
■ ■     . 

AD-765   354 

THEORETICAL   STUDIES  OF   HIGH-POWER 
INFRARED   WINDOW   MATERIALS 

M .    Sparks 

Xonics,    Incorporated 

Prepared  for: 

Advanced   Research   Projects   Agency 
Defense   Supply   Service 

30   June   1973 

DISTRIBUTED BY: 

National Technical Information Service 
U. S. DEPARTMENT  OF  COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 

iiiri-Miii ■miMMiiMiiai ■ M 



-iPWWWW»^! W^pMgpf^WJJju«!!-^ M^!>mmmm», 

m 

THEORETICAL STUDIES OF HIGH-POWER 

INFRARED WINDOW MATERIALS 

M. Sparks, Principal Inve&ägator, 213/787-7380 

Xonics, Incorporated 

Van Nuys, California 91406 

First Technical Report 

30 June 1973 

D D C 

J)   AUG si m 

c 

Contract No. DAHC15-73-C-0127 

Effective Date of Contract: 7 December 1972 

Contract Expiration Date:   6 December 1973 
Reproduced by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U S Depcrtmenl of Commerce 
Springfield VA 22151 

Prepared for 

Defense Supply Service - Washington, D. C. 

Sponsored by Advanced Research Projects Agency 

ARPA Order No. 1969, Amendment No. 1; Program Code No. 3D10 

"Ulis researcli was supported by the Advanced Research Projects Agency of the 
Department of Defense and was monitored by the Defense Supply Serv'lce-Washington, 
D. C. under Contract No. DAliC15-73-C-0127.   The views and conclusions contained 
in this document are those of the authors and should noi he interpreted as necessarily 
representing the official policies, cither expressed or implied, of the Advanced 
Research Projects Agency g^^^mMf i" 

Approved for pi lc release; 
Distribulion Unlimited 

/ 

- ■ ■  -  



Ka - - 

>t.p«iu«W..7nRi^nPi<|<9«^HM|i|W^^^^ 

TABLE OF CONTENTS 

jage 

Preface  vi 

Summary  1 

A. Introduction ,  4 

B. Theory of Infrared Absorption and Material Failure in Crystals 
Containing Inclusions  9 

I.     Introduction  10 

II.     Analysis of Absorption Cross Sections  12 

III. Absorption Efficiencies for Various Types of Inclusions  18 

IV. Material Failure from Local Heating  22 

V.     Conclusions  38 

C. Theory of Multiphonon Absorption in Insulating Crystals  42 

I.     Introduction  43 

TI.     Anharmonic Contribution to the Absorption Coefficient  48 

III. Asymptotic Approximation for Absorption by a Large Number 
of Phonons  55 

IV. The Confluence Processes     58 

V.     Vertex Corrections  59 

VI.      Frequency and Temperature Dependence of the Absorption 
Coefficient  71 

VII.     Assumptions and Approximations  84 

D. Temperature Dependence of Multiphonon Infrared Absorption  89 

E. Theory of Infrared Absorption by Crystals in the High Frequency 
Wing of Their Fundamental Lattice Absorption. .  loi 

I.     Introduction  103 

II.     General Theory  109 

I 

11 

—'---——-' - ■   ■— - imUtüimMäiMivMmM>Mii>»i^ilaJ^^ 



■pipjiyui»)W(^i|^w.i^^ 

vm™ 

TABLE OF CONTENTS (Cont'd) 

Page 

III. Applications of the Formalism to the Study of Multiphonon 
Absorption for Some Specific Potentials    123 

IV. General Discussion „    137 

F. Temperature Dependence of the Absorption Coefficient of Alkali 
Halides in the Multiphonon Regime        153 

G. Temperature and Frequency Dependence of Infrared Absorption 
as a Diagnostic Tool     267 

H.    Short-l'ulse Operation of Infrared Windows without Thermal 
Defocusing  ]73 

111 

.., .:.J...,.,.,_,..^^i^--JiiiaiMM^^:.^^..^i^^ ^^.v..,,,.       1 iiinhiiiMtf-tii 1 ■■        ■ 1 liiTiiiiilgiiiiiiri^^ 
I* 



^WWTOW^i^iMyiij^m^ ilPJlll)JJ1i,!iiyJll.M^lWlJ«|Wft4IPW8 m,mmmmmimmMmmmm'mi'm9miim 

Section    Figui'e 

2 

3 

4 

5 

2 

3 

4 

5 

6 

8 

9 

10 

11 

LIST OF ILLUSTRATIONS 

Title Page 

Absorption efficiency of a spherical metallic 
inclusion as a function of radius 16 

Temperature at the center of a spherical inclusion 
as a function of time in the case of volume heating 26 

Temperature at the surface of a spherical inclusion as 
a function of time in the case of surface heating 30 

Temperature at the surface of a metallic inclusion as a 
function of radius for various pulse durations 33 

Temperature of a dielectric inclusion as a function 
of radius 36 

Experimental frequency dependence of the infrared 
absorption coefficient ß for NaCl 44 

n-phonon summation and confluence processes 46 

Various kinds of vertices 60 

Three-phonon summation processes 61 

The n-phonon absorption vertices 65 

The 4-phonon absorption vertices 68 

Tl e 5-phonon absorption vertices 69 

The o-phonon absorption vertices 70 

Phonon density of states in NaCl and the Debye 
approximation 75 

Theoretical estimates of ß   at room temperature 
for NaCl n 77 

o 
Phonon self-energy terms of order c 79 

D Comparison of experimental points of Harrington and 
liass (NaF, 943cm"1) and Barker (KBr, 418 cm"1) w 
theoretical curves fit to the data at 300 K 

with 
95 

iv 

-— — |i|||B| üiBiüiiii niintriiiiiiiiili 



f'^^'*'*<*™***'***i*^mmmmßmmmiBmmi!!**-* ,**nwm!mmmmm?*?*m mmmmmm^m^m 

LIST OF ILLUSTRATIONS (Cont'd) 

Section   Figure Title Page 

E Comparison between the multiphonon data in KC1, 
and the non-interacting oscillator model, for the 
case where the motion of the oscillator is governed 
by the Morse potential 140 

F Frequency dependence of the absorption coefficient for 
a Morse potential oscillator at T = 300 0K and 900 0K, 
with a D chosen for NaCl 

Temperature dependence of the absorption coefficient 
at 10.6fiin (a) NaCl and (b) NaF 

158 

162 

   niirianMii naMnM  



„.^.j.yt.f.f,^^,^.^---,- ,., AfimigwDftmuf mw!ii/mi£mi^iv,^T**'. i ■^MmwpwiBpM*tPWiiJ^MWWWrflN.|-l-,«VU"^-^'«W^ 

PREFACE 

\ 
'Hiis First Technical Report describes the work performed on Contract 

DAHC15-73-C-0127 on Tlicoretical Studies of High-Power Infrared Window 

Materials during the period from December 7,  IV72 through June 30,  1973. 

Hie work on the present contract is a continuation of that of the previous 

Contract DAHC15-72-C-0129. 

The following investigators contributed to this report: 

Mr. II. C. Chow, research associate 

Dr. C. j. Duthler, principal research scientist 

Dr. A, M. Karo, consultant,  Lawrence Livermore Laboratory, 

Livermore, California 

Dr. A. A. Maradudin, consultant, University of California, Irvine, California 

Dr. D. L. Mills, consultant. University of California, Irvine, California 

Mr. A. Mcreira, research associate 

Dr.  L. J. Sham, consultant. University of California, San Diego, California 

Dr. M. Sparks, principal investigator 

The material in this report constitutes the final results on the subjects cov- 

ered.   The preliminary discussions of the theory of infrared absorption and material 

failure in crystals containing inclusions and of the theory of multiphonon infrared 

absorption presented in the reports of the preceding contract DAHC15-72-C-0129 

are superseded by the results of the present report.   In particular, the section on 

the effect of inclusion of optical absorption in the previous Final Report contained 

an error, which fortunately is not of practical consequence.  The appropriate value 

of reflection is the average value (R) rather than the perpendicular incidence 

value R, . 

VI 
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SUMMARY 

Theory of Infrared Absorption and Material Failure in Crystals Containing 

Inclusions.    Two effects of inclusions in or on the surface of infrared-transmitting 

materials are to increase the average value of the optical absorption coefficient ß 

and to cause localized heating that could lead to material failure at high-power 

-7 -8 
levels.   Volume fractions as low as 10'   to 10     of such inclusions can give rise 

to a value of the optical absorption coefficient ß of 10    cm   , a typical value of 

current interest.   For various types of inclusions, the frequen :y dependence of ß 

ranges from increasing as w , to independent of w, to exponentially decreasing 

with a).   The temperature dependence ranges from independent of T, to increasing 

as Tp in the high-temperature limit, where p 2= 2 -4 typically.   Simple expres- 

sions for the absorption cross section are derived for various cases of practical 

interest.   The cross sections are used to derive expressions for ß for the four 

cases of large inclusions of strong and weak absorbers and of small inclusions of 

dielectric and metallic particles.  The material failure resulting from local heeting 

of inclusions is a far greater problem in high-intensity short-pulse systems than in 

low-intensity long-pulse or cw systems having the same average intensity.   Micro- 

second pulses with energy densities as low as a few joules per square centimeter 

can cause material failure. 

Theory of Multiphon   1 Absorption in Insulf.dng Crystals.  The nearly expo- 

nential frequency dependence of the infrared absorption coefficient ß  recently 

observed in fifteen crystals up to several t;mes the reststrahl frequency is ex- 

plained in terms of multiphonon absorption processes.   The central-limit theorem 

is used to reduce the multiphonon contribution to a simple closed form.   Tue theore- 

tical estimates for the magnitude of the absorption coefficient, with no adjustable 

MH'^irr -aiiifHixrrMiintrfiKir "n m <ii ^—       .  
i^'""- ■ • ■ 



iump.Mmjn« .4i>iiu>.KvWw«au.u«i.uiwuui.ii.j|iiwi|iiiHpiv*lJiniii>JMLM!nwiM &,ijf!>upw<j n      II.WWWWIUIL mi    uwitm «». J^iiUP^.-!»-W!>v»'"«'»i«Mwwiw(wi.i«j™wja.iWJ|p«i.P(| 

parameters, are also in good agreen.ent with experiment.   The temperature 

dependence of ß at a fixed frequency is shown to be considerably weaker than 

ß „ Tn'\ where n is the number of created phonons.   Higher-order processes 

in the perturbation expansion are shown to be negligible for small n, to be com- 

parable to that of the lowest-order, single-vertex terms for n ^ 5 . and to domi- 

nate for large n in 8 typical case.   Difference processes, in which some thermally 

excited phonons are annihilated, are shown to be negligible with respect to the 

summation processes in the nearly exponential region.   An explanation involving 

finite phonon lifetimes is proposed to explain the fact chat the alkali haUdes show 

less structure in the ß- co curves than do the semiconductor crystals. 

Temperature Dependence of Multiphonon Infrared Absorguon.   Measurements 

of Harrington and Hass and of Barker indicate that the temperature dependence of 

the infrared absorption coefficient ß in the n-phonon region is considerably weaker 

than ß - T11"1, which had been predicted for the high-temperature limit of multi- 

phonon absorption.  This discrepancy is resolved by taking into account the tempera- 

ture dependence of the phonon frequencies and the lattice constant.  The agreement 

between the experimental and theoretical results with no adjustable parameters is 

good.  A new evaluation of the multiphonon sums yields ß ~ exp (-W T ) directly, 

rather than as a sum on n. 

Theory of Infrared Absorption by Crystals in the High Frequency Wing of 

Their Fundamental Lattice Absorption.   We have calculated the frequency depend- 

ence of infrared absorption in the classical limit for an exactly soluble model of a 

lattice of noninteracting diatomic molecules, each bound internally by a potential 

for which the classical equation of motion can be solved in closed form.   Four poten- 
2 2 

tials have been used:   a Mor^e potential, a potential of the form V (x) = (a/x  ) + bx , 
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an infinite square well potential,  and a triangular well potential.   The analytic 

results we obtain show that the absorption coefficient for large frequencies associ- 

ated with potentials which admit an harmonic approximation decreases nearly ex- 

ponentially over the frequency region covered by recent experiments, with signifi- 

cant deviations from exponential behavior at higher frequencies.   For the square 

and triangular well potentials, the absorption decreases like co     for frequencies 

large compared to a characteristic frequency. 

Temperature Dependence of the Absorption Coefficient of Alkali Halides in 

the Multiphonon Regime.   The theory of infrared absorption by an array of inde- 

pendent, anharmonic oscillators is discussed.   When the oscillator potential is the 

Morse potential, the theory provides an excellent description of the temperature 

dependence of the absorption coefficient at 10.6^ in NaCl and NaF reported by 

Harrington and Hass. 

Temperature and Frequency Dependence of Infrared Absorption as a 

Diagnostic Tool.   Recent developments render untenable a proposed method of 

distinguishing between intrinsic and extrinsic infrared absorption on the basis 

of the proposed temperature dependence.   However, when the proper temperature 

dependence of multiphonon absorption is accounted for and the possibility of other 

intrinsic processes is taken into account, the temperature and frequency depend- 

ence of the absorption of both the best available and intentionally imperfected 

crystals should be useful in studying extrinsic processes. 

Short-Pulse Operation of Infrared Windows without Thermal Defocusing. 

The possibility of transmitting short infrared pulses through materials with little 

thermally induced optical distortion is shown to exist.   For sufficiently short pulses, 

-8      -9 
of the order of 10   - 10    sec, the absorbed energy does not have time to thermalize. 

Thus, the thermally induced optical distortion is greatly reduced. 

m 
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Sec. A 

A. INTRODUCTION 

The motivation for this program on theoretical studies of high-power infrared 

window materials, which is a continuation of a previous contract DAHC15-72-C- 

0129, was the availability of high-power infrared lasers for current Department of 

Defense programs and the realization that lack of transparent materials for windows 

may limit the usefulness of many laser systems.  Values of the optical absorption 

coefficient ß of candidate window materials were needed in order to evaluate the 

potential performance of the materials.   There had been no previous calculations 

of the numerical values of j3 in the highly transparent regions for materials of in- 

terest (such as KBr and ZnSe at 10. ö^m), and the currently available correspond- 

ing experimental values were of questionable efficacy since they were believed to be 

extrinsic (i. e., caused by imperfections that can be removed in principle.). 

The paucity of experimental and theoretical information on the values of ß 

was one of the most pressing problems in the present Department of Defense high- 

power-window programs.  It was especially important to know if the values of ß 

were intrinsic or extrinsic and to have reliable estimates of the intrinsic value of ß 

before undertaking imperfection-identificatioii and sample-purification programs 

since thsre were many candidate materials and these expensive programs should be 

undertaken only if there were a good chance of reducing ß to the required value. 

During the early stages of the previous contract it became increasingly ap- 

parent that in order to obtain this information on j3, theoretical and experimental 

values of ß were needed not only at 10.^m, but also over a large range of values 

of frequencies and temperature.   In the intervening eighteen   nonths there has been 

considerable progress in our theoretical program and in experimerutl and theoretical 

MMi MfcMtta*^-^...-. ^. ...^ ^_,,. imi ^itittHM 
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programs at other laboratories.  We have explained quantitatively the nearly 

exponential frequency dependence of the optical absorption frequency ß observed 

by Rupprecht and by Deutsch and the substantial deviations from the expected 

temperature dependence observed by Harrington and Hass.  The calculations are 

based on a reasonable model of the lattice with the Born-Mayer interaction poten- 

tial.  They include the dispersion relations of the phonons, and the approximations 

made were shown to be reasonable.   The theory of intrinsic multiphcnon absorption 

now appears to be complete, and die emphasis of the program has shifted to ex- 

trinsic and nonlinear and other high-power absorption mechanisms.  Although no 

attempt will be made to review the progress of other laboratories, it should be 

mentioned that the Raytheon measurements of ß(co) and our theoretical prediction 

that there should be no drastic deviations from the extrapolations of the measured 

j3(w) have settled the question of whether the values of ß measured at 10. 6/im are 

intrinsic or extrinsic for most materials of interest and have afforded estimates of 

the intrinsic values.   With the exception of KC1, the estimated intrinsic values of 

ß.Q , for candidate 10.6/im window materials are well below the lowest measured 

values. 

A study (Sec. C)  of tne effects of macroscopic inclusions in crystals, including 

the increase in absorption nnd damage thresholds, has been completed^   A study of 

a proposed quasi-selection rule for absorption and the first phase of a study of the 

effects on absorption of parametric processes are nearing completion, and a number 

of other problems, listed below, are under investigation.   Tlie following publications 

and reports have been prepared under this and the previous contract; 

IliBliBitiMiitiiWiMiilttiiiiiiiiiiii i    i ..-^■^--■i.'-..-^^'-i^^^>-i-.^ MltiMat. 
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M. Sparks and T. Azzarelli, "Theoretical Studies of High-Power Infrared Window 

Materials," Xonics Quarterly Technical Progress Report No. I, Contract DAHC15- 

72-C-0129, March 1972. 

M. Sparks, "Recent Developments in High-Power Infrared Window Research," Invited 

Talk, 4th ASTM Damage in Laser Materials Symposium, Boulder, Colorado, June 

14-15,  1972. 

M. Sparks and T. Azzarelli, "Theoretical Studies of High-Power Infrared Window 

Materials," Xonics Quarterly Technical Progress Report No.2, Contract DAHC15- 

72-C-0129, June 1972. 

M. Sparks and L. J. Sham, "Theory of Multiphonon Infrared Absorption," AFCRL 

Conference on High-Power Infrared Laser Window Materials, Hyannis, Massachusetts, 

Oct. 30 - Nov. 1, .1972. 

M. Sparks and M. Cottis, "Pressure-Induced Optical Distortion in Infrared Windows," 

AFCRL Conference on High Power Infrared Laser Window Materials, Hyannis, Massa- 

chusetts, Oct. 30-Nov. 1, 1972. 

M. Sparks and L. J. Sham, "Exponential Frequency Dependence of Multiphonon Sum- 

mation Infrared Absorption," Solid State Commun, 11, 1451 (1972). 

M. Sparks, "Theoretical Studies of High-Power Infrared Window Materials," Xonics 

Final Report, Contract DAHC15-72-C-0129, December 1972. 

M. Sparks and M. Cottis, "Pressure-Induced Optical Distortion in Laser Windows," 

J. Appl. Phys. 44, 787 (1973). 

M. Sparks, "Stress o,id Temperature Aialysis for Surface Cooling or Heating of Laser 

Window Materials," J. Appl. Phys., in press, September 1973. 

M. Sparks and C. J. Duthler, "Theory of Infrared Absorption and Material Failure in 

Crystals Containing Liclusiors," J. Appl. Phys., in press, July 1973. 

M. Sparks and L. J. Sham, "Theory of Multiphonon Absorption in Insulating Crystals," 

Phys. Rev., in press. 

M. Sparks, "Short-Pulse Operation of Infrared Windows without Thermal Defocusing," 

^DDI- Opt., in press. 
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M. Sparks and L. J. Sham, "Temperature Dependence of Infrared Absorption," 

submitted to Phys, Rev. Letters. 

C. J. Duthler and M. Sparks-, "Tlieory of Material Failure in Crystals Containing 

Infrared Absorbing Inclusions," ASTM 1973 Symposium on Damage in Laser Ma- 

terials, Boulder, Colorado, May 15-16,  1973. 

M. Sparks, "Temperature and Frequency Dependence of Infrared Absorption as a 

Diagnostic Tool," submitted to Appl. Phys. Letters. 

D. L. Mills and A. A. Maradudin, "Tlieory of Infrared Absorption by Crystals in the 

High Frequency Wing of Their Fundamental Lattice Absorption, " Phys. Rev., in press. 

A. A. Maradudin and D. L. Mills, "Temperature Dependence of the Absorption Coef- 

ficient of Alkali Halides in the Multiphonon Regime," submitted to Phys. Rev. Letters. 

C. J. Duthler and M. Sparks, "Quasi-Selection Rule for Infrared Absorption by NaCl- 

Structure Crystals," to be published. 

C. J. Duthler and R. Ilellwarth, "Mechanism for Surface Damage in Laser Window 

Materials," to be published. 

M. Sparks and H. C. Chow, "Nonlinear Infrared Absorption: Parametric Instabilities 

of Phonons," to be published. 

L. J. Sham and M. Sparks, "Explicit Exponential Frequency Dependence of Multi- 

phonon Infrared Absorption," to be published. 

The following topics will be covered in the final report: 

• Parametric processes in infrared absorption 

• Infrared absorption by imperfections in crystals; ionic impurities, disloca- 

tions, band-mode plus impurity mode absorptior, and surface imperfections 

• Quasi-selection rule for infrared absorption 

• Explicit exponential frequency dependence of multiphonon infrared 

absorption 

• Numerical evaluation of multiphonon absorption coefficients 

i 
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Explanation of surface damage cones observed in high-power laser 

experiments 

Explanation of well known anomalies in stimulated Raman and 

Brilloain scattering and moving focus filaments 

Relative strengths of anharmonic interaction and higher-order-diiiole 

interaction in infrared absorption 

Ultraviolet-induced infrared absorption. 
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Sec. B 

B, THEORY OF INFRARED ABSORPTION AND MATERIAL 
FAILURE IN CRYSTALS CONTAINING INCLUSIONS 

M. Sparks and C. J,  Duthler 

Xonics, Incorporated, Van Nuys, California 91406 

Two effects of inclusions in or on the surface of infrared- 

transmitting materials are to increase the average value of the optical 

absorption coefficient ß and to cause localized heating that could 

lead to material failure at nigh-power levels.   Volume fractions 

-7 -8 
as low as 10     to 10     of such inclusions can give rise to a value 

of the optical absorption coefficient ß of 10'   cm' , a typical 

value of current interest.   For various types of inclusions, the 

frequency dependence of ß ranges from increasing as co , to 

independent of 60, to exponentially decreasing with to.  The tem- 

perature dependence ranges from independent of T, to increasing 

as Tp in the high-temperature limit, where p -2 -4 typically. 

Simple expressions for the absorption cross section are derived 

for various cases of practical interest.   The cross sections are 

used to derive expressions for ß for the four cases of large in- 

clusions of strong and weak absorbers and of small inclusions of 

dielectric and metallic particles.   The material failure resulting 

from local heating of inclusions is a far greater problem in high- 

intensity short-pulse systems than in low-intensity long-pulse or 

cw systems having tl • same averse intensity.   Microsecond pulses 

with energy densities as low as a few joules per square centimeter 

can cause material failure. 
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Sec. B 

I.   INTRODUCTION 

The proMem of obtaining highly transparent window materials for 

\ 2 
high-power infrared laser systems is of considerable interest. "'     In par- 

ticular, there is great interest in lowering the value of j3 for candidate 

materials such as ZnSe, CdTe, KC1, KBr, and TI 1173 glass (Ge28Sb12Se60). 

-4      -1 
Materials having values of ß at least as low as 10    cm     are needed.   It has 

been shown   that the absorptio*  with ß decaying exponentially with frequency to, 
4 

observed in a number of materials,    is intrinsic and results from multiphonon 

absorption. 

The present investigation is concerned with another aspect of the problem - 

that of extrinsic absorption by macroscopic inclusions either in the bulk of the 

crystals or on their surfaces.   The results of this investigation are of practical 

interest since it is believed the current experimental values of ß for all candi- 

5-7 
date window materials for high-power 10. 6^m systems are extrinsic.        The 

temperature and frequency dej Tclence of ß derived :n Sec. Ill should be useful 

in experiments to determine whether ß is intrinsic or extrinsic, especially as 

improved materials become available. 

Two aspects of optical absorption by inclusions are considered.   First, 

the spatial average of ß is increased, thus increasing the overall heating of the 

material.   Second, the local heating in the region of an inclusion can lead to 

material failure.   The overall increase in the value of ß can cause either 

irreversible system failure, such as thermally induced fracture, or reversible 

5-7 failure, such as thermal defocusing of the laser beam by the heated window. 

10 
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For sufficiently large concentrations of inclusions, the localized heating can also 

cause considerable optical degradation of the beam.  In the present study it is as- 

sumed that the concentration of inclusions is so small that this localized-heating 

type of optical distortion is negligible.  However, it should be mentioned that scat- 

tering may be considerably greater at high-power levels than at low levels as a 

result of the scattering by the heated host material near the inclusion.  This effect 

she ■:■: '>e greatest for scattering near the forward angle. 

Local material failure at discrete inclusion sites has been observed and studied 

by others. 8'9  In these treatments, which were concerned with metallic inclusions 
2 

in glass hosts, the absorption cross section aabs = exiTa   was used, where €x is 

the bulk emissivity of the inclusion material and a is the inclusion radius.   The 

resulting errors in a^ can be large, especially for Inclusions with diameters 

less than the laser wavelength.  The heating in transparent hosts of both dielectric 

and metallic spherical inclusions will be considered as a function of inclusion radius 

and laser pulse length, using more reaUstic models for the absorption cross section 

and for the heat transfer from the inclusion to the host. 

Absorption is of greater interest than scattering in the study of high-power in- 

frared windows.  A value of ß = 10"4 cm'1 lor the absorption coefficient can cause 

sufficient heating for the system to fail, for example, by thermal defocusing or by 

window fracture.   But an equal amount of scattering |3scat - 10"   cm"   may be toler- 

able.   Thus, scattering will be neglected here, except to mention that obsetvation of 

the associated scattering may help to identify the absorption mechanism in some 

cases.  Winsor10 has shown theoretically that scattering, especially in conjunction 

with total internal reflection at the host-crystal boundaries, may increase the mea- 

sured value of ß by increasing the path lengths of the rays in the crystal. 

11 
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II.   ANALYSIS OF ABSORPTION CROSS SECTIONS 

In this section, the absorption cross section of an individual spherical 

inclusion of radius a will be considered.   The absorption cross section is not 
2 

generally equal to the geometrical cross section IT a .   For ka « 1, where 

k = 2 IT/X. , with X    the wavelength of the radiation in the host materialr the 
2 

value of a .     typically is small (o,    « TTa  ).   In the case of ka » 1 and 

| e 1 » 1, where e = €,/€„, with Cj and c.. the dielectric consents of 

the inclusion and host, respectively, the reflection at the surface of the sphere 

2    ^ . . 
is great, which again makes a^    « ITa .   E tact absorption cross sections 

11 12 
for spheres of arbitrary size can be obtained from the classic result of Mie.    ' 

The Mie solutions are complicated in general, but reduce to simple results in 

the limits ka » 1 and ka « 1. 

For small spheres (ka « 1), the Mie series is well approximated by the 

first term, which yields 

12 Cj ka 

7abs ^   (c^)2^2 
ira for ka « 1 , (2.1, 

where  e =   €]p + i C« •   Two limiting cases of (2.1) are of interest.   For 

e» « trt  , wMch is satisfied for nonmetals at frequencies not too near the 

fundamental resonance frequency or the high-frequency absorption edge,   ß, 

and c * are related by the expression 

ßj  =   2 nj k 
Cjk 

nR 
(2.2) 

12 
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i 
where n = n^ + inQ •   Using this result to eliminate Cjk in (2.1) gives 

12 nv 

abs (f^ + 2) 
H j (i3Ia)7ra2 

^ << e (2.3) 

The second limiting case of (2.1) is that of small metallic inclusions.  The 

13 
Drude expression for the dielectric constant is 

e = e 
cH(aj2 + iajr) 

(2.4) 

where T is the electron relaxation frequency (often written as 1 /T),  e^ is the 
2       1/2 

contribution to e from the core electrons, and co   = (4 ir Ne /m)      is the plasma 

frequency, which has a typical value of OJ   = 5 x 10      sec    .    At lO.ößm, 

14-1 -n W  ^ 1.9X 10      sec    .      There are two contributions to the relaxation frequency T: 

13 
T = rn   + rc   , where the bulk contribution rn   has a typical value     of F. 

Bu      Su Bu 'Bu 

2: 5 X 10    sec    . The value of the surface scattering contribution     1^   is ~ Vp/a, 

where the Fermi velocity Vp has the value Vp - 10  cm/sec for many metals. 

.13 -1 With Tg    2: 5 x 10    sec     and vF ^ 10  cm/sec, TF[i > TBu for a < ap 
'Bu 

For typical metals at 10. 6jim, co     » |w + iooT \ , and (2.4) gives 
P 

200 I. 

e e 

2 2 

H       w
2
+icor      c.2+r

2  \      w) 
eR + 2s e(fl- (2.5) 

Both the real and imaginary parts of the dielectric constant are large In magni- 

tude for small particles of typical metals at 10. 6 fxm .   Substituting (2.5) into 

(2.1) gives 

13 
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CTabs =   12 €H 

3/2 CO 

CO 

L    Ta      2 2-— rra 
9 9 

co    » I co' + io), 
P 

(2.6) 

for metals with "ka « 1. 

Next consider the case of large spheres (ka » 1).  Using geometrical 

optics and the identity l+x + x2 + --- = (1-x)"   , where x = Riexp(-ßId), 

with R. the internal reflection coefficient and d the distance the ray travels 

in traversing the sphere once, gives 

raby = ira2   f   d(cos2e)(l-R)(l-e   I   ][}-\*    *   ) (2.7) 

where R = (| r   I2 + | rn |2 )/2 . with rp and rn the Fresnel reflection coeffi- 

cients for the two polarizations,  d the distance that the refracted ray travels 

through the sphere, and 6 the angle of incidence. 

There are two limiting cases of (2.7) of interest.   First, for fya » 1, 

which is typically satisfied for metals and strongly absorbing dielectrics, (2.7) 

yields 

a.     ^  Traz(l -<R>) abw 
(2.8) 

where the average reflection coefficient <R) is defined as 

1 

<R) = 
!■ 

d(cos 6)   . 

For ßTa « 1, in the limit of small index of refraction, using 1 "^ " ! \<< ! » 

R a R  2f 0, and d ^ a cos6 in (2.7) yields 
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-   4   o „  3 
abs        3    I 

(2.9) 

As na    departs from 1»  ü ,     first increases slightly for small  | n - 1 |  and 

eventually goes to zero when R goes to one.   Notice that (2.9) has the same 

functional dependence on a as (2.3), but with a slightly different coefficient. 

For metallic inclusions, a schematic illustration of the absorption efficiency 

a      /TTa , obtained by sketching the results (2. 6) and (2. 8), is shown in Fig. I. 

The dashed line represents the asymptotic values obtained from (2.6) with 

T ~ a    (for a « a-p ), from (2. 6) with T ^ a     ( for ar « a « k    ), and 

from (2.8) (for a » k    ).   The extrapolated dashed curve from (2. c) with 

a » a-p  intersects the dashed curve from (2.8) at 

UJ    c(l- <lO) 
\ =   .0e   3/2    2 r 

12 €H       W   rBu 

•1 

(2. 10) 

wliich occurs near k     for many metals in the infrared.   The solid curve sche- 

matically illustrates the results in the intermediate regions a ~ a^ and a ~ a^ 

The dashed curve will be sufficient for the order-of-magnitude estimates of 

overall absorption and failure intensity in Sees. Ill and IV. 

In dielectric inclusions, ß.a « 1 typically is satisfied except for very 
4 

strong absorbers with rather large radii.   (For example,  .Sja = 1 for ßj = 10 

cm"1 and a = Ifim.)   For ßra « 1, the absorption cross section is given by 

(2.3) for ka « 1 and by (2.9) for ka » 1.  Since these two limiting results 

both are of the form cr .     ^ ßja ,  with only slightly different coefficients, the 

approximation a .     = A fta , with A the average of the two coefficients, will 

be used for all values of ka. 
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Figure 1.  Absorption efficiency of a spherical metallic inclusion 

as a function of radius. 
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Sec. B 

The absorption efficiency for dielectric inclusions is qualitatively similar 

to that sketched in Fig. 1 for metallic inclusions, with two exceptions.   First, 
2 

for ka « 1, (2.3) indicates that a .    /ira   « a , and the constant region at 

small a does not occur for dielectrics.   Second   the extrapolated linear region 

crosses the large a asymptotic region near ß,   ,  rather than k    .   This can 

be seen from (2, 8) and (2. 9), which are valid for a > ßT     and a < ß,    , 

respectively.   In some cases with n ^Q -1 and n , small, the exact Mie solution 
2 

yields o .     > IT a   near ka = 1. 

For large-bandgap semiconductors, such as AIP, SiC, and ZnS, the dielectric- 

inclusion results above can be applied.   The absorption by small-bandgap semi- 

conductors is more complicated than that by dielectrics aid metals in general, 

and will not be considered explicitly.   Problems can occur involving tempera- 

ture dependence of the electrical conductivity, increased absorption caused by 

free carriers that are created in the absorption process, and the resulting 
4 

thermal runaway. 
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III. ABSORPTION EFFICIENCIES FOR VARIOUS TYPES OF INCLUSIONS 

The above cross sections will now be used to calculate properties of the 

absorption coefficient for crystals containing various types of inclusions.  The 

volume fraction f of inclusions required to make ß = 10"   cm    , a value of 

current interest, will be determined. 

Consider a sample consisting of a nonabsorbing host material of dielectric 

constant €u (real) containing NT inclusions per unit volume, each inclusion 
H *■ 

having absorption cross section a^.   Multiple scattering will be neglected -- 

a reasonable approximation for the present case of small impurity concentrations. 

The well known result for the absorption coefficient ß of the sample is then 

ß = a, abs    I 
(3.1) 

For small dielectric inclusions, aahc is given by (2.1), which when substi- 

tuted into (3.1) yields 

'abs 

ß * 
9n 51 

<v*?w 
M , forka«l, Cj* 1 .       (3.2) 

where the factor in the bracket typically has a value near unity.   The absorption 

coefficient in (3.2) is independent of a, but is strongly temperature and fre- 

quency dependent in general.   If ßl is controlled by, say, the n-phonon summa- 

tion process, then 0 ~ T11"1 in the high-temperature Umit,  and ß decays 

exponentially with frequency.   Using fy = 10 to 104 cm"1 for strongly absorbing 

inclusions, (3.2) gives ß = lO^cm"1 for volume fractions of f = 10     to 10    . 
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In the case of large dielectric inclusions, there are two possibilities. 

First, for ka » 1 and ß.a « 1, using the geometrical-optics absorption 

cross section (2. 9) yields  ß « ßTf with a numerical factor near unity, as in 

(3.2).   For ka » 1 and i3Ta « 1, (2. 8) and (3.1) give 
1 

/3= 7ra2(l-<R>)NT = 3(l-<R>f/4a , ka » 1 ,   /3Ta « 1 .      (3.3) 

-1 
The absorpti     ^Cciäcient in (3. 3) is proportional to a      for a given value 

of f and is generally temperature independent, except near the reststrahl region 

-2 
where (R) is strongly temperature dependent.   For 1 - (R) a i and a - 10 

_q -4 -6 -7 
to 10    cm, (3. 3) gives ß = 10    cm for f in the range from 10     to 10    . 

For large metallic inclusions, the value of (1 - (R)) in (3. 3) is small 

(< 1/10), since the reflectivity of metals in the infrared is great.   As a result, 
-4 

the volume fraction of inclusions for ß = 10    cm is increased by a factor of at 

least ten over the corresponding dielectric case. 

Next consider the case of small metallic inclusions.   From (2. 6) and (3. 1), 

9cH
3/Vrf 

ß a   —^  (3.4) 

This expression shows that ß increases quadratically with frequency.    For 

temperatures greater than room temperature, the electron relaxation frequency 

Tn   and hence ß increases linearly with temperature having a typical fractional 

-2 3/2 increase of 10     per degree Kelvin.   With cu '    = 10, W = u:  /25, and 
£ '«•* H P 

r = 5 x 10    sec    , an inclusion volume fraction of f = 4 x 10     results in 

-4      -1 
ß =  10    cm    . 
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The absorption by small metallic inclusions has a peak that typically lies 

13 in the ultraviolet or visible region.       The value of ß at this peak is much 

greater than the value in the infrared.   Thus, ultraviolet and visible measure- 

ments of absorption or scattering can be used to verify the source of absorption 

by small metallic particles in the infrared. 

Consider, as an example, small potassium spheres in 1CC1 or KBr. 

F centers can be transformed to colloidal potassium (small spheres) by heating 

IS-17 the rrystal. The transformation is enhanced by ultraviolet radiation. 

The wavelengths Xn of the peaks for the small potassium spheres in KC1 and 

13 KBr are 0.730 and 0. 770 ^im, respectively.       In the visible and ultraviolet, 

r2 « u;2, and (2.1) and (2.4) give, with k = nH w/c 

C -   €, 

2 ,.2 
P     +i     Pr 

^ CHW 

ß  * 
rV/*Dk 

2 2 2 
(05    - UiQ  )   +  ^"-'o /^ 

(3.5) 

wher. 

ur 
2eH+€I» 

ft pk 

o     3      4 
^H^O 

ca;2r 
P 

Notice that for fairly narrow lines (F ^ ton/10),   ß ^ ß ,   at the peak a: 

a,' = a;0 , and T is the full line width between the points ß =  -~- ß 
pk 
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Dividing ß v by the infrared absorption coefficient in (3.4) gives 

is 
0* 

CO 0 

^ T 

(3.6) 

14        -1 
For X0 =  2 7Tc/co0 = 0.75nm, XTR =   10.6|im, and F - 5 x 10     sec    , 

(3.6) gives 

IR 

ß 
EL 

'10.6 
=  6.4 x 10' (3.7) 

For  ß = lO^cm'1, (3.7) gives  |3 ,   = 6.4 cm" , which would produce a 

visibly colored crystal.   Uncolored KBr or KC1 with /3pk < 10'  cm     would 

have ß 0 £ < 1.6 x 10'4cm'1, and the contribution from potassium colloids 
10. 6 

to the infrared absorption would be small.   Colored crystals could have a 

greater contribution to ß from this source.  It should also be mentioned that 

impurities in the form of F centers, which give rise to strong absorption in 

the visible region, may not give rise to detectable absorption in the infrared. 

21 

mäm 



■"'^,*,"»™*'W'"*'a^^ ■      ^r-';7 :>:■-    ^   --■ ^■^■-'yss'-TT" !i —, -ro^!^^^B.^..T!ipriu,w,«>>',--V P"5f« 

Sec. B 

IV.   MATERIAL FAILURE FROM LOCAL HEATING 

The heating of macroscopic inclusions can give rise to localized regions 

of high temperature that can cause material failure when the intensity is great. 

This is not a nonlinear effect, but is usually important only at relatively high 

intensities.   For times short with respect to a characteristic time for heat to 

diffuse a distance a, very roughly speaking, most of the energy absorbed 

by the inclusion remains in the inclusion.   Thus, the temperature in the inclu- 

sion increases linearly with time.   For times large with respect to the char- 

acteristic time, part of the absorbed energy has diffused into the host crystal, 

and the temperature rise in the inclusion is considerably less than the value 

obtained by neglecting diffusion.   Thus, a given amount of energy will cause a 

greater temperature rise if it is deposited in a time that is short with respect 

to the characteristic time than if deposited in a time long with respect to the 

characteristic time; the local heating of macroscopic inclusions is a more 

severe problem in high-intensity short-pulse systems than in low-intensity 

long-pulse or cw systems of equal average intensity. 

The criterion for failure of the window material depends on the details of 

the laser system an:.1 the type of material and inclusions.   Since there is no 

universal criterion, it will be assumed th '. a temperature rise of 1,000K 

constitutes failure.   This is a reasonable choice for the following reasons: 

This temperature is approximately the correct value for melting temperatures 

and fracture-inducing temperatures.   The latter have typical values of the order 

of     '    (jf/aE, where CTf is the material strength, a the linear thermal expan- 

sion coefficient, and E the Youngs modulus.   For af =  10' psi, 0! = 10 l and 
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I 

f 

>.; 

E =  107psi, the temperarore corresponding to fracture is 1.000 K.    Heats of 

fusion have typical values corresponding to several hundred degrees Kelvin. 

Al 1.000K above ambient temperature in materials which do not melt, the 

ionic diffusion may be important.   Although order-of-magnitude accuracy in 

temperature usually is not sufficient, order-of-magnuude accuracy of intensi- 

ties corresponding to failure is all that can be expected at present, and this is 

often adequate.   Since the present interest is in this failure intensity If . and 

the failure temperature Tf is linearly related to If, the value Tf = 1.000K 

should be sufficient for present purposes. 

Two important features of high-power laser-window failure are that failure 

of the weakest part of the window cau constitute system failure, and that fatigue 

and other multiple-pulse effects must be considered when repeated pulses must 

be withstood.   Concerning the former, a single inclusion in a window conceivably 

could cause failure.   As an example of the latter, in a single-pulse measure- 

ment, a laser glass conceivably could melt locally and recrystallize without 

leaving detectable damage.   For a window in a pulse-operated system, the local 

absorption, coefficient could be changed by the high temperature associated with 

the first pulse or the first n pulses, thus causing increased absorption in sub- 

sequent pulses with eventual failure. 

Bloembergen21 has suggested that local field enhancement, such as that 

occurring at the edge of a crack in a material, may give rise to local intensi- 

ties up to 100 times greater than the nominal external intensity.   Thus, if an 

inclusion is in the high-intensity region, this effect could lower the failure in- 

tensities calculated below by a factor of the order of 100.   L-cal field enhance- 

ment can also occur when one inclusion is at the focal point of another.   Since 
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focusing is limited by diffraction when ka < 1, the focusing by large, weakly 

absorbing inclusions is most severe. Focusing by surface imperfections also 

could occur. 

The temperature rise below the melting point can be calculated simply for 

the following model.   The spherical inclusion of radius a is assumed to have 

temperature-independent values C. and K. of heat capacity per unit volume 

and thermal conductivity.    The host crystal is assumed to have temperature- 

independent values C.. and K...   The boundary between the two is assumed to 

be thermally perfect; that is, there is no thermal impedance.   Heat absorption 

by the host crystal is assumed negligible.   The relaxation time required to 

transfer energy to heat from the modes that absorb energy is assumed to be 

much shorter than the laser pulse duration. 

Simple solutions to the heat-flow equation 

■KV2T + C   |^  =   S 
o t 

(4.1) 

will be derived for a series of limiting times for the cases of uniform heat gen- 

eration within the volume of the inclusion and of uniform heat generation over 

the surface of the inclusion.   In (4.1),  S is the rate at which heat is generated 

per unit volume. 

First consider the case of spatially uniform heat generation within the 

inclusion at the rate 

3<W'/4^ (4.2) 

per unit volume, where I is the incident intensity.   This applies for dielectric 

inclusions with ßTa « 1 or for metallic inclusions with skin depth Ö > a. 
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Roughly speaking, the thermal time constant 

T  =   CaV4K (4.3) 

is the time required for heat to diffuse a distance a in either the inclusion or 

the host when the appropriate values of C and K are used.   Subscripts I and I! 

will denote the values of T in the inclusion and in the host crystal, respectively. 

For short times t « Tu , the diffusion of heat out of the inclusion Is .legligible. 

The term 1C72 T in (4.1) is then negligible.   The temperature at the center of 

the inclusion ih, from (4.1) and (4.2), 

TC =  3CTabsIt/47ra  Cl  ' 
for t « T 11 

(4. 4) 

for T defined as zero at the time the laser is turned on (t = 0). 

For long times t » Tj, TH, equilibrium is reached with the host material 

conducting heat away from the inclusion at the same rate that it is generated 

within the inclusion.   In this case the temperature is obtained by solving (4.1) 
2   2 2 

with 9T/a t   = 0 in both the inclusion and the host.   Using V   r   = 6 , V   (1/r) = 0 

for r > a, and the boundary conditions that the temperature and the heat flow 

be continuous at the inclusion surface, yields the steady-state value at the in- 

clusion center. 

T 
^abs1 

O "    SiraK eff ^  "   3   lKH     ^/ 
(4.5) 

For short and long times, the temperatures are approximated by (4.4) and 

(4.5), respectively.   These are shown as dashed lines in Fig. 2, while the actual 
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Coo 

Time.t 

Figure 2.   Temperature at the center of a spherical inclusion as a function 

of time in uie case of volume heating. 
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temperature is sketched as the solid lire.    The extrapolated short-time curve 

intersects the steady-state value at the Urns T « = (2KJ/K ,,) Tj, which is 

found by equating (4.4) and (4.5). 

Next consider the case in which the heat is generated near the surface of 

the inclusion, rather than uniformly throughout its volume.   Such is the case 

for metallic inclusions in dielectric hosts, where a typical value for the skin 
„                                      13 

depth Ö is 40 A (Cu at X = 10. ö^im),     or for dielectric inclusions with 
_q 

/3ja » 1, where 1/ß. is of the order of 10    cm for strong absorption. 

For spherical inclusions with radius a » 6, it is assumed that heat is 

generated uniformly within a layer of thickness 5 over the entire surface of 

the inclusion.   This is a good approximation for a « X because the electric 

field is nearly constant over distances of the order of a.      In general, 

there will be local hot spots over the surface -- not only on the front surface. 

but also on the rear surface. 

There are three characteristic times of interest.   First, 

T6   =   4CI6
2/irKI                                                                                            (4.6) 

is roughly the time in which heat diffuses out of the skin depth, assuming negli- 

gible diffusion into the host for small time, since K., (dielectric) « K. (metal). 

Second, 

•V' 
Ta  = 4CIa

2/97rKI                                                                                           (4.7) 

% t .■ 

is the time in which heat diffuses from the inclusion surface to the center, 

• 

roughly speaking.   Third, 

■ 
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TH =  CHa  /3KH (4.8) 

is roughly the time in which heat diffuses a distance equal to the radius of the 

inclusion into the host.   The values of the numerical coefficients in (4.6)-(4.8) 

are chosen for later convenience. 

For t « Tc   and Ö « a, the spherical shape of the inclusion surface 

is not important, and the solution to the simpler problem of heat generation in 

a thin plane slab can be used.   In this case, the temperature is obtained from 

22 the Laplace-transform solution of (4.1).     The solution to the transform equation 

at the inclusion surface is 

/^r T(x=6,p) = £-  -      .  
^1   /cTKr+ZCuK 

1-e 
2 

IT H   H 

1/2 
vhere qT = (p C. / K.)     .   Taking the inverse transform and keeping only the 

dominant term for t small yields the temperature at the inclusion surface 

T     - — 
^       C 

/c77 la abs 
la abs 

I    (/CJKJWCHKH )     4ffa"6 4ira  6C 
t .      t « T, (4.9) 

In (4. 9) and in the equations below, the approximate equalities are valid for 

CTKT » C..K.. .    For Tc « T « T   , the heat generation in a plane-slab 

problem can be approximated by a delta-function source at x = 0 .   Usiu? the 

method of Laplace transforms and keeping the dominant term for small t 

yields 

la 
T„   = 

S      /F(</CHKH+/CpCj)   47Ta2 
abs  tl/2 

Te «  t «  T 5 a (4. 10) 
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When t » Ta,   .ne temperature inside the spherical inclusion reaches a 

spatially uniform value.   The present problem then is equivalent to uniform 

heat generation within an inclusion of infinite conductivity and the previous 

result (4. 4) can be used to obtain 

■ 

I 

T     = \S 
3lCTabst 

47Ta3CT 

Ta   « t « TH (4. 11) 

For t » TH , the temperature inside the spherical inclusion reaches 

an equilibrium value that is spatially uniform.   This case is again equivalent 

to uniform volume heating within an inclusion of infinite conductivity, and (4. 5) 

yields 

la abs 
lSco 47TaK H 

t  »  T H (4.12) 

The temperature at the surface of the spherical inclusion is sketched in 

Fig. 3 for the various time regimes in (4. 9)-(4.12).   The extrapolated low- 

temperature linear time-dependent section of the curve intersects the t1/2 

curve at the time tö  = Tg , at which time the temperature is 

Tö   = 
löa . abs 1 

K 

ycpq 16 a 
abs 

n  a      ^1   (/C^ + /C^K^)       TTVKJ 
(4. 13) 

1 /9 
At t = ta, the extrapolated t       curve intersects the second linear region. 

The temperature at this intersection has the value 

T    = a 

Icr u   CT abs    I la 
abs 

377   a(/C^K^+/c^r Sir   aKj 
(4.14) 
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Figure 3.  Temperature at the surface of a spherical inclusion as a function 

of time in the case of surface heating. 

I 
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and the value of t    is 
a 

2    2 4azCj 

9tr(/cHKH+N/cIKIy =2   "  Ta 
(4. 15) 

At the time te    = (Cj/C^) TH , the extrapolated linear curve crosses the 

equilibrium value given in (4.12), 

Consider the effect of inclusion size on the failure intensity If.    Hie various 

time regimes in Fig. 3 depend on inclusion size in such a wav that if the pulse 

length is fixed, long times in the figure are associated with small inclusions. 

For example, the time t „  at which the temperature reaches equilibrium is 
i/2 

equivalent to an inclusion of radius aeq = (SK^t/Cj)        for a pulse of dura- 

tion t.   The temperature is then given by (4.12) for a < aeq.   Similarly, the 
1/2 

time t   in Fig. 3 corresponds to a size at ^ (9ff Kjt/^Cj)     . and the tem- 

perature is given by (4.11) for aeq < a < at .   Next, the time tß  Is independent 

of size and is determined by the skin depth and thermal properties of the inclusion. 
-13 

Tn rhP case of metallic inclusions ,   tg  is typically of the order of 10       sec, 

which is much less than most laser pulse durations of interest.   Hence, the first 

linear region in Fig. 3 given by (4.9) does not occur, in general, and for a > at 

the temperature is given by (4.10).   To determine the temperature in a pulsed 

system as a function of the inclusion radius, the dependence of aabs  on a in 

(4.9)-(4.12) must be included.   In the case of metallic inclusions, the dashed 

curve of Fig. 1 is used as an approximation for aabs.   For a given type of in- 

clusion in a particular host, the radii ar and ak   at which the functional de- 

pendence of the cross section changes   are independent of the pulse duration, 

while the radii a, and a      are both proportional to t1/2 and decrease with 

decreasing pulse length. 

I llllllll Hl^lM lllli I 
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There are six combinations of the sequence of ap, ak, at, a^ which can 

occur for different pulse lengths.   The temperature as a function of inclusion 

size is sketched for each of these ca.ses in Fig. 4, with the pulse duration de- 

creasing in going from A to F.   For a given type of inclusion, the curves C 

and D cannot both occur.   The applicable case will depend on the relative size 

of ratios at/a      and \/z-£- 

Consider the example of metallic inclusions with the laser wavelength 

equal to 10. 6 ^m.   Using the typical values a;p = 5 x 10    sec    , 1^ = 5 x 10 

sec'1. (1- <R))=0.1. and C H
3/2 = 10 in (2.10) yields a^ = 4flm.   Atypical 

value of ar   is 200 A .   Using CH ^ Cj ^ 2]/cm3 K, Kj = 2 W / cm K and 

K    = 10"2W/cmK, these typical values indicate that aeq = ak when t = 10 

sec, at = ak when t = 2 X 10'8 sec. aeq = ar  when t = 3 X 10"10 sec, and 

a   - ar when t = 6 x lO-13 sec.   Hence, curve A applies for t < 10     sec, 

that is, in the range of cw or millisecond pulses.   Curve B applies to micro- 

second pulses, curve C or D to nanosecond pulses, curve E to picosecond 

pulses, and curve F to subpicosecond pulses. 

The maximum temperature for a microsecond duration pulse occurs for 

a     < a < a,   in Fig, 4B, where a_ = l^m using the above parameters, 
eq K eq 

For radii in this range, the temperature is given by (4.11), which is evalu- 

ated at a = ak using the absorption cross section (2. 8).   With the above values 

in (4.11), the failure temperature of l.OOOK occurs for a pulse energy of 

3J/cm   with micron-size inclusions. 

With a nanosecond duration pulse, the maximum temperature again occurs 

near a = av in Fig. 4 D and is determined from (4.10).   In this case, the 

failure temperature occurs at a pulse energy of 2 J /cm . 

I 
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Qeq  Op 

Inclusion Radius, a 

Figure 4.   Temperature at the surface of a metallic inclusion as a function of 

radius for various pulse durations. 
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7 
Next consider a cw system with I = 300W/cm , an intensity which is 

equal to the average intensity of a repetitively pulsed system with a pulse 

energy of 3J/cm2 and a 100 pulse/sec repetition rate.   In this cw case, the 

temperature of an inclusion with a = ak is determined by (4.12), which yields 

a temperature rise of less than 1 K above ambient.   Hence, the pulsed system 

would fail on a single pulse, while the cw system of the same average intensity 

would have a negligible temperature rise. 

At laser wavelengths other than 10. 6/1 m, the various curves of Fig. 4 

correspond to pulse durations different from those listed above.   Consider the 

case of platinum inclusions in a glass host with X = 1 |im.   Fitting the Drude 

expression (2,4) for the dielectric constant of platinum to tabulated values of 

the refractive index      yields the values for the parameters t^ , w  , and IJ^, 

which together with e^2 = 3 when substituted into (2.10) gives ak = 400 I 
2 

for platinum inclusions in a glass host.   In this case, using Kj =0.7 W/cm  K, 

KH = 1.3X 10"2W/cmK, Cj =2.8J/cm3K, and CH = 3. 8J/cm3 K, aeq = ak 

when t = 10"   sec.  Hence, curve A applies for pulses longer than a nano- 

second duration, and the maximum temperature '^max occurs at a = a    . 

This example with a pulse energy of 20] / cm   and a pulse duration of 30nsec 
o 

has been considered previously by Hopper and Uhlmann.     With this pulse 

duration, T        occurs at a     = 0.2 urn.   Using (2. 8) with (1 - <R>) = 0.2 at 
max eq ^ 

this wavelength, (4.12) yields T   QV = 5 X 10  K.   These results are in rea- 

sonable agreement with results shown in Hopper and Uhlmann's Fig. 3, which 

presents a plot of T versus a that agrees with  Fig. 4 A only for the region 
4 

a, < a < a   = 2.3^m.  In their curve, a maximum temperature of T= 2.5 x 10 
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occurs at a = 0.2^m, the difference in temperature resulting from the 

extrapolations made in curve A.  In the region a < a, , their results are not 
2 

valid since the incorrect cross section a ,    = CN Tra   was used. 

In the case of dielectric inclusions, volume heating is used for ß^a < 1, 

and surface heating is used for ßT a > 1.   The time T ff separating the two 

regions of Fig. 2 given by (4. 4) and (4.5) corresponds to a radius a ff. 

1/2 
= (2K «t/Cj)       for a pulse of duration t.   In the volume heating range 

3 
with ßT a < 1, the absorption cross section is proportional to a   with 

slightly different coefficients for ka « 1 in (2.3) and for ka » 1 in (2.9). 
3 

Using a .     « a   with the average of the two coefficients for the entire 

volume heating region, (4.4) gives T    ^ a    for a ff < a < ß,    and (4. 5) 
2 

gives T   ^ a   for a < a ff where it is assumed that & < k.   These results 

are sketched at the left side of Fig. 5. 

For surface heating of strongly absorbing dielectric inclusions with 

ß =  1/6= 103cm"1, Cj =2J/cm3K and Kj = 10'2W/cmK, T6 is of the 
4 

order of 10  sec.   This value is much greater than pulse lengths of interest, 

and the first linear region of Fig. 3 given by (4. 9), which was only of academic 

interest for metals, is now the only surface heating region that applies.   Be- 

cause /3. a > 1 for surface heating and generally ka » 1, the absorption cross 
2 

section is a ,     = (1 - (R) ) ira , according to (2. 8).   Substituting (2. 8) for 

a .     into (4.9), die surface temperature is independent of a.   This is sketched 

at the right side of Fig. 5 for j3. a > 1. 

.i Fig. 5 the maximum temperature occurs for a  „ < a < 1 /ß,.   Using 

3^ 
abs 0. 8 ß.TTa , C, = 2J/cm   K, and 0. ranging from 10 to 10   cm    , tlie 
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failure temperature of 1,000K occurs for pulse energies ranging from 0. 3J/cm 

2 -4 to 300 J/cm .   For microsecond duration pulses a .., is of the order of 10    cm, 

° -2 
and for nanosecond pulses is of the order of 300A, where K „ = 10    W/cmK 

is used. 

Many other examples, in nearly every case of practical interest, could be 

derived using the simple results developed above.   The extrapolations from the 

simple limiting cases to the intermediate regions, such as using the dashed 

rather than solid curve in Fig. 1, tend to overestimate the temperature, or 

underestimate the pulse energy at the damage threshold, but only by factors 

typically of order 2 . 
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V. CONCLUSIONS 

Simple limiting expressions for the absorption cross sections of inclusions 

derived in Sec. II are used in Sec. Ill to obtain expressions for the optical ab- 

sorption coefficient ß for the cases of large (ka > 1) and small(ka < 1) dielec- 

tric and metallic inclusions.   For various types of inclusions, the frequency 

dependence of ß ranges from increasing as a)2, to independent of CO, to expo- 

nentially decreasing with to.   The temperature dependence ranges from inde- 

pendent of T to increasing as Tp in the high-temperature limit, where p ^2-4 

typically.   The examples in Sec. Ill illustrate that for strongly absorbing dielec- 

tric or metallic inclusions, impurity volume fractions as small as f = lO-8 can 

result in infrared absorption coefficients of the order of lO^cm-1, which are 

currently observed.   The impurities are not necessarily limited to the bulk of 

the crystal,  but may be on the surface as would occur for a surface contam- 

inated by polishing compounds, which generally have large absorption coef- 

ficients. 

In Sec. IV failure due to local heating of dielectric and metallic inclusions 

in pulsed and cw sysLems is examined, and schematic results are given for 

many Umiting cases.   Local heiting is a rar greater problem in short-pulse 

systems than in long-pulse or cw systems having the same average intensity 

as the short-pulse system.   In the case of micron-size metaldc or dielectric 

inclusions, pulse energies of a few joules per square centimeter are sufficient 

to cause local damage.   In special cases where the inclusion is adjacent to a 

crack or other imperfection or near the focal point of another inclusion or 

other imperfections, the damage thresholds could be lower than our calculated 

values by as much as two orders of magnitude. 

1 
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C. THEORY OF MULTIPHONON ABSORPTION IN INSULATING CRYSTALS'1 

M. Sparks 

Xonics, Incorporated, Van Nuys, California 91406 

and 

L. J. Sham 

University of California, San Diego,  La Jolla, California 92037, and 

Xonics, Incorporated, Van Nuys, California 91406 

The nearly exponential frequency dependence of the infrared 

absorption coefficient ß recently observed in fifteen 

crystals up to several times the reststrahl frequency is explained in 

terms of multiphonon absorption processes.   The central-limit theorem 

is used to reduce the multiphonon contribution to a simple closed form. 

The theoretical estimates for the magnitude of the absorption coefficient, 

with no adjustable parameters, are also in good agreement with experi- 

ment.   The temperature dependence of ß at a fixed frequency is shown 

to be considerably weaker than ß ~ T      , where n is the number of 

created phonons.   Higher-order processes in the perturbation expan- 

sion are shown to be negligible for small n, to be comparable to that 

of the lowest-order, single-vertex terms for n Sf 5, and to dominate 

for large n in a typical case.  Difference processes, in which some 

thermally excited phonons are annihilated, are shown to be negligible 

with respect to the summation processes in the nearly exponential 

region.  An explanation involving finite phonon lifetimes is proposed 

to explain the fact that the alkali halides show less structure in the 

ß-co curves than do the semiconductor crystals. 

42 

hftiJ        i   i - - ■     ■ ■-. i   rlUMc'lllimyftiri I 1          iirifiiMf-J'~J'-~w--*lflill|-iniilYllif--°^'-^'-~----—■ 



p^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

Sec. C 

I.   INTRODUCTION 

The intensity I of infrared radiation propagating through a solid typically 

decays according to Beer's law,  I =  I0exp(-ßz), where ß is defined as the 

optical absorption coefficient.   Extensive experimental and theoretical studies 

have been conducted on the absorption due to phonons in insulating or semi- 

conducting crystals.   Refs. 1-4 represent some recent reviews on this topic. 

The main interest has been focused on the two-phonon region where ß» 1 cm"1, 

and particularly on the structure of the frequency dependence that determines 

the critical points of the phonon spectra.     The availability of higli-power 

infrared lasers has shifted attention to higher-order phonon processes, where 

ß « 1 cm    .    Not only the positions of the multiphonon peaks are of interest, 

but also the magnitude of ß  Is of great importance now that high intensities 

are available. 

It has been observel  '    '       that for frequencies w greater than several 

times the reststrahl frequency a;,, the optical absorption coefficient varies 

nearly exponentially vrith frequency, 

ß ~ exp ( - Aco)    , (1.1) 

for a number of crystals including LiF, NaF, NaCl, KCI, KBr, MgF, , CaF_ , 

BaF2, SrF2,  MgO, Al^, Si02 , Ti02 , BaTiOg, and SrTi03.   Tliis is true for 

j3 ^ 10 cm     and u) ^ 2 a;f, roughly.  In NaCl at room temperature, for instance, 

ß decreases nearly exponentially for over four orders of magnitude as the fre- 

quency increases from 2.2 to, to 5. 8 cof , as shown in Fig.  1. 
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Figure 1.   Experimental frequency dependence of the infrared absorption coefficient j3 for 

NaCl after Horrigan and Deutsch {+,&) Ref. 7, Smart,et al (-•-) Ref.7a, and Genzel (-) 

Ref. 7b. 
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At first sight, the nearly exponential behavior might suggest the form 

J3 - exp ( -ti co/ kBT).   However, the room-temperature values of the coeffi- 

cient A in (L 11 differ by factors of 2 - 4 from the value of fi /kgT.   Further- 

more, the temperature dependence8 of ß. though not extensively studied to date, 

appears to be less strong than exp(-ticü/kBT). 

In this paper, an investigation of the optical absorption by multiphonon 

processes is presented.    It is shown that the sum of n-phonon summation pro- 

cesses is approximately exponentially decreasing with increasing frequency 

over the frequency range of interest, i. e., about 2 cüf - 7 üJf , typically.  As 

illustrated in Fig. 2 a, we consider the n-phonon summation process in which 

the photon is absorbed by the crystal through the virtual excitation of the funda- 

mental reststrahlen mode which finally emits n phonons.   In other words, the 

electromagnetic field drives the fundamental mode (off resonance since W > Wf ). 

whose relaxation time is determined by the sum of all possible processes of 

splitting into n normal modes of lattice vibrations.   The Lax-Burstein-Born 

higher-order dipole-moment mechanism9 is not considered explicitly, although 

most of the analysis still appUes to that case. 

By energy conservation, the energy tico of the photon absorbed is equal to 

the sum of the energies of the n final-state phonons.    It follows that the n-phonon 

summation process cannot contribute to ß when CO > n cogr, where co^ is the 

greatest frequency of the phonon spectrum.   For W « n a>gr , the contribution 

ß    of the n-phonon summation process to ß is small because the low frequen- 

cies of the final-state phonons greatly restrict the amount of phase space avail- 

able.   Tims,  ßn  must peak at a frequency not far below nw^.   As n increases. 
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Figure 2.   n-phonon summation and confluence processes. 
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I the peak shifts to higher frequencies and decreases in height since higher-order 

phonon processes involve weaker coupling coefficients.   The sum of the 3n then 

has a frequency dependence nearly exponential in the experimental frequency 

range.   This behavior of the ß    and the sum of the ßn  is demonstrated expli- 

citly in Sec. VI. 

A preliminary account of these results lias been published.       Subsequent 

investigations are discussed in Sec. II.   The exponential frequency dependence 

of the absorption was first suggested by Rupprecht    to be due to n-phonon 

processes, although he did not investigate the theory in detail. 

In Sec. II, formal expressions for the contribution to ß due to multiphonon 

processes are given.   A practical approximation for the anharmonic coelficient 

is chosen.   In Sec. Ill, an asymptotic approximation lor evaluation of the 

n-phonon contribution is developed.   In Sec. IV , confluence phonon processes 

are shown to be unimportant in the nearly exponential region.    In Sec. V, all 

possible processes that convert the fundamental phonon to n phonons are ex- 

amined, and the contributions of vertex corrections are estimated.   In Sec. VI, 

the explicit evaluation of  ß    is described, and comparison of theory with experi- 

ment is made.   In Sec. VII, a summary of all the assumpations and approximations 

that have gone into the theory is given, and the relation of a computer-calculation 

program to the present results is discussed. 
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II. ANHARMONIC CONTRIBUTION TO THE ABSORPTION COEFFICIENT 

The infrared radiation perturbs the insulating crystal by excitation of the 

dipole moment of the crystal by the oscillating electric field. The absorption 

coefficient is simply related to the imaginary part of the electric susceptibility 

by 

ß{(jO) =   4 TTXj (co)  co/nr c (2.1) 

where c   is the speed of light and n    is the refractive index at frequency a;. 

The susceptibility, in turn, is just the linear response of the dipole moment 
3,11 

In an anharmonic crystal, the dipole moment can be expanded in powers of the 

12 ionic displacements.       For infrared-active crystals, the leading nonzero 

term is linear in the ionic displacements.   The nonlinear   terms (the dominant 

mechanism for infrared absorption in such non-infrared-active crystals as 

diamond   ) are probably small in polar crystals, especially in alkali halides,    ' 

and shall be neglected in this work.  However, there are contrary conclusions 15 

Then, the absorption coefficient is given by the imaginary part of the Green's 

,3,13 function of the fundamental mode' 

ß  = 
a 2 w to, r(co) 

4 TT Ne* ^ O 
cmrnr"     {u2-u>*)2 + [ufT{o:)]2 

(2.2) 

where N is the number of unit cells, 0 the volume of the crystal, e   is the Bora 

effective charge, m   the reduced mass of the two ions in the unit cell, and T is 

the energy relaxation frequency of the fundamental mode (equal to twice the T in 
13 

R. A. Cowley's notation   ). The real part of the phonon self-energy is understood to 

have been included in producing the renormalized reststrahl frequency W,, and its 

frequency dependence is neglected in Eq. (2.2).   A simple classical model of a 
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harmonic oscillator (the fundamental lattice mode) driven by the applied electric 

12 
field gives (2.2), but with uifT replaced by coF in the numerator and denominator. 

The contribution T   from the n-phonon summation processes to T can be calcu- 

lated by applying    the standard perturbation-theory result that the probability per 

unit time of a transition between two states is In/fi times the product of the 

square of the matrix element and the energy conserving delta function, giving 

r(tü)= ^(n+l)2n!     £      lAaQ-'-O )|2A(2:  q ) 5(co-S co0 )n    , 

(2.3) 

where Q. is the phonon mode with wavevector q. and branch b., A is the modified 

Kronecker delta which is unity when the argument is zero or a reciprocal-lattice 

vector and zero otherwise, and 

n 
n    =   n   (n.+l)/n     +1) n i=r ^ W 

i 

n.   = n(Q.)=l/[e   ^        -1]  , 

n. =  l/(e '-I)   , 

and 
CüT = kgT/h   . 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Furthermore, A(fQ1' • • 0  ) denotes the renormalized n + 1 phonon vertex, 

represented by the circle in Fig. 2 a, and is the sum of all possible n+1 phonon 

vertices.   The simplest one is the unrenormalized vertex V (fQ. • • • Q  ) from 

12 13 
the anharmonic Hamiltonian given by    ' 

1 

n+1 
3C n+1 =   E...L     V(Q 

Ql   Q. nfl 
i-^i^^iSj^Qi-'Vi  ' 

(2.8) 
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I 

where 

A ,-V-J
4
. .=a.+a   ,     , Q qb qb -qb 

(2.9) 

a    and a being the phonon creation and annihilation operators normalized to 

unit commutators, as usual.  This simple vertex is represented diagrammatically 

in Fig. 2 b.   Other more complicated processes are examined in Sec. V, 

where we derive an approximate form for the total vertex 

A(fQ1"-Qn)  = An V(fQ1-.-Qn) (2.10) 

To obtain a reasonable approximation for the anharmonic coefficients, let us 

confine our attention to diatomic polar crystals with cubic symmetry, especially 

12 17 
NaCl-structure crystals.   The model interaction potential    '      between ions is 

composed of a Coulomb potential and a nearest-neighbor overlap exchange re- 

pulsion of the form 

0(r) = C exp (-r/pa)    , (2.11) 

where a is the equilibrium nearest-neighbor distance.   The Coulomb interaction 

is used only in determining the constants C and p  in Eq. (2.11) from the equili- 

12 17 
brium condition and the value of the bulk modulus, B, yielding    ' 

=  3a3B e1/p p2/(l -2p)    . (2.12) 

In the anharmonic coefficients, only the derivatives of the repulsive potential (2.11) 

are retained.   Since p is of the order of 0.1 for NaCl,  the derivatives of the 

Coulomb potential are smaller than the corresponding ones of the repulsive 
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potential for orders up to at least n a 10.   Had we used an inverse power law 

for the repulsive potential, this would be true to any order.    This model, in- 

cluding the neglect of the Coulomb potential in the anharmonic terms, has been 

13 used previously     with much success. 

The anharmonic coefficients? can be obtained in a straightforward calcula- 

tion from this nearest-neighbor exchange repulsion potential.       The mth order 

coefficient V (Qj • • .Qm) involves derivatives of 0(r) up to order m.   From 

the exponential form (2.11), it is clear that 

|a0(m)(a)/0(m-1)(a)hlO    . (2.13) 

Thus, it is a good approximation to retain only the highest-order derivative. 

Using these results and assuming central forces yields 

6    m 
V(Q1---Q    )=(N/mJ)0(m)(a)S    S   U (Q)(1i/2Nm<aJ0 )1/2,    (2.14) 

y=l j=l   7   J ^   ^j 

where 

1/2 
W =xy' [^<Q^m</m>)    ^Q.6^   ~y j    ' (2.15) 

and m< and   n^   denote the smaller and larger ionic masses, respectively. 

The positions of nearest neighbors nioasured from the lighter ion are x   . and 

x    is the unit vector in the same direction.   The polarization vector w ^.^   is 

defined in terms of the ionic displacement u.     from the equilibrium position 

12   18 Xj.     by the relation     ' 
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i/2 la • ^T 
u,T  =   E(Ti/2NmTa}Q)       e AQ WTQ    , (2.16) 

with T denoting the ion type.   For the fundamental mode, 

1/2 
U   (f) = xy • wf (m</mr) (2.17) 

1 1     ~ tVi 
with m    = (m "   + m^   )    .   From Eq. (2.11), we obtain the m    derivative 

0(m)(a)= 3Ba3p2/ I (l-2p)(-pa)m (2,18) 

Substituting the approximate expression (2.14) for the anharmonic coefficient 

into Eq. (2.3) for T   , we obtain, by usin-r Eq. (2.2), the contribution of the 

n-phonon summation process to the optical absorption in the form 

£,  = n 
1/2 c -CO/CUT        4-1 n     9 „ 

(Tr/2)      K to        D   (1-e ^(w  n!)     (co     D )  A.   E   . mx   e       n    n 

(2.19) 

2 2        2 We have used the approximation for high frequency (co   » Oi. + T  ) and intro- 

duced the following groups of constants: 

2 
2   ;i: 2 5 K  =  B   e     a a)r/Tic m    no: , f r    r    mx 

-1/2 2 
Dp  =   (277) [677p/(l-2p)]      , (2.20) 

2   2 
D     =  Ti / 2 p  a   m^ co <    mx 

The frequency oc       ,  introduced for later use, cancels out in Eq, (2. 19). 
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n   U   (Q )U    (>, )*     [nCWQ )+ll /CÜQ      . {2.21) 

19a 
For crystat   of NaCl structure, symmetry     ensures that Sn    and, therefore, 

ß    are independent of the direction of wf .   Let us choose wf to be along the 

positive x-axis .   Then, Eq. (2.21) becomes 

n+1 
Ln- 2Z:n+ + 2(-l)      Ln. (2.22) 

where 

,-n 
n n n 

E N "    V;       NA(S   q) 0(05-E a)0.) n W+(Qi)(nQ+l)/c^Q 
n± Q e.Q j = i~] j=i    ^J   j=l    -     J      VJ xl 

VI n (2.23) 
and, with Re and Im denoting real and imaginary parts, respectively, 

2 2 
W±(Q) =  [ReUx(Q)]    ± [ImUx(Q)]     . (2.24) 

In passing, notice that the evaluation of the sums in (2. 23) is trivial if the 

densif of states g(a)) is approximated by the Einstein model 

g(aj) =  f;(ü)-WE ) 

and the angle dependence of W± (Q ) is neglected :   W± (Q ) = W± .   It will be 

shown later than W+
n » W_n.   Then (2.23) and (2.19) give directly 
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The factor L    contains the dynamical information of the n-phonon 
n 

absorption, and is given by 

E=E     E    (x   • wf)(xv. • wf)N-n     2       NA(L q) 6(40-1^ 
n   y=iy=i    y    f     y     f       Qi"-Qn      j=1 ] J=1    J 

MW 
i >■ rS 

— ■—■'  
M^ — —— -— - ■    ■ 



=..iet=3i-*i£'a-~(^'^ ll|^>JP«PWJl!WWW).*''*^'w*'|W»*i<«W.«",w.i WMWpi'J)«J.)---Jt^ 

Sec. C 

I 

ß = 
EA^2 -n^E/^T^    ( 6tomxDeW

+t
n({V+1Mn 

00 

£ 
n=l n^n! 

1/2 

l-' ) I U), I 
Ö(w - nojg) , 

(2.25) 

■ 

where E = (2IT)      K CO      D  .  According to (2.25), the spectrum is approximated 

by a series of delta functions, which is, of course, not realistic.   Even though such 

a model is not of significant practical value, it does crudely approximate some of 

the features of the more realistic model discussed below.   For eximple, plotting 

the coefficients of the delta functions in (2.25), or formally replacing the delta 

functions by line-shape functions of finite width, gives a nearly exponential de- 

crease with increasing frequency.  In Ref. 19b, the result (2.25) was rederived 

using die simpler model of a one-dimensional lattice with the Einstein approxima- 

tion and a simpler interaction potential that neglects the angle dependence [ our 

factor W+(Q)] from the outset, and an independent-molecule model was considered. 

2 
Use of this simpler interaction potential gives unreasonably large values of An , 

19b 
which causes noticeable deviation from an exponential frequency dependence. 

19c Mills and Maradudin       independently used a single-frequency anharmonic- 

molecule type lattice to study various types of interaction potentials, effects of im- 

19d 
purities, and high-temperature effects.  Bendow, Ying, and Yukon      have used a 

diffeunt mathematical method that starts with partially summed terms. The method 

is potentially powerful, but to date they have recovered only our terms without the 

vertex correction.   Since the validity of the perturbation expansion is justified by 

showing that all diagrams not included in the result are negligible^ it is expected 

that new methods of calculation should give equivalent results.   Fo; example, the 

factor exp(->' T) resulting from vertices with phonon loops [ AQA„S, AQAQA„,AQ,S, 

etc., where S is the simple vertex and the AQ are defined in (2. 9)] is well approxi- 

mated by 1 since the phonon-loop terms are negligible with respect to simple ver- 

tices. See Sec. V. 

54 

            i   ■IMMMMII    ■ill   I      I         



■jjri.fä',"* "i^r- 

S*BiilMllMjtH»PWto''*'M> 

See. C 
f 

■ 

III. ASYNU'TOTIC APPROXIMATION FOR ABSORPTION BY A 
LARGE NUMBER OF PHONONS 

Eq. (2.19) gives the contribution to the absorption coefficient by the 

n-phonon summation process.    It contains the factor S    given by Eqs. (2.22) 

to (2.24) which involves n-fold Brillouin-zone sums.  Although these are not 

beyond the means of modem computing capabilities for n in the experimental 

range of 2 to 8, we are still interested in analytical approximations that will 

give us general properties of ß which appear to be shared by a rather large 

number of crystals.   The method of evaluation used in this section is correct 

in the large-n limit. 

For n ^ 2 we can neglect the quasi-momentum conservation restriction in 

the sums given by Eq. (2.23).   We shall justify this laer in the section.   First 

notice that if the angle dependence of W+(Q.) is neglected, the summand in (2.23) 

is a function of phonon frequencies LCQ   only.  Then, replacing the sums over 

Qi by integrals over daJn  g(u;n ), where g(u;n ) is the phonon density of 
J ^j        ^j ^j 

states, reduces (2.23) to the form 

E 'n± jdu;Qif(WQi)..-   jdWQnf(a)Qn)ö(W- EIWQ_ 

to which the central-limit theorem applies directly.  Here f ( CCQ ) 

-1 j 

= 6N    W+(Q.)(n(-) +l)g(co(-) )/tüQ , where the normalization constant 
_!       "     J j J J 

6 N     arises since g is normalized to unity. 

Eq. (2.23) can be cast into this central-limit-theorem form without neg- 

lecting the angle dependence of W+(Q.) as follows:  We introduce two functions 

which are kindred to the phonon propagators 

I ■ 
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a±^>=    j^mx^^Oij   E W±(Q)   !(nQ+1)/WQ|    6(C-t0Q) '      (3,1) 

where 

.■-1 a0± = wmxN  ^W^QXHQ + D/CCQ 
(3.2) 

are constants for normalizing the integrals of a+(C) over C   to unity. 

Tlie n-fold sums in Eq. (2.23) can be written as n-dimensional integrals, 

(a, "n±       v  0± 

These convolution integrals are well known in statistics.    For n -> «> , the integral 

tends to a Gaussian (the central-limit theorem), 

£n± =   [V_n/(^n)1/2a2±wmxn+1]  exP [-^-nal±Wmx>2/2nOi2±2c0mx2] 

(3.4) 

where an+ are defined in Eq. (3.2), and 

al± =   Wmx 

00 

1 ^ d^CT± (CK , (3.5) 

^f^^oS-^t (3.6) 

For small n, it is possible to improve Eq. (3.4) with an asymptotic series 
20 

A particular series in terms of Hermite polynomials has been used by Sjolander 

to evaluate the multiphonon background in neutron scatterings in a harmonic 

crystal. 
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V: 

It is obvious from Eq, (2.24) that Q;0_ , as defined by Eq. (3.2), is less 

than ow.  The estimates discussed in Sec VI show that a0_  is about one 

third to one half of a0+, at most.   Since S0± ~ (a0±)   according to (3. 4), Z;n_ 

becomes negligible compared with S       for large n ,   Tlierefore, from Eqs. (3. 4), 

(2.22), and (2.19), the absorption coefficient has the explicit form 

D« K / co       \ , no 

I 

exp [-(w-na1+comx)
2/2n(o!2+comx)

2] (3.7) 

By virtue of the central-limit theorem, the multiple sum over Qi» " * 0« has 

been reduced to sums over a single phonon coordinate Qj, as given by Eqs. (3.2), 

(3.5), and (3.6), 

The neglect of momentum conservation appears to be physically reasonable 

since, for larger and larger n, the restriction en phase space becomes less 

and less important.   However, if we wiah not to neglect the momentum conserva- 

tion in Eq. (2.2), we can extend the foregoing procedure by treating the summa- 

tions over q    in the same manner as the integrals over ^..   Thus, we introduce 

the functions a, (q, C) similar to Eq. (3.1), except omitting the sum over q. 

Eq. (3. 3) becomes not only multiple integrals over £.  but also over q .  with 

four  6  functions, one for the frequency and three for the wavevectors.   The 

convolution integral is evaluated in the same way by means of the central-limit 

theorem.   The integrals over q.   contribute a factor which is a lattice sum of 
2 

Gaussians of the form exp(-na x.   ) and is, therefore, approximately unity 

for large n.   We arrive at the same answer as Eq. (3.4), thereby justifying 

the neglect of momentum conservation. 
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IV. THE CONFLUENCE PROCESSES 

In the preceding calculation of the multiphonon absorption of light, only a 

particular type of phonon processes, called the n-phonon summation processes 

and Illustrated in Fig. 2a , was considered.   We have neglected the confluence 

processes ,   illustrated in Fig. 2 c .   Instead of creating n phonons after the 

annihilation of the fundamental phonon,   m phonons are absorbed, and n-m 

phonons are created. 

A confluence process involving n phonons (some of which are created and 

some annihilated)   is governed by the same vertex as the n-phonon summation 

process.   The contribution to the absorption coefficient of all confluence pro- 

cesses and the summation process is easily obtained by replacing ö (C - wQ) 

by6(C-WQ)-5(C+WQ)andn(-COQ)by -[n(coQ)+1] in (3.1).  The cross- 

product terms in (3.3) containing m factors of -ö(C + coQ) and n-m factors 

of 6(C -100) correspond to the confluence process with m thermally excited 

phonons absorbed, as shown in Fig. 2 c .   Applying the central-limit theorem 

to this term yields a Gaussian peaked at (n-m)a1+üJmx-mß1+Wmx instead of 

na    co      . where 8,    is defined by Eq. (3.5) with the new a (O •   This 
1+    mx 1+ 

contribution will be masked by the summation process of n-2 m phonons which 

peaks at about the same frequency but has greater strength, being an anharmonic 

process of lower order. 
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V. VERTEX CORRECTIONS 

j.1 

Now we consider all possible processes that contribute to the (n+1)   -order 

vertex A(fQ1 • • •Qn) and estimate the vertex correction factor A   , defined 

by Eq. (2. 10).   Standard perturbation theory can be applied in a straight- 

forward way to all the higher-order terms.   For example, for n = 3, the 

diagram in Fig. 4 b below has one intermediate state.   The contribution from 

this diagram is easily calculated, but it must be remembered that this dia- 

gram represents four diagrams when the arrow is added to the intermediate- 

state phonon.   (There are two time orderings of the two vertices, and the 

arrow can go in either direction, corresponding to a a^ and a' a, in each 

time ordering.)  This procedure has been carried out for a number of low- 

order diagrams,       and the results agree with those presented below. 

Since the number of diagrams increases rapidly as n increases, this 

method becomes tedious and time consuming when applied to larger values 

of n .   The following method is more convenient.    First, all the self-energy 

corrections, such as those illustrated in Fig. 3 a, are taken to be accounted 

for by using the measured phonon frequencies, i. e., they are included in the 

corresponding "skeleton" diagram (Fig. 3 b).   The lifetime of the intermediate- 

and final-state phonons is taken to be infinite. 

There are two types of vertices:  (1) the irreducible ones that cannot be 

rent asunder by cutting a single phonon line, such as those in Fig. 3 c, and 

(2) the reducible ones that can be separated by cutting a single line, such as 

those in Fig. 3 d. 
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(a) (b) 

(c) 

(d) 

Figure 3.   Various kinds of vertices. 
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f 

(a) (b) 

x/V^W»»» ^KW^-'N^ 

wv^/V^y«- 

(c) 

Figure 4.  Three-phonon summation processes. 
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In the sum of all irreducible vertices of the same number of external 

22 phonon lines, the simple vertex dominates.   We follow Van Hove     in order- 
n —9 

ing the anharmonic terms in the Hamiltonian, V(Q. • • • Q  ),  with e 

where  e is the small parameter given by the ratio of the root-mean-square 

displacement of the ions to the nearest-neighbor distance.   The value of € 

is less than 0.05 in alkali halides.   A complex irreducible vertex must be of 

higher order in  e than  the simple vertex with the same number of external 

lines, since cutting a phonon line will produce one vertex with a larger 

number of external lines.   For example, the simple vertex in Fig. 3 c is 

2 4 
0 ( c   ), but all the other irreducible vertices in Fig. 3 c are 0 (e   ). 

On the other hand, a reducible vertex composed of simple irreducible ver- 

tices is of the same order in c as the simple vertex with the same number of 

2 
external lines.   For example, the first diagram in Fig, 3d is 0(e   ).   A reducible 

vertex that contains one or more complex irreducible vertices is again negli- 

gible.   Therefore, for the total vertex contribution, we need only sum the simple 

vertex and the reducible vertices which are composed of simple vertices only. 

To illustrate the procedure of obtaining the vertex renormalization to the 

n-phonon summation process, the simplest non-trivial vertex correction, namely 

A«, is first calculated.   The two vertex terms that contribute to the three-phonon 

absorption are given in Fig. 4 a and 4 b .   The ratio of the latter to the simple 

vertex is 

i||i  S   V(fQ3Q4) D(Q4,C4) 
V
(Q4QIQ2)/|T  V(fQ1Q2Q3)   .      (5.1) 
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i 

23  13 
The two factors of 3! represent the number of ways" '       the phonon states are 

attached   o the limbs of each vertex in Fig. 4b.   'Hie divisor  2 ! represents the 

fact that interchanging the labels on phonon lines 1 and 2 again produces the same 

term.   T.^ factor 4! is the number of ways the four-phonon vertex in Fig. 4 a 

can be labelled,, and the divisor 3! is the overcounting factor generated by re- 

arranging the labels among lines 1, 2 and 3 in Fig. 4a.   The factor D(Q4, C4) 
23 13 

represents the Green's function for the intermediate phonon line"^       in Fig. 4b , 

By using the form (2,14) for the anharmonic coefficient and keeping only one 

term in the sum over nearest neighbors for both the numerator and the denomi- 

nator of the ratio (5.1), we obtain the ratio as 

2! ^     u 2m^co 
Q4 

|Ux(Q4)l    D(Q4,C4) (5.2) 

The factorial that represents the number of ways the states in each vertex are 

labelled cancels neatly the factorial in the anharmonic coefficient (2.14), leaving 

the counting factor in front of (5.2).   This factor is just the ratio of the number 

of ways of rearranging the labels on the equivalent outgoing phonon lines of 

Fig. 4 a to the corresponding number for Fig. 4 b. 

The factor ^ ' comes from the fact that 

|0<3>|70(4) = 0(2) (5.3) 

by virtue of Eq. (2.18).   The momentum and frequency of the intermediate-phonon 

Green's function are given by 

S4  =   ll  + 32 
(5. 4) 
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and 

C4 = a:f - CO3 = Wj +a:2 - 2 a; 

for the frequencies of interest.    Let 

WQ mx 

ntx 

,2       2 
d£   =    ^JD<Q4'^mx)/2a;Q4 

= (r -"^ 

and 

-1 

4=   0(2)Z:   |UX(Q4)1    D(Q4.Xtomx)(t./2m<u:Q4)/dje 

b4 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

"hen, the ratio of the two vertices, (5.2), becomes 3d24.  and the vertex 

renormalization factor is 

A3  =   1 + 3d2 4    • (5.9) 

Estimates of d2  and i are provided in the next section.   It is easy to verify 

that (5. 9) correctly accounts for all the three-phonon absorption processes 

shown in Fig. 4 c. 

The reasoning used in this simple example can be applied to the general case 

to deduce the rules for writing down the renormalization factor for n-phonon ab- 

sorption.   The simplest term in the total vertex is the simple n+ 1 phonon vertex 

with one of the phonons being the fundamental mode driven at the optical frequency, 

as depicted by Fig. 5a.   A typical reducible vertex is formed by joining a number 

of Irreducible vertices of lower order such that there is only one phonon line con- 

necting any pair of irreducible vertices.   Some examples are shown in Fig. 5 b -5 d, 
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(O 

(b) 

CK? 

(d) 

(e) 

Figure 5. The n-phonon absorption vertices.  The number n in a circle denotes a simple 

vertex with n external lines. 
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If a vertex contains m internal lines, then its ratio to the simple vertex 

(Fig. 5 a) contains a factor 4m, with 4   defined by Eq, (5.8).   Thus, 

n-2 

E 
m=0 

with the coefficient S x" ' obtained as follows.   Draw all topologically distinct 

reducible vertices with m internal lines and n+ 1 external lines, one of which 

is the fundamental phonon driven at frequency n O)       .   Each diagram contri- 

butes to S ^       a term of the form 

A    =     V   s(m) 4m   , 
n ^    n        s       ' 

(m) 

(5.10) 

^ (m) 
Cn      \\-"dZ 12 m 

(5.11) 

(m) 
where C is the ratio of n I   to the number of ways of rearranging the states 

of the n outgoing phonon lines that do not change the reducible vertex.   The 

factors of d^ come from the intermediate phonon lines, & being determined by 

energy conservation, assuming that all outgoing phonon lines have frequency CO mx 

For example, the vertices with one internal line, as in Fig. 5 b, give 

n-1 
(1) _ 

n EU) m=2 
d m (5.12) 

(n-2) 
and Fig. 5 e contributes to S the term 6 n 

(n!/2I)d2d3...dn.1 (5.13) 
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Armed with the general rules, we can calculate the contribution of any vertex. 

Figs. 6 - 8 show the relevant vertices for four- to six-phonon absorption, respec- 

tively, and the corresponding contributions to S ^m\ 
n 

From the considerations in the next section, the factor v in Eq. (5. 6) is 

0.5 or ^ess; thus (5.7) gives 

di   ="  * 
-2 

(5.14) 

Therefore, the vertex correction factors are 

A2   =  1 , Ag =1 + 0.754, A4 = 1 + 1,9444^ + 0.5208 42 , 

A5   =   1+ 3.9236 4 + 2. 6563 4 2 + 0.3711 4 3 , 

A6  =   1+7.1497 4 + 9.2682 42 + 3.2511 43 + 0.2806 44    . (5. 15) 
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3 y—^A 

^3 

3)—(4 

6d2 

I2d2d3 3d2
2 

Figure 6. TTie 4-phonon absorption vertices.  The only external line shown 

is the fundamental mode. 
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-€H-©   -®—©   -0—© 
5d4 

30 da^U 

I0d- 

I5d; 

I0d: 

20d3d4 

I 

30 dads 

60 dadsd4 

30 dads 

30d2''d3 

Figure 7. The 5-phonon absorption vertices. 
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-dy®   -©-©   ~®-©   -dHS) 
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90d22d5 I5d2
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360 d2 d3d4d5 180 d^ d3 d4 90 d2

2 d32 

modg-dsdj 45d2*'d4 90d2
cd4d5 

Figure 8. The 6-phonon absorption vertices. 
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VI.   FREQUENCY AND TEMPERATURE DEPENDENCE 
OF THE ABSORPTION COEFFICIENT 

It is straightforward to evaluate ß   given by Eq. (3.7) with the a 's given 

by the Brillouin-zone sums. We shall confine ourselves to two rough estimates 

of the a's. 

For a linear-chain model with two atoms per unit cell, all with equal masses, 

it is possible to evaluate explicitly the a's in the low- and high-temperature 

limits.   Table I shows the results for the a's with w        chosen to be the top mx 

of the phonon spectrum.   This simple model illustrates nicely all the important 

features that follow from Eq. (3.7).   As a function of frequency, the absorption 

coefficient  ß    due to the n-phonon summation process peaks near na.    CO       , 

which is about (3 /4 ) n co       .   Thus, the total absorption coefficient, which is 

the sum of all ß    with n ^ 2 , is dominated at a particular frequency by the 

nearest n-phonon summation process.   The frequency dependence of ß in the 

range 2 u)      - 8 cc       is , therefore, approximately exponential since the 

strength of the peak in ß    as a function of n is approximately exponential.   The 

small values of an_ confirm the validity of neglecting L  _ in Eq, (3,7),   As the 

temperature is raised, the strength of the peak in ß    increases, the position of 

the peak is shifted toward the lower frequency, and the width is either narrowed 

or broadened, depending on the temperature dependence of the phonon frequencies. 

Thus,   ß increases with temperature, but less rapidly than T        at high tem- 

peratures. 

Now we give a more realistic estimate for N'aCl-structure crystals.   There 

i        ^   I2 

are several wavevectors   for which the explicit expression of | U  (Q) |    can be 
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Table I. Values of parameters from the diatomic-chain model with equal masses 

a 0+ a 1+ a 2+ O-r 

Low T 

High T 

8/77 

4a;T/wmx 

Tr/4 0.223 8/3 TT 

2/Tr    [(TrwT/4comx)-4/7r2]1/2       0 
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written down.   For the acoustic branch at the zone boundary in the (1,1,1) 

direction, the light-mass ions stand still, and the heavy ions move in the 

direction WLQ , say.   Then, 

|Ux(Q)|2 =     (x •  w>Q)2      m</m>   . (6.1) 

Similarly, for the optical branch at the same wavevector, 

|Ux(Q)l2=   (x.  w<Q)2    . (6.2) 

For the optical modes near the zone center, U (Q) is given by Eq. (2.17).   For 

the acoustical modes near the zone center,   | U (Q) |    is nearly zero. 

i i2 

As a rough approximation,   | U  (Q) |    will be set equal to zero for 

co < f to       where f < 1, and where it is not negligible, | U (Q) |    will be 
nix X 

approximated by an average of the three known expressions (6.1), (6.2), and 

(2.17); thus. 

|Ux(Q)|     - 4 (1+ m</m>)e(wQ-fü^)   ' mx (6.3) 

where 6  is the unit step function.   In the average, we have replaced (x • w<:r)) 

by 1/3, which is the value for the (1,1,1) zone-boundary mode and is also the 
2 

angular average of cos  Ö .    The remaining factor is the average of 1, m< / m> 

and m^ / m    . <'     r 

The estimates of the a's are then, from (3.1), (3.2), (3.5), (3.6), and (6.3), 
00 

with the usual approximation of the sum over Q by 6    (     do; g(co): 
3n 

a0+ = T (1 + m</m> )  ((n + l)e/co ) co^ , (6.4) 
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a1+ = ((n+l)e>/<(n+l)e/co) w^  , 

2       , ,.     .  ,.0..v   //._,  ,.a,.^   ,..2. 2 ao,   = [<(n+l)ew)/<(n+l) e/w) to    2 ] - a l2+ 

where n  is the Bose-Einstein distribution factor, 

■1+ 

(6.5) 

(6.6) 

ue) = 
00 

l    dcüg(co 
0 

) A(w)e(cü-ftümx) (6.7) 

and g(to) is the phonon density of states normalized to unity.   Similar estimates 

give 

a0-  <   ac>i-/(1 + m</m>)    ' 
(6.8) 

The density of states, shown as the solid curve in Fig. 9, is approximated 

by the Debye model, 

g(a;) = (3co2/w_3)e(comv-co)   . mx mx 
(6.9) 

sketched as the dashed curve in Fig. 9.  The value of w^ is taken as the Debye 

cut-off frecaency in (6. 9).   In the high-temperature limit. 

n(a)) + l =- Wrp/W + Y (6.10) 

Then, the averages in Eqs. (6.4) to (6.6) are easily evaluated. 

The value of  f will be chosen as   f = y . corresponding to the assumption 

that, for 1/8 of the modes (1/4 of the acoustical modes), W+(Q) is negligible. 

In Table II, we list the data of NaCl along with the values of the a's at room 

temperature corresponding to '*:T/a:mx = 1.03 for NaCl. 
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Figure 9,  Phonon density of states in NaCl and the 

Debye approximation. 
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To estimate the magnitude of the vertex correction, we need to know the 

contribution of the intermediate phonon in the form of £   given by Hq. (5. 8). 

In the process depicted by Fig. 4b, the intermediate phonon splits into two 

phonons Qj and Q2 , which were taken at frequency to       , i. e., in the optical 

branches.   This is reasonable since the high-frequency side of the Gaussian 

ßn(w) curves contribute to ß = Lß  , as seen in Fig, 10.    By a quasi-selection 

rule,      Q4 must be an acoustic mode, the largest contribution of which will be 

at the edge of the Brillouin zone.   Thus, we take 

>     v   '   mx mx %>    ' (6.11) 

using Eq. (6. 1).     The frequency of the highest acoustic mode is taken to be 

3 2 
^—  with T]    =0.5, and the factor (WQ   /^co       )    approximately simu 'mx 

lates the effect of the polarization for the long-wavelength acoustic modes. 

Substituting Eq. (6.11) into Eq,   (5, 8), averaging over the possible modes of 

three branches, we obtain an estimate of 4: Q,, and summing over 

4 3 0v '/5 m^ co 
>    mx 0.18 (6,12) 

Substituting this value into Eq, (5.15) yields the following estimates for the 

vertex-renormalization factors: 

Ao    =   1   ; 
2 2 

A,    =  (1 + 0.142 T   =   1.30   ; 

= (l + 0,388r = 1.93   ; = (1 + 0, 844)    = 3. 40 

= (1 + 1.72 r   =  7,38 (6,13) 
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i- 

NaCI 

^rS.OSxIO^radsec"1 

^ + \^THEORY WITH ONE 
+\   PARAMETER ADJUSTED 

Figure 10. Theoretical estimates of ßn at room temperature for NaCl. Experimental 

points from Fig. 1 are shown for comparison. 
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V/e note that,   from Eqs. (5.1) and (5.2), the vertex ratio can be shown to 

be equal to the ratio of the real parts of the self-energy terms given by Figs, lib 

and 11 a at zero temperature and frequency 2 co       ,     From R. A. Cowley's 

13 calculation      for KBr , our estimate of ^  appears to be somewhat too large. 

The multiphonon absorption calculated from (3.7)   using the values 

of parameters from Eq. (6.13)  and Table II  is shown in Fig.  10, 

where the individual ß    are plotted a& light curves and the sum oi" the  ß   is 

plotted as the heavy curve.    The agreement is rather good in view of the crude 

approximations used to estimate the a's.   It should be noted that no parameters 

have beer adjusted in the theoretical result. 

By adjusting two parameters in Eq. (3.7), such as K and D    (keeping the 

a's at f = — )» the experimental data can befitted to within the scatter of the 

data.   In fact, by changing only the value of the single interaction strength 

parameter 1/p  from 9.0 to 12, the dashed curve in Fig. 10 is obtained. 

This larger value could be partly explained by the fact that the higher-order 

anharmonic coefficients are much more sensitive to the shape of the potential 

curve than the quadratic terms from which the value of p is determined. 

Errors introduced by the approximations and uncertainties in the values of 

the parameters used also could account for the difference, of course. 

The near-exponential frequency dependence is evident in Fig. 10.   The 

vertex correction, which is included in Fig. 10,  slightly improves the agree- 

ment with the experimental result.   Without this correction,   theöo-ßc  curves 

would be shifted down by factors of 1,  1. 3, 1. 9, and 3. 4, respectively. 
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Q 
(a) (b) 

Figure 11.  Phonon self-energy terms of order e   . 
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Table II. Values of parameters for NaCl at room temperature 

4.639 

«1+ 

0.757 

a2+ 

0.145 

11 2 
p = 1/9.05,    a = 2.82 A ,    B = 2.44 X 10      dynes/cm   , 

Wf = 3.09 x 1013 sec"1,    co^ = 3.85 x 10     sec"   , 
-23 

n    = 1.50 (formally for all O)),    m< =  3.82x10       gm, 

m> =  5.89 x 10 ^0 gm. 
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The n-phonon regions, marked on Fig. 10, do not correspond to 

ncof < to < (n+1) a3f , to nto^ < a; < (n+l)comx ,  or to nüJL0 < W 

< (n + 1) a), n , as is often assumed in the literature.   In fact, the n-phonon 

regions shift as the temperature changes, as discussed below. 

The n = 2 central-limit curve is included in Fig. 10 even though its ac- 

curacy is not expected to be good.   The two-phonon structure is lost, of 

course, in approximating /L by a Gaussian, and the peak does not occur 

at to = cof . 

The temperature dependence of ß  at a given frequency in the nearly expo- 

25 
nential region is considerably weaker      than that of the simple expression 

ßn(T)/ßn(0)= ll-e K1'6 )    ~T 
-n 

(6. 14) 

obtained formally from the occupation-number factor (2.4) by setting all 

CÜQ = co/n.  The approximation ßn ^ 
T  "   in (6-14) is valid in the high" 

temperature limit,  and n has been assumed to be independent of temperature 

in the past.  The T dependence of ß results from the temperature dependence 

of the parameters a,e*, and, particularly, the phonon fiequencies ojg and 

from the explicit temperature dependence of a^, a1+, and o^. 

The following example of NaCl at 300K and 10.6^1X1 illustrates the strong 
i 

deviarlon from the frequently quoted result ß ^ T      .   The value of the slope 

(T/ß)dß/dTofßasa function T on a log-log plot can be estimated from 

Eq. (3.7).   Using n = 5. 5 from Fig. 10 and the following approximate expres- 

26,27 
sions for the temperature dependence of the parameters, U-'Q 

= co00(l-3.8x 10"4T), a = a0( 1-4.4 x 10'5T), and e :: = e0
: (1 - 1.06 x 10'4T), 
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we find 

(T/i3)dß/dT =  2.5 (6.15) 

\i 

which is considerably smaller than n - 1 = 4.5 .   The Bom-Mayer-potential 

parameters C and pK = pa in (2.11) are essentially temperature independ- 

ent, being electronic in nature.   In particular, (2.12) should not be used to 

ascribe a temperature dependence to pK from measured values of B (T) and a (T). 

The temperature dependence of B arises from anharmonic and volume effects, 

not from a T dependence of pK . 

A weakening of the temperature dependence such as that in (6.15) is ap- 

2S 8 
parent in the data of Harrington and Hass,  "   Barker,     of Kaiser and co- 

workers,    and of Denham and coworkers.      Finally, it is mentioned that in 

a material, possibly a zinc-blende-structure crystal, in which the position 

of a given multiphonon peak can be traced as a function of temperature, the 

temperature dependence should be quite different from that of ß  at a given 

frequency.   A detailed presentation of the temperature dependence of ß will 

be given elsewhere. 

The ß - W curves of the alkali halides and alkaline earths show less 

structure than those of the semiconductor materials.    It is plausible that the 

greater anharmonicity of the NaCl-structure crystals could give rise to such 

short lifetimes of the zone-boundary phonons that the fine structure in the 

density of states is essentially eliminated, 

13 28 The lifetime of the fundamental phonon is short,   ''       and the lifetimes 

of the zone-boundary phonons should be even shorter since the selection rules 
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ii 

and qua si-selection rules do not apply to the zone-boundary modes (with nonzero 

wavevectors).   A value of relative linewidth IT/uc of the order of 0. 3 for the 

zone-boundary phonons at resonance should be sufficient, and this value is reason- 

able in view of the value ' of IT/LC = 0.07 for the fundamental mode in XaCl and 

the fact that IT/u: is expected to be larger at the zone boundaries.   Furthermore, 

as n becomes larger, more convolutions are involved | seeEq. (3. 3)], and each 

convolution tends to smooth out any fine structure in the density of states. 

This explanation is consistent with the experimental results which show that 

the two-phonon peaks are wider in the alkali halides than in the semiconductor 

2 
materials, that r~T    at the fundamental resonance in NaCl (implying that the 

two-phonon contribution is small at resonance), and that the two-phonon peaks 

2 
have been observed in NaCl even though r~T    at resonance.  A careful study of 

the temperature dependence of the two-phonon summation peaks could show an 

increase in the widths of the peaks as T is raised from 77 K to the highest prac- 

tical temperature of the solid.   Such increases are apparent in the small amount 

29 
of existing data.      As the temperature is reduced below room temperature, addi- 

tional multiphonon peaks could appear h. higher-n regions where ß{ic) is relatively 

smooth at room temperature.  Of the three existing known cases (for CaF9 , BaF9 , 

29 
and SrF2 at 77 and 300 K),     two show a small additional peak at 77 K that is ab- 

sent at 300 K. 

It should be emphasized that the two-phonon peaks are associated with peaks 

in the appropriate density of states and are not resonance lines.  Thus, an extrapo- 

lation of ß{üo) from the reststrahl region should not be subtracted from ß at higher 

frequencies to obtain the multiphonon contribution, as is sometimes done in the 

literature.  An alternate, though unlikely, explanation of the lack of structure is 

that the raw-phonon density of states shows little structure. 
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VII. ASSUMPTIONS AND APPROXIMATIONS 

Tlie assumptions and approximations made in the previous sections are now 

summarized: (1) The photon-phonon coupling is given by the leading dipole term, 
9 

and the Lax-Burstein-Bom mechanism   is neglected.   (2) For the anharmonic 

forces, only the nearest-neighbor Born-Mayer repulsion term is included and is 

further approximated. (3) The lifetimes of the intermediate and final-state phonons 

are assumed to be infinite. (4) The central-limit theorem is used to reduce the 

n-fold multiple sum in (2.3) to a Gaussian whose parameters a are given by single 

20 
sums, although it is possible to improve the asymptotic approximation.     (5) Rough 

estimates were given for the various Brillouin-zone sums over the phonon coordi- 

nates for the coefficients, a's .   All of these approximations except (1) were shown 

to be reasonable.  The perturbation approach used is justified by showing that all 

diagrams not included in the results are negligible.  Concerning (1), the long- 

standing question of the importance of the Lax-Bur stein-Bom mechanism in NaCl- 

structure materials remains unanswered.   The mechanism is quite simple to in- 

clude formally; estimating the strengths of vertices has been the problem. 

Our calculation gives good agreement with experimental results for the fre- 

quency dependence of the optical absorption and demonstrates the general nature 

of this dependence for crystals with tetrahedral symmetry.  The estimates listed 

in (5) above enable us to see explicitly the nature of our results.   Some of the esti- 

mates must be regarded as tentative.   However, these approximations are not es- 

sential to our theory. We plan to perform both the multiple sums in (2.21) for 

n = 2 - 6 and the single-phonon sums in Eqs. (3.2), (3.5), (3.6), and (5. 8) by com- 

puter.  This will enable us to examine more rigorously the validity of the other 
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approximations, especially (4). The computer results for the multiple sums in 

(2.21) should provide greater accuracy in the small-n regions, say n = 2 and 3, 

where the central-limit results are less accurate, and should afford a good test 

of the approximations in the region of n = 4 - 6. The temperature and frequency 

dependence of ß for a number of crystals will be included in the computer pro- 

gram, which is being performed in collaboration with A. Karo of the Lawrence 

Livermore Laboratory. 

I 
« 
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D. TEMPERATURE  DEPENDENCE OF  MULTIPHONON INFRARED ABSORPTION* 

M. Sparks 

Xonics, Incorporated, Van Nuys, California 91406 

and 

L. J. Sham 

University of California, San Diego,  La Jolla, California 92037, and 

Xonics, Incorporated, Van Nuys, California 91406 

MeasL-rements of Harrington and Hass and of Barker indicate that 

the temperature dependence of the infrared absorption coefficient ß 
n — 1 

in the n-phonon region is considerably weaker than /? ~ T      , which 

had been predicted for the high-temperature limit of multiphonon ab- 

sorption.   This discrepancy is resolved by taking into account the 

temperature dependence of the phonon frequencies and the lattice 

constant.   The agreement between the experimental and theoretical 

results with no adjustable parameters is good.   A new evaluation of 

the multiphonon sums yields ß ~ expi-ocr ) directly, rather than as 

a sum on n . 

The nearly exponential frequency dependence   of infrared absorption in the region 

of low absorption has been explained recently by a simple multiphonon-absorption 

theory       and by independent-molecule models.     The frequency and temperature 

dependence of the optical absorption coefficient ß  are of fundamental interest, and 

both should be useful in identifying intrinsic absorption and in distinguishing between 

7  3 4 8 intrinsic and extrinsic absorption.   '   '      Harrington and Hass   have shown that the 

temperature dependence of ß is considerably weaker than the expected dependence 

ß ~ [ 1-exp(-co/a;T)[ 1 -exn(-a;/na;T)J      ^ T        for n-phonon absorption. 

2-4 
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The approximate equality is the high-temperature limit, co is the laser frequency, 

and iCj =  kpT/h.   Reexamination of earlier data   reveals similar discrepan ;ies, 

whkh constitute the most serious problem in the recent developments in the theory 

of multiphonon absorption. 

These discreßfencias are explained by including the temperature dependence of 

the phonon frequencies WQ and lattice constant in our previous theory.   A simple 

estimate indicated previously that the resulting deviations would be quite large 

The previous expression      '      for ß is 

10 

ß ■ f(u:)a.r4 I (An
2vn/n:) E 

n=2     n Q 1 

•I 6 
0- 

/      n 

Q* / x=i 
(i) 

where f (cc) = con. [ 1 - exp(-a7u;T) ], v=h/2pI/m,an   • Wn   (n„  +1)/Nu;n   , T K 'Q,-"Q/"Q£ 

VV0    is of order unity for large a;0    and is verv small for small a)^.   ,   nn    are 

phonon occupation numbers, the Q's denote wavevectors and branches,   m is the 

reduced mass,  pK is the Born-Mayer repulsive-potential parameter (en), 2N is 

the number of ions in the crystal, ;ind the higher-order terms in the pe; turbation 

4   10 9 
expansion give rise to the vertex-correction factors '      A    = 1 + A  £ 4 > (f   ). 

n n^        *' 

where A4     1.94, A5 = 3,92, A6 = 7. 15, and | = ^B^/S ( 1 - 2 p0) m«  2.   Here 

B is the bulk modulus,  p = p^/a, the subscript 0 denotes T = 0, and w     is a 
^ m 

frequency near the top of the phonon spectrum.   Hq. (1) can be written down immedi- 
11   i n 9 J, 9 

ately from the well known expression    '     '        for j3 with cc  » (reststrahl fre- 

quency, (|}| )    and standard perturbation-theory results,     apart from the details2"4,10 

of A     and WQ    which are not needed here. 
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1 

See, n 

It is siPiple to show    *       that for ii^'2 the ccntr;il-liinit appvoxiniMtior to the 

imiltiplc sums on Q, • • • ()    is satisfied, tluis rcducini: (1) to fl     Efl    with 

ßn  -  f(a')u.'1. (uvC:)   c'X|. (-a/pK ) C/n'   , u = l(n    tl)./u;()l       •       (2) 
v av 

where av denotes the weighted (with WQ) average over phononsi a is the near 

neiglüior distance, and G//n  is the Gaussian from the central-limit approximationT    ' 

The small temperature dependence of the effective charge was neglected, and 

A    /n I /n  was approximated by CT , which is accurate over the range of n's used 

here (typically n - 3-6), as seen by the straight line obtained by p'otting 

2 
ini A    /n! /n   | vs n.   The two parameters in the Born-Maver potential are essen- 

tially independent of temperature, being electronic in nature.   The standard relation 

B = con. a  Pi<-     - 2 , with experimental values for the temperature dependence of B and a, 

should not be used to determine the T dependence p,, since the T dependence of B and a 

arises from anharmonic and volume effects, not from the temperature dependence of p... 
K 

nie average in (2) is easily evaluated by using the Taylor's expansion 

HQ + 1 s (U^/OIQ) + w + (WQ /12 (JCT ), which is well satisfied for all cases con- 

sidered, and a Debye spectrum (wi^h cut-off frequency U      ) truncated at -^ oc J     ' '        ■      mx 2     mx 

to account for the angle factor in the vertex [see W^   in (1)]. This gives 

2 3 
u ■ 9Ti(n   +l)/16p,,  xm, with x = 3a;      /4.   The factor of -r  is obtained when x N mx 4 

the three terms in the expansion are recombined after integration. 

A simple, accurate expression for the slope (T//3) dj3/dT of in ß vs inT, 

which is a convenient and sensitive measure of the T dependence of 3. is obtained 

by approximating ß by the locus of the inflection points on the high-cc sides of the 

peaks of the Gaussians.   The analysis leading to (4) below or inspection of the 
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show the validity of this approximation.   In the 
curves ß    and their sum2"4, U) 

absence of detailed information 

assumed that fT/m      ) i\, <       / ,\ v      / T /     <. 1 ^^nw^Snx711 '   s <T/«f)daJf/dT.  Then(l)glve 

on the temperature dependence of the u.«(), it it 

T dß 
T -e  -  D- f I)    f |) 
P   d I I a'       a DT =  ( n        mx 

4     mx 

I) 

D 

3 co 
n f4nCvu+ J^JSSL n ., , \       An j '1 

L '        4     mx       / n ^ 

1-    du ■ i 
w,    dl 

(3) 

Tl>c resuUs fr,,,,, ,3, f,lr «.„,  ul... ^ „„, K|!r> ^ ^^ „^„„^ 

va,ucs are avaUnblc, ar. ,,« „, T!lble , along ^ ^ ^j^, (>f ^ ^^^ 

Od experinK,,.,, value, „f Ha-rington and Hass8 and Barker.^  "n.e agreement is 

surprisingly g„„d. probably fcrtuitously s0> „ ^ ^ ^^„^^.^ ^ ^ ex_ 

perimental values »d the fact that the «Q (T) are not weil known.   Note that there 

are no adjustable parameters ft,   he theoretical result, and that the value of D    is 

sensitive to small errors in the values of the input parameters.  Fig. , shows the excel- 

lent agreement bet..ee„ theoretical curves and the experimental points of Harrington 

and Hass and of Barker and illustrates the greater sensitivity of the parameter 

(T/ß)4fi/ir than of such a plotted comparison, the 10 percent difference between 

experiment and theory fo, KBr at 1000 K appearing smaUer than the corresponding 

40 percent difference in the values of (T//3) dß/dT. 

In order to obtain the experimental intrinsic value of (T/ß) d/?/dT  for 

NaCl  at 943 cm"1,  which is obscured by the extrinsic contribution, the ex- 

tnasic contribution was assumed to be independent of temperature, and the 
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1 

Table Caption 

Table I.   Theoretical and ej^erimental values of (T/ß)d/3/dT.  Experimental values 

marked <- and * are uncertain (~50%) and highly uncertain (factor of ~ 3). 

a. A. M. Karo and J. R. Hardy, Lawrence Radiation Laboratory Report 

UCRL-14822, April (1966). 

b. American Institute of Physics Handbook, 2nd Ed. 

c. J. P. Jasperse, A. Kahan, J. N. Plendl, and S. S. Mitra, Phys. Rev. H6, 

526 (1966). 

d. 1. F. Chang and S. S. Mitra, Phys. Rev. B5, 4094 (1972). 

e. J. E. Mooij, W. B. Van De Bunt, and J. E. Schrijvers, Phys. Letters 28A, 

573 (1969). 
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l-'igure Caption 

Figure 1. Comparison of experimental points of Harrington and Mass 

(NaF, 943 cm"1) and Barker (KBr, 418 cm' ) with theoretical curves fit 

to the data at 300 K . 
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intrinsic value of ß at 300 K was assumed to be equal to 7x lO^cm'1.     These 

luestio-iahle assumptions surely introduce considerable errors.   Indeed, the large 

experimental value of (T/j9) d/3/dT = 6 at 300K and the equal values of 2.4 at 

700 and 943cm     appear to be unreasonable. 

In the classical, high-temperature Umit of toT » w« all occupation numbers 

na)Q are rePlaced by wT/a:Q.   For LiF at 1800cm'1 and 300K the classical ap- 

proximation to(T//3)(d/3/dT) from (3) is approximately three 'imes greater than 

the unapproximated value.  Even at 1000 K, the classical Umit gives 3.5, compared 

with 2. 4 from theory and 2.5 for experiment.   Thus, considerable care must be ex- 

ercised in applying classical theories to practical cases, as already discussed by 

Maradudin and Mills in the accompanying Letter. 

In a material, such as AlSb for example, in which the position of a given multi- 

phonon pe.. k can be traced as a function of temperature,13 the temperature dependence 

should,be quite different from that of j3 at a given frequency, since following the peak 

eliminates the contribution from dn/dT. 

The exponential frequency dependence of ß can be obtained directly, rather than 

as a sum over n , as follows:   Representing the delta function by an integral over t 

reduces (1) to 0« fMcc'4 I (dt/2IT) expOict) En4[g(t)]n, where g(t) 
o n 

= DE Og expMwQt).   Here Ar   vn/n'n: was approximated by Dn, which is 

quite accurate for n ■ 3-.S.   The sum on n can be written as a Unear combination 
l 

of(l-g)     =  Lg   and its first four derivatives.   Tlie contour integrals, which have 

poles at t = IT,   are easily evaluated by residues, giving 

■Ct'T 

ß ' ßn * 0 (4) 
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14 -5 where     /30 s= f(cc) [dg(iT)/dT]     and T i.i the solution to l-g(iT) = 0, i.e., 

1 - D N"   L Wn (nn + 1) u)n'   exp (tün T) = 0, which is easily solved numerically. 
Q    v    x v v 

The following approximation illustrate:; the general dependence of T on T, A   , etc., 

although it is too crude to afford accurate values of T.   Neglecting the angle depend- 

ence of W^ and app. «'mating the density of states by 6 (o - co. ) gives 

T = -tob'   ;.n[6CWb(nb +1 )/wb ] and dg(iT)/dT = u;b. 

The temperature dependence o' ß from (4) is formally the same as that from 

(3).      The numerical values will differ slightly, corresponding to the slight numeri- 

cal difference between T in (4) and the effective T from (2). 

We would like to thank Dr. J. A. Harrington and Dr. M. Hass for sending their 

data prior to publication.   Discussions with Dr. A. A. Maradudin and Dr. D. L. Mills 

are gratefully acknowledged.   Dr. C. J. Duthler kindly assisted with the calculations. 
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Abstract 

Vo have calculated the frequency dupL-ndencc of infrared 

absorption in the classical limit for an exactly soluble 

model of a lattice of noninteracting diatomic molecules, 

eacli bound internally by a potential for which the classical 

equation of motion can be solved in closed form.  Four poten- 

tials have been used:  a Morse potential, a potential of the 

2     2 
form V(x) - (a/x ) + bx , an infinite square well potential, 

and a triangular well potential.  The analytic results we ob- 

tain show that the absorption coefficient for large frequen- 

cies associated with potentials which admit an harmonic 

approximation decreases nearly exponentially over the fre- 

quency region covered by recent experiments, with significant 

deviations from txponential behavior at higher frequencies. 

For the square and triangular well potentials, the absorption 

doorcases as  g '  for frequencies large compared to a char- 

actcristic frequency. 
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^ 

I .   Introduction 

The absorption of ulcctromaciiotic radiation by tkfl lattice 

vibrations in anharmonic crystals has received cousiderablo 

attention from both theorists and oxpcrimontalists f^. many 

years.  However, most studies have focused attention on frequen- 

cies cither in uho near vicinity of the fundamental rest .strahl 

absorption bands, or at frequencies sufficiently low that the 

dominant, portion of the absorption may bo accounted for by pro- 

cesses which involve at most two phonons.  ^ 

Recently, interest has been aroused in the behavior of the 

absorption coefficient at frequencies several times (say 2 to 10 

times) the maximum vibrational frequency of the crystal, but still 

small compared to the electronic band Rap.  In this frequency 

region, the principal contribution to the absorption coefficient 

in a pure crvstal presumably comes from multiphonon processes, 

where the number of phonons involved may be quite large.  The 

behavior oi the absorption coefficient in this frequency regime 

is clearly important to understand lor fundamental physical 

reasons.  There is also a great do Q of practical interest in 

this region, since high power C02 lasers produce intense beams 

of radiation at 10.6|j .  This cor-.esponcls to a frequency several 

times that of the .\axiinum vibratijnal frequency of many materials 

tl at may prove useful for the fabrication of windows and lenses 

for use with these devices.  Because the radiation from these 

lasers is very intense, even a small amount of absorption can 

lead to appreciable hop ting of any window thrbllgli Which the beam 

passes.  It is therefore of interest to understand the nature of 
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the intrinsic Rbnorption processes, as well as impurity and 

surface induced absorption at frequencies high compared to the 

characteristic vibrational frequencies of the crystal. 

One inny readily come to appreciate the difficulty of carry- 

ing out a first principles calculation of the frequency depend- 

ence of the Absorption coefficient jn the multiphonon regime, 

for a realistic model of an anharmonic crystal lattice.  What 

is quite intriguing is that experimental studies of the frequency 

dependence of the absorption coefficient in several alkali halide 

(2) 
crystals    have revealed that in all the cases studied, for fre- 

quencies in the region of 200 cm'1 to 800 cm"1 the absorption 

coefficient at room temperature may be fitted quite accurately 

by the empirical formula 

ß(uj) = A exp(-Ba)) , (1-1) 

where ßCuu) is the absorption coefficient at frequency uu, and A 

and B are constants chamteristic of the particular crystal.  It 

is extremely important to know whether Eq.(l) can be derived from 

a theoretical model of some generality, and, if so, it is import- 

ant to Know if it holds to frequencies as high as lO.G^i (which 

lies outside the range rccessible to the experimental studies), 

and also if it holds at teraperatuves highr-r than room temperature. 

In this paper, we wish to address oursolves to these ques- 

tions.  B. cause of the difficulty of carrying out calculations of 

the absorption coefficient in the multiphonon regime that are 

both realistic and thai lead to conclusions of a general nature, 

we hftVC choHOn to explore the properties of a model of a solid 

vmmmm 
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that is highly schematic, but which allows simple analytic expres- 

sions to be obtained for the absorption cocfiicient for a variety 

of interatomic potentials. We replace a diatomic solid which con- 

sists of N unit cells by an array of N electric dlpole active, 

but anharmonic oscillators. While such a model is rather over- 

simplified if vie  choose to represent a real solid by it, by an 

examination of the model we can gain insight into the question of 

whether the form in Eq.(I-l) is valid quite generally.  If it is 

valid quite generally, it should also be valid for our model.  If 

a realistic potential is chosen for the anharmonic oscillator, we 

feel the model also provides a reliable semi-quantitative estimate 

for the magnitude of the absorption in the multi-pbonoi: regime. 

On the basis of our model, we will also bo led to the conjecture 

that at high frequencies, the magnitude of the absorptioi coeffi- 

cient might be quite sensitive n the presence ol certain impuri- 

ties. 

Since the region of experimental interest to date is room 

temperature and above, we bftVO used the methods oi classica] 

physics to conpute the absorplion coefficient.  We obtain a 

general expression for the absorption coeffjeient lor Uuy  model 

described above, and then Qpply the expression to the Study of 

the liecjueiicy üopondcncü oJ Lbo ubsorption coefficient ior four 

potential funciions. Wo consider nbsorpiion by unliuimonlc 

oscillftteru dcHcrlbed hy the Vorf-e potentinl, u Bccond potential 

winch posst i sos a hard core nnd adr'its a hui'moilic .»pproxiiaPtlon 

fv (x) - b >:  i a'x"), tlic Rquuvu well, itnü u  putent .ml uL 

11 j r.iiLinlar shnpe, 

1().S 

. .    
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The outline vi   the papci in as fallows.  In section II, we 

obtain a general expression for the absorption coefficient of the 

oscillator arrny by the use of the methods of classical statis- 

tical mechanics.  In section III, we apply this expression to the 

four examples mentioned in the preceding paragraph.  In section TV, 

we present a discussion of so.-ne implications of the results ob- 

tained in section III. 

(3) 
Quite recently, McGill, Hellwarth, Mangir and Winston 

have also presented a theoretical discussion of multiphonon ab- 

sorption by an array of uncoupled oscillators.  In the body of 

this paper, these authors present a diagrammatic calculation of 

the absorption coefficient which they argue leads to an exponen- 

tial form identical to that displayed in our Eq.(I-l), for a 

specific model of the interatomic potential.  Their model presumes 

that in the crystal Hamiltoniun the term proportional to the n — 

power of the atomic displacements is proportional to only the 

quantity g11 /n! ,  where g is independent of n, and the factor n'. 

apparently comes from the Taylor series expansion of the crystal 

potential.  This model is quite special, since one may find a 

large variety of realistic potentials which admit an harmonic 

approximation, and for which their factor g will be replaced 

by a quantity that exhibits a fundaneutally different dependence 

on n.  (Consider the Lcnnarvl-Jones 6-12 potential, or  any poten- 

tial which contains a term which varies inversely with a power 

OJ' the interatomic separation.)  Their conclusion that the ah- 

sorntion coili n-i' nt varies exponentially with frequency follows 

upon countiii;, the number of important diagrams in the first tew 
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I 

orders of perturbation theory.  In view of tho discussion in the 

following paragraph of the present paper and also that in  our 

section IV, we are led to question the conclusion that lor a 

potential of general form, the theory produces an analytic expres- 

sion for the absorption coefficient exponential in character in 

the multi nhonon regime. 

(3) Jn AupendiX A of their paper, McGill el al.  ' collider an 

array of non-interacting oscillatorK, each of which jr. described 

by a Morse potential.  They insert the expression oxhibited by 

Heaps and Herzberg^   for the appropriate electric dipole moment 

matrix element into the quantum mechanical form for the absorp- 

tion coefficient.  A simple analytic expression for the absorp- 

tion coefficient of the model follows from this procedure.  I f a1 

o 

is the maximun vibration frequency of the crystal, then when 

hgT > fai  the correspondence principle applies, and their expres- 

sion may be compared with the result we obt;:in below.  The two 

result:; agree in this regime.  However, while both results provide 

a rather good fit to the room temperature data in the regime of 

frequencies explored by Deutsch, and they thus appear qualita- 

tively Consistent with the form in Eq.(l-l), at higher frequencies 

significant deviations are predicted by both expressions. As the 

temperature is increased, these deviation:: arc expected to set in 

at progressive!) lover frequenrios.  Neithei our calculnlion nor 

th:it presented in the Appendix ol the paper of UcCil] < i al., 

produces an analytic expression foi Lhc nbsorption coofiicicnl 

of an array of indepomlont oscillator» vlueii exhibit;, iho oxponon- 

tial behavior nuggosiod l>v Lq.d-l), all hough UH r<;mnrked above, 

the quantitative difforenceH a^'o Kiunl] in lb»; freqiu'iir.j riciiiif 
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explored by the experiments so far.  Thus, while one may con- 

struct a particular potential that leads to BOMethlfig close in 

form to an exponential law, we feel that quite generally, the 

exponentiul law is not valid, and one may fit the data quite 

well by the forms we obtain below. 
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11 . Gom?ra3 Theory 

Since- we r>onsidcr the crystal to bo an array of non-interacting 

molecules, infrared abSoipUon by the collection of osciliators 

will bo N times thai of a single molecule, wllM'o N is thr number 

of molecules in the crystal.  Thus, in what iolloVS, we consider 

only the absorption by a single molecule.  For this the motion of 

the center of mass of the molecule is jrrelevaut , since it makes no 

contribution to its dipole moment.  Consequently, the equation of 

motion which provides the starting point for our treatment is 

m 
dx     dx   v ' (II-l) 

where m is  he reduced mass of the molecule, X is the relative 

coordinate of the two atoms comprising the molecule with p the 

momentum canonically conjugate to x, V(x) is the interaction poten- 

tial energy between these two atoms, M(x) is the dipole moment of 

the molecule and E(t) is the electric field of the incident infra- 

red rr lintion. 

To obtain the rate at which energy is absorbed by the molecule 

from the electromagnetic field, we multiply both sides of Eq.(Il-l) 

by x and rewrite the result in the for» 

MI-^v(x,J.E(t,ü|M (II-2) 

The left hand side of this equation is the instantaneous time rate 

of Change of the energy of the molecule; we will denote it by dC/dt. 

It is not the instantaneous time r?te of change of the energy in 

the molecule we require, but rather its average with respect to the 

cannonical ensemble described by the Hamiltoniah ior the system 

10«^ 
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H   - -5-  + V(x)   -   M(x)E(t) 

H    -   M(x)r(t)    , 
(11-3) 

and   the   time  average  of   the  resulting  expression. 

The  aveiage  with  respect  to  th«^   canonical    ensemble can  be  ex- 

pressed  in   the   form 

(|f> - 5 öp \ dx p^'P»^ n 
— CO — CO 

•fco -fco 
(11-4) 

C     dp  \    dx   p(xlp,t)E(t)  -^   (X)      , 
— CO — C5 

where p(x,p,t) is the co;ionical distrxbution function which obeys 

the Liouville equation 

öt + dx öp op Dx (II-5) 

In view of £(1.(11-3), this equation can be rewritten as 

öt   dx op    dp dx      dp  dx    v '        v    ' 

We now expand p in powers of the driving electric field of the 

infrared radiation, 

P - P0 + P! + (II-7) 

where the subscript denotes the order of tie corresponding term in 

E(t).  When we Bttbstituto the expansion of Eq.dl-?) into Eq.(II-6), 

aiul equate terns of lilto order in E(t) on both sides of tlie equa- 

tion, we obtain the system of equations 
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öp 5p     ÖH of      oH rO rü O hU o 
ät öx      op öp     öx 0 

dpl       apl   ÖHo       öpl   ölIo öp 
+ 

öt      '   öx     öp öp     öx 

  
We now ust tao results that 

ÖH 

o dM 
öp  dx E<t) 

(11-8) 

(II-9) 

o 2  = • 
Sp" ' m :; x 

bH
o  __  d- 

öx   dx 
= ^ = " P 

(I I-10a) 

(Il-10b) 

Equation (11-8) and Eq.(ll-9) can then ho rewritten as 

d 
dt po = 0 

d 
"dt pl " 

öp 
Cg E<t) öp  dx 

(11-11) 

(II-i2) 

where dp /dt  and dp,/dt  are the total time derivatives of p and o r i h o 

p1 , respectively.  From a physical point of view, dp/dt is the 

change in the distribution function seen by an observer moving 

with a particle that traverses the orbit generated by the Hajnilton- 

ian H,  ard which passes through the point (x,p) m phase space at 

time t . 

For the equilibrium distribution function p we assume the 

canonical form 

m  exp(- BH0) 
Z ^ :i k T  » (11-13) 

v.'lierc   1 lie  partition   function Z  is  definod by 
+ co +m 

Z  ^   \     dp   V    dx exp(-'tjll   ) (11-14) 
— CD — 00 

HI 
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If v/o now use the fact that 

öp    dp  oH 

op   dh  dp r     o 
- ßp 2  = 

o m - &P0x  , (11-15) 

Eq. (11-12) for p, becomes 

dp1 

dt 
. dM 

'oX dx Pf- x TtZ  E(i) (11-16) 

We new cis.sume that the perturbing electric field v,as switched on 

adiabatically in the infinitely distant past, so that 

p1(-o) - o (11-17) 

The solution of Eq.(11-16) which obeys the initial condition 

Eq. (11-17) is 

"• 00 

With the results given by Eqs. (II-7), (11-13) and (11-14), we 

can rewrite Eq.(II-4) in the form 

dM(x) 
€t> = Sdp Sdx p. dx E(t) 

0 —00 

+ eo -f oo 

+   S^dp^dx^Pox(t')[f J      f E(,')E(t)dt' 
— CO — 00 — 00 

(11-10) 

If we use Eqs. (II-3) and (11-13), and rewrite the first term 

on the right hand side of Eq. (11-19) in the form 

+ 00 

Ei 

9 

p2a p    f- («S-P.^I ^d,,-^f , (11-20) 
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we see Ihat it vanishes duo to the vanishing of the integral 

over p.  Thus, the first non-vanishinp contribution to <-^> 

comes from the second term.  This torsi may he arranged to read 

<|f) - 0 \   <M(t/)M(t))o E(t')L:(t)dt
/ (11-21) 

where we have introduced the notation 

M (x(t)) - M(t)  , (11-22) 

and wher^  for any  function  A(x,p,t)   , 
^-OD +00 

<A>o -   ^ dp  ^ dx   po(x,p)A(x,p,t) (11-23) 

— 00 — 00 

For E(t), we now assume the form 

E(t)   -  E cos   tut e o 
Tit (11-24) 

1 here  er|t   is  an  adiabatic  switching-  factor   Oi  is   a  positive  infin- 

tesmal) .     With  tli.s  choice,   Eq. (11-21)   becomes 

t / 

M)  -   BE
2

     \   (fi(t#)Ö(t))     cos   at'  cos   tRt  er,(t + *   'dt'.   (11-25) 
dt o     j o 

— es 

Let   t'   ---  t -   T   ,     and  integrate  over   v  rather   tlian   t'.    Then 

fC 

COB   111   K   <M(t- vjHd) >CCCH   c,(t-   v)o"   Tcl-   . 
dl f    O 

o (1I-2G) 

Because H is time indrpcadent, om- syst.iu j-'^sc^sso;, time tranfiln- 
0 

tion   Invarlaitco,  which  in  the coui'-xi oi   ih-  prcs<:nl   problo«  H: 

oxpreetiud ijy 
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(11-27) 

The 

(M(t-  T)M(t)>0 ■   (fi(0)A(T)>0      • 

of  Fa   (11-26)   thus becomes   (in  the  limit  n - o) 
time nverage of Eq.UA   **>) 

2 
«M))-!!*  f  dT cos(WT)e^

T<M(o)M(T)>0 
(11-28) 

integration variable, 
In Eq.(11-28), wa can replace T by - T ns an 

d use time reversal symmetry. Whioh leads to the identity 
an 

(M(o)M(- T)> - <M(o)V.(T))0  • 
(11-29) 

We then obtain an alternative expre ssion for «•^:>) ' 

«£»-■5? S <IT eo«(«it)6+T>T<i(o)«<T)>0 
(11-30) 

«■äT>'-  2 

Up«  «.din, haU   of  Eq.(n-28)   to En. (11-30).   wo  obtain 
„2     +00 

^§^.i*2     C   <M(O)M(T)>COS   IUT e 

— C5 

-TllTl 
dT (11-31) 

• ->nv nvrvaced rate at which energy 
for the U»e and tbermodynamiolly avciageci 

i .,-„1 , nrtod on by an external a c 18 absorbed by a diatomic molecule acted on  y 

electric field. 

,,le ,,ßl,u in ^.(11-3« «y be rccpg»i.cd as . 0l».lcal «r- 

B1M 0, tue «OU Uno.,- Knbo for»»l. to. tbo ab.ot-ptto,, cooltioiont. 

,„ ,M. .onov.,;, .. .ban conll.« our attention to the case ot 

inn-a,o(, absorption by a first order ctiPoJe ,no,.ent.  That is, if 

«j exieu.d M(X) in a Maefaorin reries 

:;,(r.) - tt'M*  +7 »"W"" ■' 
(11-32) 
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where the primes denote differentiation with respect to x (we 

assume the equilibrium configuration of the molecule has no dipolc 

moment), we retain only the contribution from the leading term in 

the expansion.  McGill et al., have examined the effect of the 

second term on the absorption coefficient and find its effect 

quantitatively small.(3)  The coefficient M'Co) has the dimensions 

of a charge, and we  ro.e  it by q in what follows. Thus, the 

starting point for the investigations in this paper is the :ollow- 

ing expression for the average rate of energy absorption by a 

diatomic molecule: 

//dCvv  il_o C <p(o)p(T)> cosCrOe'^^dT  .       (11-33) 
dt    AmA     J 0 

-co 

We next turn to the problem of casting the momentum autocorre- 

lation function (P(ü)P(T)^ into a form convenient for computa- 

tional purposes.  This autocorrelation function can be written 

explicitly in the form 

r- 2 "I 
+•   +»   -a P- + V(x) I 

<p(o)p(t)>0 =-| $ dp JJ dx e  L2m      •J PP (t) .  (11-34) 

-to     - eo 

Because the Hamiltonian is time independent, we ha\ e expressed it 

in terms of the values of p and x at time t = o in lq.(II-34). 

Thus, here and in what follows p and x denote p(o) and x(o), 

respectively.  In addition, t\H   integration of (he equations of 

motion shows, the value of the momentum at time t is a function 

of the initial values x and p, and we indicate this explicitly 

by writing p(t) as p(x,P,t;). 

V.e now rewrite Eq. (11-34) ill tlio foiiu 
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+» +a,      +00 2 
<p(o)p(t)>o =1 \dEc-PE  J dp  J dx  6(E- V(x)   - -g-)pP(x,P.t) 

       _ ^ 
— 03 — OO 

= |  C dEe-PE  ^      dx  J dp —^ ^PP(x,p,t) 

E   . mm XjCE)     -- 
PE 

(11-35) 

where 
(11-36) PE =y2m(E-V(x)) 

and «.(1)   and x2(E)   (chosen so x^E)   ^ ^(B)) arc   the classical 

turning  points   for motion  in   the potential V(x),   i.e.,   they  are 

the  solutions  of 

E = V(x)     . (11-37) 

We assume the potential V (x) is such that there are two classical 

turning points for energies E a Erain , where Emin is the minimum 

value of V(x). The physical significance of PE is that it is the 

momentum at t = o in a motion corresponding to the total energy E. 

Upon carrying out the integration over p in Eq. (11-35), we ob- 

tain tho result that 

CO 
/x2(E) 

<p(u)p(t)>o -| J dE e"^ J  dx p(x>pE,t) 

Emin 

x^E) 

ixm 
(11-38) 

C   dx p(x, - pE, t) ( 

x0(B) ) 

Since tl.o ttoncntun at t - 0 for x in the intovvpJ [XjCK) »X^CB) j 
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is tho ncffittive oi  that at  the savie point  In the interval 

Mt.(E)|   x2(E) j,   because   the  motion   reVOl'SOfi   itself   at   eacJi 

turnin;.';  pc/int,   the  expression   in  brackets   is  the   integral   over 

one   period  of   the motion  beginning  at  x, (L) ,   and   rotumint;   io 

x, (E)   after  one   period.     Thus,   we  m; v  write  Eq. (11-38)   in   the 

form 
CD 

<p(o)p(t))o »I ^  di; c'tE    fy   dx p(x,pj;,t) .    (11-39) 

E mm 

! 

The one-dimensional motion of a particle in a region bounded 

by two turning points in  a periodic function of time with a period 

(5) T(E) given by 
x2(E) 

KE) = /2T.;  J dx 

x]L(E) 
\rE- V(x) 

(11-40) 

This result holds for any initial position x and momentum p  in a 

motion corresponding to total energy E.  Thus, the integral over 

a period in Eq. (11-30) is a periodic function of time with the 

saire period T(E), and we expand it in a Fourier series: 

(^ dx p(x,pE,t) -  £  Pn(E) o-inw(E)t     (n-41) 

n=-co 

where TOO 
Pn(E) "Tjftffi  \       dt (^ dx p(x,pE,t)e 

».ir.^(E) t 

(11-42) 

and we have defined 

iKE) 
an 
TCE) 

(11-43) 

• 

To obtain a simple expres'.ion for p (E), note that the 
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Sec. B 

solution Df tlu. equal ion of notion for a particle moving in 

One dimensional potential is given explicitly by(5) 

x 
t - t dx' 

0 ,   x1(E)-- x <;x2 (E) 

(11-44) 

In wriLlnß this expression, «e are measuring time with respect to 

an instani t0 at which the particle is at the left hand turning 

point x^E).  It is necessary to know x as a function of t only 

for XjCK) k-x<x2(E) because as t increases past t +T(E)/2, where 

x - x2(r), the motion reverses itself (i.e., x(t) is symmetric 

about t - tp + T(E)/2) until the time to + T(E) is reached, at 

Which point the particle has returned to x^E), and the motion 

begins to repeat again. 

The solution of Eq.(11-44) can be written 

x(t) - x^E) + fE(t - t ) (11-45) 

where the function f^t) is an even function of t, is periodic 

in t with period T(E), is even about t - T(E)/2, and vanishes as 

t - o.  The momentum pE(t) for the orbit of energy E is 

PK(t) 
dfE(t-to) 

(11-46) 

Where g^t) is an odd function of t. is periodic in t with period 

T(£), und is odd about t ■ T(E)/2 

With these results, Eq. (11-42) becomes 

I 
T(].y  ^  dxc        0 

T(E) 

'     ! ' $ clt m ^(t-t^e^^^^V . 
(11-47) 
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Sec. E 

whore the integrations over x and 1 have boon interchanged. 

Since ggCO in  periodic with period T(E), and wo integrate over 

a complete period, this result becomes 

P.OO 
. n 'na(E)t 

. ^ (S> ** 
j 

T(E) 
0 {    dt ■ JK(t)8ln(na»(E)t) , 

o 
(11-48) 

I 

where we have used the fact that gE(t) is odd about t = T(E)/2 . 

We now convert the first integral from an integral over x into an 

integral over t : 

-T(E) -_..  T(E) 
i  f     d -  in«(E)t , 

pn(E) = TlE) \      dto'Hr~ c      0 ^ dt m gE(t)sin(na.(E)t) . 
o       0 o 

(11-49) 

The coordinate x  is  obtained as   a function  of  t    bv settinn   t  = o o 

in Eq.(11-44).  The limits on the first integral follow from the 

fact that the original integral on x around a period of the motion 

corresponds to t - t  increasing from 0 to T(E) as x goes from 

x1(K) to x2(E), and back to x-(E).  Setting t = 0, we sec that t 

goes from 0 to -T(E) as x makes the same circuit.  Making the 

change of variable t  = -t', and using the fact that fc.(t) in 
O h 

Eq.(JI-45) 18 an even function of t, we obtain for p (E) 

T(E) T(E) 

Pn(E) "TOT I    At'   KE(^)^iUa'(K)t' l    dt m gE(t)sin(na(E)t) 
o a 

(11-50) 

or,   using  the  oddness  of  gp(l')   about   t'  i= T(£)/2,   we   find  finally 

In Pn(E)   "TW  Pn2(E>' (ii-r.i) 
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Sec. E 

vhere T(E) 

Pn(E)   -  f    cU  pE(t)sin  na(E)t   , (11-52) 

where   the momentum pr(t)   " ni  ^r(t)   appoaring  in   Eq. (11-52)   must  be 

understood   to be obtained  from Eq.(11-44)  with   t     = o   (since  that 

is  how  B(t)   is  defiiu?d) . 

Upon combining Eqs.   (11-39),   (11-41),   (11-43)   and   (11-51), 

we  obtain   for  the momentum  auto-correlation  function 

<p(o)p(t)) o 

+ 00 

r 
L 

n^ - »     r 
s dEe 

2nZ W(E)P2 (E)e-in^E)l 

n (11-53) 

mm 

When this result is substituted into Eq.(11-33), and the integra- 

tion over time is carried out, we obtain (as r\  -• o + ) 

«If»- 
ßq E 

8m' 
tt*rV*. ~   1      S  dEe ""»WP^Ci^ 

n=- « E 
mm 

X [ßfuj- nuj(E)) + 6(IJJ+niu(E))1 

(11-54) 
2 

If we note thai P  (E) vanishes for n - o, and is an even 

function of n for n / o, wo finally obtain for the average rate of 

energy absorption by a diatomic molecule 

«£» 
. 2r, 2  • ivßq E 

4mi f-  I -H S   dEo-PLVn
2(E)6(.-n.(E))  , 

tt-1   E mm (11-55) 

where we have assumed tu > o . 

The dynamics of the problem are seen to enter simply through 
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Sec. E 

the necessity of knowing pc(t)   lor the evoluaUon of P   (E), and 
t n       • 

UJ(E) .  Moreover, ii   ^(E) is a sufficiently simple function of E 

so that the equation UJ - nuu(E) can be inverted, the integration 

over E can be carried out using properties of the delta function. 

We briefly summarize in words the procedure for computing 

the quantities which enter Eq.(11-55). Given a potential function 

V(x), one requires the period T(E) as a function of energy.  This 

function may be obtained from Eq.fTI-40), and uu(E) is defined by 

Eq.(11-43).  By solving the equations of motion, one finds the 

momentum as a function of time PE(t) for an orbit of energy E, 

with the origin of time chosen ,?o the parameter t  in Eq. (11-44) 
o 

is set equal to zero.  The quant ty P  (K) is a measure of the 

amplitude of the n^1 harmonic in the function PF(t), and is ob- 

tained from Eq.(11-52).  Finally, 7,   is the partition function. 

Wc conclude the present section by displaying a remarkably 

simple relation between the partition funcrxon of the oscillator, 

and the function T(E), that gives the period as a function of 

energy . 

2 Wc have 

Z ■ 

— UJ 

+ o 

C dE e'^ dp C dx *(E- V(X) - -!-) 
— CO 

00 

— C5      —CD 

x2(E) ■i -■ 

I    <!::<;'Sr.\       cxH  V,,,;,^,^, ,(1W1)|;) 

im n XjCK) 

S dK "'^f17 s 
x2(K) C.N 

min Xj(E)  v 
(-■-) 
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Sec. E 

or finally 

Z - C  dE e"0E i(E)  . (11-56) 
E . mm 

Wc next proceed to apply the results of the present section 

lo the examples mentioned in section I. 

i 
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Sec. E 

III. Applications of the Formalism to the Study of Multiphonon 

Absorption lor Some Specific Potentials 

In this section, we study the behavior o'. the absorption co- 

efficient as a function of frequency fo_- four specific forms of the 

interatomic potential V(x).  We first derive the form of the 

absorption coefficient for the Morse potential, a form used fre- 

quently in molecular physics.  We then consider the potential 

V(x) - ax + b/x , the square well, and the potential V(x) - 

yx for x 2 0, V(x) = oo lor x < 0.  The last two potentials are 

interesting example« to consider, since one cannot construct a 

discussion of s   perturbative nature, because an harmonic approxi- 

mation does not exist for either case. 

a)   The Morse Potential 

The Morse potential may be written in the form 

V(x) - DC1 - exp(-a[x - x^)]' (I1I-1) 

The minimum value of V(x) is zero and the minimum occurs at x r" x . 

For large values of the intcrparticle separation V(x) approaches 

the constant value D, the dissociation energy of the molecule. 

For most cases of Interest here, D assume a value the order of 

one electron volt, an energy very large compared to kr.T, as long 

as we confine our attention to temperatures the order of or lower 

than the melting temperature oi the solids of Interest to us.  We 

shall make use of the fact thnt hBT<< D In th« discussion below. 

If we consider only motions of small amplitude, x remains 

near x , and V(x) if, well approximated by the parnbolic form 

V(x)   -  l)ay(x  -  xo)2 (111-2) 
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Thus, in the limit whore the amplitude ol the motion is small, the 

molecule behaves like an harmonic oscillator with frequency IJU0 

given by 

2 2a D 
m 

(III-3) 

\ie begin by deriving an expression for the quantity Pj.CO 

defined in section II, following the procedure outlined there. 

We begin with Eq. (11-44), which »vith t equal zero becomes 

(S)1/   -»•[«-D 
a(x -x) 

2De  0   -De 
2a(x - .-.] -1 

(III-4a) 

x^E) 

The integral can be evaluated in closed form.  This may be 

done by letting 0 ■ exp(-ax), and e^ ■ exp(-ax,(E)).  If we then 

define C = D exp(2ax ) , B ^ 2D exp(ax ) and A = D - E, the 

integral becomes 

t-i^/c.,.-A -Ce.»]4 ^ (III-4b) 
e 

For bound aotionfl of the molecule, the only case of interest here, 

2 f 6^ 
B9 ^ A + CB  everywhere.  The integral is then readily evaluated 

to give 

at.[^(D-E)]2  - sin 1 

ax 
(D-E)-De  0G' 

ax 
,/DE e  0 

0
n. 

-3 sm 

ax o. (D-E)-Uo ^6 
ax 

/DE c üe 

Je- 

+ 5 (III-5) 
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Sec. E 

If this relation is solved for 6 as a funclion of t, and x(t) 

is obtained froru this result, one finds 

D E, 
'<« "»o^ ^"'ir:.;^'";1 - 'B'   "-'<"t- 

(in-6) 

W here wc have introJuced the quantity x(K), defined by 

x(E) i; 
o     I) 

(II1-7) 

From Eq, (II1-6), it is evident that the period T(E) of t!ie 

motion is 

T(K) a.(E) 
(III-S) 

For small energies, T(E) assumes a value independent of energy 

and equal to 2n/j , and the period lengthens as E inereases. 

The momcntui.i PE(t) is found from nx(t), with x( t) given by 

Eq. (111-6).  If this differentiation is carried out and the 

result substituted into the expression for Pn(E) given in Eq, (11-52), 

one obtains 
T(E) 

n       'x^    J 
sin IU (E) t sim (E) t 

o 

dt 
E. 2 1 - (J^) cosx(E)t 

!(2mE)z  r      sin nja Bins 

(j^) COS;, 

The inlegral in Eq. (11-9) may be evaluated exactly, to givt 

i    (n-]) , 

.(K) .tn&Jllty   'S  ^ _ u ..^^ 
n 

n X' 

(II1-9) 

(6) 

(1 11-10) 
o 
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Sec. E 

The discussion shows that for th« Morse potential, exact 

results for all quantities which enter the expression for the 

absorption coefficient are readily obtained, for the bound orbits 

We shall compute an approximate form for the absorption rnte in 

the Unut^T«D, whor« only orbits with energy E«D contribute 

significantly to the rate of absorption.  In this regime, we 

replace 5^(1:) by its leading contribution when E«D: 

PB(E) = 2TT (2ml)) a 
\  4D / 

n 
2 

(111-11) 

in this limit, the function x(E) may also be replaced by the 

approximate form %  independent of energy, for E«D.  From Eq. 

(11-56), one readily sees that the expression for the partition 

function becomes 

Z - 2TT 

»o0 (111-12) 

If these approximation s are inserted into the expression for 
.,de 
«dt» displayed in Eq. (11-55), one finds that 

de 
(III-13a) 

vhcre 

qV 
n 4    ra 

o     t/
kBT\n-l 

(III-13b) 

For the ease n - 1, we have 

, independent of temperature 
a 

q2E2 

.no 
1        4 Di (in-irfc) 
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Sec. E 

tho well known result for the integrated strength of the funda- 

mental absorption line of a simple harmonic oscillator of mass m, 

charge q and frequency x   .     (Recall that E  is the ponk value of 

the field.) 

The integrated strength of the absorption peak at the fre- 

quency 0) ■ nj}  (the n phonon absorption peak for this model) is 

related to that of the fundamental absorption peak by the simple 

relation 

k^Tvn-l 
(111-14) 

b)   The Potential V(x) (a/x2) ♦ bx2 

The second potential function v.c consider is 

V(x) = -^ + bx2      x ?. 0. (111-15) 

Setting t  = 0 in Eq. (11-44), we obtain for the equation deter- 

mining x(t) 

m /xdx  
/ ö—: 

x1(E) ^/-a + Ex - bx 

(111-16) 

Th e turning points x, 2(E) are the solutions of the equation 

E = ^5- + bx2, (111-17) 

and are found to be 

(III-lSa) 

(III-18b) 
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Sec. E 

The energy E •  equals the minimum value of the potential 

enemy (111-15). Equivalcntly, it is the energy for which 

x^CK) - x2(E) , and hence is given by 

E   = 2^   . (111-19) 
mm 

The change  of  variable x    =- y  transforms Eq.   (111-16)   into 

t  - i 
(!/ ../ 

dy 

x?(E)     ^-a + Ey    "^ 

= 2 (ibHi sm -IE- 2bx' 

V 
(111-20) 

E2 - 4ab 

If we evaluate this expression for x = x2(E) , the left hand 

side must be set equal to T(E)/2, and in this way we obtain 

T(E) "Vft (111-21) 

Consequently,   the  frequency Uü(E)   is  given  by 

tiKS) - -V^r 
8b ■ w„ m o 

(II1-22) 

It should be noted that the period T(E) and the corresponding 

frequency a (E) for the potential (111-15) are independent, of 

the energy E. 

It follows immediately from Eqs. (11-56) and (111-21) that 

the partition function Z is given by 

2=1^  e-29/äF 
ßcu 

(111-23) 
0 
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Sec. E 

The expression (11-55) for the rate at which energy is absorbed 

by the molecule described by. the potential function (111-15) now 

becomes 

«£» 
UUJU 
_o R2 q' 

m ^S^l^^/a*.-^«) | »<-..,) 
mm 

(111-24) 

If we nu.ke the change of variable E - Z/Kb(z + 1), we obtain the 

convenient form 

«H» - 2,/Sb -^ ,2 a! K2 ^ 11 f dze-23^rz pa(JW5F.(,tl)) [ 

x 6(x' -nx0) (III-J>5) 

Since 2,/ab - Emin, we see that for temperatures such that 

Emin ^ kHT' only values of a ^ 1 contribute significantl- 

integral.  We now turn to a dctermination of p (E). 

Inverting Eq, (111-20) wo obtain for x(t) 

to the 

( E  Vi ; i   ■     * i ' - 4ab > 
XU)   | 2b 2~  cos ■' oL I (IlI-2o) 

from which wc- ißüdecliatcly obtain p(t): 

V}.;2-4ab P(t) - Jü 
s i n x t 

o 

A/J 

r1 —K— CüW 'o1 
(111-27) 

The integral p in this case is given by 

^aHBIMMMfl 
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Sec. E 

,   v        „ r-rr   f          r   sin x  sin  nx   . p (K)   - XßL —      /       ;       - cix 
)SX 

(III -28) 

where  we  have  set 

6   - 
VE

2
 -4ab 
E 

(111-29) 

The change of variable x - n - 2cp yields the following expression 

for '^(E) , 

Pn(E) 

n 
2 

^/raE     26        / 

%^6    / 

cos  2(n-])o-cos2(n+l)cp ^ 

Jl-r^; sin2cp 
1        1+6                                    (111-30) 

The   integral 

K  (k)   - n 

1 
■  2nx 

Vi      .2.2 1 - k  sm  } 

dx 

has   the   following expansion  in powers  of k 
^2 

0   ^ k <  1 

n - 0,1,2,... 

2     ( 7) 

(111-31) 

K   (k)   -   (-1)" 5    S 
11 " v-n nT5 

.2V 

(v-n) ! (v^n) ! 

(III-32a) 

(-1) "tar k2l>   \ , , (2.21il kJ 
(2n) !  | "4 

4    (8n^l)(2n4 3)*    k4 + 

32(2n!2) 
(III--32b) 

Consequently,   since   in   the   present  case 

k 
o ; 

i i- 6 i • (111-3.1) 
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the  first   two  terms  in  the expansion  ol  p  (E)   are found  to be 

p  (E)   = TT    .TrnE 
n 2       ao (2n-2)! 

(25)n 

(Irb) 

(  ,   .    (2n-l)       26 ft//26  \2\ 

Consequently,   v/c  have  that 

wo 

(25) 2n 

[(2n-2)!]2   (1+6)2n-l 

x   ll (2n-l)       26 
2 1+5 4- °m2) 

(111-34) 

(111-35) 

Since 6 < 1, wo can simpliiy this expression to 

.i2 

a 2,r.    2 B£    r(2n-2):]^   c2nr,   ^, 2xn Pn (E) = " -2 ZoK^iT-   \!,,4   6  [1 + 0(6 )]  .       (111-36) »      2    [(n-l)'. J 

If we  make Hie replacement. E =-  2 N/aB" (z H 1) in ET.(III-29), 

we find that as a function of B 6 is given by 

A2   I  2y. 
i + 1 

:; AT /i   * .   23  2 • •)   0 s z < 1   (II1-37) 

Thus,   the   leading  term  in   the expansion  oJ   5J " (2 %/nIf(l -fz))     for 

small   z   is 
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UJ0      2   [(n-l)'.] 

(111-38) 

When this result is substituted into Ilq. (111-25) , and the integral 

over z is carried out, we obtain finally 

«If» 
2 

4 m 

CO 

n=l 

[(?n-2) !] nl kBT 
n-l 

..'in-S 
[(n-l)!]' \"min 

6(urnu; ) 

(111-39) 

We see from this result that the integrated strength of absorption 

2     2 
at the frequency » ■• « , (rSl  /4m)E , is independent of temperature 

and has the same value as in the case of the Morse potential.  The 

integrated strength of the absorption at the frequency uu = no) is 
o 

related   to   that  of   the  fundamental  absorption  peak   (n  ■  1)   by 

[(2n -   2)\f (hBT 

,5n-5r ,     !T , ,4        •   I E   . L (n-l) I J \   mm 

n-l 

(111-40) 

which is very close in form to the corresponding relation, (111-14), 

obtained for the Morse potential. 

c)  The Square Well 

We next apply the mothod to compute the shape of the 

absorption spectrum for a particle trapped in a square well poten- 

tial, with Infinltoly steep tides.  This example is an interesting 

itpplloation of the Jormalism developed in section II of the present 

paper, since the potential dors not admit an harmonic approxima- 

tion.  In section IV, wc shall argue INit there are certain impuri- 

ties in alkali hulideR that way be reg.jvtlod as moving in a very 

steep Hided poteiitirJ that c-nn l«e npproxiraatod hy a square well, 

at least Jfn- qnali t ;■ t i ve ptu'post-fl. 
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Sec. E 

\So  suppo'-c the square well has width L, with inlinitcly steep 

sides.  If we consider motjon of a particle ol mr.ss n  in thr well, 
.. i 

with nwrgy E, then the velocity v of the particle is (2K/m)2. 

The period T(E) is 2L/v, or 

i 

(111-41) T(B) - L {2$) _
2TT 

TTET 

For the momentum p,.(t), one nas 

E (o - ! 
+ (2iuE) «1 

I. (2mE) 
0 < t < T(E)/2 

T(E)/2 < t < T(E) 

(111-42) 

A shnrt calculation gives for this potential 

It is a straightforward matter to insert this expression 

into Eq. (11-55), and obtain the form of <^|» .  The computation 

of the partition function is also quite elementary.  The final 

result is best expressed in terms of a characteristic frequency 

T, given by 

/2kBr f 
"     —2"   / • (111-43) 

V ml. ' 

uu 

uu. 

In  terms  of »^   the  expression  for  the  race of  energy  absorption 

is 

d0 

(- — ) ^dt; 
R       q2E2       2       » 

"3/2     m '3      ^ 
n aT    n=o 

exp '•> 

u?J(2n+l)^ 

(2lHl) 
(111-14) 
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The nbsorpiion coefficient Is thus a superposition of a 

sequence ot G&UBNlans.   The function on the right hand side ol 

Eq. (111-44)  h.'-s n proiinent peak very near i ■ »_, with weak 

subsidiary maxima at higher frequencies.  OJ particular interest 

is the behavior or the absorption coefficient for frequencies 

larged compared to JLT.  In this region, one may find the asymptotic 

form ol the absorption coefficient by replacing the Bum in Eq.(III-44) 

by an integration.  For OJ » tup , by this means one finds 

«3t» 
q E_  2 

"T 
3/2 m 

9. *        r dS 

T  o 

UJ 1 
2 c2 

3/2 rr 

"^o «I 

m  uu 
(111-45) 

Thus, for frequencies large compared to Lhe characteristic 

frequency JUT, the square well potential gives rise to an absorption 

_2 
coefficient which falls off as w  , a result qualitatively different 

from the empirical form displayed in Eq. (1-1). 

d)   The 'J rian",ular Well 

^STe next display the form of the nbnorption coefficient 

for a potential V(x) of the form 

V(x) 

YX 

X < o 

X > o 

(111-46; 
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whore the constant Y i-55 presumed positive.  This is a  second 

example of a potential for which a harmonic approximation fails 

to exist. 

The classical equations of motion for this example are quite 

elementary.  For an orbit with energy E, the period  T(E) is 

T(E) - - (2mE)^   , (111-47) 

and the momentum of the particle as a function of time is 

PE(t) - (2mE)i ( 1 -JfHw  '   o <  t  < 
T(E) 

--(a«i)^i-^|j.j   ,    IM. < t < T(E) 

A short and straightforward calculation then gives 

p OO - ÄS 
n '   nyn  ' (111-48) 

and  for  the partition  function 

2 = i2nai* (kBT)3/2 
(111-49) 

^Vhen these results are inserted in Eq. (11-55), one finds 

that the results assume the form 

«£» - 
n 

4   q2Eo 4^3 ,  2 0? , 
¥- -j _S n  oxp(-n -2 ) 5/J 

ÜU n=l ID 
(111-50) 

whore    n,- is  a  charactciislic  frequency  given  by 
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n-, - TY(2n1kBT) (111-51) 

When DB » (Ui the form of the absorption coefficient may be 

deduced by replacing the sum over n by an integration, as we did 

in the preceding example.  In the high frequency regime, one finds 

that 

9 2 

^dt^    ~572  m    2 
IT (JU 

n ii-52) 

a result remarkably similar to that obtained for the square well. 

In both examples, for JU large compared to a characteristic frequency, 

_2 
the absorption falls off as JU 
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IV .  General Discussion 

The purpose of this section is to examine some implications 

of the results in section III. 

We first examine the question of the validity of the phenom- 

enological form displayed in Eq.(I-l), which is suj^ested by the 

absorption data reported to date.  11 this form is in fact a 

general result which holds in the limit of high frequencies, then 

v/e should expect it to emerge from our analysis.  If we consider 

2     2 
the Morsu potential, and also the potential  bx  + a/x , our 

independent oscillator model predicts a series of absorption 

peaks at the frequencies  ID = nu; , where UJ is the fundamental 

vibration frequency of the anharmonic oscillator.  If the exponen- 

tial lav; is obeyed for these models, then we should expect the 

integrated strength of the n phonon peak (the absorption peak at 

niu ) to vary with n as pn ,  where C i« a paramrtcr independent 
O 

oi n that depends on the details of the interatonic potential 

und the ti.-mperature. 

If wo examine the results obtained in seetion 111, wo see 

that a relation of this form does not held for any of the four 

potentials v.e have examined.  The two potential.- mosi directly 

appliciblc to roa] physical By^teius are the Morse potential mid 

2     2 the poictitlal  bx" H a/x  , since belli el these potentials aonlt 

an haii'.e. ic approximation.  11 we dcneie the ihtegrnleü strength 

of the it'uhonon peak bv Q . then ior  the Morse potential ve find -  n 

that 

r'u       " ! lllJ   c'l (IV-1) 
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where c^ is the Integrated sLreiiRth of the fundamental reststrahl 

band at a; .  A very similar relation obtains for the potential 
2     2 

bx  + a/x ,  as we have seen.  Because of the factor of n'. that 

appears in Eq.(IV-l), a plot of a vs. n does not give an exponen- 

tial law of the form displayed in Eq.(I-l).  It is for this reason 

that ve feel that the proof offered by UcGill et al., leads to con- 

clusions that arc not correct.  Both examples we have investigated 

lead to results vhich contradict this conclusion.  As we remarked 

In section I, these authors have also calculated the intensity of 

the nultlphonon absorption peaks for a set of independent oscilla- 

tors, each of which is described by the Morse potential.  Their 

calculation is carried out by a quantum mechanical means, and 

yields a result in agreement wit)«, ours in the limit ^UJ < k^T , 
o   B ' 

where the correspondence principle dictates that the classical and 

quantum mechanical results must concur. 

One must then inquire into the reason why the data are so 

well fitted by the exponential form displayed in Eq.(I-l).  Of 

course, it may be that our independent oscillator model is so highly 

simplified that conclusions based on it are unreliable.  We feel that 

that the problem does not lie here, but in the fact that the data 

obtained to date extend only over a rather small range of frequency, 

from 2ao to Bx     at best.  The frequency only varies by a factor 

of at most three through this range.  While the absorption coeffi- 

cient changes by many decades as one passes through this frequency 

rntigo, measurements over a wider range of frequencies, or at 

higher temperatur.s will be requLred to d( ionnine whether the 

phenorionolo^ical form in Eq,(l-1) is valid. 
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We illustrate this point in Figure (1), wlure we present the 

multiphcnon absorption data obtained by Deutfich11  , and compare it 

vith the prediction of Eq.(IVr-l) at integral values of nuu .  The 

solid lino in Figure (1) is a straight line, chosen with slope 

such that it passes through the data obtained by Deutsch.  We 

have omitted the data points simply to avoid cluttering the figure 

but, as noted by Deutsch, the data fall on the straight line.  It 

will bo important for our purposes to note that the data points 

all lie below the frequency of 750 cm  , to the left of the- square 

bracket which hn  been placed on the straight line.  Thus, the por- 

tion of the straight line to the right of this bracket represents 

an extrapolation of the data to higher frequencies^ in particular 

to the frequency of the C02 laser.  This extrapolation assumes the 

phcnomonological form given in Eq.(I-l) is valid for all frequen- 

cies, since it is a linear extrapolation on a semi log plot. 

In the figure, the barred circles represent tho prediction of 

Eq.(IV-l).  To place the points on the figure, wo have adjusted tt-t 

and D so that Eq.(IV-l) fits the data at the two points n ■ 2 and 

n ^ 5 .  When we then calculate the strength of the absorption at 

n = 3 and n ■ 4, wo obtain results that agree very well with the 

data, to within tho accuracy of the graph.  Thus, we can also fit 

the function in Eq.QV-l) to the data, and it is clear that the 

moasuromeiits do not extend ov».;r a ran^c oi froquoncios larj^o enough 

to warrant the conclusion that the exponential lav provides a 

unique description of tho results. 

It is not hard to see why wc obtain a good fit to Iho data. Tlio 

ratio kjjT/4D is quite small, of the order of 10" ' typically, as wo 
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Figure Caption 

Figure (1)  Comparison between the multiphonon data in KC-t, and 

the non-interacting oscillator model, for the case where the 

motion of the oscillator is governed by the Morse potential.  The 

solid line passes through the room temperature data points of 

Deutsch, and all the data lie below the square bracket placed on 

the curve neui   750 cm  . The barred circles are computed from 

the theoretical model, with parameters adjusted to fit the data 

at n - 2 aad n = 5.  The crosses give the theoretical prediction 

when T - 600° K, and the dashed line is a straight line drawn as 

an aid to the eye. 
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shall sc-o shortly.  If wc plot tho data on a Bemi-log plot, then 

we are concornod with tho behavior of 1 

Eq.(IV-1) then Rives 

op a    as a function of n. 

f   'ID   1       -i     r-^a, , 

If n is large enough for Stirling's approximation to b 

log n!   n log n - n, and 

In a n -„[ 12. 
^1 

e used, 

r.4Da, 
1+111 O " ^  "] * I" [TT-rJ • 

Since 4DABT >> 1 . the In ^D/l^T) contribution to the quantity in 

square brachotu is qulto large.  Furthermore, if we plot log tt    as a 

function of n, deviations from a straight line arise only because 

of the log n term.  Since log n is a slowly varying function of n, 

a plot of In ein  vs. n can give a result approximated very well 

by a straight line, if only a small range of n is examined. 

If we accept tho results of our independent oscillator model 

as realistic for the moment, then from Figure (1) one can see that 

extrapolation of the exponential law of Eq.(I-l) to higher frequen- 

ci - can lead to serious errors in estimates of the absorption 

coeffici-mt.  For example, by the time n - 7, the expression in 

Eq.(lV-l) gives a value of the absorption coefficient larger by a 

factor of 5 than that obtained from extrapolation of the exponen- 

tial law.  This example suggests that to estimate the absorption 

cocfliciont at 10.6^ by the use of Eq.(I-l) to extrapolate data 

from lower frequencies may lead to a serious underestimate of the 

absorption cocfliciont at 10.6M. 
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If the tenperaturc of the crystal is raised, the discussion 

above suggests that deviations from the near exponential behavior 

should be expected to be more severe, and to set in at lower 

values of n. To illustrate this point, on Figure (!) we have 

placed a series of crosses to represent tlie prediction of Eq.(IV-l) 

at T = 600 K, once a-   and D have been adjusted to lit the room 

temperature data at n =- 2 and n - 5, as described above.  The 

dashed line is a straight line place on the graph as an aid to 

the eye.  The deviations are indeed more pronounced, although on 

the semi-log plot they do not look large if one adjusts the slope 

of the straight line to give the best fit. 

In order to see if the independent oscillator model provides 

a fit to the data with realistic parameters, we have done the fol- 

lowing, for the case where the molecular potential is assumed to 

be the Morse potential.  We have determined the parameters of the 

Morse potential by the use of the value of the TO frequency, and 

the multiphonon data on the four alkali halide crystals studied 

(2) 
by Deutsch   .  When this information is combiiud with the tabu- 

lated value of the interatomic spacing, the coefficient of 

(linear) thermal expansion may be calculated for the model.  We 

shall describe the details of the analysis below.  The results 

of the investigation are summarized in Table 1.  For NaC^, , KCl 

and KDr, this procedure gives results in remarkable accord with 

measured •alues of the thermal expansion coefficient.  For LiF, 

the agreeiiiont is poorer, but the estirated and measured value of 

the thermal expansion coefficient still differs by little more 

than a factor of 2.  On the basis of this analysis, we conclude 
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that multiphonon absorption processes oi" an intrinsic character 

are indeed responsible for the absorption measured by Deutsch. 

To obtain the numbers displayed in Table 1, WO have employed 

the following procedure.  From Eq.(111-14), one sees that the 

slope of a plot of log a    vs. n is controlled only by the param- 

eter D, for the Morse potentiil.  ^'e have obtained the value of D 

given in Table 1 by fitting the ratio a5/a2 to the data of Deutsch. 

The value of a is obtained by identifying the frequency uo 

(Eq.(lII-3)) with the TO phonon frequency of the crystal.  The 

parameter x  in the Morse potential is chosen to be equal to the 

nearest neighbor interatomic spacing in the crystal. 

In the quasi-harmonic region, where fcgT<<Dl it is an elementary 

matter to calculate the Mean value <x> of the interatomic separa- 

tion of the two atoms in the molecule.  One finds 

<x> - XÄ + 
3kDT 

o ' 4aD 

«here  the second  term  is  small compared   Lo X   .    We   Identify   the 

coefficient  of   (linear)   thermal  expansions with  the  ratio       ./,   , 
o 

where   ?(>;>   is   the  change   in   the mean separation  of   the  atoms  pro- 

duced  by   the   temperature change   IT.     II   v.o  cal]   ?T   the  expansion 

COOff iciciit,   then 
3k 

PT 
B 

•Ian; 
(1V-2) 

o 

The   figures   in   the   third  column   of  Table   3   havr   been   obtained   froi 

Lq.(IV-2),   and  in  the right  hanu coluiiin v,e give  the  Dxpcrimeiital 

datav   '. 

One Intriguing fouUire of   the results oi   section ill   is   that 
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the strength o^ the n-phonon absorption peak for the Morse poten- 

tial, and for the potential bx + a/x exhibits nearly the same 

functional dependence on n.  This leads one to expect that the 

result in Eq.(IV-l) may bo rather general in the limit of large n, 

valid in the classical regime for any potential vhich admits an 

harmonic approximation, as long as the anbarmonic corrections to 

the particle motion are small.  At this time, we have not suc- 

ceeded in providing a general proof of this result, however. 

We conclude this section with some comments about the possible 

role impurities may play in affecting the behavior of the absorp- 

tion coefficient at high frequencies.  If the impurities are 

coupled to the ions of the host lattice by means of an interac- 

tion that may be crudely represented by either the Morse potential 

or the potential bx + a/x', then within the framework of our 

model, the iiupurities will not affect the qualitative behavior 

of the absorption coefficient, although they will affect it in a 

quantitative sense-, since a certain fraction of the lattice oscil- 

lators will then be described by parameters which differ from the 

oscillators which describe the host lattice. 

However, there are certain impurity ions which behave in an 

anomalous manner when present as sut.stitutional impurities in 

alkali halides.  An example is the ],i+   ion, which frequently 

gives rise to a very low Ireoe.ency resonance phonon mode, even 

though it is a very light ion vhich produces a high frequency 

local phonon mode il it is coupled to the host ion:.- by interac- 

tions characteri/ed by harmonic forco cor.slants ccmpavuble to 

those in the host matrix.  Evidently in the case ol Li, in the 
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harmonic approximation the force constants are very much Pinaller 

than those which characterize the host, small enough to offset 

the tendency of the light mass to create a high frequency local 

mode.  In fact, in KC, the Li+ion sits off the substitutional 

lattice site, in the (111) direction while it sits on site in 

KBr.  These facts sug-est that the Li ion moves in a potential 

well with a rather flat bottom, while terms higher order than 

quadratic in the displacement; of the Li ion from the substitu- 

tional site play an important role in the lattice potential energy, 

fhis notion is supported by theoretical studies^  , and by experi- 

mental observations which show very large electric field induced 

shifts in the frequency of the resonance mode(10l It is also 

true that a number of other ions have been observed to produce 

resonance modes with frequencies very much lower   than the frequency 

expected on the basis of mass defect considerations alone   ^ . 

The remarks of the preceding paragraph indicate that there 

are a certain number of impurities which when placed in alkali 

halides may be crudely described as moving in the cage formed 

by their nearest neighbors, with the i3oor of the cage quite flat 

in character.  The calculation presented in section III of the 

contribution to the absorption coefficient from the particle in 

the square well suggests that these impurities may give a contri- 

bution to the absorption coefficient which falls off as ^2  for 

freiiuoncies lurgc compared to the msononcc frequency uu nt which 

the peak in the impurity-induced absorption occurs.  Tims, the 

presence of a significant number of impurities which give rise to 

very lov. frequency resonances may hnvc ;i significant qualitative 
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effect on the behavior of the high frequency absorption coeffi- 

cient . 

Before we proceed to an estimate of the quantitative effect 

of these impurities on the absorption coefficient near 10.6^, we 

first note that for typical values of parameters, the character- 

istic frequency tu- in the discussion of section III(c) indeed 

-8 
lies in the proper spectral region.  For oxamplo, if L= 3 x10 cm, 

and if m is chosen to be fifty atomic units, then ou, w 15 cm  , a 

frequency in the spectral region where the low lying impurity in- 

duced lattice resonances are observed.  Also, the resonance mode 

frequency in some cases is observed to increase significantly 

with temperatures. Of course, we cannot expect our very crude 

model to account for the features of these resonance modes in a 

systematic and complete manner, but the overall qualitative 

features seem to be reasonable. 

It is a straightforward matter to find an expression for the 

contribution of N. impurities to the absorption coefficient, in 

the limit ID >>'jar.  This may be done by multiplying Eq.(111-45) 

by NT , the number of impurities in the sample, dividing the 

result by the (time averaged) energy stored in the electromagnetic 

2 
field (C„VE /8n, where G^ is the optical dielectric constant 

i 

and V the crystal volume), then multiplying this by C  2/c,   to 

obtain 1/L, where I. is the distr.nce required for the energy 

density of the v.ave to decay to I/o of its initial value.  One finds 

2  ,  ai„ 
1 - ir 
L " 10 (IV-3) 

cG - UJ 

148 

- - ■ ■MMa WMMM MMMa_ 



"■•■■-■    -—-    1     '»••«■.■. ,.!.«-   !■■,. „ .    IJI.iVllUli   ■laViHI    i.   I !    M    .>««•■-   !• !! |J ■ I LH..«!!!!.. Ulli 

Sec. B 

where n : NA la the n imber of unit cells/unit volume of the host 

crystal and f is the impurity concentration.  In Eq.(lV-3), q and 

m are the effective charRC and mass of the impurity.  Let qo and 

m  be the effective charire and reduced mass of the unit cell in 
o 

the host crystal, and let 

K 
2  m 

q ' o 
2 n (IV-4) 

Then  Eq.(IV--3)   maj   be  written 

«a " 
r ^ K (-r-") f (T0) C 

(IV-5) 

2 2 where   P    "  €- H   4nnq   /m  a'       is   the  static  dielectric  constant  of vs ^ o       o o 

the  host. 

For   the  purposes  of   providing   a crude  estimate  ol    the  sensi- 

tivity  of   the  absorption  coefficient  at  10.6fi  to   the  presence of 
i 

these  anomalous   impurities,   we  set  R and   (£    -   O/€„2     equal   to 
Jj w CO 

unity,   and  suppose   uu/uu    ~ 7     and     u,r = 20 cm       .     We   then   find 

- « 5   f   (cm"1) 
1J 

(IV-G) 

where f is the impurity concentration« 

The quantitative estimate of L displayed in Eq.(IV-6) must 

bo regarded as extremely crude, because the model is highly over- 

simplified.  It does suggest that near 10.6^, the absorption 

coefficient of the crystal may be quite sensitive to small concen- 

trations of Li, Ag, Cu or other impurities which give rise to 

impurity induced resonhnce modes with frequency very much louvr 
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than oxpoctod on «arc defect conüidcrrailona. It vould be 

extremely ihierestinf to measure the elJeel on the absorption 

COOffieient of doping KC/ with Li, With concentrations in the 

ranc« of O.l'.c to test this conjecture. 
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(RolerencoH continued) 

10.     For  a  rather complete  discussion of   the  properties  of  a 
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Sec. F 

F. TEMPERATURE  DEPENDENCE  OF THE ABSORPTION COEFFICIENT  OF 

ALKALI   MAUDES   IN THE  MULTIPHONON  REGIME1 

A.   A.   Maradudin and D.   L    Mills 
Department of  Physics 

University of  Califo^i ia 
Irvine,   California  92664 

and 

Xonics Corporation 
Van Nuys, California 91406 

ABSTRACT 

The theory of infrared absorption by an array of inde- 

pendent, anharmonic oscillators is discussed.  When 

the oscillator potential is the Morse potential, the 

theory provides an excellent description of the tem- 

perature dependence of the absorption coefficient at 

10.6M :n NaCt and NaF reported by Harrington and Hass 

This research supported by The Advanced Research Projects Agency 
of the Department of Defense and was monitoiid by the Defense- 
Supply Service, Washington, D. C. under Contract No. nAllCl^-73-C-n217. 

Technical Report No. 73-20 
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There has recently been interest in the mechanisms for absorp- 

tion of infrared radiation by insulating crystals at frequencies 

high compared wich the Reststrahl frequency.  In the vicinity of 

the C02 laser line at 10.6n, and in alkali halide crystals where 

the electronic band gap is very large, the principal contribution 

to the absorption coefficient from the bulk of the crystal comes 

from multiphonon processes in which five, six or perhaps a larger 

number of phonons are created in the absorptior process. 

Quite recently, Deutsch has completed a detailed experimental 

study of the frequency dependence of the absorption coefficient in 

several alkali halide crystals at room temperature.  Several groups 

have addressed the theory of the absorption process by models that 

differ significantly in physical content,  ' and there seems to be 

general agreement that the frequency dependence of the intrinsic 

contribution to the absorption coefficient may be understood if 

the absorption has its origin in multiphonon processes.  All of the 

theories which have been applied to the analysis of the data pre- 

sume that anharmonic effects on the lattice motion may be treated 

by perturbation methods.  One then predicts that for temperatures 

T large compared to the Debye temperature 9 , the contribution to 

the absorption coefficient from processes which involve n phonons 

should vary with temperature like T 

A recent experimental study of the temperature dependence of 

the absorption coefficient or at 10.6u in several alkali halides 
4 

has been reported by Harrington and Hass.   These authors find that 

a  varies with T more slowly than Tn~  in the crystals examined by 

them.  The purpose of this paper is to apply the simple theoretical 

mtm^ 
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model developed in our previous paper  to an analysis of this data. 

We obtain an excellent quantitative description of the observed 

temperature dependence, and the model also predicts absolute values 

of or at high temperatures close to the observed values.  We analyze 

the data on NaCt and NaF in detail.  In the case of NaCt, a crystal 

considered in our previous paper, an excellent description of the 

data may be obtained without introducing any parameters not found 

in our earlier work and for NaF, a crystal not examined earlier by 

us, one parameter is required.  The value of this parameter may be 

checked by comparing the thermal expansion coefficient predicted 

by our simple model with the experimental result, and the two agree 

well.  Thus, we conclude that our model provides an excellent 

account of the data reported by Harrington and Hass.  Furthermore, 

the physical content of the model suggests that at high temperatures 

anharmonic effects have a strong influence on multiphonon excita- 

tations in the alkali halides. 

In our previous paper, we replaced the crystal by a set of N 

classical, non-interacting by anharmonic oscillators, where N is 

the number of unit cells in the crystal.  Each oscillator has a re- 

duced mass m, and a transverse effective charge q.  If the crystal 

is illuminated by radiation with the elective field E(t) = E cos gut. o 

then the time and ensemble averaged rate at which energy is absorbed 

3 
by a  single oscillator   is given by 

2  2 
{{^))   -ÜÜLfo    E    ±   TdE^VcEnCuj-nujCE))    , (1) 

dt 4in Z     n=l  n b 

where 6 ■ l/kDT, Z is the partition function for a single oscillator, o 

the period T(E) of the bound orbit of energy E is written 
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T(E) " 2n/l)u(E), and P (E) is a measure of the amplitude of the n 
th 

harmonic in the orbit of energy E. If PE(t) gives the time depen- 

dence of the momentum in the orbit of energy E, with the origin of 

time chosen so that the particle is at a classical turning point 

at t = 0, then 

^T(E) 
(2) Pn(E) = ^ffy     dtpE(t) sin nuj(E)t  . 

The virtue of the model is that exact expressions for a  may be 

obtained vith It, even when the oscillator motion is very anharmonic 
2 

For the Morse potential V(x) ■ D[l-oxp(a[x-x ])]  we previously ob- 

tained exact expressions for UJ(E) and P (E) , although we found a 

only when kRT was small enough for the oscillator motion to be 

treated as nearly harmonic.  In this paper, we work with the full 

form of o, without this last assumption.  In our earlier paper, we 

found 
UJ(E)   = u)o(l-E/D) I (3) 

(n-H) 

p   (E)   =2^(^)1(1)    2        ^   _ 

i 

n 11». 
uu(E) 

Uü o   J 
(4) 

where w     = a(2D/m)2   is  the  frequency  of   the oscillatory motion,   in 

the harmonic   approximation.     Equations   (3)   and   (4)  may be   inserted 

into Eq.   (D ,   and  the  integration carried out.     We make one  simpli- 

fication  in   the  exact  result.     For k  T <<  D,   a  limit  that  applies 

to our discussions  here,   the partition   function  is well  approximated 

by   the  result  Z   =  2^k T/uj    obtained  from  the harmonic  approximation.' 

In  the  results   that  follow,   we use   this  form for Z.     Then  if  we   let 

§   ■ UU/UJ   ,   and  n     is  the  first   integer   larger  than  I,   we  find 
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at maj 
m 

exp 
"  Vl1  "   a2' 

3 (5) 
n 

At fixed frequency, the temperature dependence of the aosorp- 

tlon coefficient is controlled by the single parameter D/k T, which 

for the case of NaCt may be obtained from our earlier work. 

We first recover from Eq. (5) the result valid in the quasi- 

harmonic regime, where for the n  term, this requires nkr.T « D. 

th 
In this limit, the n   term of Eq. (5) peaks sharply just bei ow 

th 5 = n.  Thus, let § = n - €, with € small.  If the n  term in 

Eq. (5) is denoted by <<^>>n. 

2TTq2E2 

^dt;/n _  muj 

2 .n LD.\- €"9(€) 
UBT)  2nnn+l 

exp 
2D 

nkBT 
(6) 

where GCe^ = 1 if € > 0 and is zero for € < 0.  The integrated 

strength of the absorption line in Eq. (6) is 

n-1 

(7) j   dt n   4m 
n! ITD i 

th Thus, in the limit nkgT « D, the n  term in Eq. (5) contributes 

to the absorption coefficient a term well approximated by the form 

This expression is identical to that produced by the quasi-harmonic 

approximation utilized earlier by us. 

In Figure 1, we present a calculation of the frequency depen- 

dence of the absorption coefficient for the model for I = 300°K and 

T ■ 9000K> fron Eq. (5).  We have used the value of D obtained for 

L — 
157 

—  —^_ ■ »_■ 

mm MI 



■""WW ip^pp^^n iiuniiw«a..ujiwi* iwiiiiinn i)«p um IIWHUIUI   ..  II >s   JIIPIHII ii^^^w«vr^pw^«««PWip*impm»Wli)liM|V 

Sec. F 

Figure Caption 

Figure 1. Frequency dependence of the absorption coefficient for a 

Morse potential osciallator at T - 300° K and WK, with a D chosen 

for N'aC t. 
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NaCt from our earlier work, and with the absolute value of the a 

adjusted to fit the 10.6u data of Harrington and Hass at 900° K. 

Several features of these results deserve comment.  For T=300 K, 

the n=3 term in Eq.(5) produces a very sharp peak centered a bit 

below 5=3.  This peak is quite narrow and well defined, as one would 

expect in the quasi-harmonic approximation.  For ? near 5 or 6, the 

effect of anharmonicity is severe enough that ot  varies smoothly with 

frequency, displaying only gentle shoulders as a reminder of the 

sharp structure present in the quasi-harraOMic approximation.  But the 

time T=900oK, the theory produces a very smooth dependence of a 

with frequency. 

These calculations suggest that for large values of i»/^, even 

at room temperature, the lattice motion cannot be regarded as nearly 

harmonic, so the absorption coefficient cannot be calculated by per- 

turbation theoretic methods which tre-rt the anharmonic ttrms in the 

crystal Hamiltonian as small.  T.iis is also clear from the data of 

Harrington and Hass, which we shall see is well fitted by our model, 

since the data show very large departures from the T '  behavior 

cited earlier. 

It must be emphasized that at fixed T, the relative importance 

of the anharmonicity increases as Uü/UJ0 increases.  If we examine the 

absorption coefficient for the model near the Reststrahl region (the 

Reststrahl absorption is described by the term n = 1 in Eq. (5)), 

then the parameters we employ produce rather modest anharmonic 

effects.  For example, at temperature T, the Reststrahl peak occurs 

very close to ^ - »0(l-kBT/2D), where %  is the Reststrahl frequency 

at T = 0.  For our parameters, at room temperature, kBT/2D ■ 0.03 

for NaCt.  The half width at half maximum is also close to kBT/2D 

in magnitude, and increases linearly with T.  As the parameter a)/% 
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increases, each successive peak shifts to lower frequency by a frac- 

tional amount that increases with increasing order, and the width of 

each feature described by the terms in Eq. (5) increases rapidly 

enough so that by the time f, = 6, the absorption coefficient v?ries 

smoothly with frequency at room temperature. 

In Figure 2a, we compare the temperature dependence of the ab- 

sorption coefficient at 10.6M obtained from our calculations with 

the data of Harrington and Hass.  The theory has been fitted to the 

data at 900°K, and gives a very good account of the observed temper- 

ature dependence for all but the lowest temperature.  In his previous 

work, Deutsch has reported a value of 0.001 cm"1 for the absorption 

coefficient at room temperature, while the value reported by Harring- 

ton and Hass is larger by a factor of 2.7.  Thus, near room tempera- 

ture, the absorption coefficient measured by Harrington and Hass 

presumably contains an extrinsic contribution which is dominated by 

the intrinsic contribution at higher temperatures.  If we accept 

Deutsch's value as the correct one at room temperature (see the 

diamond in Fig. 2a), then we may fit a  to within a factor of two 

over the entire temperature range. 

Our model also predicts the absolute magnitude of the absorp- 

tion coefficient.  The rate at which energy is absorbed from the 

field is found by multiplying Eq. (5) by the number of molecules N 

(equal to the number of unit cells) in the crystal.  Then upon 

dividing by the time averaged energy V€oE^/8n stored in the field, 

where €o is the high frequency dielectric constant, and dividing by 

the propagation velocity c/Cj, one obtains the inverse of the length 

d required for the energy density in the beam to decay to 1/e of its 
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Figure Caption 

Figure 2.  Temperature dependence of the absorption coefficient at 10. 6^ 

in (a) NaCi, and (b) NaF.   The solid curve is calculated from the Morse poten- 

tial and the dashed curve from V(x) ■ bx2 + a/x2. 
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initial value.  This quantity is the absorption coefficient a  meas- 

ured in thj experiments.  The magnitude of or may be estimated in 

the multiphonon regime from dielectric constant data once D is known, 
2 

since €_-€_■ 4nnq /m for ionic crystals.  For-NaC^, the theory 

predicts that at T = 900OK, the absorption length should be 0.011 Cm"1 

at 10.6u, while the data shows it to be 0.020 cm .  Our model thus 

gives an absolute value for a  in good accord with the data. 

In Figure 2b, we compared the temperature dependence predicted 

for the absorption coefficient at 10.6U with the data on NaF. Again 

we obtain an excellent fit for 500°K < T < 1200°K.  The theory 

does poorly for T < 500°K, presumably because 9- « 490° in NaF, 

and our classical model is inapplicable for T s 6-..  In Figure 2b, 

we have chosen D.. _ = D _ , and adjusted the magnitude of the 

absorption length to fit the data at 700°K.  For NaF, I ^ 3.96  at 

10.6n,  The value selected for D predicts the coefficient of linear 

— ß 0 — 1 
thermal expansion for the crystal to be 38 x 10   K  when T > 9n, 

if we use our earlier procedure to make this estimate.   This value 

is in excellent accord with the measured value of the thermal 
7 

expansion coefficient.   From the dielectric constant data, the 

theory predicts the absorption length to be 1.2 cm"  at 900°K, 

while the measured value is 3.4 cm" .  Thus, while the absolute 

value for y  in NaF agrees less well with the data than in the case 

of NaCt, the theory gives reasonable semiquantitative agreement. 

One can inquire about sensitivity of these results to the 

details of the potential.  To test this, the dashed curve in 

Fig. (2a) gives the dependence on T for a  at 6u;0 for the potential 

2 2 (3) bx    + a/x    examined  previously       ,   with  the fit   to the  room 
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temperature data carried out as in our earlier paper.  This potential 

also provides a reasonable fit to the data, so the detailed form 

of the potential does not seem to be critical. 

Thus our model gives a good account of the dependence of a 

on T in alkali halides through the use of only a single parameter 

whose value may be checked through use of data on the thermal ex- 

pansion coefficient.  Quite recently, Sparks and Sham8 have extended 

their earlier work2 to provide an account of the dependence of Of 

on T.  Their theory includes the effect of phonon dispersion in an 

approximate way.  They also treat the problem by quantum mechanical 

methods while our theory is purely classical.  Thus, their theory 

may be applied to the region T < eD while ours may not be.  The two 

pieces of work are complementary in a certain sense.  While their 

model is more detailed than ours, they introduce a sequence of 

approximations, such as the inclusion of tern only through a finite 

order of perturbation theory, approximate treatment of phonon dis- 

persion, and finally a phcnomenological inclusion of certain anharmonic 

effects by allowing the phonon frequencies to be temperature dependent. 

Our model is more schematic in nature, but its virtue is the use of 

only a small number of parameters to characterize a given material, 

and we obtain exact results for ».  The two theories concur in one 

important regard.  At high temperature, and in the multlphonon regime, 

in the alkali halides the effect of anharmonicIty is very large, so 
n-1 large deviations from the T   law occur. 
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G. TEMPERATURE AND FREQUENCY DEPENDENCE OF 
INFRARED ABSORPTION AS A DIAGNOSTIC TOOL* 

M. Sparks 

Xonics, Incorporated, Van Nuys, California 91406 

Recent developments render untenable a proposed method 

of distinguisi ing between intrinsic and extrinsic infrared ab- 

sorption on the basis of the proposed temperature dependence. 

However, when the proper temperature dependence of multi- 

phonon absorption is accounted for and the possibility of other 

intrinsic processes is taken into account, the temperature and 

frequency dependence of the absorption of both the best avail- 

able and intentionally imperfected crystals should be useful 

in studying extrinsic processes. 

It has been suggested that the temperature dependence of the optical absorption 

coefficient ß could be used to distinguish between intrinsic (characteristic of a 

perfect crystal) and extrinsic (caused by imperfections) infrared absorption. 

Several recent developments bear on this suggestion.   First, a c mbination of 

frequency Ui and temperature T dependence should be far more useful than the 

T dependence alone.2   Second, the T dependence of ß for mult"phonon absorption 

deviates considerably3'4 from the expected5'6,2,1 result.   Third, other extrinsic 

processes in addition to those considered in Ref. 1 should be included. 

Consider the first development.   The near exponential frequency dependence 
no K 

of ß observed '    in a number of materials including LiF, NaF,    NaCl, KC1, KHr, 

MgF2, CaF2, BaF2, SrF2, MgO, Al^, Si02, Ti02 , SrTiOg, andBaTlOg, 
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ß ■^0   ( 
-OO/OJj 

)( 
1 - e 

•cc/ncoj \ "n 

(1) 

where u is the laser frequency and Wj ■ kgT/fi.   Eq. (1), which can be written 
n n as P ~ (ng + 1)   - ny   , where nQ  is the Bose-Einstein occupation number for 

a phonon of frequency co/n,   or in several other simple forms by using energy 
1 

conservation, reduces to ß ~ T        in the high-temperature limit a;T » to. 

Experimentally, this deviation from(l) was observed by Harrington and Hass,3 

and !r is ipparent in the data of Barker.      Sparks and Sham    have explained this 

when extrapolated to 10. 6(im, gives a fair estimate of the intrinsic value of ß 

at 10. ö^im.   Thus, it is already known with fair accuracy whether the 10. 6/im 

values of ß are intrinsic or extrinsic for a number of materials.   Nevertheless, 

additional co and T measurements would be of great interest in studying the 

sources of extrinsic absorption and possibly new intrinsic absorption mechan- 

isms.   Intentionally introducing various types of imperfections into crystals and 

on their surfaces should be invaluable in such studies.      Since values of ß of 
„-4      -1 

10    cm     and even lower are of cur/ent interest, standard transmission measure- 

ments are inadequate.   Emissivity techniques should be capable of yielding values 

-4-1 9 
of fl well below 10    cm     in a carefully designed simple instrument.     Calori- 

metric measurements of ß's approaching 10"   cm      at the single wavelength 

10. 6jim are of course now common. 

Concerning the second development, the temperature dependence of the 

intrinsic n-phonon absorption (annihilation of one photon and creation of n phonons) 
c     /;    o     i 

is considerably weaker than the well known' '   '   '    explicit temperature dependence 
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deviation by including the temperature dependence of the phonon frequencies 

and lattice constant in their previous theory of the nearlv exponential fre- 

quency dependence of ß discussed below.    In addition, the particular extrinsic 

processes suggested by Hardv and Agrawal    and by Rosenstock     will show 

similar deviations from their predicted explicit T dependence when the T 

dependence of the parameters is included.   Until more experimental informa- 

tion is available to establish faith in tlie ability to predict the T dependence of 

the multiphonon and band-phonon plus localized-impuritv processes, distin- 

guishing between the two on the basis of the T dependence alone probablv 

would be difficult. 

The third development concerns a further more serious problem in dis- 

tinguishing between intrinsic and extrinsic absorption on the basis of the T de- 

pendence in Ref. 1. That is, there are many possible extrinsic processes in 

addition to the b.uid-phonon plus localized-impuritv process suggested in Refs. 1 

and 6.   For example, small amounts of macroscopic inclusions can give ri.re 

0 4 
to a temperature dependence ranging from jS ~ T    to T     in typical cases, 

depending on the type of impurity.       There is also some experimental evi- 

dence, though it is not conclusive at present, for temperature independent 

12 3 
absorption.     ' 

The study of intrinsic and especially extrinsic processes, bv measuring 

ß{ui,T) in ultrapure and intentionally imperfected crystals, for example, 

indubitably will become important if the current interest in obtaining low- 

absorption materials is unabated.   Alreadv there are a number of cases in 

which multiphonon absorption is obviously the source of ß and others in which 

it obviously is not.    For example, there is now little doubt that the nearlv 
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7  8 
exponential frequency dependence  '    of ß mentioned above is the result of 

multiphonon absoi-ption.   The contributions of the individual n-phonen processes 

have been calculated and summed to obtain the nearly exponential frequency 

dependence.'"'      More recently, a direct derivation of the exponential in closed 

form, rather than as a sum of the individual n-phonon contributions, has been 

given. 13 

The fact7 that the 10. 6 ^m values of ß for a number of crystals, such as 

KBr, CdTe, and KC1 as examples, lie well above the values obtained by extra- 

polating longer-wavelength values to 10.6 fim surely indicates that these meas- 

ured values of ß arise from processes other than multiphonon absorption.   A clear 

example of an extrinsic experimental value of ß is that of a NaCl sample meas- 
3 

ured at 10. 6jim from 300 K to near the melting point by Harrington and Hass. 

The room temperature value of j3 = 0. 003 cm     for this sample is considerably 

-1 14 greater than both the lowest value of 3 = 0.0015 cm     observed to date     and the 

-3     -1 estimated intrinsic value of slightly less than 10   cm    obtained by extrapolating the 

lower frequency data to 10.6^1 m.  Furthermore, the temperature dependence deviates 

strongly from the multiphonon value evjn when the T dependence of phonon fre- 

quencies and lattice constant are taken into account.   In fact,  ß decreases as 

the temperature increases near room temperature. 
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H.  SHORT-PULSE OPERATION OF INFRARED WINDOWS 
WITHOUT THERMAL DE FOCUSING* 

M.   Sparks 

Xonics, Incorporated, Van Nuys, California 91406 

The possibility of transmitting short infrared pulses 

through materials with little thermally induced optical 

distortion is shown to exist.    For sufficiently short pulses, 
-8        -9 

of the order of 10    - 10     sec, the absorbed energy does not 

have time to thermalize, thus avoiding heating effects until 

after the pulse has been transmitted. 

In high-power laser systems, heating of a window or other transparent 

component by the laser beam causes changes in the index of refraction n and 

12  1 
in the thickness of the window.  '   '      The resulting defocusing is one of the 

most serious problems in such systems.    It has been pointed out that much 

higher intensities can be transmitteo if the laser can be operated for a period 

of time, say of the order of a second, after which the window is cooled before 
12   1 4 

the next pulse is transmitted.  '   '      Bloembergen    suggested that if the pulse 

duration is much shorter than a characteristic time, of Che order of an acousti- 

cal velocity times a linear dimension of the window, the change in window 

thickness is negligible, and only changes in n (at constant strain) should be 

considered. 

The purpose of the present note is to point out thai in principle still 

shorter pulse durations altow the window-to-transTmt-thc-palsc before the 

^^dMHBS 
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temperature rises, thus avoiding the thermal defocusing.   The requirement 

for this effect is 

t    ,    ^   1/r ((D) puls (1) 

where t    ,    is the pulse duration and r(co) is the relaxation frequency of the 

fundamental-phonon mode (transverse optical mode with wavevector k s: 0). 

When (1) is satisfied, the energy absorbed from the laser field by the funda- 

mental mode has not had sufficient time to relax out of the fundamental mode 

and thermalize.   Thus the temperature, which corresponds to the thermal- 

equilibrium values of the phonon occupation numbers, remains at its initial 

value. 

Practical values of t , depend critically on the deviation of Tiui) from 

the resonant value F, = F (ccf), where co, is the frequency of the fundamental 

mode.   For example, from the value of the linewidth in thin NaCl samples. 

rf a 2.5 < 1012 sec-1 

rJ -13 The corresponding value of t . < 4 x 10 sec from (1) is smaller than 

values of current interest. The value of T (w) decreases rapidly as UJ 

increases above oCr . On resonance, Fr is large in general because there 

are many phonon states into which the fundamental mode can uecay. As u; 

increases, the lower-order processes, in which the fundamental phonon splits 

into only a few phonons, cannot conserve energy, and r(üc) decreases ac- 

cordingly. 
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In order to obtain an estimate of the size of F (co), consider the optical 
6,7 

absorption coefficient p(io) 

9(0)) =   A 
co r(üj) 

(w2 - wf
2 )2 + cof

2 r(w)2 (2) 

where A Is a constant.   On resonance, (2) gives 

ß{üO{) -  A/u;f   rf (3) 

At the laser frequency u , assumed to be high [w » co,, r(a;)], (2) gives 

ß{(ii) =  AT(ui)/oü     . (4) 

Tlie ratio of ß{<jc{) to j3(co) from (3) and (4) is 

ßiu:{)/ß(u) =oo /cof rfr(co) 

which gives, with (1), the central result 

puls r(co)       ß(aj)       ~T~ 

(5) 

cc 
(6) 

Consider the materials in which distortion-free transmission is likely to be ob- 

servable. In order to make t.   large, r(co) should be small, according to (6). 
3 

Since  ßiu/üc^) decreases more rapidly than (co/co,)   with increasing oo in 
7 

the multiphonon absorption region,     a large value of co/cof is desirable in 

order to make the denominator in (6) small.   However, if to/a^ is too large, 

other absorption processes dominate the multiphonon absorption.   Thus, the 
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smallest value of ß(co) in the multiphonon region is desired.    The smallest 
.4.18 

values of p(a;) measured to date at 10. 6Jim are of the order of 10   cm   . 

The value of ß at 10. ö^im for KC1 obtained by extrapolating from mea- 
Q Q 1 y| 1 

sured values   between |3 =20 and 5x 10  cm"   is /3 = 10    cm    .   In view of 

-4      -1 current interest in KC1 and the fact that ß = 4 x 10    cm      has already been 

-4      -1 demonstrated, it is likely that 10    cm      will be attained.    Thus, KC1 is a 

good candidate in which to study the effect. At other wavelengths, oth^r ma- 

terials would be more appropriate; for example, the extrapolated value of ß 

equals 10 cm at ~3. S^imfor LiF. If values of ß smaller than 10 cm 

are attained, the choice of materials will change. 

For KCl,with8u5f= 2.7 x lO^sec'1, rf ^ 0.08 cof, cc = 1.8X 1014 

sec"1 (i.e., 10.6^m),  ß(cüf) ^ 5 x 104cm"1, and ß{u) m lO^^cm"1, 

(6) gives 

TW) =   5 x 10     sec (7) 

j 

Such short pulses are not presently available at lOfirn.  However, they 

are currently available at shorter wavelengths.    For example, 6TW with a 

pulse duration of 10       sec is available at l.Obßm.   Picosecond pulse dura- 

tions are theoretically possible at longer wavelengths, of course.   Values of 

l/r(u;) at wavelengths shorter than 10^m can be as large as that in (7).   For 

example, at 3.5f»in for LiF with u!f » 5. 8 x 1013 sec"1,  rf = 0.08 u>f , 

(jü = 5.5 x 10 4sec"1,  0(a!f) = 2 x 105cm"1, and ß(co) = 10"4cm"1, (6) gives 

l/r(u;) = 3x10     sec.    Thus, it is possible tliat the no-heating short-pulse 
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effect could be observed over a substantial part ot the near inlrared region. 

Unfortunately, at 1.06>im, where 10'      sec-pulse-duration lasers are avail- 

able, there is no material with ß determined by multiphonon absorption.  Thus, 

tests and applications of the theory will have to await the availability of short- 

pulse sources at longer wavelengths. 

The analysis above applies to the case of multiphonon absorption by the 

anharmonic potential mechanism.   The possibilin of ?. similar no-heating 

effect at other frequencies and for other absorption mechanisms also exists. 

However, the siruation is likely to be considerably more complicated.    For 

example,  for absorption in the visible and very near infrared, the absorption 

is likely to involve electronic excitations, such as in electric-field-induced 

absorption or excitation of impuritv-type or surface-state icvels.   The time 

required for the energy to be transferred to the lattice varies greatly witli the 

number of impurities, type of material, and the temperature in general. 

Furthermore, the direct effect on the index of refraction of the electronic 

processes involved in the absorption and the possibility of induced transparency 

from emptying the impurity levels should be considered. 

- 

In addition to being of fundamental interest, the short-pulse effect could 

have practical applications.   It could be useful for diagnosis, as in distinguish- 

ing between multiphonon absorption and electronic-type absorption, for example. 

It could possibly afford a method of measuring the relaxation frequency T-. of 

the fundamental phonon mode directly.   Its usefulness in high-power applications 

is limited by material breakdown at the high intensities required to obtain high 
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power with short pulse times.   A typical value of breakdown intensity for alkali 

10 2   10 -l) 
halides is 2 ■ ID    W/cm .        For t    ,    = S x 10     sec, this gives 100 joules 

2 
per pulse, or 10()W/cin   average for a duty cycle of 1 sec.    This value, which 

possibly could be raised by operating at lower than room temperature or further 

4 2 
improving materials, can be compared with values of ~0.2 to ~2 x 10   W/cm 

estimated to be obtainable for candidate window materials (ranging from Si to 

KBr) for a one second pulse, two second duty cycle, beam truncated at   -^ its 

maximum intensity, and halving the intensity at the target.     If greater than half 

the intensity must be available at the target or if the beam is truncated at a lower 

intensity (as it usually is), these one-second-pulse values are reduced, by fac- 

tors of a thousand or even greater in extreme cases.   In such cases, the no- 

heating effect would be useful. 

It should be mentioned that local heating of imperfections, which can lead to 

material failure, is a greater problem for short pulses than long ones for a given 

value of the energy per pulse.      The temperature rise tends to be lower for long 

pulses since the heat has time to diffuse away from the generation site.   In this 

regard, notice that wh?n (1) is satisfied, the time constant for the energy to 

leave the fundamental mode (after the pulse is transmitted) is l/F,, which is 

considerably shorter than 1/T(u;), since the fundamental mode oscillates at its 

resonant frequency after the drive field is turned off.   A further limit to the 

high-power use of the short pulse effect is the air breakdown at the high in- 

tensities encountered in high-energy short-pulse systems. 

Discussions with Dr. C. J. Duthler are gratefully acknowledged. 
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