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n  An account is given in the- book of the 
variational method of the solution of 
physically and geometrically nonlinear problems 
of the theory of heterogeneous slightly curved 
shells. Examined are the bending and super- 
critical behavior of plates and conical and 
spherical cupolas of variable thickness in a 
temperature field, taking into account the 
dependence of the elastic parameters on tem- 
perature. The bending, stability in general 
and load-bearing capacity of flexible Isotropie 
elastic-plastic shells with different criteria 
of plasticity, taking into account / compres- 
sibility and hardening are studied. The effect 
of the plastic heterogeneity caused by  heat 
treatment, surface work hardening and irradia- 
tion by fast neutron flux is investigated. 
Some problems of the dynamic behavior of 
flexible shells are solved. Calculations are 
performed in high approximations. Considerable 
attention is given to the construction of a 
machine algorithm and to the checking of the 
convergence of iterative processes. 

The book is intended for scientific and 
technical personnel who are engaged in the 
problems of the theory of shells.  It can be 
useful to instructors, graduate students and 
the students of colleges, 
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EDITOR'S COMMENTS 

Research on the effect of the physical and geometric non- 

linearity on the behavior of slightly curved shells is a current 

and sufficiently complex theoretical problem. Recently con- 

siderable attention has been given to the development of 

different methods of calculation which, in supplementing each 

other, make it possible to satisfy completely the demands of 

practice. 

In the book proposed to the reader an account is given of 

the variational method of the solution of nonlinear problems 

of the theory of slightly curved shells, especially convenient 

in cases of elastic and plastic heterogeneities which appear 

as a result of those or other physical effects on the material. 

Starting points in the construction of this method were works 

on the variation equations of the mixed type of N. A. Alumyae, 

Kh. M. Mushtari, K. Z. Galimov and according to the method of the 

variable parameters of elasticity of I, A. Birger. Largely 

used is the experience accumulated in the Kharkov branch of 

the Institute of Mechanics of the Academy of Sciences of the 

Ukrainian SSR (now the branch of the Institute of Technical 

Thermophysics of the Academy of Sciences of the Ukrainian SSR) 

of the use of variational methods for the solution of linear 

problems of the applied theory of elasticity. The construction 

FTD-MT-24-220-73 vi 



of an effective algorithm and the implementation of calculation 

on a computer are examined  The work carried out by the author 

in chis direction made it possible to calculate in high 

approximations, This again made it possible to be convinced of 

the fact that the /ariational methods can give not only 

qualitati/e but also good quantitative results» 

Considerable attention is given in  the book to the direct 

study of the bending of slightly curved shells of rotation 

and circular plates with a separate and joint account of the 

geometric and physical nonlinearities. An analysis of the 

effect of the variability of thickness, plastic heterogeneity, 

temperature field and eias lc heterogeneity caused by them is 

given. Bj ^he method of direct determination of critical states 

new data on the stability of shells in general are obtained. 

Investigated are the greatest loads which the flexible elasto- 

plastic slightly curved shell can receive. The nonlinear 

problem of the behavior of a shell ander the action of a dynamic 

load is examined. 

The data presented by the author develop the nonlinear theory 

of shells and can be used in the practice cf design. 

\ 
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CHAPTER I 

STATE OF THE PROBLEM 

The rapid development of the nonlinear theory cf hetero- 

geneous shells is caused by the urgent necessities of practice. 

The wide application of new materials and the use of shells 

in unusual conditions with a great intensity of external actions 

urgently require the further perfection of methods of calculation, 

In the book geometrically and physically nonlinear problems 

for homogereous and heterogeneous Isotropie shells within 

limits of the accuracy of the technical theory are examined. 

This direction covers a wide range of questions connected 

with the strength, stability and load-bearing capacity of 

slightly curved shells and plates, 

Calculation of the geometric nonlinearity is necessary not 

only for the search of critical loads which determine the 

boundary of the stability of the structural element, but also 

for the precise calculation of stresses in the subcritical area. 

The joint calculation of the geometric and physical nonlinearity 

makes it possible, without introducing the concept of a plastic- 

rigid body, in more detail to study the interconnection of 

load-bearing capacity and stability. The development of methods 

of calculation of heterogeneous flexible shells makes it possible 

to establish the features of their behavior and utilise the 

obtained information in the designing. 

FTD-MT-24-220-73 1 



The brief survey given below is not meant to be complete, 

and a number of trends is not reflected in it. Specifically, 

the studies of the nonlinear concentration developed by the 

school of G. N, Savin, thermoplastic problems, and problems of 

stability in particular are not dealt with. The selection of 

the material is dictated by its connection with the basic 

content of the book and the method developed in it. Thus, the 

known methods of the solution of problems are estimated from the 

viewpoint of their use in the case of a heterogeneous body. 

1. The Methods of the Solution 
of Geometrically Nonlinear Problems 

An outline on the history of development of the theory of 

flexible plates and shells is given in A. S. Vol'mir's work 

[22], and therefore let us note only the main development stages 

of this theory. 

The bases of the theory of flexible plates were laid by 

the well-known Russian Scientist I. G. Bubnov. T. Karman gave 

the general equations for the plates. In 19^9 V. Z. Vlasov 

obtained the system of differential equations of the theory of 

flexible slightly curved shells, Nonlinear equations of the 

cxisymmetric deformation of the flexible slightly curved shells 

of rotation were derived by D, Yu. Panov and V. I. Feodos'yev. 

The system of differential equations for flexible slight-Ly 

curved heterogeneous anisotropic shells was obtained in Cartesian 

coordinates by I, Stavskiy [135], and for plates of small 

deflection - N. A, Lobkova and L. A. II »in [74], A great con- 

tribution to the substantiation and development of the 

geometrically nonlinear theory was made by S. A. Alekseyev, 

A. S. Vol'mir, I. I. Vorovich, K. Z. Galimov, Kh. M. Mushtari, 

V. V. Novozhilov, A. V. Pogorelov, and V. I. Feouos'yev. 

FTD-MT-24-220-73 



In the initial period of development of the nonlinear theory, 

the basic method of the solution of the problems, just as in 

other fields of nonlinear mechanics, was the small parameter 

method. However, it was soon clarified taat the region of its 

use was limited. Over a prolonged period of time a large part 

of the problems was solved by P. Ff Papkovich's method.  According 

to this method the deflection should be searched in the form of 

the sum of the products of the coordinate functions, which 

satisfy all the boundary conditions, bj the indefinite parameters. 

By substituting such a sum into the equation of the compatibility 

of deformations in the middle surface (linear relative to the 

function of stresses) and integrating it analytically, we find 

the expression of the function of stresses in terms of the 

unknown parameters.  This makes it possible further by the 

Bubnov-Galerkin  method to solve the equation of equilibrium 

in the projection on the normal to the middle surface.  By 

precisely this way (and, for the most part,, in first approxima- 

tions) many problems were solved by A, S. Vol'mir, 

V. I. Feodos'yev, E. I, Grigolyuk, J. A. Koltunov and other 

researchers. According to P. P. Papkovichfs method, In general 

it is possible to obtain the system of algebraic equations of 

the third power. The use of a computer permitted using 

P. F. Papkovichfs method in high approximations. 

K. Z. Galimov [26] proposed the method opposite to 

P. F. Papkcvich's method.  By varying only the function of 

stresses and assigning it in series after substitution of the 

function into the equation of equilibrium we obtain the 

expression of deflection by <f>.  This makes it possible further 

by the Bubnov-Galerkin  method to solve the equation of com- 

patibility. By using for calculating one object the methods 

of P. F. Papkovich and K. Z. Galimov, it is possible to obtain 

a two-sided estimate of the solution. 

FTD-MT-24-220-73 
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It should be noted that in the case of the heterogeneity 

of the material or nonuniform shell, the equations of equili- 

brium and compatibility will include the first and second 

derivatives of rigidities - functions of the coordinates - and 

the structure of these equations will be noticeably complicated, 

This will make the analytical solution of the equation of com- 

patibility (equilibrium) impossible and will make the numerical 

solution of the equation of equilibrium (compatibility) by 

Bubnov-Galerkin method difficult. 

Having somewhat greater possibilities is the direct use of 

the Galerkin method to the system of equations of flexible 

slightly curved shells at which the deflection w and function 

of stresses <J> are assigned independently in the form of a 

series with undetermined coefficients. This makes it possible 

to reduce the problem to the system of quadratic algebraic 

equations, A certain inconvenience of this method is the need 

for the assignment of coordinate functions which accurately 

satisfy all the boundary conditions and the algorithmic 

difficulties in the case of the heterogeneity of the material. 

Among the methods of algebraization (reduction of 

differential equations to algebraic) of geometrically nonlinear 

problems, the net-point method occupies an important place. 

The basic results of applying this method belong to M. S. Kornishin 

[633. Numerical data for diverse cases of the bending of the 

plates and slightly curved shells of constant thickness, 

calculated by the net-point method, are given in a monograph 

[64], The net-point method is widely used also in works of 

American scientists [7, 83, 115] and others. 

The net-point method reduces to systems of quadratic 

algebraic equations with slightly filled matrices of coefficients. 

The automation of the composition and solution of such systems 
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is difficult. Just as wnen using the method of Bubnov-Galerkin, 

calculation of the heterogeneity of the material complicates 

the algorithm. 

Diverse variants of methods of the Bubnov-Galerkin type 

and successive approximations are developed in I. V. Svirskiy's 

work [97]. Some results for plates and panels of rectangular 

form are obtained when using the method of V. Z. Vlasov, which 

consists in the reduction of partial differential equations to 

the system of ordinary diffential equations [91]. 

A unique means of the solution of nonlinear boundary vplue 

problems for systems of ordinary differential equations was 

proposed by N. V. Valishvili [16, 17].  Its method does not 

require the approximate transition to algebraic equations but 

consists of the combination of the usual iterative method of 

the solution of systems of transcendental equations with the 

repeated solution to the Cauchy problem.  This made it possible 

to consider the axisymmetric deformation of spherical slightly 

curved shells whose characteristic, the load-deflection, has 

a complex form.  Earlier load - deflection graph with loops was 

obtained by Meskoll [78].  Similar dependences appear under the 

assumption of axial symmetry in shells with the lift above the 

plane of approximately more than five thicknesses.  However, such 

shells lose stability in axially nonsymmetric forms [22],  The 

value of N, V. Valishvilifs method, consists in the fact that the 

accuracy of the results is determined only by the accuracy of 

the solution of the Cauchy problem. 

The method of calculation of the knocking of shells, based, 

on the geometric analysis of the bending of surfaces, was pro- 

posed by A. V. Pogorelov [92]. 

Ftitz's method, which is rather widely used for the solution 

of linear problems, is hardly used for geometrically nonlinear 
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problems. The solution by this method of nonlinear problems, 

formulated by means of a mixed type of the variation equation, 

comprises the basic contents of the book. Some basic information 

about this approach is given in Section 4 of this chapter. 

Without discussing the methods of the solution of the systems 

of algebraic equations of geometrically nonlinear problems 

(a survey of these methods is given in work [97]), let us note 

that the effect of great deflections is investigated mainly for 

plates and slightly curved shells of constant thickness with 

a uniform Isotropie material. 

Devoted to an account of the temperature field, heterogeneity, 

anisotropy and variability of the thickness in a nonlinear 

formulation are the single works fulfilled for the most part 

in the first approximation. 

2, Physically Nonlinear Plates 
and Slightly Curved Shells 

Surveys of the examinations of the bending of uniform plates 

and shells with nonlinear connections between the deformations 

and stresses [71, 103] attest to the fact that in the majority 

of the cases the deformation theory of plasticity is used. This 

theory is comparatively simple, and although it is precise only 

for the direct i»:eans of loading, recently it was possible to 

justify its use in a wider region (see Chapter VI). Furthermore, 

it is necessary to consider that at present still there are no 

theories which are more reliably checked than the deformation 

theory [57]. 

For calculating the plates is widely utilized the net-point 

method in conjunction with the method of elastic solutions [104]. 

A large role in the development of the theory of elasto-plastic 

plates is played by works of A. S. Grigor'yev [32-36], 
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Numerical results or. the bending of slightly curved 

elasto-plastic shells (tven in a geometrically linear formulation) 

are hardly obtained. Interesting is M. S. Ganeyevafs work [27], 

where by the net-point method with small nonlinearity (after 

Kauderer) circular plates and slightly curved spherical shells 

under different loads and conditions of the attachment are 

calculated. 

The equations of physically nonlinear slightly curved shells 

of constant thickness, according to the method of supplementary 

loads, were derived by I. A. Tsurpal and N. A, Shul'ga [116]. 

However, in derivation it is assumed that Poissonfs ratio does 

not depend on state of the strain at the point. Used is the 

physically nonline^- theory of Kauderer [5*0, the relations 

of which are fulfilled in the narrow zone of deformations. 

A numerical experiment in the analysis of the different means 

of linearization was conducted by Ye. M. Kuznetsova [65]. 

In the example of cylindrical bending of the plate, she 

established that, although the Newtonfs method leads to a more 

rapid convergence than do the methods of secants and chords, 

for it the best Initial approximation is necessary. For the 

implementation of calculation by a computer, the most con- 

venient is the method of variable parameters of elasticity. 

The theory of the plasticity of heterogeneous bodies Is 

developed basically in the works of V. Ol'shak [132] and his 

students.  A survey on this problem can be found in works [87, 

88]. For the first time the study of the bending of plastically 

heterogeneous circular and circular plates is conducted In 

works [133].  A number of problems of the bending of plastically 

heterogeneous circular plates was solved by A. S. Grigoryev 

[3*, 36].  The method of the elastic solutions in conjunction 
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with finite-difference method is used for calculating a square 

heterogeneous plate in work [105]. 

3. Flexible Nonlinear Elastic 
Plates and Slightly Curved Shells 

In order to explain at which relative thickness it is 

necessary to consider the effect of plastic deformations on 

stability, let us assume that oQ/E  ■ 2*10  and use formula 

(16.9) [22] for the breaking stress of the complete spherical 

shell a      z  0.6Eh/R. When oun > oe we have h/R > 3/300.  Since Kp H p     S 
the upper critical loads of the slightly curved shells are of 

the order q of the complete spherical shell, the obtained 
B 

estimate can also be attributed to the slightly curved shells. 

Shells of this thickness are widely utilized in practice, and 

therefore in many instances in the calculation for stability it 

is necessary to have solutions of the physically and geometrically 

nonlinear problem. It is shown below that if with plastic 

deformations the geometric nonlinearity is not considered, it is 

possible to draw false (not only quantitatively, but also 

qualitatively) conclusions relative to the behavior of the shell 

under a load. 

The physically nonlinear problems with the deflection 

comparable with the thickness have attracted the attention of 

researchers for a long time, but a large part of the works 

appeared after I960, The summer school'on this problem conducted 

in the city of Tartu (1966) showed the importance of the subject 

and made it possible to reveal the problems least studied. 

Specifically, it has been established that considerable atten- 

tion should be given to the development of methods of calculation 

and to the analysis of the behavior of elasto-plastic flexible 

slightly curved shells.1 Differential equations of such shells 

1In  not one of the 32 works mentioned in Yu. R. Lepikfs 
survey [72] is the calculation of the flexible elasto-plastic 
slightly curved shell reduced to a number. 
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of constant thickness with the incompressible (not only in the 

plastic but also the e?astic region) mater.'al were obtained by 

N. P. Yershov [38]. Using the principle of possible displacements, 

N. F. fershov examined a flexible rectangular plate [39].  Some- 

what earlier P. A. Lukash [75] proposed the energy method of the 

calculation of shells rf an incompressible material. 

By the Ritz method, in the first approximation. B. V. 

Ponomarev [93] calculated a square plate of an incompressible 

material.  The potential of the elastic body was assigned ir 

the form of a polynomial according to even degrees of deforma- 

tion intensity. This made it possible to compute accurately 

the coeffiele1 .ts of the resolving algebraic equation. 

The finite-difference method with a large quantity of points 

(approximately 100) and the process of interations according 

to Newton-Rafson are used in work [106]; as a condition of 

plasticity Tresca's criterion wit;, strengthening is accepted. 

For calculating slightly curved panels rectangular in design, 

K. Soonets [101] used the method of elastic solutions in con- 

junction with the net-point method and the condition of 

incompressibility only in the plastic region. 

V. V. Sorokin [102] combines the methods of variable 

parameters of elasticity and Bubnov-Galerkin, solving at each 

stage the problem of the loading of a linearly elastic nonuniform 

shell.  In the algorithm the rigidities are approximate by the 

sum of the products of orthogonal functions, The calculation 

of a circular cylindrical shell is given.  Deflection is 

represen.-d by three terms of the series. 

The step-by-step method [125] is used by V. I. Feodos'yev 

and S. M. Chernyakov [112] for calculating an uncurved spherical 

nonuniform shell of an incompressible material with the retention 

of three terms of the series for deflection and meridional 
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displacement. The leading paremeter is taken as the deflection 

under the force applied in the center. 

An analysis of the literature on the examination of geo~ 

metrically and physically nonlinear plates and shells showed the 

need for the development of the theory of heterogeneous slightly 

curved shells in a nonlinear formulation. Of interest is the 

construction of method and algorithm convenient for implementation 

by the computers, which will make it possible to obtain in high 

approximations solutions to the problems with elastic and plastic 

heterogeneity, vhe complete calculation of the compressibility, 

the variability of the thickness, and the assigned form of the 

connection between tne intensities of deformations and stresses. 

Presented below is one of the possible ways for achieving this 

goal: the use of a variational equation of the mixed type, the 

method of variable parameters of elasticity and methods of 

Ritz and Newton-Kantorovich, 

4. Mixed-Type Variational Equation 
in the Nonlinear Theory of Shells 

The possibility of the direct use Ritz's method for the 

solution of nonlinear problems of the theory of slightly curved 

shells is closely connected with the construction of functionals 

or variational equations in which all the unknown functions 

should undergo variation. Various forms of variational equations, 

based on the variational principles of mechanics which differ 

mainly by the selection of th3 varied functions, are obtained 

in the works of L. Ya. Aynola [3], K. Z. Ge.limov [25], 

Kh. M. Mushtari, K. Z. Galimov [8l], Reissner [134], R. Z. 

Murtazin, I. G. Teregulov [82], and others. 

The type of variational equation convenient for applications 

is of the mixed-type equation relative to the deflection and 

function of the stresses.  Apparently, for the first time such 

■i i in  i.i 
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an equation for the nonlinear problem is given by N, A, Alumyae 

[4], For flexible plates it was constructed by L. I. Ealabukh, 

and for slightly curved shells it is given in work [8l], The 

generalization of this equation, connected with an account of 

the initial chamber and different external actions is given in 

works [45, 47]. These equations correspond to the variation 

principle, which is intermediate between the principles of 

Lagrange and Castigliano, since in them the displacement and 

stresses in median surface are varied. A feature of such 

equations consists in the fact that the functional, which is 

under the sign of the variation, is not equal to the total 

energy of system, although a variation in the functional coincides 

with a variation in the total energy. To solve the physically 

nonlinear problems it :'.s especially important that in the 

construction of the mixed-type equation it is not necessary to 

vary the integrals in terms of the thickness of mechanical 

parameters of the material determined by the state of strain at 

the point, i.e., in the final analysis - depending on the unknown 

functions. 

The indicated and other positive properties of mixed-type 

equations became clear when using Ritz's method in linear 

problems [M, 46, 113].  The experience obtained in their 

solution made the assumption plausible about the fact that in 

nonlinear cases the use oT  RitzTs method is effective.  Ii< this 

connection let us give L. M. Kachanovfs proposition [58]:  "At 

one time it seemed that the development of electronic digital 

computers will make it possible to be limited by the structurally 

simplest computing methods, in particular, will make it: possible 

to solve boundary value problems by the net-point method. 

However, the experience accumulated did not confirm this for 

equations in partial derivatives and showed that other methods, 

variational, are more effective." 

11 
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The comparative estimate of the Ritz and net-point methods 

[80] is constantly being reexamined, and final judgment on this 

question is hardly possible; however, it is clear that the 

development and use of variational methods, just as the net-point 

method, is useful. 

The theoretical substantiation of the use of variational 

methods in norlinear problems is most fully given in S. Or. Mikhlin's 

work [79], where questions of the selection of coordinate 

functions, connected with stability of Ritz's algebraic systems 

and some methods of their solution are examined. 

One of the basic conditions in the effective use of the 

Ritz's method for obtaining results in high approximations is 

the complete automation of the calculations, which include the 

construction ar-d scluti^i of the RitzTs systems. The 

appearance of a digital computer and the machine implementation 

of these processes made it possible to obtain results acceptable 

in accuracy by the Ri<. L«S method. The importance of the calcula- 

tion of coefficients of algebraic equations by the computer was 

noted in the article of A. S, VolTmir [21]. The first in this 

field were Forces [44, 09]. The means utilized in the cal- 

culation of coefficients of the equations [44] (precise calcula- 

tion of the integrands in nodes and the numerical integration 

over the region) makes it possible to solve the heterogeneous 

and physically nonlinear problems simply. The polynomial 

representation of all the values entering into the calculation 

[99] is not always convenient and frequently is also inexpedient. 

Experience showed that in the calculation of plates and shells 

by the computer, it is possible to obtain solutions with the 

necessary degree of accuracy [20], The execution of calculations 

of flexible shells in high approximations is caused, in 

particular, by the growing interest in the pattern of the stressed 

state in the supercritical region [15]. 

12 
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The use of variational methods has obtained wide promise 

in connection with the appearance of the R-function theory 

created by V. L. Rvachev [953. The use of these functions makes 

it possible to construct a solution in the form of a series which 

accurately satisfies all the boundary conditions on the boundary 

of a region of complex form. 

The method of calculation proposed in this book is con- 

venient for calculating the physical nonlinearity and 

heterogeneity of a material and from a systematic point of view 

is the single method of the solution of the geometrically and 

physically nonlinear problems. 

13 
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CHAPTER II 

THEORY OF FLEXIBLE PHYSICALLY 
NONLINEAR HETEROGENEOUS SLIGHTLY 
CURVED SHELLS 

1.  Statement of the Problem. 
Assumptions 

Let us consider the shell (Fig, 1) the middle surface of 

which is limited by the closed line r. Let us refer the middle 

surface to the orthogonal system of curvilinear coordinates a, 3, 

without requiring the agreement of coordinate lines with lines 

of the principal curvatures,  Let us assume that LameTs 

parameters A and B and the radii of curvature R'  R^ and R£ 

of the middle surface are continuous together with their first-order 

derivatives of function a, 3,  Unlike the main radii R, and R^, 

the prime denotes radii of curvature in directions a, 3. 

Let us designate the coor- 

dinate normal to the middle sur- 

face by the letter y.     Positive 

directions of the coordinates 

are shown on Pig, 2. L/ plotting 

in positive and negative direc- 

tions of t**— "-coordinate on 

half-thickness n/2, we form the 

body of the shell.  We consider 

<**<*„ 

Fig. 1. 

1* 
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that the function h(a, 0) does not have discontinuities of the 

first kind, and the maximum thjckness h   = hQ is considerably 

less than the smallest main 

radius of curvature R , . With- 
min 

out determining more accurately 

the possible values of ho^min* 

we assume that this ratio can 

be disregarded in comparison 

with unity.  Shells with such 

a ratio hQ^Rmin are called thir• 

Let us designate displace- 

ments in directions a, B, and y 

respectively by u, v, and w. By 

virtue of a comparative flex- Fig. 2. 

ibility of the shell in direc- 

tion y, the deflection w is commensurable with the thickness h, so 

that the relation w/h << 1 is not fulfilled. This fact leads 

to the so-called geometric nonlinearity of the resolving equations. 

However, as will be shown below, rot the value w/h but derivatives 

of deflection in terms of the coordinates enters directly into 

the nonlinear terms.  Therefore the relation w - h only indirectly 

determines the consequences of the different rigidity of the shell 

in different directions.  The shells, with the calculation of which 

consider the geometric nonlinearity, are called flexible. 

We take all components of the displacement considerably less 

than the characteristic dimension of the shell in the middle 

surface.  Let us introduce the initial chamber wQ(a, 3).  This 

function assigns the inadequacies of the initial form of the 

middle surface before deformation. Let us assume that it is 

continuous, together with its first and second derivatives In 

terms of a, 3 and is commensurable with the thickness. 

15 
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Deformations in the middle surface e.f e2, e12 
are assumed 

to be negligible in comparison with unity. However, this does 

not mean that the connection between the stresses and strains 

should be linear. We characterize the changes in the curvatures 

by the parameters K,, Kp, and <^2' 

Used in this work is the technical theory of shells based on 

assumptions about the fact that the effect of displacements u 

and v on parameters of the change in the curvature and first- 

order derivatives of deflection and function of stresses with 
AB 

factor D~5~ can be disregarded in comparison with higher R1R2 

derivatives. 

The material from which the shell is made is considered to be 

Isotropie (resistance to deformation in any direction equally), 

but heterogeneous so that the moduli of expansion E, shear G, 

volume strain K, coefficient of lateral deformation v, yield 

point 0, and coefficient of linear expansion t are functions of 

a, 3, and y.    For an account of the theory the very fact of the 

heterogeneity of the material is especially important. The 

methods of its assignment and the possibility of a change in 

the heterogeneity in the process of deformation will be discussed 

further. 

The strength of a material is characterized by the form of 

the connections between the strains and stresses o\, a?, and a.,-« 

We assume in general that these connections are nonlinear. The 

problems in which considered Is the indicated phenomenon are 

called physically nonlinear. Nonlinear properties with small 

elastic deformations are possessed, for example, by high-alloy 

steels, cast iron and a number of ether materials. 

Further everywhere it is assumed that physical parameters 

of the material F., G, K, and v are single-valued functions of the 

point and stste of strain in it. Such a position always takes 

16 



place when using the nonlinear theory of elastic (reversible) 

deformations or, coinciding with it in the absence unloading, 

the theory of small elasto-plastic deformations. We will 

characterize the state of strain of the point as the volume 

strain eQ and strain intensity e^ 

The theory given below is based on the hypothesis of direct 

normals, according to which the points, which were located before 

deformation on the normal to the middle surface, remain on it 

after deformation. Actually, his hypothesis requires neglecting 

the shears in normal sections in comparison with the angles of 

turn of the normals. 

In the usual formulation of the hypothesis of direct normals, 

this denotes also the retention of length of the normal element, 

which is equivalent to the neglecting of deformations e  in 

comparison wiüh unity. Hc.ever, entering into expressions for 

£Q and e. is this component of the vector of deformations along 

with the others commensurable with it, and in these expressions 

the value e  cannot be disregarded. For determining e  (in 

the calculation of eQ and e.), we use the condition of plane 

stressed state a      * 0. 

The shell can be loaded by forces distributed on the edge 

which are transverse Q«  normal T and tangent to the edge T- 
*■        n 0 i 

in the middle surface and by the bending moment M . The load Z 

distributed on the surface is considered to be normal to the 

middle surface.  In the case h 5* const we disregard the tangential 

components of the pressure normal to surfaces y  ■ ±ih(ct, $), 
since derivatives -r'-w-, K'-^T are considered to be small in com- 

h      00, D     Crp 

parison with unity. We will consider also body forces in the 

middle surface with the potential U and temperature field T, 

which depends on the three coordinates. 

17 
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2. Fundamental Principles 

A detailed account of the theory of shells is the subject 

of many monographs and enormous periodical literature, and 

therefore fundamental principles are given here without 

derivation. 

In accordance with the hypothesis of the direct normals, the 

deformations of a shell at an arbitrary point have the form 

Deformations in the middle surface [22] 

(2.1) 

C2: 

Ai .1 M m 

.1/1 . Afct. 
2 IT "^", - 

( 4 * ST/ 

dp [A)   '   A     dalli"* "j^T"7" 

where w„ » w + w0. 

(2.2) 

Expressions (2.2) include the quadratic terms which consider 

the geometric nonlinearity caused by the fact that the squares of 

turning angles of the normal to middle surface are commensurable 

with elongations and shears. Formulas (2.2) are obtained from 

more general formulas (VI.37) [8*0, if we consider that the 

angles of turning are negligible in comparison with unity. 

The parameters of the change in curvature of the middle surface 

are: 
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X, ■=: - 

il    la    A   0*       AB      «p      £     "öjf 

I      a     1    a»       1  . <«     j    to 

«it»-*- 

fc* — IGL 

JL i i , do , I 
.40 

JL ft? 
•5J *r M' " K*. «*' 

(2.3) 

Expressions (2,3) have an approximate nature even within 

limits of the linear theory. In precise formulas (12.53) [22] 

terms u  v_ 

V H2 
are also taken into account. The deletion of these 

terms is one of the assumptions of the technical theory of shells 

which is utilized in this work. In the case of plates and also 

in the examination of the axisymmetric deformation (v s.  0) of 

cylindrical and coniform shells (R, = °°), the indicated terms 

are accurately equal to zero. In expressions (2.3) there are 

no nonlinear terms in connection with the disregard of values of 

turning angles in comparison with unity. 

Let us present the relationships between stresses and strains 

in the form 

e^,4-(tf.-voJ + m j 

1 — V 
«,2   *  £   n« 

(2.4) 

These expressions coincide only in form with the formulation 

of Fooke's law for the plane stressed state. It is important 

to emphasize that understood by E and v    here are not fixed 

Young?s modulus EQ and Poisson's ratio vQ of the linear theory 

but the functions determined and in a nonlinear manner connected 

with the state of strain at the point in question: E » E(a, 3, 

y>  eQ* e^)> v m  v(a, 3, Y> £Q* E.), Based on such a representa- 

tion of formulas (2,4) is the method of variable parameters of 
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elasticity [10, 553 of the solution of the nonlinearly elastic 

and elasto-plastlc problems. Since for obtaining the resolving 

equations of the proposed theory knowledge of the specific form 

of functions E and v is not required, then here let us 

indicate only their general variants: E ■ E(a, 3, y),  v » v(a, 0, 

Y>, and E * E(e0> £j-)» v » v(eo* ei^ wnich correspond to the 

heterogeneous physically linear material and uniform physically 

nonlinear material before deformation. 

It is interesting to note that since (in this strained state) 

e0 * eo^a* ^* Y^ and ei r ei^a* **» Y^> in Seneral E an(i v are 

complex functions of the coordinates. The values of these 

functions change with a change in the state of strain at the 

point. Thus, a physically nonlinear body can be considered as 

a body whose heterogeneity nonlinearly depends on the state of 

strain, although its properties are physically linear. 

From formulas (2,4) it follows that 

°i*» i^rh + «* + Y(*t +•***-•T§T 
r; 

(2.5) 

Integrating the stresses with respect to y, we obtain stresses 

in the middle surface 

rs» flA 4. flie, 4. c2xt + c4x2 - r,; (2.6) 

r„-~ is — -g" Aweit + ^10*12- 

Multiplying the stresses by y  and integrating over the thickness, 

we find the bending and torsional moments 
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Af,« C,*, 4- Ce, •*• D,*, + ^x, ~ Af,; 

Af3» f>, i Car, |^K, •! 0,5c, - Af,: (2.7) 

The positive directions of forces and moments are shown on Figs. 

3 and **. Coefficients in expressions (2.6) and (2.7) are 

functions a and 3 and they are connected with the integrals 

*/2 

/-4-(l-c) 
-fc/2 

(2.8) 

and formulas 

^».2 - y (Doi ± ^ Cm = T (*>n ± DJ; 

The temperature components of stresses and moments have the form 

A/» 
EtT 

A/2 

V-   \   -TTV-^.    «.==   i  - 
£*r 

Y<fy. 
-*/a -fc/2 

(2,9) 

From formulas (2.6) let us determine deformations in the 

middle surface 



«•-^fTi « ^T,-Ä^Jf, -Ar,», !- -$^T:l 

r, a= JJ«,T, -i- Ai%Tt — /l^jf, — ß^Hi 
On ■r,; 

-l-(4*-A*)*isl' 

(2.10) 

Let us introduce the function of stresses in the middle 

surface by means of relations 

(2.11) 

Brief designations of the second-order derivatives in curvilinear 

coordinates indicsced in formulas (2.3) are used here. Function 

U is the potential of body forces in the middle surface whose 

projections on the axes a and I  are 

Let us recall the expressions of the known operators 

(2.12) 

A    1 /*   ■ 

da   A 

A* da 

, 9 

i  d   1_ A J £. JL. * J. 

JL A. JL\ 
(2.13) 

and let us introduce the operators 

J-i (t. n)» ♦;«<. r 2*;^ + Ufa; 

M* n) --■■= f;a% - 2*Vw * ^w (2.14) 

the second of which is used in the theory of plates and shells: 

function ty9  just as n, takes the values w and <J>. 

3. Variatioiial Equation 

In accordance with the principle of possible Displacements 

[67, 76], the variation of the total energy 6W of a deformed 
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Shell is equal to zero in the equilibrium state: 

MTuaK+w,+>«/,« a. (2.15) 

Let us transform equation (2.15) by using the relationships 

given in Section 2 of this chapter. 

The variation of the work of the applied forces is 

(2.16) 

Here the first integral is taken on the area of f;he middle sur- 

face, and ühe second is taken on its edge; u and u7 are the 
n     if 

components of displacement in the middle surface normal and 

tangent to the edge; w^ is the derivative of deflection in a 

direction normal to the edge of the shell. We consider further 

that the sections of the edge on which not assigned are w and w1 

0 n 

are free from loads T and T., 

The variation of the potential energy, which appears as a 

result of bending strain, is 

Wm  2 $ I Wfrk + AMxi + 2M126x12)</s. • (2.17) 

The variation of energy which corresponds to the deformation 

in the middle surface 

let us present in the form 

Wt ■■-.6jJ(TIf,--T& ': Tu^ds- 

(2.?.B) 

(2.19) 

This conversion will involve important consequences.  Actually, 

in the initial equation (2.15) only displacements undergo 

variation, while introduced into expression (2.19) are varia- 

tions in stresses in the middle surface.  Formally expressions 
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(2.18) and (2.19) are equal, but the use of formula (2.19) leads 

In summation to the mixed type of variation"egaationf% In it 

the displacement (deflection) and stresses (function of stresses 

in the middle surface) will be varied. 

Let us consider the sum 

(2.20) 

of the first integral from formula (2.19) with a variation of 

the work of tangential components of applied forces. By substitut- 

ing instead of the deformations their expressions by formulas 

(2.T) and integrating in parts, we obtain 

-äfr»+T-»<a'r«»]+,ri«*+ 

+ «jKT,
JI-13^-:-(rl-JVirl|A (2.21) 

By substituting the stresses according to formulas (2.11), dis- 

regarding terms -^-——5—, irsr ~£r  *n comparison with higher 
"mi da "\,ni    0p 

AB 
derivatives of $ (without the factor «"%■■'), and subordinating the 

function <j> to the boundary conditions 

K^nf^n (2.22) 
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we find that the first and second integrals on the region and 

integral on the outline in 6G  vanish. Let us note that two 

first integrands in (2.21) are products of the left sides of 

equations of equilibrium in the middle surface of the technical 

theory ((19.3) [84]) by the displacements. The absence in these 

equations of projections of transverse forces is the direct 

consequence of the neglecting of terms of the type ~~ and ~ in 
Kl    K2 

expressions for curvature (2.3) (see also [85], page 96). 

The rejection of first-order derivatives of <J> with the factor 

R R- is the second assumption of the technical theory of shells. 

If only one of the main radii of curvature is equal to infinity, 

this does not cause error. 

By applying the integration in parts to the third term of 

(2.21), and to the fourth term - the Kodatstsi - Gauss formulas 

((8.6) [29]), we obtain 

ÖÖ«- 

(2.23) 

where w2 = w + 2wQ; 

'»-^■S+'T-JM* 

The contour integral in expression (2.23) is equal to zero, since 

on the fastened part of the edge w *= 0, and on the free part 

Tn * T^ ■ 0 according to formulas (2.22; and the condition 

accepted at the beginning of the section. Let us note that in 

(2.23) the physical parameters of the material are not included. 

By substituting into the sum 

N sa f f (Afjftx, •[■ Mfa ■; 2Ml2by.n) ds — f J M^ + 

: iadTt-f-€ls67yifc 
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of the right side of equality (2,17) and the second term from 

(2.19) the moments and deformations in the middle surface accords 

ing to formulas (2.7) and (2.10), taking into account the 

variation of the work of the loads Z, M , and Q and relation 

(2.23), and replacing the stresses by their expressions with 

the function $, we reduce equation (2,15) to the form 

where 

Afl-Af, ^ 77 i-(f, I W 
01 

The operator R has the form 

and coefficients 

BW I        u 

(2.25) 

(2.26) 

are the complex functions of coordinates a and 3 and depend on the 

state of  strain of each element of the shell, This is caused 

by the fact that the integrals Dfe^ (2,8) include functions E 

and v of the coordinates and state of strain. 

Let us note that in the derivation of equation (2.24) it 

was not required to fulfil the operation of the variation of 

functions containing the physical parameters E and v. 
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The variation equation (2.2*0 is basic one in this work. 

This equation is of the mixed type, since it contains independently 

varied unknown functions w and <|>. 

In obtaining this equation, besides the usual assumptions of 

the classical theory of shells, the condition of heterogeneity 

of the material is accepted, and, most importantly, assumptions 

of the technical theory are introduced. Usually the theory with 

such assumptions is called the theory of slightly curved shells, 

since the rejected terms have in the denominator radii of 

curvature (relatively larger near the slightly curved shells); 

however, the field of application of this theory is considerably 

more widespread. The technical theory gives good results 

if the stressed state of the shell rapidly changes along the 

coordinates [29], although the shell cannot be slightly carved. 

Therefore, the use in the name of the chapter of the term "slightly 

curved" bears somewhat of a conditional nature, and in actuality 

possibilities of the theory are not exhausted only by slightly 

curved shells. 

The variational equation (2.24) is the natural generalization 

of the equations obtained in sources [1*5, i*7]. For the case of 

uniform physically linear shells, the mixed type of variational 

equations are given previously by N. A. Alumyae [4, 53. Later 

an equation of such type was obtained by Lyu Shi-nin [73], who 

took into account only the geometric nonlinearity and did not 

introduce the initial chamber, potential U and temperature. 

All the indicated equations have the form of an equality to 

zero of the variation of the functional, while in equation (2.24) 

the sign of the variation cannot be removed from under the first 

integral. This is connected with the dependence of functions 

A.  and B. , which enter into the operator R (2.25), on E and v> 

which in the physically nonlinear case are determined by the 

state of strain described in terms of unknowns, v* and 4».  In the 
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examination of the physically linear problems A. and L». become 

the assigned functions of the coordinates, the sign of the 

variation can be taken out, and the equation acquires a more 

customary form. 

It is advantageous to use equation (2.24) directly (without 

transition to the system of differential equations) for the 

solution of heterogeneous and physically nonlinear problems. Its 

main advantage is the absence of derivatives of functions which 

depend on the ph/rical parameters of the material. On the 

contrary, these functions enter only under the integral sign. 

Taking their complex nature into account, we note that this fact 

undoubtedly contributes to an increase in the accuracy of the 

solutions obtained by numerical methods. 

The mixed type variational equations relative to the deflec- 

tion and the function of forces have a number r£  other advantages 

in comparison with the variational equations relative to the 

three displacements u, v, and w or by the equations used in the 

principle of Reissner [13^]: 

1) only two functions are sought (me  Phould, however, 

consider that function $ can be introducac* only in the technical 

theory of shells); 

2) the function of stresses is considered to be independently 

varied, and therefore there is no need to integrate preliminarily 

the equation of compatibility in order to express $ by w; 

3) at any selection of coordinate functions for <f>, the 

equations of equilibrium in the middle surface are satisfied 

automatically, which increases the accuracy of the solution; 

4) the coordinate functions cannot satisfy the natural 

boundary conditions, which is especially important in the calcula- 

tion of shells which have free sections of the edge; 
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5) methods of the solution of variational equations of 

mixed type are convenient for an algorithm!nation, programming 

and complete automation of count by a computer. 

i 

The different special cases of equation (2,24) will be examined 

in the subsequent chapters. Here let us indicate only the | 

simplification which appears under parity condition E and v 

with respect to y,  i.e., when F'a, 3, Y) * E(a> 3, -y) and 

v(a, 3, y) ä v(a, 3, -y). Then from formula (2.8) it follows 

that D10 * Dn ■ 0, and formulas (2,26) give gWW} «= i(D21 ± D20). 

A . « B  - 0. The latter leads to the idenityWR(w, <j>) = 0. j 

The obtained formulas are fulfilled for L  linearly elastic 
i 

heterogeneous material with the structure symmetric relative to       j 

the middle surface of the shell. For a nonlinearly elastic j 

material (with the same structure before deformation), these 

formulas take place with a symmetric strained state relative to 

the surface y = 0 or with antisymmetric state, if E and v are i 

even functions of invariants of the strain tensor. 

Let us note also that equation (2.24) can be used in the 

calculation of laminar shells, since the discontinuities of tne 

first kind of functions E(Y) and v(y) do r>jt break the existence 

of integral Db^.  In this case it is necessary, of course, to 

consider that the layers should possess a commensurable sh^ar 

stiffness and chat this theory is based on the hypothesis of 

direct normals. 

4. Differential Equation.« 

Although for the solution of speciiic problems in the work 

the variational equation (2.24) is used, nevertheless, the 

completeness of the theory requires the obtaining and a system 

of differential equations corresponding to equation (2.24).  It 

is important that in this case there will also be obtained the 
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natural and main boundary conditions the knowledge of which is 

necessary when selecting systems of coordinate functions. 

In carrying out the operation of variation, using Green's 

formula 

J J ifAfofs    J JbSads !- J K- aj>)ä 

J J at, (6. c) <fc - J J L, (a, &) «fs + J [%< ~ 

and formulas 

(2.27) 

in which 

d6 .  ..  M.t     db_ 
dim ~ x "ÖT;  « ^* "J/1 "r x i)« 

(2.28) 

(n and I - normal and tangent to the edge, K - geodetic curvature 

of the edge), from equation (2.2*0 by virtue of the arbitrariness 

of variation 6w and 6<£, we find the system 

A (.4wAw) - JU (,4W - ßKV, w) - Ai.tr - AX,4^Af ) - 

— £* (3^ — A^f -!- s^i. <f>) - Zu — A.M?: 

A (A^Af) ~L*(An - ßw <r) ' Ai» -I- &IA*&% I 

-r/-2(öuV-^ ' ^. ff)--ATf. (2.29) 

whare  2M*=Z+ (.' - 4- J; ) U> F («•,>.  From formulas (2.26) it is 

evident that A**~H*m**D»~-£-,      AHn~Bn=* -L, /^~->U „ *• . 

The system of differential equations of the fourth order 

(2.29) is a generalization of the system of equations (equilibrium 
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and compatibility) of the technical theory of shells of V, Z. Vlasov 

[18] for the case of a heterogeneous material, taking into account 

the physical and geometric nonlinearity. 

Equations of the physically linear theory do not differ from 

system (2 29) in form, but in tnis case A. and B. are the 

assigned functions of the coordinates and they do not depend on 

state of strain at the point, i.e., on the unknown functions 

w and 4>, 

Differential equations of the geometrically linear problem 

are obtained from system (2.29), if we assume that w1 * wQ, 

w2 = 2WQ. In this case clearly apparent is the role of relation 

D10/DQ0, which characterizes the degree of the asymmetry of 

distribution of properties of a material with respect to thickness 

and is equivalent to the supplementary chamber. The presence 

of asymmetry leads to the fact that even in the case of the 

linear problem of the curvature of the plate (A,w = 0, A.<(> = 0, 

w0 = 0) equations (2.29) are not divided. The effect of 

asymmetry is also felt in a decrease in the flexural rigidity 

(see formulas for Aww, B ) and in the correction of temperature 

terms. 

In the particular case of h * const, v = A U~T~0, upon 

the transition to the conjugate coordinates from (2.29), there 

follow the equations of N. P. Ershov [38] for a shell which is 

uniform before deformation. Equations of the geometrically linear 

problem (which consider the physical nonlinearity), which 

I. A. Tsurpal and N. A. Shul'ga [116] obtained, also follow from 

system (2.29). 

Let us write the resolving equations for a shell uniform in 

the thickness (E = E(a, ß), v * v(a, 3)) of a physically linear 

material.  From formulas {k  8) and (2,26) in this case th. re 
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follows D 10 DU * °> D H Aww 
Eh- 

12(1 - vc) 27» Bww vD. A  * B • w$   w$ 

0. B 5 A.. * —f  B.. * -VB. Substitution of these expressions 

into system (2,29) gives 

A(4-Af)-^»(^.^)+A»P4 4-^<»t.w)«-A^        (2-30) 

Let us note that the operator F(w-) which enters into Zu is absent 
from the analogous equations derived by S. Lukashevich [126] by 
means of an examination of the equilibrium of the element of 
the shell and the condition of consistency of the deformations. 
However, in the geometrically nonlinear case this operator 
cannot be disregarded; it reflects the effect of body forces in 
the middle surface on the equilibrium in direction y. 

By substituting approximately the metrics of the surface 
of the metric plane and assuming v * const, from (2,30) let us 
arrive at equations (35) of source [61]. In the second of 
equations (35) [61] there are no projections of components of 
the tangential load on the vertical line 

Adx]' Ydy- 

Coefficient 2 is dropped before the terms 

22 1Ü 

which appear in the development of expression AM.» 

These examples again show the known advantage of the method 
of obtaining differential equations by the variational means. 

5. Boundary Conditions. 

.In the variation of equation (2,2ft) it is clarified that 
the main boundary conditions for function w are 
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ei/T-f* &l/Vr=&K> (2.31) 

wnere w and (w )' are the assigned functions. If these functions 

are r.ot assigned, then by virtue of the arbitrariness of 

variations 5w and 6w* on the contour, we find that the natural n * 
boundary conditions for the deflection 

m "       on at 
(2.32) 

where 

t* — A»J*m — tiwpH + Bmiit + 4«if^ — At?; 

(2.33) 

The second deiivatives of w and $ should be calculated according 

to formulas (2.28), and in this case the partial derivatives 

along the normal and tangent to the edge are expressed as 

derivatives in terms of a and 3 by means of the usual formulas 

of rotation of the coordinate system. 

The main boundary conditions for the function of stresses 

4> are conditions (2.22). 
0 r,0 middle surface, T = T ■ n   i 

satisfied when 

If the edge of the shell is free, in 

0 and expressions (2.22) are 

T/r-tyr-a (2.3*0 

With functions 6<J> and 6<M arbitrary on the edge of the shell 

from equation (2.24) there ensue the natural conditions for $: 

mn    u» vB Ä| ^ . 2 *,M e>/» * (2.35) 

expressions for M* and Q* are obtained from formulas (2.32) and 

(2.33) by substitution according to the scheme w 

B A 
»*  w<p    W(f>>  t    t 

■ '  ww   ( 
ww ~M>  "w$ " **w<{>> "t  *f  Conditi°ns (2.35) are geometric 
and should be fulfilled on the section of the edge of the shell 

33 



attached in the middle surf&-.*•  The value - M* is equal to the 
n 

deformation of the edge in a direction tangent to it (see (2.10)) 

The second condition is equivalent to the requirement of the 

absence of bending of the edge in a plane tangent to the middle 

surface. 

Thus, the main boundary conditions (2.31) and (2.3*0 are 

expressed as functions and their first-order derivatives along 

the normal to the contour of the shell. Into natural conditions 

(2.32) and (2,35) enter the second-order and third-order 

derivatives of the unknown functions. 

Functions w and <J>, subordinate to the main conditions and 

satisfying the variational equation (2.24), are the solution of 

the system of differential equations (2.29) subordinate to 

natural conditions. Such a position takes place as a result 

of the fact that the system (2.29) and conditions (2.32) and 

(2.35) ensue from the equation (2.24). 

Natural boundary conditions have a comparatively complex 

nature; however, the use of a variational method of the solu- 

tion makes it possible previously not to subordinate the 

coordinate functions to these conditions. This considerably 

facilitates the selection of systems of coordinate functions. 

Of course, if it appears possible to subordinate the coordinate 

system to all boundary conditions, this will contribute to 

the acceleration of convergence. 

From formulas (2.33) and (2.35) it is evident that the 

natural boundary conditions for functions w and 4> are connected. 

They are divided only in the case of the symmetry of properties of 

the material relative to the middle surface (A . « B  =0). 
W(J>     W(p 



CHAPTER III 

METHOD OF THE SOLUTION OF GEOMETRICALLY 
AND PHYSICALLY NONLINEAR PROBLEMS 

1. The Means of the Solution of 
Nonlinear Problems of the Theory 
of Heterogeneous Shells 

The complexity of the variational equation (2.24) and the 

system of differential equations (2.29) equivalent to it of the 

nonlinear technical theory of heterogeneous shells makes, 

apparently, the obtaining of exact solutions to the problems in 

general impossible. Moreover, even the problems in which the 

unknown functions depend only on one coordinate, and the 

material is uniform and obeys Hookers law, are difficult for 

analytical solution due to the geometric nonlinearity, The 

physical nonlinearity complicates equations considerably more 

than does the geometric nonlinearity. 

It should be noted that the account of the heterogeneity of 

the material (or variability of the thickness) increases the 

difficulties of the solution of specific problems.  However, in 

linear problems this difficulty is basically of a technical 

nature, and although their overcoming requires definite stresses 

and affects tae selection of the methc 1, nevertheless, in 

nonlinear cases the presence of heterogeneity complicates the 

problem to considerably greater degree. 

35 

afö^^wsiii^; hJnäussQha&iittoii uäüiäi&äl 



The general idea which is used in all numerical methods of 

the solution consists in the approximate transition fro-a the 

system with an infinite number of degrees of freedom to the 

system with their finite number.  In this case the variational 

equation (or the system of differential equations), by one method 

or the other, is reduced to the system of nonlinear finite 

equations. 

Without dwelling in detail on each of the knowr. methods of 

information, let us note the presence of two groups of methods. 

The methods of the first group are based on the system of 

the resolving differential equations and the boundary conditions 

corresponding to the problem. These are the classical methods of 

net-point, straight lines, collocations and the variants. The 

indicated methods are widely used for the solution of linear 

problems of the theory of uniform shells.  In the case of 

heterogeneous shells, their use is also possible. Hov/ever, the 

presence in differential equations (2.29) of second-order deriva- 

tives of functions A, and B, requires (to obtain the acceptable 

accuracy)   an increase in the quantity of discrete unknowns, 

terirs of a series, etc. This lei'ds to an increase in the number 

of nonlinear finite equations. The latter substantially limits 

the possibilities of the implementation of calculations and 

leads to a considerable increase in machine time.  It is necessary 

to consider also that th* quantity of coefficients of the 

quadratic part (connected with the geometric nonllnearity) of 

finite equations is proportional to n (n Is the number of discrete 

unknown«), which also makes an increase In the dimension of this 

system undesirable. 

Since the solved problems with the simultaneous account of 

the nonllnearity of two types and heterogeneity are very few, 

the total characteristic of the methods of the first group still 
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cannot be given, and the deficiencies ncted above cannot oerve as 

a basis for the failure of their use. In selecting the method 

of the solution to the problem, generally the researcher's 

personal experience is of great significance. 

In methods of tie second group variational equations, 

directly (methods of Ritz and Bubnov-Galerkin) or in conjunction 

with differential equations, are used. Most widely used in a 

nonlinear theory (especially in problems of flexible shells) is 

the solution of the problem in two stages - in the first the 

differential equation of the consistency of deformations is used, 

and in the second - the variational method of Bubnov-Galerkin. 

An analysis of the possibilities of methods of Ritz and Bubnov- 

Galerkin in connection with the linear problems of the curvature 

of the plates of variable thickness, carried out in source 

[113], showed that among these methoas, in the case of heterogeneous 

shells, preference should be given to the Ritz method.  Since 

the technical difficulties caused by the heterogeneity become 

especially important in the nonlinear problems, and in the Ritz 

method the heterogeneity is considered most simply, let us give 

preference namely to it. 

The Ritz methca is used for equations which have the form of 

the equality bo zero of a variation of the functional. Although 

equation (2.24) is written in another form, the use of the method 

of variable stiffness constants will make it possible to reduce 

the problem to the sequence of problems of steady state of 

functionals, 

2. Variational Method. 

The propojed method of the solution of nonlinear problems of 

the technical theory of heterogeneous shells is based on the 

combined use of methods of the variable elasticity parameters of 

I. A. Birger [10], Ritz and Newton-Kantorovich. 
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In accordance with the method of variable elasticity 
parameters, we will seek the solution to the physically nonlinear 
problem by means of successive approximations, assuming that on 
each step (external) of the iterative process the material of the 
shell possesses linear but heterogeneous properties. In this case 
functions E and v are considered assigned and dependent directly 

on coordinates a, 3, and y. 

To fulfill one iteration means to solve the geometrically 
nonlinear problem of the heterogeneous shell from a physically 
linear material. Having obtained the strain distribution as a 
result of the solution of this simpler problem, it is possible 
to compute at each point the volume strain e. and deformation 
intensity eQ and determine the new refined values of functions

1 

E and v. The process is continued until two consecutive states 
of strain coincide with the assigned accuracy. 

The variational equation, which describes the behavior of 
the flexible heterogeneous shell, is obtained from equation 
(2.24), if in it we replace operator R by 6R°, where 

*• (*. 'l) - Awh (*. >1) -f- BwnL. (if, i]), .  (3.1) 

and remove tiie sign of the variation from under the sign of the 
first integral in (2.24), This becomes possible, since when 
E ■ E(a, 3, y) and v(a, 3, y)  functions A  and B.  do not depend 
on the unknowns w and <f>. The left side of equation (2.24) then 
acquires the form of the variation from the functional. We solve 
the obtained geometrically nonlinear problem by the Ritz method. 

xWe consider that there are formulas, tables or graphs on 
which (by knowing the coordinates of the point and eQ, and e. in 
it) it is possible to find E(a, 3, Y, eQ, e,) and v(ot, 3, Y> 
eQ, t±). 
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Assuming 
M m 

(3.2) 

where x.  and y. are the unknown parameters, and w, and $. - the 
assigned coordinate functions, from conditions of steady state of 
the functional 

£»<W-*ai n;   ^-0, J-l,2,...,m 

we obtain the system of quadratic algebraic equations (  here 
it is assumed that the potential of applied forces in the middle 
surface U = 0; Z * q(a, &), M° = Q° « 0): 

a     «t 

•f-MJA»,-floods ~.-0. f^i,2 it; (3.3) 

«     MI 

4 Z.j fcv <T/)) ">/I — 4~ ^ ^ xp &¥~* fa. <P/) — 

~r°Aq),|ds-0, i-1,2 /«, 

With the derivation of the first group of equations, it is 
taken into account that by virtue of formula (2.27) 

J| ^A K v.) <fs = J J »A K ^ &: 

the contour integral disappears if on the edge of shell w = 0. We 
consider this condition to be fulfilled. 
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System (3.3) is solved by the Newton-Kantorovich method 

(internal iterative process), and their theory is presented in 

detail in a book [533. 

The presence and rate of convergence of the iterative 

processes depend substantially on how closely the initial 

approximation is to the solution. Therefore, if in the nonlinear 

problem there is a parameter to each value of which corresponds 

one solution, then it is advantageous to seek not one solution 

for the assigned value of the parameter but a sequence of 

solutions for a certain range of values of this parameter. The 

search of the series of solutions for a number of monotonically 

varying values of the parameter makes it possible to use the 

Information obtained on previous steps in the determination of 

the zero approximation necessary for the beginning of the 

iterative process with the following value of the parameter. Such 

a method makes it possible to decrease considerably the expenditures 

of machine time, and frequently - generally make the process 

converging. As a parameter it is possible to take the value of 

the load. 

One of the methods which satisfies the indicated requirement 

is the method of differentiation with respect to the parameter 

proposed by V. s. Kiriya [59] and D. P. Davidenko [37]. This 

method is developed in connection with the theory of shells in 

works of I. I. Vorovich and his students [24, 40],  The method 

consists in the replacement of the system of the finite nonlinear 

equations by Cauchy problem for the system of ordinary 

differential equations in terms of the parameter.  If the 

solution for a certain value of the parameter is known, then the 

numerical integration makes it possible to find the sequence of 

the solutions for the monotonically varying values of the para- 

meter. The indicated method is successfully used in cases of 

nonlinear shells.  A certain shortcoming in it is the possibility 

of the accumulation of an error in the process of integration. 
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In V. I. Feodosfyevfs method [111] the transition to the 

Cauchy problem is fulfilled naturally - by the replacement of the 

static problem on the behavior of the shell by the quasi-dynamic. 

Introducing the inertia and dispersive terms and considering 

the load of a slowly changing time function, one of the approximation 

methods from the system of partial differential equations obtains 

with the problem the initial conditions for ordinary differential 

equations with respect to time. 

M. S. Kornishin and Kh. M. Mushtari [62] proposed solving 

the system of nonlinear equations with the parameter 

1fiv*t 1,-n)   *'* •■•* * 

so that the solution Z, , obtained for parameter p. , is taken as 

the zero approximation Z, - for Pk+1 = Pk + Ap* M. S. Kornishin 

[63], proposed using for determining the initial approximation 

the extrapolation with respect to formulas Z . ■ 2Z, - Z. -, 

4i * 3Zk - 3Vi + V2 wh- zi°>k+i  - (2zi,k - «i^i>75f- 
2i,k 

The advantage of such an approach consists in the absence 

of the accumulation of an error with a change in the parameter 

since for each new value of it the solution is calculated by 

iterative means, 

In the proposed method namely this method is used: Newton- 

Kantorovich method in conjunction with the extrapolation of 

the initial approximations. Before citing the formulas used, 

let us discuss the selection of the parameter. 

As a parameter let us introduce the relative deflection of 

the shell C»w(aQ) $o^
hO at a certain characteristic point 

o*Q, 3Q (for circular plates and slightly curved shells of 

rotation - in the center) [48].  Such a selection of the parameter 

pursues two goals.  It is known that if there occurs a knock 
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of the flexible slightly curved shell (with a not very large ratio 

of the rise H to the thickness hQ), then function C(qQ) is 

ambiguous, and q0(O is single-valued (qQ - the load parameter). 

Therefore, namely, quantity c is conveniently selected as a 

parameter, since the entire curve q0(?) can be obtained with a 

monotonic charge in c. However, the following is more important. 

At the maximum points at which the load qQ takes the upper or lower 

critical value, the determinant of the matrix (system of the linear 

algebraic equations of the Newton-Kantorovich method relative to 

correlations Az.), co^prise^ of second-order partial derivatives 

of functional W in terns of x. and y., vanishes [1173. At such 

points the process of iterations according to the Newton- 

Kancorovich method does not converge. But precisely these points 

are frequently of special interest for the researcher.  Introduc- 

ing as a parameter the value 

* 
ts=s"/££ www (3.*) 

we supplement system (3.3) with equation (3.*0, and we consider 

qQ to be unknown.  The determinant of the Newton-Kantorovich 

matrix for thus expanded system at the maximum points does not 

vanish. 

For components of the vector Z of the solution to this system, 

let us introduce notations z. ■ x,; z. « y,;  z. = qQ respectively 

when i * 1,2, n; i » n + 1, n + 2, n + m and i = n + 

+ m + 1.  Then the formula of the Newton-Kantorovich method take 

the form 

z^^-*-1*^ (3.5) 

where F is the column of discrepancies f.  of equations of system 

(3.3) and (3-*0, and matrix A has components 
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We compute initial approximations by using the following 

system of extrapolaticnal formulas: 

Zf-Z0; Zf-~2ZX-Z£ 2^32,-32, + ^; (3.6) 
ZSf^AZ^t -6Z^24- 42^3-V*. />=4.5. 

whereupon Z 5 Z(Cp), 5 s C0 + pAC, These formulas provide 

for the gradual increase in the power of the extrapolational 

polynomial (from zero to the third power in the beginning of 

the process) and subsequent extrapolation by a polynomial of 

the third power. 

It should be noted that formulas (3.6) are used not after 

the next (geometrically nonlinear with the assigned heterogeneity) 

problem of internal iterative cycle is solved, but upon the transi- 

tion to the next value of the leading parameter L9  i.e., after the 

solution of the complete (physically and geometrically nonlinear) 

problem for £ -. 

In the solution of the physically nonlinear, but geometrically 

linear, problems, the internal iterative cycle is degenerated, 

since the system (3.3) and (3.*0 becomes linear and the Newton- 

Kantorovich method gives its solution for one iteration. In 

this case the proposed process realizes one of the possible ways 

of the combination of methods cf variable elasticity parameters 

and variation.  These methods are distinguished by the form of 

the variational equation. For the first time the combined use 

of these methods was proposed by .,, M. Kachanov [56], who used 

functionals of the theory of plasticity based on principles of 

possible displacements and the minimum of supplementary work of 

the body. 

The convergence of the method of variable elasticity 

parameters has thus far not been strictly demonstrated; however, 

experience shows that usually the process converges. 
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3. Coordinate Functions 

In order to obtain the solution to the problem of the steady 

state of the functional W, it is necessary to assign coordinate 

functions w, and 4^. Prom the theory of the Ritz method [80] 

it is known that the coordinate system should be subordinate to 

some conditions. 

First, the coordinate functions should belong to the region 

of definition of the functional. This means that functions w. 

and $, should be subordinate to the main boundary conditions 

(2.31) and (2.3*0; they also should be continuous together with 

the first-order derivatives and have the integrated squares of 

second-order derivatives.  It is not difficult to fulfill all 

these requirements, since the main boundary conditions for w 

and <J> are simple, and the class of functions which ensures the 

existence of the integrals in terms of the region in equation 

(2.24) is very wide. 

In the second place, coordinate functions should be linearly 

inaependent at any n and m. It is possible to check the linear 

independence of the coordinate elements (if It is not obvious), 

having composed the Gram determinant - if it is not equal to zero, 

then this requirement is fulfilled. 

The third condition - the completeness of the coordinate 

system in a certain linear separable metric space - will be 

considered in the solution of the specific problems to be 

fulfilled. 

Usually when using variational methods in the theory of plates 

and shells, accepted as coordinate functions are trigonometric, 

hyperbola-trigonometric and exponential polynomials. The 

experience of the solution of linear problems [46] showed that 



under conditions of the conducting of calculations by the com- 

puter, preference should be given to the exponential polynomials. 

This is explained by the simplicity of programming and the small 

expenditure of time for the calculation of values of these 

functions and their derivatives in the nodes. The rate of con- 

vergence of the Ritz process according to number of parameters 

n and m when using exponential polynomials is not less but, in 

certain cases, more than that with other types of coordinate 

functions. 

We will assume that in the nonlinear case these properties 

are retained. In this work the problems are solved with coordinate 

functions of precisely such a class. 

If the unknown values w and <J> are functions of two coordinates 

a and ß, it is possible to assume that 

as is done, for example, in [46], and assign A,, x*f  *j $  and x? 

in the form of exponential polynomials which satisfy the necessary 

conditions at the ends of the interval. 

In problems on the axisymmetric deformation of circular plates 

and shells of rotation, functions w and 4> depend on one coordinate. 

In the subsequent chapters namely such problems are examined, 

and it is considered that the shell is closed at the vertex, 

while accepted as coordinate a is the radius in plane r. 

The set of the functions w^p) and <f>.(p) when i, J« 1, 2, .. 

reduced in table 1 (p * r/a, where a is a radius of the shell in 

the plane). All these functions are subordinate to the symmetry 

condition relative to the center. Functions w,(p) satisfy 

conditions w^l) * wj(l) ■ 0 with the attachment of the edge 
and w^(l) * 0 with a free support. Functions <Mp) in the case 

is 
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of rigid fastening in the middle surface (natural boundary con- 

ditions) are subordinate to no conditions on the edge; with 

the sliding attachment the edge is free from stresses Tn(l) * 

■ T4(l) « 0. These conditions are fulfilled when $«(1) ■ *I(1) 
2 1+1 

• 0, and functions $* * (1 - p r      satisfy them. 

Coordinate functions of such type are used by many authors, 

beginning from the first works on the geometrically nonlinear 

theory of shells and until recently. The convenience in them 

consists of the simplicity because of which it is possible to 

obtain precise formulas (3.12) for coefficients of the nonlinear 

part of the system (3.3). Although the orthonormalized polynomials 

lead to the greater stability of the Ritz systems with respect 

to errors for calculations, the simplicity of functions of Table 1 

makes them more preferable where a certain deterioration of 

feature of the Ritz system is not reflected on results of the 

calculation. 

Table 1. 

Hf  10» 

«•', '«» 

|l-tf,HI «»-W 

ft-yV" 

—i 
wm 

4,  Algorithm 

Taking into account the need for obtaining solutions in 

high approximation©, let us construct the algorithm which we use 

for performing the calculations by computer, 
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Examined in subsequent chapters is the axisymmetric deforma- 

tion of slightly curved shells of rotation closed in the vertex 

and circular plates (Pig. 5) under the action of the load Z «= q(r) 

distributed normal to the middle surface and temperature field 

T(r, Y). Therefore, it is accepted that U ■ Mn m  Qn * 0. 

Furthermore, the shells are considered slightly curved so much 

that they cannot be presented in the form of plates with initial 

chamber (A.w = A,* » 0), and the metrics of the surface can be 

replaced by the metrics of the plane. Such an approach is widely 

used in literature. 

In polar coordinates with axial symmetry we have w ■ w(r), 
4>c <J>(r), a «= r, $ ■ 9, ds ■ 2irrdr; and the operators take the 
form 

Ll^'"- dr   d?      7   dr   r    dr  • (3.7) 

We consider further all the functions a, 3, and Y as functions 

only of the radius r and z-coordinate y.    We assign the form 

of the middle surface of the shell by the initial chamber 

H 
c# ■■" - hj*{\ - <",(? — crfk k -.- Y' (3.8) 

Here H is the height of the shell above the plane. When c, « 1 

and c2 
B 0 we obtain a cone; c1 = 0 and c2 = 1 gives a surface 

similar to a sphere; value k p 0 corresponds to the plate. 

Let us introduce the relative values 
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«y4     M      *■*•     ^#      3       fa   t 
(3.9) 

Here GQ, tQ, and TQ are the characteristic values of the shear 

modulus in the undeformed state, the coefficient of linear expansion 

and temperature. 

nrrrrnTTi 

-t-Oh 

Fig. 5. 

Replacing in operators (3.7) 

r by ap and substituting formulas 

(3.9) into equations (3.3), after 

division by 2TtGQh^/a    and dele- 

tion of the line above the 

relative values, we reduce the 

system (3.3) to the dimensionless 

form 

I t n 

6    «/«t *       /ral 

n    m 

j», ( 
/«lie»! I 

«=1.2 n; 
(3.10) 
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3 I /«i      £i 

£=5 l,2,...,/n. 

We consider further that in operators (3.7), instead of dr and r, 

there are dp and p. 

The system of equations (3.10) describes ine axisymmetric 

deformation of flexible slightly curved heterogeneous shells and 

is used in the internal iterative process in the solution of 

physically nonlinear problems. 

The coefficients of the linear part are computed by a machine 

approximately - integration over p is made through a 12-nodal 

Gauss formula. Values of derivatives of coordinate functions 

are determined from precise formulas. Numerical integration 

is caused by the fact that functions A. , B^, M. , and T^ have 

a complex nature. The matrix of the linear part of system (3.10) 

is symmetric, and therefore only its right upper triangle is 

computed. 

Coefficients gi-g and g. . wich quadratic terms x,y and 
xixs do not contain physical parameters of the material and are 

calculated from precise formulas. When using coordinate func- 

tions given in Table 1, these coefficients can be presented in 

the form of the sum of integrals of the form 

/(c;<o«Jcr(l —«V*. " 
o 

Let us transform I(c, d) with the aid of the apparatus of Eulerian 

functions [121]: 
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r(£±J)iv~i) 
>M4^i')4rJri(., 

(3.11) 

Relation (3.11) makes it possible to obtain easily coefficients 
ei1s ** ~/wiL2^w1* 4> )pdpfor varied conditions of the attach- 

ment of the shell: 

motionless fastening 

tm-'*9 '•- w* ^imrTrimTTtir 
fixed hinge 

*»  fV (i!/i-J-l)! ■• 

mobile fastening 
*'/* ~  (i + / -|. t -|-1) (, .j. / 7 , .j. 2) • 

mobile hinge 
- 4//(f-fl) 

P + i + «-W + /+*» 

(3.12) 

Prom formulas (3.12) it is evident that g. . ■ g^g* By com- 

paring the formula for g,. with the coefficient at x.xe of the ijs . j s 
second group of equations (3.10) g^..55 ~4^w4Lp^ws^i^p dp we 

find g. . » =g,. . The noted symmetry makes it possible to 
jsi  2 «*-J ° 

calculate and, what is more important, to store in the immediate- 
12 2 access memory only —(n + n)m instead of 2n m coefficients of 

the quadratic terms. The three-dimensional matrix (its upper 
right half) with elements g,. is calculated in the beginning 

ijs 
of the solution to the problem only one time, since it does not 
depend on the physical properties of the material and therefore 
remains constant during the execution of the external iterative 
process. 

Sfi 
Derivatives of discrepancies -r— of equations (3.10), which 

enter into the matrix A of the Newton-Kantorovich method (3.5), 

ggggg 



are computed accurately and Incidentally with the calculation of 
the discrepancies themselves. This becomes possible because of 
the representation of the first group of equations (3«10) in the 
following form: 

ft      HI 

A-S auxi+1 b'.y> -;-1S euM+Vi+Vi=° - 
fvml S»| /=s| f—1 

m 

i=!,2 n. 

The second group of equations is similarly converted. 

Actually instead of formula (3.5), which requires matrix 
inversion, we use another one: 

A(£$-X) - Zi$)) = - F (Z(5)). (3.13) 

The system of algebraic equations (3.13) relative to corrections 
AZ is solved by the Gauss method with the selection of main 
element [107], This method possesses high resistance to errors 
of calculations. 

In the solution of the physically and geometrically nonlinear 
problem on each step of the external iterative process, the 
coefficients of the matrix of the linear part of the system (3.10) 
are computed again, since they include new values of functions 
A^n, and B^ (the methodology for the calculation of these func- 
tions is given in Chapter VI). For the economy of machine time, 
in the calculation of values of operators L, and L~ in nodes p. 

of the quadrature Gauss formula, before the beginning of the 
iterations, —~-, ~i, üt, J^L    are calculated and stored. 
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In the case of a material subordinate to the Hooke9s law, 

the coefficients of the linear part of system (3.10) are computed 

only one time. 

5. Flowchart 

Enlarged flowchart of tne major portion of the program 

developed for the computer "Ural-2" is given on Pig. 6. 

Block 1 sends to the working cells the initial value of the 

leading parameter c0 and vector of the initial Z*
0'. Block 2 

sends vector Z to the group of cells Z*, and this is necessary 

for the organization of the dual iterative process. Block 3 

calculates in 12 nodes of function A. , B. and computes the 

coefficients of the linear part of the system (3,10). In block 

k  the calculation of the matrix and right side of the system 

(3.13), its solution and the calculation of elements Z^ ■ 
* Zv    + AZ are achieved. The result is sent to the Z cells. 

If the relative disagreement of all components of vectors Z^ 

and Z    is less than that permissible, then we pass from 

block 6 to block 7. 

The internal iterative process, which solves the heterogeneous 

geometrically nonlinear problem with fixed A^v, B^,, (block *J-6), 

is shown by a dashed line.  If the problem is geometrically linear, 

block 6 is bypassed, since the solution is obtained for one 

iteration. 

Block 8 checks if the necessary accuracy in the external 

iterative process (blocks 2-8) is reached. In physically linear 

problems this block is bypassed. After the process of successive 

approximations converged, block 9 calculates and prints the 
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Flowchart 

 1 *▼*  
Iz+z*I ~ 

i 
Coefficient of linear 

Step according to the Newton- 
Kant orovich method 

Geometric 
linearity 

Geometric 
nonlinear!ty 

1 
UZi/Z1|   <  £  ? 

Yes    i- No 

Physical     Physical 
nonlinearity  linearity 

|(Z*-Zi)/Z1|   < e ? 

No 

I 
Yes 

z(s)+ z(s-l)| 
17 

z(s-l) z(s-2) 
16 

2z(-)_ z(s-l) z 

I 15 

z(s-2)+ 2(s-3) 14 

3z(s)_3z(S-l)+z(s.2)+ z 

I 13 

Calculation and print 
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11 

121 

Fig.   6. 
Stop 

No 
18 
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value C for which the problem is solved, the vector of the Ritz 

parameters, and the distribution o    the deflection, flexural and 

diaphragm stresses. 

Blocks 10-17 organized the transition to the following value 

C, and the circuit 11-17 with the aid of sendings and calculations 

according to formulas (3.6) fulfills the growth of the degree 

of the extrapolating polynomial (from 0 to 3). 

Before the part of the program which corresponds to the 

flowchart begins "to operate (see Pig, 6), another preparatory 

part fulfills the adjustment of the entire program for the 

quantity of coordinate functions n, m and auxiliary calculations, 

which can be done only once for the search of a series of 

solutions in the range C0 £ C < Cmax. 

As initial information the program uses numerical data on 

the type and height of the shell (c.,, c2, k), distribution of 

the thickness, transverse load, temperature field and on physical 

properties (data for the calculation of E and v with respect to 

£Q and ei). 

The method of attachment of the shell when using the Ritz 

method is wholly determined by conditions to which coordinate 

functions are subordinate. Introduced into the machine are 

coefficients of all the polynomials indicated in Table 1 (up 

to the 16th power) and the code information which make it 

possible to automatically take the necessary polynomials in the 

necessary sequence. The code information is a series of 

pseudoinstructions constructed so that in the first two octal 

positions (assigned on the computer "Ural-2" [2] for the number 

of operation the power of the polynomial is written, and in 

four positions (assigned for the address of the cell of the 

storage on ferrites) the address of the coefficient of the 

polynomial of the zero power of the argument is incdcated. Thus, 

5^ 

mmgm**mmm*mm0mm**—^mmmmmamm 



for a change in conditions of the attachment of the shell, it 

suffices to introduce into the memory of the machine only the 

other code information concerning the coordinate functions. This 

is one of the advantages of the Ritz method in the implementation 

of it on the computer. 
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CHAPTER IV 

FLEXIBLE UNIFORM PLATES AND 
SLIGHTLY CURVED SHELLS OF 
ROTATION 

1. Fundamental Principles 

Examined in this chapter are the geometrically nonlinear 

problems of the bending of shells and plates made of a uniform 

(E *  EQ, v » VQ, t B const) material subordinate to Hookefs 

law. The thickness of the shell is considered to be constant 

and equal to hQ so that the relative thickness h « 1. External 

loads are the evenly distributed pressure and, in individual 

problems, temperature field T(r), which varies along the radius. 

Taking the indicated conditions into account, and also 

expressions (2.8), (2.26) and (3.9), from equation (2.24) we 

obtain the variational equation of the problem in dimensionless 

form 

tw ~ \tfe^ir mf ~ °~ y*)Ls lw,w)] ~T 
x 

0 
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where qQ and TQ are the parameters of the load and temperature 

field. Function M^. is equal to zero identically, since the 

temperature along the thickness is considered to be constant. 

Let us write the formulas for the bending and torsional 

moments. Prom relations (2.33) it follows that 

Hence flexural radial stress 

p 
Bending stresses referred to EQ(h0/a) , taking into account 

formulas (3.2), will be 

/.-i 

We will obtain diaphragm stresses by the division of stresses 

(2.11) by hQ: 

i~i        HI 

2 
they are also referred to Ep(h0/a) . 

Let us recall that in view of the axial symmetry, after 

transition to the relative values in equation (4.1), operators 

A~2?'*? Ws l'»(*'1' ■■ff't'W + T-i'Sj?-      (4.4) 

In the solution to equation (4.1) according to the Ritz method, 

as algebraic equations relative to x. , y. it is possible to take 
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the system (3.10). The dual iterative process, described in 

Sections H  and 5 of Chapter III, is degenerated in the problems 

in question here into the single process of iterations of the 

solution to the system (3.10). 

In the examples given below vQ *  0.3. 

2. The Nonlinear Bending of 
Circular Plates 

Let us consider the bending of circular plates with rigid and 

sliding attachment caused by an evenly distributed load. The 

corresponding equation is obtained from relations for a slightly 

curved shell at the relative height of k * 0. 

By introducing the coordinate functions from the first column 

of Table 1 into the calculation, in choosing n * m « 4, Ac » 0.5 

and beginning the calculations from cQ *  0, Z- ' * 0, we obtain 

on the computer "Ural-2ff functions qn(c) shown on Pig. 7. The 

«}■> - «{•-« 
iterations ceased in the fulfilment of inequality [•— 7-y^ 1 < 

-5 ZiS 
<'10 *\ Results of the calculation in the third approximation 

(n * m ■ 3) on the graphs merge with the appropriate curves of 
the fourth approximation, which indicates the good convergence 

according to the number of Ritz parameters. The straight lines 

correspond to the linear solution. 

The data given (for c < 3.5) are not new. The solution to 

the indicated problem in the first approximation is statea in a 

book [193; the series method in the second approximation was used 

by Nadai [1283; by the method of collocation and net-point method 

this problem was solved by M, d. Kornishin [63]. The most 

precise results belong, apparently, to I. I. Vorovich and 

V. P. Zipalova [24], who used the Bubnov-Galerkin method. 
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Table 2 gives qQ * §~(f) 

for the series C obtained in the 

article [24] and in this work. 

The divergence does not exceed 

unity in the fourth significant 

digit. 

The convergence of the 

stresses is somewhat worse than 

that of values qQ. On Fig. 8a 

the solid line shows the curves 

of the greatest radial bending 

stresses when n « m « 4 and the 

dashed lines - when n * m ■ 3. 

Fig. 7. 

Bending stresses of the fourth 

approximation differ when r = a and C = 5 from a    M of the 

fifth approximation by 1%.    Let us note that the gradient o 
r M 

in the region of attachment (r s a) is considerably more than 

that within the plate, and therefore the value a H(a) is 

especially sensitive to the accuracy of the solution. The depen- 

dence of the greatest diaphragm radial stresses on the relative 

deflection in the center is given on Fig. 8b. Because of the 

use of formulas (3.6) with the assigned Ac the process coverges 

for two iterations. 

Table 2. 

C From source  [24] n ■ m •  4 

0.5 3.333 3.333 
1.0 9.in 9.147 

1.5 20.183 20.3.88 
2.0 39.437 39.447 

2.5 69.904 69.914 

Fig. 8. 
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3* Bending and Stability in a 
Large Spherical Panel 

The problem of the knocking of a slightly curved spherical 

shell under the action of a distributed load is classical for the 

geometrically nonlinear theory. The first works in this direc- 

tion belong to V. I. Feodos'yev [109, 110], Subsequently, the 

behavior of such a shell was investigated in the works of a 

number of American scientists and also I, I, Vorovich and 

V. P. Zipalova, M. S. Kornishin and other authors. 

The inclusion into the book of the material of this section 

is explained not by the newness of the results given below but 

by the need for their comparison with those known in order to 

check the accuracy of the method. 

The middle surface of the spherical cupola is assigned with 

the aid of formula (3.8) f assuming in it that c1 «= 0, and c2 «= 1. 

We take the attachment in the form of a rigid seal. In accordance 

with Table 1, in this case 

The calculation is fulfilled when n = rn « 4. 

Figure 9 shows curves qQ(C) for k * 4 and k * 5. Calculations 

are made when AC * 0.2. The dependence q0(O for k ■ 4 was 

obtained earlier [24]. Table 3 compares values of q0 from work 

[24] and our data. All values of qQ are computed in the 

fourth approximation. The greatest disagreement takes place 

in the unstable region of curve (£ « 2). In the region of the 

upper qQ and lower qH critical values, the divergence does not 

exceed 0.3%.    Data of M. S. Kornishin and F. S. Isanbayeva [64] 

obtained ^y the finite-difference method are very close to these 

results. In this work the table is given for the leading 

parameter qQ and not for C. 
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Fig. 9. 

'able 3. 

c From source [24] n * in = 4 
l 

0.4 35.06 35.08 0.06 

1.0 48.36 48.36 0 
2.0 34.29 33.69 -1.78 

5.6 21.04 21.10 0,28 I 

6.8 32.35 32.45 0.31 

Curves qQU) when k « 5 in the range 0 < c < 1,5, given on 

Fig. 10, are obtained when A; = 0.02. Shown there are shapes of 

deflection at the characteristic points. Values of the upper q 
B 

and lower qH critical loads coincide with data of the article 

[136] in which on the graphs, instead of the critical value of 

load q# /3(1 - v^)q#/8k
2 is plotted, and instead of k - the value 

4/3(1 - v )k. Curves qQ(c) with the shape characteristic for 

k m  5 were obtained previously V. I. Feodos'yev [111]. 

Let us also give the distribution curves of radial stresses 

in the upper (? ■ 0,6) and lower (5 * 7.2) critical states when 

k » 5 (Pig. 11); the solid lines are or  M; the dashed lines are 
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Fig. 11. 

ö  .  In the upper critical state there occur compress!ve 

diaphragm stresses almost uniform on the radius, which con- 

tribute to the loss of stability in general and to a knock. In 

the lower critical state (after the knock) the level a M r M 
noticeably decreased, but the bending stresses increased.  It 

is interesting that value a    M(a), i.e., in sealing, is not 

greatest. An analysis of the distribution of stresses shows that 

for the correct determination q an obligatory account rZ  the 
B 

fact that the shell is not zero-moment is necessary. 

The calculations of cupolas fulfilled according to the 

proposed method with other conditions of attachment also confirmed 

that the method gives accurate and not less accurate results 

than do other methods. 
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4. Conical Slightly Curved Shell 

We obtain the initial chamber which assigns the shape of the 

middle surface of conical panel, assuming in formula (3.8) 

that c 1 and c« "0, 

Figures 12 and 13 show curves qQ(c) calculated in the fourth 

approximation [8] at the height of the shells k, equal to 1, 3, 

and 5, with constant thickness and with rigid and sliding 

attachment of the edge, respectively. The characteristic points 

obtained in source [30] by the Bubnov-Galerkin method (first 

approximation) are shown by small circles on Fig. 12. When 

k > 3 the divergence rapidly increases. The value of the upper 

critical load of the shell with height k = 5 coincides with thsit 

given in the article [115]. 

% 

ao 

20 

A 1 w 
A l*W LJ 

,4k 
—j*c-v 

\e 

—1— i       / \x    J 

o a 
Fig. 12. Fig. 13. 

In the case of the rigidly attached shell with height k » 5 

curve qQ(C) is obtained in the form of two parts:  C < 3.5 and 

C > 3.5.  In the method used for the solution of the problem 

in certain c, knowledge of solutions with previous values of 
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deflection In the center Is not required. Therefore, transition 

from one segment of the curve of states of equilibrium to another 

is achieved simply by an assignment of the new initial 

approximation for the solution of the Ritz system with the 

parameter C at which the process of Iterations, connected with 

the motion along one of the parts of the curve, ceases to 

converge. The necessary initial approximation can be established 

by analyzing the nature of vector Z for values k, at which the 

discontinuity is absent. 

In actuality the curve qQ(c) has no discontinuity. With a 

monotonic increase c (for example, from c ■ 0) in certain cases 
(usually at relatively high values of k) the process of iterations 

of Newton-Kantorovich, in the solution of expanded system (3.3) 

and (3»*0» ceases to converge. This occurs at the place where 
dqn 

the derivative —z. becomes equal to infinity and the curve 
dC 

sharply changes direction. 

When it is necessary to obtain the curve in the region of 

point q « q*, r,  * c* with a vertical tangent, it is possible, 

without substituting the leading parameter C with another, to begin 

in the following way. Let us assume that at the next value 

C ö C T + A? the process did not converge for a certain assigned 

number of iterations. Since the initial approximation of vector 

Z   for C ~ Cp was calculated from solutions for four previous 

values of C (3.6), and there is no solution for c ~ c , then 

z£  corresponds to the point when t,  = x>  _•. on the part of the 

curve qn(c) which lies on the other side (above when -~-L .  >0 

or below - otherwise) of point q * q#. After repeating'the 

process of iterations with the initial approximation Z^0' when 

C p Sp~i> we find this solution for the further motion along 

the curve qQ(c) and change the sign of Ac to the opposite. 
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The described algorithm is programmed simply and makes it 

possible to automate the control of the leading parameter 5 in 

order to obtain the entire curve, following its course. 

With the bending of the rigidly attached shell with height 

k ■ 3 a smooth sagging of the center section occurs (Pig. 1*0. 
The shell with height k * 5 sags 

first at the periphery so that 

its shape (in the state which 

corresponds to the upper critical 

load) noticeably differs from the 

shape of the shell when k *  3» 

Fig. 14. 

However, with a load equal to 

the lower critical load, the 

shapes of the deformed middle 

surface of these shells differ 

little. A sharp change in 

shapes of the shells when k = 5, 

upon the transition from one critical state to another, is 

accompanied by the appearance of a "discontinuity11 of curve 

qQU). The difference between these shapes is especailly clearly 

visible on graphs ? = 3 and £ = *J,5, obtained when qQ z  15.5 and 

corresponding to points A and B (Fig. 12). 

Figure 15 gives the dependence of critical values of the 

load on the height of the shell. When k < 1.8 the shell is stable 

in general. The solid line shows the result of the calculation 

in the fourth approximation, the dashed line - in the second, 

and dot-dash line - in the firs', according to the article [30]. 

The fifth approximation in this figure coincides with the 

fourth. 
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5. Plates and Shells in a 
Temperature Field Loaded by 
Pressure 

The supercritical behavior of flexible plates and slightly 

curved shells loaded by pressure is of great interest for practice. 

However, the obtaining of the sufficiently exact solutions of 

this nonlinear problem requires the overcoming of a number of 

difficulties. Usually in the calculations we are limited to the 

first or second approximation, fulfilling the calculations 

manually, which cannot satisfy the practice either in accuracy 

or in the labor expense of the process of the obtaining of results. 

The loss of the stability of plates in the temperature field 

is the subject of many works in which the linear uniform problem 

of eigenvalues - critical temperatures, is solved. If the 

temperature exceeds critical, the plate bulges and takes the form 

of a slightly curved shell bi't does not lose the abibity to 

resist a transverse load. Subsequently, depending on the direction 

es 



of the bulge, a knock or monoton!c increase in the deflection 

with an increase in the load is possible. Since in the super- 

critical state of deflection of the plate is of the order of 

the thickness, the problem becomes geometrically nonlinear. 

Let us consider the circular plate strictly fastened on the 

edge stressed by the evenly distributed pressure. We consider 

the temperature field to be constant in thickness, and we 
0 1 

assign it one of the following functions: Tfc ■ 1 - p , Tt * j 

T? B p2 subordinate to the condition of normalization 

/ ^(eMo «*— • Sucn functions are selected in order to model 

*most simply the decrease, constancy and increase in the 

temperature along the radius. 

Figare 16 gives curves qQ(c) with uniform heating and Tt « j 

(function qQ(0 - odd; the figure depicts its branch for e > 0). 

Curves of the third and fourth approximations merge. The dashed 

line shows the result of the calculation when n*m=2atT0*=5. 

With an increase in the 

parameter of temperature TQ the 

value decreases and 

becomes equal to zero at the 
u\ 

critical value TQ T* * 6(1+*) 

whers u, * 3.832 is the first 

root of the Bessel function J-j(u). 

When v0 * 0.3, T* * 1.883. The 

parame -er T# is determined in 

the solution of the linear 

problem ZTA  corresponds to the 

loss in stability in particular. 

A further increase in TQ leads 

to an appearance and increase in absolute value of the critical 

load; the point of the curve qQ » 0, which previously coincided 

Fig. 16. 
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I 
with the beginning of the coordinates, is displaced along the 

axis c to the right. 

Shapes of the curved surface for a number of values c (when 

T0 » 10, T£ *» |) are shown on Pig. 17. Point c * 0, as can be 

seen from Pig, 16, belongs to the section of curve q0(c), which 

corresponds to the unsteady states of equilibrium. 

The behavior of the plate 

stressed by pressure when TQ > 

> T# can be traced on Pig. 18. 

When qQ * 0 the plate has two 

steady states of equilibrium at 

points A and B with flexural 

shapes, which are a mirror 

image with respect to each other, 

The peculiarity of the position 

in comparison with the slightly 

curved shells consists in the 

fact that the plate does not 

have a lower critical load. Actually, in moving from A to the 

right and from B to the left, we arrive at equal in absolute value 

upper critical loads. With an increase in qQ (in absolute value) 

a jump into new stable positions of equilibrium (A* and Bf) occurs, 

Fig. 17. 

Since with an increase in temperature the plate equiprobably 

bulges both in the direction of the y axis and opposite it, 

the entire graph q0(O possesses a central symmetry relative to 

the beginning of the coordinates. The stresses and strains in 

the middle plane coincide at points with equal (in absolute value) 

values c; bending stresses and deflection have opposite signs at 

these points, When C = 0 there are two mirror reflected unsteady 

states of equilibrium. 
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Pig. 18. 

The indicated properties ensue from equation (4.1), In the 

case of the plate (k * 0) a simultaneous change in the sign 

at x^(x ) and qQ do not change these equations. The solution 

for y, remains the previous one. The dependence of the 

flexural radial stresses in the sealing on the deflection in 

the center is given on Fig. 19. 

We show one of the possible 

ways of the solution of geome- 

trically nonlinear problems in 

the example [51] by the bending 

of the strictly attached conical 

shell stressed by an evenly 

distributed pressure and placed 

in a temperature field. 
Fig. 19. 

P y2. 

In the second approximation 

we take w *  (1 - P*) Xj + (1 - p ) *2» ♦ ■ P yj 
ing these formulas into (4.1) and performing integration, we 

obtain 

Substitut- 

\ 
\ 
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- [(I'I + 1*$** * &i * ^)f« ]• *** wfa-       (* • 5) 

The coefficient p is equal to ft/3j 2; and 8/3 for Tf * 1 - p
2; 

2 
1/2; p , respectively. 

Conditions of the stationarity of function (ft•5) give the 

system of nonlinear algebraic equations 

2*^0, I-I.1M. (ft.6) 

We supplement it by equation 

fc-*i + V-t-*i (ft.7) 

we assume further £ to be assigned and qQ to be the fifth unknown. 

To calculate the discrepancies f. on each step of the process of 

the iterations of the solution of system (ft.6) and (ft.7), let 

us use the finite-difference formula 

^r(^.,.,zl~Ä,....^^r0)i,r 1,2,3,4.      (i,i8) 

The formula in central differences (ft.8) is accurate for 

polynomials up to the second power inclusively, and, consequently, 

it is accurate for function (ft.5). 

The indicated method makes it possible to avoid the actual 

construction of nonlinear algebraic equations.  In order to 

solve the problem, it is sufficient only to compile a program 

of the calculation of function W. The accuracy of the calcula- 

tions in the solution of the nonlinear system f. » 0, i - 1,2, 

..., N depends on the accuracy of the calculation f., The values 

of derivatives of f., necessary for the method of Newton- 

Kantorovich et, al; can contain the error whose value will affect 
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only the rate of the convergence of the process of the iterations. 

However, in the work with functions of form (4,5) the calcula- 

tion of derivatives of f. by means of centralized formulas will 

also lead to almost precise results, since the f. are polynomials 

of not more than the second power. 

The solution to system (4,6) and (4.7) was carried out on 

the computer "Ural-2" by the method of gradient descent of 

V. A. Matveyev [77] at the following values of the parameters: 

TQ ■ 0; 5; k ■ 0, 1, 2, 3, 4, 5. Step 6 is accepted equal to 

0.01. Here the f. are obtained with eight precise significant 

digits. The use of 6 << 0.01 lowers the accuracy as a result 

of the emergence of small differences. 

The system of equations was solved with the assigned TQ and 

k for the relative deflection c, which varies from 0 to 8 and 

from 0 to -2 with the step 0.2 and -0.1, respectively. The 

initial value of the vector Z with components x19x09  yn, y0 and 

qn when k ■ 0, and c » 0 is accepted as ZK   ;(0*  0) = 0. The 
(0) 

vector Zv '(0; 0 P.)  * Z(0; 0). Further it was considered that 

Z(0)(k; ci+1) --■ 2Z(k;   q) - Z(k; C^).  Upon transition to the 

next value of k the zero approximation is z  (Ki+T, °) ~ 
z(ki» °)« 

The process of iterations was finished with max |f.| < 10"^. 

Figure 20 gives graphs of qQ(t)>  obtained when T^ - * | [sic] 

and TQ » 5. From the curve of states of equilibrium it is possible 

to trace the behavior of the shell.  Let us assume that £ is 

beginning with a large negative value. Load qQ < 0 will also 

increase and at a certain moment will becone equal to zero. The 

state of strain of the shell in this case is determined only 

by the temperature field. The corresponding value of C shows 

how much higher the conical panel became due to a temperature 

expansion. With a further increase in t,  the load reaches the 
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upper critical level, then the section of the unsteady states of 

equilibrium proceeds. The lower critical load in this example 

is close to zero, A further increase in e requires a rapid 

increase in qQ - the knocked shell is new expanded under the 

effect of pressure. 

The dependence of critical 

pressures qt on the nature of 

the distribution of temperature 

(Fig. 21) shows that the form 

of function Tjl(p) substantially 

affects values of qt. With an 

increase in values of k, the 

connection of q* with T, de- 
8 O 

creases. On Fig. 21 curves 
0        2 1 correspond to T^ * 1 - p , 

rr,0       1 curves 2 - T. « —, and curves t   o* 

3 - T 
0 

In more detail let 
nO us give results [52] for Tj; « 

* 1 - p2. Figure 22 shows 

curves of q*(k) for a number 

of values of parameter TQ. 

Curve of the change in the 

deflection in the center of 

critical states are given on 

Fig. 23, and flexural forms 

for k ■ 5 - on Fig. 2k.    As a 

rule, the flexural radial 

stresses in the center when q^ * 

* q are greatest. The depen- 

dence of these stresses on k 

when q# * qo is shown on Fig. B 

25, and when q„ • q - on Pig. 26. 

-4     -2       0 
Pig. 20. 
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6. The Direct Determination of 
Critical States of Flexible 
Slightly Curved Shells 

One of the main purposes in the study of nonlinear elastic 

systems is the search for critical points which separate tne 

regions of steady and unsteady states of equilibrium. In the 

case of flexible slightly curved shells such points are usually 

the limiting points at which the upper or lower critical state 

is reached. The method of the direct determination of critical 

states which, unlike the usual method, does not require the 

plotting of curves of positions of equilibrium proposed by 

A. A. Kurdyumov [66], 

In this work the system of equations whose solutions describe 

the critical states is compiled on the basis of the theory given 

above. As an example of the use of the method, problems of 

stability in large conical and spherical panels, which are under 

effect of pressure with four basic kinds of boundary conditions, 

are solved. 

Let us consider conservative elastic nonlinear system [50] 

with n degrees of freedom. The variation of total energy of 

such a system is a function of the generalized coordinates z. and 

parameter of the load qQ; 

M/a^'(',.': *„.?«)• 

Equilibrium states (point of stationarity of the function U) are 

determined by equations 

/^jj-M«!.« *. (4.9) 

Each assigned value of parameter qQ, by virtue of the nonlinearity 

of system (4.9), corresponds to m > 1 solutions (z/^), The 

dependences 

n 
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äp**tflfri**U%.*:Xh=*iX — ** («.10) 

represent parametrical equations of curves of states of 

equilibrium. 

It is known [96, 117] that at points of bifurcation (branch- 

ing off of the curves) and the limiting points in which 
dQ 

■ », the Jacobian functional determinant is equal to zero: 

d2l c 

0 

Fb»h *•.*)« 
?u 

&*fcj    dzi "'tefK 

ö?U     <**U        <?U 
mntot   d:ndz2 ~'d,2 

= 0. (».ID 

Formula (».11) expresses the condition of ambiguity of the solu- 
dz-f 

tion of the linear algebraic system relative to —-. This 

system can be constructed by substituting relations (4.10) into 

equation (».9) and differentiating the obtained identities with 

respect to qQ. Formula (».11) shows also that at the critical 

points the second variation in the total energy of the elastic 

system is equal to zero. 

In the linear problems U there Is a uniform quadratic 

function z^%  and F(qQ) = |A - qQB| ■ 0, w.':ere A and B are numerical 

matrices. Methods of the solution of such equations worked out 

in detail, 

In general  when system (».9) is nonlinear, for determin- 

ing the critical parameters, we usually plot curves of equilibrium 

states, and the points of bifurcation and limiting points are 

found on the graph. This way requires performing of very laborious 

calculations, since for the search of each point of each of the 

curves it is necessary to solve the nonlinear problem. 
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The following method is more advisable. We will consider 

the parameter of the load to be unknown and will form the system 

which includes equations (4.9) and (4.11): 

du ^«o, .i**ix. ...«ft*,* W-* (4.12) 

where zn+, m  q . The solutions to problem (4,12) are the critical 

equilibrium states, since the first n of the equations determine 

the equilibrium states, and the latter is fulfilled only at 

critical points. 

The configuration of the elastic system in the critical 

state is described by a set of generalized coordinates z. «= z.#, 

and the load - by the value of parameter qQ *= q^. 

In order to explain if the obtained value q# is equal to the 

upper (lower) critical load, one should establish if the quadratic 

form Q * ^&-"£?*-*****  of  function M'^o+SV» is negatively 

(positively) determined. 

Actually, the search of critical values q# can be considered 

as the problem to the extremum of function p(z,f z~, ..., z , qQ) = qQ 

under conditions (4,9). The solution to this problem, according 

to the method of Lagrange?s indefinite factors, coincides with 

the absolute extremum of function H/(z1, z«, 

.... y. • v QQ> ^T> ^2* 

The factors X^ necessary for calculation of derivatives 

^^-; in the critical point can be found from linear algebraic 

system -^- = 0, i * 1, 2, . . ., n + l relative to A . The first 

n of the equations of this system are uniform but have a 

significant solution, since their determinant coincides with P 

and at the critical points is equal to zero. 
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Let us note that the system of equations which determines 

the positions of equilibrium should not have the form (4.9), i.e., 

it should directly ensue from the condition of stationarity of 

the total energy. These equations can be obtained by other 

ways - by the Bubnov-Galerkin method, the net point method, 

etc. 

In the theory of slightly curved shells, for the construction 

of these equations, it is convenient to proceed from the 

expression for a variation in total energy (2.24). Therefore, 

as system (4.9) we use equations (3*10) and will solve the com- 

bined system of n + m + 1 equations (3.10) and (4.11) with 

unknowns x1 (i * 1,2, ..., n), y, (i = 1,2, ,.., m), and qQ. This 

system includes parameter k (relative height of the shell). To 

seek the initial approximations, we use the extrapolation accord- 

ing to formulas (3.6), where each of the solutions corresponds 

to one of the monotonically varying values k. As the initial 

approximation for the first v^lue k, we take the critical state 

obtained for this k by the usual means. 

We use the Newton-Kantorovich method. We compute first- 

order derivatives of the determinant F in terms of z., necessary 

for the construction of the matrix of the system of algebraic 

equations of relative discrepancies, according to the formula 

of central differences. The fulfilment of one iteration requires, 

with such a method, the calculation of 2(n + m) + 1 value c?  a 
3F 

determinant of the n + m-th order. The derivative -r— i 0. 
dq* * 

since F does not directly depend on qQ.  For the economy of machine 

time, the determinants are calculated from the square root method 

[107].  This is possible, since matrix (PU 

n + m) is symmetric. 
dish; (i, i  ■ i» 2, 
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Figure 27 shows1 the dependences obtained by the given method 

of critical loads of slightly curved spherical cupolas on the 

geometric parameter of the shell. Plotted clong the axis of the 

abscissas is the parameter of height X *4y57|—v*) X —«6.6 k; along 
0 n 

the axis of the ordinates - the value q jqual to q# referred to 

the critical pressure of a complete spherical shell of radius 
R * a2/2H according to the linear theory q° * T,3(l—r)f*i # Curves 

8k* 
I  and 2 denote the results of the calculation of the upper 

critical loads of a rigidly attached panel in the fourth and 

fifth approximations, respectively. In the region A < 60 data 

of the fifth and sixth approximations differ by not more than 2%. 

Values of q in this region are 5%  different from those given 

in source [137]. At X < 25 values qo and q coincide with the 
B        H 

data of source [24], 

f 

A* 

M 

■ Oft 

■ i 

n' :&ö 
f />— 

< 

k/C ._,L & 

\PC kCf_ |   1 '• 
1   V ^* —-*£Szf -~ —- » - 

  
—, _1 

  

  5— —   — 

Curves q    for boundary con- 
B 

ditions B, C and D are given in 

the fourth approximation. Lower 

critical loads q for all types 

of attachments are also given 

in the fourth approximation. For 

qu curve A almost coincides with 

that obtained in source [137]; 

curves B, C and D are new. 

0 40 
Fig. 27. 

Forms of deflection of the 

eo \20   \ shell in the upper critical 

states differ by the complex 

wave formation (Fig. 28a, k *= io), 

while with the lower critical load the shape of the middle surface 

is simple (Fig. 28b, k » 10). 

rThe data given below are obtained in conjunction with that 
of L. M. Afanasfyeva, (News of the Accademy of Sciences of the 
USSR, Mechanics of a Solid body, 1969, b) . 
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0        0.3        i 

1  1 
Fig. 28. 

The completeness of the data shown on Fig. 27 becomes clearer 

in its comparison with Fig. 18.11 of the monograph [22], 

Figure 29 shows q and q of conical shells with four kinds 
B        H 

of boundary conditions. The convergence of the Ritz process was 

checked for all kinds of the attachments. All curves of q are 

obtained in the fifth approximation, with the exception of case 

A, which when X  > 60 is calculated when n ■ m «= 6. For this 

kind of boundary conditions the fifth and sixth approximations 

coincide when A < 60. 

0 
Values of q. , under all con- 

ditions of support, are given in 

the fifth approximation. Its 

results are merged on the graphs 

with results of the fourth 

approximation in the indicated 

range of values A and are new. 

The values obtained for the 

cone q differ from those given 
B 

in work [120] by not more than 

5$. Let us say, however, the 

concept of the upper critical 

pressure used in L. I. Shkutin's 

work differs somewhat from our own, 

0.2 

■0.2L. 
0 W CO 

Fig. 29. 
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The forms of the deflections of the conical shell with a 

height of k * 10 are shown on Fig. 30. 

0 W      / 
\^Br"^*" 

o 

x^,^ 

- £ 

a 
Fig. 30. 

Let us note that with the hinged attachment of spherical and 

conical cupolas and with the sliding attachment of the conical 

panels, there are wide regions of X  in which q < 0, The 
H 

emergence of negative lower critical loads is easy to comprehend 

if we analyze the behavior of the simple rod system shown on 

Fig. 31a. The shape of curve P(c) is given on Fig. 31b. The 

point C s CQ corresponds to the unstable horizontal position of 

the rods. When c = C* the form of system is a mirror reflection 

of the initial one. Function P(c - cQ) is odd (is polar symmetric 

relative to point c B CQ). The upper critical load P0 is equal 

to the absolute value of the negative lower load P . 

Fig. 31. 

The characteristic of this rod system is the absence of 

strains and stresses at the origin of the coordinates and at point 

C ■ t%    after a knock,  In the case of slightly curved shells 

(even with the free support of the edge) in a knocked state 
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strains and stresses are not equal to zero, and the shape of 

the shells is not a precise mirror reflection of the initial. 

In this way the absence of the polar symmetry of curves qQU) 

relative to any point on the horizontal axis is caused. However, 

the lower critical load with not very small X,nevertheless, 

remains negative, although its absolute value becomes less than 

q • The qualitative analysis of different forms of the symmetry 
8 

of curves q0(C) was done by D. I. Shil'krut [119]. 

81 

■IffWJP. 



CHAPTER V 

FLEXIBLE HETEROGENEOUS PLATES AND 
SHELLS 

1. Variation Equation and Basic 
Formulas 

The study of uniform slightly curved shells and plates in a 

geometrically nonlinear setting is the subject of a large number 

of works.  However, the effect of heterogeneities on the behavior 

of flexible shells still remains almost completely unstudied. 

This is explained, apparently, only by the considerable 

difficulties in the solution of similar problems, since their 

practical importance is doubtless. 

With the presentation of the theory and method proposed in 

this work, it was stressed that they are convenient for the 

solution of problems in which one must take the heterogeneity 

into account. Actually, in one of the advantages of method it is 

easy to be convinced, after noting that the variational equation 

upon transition  from a  uniform to a heterogeneous case 

barely changes, the algorithm does not become more complex. 

In this chapter let us consider two types of heterogeneities. 

The first - the variability of thickness (with uniform properties 

of the material) - can be conditionally classified under this 

section, since in an algorithmic sense the introduction of 

__- . ^_ 



function h » h(p) leads to those same consequences as that of 

the appearance of functions E *  E(p); v * v(p): coefficients 

A. and B. become functions of the radium. We assign the 

second form of heterogeneity, considering Young's modulus GO be 

the function p as a result of the dependence of it on the 

temperature field unevenly distributed along the radius. We 

assume that on z-coordinate the temperature does not change, 

and therefore E is the function only of the radius and M. «* 0. 

We disregard the dependence of Poissonfs ratios and linear 

expansion on temperature, assuming v ~ vQI t * tQ. We consider 

the distributed load to be uniform, so that q * 1. 

The variational equation for slightly curved shells of 

rotation with the indicated heterogeneities are obtained from 

equation (2.2*1). After transition to the dimensionless form, 

we find 

0 

f-ft]w-r,T|A<p|(!de-0. (5.1) 

Here E(p) *  E(p)/EQ, whereupon EQ is Young's modulus at a 

temperature of 20°C, h(p) «= h(p)/hQ; the lines above the remaining 

relative values are dropped. In their obtaining we consider that 

in formulas (3.9) everywhere, instead of GQ, there is EQ. 

We will obtain the resolving system of quadratic algebraic 

equations from (3-3.0)f using formulas for A . and B. used for 

the derivation of equations (2.30), and the latter from relations 

(2.27) 
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To these equations, as usually, we connect equation (3.4). System 

(5.2) can also be obtained by equating derivatives of the integral 

in (5.1) to zero. 

Formulas fo? the flexural and membrane stresses have the 

form: 

£      Eft  v« /r- i vo -M 

—-    * 

« m 

(5.3) 

By comparing equations (4.1) and (5.1), we see that for 

the transition from the uniform case to the heterogeneous, it 

was required only to introduce under the integral the functions 

E(p) and h(p). The differential equations (2.30) corresponding 

to this problem contain the second derivatives of E and h. This 

in general makes the analytical solution of the second of 
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equations (2»30) impossible, and the usual scheme of the solution 

of the geometrically nonlinear problems is destroyed. In the 

case of the use of numerical integration of differential equations, 

the presence of derivatives of hardnesses introduces difficulties. 

The method used in this work is free of the indicated deficiencies. 

2. Circular Plates of Variable 
Thickness 

Let us give the results of calculating the bending of plates 

with rigid and sliding attachments of the edge under the action 

of a uniform load. We assign the distribution of thick:iess by 

the function 

K»*i-Kt-~i)e n-/I(1)/A0. (5.*D 

Figure 32 shows curves qQ(c) for the different ratios of 

thickness near the edge and in the center. The solid line 

denotes results of the fourth approximation; curves for n * m = 3 

merge with the appropriate curves n = m *= H;  the dashed lines are 

the second approximation. 

The value of parameter n has 

a great effect on the rigidity 

of the plate. It is interesting 

that an increase in n leads to a 

decrease in the curvature of 

curves qQ(c). Thus, when n ■ 3 

on Fig. 32b curve q0(O differs 

little from a straight line in the 

range 0 < c<4. Although the 

deflection in the center reaches 

the value flh, i.e., the problem 

is substantially geometrically 

nonlinear, the dependence q0(C) 

resembles a linear dependence.  This is explained by the redistribu- 

tion of the stresses caused by a change in functions h(p). 
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The flexural radial stresses of a rigidly attached plate 

when C • *» are shown on Fig. 33. With an increase in n they 

increase in the center section of the plate and decrease some- 

what on the periphery. 

Greatest (with respect to p) flexural and membrane stresses 

are given on Pigs. 3** and 35. The solid Unes correspond to 

anechoic sealing and dashed lines - the sliding. By points 

Fig. 3^4 gives the results of the third approximation for plates 

with dead-end sealing at values of n equal to 1 and 3. With 

an increase in n the convergence of the stresses is improved. 

The bending stresses when n * 3, which correspond to the second 

and third approximations, coincide on Fig. 31*. Membrane stresses 

are established more slowly than the flexural are: when n c 3 

(Fig. 35) the values obtained in the second approximation (crosses) 

are distant from data of the third approximation (points). 

0 Uj        p 

Fig. 33. Fig. 3*. 

3* Flexible Spherical Panel of 
Variable Thickness 

Let us investigate the effect of the variaL*.*lty of thick- 

ness on the behavior of shells with rigid and sliding attachments 

of the edge [*iS] with the deflection commensurable with the 

JJ n *■:-.■ ,^*Ä'Ä^^fcS^&jSifc.*!tä 
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thickness. We take the distribution of thickness to be linear 

(5.*0; we assign the form of the meridian of the shell by the 
p 

relative chamber wQ » -(1 - p ). Let us give results of the 

calculation by the stressed pressure of a panel with height 

k « 5. 

Figure 36 shows by solid lines curves qQU) of a shell with 

the sliding attachment of the edge when n * ro * 4, dashed lines - 

results of the third approximation, and the dot and dashed lines 

(for the shell of constant thickness) - the second approximation. 

A change in parameter n leads, as is evident, not only to 

quantitative changes in value in the upper and lower critical 

pressures, but to important qualitative consequences. Precisely, 

with an increase in n the difference between q and q r^dly 
B       H 

decreases, and when n > 2 the phenomenon of knock generally 

disappears - the shell becomes stable in general. 

In the case of the rigid fixing of the edge (Fig. 37) the 

effect or the value n is also great. With a change in n from 

1.25 to 1.5 the deflection in the center when qQ - q decreases 

from 6.8 to 3*8.  The relative change in the lower critical 

pressure in this case is approximately 31$, and that of the 

upper - approximately 7%.     The tendency toward the elimination 

of knock with an increase in n here is also clearly visible, 

but the shell becomes stable when n > 2. 

For shells with the sliding attachment Fig. 38 shows the 

dependence of flexural radial strains near the edge from 

deflection in the center when k * 5.  A dashed curve is obtained 

when n *1 and n *  m * 3. The distribution c  (p) of a rigidly 

attached shell for a number of values £ when k * 5 and r, ■ 1.5 
is given on Fig. 39.  In the steady-states of equilibrium before 

and after the knock the edge stresses are large in abjolute vaiue, 
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Fig. 39. 

ft. Conical Slightly Curved Shell 
of Variable Thickness 

In a linear setting such shells are well studied in the works 

of A. D. Kovalenko and his students (see, for example, [60]). 
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However, the effect of the variability of thickness on stability 

in large flexible conical panels has not Leen investigated. 

Let us consider results of the solution f8] zT  the system 
t 

of equations (5.2) when wQ=-(l~p) and the distribution of thick- 

ness h (5.*0 for conical shells with the rigid and sliding 

attachments of the edge, We consider that 1*1 and TQ - 0. 

The graphs of functions qQ(c) **or height k * 5 and a number 

of values of parameter n ar^ given on Figs. kO  and 41. Solid 

lines refer to n « m  - 4 and dashed lines - to n * m » 3. Resales 

of the calculations in the fifth and fourth approximations 

r rge everywhere, with the exception of the region of unsteady 

states of equilibrium. 

0       2      4      6     5 
Fig. 40. 

Just as in the case ^f the spherical panel with a sliding 

attachment, an increase in n conducts to a more rapid increase 

in the lower critical loads than it does in the upper ones. 

When n somewhat exceeds the value 2,5, the shell becomes stable 

in general.  In the case of the rigid fixing of the edge (Fig. 

*J1) this phenomena is expressed less sharply as compared with 

the spherical shell.  Here when n ■ 3 the difference between 

q0 and qR is s';ill great. 
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The effect of the ratio of thicknesses n on the critical 

loads is very considerable. Thus, with a change in n from 1 to 

1.5 (.50%)  the value qB on Fig. *J1 increases by approximately 

100$, and that of qH - by approximately 400Ä. Thus, it is 

possible to assume that the less deviations of thickness of the 

conical panel from the constant will lead to noticeable changes 

in its stability. 

The distribution of flexural radial stresses before and 

after the knock of a rigidly attached shell is given for n ■ 1,5 
and k * 5 on Fig. **2. The dash id line corresponds to the th; ~*d 

approximation. Membrane stres<>es 

for this shell are given on Fig. 

^3, where the dashed line de- 

notes the fifth approximation. 

After the knock compression 

stresses are decreased, and when 

C > 8 only tensile stresses are 

present. Membrane stresses 

are less flexural, but they con- 

verge more slowly . 

5. Geometrically Nonlinear 
Problems with Heterogeneous 
Material 

Let us now consider the 

effect of the heterogeneity of 

mechanical properties of the 

material, caused by the depen- 

dence of Young's modulus on 

the temperature, on the behavior 

of flexible plates and slightly 

curved shells.  In the first 

approximation, such problems 

are examined in work [28], Let 

Fig. 12. 

Fig. *43. 
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us assume that the material is steel of the brand St. 3, for 

which over a wide range of temperatures it is possible to take 

with sufficient practical accuracy 

B«!--A7?fe). (5-5) 

mo) here k  • ~T.~'. whereupon coefficient 3 * 1000 kg/(cm *deg) [9]. 
t9 

When T0 * 500°C and EQ 2*10 kg/cm2 we have X * 0.25. 

Results of the calculation of a rigidly, attached and evenly 

stressed plate when n * m » 4 and TQ * 5 are shown on Figs.M 

and 45. The solid lines correspond to E *= 1, dashed lines - 

to dependence (5.5), curves 1 - Tg « p , curves 2 - Tg « 1 - p , 

and curves 3 (Fig. ft») - T£ * |. 

0   /   2    ' 3       < 

Fig. l\H, 

•^ 

?0 

Or 

J 

—- — 3 //>f 

zzz —"- r-^^r""-1 

J  
/   2   5 

Fig. »5. 

In a subcritical state the distinctions between these 

curves are insignificant. However, when c > 2 the divergence 

noticeably increases.  If the temperature ii the center is less 

than that on the periphery (T ■ 0 ), then the account of the 
t 

dependence of Young's modulus on the temperature leads to a 

reduction in qn (with the same deflection) by approximately 11%, 
0       2 The distribution of T, * 1 - p  (curves 2) leads to a decrease 
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In the load by approximately 19?. The fiexural radial stresses 

in the sealing are decreased, respectively, by approximately 

20 and 11?. 

Appearing especially noticeable is the dependence of Young's 

modulus on the temperature with bending by the transverse load 

Ox slightly curved shells. As 

an example let us give results 

of the calculation of a rigidly 

attached spherical shell with 

height k « 3 when TQ « 5 (Pig. 

46). The solid curves are 

computed taking into account 

formula (5.5) when A » 0.25 and 

the dashed curves - when A * 0, 

and dot-dashed curves corresponds 

to the unheated shell, whereupon 
,0 
t 

1 - ßc\  and 

1 

curves 1 correspond to T 
„0 „ ,    2 

P * 

p2, 

curves 2-1 

curves 3 - T r£ * ~. It is evident 

that although the value q 
*H 

changes comparatively little, 

the upper critical load depends 

both on the nature of the dis- 

trioution of the temperature and 

on whetner or not the temperature effect on mechanical properties 
0      2 ir, t::!:3n into account, When Tfc « 1 - p the difference in values 

0 and when X « 0.25 is 2k%,  and the value itself 

0.25; T, 

q„ when A 

L0 «* 5) Is two times more than it is when T* «= 0. 

The conical slightly curved shell with sliding attachment of 

tho edge can also serve as an example. Figure 47 by a solid line 

shows the dependence of qQ(c) for A = 0,25 ani dashed line - 

for A ■ 0. 0    2 It is interesting that when T. >• p  (curves 1) the 
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f 
deflection ,in the center when qQ * 0 is positive (the shell sags 

downward), knd with T° * 1 - p2 (curves 2) the defelction is 

negative (the shell stands higher). This is connected with the 

fact that in the first case the temperature expansion is more 

on the periphery. 

With the sliding attachment 

of the edge, the account of the 

dependence of Young's modulus 

on the temperature is reflected 

in the behavior of the >hell 

less noticeably than that with 

rigid attachment. The shell 

is stable in general if the 

temperature is distributed 
0      2 

according to the law T, ■ 1'- p 
0   2 and is unstable when T * p . 

Fig. 47. 
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CHAPTER VI 

ELASTIC-NONLINEAR PLATES AND 
SLIGHTLY CURVED SHELLS OF 
ROTATION 

1. Fundamental Principles 

Geometrically linear problems are examined in this chapter. 

In the derivation of the variational (2.2*0 and resolving 

algebraic (3.10) equations, it was assumed that dependences 

E * E(r, Y* £Q» ei^ and v K  v^r* Y> e0> £i' were a?siSned*  In 
order to define them concretely, let us use   the Hencky theory 

of small elasto-plastic deformations [*J2].  It is known that 

if at not one of the points of a body does unloading appear , 

then this theory coincides with the theory of an elastic physically 

nonlinear body. The cases of unloading, i.)., a decrease in ei 

upon the transition from one step of loading to another, will 

be noted. Accepting that the material possesses nonlinearly 

elastic properties, we subordinate unloading to those same laws 

as the process of loading. 

The relationships of the theory of small elasto-plastic 

deformations are based on the assumption that at each point of 

the body the path of loading is a strai&'it line.  In 

axisymmetric problems this means that in the plane c and eft 
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the points which correspond to different values of the load 

parameter should lie on the straight ray which emerges fror, the 

origin of the coordinates. This limitation is sufficiently rigid. 

fc,ven in the construction cf this theory, it was considered that 

it will give acceptable results also for paths of loading close 

to straight lines. 

Later in the works of B. Budyanskiy [122] and Yu, N. Rabotnov 

[9*0, under the assumption of the singularity of the surface of 

loading, it was p .*oved that Hencky's deformation theory does not 

contr^ict the postulate of plasticity of Drucker [12*1] (it is 

physically consistent) in the deviation of the trajectories of 

loading fror« straight lines, Yu. N. Shevchenkc [IlS] demonstrated 

an analogous theorem for the nonsingular sun ace of loading ir 

the noni.TSuuermal process, taking into account the dependence of 

the matrix of coefficients of elasticity on the temperature and 

plcstic deformations.  In order to be convinced of the correctness 

of results obtained from this theory, one should cneck fat 

each pjint of the body and at all stages of deformation) to see 

if the vector of preloading lies in the region limited oy the cone, 

the permissible solution of which can be computed. 

Since [89] shows that in the case of an ideal elasto-plastic 

diagram v^i*-*)  without strain hardening, when using zne  con- 

dition of plasticity of Mises, the criterion of B. Budyanskiy of 

the applicability of the deformation theory is funfilled.  Because 

of these works, the region or  the theoretically substantiated 

use of the deformation theory vas substantially expanded, although 

the most complete chocking can be given only by a comparison of 

results of the calculation with the experimental data. 

In the theory of small e2asto-plastic deformations, the 

relationships between the stresses and strains have the f>-rm of 

(2.4); however, values of E and v depend on state of strain at 
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the point• The modulus of expansion and the coefficient of 

lateral compression are connected with the shear moduli G and 

volumetric strain K by formulas 

9KQ 
W+G* Vs-r 

1 3K-2G 
T WTo~* (6.1) 

In this theory it is assumed that K does not depend on the state 

of strain at the point, so that in the case of the body 

heterogeneous before deformation K ■ K(r, y);  for the body which 

is uniform before deformation K * KQ m  const. 

The shear modulus in the deformati m  theory is determined 

by the formula 

(6.2) 

and is called the intersecting modulus. The deformation intensity 

with axial symmetry has the form 

2,/r v"TV[i+^]fc + «/--*,V (6.3) 

In the derivation of this formula the normal deformation in 

direction y  is expressed by e and e0 from the condition in the 

equality to zero of the stress a  ; the shear e 0 is equal to zero 

with respect to symmetry. It is important to note that the 

value v here is not constant, but it depends on accordance with 

formulas (6,2) and (6.1) on the state of strain at the point. 

The mechanical properties of the material are determined 

by functions a(e.» r, y)  and K(r, y). 

2, Approximation of the Connection 
Between the Intensities of Stresses 
and Deformations. 

Let us consider some methods of the representation of the 

dependence of the intensity of stresses on e.. 
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Ideally the elasto-plastic body  (Pig,  48a)  is characterized 
by formulas 

«V 'ffify when «,<*,.* 

at    o9 when «<>«„. 

(6.4) 

The relationship a, * cr is the Mises criterion of plasticity l   s 
From formulas (6.2) and (6.4) it follows that 

G-GQ  when ^<*/t; (6.5) 

The elasto-plastic body with linear strain hardening (Fig. 

48b) is usually assigned by formulas 

o4**9ßft  when e,<efi; 

«,»% +• 3(7,(e, — e.$) when «,>V 
(6.6) 

where Ga is the modulus of strain hardening; 3G0els . a  . When 

Gx * 0, from (6t6)  we obtain expressions (6.4). From formulas 

(6,6)  we find the intersecting shear modulus 

G«-^ when el<r.|; 

(? ,Crt+ (?,(!.-ii.) when ff>f|1. 
(6.7) 

<?e 

0 iu £t     0   eis 

Fig. 48. 

The nonlinear diagram (Fig. 48c) for pure aluminum [131] u 
described well by the dependence 
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In which E. • as^^Go ls tile conditional intensity of yield strains, 

Hence thi intersecting modulus is 

«-*•£! »—»(-#1- (6.9) 

With the approximation of dependences of the type shown on 

Fig. 4 8c, the formula 

*H!-^l-#,+*#]I- (6.10) 

can oe useful. The determination of coefficient b from the con- 

dition that the curve passes through a-certain selected point 

(obtained with the aid of the experiment of the graph) with 

coordinates e?, and a*, namely, 

.-iH^.i,]. 
makes it possible to consider more accurately the rate of 

convergence of o. to a    with an increase in e., 

The generalization of formula (6.10), in the case of strain 

hardening (Pig. 48d), is the dependence 

«t^(t> I  «tv)JI- c*p|-ifr,(f } <Y,W. (6.11) 

in which b - 3els(G0 - G-^, c *  30^ d - G
0/^is^0  - C^).  Con- 

stant e is calculated from the condition that curve [6.11)  would 

pass through assigned point e?, of: 

1 >■$(.--£) X 

>: In l-i.. 
T7» 
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If the body is nonhomogeneous before deformation, then in 

formulas (6.1»)-(6.11) one should consider that GQ * 
Go^r* Y^ 

(elastic heterogeneity). In the case of plastic heterogeneity 

the functions of the radius and z-coordinate will be a, and s 
eis* ^ne modu*us of strain hardening G-f and coefficients b, c, 

d, and e. 

Exponential and the polynomial approximations of the depen- 

dence oAe.)  give good results in the narrow regicii e., and 

therefore they are barely suitable for the solution of problems 

with development zones of plasticity. 

In the given formulas the intersecting shear modulus is 

calculated from the value of the deformation intensity and 

dependence a.«e.). Such a method (unlike determination of G 

from value o. at the point) leads to the best convergence of 

the iterative processes [55]. 

3. Features of the Algorithm 

When using the method of variable parameters of elasticity on 

each step of external iterative process, one should compute the 

values of functions A. (p) and B (p) at each point pk (let us 

recall that the calculation of integral in terms of the radius 

is fulfilled in the program according to 12-nodal Gaussian formula 

so that we have 12 calculated positions). 

The indicated process itself is iterative and consists in the 

following, According to vector Z of the Ritz; parameters and 

formulas (3.2), (2.3), (2.10) and (2.1), utilizing the initial 

e. approximation for A. and B,  at point y    the values er and 

Then according to formula (6.3) and the initial approximation 
'6" 
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v(r, Y)» WS find the deformation intensity. Further we compute 

the shear modulus (6,Z)  and values E and v (6.1), In this case 

the obtained value v will differ from the initial one. In order 

to reduce disagreement, the new value v is substituted into 

formula (6.3), the refined value is determined t±  and E and v are 

again determined. This (internal) process of Iterations is 

finished upon achieving the assigned accuracy, and E(r^, y  )$ 

v(r. , Y ) obtained in summation are stored, 
K   p 

After repeating these calculations for all Y » °y integration 

over Y we determine the values of functions D.- (2.8), and 

according to formulas (2.26) we find the values A. (r.J and 

B. (r. ). However, these values differ from the Initial ones. 

They are again used for the calculation of er and e0 and the 

process is repeated until the assigned accuracy will be achieved. 

Integration over Y if fulfilled by a 6-nodal Gaussian 

formula (precise for polynomials of up to 11 degrees inclusively). 

Fig. 49. 

A flowchart of the calculation of A, and B, is given on 

In the solution of the physically nonlinear problem for the 

first value of the leading parameter, as an initial approximation 

of functions v, A. and B  we take their values for a linearly 

elastic material. Further we use the values v(r, Y), A. (r) and 

B^n(r), obtained for a certain c1, as the initial approximation 

for the solution to the problem with Ci+1.  An experiment showed 

that with such a selection of the jritial approximations the process 

of the determination of v, A. and B. converges on a one-two 

iteration with the permissible relative error equal to 10" . 

Taking into account the geometric linearity, we obtain the 

variational equation from (2.24) by replacement of wp = w + 2w by 
w2 * 2w0' The algebraic equations (3.10) become linear, and the 
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internal iterative process of the general scheme of calculation 

(paragraph 5, Chapter III) is degenerated. The external process 

of Iterations, which corresponds 

to the method of variable 

parameters of elasticity, with 

the permissible error of Ritzfs 
•.a 

parameters of 10  converges 

usually in one - three iterations 

depending on the step Ac 

It follows, however, to 

select correctly the initial 

approximation for the first value 

CQ. If this value is large, and 

the greatly developed plastic 

regions will correspond to it, 

then the process of iterations 

will converge very slowly or 

not converge at all. Therefore, 

it is desirable to choose 5« in 

order that in the shell there 

would not appear plasticity or 

(with the nonlinear dependences 

of rig. lJ8c and d) the values 

e. are small. 

Yesj- 

Ho 

No 
Store 

J 111 
Yes 

jfc^WW 
Yes" 

ß-Af>tä,B-&*>l9 

No 

Store 

12 
Yesi pJo 

Fig.   Ü9. 

10 

The results of the calculations given in this chapter can 

be used only when c < 0.25; with great deflections the effect 

of the geometric nonlinear!ty becomes noticeable. 

In Chapters VI and VII we assign the relative values by 

formulas (3.9), so that unlike Chapters IV and V the parameter 

,J0 ,x0 
of the load is qQ ■ r~~(fp)\ and the stresses are referred to 
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G (fcu/a)2. Further we will use the given deformation Intensities 
0 0      o ° 

u * e^U/hQ)' and the yield deformations u. elsCa/h0)^ 

i». The Elasto-Plastlc Bending 
of Circular Plates 

The problem Indicated in the title of the section is usually 

used for the testing of different methods of calculation. However, 

in spite of the relative simplicity (if applied forces in middle 

surface are equal to zero and geometric nonlinearity is not 

considered, then $ H 0), an exact solution is absent. 

One of the first approximate solutions to problems of 

elasto-plastic bending of freely supported circular and annular 

plates was given by V. V. Sokolcvskiy [100].  In A. A. Ilyushin's 

boci". [42] different methods are proposed, and examples «nd 

approximation formulas are given. Many problerne of the theory of 

circular plates were solved by A. S. Grigor'yev. He performed 

detailed studies of the effect of strain hardening, compressibility 

of material, plastic heterogeneity, and supporting power [32-3**]. 

The most precise results of recent time belonp, apparently, to 

Okhashi and Kamiye [131]. 

The method cf the solution given in Chapter III, in the case 

of small deflections of the plate, is somewhat simplified. 

Assuming in the system of equations (3.10) that k «= 0, 

rejecting the m of equations of the second group and connecting 

equation (3.*0, we obtain n + 1 linear algebraic equations, 

which make it possible to fulfill one iteration of the method of 

variable parameters of elasticity. 

As the first example let us consider the hinged supported 

plate under the action of an evenly distributed load. Let 

12.5, the material of the plate (pure/aluminum) has 

0.3^83 x 10 bar,*.and its properties are 

a/hQ * 

aQ  * 1023 bar, G( 
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0,5 

assigned by formulas (6,8) and (6.9). The parameter ug in this 

case is equal to 0.1530. Source [131] shows that the dependence 

(6.8) clearly coincides with the experimental curve o^(e^).    An 

analysis of data of this work makes it possible to consider that 

K * K0 and take KQ * 2GQ. 

On Fig. 50 the letters H®  (nonlinear physically) mark the 

result [131] of the calculation according to the method [130] 

based on the separation of the elasto-plastic and elastic regions, 

each of which is described by the individual system of differential 

equations. These equations, as 

the authors of source [1301 note, 

are very bulky. Used for *he 

solution are the method of in- 

itial parameters, the numerical 

integration of systems of 

differential equations (Cauchy 

problem) and the dual process of 
iterations. o o.s t, 

Fig. 50. 

The dependence qQ(c), cal- 

culated when n * 4, merge* on 

Fig. 50 with curve H$.  An increase in n does not change the 

result. The horizontal line indicates the maximum load q = 0.748 

which is obtained [36] on the assumption that the material is rigid- 

plastic and incompressible.  It is evident that the curve qQ(c) 

asymptotically tends to this straight line.  It follow, to refer 

to values qQ for c > 0.25 with caution, since in this region the 

process of deformation affects the.geometric nonlinearity. 

Figure 51 shows results of the calculation when n = 5 of 

freely supported and rigidly fastened circular evenly stressed 

plates made from an ideally elasto-plastic material (vQ - 0.3). 

-"■■"■- 

\»*n • j 

-~~~ 1 

  

k   £ 
 1   
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Plotted along the axis of the abscissas is the valus c * C//3Üg» 

and at the axis of the ordinates - qQ » QQ^^S* 
In tnese 

coordinates the curves wh:.ch 

correspond to calculation of 

only the physical nonlinearity 

are obtained unique and do not 

depend on u . According to data s 
of source [3u]> the maximum 

loads q+ for two iidi^ated con- 

ditions of the attachment are 

equal to 2.82 wid 5M.    The 

distribution of zones of plasticity 

for some values of £ is shown on 

Fig. 52. 

0,3 when \i  < u and v * 0.5 when s 

The effect of the law of the change in Poissonfs ratio on 

the dependence qQ(0 can be traced en Fig. 53, on which shown are 

results of the calculation (n * 4) of the bending of a freely 

supported circular plate by a uniform load. Curve 1 corresponds 

to v « 0.5, and curve 2 to v 
u ? V*. The curve obtained from 

the proposed method with com- 

plete calculation of the com- 

pressibility of the material 

coincides with curve 2. The 

assumption about the incompres- 

sibility of the material in 

the elastic and plastic range 

(v m  0.5) leads tc very approxi- 

mate results in the elasto-plastic 

state of the plate, but with the 

greatly developed plasticity 

(when almost in the entire volume of the material v is close 

to 0.5) the error in the determination of the load for the same 

value of deflection is small.  However, at the identical 

if      0.15     0,5 

Fig. 52. 
0,75     p 
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V&TJ* cf the load, the deflection differs. So, if qQ * 0.9^5q+, 

then the deflection in the center calculated with v p 0.5 is 

obtained 3555 greater. The widespread method of the approximate 

account cf compressibility, with which outside the dependence on 

t±  in a plastic state v * 0,5 is accepted, gives the curve qQ(C), 

which barely differs from the precise one. Therefore, when such 

an assumption noticeably simplifies the calculation, it is possible 

to use it. 

If it is necessary to obtain 

a detailed picture of the state 

of strain, all the same one 

should not allow the disruptive 

behavior of Poisson's ratio - one 

of the two physical parameters 

which characterize the state of 

strain at the point. One should 

also take into account that the 

effect of v is explained in only one example. The propagation 

of conclus:ons tc other cases, without sufficient substantiation, 

can lead to errors. In the first approximation, an analysis 

of the effect of different methods of the account of compressibility 

is ^iven in source [70], 

5. The Plastically Heterogeneous 
Circular Freely Supported Plate 

Investigated in source [3^] Is the bending of the plate whos* 

material steel 60,  after the oil quenching, became plastically 

heterogeneous in thickness: 

0%=z.o.,t{\ + I6|yfr; ~0,5<v<0,5. (6.12) 

Here i Q Is the value of the yield point in the middle plane. 

Tresca's flow condition, the ideal elasto-plastic diagram and 

the assumption about the Incompressibility of the material both 
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in an elastic and plastic range are used. The calculations are 

made by the method of numerical integration of systems of two 

nonlinear differential equations. 

Let us solve this problem by the variational method, and 

unlike source [3*0 let us completely take the compressibility into 

account. Let us present Tresca's condition of plasticity in the 

form 

max | Y, |-7f. 

Here y.  is one of the main shears 

Vi-4<S -«*>• V-4-<ev-*,>' Vw4"(«,-«i>.      (6.13) 

value YS * OQTS, and the deformation in the direction y 

is determined f re n the condition 0 = 0. We consider that 

K i K^; we compute the shear modulus according to formulas 

ö~C„ when max| v41 < V» 

6"°*S*X* when maxiv^l>\v        (6.14) 

The relation Gn * <n- » 5
s—, taking into account the fact that 

s     if. - 
with Tresca's criterion 0 - 2x_, gives the  relation Y„ c #£ < 

S     S S   c s 1 
[100].  Thus, the expression ',6.12) corresponds to 

fcföjW*«-16^ (6.15) 

Formulas (6.13)^(6.15) are used in the calculation; it is accepted 

that Ps * 1; vQ « 0.3; n « M. 

On Fig. 5^ the solid line shows the dependence qQ(c) obtained 

by the variational method; the dashed line corresponds to the 
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data of source £3*0. The precise value of the maximum load with 
Q 

plastic heteroger*icy (6.15) is  ~q+  of the uniform plate. 

This coefficient n taken from formula (38) of source [31*]; after 

the replacement oi z by 2y it is determined by expression 

8 /V + lGy^Ydy. 

The value of maximum load 

calculated by the variational 

method consists of 3.0 and only 

exceeds the precise value 2.970 

by 1%. 

Let us recall that the 

maximum load of the uniform freely 

supported plate when using TrescaTs 

condition of plasticity [100] 

ft 

2 

t 

0    ~7~ 2      3     Z 

Fig. 5*. 

/?. 

4\ -jj- 

\\ 
ij 

..,__.«„ 
A          A 

4 

Value 

so that when u 

*-*(#-»$(iM*r-%* 
1 the maximum load 

5^ 1&&/I 3u, m 3) *ä 2 «* 2,593. 

For transition to the hetnfcgeneous plate, this value should be 

multiplied by 8/7, and this gives q+ ■ 2.970. 

Let us note that the complete account of compressibility 

in an elastic and plastic range, simply achieved according to 

the proposed method, makes it possible to obtain a considerably 

more precise dependence qQ(C). The difference between values q 

(with the same deflection), obtained by taking into account the 

compressibility and without taking it into account, decreases in 

proportion to the approach of load to the maximum. 

107 



*mwmmw*m 

It should also be noted that the quantity of precalculated 

Joints taken in the program for a computer, according to thickness 

(six abscissas of the formula for the numerical Gaussian integra- 

tion) proved to be sufficient in order to obtain a high accuracy 

of the value of maximum load, although the plastic heterogeneity 

was changed with respect to y  very sharply. The use of the Gaussian 

formula in   this case proved to be especially successful, 

because its nodes are concentrated at the edges of the interval 

of the argument where function (6.15) is changed most rapidly. 

6. Elasto-Plastic Bending of 
Slightly Curved Spherical Shells 

If relation a/h « 20-30 and e.  « 2»10"3 (aluminum alloys, 

steel), the value of the parameter is obtained close to unity. 

Calculations of slightly curved shells show that the plasticity 

then appears with small deflections C < 0.2!;, and therefore a 

study can be made in geometrically linear setting. The greatest 

load q+ which is withstood by the shell is determined in this 

case by the loss of the supporting power caused by the rapid 

propagation of plastic zones •> the value of function q(c)» with 

an increase in z,  asymptotically tends to the horizontal line 

One should emphasize that values q, obtained for elasto- 

plastic slightly curved shells, in a geometrically linear 

setting, have a conditional nature. An account of the effect of 

geometrically nonlinear terms (Chapter VII) shows that the behavior 

of the plastically deformed shell even with very small deflections 

depends substantially on the load direction. *I?  it is directed 

from the center of curvature, then soon after the development of 

plastic ranges there begins the phenomenon of geometric strain 

hardening - the load Increases together with the deflection, 

although the ..ntire material has already been found in a plastic 
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state. In the case of the load direction to the center of 

curvature, a knock occurs, and q proves to be less in value than 

q+. Thus, these solutions to the problems, only physically 

nonlinear, make it possible to explain the behavior of the slightly 

curved shells in the stage of the accumulation of plastic deforma- 

tions, but they do not make it possible to judge the type of the 

curve q(c) after plastic regions became vast. Therefore, the 

use in this section of  the term "supporting power" is caused by 

tradition rather than the essence of the phenomenon. 

Let us consider results of the calculation of spherical 

cupolas with rigid and free motionless and movable support. We 

take the relative height k « 3» the material to be ideally elasto- 

plastic (Fig. 48a), and vQ P 0.3, 

The supporting power of a shell depends on the boundary con- 

ditions. With a motionless free support and rigid fixing, q+ is 

equal to 19.0 and 18.8, respectively.  The hinge and sealing 

movable in the middle surface cause values of q+ equal to 4.5 

and 8.5. By comparing curves qQ(c) for shells and plates (Figs. 

55 and 51), it is possible to note that the transition from the 

elasto-plastic state to the exhaustion of the supporting power 

in the plates occurs more smoothly than that of the shells. This 

is especially vividly evident in the cases of free support. Then 

in the figure the straight line 

of elastic equilibrium states 

soon after the appearance of 

plasticity sharply turns and 

becomes horizontal, having 

achieved the extreme value of 

the load. 

Sources [35, 36] show that 

the exhaustion of the supporting Fig. 55. 
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power of the freely supported circular plates takes place with the 

propagation of zones of plasticity for the entire upper (~- < 

iy;0) and entire lower (0 < y < -) part of the plate with 

respect to thickness. 

With the bending of slightly curved shells, the propagation 

of zones of plasticity in the limiting state onto the entire 

volume of material is possible only with a very small indicator of 

lift of the shell. The complexity of the stress-strain stato 

of the more slightly curved shells, which is connected with the 

interaction of bending and deformation in middle surface, leads 

to a more whimsical distribution of the zones of the plasticity. 

For spherical cupolas with k ■ 3, these zones in limiting states 

are shown on Fig. 56. Given there are forms of function ffl~i 

reduced to identical deflection in the center. 

& 

A   HVt/a 

0      0,25     0,5      Ü.75    p 

Fig. 56. 

In the first case (Fir- 56a) the reason for the exhaustion 

of the supporting power is ti.e vast plastic zone in the central 

upper part of the plate and the zone near the sealing; they are 

caused by the large radial c mpressive stresses. In the second 

case (Fig. 56b) the limiting state is connected with the bending in 
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the sealing, where the plastic hinge was formed. With a fixed 

hinge (Pig. 56c) plasticity is caused by compressive stresses, 

while with a movable hinge (Pig. 56d) - by powerful extension 

below near the support. 

Let us note that in the cases considered from the onset of 

plasticity up to the limiting state, at not one point did there 

appear unloading, and therefore this calculation, made according 

to the elastic-nonlinear theory, coincides with the calculation 

according to the deformation theory of plasticity. 
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CHAPTER VII 

FLEXIBLE ELASTIC-NONLINEAR PLATES 
AND SHELLS 

1. Basic Concepts and Dependences 

m- The degree of effect of the physical and geometric nonlinearity 

on the stress-strain state of thin slightly curved shells is 

determined by the value of the given intensity of yield deforma- 

tion u , which in a composite manner characterizes properties of s 
the material and relative thickness jf the shel±. With small 

u (e.  or a/h are small) the plasticity begins with such in- 

significant deflections that the problem with high accuracy can 

be considers geometrically linear. If u0 is preat, then even o 

with great deflections the plasticity does not appear, and 

calculations can be conducted by taking into account only 

geometric nonlinearity. These two limiting cases are examined 

in Chapters IV-VI. 

There is great scientific and practical interest in the 

examination of plates and shells for intermediate values of the 

parameter u , when the behavior of the object to an equal degree 

is affected by the physical and geometric nonlinearity. It is 

important, furthermore, more accurately to deter nine which values uc 

can be considered "small" and "large," depending on the form, 

.  ..-.-..■ jr    .    r   ■- 



conditions of attachment of the shell and the load which acts on 

it. Recently problems of such type have received even greater 

attention; however, specific numerical results of accuracy accept- 

able for practice are obtained little. 

Using the variational method described in Chapters II and III, 

let us consider twice the nonlinear problems of bending, stability 

and supporting power of circular plates and slightly curved 

spherical cupolas under vailed conditions of attachment. We 

proceed from the variational equation (2,2*0, which in accordance 

with the general algorithm by the method of variable parameters 

of elasticity we reduce to the sequence of systems of quadratic 

algebraic equations (3.10) and (3.*0.  We solve the problems 

on the computer "Ural-2" by the dual iterative process described 

in Chapter III, 

Below everywhere, except the cases especially stipulated, we 

assign the physical nonlinearity by dependences (6.4) and (6.5), 

considering the material to be ideally elastu-plast;i.c, and we take 

the Poisson coefficient before deformation equal to \>Q * 0.3.  In 

all cases the load is considered to be transverse v/enly dis- 

tributed, although the program makes it possible to perform 

calculations for other forms of loading. 

2. The Bending of Circular Plates 
with Varied Conditions of Attachment 

The examination of the combined effect of the physical and 

geometric nonlinearity on the bending of circular plates was 

initiated to source [129j, where by the finite-difference method 

a freely supported plate under the action of a concentrated force 

in the center is examined.  In sources [1, 69] in the first 

approximation, problems of the action of an evenly distributed 

load are solved, and the principle of possible displacements and 

the assumption about the incompressibility of the material are 
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used. The method, based on the separation of zones with the 

characteristic distribution of the plastic regions each of which 

is described by a separate system of differential equations, is 

proposed in source [130], 

Let us consider a plate with a sliding hinged support of the 

edge. Let a/hQ * 12.5, the material of the plate (pure aluminum) 

has a    * 1023 bar, GQ * 0.3^83-10 bar and its properties are 

assigned by the dependence (6.8), us * 0.1530, KQ - 2GQ. The 

calculation of this plate, without the effect of geometric 

nonlinearity, is made in Section ** of Chapter VI. 

On Fig. 50 the dashed line shows an experimental curve 

obtained in source [131].  Dependence qQ(0» calculated when 

n * 1», coincides with this curve. Line with the mark H#r 

(nonlinear physically and geometrically) is obtained when n = m » 

=5.  As is evident, calculation of the geometric nonlinearity 

made it possible to bring together the theoretical and experimental 

results, especially when t,  - 0.5. 

A plate of the same dimensions but made of soft steel, with 

a * 3110 bar, QQ  = 0.7848-1Q
6 bar and vQ = 0.28, is calculated 

in source [89] with the diagram of Fig. *J8a (authors of source 

[89] reported that the calculations were made with a ■ 31.7 kg/mm" 
2 and not with the value c^ * 3^.5 kg/mm", as indicated in their 

article).  Results of source [89] coincide with the obtained 

variational method.  In the subsequent cases it is accepted that 

the deformation of the edge of the plate in the middle plane is 

absent. 

Figure 57 shows curves plotted according to results of the 

calculation when n *m « H  of freely supported plates with 

different parameter value u ,  The letter 71 marks the line of s 
the linear solution.  The dashed line separates the region in 

IfätiiffiMälta&k^Aii^^^^,.^.,:.,..,.,...,.:■ .■_;. . ....^^Ä.^ü.ifiBi. 



which the plate remains elastic from the region of elasto-plastic 

deformations. The arrows show the points at which unloading 

appears; the continuation of the curves for large £ is plotted 

for an elastic-nonlinear body. 

Similar curves obtained when n *  m « 5 for rigidly attached 

plates are given on Fig. 53. The curve u = 0.2255 corresponds s 
to data of source [90], and it coincides with that calculated 

in the variational method. 

0 0,4 

Fig. 58. 

It is interesting that it is possible to select such a value 

Ms for each o^ Figs. 57 and 58 at which the dependence 50(£) will 

hardly differ from the straight line of the linear solution. 

According to results of the analysis of these curves it is 

possible to establish which values of u should be considered s 
large or small.  In the case of the free support already when 

Ps s 0,25, it is necessary to consider the geometric nonlinearity, 

and when u > 2 it is possible to consider only it. In the case 

of rigid attachment the lower boundary can be left the same, 

but the possibility of not considering the physical nonlinearity 

appears only when u > 10. 
s 
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The distribution of radial stresses referred to G0(h/a) on 

planes Y * ±1/2-of a rigidly attached plate when c » 0.25 (dot- 

dash lines), 5 *  0,5 (dashed lines) and 5*1 (solid lines) and 

when u » 1, is given on Fig. 59. The maximum value of the s 
stresses in the center of the plate (with developed plasticity) 

0 0,2 0,4 

Fig. 60. 

Ofi 0,8 

Figure 60 shows the dependence y(p) of the given deformation 

intensity of a freely supported plate also when u * 1. The s 
dot-dash, dashed and solid lines correspond to values 5 equal to 

0.1*, 0.6 and 0.8. With an increase in £ on the lower (y * 1/2) 

extended surface of the plate the plasticity rapidly develops, 

and when c *  0.8 the plastic region occupies the region 0 < p < 0.76, 

The given data show that over a wide range of values of u 

it is completely necessary to consider the effect of membrane 

forces and deiormatlons in the middle plane (appearing in uniform 

plates as a result of the geometric nonlinearity) on the work with 

elasto-plastic deformations. 
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3. Bending and Stability in Large 
Elasto-Plas.tic Slightly Curved Shells 

The account of geometric nonlinearity with the calculation 

of shells whose material is subordinated to Hook's law makes it 

possible to determine the critical loads connected with the 

stability in general and to explain the effect of the deflections 

commensurable with the thickness on bending. However, as is 

shown in Chapter I, shells with thickness h/R > 1/300 usually 

lose stability in the presence of plastic deformations. This 

leads to the need for solving geometrically and physically non- 

linear problems. 

Furthermore, the use of concepts of a plastic-rigid material 

with small deflections is connected with the assumption that 

the shell does not lose stability up to the exhaustion of the 

supporting power [108, 127].  The calculation of flexible plastic- 

rigid slightly curved shells1 leads to the conclusion that such 

shells already with zero deflection are unstable in general. The 

assumption mentioned becomes unnecessary if we forego the 

plastic-rigid model and consider not only the plastic but also 

elastic deformations. This way gives also the possibility, of 

discovering that shells made from real materials with a linearly 

elastic zone on the diagram a. - e. are stable in general up to 

the load at which the plastic regions occupy almost the whole 

section. 

The joint account of the geometric and physical nonlinear!ty 

makes it possible to study the bending and find the critical loads 

lShIabiy, o. N., Large deflections of a plastic-rigid slightly 
curved spherical shell.  Data of summer school on the problem 
"Physically and Geometrically Nonlinear Problems of the Theory 
of Plates and Shells," Part II.  Tartu, 3966. 
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of flexible shells in the presence of elasto-plastic deformations, 

depending on the value of the given intensity of yield 

deformations. 

Let us consider the results of calculations of slightly 

curved spherical cupolas of different height with the usual four 

forms of attachment, an evenly distributed load, an ideal elasto- 

plastic diagram (Pig. 48a) and vQ « 0.3.  We assign the 

parameter u in the range 0.1-10. The quantity of Ritz's 

parameters is accepted at n a m « k$  since a further increase 

in n and m (for the indicated pc and k - 1-5) did not change the 

solutions. 

Figures 61 and 6? show curves of states of equilibria of 

shells with rigid and sliding attachment of the edge. The 

straight arrows denote the onset of plasticity. The wavy arrow 

on Fig. 62 indicates the value C at which the unloading appeared. 

0 0,8 

Fig. 61. 
Ifl 

An a".".lysis of curves qQU) with different pg leatfs to a 

number of conclusions:. First of all, let us note that each 
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height of the shell corresponds to a definite parameter value 

M * u° at which the plasticity appears for the first time in 
s   s 

the critical state q - q . With uc equal to that indicated or 

larger, the upper critical load is completely determined by the 

shape of the shell, its attachment, and the form of the load 

and does not depend on u0 , i.e., on the plastic properties of s 
the material.  It would be interesting to consider approximately 

the mentioned boundary value p(«  On the basis of the formula 

for the breaking stress of a complete spherical shell a      » 0.6Eh/R 
Hp 

and accepting R 
,0 

a /2H and a  « aQf we obtain p° = fT^2 * *-2k« 

The values of p > which can be determined by the graphs, are 
s 

somewhat higher than those calculated from this formula, but the 

nature of the dependence u (k) is close to the estimate found, s 

With a decrease in u the deflection at which there appeals 
s 

plasticity also decreases. Therefore, the less u , then with s 
less deflections the plastic regions become more developed, in 

consequence of which the value q decreases. 

Lot us examine the three curves qß(c) when k * 3 and p = 1 

given on Fig. 61.  The dashed curve is obtained from a physically 

nonlinear theory not allowing for the geometric nonlinearity. 

Soon after the development of plastic deformations value qn ceases 

to change and becomes equal to the maximum load in connection 

with the exhaustion of the supporting power.  However, an account 

of the geometric nonlinearity (lower curve) shows that in 

actuality the elasto-plastic shell reaches not the maximum load 

but the upper critical load and makes a knock - the sign dqn/dc 

at a certain point of the curve qn(c) is changed and the steady 

states of equilibrium are changed to unsteady.  The zones of 

plasticity in the critical state are shown on Fig. 63. 

Ms 

Calculations show that even with very srall u^ (for example, 

0,1), when the plastic regions prove to be greatly developed 
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already with c s 0,05, the geometric nonlinearity produces a 

decrease in value qQ after a certain greatest value of q * q0, 

Let us emphasize that this occurs 

with deflections C < 0,25, when 

usually the effect of geometric 

nonlinearity is disregarded. 

Hence, there follows the important 

conclusion: the slightly curved 

shells loaded in the direction 

to the center of curvature in 

the development of plastic 

deformations even in the region of 

of very small deflections make 

a knock; the asymptotic tendency of qQ to the maximum load 

(dashed curve on Fig. 61) is not realized. However, one should 

clearly imagine that with loads qQ < q the elasto-plastlc shell 

is stable, since this region corresponds to dqQ/d£ > 0. 

 ur/h . 

Fig. 63 

The upper curve uc ■ 1 and k - 3 on Fig. 61 corresponds to s 
the calculation of the shell under the action of the load qQ <  0 - 

from the center of curvature. Values of c for it should be taken 

with the  "minus" sign.  After the development of plasticity when 

S - 0,2  the curve sharply turns and asymptotically tends to an 

inclined straight line of zero-moment solution for a plastic- 

rigid shell. An increase in the load with an increase in 

deflection is connected here with the ''geometric strain hardening." 

Figure 62 shows that the shell with height k « 3 and sliding 

attachment is stable in general if the value pe is sufficiently 

great.  At smaller values of u„ curves q0(c) have a maximum - a 

knock appears, 

Dependences q_(u_) are shown on Figs. 64 and 65. They are 

obtained as a result of an analysis of curves q0(c) f°
r different 
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Fig. 65. 

forms of the attachment and different values of k and p . On 
s 

horizontal sections curves of value q coincide with values of 
B 

the upper critical loads known for linearly elastic shells. By 

knowing the values k, ug and the type of attachment, according 

to Figs. 64. and 65 it is possible to find the greatest load, 

taking into account the elasto-plasticity and nonlinear effect 

of the deflections commensurable with the thickness. 

4. The Effect of Neutron Irradiation 
on Stability in a Large Spherical 
Panel 

With the irradiation of metal by rapid neutron flux, a change 

in the number of physical and mechanical properties occurs [68]. 

To the greatest degree the effect of irradiation shows up in the 

value of the yield point ap, which increases with an increase in 

the obtained dose, reaching a certain limit. The dependence of 

ag on the total flow is nonlinear.  This dependence for silicon- 

carbide steel A-212V is given on Pig. 3 of source [I13]. 
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If the flow is directed perpendicular to the flat surface 

of the material, then the dependence of the total flow from ;he 

z-coordlnate can be taken [43] in the form 

«VH -4<T«4- (7.1^ 

Let us use formula (7.1) for calculating the slightly curved 

shells [49]. Assuming that ch « 2, NQ = 'M0
19nvt, (a/h)2 * 1000, 

GQ » 0.8*10 bar and vQ ■ 0.3, let us find that the yield point 
is described well by the formula 

0,(7) »(SOOOq: 1800 v) bar, (7.2) 

and the normalized intensity of deformations at th^ mc ..ent of the 

onset of the plasticity - by foriroia 

\\,r"2M  7O.75?. (7.3) 

In'formulas (7.1)-(7.3) the upper and lower signs of the terms 

which contain y  are .elated to cases of irradiation on the side of 

convexity and concavity, respectively. The nonirradiated material 

has a ■ 3375 bar and u_ = 1.405. Let us emphasize that the 
s s 

linearity of formula (7.3) does not create any important 

simplifications on which the possibility of the realization of 

the calculatiun depends,  It is necessary only to assign values 

of rr in six nodes of the Gaussian formula of integration with s 
respect to y» so that ehe analytic form of co^^ntration 0_(y) s 
has no vital importance. 

Thus, in the statement in question the problem of the effect 

of irradiation by fast neutron flux is reduced to the calculation 

of plastically heterogeneous (in thickness) bending of the 

shell made from an ideal elasto-plastic material. 

Let us investigate the effect of irradiation and its direction 

on the behavior of a slightly curved spherical shell k ■ 3 high 

whose edge is rigid or attached in a sliding manner.  Figure 66 
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<5ives curves qQ(c) of irradiated (flow direction shown by the 

wavy arrow) and nonirradiated shells (n » m » '4). The appearance 

of plasticity is noted by dots and unloading - by crosses. The 

dot-dash line shows results of the calculation of flexible linearly 

elastic shells. 

With the rigid attachment 

of edge the irradiation on the 

side of convexity increases 

the upper critical pressure qB 

by 37%>  and on the side of 

concavity it increases it by 

20? in comparison with the non- 

irradiated shell. The direction 

of irradiation with the sliding 

attachment virtually does not 

affect the dependence qQ(c). 

Valut q increases in this case 

by approximately 26$, 

The distribution of plastic 

zones of shells with different 

attachment in states close to 

the critical is shown on Fig. 

67. It is evident that the 

regions of plasticity are 

developed more near the surface 

opposite to the irradiated sur- 

face, which corresponds to the 

nature of the change ii the yield 

point with respect to thickness. 

0 0,5 i.Q 

Pig. 66, 

Fig. 67. 

Figure 68 gives the distribution o in the center for 

different values of c of the rigidly attached shell. The solid 
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lines correspond to the irradiation on the side of concavity, 

dashed lines - on the side of convexity; the dot-dash lines are 

the nonirradiated shell; 3„(Y) are shown by dots. 
b 

Irradiation noticeably affects the stability and stressed 

state of slightly curved shells and can be used as the production 

process which improves the properties of design. If the radiation 

dose is sufficiently large, then the yield point will become 

coi stant according to thickness (the shell will be plastically 

uniform) but greater than that of the nonirradiated shell. The 

calculation of such a shell can be made when u^ * const. s 

The proposed methodology makes it possible to study also the 

effect of other changes in the mechanical properties produced 

by irradiation, for example, elastic heterogeneity GQ S0(Y), 

'0 V(Y). 

Fig. 68 

erwi 
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CHAPTER VIII 

PVIYAMIC BEHAVIOR OF FLEXIBLE 
SLIGHTLY CURVED SHELLS 

Variational equations of the mixed \;ype are a convenient 

apparatus for the solution not only of static, but also dynamic 

problems. The inclusion of this chapter1 into the book has the 

purpose of giving an example of such an approach. Examined here 

is the geometrically nonlinear problem for slightly curved shells 

made from an isotropic material subordinate to Hooke's law. We 

consider the load to be evenly distributed and normal to the 

middle surface but time-dependent. The effect of the force of 

inertia in directions tangent to the middle surface and the 

inertia of rotation of the right section are disregarded. The 

theory is stated for shells with an arbitrary form of the middle 

surface and the algorithm and concrete calculations are given 

for the axisymmetric deformation of slightly curved shells of 

rotation. 

1, Brief Survey of Literature 

We find the systematic presentation of the theory and results 

of a study of the stability of plates and shells with dynamic 

load in the books of A. S, Vol'mir [22] and V. V. Bolotin [12, 13] 

*The material is obtained by the author in conjunction with 
L. A. Starosel'skiy. 
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Let us corn dar only some methods of th*» solution of 

problems of Kie  dynamic behavior of shells, which can be 

described by the nonhomogeneous differential equations 

(8.1) 

System (8.1) is obtained from equatV.-r.s (2.29) if we consider 

constants E, v, and h and in accordance with the d'Alembert 

principle take into account the force of inertia ano attenuation 

along the normal to the middle surface. Here y  is the specific 

gravity of the material, q - the acceleration of gravity, 

e - the attenuation factor, t - tirr;, and the dots above w 

indicate the time differentiation. 

The most widespread method of the approximate transition 

from the problem with the boundary and Initial conditions (3.1) 

to the Cauchy problem consists of the use of the generalized 

procedure of P. F. Papkovich. In searching for the deflection in 

the form of 

»«^««Ifr.» (3.2) 

and accurately integrating the second equation of system (8.1), 

we substitute the expression obtained for 4> and formula (G.2) 

into the first equation, which further according to the Bubnov- 

Galerkin method leads to the Cauchy problem relative to 

functions x.(t).  Such a method (usually with one term of a 

series (8.2*) is used in works of A. S. Volfmir [22], V. V. Bolotin 

and G. A. Boychenko [1*1] and P. M. Ogibalov [86]. The clicking 

of the cylindrical panel, under the action of impact acoustic 

loading, is examined in a one-term approximation in source [31]. 

The ternary representation of the deflection and function of 

forces with the use of the Bubnov-Galerkin method directly to 

system (8.1) permitted V. I, Feodos'yev [111] to solve more 
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accurately the problem of the stability of a slightly curved 

spherical shell under the action of the load q * At. The 

mathematical foundation of the use of the Bubnov-Galerkin method 

in the nonlinear theory of slightly curved shell was given by 

I. I. Vorovich [23]. 

Simlcsis [98] in a one-term and binomial approximation 

investigated the knock of a slightly curved spherical cupola 

under the effect of pressure applied suddenly and also in the 

form of an ideal pulse. The slightly curved conical shell, under 

the action of a pulsating load, is considered as the single- 

degree-of-freedorn system of Pulton [114]. The behavior of a 

slightly curved spherical shell, under the action of a load 

periodic in time^ is studied in source [4l], Used as the 

coordinates were the Bessel functions, the periodic solution of 

the Cauchy problem was sought. The finite-difference method 

for the solution on each step with respect to time of the 

nonlinear boundary value problem was used by A. Yu. Birkgan and 

A. S. Vol'mir [11] for calculating the reaction of a slightly 

curved panel square in design for the linear (with respect to 

time) load.  A similar procedure was used by Archer and Leng [6] 

during a study of the action of the square pressure pulse on a 

slightly curved sphere. Even with a large step on coordinates 

of middle surface, such an approach requires noticeable expenditures 

of machine time. 

One of  the possible ways of the solution of dynamic problems 

of  the theory of flexible slightly curved shells is the use of 

the variational equation of the mixed type and the transition to 

the system of ordinary differential equations with respect to 

time by the method which is similar to RitzVs procedure.  The 

advantage of such a method consists in the simplicity of the 

account o£  heterogeneities of the material and also the algorithm 

of the construction and solution on the computer of equations of 

the problem. 
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2. Variational Equation and 
Transition to the Cauchy Problem 

We proceed from the principle of possible displacements, the 

fundamental relation of which has the form 

—air;.+i/o-;- ((M -°. (8.3) 
•« 

The first component is the virtual work of elastic forces 

which act In the material of the shell. The second term corres- 

ponds to the virtual work of the load and also of forces of 

inertia (applied in accordance with the d'Alembert principle) and 

is dissipative: 

Ä.'f-ÄfSr.flk (8.U) 
I 

I    The relation (6.3), taking into account (2.2*0 and (8.10, reduces 

!    to the variational equation 

~)Jlr "71* ^l*6* °' <8-5) 
For the solution of equation (8.5), In which w and <J) are 

the independently varied unknown functions, it is not possible 

to use directly Ritz's procedure, since this equation does not 

have the form of equality to zero of the variation from the 

functions. Therefore, let us use the method (let us call it 

the method of generalized coordinates) which was used by 

G. A. Marchenko in the investigation of dissipative problems of 

the vibrations of plates,* 

*News of Colleges.  Aviation Technology, 1966, 3. 
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Let us decompose the deflection and function of forces with 

respect to two complete systems of the linearly independent 

functions, subordinate to the main boundary conditions, and we 

will be limited to the finite sums 

(8.6) 

The coefficients x.(t? and yAt)  are unknown functions of 

ti~;e. Substituting expressions (8,6) into equation (8.5), 

performing the operation of variation and equating to zero the 

coefficients of <5x., and 6yi, we will obtain the system of 

ordinary differential equations relative to functions x.(t) and 

y«Ct) 

U(vft     tvft)    BfiXk '■ C!ptjp -   DutXilh •   Qi<?o> 

Cplx,  • F.Pitji     YD?l/x*xt    0. 

J.fr     1.2 it:   p,j     1,2 m. 

(8.7) 

Let us introduce the dimensionless quantifies t ■ t , 

where 

e = e/T, 

t ■ —  ■ l/j!b_t  and the parameter of the load qn(t) ■ 
0   " /:|? 

* q(t)aVEh!i. 

In the case of the axisymmetric Reformation of a slightly 

curved shell of rotation with a thickness of h m  hp{1 + cp), the 

matrices of coefficients of system (8,7) have the form 

6 
t 

o 



A»»83*- fa** (»*. %) Qdo;     Qi^r; [WfQdQl 

I 

(8,8) 

Solving the second equation of system (8.7) relative to y,, 

we obtain 

yf ~ [*rX '* 4-<^X<<>.}v (8.9) 

Multiplying by A~:~ the first equation of system (8.7), 

and designating x. « r, we arrive at the Cauchy problem 

xt-n.   t,*,s~ 1.2 n; p,/*=1.2 m 

(8.10) 

for the nonlinear system of equations of the first order. The 
-1     -1 conversion carried out is possible, since matrices A., and E. 
Ik     JP 

exist if the coordinate functions are linearly independent. 

We will integrate system (8.10) with the initial conditions 

Xi■— 0, Xf rr. () When /rr=0." 

3. Some Formulas 

V/e will obtain precise formulas for the matrix elements of 

system (8.10).  In turning to the problem cf the behavior of a 

slightly curved spherical cupola, let us consider the latter as 

a plate (Ak<J> = 0) with an initial chamber wQ * -k(l - p )» k «= 

* H/hQ and use the coordinate functions given in Table 1,  It 

is easy to note that in this case each of the formulas (8.8) 

can be represented by the sum of the integrals of the form 

/<*.*)- Jo' (1-/)'..'--gf: (2»V!(x'H)ir 
(8.11) 
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Using the relation (8,11) and without discussing the cal- 

culations, let us give the final results for each of the four 

types of attachments. 

1. The fixed attachment: 

M (»). i _,     J4 + 2i.f-?*)!! 

B 

64-2»-f 2ft 

I        f ik 
«* '■•      3 (I ~ v*)       \i -,- k-f 1 i (i-~A) (i+ik-l) ■"*" 

(7 .i. 2i a- 2*)!l   • 

3..- 6:* 
'   2(JT*+2)     (i>&K'TÄ-U ^J+ 
(:L--2*-3;f!    i^^~UrV)(| t % ;-/E-1)JJ, j 

3,-4/rt(/,-p-i)(i -;-v)-2/p|x 

X   ; (/T p_l        /Tp-l/2    !   /.f-p 
■)• - 

(8.12) 

2.    The movable attachment: 

C-l£<M Ixp+D^t^;   Q;^Q-: 

c/ 

j. i!    _ _r _ rv> ^r:>- 

(8.13) 

Matrices D..  of these two forms of attachment are equal 

to g..  (first and third formulas (3,12)) with the replacement of 
1JS 

J  and s  by k and p,  respectively. 

3.     The  fixed hinge: 
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Al? A«\»-.; 

MI- vj      * *      ' * 

I«TV-.; 
rn,--r111. • #in> -rt"1 * 

*L    The mobile hinge: 

ata-neu. 

Ö'*»  ß«ii.  fnj  w^ . 

(8.11) 

(8.15) 

In the derivation of formulas (8.12)-(8.15) there are used 

the approximate relations (1 + cp)^ : 1 + 3cp + 3c*p2, (1 + cp)*"1 

2 2 s 1 - cp + c p,, which when c < 0.2 give an error which does not 

exceed 1%. 

To study the action of pulse loads, it is useful to place 

formula qQ(t) which, without the inclusion of machine logical 

operations, would describe a graph of the type shown on Fig. 69. 

i 

"Vi h 

The function which has the 

values 

¥l  i€f/,./.*«.    (8.16) 

is represented by formula 

F^l"EWwm\'    (8-17) 
Fig. 69. 

in which E(x) is the whole part of the number. 

Let us show that the introduced function possesses properties 

of (8.16).  When t C [0, t^J this is simple to check by substitu- 

tion.  The second condition in (8.16) will be satisfied if with any 
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t, and tp the expression included in the outer brackets is less 

than two. We have 

t + Lßfl/M _ |  ,       *~U     ^ .  , 

4. LnJti *?! -♦-. fa   «r 2 
'l T 'S '• + '* 

The behavior of function F(t) outside the interval [0, t^ + t2] 

does not interest us.  The pulses which are repeated with the 

period t, + t-> can be obtained by making the replacement of the 

variable according to formula 

,,= ,_(,, f/s)E(_l_). (8.18) 

It is obvious that for any zG [0, *]■ there will be t C [0, t + 

+ tp]. In this case, taking into account (8.18), function qQ(t) 

coincides with the right side of (8.17). 

In choosing t2 sufficiently large, according to formula 

(8.17) it is possible to describe the single pulse. 

The construction of system (8.9) and its integration by the 

Adams method are programmed for the computer "Ural-2.ff 

4. The Dynamic Behavior of a 
Slightly Curved Spherical Panel 

Let us check the rate of the convergence of the method 

according to the number of degrees of freedom on a rigidly attached 

shell stressed by a square pulse.  Figure 70 gives the dependences 

of deflection in the center on the time parameter; k = k,  E - 3. 

Even with n «= m * 3 acceptable results are obtained; the data 

obtained with four and five terms of a series for deflection 

and the function of forces coincide on the figure. 
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0 M 
Fig. 70. 

The effect of conditions of attachment on the behavior of 

the shell with the relative height equal to four thicknesses with 

the action of the pulse of 60 * 0.9 is shown on Fig. 71 (n - m = k, 

e  * 3). The shell, fastened by the scheme "fixed hinge," after 

a knock vibrates near the inverted position. With other methods 

of support, after unstressing there occurs the discharge to the 

initial state and damping oscillations near it. 

Unlike the problems of statics, where the concepts about the 

upper and lower critical loads were established, in dynamic 

problems there is no such certainty. Since it is not clear 

which deflections or which state of the shell in time can be 

considered corresponding to the knocking, let us conditionally 

assume that the shell knocks if the deflection in the center C 

reaches a value large in relative height k. The pulse with 

such amplitude and duration, which lead to the knocking of the 

shell,is called critical. 

Or. Fig. 72 (k * ^, n * m = H)  the pulse 45 * 2 is not critical 

for the rigidly attached shell. The amplitude change per unit 

leads to knocking, and the shell is reversed (Cmax 
z  2k),  A 
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similar pattern can be observed 

by varying not the amplitude but 

a pulse duration. 

The dependence of amplitude 

on duration of the critical pulse 

for the rigidly attached cupola 

with height k - 3.8 when e = 0 

and n « m = 5 is given on Fig. 

73 by a solid line. The dashed 

curve is the dependence obtained 

in source [123], and the dot- 

dash curve represents data of 

Archer and Lenp [6], who took 

into account forces of inertia 

in a direction tangent jbo the 

middle surface. The stress 

distribution of this shell in 

z  knocked state is shown on Fig. 

74, where k-3.8;eÄ3in-m*4;£-7.55. Figure Ik  shows 

that the bending stresses predominate over the membrane stresses 

over the entire length of the radius. 

Fig. 71. 
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0 0.$ 
Fig. 73. 

•m 

«n 

1"■«' —« 1 

14. 

M 

Ä VN 
L »t-; 

1    °, h
1 

Fig. 7*. 

The effect of the form of the attachment on dimensions of 

the critical pulse can be traced on Fig, 75 (k * *t, n ■ m = A, 

e w 3). It is interesting to note that the phenomenon oi' 

knocking is especially affected by the boundary conditions 

superimposed on the function of forces (mobility of immobility 

of the edge in the middle surface). At the same time the 

subordination of deflection to the condition of attachment or 

free support affects less the amplitude of the critical pulse. 

1,6       £ 
Fig. 75. 

By comparing curves for the 

fixed attachments and hinge, it 

is possible to see that in the 

range qQ > 100 and qQ < 53 the 

hinged attached shell possesses 

greater supporting power. 

Let us consider the behavior 

of the shell stressed according 

to the law qQ ~ At with different 

proportionality factors X when 

k * 4 and n * m «* 3. With an 

increase in X the load at which 

the shell knocks increases (Fig. 

76). 
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As an example let us also give results of the calculating 

of slightly curved spherical shells of linear-variable thickness 

when A ' 1, k = ^, E » 3, n = m = 3, Ä  shell with thickening 

from the center to the periphery (c ■ 0,2) and vice versa is 
calculated. The critical load for a shell with thickening in the 

center is somewhat higher (Pig. 77). Let us note that the curves 

c » 0 of a shell of constant thickness on Fi^. 77 and A * 1 on 

Fig. 76 coincide with the curve obtained in source [130]. 

% 

60 

40 

20 

0 A 

Fig.  77. 
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