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PREIFACE

'l’hzs FFirst Teclhnical Report describes the work performed on Contract
DALIC15-73-C-0127 on Theoretical Studies of lligh-Power Infrared Window
Materials during tiie period from December 7, 1972 through June 30, 1973.
1‘ The work on the present contract is a continuation of that of the previous

p Contract DAlIC15-72-C-0129.

The following investigators contributed to this report:
Mr. H. C. Chow, research associate
Dr. C. j. Duthler, principal research scientist

Dr. A. M. Karo, consultant, Lawrence Livermore Laboratory,

Livermore, California
Dr. A. A, Maradudin, consultant, University of California, Irvine, California
1 Dr. D. L. Mills, consultant, University of California, Irvine, California

Mr. A, Mcoreira, research associate

Dr. L. ]. Sham, consultant, University of California, San Diego, California

o Dr. M. Sparks, principal investigator

b The material in this report constitutes the final results on the subjects cov-

” ered. The preliminary discussions of the theory of infrared absorption and material
failure in crystals containing inclusions and of the theory of multiphonon infrared
absorption presented in the reports of the preceding contract DAHC15-72-C-0129

4 are superseded by the results of the present report. In particular, the section on

the effect of inclusion of optical absorption in the previous Final Report contained

an error, which fortunately is not of practical consequence. The appropriate value
of reflection is the average value (R ) rather than the perpendicular incidence

value R .
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SUMMARY

Theory of Infrared Absorption and Material I'ailure in Crystals Containing

Inclusions. Two effects of inclusions in or on the surface of infrared-transmitting
materials are to increase the average value of the optical absorption coefficient B
and to cause localized heating that could lead to material failure at high-power
levels. Volume fractions as low as 10-7 to 10_8 of such inclusions can give rise
to a value of the optical absorption coefficient B of 10-4 cm-1, a typical value of

current interest. For various types of inclusions, the frequen:y dependence of B

! . 2 | . .
ranges from increasing as w, to independent of w, to exponentially decreasing

with w. The temperature dependence ranges from independent of T, to increasing
as TP in the high-temperature limit, where p = 2 -4 typically. Simple expres-
sions for the absorption cross section are derived for various cases of practical
interest. The cross sections are used to derive expressions for g for the four
cases of large inclusions of strong and weak absorbers and of small inclusions of
jelectric and metallic particles. The material failure resulting from local heeting
of inclusions is a far greater problem in high-intensity short-pulse systems than in
low-intensity long-pulse or cw systems having the same average intensity. Micro-
second pulses with energy densities as low as a few joules per square centimeter

can cause material failure.

Theory of Multiphon’ 1 Absorption in Insulagng Crystals. The nearly expo-

nential frequency dependence of the infrared absorption coefficient B recently
observed in fifteen crystals up to several i'mes the reststrahl frequency is ex-
plained in terms of multiphonor. absorption processes. The central-limit theorem
is used to reduce the multiphonon contribution to a simple closed form. Tlie theore-

tical estimates for the magnitude of the absorption coefficient, with no adjustable
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paramecters, are also in good agreen.ent with experiment. The temperature
dependence of B at a fixed frequency is shown to be considerably weaker than

B~ Tn-l, where n is the number of created phonons. Higher-order processes

in the perturbation expansion are shown to be negligible for small n, to be com-
parable to that of the lowest-order, single-vertex terins for n = 5, and to domi-
nate for large n in e typical case. Difference processes, in which some thermally
excited phonons are annihilated, are shown to be negligible with respect to the
summation processes in the r.early exponential region. An explanation involving
finite phonon lifetimes is proposed to explain the fact chat the alkali halides show

less structure in the - w curves than do the semiconductor crystals.

Temperature Dependence of Multiphonon Infrared Absorption. Measurements

of Harrington and Hass and of Barker indicate that the temperature dependence of
the infrared absorption coefficient § in the n-phonon region is considerably weaker
than 8 ~ Tn-l, which had been predicted for the high-temperature limit of multi-
phonon absorption. This discrepancy is resolved by taking into account the tempera-~
ture dependence of the phonon frequencies and the lattice constant. The agreement
between the experimental and theoretical results with no adjustable parameters is
good. A new evaluation of the multiphonon sums yields § ~exp(-wT ) directly,

rather than as a sum on n.

Theory of Infrared Absorption by Crystals in the High Frequency Wing of

Their Fundamental Lattice Absorption. We have calculated the frequelicy depend-

ence of infrared absorption in tiie classical limit for an exactly soluble model of a
lattice of noninteracting diatomic molecules, each bound internally by a potential
for which the classical equation of motion can be solved in closed form. Four poten-

tials have been used: a Morgze potential, a potential of the form V(x) = (a /x2 )+ bxz,
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an infinite square well potential, and a triangular well potential. The analytic
results we obtain show that the absorption coefficient for large frequencies associ-
ated with potentials which admit an harmonic appreximation decreases nearly ex-
ponentially over the frequency region covered by recent experiments, with signifi-
cant deviations from exponential behavior at higher frequencies. For the square
«nd triangular well potentials, the absorption decreases like w-z for frequencies

large compared to « characteristic frequency.

Temperature Dependence of the Absorption Coefficient of Alkali Halides in

the Multiphonon Regime. The theory of infrared absorption by an array of inde-

pendent, anharmonic oscillators is discussed. When the oscillator potential is the
Morse potential, the theory provides an excellent description of the temperature

dependence of the absorption coefficient at 10. 6y in NaCl and NaF reported by

Harrington and Hass.

Temperature and Frequency Dependence of Infrared Absorption as a

Diagnostic Tool. Recent developments render untenable a proposed method of

distinguishing between intrinsic and extrinsic infrared absorption on the basis
of the proposed temperature dependence. However, when the proper temperature
dependence of multiphonon absorption is accounted for and the possibility of other

intrinsic processes is taken into account, the temperature and frequency depend-

ence of the absorption of both the best available and intentionally imperfected

crystals should be useful in studying extrinsic processes.

Short-Pulse Operation of Infrared Windows without Thermal Defocusing.

The possibility of transmitting short infrared pulses through materials with little
thermally induced optical distortion is shown to exist. For sufficiently short pulses,
of the order of 10—8- 10-9 sec, the absorbed energy does not have time to thermalize.

Thus, the thermally induced optical disto.tion is greatly reduced.




Sec., A

A, INTRODUCTION

The motivation for this program on theoretical studies of high-power infrared
window materials, which is a continuation of a previous contract DAHC15-72-C-
0129, was the availability of high-power infrared lasers for current Department of
Defense programs and the realization that lack of transparent materials for windows 1
may limit the usefulness of many laser systems. Values of the optical absorption
coefficient B of candidate window materials were needed in order to evaluate the .'
potential performance of the materials. There had been no previous calculations
& of the numerical values of 8 in the highly transparent regions for materials of in-
terest (such as KBr and ZnSe at 10.6ym), and the currently available correspond- ,_il
ing experimental values were of questionable efficacy since they were believed to be

extrinsic (i.e., caused by imperfections that can be removed in principle. ).

The paucity of experimental and theoretical information cn the values of 8
was one of the most pressing problems in the present Department of Defense high-
g ' i power-window programs. It was especially important to know if the values of B
were intrinsic or extrinsic and to have reliable estimates of the intrinsic value of B
before undertaking imperfection-identification. and sample-purification programs
since th»re were many candidate msterials and these expensive programs should be

! undertaken only if there were a good chance of reducing B to the required value. i

3w G D

During the early stages of the previous contract it became increasingly ap-
parent that in order to obtain this information on f, theoretical and experimental
values of B were needed not only at 10.#ygm, but also over a large range of values
of frequencies and temperature. In the intervening eighteen .nonths there has been

considerable progress in our theoretical program and in experimer:dl and theoretical

7
:
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Sec. A

programs at other laboratories. We have explained quantitatively the nearly
exponential frequency dependence of the optical absorption frequency B observed

by Rupprecht and by Deutsch and the substantial deviations from the expected
temperature dependence observed by Harrington and Hass. The calculations are
based o a reasonable model of the lattice with the Born-Mayer interaction poten-
tial. They include the dispersion relations of the phonons, and the approximations
made were shown to be reasonable. The theory of intrinsic multiphcnon absorption
now appears to be complete, and the emphasis of the program has shifted to ex-
trinsic and nonlinear and other high-power absorption mechanisms. Although no
attempt wili be made to review the progress of other laboratories, it should be
mentioned that the Raytheon measurements of §(w) and our theoretical prediction
that there should be no drastic deviations from the extrapolations of the measured
B(w) have settled the question of whether the values of 8 measured at 10, 6 m are
intrinsic or extrinsic for most mateiials of interest and have afforded estimates of
the intrinsic values. With the exception of KC1, the estimated intrinsic values of
BIO. 6 for candidate 10.6pm window materials are well below the lowest measured

values.

A study (Sec. C) of tie effects of macroscopic inclusions in crystals, including
the increase in absorption and damage thresholds, has been completed. A study of
a propused quasi-selection rule for absorption and the first phase of a study of the
effects on abhsorption of parametric processes are nearing completion, and 2 number
of other problems, listed below, are under investigation. The following publications

and reports have been prepared under this and the previous contract:
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M. Sparks and T. Azzarelli, "Theoretical Studies of High-Power Infrared Window

Materials, " Xonics Quarterly Technical Progress Report No. 1, Contract DAHCI15~
72-C-0129, March 1972,

M. Sparks, ""Recent Developments in High-Power Infrared Wisidow Research, " Invited

Talk, 4th ASTM Damage in Laser Materials Sympcsium, Boulder, Colorado, June
i 14-15, 1972,

M. Sparks and T. Azzarelli, " Theoretical Studies of High~Power Infrared Window
Materials, " Xonics Quarterly Technical Progress Report No,2, Contract DAHCI15-
72-C-0129, June 1972,

M. Sparks and L. J. Sham, "Theory of Multiphonon Infrared Absorption," AFCRL
Conference on High-Power Infrared Laser Window Materials, Hyannis, Massachusetts,
; Oct. 30-Nov. 1, 1972,

M. Sparks and M, Cottis, "Pressure-Induced Optical Distortion in Infrared Windows, " i
AFCRL Conference on High Power Infrared Laser Window Materials, Hyannis, Massa-
chusetts, Oct, 30-Nov.1, 1972,

M. Sparks and L. J. Sham, "Exponential Frequency Dependence of Multiphonon Sum-
mation Infrared Absorption, " Solid State Commun. 11, 1451 (1972),

s 5%
et

M. Sparks, "Theoretical Studies of High-Power Infrared Window Materials,' Xonics ‘:'J,
Final Report, Contract DAHC15-72-C-0129, December 1972. ‘

M. Sparks and M. Cottis, ""Pressure-Induced Optical Distortion in Laser Windows, "
J. Appl. Phys. 44, 787 (1973).

M. Sparks, "Stress ~id Temperature Aualysis for Surface Cooling or Heating of Laser
Window Materials, " J. Appl. Phys., in press, September 1973.

A
’ M. Sparks and C. J. Duthler, "Theory of Infrared Absorption and Material Failure in
i Crystals Containing Liclusiors,” J. Appl. Phys., in press, july 1973.

3 M. Sparks and L. J. Sham, "Theory of Multiphonon Absorption in Insulating Crystals,"
; Phys. Rev., in press.

M. Sparks, "Short-Pulse Operation of Infrared Windows without Thermal Defocusing, "
Appl. Opt., in press.
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Sec. A
.' 4 M. Sparks and L. J. Sham, "Temperature Dependence of Infrared Absorption, "
A f submitted to Phys. Rev. Letters,
% C. J. Duthler and M., Sparks. " Theory of Maierial Failure in Crystals Containing
- Infrared Absorbing Inclusious, '™ ASTM 1973 Symposium on Dam.ge in Laser Ma-
4 { terials, Boulder, Colorado, May 15-16, 1973.
3 !_7 M. Sparks, "Temperature and IFrequency Dependence of I.frared Absorption as a
3 é Diagnostic Tool," submitted to Appl, Phys. Letters.
v i‘
r D. L. Mills and A. A. Maradudin, "Theory of Infrared Absorption by Crystals in the
? High Frequency Wing of Their Fundamental Lattice Absorption,” Phys. Rev., in press.
r A. A, Maradudin and D. L. Mills, "Temperature Dependence of the Absorption Coef-
" i‘: ficient of Alkali Halides in the Multiphonon Regime, " submitted to Phys. Rev. Letters.
£
P %_ C. J. Duthler and M. Sparks, "Quasi-Selection Rule for Infrared Absorption by NaCl-
- Structure Crystals," to be published.
E & C. J. Duthler and R. tlellwarth, "Mechanism for Surface Damage in Laser Window
¥ Materials, " to be published.
M. Sparks and H. C. Chow, "Nonlinear Infrared Absorption: Parametric Instabilities g
of Phonons, " to be published. 3
L. J. Sham and M, Sparks, "Explicit Exponential Frequency Dependence of Multi- g
phonon Infrared Absorption, " to be published. §
3

The following topics will be covered in the final report:
e Parametric processes in infrared absorption

o Infrared absorption by imperfections in crystals; ionic impurities, disloca-

tions, band-mode plus impurity mode absorptior, and surface imperfections
e Quasi-selection rule for infrared absorption

e Explicit exponential frequency dependence of multiphonon infrared
absorption

e Numerical evaluation of multiphcnon absorption coefficients

.
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e Explanation of surface damage cones observed in high-power laser
evperiments
e Explanation of well known anomalies in stimulated Raman and
g Brilloain scattering and moving focus filaments _
1 e Relative strengths of anharmonic interaction and higher-order-dipole
‘3 interaction in infrared absorption
! ks
i e Ultraviolet-induced infrared absorption. 3
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B. THEORY OF INFKARED ABSORPTION AND MATERIAL
FAILURE IN CRYSTALS CONTAINING INCLUSIONS

M. Sparks and C. ]J. Duthler
Xonics, Incorporated, Van Nuys, California 91406

Two effects of inclusions in or on the surface of infrared-
transmitting materials are to increase the average value of the optical
absorption coefficient B and to cause localized heating that could
lead to material failure at high-power levels. Volume fractions
as iow as 10-7 to 10-8 of such inclusions can give rise to a value
of the opticai absorption coefficient 8 of 10-4 cm-l, a typical
value of current interest. For various types of inclusions, the
frequency dependence of B ranges from increasing as wz, to
independent of w, to exponentially decreasing with w. The tem-
perature dependence ranges from independent of T, to increasing
as TP in the high-temperaturc limit, where p =2 -4 typically.
Simple expressions for the absorption cross section are derived
for various cases of practical interest. The cross sections are
used to derive expressions for f for the four cases of large in-
clusions of strong and weak absorhers and of small inclusions of
dielectric and metallic particles. The material failure resulting
from local heating of inclusions is a far greater problem in high-
intensity short-pulse systems than in low-intensity long-pulse or
cw systems having t! - same aver~re intensity. Microsecond pulses
with energy densities as low as a few joules per square centimeter

can cause material failure.
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I. INTRODUCTION

The problem of obtaining highly transparent window materials for
high-power infrared laser systems is of considerable interest. L2 In pai-
ticular, there is great interest in lowering the value of 8 for candidate
materials such as ZnSe, CdTe, KC1, KBr, and T1 1173 glass (Ge288b12 Se60 ).
Materials having values of 8 at least as low as 10-4 cm-1 are needed. It has
been shown3 that the absorptio: with 8 decaying exponentially with frequency w,

observed in a number of materiais, ~ is intrinsic and results from multiphonon

absorption.

The present investigation is concerned with another aspect of the problem - -
that of extrinsic absorption by macroscopic inclusions either in the bulk of the
crystals or on their surfaces. The results of this investigation are of practical
interest since it is believed the current experimental values of B for all candi-
date window materials for high-power 10. 6 4m systems are extrinsic. ~' The i
temperature and frequency dej~ndence of 8 derived in Sec. III should be useful

in experiments to determine whether B is intrinsic or extrinsic, especially as

improved materials become available.

Two aspects of optical absorption by inclusions are considered. First,
the spatial average of B is incrcased, thus increasing the overall heating of the
material. Second, the local heating in the region of an inclusion can lead to
material failure. The overall increase in the value of B can cause either

irreversible system failure, such as thermally induced {racture, or reversible

failure, such as thermal defocusing of the laser beam by the heated window. 5L
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For sufficiently large concentrations of inclusions, the localized heating can also
cause considerable optical degradation of the beam. In the present study it is as-
sumed that the corcentration of inclusions is so small that this localized-hecting
type of optical distortion is negligible. However, it shouid be mentioned that scat-
tering may be considerably greater at high-power levels than at low levels as a
resu’t of the scattering by the heated host material near the inclusion. This effect

she -1 he greatest for scattering near the forward angle.

Local material failure at discrete inclusion sites has been observed and studied
by others. &2 In these treatments, which were concerned with metallic inclusions
in glass hosts, the absorption cross section 0, . = (xnaz was used, where €, is
the bulk emissivity of the inclusion material and a is tize inclusion radius. The
resulting errors in O, ps 21 be large, especially for inclurions with diameters
less than the laser wavelength. The heating in transparent hosts of both dielectric
and metallic spherical inclusions will be considered as a function of inclusion radius
and laser pulse length, using more realistic models for the absorption cross section

and for the heat transfer from the inclusion to the host.

Absorption is of greater interest than scattering in the study of high-power in-
frared windows. A value of B = 10-4 cm-l for the absorption coefficient can cause
sufficient heating for the systen1 to fail, for example, by thermal defocusing or by
window fracture. But an equal amount of scattering Bscat = 10-4cnf1 mayv be toler-
able. Thus, scattering wili be neglected here, except tc mention that observation of
the associated scattering may help to identify the absorption mechanism in some
cases. Winsor10 has shown theoretically that scattering, especially in conjunction

with total internal reflection at the host-crystal boundaries, may increase the mea-

sured value of B by increasing the path lengths of the rays in the crystal.
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II. ANALYSIS OF ABSORPTION CROSS SECTIONS

In this section, the absorption cross section of an individual spherical

inclusion of radius a will be considered. The absorption cross section is not

; generally equal to the geometrical cross section 'na?‘. For ka << 1, where
k=2n/ AH , with AH the wavelength of the radiation in the host niaterial; the
value of oabs typically is small (oabs << ﬂaz ). In the case of ke »> 1 and

| €| >> 1, where € = EI/EH , With € and €, the dielectric constants of

the inclusion and host, respectively, the reflection: at the surface of the sphere

is great, which again makes Oabs << 'naz. Exact absorption cross sections

for spheres of arbitrary size can be obtained from the classic result of Mie.u’ 12

The Mie solutions are complicated in general, but reduce to simple results in

the limits ka >> 1 and ka << 1.

For small spheres (ka << 1), the Mie series is well approximated by the

first texm, which yields

12 € ka 9
C = mTa” , for ka<<1, 2.1)
abs 2 2
(en+2) + €y

where € = eﬁ + 1 € - Two limiting cases of (Z. 1) are of interest. For
€ << Eﬂ , which is satisfied for nonmetals at frequencies not too near the

fundamental resonance frequency or the high-frequency absorption edge, ]31

and €y are related by the expression

BI=2an"=: W ’ (2.2)
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where n = ng + ing9 . Using this result to eliminate €Jk in (2. 1) gives

12 n

O'abs = m (ﬁla)‘rraz b GJ << ¢ 0 (2.3)
R

The second limiting case of (2, 1) is that of small metzallic inclusions. The

Drude expression for the dielectric constant i313

2

w
€ = €_ - E , (2. 4) |
€(w” +iwl)

- o a x g Y
o e RS, e Sy £ PTI TN SR 4 LAWY

g where IT' is the electron relaxation frequency (often written as 1/7), €_ is the »-‘
i contribution to € from the core electrons, and wp = (4'n'Ne2/m )l/2 is the plasma !
E frequency, which has a typical value of wp = 5x 10" se.c-l. At 10,6 pm,

E @ =1.9X% 1014 sec-l. There are two contributions to the relaxation frequency I': "
B

13
T e ol
=1 But rSu » where the bulk contribution rBu has a typical value = of rBu |
= 5X 1013 sec . The value of the surface scattering contribution'* I"Su is ~vy/a,

where the Fermi velocity Vg has the value Ve = 108 cm/sec for many metals,

‘ 3 13 -1 1 a8 -
With rBu =5%x10""sec " and vp =10 cm/sec, r“u > rBu for a< ap = 200 & .

L

e e i e
g s

For typical metals at 10. 64 m, wpz >> |w2+ il l , and (2. 4) gives g .“’
2 2 -

€ €, = -~ = - 1-i—1, €. +2 = €4 . 2.5) Pl
i w2+iwI" wz+I‘2 ( - R R *

Both the real and imaginary parts of the dielectric constant are large in magni- 0
tude for small particles of typical metals at 10. 6pm. Substituting (2.5) into

(2.1) gives

TR s e P AT

13




Sec. B

2. . =
Ly 22w wg >> | w +iwl| , (2. 6)

for metals with ka << 1.

Next consider the case of large spheres (ka >> 1). Using geometrical

optics and the identity 1+ x + x2+'“ = (1 -x)-1 , where x = Riexp(-BId),

with R, the internal reflection coefficient and d the distance the ray travels

i

-;. in traversing the sphere once, gives

1
-B;d -B+d -1
0

where R = (|1'p |2 + |rn |2 y/2, with r‘p and r the Fresnel reflection coeffi-
cients for the two polarizations, d the distance that the refracted ray travels

_; through the sphere, and 6 the angle of incidence.

There are two limiting cases of (2.7) of interest. First, for Bla >>1,

which is typically satisfied for metals and strongly absorbing dielectrics, (2.7)

E yields
o = ma’ (1-(R)) 2.8
abs Sl |
b where the average reflection coefficient (R) is defined as

1
GRS = 5 Rd(cosze) p
0

For fa << 1, in the limit of small index of refraction, using | ng -1 | << 1,

R = Ri =, and d = a cosb in (2.7) yields

14




X
ke " g L, Qgiisl =t " o~ X o e (L&
5 e - A i s T ] - O e &4 B i 4
g il e o o B e L L G b B L it i b T = s

— RT— - S . i e A A i ol A e -

R Sy Sk e

Sec. B

=

4
G -3—51778 . (2.9)

As ng departs from 1, Oabs first increases slightly for small In -1 | and
eventually goes to zero when R goes to one. Notice that (2.9) has the same

functional dependence on a as (2. 3), but with a slightly different coefficient.

& For merallic inclusions, a schematic illustration of the absorption efficiency

oabs/‘naz, obtained by sketching the results (2. 6) and {2. 8), is shown in Fig. 1.
The dashed line represents the asymptotic values obtained from (2. 6) with

/ I‘~a-1(for a << ar.). from (2. 6) with 1"~a0 (for arp << a << k-1 ), and

1

from (2.8) (for a >> k ). The extrapolated dashed curve from (2.t} with

a >> ap intersects the dashed curve from (2. 8) at

wpzc(l- ()

% ~ 372 2 (2. 10)
4 12 € W I‘Bu

which occurs near k-l for many metals in the infrared. The solid curve sche-

matically illustrates the results in the intermediate regions a ~ ap and a ~ a .

The dashed curve will be sufficient for the order-of-magnitude estimates of

;1 overall absorption and failure intensity in Secs. III and IV.

| In dielectric inclusions, Bla << 1 typically is satisfied except for very !
strong absorbers with rather large radii. (For example, ,-SIa =1 for BI = 104 m

cm-1 and a = 14m.) For Bla << 1, the absorption cross section is given by }

i (2.3) for ka << 1 and by (2.9) for ka >> 1. Since these two limiting results a :
4 " both are of the form ¢, ~ BI a3. with only slightly different coefficients, the 'i .:
1 approximation @, . = A Blaa. with A the average of the two coefficients, will ‘f
1 be used for all values of ka.

15 1
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Figure 1. Absorption efficiency of a spherical metallic inclusion
as a function of radius.
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g The absorption efficiency for dielectric inclusions is qualitatively similar
&
i to that sketched in Fig. 1 for metallic inclusions, with two exceptions. First,

for ka << 1, (2. 3) indicates that oabs /1Ta2 « a, and the constant region at

small a does not occur for dielectrics. Second, the extrapolated linear region

crosses the large a asymptotic region near BI_I, rather than 'k-l. This can

be seen from (2. 8) and (2. 9), which are valid for a > ﬁ{l and a < Bl-l , 5

respectively. In.some cases with ng-1and n g small, the exact Mie solution

. 2 b
yields O ~ Ta near ka = 1,

For large-bandgap semiconductors, such as AlP, SiC, and ZnS, the dielectric-

T, T ST L TR S A e PR T

inclusion results above can be applied. The absorption by small-bandgap semi-

P

conductors is more complicated than that by dielectrics and metals in general,
and will not be considered explicitly. Problems can occur involving tempera-
ture dependence of the electrical conductivity, increased absorption caused by
free carriers that are created in the absorption process, and the resulting l

thermal runaway. -

et eV . 3 O
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I1I, ABSCRPTION E FFICIENCIES FOR VARIOUS TYPES OF INCLUSIONS

The above cross sections will now be used to calculate properties of the
absorption coefficient for crystals containin various types of inclusions. The
. . . L -4 -1

volume fraction f of inclusions required to make B =10 cm , avalue of

current interest, will be determined.

Consider a sample consisting of a nonabsorbing host material of dielectric
constant € (real) containing NI inclusions per unit volume, each inclusion
having absorption cross section 0, . Multiple scattering will be neglected --

a reasonable approximation for the present case of small impurity concentrations.

The well known result for the absorption coefficient B of the sample is then

3.1)

For small dielectric inclusions, G 2al is given by (2. 1), which when substi-

tuted into (3.1) yields

9n&
B = | B for ka <<1, ¢, %1, (3.2)

2
(€&+2) +€g

where the factor in the bracket typically has a value near unity. The absorption
coefficient in (3.2) is independent of a, but is strongly temperature and fre-
quency dependent in general. If ;31 is controlled by, say, the n-phonon summa-
tion process, then f ~ T in the high-temperature limit, and B decays

: for strongly absorbing

5

exponentially with frequency. Using ’SI = 10 to 104 cm~

inclusions, (3.2) gives B = 10" 4cm! for volume fractions of £ = 107" to 1078,

18
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In the case of large dielectric inclusions, there are two possibilities.

First, for ka >> 1 and BIa << 1, using the geometrical-optics absorption
cross section (2.9) yields B « BIf with a numerical factor near unity, as in

(3.2). For ka >>1 and BIa << 1, (2.8)and (3.1) give
B=‘na2(1-<R))NI=3(1-(R)f/4a, ka>>1, BIa<<l. (3. 3)

The absorpti ' rocificient in (3. 3) is proportional to a—1 for a given value

of f and is generally temperature independent, except near the reststrahl region

where (R) is strongly temperature dependeni. For 1-(R) =1 and a = 1072

to 10_3cm, (3. 3) gives B = 10_4 cm for f in the range from 10‘6 to 10—7.

For large metallic inclusions, the value of (1- (R)) in (3. 3) is small

(< 1/10), since the reflectivity cf metals in the infrared is grear. As a result,
the volume fraction of inclusions for f = 10_4 cm is increased by a factor of at

least ten over the corresponding dielectric case.

Next consider the case of small metallic inclusions. From (2. 6) and (3. 1),

9€H3/2 w2l £
(3. 4)

cw?
P

™
v

This expression shows that B increases quadratically with frequency. For
temperatures greater than room temperature, the electron relaxation frequency
T and hence B increases linearly with temperature having a typical fractional

Bu
ineredse of 1002 per degree Kelvin. With €H3/2 =10, w=w_ /23, and

' T =5x 1014 sec_l, an incluéion volume fraction of f = 4 X 10_8 results in

B = 10-4 cm_l.

19
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The absorption by small metallic inclusions has a peak that typically lies

k
%
K
I

; in the ultraviolet or visible region. w The value of B at this peak is much

greater than the value in the infrared. Thus, ultraviolet and visible measure-
ments of absorption or scattering can be used to verify the source of absorption

by small metallic particles in the infrared.

Consider, as an example, small potassium spheres in KC1 or KBr. 3
F centers can be transformed to colloidal potassium (small spheres) by heating
the rt'ystal.ls"r7 The transformation is enhanced by ultraviolet radiation.

The wavelengths )LO of the peaks for the small potassium spheres in KC1 and

KBr are 0.730 and 0.770 pum, respectively. 18 In the visible and ultraviolet, i
2 b

E ‘ 1"2 << @“, and (2. 1) and (2. 4) give, with k = ny w/c 3
2 2
w w

1 G =tc oy _SED 5 +i pl; )

; €@ € w !
1 f-

B = , (3.5) /
2 2.2 9, 2 |
(w* - «y ) + (I‘wo /) =

wher.:

) 2 9. 3 4

; = Y _ H ™0

3 “o 2¢,t€ ’ B ey B Rva— L

1 HY "o P cw T

Notice that for fairly narrow lines (T’ Z wO/IO =B = ﬁpk at the peak at

@ = @y, and I' is the full line width between the points 8 = -é— B K
P
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3 |7
Dividing Bpk by the infrared absorption coefficient in (3. 4) gives '

4 J"l A

By %o ]

B i 2 2 . (3. 6) :‘I 9

R “R T *

i g

i
; 14 -1 £
3 For A, = 2mc/wy = 0.754m, Ap = 10.6pm, and T = 5 x 10" sec™, | A
3

(3.6) gives i

8 |

B—P-k— - 6.4x10° . (3.7) F

10.6 1

4 -1 . ST | &
n For 8 =10 "cm ~, (3.7) gives Bpk = 6.4 cm ~, which would produce a : &

visibly colored crystal. Uncolored KBr or KCI with ﬁpk <107 em™ would

have 310. 6 <1l.6 X 10-4 cm-l, and the contribution from potassium colloids
to the infrared absorption would be small. Colored crystals could have a

greater contribution to B from this source. It should also be mentioned that
’5' impurities in the form of F centers, which give rise to strong absorption in

1 the visible region, may not give rise to detectable absorption in the infrared.

I
‘% .
* r
E | |1
]




1V. MATERIAL FAILURE FROM LOCAL HEATING

The heating of macroscopic inclusions can give rise to localized regions
of high temperature that can cause material failure when the intensity is great.
This is not a nonlinear effect, but is usually important only at relatively high
intensities. For times short with respect to a characteristic time for heat to
diffuse a distance a, very roughly speaking, most of the energy ahsorbed
by the inclusion remains in the inclusion. Thus, the temperature in the inclu-
sion increases linearly with time. For times large with respect to the char-
acteristic time, part of the absorbed energy has diffused into the host crystal,
and the temperature rise in the inclusion is considerably less than the value
obtained by neglecting diffusion. Thus, a given amount of energy will cause a
| greater temperature rise if it is deposited in a time that is short with respect
to the characteristic time than if deposited in a time long with respect to the
characteristic time; the local heating of macroscopic inclusions is a more
'i" | severe problem in high-intensity short-pulse systems than in low-intensity

long-pulse or cw systems of equal average intensity.

=

,; The criterion for failure of the window material depends on the details of
the laser syste.n and the type of materia. and inclusions. Since there is no

‘ universal criterion, it will be assumed th... a temperature rise of 1,000 K

constitutes failure. This is a reasonable choice for the following reasons:

This temperature is approximately the correct value for melting temperatures

and fracture-inducing temperatures. The latter have typical values of the order

0f18--/.00f /0 E, where Of is the material strength, o the linear thermal expan-

sion coefficient, and E the Youngs modulus. For Op = 105 psi, ¢ = 10 ~ and
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E = 107 psi, the temperafire corresponding to fracture is 1,000K. Heats of
fusion have tvpical values corresponding to several hundred degrees Kelvin.
At 1, 000K above ambient temperature in materials which do not melt, the
jonic diffusion may be important. Although order-of-magnitude accuracy in
temperature usually is not sufficient, order-of-magnitude accuracy of intensi-
ties corresponding to failure is all that can be expected at present, and this is
often adequate. Since the present interest is in this failure intensity If , and
the failure temperature 'I‘f is linearly related to If. the value 'I‘f =1,000K

should be sufficient for present purposes.

Two important features of high-power laser-window failure are that failure
of the weakest part of the window can constitute system failure, and that fatigue
and other multiple-pulse effects must be considered when repeated pulses must
be withstood. Concerning the former, a single inclusion in a window conceivably
could cause failure. As an example of the latter, in a single-pulse measure-
ment, a laser glass conceivably could melt locally and recrystallize without
leaving detectable damage. For a window in a pulse-operated system, the local
absorptio: coefficient could be changed by the high temperature associated with

the first pulse or the first n pulses, thus causing increased absorption in sub-

sequent pulses with eventual failure.

Bloembergen21 has suggested that local field enhancement, such as that
occurring at the edge of a crack (n a material, may give rise to local intensi-
ties up to 100 times greater than the nominal external intensity. Thus, if an
inclusion is in the high-intensity region, this effect could lower the failure in-'
tensities calculated below by a factor of the order of 100. Local field enhance-

ment can also occur when one inclusion is at the focal point of anothe. Since

23
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focusing is limited by diffraction when ka < 1, the focusing by large, weakly
absorbing inclusions is most severe. Focusing by surface imperfections also

could occur.

e s a3

. T ST ST SR S A

The temperature rise below the melting point can be calculated simply for
the following model. The spherical inclusion of radius a is assumed to have
temperature-independent values CI and KI of heat capacity per unit volume
and thermal conductivity. The host crystal is assumed to have temperature-
independent values CH and KH . The boundary between the two is assumed to
be thermally perfect ; that is, there is no thermal impedance. lleat absorption

by the host crystal is assumed negligible. The relaxation time required to

hl

:
E

transfer energy to heat from the modes that absorb energy is assumed to be

much shorter than the laser pulse duration.

Simple solutions to the heat-flow equation

K92T + C a-?-: S (4.1)

will be derived for a series of limiting times for the cases of uniform heat gen-
eration within the volume of the inclusion and of uniform heat generation over

the surface of the inclusion. In (4.1), S is the rate at which heat is generated

per unit volume,

First consider the case of spatially uniform heat generation within the

inclusion at the rate

3
= /
S=30, 1/4ma (4.2)

A R T T R T

i per unit volume, where I is the incident intensity. This applies for dielectric

inclusions with BIa << 1 or for metallic inclusions with skin depth 6 > a.

k 24
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Roughly speaking, the thermal time constant

T = Ca’ /4K (4.3)

is the time required for heat to diffuse a distance a in either the inclusion or 3 R
the host when the appropriate values of C and K are used. Subscripts I and H
will denote the values of T in the inclusion and in the host crystal, respectiively.
For short times t << T, the diffusion of heat out of the inclusion is negligible.
The term KIV 2 T in (4.1) is then negligible. The temperature at the center of % :

the inclusion is, from (4.1) and (4. 2),

_ 3 .
T, = 30, It/4ma"Cy , for t << T, (4. 4)

for T defined as zero at the time the laser is turned on (t=0).

For long times t >> TI' TH , equilibrium is reached with the host material

conducting heat away from the inclusion at the same rate that it is generated

within the inclusion. In this case the temperature is obtained by solving (4.1)

AR e na

By s PR Liar P ot AR bl ot
b el L~ st L s e a
5 oty e i =

with 3T /3t = 0 in both the inclusion and the host. Using V2 r2 =6,V % (1/r)=0
for r> a, and the boundary conditions that the temperature and the heat flow
be continuous at the inclusion surface, yields the steady-state value at tl.e in-

clusion center.

30 I
abs 1 _ 1 (2 1 )
T w = WAl E = | 7— + . (4.5)
C 81'raKeff Keff 3 KH KI

For short and long times, the temperatures are approximated by (4.4) and

(4.5), respectively. These are shown as dashed lines in Fig. 2, while the actual




r —_— == = — 1
: Teool
4 '_u
E [ |
2
o
| .
@
a |
E
)
'_
Teff

Figure 2, Temperature at the center of a spherical inclusion as a function

of time in ihe case of volume heating.
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temperature is sketched as the solid lirc, The extrapolated short-time curve

intersects the steady-state value at the time T

ir = (2K[/K g) T, which is

found by equating (4, 4) and (4. 5).

Next consider the case in which the heat is generated near the surface of

the inclusion, rather than uniformly throughout its volu:xe, Such is the case
for metallic inclusions in dielectric hosts, where a typical value for the skin
depth 6 is 40 A (Cuat A =10.6pm ),13 or for dielectric inclusions with

BIa >> 1, where I/BI is of the order of 10-3cm for strong absorption.

For spherical inclusions with radius a >> 8, it is assumed that heat is
generated uniformly within a layer of thickness 0 over the entire surface of
the inclusion. This is a good approximation for a << A because the electric
field is nearly constant over distances of the order of a.  In general,
there will be local hot spots over the surface -- not only on the front surface,

but also on the rear surface.

Th.ere are three characteristic times of interest, First,
T, = 4C 62 /1K (4. 6)
) I I ‘

is roughly the time in which heat diffuses out of the skin depth, assuming negli-
gible diffusion into the host for small time, since KH (dielectric) << KI (metal).

Second,

_ 2
T, = 4Cja" /91K, (4.7)

is the time in which heat diffuses from the inclusion surface to the center,

roughly speaking. Third,

i
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is roughly the time in which heat diffuses a distance equal to the radius of the
inclusion into the host. The values of the numerical coefficients in (4. 6)-(4. 8)

are chosen for later convenience.

For t << s and 6 << a, the spherical shape of the inclusion surface
is not important, and the solution to the simpler problem of heat generation in
| a thin plane slab can be used. In this case, the temperature is obtained from
the Laplace-transform solution of (4. 1).22 The solution to the transform equation

at the inclusion surface is

T(x=6,p) = =

I
| C VT K +/C K, p®

1/2
where q = (p CI / KI) / . Taking the inverse transform and keeping only the

dominant term for t small yields the temperature at the inclusion surface

vC: K Io Io

T. = 1 11 abs ¢ = abs

S C 2 B 2
I (»fCIKI +@HKH) 4ma” o 4ma GCI

s t<<1'6 . 4.9

In (4.9) and in the equations below, the approximate equalities are valid for

CiKy 2> CyKy .

problem can be approximated by a delta-function source at x = 0. Using the

For s <L 7 Tar the heat generation in a plane-slab

method of Laplace transforms and keeping the dominant term for small t
yields

Io
T = 2 abs tl/2 ’

S /1 (/K +/CK)) 4122

s Kt << Ta * (4. 10)
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A 1
When t >> T,» -ne temperature inside the spherical i:iclusion reaches a
" spatially uniform value. The present problem then is equivalent to uniform
heat generation within an inclusion of infinite conductivity and the previous
result (4. 4) can be used to obtain
. - 3lo,, t
T. = _____;bs 1 T, << t<<Ty . (4. 11)
; 4ma CI i
¥
For t >> Ty » the temperature inside the spherical inclision reaches 2
an equilibrium value that is spatially uniform. This case is again equivalent
" to uniform volume heating within an inclusion of infinite conductivity, and (4. 5)
- ylelds .
. Io
E B abs
-;;‘ 1 = T > . .
Tse = 77 R g (4. 12) 4

The temperature at the surface of the spherical inclusion is sketched in

Ea IR S

, Fig. 3 for the various time regimes in (4. 9)-(4. 12). The extrapolated low-

temperature linear time-dependent section of the curve intersects the t L i

'

/3

3 curve at the time s = Tg» at which time the temperature is 1
. Ido,, 1 vCi K _ 16 Oobs -

0 22 K (VER+/C Ky)  nlalK, :

1/2 . . .
At t = ts the extrapolated t / curve intersects the second linear region.
The temperature at this intersection has the value

T = Icrabs cI o Icrabs

a 2 2 2
3n a(/CHKH+JCIKI) 37" akK

(4. 14)

I
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Figure 3. Teraperature at the surface of a spherical inclusion as a function 3
of time in the case of surface heating. ;
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and the value of ta is

t = 1 = 7 (4. 15)

a > )
97 ( C“l\H +\/C1l\1)

a

At the time toq = (CI/CH) Ty o the extrapolated linear curve crosses the
equilibrium value given in (4. 12).

Consider the effect of inclusion size on the failure intensity If . 'The various

time regimes in Fig. 3 depend on inclusion size in such a wav that if the pulse

length is fixed, long times in the figure are associated with small inclusions.

For example, the time teq at which the temperature reaches equilibrium is

equivalent to an inclusion of radius aeq = (3 KHt/CI) 1/2 for a pulse of dura-

tion t. The temperature is then given by (4. 12) for a < aeq' Similarly, the

time t, in Fig. 3 corresponds to a size a, = (97 Klt/4CI)1/2, and the tem-

perature is given by (4.11) for aeq <a< a . Next, the time tg is independent

size and is determined by the skin depth and thermal properties of the inclusion.

cf

In the case of metallic inclusions, tg is typically of the order of 107" sec,

which is much less than most laser pulse durations of interest. Hence, the first
linear region in Fig. 3 given by (4. 9) does not occur, in general, and for a = a,

the temperature is given by (4. 10). To determine the temperature in a pulsed

system as a function of the inclusion radius, the dependence of Ops O0 2 in

(4.9)-(4. 12) must be included. In the case of metallic inclusions, the dashed

curve of Fig. 1 is used as an approximation for 0, For a given type of in-

clusion in a particular host, the radii ap and a, at which the functional de-

pendence of the cross section changes are independent of the pulse duration,

while the radii a and aeq are both proportional to tl/ and decrease with

decreasing pulse length.

31




which can

There are six combinations of the sequence of ar » s at . aeq
occur for different pulse lengths, The temperature as a function of inclusion
size is sketched for each of these cases in Fig. 4, with the pulse duration de-
creasing in going from A to F. For a given type of inclusion, the curves C

and D cannot both occur. The applicable case will depend on the relative size
of ratios a, /aeq and ay /ar .

Consider the example of metallic inclusions with the laser wavelength

15

equal to 10.6um. Using the typical values wp =5x10 sec_l, I"B 8

=5% 10
u

-1 _ 32 .. . B .
sec , (1-(R))=0.1, and €y = 10 in (2.10) vields a = 4um. A typical

value of ap is 200 k. Using CH = CI = 2J/cm3K, KI =2W/cmK and
5

KH = 10-2 W/cmK, these typical values indicate that aeq = a when t = 10

sec, a, = a, when t =2X 10-8 sec, a = a2+ when t=3X 10_10 sec, and
t k eq T

a, = ap when t=6X 10_13 sec. Hence, curve A applies for t < 10-5 sec,

that is, in the range of cw or millisecond pulses. Curve B applies to micro-

second pulses, curve C or D to nanosecond pulses, curve E to picosecond

pulses, and curve F to subpicosecond pulses.

The maximum temperature for a micro second duration pulse occurs for

< < in Fig. _ \ .
aeq a a, in Fig. 4B, where aeq 1 ym using the above parameters
For radii in this range, the temperature is given by (4. 11), which is evalu-
ated at a = a, using the absorption cross section (2.8). With the above values

in (4.11), the failure temperature of 1,000 K occurs for a pulse energy of

N 2T . e :
3] /cm® with micron-size inclusions.

With a nanosecond duration pulse, the maximum temperature again occurs

near a = ay in Fig. 4D and is determined from (4. 10). In this case, the

failure temperature occurs at a pulse energy of 2] /cm2.
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4 Next consider a cw system with I = 300 W/cmz, an intensity which is

4 equal to the average intensity of a repetitively pulsed system with a pulse

| energy of 3] /cm2 and a 100 pulse/sec repetition rate. In this cw case, the
temperature of an inclusion with a = a, is determined by (4. 12), which yields

. a temperature rise of less than 1K above ambient. Hence, the pulsed system
would fail on a single pulse, while the cw system of the same average intensity

would have a negligible temperature rise.

At laser wavelengths other than 10. 6um, the various curves of Fig. 4
correspo.ad to pulse durations different from those listed above. Consider the
case of platinum inclusions in a glass host with A = Ipm. Fitting the Drude
expression (2.4) for the dielectric constant of platinum to tabulated values of

the refractive index23 yields the values for the parameters ¢ wp , and If}u’

-1

which together with €H3/2 = 3 when substituted into (2. 10) gives a = 400 A

k- for platinum inclusions in a glass host. In this case, using K; = 0. 7W/cm2 )

-2 3 3
KH =1.3x10 “W/cmK, CI =2,8] /cm” K, and CH = 3.8]/cm K’aeq=ak

when t = 10-9 sec. Hence, curve A applies for pulses longer than a nano-

second duration, and the maximum temperature Tmax occurs at a = aeq :
This example with a pulse energy of 20]/ cm2 and a pulse duration of 30 nsec

has been considered previously by Hopper and Uhlmann.8 With this pulse

o duration, T occurs at aeq = 0.2 um. Using (2.8) with (1-(R))=0.2 at 4

4

this wavelength, (4.12) yields Tmax =5x 10K, These results are in rea-

sonable agreement with results shown in Hopper and Uhlmann's Fig. 3, which
presents a plot of T versus a that agrees with Fig. 4 A only for the region

ay <a< a, = 2.3um. In their curve, a maximum temperature of T=2.5X 104
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occurs at a = 0.2 um, the difference in temperature resulting from th
extrapolations made in curve A. In the region a < a, , their results are not

i |18 . . 2
valid since the incorrect cross section Uabs = Gx'rra was used.

In the case of dielectric irclusions, volume heating is used for BIa <1,

and surface heating is used for BIa > 1. The time L separating the two
regions of Fig. 2 given by (4. 4) and (4. 5) corresponds to a radius a_ ¢
= (2 Keff t/ CI )1/2 for a pulse of duration t. In the volume heating range
with BIa < 1, the absorption cross section is proportional to a3 with
slightly different coefficients for ka << 1 in (2. 3) and for ka >> 1in (2.9).
Using Oups & a3 with the average of the two coefficients for the entire
volume heating region, (4.4) gives TC = aO for a ¢t <a< BI-I and (4. 5)
gives TC o a2 for a < acff where it is assumed that BI < k. These results
¥ are sketched at the left side of Fig, 5.

For surface heating of strongly absorbing dielectric inclusions with

3emL, a! = g4 e K I¥arrdd K, = 102 W/emK, T4 is of the

f order of 104 sec. This value is much greater than pulse lengths of interest,

B=1/6=10"cm"
and the first linear region of Fig. 3 given by (4. 9), which was only of academic
interest for metals, is now the only surface heating region that applies. Be-
cause Bla > 1 for surface heating and generally ka :>> 1, the absorption cross
section is Oabs = (1-(R)) ‘naz, according to (2. 8). Substituting (2. 8) for

c into (4.9), the surface temperature is independent of a. This is sketched

abs
at the right side of Fig. 5 for BIa > 1,

<1 Fig. 5 the maximum temperature occurs for a ¢t <ac< l/BI. Using

= 0.8 6Ina3, CI = 2J/cm3K, and BI ranging from 10 to 104 cm_l. the

B 0abs
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failure temperature of 1,000K occurs for pulse energies ranging from 0. 3J/cm2

72
[0
%
=
B ,i.lk-!ﬂ;n'—ﬁ.éﬁ‘fim s :

to 300] /cmz. For microsecond duration pulses a,ff is of tne order of 10_4 cm, 4 '

I

and for nanosecond pulses is of the order of 300.3. , where Keff = 10_2 W/cmK

VRS 1o

is used.

Many other examples, in nearly every case of practical interest, could be
derived using the simple results developed above. The extrapolations from the
simple limiting cases to the intermediate regions, such as using the dashed
rather than scolid curve in Fig. 1, tend to overestimate the temperature, or

underestimate the pulse energy at the damage threshold, but only by factors

s = e T R I St

typically of order 2.
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V. CONCLUSIONS

Simple limiting expressions for the absorption cross sections of inclusions

derived in Sec. II are used in Sec. III to obtain expressions for the optical ab-

sorption coefficient 8 for the cases of large (ka > 1) and small(ka < 1) dielec-

£ tric and metallic inclusions. For various types of inclusions, the frequency

dependence of f ranges from increasing as w2, to independent of w, to expo-
nentially decreasing with w. The temperature dependence ranges from inde-
pendent of T to increasing as TP in the high-temperature limit, where p = 2-4
typically. The examples in Sec. III illustrate that for strongly absorbing dielec-
tric or metallic inclusions, impurity volume fractions as small as f = 10-8 can
result in infrared absorption coefficients of the order of 10 *cm™!, which are
currently observed. The impurities are not necessarily limited to the bulk of
3 the crystal, but may be on the surface as would occur for a surface contam-

inated by polisiting compounds, which generally have large absorption coef-

ficients.

In Sec. IV failure due to local heating of dielectric and metallic inclusions
in pulsed anc cw sysiems is examined, and schematic results are given for
3 many limiting cases. Local heating is a 1ar greater problem in short-pulse
systems than in long-pulse or cw systems having the same average intensity
as the short-pulse system. In the case of micron-size metaliic or dielectric
inclusions, pulse energies of a few joules per square centimeter are sufficient
to cause local damage. In special cases where the inclusion is adjacent to a
crack or other imperfection or near the focal point of another inclusion or
other imperfections, the damage thresholds could be lower than our calculated

values by as much as two orders of magnitude.
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v C. THEORY OF MULTIPHONON ABSORPTION IN INSULATING CRYSTALS*

M. Sparks
Xonics, Incorporated, Van Nuys, California 91406
and
L. J. Sham
University of California, San Diego, La Jolla, California 92037, and

Xonics, Incorporated, Van Nuys, California 91406

The nearly exponential frequency dependence of the infrared
absorption coefficient f recently observed in fifteen
crystals up to several times the reststrahl frequency is explained in
terms of multiphonon absorption processes. The central-limit theorem
is used to reduce the multiphonon contribution to a simple closed form.
The theoretical estimates for the magnitude of the absorption coefficient,
with no adjustable parameters, are also in good agreement with experi-
ment. The temperature dependence of B at a fixed frequency is shown
i to be considerably weaker than 8 ~ Tn-l, where n is the number of
created phonons. Higher-order processes in the perturbation expan-
i sion are shown to be negligible for small n, to be comparable to that
of the lowest-order, single-vertex terms for n = 5, and to dominate
for large n in a typical case. Difference processes, in which some
thermally excited phonons are annihilated, are shown to be negligible
with respect to the summation processes in the nearly exponential
region. An explanation involving finite phonon lifetimes is proposed

to explain the fact that the alkali halides show less structure in the

B -w curves than do the semiconductor crystals.
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I. INTRODUCTION

:
i
¥

The intensity I of infrared radiation propagating through a solid typically
decays according to Beer's law, I = I0 exp(-Bz), where B is defined as the

optical absorption coefficient. Extensive experimental and theoretical studies

= Y T

s SR e
i B sl b i S Rl
s
P T e i I T T T . - -

have been conducted on the absorption due to phonons in insulating or semi-
conducting crystals. Refs. 1-4 represent some recent reviews on this topic.
The main interest has been focused on the two-phonon region where B>> lcm_l,
and particularly on the structure of the frequency dependence that determines
the critical points of the phonon spectra. 2 The availability of high-power
infrared lasers has shifted attention to higher-order phonon processes, where
B << lcm-l. Not only the positions of the multiphonon peaks are of interest,

but also the magnitude of 8 is of great importance now that high intensities

are available.

SR

6,7a,7b

It has been observe't that for frequencies w greater than several

times the reststrahl frequency w £ the optical absorption coefficient varies

nearly exponentially vrith frequency,

B~ exp(-Aw) , (1. 1)

e BT AR R34 TP i« s
G e g B B e
e e R PR S\ :

for a number of crystals including LiF, NaF, NaCl, KCI1, KBr, MgF2 ; CaF2 .
BaF2 , SrF2 » MgO, A1203, 8102 - TiO2 , BaTiO3 , and Sr’I’103 . This is true for
B <10 cm_1 and w 2 2 Wy roughly. In NaCl at room temperature, for instance,

T S T S TP e ey

B decreases nearly exponentially for over four orders of magnitude as the fre-

quency increases from 2,2 we to 5.8 We, as shown in Fig, 1.
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Figure 1. Experimental frequency dependence of the infrared absorption coefficient § for
NaCl after Horrigan and Deutsch (+,® ) Ref, 7, Smart, et al (—-—) Ref.7a, and Genzel (—)

Ref. 7b.
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At first sight, the nearly exponential behavior might suggest the form
B ~ exp (-h w/ kBT). However, the room-temperature values of the coeffi-
cient A in (1. 1) differ by factors of 2 -4 from the value of fl/kBT. Further-
more, the temperature dependence p of B, though not extensively studied to date,

appears to be less strong than exp(-f w/kBT).

In this paper, an investigation of the optical absorption by multiphonon
processes is presented. It is shown that the sum of n-phonon summation pro-
cesses is apsroximately exponentially decreasing with inc reasing frequency
over the frequency range of interest, i.e., about 2 W~ 7Twe, typically. As
illustrated in Fig. 2a, we consider the n-phonon summation process in which
the photon is absorbed by the crystal through the virtual excitation of the funda-
mental reststrahlen mode which finally emits n phonons. In other words, the
electromagnetic field drives the fundamental mode (off resonance since w > W £ Yy
whose relaxation time is determined by the sum of all possible processes of
splitting into n normal modes of lattice vibrations. The Lax-Burstein-Born
higher -order dipole-moment mechanism9 is not considered explicitly, although

most of the analysis still applies to that case.

By energy conservation, the energy hw of the photon absorbed is equal to
the sum of the energies of the n final-state phonons. It follows that the n-phonon
summation process cannot contribute to § when w > n wgr , where wgr is the
greatest frequency of the phonon spectrum. For W << n wgr , the contribution
Bn of the n-phonon summation process to B is small because the low frequen-
cies of the final-state phonons greatly restrict the amount of phase space avail-

able. Thus, ﬁn must peak at a frequency not far below nwgr . As n increases,

45

L e S L o oy e a L AR

o igial




G il s St
Sec. C

Figure 2, n-phonon summation and confluence processes,
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the peak shifts to higher frequencics and decreases in height since higher-order
phonon processes involve weaker coupling coefficients. The sum of the Bn then
has a frequency dependence nearly exponential in the experimental {requency
range. This behavior of the Bn and the sum of the Bn is demonstrated expli-

citly in Sec. VI.

4. preliminary account of these results has been published. 10 Subsequent
invesrigations are discussed in Sec. II. The exponential frequency dependence
of the absorption was fii1st suggested by Rupprecht6 to be due to n-phonon

processes, although he did not investigate the theory in detail.

In Sec. II, formal expressions for the contribution to f due to multiphonon
processes are given. A practical approximation for the anharmonic coeificient
is chosen. In Sec. IlI, an asymptotic approximation for evaluation of the
n-phonon contribution is developed. In Sec. IV, confluence phonon processes
are shown to be unimportant in the nearly exponential region. In Sec. V, all
possible processes that convert the fundamental phonon to n phonons are ex-
amined, and the contributions of vertex corrections are estimated. In Sec. VI,
the explicit evaluation of Bn is described, and comparison of theory with experi-
ment is made. In Sec. VII, a summary of all the assumpations and approximations
that have gone into the theory is given, and the relation of a computer-calculation

program to the present results is discussed.
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1. ANHARMONIC CONTRIBUTION TO THE ABSORPTION COEFFICIENT

The infrared radiation perturbs the insulating crystal by excitation of the
dipole moment of the crystal by the oscillating electric field. The absorption
coefficient is simply related to the imaginary part of the electric susceptibility

by

Blw) = 4mx (w) w/n c , 2.1)

where c is the speed of light and n. is the refractive index at frequency w.

3,11
The susceptibility, in turn, is just the linear response of the dipole moment.”’

In an anharmonic crystal, the dipole moment can be expanded in powers of the
SR 12 : . .

ionic displacements. For infrared-active crystals, the leading nonzero
term is linear in the ionic displacements. The nonlinear terms (the dominant

mechanism for infrared absorption in such non-infrared-active crystals as

diamondg) are probably small in polar crystals, especially in alkali halides,13’ 14

and shall be neglected in this work. However, there are contrary conclusions.15
Then, the absorption coefficient is given by the imaginary part of the Green's
function of the fundamental mode 2513

41 Ne*2 6 welw

emen 8w w ) [, T ()

where N 1s the number of unit cells, § the volume of the crystal, e* is the Born
effective charge, m, the reduced "nass of the two ions in the unit cell, and T is

the energy relaxation frequency of the fundamental mode (equal to twice the I' in

13
R. A. Cowley's notation ), The real part of the phonon self-energy is understood to

have been included in producing the renormalized reststrahl frequency £ and its

frequency dependence is neglected in Eq. (2.2). A simple classical model of a
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unit time of a transition betwen twy states is 27 /% times the product of the
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] harmonic oscillator (the fundamental lattice mode) driven by the applied electric -‘
field gives (2.2), but with f1" replaced by wI" in the numerator and denominr::n;or.12
4 The contribution I‘n from the n-phonon summation processes to I" can be calcu-
',_ lated by applying16 the standard perturbation-theory result that the probability per

square of the matrix element and the energy conserving delta function, giving

N 2m 2 :
Tn(u)-;l-z-(n+l) nt 2 A Qn)l A(Z‘ 9 bw- z u,QJ)n :

1 1
2.3)

R SR T S

el it o S TR S R e NS 2 A T N el L A S ;.%.Mm ;
e Tl ot a
2 v ¥

Furthermore, A(fQ 1’ Qn) denotes the renormalized n+1 phonon vertex,

: ‘where Qj is the phonon mode with wavevector q; and branch bj » A is the modified
- T .!, .
E’ Kronecker delta which is unity when the argument is zero or a reciprocal-lattice : ‘
K '
£ vector and zero otherwise, and
E { 3
;:; fiy = 0 1) /n, +1) - (2.4) i1 3
i = :; ‘L
with i
w T ‘
n, = n(Qj)=l/[e -1], @.5)
. w/wp ’§ 1
n,=1/(e -1), (2.6) {1 3
and %
wp =k T/f . 2.7) ]
o
%
%
3
-‘é

sl S o S L B e,

represented by the circle in Fig. 2a, and is the sum of all possible n+ 1 phonon

vertices. The simplest one is the unrenormalized vertex V(le cor Qn) from ; ,M

the anharmonic Hamiltonian given by 125l
- LN S V(Ql'”QrH-I)A(E 250 Sop” e, | 2.8 %
o Q Qn+l ;

3 ,E.r 3 _;?-_. -
TR N
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a ' and a being the phonon creation and annihilation operators normalized to
unit commutators, as usual. This simple vertex is represented diagrammatically
in Fig. 2b. Other more complicated processes are examined in Sec. V,

where we derive an approximate form for the total vertex

e B e T R S

A(le---Qn) = An V(le--°Qn) : (2. 10)

- s

To obtain a reasonable approximation for the anharmonic coefficients, let us

confine our attention to diatomic polar crystals with cubic symmetry, especially
. . .12 . .

NaCl-structure crystals. The model interaction potential al between ions is

composed of a Coulomb potential and a nearest-neighbor overlap exchange re-

pulsion of the form
¢(r) = C exp (-r/pa) , (2.11)

where a is the equilibrium nearest-neighbor distance. The Coulomb interaction

is used only in determining the constants C and p in Eq. (2. 11) from the equili-

i SR R T T T T T R AR TR T R T TR T

brium concition and the value of the bulk modulus, B, yielding 12,17
c=3aBe’P p2/(1-2p) . 2. 12)
51 In the anharmonic coefficients, only the derivatives of the repulsive potential (2. 11)

are retained. Since p is of the order of 0.1 for NaCl, the derivatives of the

Coulomb potential are smaller than the corresponding ones of the repulsive

T TGy Y D p——— -
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potential for orders up to at least n = 10, Hsd we used an inverse power law
for the repulsive potential, this would be true to any order. This model, in-
cluding the neglect of the Coulomb potential in the anharmonic terms, has been

used previously = with much success.

The anharmonic coefficients can be obtained in a straightforward calcula-
tion from this nearest-neighbor exchange repulsion potential. e The mth order
coefficient V(Q1 .o -Qm) involves derivatives of ¢(r) up to order m. From

the exponential form (2. 11), it is clear that

la0™ (@) /6™ Diay|m10 . @.13)

Thus, it is a good approximation to retain only the highest-order derivative.

Using these results and assuming central forces yields

V(Q,**Q_ )= (N/ ')¢‘”‘)<)g 0 U @Q)(h/2N 2 e
= (N/m! a ) (h \m _ W , .
1 m y=1 j=1 Y < Q_]
where
A 172 iq-. x
U =%y [ Heq (ma/ms) wqe~ 7] (2.15)

and m and my denote the smaller and larger ionic masses, respectively,

The positions of nearest neighbors measured from the lighter ion are X.,» and

Y

)A(y is the unit vector in the same direction, The polarization vector yg<Q is

defined in terms of the ionic displacement Ygr from the equilibrium position

. 12,18
X7 by the relation
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1/2 i '?521'
Y.p = g(ﬁ/ZNmTwQ) e AQ%TQ , (2. 16)

with T denoting the ion type. For the fundamental mode,

X v 172 2,17
U, () = %, Wy (mg/m) ", (2.17)
-1 a1 th
with m_ = (m< il ) . From Eq. (2.11), we obtain the m ~ derivative
o™@) = 382302/ | (1-2p)(-pa)™ | . (2.18)

l

Substituting the approximate expression (2. 14) for the anhariaonic coefficient
into Eq. (2.3) for I‘n , we obtain, by usint Eq. (2.2), the contribution of the

n-phonon summation process to the optical absorption in the form

5 ~w/wr

1/2 -1
B = (r/2) K P (- T (wtnh) T (D) AYE

(2.19)
' — : 2 =) :
We have used the approximation for high frequency (w™ =>> we + I'“) and intro-

duced the following groups of constants:

«2

K=Bze awf/ﬁcmznu.‘ S ,
r r mx
-1/2 2
D‘O = (2m) [6mp/(1-2P)] , (2.20)
De = T1/2p2::12 m_ w

The frequency wmx , introduced for later use, cancels out in Eq. (2. 19).

P e T

T e




The factor 2,«. contains the dynamical information of the n-phonon

- r— R T TS B &

absorption, and is given by

6 6

r =Z L (% -\?zf)o?

n n
.\irf)N'“ z: NA('E qj)b(w-Eij)

.y___l .yn____l Y Y Ql.--Qn J=1 J:1

n
n
=1

T e T TR R

U, (@) U (i) [n(ij)+l] /ij . 2. 213

CIIRES o

For crystat- of NaCl structure, sy'mmetrylgaensures that Z}n and, therefore,
Bn are independent of the direction of Cvf . Let us choose \'irf to be along the

positive x-axis. Then, Eq. (2.21) becomes

e N et =l S e i

1

- n+
2 Eoen EEBIN D

..Q

n n n
NA(Z b(w-2 w nw . 1)/
(E ;) 6(w- B wgp I Wy(Q)ng+ ) /iy

n j=1 J=

(2.23)
and, with Re and Im denoting real and imaginary parts, respectively,

2 2
W,(Q) = [Re Uy (Q)] # [Im U (Q)]" . (2.24)

In passing, notice that the evaluation of the sums in (2.23) is trivial if the

densitr of states g(w) is approximated by the Einstein model

gw) = t(w-wg)

and the angle dependence of W+(Q) is neglected: W+(Q) =W,_. It will be

shown later than W, >> W_". Then (2.23) and (2.19) give directly

BN R SR A R T ——
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2 ) n
) % EAn . -nwE/wT ‘6w DeW+[n(wE)+lJ) 6w nw. )
ﬁ B - 4 1 ( € ) l w< s E ’
n=1 n ' n! E

(2. 25)

where E= (27 )l/2 K @ g Dp . According to (2.25), the spectrum is approximated
by a series of delta functions, which is, of course, not realistic. Even though such
a model is not of significant practical value, it does crudely approximate some of
the features of the more realistic model discussed below. For example, plotting
the coefficients of the delta functions in (2.25), or formally replacing the delta
functions by line-shape functions of finite width, gives a nearly exponential de-
crease with increasing frequency. In Ref, 19b, the result (2.25) was rederived
using the simpler model of a one-dimensional lattice with the Einstein approxima-
tion and a simpler interaction potential that neglects the angle dependence [our
factor Wi (Q)] from the outset,and an independent-molecule model was considered.
Use of this simpler interaction potential gives unreasonably large values of Anz,

which causes noticeable deviation from an exponential frequency dependence.19b

Mills and Maradudj.n1 9

¢ independently used a single-frequency anharmonic-
molecule type lattice to study various types of interaction potentials, effects of im-
purities, and high-temperature effects. Bendow, Ying, and Yukon19d have used a
differ .nt mathematical method that starts with partially summed terms. The method
is potentially powerful, but to date they have recovered only our terms without the
vertex corrcection, Since the validity of the perturbation expansion is justified by
showing that all diagrams not included in the result are negligible, it is expected

that new methods of calculation should give equivalent results. Fo: example, the
factor exp (-¥ T) resulting from vertices with phonon loops [AQAQS 3 AQAQAQ,AQ,S 3
etc., where S is the simpie vertex and the AQ are defined in (2.9)] is well approxi-

mated by 1 since the phonon-loop terms are negligible with respect to simple ver-

tices. See Scc. V.,
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III. ASYMPTOTIC APPROXIMATION FOR ABSORPTION BY A
LARGE NUMBER OF PHONONS

Eq. (2.19) gives the contribution to the absorption coefficient by the
n-phonon summation process. It contains the factor En given by Eqs. (2.22)
to (2.24) which involves n-fold Brillouin-zone sums. Although these are not
beyond the means of modern computing capabilities for n in the experimental
range of 2 to 8, we are still interested in analytical approximations that will
give us general properties of B which appear to be shared by a rather large

number of crystals. The method of evaluation used in this section is correct

in the large-n limit.

For n 2 2 we can neglect the quasi-momentum conservation restriction in
the sums given by Eq. (2.23). We shall justify this laer in the section. First
notice that if the angle dependence of wi(Qj) is neglected, the summand in (2.23)
is a function of phonon frequencies wQ_ only. Then, replacing the sums over
Qj by integrals over dwq_

J
states, reduces (2.23) to the form

J
g(wQ.), where g(wQ.) is the phonon density of
J

n
T4* fdeIf(wQI)--- fdenf(an) 6 (w-jE1 wqj)

to which the central-limit theorem applies directly. Here f( wQ )
= 6N W (Q, )(nQ +1)g(¢.¢)Q )/wQ , where the normahzatlon constant

]
6 N arises since g is normalized to unity.

Eq. (2.23) can be cast into this central-limit-theorem form without neg-
lecting the angle dependence of W, (Qj) as follows: We introduce two functions

which are kindred to the phonon propagators

55

e | -;"7:.

q
L




T BTN, N | A, = (- e

RN i S

S

e L

TSN RV 88

TS R AP T, B TSNS

Sec., C

0,(8) = fw, /Nag, | Z W@ lng# D/wg | 8(E-wq) . @D
where
\ 1w "
Oy = Wox N aWi(Q)(nQ+1)/u.Q (3.2)

are constants for normalizing the integrals of c+(C) over { to unity.

The n-fold sums in Eq. (2.23) can be written as n-dimensional integrals,

@ @

n
£, = (@ /e ) Jf dclogcl)---j dg, 0, (2) 6(w-T L) (3.9)

- - =1

These convolution integrals are well known in statistics. For n = =, the integral

tends to a Gaussian (the central-limit theorem),

NERY n+1 2 2, 2
Zni - [aOin/(ﬁ‘,ﬂn) / azi-wmx ] exp ['(w'naliwmx) /2n0121L wmx ]

3.4)
where a,, are defined in Eq. (3.2), and
a0y, = W S at o, (0L , (3.5)
2
(a2iwmx )2 = S dCO‘i(C) Cz '(altwmx) . (3.6)

For small n, it is possible to improve Eq. (3.4) with an asymptotic series.20
A particular series in terms of Hermite polynomials has been used by Sjolander21

to evaluate the multiphonon background in neutron scaiterings in a harmonic

crystal.
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It is obvious from Eq. (2.24) that 0y s as defined by Eq. (3.2), is less
than %y The estimates discussed in Sec, VI show that oy, is about one

I3 . 11 .
third to one half of s at most, Since in ~ (a0i) according to (3. 4), En_

-}

becomes negligible compared with 2n+ for large n. Therefore, from ligs. (3. 4),

(2.22), and (2.19), the absorption coefficient has the explicit form

4
ﬁ ) DpK ((.Un:lx) il (a D )nA 2
n a2+(nw+l) w . o+ "e n
2 2
exp [-(w-nanmx) /2n (e, © ) ] . (3.7)

By virtue of the central-limit theorem, the multiple sum over Q] , 't Qn has
been reduced to sums over a single phonon coordinate Q1 , as given by Eqgs. (3.2),

(3.5), and (3.6).

The neglect of momentum conservation appears to be physically reasonable
since, for larger and larger n, the restricuon ¢n phase space becomes less
and less important. However, if we wish not to neglect the momentum conserva-
tion in Eq. (2.2), we can extend the foregoing procedure by treating the summa-
tions over Sj in the same manner as the integrals over Cj . Thus, we introduce
the functions a, (g, ) similar to Eq. (3. 1), except omitting the sum over q.

~ 3
Eq. (3.3) becomes not only multiple integrals over Cj but also over q j with i
four 6 functions, one for the frequency and three for the wavevectors. The

convolution integral is evaluated in the same way by means of the central-limit

theorem. The integrals over gj contribute a factor which is a lattice sum of

Gaussians of the form exp(-na x 22 ) and is, therefore, approximately unity

for large n. We arrive at the same answer as Eq. (3. 4), thereby justifying

the neglect of momentum conservation. i
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1V. THE CONFLUENCE PROCESSES

In the preceding calculation of the multiphonon absorption of light, only a

particular type of phonon processes, called the n-phonon summation processes

T

{ and !llustrated in Fig. 2a, was concidered. We have neglected the confluence
processes, illustrated in Fig. 2c. Instead of creating n phonons after the
annihilation of the fundamental phonon, m phonons are absorbed, and n-m

phonons are created.

A confluence process involving n phonons (some of which are created and
some annihilated) is governed by thc same vertex as the n-phonon summation
process. The contribution to the absorption coefficient of all confluence pro-

. cesses and the summation process is easily obtained by replacing 6 (L - wQ)
i by 6(L - wQ) - 6(C+wQ) and n(-wQ) by -[n(wQ)+ 1] in (3.1). The cross-
product terms in (3.3) containing m factors of -0 (C+ wQ) and n-m factors

' of 6 (L - wQ) correspond to the confluence process with m thermally excited

e

i phonons absorbed, as shown in Fig. 2c. Applying the central-limit theorem

i ¢ to this term yields a Gaussian peaked at (n-m) O, Woe” m61+wmx instead of

S

,:. 1 nog, W where Bl+ is defined by Eq. (3.5) with the new 0+(C ). This

+

contribution will be masked by the summation process of n-2 m phonons which

peaks at about the saine frequency but has greater strength, being an anharmonic

oo 3ot e e

process of lower order.
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corresponding "skeleton" diagram (Fig. 3b).

N Ay

R T

and final-state phonons is taken to be infinite.

e

those in Fig. 3d.

V. VERTEX CORRECTIONS

Now we consider all possible processes that contribute to the (n+1)th-order
vertex A(fQ 1 -Qn) and estimate the vertex correction factor An , defined
by Eq. (2.10). Standard perturbation theory can be applied in a straight-
forward way to all the higher-order terms. For example, for n = 3, the
diagram in Fig. 4b below has one intermediate state. The contribution from
this diagram is easily calculated, but it must be remembered that this dia-
gram represents four diagrams when the arrow is added to the intermediate-
state phonon. (There are two time orderings of the two vertices, and the
arrow can go in either direction, corresponding to a a+ and a+ a, in each
time ordering.) This procedure has been carried out for a number of low-

order diagrams, 10 and the results agree with those presented below.

Since the number of diagrams increases rapidly as n increases, this

method becomes tedious and time consuming when applied to larger values
of n. The following method is more convenient. First, all the self-energy
corrections, such as those illustrated in Fig. 3a, are taken to be accounted

for by using the measured phonon frequencies, i.e., they are included in the

The lif etime of the intermediate-

There are two types of vertices: (1) the irreducible ones that cannot be
rent asunder by cutting a single phonon line, such as those in Fig. 3¢, and

(2) the reducible ones that can be separated by cutting a single line, such as




t
FI{
j (.
:

(a) (b)

b

(c)

e’

(d) .;

Figure 3. Various kinds of vertices,
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Figure 4, Three-phonon summation processes.

it SR

¥ o1

R - R XSRS S




e o |

3
=29

Sec. C

In the sum of all irreducible vertices of the same number of external
phonon lines, the simple vertex dominates. We follow Van Hove22 in order-
ing the anharmonic terms in the Hamiltonian, V (Ql a Qn)’ with En-2
where ¢ is the small parameter given by the ratio of the root-mean-square
displacement of the ions to the nearest-neighbor distance. The value of €
is less than 0.05 in alkali halides. A complex irreducible vertex must be of
higher order in ¢ than the simple vertex with the same number of external
lines, since cutting a phonon line will produce one vertex with a larger

number of external lines. For example, the simple vertex in Fig, 3¢ is

0(e 2 ), but all the other irreducible vertices in Fig. 3¢ are 0( 64 ).

On the other hand, a reducible vertex composed of simple irreducible ver-

tices is of the same order in ¢ as the simple vertex with the same number of

: . R . 2 .
external lines. For example, the first diagram in Fig. 3dis 0(€~). A reducible
vertex that contains one or more complex irreducible vertices is again negli-
gible. Therefore, for the total vertex contribution, we need only sum the simple

vertex and the reducible vertices which are composed of simple vertices only.

To illustrate the procedure of obtaining the vertex renormalization to the
n-phonon summation process, the simplest non-trivial vertex correction, namely
A3 , is first calculated. The two vertex terms that contribute to the three-phonon
absorption are given in Fig. 4a and 4b. The ratio of the latter t6 the simple

vertex is

(31)2 41
Gt 2 Vg0, D@y 8y V(Q,Q,Q,)/ 3 V(£QQ,Q,) . (5.1)
4

T L T T T L R 0 R AL L O




o i
e

- - . 23,13
k The two factors of 3! represent the number of ways 3, the phonon states are

attached .o the limbs of each vertex in Fig. 4b. The divisor 2! represents the
fact that interchanging the labels on phonon lines 1 and 2 again produces the same
term. The factor 4! is the numnber of ways the four-phonon vertex in Fig. 4a
can be labelled, and thedivisor 3! is the overcounting factor generated by re-

arranging the labels among lines 1, 2 and 3 in Fig. 4a. The factor D(Q4, C4)

. . . ! . 13 . ..
represents the Green's function for the intermediate phonon line™ ™’ in Fig. 4%,

By using the form (2. 14) for the anharmonic coefficient and keeping only one

term in the sum over nearest neighbors for both the numerator and the denomi-

nator of the ratio (5.1), we obtain the ratio as

2
é"i ¢(2)bz z—'ﬁz%Q—' |UX(Q4)| D(Q4»Ly) - (5.2)
it 4 4 |

The factorial that represents the number of ways the states in each vertex are
labelled cancels neatly the factorial in the anharmonic coefficient (2.14), leaving
the counting factor in front of (5.2). This factor is just the ratio of the number
of ways of rearranging the labels on the equivalent outgoing phonon lines of

i Fig. 4a to the corresponding number for Fig. 4b.

The factor ¢(2) comes from the fact that ;
POTRy AT 5.3) -,
l f ‘ :

by virtue of Eq. (2. 18). The momentum and frequency of the intermediate-phonon

Green's function are given by

Q=4 *t 9 (5. 4)
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1 and
3 :
:"- k - \ - \ - [} b \ 5.5
i ; Ly = wp - wy = w) + Wy 2w o (5.5)
3 for the frequencies of interest. Let
1 " 5.6)
1 wQM v o (
E.
3 -1
] 2 2 2
- ) \ ) = ,e, = 5.7
k a, = M FD(Q ke )/26q, = (17 -vT) (5.7)
and
- oD 5 U@ ? DIQ, tw_ ) (B/2mowg )/d, . (6.8)
- b X" 4 4 mx <7Qq 4
4

Then, the ratio of the two vertices, (5.2), becomes 3d2 £, and the vertex

renormalization factor is

A3=1+3d2£ . (5.9)

Estimates of d2 and £ are provided in the next section. It is easy to verify
that (5.9) correctly accounts for all the three-phonon absorption processes

'? shown in Fig. 4c.

The reasoning used in this simple example can be applied to the general case
to deduce the rules for writing down the renormalization factor for n-phonon ab-
sorption. The simplest term in the total vertex is the simple n+1 phonon veriex
with one of the phonons being the fundamental mode driven at the optical frequency,
as depicted by Fig. 5a. A typical reducible vertex is formed by joining a number
of irreducible vertices of lower order such that there is only one phonon line con-

necting any pair of irreducible vertices. Some examples are shown in Fig. 5b-5d.

OREETY T T Ry = e T
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Figure 5. The n-phonon absorption vertices. The number n in a circle denotes a simple

(a)

vertex with n external lines.

65

(c)

(d)

(e)

(b)

m+l|




If a vertex contains m internal lines, then its ratio to the simple vertex

(Fig. 5 a) contains a factor gm, with £ defined by Eq. (5.8). Thus,
n-2 (m)
m
Ay = 25060, (5. 10)
m=0
with the coefficient Sn(m) obtained as follows. Draw all topologically distinct

reducible vertices with m internal lines and n+1 external lines, one of which

is the fundamental phonon driven at frequency n Wy Each diagram contri-

butes to Sn(m) a term of the form
(m)
Cn dz d'e -~-d'e , (5.11)
1 72 m

m
where Cn( ) is the ratio of n! to the number of ways of rearranging the states
of the n outgoing phonon lines that do not change the reducible vertex. The
factors of d 4 come from the intermediate phonon lines, £ being determined by

energy conservation, assuming that all outgoing phonon lines have frequency @k

For example, the vertices with one internal line, as in Fig. 5b, give

n-1
I (1) _ n
s, = Z(m d_ 5. 12)
m=2
(n-
and Fig. Se contributes to Sn the term
(n1/2!)d2d3---dn__1 : (5.13)
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Armed with the general rules, we can calculate the contribution of any vertex,
Figs. 6 - 8 show the relevant vertices for foui- to six-phonon absorption, respec-

tively, and the corresponding contributions to Sn(m).

From the considerations in the next section, the factor v in Eq. (5.6) is

0.5 or less; thus (5.7) gives

Therefore, the vertex correction factors are

A2=l, A3=1+O.75€, A4=1+1.94441§+O.52081§2,

A = 1+ 3.9236& +2.6563£% + 0.3711£ 3,

1+7.1497 € + 9.2682 £% + 3.2511£° + 0.2806 ¢ ¢

R
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R

aatan s

4dy 6d,

12d,d3 34,2

Figure 6. The 4-phonon absorption vertices. The only external line shown

is the fundamental mode.
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Figure 7, The 5-phonon absorption vertices. |
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6 ds 15 dg 20 dy 15d,
30 dyds 15 dpd, 60d,ds
60 ds ds 60 dpds 90 d, d4
000 OO0
60 d, dg a5 42 60dyd,
10dy2
1 --® -GW M O-®
,, 120 d; d4ds 60 d,d3d, 60 dpdy° 180 d, dgd,q j
} 05030361030202010202056J0505050 i
E | 180 d dg ds 90d7 dg 180 d d3 180 d d3ds ;_f
| : ® : : i
E | -0 OO 6O W
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PR R GG
360 d, d3dgqds 180 d,° d3 d, 90 dfds?
® ® ® .
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180 d7 d3 ds 454 d4 90 d,2d,ds

Figure 8. The 6-phonon absorption vertices.
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VI. FREQUENCY AND TEMPERATURE DEPENDENCE i

OF THE ABSORPTION COEFFICIENT

It is straightforward to evaluate Bn given by Eq. (3.7) with the &'s given

by the Brillouin-zone sums. We shall confine ourselves to two rough estimates

of the a's.

For a linear~-chain model with two atoms per unit cell, all with equal masses,
it is possible to evaluate explicitly the a's in the low- and high-temperature
limits., Table I shows the results for the a's with wox chosen to be the top
of the phonon spectrum. This simple model illustrates nicely all the important
features that follow from Eq. (3.7). As a function of f:requency, the absorption
coefficient Bn due to the n-phonon summation process peaks near noy, W

which is about (3/4)n @ g * Thus, the total absorption coefficient, which is

the sum of all Bn with n = 2, is dominated at a particular frequency by the
nearest n-phonon summation process. The frequency dependence of B in the
range 2 @k~ 8 @ox is, therefore, approximately exponential since the
strength of the peak in Bn as a function of n is approximately exponential. The
small values of o confirm the validity of neglecting En- in Eq. (3.7). As the
temperature is raised, the strength of the peak in Bn increases, the position of
the peak is shifted toward the lower frequency, and the width is either narrowed

or broadened, depending on the temperature dependence of the phonon frequencies.

. : . .n-1 .
Thus, B8 increases with temperature, but less rapidly than 'l : at high tem-

peratures.

Now we give a more realistic estimate for NaCl-structure crystals. There

2
are several wavevectors for which the explicit expression of | UX(Q) | can be

71 %
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Table I, Values of parameters from the diatomic-chain model with equal masses
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written down. For the acoustic branch at the zone boundary in the (1,1, 1)
direction, the light-mass ions stand still, and the heavy ions move in the

direction v:r>Q, say. Then,
X(Q) = (x - W>Q) m</m> . 6.1)
Similarly, for the optical branch at the same wavevector,
lu |2 e oa )2 6.2
L = (x V<Q 5 (6.2)

For the optical modes near the zone center, Ux(Q) is given by Eq. (2.17). For

. 2.
the acoustical modes near the zone center, I Ux(Q) I is nearly zero.

2
As a rough approximation, | Ux (Q)|” will be set equal to zero for
w < fw,, Where f < 1, and where it is not negligible, | UX(Q) |2 will be
approximated by an average of the three known expressions (6. 1), (6.2), and

(2. 17); thus,

2
U ()17 = & (14 m_/m) 0wy -fuw ), (6.3)

where 6 is the unit step function. In the average, we have replaced (x W <Q)
by 1/3, which is the value for tlie (1,1,1) zone-boundary mode and is also the

angular average of 00326 - The remaining factor is the average of 1, m_ /mg
and mg / m_.

The estimates of the a's are then, from (3. 1), (3.2), (3.5), (3.6), and (6. 3),

with the usual approximation of the sum over Q by 6 S dwg(w):
0

0y, = & (1+m /m ) ((n+1)6/w) w__ , (6. 4)
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5 L i
a o = ((n+1)8) /{(n+1)8/w) w__ (6.5)
§ 0.2 = [((m+1)8w)/{(nt1) 8/w) w_21-a > (6. 6) .
- 2+ mx + !
L where n is the Bose-Einstein distribution factor,
, ® ;
1 (AB) = S dwg(w)A(w)O(w-fwmx) 3 (6.7)
0
and g(w) is the phonon density of states normalized to unity. Similar estimates
)
give
ay. < am_/(1+m</m>) . (6. 8) 1
The density of states, shown as the solid curve in Fig. 9, is approximated
2 by the Debye model,
& § 2
3 3 _ i
i gw) = Bw/w 7)) 8w, -w (6.9)
i sketched as the dashed curve in Fig, 9. The value of Wk is taken as the Debye
; cut-off frecuency in (6.9). In the high-temperature limit, 1 ‘
3
{ 1 ;
! n(w)+1 ”wT/u.H- oo (6. 10) k.
g Then, the averages in Eqs. (6. 4) to (6.6) are easily evaluated. 1
The value of f will be chosen as f = —%— , corresponding to the assumption A
; that, for 1/8 of the modes (1/4 of the acoustical modes), W_(Q) is negligible.
In Table I, we list the data of NaCl along with the values of the o's at room ﬂ

temperature corresponding to wT/ g = 1.03 for NaCl.
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To estimate the magnitude of the vertex correction, we need to know the
contribution of the intermediate phonon in the form of £ given by Eq. (5. 8).
In the process depicted by I'ig. 4b, the intermediate phonon splits into two
phonons Q1 and Q2 » which were taken at frequency Wik * i.e., in the optical
branches. This is reasonable since the high-frequency side of the Gaussian
ﬁn(w) curves contribute to f = EBn, as seen in Fig, 10. By a quasi-selection
rule,lO Q4 must be an acoustic mode, the largest contribution of which will be
at the edge of the Brillouin zone. Thus, we take

Q |

w
6 - , 6.11
(nwmx) (nwmx wQ4) ( )

M
m-,

k. 2-9‘ 1
lu Q) |” =~ 3

using Eq. (6. 1). The frequency of the highest acoustic mode is taken to be
. 3 2 : .

nu,mx with n° = 0.5, and the factor (u,Q4 /nwmx ) approximately simu-

lates the effect of the polarization for the long-wavelength acoustic modes.

K Substituting Eq. (6. 11) into Eq. (5.8), averaging over the possible modes of

Q4 » and summing over three branches, we obtain an estimate of £:

. £ =369 /5mow % =018 . (6. 12)

Substituting this value into Eq. (5. 15) yields the following estimates for the

vertex-renormalization factors:

3 2 2 2
A, =1 ; Ag = (1+0.142)° = 1.30 ;
! 2 2 2 2
A, =(1+0.388)" = 1.93 ; AL = (1+0.844)° = 3.40 :
4 2 :
Ag = (1+1.72)° = 7.38 . (6. 13)
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We note that, from Eqs. (5.1) and (5.2), the vertex ratio can be shown to
be equal to the ratio of the real parts of the self-energy terms given by Figs. 11b
and 11a at zero temperature and frequency 2 @y From R. A, Cowley's

- - '
calculation s for KBr, our estimate of § appears to be somewhat too large.

The multiphonon absorption calculated from (3.7) using the values
of parameters from Eq. (6.13) and Table II is shown in Fig. 10,
where the individual Bn are plotted as light curves and the sum of the Bn is
plotted as the heavy curve. The agreement is rather good in view of the crude
approximations used to estimate the &'s. It should be noted that no parameters

have beer adjusted in the theoretical result.

By adjusting two parameters in Eq. (3.7), such as K and De (keeping the
a's at f = —é— ), the experimental data can be fitted to within the scatter of the
data. In fact, by changing only the value of the single interaction strength
parameter 1/p from 9.0 to 12, the dashed curve in Fig, 10 is obtained.
This larger value could be partly explained by the fact that the higher-order
anharmonic< coefficients are much more sensitive to the shape of the potential
curve than the quadratic terms from which the value of p is determined.
Errors introduced by the approximations and uncertainties in the values of

the parameters used also could account for the difference, of course.

The near -exponential frequency dependence is evident in Fig. 10. The
vertex correction, which is included in Fig. 10, slightly improves the agree-
ment with the experimental result. Without this correction, the Bz— BS curves

would be shifted down by factors of 1, 1.3, 1.9, and 3.4, respectively.
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Table II. Values of parameters for NaCl at room temperature
? %o+ %+ %2+
4.639 0.757 0. 145
3 o . 11 2
p=1/905, a-= 2.82 A, B=2.,44x10 dynes/cm” ,
13 __ -1 13 -1
- = 3.8%
we 3.09 x 107" sec , W, 3.85 X 107" sec ,
n_ = 1.50 (formally for all ), mg = 3.82 1072 gm,
m_ = 5.89 x 1072° gm.
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The n-phonon regions, marked on Fig. 10, do not correspond to

v < < ) < w< < w
nwe w<(n+l)w tonw, <« (n+l)wmx,ortonwLO w

f 14
< (n+1) Wi 28 is often assumed in the literature. In fact, the n-phonon

regions shift as the temperature changes, as discussed below.

The n = 2 central-limit curve is included in Fig. 10 even though its ac-
curacy is not expected to be good. The two-phonon structure is lost, of
course, in approximating BZ by a Gaussian, and the peak does not occur

atw=wf.

The temperature dependence of B at a given frequency in the nearly expo-

25
nential region is considerably weaker than that of the simple expression

- -w/
B.(T)/B (O) = (1 -e w/wT)(l e an) ST (6. 14)

obtained formally from the occupation-number factor (2.4) by setting all

wQ = w/n. The approximation Bn s T L in (6. 14) is valid in the high-
temperature limit, and n has been assumed to be independent of temperature
in the past. The T dependence of f results from the temperature dependence
of the parameters a, e*, and, particularly, the phonon frequenzies wQ and
from the explicit temperature dependence of Oy Ay and o

‘The following example of NaCl at 300K and 10. 6 ym illustrates the strong

deviaiior from the frequently quoted result 8 ~ Tn-1

. The value of the slope
(T/B)dB/dT of B as a function T on a log-log plot can be estimated from
Eq. (3.7). Using n = 5.5 from Fig. 10 and the following approximate expres-
sions for the temperature dependence of the parameters,%’ 27 wQ

(1-3.8x107%T), a=a,(1-4.4x 1067°T), and e* = eg (1-1.06 x 104T),
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we find

(T/B)dB/dAT = 2.5 (6. 15)

which is considerably smaller than n-1=4.5. The Born-Mayer-potential
parameters C and p, = pa in (2.11) are essentially temperature independ-

ent, being electronic in nature. In particular, (2.12) should not be used to
ascribe a temperature dependence to py from measured values of B(T)and a(T).
The temperature dependence of B arises from anharmonic and volume effects,

not from a T dependence of Pk -

A weakening of the temperature dependence such as that in (6. 15) is ap-
parent in the data of Harrington and Hass,25 Barker, 6 of Kaiser and co-
workers, g and of Denham and coworkers. 8 Finally, it is mentioned that in
a material, possibly a zinc-blende-structure crystal, in which the position
of a given multiphonon peak can be traced as a function of temperature, the
temperature dependence should be quite different from that of 8 at a given
frequency. A detailed presentation of the temperature dependence of 8 will

be given elsewhere.

The B- w curves of the alkali halides and alkaline earths show less
structure than those of the semiconductor materials. It is plausible that the
greater anharmonicity of the NaCl-structure crystals could give rise to such
short lifetimes of the zone-boundary phonons that the fine structure in the
density of states is essentially eliminated.

13,28

The lifetime of the fundamental phonon is short, and the lifetimes

of the zone-boundary phonons should be even shorter since the selection rules

ST e e i L
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and quasi-selection rules do not apply to the zone-boundary modes (with nonzero
wavevectors). A value of relative linewidth 2T /w of the order of 0. 3 for the
zone-boundary phonons at resonance should be sufficient, and this value is reason-
able in view of the value28 of 2T'/w = 0.07 for the fundamental mode in NaC! and
the fact that 2T /w is expected to be larger at the zone boundaries. Furthermore,
as n becomes larger, more convolutions are involved | see Eq. (3.3)], and each

| convolution tends to smooth out any fine structure in the density of states.

This explanation is consistent with the experimental results which show that
the two-phonon peaks are wider in the alkali halides than in the semiconductor
materials, that I"~T2 at the fundamental resonance in NaCl (implying that the
two-phonon contribution is small at resonance), and that the two-phonon peaks
have been observed in NaCl even though 1"~T2 at resonance. A careful study of
the temperature dependence of the two-phonon summation peaks could show an
increasc in the widths of tlie peaks as T is raised from 77 K to the highest prac-
tical temperature of the solid. Such increases are apparent in the small amount
of existing data.29 As the temperature is reduced below room temperature, addi-
tional multiphonon peaks could appear i1: higher-n regions where 8(w) is relatively

smooth at room temperature, Of the three existing known cases (for CaF,, BaF

2’ 2°
29
and SrF2 at 77 and 300K), two show a small additional peak at 77 K that is ab-

sent at 300K.

It should be emphasized that the two-phonon peaks are associated with peaks

in the appropriate density of states and are not resorance lines. Thus, an extrapo-
lation of §(w) from the reststrahl region should not be subtracted from B8 at higher
frequencies to obtain the multiphonon contribution, as is sometimes done in the
literature. An alternate, though unlikely, explanation of the lack of structure is

that the raw-phonon density of states shows little structure.
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VII. ASSUMPTIONS AND APPROXIMATIONS

The assumptions and approximations made in the previous sections are now
summarized: (1) The photon-phonon coupling is given by the leading dipole term,
and the Lax-Burstein-Born mechanism9 is neglected. (2) For the anharmonic
forces, only the nearest-neighbor Born-Mayer repulsion term is included and is
further approximated. (3) The lifetimes of the intermediate and final-state phonons
are assumed to be infinite. (4) The central-limit theorem is used to reduce the
n-fold multiple sum in (2. 3) to a Gaussian whose parameters a are given by single
sums, although it is possible to improve the asymptotic approximation.20 (5) Rongh
estimates were given for the various Brillouin-zone sums over the phonon coordi-
nates for the coefficients, a's. All of these approximations except (1) were shown
to be reasonable. The perturbation approach used is justified by showing that all
diagrams not included in the results are negligible. Concerning (1), the long-
standing question of the importance of the Lax-Burstein-Born mechanism in NaCl-
structure materials remains unanswered. The mechanism is quite simple to in-

clude formally; estimating the strengths of vertices has been the problem.

Our calculation gives good agreement with experimental results for the fre-
quency dependence of the optical absorption and demonstrates the general nature
of this dependence for crystals with tetrahedral symmetry. The estimates listed
in (5) above enable us to see explicitly the nature of our results. Scme of the esti-
mates must be regarded as tentative. However, these approximations are not es-
sential to our theory. We plan to perform both the multiple sums in (2.21) for
n =2 -6 and the single-phonon sums in Egs. (3.2), (3.5), (3.6), and (5. 8) by com-

puter. This will enable us to examine more rigorously the validity of the other
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approximations, especially (4). The computer results for the multiple sums in
(2.21) should provide greater accuracy in the small-n regions, say n = 2 and 3,
where the central-limit results are less accurate, and should afford a good test
of the approximations in the region of n = 4-6. The temperature and frequency

dependence of § for a number of crystals will be included in the computer pro-
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gram, which is being performed in collaboration with A, Karo of the Lawrence
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D, TEMPERATURE DEPENDENCE OF MULTIPHONON INFRARED ABSORPTION*

M. Sparks
, Xonics, Incorporated, Van Nuys, California 91406
1 and
: L. J. Sham
* University of California, San Diego, La Jolla, California 92037, and
Xonics, Incorporated, Van Nuys, California 91406

E Measu:rements of Harrington and Hass and of Barker indicate that

the temperature dependence of the infrared absorption coefficient B

1

in the n-phonon region is considerably weaker than g8 ~ T , which

had been predicted for the high-temperature limit of multiphonon ab-

. sorption. This discrepancy is resolved by taking into account the

temperature dependence of the phonon frequencies and the lattice

constant., The agreement between the experimental and theoretical

results with no adjustable parameters is good. A new evaluation of

S

the multiphono.: sums yields B ~ exp(-w 7 ) directly, rather than as

asumon n.

o e

5;' » 1
& The nearly exponential frequency dependence™ of infrared absorption in the region
oy
£
g of low absorption has been explained recently by a simple multiphonon-absorption
% - .
& theor'v2 2 and by independent-molecule models. 6 The frequency and temperature
@ dependence of the optical absorption coefficient 8 are of fundamental interest, and
§ both should be useful in identifying intrinsic absorption and in distinguishing between
& 7,3, 4 4
) intrinsic and extrinsic absorption. '’ "’ Harrington and tlass” have shown that the
‘ temperature dependence of 8 is considerably weaker than the expected dependence i

.n-1 .
for n-phonon absorption.

B~ [l-exp(-w/wT)[l-exp(-w/an)]-n = |
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The approximate equality is the high-temperature limit, w is the laser frequency,
and W = kBT/fl . Reexamination of earlier data9 reveals similar discrepan :ies,
which constitute the most serious problem in the recent developments in the theory

of multiphonon absorption.

These discreplincies are explained by including the temprrature dependence of
the phonon frequencies wQ and lattice constant in our previous theory. A simple

: i : 1 - s 10
estimate indicated previously that the resulting deviations would be quite large.

The previous expression2-4' o for B is
-4 < €l . / s u
B = f(w) w E(Anv /)X L 6 {w-T wQ I UQ (1)
n=2 Q1 Q X =] i] 2=1 L
n
where f(w) = con, [1 -exp(-u:/wT)], v =ﬁ/2pK2m, le = sz(an+l)/Nsz'
W~ is of order unity for large w and is very small for small w.~ , n are
Q, Q, Yt

phonon occupation numbers, the Q's denote wavevectors and branche.:, m is the
reduced mass, Pk is the Born-Mayer repulsive-potential parameter (c'n), 2N is

the number of jons in the crystal, and the higher-order terms in the pe:‘turbation

4,10

expansion give rise to the vertex-correction factors An = 1+An€ % (gz Y

1 A h .- 3 2

where A4 = 1.94, A5 = 3.92, A6 =7.15, and £ = OBOaO/S (1-2 po) muw. - Here
B is the bulk modulus, p = pK/a » the subscript 0 denotes T = 0, and w, isa
frequency near the top of the phonon spectrum. Egq. (1) can be written dowr immedi-

e for B with wz >> (reststrahl fre-

2-4,10

ately from the well known expression

quency, W, )2 and standard perturbation-theory results,12 apart from the details

of An and wQ which are not needed hcre.
2
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! 0,2-4 1 A el . .
It is simple o shnwl » that for n >2 the central-limit approximation to the

multiple sums on Q] 2 (‘)n is sctisfied, thus reducing (1) to = & 5n with

. : ) = .
ﬁn &= f(u‘)u.‘f(uv(,)n exy (-a ,«pK) Ol s u E [(n(\) } l)‘/u:(\) ]'w : (2)

where av denotes the weighted (with W()) average oer phonons, a is the near
N

. L -y s . Y . I . 2-4,10 ]
neighbor distance, and G /V/n is the Gaussian from the central-limit approximation;
The small temperature dependence of the effective charge was neglected, and

2 ) ‘./_’ 2 Cr‘ % b . . . [
An /nltvn was approximated by C, which is accurate over the range of n's used
here (typically n = 3-6), as scen by the straight line obtained by },'atting

2 ; . .
In| An /nly/n" ] vs n. The two parameters in the Born-Maver potential are essen-
tially independent of temperature, being electronic in nature. The standard relation
i =l . : :

B =con. a Py - 2, with experimental values for the temperature dependence of B and a,

should not be used to determine the T dependence Py since the T dependence of B and a

arises from anharmonic and volume effects, not from the temperature dependence of Py -

The average in (2) is easily evaluated by using the Tavlor's expansion
o . \ _l_ ) \ i i :ati<fi e =
nQ +1 = (u.,T/u,Q)+ 3 + (QQ /12 W ), which is well satisfied for all cases con

sidered, and a Debye spectrum (wirh cut-off frequency wmx) truncated at —é— w

mx
to account for the angle factor in the vertex [ see \VQ in (l)].2-4’ i This gives
L
Z 3 } 4
U= 91’1(nx +1)/16 pg xm, with x = Swmx/4 . The factor of -3— is obtained when

the three terms in the expansion are recombined after integration.

A simple, accurate expression for the slope (T/B)dB/dT of £nfB8 vs 4nT,
which is a convenient and sensitive measure of the T dependence of 8, is obtained
by approximating f by the locus of the inflection points on the high-w sides of the

peaks of the Gaussians. The analysis leading to (4) below or inspection of the

91
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2-4, 10

curves Bn and their sumn show the validity of this approximation. In the

absence of detailed information on the temperature dependence of the @y it is

assumed that (1 /wmx ) dwmx/d I” = I‘/wr) dwr/d I'. Then (1) gives
T df swmx w \
— e DD «b . Do.={n—2, =l ,
B aT 14 w 4 1 4wT 3 K W T
4 Tmx
3 A E-1 dw
D == 1{In{inCvu+ LL". S | : 1 1 ’
w fe. 3. WA e | @, d7
! 4 Tmx
2 T d v
& 4 e Ee i g 8L
D, = ( 5 ) - &5 (3)

The results from (3) for NaF, LiF, NaCl, and KBr, for which experimental
values are available, ar. Yisted in Table I along with the values of input parameters
and experimental values of Harrington and Hass8 and Barkcr.9 The agreement is
surprisingly good, probably fortuitously so, in view of the uncertainties in the ex-
perimental values and the fact that the wQ (T) are not well known. Note that there
are no adjustable parameters in :he theoretical result, and that the value of D . 18
sensitive t¢c small errors in the values of the input parameters. Fig. 1 shows the excel-
lent agreement be:,.ccn theoretical curves and the experimental points of Harrington
and Hass and of Barker and illustrates the greater sensitivity of the parameter
(T/B)dB/dT than of such a plotted comparison, the 10 percent difference between
experiment and thenry for KBr at 1000 K appearing smaller than the corresponding

40 percent difference in the values of (T /B) dB/dT.

In order to obtain the experimental intrinsic value of (T/B)dB/dT for

NaCl at 943 cm-l, which is obscured by the extrinsic contribution, the ex-

triasic contribution was assumed to be independer: of temperature, and the




Table Caption

Table 1. Theoretical and experimental values of (T/8)dB/dT. Experimental values

marked ~ and ~ are uncertain (~50%) and highly uncertain (factor of ~ 3).

a. A. M. Karo and J. R. Hardy, Lawrence Radiation Laboratory Report
UCRL-14822, April (1966).

American Institute of Physics Handbook, 2nd Ed.

J. P. Jasperse, A. Kahan, ]. N, Plendl, and S. S. Mitra, Phys. Rev. 146,

526 (1956).

L. F. Chang and S. S. Mitra, Phys. Rev. B5, 4094 (1972).

J« E. Mooij, W. B. VanDeBunt, and J. E. Schrijvers, Phys. Letters 284,
573 (1969).
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Figure Caption

Figure 1. Comparison of experimental points of Harrington and tass 1

(NaF, 943 cm-l) and Barker (KBr, 418 cm-l) with theoretical curves fit

to the data at 300K.
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| intrinsic value of § at 300K was assumed to be equal to 7x 10 Yem 'L, These

Juestionable assumptions surely introduce consider ible errors. Indeed, the large

experimental value of (T/8)dB/dT =6 at 300K and the equal values of 2. 4 at

Ll

700 and 943 cm ™! appear to be unreasonable.

e

In the classical, high-temperature limit of wT >> w, all occupation numbers

an are replaced by wT/wQ . For LiF at 1800 cm-l and 300K the classical ap-

» g

proximation to (T /B)(dB/d T) from (3) is approximately three times greater than
the unapproximated value. Even at 1000K, the classical limit gives 3.5, compared
with 2. 4 from theory and 2.5 for experiment. Thus, considerable care must be ex-

. arcised in applying classical theories to practical cases, as already discussed by

.r Maradudin and Mills in the accompanying Letter.

In a material, such as A1Sb for example, in which the position of a given multi-
, . 1
phonon pe:.k can be traced as a function of temperature, > the temperature dependence

should be quite different from that of 8 at a given frequency, since following the peak

eliminates the contribution from dn/dT.

The exponential frequency dependence of B can be obtained directly, rather than
as a sum over n, as follows: Representing the delta function by an integral over t

reduces (1) to B = f(w)«.«.‘-4 s(dt/2n)exp(iwt) z n4 [g(t)]n, where g(t)
n

[

=DZ 9 exp (- int). Here 1‘\n2 vn/n'ln! was approximated by Dn, which is
Q

e
-

quite accurate for n = 3-8, The sum on n can be written as a linear combination

T oh

of (1- g)-1 = gn and its first four derivatives. The contour integrals, which have i o

e
[h

-

poles at t = iT, are easily evaluated by residues, giving

~wT

ﬁ:BOC (4)
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where14 50 = f(c.c)[dg(i‘r)/d‘r]-5 and T is the solutdonto 1-g(iT)=0, i.e.,

5

1- DN-1 }é WQ (nQ+ 1) wQ l exp(u.)Q T) =0, which is easily solved numerically.

The following approximation illustrates the general dependence of T on T, An' ete. ,
although it is too crude to afford accurate values of 7. Neglecting the angle depend-
ence of WQ and app:ximating the density of states by 6 (v - wb) gives

-1 .
T=-w " In[6CW, (n +1)/w, ] and dg(iT)/dT=w,.

The temperature dependence o 8 from (4) is formally the same as that from
(3).15 The numerical values will differ slightly, corresponding to the slight numeri-

cal difference between T in (4) and the effective T from (2).

We would like to thank Dr. ]J. A. Harrington and Dr. M. Hass for sending their
data prior to publication. Discussions with Dr. A. A. Maradudin and Dr. D. L. Mills

are gratefully acknowledged. Dr. C. J. Duthler kindly assisted with the calculations.
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Abstraet

We have caleulated the frequency dependence of infrared
absorption in the classical limit for an exactly scluble
model of a lattice of noninteraeting diatomic molecules,
cach bound internally by a potential for which the classical
equation of motion can be solved in closed form. Four poten-
tials have been used:; a Morse potcential, a potential of the
form V(x) = (a/xz) + bxz, an infinite square well potential,
and a triangular well potential. The analytic results we ob-
tain show that thc absorption coefficient Tor large {requen-
cies associated with potentials which admit an harmonic
approximation decreases nearly exponentially over the fre-
quency region covered by recent cxperiments, with significant
deviations from exponential behavior at higher frequencies.
For Lhe square and triangular well potentials, the absorption
decrcases as ufz for frequencies large compared to a char-

acteristic frequency.
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I. Introduction

The absorption of electromagnetic radiation by the lattice
vibrations in anharmonic crystals has received considerable
gttention from both theorists and experimentalists fol many
years. However, most sindies have focused attention on frcquen-
cleg either in the near vicinity of the fundamental reststrahl
absorption bands, or at frequencies sufficiently low that the

dominant portion of the absorption may be accounted for by pro-

cesses which involve at most two phonons.(l)

Recentily, interest has been ¢roused in the behavior of the
absorption coefficient at frequencies several times (say 2 to 10
times) the maximum vibrational frequency of the crystal, but still
small compared to the clectronic band gap. 1In this frequency
region, the principal contribution to the absorption coefficient
in a pure crystal presumably comes from multiphonon processes,
where the number of phonons involved may be quite large. The
behavior oif the absorption coefficient in this frequency regime
is clearly important to understand for fundamental) physical
rcasons. There is also a great denl of practical interest in
this region, since high powver CO2 Jasers produce intense beams
of radiation at 10.6y . This corvesponds to a frequency scveral
times that of the naximum vibrational frequency of many materials
ti at may prove useful for the fabrication of windows and lenses
for use with these devices., Because the radiation from these
lascers is very intonsec, ceven a small amount of absorption can
lead to appreciable henting of any window through which the beanm

asses. Jt is therefore of interest to understand the nature of
P
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the intrinsic absorption processes, as well as impurity and
surface indvccd absorption at frequencics high compared to the
charactericitic vibrational frequencics of the crystal,

One may readily come to apprcciate the difficulty of carry-
ing out a first principles calculation of the ircquency depend-
cence of the absorption coefficient in the nultiphonon regime,
for a realistic model of an anharmonic crystal lattice, What
is quite intriguing is that experimental studies of the frequency
dependence of the absorption coefficient in several alkali halide
(2)

crystals have revealed that in all the cases studied, for fre-

1 to 800 cm"1 the absorption

quencies in the region of 200 cm
coefficient at room temperature may be fitted quite accurately

by the empirical formula

B(w) = A exp(-Buw) , (1-1)

where B(w) is the absorption coefficient at frequency w, and A
and B are constants charr:teristic of the particular crystal. It
is extremely important to know whether Eq.(1) can be derived from
a theoretical model of some generality, and, if so, it is import-
ant to know if it holds to frequencies as high as 10,6y (which f‘
lies outside the range ~ccessible to the experimental studies),
and also if it holds at temperatuves highcr than room temperaturc.
In this paper, we wish to address oursclves to thesc ques-
tions. Because of the difficulty of carrying out calculations of
the absorption coefficient in the multiphoinon regime that are
both realistic and that lead to conclusions of a general nature,

we have chosen to explore the properties of a model of a solid

104




O ot IO e s o B A A 7 R, o T L = M

e i Al

that is highly schematic, but which allows simple analytic expres-
sions to be obtained for the absorption coefficient for a variety
of interatomic potentials. We replace a diatomic solid which con-
sists of N unit cells by an array of N eclectric dipole active,

but anharmonic oscillators. While such a model is rather over-
simplified if we choose to represenl a real solid by it, by an
examination of the modcl we can gain insight into the question of
whether the form in Eq, {I-1) is valid quite generally. If it is
valid quite generally, it should also be valid for our model, If
a realistic potential is chosen for the anharmonic oscillator, we 5
feel the model also provides a reliable semi-quantitative estimate
for the magnitude of the absorption in the multi-phbonoi rcgime,

On the basis of our model, we will also be led to the conjccture
that at high {requencies, the magnitude of the absorption cocffi-
cient might he quite sensitive 1o the presence of certain impuri-
ties.

Since the region of experiwental interest to date is room
temperature and above, we have used the methods oi classical
physics to compute the absorption coefficient. We obtain a
gencral expression for the absorption cocfficient for the model

desceribed wbove, and {lien apply the expression to the study of

B |, T R —— . SSam— e

the frequency dependence ol Lhe absorption coefficient for four

-

potentinl functions., Ve consider absorption by anhiarmonic

o, W Wi

oscillators desceribed by the Moree potential, a sccond potential
which posscoses a hard core ana admits a hareomice epproxinetion
(3]

(V () = b x" 2 :I/X;l), the squaie well, and o potential of

teangulay shape,

AR G Ty
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The outline of the paper is as fullows. 1In section 1I, we
obtain a gencral expression for the absorption cocfficient of the
oscillator array by the use of the methods of classical statis-
tical mechanics. In section 111, we apply this expression to the
four examples mentioncd in the preceding paragraph. In sectioa 1V,
we present a discussion of some implications of the results ob-
tained in section III.

Quite recently, McGill, Hellwarth, Mangir and Winston(3)
have also presented a theoretical discussion of multiphonon ab-
sorption by an array of uncoupled os:illators. In the body of
this paper, these authcrs present a diagrammatic calculation of
the absorption coefficient which they argue leads to an exponen-
tial form identical to that displayed in our Eq.(I-1), for a
specific model of the interatomic potential. Their model presumes
that in the crystal Hamiltonian the term proportional to the nLE
pover of the atomic displacements is propcrtional to only the
quantity gnmz/n! , where g is independent of n, and the factor h

apparently comes from the Taylor series expansion of the crystal

potential. This modcl is quite special, since one may find a
large variety of rcalistic potentials which admit an harmonic
approximation, and for vhich their foactor g" vill be replaced
by @ quantity that exhibits a fuadamentally different dependence
o n. (Consider the Lennard-dones 6-12 potential, or any poten-
tial which contains a term wloceh varies inverscely with a pover
o/ the intcratomic separation.) Their counclusion that the ab-
sorntion cocifici-nt varies exponentially with frequency follows

upen counting the number of iwportant diagrvars in the first few

106




Scc. E

orvders of perturbation theory. 1In view of ihe discuscsion in the ;
following varagraph of the present paper and also that “‘n our
section 1V, we are led to question the conclusion that for a
potential of general form, the theory produces an analytic expres-
sion for the absorption coefficient exponential in character in
the multi -~honon regime.

In Anpendix A of their paper, McCGi11l et ul.(3) colsider an
array of non-interacting oscillators, each of which is described
by a Morse potential. They insert the expression exhibited by
Heaps and Horzborg(4) for the appropriate electric dipole moment
matrix clement into the quantum mechanical form for the absorp-
tion coefficient. A simple analytic cxpression for the absorp-
tion cocfficient of the model follows from this procedure. I1f w,
is the maximum vibration frequency of the crystal, then when
kBT‘> hwo the correspondence principle applics, and their exproes-—
sion may be compared with the result we obtiéin below. The two
results agree in this regiwe. However, while both results provide
a rather good {fit to the rcoom temperature data in the rvegime of
frequencies cexplored by Deutsch, ard they thus appear cnalita-
tively consistcut with the form in Eq.(1-1), at higher frequencices
significant deviations are predicted by botl, expressions. As the
temperature is increasced, these deviations ave expected to set in
at progressively lover frequencics. Neither our caleulation noy
thut presented in the Appendix of the paper of MeGill ¢t al,,
produces an anadytic expression for the absorption cocfticicent
of an array of independent oscrllators which exhibits the exponcn-
tial behavior suggested by Lg.(1-1), althouph as remaried above,

the quantitative differcnces ace saall i (the frequency regime
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explored by the experiments so far. Thus, while onc may conh=.
struct a particular potcntial that leads to something close 1in
| form to an exponential law, we feel that quite generally, the
exponential law is not valid, and one may fit the data quite

vell by the forms we obtain below.
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I1. General Theorvy

Since we consider the crystal to be an array of non-interacting
nolecules, infrarcd absoiption by the collection of osciliators
will be N times thot of a single molecule, where N is the number
of molecules in the crystal. Thus, in what io0llows, we consider
only the absorption by a single molecule. For this the motion of
the center of mass of the molecule is irrelevant, since it makes no
contribution to its dipole moment. Conscquently, the cquition of

motion which provides the starting point for our treatment is

dv (x) ” dM(x)
dx dx

m¥ = p = - E(t) (11-1)

where m is lhe reduced mass of the molecule, x is the relative
coordinate of the two atons comprising the molccule with p the
momentum canonically conjugate to x, V(x) is the interaction poten-
tial cnergy between these two atoms, M(X) is the dipole moment of
the molecule and E(L) is the electric field of the incident infra-
red rodiatsion.

To obtain the rate at which energy is absorbed by the molecule
from thc electromagnetic field, we multiply both sides of Eq.(11-1)

by x and rewrite the result in the form

%T [% miz + V(x)} = E(t)-ggéil . (11-2)

The left hand side of this cquation is the instantaneocus time rate
of chingce of the energy of the molecule; we will denote it by de /dt.
It is not the instantancous time rzte of change of the cnergy in

the molecule we require, but rather its average with respect to the

cannonical ensemble described by the Hamiltonian for the system




2

P =

B, - M()R(L)

and the time average of the resulting cxpression.
The average with respect to the canonical ensemble can

pressed in the form
+ +4c
) d
= S dp S dx p(x,p,t)-a%
- -0

+o

i dn
S dx p(x,p,t)E(t) at

-

where p(x,p,t) is the cosuonical distribution function which obeys
the Liouvillc equation

op , op sH _ 9p H _
ot T 3x op _ op ox _ ©

In view of Eq.(11-3), this equation can be rewritten as

We now expand p in powers of the driving elcctric field of the
infrared radiation,

pl 4+ o000 (11-7)

where the subscript denotes the order of tle corresponding term in
E(L). VWhen we substitutc the expansion of Eq.(II-7) into Eq.(11-6),
and cquate terms of like order in E(t) on both sides of the equa-

tion, we obtain the system of cquations
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apo B dp oH L or, oH, e . |
at dX  op ¢p  ex !
4 3py . opy oH | ) apy ol . o, ay Be) <R
r ot dX ap op X ep dx :
We now usct tae results that
BHO P "
—5..13..— = . = X (11’1011)
oH 2
ey & =
B Tow Pl ! (I1-10b)

Equation (II-8) and Eq.(II-9) can then be rewritten as

d

aIE P = 0 (I1-11)
. ¢

d_ Py = = o dM E(t) |, (11-12)

dt "1 op dx

where dp /dt and dp,/dt are the total time derivatives of p, and
Py s respcctively. "From a physical point of view, dp/dt is the
change in the distribution fimction seen by an observer moving
with a particle that traverses the orbit generated by the Hamilton-
ian H, and which passes through the point (x,p) in phase space at
time t.

For the equulibrium distribution function P, We assume the

canonical form

- exp(- gH,) Nl
Po 7 == e (11-13) ‘
vhere the partition function 2 is defined by ]
+® +o

7 = S dp Q dx exp(-BH ) . (11-14)

- - 00
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If we now use the facl that

op dp oH
o 0 0 L]
Sp _ dn_ op Bpoﬁ =T BP X (11-15)
0

Eq.(11-12) for Py becomes

dp
o . d“ "
ne - 3(,0 I‘(t) s (11-16)

We now assume that the perturbing clectric field was switched on

adiabatically in the infirnitely distant past, so that
pp(==) = O (11-17)

The solution of Eq.(II-16) which obeys the initial condition

Eq.(11-17) is

t o
L . . '} d:“- n) ! [ -
py(t) = 8 § by X(t )Laijx(t,)h(t yde! . (11-18)

With the results given by Eqs. (11-7), (I1-13) and (1I-14), we

can rewrite Eq.(II-4) in the form

4 4o
G = §ap § ax o, % B2 ()

+o +o® t

>h S - S - S o %t )[dMJL'_%% E(C)E(t)dt’ 4 ..ill_lg)

1f we use Eqs. (I1I-3) and (11-13), and rewrite the first term
on the right hand side of Eq. (II-19) in the form
+ & _Erf + ¢
6. . -\ o
L(1) S dpe P & as o”BVO) QN (11-20)

- -

112




Sec. E

e Sl W

we see that it vanishes duc to the vanishing of the integral

over p. Thus, the first non-vanishing contribution to Q%%)

comes from the second term. This term may be arranged to read

faae W

t
G%%) = b S <ﬂ(t’)ﬂ(t))o E(tHE()dt’ (11-21)

where we have introduced the notation

i
.I.

) 2 -
| M(x(t)) = N(t) (11-22)
and where for any function A(x,p,t) ,
- 4@
Ay, = & dp S dx p_(x,P)A(X,p,t) . (11-23)
- -

For E(t), we now assume thc form
E(t) = E cos ut ent (11-24)
o ’ :

P - . . - . : . P -
where ¢’ is an adiabatic switching factor (n is a pesitive infin-

tesmal). With this choicc, Eq.(I1-21) bccomes

t
acy o 2 A SRR — B Tl(t+t’) ’ =
) - e B (M(LDIN(L) ) cos wt’ cos wt e dt’. (11-25)
1
Let t/ = t - v, and integratce over 7 rather than t’. Then
By o ep? (Fogs 1 'ﬁ<ﬁ(t- DMLY cox w(t= a)e dr
\(11 v Jo 4 S W ) WERIRN o L5 [ | e

< (17-26)

Becouse ”o is time indepeadent, our systen possesses time transla-
tion invarionce, vhich in the coutext or the presopt probhlem iy

expressed by

=] R
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(11-27)

(e - ML) = GIM(T)), -

The time average of Eq.(I11-26) thus becomes (in the limit n - 0)
gE2 =
9 (11-28)

«%%))a —5~ S) dv cos(wT)e—nT(ﬁ(o)ﬁ(T))o 5

In Eq.(I11-28), we can replace T by = T a8 an integration variable,

and use time reversal symnmetry, which leads to the ‘identity

@Y= 7))y = (H@R(M), (11-29)
We then ohtain an alternative expression for «%%>):
9 ©
(5e" =3 ar cos (wr)e NTM(eIM(T)) (11-30)
-

Upon adding half of Eq.(11-28) to Eq.(11-30), we obtain

ae BBy (i o S
3N =71 S (M(0)M(7))cos wT €

-0

nltly, . (11-31)

for the time and {hermodynamic™lly averaged rate at which energy

is absorbed by & diztomic molecule acted on by an external ac

electric field.

The result in Bg. (I1-31) wmay be rccognized as classical ver-

sjon of the well known Kubo formula lov the absorption cocflicient.

In what follows, we shall confine our attention to the case of
infrarcd absorption by a first order dipole moment. That 1is, if

we expand V(x) in & daclaurin series

nx) = M(e)x 4+ % M"(o)xz I (11-32)
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where the primes denote differentiation with respect to x (we
assume the cquilibrium configuration of the molecule has no dipole
moment), we retain only the contribution from the leading term in

the expansion. McGill et al., have examined the effect of the

second term on the absorption coefficient and find its cffect
quantitatively small.(s) The coefficient M/ (o) has the dimensions
of a charge, and we ro.c it by q in what follows. Thus, the
starting point for the investigations in this paper is the lollow-
ing expression for the average rate of encrgy absorption by a ,

diatomic molecule:

PP ——— LR Y e T

2.2 4o
Pa Eg il
@y = —52 { (prp(m) costunye™ M Tlar . (11-33)
4 o= 0
We next turn to the problem of casting the momentum autocorre-
lation function (p(O)p('r))o into a form convenicnt for computa-

tional purposcs. This autocorrelation function can be writien

cxplicitly in the form

ik ——— e e -

-Blgm + V(X
(p(o)p(t)), = -rl S dp S dx ¢ L)‘m 1 pp (t) . (11-34)

e I — ——

Because the Hamiltonian is time indepcendent, we have expressed it
in terms of the values of p and x at time t = o in Eq.(1Y-34).
Thus, here and in what follows p and x denote p(o) and x(o),
espectively. In addition, as integration of the cquations of
motion shows, thc value of the momentum at time t is a function
of the initinl values x and p, and we indicate this explicitly !

by writing p(t) as p(x,p,t).

CLEY _a\‘taﬂwtl-wmqm R
(=)
.

Ve now rewrite Eq.(X1--34) in the form

115 3
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-2 Cqpe PE ( % .
(pIp(1)), =7 {are™™ § dp § ax o(z-veo - 55 )eper, ©
-0 -0 - 00 ¢
X5 (E)
= - BE ; °° 6(p-pp) +6(p+py)
-3 S dEe S dx S dp 5n pp(x,p,t)
min xl(E) i
(11-35)
where
pg = J2m(E- V() (11-36)

and xl(E) and xz(E) (chosen =Yo) xl(E) < x2(E)) are the classical
turning points for motion in the potential vV(x), i.e., they are

the solutions of

E =V . (11-37)

We assume the potential V(x) is such that there are two classical

turning points for energies E =z E

., where E_. is the minimum
min min

value of V(x). The physical significance of Pp is that it is the
momentum at t = o in a motion corresponding to the total energy E.
Upon carrying out the integration over p in Eq.(I1-35), we ob-

tain tho result that

= xz(E)
p@p(0)y, =3 § ar Tl ax popg, 0
E in xlﬁu)
xl(E) (11-38)
+ S dx p(x, - P t)
xz(E)

Since the momentum at t = o for x in the intcrva) (xo(t),xl(E))
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is the negative of that at the swae point in the interval

(Xl(E), xz(E)), because the motion reverses itsel! at each

turning point, the cxpression in brackets is the integral over
onec period of the motion beganping at xl(E), and rcturning to
xl(E) after onc period. Thus, we mov wrile Eq.(11-38) in the

form

(@0, =g § ar ™ & ax pepp, 0 0 ar-39)
E

min

The one-dimensional motion of a particle in a region bounded
by two turning points is a periodic function of timc with a period
[ =4
T(E) given by(o)
x, (E)

- dx
) = [3 : -4
T(E) m S T S (11-40)
xl(L) (

This result holds for any initial position x and momentum Pr in a
motion corresponding to total cnergy E. Thus, the integral over
a period in Eq.(1I-39) is a periodic function of time with the

sarme period T(E), and wec expand it in a Fourier scries:

+e

Q’ dx 1)(X,pE,t) = 2 pn(E)e-i"w(E)t

==

where T (R)
1

o Y . . LoHinu(E)t
pn(E) = T S dat @? dx p(m,pE,i)e !
o (11-42)
and we have defined

21

w(E) = 7T (11-43)

To obtain a simple expression for p (1), note that the
Ir !
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solution of the cquation of motion for a parcicle moving in a

crue dimensional potential is given explicitly by(s)

)] X ’
) dx
il t;4@y‘g —— , %, (B)s x ex,(E)
0 P _ E=VET a B 2
}ul(E) ’\

(11-44)

l

Tu writing this cxpression, we are measuring time with respect Lo
an instant to at which the particle is at the left hand turning
point XJ(E)' It is necessary to know x as a function of t only
for xl(E):sx:sxz(H) because as t increases past to-+T(E)/2, vhere
X = xz(r), the motion reversces itself (i.e., x(t) is symmetric
about t = t, + T(E)/z) until the time L, + T(E) is reached, at
which point the particle has returned (o xl(E), and the motion
begins to repeat again,

The solution of Eq.(II-44) can be written

x(t) = Xl(E) + Ip(t - to) (11-45)

- e e T

whevre the function fE(t) is an even func.ion of t, is periodic
in t with period T(E), is even about t - T(E)/2, and vanishes as

t - o. The momentum pF(t) for the orbit of energy E is

dIE(t— to)
pE(t) = m e "IN gE(t = tO) 3 (11-46)

wheye gF(L) is an odd function of t, is periodic in t with period

T(L), and is odd about t = T(E)/2 .
With these results, Eq.(11-42) becomes

T(E)

pn(F) =;%L3- GF dxclnw(h)to S di m gF(t~t0)olnw(E)(t_to) 0
[} o) 4

(11-47)
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. where the integrations over x and t have been interchanged.,

Since gE(t) is periodic with period T(E), and we integrate over

a complete period, this result becomes

! : i d‘ :'.nu;(E)t0 T(E) . !
pn(L) es TEY jb dx e S dt m gE(t)51n(nw(E)L) g

o
(11-48)

where we have used the fact that gE(t) is odd about t = T(E)/2 .
We now convert the first integral from an integral over x into an

integral over tO:

T O e _n-,*i'.u-mmm

. "T(E) ing(E)t T(E)
pn(E) = T%ET S dt0 %%; e 9 S dt m gE(t)sin(nw(E)t) .
o o _

(11-49) )
The coordinate x is obtained as a function of to by setting t = o
in Eq.(I1-44). The limits on the first integral follow f:'om the |
fact that the original integral on x around a period of the motion
corresponds to t - to increasing from O to T(E) as x goes {rom
x, (E) to x,(F), and back to x;(E). Setting t = 0, we scc that t_ |
gocs from 0 to -T(E) as x makes the same circuit. Making the

change of variable to = -t’, and using the fact that fE(t) in

Eq.(11-45) is an ceven function of t, we obtain for pn(E)

T (F) | T(E)
NS S ¢ : ~ing(L)t .
Pn(b) = TEY S di’ gn(t')e w(L) S dt n gE(t)51u(nw(L)t)
0 0

(I1-50)

or, using ‘the oddness of g.(t’) about t’ = T(E)/2, we find fivall
’ E ’ y

! 2o .
m p (E) = T I “n (E). (11-51)
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vhere T(E)
P (E) = S at pg(t)sin nu(EMt (11-52)
(0]

where the momentum pF(t) = gE(t) appearing in Eq. (I1-52) must be

understood to be obtained from Eq.(1I-44) with to = o0 (since that

is how g(t) is defined).
Upon combining Eqs. (11-39), (I1-41), (11-43) and (11-51),

we obtain for the momentum auto-correclation function

+o ©
| : Y} = mme
| )y = Y o wme? @e B L 1-s3)

~

n=-oe E_
nin

When this result is substitutcd into Eq.(I1-33), and the integra-

tion over time is carried out, we obtain (as n = o+ )

|
i
2.2 4w ©
de,  PIE, o . ~BE . 2 i
‘ ((‘a—t»— ——8—1;2-'/—_ /. S dEe w(E)Pn(E) X {

X Em:i.n I
X [b(w— nw(E)) + 6(w4-nw(E))] . |

(11-54) i
If we note thati Pnz(E) vanishes for n = o, and is an even

function of n for n # o, we finally obtain for the average rate of

cnergy absorption by a diatomic molecule =
2. 2 @ ©
de weq E - e
(”i))=’———7~2— 1 dEe SEP‘Z(E)G(uv—nw(E))
dt. 2, on n !
L n=1 E
min (11-55)
I
' where we have assumed @ > o,

The dynamics of the problem are seen to enter simply through
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the necessity of knowing pE(t) for the evaluation of Pn(E), and
w(E) . Moreover, if w(£) is a sufficiently simple function of E
so that the ecquation w = nw(E) can be inverted, the intecgration
over E can be carried out using properties of the delta function.
We bricfly summarize in words the procedure for computing
the quantitics which enter Eq.(11-55). Given a potential function
V(x), one requires the period T(E) as & function of energy. This
function may be obtained from Eq.(11-40), and w(E) is defined by
Eq.(II-43). By solving the equations of motion, one finds the
momentum as a function of time pE(t) for an orbit of energy E,
with the origin of time chosen 50 the parameter to in Eq.(11-44)
is set equal to zero. The quant ty Pn(E) is a measure of the
amplitude of the niP nharmonic in the function pE(t), and is ob-
tained from kEq.(I1-52). Finally, 7 is the partition function.
We conclude the present section by displaying a remarkebly
simple relation between the partition funcrion of the oscillator,

and thc function T(E), that gives the period as a function of

energy.
We have i )2
+ V(x)}
Z - S dp S dx ¢ LZn
4« +e + 2
. Edl‘ v )
-~XdEc Sdp dx &(E- V() - 4-)
-:(Q - - 0
© X2 ) 4
-= @, 1 -
K dil ¢ g dx T \\) cp- {,(p—p ) i(l”*'l-’l.-)J
s) % : L =
LmJ'n kl(L) =9
‘w _ .F ’.XZ(L) (‘-\
: dr ¢ U f2n \ e
) YERI e
Emin N](H)

B T T e R
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or finally

-]

7 = S dE ¢ BE ;(g) . (11-56)

E_.
min

We next proceed to apply the results of the present section

to the exanples mentioned in ~ection I,
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II1. Applications of the Formalism to the Study of Multiphonon

Absorption for Some Specific Potentials

In this section, we study the behavior o! the absorption co-
efficient as a function of frequency fo:r four specific forms of the
interatomic potential V(x). We first derive the form of the
absorption coefficien. for the Morse potential, a form used {re-
quently in molecular physics. We then consider the potential
V(x) = ax? + b/xz, the square well, and the potential V(x) =
yx for x =2 0, V(x)=e for x < 0. The lasl two potentials are
interesting examples to consider, since one cannot construct a
discussion of 2 perturbative nature, because an harmonic approxi-

mation does not exist for either case.

a) The Morse Potential

The Morse potential may be written in the form
V(x) = D[1 - exp(-alx - x. D1% . (111-1) |

The minimum value of V(x) is zero and the minimum occurs at X=X . :
For large values of the interparticle separation V(x) approaches
the constant value D, the dissociation energy of the molecule.
For most cases of interest here, D assume a valuec the order of ]
onc electron volt, an cnergy very large compared to kBT,as long |
as we confine our attention to temperatures the order of or lower
than the melting temperaturce oi the solids of interest to us, We
shall make uvuse of the fact thnt KpT<<D ir the discussion below.

If we consider only motious of small amplitude, X remains

near x ., and V(x) is well approximated by the parabolic form

g 2
V(x) = Da“(x - x )" : (117-2) [
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Thus, in the limit where the amplitude of the motion is small, the
molecule bechaves like an harmonic oscillator with frequency w,

given by

w2 = ] (111-3)

We begin by deriving an expression for the quantity pE(t)
defined in scction II, following the procedurc outlined there.

We begin with Eq. (II-44), which with t_ equal zero becomes
\,
X

’ a(x -x) 2a(x _-x) g
t = (g)éjf dx'[E—D% 2pe °  -pe ° ] . (I1I-4a)
x, (E)

The integral can be evaluated in closed form. This may be

done by letting 6 = exp(-ax), and 8, = exp(-axl(E)). If we then
define C =D oxp(2axo), B = 2D exp(axo) and A =D - E, the
integral becomes

1 /m\ 1 2 -3 de'
t = ;(z)f [Bo' - A -co'?) S (111-4b)
(

For bound motions of the molecule, the only case cf interest herec,

B = A + C82 ceverywhere. The integral is then readily evaluated(G)

to give -
! ax_ 6
2,0 .k . -1| (D-E)-De °g
at[m(D E) ] sin —ax_
; '
L',fI)E e 0 0
i ax_
.o=1 D-Y¥) -Dbo
= o & )ax 2 (111-5)
LJﬁE c %
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If thic relation is solved for ¢ as a function of t, and x(1)

5 -

. is obtained from this result, one [inds

1
{(t) = Loy ol o b pry =B cqm : C
x(t) X4 WDt a tnll () cos 1 (F) t (111-6)

where we have introduced the quantity « (L), defined by

1
. E,?
2 (F) + . _ L -
w(E) &0[1 ”] (111-7)
From Eq. (I11-6), it is cvident that the period T(E) of the
motion is
N . 27 _
T(E) neN) . (111-8)

For small energies, T(E) assumes a value independent of energy
and cqual to 2n/JO, and the period lengthens as E increases,
The momentun pE(t) is found from nx(t), with x(t) given by
Eq. (IT1I-G). If this differentiation is carried out and the
result substituted into the expression for Pn(E) given in Eq. (1I-52),

one obtiains
T(E)

1
2 (T i . o1 Gl (T
P“(E) = $2mEl e () ./' sin nJ(g)t sine(B) L,
© o 1 - (%) cosy(E) t
m
)
_ 2(2mp) 4 f Sih N Sing
= T d (111-9)
o 1 - () -cosy

The integral in Eq. (1I-9) may be cvalnated exactly, to givv(G)

g ( )? (n+1) o
i . 2= (2uE)* D 2 K. 2.
T (1 -Q -5 | . (111-10)
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The discussion shows that for the Morse potential, exact
results for all quantities which enter the expression for the
absorption coefficient are readily obtained, for the bound orbits,
We shall compute an approximate form for the absorption rate in
the limthhT<<D, where only orbits with energy E<<D contribute
significantly Lo the rate of absorption. 1In this regime, we

replace P"(E) by its leading contribution when E<<D:

n

4 2
o (E) = 2122 ( E )
n*" W, \ 4D

(I11-11)

In this limit, the function w(E) may also be replaced by the
approxinate form w, independent of energy, for E<<D. From Eq.

(I11-56), one readily sees that the expression for the partition

function becomes

g~ AL (I11-12)
w B
o
If these approximations are inserted into the expression for .

((g%)) displayed in Eq. (II1-55), one finds that

-]
dae ., _.
P = 2_3 @, 8(w-ny ) (I11-13a)
n=1
vhere
== l o !
@ 4 “m “-( —5') (III-13b)

For the casec n = 1, we have

q2E2

a] = % - independent of temperaturc, (III-]&;)
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the well known result for the integrated strength of the funda-
mental absorption line of a simple harmonic oscillator of mass m,
charge q and frequency Ly (Recall that EO is the peak value of
the field.)

The integrated strength of the absorption peak at the fre-
quency w = ny (the n phonon absorption pcak for this model) is
related to that of the fundamental absorption peak by the simple

relation
(III"'14)

b) The Potential V(x) = (a/xz) + bx2

The second potential function we consider is

-2 bx 2 & & 0. (I11-15)

X

V(x)

;
?E'

Settiing to = 0 in Eq. (11-44), we obtain for the equation deter-

mining x(t)
x

,4
l(E)J a+ EX = 4;

The turning points 3 2(E) are the solutions of the equation
’

(II1I-16)

E=2 . bx2, (111-17)

are found to be

2 A K.
E-[E“ -42b]2 | 2
x, (E) [Zb 1 ] (I11-18n)

1 )

,‘ = _[_l" = 1].'] E —~1Q
xz(L) o J (ITI—18DL)
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The energy Yuin equals the minimum value of the potential
energy (JII-15). Equivalently, it is the cnergy for which

xl(E) - xz(E), and hence is given by

= 2J/ab ; (111-19)

min
The change of variable x2 = y transforms Eq. (II11-16) into
x2
t =3 (ﬂ)% f dy
2 I3
2 Oy 2

1
2
= -é (_m_ {ITZ_ - Sin—l E;_z—bL } . (III—ZO)

2b
4E2 - 4ab

If we evaluate this expression for x = xz(E), the left hand

side must be sct equal to T(E)/2, and in this way we obtain

T(E) = n JEmB : (111-21)

Consequently, the frequency w(E) is given by

w(E) = 4%}3 =, . (111-22)

It should be noted that the period T(E) and the corresponding
frequency w(E) for the potential (III-15) are indepcndent of
the cnergy E.

It follows immediately from Fgqs. (II-56) and (I1I-21) that

the partition function 7 is given hy

Z =—§-g— o~ 28 4/3D ) (111-23)

o
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The expression (I1-55) for the rate at which cnergy is absorbed

by the molecule described by the potential function (II1-15) now

becomes
ww 2 ‘ -y I
ey o 29”2 R 1) 2:/aD [ aneFFa2( -
«ae” g P 02 E AE% n | i dEc Pn(L)} ¢ (w Y
Lmin

(I111~-24)

If we mzke the change of variable E = Z/EF(Z+-1), we obtain the

convenient form

_ ww 2 © - B
| «g%» = 2./ab -2 g2 L2 T % f dze~23/abz pﬁ(z./ub(zu)) fx
E_ m n=1 o
«
X 6(w*—nwo) \ (111-25)

Since 2/ab = E ip’ We see that for tempera.ures such that
Emin 2 kBT’ only values of 2 S 1 contribute significantlv to the
integral. We now turn to a determination of Pn(E).

Inverting Eq. (III-20) we obtain for x(1)

2 1
e YE?-4ap . -
x(t) l 5b R, cos Jot ‘ ; (I11-25)
from which we Lamediately obtain p(t):
\’Fz—fkﬂ) sh)uaﬁ

. p(l) = Jfu — - « (I17-27)

; / —

Vi B gl
VI- T co= ¢+t

The integrul . in this case is viven by
: b f .

A=

LE o
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™
p (E) = 2/mE = -/' BIN K 0N D g (111 -28)
o A J1 - dcosx

where we have set J———»
2
~ YE” - 4ab (111-29)

The change of variable x = m = 20 yields the following expression

for 'Pn(E) ;

n
2
¢ (E) = (_1)11—1 :/fﬁ_: 25 f cos 2(n-1)w-cos2(n+l)ep dep
n w
D o o Jl--—z—é snnch
1+6 (111-30)
The integral
i 4
2
' = cos 2nx
(o} Jl—k sin“x n=06,1%,,..
' . . e 2 (7)
has the following expansion in powers of Kk
n T = I(v4 ]) : sz
Kn(k) = A=l 7 o -—rTr)’L-
v=n ¥ (v-n) !(v+n) !
i (111-323)
1 3 21 ‘
= n < I(nt,) K (2n+1) ,2 i
= (=1) L |02 . A&
()leG) ] (211)"1+ I k® +
(2n+1) (2043)% 4 l
+ Sx A Sl e (ITI-32D)
32(2n12)

Consequently, sirce in the present case

(1I1-33)
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the first two terms in the expansion of Pn(E) are found to be

L SRS RN

2 f
N oo JmE | -D) 1, _@en”
Pp(E) 2w, I'(3) ] (2n-2)! lré)n_% i
! (2n-1) 25 f{26 \2\ |
XI 1l + 4 1+ 6 + 0\(?) )’ A (111‘34)

Consequently, wc have that

2 4 2n |
. 2 < mE r(n—-‘) /| (25) '
1 Pn(E) T4 T2 T [ (2n-2) .]2 on-1 X '.
! Yo (1) 20 ;
i
E
M PR €11 DI T E (—29—)2 ) (I111-35
i l ¥ s 5 Jy ) .
: .
Since & <1, we can simplify this expression to !
|
»
2 2 mE  [(2n-2)112 .2 2 -
P “(E) = n" &5 & 1+ 008%)] . (111-36)
n 2 Gn (¢
w [(n-1)! J
o
I
s
If we make the replacement E = 2,/ab (z+1) in Eq.(111-29),
we find that as a function of z § is given by | 3

2
_ iéu + 27

¢ 2 + 1 :
L4 ')'
=22 Q- F e Zg At ) 0=z <1 1137y 1

2’! % ol -, "
Thus, the leading term in the expansion of 2 kzvhb(l +z)> ifor

small z is
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= \]
e 2 (ZJEB'(1+-Z)) N n2 m 2 /Al r[(2n )i g O(Zn+1) )
n 2 o5n-6 v 14
W, 2 [(n-1)!]

' (111-38)
!, When this result is substituted into Jq.(III-25), and the integral
; over z is carried out, we obtain finally

9 n-1

- _2y17%n1 [ KgT
Gy~ gL g2y Lo 2).Jn;( B )

m o =5, .y, 4
ne1 2 ((n-1)!]

T 6(w—nw0) &
min

(111-39)
We see from this result that the integrated strength of absorption
at the frequency y = W s (nq2/4m)E3, is independent of temperature,
and has the same value as in the case of the Morse potential. The

integrated strength of the absorption at the frequency w = nw, is

related to that of the fundamental absorption peak (n = 1) by

[(2n - 2)1]2 . ("BT )

= > (I11-40) 1
25n 5[(n-1)!j4

R .

which is very close in form to the corresponding relation, (I11-14),

obtained for the Morse potential.

¢) The Squarc VWell

We next apply the method Lo compute the shape of the

e g Ay,

absorption spectrum for a particle trajpped in a square well poten-

A TR

tial, with infinitely steep vides., This cxample is an interesting
application of the formalism developed in section 11 of the present
paper, since the potential does not adait an harmonic approxima-
tion. In scection IV, we shall arguc that there are certain impuri-
ties in allali helides that may be sregarvded as moving in a very
steep sidced potentiad that can be approrimated by a square well,

at Jeast for gualitative pumvposes,
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We suppo<ce the square well has widih L, with infinitcly steep
sides. If we consider motion of a particle of mass m in the wvell,
1
with znergy L, then the velocity v of the particle is (2k/m) 2.

The period T(E) is 2L/v, or

1
(I = _2_£1 4 s er Y =
T(L) L (5 Ty . (I111-41)

For the momentum pF(t), one has

‘ + (2mE)% 0 <t < T(E)/2

PE(t) - (111-42)

l - (2mE)é T(E)/2 < t < T(E)

A short calculation gives for this potential

_. 2mL
mn

P, (E) (1 = (=1)"]

It is a straightforward matter to insert this expression
into Eq. (11-55), and obtain the form of((g%)). The computation
of the partition function is also quite elementary. The final
result is best expressed in terms of a characteristic irequency

Wr, glven by .

2kpT 5
W = (-—2— ) s (I71-43)
mL

In terms of Wy the expression for the raie of energy absorption

is 2
expl- —p-d,
ds 8 QZEZ 2 w w(2n+l)“
<_ [ > ) O L Y\ - f
t 3/2 m 3 - 5 (111-44)
v \lT n=o (2,1_{,1)
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The absorption coefflicient 13 thus a superposition of a

sequence of Gaussians, The function on the right hand side of

T

Eq. (II11-14) hoas a preainent peak very near o = Yoo with weak
subsidiary maxima at higher frequencies. Of particular interest

is the bchavior of the absorption coefficient for frequencies

- — g ———

| larged compaved to Lope I, this region, one may find the asymptotic
L
!

form of the absorplion coefficient by replacing the sum in Eq.(I111-44)

&

by an jategration. For w >> Wp by this means onc finds

(%)

~w_ 1

2.2 o 2 2
: By o 2 Bo w2 fas _ “r°
_F at’”/ = [ 3/2 m |3 §2
: “r 7o
|
! 2 qug Wip
E 12 m w

Thus, for frequencics large compared to the characteristic
frequency L the square well potential gives rise to an absorption
coefficient which falls off as w-z, a result qualitatively different

from the empirical form displayed in Eq. (I-1).

d) The Iriancular Well

We next display the form of the absorption coeff.icient

L L ———

for a pctential V(x) of the form

2 ‘m X < o0

V(x) = (I11-46)
l 2.4 X > o0
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wvhere the constant y is presumed positive. This is a sccond ;

example of a potential for which a harmonic approximation fails

to exist.

The classical equations of motion for this example are quite

elementary. For an orbit with energy E, the period T(E) is
2y o}
T(E) = A (2nE) 4 (111-47)

and the momentum of the particle as a function of time is

pE(t) = (2mE)%(1 L. ) . o<t <T(E)

" T(E) 2
= _(sz)%(l 'T%%T’) , TéE) < t < T(E)

A short and straightforward calculation then gives

_ 4mE i
Pn(E) myn (111-48)

and for the partition function

3/2
Z (kBT)

: (I111-49)

i — . e

_ (2mm) 5
Y

- -

When these results are inserted in Eq. (II-55), one finds

that the results assume the form

2.2 2
(Ly- 4,2 o It 53 (-n° Sé ) 111-
at- 5 w8 o N SRR s KT1360)

where QT is a characterictic frequency given by

i A e
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1

Op = my(2mkyT) 3 (I11-51)

When w >> 0 the form of the absorption coefficient may be

rr)
deduced by replacing the sum over n by an integration, as we did

in the preceding example., In the high frequency regime, one finds
that

2 2
ae. . 2 YE O
2

Fe” = 572
m

, (111-52)
w

a result remarkably similar to that obtained for the square well.

In both examples, for w large compared to a characteristic frequency,

the absorption falls off as w—z
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IV. General Discussion

The purposc of this section is to cxamine some implications
of the results in section II1.

We first examine the question of the validity of the phenom-
enological form displayed in Eq.(I-1), which is sugpested by the
absorption data reported to date. I{ this form is in fact a
general result which holds in the limit of high frequencies, then
we should expect it to emcrge from our analysis. If we consider

the Morsc potential, and also the potcuntial bx2 + a/x2

, our
independent oscillator model predicls a series of absorption
peaks at the frequencies w, = neg where W is the fundamental
vibration frequency of the anharmonic oscillator. I1f the exponen-
tial law is obeyecd for these models, then ve should cxpectl the
integrated strength of the n phonon pecak (the absorption peuak at
nwo) to vary with n as e" , vwhere € is a paramcter independent
of n that depends on the details of the interatonic potential
and the (cupcerature.

1f we examine the results obtained in section 111, we see
that a rclation of this form does not hold for any of the four
potentials we have examined. The two potentials most dircetly
applicable to real physical systems 2ve the Morse potential ond
the povontinl hx2 1 n/x2 , since bhoth of these potentiads adnmit
an harvnoice approxiniation. 11 we denote the integrated strength
of the n- phionon peah by o . then for the Morse potential ve find

that

i
cr %o ! (3-1:1[-‘)' C.'l ’ (I\"—])



wherce 0y is the integrated strength of the fundamental reststrahl
band at L. A very similar relation obtains for the potential
bx? + a/xz, as we have seen. Because of the factor of n! that

appears in Eq.(IV-1), a plot of o, VS. n does not give an exponen-

tial law of the form displayed in Eq.(I-1). It is for this reason

that we feel that the proof offered by McGill et al., leads to con-
clusions that are not correct. Both examples we have investigated
lead to results which contradict this conclusion. As we remarked
in section ¥, these authors have also calculated the intensity of
the multiphonon absorption peaks for a set of independent oscilla-
tors, euach ot which is described by the Morse potential., Their
calculation is carried out by a quantum mechanical means, and
yields a result in agreement with ours in the limit hwo < kBT,
where the correspondence principle dictates that the classical and
quantum mechanical results must concur.

One must then inquire into the reason why the data are so
well fitted by the exponential form displayed in Eq.(I-1). Of
course, it may be that our independent oscillator model is so highly
simplified that conclusions based on it are unreliable. We feel that
that the problem does not lie here, but in the fact that the data
obtained to date extend only over a rather small range of {requency,
from 2;0 to GLO at best. The frequency only varies by a factor
ol 2t most three through this range. While the absorption cocffi-
cicnt changes by many decades as one passcs through this frequency
range, measurcements over a wider range of frequencies, or at
higher temperatures will be required to deiermine whether the

pheronenciogical torm in Eg.(1-1) is valid.
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We illustrate this point in Figure (1), where we present the
mul tiphenon absorption data obtained by Deutsch(z), and compare it
with the prediction of Eg.{IV-1) at integral values of nw, . The
solid line in Figure (1) is a straight line, chosen with slope
such that it passes through the data obtained by Deutsch. We
have omitted the data points simply to avoid cluttering the figure
but, as noted by Deutsch, the data fall on the straight line. 1t
will be important for our purposes to note that the data points
all lie below the frequency of 750 cm_l, to the left of the square
bracket which has been placed on the straight line. Thus, the por-
tion of the straight line to the right of this bracket represents
an extrapolation of the data to higher frequencies, in particular
to the frequency of the 002 laser. This extrapolation assumes the
phenomenological form given in Eq.(I-1) is valid for all frequen-
cics, since it is a linear extrapolation on a semi log plot.

In the figure, the barred circles represent the prediction of
Eq.(IV-1). To place the points on the figure, we have adjusted &y
and D so that Eq.(IV-1) fits the data at the two points n = 2 and

n = 5. When we then calculate the strength of the absorption at

1

n 3 and n = 4, we obtain results that agree very well with the
data, to within the accuracy of the graph. Thus, we can also fit
the function in Eq.(IV-1) to the data, and it is clecar that the
neasurements do not extend over a rauge oif frequencies Jarge enough
to warrant the conclusion that the exporential lav provides a
unique description of the results.

Jt is not bhard to sec vhy we obtain a good {it to the data. The

ratio kBT/4D is quite small, of the order of 10-2 typically, as we
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Figure Caption

Figure (1) Comparison between the multiphonon data in KC.¢, and

the non-interacting oscillator model, for the case where the
motion of the oscillator is governed by the Morse potential. The
solid line passes through the room temperature data points of

Deutsch, and all the data lie below the square bracket placed on

= =4 "
the curve newr 750 cm ~ . The barred circles are computed from

the theoretical model, with parameters adjusted to fit the data
at n = 2 aud n = 5. The crosses give the theoretical prediction

when T = GOOOK, and the dashed line is a straight line drawn as

an aid to the eye.
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shall sce shortly. I1f we plot the data on a semi-log plot, then
we ave concerned with the behavior of log «, 4s a function of n. 5

Eq.(1V-1) then gives

4D o
4
In o, 7T n[ln }‘I—)—- —Tll ln n!:l + 1n ﬁ]

If n is Jarge enough for Stirling's approximation to be used,

log n! - n log n - n, and

4Dy, .
In ¢ = — n[l + 1n %QT - 1In n] + 1n L7—$1J
n B I\BA

Since 4D/kBT >>1, the 1n (4D/kBT) contribution to the quantity in
square brackets is quite large. Furthermore, if we plot log o, @s a
function of n, deviations from a straight line arise only becausc
of the log n term. Since log n is a slowly varying function of n,
a plot of 1n &, VS. n can give a result approximated very well
by a straight line, if only a small range of n is examined.
I{ we accept the results of our independent oscillator model

as realistic for the monent, then from Figure (1) one can see that

' extirapolation of the exponential law of Eq.(I-1) to higher frequen-
ci_« can lead Lo serious errors in estimates of the absorption
coeffici~nt, Jor example, by the time n = 7, the expression in
Eq.(IV-1) gives a value of the absorption cocfficient larger by a
factor of 5 than that obtained from extrapolation of the exponen-
tial isw. 7This example suggests that to estimate the absorption
cocificient at 10.6,; by the use of Eq.(I-1) to extrapolatc data
from lower Irequencies may lead to a scrious underestimate of the

absorption coefficient at 10.6p.
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If the temperaturc of the crystal is raised, the discussion
above suggests that deviations from the near exponential behavior
should be exnceted to be more severe, and to set in at lower
values of n. To illustrate this point, on Figure (1) we have
placed a scries of crosses to represent the prediction of Eq.(IV-1)
at T = GOO(K, once a, and D have been adjusted to fit the roon
temperature data at n = 2 and n = 5, as described above. The
dashed line is a straight line place on the graph as an aid to
the eye. The deviations are indeed more pronounced, although on
the semi-log plot they do not look large if one adjusts the slope
of the straight line to give the best fit.

In order to see if the independent oscillator model provides
a fit to the data with realistic parameters, we have done the fol-
lowing, for ithe case where the molecular potential is assumed to
be the Morse potential. We have determined the parameters of the
Morse potential by the use of the value of the TO frequency, and
the multiphonon data on the four alkali halide crystals studied
by Dcutsch(z). When this information is combincd with the tabu-
lated value of the interatomic spacing, the coefficient of
(linear) thermal expansion may be calculated for the model. We
shall describe the details of the analysis below. The results
of the investigation are summarized in Table 1. For NaCs , KCL
and KBr, this procedure gives results in remarkable accord with
mcasured values of the thermal expansion coefficient. For LiF,
the agrcement is poorer, but the estirated and measured vilue of
the thermal cxpansion cocfficient still differs by little more

than & factor of 2. On the basis of this analysis

, We concluie
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that multiphonon absorption processes of an intrinsic character
are indeed responsible for the absorption mecasured by Deutsch.

To obtain the numbers displayeu in Table 1, we have employed
the following procedure. From Eq.(111-14), one sees that the
slope of a plot of log a, VS. n is controlled only by the param-
eter D, for the Morse potenti:l. e have obtained the value of D
given in Table 1 by fitting the ratio as/a2 to the data of Deutsch.

The value of a is obtained by identifying the frequency Wy

(Eq.(III—B)) with the TO phonon frequency of the crystal. The

paramneter xo in the Morse potential is chosen to be ccqual to the
nearest neighbor interatomic spacing in the crystal.

In the quasi-harmonic region, where kBT'<<I), il is an clementary
matter to calculate the mecon value (x) of the interatowic scpura-
tion of the two atoms in the molecule. One finds

3kBT

(x) = xo i 4aD

where the second term is small compared Lo X, We identify the

- ; . . . E(X
coefficient of (linear) thermal expansious with the ratio ;if% 1
0 1]

where £(x) is the change in the mean separation of the atoms pro-

duccd by the temperature change (T. I we call the expansion

Pp
cocificicnt, then
SRB
f‘T % '1“1"—)-\—; . (1v-2)

The figures in the third column of Tiable ) have been obtainced fron
Lqg.(IV-2), and in the right hand colunn ve give the experimental

3 )
dnln(b’.

Ounc intviguing feature oi the results of scetion 11T s what
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the strength of the n-phonon absorption peak for the Mcrse poten-

45 a/x2 exhibits nearly the same

tial, and for the potential bx
furctional depend:nce on n. This leads one to expect that the
result in Eq.(IV-1) may be rather general in the limit of large n,
valid in the classical regime for any potential which admits an
harnonic approximation, as long as the anhkarmonic correcctions to
the particle motion are small. At this time, we have notl suc-
cecded in providing a general proof of this result, however.

We conclude this section with some comments about the possible
role impurities may play in affecting the behavior of the absorp-
tion cocfficient at high frequencies. If the impurities are
coupled to the ions of the host lattice by mecans of an interac-
tion that may be crudely represented by either the Morse potential
or the potential bx2 + a/xz, then within the framework of our
model, the impurities will not affect the qualitative behavior
of the absorption cocefficient, although they will affect it in a
quaatitative sensc, since a certain fraction of the lattice oscil-
lators will then be described by parameters which differ from the
oscillators which deseribe the host lattice.

However, there are certain impurity ions which behave in an
anomalous manner vhen prescent as substitutional impurities in
alkali halides. An example is the Lit ion, which frequently
gives rise to a very low irequency resonance phonon node, even

hough it is a very light ion which produces a high frequency
local phonon wode if it is coupled to the host jons by interac-
tions charvacterized by harmonic force constants ccupiaruable to

thosce in (e bost matris, Evidently in the casce of La, in the
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harmonic approximation the force constants are very much smaller
than those which characterize the host, small enough to offset

the tendency of the light mass to crecate a high frequency 1local
mode. In fact, in KC2 the Li* ion sits off the substitutional
lattice site, in the (111) direction while it sits on site in

KBr. These facts suggest that tho Li+ion moves in a potential
well with a rather flat bottom, while terms higher order than
quadratic in the displacement of the L{Fjon from the substitu-
tional site play an important 1o0le in the lattice potential energy.
This notion is supported by thecoretical studies(g), and by experi-
mental observations which show very large electric field induced
shifts in the frequency of the resonance modc(lol It is also

true that a number of other ions have been observed to produce
resonance modes with frequencies very much lower than the frequency
expected on the basis of mass defect considerations alone(lo).

The remarks of the preceding paragraph indicate that there
are a certain number of impurities which‘when placed in alkali
halides may be crudely described as moving in the cage foraed
by their nearest neighbors, with the floor of the cage quite flat
in character. The calculation presented in section III of the
contribution to the abhsorption coefficicnt from Lhe particle in
the square well suggesis that these impurities may give a contri-
bution to the absovption coefficient which falls oif as ufz for
frequencies large conpared to the resonsace Trequency Uip al which
the peak in the impurity-indvced absorption occurs. Tims, Lhe
presence ol a significant numbesr of impuritics which Tive rise to

very low frequency resonances may have o significant gnalitative
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effect on the behavior of the high frequency absorption coeffi-

cient.

Before we procecd to an estimate of the quantitative effect

of these impurities on the absorption coefficient near 10.6y,, we
first note that for typical values of parameters, the character-
istic frequency Wp in the discussion of section I1I{(c) indeed

lies in the proper spectral region. For ecxample, if L=3 xlO—Scm,

B e S T W

and if m is chosen to be [ifty atomic units, then Wy~ 15 cm-l, a

frequency in the spectral region where the low lying impurity in-

duced lattice resonances are observed. Also, the resonance mode

T

frequency in some cases is observed to increase significantly

? with temperatures. O0f course, we cannot expect our very crude
‘ model to account for the features of these resonance modes in a
systematic and complete manner, but the overall qualitative
features seem to be reasonable,

It is a straightforward matter to find an expression for the
contribution of NI impurities to the absorption coefficient, in
the limit w >> W o This may bce done by multiplying Eq.(111-45)
by NI’ the number of impurities in the sample, dividing the
result by the (Lime averaged) energy stored in the electromagnetic

. 2 . . .
field (C@VEO /8 71, wvhere ¢, is the optical dielcciric constant

1
and V the crystal volume), then multiplying this by cmz/c, to
obtain 1/L, where 1, is the distance required for the cnergy

aensity of the vwave to decay to 1/¢ of its initial value. One finds

2-16 20 2,0 L (1v-3)
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where n = N/V is the namber of unit cp]]s/unit volume of the host
crystal and { is the impurity concentration. In Eq.(IV-3), q and

r m are the effective charge and mass of the impurity. Let q, and

; mg be the effceetive charge and reduced mass of the unit cell in
i the host crystal, and let
q2 mo
- e -
g R =5 R . (1v-4)
%
Then Eq. (IV-3) may be written
G —G\ u‘ 2 ‘\
oGS avy
i €.2
. 2 2 o . .
. wherc €g = €, + 4ﬁnqo,/mow0 is the static diclectric constant of

the host.

Yor the purposes of providing a crudc estimate of the seusi-

tivity of the absorption cocfficicnt at 10.64 to the presence of
1
these anomalous impuritics, we set R and (es - em)/eu2 equal to

unity, and suppose w/wo ~ 7 and = 20 cm—1 . We then find

U'T

.11— ' P Can™) (1V-6) '

e S R e =

where f is the impurity concentration,

The quantitative estimate of L displayed in Eq.(IV-G) must

e ———

be regarded as extremcly crude, bocause the model is highly over-

simplifiecd. It does suggest that ncar 10.6y, the absorption

cocfficient of the crystual may be guite scnsitive to small concen-
trations of Li, Ag, Cu or other impurities which give risc to

impuri ty induced resonance modes with frequency very much lower
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than expected on wmass: defect considerations. It would be

extremely inierestine to measmre the effect on the absoiption

coetficient of doping KC2 with Li, with concentrations in the

range of 0.1% to test this conjecture.
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The theory of infrared absorption by an array of inde-

pendent, anharmonic oscillators is discussed. When

the oscillator potential is the Morse potential, the
theory provides an excellent description of the tem-

perature dependence of the absorption coefficient at

10.6u in NaCL and NaF reported by Harrington and Hass.
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There has recently been interest in the mechanisms for absorp-

tion of infrared radiation by insulating crystals at frequencies
high compared wich the Reststrahl frequency. 1In the vicinity of
the CO2 laser line at 10.6u, and in al.ali halide crystals where
the electronic band gap is very large, the principal coentribution
to the absorption coefficient from the bulk of the crystal comes
from multiphonon processes in which five, six or perhaps a larger
number of phonons are created in the absorptior process.

Quite recently, Deutsch1 has completed a detailed experimental
study of the frequency dependence of the absorption coefficient in
several alkali halide crystals at room temperature. Several groups
have addressed the theory of the absorption process by models that
differ significantly in physical content,l_3 and there seems to be
general agreement that the frequency dependence of the intrinsic
contribution to the absorption coefficient may be understood if
the absorption has its origin in multiphonon processes. Ali of the
theories which have been applied to the analysis of the data pre-
sume that anharmonic effects on the lattice motion may be treated
by perturbation methods. One then predicts that for temperatures
T large compared to the Debye temperature BD, the contiikution to
the absorption coefficient from processes which involve n phonons
should vary with temperature like 1

A recent experimental study of the temperature dependence of
the absorption coefficient o at 10.6u in several alkali halides
has been reported by Harrington and Hass.4 These authors find that
o varies with T more slowly than Tn-1 in the crystals examined by

them. The purpose of this paper is to apply the simple theoretical
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model developed in our previous paper to an analysis of this data.

We obtain an excellent guantitative description of the observed
temperature dependence, and the model also predicts absolute values
of « at high temperatures close to the observed values. We analyze
the data on NaCL and NaF in detail. In the case of NaCl, a crystal
considered in our previous paper, an excellent description of the
data may be obtained without introducing any parameters not found
in our earlier work and for NaF, a crystal not examined earlier by
us, one parameter is required. The value of this parameter may be
checked by comparing the thermal expansion coefficient predicted
by our simple model with the experimental result, and the two agree
well. Thus, we conclude that our model provides an excellent
account of the data reported by Harrington and Hass. Furthermore,
the physical content of the model suggests that at high temperatures
anharmonic effects have a strong influence on multiphonon excita-
tations in the alkali halides.

In our previous paper, we replaced the crystal by a set of N
classical, non-interacting by anharmonic oscillators, where N is
the number of unit cells in the crystal. Each oscillator has a re-
duced mass m, and a transverse effective charge q. If the crystal
is illuminated by radiation with the electr.c field E(t) = Eo cos ut,
then the time and ensemble averaged rate at which energy is absorbed

by a single oscillator is given by3

o 1" =BE,2
Ly - —5=2 T ¢ [ e E®e @) (1)

i-N
=
N
o
i
—
o4

where g = l/kBT, Z is the partition function for a single oscillator,

the period T(E) of the bound orbit of energy E is written
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T(E) = 2n/w(E), and Pn(E) is a measure of the amplitude of the nth

harmonic in the orbit of energy E. If pE(t) gives the time depen-
dence of the momentum in the orbit of energy E, with the origin of
time chosen so that the particl: is at a classical turning point

at t = 0, then

9 T(E)
Pn(E) = T(E i dtpE(t) sin nw(E)t . (2)

The virtue of the model is that exact expressions for a may be
obtained with it, even when the oscillator motion 1s very anharmonic.
For the Morse potential V(x) = D[I—exp(a[x—xo])]2 we previously ob-
tained exact expressions for w(E) anrd Pn(E), although we found o
only when kBT was small enough for the oscillator motion to be

treated as nearly harmonic. In this paper, we work with the full

form of a, without this last assumption. In our earlier paper, we
found %
w(E) = w_(1-E/D) (3)
(n+l1)
on(2mE)? (D) 2 (e) |”
Pn(E) AR Yk S AL (_) 1 - wiL) , (4)
w, E W,

where Wg = a(2D/m)% is the frequency of the oscillatory motion, in
the havmonic approximation. Equations (3) and (4) may be inserted
into Eq. (1), and the integration carried out. We make one simpli-
fication in the exact result. For kBT << D, a limit that applies

to our discussions here, the partition function is well approximated
by the result Z = 2nkBT/wo obtained from the harmonic approximation.5

In the results that follow, we use this form for Z. Then if we let

£ = w/wo, and n. is the first integer larger than £, we find
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At fixed frequency, the temperature dependence of the absorp-

tion coefficient is controlled by the single parameter D/kBT, which

for the case of NaCL may be obtained from our earlier work. 2

We first recover from Eq. (5) the result valid irn the quasi-

harmonic regime, where for the nth term, this requires nkBT << D,

In this limit, the nth term of Eq. (5) peaks sharply just helow
€ = n., Thus, let € = n - €, with € small. If the nth term in

Eq. (5) is denoted by (( ))

exp|- nk T

2.2
de 2na"ES  p \2 eNg(e)
Gy = ) :

2D
6] ) (6)
mwo kBT 2nnn+1

where 6(€) = 1 if € > 0 and is zero for € < 0, The integrated

strength of the absorption line in Eq. (6) is

r q2E2 kBT)n-l
1 — ~
d <( )) 4m n: 4D (‘)
Thus, in the limit nkBT << D, the nth term in Eq. (5) contributes
to the absorption coefficient a term well approximated by the form
2.2 n-1

q Eo ' (k T

n
((%%))n A jﬁ; 6 (w-nw_) . (8)

This expression is identical to that produced by the quasi-harmonic-
approximation utilized earlier by us. 3
In Figure 1, we present a calculation of the frequency depen-

dence of the absorption coefficient for the model for T = 300°K and

T = 900°K, from Eq. (5). We have used the value of D obtained for




Figure Caption

Figure 1. Frequency dependence of the absorption coefficient for a

Morse potential osciallator at T - 300° K and 900°K, witha D chosen

for.NaC ¢,
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NaCt{ from our earlier work, and with the absolute value of the a
adjusted to fit the 10.6u data of Harrington and Hass at 900° K.

Several features of these results deserve comment. For T=300°K,
the n=3 term in Eq.(5) produces a very sharp peak centered a bit
below £ = 3. This peak is quite narrow and well defined, as one would
expect in the quasi-harmonic approximation. For £ near 5 or 6, the
effect of anharmonicity is severe enough that « varies smoothly with
frequency, displaying only gentle shoulders as a reminder of the
sharp structure present in the quasi-harmonic approximation. But the
time T=900°K, the theory produces a very smooth dependence of «
with frequency.

These calculations suggest that for large values of w/wo, even
at room temperature, the lattice motion cannot be regarded as nearly
harmonic, so the absorption coefficient cannot be calculated by per-
turbation threoretic methods which trent the anharmonic terms in the
crystal Hamiltonian as small. Tais is also clear from the data of
Harrington and Hass, which we shall see is well fitted by our model,

1

since the data show very large departures from the ™% pehavior

cited earlier.

It must be emphasized that at fixed T, the relative importance
of the agharmonicity increases as w/wo increases. If we examine the
absorption coefficient for the model near the Reststrahl region (the
Reststrahl absorption is described by the term n = 1 in Eq. (58)),
then the parameters we employ produce rather modest anharmonic

effects. For example, at temperature T, the Reststrahl peak occurs

very close to ¥ = w_(1-k,T/2D), where w_ is the Reststrahl frequency
o o B o

at T = 0. For our parameters, at room temperature, kBT/ZD > 0.03
for NaCL. The half width at half maximum is also close to kBT/2D

in magnitude, and increases linearly with T. As the parameter w/wo
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increases, each successive pcak shifts to lower frequency by a frac-
tional amount that increases with increasing order, and the width of
each feature described by the terms in Eq. (5) increases rapidly
enough so that by the time ¢ = 6, the absorption coefficient veries
smoothly with frequency at room temperature.

In Figure 2a, we compare the temperature depcndence of the ab-
sorption coefficient at 10.6u obtained from our calculations with
the data of Harrington and Hass. The theory has been fitted to the
data at 900°K, and gives a very good account of the observed temper-
ature dependence for all but the lowest temperature. In his previous
work, Deutsch has reported a value of 0.001 cmhl for the absorption
coefficient at room temperature, while the value reported by Harring-
ton and Hass is larger by a factor of 2.7. Thus, near room tempera-
ture, the absorption coefficient measured by Harrington and Hass
presumably contains an extrinsic contribution which is dominated by
the intrinsic contribution at higher temperatures. If we accept
Deutsch's value as the correct one at room temperature (see the
diamond in Fig. 2a), then we may fit o to within a factor of two
over the entire temperature range,

Our model also predicts the absolute magnitude of the absorp-
tion coefficient. The rate at which energy is absorbed from the
field is found by multiplying Eq. (5) by the number of molecules N
(equal to the number of unit cells) in the crystal. Then upon
dividing by the time averaged energy VEoEg/Bn stored in the field,
where Eo is the high frequency dielectric constant, and dividing by
the propagation velocity c/Eé, one obtains the inverse of the length

d required for the energy density in the beam to decay to 1/e of its
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Figure Caption

Figure 2. Temperature dependence of the absorption coefficient at 10. 6u
in (a) NaC4 and (b) NaF. The solid curve is calculated from the Morse poten-

tial and the dashed curve from V(x) = bx2 + a/x2.
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we have chosen D

initial value. This quantity is the absorption coefficient ¢ meas-

ured in the experiments. The magnitude of « may be estimated in
the multiphonon regime from dielectric constant data once D is known,
since Es - Go = 4nnq2/m for ionic crystals. For NaCy, the theory
predicts that at T = 900°K, the absorption length should be 0.011 Cm-1
at 10.6u, while the data shows it to be 0.020 cm™!. Our model thus

gives an absolute value for ¢ in good accord with the data.

In Figure 2b, we compared the temperature dependence predicted

for the absorption coefficient at 10.6: with the data on NaF, Again
we obtain an excellent fit for 500°K < T < 1200°K. The theory
does poorly for T < 500°K, presumably because GD ~ 490° in NaF,

and our classical model is inapplicable for T < BD. In Figure 2b,

NaF DNaCL’ and adjusted the magnitude of the

absorption length to fit the data at 700°K. For NaF, € = 3.96 at

10.6u. The value selected for D predicts the coefficient of linear

6 ° -1

thermal expansion for the crystal to be 38 x 10~ K when T > BD,
if we use our earlier procedure to make this estimateﬁ This value
is in excellent accord with the measured value of the thermal
expansion coefficient.7 From the dielectric constant data, the
theory predicts the absorption length to be 1.2 en L at 900°K,

while the measured value is 3.4 cm 1. Thus, while the absolute

value for o in NaF agrees less well with the data than in the case

of NaC{, the theory gives reasonable semiquantitative agreement.

One can inquire about sensitivity of these results to the
)

details of the potential., To test this, the dashed curve in

Fig.{2a) gives the dependence on T for « at 6wo for the potential

2

bx” + a/x2 examined previously(s), with the fit to the room
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temperature data carried out as in our earlier paper, This potential
also provides a reasonable fit to the dats, so the detailed form

of the potential does not seem to be critical.

Thus our model gives a good account of the dependence of ¢
on T in alkali halides through the use of only a single paraneter
whose value may be checked through use of data on the thermal ex-
pansion coefficient. Quite recently, Sparks and Sham8 have extended
their earlier work2 to provide an account of the dependence of «
on T. Their theory includes the effect of phonon dispersion in an
approximate way. They also treat the problem by quantum mechanical
methods while our theory is purely classical. Thus, their theory
may be applied to the region T < eD while ours may not be. The two
pieces of work are complementary in a certain sense, While their
model is more detailed than ours, they introduce a sequence of
approximations, such as the inclusion of terms only through a finite
order of perturbation theory, approximate treatment of phonon dis-
persion, and finally a phenomenological inclusion of certain anharmonic
effects by allowing the phonon frequencies to be temperature dependent,
; Our model is more schematic in nature, but its virtue is the use of
.\ only a small number of parameters to characterize a given material,
and we obtain exact results for &, The two theories concur in one
important regard. At high temperature, and in the multiphonon regime,

in the alkali halides the effect of anharmonicity is very large, so

large deviations from the Tn_1 law occur,
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G. TEMPERATURE AND FREQUENCY DEPENDENCE OF
INFRARED ABSORPTION AS A DIAGNOSTIC TOOL*

M. Sparks
Xonics, Incorporated, Van Nuys, Califorria 91406

Recent developments render untenable a proposed method
of distinguist ing between intrinsic and extrinsic infrared ab-
sorption on the basis of the proposed temperature dependence.
However, when the proper temperature dependence of multi-
phonon absorption is accounted for and the possibility of other

intrinsic processes is taken into account, the temperature and

frequency dependence of the absorption of both the best avail-
able and intentionally imperfected crystals should be useful

in studying extrinsic processes.

It has been suggested that the temperature dependence of the optical absorption
coefficient 8 could be used to distinguish between intrinsic (characteristic of a
perfect crystal) and extrinsic (caused by imperfections) infrared absorption. 1
Several recent developments bear on this suggestion. First, a combination of

frequency « and temperature T dependence should be far more uvsaful than the

T dependence alone.2 Second, the T dependence of B for mult'phonon absorption
5,0,2,1

deviates considerablys’ 4 from the expected result. Third, other extrinsic

processes in addition to those considered in Ref. 1 should be included.

Consider the first development. The near exponential frequency dependence
of B observed7’8 in a number of materials including LiF, 1\';117,8 NaCl, KC1, KBr,

MgF2 5 CaF2 5 BaF2 5 SrF2 » MgO, AI?‘O3 , SiO2 R TiO2 5 SrTiO3 , and BaTiO3 A
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when extrapolated to 10. 6um, gives a fair estimate of the intrinsic value of f8

at 10.6um. Thus, it is already known with fair accuracy whether the 10.6um
values of f are intrinsic or extrinsic for a number of materials. Nevertheless,
additional w and T measurements would be of great interest in studying the
sources of extrinsic absorption and possibly new intrinsic absorption mechan-
isms. Intentionally introducing various types of imperfections into crystals and
on their surfaces should be invaluable in such studies. 2 Since values of B of
10-4 cm"l and even lower are of cur.,ent interest, standard transmission measure-
ments are inadequate. Emissivity techniques should be capable of yielding values
of R well below 10-4 cm—1 in a carefully designed simple instrument.9 Calori-
metric measurements of f's approaching 10-4 cm™} at the single wavelength

10. 6ym are of course now common.

Concerning the second development, the temperature dependence of the
intrinsic n-phonon absorption (annihilation of one photon and creation of n phonons)

2565725 I

is considerably weaker than the well known explicit temperature dependence

B = B, (l - e-w/wT) (1 - e-w/an )-n (1)

where w is the laser frequency and Wy = kBT /. Eq. (1), which can be written
n

as B ~ (nQ +1) - nQn , where ng is the Bose-Einstein occupation number for

a phonon of frequency w/n, or in several other simple forms by using energy

. n-1 . . -
conservation, reducesto 8~ T in the high-temperature limit w... >> w.

T
Experimentally, this deviation from (1) was observed by Harrington and Hass,3

10
and °* is apparent in the data of Barker. = Sparks and Sham4 have explained this
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deviation by including the temperature dependence of the phonon frequencies

E ! and lattice constant in their previous theory of the nearlv exponential fre-

: . quency dependence of B8 discussed below. In addition, the particular extrinsic
l processes suggested by Hardy and Agrawal 1 and bv Rosenstock . will show

1 similar deviations from their predicted explicit T dependence when the T
dependence of the parameters is included. Until more experimental informa-
tion is available to establish faith in the abilitv to predict the T dependence of
the multiphonon and band-phonon plus localized-impurity processes, distin-

guishing between the two on the basis of the T dependence alone probablv

would be difficult.

The third development concerns a further more serious problem in dis-
tinguishing between intrinsic and extrinsic absorption on the basis of the T de-
pendence in Ref. 1. That is, there are manyv possible extrinsic processes in

# addition to the band-phonon plus localized-impurity process suggested in Refs. 1
and 6. For exa.nple, small amounts of macroscopic inclusions can give rice
to a temperature dependence ranging from 8 ~ TO to T4 in typical cases,
depending on the type of impurity.ll There is also some experimental evi-

f . dence, though it is not conclusive at present, for temperature independent

absorption. a8

i The study of intrinsic and especially extrinsic processes, by measuring
B(w, T) in ultrapure and intentionally imperfected crystals, for example,
indubitably will become important if the current interest in obtaining low-
absorption materials is unabated. Alreadv there are a number of cases in
which multipiionon absorption is obviously the source of B and others in which

it obviously is not. For example, there is now little doubt that the nearlv

169

R P I e =T 1,



fa T

Sec. G

exponential frequency dependencc7' . of B mentioned above is the result of
multiphonon absorption. The contributions of the individual n-phoncn processes
have been calculated and summed to obtain the nearly exponential frequency
dependencc.s More recently, a direct derivation of the exponential in closed

form, rather than as a sum of the individual n-phonon contributions, has been

. 1
given.

The fact7 that the 10. 6 ym values of B for a number of crystals, such as
KBr, CdTe, and KC1 as examples, lie well above the values obtained by extra-
polating longer-wavelength values to 10.6 ym surely indicates that these meas-
ured values of B arise from processes other than multiphonon absorption. A clear
example of an extrinsic experimental value of B is that of a NaCl sample meas-
ured at 10. 6y m from 300K to near the melting point by Harrington and Hass. 8
The room temperature value of 8= 0.003 cm-l for this sample is considerably
greater than both the lowest value of 8= 0.0015 cm-1 observed to date14 and the

estimated intrinsic value of slightly less than 10-3cm- : obtained by extrapolating the

lower frequency data to 10.6um. Furthermore, the temperature dependence deviates

strongly from the multiphonon value evzn when the T dependence of phonon fre-
quencies and lattice constant are taken into account. In fact, f decreases as

the temperature increases near room temperature.
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H. SHORT-PULSE OPERATION OF INFRARED WINDOWS
WITHOUT THERMAL DEFOCUSING*

M. Sparks
Xonics, Incorporated, Van Nuys, California 91406

The possibility of transmitting short infrared pulses
through materials with little thermally induced optical
distortion is shown to exist. For sufficiently short pulses,
of the order of 10-8- 10-9 sec, the absorbed energy does not
have time to thermalize, thus avoiding heating effects until

after the pulse has been transmitted,

In high-power laser systems, heating of a window or other transparent

component by the laser beam causes changes in the index of refraction n and

in the thickness of the window.l’ 250 The resulting defocusing is one of the

most serious problems in such systems. It has been pointed out that much
higher intensities can be transmitted if the laser can be operated for a period

of time, say of the order of a second, after which the window is cooled before

the next pulse is transmitted.l’ Ze 8 Bloembergen4 suggested that if the pulse

duration is inuch shorter than a characteristic time, of the order of an acousti-

cal velocity times a linear dimension of the window, the change in window

thickness is negligible, and only changes in n (at constant strain) should be

considered.

The purpose of the present note is to point out that in principle still

shorter pulsc durations allow-the-window to-transmitthe pulse before the
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temperature rises, thus avoiding the thermal defocusing. The requirement

for this effect is

)
tpuls < 1/T (w) (1)

where t is the pulse duration and I'(w) is the relaxation frequency of the

puls
fundamental-phonon mode (transverse optical mode with wavevector k=0 ).
When (1) is satisfied, the energy absorbed from the laser field by the funda-
mental mode has not had sufficient time to relax out of the fundamental mode
and thermalize. Thus the temperature, which corresponds to the thermal-

equilibriura values of the phonon occupation numbers, remains at its initial

value.

Practical values of tpuls depend critically on the deviation of I'(w) from

the resonant value I"f = I (wf) , where w_. is the frequency of the fundamental

f

mode. For example, from the value of the linewidth in thin NaCl samples, >

1"f > 2,5 x 1012 sec-l .

The corresponding value of tpuls Z 4« 10-13 sec from (1) is smaller than

values of current interest. The value of " (w) decreases rapidly as w
increases above Wee On resonance, 1"f is large in general because there
are many phonon states into which the fundamental mode can decay. As w
increases, the lower-order processes, in which the fundamental phonon splits
into only a few phonons, cannot conserve energy, and I' (w) decreases ac-

cordingly.
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In order to obtain an estimate of the size of I" (w), consider the optical

6,
absorption coefficient g(w)

w I'w)
- wfz )2 + wfz 1"((.0)2

B(w) = A
(w2

where A is a constant. On resonance, (2) gives
B(wf) = A/c.c.af 1"f .
At the laser frequency w, assumed to be high [w >> w,, I'(w)], (2) gives

Bw) = AT(w)/w>

The ratio of B(wf) to B(w) from (3) and (4) is
Blw)/B(w) = w’/w, T,T(w)

which gives, with (1), the central result

o 1 Blwe) wp Ty

buls ~ T(@) = B@) ”

(6)

Consider the materials in which distortion-free transmission is likely to be ob-

servable. In order to make tpuls large, I' (w) should be small, according to (6).

Since B(w/wf) decreases more rapidly than (t-.a/l.:.Jf)3 with increasing w in

the multiphonon absorption region, 7 a large value of w/wf is desirable in
order to make the denominator in (6) small. However, if w/wf is too large,

other absorption processes domiiiate the multiphonon absorption. Thus, the
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smallest value of B(w) in the multiphonon region is desired. The smallest

_ _1 8
values of B(w) measured to date at 10. 6um are of the order of 10 4cm 1.

The value of B at 10. 6 m for KC1 obtained by extrapolating from mea-

sured values8 between 8 =20 and 5x 103 cm-1 is 8= 10-4 cm-l. In view of

4em™! nas already been

current interest in KC1 and the fact that 8 = 4 x 10~
demonstrated, it is likely that 10-4cm-l will be attained. Thus, KC1 is a

good candidate in which to study the effect. At other wavelengths, ott2r ma-
terials would be more appropriate; for example, the extrapolated value of

equals 107%em™ ! a ~3.5um for LiF. If values of B smaller than 104 em !

are attained, the choice of materials will change.

For KCI, with® ws= 2.7 x 10'3sec™!, T, = 0.08 we, w= 1.8x10M"
see | (i.e., 10.6um), B(w) =5x 104cm-1, and B(w) = 10-4cm'1,
(6) gives
1 -9
Tw) - 5x 10 “sec . (7)

Such short pulses are not presently available at 10gm. However, they
are currently available at shorter wavelengths. For example, 6 TW with a
pulse duration of 10-11 sec is available at 1.06 g m. Picos~cond pulse dura-
tions are theoretically possible at longer wavelengths, of course. Values of

1/T(w) at wavelengths shorter than 10 m can be as large as that in (7). For

example, at 3.5um for LiF with wp = 5.8 x 1013 sec-l, Ff = 0.08 W »

4 4

w=5.5x 10! sec-l, B(wf) = 2x loscm-l, and B(w) = 10" cm-l, (6) gives

9

1/T(w) = 3x10 " sec. Thus, it is possible that the no-hea-ting-short-pulse

176




Sec. H

effect could be observed over a substantial part ot the near infrared region.

Unfortunately, at 1.06 um, where 10-11 sec-pulse-duration lasers are avail-

able, there is no material with 8 determined by multiphonon absorption. Thus,

tests and applications of the theory will have to await the availability of shiort-

pulse sources at longer wavelengths.

The analvsis above applies to the case of multiphonon absorption bv the

anharmonic potential mechanism. The possibility of 2 similar no-heating
effect at other frequencies and for other absorption mechanisms also exists.
However, the situation is likely to be considerably more complicated. For

! example, for absorption in the visible and veryv near infrared, the absorption
is likely to involve electronic excitations, such as in electric-field-induced
absorption or excitation of impurity-type or surface-state icvels. The time
required for the energy to be transferred to the lattice varies greatly with the
number of impurities, type of material, and the temperature in general.
Furthermore, the direct effect on the index of refraction of the electronic
processes involved in the absorption and the possibility of induced transparency

from emptying the impurity levels should be considered.

In addition to being of fundamental interest, the short-pulse effect could
have practical applications. It could be useful for diagnosis, as in distinguish-
ing between multiphonon absorption and electronic-type absorption, for example.
It could possibly afford a method of measuring the relaxation frequency 1’f of
the fundamental phonon mode directly. Its usefulness in high-power applications

is limited by material breakdown at the high intensities required to obtain high
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powcr with short pulse times. A typical value of breakdown intensity for alkali
halides is 2 x l()lOW,’cmz. : IFor tpuls =95x l()-q sec, this gives 100 joules
per pulse, or 100 W/cm2 average for a dutv cvcle of 1 see. This value, which
possibly could be raised by operating at lower than room temperature or further
improving matevials, can be compared with values of ~0.2 to ~2 x l()4 W/cm2
estimated to be obtainable for candidate window materials (ranging from Si to
KBr) for a one second pulse, two second duty cycle, beam truncated at -;— its
maximum intensity, and halving the intensity at the targct.1 If greater than half
the intensity must be available at the target or if the beam is truncated at a lower
intensity (as it usually is), these one-second-pulse values are reduced, by fac-

tors of a thousand or even greater in extreme cases. In such cases, the no-

heating effect would be useful.

It should b;: mentioned that local heating of imperfections, which can lead to
material failure, is a greater problem for short pulses than long ones for a given
value of the energy per pulse.9 The temperature rise tends to be lower for long
pulses since the heat has time to diffuse away from the generation site. In this
regard, notice that when (1) is satisfied, the time constant for the energy to
leave the fundamental mode (after the pulse is transmitted) is I/Tf, which is
considerably shorter than 1/T'(w), since the fundamental mode oscillates at its
resonant frequency after the drive field is turned off. A further limit to the
high-power use of the short pulse effect is the air breakdown at the high in-

tensities encountered in high-energy short-pulse systems.

Discussions with Dr. C. J. Duthler are gratefully acknowledged. .
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