
GVTDOC
D 211.
9:
4057

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER T
Bethesda, Md. 20034

STRESS ANALYSIS OF COMPLEX SHIP COMPONENTS

BY A NUMERICAL PROCEDURE USING

CURVED FINITE ELEMENTS

by

James Hsienne Ma OCT

U. S. NAP/VM CCADEMY

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

STRUCTURES DEPARTMENT

RESEARCH AND DEVELOPMENT REPORT

LIBRARY

July 1973 DEC 5 1973 Report 4057

-0



The Naval Ship Research and Development Center is a U. S. Navy center for laboratory
effort directed at achieving improved sea and air vehicles. It was formed in March 1967 by
merging the David Taylor Model Basin at Carderock, Maryland with the Marine Engineering
Laboratory at Annapolis, Maryland.

Naval Ship Research and Development Center

Bethesda, Md. 20034

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

NSRDC

COMMANDER 00

"*REPORT ORIGINATOR TECHNICAL DIRECTOR

01

OFFICER-IN-CHARGE OFFICER-IN-CHARGE
CARDEROCK 05 ANNAPOLIS 04

SYSTEMS
DEVELOPMENT
DEPARTMENT

SHIP PERFORMANCE AVIATION AND
DEPARTMENT SURFACE EFFECTS

15 DEPARTMENT

16

SSTRUCTURES COMPUTATION

DEPARMENTAND MATHEMATICS

DEARMET 17 DEPARTMENT 18

SHIP ACOUSTICS PROPULSION AND

DEPARTMENT AUXILIARY SYSTEMS
19 DEPARTMENT 27

MATERIALS CENTRAL

DEPARTMENT INSTRUMENTATION
28 DEPARTMENT

29

NDW-NSRDC 3960/43b (Rev. 3-72)

GPO 928-108



DEPARTMENT OF THE NAVY

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER
BETHESDA, MD. 20034

STRESS ANALYSIS OF COMPLEX SHIP COMPONENTS

BY A NUMERICAL PROCEDURE USING

CURVED FINITE ELEMENTS

by

James Hsienne Ma

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

July 1973 Report 4057



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

ADMINISTRATIVE INFORMATION ................. ...................... I

CHAPTER

I INTRODUCTION ...................... ........................ 3
1.1 General ........................ .......................... 3
1.2 Objective and Scope ................... ...................... 4
1.3 N otations . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 THE FINITE ELEMENT METHOD OF
STRUCTURAL ANALYSIS ............. .................... 11

2.1 Background ................. ......................... .. 11
2.2 Finite Element Displacement Approach ........ ............... .. 12

2.2.1 Element Analysis ............. ..................... .. 12
2.2.2 Structural Analysis (by Direct Stiffness Method) .... .......... .. 14

2.3 Characteristics of Finite Element Analysis ...... .............. .. 15
2.3.1 Convergence Criteria .......... ................... .. 15
2.3.2 Elements of Arbitrary Shapes ........ ................ .. 16

3 ELASTIC ANALYSIS IN THREE-DIMENSIONAL SPACE .... .......... 19
3.1 Introduction to Solid Elements .......... .................. .. 19
3.2 The Basic Solid Elements ............ .................... .. 19

3.2.1 The Isoparametric Displacement Field ....... ............. .. 21
3.2.2 Numerical Calculation of Stiffness Matrix ...... ............ 25
3.2.3 Higher Order Curved Elements .......... ................ 30

3.2.3.1 Quadratic Curved Element ....... .............. .. 30
3.2.3.2 Cubic Curved Element ......... ................ .. 32

3.2.4 Practical Considerations ............ .................. 32
3.3 Specialization ................ ......................... 33

3.3.1 Load Matrix for a Prescribed Pressure ..... .............. ... 33
3.3.2 Stresses on an Arbitrary Surface ........ ............... .. 38
3.3.3 Applications to Plates and Shells ........ ............... .. 42

3.4 Implementation .............. ....................... .. 42
3.4.1 Introduction to Solution Methods ....... ............... .. 47
3.4.2 Frontal Technique ............ .................... .. 48

3.5 Evaluation of Numerical Results ........... .................. .. 51
3.5.1 Prismatic Beams ............. ..................... .. 52

3.5.1.1 A Cantilever Beam .......... ................. .. 52
3.5.1.2 A Simply Supported Beam ...... .............. .. 52

3.5.2 Plate Bending ............... ...................... .. 55
3.5.3 Thick-Walled Cylinder ........... ................... .. 58
3.5.4 Stiffened Plates .............. ..................... .. 58

4 SPECIAL CLASS OF STRUCTURAL PROBLEMS ...... ............. .. 67
4.1 Introduction to Propeller Blades ........... .................. .. 67
4.2 The Geometry of Skewed Propellers ........ ................ .. 68
4.3 Experimental Data ................ ...................... 73
4.4 Finite Element Analyses .............. .................... 75
4.5 Discussion of Results ............. ..................... .. 82

CONCLUSIONS AND RECOMMENDATIONS ......... .............. 87

ii



Page

ACKNOWLEDGMENT ................... .......................... 89

REFERENCES ...................... ............................. .. 95

APPENDIX - EXAMPLE OF FORTRAN PROGRAM FOR NUMERICAL
CALCULATION OF AN ELEMENT STIFFNESS MATRIX ... ......... .. 91

LIST OF FIGURES

Figure

3.1 Tetrahedron, a solid element and rectangular coordinate system ... .......... ... 20

3.2 An eight-node generalized hexahedron .......... .................. .. 22

3.3 Refined curved hexahedron .............. ...................... .. 23

3.4 Curved element representation of a complex surface ..... .............. ... 34

3.5 Rotation of reference frame ............. ...................... .. 39

3.6 Element nodal incidence and local reference frame ........ .............. .. 39

3.7 A quadric curved shell element ............. ..................... .. 43

3.8 Stiffness matrix of a structural system (solution by the
Gauss frontal technique) ................ ....................... .. 49

3.9 Frontal processing of a finite element idealization of the
cross frame of a ship ...................... ........................ 50

3.10 Pure bending of a prismatic bar ............. ..................... .. 53

3.11 Plate bending sample problem (example 3.1) ........ ................ .. 56

3.12 Convergence of center deflection of a square plate with mesh
refinement (example 3.1) ............... ....................... .. 57

3.13 Distribution of bending moments along a center line of a
square plate (example 3.1) .............. ...................... 57

3.14 Stiffened plate sample problem (example 3.2) ......... ................ .. 61

3.15 Distribution of normal stresses in a plate beam (example 3.2) .... .......... 62

4.1 Global coordinate system used in definition of skewed propeller ... ......... .. 69

4.2 XY-plane projection of a propeller blade (looking forward) .... ........... .. 69

4.3 Local blade coordinate systems (x, y, Z) and (p, 0, Z) ..... ............. .. 71

4.4 Developed view of cylindrical blade section .... ......... ........... .. 72

4.5 Aluminum blade model (looking forward) .......... ................. .. 74

4.6 Interferometric fringe pattern of blade model with applied pressure ( 0.098 psi) . . .. 74

iii



Page

Figure

4.7 Projected view of two 5-bladed model propellers (model propeller
series, part I) ................... ........................... .. 76

4.8 XY- and YZ-projections of a highly skewed propeller blade .... ........... .. 77

4.9 Curved solid element representation of a 72-degree skewed
propeller blade .................. .......................... 78

4.10 Computed and measured displacements of a 72-degree
skewed propeller ................. .......................... .. 80

4.11 Stresses of a 72-degree skewed propeller ........... .................. .. 83

4.12 Flat shell element representation of a 72-degree skewed
propeller blade .................. .......................... 84

LIST OF TABLES

Table

3.1 Results of analysis of a simply supported beam ....... ............... .. 54

3.2 Results of stress calculations for a thick-walled cylinder ..... ............ .. 59

3.3 Longitudinal stresses in a stiffened plate
(example 3.2) ................... ........................... .. 63

iv



ABSTRACT

A numerical procedure for the structural analysis of a general three-

dimensional nature has been developed to provide a reliable solution to the

problem of determining the strength of propellers, particularly those with

unconventional configurations. A finite element displacement model is utilized

and compatible solid elements in their general form are adopted. The use of

interpolation functions to define pertinent curvilinear coordinates in element

space gives the finite element technique, new capabilities for dealing with

structures of highly complex geometry. This formulation bypasses the con-

straints of simplifying assumptions (such as those imposed by classicial plate

theory) and allows a closer approximation to the true structural configuration

than is possible by other approaches, including most analytical and numerical

methods. The performance of the refined elements described in this report is

distinctly superior to those obtainable with commonly available elements, for

example, those in NASTRAN. A highly skewed propeller blade under pre-

scribed pressure distributions was chosen for demonstration of the generality

of the procedure. Good agreement was obtained with measured displacement

and experimental stress data.
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CHAPTER 1

INTRODUCTION

1.1 General

Recent years have witnessed an increased interest in the development of performance-

oriented surface ships for which it is vital to keep weight to a minimum, e.g., high-speed

hydrofoils, catamarans, and surface effect ships. A more accurate method of analysis than

currently employed in shipyards is imperative if weight saving is to be achieved for such

vehicles. The effective use of materials and an increased reliability of design will have

far-reaching results over their life spans.

Governed by functional requirements and hydrodynamical considerations, the geometry

of ship scantlings is generally complex and their construction contains a high degree of

redundancy. It is therefore necessary to make simplifying assumptions in order to reduce

the complexity of the mathematical model representing the structure to a form that is amenable

to traditional design methods. In consequence, certain characteristic behavior of the elastic

body is ignored and the accuracy of the analysis is often open to question. Thus verification

requires testing scaled models and, at times, costly prototypes as well.

The rapid advances in digital electronic computers since the mid-1950's coupled with

recent development in discrete element methods provide a powerful new tool for structural

analysis (Paulling, 1964; Moe and Tonnesen, 1966; and the International Ship Structures

Committee, 1969).* Many complicated design problems that were considered insurmountable

to a realistic analysis only a few years ago can now be executed almost routinely by using

an ordinary computer (Roren, 1969; Ma, 1969; and Abrahamsen, 1970). Specifically a struc-

ture system having, say, 1000 degrees of freedom can be solved in a matter of a few min-

utes on a late model computer (such as CDC 6600, or IBM 360/75, etc.) through appropriate

idealization with due consideration for the bandwidth of the resulting system of equations.

During the past decade, the development of finite element methods has exhibited an

exponential growth, and the demand for appropriate programs has increased rapidly. The

total number of finite element computer programs in which substantial efforts have been ex-

pended may have exceeded several hundred (Gallagher, 1970 and Schrem, 1971). Neverthe-

less, only a rather small number of them (and these only recently) are accessible to engi-

neers in practice. Among these well known programs are NASTRAN, the NASA structural

analysis (MacNeal and McCormick, 1967); STRUDL, structural design language (Logcher

and Sturman, 1966); FINEL (Adamchak, 1970) and SAMIS (Melosh et al., 1966). Programs of

a proprietary nature includes ASKA (Schrem and Roy, 1971); DAISY (Kamel et al., 1969);

SFSAM-69 (Araldsen and Egeland, 1971); SAP (Wilson, 1970); STARDYNE (Dainora, 1971);

and others (Hartung, 1970; and Mallett and Jordan, 1969).

*References are listed alphabetically starting on page 95.
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Mo st of the finite element programs, including larger scale and general purpose pro-

grams that; are currently available, have little or no data-generation features and their ele-

ment libraries contain basically one- and two-dimensional elements of linear or constant-

strain type~s. The big cost item of a finite element analysis is frequently the data preparation

stage. In areas of steep stress gradient, for example, the good approximation of an important

structural response may require the assemblage of a large number of elements, especially

when the elenernts to be used are of lower calibre, such as the constant-stress elements. In

the case of an ii~regular boundary, curved elements will have a distinct advantage. Thus re-

finement of element characteristics can have a profound impact on the economy and range of

solution that the finite element method can provide.

By nature of their geometric proportions, many structural components can be idealized

as one- or two-dim ensional problems of elasticity and standard methods can be used to obtain

reasonably good solutions. For other design tasks, however, no conventional approach can

achieve realistic rcsults. Examples are bodies of complex, unsymmetrical shapes and inter-

face problems of two or more geometrical entitles (e.g., the junction of pipes, plates, and/or

shells). The rational solution of such problems requires a general analysis in three-

dimensional elast icity. It is in this difficult, but important, field of three-dimensional prob-

lems that recent developments in the isoparametric element family offer the most promising

approach. These refined elements will be utilized in the study reported here.

1.2 Objective and Scope

The objective of the present, study was to develop a numerical procedure for the static

analysis of a three- dimensional elastic body of arbitrary configuration. More specifically,

the purpose was to (determine the structural behavior of a marine propeller subjected to a pre-

scribed pressure loa(ding. A highly skewed propeller* was chosen to dcmron:Jst•'te the gever,

ality of the approach. The study employed the finite element method in conjunction with

curved solid elements,, A computer program was developed to implement the procedurc for

predicting displacemerits and stresses of a complex structure itb refeoence to an arbitrary

curvilinear coordinate Bystem. Linear elas•ticity and small deformation theory were ussumed.

Chapter 2 outlinos the finite el(hent method for structural analysis. Certain element

characteristics derived f,"om a displacement model are discussed to aid in the selection of

appropriate elements for improved computational results.

Although finite el ement techniques are widely used in the two-dimensional domain of

plates and shells, they have had only limited application for the treatment of complex struc-

tures in the context of three-dimensional elasticity. The principal reason for this slow

*The marine propeller takes on complex, skewed geometry as a result of design considerations, such as those
of vibration and cavitation aspet s in blade design (Cox and Morgan, 1972).

4



progress is the large amount of input data and processing time required to implement a three-

dimensional solution when only simple, tetrahedron-type solid elements are utilized. Isopara-

metric formulation and its associated refined curved elements coupled with a more efficient

solution technique (as described in Chapter 3) now make it possible to tackle some of the

most difficult problems in solid mechanics.

Some selected problems, including beams, plates, shells, and stiffened plates are

solved to evaluate the adequacy and performance of the procedure developed here. Further,

a ship component of complex geometry-a skewed propeller blade-is analyzed in Chapter 4

to provide insight into the potential of the procedure as a design tool. Since no analytic

solution for the propeller blade problem is known, computed results for displacements and

stresses are compared with experimental data.

1.3 Notations

The symbols used in this study are defined where they first appear. For convenience,

frequently used symbols are summarized below.

The bar and tilde underscores (or overscores) generally denote a vector and a matrix,

respectively. Parentheses and brackets are used alternatively to denote a vector and a

matrix. For example, a column vector Ua can be written

U 1

with its subvector

-Pi =lUll = V•

A matrix

A A A

0 = [0] = [V1 , V2 , V 31

When vector quantities appear in an equation, standard vector notations will apply. For

example, "x" and "." represent cross and scalar product of vectors, respectively.

5



[A] matrix of functions in nodal coordinates, Eq. (2.2)

[B] matrix relating strain vector to nodal displace-
ments, Eq. (2.4) or (3.8)

[B'] matrix relating local strain vector of a shell to
nodal displacements, Eq. (3.52)

D a specified domain, such as a given volume or area

[D] elasticity matrix

[D ] elasticity matrix in the local coordinate system for
a isotropic shell element

E
DK

(1 + v) (1 - 2 v)

E Young's modulus of elasticity

{FI equivalent load vector, also known as generalized
load vector

FX, FY, FZ equivalent element nodal force in the x, y, or a
direction, respectively; forces are positive in
the positive direction of x, y, and z axes

Fx (1), F y (I), Fz (1) equivalent force in direction of x, y or 2 axis at
node "i," Eq. (3.28)

[g (el, 7, 1)] matrix containing functions of curvilinear coordinates

E
C = shear modulus of elasticity2(1 + v

Hix, Iy, Hiz weighting coefficient corresponding to position along
Gaussian quadrature points ýi ,i y or Ciz

i subscript indicating nodal number, or active index

I moment of inertia of a transverse section of a beam

A A A

i, ], k vector having unit value in direction of x, y, or
z axis, respectively

[J] Jacobian matrix of coordinate transformation

I.l Jacobian determinant

6



k constant factor included in [D '] matrix to improve
shear deformation

kl., stiffness coefficient at i th row and j th column

[K] stiffness matrix of entire structure

[Ke] stiffness matrix of an element e

K (r. s) submatrices of [K]

A AA

Pm, n direction cosines of a unit vector e and (i, J, k)
representing global rectangular axes (x, y, z)

[La] localizing matrix relating element nodal parameter
to global structure parameter, Eq. (2.13)

MX, M7 Ybending moment components in the x and y directions

n vector normal to a curved surface

N 77), Ni(4, 7 7) function of curvilinear coordinates in two or three
dimensions, respectively, taking a value of unity
at node i and zero at all other nodes

NNPE number of nodes per element

T applied pressure on an element face, Eq. (3.27)

{PI global load vector (entire structure)

[Pa external load vector for an element

P•, P7, PC vectors tangent to curvilinear coordinate lines
(67, 4)

q (x, y, z) intensity of distributed loads

[q] column matrix of generalized coordinates

A A A

7 displacement vector (= ui + vj + wk)

displacement vector of node "i"

[R] rotation matrix for coordinate transformation,
Eq. (3.40)

S area of curved surface

7



t. shell thickness at node i

u, v, w components of displacement in the direction of x, y and a
axes, respectively; displacements are positive in the
positive direction of coordinate axes

ui, vi, wi components of displacement at node i

IN} vector of nodal parameters for entire structure, Eq. (2.13)

jUal nodal displacement vector for an element

U. vector of parameters at node i

U1. S vector of parameters at node i for shell element,
Eq. (3.51)

A A A

V1, V2 , V3  unit vectors in directions of local axes x , and 2',

respectively

A A A

Vli, V 2 0, V3 i local unit vectors at node i

V3 i shell thickness vector at node i

Vol volume of a given solid domain

we work done by external load

w 1.internal work of strain energy

x1, y, ? global system of rectangular coordinates

x , y , 2' local system of rectangular coordinates for shell element

Xi. Yil zi coordinates at node i

a, 1P rotations of nodal normal about two orthogonal axes

ail Pii rotations of normal at node i

la}I column matrix of constant coefficients, Eq. (3.21)

Yxy, YYZ, Yxz shearing strain components

Yx.*'yl 1',Y'z, Yxpz shearing strain components in the local rectangular
coordinates

8



a prefex denoting first variation of a function

SU. virtual displacement at node i for an element

[I ] local strain tensor, Eq. (3.42)

local strain vector for a shell element Eq. (3.52)

4 a curvilinear coordinate in the thickness direction in case
of a shell element

4, i1, curvilinear coordinates at any point within an element

41., tii ei curvilinear coordinates at node i

Ciz' niyl ýix position constants for the Gaussian quadrature point i

[0] direction casine matrix of a local orthogonal system of
axes

v Poisson's ratio

[a] stress tensor, Eq. (3.43)

rxPy,, rypzP, rzP P shearing stress components in the local rectangularcoordinates

[1 (X, y, z)] row matrix of monomial functions of cartesian coordinate,
Eq. (3.1)

summation on the running index i

f

fD integration over a domain D

9



CHAPTER 2

THE FINITE ELEMENT METHOD OF STRUCTURAL ANALYSIS

2.1 Background

The finite element methods of structural mechanics rely heavily on numerical compu-

tation and their advent followed the availability of high-speed digital computers. The matrix

formulation of structural problems was formally introduced by J. H. Argyris in a series of

papers published in 1954-55. About the same period, notable progress in applying finite ele-

ment methods to the analysis of aircraft and civil engineering structures had been made inde-

pendently by a number of investigators including M. J. Turner (1956) and his group at the

Boeing Company and B. Langefors (1958) in Sweden.

The basic concept of the finite element method is that a real continuum can be treated

analytically by subdividing it into a finite number of regions. In each of these regions, the

behavior, such as displacement or stress, is described by a separate field. These fields are

often chosen in a form that ensures continuity of the described behavior throughout the com-

plete continuum. In other cases, the chosen fields do not ensure continuity but nevertheless

they achieve satisfactory solutions. These later cases do not have the assurance of converg-

ence* possessed by the fully continuous analytical models (Melosh, 1963 and Irons and Draper,

1965). The concept of the finite element representation owes much to the early work of
A. P. Hrenikoff (1941) and R. Courant (1943); the later was concerned with problems governed

by broader field equations than just structural mechanics.

Much progress had been made in the various aspects of finite element analysis. Im-

proved results were realized by introducing new types of elements, such as more powerful

refined elements (Argyris, 1965; Felippa, 1966; Mehrain, 1967; Kohnke and Schnobrich,

1969; and Chu and Schnobrick, 1970) or efficient superelements (Araldsen and Egeland,

1971). Successful developments were also cited for various forms of structural behavior

representation as in dynamics, plasticity, and large deflection (Argyris, 1965; Przemieniecki

et al., 1971; and Zienkiewicz, 1971).

The formulation of the finite element method can be traced to energy procedures, prin-

cipally the minimum potential energy (MPF) method and the minimum complementary energy

(MCE) method. The MPE method is associated with assumed displacement parameters as un-

knowns and is usually termed the "displacement" or "stiffness" method. On the other hand,

the MCE method deals with stress parameters and is termed the "flexibility" approach. Sev-

eral authors, e.g., Fraeijs deVeubeke (1964), have been concerned with a parallel use of dis-
placement and equilibrium models to obtain lower and upper bounds to the exact solution.

Still others (Fraeijs deVeubeke, 1964 and Herman, 1967) used a mixed model and considered

both displacements and stresses as primary variables. The ease with which a continuous

*For convergence requirements, see Section 2.3.1.
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displacement pattern can be prescribed (compared to the alternative approach of forming an

equilibrating internal force field) has aided the widespread use and development of the finite

element displacement approach. The displacement model and the stiffness analysis are em-

ployed in the present study.

2.2 Finite Element Displacement Approach

The displacement formulation involves derivation of the stiffness matrix of each indi-

vidual element. The stiffness matrix of the entire assembled structure is then obtained by

the direct stiffness method. This matrix, along with the prescribed displacement boundary

conditions and loads, is used for the solution of displacements and stresses.

2.2.1 Element Analysis

The basic steps for derivation of the element stiffness matrix are:

a. Express the internal displacements WUI of the element in terms of displacement func-

tions q5(x, y, 2), and generalized coordinates IqI

[UI = [ ] q1 (2.1)

where U (X, y, 2)

IUI V (X, Y, P')

W(X, y, 2)

is a displacement vector consisting of displacement components u, v, w, referenced to the

rectangular cartesian coordinate system (x, y, 2).

b. Express the nodal displacements IUa} in terms of generalized coordinates Iql:

j~aj = [A] IqI (2.2)

Here {Ua} = {Ui(x, y, z)l and

Ui(X, y, 2) = U (xi, Yj, zi) i = 1, ,.. , n

are the displacements at node "i" and n is the number of nodes. Coefficients of matrix [A]

are functions of nodal coordinates (xi, Yi, ;?)" Conversely,

IqI = [A]-' Ial (2.3)

12



c. Evaluate strains {li from the assumed displacement. Use the strain-displacement

relationship

Jcj- = 2el-- [G(x, y, z)] Ill

= [G] [A-'] IUal

or

= [B] jUal (2.4)

where 2 is a differential operator and [G] = 2 [o].

d. Compute stresses Jul using the elasticity matrix (D] established from the properties of

the material

lal = [D] Id (2.5)

or

Jul = [D] [B(x, y, z)] tUal (2.6)

e. The condition for equilibrium is obtained by applying the principle of minimum potential

energy

6(wi + We) = 0 (2.7)

During a virtual displacement U' -* aUa, the internal work done is

awi = fEIT Jal d (Vol)

= lauaT f[B]T [DI [B] d(Vol) {Ual

or

awi = IbUali [Ke] IUal (2.8)

The external work done by a set of nodal forces IPaI corresponding to thre nodal displacements

jUal is

T
awe -8Ua Plal (2.9)

Substitute into Eq. (2.7). Since the virtual displacements 8Ua are arbitrary, we have

[Ke] IUaI = lPa (2.10)

13



where [KWe = f [B]T [DI [B] d(Vol)
T

= [A1] f [G] T [D] [G] d(Vol) [A-'] (2.11)

expresses the nodal force-displacement relation and is the desired element stiffness matrix.

f. Establish the load generalization. Generally loads are distributed. Concentrated

loads at nodes represent special cases. In the finite element context where all the forces

can be transmitted only through the prescribed network of nodes, we need to compute the

equivalent concentrated nodal loads 1paI for the actual distributed loading p (x, y, a).

Equivalence is based on the work done during a virtual displacement consistent with the

assumed displacement field U (x, y, ?). Since

6we = - 3f U17 JpJ d (Vol)

Eq. (2.9) gives the equivalent loading vector

1p I = [A-,] fk[]T Ip d(Vol)

or

P' I = f[N]rTpI d(Vol) (2.12)

The vector {Pfl is often called the generalized load of element "a" and N is known as shape
function. Thus a normal load can produce not only parallel nodal forces but also couples, or

their equivalent, and these will depend on the displacement assumption U (x, y, a) used.

2.2.2 Structural Analysis (by Direct Stiffness Method)

The real elastic structure is now represented by a finite number of small, discrete

elements. Once their approximation behaviors, identified by their individual stiffness matri-

ces [Ka], have been established, the stiffness matrix [K] for the complete structure is ob-

tained by the proper summation of each element stiffness matrix in the structure. This is

done conceptually by joining successive elements at their adjoining nodes and requiring that

the conditions of compatibility of displacements and equilibrium of forces have been satisfied
at every node throughout the structure. .A set of simultaneous equations is generated in terms

of displacement parameters {U}. For compatibility, express in matrix form:

juaý = [La] U (I.13)

14



where 1U'} is the column vector of element nodal displacements,

1UI is the column vector of nodal displacements for the entire structure,

[La] is the localizing matrix for element "a" relating the displacements of the element
to those of the structure and is with respect to a set of nodal numbering system,
and for equilibrium,

[K] {U I = 1P } (2.14)

Note that [ [La] [Ka] [La]
a=1

where [K] is the structure stiffness matrix,

[Ka] is the element stiffness matrix,

M is the total number of element in the structure, and

{PI is the structure loading vector and is equal to

M T
IPI= I [L a] {pal

a= 1

The assembly process is also known as the direct stiffness method. Matrix notation

is convenient, general, and applicable to a wide range of structural problems. In practice,

further processing takes into consideration the fact that the structure stiffness matrix is

banded, symmetric, and sparsely populated. This allows a significant advance (Tezcan,

1966; Irons, 1970; and Jennings and Tuff, 1971) in computational efficiency (the number of

arithmetic operations and data storage can often be drastically reduced).

2.3 Characteristics of Finite Element Analysis

2.3.1 Convergence Criteria

The trace of element characteristics follows a prescribed path once the shape function

N has been defined. It describes the displacement field within the element in terms of the

nodal parameters. The shape function matrix [N] can be determined from Eq. (2.1), (2.3), and

(2.12):

1U=I [N] U9e1 (2.15)

and

[N] = [c] [A]-' (2.16)
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The shape functions are usually taken as polynomial expressions in terms of either the global

coordinates (x, y, z) or the local coordinate system (e, q, 4).
The reliability of a solution by the finite element method is indicated by the fact that

the approximate numerical results come increasingly closer to the correct value as the finite

element mesh is repeatedly subdivided into finer and finer meshes (Tong and Pian, 1967 and

deAranetes, 1968).

The requirements of convergence fall into two categories: (a) completeness of the dis-

placement field U and (b) interelement continuity. First, the completeness requirement en-

sures that the energy represented by the functional (such as the integral of potential energy)

includes a constant energy state for each element. If this is satisfied, the true energy state

of the entire structure can be represented, in the limit, as the mesh layout is refined. Mathe-

matically, this requires that all uniform states of the displacement variables U must be in-

cluded in each element. This results in the equivalent requirement that "constant strain"

and "rigid body" states must be included.

The second requirement is that of continuity between adjacent elements. In order for

the functional at the element interface to remain finite, it has been considered necessary to

provide continuity of displacement variable U and its derivatives to one order lower than the

order of the highest derivative of that variable in the energy integral. The success of certain

nonconforming elements, however, has led to a reevaluation of this requirement. Bazeley et al.

(1965) suggested a less stringent condition, namely, that reduced continuity must be maintained

for the state of constant energy in the region concerned.

2.3.2 Elements of Arbitrary Shapes

Linear elasticity problems can be readily solved by a finite element technique that em-

ploys simple triangular or tetrahedral elements. The displacement fields for those elements

have often taken the form of polynomials of variables in cartesian coordinates. That is

IVuI = [0(x, Y, 3)] Iql

or

u (x,y,O)= q1 1 + q1 2 X+ q 1 3 Y+ ql4+...

v) (xya) =q 2 1 + q 2 2 x + g2 3 y + q2 4 z2 +" (2.17)

w(a,y,z) = q3 1 + q3 2 X+ q3 3 y+ q3 4 ; + " " •

In the case of the constant strain element, the criteria of convergence can be satisfied when

the assumed displacement functions 0 include the complete first order polynomial [1, x, y, z]
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in addition to the basic requirement of compatibility* of nodal parameters. Additional nodal

variables can be introduced to give better element performance with improved representation

of the actual deformation. Selective higher order terms are to be added to ensure the continu-

ity of displacement U across the interelement boundary.

The popularity of polynomial displacement expansions 0 (x, y, z) lies in the fact that

matrix operation is straightforward and stiffness coefficients can be readily obtained in ex-
plicit form by a standard procedure (see Section 2.2). It becomes obvious in application, how-

ever, that the property of a displacement variable U (x, y, z) should have no preferred directions.

This requires that the complete polynomial expansion be used in the displacement assumption.

To implement this, a simple procedure can be found to determine shape functions [N] and dis-
placement patterns JU ; the tacit assumption is that matrix [A] (Eq. (2.14)) is invertible and
that the shape function is correct simply because there is a "match" between the monomials
present in the displacement expansion and the corresponding nodal variables (Dunne, 1968).

However, this approach is not generally valid.

Complete polynomials for a compatible displacement field are well suited for the tri-

angular and tetrahedral family of elements, but the use of complete polynomial displacement

expansion may lead to algebraic difficulties in the case of arbitrary quadrilaterals, hexahedra,

and plate bending elements. On the other hand, it is possible to formulate a compatible ele-

ment that possesses rotational invariance via direct formulation by employing a coordinate

transformation (mapping) or a natural coordinate system (Irons, 1966 and Ergatoudis et al.,

1968). Additional kinematic capabilities can be incorporated by introducing intermediate nodal
parameters (Zienkiewicz et al., 1971). This is another desirable feature of isoparometric

elements. A more detailed description will be given in the following chapters.

*This ensures the minimum continuity requirements of displacement at element interface.
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CHAPTER 3

ELASTIC ANALYSIS IN THREE-DIMENSIONAL SPACE

3.1 Introduction to Solid Elements

For many years, considerable effort has been devoted to solving problems in the realm

of three-dimensional elasticity. The classical, analytical approach for solving a set of

governing differential equations derived from a three-dimensional theory is available only for

bodies with simple geometric forms and for restricted boundary conditions and limited loading

cases. Different numerical procedures (finite difference methods etc.) have been applied to

solve these differential equations; their success is generally still limited to special geometric

shapes and, at most, is of occasional academic interest. Now that the finite element method

has been eminently successful in dealing with certain complex problems such as plane stress

and plate bending, it has perhaps even greater potential for the solution of three-dimensional

problems.

The approach envisioned here is based on a full three-dimensional analysis and is com-

pletely general in nature. It will be shown that the solid elements used in the present study

are capable of correctly representing the behavior of a beam, plate, shell, or any of the varied

aspects of structural components.

Because the tetrahedron-shaped element (Fig. 3.1) has simplicity and flexibility, it

was a natural choice for the earlier development of solid elements (Gallagher et al., 1962).

The element shape is defined by four arbitrary, noncoplanar points in space. Any topography

may therefore be represented with sufficient accuracy by some assembly of these tetrahedron

elements. The drawback to this element shape is the large number of element inputs required

to describe a complex surface. The mesh is difficult to visualize, and the amount of data to

be processed as well as the number and the bandwidth of the system of equations generated

tend to exceed the storage capacity of the average size computer and call for excessive com-

puter times. To reduce these constraints, isoparametric elements, including those with a

curved face, have been introduced. These elements represent a great improvement over the

tetrahedron because they enable bodies with curved boundaries to be treated with a limited

number of elements.

3.2 The Basic Solid Element

A comparison (Clough, 1969) of the performance of solid finite elements has shown that

isoparametric hexahedron elements are distinctly superior to any tetrahedron assemblages, both

in terms of the properties of the individual elements and their application to analyze real struc-

tural systems. Isoparametric elements have the additional advantage of isotropy. It is evident,

then, that a general-purpose, three-dimensional finite element analysis program should be con-

structed around the isoparametric hexahedron element family.
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Figure 3.1 Tetrahedron, a solid element and rectangular coordinate system
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3.2.1 The Isoparametric Displacement Field

Consider the general family of elements with six faces, the hexahedron family. The

use of an appropriate natural coordinate system greatly simplifies the formulation of the ele-

ment stiffness matrix for some very complex members of this family. These coordinate lines

are generally curved in space and follow only the interface topology of an individual element.

As shown in Fig. 3.2 (and later in Fig. 3.3) for instance, •, •, 4 are natural coordinates; each

coordinate axis is associated with a pair of opposing faces which are given the coordinate

values of + 1. In their local reference frame, the elements take on the image of a 2 by 2 by 2

cube, whereas in the real cartesian coordinate system (x, y, z), they can be any arbitrarily

warped, six-sided solids.

We begin with the linear hexahedron that has the eight corner nodes shown in Fig. 3.2
and introduce a polynomial expansion of the displacement component in rectangular cartesian

coordinates

u u (X, y, z)

=11 + q 1 2 T+ q 1 3 Y + q14 + q 1 5 Xy + q 1 6 Yz + q 1 7 zax+ q 1 8 XYz

or

u= [0,(x, y, a)] 1qjli i = 1,2 ..... , 8 (3.1)

It will be demonstrated (Section 3.2.4) that the criteria of convergence are satisfied. Without

losing generality, we can consider an element in the form of a rectangular parallelopiped with

the origin located at centroid and the coordinate planes as planes of symmetry. By evaluating
nodal displacement parameters at the appropriate coordinates, i.e., ui =u (xi, yi, as), etc., we

can assemble the nodal displacement vector, for instance, uil = [Ai.] {qi, etc. From Eq.

(2.15), we obtain by identity

u = N1 u 1 + N 2 u 2 +..... .... + N 8 u8

8
= . N u. (3.2)

and
1

Ni=8- (l+xix)(l+yy)(l+ Zz) i=l ..... .. ,8 (3.3)
S8

wherex= + 1, y. = + 1, and zi= +1 are coordinate values at node i,

Here, Ni (x, y, z) is known as the shape function, or interpolation function, such that it takes
on unit value at the indexing node (i) and is zero at all other nodes. These interpolation func-

tions are readily developed simply by writing them as the product of the equations of the lines
or surfaces through all the remaining nodes. This can frequently be done by direct inspection.
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Figure 3.3a Quadratic element (20 nodes)
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Figure 3.3b Cubic element (32 nodes)

Figure 3.3 Refined curved hexahedron
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Proceeding in the same fashion, we can define other displacement components v and w

as

V v(x, y, z)

8

=E Nv.
i=1 t

and
8

w= Y Nw. i= 1, 2 ..... ., 8 (3.4)
i=1 I

where the shape function Ni takes on the same form, Eq. (3.3).

As mentioned earlier, an element of prismatic shape has rather limited appeal in deal-

ing with practical problems. This geometric constraint can be relaxed by a suitable coordinate

transformation commonly known as mapping. Consider, for instance, an element of Fig. 3.2a

being distorted geometrically to a shape shown in Fig. 3.2b. In other words, map the element

into x, y, z-coordinate space such that a typical node i moves to a position (xi, yi, oi). A

relation of the forms

x= Y_ N. x.
iI

y = E Niy. (3.5)

z = YN.2 i= 1, 2,... n
i I

(where n = NNPE, the number of nodes per element) gives x= (, x , ), . . . and can

be used to define the mapping. Here, the shape functions

N = Ni (6, 1 7)

1
= - (1 + 6:i ) (0 + 7qi r) (0 + i L) (3.6)

8

are written in terms of the local dimensionless coordinates 6, 77, and 4. Following the nodal

ordering number as given in Fig. 3.2a, we have the local nodal coordinates

(4,:, ,77, ýi):

fori= 1, 2, ... ,8
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The displacements u, v, w can be interpolated in the same manner; hence u = u (e, 7,

etc. Again, we write

u =IN.u.

v = I N v (3.7)i

w=INi wi i=,. J..,ni

The shape functions Ni (4i, r7j, 4i) used here are identical to those employed in the coordinate
definition and in such cases the formulation has been termed "isoparametric" (Zienkiewicz
et al., 1969). With the position and the displacement of a material point in an element space
defined, a family of isoparametric elements can be formed routinely.

3.2.2 Numerical Calculation of Stiffness Matrix

Consider an element stiffness matrix, Eq. (2.11),

[Ke] = fff [B] T[D] [B] dxdydo
volume of
element

To integrate it, we need to evaluate the integrand [B] T[D] [B] = G (X, y, z) in terms of independ-
ent space variables (x, y, a). The algebraic expression of G involves the strain matrix [B]
which is derived from the definition of strain and consists of appropriate first derivatives of
the displacements. For a solid element, we have

ON.
E0 0

x ax

aN.

MI.
cz0 0 a2 U

)NI. MI O 1. (3.8)

Yxy ay ax 0 w

a NI. aN.
Yyz 0 aO ay

aNi NI.

YX- 0 a ax i= , 2 , NNPE

= [B] tual
6 x 2 4 2 4 x I forNNPE= 8
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It is clear then the expression G is algebraicly complex and its integration presents a formid-

able task since the shape functions N, = Ni(e, -q, C) are established in local rather than global

coordinates. In order to proceed further, it is desirable to introduce an auxiliary expression

C(, ,) in terms of local coordinates (e, 7, 4).
The Jacobian of the transformation is defined as J = d(x, y, z)/1(9, ,, 4) and the

matrix is

ax ay az
a6 a ý aea

ax ay az -- -- -- (3.9)

ax ay az

a 1  a 2  I

a .. 4  X2

aN1 9N2  aN 8  X 3

a• a7 a 77
dN 1  aN2  aN 8

a< a4 a4
x 8  Y8 28

d Ni i

where - -8 (l+i 7,7) (1+4•4)
ae 8

aNi (I'+ 6i )

O9 Ni cia C 8

Following the standard rule of partial differentiation, for example,

aNi aNi a Ni a• aNi a4
- = + , etc.,

ax Oa Ox ,7 aOx a< ax
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we have

aN1  aN 2  a(9 aN 1  aN 2  aN 8

aX ax ax a• a

aN 1  aN 2  aN 8  aM1  aN 2  dN8
ay ay ay a (3.10)

aN 1  aN 2  an9 N3N 1  aN 2  aN8

az a2 a2 a< a< a

Now the values of aNi/ae, aN1/a17, aN9/a , and matrix [J] can be calculated point by

point in an element subregion. The matrix [B] can be readily assembled. The components of

strains everywhere within the elastic element are now defined in terms of nodal deflections

{Ua I as parameters.

The integration in terms of local coordinate variables (e, 77, C) can be executed in a

simple format, that is,

[K,] =ff G(x, y, z) dx dy dz
Vol

fff 1 [BI T [D] [B] IJI d dq d< (3.1t)

and

g(C7, C*) = [BIT [D] [B] IJ.(6, -q, <)I (3.12)

For all practical purposes the integration performed numerically (Hammer, 1959) as a

summation of quadratures is a simple matter on a digital computer. Here,

NPZ NPY NPX
[K e l = .Y - Y- I W( ix ', 77iy ' ý j ) H x i iz( . 3[ z=l iy=l ix=l x) H. H. H.

If the Legendre-Gauss quadrature formula is employed, 6j., 7iy' (z correspond to the abscissas

for the zeros of the Legendre polynomial of degree NPX, . . . etc. NPX, NPY, NPZ are the

number of integration points to be used in each linear quadrature space. The values of ej X

and its weight factors Hix can be found in standard quadrature tables (Stroud and Secrest,

1966).

It is worth noting that the stiffness matrix [Ke] is symmetric and that the strain matrix

IB] and the elasticity matrix [D] include many zero terms, or null submatrices. A substantial
reduction in arithematic operation is possible by carrying the algebraic processing a little

further. First, the strain matrix [B]
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B 12 Bi

[]= F-(.4
6 x 24 [ B 2 1  B 2 2  B 2 3L_ I I

B1 0 0

0 B2 0

0 0 B3

B2 Bi 0
0 B3 B2

LB3 0 B1

can be expressed in terms of submatrices:

= aN1  aN 2  aN 8 ]
Bt(8)=L ' a_ ) ...... ' ax

aN 1  aN 2  aN 8

B2 (8) = _ - ...... , y (3.15)
8ay Jy8

aN 1  N 2  (N9
B3 (8) = _ , a ......

Second, the elasticity matrix [D] which relates the stresses and strains, Eq. (2.5), can include

any anisotropic properties and can be prescribed as a function of spatial distribution, e.g.,

Di. (x, y, z). The [D] matrix is symmetric and can be written as:

wee[D (6,9 6)] = P01 100 (3.16)

where-I -I
D11 D 12 D 13

[DM] = D 2 2  D23

SYM D3_.3

D44 0 07
[Ds]= YM D55

[0] is a 3 by 3 null matrix. For this study, we shall consider an isotropic material. In

that case

AA BBB [D cc 0 -0

[DMl = DK AA BB [D1= DK cc

SYM A , M
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E
where DK =

(1 + v) (1 - 2 v)

AA= i-v

BB= v

CC = (1 - 2 v)12
E and v are the usual elastic constants, Young's modulus and Poisson's ratio, respectively.

At this stage, the calculation of element stiffness matrix can be broken into parts.

Terms that contain null factors can be screened, large number of intermediate calculations

can be eliminated, and economy in computer time can be realized. For instance:

[Ke(i,j)] = f' f 1 f 1 [B(m,i)]T[D(m,n)] [B(n,j)]IJI ded, dC (3.17)
- 1 -1 __1

24x 24 24x6 6 x 6  6 x 24

or

oK(, 8) ' (r, S + 8) K(r, s + 16) 7
[Ke] = K(r+8, s+8) LC(r+8, s+16) (3.18)

LSYMM K (r+ 16, s + 16)J

r, s = 1, 2. ..... . 8

A typical submatrix, for example, is

K (r,s)=f' f 1 f'[B T nD B +BT D B ]JId ejd-qd< (3.19)
S- -1 M 21 s 2 1

This can be reduced to

f_.f'lf_1[Bt(r) D1 1 BI(s) + 1B2(r) D4 4 B2(s) + B3(r) D6 6 B3(s)I] IJI d6d qd< (3.20)

Other submatrices are

f 1 f 1 __[Bl(P) D 1 2 B2(s) + B2(r) D4 4 BI(s)]IJI de• d? dC

f 1 f' jl [Bl(r) D13 B3(s) + B3(r) D66 BI(s)] IJI d6 d 77 dC

Pl f EB2(r) D2 B2(s) + Bl(r) D BI(s) + B3(r) D B3(s)] IJI d/6d 7 7 d<-1 1f-1[Br 022 + 44 + 55

f-1 1 fl fl [B2(r) D2 3 B3(s) + B3(r) D 55 B2 (s)] IJI d= d? d7

f 1 f 1 [B3(r) D3 3 B3(s) + B2(r) D5 5 B2(s) + B1(r) D6 6 B1(s)] IJI d/dri d<
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For submatrices on the diagonal, stiffness coefficients must be computed only for

those terms where s>r, since advantage is taken of the symmetry of the stiffness matrix.

Finally the nodal parameters can be regrouped, i.e.,

jUal = d

and

UUi

wi ii= 1, 2 ..... . , 8

to expedite the assembly into the entire structural system matrix [K] of Eq. (2.14).

3.2.3 Higher Order Curved Elements

In earlier developments, the boundary of a finite element was usually thought of as

composed of straight edges and its geometric form completely defined by a series of corner

nodes. Where an edge is curved, appropriate intermediate nodes must be specified along that

edge. One intermediate point will suffice to define the shape of an edge with a simple or

constant curvature. Two or more intermediate points will be required to specify the geometry

of an edge with a multiple or reversed curvature.

3.2.3.1 Quadratic Curved Element. In most cases, the boundary of a complex structural
shape can be closely represented by a sequence of quadratic curves or quadratic surfaces.

Therefore many complicated problems can be realistically defined and solved with only a

limited number of simple, discrete, curved elements. These curved elements can be readily

formulated by using isoparametric concepts (Section 3.2.1). For example, by placing one

midside node along each edge of an 8-node hexahedron, we obtain a 20-node element. This

20-node hexahedron is coming into widespread use and is an important tool in three-

dimensional analysis (Fig. 3.3a).

For a 20-node hexahedron element with edges capable of displaying simple curvatures,

we can write a displacement expansion that contains 12 terms in addition to those required

for the 8-node hexahedron (Eq. (3.1)) to ensure compatibility.

Hence,

U2 0 = [0l(X, y, z)] faiI i=1,2 ..... .. , 20

= a 1 + a 2 x + a 3 y + a4 + a 5 xy + a 6 yz + a 7 ZX + a 8 XYZ

22 2222
" a9X 2 + aloy2 + allz2

"+ a1 2X 2y + a,3X2 + a 4 y 2x + al 5 y2Z + a1 6 z2 y + a1 7 2 x

"+ al X2 yz + a1 9 XY2 + a2 0 Xy2 2 (3.21)
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It is seen that the displacement is capable of a quadratic variation along any space variable,

and consequently the 20-node element is often called a quadratic element.

Following the example of Section 3.2.1, we obtain immediately the shape functions for

the 20-node hexahedron element:

For corner nodes i= 1 to 8, = ± 1 =+- 1, 7. + 1

1
Ni = 8(1 + e=6) (1 + 7i) (1 + Ci¢) (6:i ý+ 71i 7 + CiC - 2) (3.22)

For midside nodes i= 9 to 12, •=i= ± 1, 7i= ± 1, 4 = 0

1
Ni = (1 + =i e) (1 + i (1- 42)

4

and midside nodes i = 13 to 16, • = ± 1, 7i=0, 4 = + 1
(3.23)

1
Ni -- (I + • 4) (t - q2) (1 + 44)

4

and midside nodes i = 17 to 20, • = 0, 71=i , Ci + 1

1
Ni = 4 (1 - e2) (1 + 7q 7) + Ci

The displacements and coordinates definition for the quadratic element follow directly

Eq. (3.7) and (3.5) of the previous case. The summation will extend to all 20 nodes, i.e.

u= I Niui

v { = N.v.

w= Y N w i=1,2, 20
i i i ......

The calculation of element stiffness matrix follows the procedure outlined in Section

3.2.2. For the quadratic element, matrix [Ke] is of an order of 60 x 60; a Fortran listing of a

subroutine for computing stiffness coefficients for this element is included in the appendix.
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3.2.3.2 Cubic Curved Element. By placing two intermediate nodes at the one-third and two-

third points along each edge of an 8-node hexahedron, we then obtain a 32-node cubic element,

Fig. 3.3. To ensure compatibility, a displacement expansion involving 32 terms can be

written:

U 3 2 (x, y, 1) = U21(O' y, ;) + a 2 1 x3 + a 2 2 y + a 2 3 2

"+ a 2 4 X3y + a 2 5 X3 + a 2 6 y 3 + a 2 7 y 3 x + a 2 8 Z 3 X + a 2 9 
3 Y

"+ a 30 X3 yz + a 3 1 Xy3 z + a 3 2 XY2 3 (3.24)

where the first 20 terms are identical to u2o in Eq. (3.21).

The 32 shape functions for the cubic element can be obtained by standard procedure or

by inspection (Zienkiewicz, 1971) and the 96 x 96 element stiffness matrix can be computed

in a manner similar to those already described.

3.2.4 Practical Considerations

It is appropriate to note that the isoparametric formulation provides its elements with

the quality of compatibility and the requirements of monotonic convergence.

The compatibility condition requires that the displacement along an edge between the

adjacent elements be uniquely defined in terms of the displacements of the nodal points

along that boundary line at any stage of loading (for example, initial and final). Eq. (3.5)

and (3.7) define exactly the displacements and the coordinates along the edge of an element

as functions of the nodal displacements and the nodal coordinates, respectively; thus

compatibility is ensured.

A general displacement field must allow an element to undergo a rigid-body displace-

ment without introducing strain. The constant terms in the expression for displacement (for

example, Eq. (3.1)) satisfy the rigid-body translation while the linear terms satisfy the

rigid-body rotation.

A state of constant strain will be represented in an element as its size decreases.

This condition is again satisfied by having the complete linear expansion in the displace-

ments (Timoshenko, 1934). The premise is proved.

The property of interelement continuity and the assurance of convergence of the

solution are important considerations for element selection. In practice, good element per-

formance invariably requires the exercise of sound judgment in locating a suitable set of

nodal coordinates to describe the geometry of the individual elements when a structure is

idealized. It is important to keep the element aspect ratio (i.e., the ratio of adjacent edges

when an element is proportioned) from becoming excessive. Also it is essential to locate the

side nodes of a curved edge close to the center of the edge and to form corner angles well

under 180 deg. The rationale will become clear through an evaluation of the computational

process. For instance, the numerical integration of an isoparametric element will involve
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calculation of the Jacobian of the coordinate transformation, or the functional determinant
a (x, y, z)

IJI I - To ensure that the mapping is unique and that there is a one to one
a(6q, 0,)

correspondence of coordinates (x, y, z) and ('s, 7, 4), it is necessary that the Jacobian de-

terminant does not change sign in the element space (which implies IJI j' 0).

Now note that

ax dy a0z

ae aC a9 i 6
ax dy dz T (3.25)

H an an a 7

ax a y a2
a< a< a4 "

where Pe, Pq, P4 are vectors tangent to local coordinate (q, C, 4) lines (Fig. 3.4). From the

standard expression

d (Vol) = dx dy dz

= IJI dednqdC (3.26)

A Vol x y
hence IJI = lim I A. Therefore, the Jacobian provides a quantitative measure by

A Vol -77

which the admissibility of an element geometry can be evaluated. This is a useful guide in

selecting the appropriate structural idealization for element application. (Since LJI = Pe •

P 4x , the Jacobian is viewed as a scalar triple product, and numerically it equals the

volume of a parallelopiped with opposing sides parallel to the vector triplet Pe, P7, P4 .)

3.3 Specialization

3.3.1 Load Matrix for a Prescribed Pressure

It is often a tedious task to calculate the load on the surface of a complex structure

due to a distributed pressure. The difficulty arises from the lack of a simple practical means

to describe a design surface. However, with the evolution associated with the isoparametric

curved element formulation, such a surface can be numerically defined and load calculation

evaluated.

In a finite element system, the layout of the element mesh pattern that represents a

structure depends on the manner in which the loads are to be carried. As a rule, loads are

prescribed only at the nodal points and in the directions corresponding to displacement com-

ponents defined in the global coordinates X, Y, and Z. Sometimes "statically equivalent"

loads are used as an expedient computation. For correct solutions especially when the

details of local stress distribution are desired, the load calculation s should follow the pro-

cedure outlined in Section 2.2.1. An example is given here.
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Figure 3.4 Curved element representation of a complex surface
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Consider the general case of a fluid pressure distribution

P = - q(x, y, z) , q (3.27)

where q(x, y, z) is a scalar factor that describes the variation in spatial pressure and A is the

external surface normal. In case of hydrostatic pressure, q(x, y, z) reduces to q(z). From

Eq. (2.12), the equivalent loading vector at the ith node is

I (1)j F Y N(I) IPI ds (3.28)

where N (I) is the shape function for node i and ds is the differential area of a given surface

region (D) for which the pressure has been specified.

Since the position of any point in an element body is defined by the coordinate equation

(Eq. (3.5)), points on any surface area can be readily obtained. For instance, by setting

S = ± 1, we obtain the surface equations in a parametric form for the top and the bottom faces,

respectively.

X YX N X=X(4, ij)
i

Y = I N. . = Y(=, 7) (3.29)
i

Z = Y- N. Z.= Z (•,77)iZ N

The summation extends to all nodes on a given surface. Nodal numbers for a given (top)

face and corresponding shape functions are shown in the following nodal number labeling scheme.

3 8 04 3 12 40

57 7 
7 7 4 5 1

5 664

1 7 2 0
9 10 2

Quadratic Element Cubic Element
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For the quadratic element:

Corner nodes 1, 2, 3, 4 =T1, 77i 1.
1

N i = 4 ( t + 6ci 6) (1 + 77i q) (ýji + 77i7 - 1

Midside nodes 5, 6 ý, = 1, 7i= 0.
1 (3.80)

N. = - (1 + 6i. 12)(( 
.30)

Midside nodes 7, 8 =, 0, 7i = 1.

1

For the cubic element:

Corner nodes 1, 2, 3, 4 •=¥1, 7i= 1.

1Ni= "- (1+ 6=i e) (t+ qi 77) [9 (:2 + 772)_ 0

1
Side nodes 5, 6, 7, 8 77i= -- , 1 6i=l.

N.-= (I + 6i 0o (t - 17 2) (1 + 9 77i 77)332

1
Side nodes 9, 10, 11, 12 3-= 3 ' 1ii=¥

9
Ni = - (1- _ 2) (1 + 9 4i) (1 + 77iT)

£ 32

With the surface defined in curvilinear coordinates, i.e., S(e, -q) in Eq. (3.29), its

normal vector can be expressed by

A A A
" x i + n Y + n k =P x P7  (3.32)

A .A

z kz
ax ay dz0

a• a a.•
ae de ae
ax aOy a
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where P 6 and P 77 are vectors tangent to the surface and in the directions of the 6- and -
coordinate lines, respectively (Fig. 3.4). An elementary area of the surface is given by

A9 = Pe Ae x P 17 A7

The surface area of a region D is

_ lir I JP6 × P771 A6 A7

AT7 -• E

The area of one complete face of an element can be found conveniently by a numerical integra-

tion process; we have

S = f' f'1 1-i d~d77

NPT NPT (3.33)
I Y I • Hi(e).Hi(77 )

i=1 =1 = . . , NPT

For a relatively smooth surface, such as the surface of a cylinder or a skewed propeller blade,

a three-point integration rule gives adequate accuracy (i.e., for NPT = 3, the error range is

0.03 to 0.12 percent). Hence the numerical integration provides an effective way to compute

a complex surface area as well as its projections and other surface characteristics.

Now the nodal load components for any node (1) due to a pressure loading on a face of

the element can be expressed as

F(I)- f f ' N(1) p} JIl d4 d 77  (3.34)

Expressed in quadrature format,

F (1) = + + ij. N (1) n.,x H n (C) .nj (77)

F (1) = I N()-n Hi H 7)(.5

F, (1) = I I qi. u (1) ,, n., H(e).nj(,7)i J

The distributed load qi] must be evaluated in a pointwise manner at each integration point

i, j = 1, 2, . . . , NPT. As before, these are the numbers of Gaussian integration points along

the e- and 77-coordinate lines, respectively. The final load vector {p} is obtained by summing

up individual contributions from all elements attached to these nodes or the network of nodes

(see Section 2.2.2).
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3.3.2 Stresses on an Arbitrary Surface

For obvious reasons, it is conventional to give experimental stress data along certain

well-defined reference frames tangent to the surface area of interest. Expression of the stress-

es in a global coordinate system generally does not give a clear picture of the surface situation

for a structure of arbitrary shape. The stress calculation should therefore be put into a format

that allows numerical results to be readily assessed, interpreted, and/or compared to experi-

mental values or other known results.

In the process of computing stiffness coefficient matrix [K], values of strain and stress

are computed at each Gaussian quadrature point. These values are expressed in terms of nodal

displacement parameters (ui, vi, wi), with reference to the global coordinate (x, y, z) system.

As evaluated, these strain values are stored on tape. Once the equations of the structure sys-

tem are solved and nodal displacements become known, stresses and strains can be obtained by

direct substitution into Eq. (2.4) and (2.6). For design purposes, these results are sufficient

to describe the response of an elastic body in many practical applications.

For structures of complex shapes, stresses at points other than those quardrature points

may be desirable. This will require additional calculations at the designated locations where

stress evaluation is sought. Matrix [B], shown in Eq. (3.8), should be used for this purpose.

The corresponding process outlined in Section 3.2.2 must be repeated. Once again, there is a

need to define the surface orientations from which a set of local coordinates can be chosen so

that the computed stresses can be of value for immediate, meaningful interpretations.

We begin with the definition of unit normal

- (3.36)I5I

where = P6 x Pq is given in Eq. (3.32). Now let P be the unit tangent vector which is
A - -

along an 71-eoordinate line and P7 = P 7P771. Then

A A

T =P 77 X (3.37)

AT will be the third unit vector, completing a right-handed orthogonal triad scribed in the body

or attached to a surface. The triad (T, P n) can be considered as a local reference frame

(x', y', a'). See Fig. 3.5 and 3.6. Hence, the matrix

^ A A ý A A

[ el, e2  e3] (3.38)

= [o0]

A Awhere P1, e 2 , e 3 are unit vectors in directions of local rectangular coordinates (x', y , 2
10] is also known as the direction cosines matrix. [T,, P ] can be expressed in terms of

traditional directional cosine symbols (e, m, n), namely
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Figure 3.5 Rotation of reference frame
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Figure 3.6 Element nodal incidence and local reference frame
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A A A A
A A A A

3 +M + n2nk (3.39)S3 z + M 3) + n 3 k

Let (u', v , w ') be the displacement components along the local cartesian coordinates

(x , y ' o '). They can be obtained from displacements (u, v, w), which are referenced to the

global cartesian coordinates, by a single transformation:

V [=1 {V (3.40)

where [R] is the rotation matrix

P1 mi n]
[9]1 P2 M2 n2 T[]

f3 M 3n3

Following the standard rule of differentiation (see Eq. (3.10)) displacement derivatives can be

written with respect to local coordinates (x', y', z

au av aw ax ay az au av aw

ax" ax" 9x" Px" a xa a-x ax ax ax

au av aw ax ay az au av aw

ay" ayP ay" ay" ayA ay" ay ay ay

au av aw ax ay aOz au av aw

z' aoz az a' az az' aoz a az

a
ax

a
InR] -a [u, v, w] (3.41)

ay

az

40



By substituting local displacements (u, v', w') in place of (u, v, w) in Eq. (3.41), we can

arrive at a convenient form of the expression to calculate local strain components from strains

given in global coordinates:

ax" ax" (9X"

auS' av? aw

au' av' aw'"

au aV dw

ax ax ax

a [ u dv aw [R]T (3.42)
ay ay ay

au av aw

az (z az

Stress components computed in the global coordinate system can be transformed to

locally oriented stresses [a'] by a similar expression, that is,

ta'3]= H" OS *
opr• r;

[R] [a] [R]T (3.43)

Once the element mesh and labeled element nodal numbers are laid out over the ideal-

ization of a structure, the element incidences must be suitably ordered (Fig. 3.6) such that

one curvilinear coordinate, 71 for instance, will be placed on a designated coordinate surface.

When the surface normal vector is computed, another orthogonal surface tangent will complete

a right-handed triad. This combination will furnish a set of local rectangular axes and form

the basis of a rotation matrix. These data enable the stresses to be calculated over an

arbitrarily shaped body along any prescribed orientation.
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3.3.3 Applications to Plates and Shells

The solid isoparametric finite elements outlined here are based on a general three-

dimensional solution. Such elements have demonstrated broad applicability for problems in

structural mechanics. Where the element thickness is decreased to the proportion of a med-

ium thick plate (or a thin shell), a specialized formulation is permissible to achieve greater

economy and effectiveness (Ahmad et al., 1965, 1970 and Pawsey, 1970). Some well-known

approximation will be utilized in the computations of stiffness coefficients [Ke], e.g., as ad-

vocated in classical plate theory (Timoshenko and Woinowsky-Krieger, 1959 and Flugge,

1960) such that lines perpendicular to the middle surface remain straight under loading and

strains along these lines can be ignored in the energy summation.
We begin with the element geometry. Pairs of points itop and ibottom' each with given

cartesian coordinates, prescribe the shape of an element (see Fig. 3.7) i= 1, 2, . . . , NNPE
where NNPE is the number of nodes per element. Let ý, ý be the two curvilinear coordinates

in the middle surface of the shell and 4 a linear coordinate in the thickness direction. As

before, 6, r/, and < vary between - 1 and + 1 on the respective faces of the element. The

cartesian coordinates (x, y, z) of any point of the shell can be defined by interpolation on

the coordinates at nodal points i; hence

{ = I N + (I N bt (3.44)

top iIbottom

Here Ni = Ni( ) are surface shape functions of the type given by Eq. (3.30). Once again,

parabolic, cubic, etc. (or of any specific order) shape functions can be adopted for the middle

surface of a shell element.

By introducing a nodal vector V3i that connects the pairs of nodes itop and /bottom' we

can rewrite the relationship between the cartesian and curvilinear coordinates in terms of the

midsurface coordinates and the vector f3 .,

{§} = N Timid N1 V2 i (3.45)

422

mid
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Figure 3.7 A quadric curved shell element
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where

v3i Yi Yi (3.46)

top- i bottom

i= 1, 2, . . . , NNPE (=n)

Now the displacement pattern has to be assumed for the element. Since the strains in

the direction normal to the midsurface are assumed to be negligible, the displacement vector

"throughout the element will be taken to be completely defined by the midsurface nodal dis-

placement Fmi and two rotations (a-, #) of the nodal normal V3i about axes orthogonal to it. If
A Atwo such orthogonal directions are given by unit vectors V2 i and VWi, with corresponding

scalor rotations ai and fpi, we can write

T= Y N. TM + C-2 (Ei + j) x f3 (3.47)

where

F= v = ui+ v+ A

w

A A A
-mi Ui+ 0i + W j+ (3.48)

and

A A A

Vii = i X V3  I(
A A A (3.49)
V2 i = V 3 i X V 1 i

"ai = a, V2i

,} (3.50)

i = Pi vi

i=1,2, ... ,NNPE(=n)

Here u, v, and w are displacements in the directions of global x, y, and z axes, and up, vi, and

wi are displacements at the midsurface node i. At each node, we now have the five basic

degrees of freedom:
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U.

V.ui

ai

1i

From the basic shell assumptions, the strain components are essential in directions

of tangential orthogonal axes related to the surface C = constant. The strains to be used in

the element approach must be converted to this same reference system. At a point on this

surface, take z' in the direction of surface normal T, Eq. (3.32). We can establish a set of

local orthogonal axes x', y', and z a One simple scheme is given by Eq. (3.49). The strain

components of interest are

a~u'
x ax'

cav'

{ E'P= Axa = Ua + au

au, (9w'
Yx 'z 1 - + -

a9' ax,

z - + -O

or

= [B'] It a (3.52)

The stresses corresponding to these strains are defined with the aid of the elasticity

matrix [D']. We have

ay

l == [D ] Ic' (3.53)
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where

1 v 0 0 0

1 0 0 0
i-v

' 0 0
[D"1= - E 2 (354)

,"(l - ) 1-v 0
0

2 2k
SYM II 1-V

2k

The 5 x 5 matrix [D '] is defined for an isotropic material. E and V are Young's modu-

lus and Poisson's ratio, respectively. The factor k (= 1.2) included in the last two shear

terms is intended to improve the shear displacement approximation (Ahmad, 1970). It is seen

that because of the displacement assumption, the shear strain is approximately constant

through the thickness, whereas in reality the shear distribution is approximately parabolic.

The value k= 1.2 is the ratio of relevant strain energies.

The next step is the calculation of the element stiffness matrix

[Kl] =f' fl f 1 [B']T [D'] [B'] J1 d6 d-q d< (3.55)
-1 -1 -1

By definition, l = [B'] IUsI. Matrix [B'] relates the local displacement derivatives to the

nodal parameters. The calculation of [B'] involves three steps:

a. Compute global displacement derivatives for a set of curvilinear coordinates in the

manner shown by Eq. (3.10).

b. Transform these derivatives (i.e., the strain components expressed in global coordi-

nates) to local displacement derivatives by Ea. (3.42). Here, the direction cosine matrix
A

[0] can be constructed by a process given by Eq. (3.49) with unit vector V3 parallel to z '-axis

which is in the direction of surface normal _n.

c. Assemble the local displacement derivatives to form the strain vector {e'} in terms of

nodal parameter vector [UIs given by Eq. (3.52).

Now the whole integral of Eq. (3.55) can be expressed as an explicit function of the

curvilinear coordinates. After carrying out some operations at the submatrix level, simplifi-

cations and saving in numerical processing can be achieved. A numerical integration will

allow the properties of the element to be evaluated.
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3.4 Implementation

3.4.1 Introduction to Solution Methods

In the displacement method of finite element analysis, the problem eventually reduces
to the solution of a set of linear simultaneous equations that express the load-displacement
or equilibrium relation for the structure. The displacement boundary conditions can be read-
ily imposed by deleting the appropriate nodal parameters (corresponding to nodal degrees of
freedom) from Eq. (2.14). After reduction-which, in effect, removes the rigid-body mode-we

have

[Kr] U = P (3.56)

where [Kr] is the nonsingular structure-stiffness matrix,

U is a vector of unknown nodal parameters (displacements), and
P is a vector of applied load.

Once Eq. (3.56) is solved, the global displacement parameters U become known. The
desired stress and strain at any point within any element can be found immediately by sub-
stituting the nodal displacements in Eq. (2.4) and (2.5) in turn.

In practical application, a sizable number of finite elements is required for the repre-
sentation of structural design problems. Consequently, an extensive network of nodes evolves
and the size of the stiffness matrix which corresponds to the number of unknown nodal vari-
ables is often overwhelming (not infrequently several thousand degrees of freedom arise). A
large portion of the total computer time required to solve a given problem is generally con-
sumed in solving the set of linear equations (Eq. (3.56)). Here, the method of solution can
have a significant bearing on the computational efficiency which is measured in terms of
demand on core size. At times, the core requirement may dictate the applicability of the
finite element method.

It is of prime interest, then, to select a solution algorithm which takes into account
the symmetric, positive definite and banded nature of stiffness matrix [Kr]. Further the
Gauss elimination is known to be numerically stable, irrespective of the order in which the
equations, Eq. (3.56), are eliminated (pivot search is not necessary) and therefore the full
advantage of symmetry can be realized. The elimination of a row S (which represents an

equilibrium equation in nodal variable Us) leads to a modification of the coefficients in the
remaining rows according to the formulas

1*. _ -i. ( .. (3.57)

I I is k

4 P
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Stiffness coefficients kip, ki (= k), • etc. represent the sum of individual element contri-

butions. It does not matter in which order the summation is made and, further, they need not

be fully summed except those in row S currently being eliminated. This process affects a

triangular array immediately below the row that is being eliminated. It can be carried out by

retaining in the core only the triangle of coefficients which moves diagonally downward as

the elimination proceeds; see Fig. 3.8.

As depicted by a coarse or a fine mesh, the finite element idealization of a structure

frequently takes the form of a simply connected region. In these cases, the stiffness matrix

can always be arranged in a nicely banded form by labeling the unknown parameters U. in a

suitable order. In the case of a closed ring that represents a multiply connected region, the

band can be large despite high sparsity. It is also true that the bandwidth of the individual

equations tends to be large in three-dimensional problems where large solid elements with

intermediate nodes along their edges are used. In addition, one has to operate on many zero
terms within the band, and this adds to the cost of solving equations by a band algorithm.

For these and many other cases as well, the "frontal" technique (see Section 3.42) requires
less storage and arithmetic than the best Gaussian banded algorithm (Melosh and Bamford,

1969 and Irons, 1970). The frontal solution algorithm is employed for this study, and is

described in the next section.

3.4.2 Frontal Technique

Most of the inefficiency in data processing keyed to matrix bandedness can be avoided
by applying the frontal technique. It is based on the principle implied by the very nature of
Gauss elimination, Eq. (3.57). Frontal processing takes advantage of the fact that nonzero
elements in a column of the decomposition (inside the triangular portion of the array affected

by row operations) cannot occur in any row prior to the occurrence of a nonzero element (i.e.,
the stiffness coefficient kis = k1i ý/ 0) in the column of the stiffness matrix. In this approach,

the first appearance during decomposition of an element in a column of [Kr] causes the addition
of that column to the wavefront which is the "front of active variables." Data that must be
readily available on core include only the coefficients of the equations on the wavefront. A
variable becomes "active" on its first appearance and is eliminated immediately after its
last. Hence, if a variable xs is ready for elimination, there must be no subsequent elements

that contain x . (It was implied previously that ksi, ks, . . . . . , P, in Eq. (3.57) must be
fully summed.) Thus the size of the "front" is smaller than or, at worst, equal to the band-
width of the equations. In effect, this eliminates a good number of zeroes from the process

of computation, and it saves substantially on core requirement.
Fig. 3.9 illustrates an application of the wavefront method. The associated graph,

representing a portion of a ship structure, explains the name "wavefront," i.e., equation

solving is visualized as progressing like a wave over the structure. At any given time in
the analysis, the wavefront includes the total number of active degrees of freedom.
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Figure 3.8 Stiffness matrix of a structural system (solution by the Gauss frontal technique)
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Figure 3.9 Frontal processing of a finite element idealization of the cross frame of a ship
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These are associated with partially processed degrees of freedom (or nodal variables). For

example, Fig. 3.9 shows a situation just before element ®ý) is introduced.* If there is only

one equation per joint, joints 7, 17, 27, and 60, 70, 77 (representing active nodal variables)

currently constitute the wavefront. Joints 1, 2, 3, 4, 5, 6, 14, 15, 16, 21, 22, 23, 24, and 25,

etc. (which lie to the left (back) of the dotted line) have been fully processed and are no

longer considered active. At the next step, element (D introduces the new active variables

61, 62, 71, 78, and 79. As elements are being processed one after another, the front moves

forward across the structure.

Further we observe that:

a. The order of element sequence is critical in frontal solution, just as the node numbering

is critical in a band algorithm, although the best order is not always unique.

b. Ordering of the nodes is irrelevant to the frontal technique. The node numbers are

merely unique labels that relate the degrees of freedom for element and structure. They have

no effect on the order of elimination. Here, when a given mesh is changed by adding or de-

leting nodes, the frontal data are little changed, but a band algorithm may require extensive

node renumbering in order to preserve a small bandwidth. This can be extremely valuable in

design application when a mesh is to be modified locally for a rerun.

c. The size of front and hence the storage requirements for a given problem can be

assessed from the mesh pattern such as given in Fig. 3.9. For example, before element

®•) is introduced, there are six active variables: 7, 17, 27, 60, 70, 77; immediately after

the stiffness coefficient generated by element © has been added in, the list of

active variables increases to 11.

3.5 Evaluation of Numerical Results

The preceding sections have described the formulation of solid finite elements for the

three-dimensional analysis of a general elastic body and a method for its implementation.

The performance of these elements in the representation of an elastic structure will now be

evaluated. Some preliminary computations were conducted with these elements using

examples given in Chapter 9 of Zienkiewicz (1970) and favorable numerical results were

obtained. Additional problems are included here and solutions for such basic structural

components as beams, plates, and shells are presented to verify the behavior of individual

elements and to examine the adequacy of the finite element models. A special example will

be given in Chapter 4 to demonstrate the effectiveness of the procedure in solving the

difficult problem of marine propeller blades.

*Element @ has not yet been introduced.
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3.5.1 Prismatic Beams

3.5.1.1 A Cantilever Beam. Timoshenko (1934) treated a prismatic bar subjected to pure

bending as a problem of elasticity in three dimensions. Consider the bar bent in one of its

principal planes (x-z) by a couple M at one end and held fixed at the other. Take the origin

of the coordinates at the centroid of the cross section, i.e., point 0 (Fig. 3.10). The displace-

ment components as predicted by the theoretical solution are:

1
U{ - [2 _V (x2 _ y 2)1

I?

1 M

and - = - is the curvature of the deflected bar. After deformation, points on a planeR El

cross section will remain on that plane, but the cross-sectional shape will change. The

sides of the cross section become inclined and the top and bottom edges are bent into

parabolic curves as shown by the dotted lines in Section A-A of Fig. 3.10.

An aluminum cantilever beam having a cross section of 0.5- by 0.6875-in. thick and

a length of 11.0 in. was bent by an end couple of 4.10 in.-lb. Surface displacements were

measured by using holographic interferometry (Dhir and Sikora, 1972). Three-dimensional

displacement components (u, v, w) for the top face along the front edge were obtained; see
Fig. 3.10. This experiment was conducted as a preliminary process to evaluate the quality
of measurements obtainable by holography. In this case, the measured data indicate that the

beam appeared to be distorted locally near the support; the investigators had difficulty in

simulating the fixed-end condition for the slender beam.

The cantilever beam is represented by four 20-node (quadric) hexahedron elements

with a total length of 11 in. The finite element model is completely fixed at one end and

bent at the other by an end couple produced by two equal and opposite forces (=± 5.9636 lb)
applied to the top and bottom midside node. Computed displacements u and v are almost

exact; they are within 0.1 percent of the correct solution. Computed stresses are good and
are generally within 0.5 percent of the exact solution except at points near the concentrated

applied forces.

3.5.1.2 A Simply Supported Beam. The purpose of the current example is to assess the effect
of mesh pattern (as it relates to the element aspect ratio) on the behavior of the finite ele-
ment model. A simply supported rectangular beam 40 in. long and with a 0.6 by 6.0 in. cross

section is represented by four quadric elements (Table 3.1).
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Figure 3.10 Pure bending of a prismatic bar
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TABLE 3.1 RESULTS OF ANALYSIS OF A SIMPLY SUPPORTED BEAM

DISCRETE MODEL B1 DISCRETE MODEL B2-T 4@ • -:••'
t/2

af 9t/10

K A B C D A jB C D
,/4 ,,/4 £/4 £/4

LINE OF LINE OF

SUPPORT CENTER SUPPORT CENTER

OF SPAN OF SPAN

SPAN £= 40 IN. POISSON RATIO V= 0.30
THICKNESS t = 6 IN. YOUNG'S MODULUS E = 30,000,000 PSI
WIDTH b = 0.6 IN. BENDING STRESS a PSI
CENTER POINT LOAD P = 10,000 LB

Vertical Deflection Stresses at

at Section Section C

in. psi

A B C D otop Oabottom

Discrete Model B1 0.0156 0.0292 0.0390 0.0427 - 20,590 21,030

Discrete Model B2 0.0155 0.0290 0.0388 0.0425 -20,820 21,040

Beam Theory 0.0151 0.0283 0.0376 0.0412 -20,830 20,830

Theory of Elasticity 0.0158 0.0298 0.0398 0.0440 -20,720 20,890
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These elements are of uniform size in discrete model BI while they are of nonuniform

size in discrete model B2. The beam is loaded at midspan by a concentrated force P.

Vertical deflections and normal stresses are obtained from the discrete element models. The

response of discrete model B2 with its nonuniform mesh size appears to be slightly stiffer.

Theoretical solutions (listed in Table 3.1) are obtained (a) by using elementary beam theory

in which the effect of shear stresses is neglected and (b) by elastic theory (Timoshenko 1934)

in which the beam is treated as a two-dimensional problem. Numerical results obtained by

both finite element calculations are acceptable from an engineering standpoint.

3.5.2 Plate Bending

When the thickness of an elastic body is small compared to its other dimensions, it

is called a plate. A flat plate is classified as thin or medium thick according to its span

to thickness ratio (Ut) whether, this ratio is greater or less than 40. When a medium thick

plate (5 > Ut > 40) is bent with small deflection-small in the sense that the plate deflec-

tion is small compared with its thickness-the classical plate theory (i.e., the Kirchoff

assumption) holds. Then, the laterally loaded plate can be treated as a two-dimensional

problem.

The 20-node hexahedron elements are used to model a plate structure with varying mesh

fineness (Fig. 3.11). Here the analysis is for a simply supported square plate with a 40-in.

span and a 1-in. thickness subjected to a concentrated center load. This is a severe bending

test because the situation is singular at the loading point (the solution for stresses at this

point is not bounded).

The center deflection under concentrated load obtained from finite element calcula-

tions is plotted against mesh size in Fig. 3.12. Note the rapid convergence of the deflec-

tion. For a mesh size N= 4 (Ut = 5), the calculated deflection is within 1.5 percent of the

exact solution. Numerical results for some well-known plate bending elements are also

shown in Fig. 3.12 for comparison purposes. These results are taken from the Nastran

Theoretical Manual (1969).

The dotted lines in Fig. 3.13 indicate the distribution of bending moments M. and My

along the centerline of the square plate computed from the finite element model. The theo-

retical results (Timoshenko, 1959) are for a concentrated load P applied over a circular area

of 0.05-a radius.

For general plate bending analysis, the application of the specialized element given

in Section 3.3.3 is preferred because of its efficiency and ensuing economy. Although the
solid element is not intended to be used for plate bending problems, it did behave well as a

plate when molded to the geometry of a plate. The element did yield results which converged

rapidly to the exact solution.
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Figure 3.11a A simply supported square plate under center load
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Figure 3.11b Element mesh used on the analyzed quadrant of the plate

Figure 3.11 Plate bending sample problem (example 3.1)
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3.5.3 Thick-Walled Cylinder

The subject of this analysis is a section of cylindrical wall 12-in. long with an outside

diameter of 20 in. The wall is 2-in. thick and its outer surface is under a uniformly distributed

pressure. The problem is that of an axisymmetric solid and the situation is two-dimensional.

In this case, a quadrant of the thick-walled cylinder is considered and each time either two or

three 20-node hexahedron elements are used to model the curved shell.

Displacements are computed for all nodal joints in global coordinates XYZ. Stresses

are computed at integration points as well as on the curved surfaces, including both interior

and exterior. The stresses are expressed in global coordinates and also in local curvilinear

coordinates (C, -q, ,). A two-element representation of the curved shell is illustrated in Table

3.2. Also given there are computed stresses, the radial component ar, and the tangential com-

ponent a0 along a typical section. Numerical results obtained from the three-dimensional

finite element solution are in good agreement with the theoretical solution (Timoshenko, 1934).

The computed stresses are generally closer to the exact solution at the integration points than

at other points, e.g., on the surfaces.

This example provides a way to verify certain subprograms used to define surface char-

acteristics, local axis orientations, and stress transformations for an arbitrary shaped body.

These subprograms are designed to enable immediate interpretation of finite element solutions

where a complex structural configuration is considered (see Section 4.4).

3.5.4 Stiffened Plates

In the case of a simple beam having a longitudinal plane of symmetry with external

forces also acting in this plane, bending will take place in the same plane. Elementary beam

theory assumes that a transverse section of the beam that is originally plane remains plane

and normal to the longitudinal fibers of the beam after bending. Direct measurement shows

that the beam theory gives very accurate results for the deflection of beams and the strains

of longitudinal fibers. The results of finite element calculation for a beam of rectangular

section (Table 3.1) also confirm the validity of the elementary theory of bending.

Now consider a T-beam which, in essence, is a rectangular beam with projected flanges.

When a T-beam has the proportions of an ordinary structural shape as found in a standard hand-

book, its behavior under simple bending can still be predicted by ordinary beam theory. How-

ever, when the flanges of a beam are extended further, the transverse stress distribution is no

longer uniform across the width of the flange. It is known that parts of the flange at a dis-

tance from the web do not take their full share in resisting bending. This phenomenon is

called "shear lag." A beam of this type is less stiff than predicted by elementary beam

theory.

The configuration of a beam with very wide flanges becomes that of a stiffened plate.

Plates that are stiffened transversely and/or longitudinally are important components in the

hull structure of ships. The plate which serves as load bearer also acts as the flange of
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the stiffener. There are numerous approximate methods for analyzing these plates. Most fre-

quently, they are based on idealization of the system into a grid (or network) of beams or into

an equivalent orthotropic plate. These methods require an estimate on the effective width of

the plate and the torsional rigidity of the composite. Thus they demand considerable engi-

neering judgment and interpretation and are not completely reliable.

Important progress has been made in recent years on finite element analysis of eccen-

trically stiffened plates and shells (Mehrain, 1967; Kohnke, 1969; and Chu, 1970). The stiff-

ened plates are represented by a composite of beams and plates (one- and two-dimensional

elements, respectively). Actually, at or near the interface of the plate and its stiffener, an

accurate solution of their structural behavior would require a three-dimensional analysis.

The improved hexahedron element is utilized here to analyze the intricate stress distribution

of stiffened plates.

Fig. 3.14 indicates a general scheme used to analyze a laterally loaded stiffened plate.

The plate with a stiffener on one side is taken as a simply supported plate beam carrying a

center load P. Because of symmetry, a half span of the beam is idealized and twelve 20-node

hexahedron elements are used for its representation. At each end, vertical supports are pro-

vided for both flange and web plates. Five different flange versus stiffener aspect ratios are

used as parameters (plate beams CX2 through CX6) to assess the effect of flange width

on the structural behavior of these stiffened plates. As the flange of a beam is progressingly

widened (e.g., plate beam CX3), the maximum center deflections calculated by the finite

element representation are found to increase at a greater rate than those obtained by the

elementary beam formula. In other words, because of shear lag, each incremental flange

material is engaged in a lesser capacity than has been assumed.

Fig. 3.15 depicts the distribution of longitudinal stresses (aY) on a transverse section

of plate beam CX3. Stresses are generally higher in the parts of flange near the stiffener

and especially in the vicinity of the concentrated load. Similar patterns of stress distribution

with varying degree of stress gradient are found in each beam that has projected flanges.

Stress distribution across the web plate differs somewhat from the linear variation assumed

in the elementary theory of bending. The neutral axis at these cross sections of the beam

does not pass through the geometric centroid (Fig. 3.15). Such behavior was more pronounced

for a plate beam such as CX3 with its deeper web plate (S= 6 in.) than for the others, for

example, CX4.

Fig. 3.15 also shows the distribution of typical transverse stresses (a ) along the

flange plate. They indicate some local bending of the flange in the transverse direction near

the concentrated force. Additional stress data of interest are given in Table 3.3. These

stresses were obtained at the Gaussian integration points (used to form the stiffness matrix

of the isoparametric element). Stresses computed at such points have been shown to be

generally of high accuracy. Stresses for other locations in the plate beam can be found by

interpolation.
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p = 10k

20-IN. 20-IN.

A SIMPLY SUPPORTED PLATE BEAM

log w

, ® ', V®_ E =30.000 KSI///_..•• __v =0.30

XZ IS THE PLANE OF
Z y , SYMMETRY OF

a - _ _ _ _ _ _ _ _ _ _ _ _ P L A T E B E A M

A FINITE ELEMENT REPRESENTATION

PLATE BEAM BEAM PARAMETER CENTER DEFLECTION (IN.)

MARK w tb s ts FINITE ELEMENT BEAM THEORY

CX1 0.6 0.6 6.0 0.6 0.0425 0.0412

CX2 6.0 0.6 6.0 0.6 0.0214 0.0191

CX3 12.0 0.6 6.0 0.6 0.0185 0.0158

CX4 1.8 0.6 3.0 0.6 0.213 0.210

CX5 6.0 0.6 3.0 0.6 0.147 0.142

CX6 12.00 0.6 3.0 0.6 0.129 0.123

PARAMETERS OF BEAM CROSS SECTION AND COMPUTED DEFLECTIONS

Figure 3.14 Stiffened plate sample problem (example 3.2)
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Figure 3.15 Distribution of normal stresses in a plate beam (example 3.2)
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TABLE 3.3 LONGITUDINAL STRESSES (a y) IN A STIFFENED PLATE (EXAMPLE 3.2)

'Table 3.3a Plate beam CX2

y _y , (psi)

(in.) A1 A2 A3 B1 B2 B3 Cl C2 C3

0.676 -6252 -5103 -3479 - 6795 -5417 -3525 -7768 -6215 - 4127
3.000 -5989 -4945 -3529 - 5845 -4817 -3450 -5959 -5000 - 3755
5.324 -5557 -4471 -3074 - 5267 -4442 -3411 -5063 -4555 - 3961
9.500 -3683 -3180 -2547 - 3725 -3201 -2537 -3748 -3199 - 2498

16.500 -1155 - 979 - 752 - 1214 -1039 - 814 -1255 -1082 - 863

D1 D2 D3 E1 E2 E3 F1 F2 F3

0.676 -9161 -6841 -4624 -10247 -7926 -5705 -2533 5995 18193
3.000 -6093 -5051 -4045 - 6575 -5528 -4519 -2225 5486 16420
5.324 -4773 -4496 -4048 - 4646 -4367 -3916 -2135 4687 14265
9.500 -3757 -3232 -2466 - 3639 -3113 -2347 -1126 3541 9634

16.500 -1200 -1050 - 854 - 1230 -1079 - 882 - 387 1203 3182

a a b _b I_ a a
2 - 2 2 b =0.6 IN.2 1 = 0.3873

Bb c =S-b
A aB C Ec S-

4! H I .0? I0

u• ~~ABOUT eL " -|

7

23 C,

F

w w

2 2

POSITION OF INTEGRATION POINTS USED IN STRESS TABULATION
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Table 3.3b Plate beam CX3

y oay (psi)

(in.) A1 A2 A3 B1 B2 B3 Cl C2 C3

0.676 -3267 -2335 -1374 -3979 -2855 -1713 -5092 -3791 - 2480
3.000 -3428 -2378 -1311 -3487 -2511 -1531 -3878 -2995 - 2119
5.324 -3454 -2267 -1076 -3158 -2311 -1473 -3124 -2641 - 2177
9.500 -2015 -1629 -1244 -2151 -1717 -1283 -2268 -1803 - 1338

16.500 - 522 - 369 - 218 - 729 - 586 - 444 - 805 - 670 - 537

D1 D2 D3 E1 E2 E3 F1 F2 F3

0.676 -6733 -4610 -2802 -7851 -5731 -3925 -1290 +5261 14095
3.000 -4173 -3260 -2491 -4656 -3745 -2980 -1004 4775 12740

5.324 -2771 --2668 -2541 -2619 -2519 -2393 -1045 4024 11155

9.500 -2265 -1872 -1455 -2130 -1736 -1317 - 299 3157 7605
16.500 - 713 - 587 - 445 - 747 - 621 - 479 - 84 1107 2505

Table 3.3c Plate beam CX4

y a y (psi)

(in.) Al A2 A3 B1 B2 B3 Cl C2 C3

0.676 -48270 -37590 -26240 -48610 -37800 -26415 -49440 -38595 -27255
3.000 -43650 -34230 -24500 -43315 -33880 -24220 -43200 -33840 -24330
5.324 -39980 -30840 -21740 -40005 -30960 -22030 -39965 -31100 -22435
9.500 -21720 -21230 -15420 -27150 -21320 -15550 -27130 -21340 -15590

16.500 - 9105 - 7235 - 5325 - 9110 - 7207 - 5277 - 9160 - 7225 - 5270

D1 D2 D3 El E2 E3 F1 F2 F3

0.676 -50570 -38710 -27930 -51640 -39780 -29005 -12830 +28290 70310

3.000 -43655 -33720 -24340 -44135 -34210 -24830 -11605 25560 63520
5.324 -39870 -31220 -22580 -39765 -31120 -22490 -10430 22850 56830
9.500 -26980 -21315 -15520 -26860 -21195 -15400 - 7100 16000 38930

16.500 - 9136 - 7210 - 5315 - 9162 - 7236 - 5343 - 2400 5389 13220
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Table 3.3d Plate beam CX 5

y aOy (psi)

(in.) A1 ,A2 A3 B1 B2 B3 Cl C2 C3

0.676 -18990 -11890 -4678 -19970 -12480 -4912 -21430 -13650 - 5854

3.000 -18160 -11120 -4005 -18240 -11220 -4189 -18680 -11820 - 4985
5.324 -17340 -10110 -2875 -17060 -10300 -3573 -17060 -10880 - 4788
9.500 -11110 - 7214 -3338 -11150 - 7246 -3347 -11165 - 7225 - 3284

16.500 - 3494 - 2229 - 963 - 3651 - 2371 -1094 - 3780 - 2493 - 1212

D1 D2 D3 E1 E2 E3 F1 F2 F3

0,676 -23300 -14550 -6405 -24480 -15740 -7608 3672 31575 60930
3,000 -18720 -11970 -5518 -19255 -12515 -6070 3264 28630 55050
5.324 -16770 -11000 -5217 -16655 -10895 -5118 3011 25750 49160
9.500 -11200 - 7256 -3243 -11070 - 7123 -3108 2466 18135 33610

16.500 - 3653 - 2411 -1162 - 3687 - 2445 -1196 824 6105 11365

Table 3.3e Plate beam CX6

y Oy (psi)

(in.) A1 A2 A3 B1 B2 B3 Cl C2 C3

0.676 -11410 -5070 1312 -12670 - 6115 461 -14560 - 7812 - 1070
3.000 -11550 -4975 1625 -11840 - 5470 906 -12750 - 6619 - 512

5.324 -11580 -4742 2110 -11230 - 5015 1183 -11510 - 5965 - 464
9.500 - 6985 -3453 77 - 7115 - 3641 - 167 - 7194 - 3776 - 354

16.500 - 1936 - 781 371 - 2351 - 1243 - 139 - 2517 - 1444 - 379

D1 D2 D3 E1 E2 E3 F1 F2 F3

0.676 -17150 -9085 -1510 -18270 -10320 -2770 7100 31300 57310
3.000 -13360 -7155 -1157 -13900 - 7720 -1740 6500 28450 51670

5.324 -11400 -6279 -1159 -11280 - 6173 -1070 6020 25725 46180
9.500 - 7185 -3829 - 442 - 7055 - 3693 - 301 4514 18140 31640

16.500 - 2322 -1220 - 86 - 2364 - 1263 - 130 1573 6189 10650
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CHAPTER 4

SPECIAL CLASS OF STRUCTURAL PROBLEMS

4.1 Introduction to Propeller Blades

Marine propeller blades present a special class of structural problems for which no

generally satisfactory solution is presently available.

Screw propellers have been and remain the principal device used to move a ship.

Despite their importance, there is little or no realistic approach by means of which an accu-

rate evaluation of propeller stresses can be obtained. The problem lies in the difficulty of

describing a blade design in simple mathematical terms. Until recently, existing methods ap-

plicable to screw propellers have relied heavily on practical experience and semitheoretical

considerations. They provide a criterion of stress rather than the actual surface stresses.

In the past, analytical methods for predicting blade stresses have been developed by

using "beam" theory or "shell" theory. The use of elementary beam theory was first pro-

posed by Taylor (1933) who treated a blade as a cantilever attached to the propeller hub and

recommended that stresses be calculated for cylindrical blade sections with the neutral axis

parallel to the nose-to-tail (pitch) line* of the expanded section. Cantiliver beam theories

have yielded reasonable estimates of stresses at certain selected points of relatively straight

and narrow blades. Some modified forms of beam theory have been proposed (Rosengh, 1937;

Hancock, 1942; Schoenherr, 1963; and McCarthy and Brock, 1969) for wide-bladed propellers

with blade width to length ratios of about 1. The shell theory approach was first proposed by

Cohen (1955) who treated a simplified propeller blade model as a helicoidal shell with vari-

able thickness and infinite width. However, where this approach was applied to the problem

of a shell of finite width, it was impossible to produce a solution to satisfy the boundary con-

ditions. Later studies included those of Conolly (1961) and others (General Applied Science

Laboratory, 1963 and Atkinson, 1968). Shell-type theories that incorporate broad assumptions

do not appear to offer tangible improvement; moreover, they are rather involved for routine de-

sign purposes. Analytical methods that attempt to predict blade stresses on the basis of

conventional mechanics have not been eminently successful.

Considerable effects have been devoted to measuring blade strains on both model and

prototype propeller blades (Connolly, 1961; Wereldsma, 1965; McCarthy and Brock, 1969;

and Boswell, 1969). In certain cases, good agreement was obtained between beam theory

and measured data. However because of the large number of factors involved, care must be

taken in drawing general conclusions from limited measurements.

*See Comstock (1967) for propeller terminology.
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The trend in shipbuilding to full afterbodies for mammoth tankers and bulk carriers and

to higher speeds for modern naval vessels has been accompanied by large irregularities and

fluctuations in the wakes of such ships. As a result, the propeller experiences increased dy-

namic excitation and generates severe vibratory forces on the hull and propulsion system.

Propeller-induced vibration is one of the main problems associated with ship propul-

sion employing the screw propeller. The thrust derived from blade-lift force is unsteady

when the blades rotate in a nonuniform velocity field behind the ship. The interaction of

these unsteady forces with the hull and appendages causes the excitation of the ship by the

propellers. Blade skew, high blade area ratios (i.e., wider blades), and a larger number of

blades per shaft have all been tried in an attempt to reduce vibration. These innovations of

propeller geometry drastically alter blade displacement patterns (Dhir and Sikora, 1971, 1972)

and render the standard methods (i.e., beam theory) invalid. If blade design is to have a

sound and rational basis, then an effective analytical method is clearly required so that suit-

able blade strength and stiffness can be determined for a specified ship-operation task.
0

The finite element procedure outlined in Chapter 3 will now be used to analyze a

screw propeller in its more general form, that of a highly skewed propeller. The computed

results will then be compared with measured displacements and stresses derived from mea-

sured strain under steady pressure loading. This study will provide the basis for further ex-

tending the procedure until it is eventually able to take unsteady stressing due to dynamic

effects and fatigue behavior into account.

4.2 The Geometry of Skewed Propellers

When properly designed, skewed propeller can be used not only to significantly reduce

propeller-induced vibrations but also to improve blade performance against cavitation, etc.

(Cummings et al., 1972).

The general characteristics of screw propellers and their typical design process can

be found in standard sources (Comstock, 1967). A propeller is usually described by a set of

architectural drawings that show various views of the blade and a table that gives detailed

dimensions of blade sections including pitch angles, camber ordinates, thickness ordinates,

and chord lengths. These are useful input for propeller manufacturers. Application of the

finite element procedure, however, requires analytical specification of the blade geometry,

i.e., the definition of a suitable set of coordinate systems.

The highly skewed propeller is a recent innovation and its geometry is more involved.

The skewed blade illustrated conceptually in Fig. 4.1 is shown in Fig. 4.2 as a projection on

the XY plane. Two right-handed coordinate systems share the common Z (= 2) axis (coincid-

ing with the centerline of the shaft). The common Z-axis is taken positive downstream from

the propeller. One of the systems is the global rectangular coordinates (X, Y, Z), a ship-fixed

frame of reference whose origin lies on the shaft centerline at a convenient longitudinal
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location. The other is the local rectangular coordinates (x,y, Z) attached to the rotating pro-

peller. The y-axis for this system passes through the midchord of a blade root section. The

y-axis is tangent to the blade reference line and is also known as the generator line of the

blade. The angular displacement of the generator line 0 is measured in the XY-plane from

the global axis OX, positive in a counterclockwise direction. The skew angle 0S is the pro-

jected angle of the blade measured from the generator line oy.

Fig. 4.3 provides a pictorial view of the basic parameters that will provide a complete

description of the blade geometry. The blade section, which lies on a cylindrical surface of

radius p (usually expressed as percentage of blade tip radius R), is shown in Fig. 4.4 in de-

veloped view and with more details. The blade section has a reference line (also known as

the geometric pitch line) which makes an angle b P with the xy-plane. The geometric pitch

line usually lies along the nose-tail line (curved line CDE in Fig. 4.3).* This line joins the

the leading point and the trailing point of the blade section cut by the cylinder (p = constant).

Another important baseline is the blade reference line which is defined as the line

through an approximate "datum" point at each radius (p _< H). This datum point is usually

on the nose-tail line and will generally be the midchord point (Fig. 4.4).

On the cylindrical surface (p = constant), a coordinate system (61, •2, p) is defined. The

variable ý, is measured from the datum point along the nose-tail line positive in the down-

stream direction (i.e. toward trailing edge). 62 is normal to the ý 1 -line and points in the up-

stream direction (Fig. 4.3). The system is left-handed to permit blade section geometry to be

specified in the conventional two-dimensional orientation such that positive camber is in the

positive 2 2-direction. Finally, the blade-section profile ordinates (see Fig. 4.4) EU = (Ec +

Et) and EL = (Ec - Et) for -0.5c < 61 < 0.5c can be expressed in terms of the camberline

function E, (6, p) and thickness function Et (61, p).

"Rake" and "skew" have been implemented frequently in modern propeller designs.

They represent certain specialized departures from orthodox blade geometry in the fore- and-

aft and transverse projected views, respectively. Unfortunately use of the terms has different

meanings for different people. Therefore there is a need to have precise definitions of skew

and rake because they are essential to a valid structural analysis.

Skew is defined as the sucessive "transverse displacement" of the blade sections

along their respective pitch helices. A skew angle is a projected angle in the (transverse)

XY-plane between a radial line (generator line, Fig. 4.2) from the centerline of the propeller

hub through midehord of the blade root section and a radial line through midchord of the blade

section in question. Each section of the blade has a different skew angle; the skew angle

0. of the tip section is commonly used as the measure of the skew of the blade. Rake fR is

*Space curve CDE is also known as pitch helix which is generated as the blade rotates; Op is the pitch angle.
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6?(p) = RAKE
es(p) = SKEW ANGLE

p (p) = PITCH ANGLE N. OUTLINE OF

OUTLINE OF 0000,"

CY LEADBLA
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! FOR VIEW A-A

SX O ; / SEE FIGURE 4.4

/ DIS DATUM POINT

LINE CDE IS THE NOSE-TAIL LINE LOCATED ON A CYLINDRICAL SURFACE OF RADIUS p
(THE BLADE IS CUT BY A CYLINDRICAL SURFACE CONCENTRIC TO THE PROPELLER AXIS, LOOKING AFT)

Figure 4.3 Local blade coordinate system (x, y, Z) and (p, 0, Z)
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defined as the successive longitudinal "displacement" forward or aft of the blade sections

from the radial reference line (Fig. 4.3). These definitions of rake and the skew allow the

datum points along a blade reference line to be described analytically by (p, O(p), 5R (p)) with

respect to the local cylindrical coordinates (p,• 0, s). Hence the blade section profile and

complete blade surface can be constructed.

4.3 Experimental Data

Dhir and Sikora (1971) used holographic interferometry to predict the static deflections

of a highly skewed marine propeller blade model. The aluminum blade model (Fig. 4.5) was

loaded on one side by a specially designed pressure chamber under controlled air pressure

(Boswell, 1969 and McCarthy and Brock, 1969). Applied pressure ranged from 0.032 to 0.192

psi. This holographic technique uses laser as the light source and is capable of measuring

the displacement components of complex surfaces witha resolution of about i0 J in.

The three-dimensional displacements were derived from fringe patterns formed in the

holographic interferogram (Fig. 4.6). The interferometric fringes on an object were related to

optical path differences, and the double exposure technique was used in its formation (in this

case, air pressure was applied to the blade after the first exposure was made). Dark and light

fringes represent contours of constant spatial blade displacements. As the applied pressure

increases on the propeller blade, the fringe pattern remains essentially unchanged but the

number of interference lines increases. The appropriate displacement components can be ex-

pressed as a linear combination of the "number" of fringes. This number is counted from the

(fixed) hub to the point of interest (obtained through certain designated observation points on
0

the hologram plate) and is multiplied by the wavelength of light used (A = 5145 'A; see Dhir and

Sikora (1971, 1972) for a detailed description). Refined displacement data are obtained by

applying the least-square approximation technique.

The fringe pattern of the hologram indicates that the contours of constant displacement

line cross the circular lines which correspond to blade sections of constant radii at various

angles. It is concluded that the deflections of the blade do not follow those predicted by the

conventional method based on "beam" theory.

Strain measurements on a highly skewed model propeller blade were first made by Boswell

(1969). The blade model of 2014 aluminum was similar to that shown in Fig. 4.5 except that it

had a skew of 120 deg. Strain-gage rosettes were placed along cylindrical blade sections, five

each at the 30-, 50-, and 70-percent radii and three at the 90-percent radius. The rosettes were

so oriented that both tangential and radial strains were measured. For every gage located on the

blade face, there was a corresponding gage on the blade back.

The blade was subjected to air pressure loading by using the technique described

previously. The strain distribution was found to be radically different from that pteviously

measured on unskewed blades. The high principal stresses occurred in a relatively narrow

band which extended from near the trailing edge at the blade root to near the leading edge

at the 90-percent radius.
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Figure 4.5 Aluminum blade model (looking forward)

Figure 4.6 Interferometric fringe patterns of blade model with applied pressure (= 0.098 psi)
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To obtain an experimental assessment of the effect of skew on blade stress distribu-

tions, Cumming et al. (1972) conducted further tests on a series of one-blade versions of pro-

pellers with various degrees of skew. These propellers were made of the same material and

tested under the same loading conditions. Stress data for a blade with 72-deg skew were ob-

tained for comparison with the present study.

4.4 Finite Element Analyses

The three-dimensional curved elements described in Chapter 3 are used here to predict

static deflections and stresses for a highly skewed propeller blade. The blade model is sub-

jected to a uniformly distributed pressure applied on its back surface, and its root section is

assumed to be completely fixed. This loading is not the anticipated service load distribution

but was selected to match the experimental conditions. Nonuniform loading represents no
problem to the program and the influence of load distribution on stresses can be investigated.

The propeller blade used in the current analysis is one in a series of skewed, research
model propellers that form part of a larger study undertaken to determine the blade strength

and other performance characteristics of highly skewed propellers. Each propeller consists

of five equally spaced 1/23-scale propeller blade models attached to a cylindrical hub (Fig.

4.7). The version selected for this study (Fig. 4.5) is a single-blade model of 2014 aluminum

with a tip radius of 6 in. and a skew angle of 72 deg.

The geometry of the propeller blade has been shown to be rather involved (Section 4.2).

Application of the finite element method requires precise coordinate definition of hundreds of

discrete points that cover the complete top and bottom surfaces of the blade. A sizable effort

is therefore involved in the calculation of coordinate data. Existing computer programs, e.g.,
Brockett (1972), and other data generation routines are designed to furnish the pertinent geo-
metric description of a propeller blade. Nevertheless it is the responsibility of the user to

discern the validity of his input.

The coordinate data for this analysis were obtained from the geometric output generated
by a numerical machine* from input of blade section parameters. As seen from its plotted pro-

jection (Fig. 4.8), the coordinate data are for a blade situated in a position 144 deg ahead of
the blade shown on Fig. 4.2. The geometric data have been checked visually and by graphical

means; however, rigorous error analysis has not been attempted.

Discrete point locations on the blade surfaces were chosen for the element mesh net-

work. Figure 4.9 shows that these points were along 20-, 30-, 40-, 50-, 60-, 70-, 80-, and

90-percent blade radius, etc. They are those points for which blade section geometries were

given and for which displacement as well as strain measurements were made. It is only natural

that these points are adopted in the formation of the element mesh.

*A numerically controlled machine used for model cutting.
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UNSKEWED BLADE HIGHLY SKEWED BLADE

Figure 4.7 Projected view of two 5-bladed model propellers (model propeller series, part I)
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Figure 4.9 Curved solid element representation of a 72-degree skewed propeller blade
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Three elements were used to span the chordwise dimension, and four elements were

used to cross from the blade root to its tip. Available coordinate data and element shapes

into which the blade was discretized were taken into consideration. This arrangement

allowed a direct comparison of computed and measured deflections and immediate interpre-

tation of the stress calculation.

To a large extent, the effectiveness of a finite element analysis depends on the appro-

priate element arrangement or mesh pattern which is used to represent a given structure. The

maximum number of elements is generally dictated by considerations of accuracy and cost.

The accuracy of the computed results increases as the number of elements increases, pro-

vided the resulting elements are not so numerous as to exceed computer size limitation or the

number of computations are so large that round-off errors become a dominant factor. On the

other hand, as the number of elements increases, the cost of input preparation and computa-

tion processing also increases. Obviously a compromise is required for these two competing

considerations. There is no easy way to attain an optimal mesh; nevertheless, numerical in-

stability or distortion of element performance can always be avoided by the discreet exercise

of good engineering judgment. (Some basic rules for element mesh layout were described in

Section 3.2.4.)

After element meshes were generated and nodes labeled, the elements were numbered

in succession such that the maximum front width (see Section 3.4.2) was optimized. In the

finite element method, each element is defined by a series of nodes to which it is connected

and its orientation (with reference to local axes) is determined by the numbering sequence of

the nodes defined in the incidence table. The first two numbered nodes serve to fix the

direction of element axis-6. The element axis-n is taken in the direction of a line from the

first to the third numbered node. The 4-axis is obviously the remainder that completes the

right-handed element axis system. In the case of propeller blades, nodes can be placed along

a cylindrical surface so that the direction of local element axes 6 and q will respectively

correspond to the radial and tangential axes of the cylindrical coordinates.

Note that the experimentally determined blade displacements were measured with re-

spect to the global coordinates (X, Y, Z) when the blade was oriented in the position shown

in Fig. 4.2, where 01 = 124.96 deg. The finite elements coordinates obtained from the numer-

ical machine provided a blade with the projection shown in Fig. 4.9, i.e., 01 was approximate-

ly 269 deg. Finite element calculations gave displacement components u and v that were 144

deg out of phase (A0 1) with reference to measured displacements; accordingly, the element

displacements were transformed so that they could be compared on the same scale (Fig. 4.10).

Computed displacements were obtained along the cylindrical blade section at 30-, 40-,

50-, 60-, 70-, 80-, and 90-percent radii in addition to points near the blade tip. Measured de-

flections by holographic interferometry are available at 50-, 70-, and 90-percent radii on blade

face; these are plotted on Fig. 4.10.
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Computed stresses in global coordinates at interior points as well as surface points

are given along cylindrical blade sections. Stress outputs are available at 30-, 50-, 70-, and

90-percent radii and at many intermediate points. Stress transformation is applied so that

there is an option to print out stresses in local cylindrical coordinates. Stresses in most

areas are obtainable by interpolation. Computed stresses are plotted on Fig. 4.11 together

with stresses calculated from experimentally obtained strain data.

4.5 Discussion of Results

Fig. 4.10 shows that blade displacement component w (parallel to the centerline of the

propeller shaft) was generally higher near the trailing edge than near the leading edge for

various blade radii. This was also visible from the interferometric fringes (Fig. 4.6) repre-
senting displacement contours. This indicates that displacements for a skewed propeller are
no longer parallel to the cylindrical blade sections. Clearly this is a case for which the
assumption made by the conventional method of blade design is not valid. Further it is noted
that the values for u and v are appreciably larger than the displacements that can be account-
ed for by beam theory. A new approach is needed to predict the elastic behavior of a skewed

blade.

Genalis (1972) treated the skewed blade as a thin shell and idealized it as an assem-
blage of discrete, flat, triangular elements; see Fig. 4.12. Because of the complexity of blade
profiles and blade surface curvatures (such as described previously in Figs. 4.3 and 4.7), a
large number (about 270) of these shell elements is required in order to achieve a reasonable
approximation to the geometry of a skewed blade. Thus a substantial effort is required for
input preparations including all coordinates and load data. (It is conceivable here that the
chance for input error is increased because of the huge amount of complex input data involved.)
Furthermore, the proportions of the elements in the region near the hub are well beyond the
limits of medium thick plate or thin shell theory from which such elements are derived. Com-
puted displacements were given for the shell solution along cylindrical sections at 50- and
70-percent radii (Fig. 4.10).* The discrepancy of the numerical results as obtained from the
flat thin shell element solution, from the isoparametric finite element, and from the experi-
mental methods can be attributed (a) to the geometric mismatch introduced by using a flat
shell element approximation for this highly curved blade of varying thickness and (b) to the
breakdown in the suitability of thin shell theory in the region near the hub. (Furthermore,
some inaccuracy may be attributable to rounding errors developed during the solution process.)
The error accumulation evident in the thin shell element values at the 70-percent radius was
even more pronounced at 9 0-percent radius.

*Any inaccuracy of input data will almost inevitably show up in the numerical results. The reliability of com-
puted values may be increased if an appropriate algorithm is available to screen or to smooth input. The toler-
ance in the fabrication of the blade model was said to be within 5 percent.
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The changing profiles of the successive sections from blade root to tip indicate that

the skewed blade has a more complicated geometry than an ordinary shell. The blade is

treated in this study as a solid continuum of general shape. It is represented by 12 curved,
three-dimensional elements which are capable of fitting smoothly in any complex surface.

Use of these isoparametric elements gives a marked improvement in the numerical results
(Fig. 4.10). Note that the computed displacements agree well with holographic measurements,
especially in displacement component w, which is by far the dominant factor of the total blade

displacement.

The largest disagreement between the displacements, which are solved for directly by
the two procedures (experimental and isoparametric finite element) is in the horizontal dis-

placement normal to the shaft axis. Possible causes for such a discrepancy might be slippage
of the test specimen at the support bolts in the hub and mismatch of the isoparametric propel-
ler surface with that of the test specimen. However, since the differences do not show up in
the other displacements, the latter explanation seems unlikely. Furthermore, support slippage
(i.e., a difference between the ideal clamped condition of the finite element method and the
fixity achieved in the test) also seems unlikely because of the low pressures involved. If
movement did occur, it would have to be rigid-body movement normal to the axis of the shaft
rather than the more likely rotation or tipping. The final possibilities are errors in reading
and/or possible binding of the blade model on the pressure seal.

The stress distribution of highly skewed propellers is expected to be unsymmetric and
different from that of an unskewed blade. The maximum radial and tangential stresses are
located away from midchord and toward the trailing edge in the main body of the skewed blade.
The magnitude and distribution of stresses along the cylindrical chords of the blade varies
with blade skew. Computed stresses were obtained from the same element mesh (Fig. 4.8)
and were shown together with experimental stresses in Fig. 4.11. No calculated stress was

given by the shell element program (Genalis, 1972).
A finer mesh would have given a closer approximation to the true stress distribution

since convergence is assured with the compatible elements used in the current study.
In some of the experiments, difficulties were encountered in providing a precise fit be-

tween the test pressure chamber and the propeller blade; thus free movement of the blade edge
was not always obtained. (It was also noticed in the course of stress evaluation for a series
of test propellers with varying degree of skews that maximum stresses and blade skews did not
increase in direct proportion.) It is desirable therefore to implement a comprehensive test pro-
gram to enhance the reliability of experimental results. The stress agreement shown in Fig.
4.11 was much better on the back or loaded face than on the front face, and the agreement was
better for tangential than for the radial stress. However, since the stresses are one step re-
moved from direct measurement the agreement is not out of line even with these differences.

Since the near tip region of the blade is a sensitive region, a higher density of elements in that
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region seems desirable. Coupled with the comprehensive test program, this should assist in

resolving the differences and provide an accurate delineation of the stresses.

The present procedure can generate an estimated complete stress field for the propel-

ler and thus provide a detailed account of the stress distribution throughout the elastic body.

This is of great practical value for a structure of unconventional configuration where conven-

tional methods offer little guidance as to the pattern of stress distribution for a structure

like a skewed propeller. A development that utilizes three-dimensional curved elements is

probably the most effective analytical method currently available and is capable of represent-

ing both the complex blade geometry and load distributions with ease and validity.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The rational approach established herein represents the first step in a general solution

of the propeller strength problem. A finite element displacement model is utilized to predict

the behavior of an elastic body of arbitrary shape under static loads. Compatible solid ele-

ments in their general form are adopted. This formulation bypasses the constraints of simpli-

fying assumptions and allows a closer approximation to the true structural configuration than

is possible by most other approaches, for instance, by classical plate or shell theories. Solu-

tions are subsequently obtained for displacements and internal stresses.

The numerical results obtained by the refined curved elements described in Chapter 3

are distinctly superior to those obtainable with commonly available simple triangular or rec-

tangular finite elements. The displacements obtained for a complex structure under prescribed

loading had a good degree of precision even with the relatively coarse mesh employed. This

study confirms the findings of Clough (1969), Zienkiewicz (1971), etc. that significant improve-

ments in element performance are obtainable when higher order displacement functions are em-

ployed in the element formulation.

For structures loaded so that a steep stress gradient prevails, stress predictions can

always be improved by using progressingly finer element meshes. The element presented in

this study showed a rapid rate of convergence as the mesh was refined.

The mapping technique, which is based on the application of the shape function as de-

scribed in Chapter 3, provides an expedient way to describe the geometry of a general continu-

ous surface. Load computations for a prescribed pressure distribution are therefore conducted

in a routine manner.

The method developed in this study is particularly valuable to structures with arbitrary

configurations such as skewed or unsymmetric geometry. Large savings in labor and comput-

ing costs are possible when the flat-plate or shell-element representation of a complex skewed

body is replaced by curved elements. The present development offers perhaps the only real-

istic solution available for many difficult structural problems of a three-dimensional nature,

such as a highly skewed propeller. The method now permits rapid solutions for structures

with varying degrees of skew, camber, and loading.

Among other significant applications, the present procedure can provide stress calcula-

tions at the root section of a propeller blade joining the hub, at the complicated intersection

of cylindrical walls such as a piping joint, and at the delicate interface area of a sandwich

construction. Further extension of the analysis may include considerations of anisotropic

material properties as well as the nonlinear or plastic behavior of materials (Gupta, 1971).

The current method provides a general and realistic solution to the structural problem

of a propeller under static loads, and eventually a procedure can be evolved for the complete
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solution of propeller strength under all possible service loads. Inasmuch as a propeller

blade experiences varying vibratory forces in addition to the "nearly steady" thrust that is

always present during ship operation, a dynamic analysis that includes an investigation of

fatigue behavior of the complex ship component is naturally of prime significance.

It is recommended that the current procedure be extended to incorporate a mass matrix

of the propeller blade and an auxiliary matrix to account for the effect of "added mass" of

the fluid medium surrounding the blade. When a pressure-time relation for a propeller is pre-

scribed, a complete dynamic response can be obtained by using a time increment numerical

technique. The effect of damping may also be incorporated.

A sound propeller design is extremely important to the successful operation of a ship

and has a significant bearing on its performance. It is worth noting that improved design

methods including a dynamic analysis are being vigorously pursued by Norwegian and

Japanese ship builders. To remain competitive, U.S. ship builders must take advantage of

new technologies and be instrumental in their development.
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APPENDIX

EXAMPLE OF FORTRAN PROGRAM FOR NUMERICAL CALCULATION
OF AN ELEMENT STIFFNESS MATRIX

An outline of the process is described in Section 3.2.2.
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LIST
SU~rýOJT INE ST 1FFR( XY Z ,E NU, cK)
COMMON /VAB7/ INTGLRND,NPTNPTS,NPZ

COMMON~ /BLAV/GM(3,5),PX(3),PY(3),O
o SUr3ROUTINF TO CALCULATE THC STIFFNESS MATRIX SK FOR ISO-PARAMETRIC
C
C SK=INTEGRAL PHI DV
C WHEFE PHI= B T X 1) X B
C
C X.. 0..0.... =VLCTOR OF PARTIALS OF NCI)
C 0 ... Y ... 0.. WITH RESPECT TO X
C 13= i... 0... Z... Y ... =VECTOR OF PARTIALS OF N(I)
C Yoo. X.60 0. .. WITH RESPECT TO Y
C il.. 2 ... Y... Z ... =VcCTOR OF PARTlALS OF N(I)
C Z ... a.*. X... WITH RESPECT TO Z
C 0 ... =. VECTOR
C NOTE. THAT THIS MATRIX MULTIPLICAT ION HAS BEEN DON 7ALGEBRAICALLY

C PRIOR TO COOING.
C

* REAL CHI(20,3),CHIX(2U),GHIY(214),CHIZ(2J)
EQUIVALENCE (CHIXCI),CHI(l,1)),(CHIYUl),CHI( 1,2)),CCHIZ(1),CHI(1,3

X))
REAL JAC (3,3) ,DTJJ11 ,J1.,J13,J21,J22,J23,J31,J32,J33

X,J21),(JAC(2,2),J22),(JAC(2,3),J23),(JAC(3,l),J31),(JAC(3,2),J32),
X (JAC (3,3), J33)
DIM:NSION EK(bU,6fi) ,SK(606,u) ,XYZ (20,3)
DINENSION A(36),Hi(36),ISWK(bUu),TZ(3,,3),S(i3)

c EQUIVAL.ENCES AnOVE AP~E LOGlGALLY NECESSARY
C EQUIVALENCES BELOW A;kE USEEC ONLY TC CONSERVE SPACE'

XXXF1) , (S(ý) ,SIYYP1) ,(3(6) ,S2YYP1) ,(S(7) ,S2ZZPi) ,(S(7) ,S3ZZPI) ,(S( 8

X) ,U S') , (S ( 116) , CON)
C
C GAUSSIAN OUAIJRATURE CONSTANTS

DAlA A/
I *0.0.030 uiUbUu IJu(1, -0i.57735 02691 8963, 0.57735 U2691. 8953,
3-0.?7 -t59 66.ý92 4+148, C0.U(;UJu j~2L J30jJ1 C.77q59 66692 '+148,
4-0*86113 63115 94>3, -0.33993 lj435 8486, 0.33996 1J435 8485,
4~ ).66113 u3115 94-5, -0.9-b17 36'+ý9 3866, -.- 53846 931ul 58
5 0.00000 00000 0011, U.53846 93101 0568, 0.9U617 93459 .386b,
6-3.93246 95142 u 315, u.61393864 6627, -5.23851i 91863 8323,
6 J.23361 91361 83230, u.66121 93864 6627, C.9324b 961'+2 U315,
7-3*94'310 79123 427o, -3, 74153 118:ý5 9 91349 , -U.40584 5 1 t13 771401,
7 0.06300 uo UO otO, 0.4u-L584 51513 774~U, 0.7415ý3 11855 9939,
7 6.9491L 79123 4276, -[.9L-,,28 956'-'L 9754, -i,.79o0'6 64774 1363,
8-u.62553 241-99 !633, -0.1e,343 -t6424 9565, 6.18343 46,+24 9505,
8 3.52553 243-99 1633, '0.79bo6f 047 7 4 136j, IJ.96W28 98564 9754/
DATA H/

1 2 .3G~ 0303a323, ýi 1..3 c 0 V6.8 c.u .w jU6 3 u
3 J.5-3555 55555 5 15 6, u .6ýý6 66888 6 18 9, u . 5 55 5565 ý 5 5556,
4 .3 47 85 '+6+51 3745, .C. 6 ý2 1,+ 515'8 6 2 i5 , u . 6ý21. 451348 6255,
4 U .34785ý 4a4+51 3745, 0.23u92 6i850 5619, U.,+7862 86704 9937,
5 3'.t6886s 8888B 6689, C.H,78u2 861.4 9937, u.23o692 b8850 5619,
6 Li.17132 44923 7917, Z. 36ý76 15732 ~+81.4, ~.t713-3345 7269,

6 .46791 393'+5 7 2 E9 s 0. 3b. ' 1573u 4814, U0.17 132 4 + 92 7917,
7 l. 12 34 8 49661 b 887, U .2797u 63914 6923, 0. 38163 00 56 5 06312,
7 C.41795 91836 7347, C.36183 035 5 12, u.2797,0 53914 8928,

7 .12948 496o1 ud67, 3. 1r122 653. '33, 22238 10344 5337,

8 0. 3 13 7 6 66458 7789, 0.3t8268 37833 7836, 0.36268 37833 7836,
8 0.31370 b6,+'5 8 7789, 0. 22233 10344 53337, 0.10U122 85362 9038/

C SIZE CONSTANTS
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Ut'ill NprN/2J/,LNPTSf/4,KSIZE/6J/,KSIZ,,Mf/,9/
C CHK-CK APT ANJ COýýPCT IF NLGESSARY

IF(:IJPT.*GT. 8)NPTz b
IF (NPT.LT.1)NPT=1
I? IzNPT* (NPT-1)/2
IPZ- '4PZ*iNr2Z-I) 12

C ZE.ýC' MATRIX
CALL ZLý.OZ(Grl,li)
CALL ZLrPZ(SK,3t6JC)

NPZ1: NPZ4-1
NDýZ2= NF'Z+2

C LOOFS OVER) XX,YY, ANDJ ZZ FUR GAUSSIAN r2UADRATURE OVER VOLUME
DO 21 IXX=1,NPT
XX=A (IXX+IPT.)
HXX=H( IXX+IPT)
DO 23- LYY=1,NPT
YYAý (I YY4.IPT)
FiXX'lYY=H <X*H ( IYY +IPT)
DO 22 IZZ=l,NPZ2
ZZ= A(IZZi-IPZ)
IF (iZZ.EQ.NPZI) ZZ=-1.0
"IF(IZZ.cE'bNPZ'2) ZZ=1.0

C CALCULAITE HARTIALS OF NCI) WITH RESPECT TO XX, YY, AND ZZ

S1=2 *1 -'-7
S1XXP I = SI*XX+ I .
SIYYPI=SI*YYUl.
00 3 3 J = It2

JP=2*(J-1.) +
-i2YY?2 1zS2*YY+l.

S? Z7P.I=S24 ZZ#-1 .
CHIlX(JP+0)=S1*U.2E*SYYPI*(I.-ZZ**2)
C- Y ( JP +ý) =S2 * . 25*S IXXP 1*(I.*- ZZ* *2)
CHiZ T JF-+e) =-j.5*ZZ*SXXPJ*S2yypl
Cd1 7X (J) 2 ) =S14 5.25*S2ZZPI*(I.-YY**2)
C'i1y (JP+i2) -l-fl *yy*SIXXPI*S2ZZPI
CHI1Z(JP+'2)=S20j.25*S1XXP1*Ci.-YY**2)
CH ix (J P+ 1.6) =- Q 5*x *XXS1YYPI*S2ZZP
CriIY (JP+1ý>)=SI %,. 25*S2ZZPI*(i.-XX**2)
CHIZ(JP+ý)=S2*tJ.254SiYYPI*(1.-XX**2)
0O 3J K= , 2
S 3=2*<- -'
KP=4*CK-i) +.JP
SSZZPl=S3*ZL+1.
CHIX (KPI):SI * ý3125S2YYP1*S3ZZPI*( S1'2. XX 'S2*YY*S 3*ZZ-1.)
CH1y (KE) :'ý2%* 12 5SI XXP1*S3ZZP1 (S2*2. 'YYi+SI*XX'S3*ZZ-1.)

30 CHIZ(K<P)=S3*0.122'*SlXXP1'*S2YYPI4 (S3*2.*ZZ+Sl*XX+S2*YY-i.)
C CALCULATE JAC:PA`TIALS X XYZ

DO 4: =-

SUM=U. (L
00 41 K=1,t4PTS

41 SJM=SJM !+CAI (K,I) *XYZ(K,J)
4G JAC(I,J)=S:SU

DO 42 L1, 3
PX (L)= JAC (1,L)

42 PY(L)= JAC(2,L)
CALL SURF.N(TZ)

C INVERT JAG AND CALCULATE DLET JAG
CALL :lINVDP(JAC,3,23,OE-TJ,IO,IEXP)
IF(ID-i) 31,31,33 9



91 FORA4AT (1X,110,*TH ORDER PRONCIPAL MINOR IS ZERO*

STOP
31 CONT INU E

C CALCULATE PATIALS WITH RESPECT TO X, Y, AND Z FROM PARTIALS WITH
C RESPECT TO XX, YY, AND ZZ BY
C NEW.PARTIALS=JAC INVERSE X OLD.PARTIALS

0O 50 11I,NPTS

CHIYI=CHIX (I)

CHIZI=CHIZ (1)
CHIX (I) =J11#CHIXI14J12*CHIYI*Jt3*CHIZI
CHIY(I)=J214CHIXI+J22*CH.IYIiJ23*U'HIZI

50 CHIZ(I)=J31*CHIXI4-J32*CHIYI+J33'*CHIZI

IF(IZZ.GT.NPZ) GO TO 22

C CALCULATE. INTEGRATION CONSTANT
COt4=DE TJ*DK*HXXH YY*H (IZZ +IPT)

C DO SUMMATION FOR HALF OF MATRIX
00 6U I=1,NPTS
X1=CHIX (I)
YI=CHIY (I)
Z1=CHIZ (I)
00 60 J1,NPTS
X2=CHIX (J)
Y2=CHIY (J)
Z2=CHIZ (J)
SK(I,J+NPTS)=SK(I,J*NPTS)+CON*(23B*X1#Y2+CC#Y1*X2)
SKIJLPS=KIJLPS)CN(BX*2-CZ*2
SK(I+N1PTS,J+LNPTS)=SKCIi+NPTS,J+LNPTS)+CON#(BB*Yi*Z2+CC*Zi*Y2)
IF(J.LT.I) GD TO 61
X2=X I*X 2
Y2=Y1*Y2
Z2=Zi* Z2
SK(I,J)=SK(I,J)tCON*(AA*X2+CC*(Y24-Z2))
SK(I4,NPTS,JtN4PTS)=SK(I+NPTSJ+NPTS)+CON*(AA*Y2+CC*(X2+Z2))
SK(I*LNPTS,J+LNPTS)=SK(I4+LNPTS,J+LNPTS)*CON*(AA*Z2s.CC*(X2*Y2))

61 CONTINUE
60 CONTINUE

22 CONTINUE
CALL GLOAD (XX,YY,HXXHYY,XYZ)

20 CONTINUE
RETURN
END0
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