbers.

We shall use the results of the analysis in [5] of drop motion
after injection into a supersonic stream. In this paper, a numerical
method was used to solve the equation of motion of a single drop in
the flow field directly behind the shock wave, The shape of the wave
was obtained from experiments with spray jets (see Chapter II). For
example, calculations for alcohol particles of diameter a = 20 — 30
km at an injection velocity Vi = 50 -~ 100 m/sec (from orifices with
dn = 0,7 — 1 mm) and My = 2.9, py = 16 bar, and Ty » 300° K indicate

#The equation of motion of the center of mass of the drops.

10




that a drop 1s swept in its relative motion by a comparatively weak
subsunic flow with & velocity below 200 m/sec, even though the abso-
lute velocity of the droj is supersonic.

Consequently, the relative pa:ticle velocity |V - W| 1s lower
than the velocity of sound 854" Calculations of two-phase flows yield

a sirllar result in many cases,

Calculations indicate that the dependence of ¢, on Mach number

cannot usually be taken into account for a real spray jet. If neces-
sary, the influence of Mach number can be taken into account with the
appropriate formulas from the literature. Among the various relation-
ships encountered in the literature, we might mention the well-known
empirical formula pf V. A, Olevskiy, which expresses the Cx of a sphere

on a rather broad range of Reynolds numbers [6]:

4.4 24
=032+t (1.2)
where
Re=-—‘__|w - V‘” (I

"
0,001 < Re <6-108,

In a more general formulation, corrections for the effect of
deformation and evaporation of the drop can be applied to the drag
coefficlent.

The law of motion of the drop 1s written in the form
dx
priad £ (1.3)

where x 1s the coordinate of the particle's center of mass.

11

s



Equation of the Vaporization of the Drop

This familiar relation expresses the rate of decrease of the
surface aree of an evaporating drop in a gas stream:
del

e b (103 VFV RO (1.4)

Reference [1] sets forth the theory of evaporation of drops in a
gas stream in detall. Here we present only the basic relations and
definitions that will be needed for calculation. The static vapori-
zation coefficlient 8 characterizes the rate of vaporization of the
drop in a still medium at the thermodynamlc parameters of the particu-
lar cross section; the multiplier

0,=(1+037 VPr1'Re), (1.5)
the coefficient of dynamic vaporization, takes into account the flow
of the stream around the drop

0 B0 In(-—'-:—'?—). (1.6)

Tm I —tan

where Dv is the diffusion coefficient of the vapor:

14'4
Y, =VWy——2—— — 1s the specific gravity of the vapor-air mix-

—e (118
! "(' *v) ture at the point on the boundary layer of the
drop with the mean concentration c'm:

' € €
'd =-—£—"

] 2 4
q“==“ 7 ! —- 18 the vapor concentration at the surface of )
9 -
Pv(Fv ')*' the drop;
P, — i1s the saturation vapor pressure at the liquid ¢
surface;

12




*gafs&ww& R
2
A

,_u_’x!f’;'_‘)_ — 18 the vepor concentrution at infinity (in
the free stream);

p--"8t™l __ 35 the ratio of thc total flow rate of tkre

]
2 air (gas) and liquid in the initial cross
section to the air flovw rate;
=z : — 1is the influence fector of heat transfer on
Nugt, ] — €4 \*
V ':;‘\l__,_.) dynamic vaporization;
| -
‘hln( l_:" )
Nu = —~— 7= — 1s the Nusselt number in heat transter with
l(‘—‘w) "'] static evaporation of the drop;

Here o e PVIMXEM X5
Amx

Pr=ﬂm___x’?x'mX_ is the Prandtl number.
mx

In the calculation procedure mentioned above (1], the physical con-
stants of the vapor-air mixture — the specific gravity Yonx viscosity

Nnx? thermal conductivity coefficlent A heat capacity c__, and the

mx? mx

specific gravity of the vapor Yy which app-ar in the expressions for
the vaporization (and neating) of the drop, are calculated from the
characteristic temperature and concentration in the conventional
bounday layer of the drop. They can be determined spproximately from
the average values of the concentrations and temperatures at the sur-
face of the drop and in the fi1ee stream, c'm and

T _T.+T|.
) 9

13



Relations that can be used to calculate the parameters of gaseous
mixtures (for example, A__ and "mx) will be found in the literature

71, (8].

mx

Equation of the Heating of the Drop

The equation of heating of the drop 1s obtained from the equations
of heat-flux conservation at the boundary of the drop. The change in
the total enthalpy of the particle per unit time equals the heat flux
into the drop from the outside (first term on the right) less the
enthalpy that has been removed with the vapor (convective term):

4
d(miy)mu,(T—T,)Sdv—~dm,(i, +1), (1.7)

= ’ . =
where the mass m, = ma /6 0, dmv dml

11 = c'l(Tl - Tr) — 18 the specific enthalpy of the particle;

ap — 18 the coefficient of heat exchange of the
drop across the surface S = na? with the
surrounding medium;

1 — 18 the heat of vaporization;

c'l; Tz — are the average heat capacity and the mass-
averaged temperature of the drop.

In accordance with the one-dimensional formulation, the distri-
bution of temperature within the drop is not taken into account here,
i.e., 1t 1s assumed that the coefficient of thermal conductivity Al = ®

(instantaneous equalization of temperatures within the liquid).

From Equation (1.7), we obtain (the cerm dmlil = -dmviz drops out

of the equation):

dal, dm
m —d—-‘—zﬂ,(r—r-)ﬂa.‘{"fl. (1.8)
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During vaporization, as we know, the temperature of the drop rapidly
approaches a certain limiting value Te known as the temperature of

isothermal or equilibrium vaporization:

TuTy

Unlike that of a solid sphere, therefore, the temperature of a
drop in a stream whose parameters vary "fronts" not for the temperature
of the gas, but for the corresponding temperature Te’ varying from

TZx to Te when Tz - Te' All of the heat absorbed by the particle will be

expended on vaporization, and there will be no further change in its
temperature; for each liquid, Te is a function of temperature, pres~

sure, and the concentration ¢, in the surrounding medium. It is
calculated from the familiar formulas [1].

For Tl < Te(dTl/dt) > 0 (heating of the drop);

for Tl > Te(dTl/dt) < 0 (cooling of the drop).
The heat-exchange coefficient ap of the evaporating drop is determined
in terms of the Nusselt number of the drop:
=N
L .'

which is expressed by the formula

’Nu=-—Nu“ [ ;-0.3vl/ﬁ '/k—e]- (2.9)

Vaporizability of the Drop

Vaporizability 1s the fraction of evaporated matter that he3 been
given off by the drop between the start of the process and the parti-
cular (present) cross section of the stream:

.-,..‘1-:__""'-=.|-(;'7)'|3. (1..10)
15
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The densities of the liquid are accordingly functions of the drop
temperatures Tz: and Tz; 0s Z, £ 1],

uation of Flow Rate for Two-Phase Mixture

The sum of the flow rates of a mixture of gas (air), vapor, and
liquid particles remains constant in each cross section of the stream:

WoF 4-m wm, 4m,,. (1.11)

Equation of Momenta for Two-Phase Mixture

Let us apply the equation of momentum of a stationary stream in
its differential form to a two~-phase mixture in the absence of
frictional forces. In projection onto the x axis, the equation can
be expressed in terms of the total momentum J:

4 ar
alu (1.12)

Here the formula for J will serve as an additional relation (for the
sum of the gas and drop momenta):

Jom(m;4-m )W +m,V 4 pF. (1.13)

In the particular case of a cylindrical pipe, dF/dx = 0 and Equation
(1.12) assumes the form J = J;.

Equation of Ccnservation of Energy in a Two-Phase Mixture

This equation can be written in enthalpy form. The energy of a
two-phase mixture remains constant in each cross section; it 1is com-
posed of the enthalpy i1 and kinetic energy for a gas-vapor mixture —
the first terms on either side of Equation (1.14) — and the second
teem for the liquid.

16
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The heat expended to vaporize the drops, including the latent
heat of vaporization I, appears on the right side:

(it ) tmas (142 )= o ) ma (it ) £ma (1.14)

where m = Mgy + m, is the mass of the air-vapor mixture.

The enthalpy of the gas (or liquid) is written in its usual form
(it 1s assumed that heat capacity does not depend on pressure):

4
1-'[ €, AT+l m=c, (T T —T,) Liy;
| ]
’ r

. 1
€, = =T Sr,dr.

' Here c'p(T'av) is the average specific heat of the gas in the range
of integration T1 < 'r'av <T;

Ti; 11 are the temperature and enthalpy corresponding to the
reference from which the enthalpies are reckoned.

The other enthalpies will be written in similar fashion: 1;; 1115

The enthalpy of an air-vapor mixture equals the sum of the
enthalpies of its components:

s .| -l .
l-,.’-'!"l'l='- PR +'¢ .‘_‘...'

C'p=r‘ac'a+rvc'v, the average heat capacity of the mixture on the segment
(Ti; T), 18 expressed in terms of the average heat capacity of the

components. Here r =—-t ., =m]—r, are the fractions of air and

: S TPIPPRETI a
\'
vapor; 1a; 1v are the enthalpies of the air and vapor. For example,
if the cp(T) relation 1s near-linear (as may be assumed in approxima-
tion in many calculations), we have Qv..i%ln.and the heat capacities

are calculated from the arithmetic mean of corresponding temperatures.

17
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Equation of State of the Vapo:-Gas Mixture

The Clapeyron equation of state for vapor-gas (air) mixture takes

the form

LR
e C.rv (1.15)

where Rmx = 8‘}“'u is the gas constant of the mixture,
mx

R«-"':_’”"w"*'!'g;
Bew o M ¥
Mo are the molecular masses of the mixture and its
components (vapor and gas).

Unxi PByd

The 10-equation system written out above includes differential
and algebraic relations. For convenience in the later analysis, we

must:

(1) reduce the system to dimensionless form (by normalizing the
variables with appropriate initial values);

(2) reduce it to differential equations only (by differentiating
the appropriate expressions) and solve them for the derivatives of all
of the unknowns. This 1s convenient, for example, in computer solu-

tion of the equation.

Thus, we can obtain 10 dimensionless functions of the independent

variable
et Wt pml Tl g=2;F
r ' v, p n T, VO [ = y
--i'aa—'—:z =] gtV m—: =l T
] ((‘. ’I x* ll

where x* = 1%,. These functions appear in 10 initial equations (1.1),

(1.3), (1.4), (1.8), (1.10), (1.11), (1.12), (1.13), (1.14), and (1.15).

Here the parameters J, ¢, z, and V are auxiliary unknowns that are

easily expressed in terms of the others. They could have been elimini-
nated, lowering the order of the system. But for convenience in

18
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3
%

notation and ir the transformations that follow, we shall work with

a system of nine rJjuations, eliminating only the unknown J and,
accordingly, Equation (1.13) [we substitute the value of J from (1.13)
into (1.12)]. Here t* is the characteristic vaporization time defined
in the single-drop theory, i.e., the time of total static vaporization
(with no flow past the drop) when the initial parameters of the medium
and the equilibrium vaporization temperature of the liquid remain

A\l

q

1°m—
[ 9 M

constant:

were eev 18 the value of the coefficient of vaporization 6 at the

initial values of the gas parameters and isothermal-vaporization
temperature Tpx; x* is the corresponding characteristic vaporization
length.

The universal variable t is highly convenient for analysis and
comparison of various conditions of the process, since it varies in
a much narrower range than the absolute time of total vaporization Tev*

The value of t* depends on the properties of the model adopted
for static vaporization of a single drop.* Thus the corresponding
modifications and improvements of the theory can be taken into account
in many cases by applying corrections to the parameter t*., The con-
version from the universal variable to the variable t or x is very
simple, e.g.:

S mt® g0 L -t
et V, where V o
After simple transformations, we arrive at a system of dimensionless

equations.

*The theory of dynamic vaporization is based on this model.
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Equation of motion of the drop:

AV L3IV 6 3w —V)
&t 4 8 6 (u !

where -
Cn

Law of motion of the drop:

Equation of vaporization of the drop:

3 (1403 VP Re).

n|-

=
2

ails

Equation of heating of the drop:

{
_:L —;'—‘II(r -7 di
i l—c o
[l“‘no ]

(oo &7

(1.16)

(1.17)

(1.18)

(1.19)

For the liquids of practical importance, the density 0 decreases

with rising temperature, so that -'—‘-'—iJ-(O and the

e 1
cannot vanish.
Vaporizability of the drop

4z, at (o da~ | dg, =

_— e - - -—— —

dt Ve (3 di""+ ax a),
where

=~ gay. dv, Ay 4T, . T de _Q'_l

denominator of (1.19)

(1.20)

Var ;“_u-._' 7!‘—~ ;I-T dt ¢ 4T dt

20
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The derivative %: , which appears in Equations (1.19) and (4.20),
should be taken from (1.18); Lfl in %L 1s substituted from (1.19).

4

Equation of momenta for a two-phase mixture:

a_ pf = 4F
a5 P (1.21)

where J, 1s the initial momentum of the gas and drops;

LLANR VNTY L NI
dx

J .
dx Jy [| +0-1)0 + ;-‘%r]u.ﬂ

'sf‘ 1s the assigned value of IF=;’:-f(x)]. Thus, all five equations
describing the process as it unfolds with 1iquid particles are solved
directly for the corresponding five derivatives of the unknown para-
meters:

. ' A dav dt | oav

The unknown functions themselves and the physical constants remain in
the right members of these expressions. The remaining gasdynamic rela-
tions can be written after differentiation as linear algebraic equations
in the erivatives [the derivative of the right member of the expres-
sion for J from (1.13) should be substituted into the left member of

the momentum equation (1.12)]:

They take the form:

ar do ‘
flow rate equation ay Tﬁ_+u“7!;'=.=5,; (1.22)
momentum equation ay ﬁf_+¢”£=7= . (1.23)
dt ds
21 :
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ai af .
energy equation o ,yn,.ﬁms.; . (1.24)
equation of state ay, %.’;’ ,La“-‘:z "y ;:E-B‘. (1.25)
A 4 T

We also write the flowrate equation of the gas in nondifferential

form:

Ty )
e LU EIEY

WF

the density (flow rate) of the air-vapor mixture increases as a result
of vaporization. The coefficlents of these equations® are expressed .
terms of the aforementioned five derivatives and the various unknown

functions.

In writing the energy equation in differential form, use should
be made of the expression for the enthalpy of the alr-vapor mixture

in terms of the quantities "a’ Tys from which it follows that

4o~ dry dr. ar, = o7 (L=i)A-1) 4z,
Pl 4w+(‘ +e ) Pr 4?+|| -0 @

.‘_8——’-—-: r= b H ’:-——‘_.—'
el ety enly
6“ - ’. ’. T | €a
——aml ==l —— rf, —— =2 = — -—I B ——)
P e PR Pt el ey

Cab Cyi cp are the absolute heat capacities of the air, the vapor,

and the vapor-air mixture and cpl is the heat capacity of the air in

the initial cross section. . ’

The linear equations (1.22 — 1.25) can be solved for the
derivatives of the unknowns if the system determinant D does rot !

vanish:

#3ee the dete-rminant (1.30) below.
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o Dy | (1.26)
dt D
# o MO (1.27)
« dt D axn )
—a P2 _
ap Mo (1.26)
ds D @)q

f-el. By~ 0B; — auBy + (a + Gn)%
.4'? D ag ’ (1.29)

where Dw; Do; DT are tlre partial determinants corresponding to the

unknowns g%—: %E- %Z; in these determinants, the appropriate columns
]

are replaced by the right members of Equations (1.22) — (1.25) B;;
Bz; Bs; Bas.

Thus, all unknowns can be found and expressed in terms of Dw/D:

Jaw 0 0 a
Dl %2 9 0 0 | (1.30)
@y 0 a4 0 |’
0 ag ag O

0 0 g
e, 0 O
0 o, 0

4 Gy Gy ay

(1.31)

£
]

% %
-

Let us denote a = zv(B - 1) + 1; the coefficients of the equation

system and the elements of the determinants are expressed in the form

ﬂ" = GF-; 0“ = ‘F'F‘;

23
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gy == U “"=h—:f;

a,, =2alt’; a.-m"r_—":

g = u“-—[f{ﬂ*l):.-{.-l ]3;
w==[2ap-n41]F

a7,

=
ﬁ:-—(?—l)[(W-V)‘—’_a+(1_ )‘V] ._"z‘!_ “z
. By=—(3-1) {[m(r -1, ""—7 )+wl Vl+ ]"-

(1= 4V 2 - 4,
(1 ~.)[2V m n ]’

—(g-nu'f"- —aW

By=(3-1) [E To-p ‘—;.

[ - ¢
[ -—tE o x
= oy ' ¢'|T|'

M= |/I‘/§;r‘ and 4, =-2 are the Mach number and adiabatic exponent of
! (9]

the gas in the initial cross section. If we put Iv‘:a—5y =0 1n the

coefficients a“ and Bi’ we obtain as a particular case the flow

equation of a gas mixture with nonvaporizing solid particles.

Substituting the values from Equations (1.16), (1.19), and (1.20)
into the formulas for the coefficients By, B2, By, By, which contain

the derivatives i? ._‘L, ‘._'_V » We obtain relationships solved for the
. 4

derivatives of the velocity, pressure, temperature, and density of
the gas.
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The general system of 9 equatlons (1.16), (1.17), (1.18), (1.19),
(1.20), (1.26), (1.27), (1.28), and (1.29) can be called canonical.
It breaks down into two groups. The first group of five equations
contains, 1n its left members, the derivatives of the parameters
describing the processes involving the drops, their motion, heating,
and vaporization. The second group consists of four equations whose
left members contain only the derivatives of the gasdynamic parameters.

The canonical system 1s convenient for programming computer
solutions of the problem.

Let us invesctigate in greater detall the question as to the
conditions under which the solution of the canonical system of equa-
tions of two-phase one-dimensional flow 1s possible. It involves
the exlstence of a singular point for the system of differential
equations (1.16), (1.17), (1.18), (1.19), (1.20), (1.22), (1.23),
(1.24), and (1.25). The first five equations of this system have no
singularities, and the coefficients of the respective derivatives on
their left sides do not vanish.

Let us examine the last four equations, which have a singular
point. At this point, the (fourth-order) system determinant D, which
should appear before the derivatives in the left members of (1.2R) —
(1.29) vanishes, with the result that uniqueness of solution 1is vio-
lated (it can be shown that two solutions pass through the singular
point). The parameters of the gas at this point acquire certain
characteristic values. All relations in this chapter can be written
in a form that does not contain the Machi number of the gas-drop mix-
ture (and the adiabatic exponent k), since the determination of M
presents certain difficulties for a two-phase stream.® We introduce

the quantity Ai-.-F!_.. formally into the expression for the deter-

minants D; here uﬁka-ﬁ;k;rare the velocity, adiabatic exponents,

€o

gas constant, and gas temperature (ailr-vapor mixture) in the

*The parameters M; and k) pertain to the gas in front of cross
section 1 — 1. ]

25

St i



particular cross section of the two-phase stream. Thus, M 1s the

Mach number of the "frozen" gas in the particular cross section with-

out consideration of particles. Physically, this quantity is the

Mach number only of the gaseous phase, and rot of the two-phase mix- .
ture, since its denominator 1s not equal to the velocity of sound in

a stream contalning drops.

We transform the determinant D and find its roots, which will be
the roots of the (ninth-order) determinant of the complete canonical
gystem. We substitute the values of the elements “13 into (1.30):

F o 0 ’ (2T
4
! ‘|A"I- 0 0
Di=al _ ' %0
2w 0 T ) ¢
0 o« —[Bae-nm]e -[Eae-vn]r]

and expand the determinant, using the flow rate equation of the gaseous
phase:

The Mach number 18 easily composed of terms of the form #2/% which
appear in the course of the transformation:

“_wm
r T‘? Ry

As a result, we obtain an equation for the roots of the deter-
minant:

"
orfn[”' ..o—l)+l{ N (1.32) )

D= )
My —-1)
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The first multiplier in (1.32) is nonvanishing; consequently, the
unique solution 18 M = 1. As we know from the gasdynamlcs of single-
phase streams, a unit Mach number corresponds to a singular point ¢f
the equations and to the critical-flow condition. Following the
analogy, we shell call a two-phase flow that satisfies Equation (1.32)
critical if M = 1, subcritical if M < 1, and supercritical if M > 1.

The parameter M introduced here 1s not the Mach number of the
entire two-phase mixture. For example, processes in it that involve
the propagation of sound waves are not determined by the combination
M. Soluticn of the equation system® in the critical cross secticr

M = 1 is possitle only if all of the determinants vanish: Dw = Dp =

Dc = DT = (., For a gas flow contalning drops that 1s continuously

accelerated (‘id";’-> o) from M < 1 to M > 1 the determinant D could,

according to (1.32), change sign from (-) to (+) at the sirgular
point. Analysis of the determinant Dw (which 1s more complex than

the determinant D) may, generally speaking, establish the mathematical
conditions of the transition through the critical cross section in
channels with various shapes. Physically, this corresponds to a change
in the sign of the resultant gasdynamic disturbance according to the
familiar treatment of L. A. Vulis [9]. This reference also examines
the vaporization of a liquid in a cylindrical pipe under two extreme
assumptions: the absence of dynamic and thermal lagging of the drops
with resrect to the medium, and conservation of the initial parameters
of the drops as they move,%#®

The right sides of Equations (1.26) and (1.29), i,e., the
deternminents D, s include terms (see the elements of the determinaut Bi)

that correspond to various physical disturoances (terms with the
derivatives dF/dt; dV/dT, etc.). Numerical calculations indicate, in

#The derivatives of the unknown quantities have finite values.

##The real process under consideration here differs substantially
from these extreme cases.
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agreement with the above, that there is a change in the direction of
an elementary disturbance in a particular process in any small region
containing the point M = 1. For example, utilization of work from
the gas to entrain drops accelerates the gas if M < 1 but decelerates
1t Af M > 1. in machine calculatiocns, it 1s helpful to watch the

w

sign of the determinant D or the quantity (l_'Tﬁﬁ?") so as to know

whether the singular point has been passed in the computing process
and the interval in which it occurs. The solution gives the unknown
parameters in all channel cross sections, no matter how close they are
to the section where M = 1 (with any accuracy attainable in machine
calculations). Since the singularity of the equation is an isolated
singular point, the values of the parameters at this point can easily
be found by the corresponding continuity extrapolation.

An inference as to the characteristic value of the parameter M = 1
in a twc-phase flow can be arrived at by writing the equation of the
inverted disturbances in the Vulls form.

If we regard the two-phase flow® as a gas in which the particles
act as point forces (or sinks) of heet, mass, and mechanical energy,
the derivation scheme given in [10], for example, ylelds

Mo W _dF 4G 1 _r=1,0_4G ¢ IR,
W= -G @Il R T~ W=
- = (1.33)
M=—=
Qyy 'm *

Here agq and k are the velocity of sound and the adiabatic exponent
of the gas; dG = de is the elementary flow rate of the vapor given

off by the drops; dQ is the heat given up for heating, vaporization of
the drops, and heating of the vapor to the temperature of the surround-
ing gas (dQ < 0); dL 1s the work supplied to (or taken from) the drops
during their entrainment or deceleratlon, with dL > 0 or dL < 0,

#With the same starting hypotheses as were used in the present
chapter (neglect of particle volume, absence of friction at the wall,
etc.).
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respectively; and dR is the change in the gas constant due to vayori-
zation (with increasing dR < 0).

Each of the terms 1s expressed with simple relationships in terms
of the gas and liquid parameters. The elementary disturbances expressed
by the terms of (1.33) can be broken down into groups from the stand-
point of their effects on the gas velocity W. For a flow in a cylin-
drical pipe with M < 1, for example, vaporization, i.e., the input of
mass (dG > 0), accelerates the flow, but the utilization of heat for
vaporization (dQ < 0), input of work to the gas from decelerated drops
(dL < 0) (we shall show that the particles characteristically lead
the gas during vaporization in a pipe) and a decrease in the gas
constant of the mixture (dR < 0) — the molecular weight M of the

mixture increases for the fuel considered here — all accelerate the
fl w.

It will be shown later on in a numerical calculation that the
decelerating group of factors prevails in a broad range of flow con-
ditions of practical interest in a cylindrical channel.

Let us also consider the particular case of the flow of non- |
vaporizing, e.g., metallic, particles in a nozzle:

Vaw 4 G,
aw__ar_ G

H Gy k=1
M-=NZ aVite = = dl.. (1.34)

G‘:- i 2

Let 1t be assumed that the velocity and temperature of the particles
and gas are the same in a certain initial cross section of the nozzle.
Then the particles with larger inertia will lag behind the flow
mechanically and thermally: V < W; Tl <T, i.e., the flow must give

up work (to entrain them) and acquire heat (as a result of thelr
cooling):

dv’>°v dr-(O.
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viwm/sec In the narrowest cross section, dF =
0 and the right side of Equation
(1.34) is negative, so that M < 1.
Consequently, the critical cross
section M = 1 must be situated far
downstream from the cross section
with Fmin‘

If the particles lead the flow
mechanically and thermally, (V > W,
Tl > T), then the cross section M =

_ ) : Toe 1l will be situated at a shorter dis-
e f“mu:ﬂ- tance downstream than the cross sec-
tion with Fm

.8
in

il . — .

Figure 1.2. Variation of gas Thus, we arrive at the well-known

and drop velocities 1n two- fact that, generally speaking, the
phase flow (M, = 0.75; a = 16 Hicritical cross section in a two-nhase

g =1.8; T, = 1700° K).
Vi eem Wi —teee U flow does not coincide with tae
’ ’ smallest cross section r. t 1w nozzle.

In many practical calculations of two-phase flcws in nozzles,
the pressure (or density) distribution along the axi: of t > nozzle
i1s usually assigned rather than its shape, and the relc*io T = f(x)
is found. This simplifies the calculation by eliminating the afore-
mentioned singularity of the equation system. By performing a seriles
of calculations for various initial pressure distributions we can
arrive at a nozzle shape quite close to that required.

#In intermediate cases, when dV and de have different signs, it

is necessary to make a special analysis for the sign of the right
side of Equation (1.34).
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§2. Results of Solution of

':.' C the Equation System of
fare Two~Phase Flow
L
Al The canonical system of differ-
Jf ek entlal equations describing the flow
+—4@8 of a gas that contains drops was

Tred

solved on an M20 electronic computer

'ny by the Runge-Kutta method. The accuracy

I

g8  of determining the normalized
Figure 1.3. Temperature of parameters was ~ 0.1% (0.01% in cer-
I}Quidtgsaﬂoéige); ioefficiints tain special cases). For the most
t na -
Zatiog (;las O.gs;mac.vggoi; part, we studied a flow of alr with
206 1}9; T, = 1700° K; W1 = drops of gasoline in a cylindrical
; Bee) : channel (see Figure 1.2 — 1.12 and
o, o8, .. 1.16 — 1.22); some of the calculations
T2 9. edyn !
v (see Figures 1.6 — 1.15) were made
for drops of alcohol. In addition to values for calculations of mixing
in cylindrical chambers at M > 1 and M < 1, the flow in a channel of
simple shape makes it possible to establish a number of general features

of the two-phase flow.

In addition, this regime can be used as a kind of gauge to esti-
mate the parameters of vaporization in a more complex case. Such a
case 1s the spray cone injected into a supersonic stream, to which the
next chapter 1s devoted. It makes clear the impor<ance of analysis of
gas flows with drops under local subcritical conditions, such as may
arise directly be: ~d the injection zone. In analyzing the phase
transitions in a cylindrical pipe, we propose to use the results
obtained in Chapter II.

For a broad class of practically important cases, the basic
differences between two-phase flows with M < 1 and M > 1 are quali-
tative differences in the interaction of the two media, the liquid
and the gas. Offtake of heat, input of mass, and expenditure of work
to entrain drops infiuence the parameters of sub- and supercritical
flows in different ways.
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ﬂ;: However, the laws
F‘J of the elementary event
ff of flow past a single
L;;-: liquid particle and its
- neat and mass transfer
remaln the same, since,

-“'-:-".:.Et 14| o

a3 we have noted, the

relative velocity of a
ey g drop usually remains
J suberitical. For flows

Figure 1.4. Vaporizability and vaporiza- in a cylindrical channel
tion interval of drops at various gasoline
concentrations (M; = 0.95; a = 10 u; Ty = and in many types of

1050° K). nozzles in which the
_— 2, == X, mm. relative particle velo-
ecity u can increase
rapidly, it still remains ¢ .. .cantially below the local sonic veloclity
(5% as 16 u; liquids: gseoline, alcohol, water). The occurrence

of flow past an indi-idual drop at sonic velocity {(u = a4 and Mu =
u/asd = 1) will most probably be preceded by atomization of the drop
with a sharp decrease in particle relative velocity. From the rela-

tions M.g_i_;_ﬁ_ and Wem® (where We 1s the Weber number), we obtain
. L)

M-='l//%£f _ Under atomization conditions We 2 9 — 10.7, M, = Mﬁt,

the Mach number corresponding to the relative velocity of the gas
during atomization of the drop, will be larger the larger the o of

the 1iquid and the smaller the exponent k, a, and p. Taking, for
example, a 10 y drop, k=14, and p = 1 bar, ve obtain accordingly for

gasoline (and alcohol) Mﬁt » 0.37 (for water, Mﬂax s 0.7).

Thus, the necessary conditions for decay of the drop make their
appearance before the flow past it 1s sonic.®

#To establish whether atomization actually takes place, it 1s
necessary to perform a special analysis and to compare the time for
deformation of the drop with its stay time on a given segment. For
simplicity in estimates, 1t is assumed that We ~ 10; We » 17 may be
reached if the parameters are variable.
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Turning to our ansljsis of the computer results, we begin with
the kinematics of gasoline drops. The curves of Figure 1.2 illustrate
the changes in the absolute and relative drop velocities V and U and
the gas veloclity W during flow through a cylindrical channel.

In the flow considered here, V; £ W and the drops, which have
greater inertia than the gas, will retain their initial velocity at
the start of a substantial change in flow velocity. The gas velocity
drops off rapidly at first, and the velocity of the drop increases
slowly as long as V < W; when dV/dt = 0 the two parameters should,
according to the equation of motion (dV/dt ~ u?), be equal. Beyond
this point, W continues to decrease appreciably, and V slowly (begin-
ning of deceleration of the particles), and the drops "run out ahead,"
leading the gas by a considerable distance. Then even the drops begin
to lose much of their velocity, by the end of the motion, when a + 0,
V -+ W

The trend of the curves in Figure 1.2 can be explained with tu-
aid of Vulis's generalized-disturbance equation, which we mentioned
previously.

In our case, in which T > Tl heat 1s taken from the gas. It is

used to heat the liquid and vaporize it; the heat of vaporization Zde
1s included in the enthalpy of the vapor.* The vapor at the surfaces
of the drops has the temperature of the liquid and, on mixing with

the gas, 1s heated to the temperature of the gas mixture. Thus,
although the total enthalpy of the gas increases during vaporization,
its specific heat decreases as a result of dilution of the mixture
with colid vapor: dQ = cmxdT < 0.

At the start of the motion from the point x = v = 0, the phase
transitions have, for all practical purposes, not yet started, since
the 1liquid temperature Tl; is low and de & 0, However, the heat

taken from the gas, i.e., the increment dQ ~ d'rZ i1s substantial, since

®It 1s released again when the 1liquid condenses.
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the temperature Tz of the drops (Figure 1.3) increases rapldly at the

starting po'nt. Owing to the high inertia of the drops, the work
increment dL ~ dV? must be very small (as is indicated by the initilal
segments of the curves, where V ~ const). Thus, the term dQ will
continue to be the prevalent factor on the initial segment of the
motion, and the right side of Equation (1.33) will have the sign

(#). Thus, with M < 1 and dW < 0, the gas begins to slow down sharply
and 14 lags behind the drops. On the next segment of the motion, the
increased velocity difference V - W = U will result in an increase in
the aerodvramic forces acting on the drops, and this will sharply
increase the factor dL. Vigorous vaporizatiocn of the heated liquid
particles will result in an increase 1n the terms with de and dQ.

Comparison of the computer results and the generalized-disturbance
equation leads to the general conclusion that the basic tendencles
that lower the velocity of the gas, e.g., input of work from the drops
(whose kinetic energy decreases) to the gas dL < 0, prevail when M < 1.
Transfer of heat from the gas to the drops, dQ < 0, prevalls over the
trends that tend to increase velocity, such as input of vapor mass to
the gas de > 0.

The right side of this equation is always found to be
positive, and hence the continuous deceleration of the gas (dW < 0)
over the entire "lifetime" of the drop.

Thus, a situation similar to the conditions of two-phase flow in
a nozzle (where, to the contrary, the gas leads the drops) arises in
the cylindrical pipe. The 1liquid particles are ventilated and,
consequently, subjected to a rapid dynamic vaporization. Generally
speaking, the maximum relative velocitles U'max that the drop encoun-

ters on its path can exceed U;. They are hrigher (see Figure 1.2) the
lower U; (the maximum Umax 18 reached at U; = 0). We observe a kind

of "compensation" in which the mean effective relative velocity on the
path of the drop remains nearly constant or increases slightly with

increasing U.
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Figure 1.3 shows curves of the dynamic vaporization coefficlent
(which depends on the convective heat- and mass transfer between the
drop and the surrounding gas) and of the relative static vaporization
coefficient 6/6v (which is determined by the static heat- and mass
transfer of the drop at rest). The vaporization rate of the liquid
depends on these parameters. The factor ed which is approximately

yn
= v
proportional to | Re (where Re = ~£! is the Reynolds number of the

evaporating drop), reaches a maximum at Remax (this poiit is shifted
slightly toward the origin from Umax)' In accordance with what we
sald concerning "compensation" of U, the increase of the inltial edyn
1s accompanied by a decrease in Og;:, which offsets the effect of the
initial Ui. If we estimate the average effective value 9§;n in the

vaporization interval frow the areas under the curves in Figure 1.3,
we obtain closely similar values that increase slowly with decreasing
Ulc

For most of the M < 1 conditions under investigation here, the
vaporization process depends weakly on Ui (1f the gas temperatures are
not too low, T, > 800° K).

On the other hand, the vaporization rate of the drops in a super-
sonic free stream increases only with increasing initial relative
velocity. This is explained by the continuous and rapid decrease,

U < U, during the flow with M > 1 (a small change in the veloclty
W compared to subsonic flow). Hence the main effect of the flow past
the particles is felt on the initial segment, where U is still near U;.

: The curves of B/er as a function of the dimensionless time 1
(the parameters U, and a have no appreciable influence on O/GP) in

Figure 1.3 have distinct maxima. The ascending branch of the curve s
corresponis to a segment in which the drops are heated from a com- |
paratively low initial temperature sz (in practice, the temperature !

of the fuel tanks or fuel 1ines) to a value near the isnthermal -
vaporization temperature of the drops. The descending tranch relates
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Tu 2 to the cooling of the gas due

HERRN Ty=1050°K
ol to vaporization or the liquid.
0t -1~ li/ The curves Figure 1.4 indicate
N /" i the vaporizabilities of gasoline
1~ ] 1/‘ P drops at various concentrations
sol-- /,/' P B. On a certain initial segment
- 112 T$ 0.2 — 0.3, where ~0% of
’;,4 et 4 the liquid is vaporized, the
o et
e EE ] curves for the various B practi-
0 3 0 T sap

cally coincide,

Figure 1.5. Influence of gasoline-
drop diameter on vaporization Vaporization of the rest

interval (M; = 0.95; B = 2.4),
of the 1liquid is strcngly
retarded as B increases (especially when 8 > 2.4). For B 2 2.4, the
parameter T becomes larger than 1, 1i.e., T > 1%, This means that

the strong flow around the drops with deceleration of the stream
(which intensifies heat transfer) can no longer compensate the
cooling of the gas by 1liquid drops. The curve for B = 3,whose main
segment is characterized by asymptotic behavior, corresponds to
vaporization conditions that are approaching but have not yet reached
saturation. The total-vaporization interval X, of the drops 1s an

important characteristic of the mixing process. This quantity is
significant for engineering components used in the preparation of
fuel mixtures, e.g., the various types of combustion chambers.

The general theory of two-phase flows tells us that the vaporiza-
tion interval x, is an extremely complex function of the many variables

that determine the motion and vaporization of the mess of drops in
the gas stream. The results of a series of calculations of the
vaporizabllity of gasoline are represented in the form of plots
against the basic variables a;; T,; B; M (W,); Uy,

In most of the cases of interest to us, the pressure p varies in
a4 comparatively narrow range, p = 1 — 3 bar, and 1s not a particularly
essential parameter. To simplify, we shall therefore refer the
resu.ts to atmospheric pressure in the initial cross section of the
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Figure 1.6. Influence of gas
tempcrature on vaporization stream. The influence of the initial

interval (M, = 0.95; 8 = 2).  fuel temperature T, 1s comparatively

—- alcohol; --- gasoline.
weak in the narrow range from 293 to

330° K even when M < 1. Calculations of the vaporizati~n range for |
M < 1 were made for an initial liquid temperature '1‘1l = 293° K. The

parameters a, and T; are most important if the concentration of the
drop 1s not too high: p<2+24 (T,>>1050° K; M,3»0.,75).

Figure 1.5 illustrates the influence of drop size.

Figure 1.6 shows the influence of gas temperature T, on the
vaporization range X, When T, reaches a large enough value T, ™

1500 — 1700° K (at 8 s 3), further temperature increase has little
influence on Xy The effects of the parameters B and M on the vapori-

zation interval are more complex. Curves showing x, as a function of

8 for fixed values of My, T., &1, appear 1in Figure 1.7. They are
typlcally flat over a rather broad range of liquid concentrations and
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rise sharply when B reaches 1 'rge

Puse P-1£;;bar‘p-ijfr ralues. This last property results
[ ¥ from the existence of a limiting
’ | concentration BB = £(T, p) that
il— ML i j corresponds to saturation, at which
=N ___J = £ ; f thermodynamic equilibrium is estab-
" / 1ished between the gas and the liquid
;ﬁ : and there 1s no further vaporization.
3 A.ﬁ- ff}g This state is characterized by equal
r; ifjf 9 temperatures of the drop and the
=t ;{’é&} E;., " surrounding gas, Tz = T, and equal
“_«—_:-?'f" = | [ vapor concentrations at the surface
' Joo J5@ _ T'% - of the 1iquid particle and at infinity

Figure 1.8, Saturation concen- Cp  * Cw.
tration during vaporization:

—z, * 1.0 -z = 0.7; As an example, Figure 1.8 shows
memee Ty curves of the saturation concentration
Bs as a function of the mixture T and

p at vaporized matter ratios z, "= 1.6 and 0.7. If the point (B, T)

for a given p and z lies to the right of the corresponding curve,
saturation hcs not been reached. The saturation concentration Bs

rises with increasing T (with p = const). This explains the delay in
the rise of the curves (large B) as T increases. The aforementioned
gently sloping trend of the x, = f(B) curve 18 explained by the antag-

onisms among the three basic tendencles of the process.
The following ozcur as B increases:

1. A decrease in the static-vaporization factor (O/Or) due to

cooling of the gas by the drops (an increase in xv).

2. An increase in the dynamic-vaporization factor ed n due %o

y
the higher ventilation velocity {(a decrease in xv); see Equations
(1.5) and (1.4).
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Figure 1.10. Temperature and velocity
3. An increase in of gas in total-vaporization cross
the flow-stagnation effect section (a = 16 ).

and a corresponding decrease =~ Ty = 1050° K; --- Ty = 1700° K.

in the absolute velocity of
the drop (a decrease in xv). I1n the range of small 8 and surficiently

large M;(M; 2z 0.75), tendencies 2 and 3 prevail, and a slowly desccni-
ing branch with a minimum point appears on the curves cf x, = £(8).

A transition to larger M, strengthens tendency 3. For this reason,
the descending branch is protracted and the minimum point 1s shifted
to the right as My increases (see Figure 1.7).

At small values of M, T,* (M,=05; T,=1050°K) , the minimum 1s filled
in and may be absent altogether (monotonically increasing curve).
Tendency 1, which results in a longer interval Xy» prevalls at large

B, but this tendency may be affected by an increase in T,.

Figure 1.9 shows the influence of B on x_ for various drop sizes

v
ai1. The range of variation of x, becomes shorter as a, decreases,

and the curves become progressively straighter.

For given 8 and T., a stronger cooling action of vaporization of
the drops on the gas (decrease of Tv in the total-vaporization cross

section, see Figure 1.10) should appear at smaller M. In these cases,

#For small T, the drop in the static vaporization rate has a stronger
influence on the range of the drops.
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the influence of gasdynamic heating on the deceleration . the flow,
which retards cooling, becomes weaker. Hence it 1s precisely at
small M £ 0.5 and large 8 that conditions may be created for a sharp
decrease in the vaporization rate with a substantial increase in Xy

(see Figure 1.11) all the way to saturation. Such conditions are

less probable when My » 1 — 0.7. Figure 1.11 shows the influence of
the parameter M; at T, = const,* i.e., in essence the influence of the
initial velocity W,, on the vapcrization interval. The xv(M;) curves

are characterized by maxima that become more distinct and shifted
toward smaller M, (W;) the larger 8 and the smalier T,. W, increases
with increasing M,;, but so does the decelerating effect (see Figure
1.10), as 1is illustrated by the dropping wv at the end of vaporization.

The increase in W; prevails at small M,, increasing the velocity of
the drops and the value of x, = £(M,).** As M; and Wy + 0 (T, = const),

the interval x, * 0 (in the 1imit, the resting drop 1s vaporized). At

large M, approaching 1, the decelerating effect of vaporization on
the flow "wins out," caus!ng a decrease in x = f(M;). The maximum
corresponding to "equilibrium" of the antagonistic tendencies 1is
shifted toward smaller M as 8 increases.

At comparatively large T; 2 1500 — 1700° K and B < 2 — 2.2,
this maximum occurs at about M, » 0.6 — 0.75.

In accordance with what was saild earlier, the influence of the
factor U, 1s negligible ("compensation" effect), see Figure 1.12.
Thus all results can be referred to the case U; = 0 for gasoline and
T, 2 1050° K. The transition to lower temperatures T; < 800° K brings
out a certain effect of U;. On the whole, the results of the compu-
tation indicate that at sufficiently high gas temperatures T; 2 1700° K
and not too large B < 2.8 — 3.4, the vaporization interval Xy varies

comparatively weakly with 8 and M, for gasoline drops.

#The case of M; = var with weakly varying T, 1is of interest for
what follows (see Chapter II).

#40ther conditions the same.
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= Figure 1.12. Influence B = 2).
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Uy on total-vaporiza-
5 e 15t erval ?Mx z For gasoline, for
s 0.75; a = 16 y; B = example, a = 14 yu,
Figure 1.11. 1.5). 60 5 x s 80 mm at
Influence Of Ml 0.5 < Ml < 0.95 and

on vaperization
interval (a = 1835 3.4, 0<U, £ 200 m'sec. This is a conse-

16 u. quence of certain "equilibrium" between the opposing
tendencies, which we mentioned earlier, and of the fact thut these
conditions are still far from saturation. A transition to higher ;as
temperatures equalizes the effects of M; and 8 (as long as B8 does not
exceed a certain limit).

Figures 1.6, 1.13, 1.14, and 1.15 present the curves for vapori-
zation of ethyl alcohol. The total-vaporization intervals are longer
than those for gasoline, especially when T decreases and a increases
(Figure 1.6).

In the case of alcohol, the effect of an increase in liquid con-
centration 8 on the vaporization interval 1s even more pronounced.
There 1s no descending branch of the x, = f(B8) curve, and the rise

of the characteristic for 8 2 2.3 — 2.5 1s steeper than had previously
teen observed (Figure 1.14). Figure 1.15 shows the comparatively weak
influence of gas pressure (in the range under consideration) on the
vaporization of alcohol. The effect observed on comparison of these
curves with the corresponding curves for gasoline is explalned by the
substantial difference between the physical constants of the two

l1iquids, especially their heats of vaporization: [ > 1

alcohol gasoline’
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Figure 1.16. Velocity and
temperature of gas and drops
in subcritical and supercritical
conditions (a = 16 u; B = 1.8;
T, = 1050° K).

o>
=)

2 p,bar

Figure 1.15. Influence of pres-
sure on vaporization interval
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Figure 1.17. Parameter M and gas
pressure in suberitical and super-
critical conditions (gasoline,

a =16 u; B = 1.8; T1 = 1050° K).

— p/p1; === M.

As they evaporate, drops of alcohol remove more heat from the
gas. The flcw-cooling factor and the decrease in the static vaporiza-
tion coefficient with increasing B and decreasing T are found to be

more significant here.
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To conclude this chapter, let us examine the behavior of the
various characteristics of a two-phase mixture as the parameter M, of
the initlal cross section of the pipe passes through the critical
value M; = 1, Numerous calculations in the practically interesting
range of variation of the initial data T, = 800 — 2300° K, 8=1.3 —
3, Uy = 0 — 200 m/sec, 5 < a3 < 16 y for gasoline and alcohol have
shown that the form of the curves for all parameters of the two-phase
flow as functions of T (or x) and their orders of magnitude change
sharply at this transition. FPigure 1.16 shows the variations of
instantaneous velocity and gas and drop temperatures, and Figure 1.17
— those of M and gas pressure.

Figure 1.18 1llustrates the variation of the dynamic and static
vaporization coefficlents, while Figure 1.19 1s a plot of the vapori-
zability of the drops.

All of these curves pertain to two comparatively similar flow
regimes — subcritical, M; = 0.95, and supercritical M, = 1.2. Fi,ure

1.20 shows curves of x, = f£(M;) and the relationships for the gasdynamic

parameters wv/w., TV/T;, and pv/p, in the total-vaporization cross
section.

For computer calculation of these curves, we chose a step M, =
0.01; the approach to M; = 1 was M; = 0.98 in the suber’tical range
and M, = 1,02 in the supercritical range. The aforementioned sharp
change in the trend of the curves (which is confirmed by the diagrams)
results from the fact that the flow in a cylindrical pipe does not
pass through the critical state M = 1 in the phase-transformation
process (in any event, for a broad range of conditions studied). Ir,
for example, the process began at M; < 1, it will remain subcritical
all the way to the total-vaporization cross section.

For these flows, the reversal of sign of the resultant physical
disturbance (which determines the nature of the relationship) will
occur only as the initial conditions change from critical to super-
eritical.
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Figure 1.19. Vapcrizabllity in
FPigure 1.18. Coefficients of subcritical and supercritical
static and dynamic vaporization conditions (gasoline, a = 16 u;

in subcritical and supercritical g =1.8; T, = 1050° K).

conditions (gasoline, a = 16 u;

B =1.8; T, = 1050” K).

—_—0/0 ; ——— 8 The sharp increase in the length
v’ ‘

dyn x, of the vaporization interval with
the transition into the supercritical range 1s highly important in
practice. It results primarily from deceleration of the gas 1in which
the drops are being vaporized in subcritical condition and from
acceleration of the gas when M; > 1. In a flow with M < 1, as we have
noted, the velocity ? of the drops (which overtake the gas) drops
significantly, "following" the decreasing gas velocity W (prevalence
of the elementary disturbances that decelerate the gas, offtake of
heat, etc.). In a supercritical flow, the velocity of the particles
(which lag the flow) increases, following the increasing gas velocity.

The increase in ¥ 1s associated w.th an increase in the interval xv

(for a given drop lifetime Tv). But the time Ty also changes 1in the

same direction, increasing with the conditicn from suberitical to
supercritical flow. This is due to a substantial decrease in the
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Figure 1.20.

Interval x, and gas-

dynamic parameters in total-
vaporization cross section in

subcritical and supercritical *ﬁ | E#fl_
conditions (a = 16 y; B = 1.8). ]! iﬂ"‘"‘#-# T
— Ty = 1700° K; =e= T, ® et L L

b
1050° K. b A

dynamic vaporizability coefficient T
edyn in time in a flow with M > 1 '

— Uy = 620 m/aeg; —= U; = 0.

B 00 200 Jo0 oo 500
(see Figure 1.18) because of the e
shorter lag of the drops behind Figure 1.22, Vaporizability
in supersonic flow (M, = 2.85;
the gas (smaller values of the B =1.3; Ty = 1050° K; Uy, =
instantaneous U for a given U;). 620 m/sec).

The static vaporizability e/edyn (see Figure 1.18) also decreases.

This 18 a result of the stronger cooling of the flow and the lower
temperatures to which the drops are heated (see Figure 1.16) in a
supercritical flow. The strong protraction of the vaporization
process in time and over length intervenes after vaporization of
40 — 50% of the 1liquid (see Figure 1.19). Figures 1.21 and 1.22
present an example of vaporizability calculation for a supersonic

flow. Figure 1.21 presents curves for determination of the time
scale.
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This calculation was made under two extreme assumptions concerning
the relative velocity: U, = 0 (no flow around the drops) and U; = 620
m/sec (flow around the drops at sonic velocity). The true initial
relative velocity lies between these limits and is usually closer to
the former.

We see from the diagram (Figure 1.17) that vaporization results
in a substantial decrease in M at the end of the process for M,<!—McM,
and an increase when M,>1—M>M,. This is why all parameters of the
total vaporization cross sectlion differ so sharply from one another
as M; = 1 1is approached from the subcritical and supercritical sides.

The following conclusion can be drawn in regards to the rate of
the phase transitions: setting up a more rapid vaporization process
requires injection into a supersonic flow, which ensures 1) fine
atomization and 2) vaporization under the conditions of local sub-
critical flow in the injection zone. It 18 interesting that such
conditions, as we shall see in Chapter II, can be obtained in spray
cones with a free-stream velocity M, > 1.
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CHAPTER II
THE SPRAY CONE IN A SUPERSONIC FLOW

§1. Formulation of Problem

The present chapter is devoted to construction of a semiempirical
theory of flows with phase transitions in a supersonic-stream spray
cone. It is presently an approximate method for calculation of all
the necessary flow parameters and the characteristics of the total-
vaporization interval, which are of greatest importance for
practice.

In the preceding chapter, we examined the process in a channel
in which gas and liquid particles interact with fully defined initial
conditions. Use of the equations of one-dimensional gasdynamics in
combination with the differential equations of the elementary pro-
cesgses for the drops enabled us to solve the problem on comparatively
simple and obvious premises.

The spray cone in a supersonic flow is a more complex object.
The dense swarm of 1iquid particles formed after injection confronts
the stream as a kind of semipermeable body offering a large hydro-
dynamic resistance. The mass and parameters of the gas that penetrates
into the frontal region of the cone are not known in advance.
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It 1s sufficient to inspect any of the accompanying fuel-cone
photographs to arrive at the conclusion that the velocity W', tempera-
ture T', and pressure p' of the gas in the region of high liquid-
particle concentration must differ substantially from the free-stream
parameters W, Ty, and p). Estimation of average flow characteristics
in the injection zone presents certain difficulties. In addition to
knowledge of the shape of the cone's boundaries, it 1s necessary to
make a special analysis of the flow within them. The shock wave ahead
of the cone results in highly nonuniform distributions of all para-
meters, which are then gradually equalized in the "liquid-grid" zone.
At our present level of knowledge, it 1s highly advantageous to repre-
sent the complex two-phase flow that arises on injection into a super-
sonic stream in the form of an equivalent one-dimensional gas stream
that carries the particles. For the time being, this approach is the
most rational for investigation of systems with phase transitions.

As we know, solution of the analogous (but simpler) problem of
averaging inhomogeneous flows in ordinary gasdynamics has ylelded a
number of valuable and practically useful results. The present stage
1s also necessary for the transition (in the future) to solution of
the problem of non-one-dimensional flows with phase transitions.
Three individual particular problems arise in construction of the
theory:

1. determinatinn of the shape of the spray-cone boundaries (and
of the shock wave) as a function of the principal dimensionless numbers,

2. establishment of the possibility in principle of egquivalent
substitution of a one-dimensional two-phase flow for the complex flow
within the boundaries of the spray cone;

3. determination of the effective parameters W', T', p', 8'

of that flow in the frontal regiocn of the spray cone, which contains
a dense swarm of particles.
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The average parameters found in a certain reference cross section
of the spray cone may be taken as initial parameters; they permit use
of the results of the one-dimensional idealization (Chapter I) to
calculate the characteristics of the next section, in which the bulk
of the liquid 1s vaporized.

The first of the problems formulated 18 accessible to modern
experimental and theoretical methods and has been solved (though per-
haps not quite completely) by a number of investigators. In the
present chapter, §2 1s devoted to the acquisition and generalization
of experimental results defining the boundaries in "cold" spray cones
with negligible vaporizability.

However, the data can be applied to rather short initial segments
of the vaporizing cone in which the shape of the boundaries has not
yet undergone substantial changes.

In solving the problems formulated under points 2 and 3 above,
it will be necessary to construct a model of the phenomenon under
study, and this 1s done in §3. An analytical discussion of the prob-
lem 1s presented in §4 and 5, to the best of our knowledge for the
first time in this form. Essentially, an attempt 1s made here to
calculate the interaction of the supersonic stream and the dense
particle swarm for the conditions of the spray cone. We shall formu-
late the general problem of the present chapter as follows.

All initial free-stream and injection parameters and the corres-
ponding physical constants of the two media are known.

It 1s required to calculate in approximation: the flow within
the spray cone in the supersonic stream with phase transitions, 1i.e.,
the average® velocity, temperature, gas pressure, and 1iquid and vapor
concentrations with the objJect of determining the principal parameter,
the length X, of the total-vaporization interval. Having these data,

vwe can determine the parameters of the fuel-delivery system in a

#In a cross section of the stream.
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certain ideal chamber with supersonic flow, 1.e., the pressure drop,
the number and diameter of the atomizer nozzle orifices, and the
vaporization interval, and can determine the total-head loss due to
atomization.

At the end of Part 1, the corresponding calculation procedure
will be set forth in detail. Naturally, this semiempirical theory
requires experimental verification. Measurement of gasdynamic or
other quantities in the injection zone is extremely difficult. 1In
the present study (see §6), we present a comparison of theoretical
and experimental results for the principal parameter, the total-
vaporization interval, in a spray cone in a supersonic stream.

In §7, we examine certain applications — concrete examples of
injection-system mathematical design for the mixing section. In our
opinion, the following are of independent interest: 1) results on
representation of the inhomogeneous flow in the cone behind the shock
wave in the form of an equivalent one-dimensional flow; 2) solution
of the problem of the existence of a developed suberitical flow
region in the initial segment of the spray cone (which is an important
factor in the theory to be developed).

§2. Shapes of Spray Cone and Shock Wave

Here we set forth experimental results {rom determinations of
the shapes of the spray cone and shock wave when 1iquid is injected
into a supersonic stream. They pertain to a "cold" eone from a
straight-cone atomizer without phase transitions (vaporization). The
initial gas-stagnation and liquid-heating temperatures are near room
temperature, and the vaporization rate is vanishingly small. The
processes within such a cone develop basically as fluid-dynamic pro-
cesses and are determined by the interaction of the gas with the
dense particle swarm. It will become clear from what follows that
description of a certain initial (frontal) section of the cone at
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distances on the order of x/dn = 10 — 30 and determination of the

1imiting line that indicates the range of the 1iquid stream® (the
asymptote of the cone) are of greatest interest for the analysis at
hand. In subsequent study of fuel cones with phase transitions in a
heated stream, it 1s found possible to use the relationships obtained
here as a point of departure.

According to the experiments described below (see §6 of this
chapter), vaporization has little effect on the cone-boundary contours
on a certain initial interval; the vaporizing cone undergoes a sharp
change in shape on a segment farther from the point of injection. In
these experiments, the liquid was delivered at an angle to the stream
(90°) from a circular orifice on the surface of a streamlined needle-
shaped body. This minimized the influence of the flow around the
atomizer itself. For example, it was possible practically to eliminate
the influence of the complex phenomenon of boundary-layer Jetachment
(confining it to a zone small by comparison with the dimensions of

the cone).

Selection of the streamlined atomizer made 1t easier to analyze
the structure of the two-phase flow, to describe its outer boundaries
with comparatively simple and general relationships, and to prepare
reference material for tlLe theory of flows with phase transitions that
1s developed in the sectlons that follow. The basic purpose of the
experiments performed was to acquire the most general possible approxi-
mate relationships to describe the outer boundaries of the spray cone
and shock wave in two coordinate planes in terms of the basic simi-

larity criteria.

It 1s also known that data on the shapes and ranges of the cones
are of direct practical importance. They are needed for rational
selection of the number of atomizers and their placement in the volume

#The contowr of the cone boundary is usually such that relatively
arbitrary smooth matching of the initial segment to the asymptote
ylelds a practicallv correct picture of the entire cone over a con-

siderable part of its length.
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of the combustion chamber.

Turning to the corresponding
experiments, we note that similar
experiments have been performed by
a number of authors, and that most
of them have been based on a well-
known photographic technique the
details of which are set forth in
the literature [1].

The experiments performed here

also reduced to photographic inves-
tigation of a cone in a supersonic
stream by the shadow or Tépler
method. The photographs were taken
in two planes: for the most part

Figure 2.1. Boundary between
spray cone and shock wave. in the profile plane xoy (plane of

symmetry of the cone), which con-
tains the liquid-outflow and gas velocity vectors V, and W;, respec-
tively, and in the horizontal plane xoz, which passes through the
coordinate crigin perpendicular to the vector V, (Figure 2.1). Special
spark photographs were also made of certain segments of the spray
(the root of the liquid cone) at known magnification.

A conventional supersonic-flow installation was used for the
experiments, with a special (interchangeable) gasdynamic nozzle to
produce the desired Mach number in the working section.

Figure 2.2 presents a diagram of this setup. Air from the high-
pressure line 1 is delivered into receiver 2, where the stream is
sharply decelerated. The total head pei1 of the gas and, accordingly,
the static pressure p, in the working chamber can be regulated with a
regulator valve installed in the high-pressure line. Thereafter, the
stream is accelerated in the gasdynamic nozzle 3, entering a rectangu-
lar working chamber with flat 120 x 120 mm optical glasses 5. The
object photographed — the atomizer with the spray cone — is situated
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Figure 2.2. Diagram of experimental setup.

1 — high-pressure air line; 2 — recelver; 3 — gasdynamic nozzle;
4 — constant-velocity rhombus; 5 — glass for photography; 6 —
object of photography.

in the constant-velocity rhombus 4. The photographs were made with

a standard IAB-U451 Topler device (using an RDSh-250 mercury lamp for
{llumination). To obtain shadow photographs, a knife edge that cuts
off part of the light beam is moved aside to a certain position. In
spark photography, which permits inferences as to the instantaneous
picture of the process, the standard illuminator was replaced with
the discharge tube of a specilal spark apparatus having a flash dura-
tion of ~10~% sec. The Mach number in the workirz sectlon was deter-
mined from measurements of the total pressure (needle-type manometer
with scale conversion factor of ~0.2 bar) and of the static pressure at
a given point in the siream, using the familiar Rayleigh formula.

The stagnation temperature Te1 was measured with a thermocouple
in the receiver. It was ~253° K (cooling due to gas-expansion effect).

The Mach-numbe: field was quite uniform. It was determined with
the aid of Pitot and static pressure probes. The measurements were
made at 20 points on two mutually perpendicular axes. The uniformity

AM/M; of the field was approximately 1.5%.

Liquid was delivered to the atomizer through a fuel line from a
pressurlized cylinder, and the delivery pressure Ap was meagsured with
a needle manometer reading to 0.2 bar. The basic parameters of the
stream were varied in the following ranges: My = 2.9 —~—2; pPo ®
16 — Tbar, 5 £ Ap £ 50 bar, and the atomizer discharge coefticients
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Figure 2.3. Photographs of spray cone (M; = 2.9; pe = 16 bar, d_ = 1 mm
magnification 0.66 X) " :
@ — Ap = 10 bar; b — Ap = 4 ar; ¢ — A d_ = 0.4 mm

were 0.7 — 0.75. Some of the experiments were made on a similar

setup with an open working section at design ne 1tflow.

The films were calipered on a special enlarger with a magnifying

fower of five.

At least two panotographs were made in each regime to check the
reproducibility of the results; as a rule, it was quite satisfactory.
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Specimen photographs showing
the respective images from which
the boundaries of the spray cone
(alcohol) and shock wave were deter-
mined appear in Figures 2.3 and
2.4. Examination of the photographs
indicates an increase in the range
of the spray with increasing delivery
pressure Ap and dliameter dn of the

nozzle orifice, as well as asymp-

Figure 2.4. Spark photograph of totic behavior of the cone.

root section of spray cone
(M = 2.9; = 16 bar; d_ = 0.4
. 5 Pe n The scatter of the coordinate

mm; magnification 25 X; Ap = 40

bar). points in the measurements averaged
+(5 — 8%). An instantaneous image of the cone appears o.u the spark
photograph of Figure 2.4, which is magnified 25 times. In it, we see
the root section of the cone in the injection zone. The cone remains
intact (under these particular flow conditions) on a length approxi-

mately equal to the orifice caliber dn and then disintegrates rapidly,

creating a dense swarm of particles, which are entrained by the stream
of gas. Minute filaments and single droplets separate under the
influence of the vacuum in the wake zone of the flow past the liquid
cone. In the longitudinal plane xoy, the shock wave is closely adjacent
to the boundary of the spray. At the base, the wave has an element
whose shape approaches that of the normal shock, and it 1s separated
from the wall of the delivery tube by a small subsonic boundary-layer
segment.

For segments remote from the injection point, at distances greater
than (8 — 10)dn, we need not take account of structural details of

the root zone, and may assume that the 1iquid is delivered from a point
source at the center of the nozzle orifice, at which the coordinate

origin is placed.
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The results of the boundary determinations were found to be
practi ally the same for the Tépler and shadow methods. Nor did they
change . ien the exposure time of the photographs was varied from 0.01
to 0.1 seconds. On the basis of the many photographic images obtained
in this and other studies, i1t 1s possible to form a quite definite
picture of the shape of the spray cone in a supersonic stream.

Dimensionless Numbers in the Problem of the Spray Cone

Let us consider the set of dimensionless numbers in the problem
of the spray cone in an unbounded gas stream. They determine the
shapes of the cone and the shock wave and other characteristics of
the flow, drop size, the gasdvnamic variables, etc. The injection
process is examined without consideration of phase transitions, 1.e.,
for the initial section of the spray or for a spray in a stream at
comparatively moderate temperatures. We shall assume that the phenom-
enon is quasistationary, neglecting boundary-layer detachment on the
solid surfaces in the injection zone and neglecting the influence of
the atomizer itself on the flow.

The gas 1s subject to the Clapeyron equation of state with gas
constant R and is regarded as an unbroken continuum.* This last
limitation may exclude, for exanmple, streams at very low pressures
or streams that contain extremely fire droplets with diameters in the
hundredths of a micron (flow conditions that are not studied here).
Turbulence in the free stream can be taken into account by the inten-
sity factor ¢ = V'/W; (where V' is the average fluctuation velocity
of the gas) and the turbulence scale ZT," and the hydraulics of the

outflow can be allowed for with the atomizer discharge coefficient My

We shall not take account of temperature gradients within the 1liquid
(whose heating 1s estimated in terms of a certain average temperature
Tz),and for this reason the constant AZ — the thermal conductlvity

coefficient of the liquid — will also be left out of account.

#The mean free path of the molecules is much shorter than all other

characteristic dimensions.
®%The characteristic turbulence scale.
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For lucidity, our two-phase flow within the boundary surfaces
of the spray can be represented as on:-dimensional, 1.e., it can be
characterized by parameters averaged for each cross section x = const:
velocity, temperature, gas density and velocity, and drop temperature.
For sections of the spray remote from the injection point we shall
disregard the deviation of the gas and particle velocity vectors from
the direction of the horizontal axis ox (without their projections
onto this axis). This limitation is not fundamental,

In the general case, the process 1s three-dimensional, with the
velocities having three projections onto the coordinate axes. In our
adopted scheme, we consider the basic hydrodynamic phenomena: the
decay of the core into drops, the formation of a dense swarm of par-
ticles that create a single "liquid grid," the motion of the system
of drops on their subsequent individual trajectories, and the heating
of the liquid in the stream.

We write all of the independent dimensional parameters of the
protlem that characterize the flow of the gas and liquid, taking, for
example, the ordinate y of the spray boundary or the ordinate Yy of

the shock wave in the xoy plane as the unknown:

aWieTic i lkiclinaVid oin: s P TalCaibgig.’

Here A and bZ are the thermal conductivity of the gas and the coef-

ficlent of volunetric expansion of the 1liguid, and g 1s the accelera-
tior of gravity. Thus, we have a set of 22 parameters defining the
bcundary of the spray, and of these ¢, a,, H, are dimensionless. The

fundamental units of measurement will be four in number: the kilogram
of force of mass, the meter, the second, and the degree Kelvin,
abbreviated kgf or kg, m, sec, and ° K.

The "kcal" unit of thermal energy is derlived, and we shall express
it in terms of the Joule, the universal energy unit (as is done, for
example, In the 3 * cystem). Using the Mayer equation for the heat-

capacity relatlic.. cpl - cVl = R, we shall take cpl and R as independent

*¥Translator's . .. Thi. 15 the International System of Units,
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parameters from among the three quantities cpl, cvl, and R: cv‘ =

cp‘ - R. We shall use the familiar N-thenrem of similarity theory

(see, for example, [11] [12]), according to which there are a total of
22 - 4 = 18 dimensionless numbers. Of these, one dimensionless
variable y/dn or yb/dn is a function of the other 17 independent

criteria.

They may have the following structure:

V|x v, ot e
— (= ——=M _L ” .
dlac’ yry TV T TRk
w,d‘.og Vd( e w?
. aWid .
==Re; = =R -t 117 =We;
n "
oWl ede o
v oAy =P o-— 1, n.
Ul‘? Vi 0x v b
! mey ) p
e, T H Ta: ry — M ’ b.T.

We obtain a system of known dimensionless numbers for the dynamic
and thermal problem of flow past the spray cone, They have the
following physical significance:

M, R, k are the Mach number, the gas constant, and the adiabatic
exponent;

Re and Rez are the Reynolds numbers for the gas and liquid,
constructed for the characteristic dimension of the
liquid cone;

We is the Weber number (or the drop-atomization number), which
expresses the ratio of the hydrodynamic forces and
the surface-tension forces of the liquid.

The particle diameter a can be introduced into the expressions
for Re, Rez, and We as a characteristic dimension, using, for example,

an experimental non-dimensional relation for the coarseness of atomi-
zation or theoretical data [13], [14], [15]:
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Vig.- 1s the ratio of the dynamic pressures of the gas stream and

Ull
the liquid;
Fr 1s the Froude number for the liquid, which takes ite welght
into account;

b{ - 1s the density ratio of the two media;

8y, W, are the dimensionless spray cone angle and the discharge
coefficient of the liquid delivered;

I
+ o - are the intensity and dimensionless scale of the turbulence;
n

T :
Pn-;L. iﬁ--are the Prandtl number and the ratios of the temperatures
! L and the heat capacities of the media;

bZ' TZ is a combination that takes account of thermal expansion
of the liquid (it can be written in the form of a Grashof

bped STy
number Gr= 2 . if ATZ, the temperature difference

l
between characteristic points of the drop or cone, 1is

introduced).

When the shape of the cone depends weakly on thermal processes
in the system, e.g., when the drops are only slightly heated on the
initlal segment or when the free-steam turbulence parameters have
little influence (they may make themselves felt at a considerable
distance from the point of injection, causing diffusive dispersion
of fine droplets), the last six dimensionless parameters may be left
out of account. Then the number of dimensionless numbers in the
process 1s reduced to 12. Such conditions are created when unheated
liquids are atomized in a stream of gas with a stagnatlion temperature
near room temperature. Workup of experimental results in terms of
the dimensionless varlables indicates that we may confine ourselves
to a much smaller number of dimensionless numbers in describing the
shapes of the spray cone and the shock wave (in a certain range of
conditions). <Study of the photographs and visual observatlions enables
us to describe the process superflcially and arrive at certain assump-

tions concerning lt.
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A curved shock wave forms in front of the cone and undergoes
rapid decreases in curvature and intensity with increasing distance
from the root, approaching the straight-line characteristic corres-
ponding to “i.e free~stream Mach number. This is especlally conspicuous
in the lateral zones of the wave, which can be observed in the vertical
proJection in the xoz plane. The cone decays near the point of injec-
tion, forming a small "liquid foot"; it 1s deformed under the action
of the stream, curving and flattening out into a sheet (similar in
shape to the liquid cone in a subsonic stream).

In the zone behind a strong shock wave (a nearly normal shock
if the injection angle 1s 90°), the liquid 1s atomized to form a
dense swarm of drops. At the root of the cone, we observe a small
zone of boundary-layer detachment from the surface of the atomizer,
in front of which a weak oblique shock can sometimes be seen. To
Judge from the photographs, the shock wave stands off from the cone
at a distance h~ 0.25 dn’ and 1ts helght above the atomizer tube is

h, ~ dn (see Figure 2.4). Drops moving behind the wave enter stream

filaments with continuously increasing velocity (from subsonic behind
the normal shock to supersonic in the free stream), and may be subject
to secondary atomization.

Our impression is that the decay to particles of a certain
final diameter (determined in the experiments from spray-coarseness
measurements) is complete at short distances that do not exceed 0.5 —
3 atomizer-nozzle calibers (this interval may increase substantially
for viscous 1iquids such as glycerine or oil).

Gererally speaking, the real atomization process is nonstationary,
especially at the root of the cone. Spark photographs with short
exposures, ~10" % sec, indicate certain oscillations in the positions
of the cone and wave boundaries. However, conventional photographs
made with longer exposure times (in hundredths of a second),
which average the phenomenon in space and time, yield a fully defined
and unchanging picture.
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The proceas will be regarded henceforth as quasistationary. The
toundaries of the cone were determined from photographs with exposure
times on the order of 0.02 — 0.05 sec, on which the positions of the
spray cone and shock wave are averaged, but constant for a glven set
of conditions.

The outer boundary of the cone is sharply defined in both planes
and tends to a horizontal asymptote with which it nearly merges. The
spans of the cone biundaries, y* in the profile plane and cz% in the
vertical plane, are of the same order of magnitude. At greater dis-
tances from the point of injection, the boundaries begin to blur under
the action of turbulent droplet diffusion. The depth of penetration
of the cone into the stream is considerably smaller than in subsonic
flows because of the larger velocity heads of the gas (at a given
velocity head of the liquid). The bulk of the liquid particles, which
are distributed higrly nonuniformly on the initial segment of the
cone, 1s apparently to be found in the zone of the cone's profile
plane of symmetry xoy.

In addition to the outer boundary of the cone in the xoy plane,
we observe a less distinct internal boundary lying near the surface
of the atomizer (nearly in the xoz plane). More distinct internal
boundaries may be formed when the velocity-head ratio of the gas and
the 1iquid being delivered is sufficiently small (small pei2 and small
Mi1).

We note that the phenomenon develops basically in the upper half-
space, above the xoz plane, where the boundary surfaces of the cone
and the main segment of the shock-wave surface are located.

At high liquid flow rates, e.g., dn > 2.5 — 3 mm, a certain

amount of liquid may sometimes be carried into the lower half-space
(below the xoz plane).
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Figure 2.5. Shapes of spray cone and shock wave.

For the analysis to follow, it will be helpful to form a general
three-dimensional conception of the shape of the boundary surfaces of
the spray cone and shock wave (Figure 2.5).

1. The boundaries of the cone present a smooth convex surface
(the sign of the curvature can evidently change only in the small
region in which the cone i8 in contact with the atomiger pipe or at

the very root of the cone).

The boundary of the cone y * @1(x) 1in the profile plane xoy and
the boundary z = @2(x) in the horizontal piane xoz have the asymptotes
y* and z*. The curves approach quite close to their asymptotes,
usuelly at x ~ y* — 2y*. The boundaries in the horizontal plane,

z = ¢2(x) and 2z = fa(x), are the projections of the lines of maximum

span (maximum width in the yoz plane) of the cone and the wave.
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2. Cutting the cone and shock wave (which follows the general
contours of the cone) withplanes parallel to yoz produces elliptical
curves; their major and minor axes generally differ, but by compara-
tively small amounts.

3. The surfaces of the cone and the wave have xoy as a plane
* of symmetry.

b, In the initial segment of the cone, liquid with the highest
concentration moves in the zone of the plane of symmetry.

The vertical rise of the particles (for delivery pressures that
are not too low; in our experiments Ap 2 8 — 10 bar) exceeds the lateral
spread of the droplets in the direction of the z axis.

; Thus, the segment (strip) of the shock-wave surface corresponds
i in the zone of 1ts vertical boundary Y, * fi1(x) where the curvature

18 greatest, to the largest losses of total head ps1 of the gas that
has passed across the wave. The boundary of the shock wave z, fa(x)

in the zox plane (perpendicular to the plane of symmetry), passing
) above the lateral zone of the cone with its low droplet content, has
1 a small curvature. It characterizes the reglon of smallest total-
head losses on passage of the gas through the wave. Let us turn now
to determination of the empirical relationships for thre boundaries

of the cone.

Workup of the results of measurements of the boundaries in the
initial segments of the cone in dimensionless variables ylelds an
approximate relation of the form

X_o.’:)
—==ly

de ;:. vy (2.1)

for the range of varlation of the flow parameters indicated below

and values of

X -~
"': < 20+ 30.
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The combinations x/dn and y/dn take account of the influence of

atomizer diameter, and the second criterion, the dynamic-head ratio

of the 1liquid and gas, expresses the action of the stream forces that
deform the 1iquid cone; the larger this quantity, the smaller the span
of the cone. Expressing the velocity head ¢,W? in accordance with the
familiar formula of gasdynamics, we obtain

oWl Mimp M (M)
N Y 22 '
u¥y, p p

(2.2)

- a
=1 g AT

where poy 18 the total pressure of the stream; "(M')'(H‘T M}) ~1s

the gasdynamic pressure function; Ap 1is tlLe pressure drop at delivery.

It follows from (2.2) that this ratio takes account of four
factors at once in ccmpact form: 4p, p, My and ki. At a given Mach
number and a given k), it expresses the influence of the pressure
ratio 4p/pi. The influence of M, itself as the third dimensionless
number (which appears explicitly in the general form of the relation-
ship) 1s found to be not particularly significant, in any event, when
My = 2 — 3. It begins to make itself felt on downstream segments
of the cone boundary. For a broader range of x, it is necessary to
use a general relation in the form

-l!‘-=l-',(i-: "Ll; M,:k,), (2.3)
which includes three separate independent variables: Ap/p:, My, and
ki. The fact that the approximate relations (2.1) and (2.3) do not
include the Weber number, which is important for determination of
liquid-particle sizes, 1s evidently explained by the fact that it is
not the sizes of the individual drops, but the motion of the particle
swarm as a whole, that is important in shaping the frontal segment
of the cone.

To a certain degree, the process is also self-similar with
respect to the gas Reynolds numbers (which evidently have little
effect on the result). For high-viscosity liquids, in which case the
decay length of the cone may increase appreciably, ReZ is found to be
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Figure 2.6. 1Initial section of spray cone boundary.
significant. The small effect of the Froude number of the liquid 1is

natural, since the dynamic forces exceed the weight forces by an
order of magnitude (o more). This number may become influential,

fo. example, at low delivery pressures, high 1iquid specific gravities
(molten metals), and large atomizer orifice diameters.

Experience has shown that the following expression cen be used
as a functional relation in (2.1) (Figure 2.6 and Table 2.1):

Petn[1 e X 4V X (X+9)), (2.4)

where X and ¥ are generalized coordinates containing the dimensionless

numbers
1
g ’ T
X=o,413-‘-(‘-"1'_) :
de qul
. (2.5)
F=0413L (""' )
de \oxY)
* The constant in Expression (2.5) is determined exprrimentally.

Expression (2.4) defines a family of affine curves.
obtained from another by a similarity transformation witl, the

Ar.y curve 1s

. coefiicient
L)

’ Pl 0 41 ¥
N XL

g \euVl
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TABLE 2.1
~ symbol a0 [e | symwor a op
mm bar mm bar
m -
Alcohol 2 1o 0
M = 2.9
Po = 16 bar
- i I -
" 1.0 © Gasoline
. :% 1%40 My, = 2.9
3 . =
10 0.7 15 Pe 7.7 bar
0 0.7 %
0 0,7 15 v 1,0 ©
. a8 ; 4 )
: 0.4 10 Q '
Alcohol ‘ ' Kerosene
Ml - 2.0 ) ' ! Ml = 2:5
Pe = 12 bar | | | pe = 2.0 ban
© RN E w0 A 10 m
5 |

The larger kc, i.e., the higher the velocity head of the gas compared

to that of the liquid, the shorter 1s the range of the atomized cone.

As an example, Figure 2.7 shows typical cone- and shock-wave
boundary shapes in two projections, onto the xoy and xoz planes.

The form of the relationships and the generalized coordinates
is sujgested by the structure of the analytical solution of the
probl:m of motion of a deformed liquid element when liquid 1s delivered
into a subsonic stream [1].

The motion of the center of mass of the dense swarm of drops
should still follow the trajectory of the 1liquid element on a certain
interval.
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Let us first consider a rather
small zone of the flow at the root
of the cone. Here the liquid cone
is washed by a stream with para-
meters approaching those of the
gas behind the normal shock. Then,
Bar in accordance with the formulas of
ﬁ [1], which sets forth the elementary

- ';,!_ [ =
- Shock wa¥®  ¢peory of 11iquid-cone deformation,
L *"l Tt ] 3 we may write an expression for the
il L=ty :
e == = y coordinate:
= | Cone
i 117~ =4 _|boundary dy=in [1 +kx + VEx (X F);
' LA ) - 0y (2.6)
Ry ;:V" ¥ ke o—:ﬂ- 3 X
Figure 2.7. Boundary between ‘ =t . ~13.
spray cone and wave at various Tyt TwT

feed pressures (alcohol, M; =
2.9; pe = 16 bar; d; = 1 mn; According to the well-known

n
magnification X1}. relation of gasdynamics oW'-'—'—_",-'-

where A, = W;/acr is8 the velocit, coefficient (acr is the critical

velocity of the gas). The dimensionless coordinates assume the form

§ o /Wy oy . 4 o (Vl
* xS (T
y= ¥ . (Vn) . ' e

Since we are concerned with the range of small kx(kx « 1), we may
retain only terms of the form vkx in (2.6) and write

ky=z=in [1 +V Zx].

Erxpanding the right side of this expression in power series and
retaining the first terms of the expansion, we obtain

~l/o. iy (2.7)
w v
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Figure 2.8. Initial segment of
spray cone (approximate analyti-
cal formula).

accordingly).

Relation (2.7) yields a rough
approximate formula for the axis
of a curved cone. It is valid
cnly in the range

r— 2 ;- W| ;’-
-2y a TS oy
' A VQ. vy de <

i.e., at small x/dn, high delivery

pressures, large M(A), and large
stream total pressures pg;. Assum-
ing that the forward boundary of
the cone is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>