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Abstract

The precise determination of a satellite's posifion is of prime importance in
satellite geodesy and in the use of satellites in studying geodynamics. It is not
possible, however, to obtain a precise estimate of the satellite's position if suf-
ficiently large errors exist in the gravity model. In this investigation, the
application of a dynamic model compensation method to the problem of estimating the
motion of a near-earth satellite in the presence of gravity model errors is described.
Based on numerical results obtained in a computer simulation, it is concluded that
the algorithm will yield an accurate estimate of the state in the presence of
gravity model error:.. The effects of the obsevrvation type and accuracy, station
location and observation batch size on the accuracy of the orbit determination
procedure are considered. Finally, it is shown that in addition to an accurate

estimate of the position and velocity,the method can be used to obtain an accurate

estimate of the unmodeled acceleration components.
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satellite geodesy and in the use of satellites in studying geodynamics. It is not
possible, however, to obtain a precise estimate of the satellite's position if
sufficiently large errors exist in the gravity model. 1In this investigation, the
application of a dynamic model compensation methal to the problem of estimating the
motior of a near-earth satellite in the presence of gravity model errors is described
KNER Based on numerical results obtained in a computer simulation, it is concluded
that the algorithm will yield an accurate estimate »f the state in the presence of
gravity model errors. The effects of the observation type and accuracy, station
location and observation batch size on the accuracy of the orbit determination
procedure are considered. Finally, it is shown that in addition to an accurate
estimate of the position and velocity, the method can be used to obtain an accurate
estimate of the ummodeled acceleration components,
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Introduction

With the recent improvements and refinements in the instruments used in the
cbservations of near-earth satellites, measurements of range and range-rate with
precision of less than one meter and one centimeter per second, respectively,
are a4 reality. Such precise observations have potential for determination of the
satellite's state, namely, position and velocity, to the preciuion necessary for
geodesy and geodynumics studies.

A determination of the satellite's state commensurate with the observation
accuracy using the classical batch processor (least squares) or the sequential
filtering method is dependent on the accuracy of the tracking station locationé
and the model of the dynamical system. Such dependence on the model of the
dynamical system is demonstrated by Smith, Kolenkiewicz, and Dunn (1971), Marsh
and Douglas (1971), and Yionoulis, Heuring, and Guier (1372). Uncertainties in
the geopotential, particularly resonant coefficients in some case:, are an im-
portant error source. Additiohal errors often occur in the atmospheric resist-
ance modeling. The discrepancy between the true motion and the modeled motion
often limit the usefulness of the orbit determination results, both from the point
of view of using the estimate; for navigation purposes as well as using them for
scientific purposes.

The effect of gravity model errors on the accuracy of batch-type orbit de-
termination methods was observed also in processing the Lunar Orbiter range-rate
observations. Observation residuals were obtained which clearly showed a
periodic variation with an amplitude larger than the observation noise. The work
of Muller and Sjopren (1971) and Sjogren and Muller (1971) resulted in a mascon
representation for the gravity anomalies.

A somewhat different approach was taken by Tapley and Ingram (1971) ard
Ingram and Tapley (1971) using a sequential estimation procedure which compensated

fc» the model errors. In this approach, referred tc as the Dynamic Model Comgénsati::



(DMC) method, the model errors are assumed to consist of a time correlated
component and a purely random cémponent and are approximated by a first-order
Gauss-Markotv process. Application of the DMC method to the lunar orbit phase

of the Apollo 10 and 1l spacecraft showed that (1) the DMC method obtained ob-
servation residuals within the observation noise level and (2) provided estimates
of the acceleration due to the model error which could be correlated with the
surface ma:s anomalies described by Sjogren and Muller (1971). Additional ap-
plications of the DMC method have been made by Tapley and Schutz (1972) to the
problem of estimating unmodeled forces due tc errors in the lunar potential.

In addition, Connolly (1972) considered application of the method to the orbit

determination problem of a near-earth satellite.

Other applications of statistical models have been explored by Shaw, Paul,
and Henrikson (1969) for use in inertial navigation systems. Shaw et al. used
statistical models for the vertical deflection from gravity anomaly models. More
recently, Kasper (1971) and Jordan (1972) have utilized second-order Gauss—Markqv
processes to represent the gravity anomaly.

In this investipation, the question of how accurately both the state of the
satellite and the acceleration due to model errcrs can be estimated for a near-
earth satellite is considered. A near-earth orbit of 1000 km inclined at u42° is
assured for the study. In the investigation, computer simulation tezhnizuss wars
used to investigate the behavior of the DMC method as applied to the orziz de-
termination problem of a near-earth satellite. In this study, the model errors
were assumed to arise from an incomplete description of the geopotential. Two
sets of simulated observations were generated, each resulting from a different
method of :nimulating gravity model errors. It is shown that state estimates can
be obtained which reduce the observation residuals to within the apriori observa-

tion accuracy and that the methods can be used to obtain an accurate estimate of



the uccelerations due to gravity model error. The influence of ohrnervation ac-
curacy, the magnitude of the model error, and the number of tracking, stations on
the accuracy with which the acceleration due to the model error can be estimated
is discussed.

e BEstimat ion 'rocedure

The equation:; which describe the motion of an earth satellite can

be expressed by the following system of first-order equations:

r=v , V= a_ + a, + m(t) (1)

where r is a three-vector of position components, v is a three-vector of vel-

ocity components, a, is the acceleration due to the central body, ap is the modeled
acceleration due to other sources, gravitational or otherwise, and m represents
the acceleration due to incorrect modeling in a_ and ap. The term m(t) will be
referred to as the '"unmodeled acceleration”.

The three-vector m(t) represents the effects of all acceleration: not :ic-
counted for in the mathematical model used to describe the motion of the satellite.
In this discussion, m(t) is approximated as a first-order Gauss-Markov process,
e(t), which satisfies the following vector differential equation

é(t) = Be(t) + u(t) (2)
where u(t) is a three-vector of Gaussian noise whose components are assumed to

be described by the statistics:

Efu(t)) =0 , ECfu(t)u’(t)] = q(t)8(t-1) (3)

where q(t) is a 3 x 3 positive definite matrix. The coefficient matrix B is
=5,
q J

are assumed to be unknown parameters whose values are to be determined during the

defined by the components Bij E where Ti’ the time-correlation coefficients,
estimation process. The state vector is then defined to be

XT = [rT : vT : cT : TT] .



Then the differential equations of state become

i N
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with the initial conditions X(to) z xo.

In the following discussion, it is assumed that the observation noise, Vis

satisfies the following conditions:
Elv,J =0 , Elv,v.] =R Efv,X ] = 0 (s)
i S A i‘ij ° i ’
where E[ ] is the expected value operator. Further, the observations are re-

lated to the state by the relation
y; = G(xi,ti) + v, (6)

where G(X;,t) is some nonlinear function of the state.

The problem considered then is posed as follows: Given the relation for
propagafing the state, Eq. (4); the observation state relation, Eq. (6); a
sequence of observations Yi’ i =1, ..., k; the statistics on the state noise,
Eq. (3); and the observation noise, Eq. (5), determine the best estimate of the
state in the minimum variance sense, ik' at the time tk. Under these ccrnditions
the estimate can be oStained using the following algorithm (Jazwinski, 1969):
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The zovariance matrices ﬁk and Pk are associated with the state estimates ik and

Xk, respectively. The state transition matrix, ¢(tk,t ) satisfies the follow-

k-1
ing differcential equation

o(t, tk) = A(t) o(t, tk) s o(t, t) =1 (8)

where A(t) = [3F/3X)*. The symbol []* indicates that the quantity in the bracket

is evaluated on the nominal solution, X(t) = e(xk_l, t t), tk < t, that is,

k-1’
"the solution obtained by integrating Eqs. (4) with the condition X*(tk_l) = ik-l
and u* = Efu(t)] = 0. The algorithm given by Eqs. (7) and (8) is the extended

form of the linear sequential estimator, or the Kalman-Bucy filter, as liscussed

by Jazwinski (1969). The covariance matrix Pk is associated with the best estimate
of Xk based on k-observations while §k is the covariance matrix associated with

the best estimate of x_ based on (k-1) observations.

It should be recalled that the estimate ik’ includes an estimate at the time,
tk’ of the éomponents of the position, the velocity, the unmodeled acceleration
€(t) and the correlation coefficients, Tx’ Ty’ and Tz. The algorithm requires
apriori or "initial" estimates of each of these quantities as well as the apriori
covariance matrices, Po’ Qi’ and Ri’ associated with the initial state and with
the state and the observation noise, respectively. The development of the algo-
rithm and the computational procedure required to implement the algorithm are
discussed in greater detail by Ingram (1971).

The following section describes the generation of the observations used in

the estimation procedure and discusses the simulation of the gravity model errors.

Generation of the Simulated Observations

The simulated observations are generated by the integration of the system

of equations



Ppzve , Yo=a +m (9)

where Tp is a three-vector of the true position components, Ve is a three-vector
of the truc 'rmlocity components, a represents the terms modeled in the estimation
algorithm, and m represents the terms not directly included in the estimation
differential cquations. The term m represents a model error in the estimation
procedurc. To simulate model errors, two forms for m were used. First, m is
assumed to represent the acceleration due to a point mass on the surface of the
earth and close to the satellite's ground track. The term a includes all of the
zonal harmonics up to the sixth degree as well as the tesseral and sectorial
harmonics up to fourth-order and the lunar gravitational effect. In the second
form, a includes J2 and the lunar effect, whereas m contained the geopotential
terms up to sixth degree in the zonal harmonics and all other terms to the fourth
order.

Integration of Lq. (9) yields a solution for the motion of the satellite
used in generating obscrvations. The computer program ascertains which tracking
stations can observe the satellite and an observation (either range, azimuth,
elevation, range-rate or any combination) is computed. These observations are
then corrupted by adding the quantity, oA, where o is the standard deviation of
the observation noise and A is a Gaussian distributed random variable with zero
mean.

The numerical integration is performed using the Runge-Kutta methods
foruwulated by Fehlberg (1968). As implemented in the simulation program, two dif-
ferent order integrators can be used. For periods when the satellite cannot be
seen by any of the tracking stations, the Runge-Kutta-Fehlberg 7(8) is used with
a variable stepsize control. During periods in which observations are being

generated, a fixed step is used to comply with a fixed observation interval.




This interval is normally small enough to allow use of a lower order integrator,
namely, the Runge-Kutta-Fehlberg 4(5). If the observation interval results in

a stepsize which is too large and the 4(5) is inadequate for maintaining accuracy,
the 7(8) method can be used.

Data

The estimation program requires the numerical integra*tion of Eq. (%) and
Eq. (8), whereas the observation generation program requires the integration of
Eq. (3). The state vector of Eq. (4) consists of 12 elements, thc state transi-
tion matrix consists of lu4 elements, and Eq. (8) consists of six elements.

Eq. (8), 5, can, however, be reduced to a lower order by noting that a number of
elements arc zero.

The initial conditions for Eq. (4) and Eq. (9) used in the simulation are
shown in Table I. A rectangular coordinate system is used in which X and Y are
in the equatorial plane and 2 is along the polar axis. The ground track of the
satellite is shown in Fig. 1 where the semi-major axis of the satellite orbit is
7,507,000 meters, the eccentricity is .025, and the inclination is 41.2°. These
orbital elements closely approximate those of the Beacon Explorer C (BE-C)
spacecraft (Koienkiewicz, 1972).

The assumed tracking station locations used in the simulations are shown in
Table II. In general, the observations from horizon-to-horizon of the tracking station
are used in the estimation process. However, several cases were examined in which a
25° elevation constraint was imposed. These results are discussed in a later section.
The period of time during which each station can observe the satellite is shown
also in Figure II. Although figure II shows 15 stations, not all stations are used.

The geopotential coefficients used were given by Melbourne, et al (1968). Since
these coefficients were being used to simulate a gravity model error, a more ac-

curate set such as those determined by Gaposchkin and Larmbeck (1970) was not requirec.



In all cases, the initial covariance matrix, Po’ had the following form

P
a? _
r 42 0
r 52
ro‘z,
02
vV 42
P = Vo2
° €52
£ 52
€ 52
T 42
oT >
0
il
whene nP = 1000 weter:, "v = 1 meter/soec, Op = .01H seconds, P L0001 meters/sec?.

In general, the initial value of £ is taken to be zero unless otherwise stated.
Results

Not only were two types of gravity mcdel errors studied, but the effects of ob-
servation noise, station location, and nu.ber of stations were investigated. These
results are discussed in the following. The gravity model error due to a point mass
will be referred to as Case I and the second type discussed in preceding sections will

be referred to as Case II. Furthermore, Case I is only considered in the 50 cm range

observations study.

1. SO0-cm Range Observations
Both types of gravity model eyrors‘were used in the study with range observa-
tions in the noise level of 50 cm.
A. Case I
In the generation of the observations, a point mass of 3.64 x 1077 times

the mass of the earth was placed at 41°N latitude and 108°W longitude. The

standard deviation in the state noise was .C05 and the initial value assumed “or

the time correlation coefficient, Ti’ i=1, 2, 3, was 200 seconds. Figure 2

shows the result of estimating the acceleration due to the model error, or




unmesle e acceleration.  In this figure, the nmooth line eepresents the true
value and the jagged line represents the estimate. Figs. 2a, 2b, an! 2¢
represent the acceleration components in a rectangular coordinate system.
Note that the estimate follows the true acceleration component and that the
estimate has a mean which is close to the true value. Figs. 2d and 2e, show
the trace of the state error covariance matrix and the true error norm plotted
as a function of time. In Fig. 2d, for example, the smooth line represents
the trace of P associated with the position components and the jagged line
represents the true error norm. It is important tc note that the state error
covariance matrix bounds the truc error. In this case, 12 tracking stations
werc uscd, although not all stations can observe the satellite simultaneously
a2 shown in Table II. Those not used were Merritt Island, Arecibo, and
Bermuda. Since the true error is within one nieter from S to 20 minues, the
(0-C)'s would also be within one meter.

B. Case II

The gravity model error was simulated using J_ through J6 and the tesseral

3
and sectorial harmonics through order four. The same stations used in Case I
were alio used in this caﬁe. Figure 3a, 3b, and 3c show the acceleration
stimate and the true accelcration. The standard deviation in the state noise
was 0.000025. Again, the smooth line is the true and the jagged is the
estimate. Although the estimate of the acceleration is not as good as in
Case I, the state estimate is quite good, that is, within one meter. 1t
should be noted that the acceleration error is approximately 100 times
smaller than ir the preceding case. The acceleration 2rror in Case II is cn
the order of 5-8 milligals, as can be seen in Fig. 3. The (0-C)'s are shown
£

in Fig. 4. Note that most of the points are within the S0 cm noise level of

observation,



. |

As a point of comparison the same case was run using the hatch procescor.
The (0-C)'s are shown in Fig. 5. HNote the periodic-type behavior with ampli-
tﬁdo considerably above the noise level of the obscrvation.
Fipure 6 show: the results obtained by replacing the Ganta Barbara, Las
Vesra:i, and Albuquervjue stations by ones at Merritt I:land, Arecibo, and Bermuda.
The influence of additional east coast stations was not significant except
toward the end of the pass. It can be seen in Fig. 2d that the error begins
a significant increase at approximately 20 minutes. Table II shows that at
about 20 minutes there are four stations taking data and beginning at 2u
minutes, only one station taking data. The error growth appears to be an ef-
fect of the nurber of stations. This effect will be discussed in a later
gection.
2. l-em Ranpe Ohservations
Repeating the preceding Case IT with o = 50 cm replaced by a =1 cm yieldwd
the result:s shown in Tig. 7. The tracking stations not used were Merritt Island,
Arecibo, and Bermuda. It is apparent that by improving the observation accuracy,
the estimate of the unmodeled acceleration is improved also. The upward trend of
the coariance trace in Fig. 7d is again an effect of a single station observing

the satellite. Note, however, that the true error is no* increasing. gure 2 il-
lustrates the (G-C)'s for two of the stations, Goldstone and Geddari. I:-t=2 zhat
most of the resicduals are within the l-cm observation ncise. for ccmrarison, the

same case was run in a batch® processor. The (0-C)'s resulting from this case are

shown in fFig. 9.

Since it is evident that the accuracy with which the unmodeled acceleration
can be estimated is dependent on the observation accuracy, Case I was not run with
l-em observations since 53-cm observations fave focd estimates. he l-cm cbhservatic.as

would simply reduce the scatter in the estimate.
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3. 2mni/sec Range-Rate Observations

The Case Il discussed in the preceding section (2) was repeated using range-
rate observations of 2 mm/sec accuracy. The results are shown in Fig. 10. The
accuracy with which the unmodeled acceleration can be entimated is comparable to the
lJ-cm rangce observation:, The (0-C)'s behave as expectoed.
4. 25° Elevation Con:itraint

A case was run to examine the effect of a 25° elevation constraint on the l-cm
range observations. All observations yielding an elevation less than 25° were dis-
carded. The observation interval usc i was .02 min = 1.2 sec. Again, Merritt Island,
Arecibo, and Bermuda were not included. In this case, as can be seen in Table II,
the first station which can see the satellite is San Francisco at approximately 3.6
minutes. Shortly thereafter, Santa Barbara acquires the satellite. Figure lla shows
that the acccleration estimate is poor until approximately 4 minutes at which time a
third ntation dcquires, namely, Cold=tone. After this, the cstimator yield: good
ontimate:. Thus:, for the simulation, the hiorizon-to-horizon ob:ervations vield
results rcpreucntafive of a more realistic case.
S. Effect of Number of Stations C_c~rving

The preceding case indicated the effect of the number of tracking stations which
can observe the satellite. Figure ;2 shows the results of using only thre¢ stations,
namely, San francisco, Ft. Davis, and Goddard. The observation accuracy is l-cm in
range, and the observations are taken from horizon-to-horizon. Note the radical change
in the Y-component (Fig. 12b) when the third station iz included at approximately 8

minutes. Even after the San Francisco station is lost at 16 minutes, the estimate re-

main: quite pood until the Ft. Davis station loses acquisition. Thus, this result
shows that three stations can yield a good result while two stations may yield com-
parable or reasonable results. The question of what a single station can do with

this method was not thoroughly investigated.
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Summa

Based on the numerical results in the previous section, it can be concluded
that the DMC method provides a significant improvement over the conventional batch
method in estimating the state of a satellite in the presence of gravity model
errors. The 50 cm range observations and 2 mm/sec range-rate observations are
realistic while the 1 cm range observation will probably be available in the very
near future. Using these cbservation accuracies, it was shown in the previous sec-
tion that the accuracy with which the unmodeled acceleration can be estimated de-
pends on the observation accuracy and the magnitude of thc acceleration due to the
model error. Even when good acceleration estimates are not obtained, the state estimate
yields (0-C)'s within the observatiéﬁ noise. The number of tracking stations which
can observe the satellite influences the acceleration estimate. The results indicate
that two or three stations yield good estimates at the l-cm range noise level.

Further work is in progress to determine whether the second-order Gauss-Markov
process would yield a significant improvement over the first-order process used in
this paper. Additional investigation of the number of tracking stations required as
well as the effect of tracking station location errors is underway. Consideration is
also being given in the use of the acceleration estimates to improve the mathematical

model of the geopotential.
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Figure 9.
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