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ABSTRACT 

The use of tapered reflectivity mirrors and shaped apertures in 

unstable resonators is shown to be an effective method for improving 

the mode properties.     Mode intensity and phase profiles are smoothed 

and the mode discrimination ratio is increased.    Results are presented 

illustrating the importance of diffracted waves from sharp mirror 

edges in determining these mode properties.    A simple expression 

for estimating the diffractive contribution is given and is used to 

determine optimum mirror designs.    Shaped mirrors and mirrors 

having amplituue and phase reflectivity tapers are studied.    The 

concept of equivalent Fresnel zones is used to gain physical insight 

into the mode properties. 
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I.      INTRODUCTION 

.1    .. Numerous theoretical studies of unstable resonators with mirrors having 

sharp edges have shown characteristics which are quite different from 

those of stable resonators.    The unstable resonator mode shapes and 

losses are sensitively dependent upon the mirror radii and curvatures 

in contrast to the stable resonator modes which change only slowly with 

the mirror parameters.    The manner in which the modes vary with the 

parameter N     (the equivalent Fresnel number defined by Siegman and 
3   eq 4 Arrathoon  ) is particularly interesting.    Siegman and Miller    have shown 

that the mode losses for cylindrical unstable resonators not only interleave 

but have minima and crossover points which are periodic with,   respectively, 

half integer and integer values of this parameter N     .    Anan'ev    has pointed 

out that,  for unstable resonators, the diffracted wave or "edge" wave 

resulting from the sharp edge of the mirror will have a dominant effect on 

the mode properties and accounts for the periodic behavior.    In addition, 

he has suggested that eliminating the sharp edge condition will result in 

modes more like the geometrical optics values,   improving both the mode 

shapes and discrimination ratios. 

In this paper we explore in more detail the effects of the aperture edge 

and illustrate the advantages of tapering the mirror edges,  both in 

amplitude and phase.    A theory is developed which helps in the design of 

tapered mirror resonators and which predicts the effects of aperture 

shaping without recourse to extensive computer calculations.    The para- 

meter N      comes in naturally in this theory and its physical significance 
eq 

becomes more apparent.    It will be shown by comparisons with detailed 

computer calculations for several examples that the present theory 

successfully predicts the significant features of the resonator modes. 

Finally,  the application of these techniques to the design of practical 
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resonators shall be discussed,   particularly for resonators with large 

Fresnel numbers such as those presently used for high power gas lasers, 

It is found that the degree of mode improvement effected by edge tapering 

is dependent upon the exact nature of the taper.    As an illustration, 

consider the fundamental modes for three symmetric unstable resonators 

(N      = 2. 8,  M = 2. 0) having mirror reflectivities which vary with radius 

as shown in Figure 1.    The computer calculated normalized intensity 

profiles for these three cases are shown in Figure 2.    Although the linear 

and parabolic taper functions appear very similar,  the modes are quite 

different,  with the parabolic taper producing a much smoother mode.    It 

is usually found,  as is demonstrated by the two tapers here,  that any taper, 

even though it is not optimized,  will improve the mode over the sharp edge 

case.    The phase profiles (normalized to the geometrical optics values) 

are shown in Figure 3 and are even more striking.    The sharp edge case 

shows a variation of almost   X/4 (unacceptable for diffraction-limited 

operation) whereas the parabolic taper has essentially no deviation beyond 

the center 10%.    These results are consistent with the theory,  which predicts 

that the linear taper should be an improvement over the sharp edge and that 

a parabolic taper over the outer 20% should be nearly optimum and result 

in a uniform mode similar to the geometrical optics solution. 

II.     THEORY 

The concept of an edge wave,   i.e.  a diffracted wave which emanates from 

an aperture edge,   can be obtained from standard scalar diffraction theory 
7 

as described by Born and Wolf.      This concept is discussed in more detail 

below  but,   in brief,  the edge wave formalism is obtained by expressing 

the field amplitude resulting from an illuminated aperture as the sum of a 

geometrical optics term plus a diffraction term,  the latter of which is 

expressed as a line integral around the aperture boundary.     The diffracted 

wave is emitted in all directions but,  as Anan'ev has pointed out,  only that 

m^mm — "■-• -*' 
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Figure 1.    Amplitude reflectivity vs normalized mirror radius, 
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Figure  3.      Normalized mode phase profiles for symmetric 
unstable  resonators with tapered reflectivity 
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part of the edge wave which is directed back into the cavity such that it is 

trapped along the resonator axis should be important in determining the 

properties of the modes.    This is illustrated for a symmetric unstable 

resonator in Figure 4.    The solid lines represent the geometrical rays of 

the resonator mode which are incident on the sharp edge of the mirror and 

the dashed lines represent rays of tho resulting edge wave.    It is clear that 

the diffracted rays which are scattered in a direction exactly opposite to 

that of the ray incident on the mirror edge will,   in the geometrical optics 

picture,  be trapped along the resonator axis whereas the other diffracted 

waves will be deflected out of the cavity after a few reflections.    These 

rays which are trapped in the geometrical optics picture will of course 

diverge due to diffraction and thus act in part as the source for the mode. 

The phase shift between two trapped rays originating from different radii 

at the aperture is the same,   after many round trips,   as the piase difference 

between the two rays if they are extended directly to the vrrtual focus 

(Point P in Figure 4\    Thus a semi-quantitative measure of the diffractive 

contribution to the mode can he obtained by computing the edge diffracted 

field amplitude at the virtual focus resulting from the mirror (or aperture) 

illumination. 

It is obvious from symmetry that the rays from the sharp edge of a 

cylindrical mirror will all arrive at the virtual focus in phase.    This 

produces a large diffractive contribution,   resulting in modes with large 

amplitude variations across the radius,  large phase deviations from the 

geometrical optics value and mode losses which vary rapidly with the 

resonator parameters.    It is also clear that altering the shape of the 

aperture or tapering the edge such that it is no longer sharp can result 

in destructive interference at the focus,   reducing the diffractive contri- 

bution to the modes.  Anan'ev has suggested that the^e destructive interference 

effects can be introduced by smoothly rolling off the mirror edges,   roughing 
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the edges,  misalignment,   positioning the mirror off center,   etc. ,  over 

a zone of width a/2N      where a is the mirror radius.    We consider here 

the effects of amplitude tapering,   introduced by varying the mirror 

reflectivity with radius; phase tapering,  introduced by rolling off the 

mirror edges; and aperture shaping. 

Mathematical formulation of edge wave effects can be obtained from the 

standard Kirchhoff approximations used in scalar diffraction theory,   with 

the diffraction contribution expressed as a line integral around the aperture 

boundary.    By superposition we can treat tat variable transmission aperture 

(or the variable reflectivity mirror) as a sum of sharp edge apertures,   each 

illuminated by a spherical wave,  with amplitude and phase such that the sum 

equals the proper field amplitude at the aperture.    If we consider,  as shown 

in Figure 5,   an aperture illuminated by a spherical wave U  exp(ikr)/r 

emanating from the point P   ,  then the field amplitude at a point P can be 

written as 

mpi = J_   (T   u    exp(ikr)  _a_    fexpiiks)] 
y 4 n   JJ       o        T (9ns 

A L J 

_ exp(iks)      d       fexpUkr)! 
s dn      I      T J 

(1) 

where r is the  distance from P    to a point in the aperture plane A,   s is 

the distance f^ om P to the same point in the aperture plane, d/dn is the 

derivative along the inward normal to the surface and k = Zir/\ is the 

•wave number. 

Following Born and Wolf,     Equation (1) can be written as the sum of a 

geometrical optics term and a diffractive term, 

U(P) = UG(P) + UD(P), (2) 

kMaaMMMMMCMtaaiM -■- -  - ■■■ ■^_. -- 





where 

U_(P) = U  exp(ikR)/R 
u o 

and 

U   (P) -      -i- ffu      exP(lkri -J-   r^xpdks)] 
UD^; "        4 7rjJUo r fln      I        s I 

B L J 

_ exp(iks)     d      fexp^kr)"] I dS 

s 5n r 

(3) 

(4) 

In this equation,  R is the vector from P    to P,  and E is that part of an 
o r 

infinite conical surface originating at P    which subtends and lies to the 
o 

right of the aperture boundary T. The surface integral that occurs in 

Equation (4) for U can be transformed into a line integral around the 

aperture boundary T using a Rubinowicz representation: 

UD(P) ■ rr f 
exp[ik(r   +s   )]        cosliT,"? ) sin(r-,  dj? ) 

Vi l+cos^, ■   ) 
di, (5) 

where r^  and s*j are vectors to a point on the aperture boundary from P 

and P,   respectively, d^  is a differential line element along the boundary, 

and n is a unit normal vector directed inward from the surface B.    Equation (5) 

can be simplified considerably for cases where the source point P    is dire'tlv 
o 

behind the aperture and the angles 0 and <P that r*  and T   make with R (shown 

in Figure 5) are small,  which is the case for aligned resonators with 

moderate Fresnel numbers.    In that case,   sin (r* ,  dj")«!,   cosirT s* )=:-(0+0) 

and 

1 + cos (s^,   r  )■(« + #)   /2. (6) 

10 
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These   approximations  will not introduce serious errors in Equation (3) 

since they do not occur in the    phase term. 

Substituting 

ö + 0= i l—     . 

Vl 
(7) 

where ^   is the distance between a point on the boundary and ehe intercept 

of the line P  P with the aperture A, 
o 

lyp) .T 

,      ,    U   expfiMr+s   )] 

Krj+Sj) 
(8) 

These results can be applied to a symmetric resonator,   as shown in 

Figure 6,    The philosophy of the present approach assumes that,  to the 

lowest order of approximation,  the modes of a resonator are described 

by the geometrical solution.    Diffraction effects,   calculated from Kirchoff 

theory with the assumption that apertures are illuminated by the zeroth 

order geometrical fields,  then enter as a first order correction.    Since 

the geometrical solution for a resonator with perfectly reflecting spherical 

mirrors is equivalent to two point sources of radiation placed at thfe virtual 

foci F    and F,   „c assume that the '"ft mirror in Figure 6 is illuminated by 
o 

a   uni.'orm spherical wave emanating from the virtual focus P   ,  and 

estimate the resulting diffraction effects at the opposite virtual focus P. 

In actuality,  the mirror illum'nation is not uniform and the theory is only 

approximate in that sense.  However,   we will search for conditions where 

thediffractive contributions are minimum,   which are also the conditions 

where the approximation of the uniform wave are most accurate. 

The lengths shown in Figure 6 (given by Siegman) can be used to formulate 

Equation (8) in terms of the equivalent Fresnel number.    At this point, 
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a shape for the boundary has not been specified and N      is thus still a 

function of the radial coordinate I . 

If the mirror size is small compared to L^M-Dand LM^M-1)then 

.2        .2, 
rl + ^-^ +        2L 2LM (9) 

and 

^ 
k(r1+s1) = kR +  LY (M-l/M) , 

The equivalent Fresnel number at radius  I is defined as 

*2 
N    U) =-T7V (M-l/M) 

eq <il_,A 

hence 

M^+sJ = kR + 27rN     (|). 
11 eq 

(10) 

(ID 

The diffraction contribution Equation (8) becomes,   after approximating 

(r   +r   ) = R in the demoninator, 

UD*    ; 2 7rR      "      o r 

exp[i2 7rN     ({)Jdi 
SSL 

(12) 

and,   if the mirrors are circular with radius   £ ,  this becomes 

n   (P) . .SS^ÜSSlü    exp[i27rN     ({)]. 
D R o eq 

(13) 

13 
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Consider now a resonator with circular mirrors of radius a which have 

nonuniform reflectivities or which are not spherical.    In this case,  the 

equivalent aperture illumination must now be described by replacing the con- 

stant Uo by a complex function U(4 ),  where the amplitude and phase of U(|) 

express variation in mirror reflectivity and deviation of reflected phase 

fronts from the geometrical phase fronts.    Because of the assumed circular 

symmetry of the mirrors,   U( ^ ) is a function of the radial coordinate only. 

The diffracted wave from this nonuniformly illuminated aperture can be 

expressed with the edge wave formalism of Equation (13) by a superposition 

of uniformly illuminated circular apertures of varying radii with different 

amplitudes and phases.    If an aperture of radius  ^ is illuminated by 

(dUAU ) A?  [corresponding to Uo of Equation (13)], then the summation of 

th^ fields of all these apertures will be U(4).    The diffracted field at P 

from each of these apertures can be obtained from Equation (13),   and when 

summed,   give the total diffracted field at P due to the distribution UU): 

1 
exp(ikR)   f dl 

R 
o 

i; "'        -/■: '      ^eq^" (14) 

where    P=   ^/a is a normalized radius anH N      is evaluated at    P=  1 
eq 

Note that if the illumination U(^ ) has a finite discontinuity,  AU at any 

point    P ,   this will contribute an additional term - [exp(ikR)/R]AU 

exp(i2 7rNeq PQ ) to the right hand side of Equation (14).    Physically,  this 

additional term just corresponds to the effect of a sharp-edged disc of 

radius    PQ and illumination -AU,   and its contribution to the field U   (P) 

can be obtained directly from Equation (12).    In particular,   if a sharp- 

edge mirror has an amplitude \3    at the edge, then AU(P = 1) = -U    and this 

additional term is 

14 
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U(P) = [U,  exp(ikR/R)]exp(i27rN     ) 
1 eq (15) 

It is interesting to note that N       occurs quite naturally as the phase 

factor in Equation (14) and periodic behavior would be expected as N 
eq 

is varied.    More importantly,  the  integral equation is quite significant 

in that it provides a semi-quantitative measure of the diffraction pertur- 

bation to the resonator mode.    If we are to achieve the benefits of a 

geometrical optics mode,  then we should search for the conditions that 

will cause the integral to go to zero.    Equation (14) can be evaluated for 

arbitrary taper functions (amplitude or phase).    It will be shown in the 

following section how optimum taper functions and their required taper 

widths can be determined for a resonator configuration. 

, 

in.    THEORETICAL CALCULATIONS 

As shown in the previous section.   Equation (14) provides a quantitative 

measure of the diffractive contribution to the resonator fundamental mode. 

The fundamental mode profile should most closely resembly the geometrical 

optics mode for taper widths where this integral reaches a minimum.    The 

fundamental mode loss should,   correspondingly,  increase toward the 

geometrical optics value at this point,   and then become less lossy as 

diffraction effects again become important.    The losses of the dominant 

modes have been computed numerically for a number of cases with lineai 

and parabolic tapers of both amplitude and  phase and it has been found 

that the loss follows the expected quasiperiodic behavior.    The results  ei 

these calculations and a discussion of aperture shaping effects follow below. 

A computer code based on the Prony technique described by Siegman and 
4 

Mil.l.er    wae used to determine the eigenvalues and eigenmodes for all the 

significant modes.    For each eigenmode calculation, spurious modes were 

eliminated by varying the number of eigenvalues  requested and by using 

15 
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different amplitude vectors in the computations.    In all cases,  the number 

of mesh or sample points was at least 15 times the value of N      so that 
eq 

the modes were accurately described. 

Parabolic Reflectivity Taper 

Consider now a mirror whose amplitude reflectivity is unity from the 

center out to H= P  and tapers parabolically to zero at the mirror edge. 

If we assume,  as stated earlier,  that the amplitude follows the reflectivity 

dependence,  then 

dU/dP =   0 

and dU/dP .2PU   /{I - ff) 
o o 

for       0<P<P 

for     P   <P< i 
o 

(16a) 

(16b) 

The diffraction contribution obtained from Equation (14) is 

uD(P) - 
2U exp(ikR)   j 

(1 - P )R      p 
o o 

J    exp(i2 TT N      P  )PdP 
eq (17) 

After integration. 

U exp[ikR + ITTN    (1 + P )] 
U   (P) = -^ -e-3- o_    .    sin X 

D' R X (18) 

where   X = TTN     (1 -   p ), 
eq o 

The single pass losses for all the significant modes of a symmetric, 

unstable resonator (N^ = 2. 8) with the parabolically tapered reflectivity 

16 
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described above are shown in Figure 7.    The horizontal scale in this 

graph denotes the radius at which the taper is initiated and the individual 

mode losses are read on the vertical scale.    The general shape of the loss 

curve for the fundamental mode (that mode having the least loss) is pre- 

dicted quite accurately by Equation (18).    Notice that the mode loss peaks 

near the geometrical optics mode loss (75% in this case) each time the 

diffraction contribution goes to zero.    This happens whenever 

•■■{• 
m 

P   =,/!- — N (19) 
eq 

where m is an integer.    For N      =2.8,  the integral becomes zero at 
eq 

p     =0. 802 and    P   = 0. 535.    It is at these points where the mode looks 
o o 

most like the geometrical optics mode,  as shown by the parabolic taper mode 

illustrated in Figure 2.    Thus, one can use the simple formulation of 

Equation (14) to predict an optimum resonator configuration. 

It can be seen from Equation (18) and Figure 7 that the effects of the edge 

taper are very sensitive to the taper region width.    To understand this it 

is useful to think of the tapered region in terms of radial zones,  analogous 

to Fresnel zones,  over which the phase term in Equation (18) changes by T. 

These zones,  in addition to aiding the understanding of the integral,   are 

useful as graphical aids to determine the proper width for the tapered 

region and to estimate the taper shape.     This concept of equivalent Fresnel 

zones is discussed is more detail below in the section on aperture shaping 

(where it is particularly useful) but can be illustrated here by assuming that 

the function dU/PdP    varies slowly over the zone    widths.    This term can 

then be removed from the integral and Equation (14) can be written in this 

form: 
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TT   /T,.     exp(ikR)      dU I      r 

'n    rh c^ 
O     O 

(20) 

where u =   P  . 

Two things are apparei t from this integral.    Firstly, the integral goes to 

zero when exactly two zones are covered by the tapered region.    Secondly, 

an approximate functional dependence for dU/dP  is indicated by the require - 

ment that dU/PdP   vary slowly.    Of course,  the parabolic dependence described 

by Equation {16b) satisfies this criterion perfectly in that dU/PdP  is a constant. 

A zone is completed each time the phase in Equation (19) changes byir,  i.e. 

each time N     (P) changes by 0. S.    The zone radii are marked in Figure 7 by 
eq 

the numbers just above the abcissa indicating each change of TT in the phase 

argument.    As the number of zones is increased (as the taper width is 

increased) then dU/dP   decreases making the integral value less sensitive 

to the exact width.    Thus, it is generally found that any amount of taper is 

an improvement over the sharp edge condition but optimum results are 

expected when the taper region encompasses an even number of zones. 

This agrees with Anan'ev's statement that the desired taper width is a/ZN 
eq 

since for large N     it can be shown that two zones are covered u the taper 

extends over this distance.    However, this formulation also shows that the 

modes are alternately improved and degraded as the taper is increased 

still further. 

The discrimination ratio,defined here as the ratio of eigenvalue magnitudes 

squared,   is also sensitive to the type of taper and the taper width.    This 

discrimination ratio,   which is a measure of the ability to operate single 

mode,   can be considerably larger than for the sharp edge resonator as 



■'     "  "■■■Il  im mn ""• «'wm 

illustrated in Figure 8.    In this figure,  the ratio of the fundamental to the 

second symmetric mode is shown and,  for some of the tapers,  the ratio 

of the second to the third mode is shown.     Crossings of modes as the 

taper width is varied are apparent,   much like Siegman and Miller    observed 

as N      was varied.    For the mode shown in Figure 2 (P   = 0. 8),  not only are 
eq o 

the phase and intensity profiles greatly improved but the discrimination 

ratio is 2,40 compared to the sharp edge (P   =1) value of 1, 35.    The sharp 
o r 

peak in the discrimination ratio near    P   = 0. 8 suggests that additional 

minor changes in the mirror reflectivity could result in even higher 

discrimination ratios. 

If the value for N      is changed,  then the zone widths will be changed 
eq ■ 

accordingly,     This is illustrated in Figure 9 where the mode losses for 

N       =3,5 are shown.    In this case there are more zones and the zone ec| 
widths are,   of course,  smaller but the general shape of the curves are 

otherwise the same.    As above,  the zone radii are marked by the phase 

valu   s  indicated above the abcissa.     The narrowing of the zone widths as 

N       increases points out that the taper region for large Fresnel number 

resonators need only perturb a small fraction of the mirror area. 

As long as the reflectivity taper function is reasonably smooth,  then the 

phase term in Equation (14) will dominate as described above and the phase 

zones therefore exist for other taper functions.    Although the integral may 

not go to zero,  there will typically be maxima and minima as predicted on 

the basis of these zones.    Linear taper functions have also been studied for 

several equivalent Fresnel numbers and the results,  described below, 

follow the expected pattern, 

Linear Reflectivity Taper 

Next,   consider a mirror whose amplitude reflectivity is unity from the 

center to  P=  P   and then tapers linearly to zero at the mirror edge.    Then, 

20 
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dU/dP  = 0 for   0 < P < P (21a) 

and        dU/dP   = . U   /(I - P )       for     P < P < 1   . 
o o o (21b) 

Substituting this into Equation (14) to get the diffraction contribution gives 

U exp(ikR) 2\rN 
U   (P) = —— 

Dy    '      2(1-P)RV 
-^==^ j    exp(iTrv   /2) dv (22) 

ecl   P  Z\rW 
o eq 

vhere v = 2vN       P.    This integral has the form of the Fresnel integrals7 

eq ■ 
which define the coordinates on a Cornu spiral and which have tabulated 

values.    When v is approximately 1. 5 or larger, then the phase variation 

becomes the dominant factor and the integral resembles a vibration spiral. 

The results are then predictable on the basis of the zones described above 

for the parabolic taper.    Although the integral does not go to zero,  it 

reaches a minimum each time the tapered region encompasses an even number 

of zones.    The mode losses for a symmetric,  unstable resonator with N     =28 
eq 

are illustrated in Figure 10 and show the expected periodic behavior.    Notice 

that the fundamental mode loss does not reach the geometrical optics mode 

loss (75% again in this case) ao it did for the parabolic taper and the mode 

shape at the first loss peak (P   =0.8),   shown in Figure 2,  ir not as desirable 

as the parabolic taper.    Thus, just as evaluation of Kquation (22) suggests, 

the linear taper can effect a considerable improveme it over the sharp edge 

resonator but does not reach the optimum condition. 

For high power lasers,   introducing a reflectivity taper is not simple and 

may not be practical because of damage to the mirrors or attenuating 

apertures.    Similar effects can be accomplished by making the mirrors 

slightly aspheric,  thereby introducing a phase taper.    This may be more 

practical from a construction standpoint and i3 discussed below. 

23 
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Parabolic Phase Taper 

Consider now mirrors whose edges have been gound off so that over a 

portion of the mirror, the phase of the reflected wave differs from the 

geometrical spherical wave.    In particular consider a mirror where this 

deviation from spherical varies parabolically with the aperture radius.    The 

phase difference from the geometrical wave is given by 

0 =    _ 0 

0 = 0 
(P      -   1) 

0(P2 

O 
1) 

for    0<P<P„ 

for     P < P < 1 
o 

(23a) 

(23b) 

so that 

U(P) = U    exp[-i 0 (p' 
o      r        o l)/(p -1)] (24) 

where o   is the magnitude of the totd taper.    Note that in our notation,   if 0 
o 

is positive,  the mirror edges have been ground off by   0 /2k,  or,  alternately 
o ' 

the center has been built up by this amount.    Then, 

dU/dP   = 0 for      0<P<P (25a) 

-i2P0   U 
and dU/dP  = r—?-■ for      P<P<1 (25b) 

(P    - 1) 0 

o 

Substitution into Equation (14) gives the diffraction contribution 

2S 
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UD(P) 
U   exp(ikR) 

—_ 
/ 

!    2i0 
exp 

p    (P  -1) [■'«fe)^^'*] PdP 

+  exp (IZTTN     ) 
eq 

After integration and rearranging terms this becomes 

(26) 

UD(P) 
U  exp(ikR+i2 7rN     ) 

o e£_ 
R —-    [l  - exp(i01)] + 1 (27) 

where 

0   = 27rN     ( p    - I) -   0 
1 eq     o o (28) 

To make the diffrac'.ed field zero will require  that 0   = -(2n + 1 )7r where 

n is an integer and   0    = - 0/2,    This requires that 
o 1 

0   = (n + l/2)7r 
o 

2 n+l/^ 
o 2N 

(29) 

(30) 
eq 

These expressions give the amount of phase roll off and the radius at which 

the taper begins.    Notice that the negative   0    solution are not possible since 
o r 

that requires    P >1,  hence the diffracted field can be made zero only for 

mirrors whose edges have been ground off and not for mirrors whose edges 

have been built up.    For a given N      there is a finite number of sets of 
eq 

values for 0   and    P . 
o o 
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To check these conclusions the eigenvalues were calculated on the 

computer for the case   a   =   + "72,  N      =2.8,  and M = 2.    The single r o eq B 

pass losses for the first three modes are shown in Figure 11.    The values 

of the parameter   0   are also shown on the figure.    The computer results 

closely follow the theoretical predictions and again demonstrate the validity 

of the theory.    For this case,  the diffracted field at Pis zero when 

o    - 0. 96( 0    = - 7i) and the comp \ter results show a sharp loss peak at ro o 
this point with the sinjle pass losses approaching the geometrical loss 

value of 75%. 

The other features of the loss curve such as the rapid variation near 

0    = - TT and the slow undulations elsewhere are also consistant with the 

theory.    The phase taper,  in contrast to the amplitude taper, has the 

added term [see Equation (26)] resulting from the sharp edge which is still 

present.    Because of this term only one null is reached and,  for other 

taper widths,  minima and maxima occur but the excursion is very small. 

Thus,  the behavior patterns for phase tapers is different from that for 

amplitude tapers but the improvements that can be effected are the same. 

Aperture Shaping 

Consider now a totally reflecting,   spherical mirror which is noncircular 

but which is uniformly illuminated by a spherical wave emanating from the 

virtual focus.    The diffraction contribution at the opposite virtual focus can 

be obtained from Equation (12) and if the boundary path F is chosen properly, 

this contribution will go tc zero or at least reach a minimum.    Thus,  it is 

possible to realize the same benefits as in the case of amplitude or phase 

tapering by simply choosing the appropriate mirror boundary shape. 

Generation of an optimum boundary shape will be discussed first,  followed 

by a discussion of the more common mirror shapes,  including circles, 

squares and rectangles. 

27 
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It is apparent from Equation (12) that if we have a mirror shape such that 

.2 
dl = — d^ 

a (31) 

where a is the minimum radius,  then 

uD(P) = 
-U exp(ikR) 

o 
R 

M 

J exp(i2 7r N     P   )PdP 
eq 

(32) 

where  P=  |/a and N       = N     (a).    If the minimum (P= 1) and the maximum 
eq eq , 

(P= P. .) radii are chosen so that N     (P     -  1) is an integer then the diffraction 
M eq   M 

contribution goes to zero and the mode should be nearly optimum.    The path 

taken in going from  P» 1 to P   ,  which is the boundary shape,  can be found 

in the normalized cylindrical coordinates (P, Ö) from Equation (31) 

ü. v57T7d7 p dP (33) 

which therefore requires that 

^777 dP = de (34) 

Integrating both sides of the equation results in a transcendental equation 

in P and 6, 

cos(2e   - Vp4 - 1 J 1/P (35) 

.»^ 
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The solid curve plotted in Figure 12 for 0^e-TT/4 is a solution to this 

equation with the normalization that the minimum radius ( P = 1) occurs 

at   6=0, 

An ideal mirror boundary shape can be produced by using any combination 

of segments of the curve given by Equation (35) and hence there are any 

number of solutions  such as the two illustrated in Figure 12,    It is only 

necessary that (1) each segment cover the proper width for the integral 

in Equation (32) to contribute zero over the segment,   and (2) each segment 

must cover an angle of   ir/n radians (n = integer) so the required symmetry 

will be achieved. 

The first requirement above is just the requirement that the segment 

cover an even number of equivalent Fresnel zones.    That is,  the phase 
2 

argument (2TTN      P   ) in Equation (32) must change by m2TT  where m is an 
eq 

integer or,   equivalently,   N     (P) must change by an integer over the 
eq 

segment.    The solid curve of Figure 12 is therefore one quadrant of a 

perfect aperture shape with   n = 4 and N       changes by three on each 

segment.    The dashed curve is another porfect aperture shape with   n = 4 

and N       changes by one on eac/; segment, 
eq 

The above example is an illustration of how equivalent Fresnel zones 

can be used for graphically determining the width of the region over 

which the mirror boundary should be altered and the approximate shape 

the boundary should take.    For mirrors whose radius varies slowly with 

angle (e.g. ,  mirrors which are approximately circular),    jdl/^   can be 

considered constant over one zone and the changes in aperture shape should cov- 

er an even number of zones,   i.e.  the difference between the minimum and maxi- 

mum radii should be an even number of zones.    The correctness of the phase 

generated can be estimated by comparing it with any segment of the optimum 
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curve given by Equation (35).    For example,  consider an elliptical mirror 

with a maximum radius such that the maximum N     (P) = 7,0.    One choice 

for a minimum N     (p) is 5.0 (4 zones crossed) and this is illustrated by 
e^j / 

the solid curve in Figure 13. 

The extent to which the ellipse (or any curve) nulls the diffracted field 

can be estimated by comparison with the optimum curve given by 

Equation (35).    For con-narison to the ellipse, the boundary conditions 

on this equation require      at the curve coincide with the ellipse at two 

points separated by an angle AG =   tr/2.    This is illustrated in Figure 13 

(where the two curves coincide at 8 = ^ and    6= 3TT/2) and it is apparent 

that fhe third quadrant   of the ellipse,  which repeats in each of the other 

quadrants,  does not differ  greatly from the optimum shape given by the 

dotted line.    Preliminary experiments have shown that an elliptical 

boundary shape similar to the shape shown in Figure 13 does result 

*.« improved resonator mode profile. 
in 

The zone concept is also useful for graphically estimating the behavior 

of more common mirror shapes.    The most common,  the circle,  is 

also the worst shape as far as diffractive effects are concerned.    All of 

the diffractive contributions from the edge add up in phase at the virtual 

focus and result in a contribution U(P) = U    exp(ikR + 2nN     )/R as 
o eq 

described in Equation (15).    This results in mode patterns with large 

phase and amplitude ripples as shown in Figures 2 and 3, 

It may be that beneficial cancellation effects introduced by slight 

angular misalignment of a circular mirror may outweigh   the undesirable 

asymmetry caused by the misalignment.    Equivalent Fresnel zones can 

also be used to analyze misaligned resonators.    In this case the center 

of the Fresnel zones does not correspond to the mirror center.    The 
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Figure  13.   The elliptical shaped aperture covering four zones 
compared to the optimum aperture shape. 
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edge diffraction field can be estimated from the phases of the zones 

through which the mirror boundary passes and the boundary length in 

each zone. 

It is expected that a square mirror with a reasonably large equivalent 

Fresnel number will be inherently better than a circular mirror because 

the boundary crosses several zones and partial cancellation of the 

diffraction contribution occurs.    Graphically this is illustrated in 

Figure 14 where a square mirror boundary with N       (P=  \Z) = 4 is 
eq 

plotted.    Starting at the corner,   as the boundary is traversed,  alternate 

zones (TT out of phase) are crossed leading to partial cancellation.    It can 

be seen,  however,  that the segment length in the smallest radius zone 

tends to be much larger than the others and complete cancellation is 

difficult,   if not impossible.    Based on this picture,   it is expected that 

the square mirror would give better results than a circular mirror but 

would not be optimum.    To show this,  the diffractive contribution for a 

square aperture of side 2a can be computed from Equation (12) as: 

• U    exp(ikR+i2 7TNeq) ^^eq ,.      2/O1 

UD(P) =       0      ^    ^      / 7^V   /2)  dv (36) 
TTR  v/N 

eq V    eq       V   4 T 
+ 1 

eq 

where (x,y) are the rectangular coordinates,  v = ZJN      x/a and v    eq 
N       = N     (a).    The form of this integral is similar to that producing a eq eq r —• 
Cornu spiral and the large contribution near the minimum value of v 

{the region of the smallest radius zone) will never be cancelled just as 

a Cornu spiral curve never returns- to the origin.    This situation can be 

corrected by modifying the straight line boundary so that it resembles the 

optimum curve of Figure 12 in the smallest radius zone or by making the 

mirror slightly rectangular.    As is shown by the dotted boundary in 
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Figure  14,   The square and rectangular shaped apertures with 
equivalent Fresnel zones. 
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Figure 14,   when two opposite sides are reduced by one equivalent 

Fresnel zone then the long segment length     (which occur in the smallest 

zones) on adjacent sides of the rectangle a.e out of phase and tend to 

cance1.    This would then be expected to result in an improvement over 

the square profile. 

IV.   CONCLUCJONS 

The results presented here show that significant improvements in the 

amplitude and phase of the dominant mode and increases in the mode 

discrimination ration are attainable by mirror tapering or aperture 

shaping.    The simple theory developed here for the diffractive contri- 

bution to the resonator fields can be used to design optimum resonators 

without resorting to extensive machine calculations.     Using these results, 

it should be possible to design unstable cavities which have reduced 

internal hot spots and outputs which are more nearly diffraction limited. 

We have not included in this work any effects of gain medium nonr liformity. 

The equivalent Fresnel zone concept,   developed in Section III,   is useful 

in the design of resonators and in gaining physical insight into the mode 

phenomena.    In particular,  the physical significance of N       as a phase 
eq 

factor is clear from the discussions in the text.    It should be pointed out 

that,   with the exception of a factor of two occuring in the definition of 

N     ,  the equivalent Fresnel number is just the Fresnel number based on 

a curved wavefront.    One can use these concepts to predict   and understand 

unstable mode patterns even in sharp edge cases.    These concepts will be 

expanded upon in a forthcoming publication where they are related to 

experimental observations. 

It is also clear from these results that for large Fresnel number systems 

the mode obtained in practice may be quite different from those predicted 
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by the sharp edge theory.    Small discontinuities in the -idge can easily 

cover two or more equivalent Fresnel zones when the Fresnel number 

is large and hence the amplitude of the diffraction fields can be signifi- 

cantly changed.    In fact,  for very large equivalent Freenel numbers the 

outer zone widths become so small that these perturbations may be 

unavoidable resulting in inherently better (although not necessarily 

optimum) mode quality. 

The authors would like to acknowledge the contributions of Dr.   D.  K.  Rice, 

Dr.  M.  M.   Mann and Dr.   G.  Hasserjian toward this work. 
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