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Abstract 

The precise determination of a satellite's position is of prime  importance in 

satellite geodesy and in the use of satellites in studying geodynanics.     It is not 

possible, however, to obtain a precise estimate of the satellite's position if suf- 

ficiently large errors exist in the gravity model.    In this investigation,  the 

application of a dynamic model compensation method ;o the problem of estimating the 

motion of a near-earth satellite in the presence of gravity model errors  is described. 

Based on numerical results obtained in a computer simulation,  it is concluded that 

the algorithm will yield an accurate estimate of the state in the presence of 

gravity model error:..    The effects of the observation type and acciracy, station 

location and observation batch size    on the accuracy of the orbit determination 

procedure are considered.    Finally,  it is shown that in addition to an accurate 

estimate of the position and velocity,the method can be used to obtain an accurate 

estimate of the unmodeled acceleration components. 
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Introduction 

With the recent improvements and refinements in the instruments used in the 

observations of near-earth satellites, measurements of range and range-rate with 

precision of less than one meter and one centimeter per second, respectively, 

arc a roaJily. Guch precise observations have potential for determination of th»« 

aatellite'Li r.tatc, namely, position and velocity, to the precision necessary for 

geodesy and geodyn^mics studies. 

A determination of the satellite's state commensurate with the observation 

accuracy using the classical batch processor (least squares) or the sequential 

filtering method is dependent on the accuracy of the tracking station locations 

tnd  the model of the dynamical system. Such dependence on the model of the 

dynamical system is demonstrated by Smith, Kolenkiewicz, and Dunn (1971), Harsh 

and Douglas (I'JTl), and Yionoulis, Heuring, and Guier (1972). Uncertainties in 

the peopotential, particularly resonant coefficients in some cases, are an im- 

portant error source.  Additional errors often occur in the atmospheric resist- 

ance modeling. The discrepancy between the true motion and the modeled motion 

often limit the usefulness of the orbit determination results, both from the point 

of view of using the estimates for navigation purposes as well as using them for 

scientific purposes. 

The effect of gravity model errors on the accuracy of batch-type orbit de- 

termination methods was observed also in processing the Lunar Orbiter range-rjte 

observations.  Observation residuals were obtained which clearly showed a 

p-'riodic variation with an amplitude larger than the observation noise.  The work 

of Mullcr ami Sjor.ren (1971) and Sjogren and Müller (1971) resulted in a mascon 

representation for the gravity anomalies. 

A somewhat different approach was taken by Tapley and Ingram (1971) and 

Ingram and Tapley (1971) using a sequential estimation procedure which compensated 

fc;-« the model errors.  In this approach, referred to as the Dynamic Model Compensa: 



(DMC) rriethod, the model errors are assumed to consist of a time correlated 

component and a purely random component and are approximated by a first-order 

Gauss-Harko\ process. Application of the DMC method to the lunar orbit phase 

of the Apollo 10 and 11 spacecraft showed that (1) the DMC method obtained ob- 

servation residuals within the observation noise level and (2) provided estimates 

of the acceleration due to the model error which could he correlated with the 

surface ma.i.s anomalies described by Sjogren and Müller (1071). Additional ap- 

plications of the DMC method have been made by Tapley and Schutz (1972) to the 

problem of estimating unmodeled forces due to errors in the lunar potential. 

In addition, Connolly (1972) considered application of the method to the orbit 

determination problem of a near-earth satellite. 

Other applications of atatistical models have been explored by Shaw, Paul, 

and Henrikson (1969) for use in inertial navigation systems. Shaw et al. used 

statistical models for the vertical deflection from gravity anomaly models. More 

recently, Kasper (1971) and Jordan (1972) have utilized second-order Gauss-Markov 

processes to represent the gravity anomaly. 

In this investigation, the question of how accurately both the state of the 

satellite and the acceleration due to model errors can be estimated for a near- 

earth satellite is considered.  A near-earth orbit of 1000 km inclined at ^2° is 

assured for the study.  In the investigation, computer simulation teshnizues vere 

used to investigate the behavior of the DMC method as applied to the oriiT de- 

termination problen of a near-earth satellite.  In this study, the model errors 

were assumed to arise from an incomplete description of the geopotential. Two 

sets of simulated observations were generated, each resulting from a different 

method of .■; imulat in.T gravity model errors.  It is shown that state estimates can 

be obtained which reduce the observation residuals to within the apriori observa- 

tion accuracy and that the methods can be used to obtain an accurate estimate of 



t^l<.• ucc»'lorationr, duo to gravity model orror.    The  influence of obnopvatlon ac- 

curacy,  the magnitude of the nodel error, and  the number of  ir.ickin»', ;:i .it ion:-, on 

the accuracy with which the acceleration due to the model error can be estimated 

in discussed. 

Tli»;  Lul ini.il ion   Pnoccduiv 

The ttquutlonii which describe the motion of an earth satellite can 

be expressed by  tiie following system of first-order equations: 

rsv,      v=a+a+ m(t) (1) c        p 

»rhere r is a three-vector of position components, v is a three-vector of vel- 

ocity components, a    is the acceleration due to the central body, a    is the modeled 

acceleration due to other sources, gravitational or otherwise,    and ra represents 

the acceleration due to incorrect modeling in a    and a  .    The term m(t) will be 
c p 

referred to as the "unmodeled acceleration". 

The three-vector m(t) represents the effects of all acceloration:: not   .c- 

counted  for in  the mathomatical model used  to describe the motion of the satellite. 

In this discussion, m(t)  is approximated as  a first-order Gauss-Markov process, 

c(t), which satisfies  the following vector differential equation 

c(t)  = BE(t)  + u(t) (2) 

where u(t)  is a three-vector of Gaussian noise whose components are assumed to 

be described by the statistics: 

E[u(t)] = 0       ,     E[u(t)uT(T)]  = q(t)6(t-r) (3) 

where q(t)  is  a  3 x  3 positive definite matrix.     The coefficient matrix B is 

defined by  the  components  B..  = =—5..  where T. ,   the  time-correlation  coefficients, 3 ij       T.     IT i J i       J 

are assumed  to be unknown parameters whose values  are to be determined during the 

estimation process.     The state vector is  then defined to be 

vT      r T        T T      „T, 
X    =  Cr     :  v     :   c     :  T  ] 



Then the differential equations of state become 

v 

* 

a ♦ a + c 
c   p 

Be ♦• u 

0 («♦) 

with the initial conditions X(t ) = X . 
o   o 

In the following discussion, it is assumed that the observation noise, v., 

satisfies the following conditions: 

EC^] = 0 , EfVj3 = Vij  » EtVjXT] = 0  , (5) 

where EC ] is the expected value operator.  Further, the observations are re- 

lated to the state by the relation 

y. = G(xi,ti) + v. (6) 

where (l(X£,t) i:: nomo nonlinear function of the state. 

The problem considered then is posed as follows: Given the relation for 

propagating the state, Eq. («0; the observation state relation, Eq. (6); a 

sequence of observations Y., i = 1, ...» k; the statistics on the state noise, 

Eq. (3); and the observation noise, Eq. (5), determine the best estimate of the 

state in the minimum variance sense, X. , at the time t, . Under these conditions 

the estimate can be obtained using the following algorithm (Jazwinski, 1969): 

^ = 9(*k-i' Vi» V 

K ■ ♦(tk» Vi^k-i ^v Vi'+ %.i 

\'-\* v\ - G(V tk>3 

pk= CI - W K (7) 

where Hk = [ac/ax^, 5^ = E^ | Y1 Yk_1] and ^ = E^ | Y^ ..., X^.  J 



The covariance matrices P, and P. are associated with the state estimates X^ and 

X. , respectively. Tho state transition matrix, *(t. »*. ) satisfies the follow- 

ing, cl! ftcruntial <;i|ii>'iLion 

♦(t, tk) = A(t)    *(tt tk)   ;  ♦(t. tk) =  1 (8) 

where A(t) = [3F/3X]*.    The symbol []* indicates that the quantity in the bracket 

is evaluated on the nominal solution, X(t) = 6(X.   ., t.   ,, t), t.   < t, that is, 

the solution obtained by integrating Eqs.   (4) with the condition X*(t      ) = \„\ 

and u* = ECu(t)3 = 0.    The algorithm given by Eqs.  (7) and (8) is the extended 

form of the linear sequential estimator, or the Kalman-Bucy filter, as   liscussed 

by Jazwinski (1969).    The covariance matrix P,   is associated with the best estimate 

of X.   based on k-observations while P.   is the covariance matrix associated with 

the best estimate of x,   based on (k-1) observations. 

It should be recalled that the estimate X, , includes an estimate at the time, 

t. , of the components of the position, the velocity,  the unmodeled acceleration 

c(t) and the correlation coefficients, T  , T  , and T .    The algorithm requires 
x  y     z 

apriori or "initial" estimates of each of these quantities as well as the apriori 

covariance matrices, P , Q., and R., associated with the initial state and with 
o*    i i 

the state and the observation noise, respectively.    The development of the algo- 

rithm and the computational procedure required to implement the algorithm are 

discussed in greater detail by Ingram (1971). 

The following section describes the generation of the observations  used in 

the estimation procedure  and discusses the simulation of the gravity model errors. 

Generation of the Simulated Observations 

The simulated observations are generated by the  integration of the system 

of equations 



fT S VT    »    ^T = am + ^, (9) 

where r_ is a three-vector of the.true position components, v   is a three-vector 

oT the true ■'olocity components, a    represents  the terms modeled in the estimation m 

al/'.ori tliiu, .JIKI m reprencntr. the terms not directly   included  in the ostinut ion 

dlrfuivntial et|uation.';.    The term m represents a model error in the entinution 

procedure.    To simulate model errors, two forms for m were used.    First, m is 

assumed to represent the acceleration due to a point mass on the surface of the 

earth and close to the satellite's ground track.    The term a   includes all of the 

zonal harmonics up to the sixth degree as well as the tesseral and sectorial 

harmonics up to fourth-order and the lunar gravitational effect.    In the second 

form, a   includes J„ and the lunar effect, whereas m contained the geopotential ■ 2 

terns up to sixth degree in the zonal harmonics and all other terms to the fourth 

order. 

Integration of Cq.   (9) yields a solution for the motion of the satellite 

used in cenerating observations.    The computer program ascertain:; which  tracking 

stations can observe the satellite and an observation (either range, azimuth, 

elevation, range-rate or any combination)  is computed.    These observations are 

then corrupted by adding the quantity, a\t where a is   the standard deviation of 

the observation noise and X is a Gaussian distributed random "variable with zero 

mean. 

The numerical integration is performed using the Runge-Kutta methods 

fomulated by Fehlberg (1958).    As implemented in the simulation program, two dif- 

ferent order integrators  can be used.    For periods when the satellite cannot be 

seen by any of the tracking stations, the Runge-Kutta-Fehlberg 7(8) is used with 

a variable stepsize control.     During periods in which  observations are being 

generated, a fixed step is used to comply with a fixed observation interval. 



This interval is normally small enough to allow use of a lower order integrator, 

namely, the Runge-Kutta-Fohll)erg 4(5).  If the observation interval results in 

a stepsize which is too large and the 1(5) is inadequate for maintaining accuracy, 

the 7(8) method can be used. 

Data 

The estimation program requires the numerical integration of Cq. (U) and 

Eq. (8), whereas the observation generation program requires the integration of 

Eq. (9). The state vector of Eq. («O consists of 12 elements, the state transi- 

tion matrix consists of 1UU elements, and Eq. (8) consists of six elements. 

Eq. (8), ♦, can, however, be reduced to a lower order by noting that a number of 

elements arc zero. 

The initial conditions for Eq. («0 and Eq. (9) used in the simulation are 

shewn in Table I. A rectangular coordinate system is used in which X and Y are 

in the equatorial plane and Z is along the polar axis. The ground track of the 

satellite is shown in Fig. 1 where the semi-major axis of the satellite orbit is 

7,507,000 meters, the eccentricity is .025, and the inclination is U1.20. These 

orbital elements closely approximate those of the Beacon Explorer C (BE-C) 

spacecraft (Kolenkiewicz, 1972). 

The assumed tracking station locations used in the simulations are shown in 

Table II.  In general, the observations from horizon-to-horizon of the tracking station 

are used in the estimation process. However, several cases were examined in which a 

25°  elevation constraint was imposed. These results are discussed in a later section. 

The period of time during which each station can observe the satellite is shown 

also in Figure II. Although Figure II shows 15 stations, not all stations are used. 

The geopotential coefficients used were given by Melbourne, et_ al^ (1958). Since 

these coefficients were being used to simulate a gravity model error, a more ac- 

curate set such as those determined by Gaposchkin and Lambeck (1970) was not required. 
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In all cases, the initial covariance matrix, P  , had the following forr. 

P    = 
o 

ro2 

r o2 

r o2 
Vo2 

Vo2 

0 T<4 Ll 
WllOtf   tl 100«) it*' «•l«!n:, <i-l im.»tei7f.(.'c, <i,_ =   .OiS ttncondn. «I.  =  .0001 meiors/soc7. 

r v T C 

In general,  the  initial value of t is taken to be zero unless otherwise stated. 

Results 

Not only were two types of gravity model errors studied, but the effects of ob- 

servation noise, station location, and nv.nber of stations were investigated.    These 

results are discussed in the following.    The gravity model error due to a point mass 

will be referred to as Case I and the second type discussed in preceding sections will 

be referred to as Case II.    Furthermore, Case I  is only considered in the  50 cm range 
« 

observations ntudy. 

I.    50-cm Range Observations 

Both types of gravity model errors were used in the study with range observa- 

tions in the noise level of 50 cm. 

A.  Case I 

In the generation of the observations, a point mass of 3.64 x 10"    times 

the mass of the earth was placed at U10N latitude and 108oW longitude.    The 

standaivl deviation  in the state noise was   .COS and the initial value assumed ^cr 

Ihotlnv correlation coefficient, T.,  i  =  1, 2,   3, was  200 seconds.     Figure 2 

show:?   the tvsuJ t of csl'lmating the acceleration due to the model error,  or 
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uiiiiiinioli"! .icit'li'fai ion.  In ihiu fif.uiv, tin» rimootli linn rupretifiitu Liu* triu» 

value and the jagged line represents the estimate.  Figs. 2a, 2b, an>l 2c 

represent the acceleration components in a rectangular coordinate system. 

Note that the estimate follows the true acceleration component and that the 

estimate has a mean which is close to the true value.  Figs. 2d and 2e, show 

the trace of the state error covariance matrix and the true error norm plotted 

as a function of time.  In Fig. 2d, for example, the smooth line represents 

the trace of P associated with the position components and the jagged line 

reprenentn the true error norm. It In important tc note that the state error 

covariance matrix boundn the true error.  In thir. rase, 1? trackinf. stations 

were used, although not all stations can observe the satellite simultaneously 

as shown in Table II. Those not used were Merritt Island, Arecibo, and 

fletmuda. Since the true error is within one r.ieter from 5 to 20 minues, the 

(O-O's would also be within one meter. 

B. Case II 

The gravity model error was simulated using J    through J    and the tesseral 
3 5 

and sectorial harmonics through order four. The same stations used in Case I 

were al'.o used in this case.  Figure 3a, 3b, and 3c show the acceleration 

er.tfnuli? and the true acceleration.  The standard deviation in the state noise 

wa.-. 0.00002b,  Again, the smooth line is the true and the jagged is the 

estimate.  Although the estimate of the acceleration is not as good as in 

Case I, the state estimate is quite good, that is, within one meter.  It 

should be noted that the acceleration error is approximately 100 tines 

smaller than ir the preceding case.  The acceleration orror in Case II is on 

the order of 5-8 milligals, as can be seen in Fig. 3.  The (O-O's are shown 

in Fig. U.  Note that most of the points are within the SO cm noise level of 

observation. 
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As a point of comparison the sane case war. run usinR the hatch proce';^or. 

The (O-O'r. are shown in Fig. 5. Note the pei'iodic-type behavior with ampii- 

tud«'» conni«lr«ri»Jjlv .ihovo the noir.c level of  the observation, 

I'ip.urv f. show::  the tvsults ohtained by  n«placinp, the Santa Marhara,  L.is 

Vef.J-;» 'ind All)u<|uet<<|uc stations by ones at Merritt   Island, Arecibo, and Uonnuda. 

The influence of additional east coast stations was not significant except 

toward the end of the pass.     It can be seen in Fig.  2d that the error begins 

a significant  increase at approximately 20 minutes.    Table II shows that at 

about 20 minutes there are  four stations taking data and beginning at  21 

minutes, only one station taking data.    The error growth appears to be an ef- 

fect of the number of stations.    This effect will be discussed in a later 

section. 

2.     1-ein Ranfv» OhsrrvatJons 

Repeating the preceding Case   IT with    o    =  50 cm replaced by    ci    =  1 cm yielded 

the  result:; shown  In Fig.  7.    The  tracking stations not  used were Merritt   Island, 

Arecibo, and Bermuda.    It Is apparent that    Dy improving the observation accuracy, 

the estimate of the unmodeled acceleration is  improved also.     The upward trend of 

the co-ariance trace in Fig.  7d  is again an effect of a single station observing 

the satellite.    Note, however,  that the true error is no*   increasing.     "Ir^re 3 il- 

lustrates the (O-O's  for two of the stations,  Goldstone and Gcddari.    "-z-.s that 

most of the residuals are within  the  1-cm observation noise.     "or cc-.parison,  the 

same case was run in a batch* processor.    The (O-O's resulting from this case are 

shown  in  Tig.  0. 

Sine«-   it   ii; evident   that   the accuracy with which  the unmodeled acceleration 

can be estimated   is  dependent  on  the observation accuracy.     Case  I was not  run with 

1-cm observations since 50-cm observations  gave good estimates.    The 1-cn observations 

would simply reduce the scatter in the estimate. 
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3. 2inni/iec Range-Rate Observations 

The Case II discussed in the preceding section (2) was repeated using range- 

rate observations of 2 mm/sec accuracy.    The results are shown in Fig.  10.    The 

accuracy with which the unmodelcd acceleration can be estimated is comparable to the 

J-cm ran/'.c atamrvul IcMut.    The (O-O's behave au expected. 

»♦. 25° Clevution Constraint 

A case was run to examine the effect of a 25° elevation constraint on the 1-cm 

range observations.    All observations yielding an elevation less than 25° were 'dis- 

carded.    The observation interval us, i was  .C2 min = 1.2 sec.    Again, Merritt Island, 

Arecibo,  and Bermuda were not included.     In this case, as  can be seen in Table II, 

the first station which can see the satellite is San Francisco at approximately 3.6 

minutes.     Shortly thereafter, Santa Barbara acquires the satellite.    Figure 11a shows 

that  the acceleration estimate  is poor until approximately ^ minutes at which time a 

third r.tution acquires, namely, Holdr.tonc.     After thir.,  the estimator v»»*!''.-: pood 

estimate::.     Tliuu,   for the simulation,   the horizon-to-horizon observations yield 

results  representative of a more realistic case. 

5. Effect of Number of Stations C-u^rving 

The  preceding case  indicated the effect of the nurnber of tracking stations which 

can observe  the satellite.    Figure 12 shows the results of using only thre«   stations, 

namely, San Francisco, Ft.   Davis, and Goddard.    The observation accuracy io  1-cm in 

range, and the observations are taken  from horizon-to-horizon.     Note the radical change 

in the Y-conponent  (Fig.  12b) when the third station ic  included at  approximately 8 

minutes.     Even after the San Francisco station  is lost at  16 minutes,  the estinate re- 

main:; quite p,ood until   the  Ft.   Davis  station  loses acquisition.     Thus, this  result 

shows  that   three stations  can yield a good result while two stations  nay yield com- 

parable or reasonable results.    The question of what a sinple station can do with 

this method was not thoroughly investigated. 
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Summary 

Based on the numerical results in the previous section, it can be concluded 

that the DMC method provides a significant improvement over the conventional batch 

method in estimating the state of a satellite in the presence of gravity model 

errors. The 50 cm reuige observations and 2 mm/sec range-rate observations are 

realistic while the 1 cm range observation will probably be available in the very 

near future. Using these observation accuracies, it was shown in the previous sec- 

tion that the accuracy with which the unmodoled aocoleration can be cjtinutcd de- 

pends on the observation accuracy and the magnitude of the acceleration due to the 

model error.  Even when good acceleration estimates are not obtained, the state estimate 

yields (O-O's within the observation noise. The number of tracking stations which 

can observe the satellite influences the acceleration estimate. The results indicate 

that two or three stations yield good estimates at the 1-cm range noise level. 

Further work is in progress to determine whether the second-rrder Gauss-Markov 

process would yield a significant improvement over the first-order process used in 

this paper.  Additional investigation of the number of tracking stations required as 

well as the effect of tracking station location errors is underway. Consideration is 

also bring given in the use of the acceleration entimates to improve the mathematical 

model of the geopotential. 
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.' ;«tiii>j li.ir-ii.nM 
:i iWiiifcii IAV*'. 

>\  I Hi: l   V<-)Vi:: 

1> Phoenix 
6 AJi)uqucrquc 
7 Ft.   Davis 
8 Denver 
9 Austin 

10 New Orleans 
11 St.  Louis 
12 Merritt Island 
13 Goddard 
1U Arecibo 
15 Bermuda 

Time (Min.) 12 16 20 2U 

25° Elevation Constraint Station CoveraRe 

1 San Francisco 
2 Santa Barbara 
3 Goldstone 
U Las Vegas 
5 Phoenix 
6 Albuquerque 
7 Ft. Davis 
8 Denver 
9 Austin 

10 New Orleans 
11 St. Louis 
12 Merritt Island 
13 Goddard 
lU Arecibo 
15 Demuda 

Time (Min.) 

| 1 
t        I 

I       A 
I      I 

i ' 
I       I 

h 

12 16 20 2U 

Table II 

Simulation Tracking Station Locations and Coverage 
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