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1. INTRODUCTION 

The transmission of standard commercial television images from k remotely piloted vehicle (RPV) 

to a distant observer requires a large bandwidth channel in order to protect the video information 

against jamming and interference. This protection can be gained from spread spectrum techniques.  In 

many RPV situations, however, the available channel bandwidth is barely sufficient or is insufficient 

to transmit the television signal directly.  In these cases the video information can be transmitted only 

if the redundancy present in the original images is greatly reduced. This report discusses the feasibility 

of redundancy removal at real time rates with small, lightweight, low power hardware suitable for the 

ARPA RPV transmission.  It is desirable to be able to vary the amount of redundancy removed to 

permit the observer to select from the available tradeoffs of resolution, bandwidth, scan late, and 

jamming environment. 

Image redundancy reduction by a factor of ten without serious image degradation has been 

achieved by the use of üaear trarüiormations and filtering in the transform domain. Such techniques 

an the only methods presently known to obtain such large redundancy reduction factors. They are 

also tne only methods known which will allow the redundancy reduction ratio versus degradation 

to be continuously varied. Haar, Hadamard, Fourier, and Karhunen-Loeve transforms have all been 

successfully used in this way, but the processing has been accomplished on large digual computers at 

much slower than real time rates. Examples of these redundancy reduced photographs are given in 

Appendix A. The feasibility that the required transforms can be performed with a high throughput 

processor structure which utilizes parallel access to a serially shifting data stream is explored. The 

processor structure may be implemented by snail, lightweight, low-power hardware using transversal 

filters. Other methods of television bandwidth reduction such as slow frame rate and image sensor 

improvements are also presented. 
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2.  VIDEO DATA SPECIFICATIONS 

PSYCHOPHYSICAL STUDIES 

Tlie amount Of informatioil that an operator needs to effectively operate an RPV tor various 

missions is not a well-defined quantity.  Rather it is a subject of some controversy in the literature' ' '. 

The Aerospace Medical Research Laboratory (AMRL) at Wright Patterson A ir Force Base has been 

conducting such psychophysical experiments tor an RPV mission. The speed and altitude of the 

Wright Patterson RPV's mission differ from the speed and altitude of the ARPA RPV. The Wright 

Patterson studies may therefore have limited applicabiliiy to the ARPA RPV mission. 

However, Wright Patterson has sponsored wovk at Virgin'., Polytechnic Institute and State Uni- 

versity in order to determine a more general measure of video image quality. This work has met with 

some success and has been reported in conference proceedings' -' and in a final report to the Aero- 

space Medicil Research Laboratory. At this time it is undergoing review by AMRL and by USC". 

In the absence of definitive results there are several tentative conclusions that have been reached. 

Since the ARPA RPV has a slow speed, low altitude mission, and since the human operator response 

time is approximately one-quarter of a second, the information rate (i.e.. frame rate for television) 

ne.'d only be approximately four frames per second. Again, since the ARPA RPV has a relatively slow 

speed, the time delay of the information for control and reconnaissance is not of critical importance. 

However, it is important in the target designator mission and should always be less than the human 

response time, preferably much less. 

The image quality necessary is more difficult to estimate. The resolution of home quality televi- 

sion is the best available estimate at this time. The Virginia Polytechnic stuuy should answer this in 

more detail. The camera itself has a very important role and the \idicon is not the best camera for 

RPV missions. The Navy, through NAVLLKX, is developing charge-coupled device cameras which will 

offer a better alternative to the vidicon. 

The value that color will provide to an RPV operator is also a subject of controversy. Studies 

have been made with contradictory results. This subject will continue to be investigated. The Univer- 

sity of Southern California has performed independent studies in this area. Their work will be detailed 

hi a later report. If it is determined that color i. necessary, then the primary implementation diffi- 

culty will be in the color camera. 
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BANDWIDTH COMPRESSION 

The amount of bandwidth required to digitally transmit television images is determined by the 

bit rate. The television bit rate is given by 

B.R.    B N*B*F . 

where N is the number of picture elements (pixels) per video frame, B is the number of quantization 

bits per picture element, and F is the frame rate. The number of pixels per frame is a measure of 

resolution. The number of bits per pixel is a measure of the dynamic range of the sensor and the 

display. The frame rate for broadcast television is determined by the avoidance of flicker in the 

display. Broadcast television has set this at thirty frames per second. 

Let us consider a channel over which the digitized television is to be transmitted. Let the 

channel bit rate be a given quantity.  It is, in most applications, a number fixed by considerations 

other than video bandwidth. It is determined in part by assumptions of white noise in a given band- 

width and a specified bit error rate which implies a given signal-to-noise ratio at the receiver. 

A relative compression ratio (in dB) can then be defined for use in comparing various band- 

width compression schemes as 

„        ,„,      /channel bit ratc\ 
-R. ■  10 log  ^ N*B*F j 

United States broadcast television has thirty frames per second, 525 lines per frame with 480 

useable lines and a 4;3 aspect ratio. Studio quality TV is stored digitally with 6 bits per picture 

element, 640 picture elements per line, and 480 lines per frame. Tl.   data rate for studio quality 

television is 55.3 megabits per second. Let us postulate a 20.0 megabit channel data rate. The 

relative ■ ompression ratio for conventional studio quality television is -4.4 dB; that is, the channel 

is inadequate.  Home quality television does not have the resolution of studio quality. The Univer- 

sity of Southern California has determined that a sampied image of 256 by 256 with 6 bits per pixel 

is comparable to home quality television. This has a data rate of 11.8 megabits per second. The 

C.R. for home quality television for the 20.0 megabit channel is 2.3 db. 

Computer studies in picture transform encoding have shown that the transforms allow the 

average number of bits to be reduced to approximately one bit per picture element without picture 

degradation. Optimum transform encoding has reduced tlvs to one-half bit per pixel. Let us con- 

sider the C.R. available for a r,56 by 256 frame at 4 frames per second with a transform encoder 
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capable of preserving nicture quality at one bit per picture element. The data rate is 262 kilobits 

per second and the C'.R. for a 20 n egabit channel is 18.8 db. 

If it is determined that the resolution of home television is adequate for RPV missions, then 

the linear transform frame encoding plus a reduced frame rate will give a relative compression ratio 

of 18.8 db. The feasibility of a real lime hardware implementation of this biindwidth reduction will 

be discussed in section ill. 

The amount of AJ available on the redundancy reduced data will depend on the subsequent 

coding algorithms used to encode the data. A coding scheme is being inves'igated that offers an 

additional 10 db of AJ. A computer emulation of the system has been programmed which will 

allow the testing of this and other proposals. This emulation is described in Appendix B. 

Signal reconstruction by an inverse transform at the ground station is straightforward. Addi- 

tional processing may enhance the picture. One such procedure is described in Appendix C.  Recon- 

struction enhancement will be investigated more fully in the next phase of the program. Appendix 

A contains a report by Habibi and Hershel which discusses a general reconstruction method. 
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3. TRANSFORM ENCODING 

INTRODUCTION 

The use of unitary transforms for image encoding has been evaluated for use as intraframe 

encoding techniques'* '. In addition, these techniques may also be applied to interframe and multi- 

spectral encoding. However, all unitary transformations are information preserving and no band- 

width reduction results from the application of the transform to the image. Instead, the transforms 

redistribute the variance associated with each picture element (pixel); so that subsequent to the 

transform, basis restricting operations on the transform coefficients will result in bandwidth reduc- 

tion. Upon reconstruction of the original image from the basis restricted transform coefficie its, a 

degraded version of the original image can be obtained.  Unfortunately, the interrelationship be- 

tween the type of transform, the form of the noninverflble operation, and the type of degra- 

dation in the reconstructed image is very complicated and subjective. The universally used analytic- 

criterion of the mean-square-error is at present, the best technique for transform comparison. 

For the particular operation of basis restriction by truncation, a particularly simple 

interpretation of the bandwidth reduction can be made. The transforms may be viewed as a vari- 

ance redistributing operation that approximately decorrelates the transform coefficients while trans- 

forming the variance associated with each picture element into the low-order coefficients of the 

transform. Under the assumption that each set of picture elements can be considered as a sample 

function from a wide sense stationary random process with correlation function r", there exists an 

optimum discrete transformation, the Karhunen-Loeve transformation, which totally decorrelates 

the transform coefficients and maximally compacts the variance to the low-order coefficients. All 

other transformations can be compared in their performance by comparing their transform coeffi- 

cient decorrelation and variance compaction with this optimum transformation. 

This intuitive interpretation can be made rigorous through the use of the rate-distortion criteri- 

on'4' ,  It has been found from experience that the closer the eigenvectors of the transformation 

approximate the eigenvectors of the optimum Karhunen-Loeve transformation, the greater the vari- 

ance compaction will be and the more the coefficients can be truncated while maintaining a fixed 

rate distortion or mean-square-error. 
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The use of two-dimension transforms can provide improved performance over the use of trans- 

formations on a line-by-line basis'5'. The most direct approach is to seek a two-dimensional trans- 

form which simultaneously decorrelates the transform coefficients and compacts the variance into a 

corner of the two-dimensional transform coefficient space. One method is to find a two- 

dimensional transform which can be represented as the product of a transform in one direction and 

a transform in the other direction. Assuming that a two-dimensional picture can be considered as a 
ITII   |TI| 

sample function from a random process with two-dimensional correlation r '  r, ' i.e., with a 

correlation coefficient r, in direction one and a correlation coefficient rj in direction two, then the 

optimum discrete transformation is the successive use of two Karhunen-Loeve transformations; the 

first with parameter r|, and the second with parameter ^ 

Another variable of interest in transform encoding is block size. For a one-dimensional signal 

the block size is the number of elements of the transform and the performance of the transform 

improves monotonically with increasing block size. For two-dimensional images, transform per- 

formance also increases with increased number of elements in each dimension of the transform. 

However, two dimensional transforms usually require intermediate memory to store the transform 

coefficients in the first direction while the transform is being computed in the second direction. 

Also of interest in two-dimensional transform encoding are mixed transforms, e.g., one hori- 

zontal transform and one vertical transform. Although performance increases with the number in 

each direction of elements in the transform, performance varies with the particular transform chos- 

en. However, memory requirements tend to increase linearly with the number of elements in the 

second transform direction since all of the coefficients must be stored from the first transform. The 

amount of intermediate memory may be minimized by the use of a small block size for the image in 

the second direction, but performance may not be optimized by this choice. The choice of a mixed 

transform thus interacts with the overall system design and the available memory for coefficient 

storage. 

KARHUNEN-LOEVE TRANSFORMATION 

If a continuous time function of zero mean and autocorrelation function TT = e-01^' is consid- 

ered to be a sample function from a wide-sense stationary random process, then this time function 

can be expanded by the Karhunen-Loeve expansion'^ and the resulting coefficients will be uncor- 

related. For a discrete function of zero mean and autocorrelation function RT ■ r'T', which may be 
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considered as a sample function from a first-order Markov process, a similar discrete Karhunen- 

Loeve transformation may be defined17'. This transformation diagonalizes the covariance matrix 

and is optimal in the mean-square error sense for a restricted set of basir functions that do not span 

the complete space. 

The discrete Karhunen-Loeve expansion is given by [71 for the case N = 2m as 

2m 

G(k) 
n=12m + Xn 

k = , 2m 

where 

X2 = n 
1-H 

1 - 2r cos cjn + r 

and lajn [ are the positive roots of 

tan 2mu) = 
-(1 -r2)sin CJ 

(cos CJ - 2r + r2 cos w) 

Since the discrete Karhunen-Lo^ve expansion involves both the solution of a transcendental 

equation and the evaluation of the autocorrelation function of the data to be transformed, real time 

computation of this transform is quite complex. However, Habibi and Wintz t31have shown that 

Karhunen-Loeve transformations using approximate autocorrelation functions are satisfactory for 

many applications. In addition, Pratt at USC is examining the use of corrected Fourier coefficients 

as a practical way of computing approximate Karhunen-Loeve expansions. 

The preceding considerations suggest that the Karhunen-Loeve expansion should be used only 

for small block sizes and that under these conditions either precomputed expansions or interpola- 

tion may be used. This complexity may be justified for multispectral encoding or for reduction of 

the memory required for a mixed transform. 

DISCRETE FOURIER TRANSFORM 

Since the discrete Fourier transform is asymptotic to the Karhunen-Loeve transformation 

even though the basis vectors are picture independent, the Fourier transform represents a logical 

181 
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choice for real time implementation. The Fourier transform exists for all lengths N. The basis 

vectors are complex and are given by 

/ . ^2* nk/N 
k 

If the input sequence is real, then the Fourier coefficients will be conjugate even. If the input 

sequence is real and even then the Fourier coefficients will be real and even. If the input sequence 

is non-negative and symmetric, then the Fourier coefficients will be an autocorrelation sequence. 

Many methods exist for the computation of discrete Fourier coefficients. The Goertzel algo- 

rithm requires a number of computations proportional to N*- but can be used for all lengths N. 

When N is highly composite "fast" transformations can be used'   '. Thus, if N is of the form 2', 

then the number of computations can be made proportional to Nq. Although "fast" algorithms 

have been successfully used on General Purpose Computers they are too slow for real time computa- 

tion since the algorithm iterates q times before achieving a solution. This problem can be overcome 

by the use of q processors in a pipeline architecture' '^', although this increases the complexity of 

the processor. 

A linear filter implementation also exists for the discrete Fourier transform which is both 

easily implemented and suitable for real time computaiion. This algorithm, called the cbirp-Z- 

trr.nsform' '   ' is based on the substitution nk = [n^ + k~ - (n -krl/2 and can be used for any 

length sequence N. The transform may be summarized as a premultiplication by a discrete chirp, 

convolution with a discrete chirp of twice the length, and postmultiplication by a discrete chirp. 

This transform may be computed with either acoustic surface wave filters or charge transfer de- 

1121 vices1     J. 

DISCRETE COSINE TRANSFORM 

Certain properties of Fou»ier transforms should be observed when using the discrete Fourier 

transform (DFT). The DFT is the Fourier series representation of periodically extended data and as 

such has convergence properties which depend on the input data. If the periodically extended data 

is discontinuous, then the convergence will be of the order of l/n; if, however, the periodically 

extended data is continuous, then the convergence will be of the order of 1 /n2.   i t'e cosine trans- 

form makes the data appear to be continuous. 
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I A discrete cojine transtorm of a data sequence g(n), n = 0, 1, . . . , (m - 1) can be defined as 

N-l IN-1 

G(0) ■ :1,2/N   S   gin 

n=0 

N-l 
G(k) ■ 2/N y   g(n)cos|(2n+I)k7r/:N! k • 1, 2,.. . ,(N - 1) 

n=0 

The basis vectors are a class of discrete Chebyshev polynomials which are real and are given by 

^ = cos{(2nt l)kt/2N] 

Ahmed' '^' has investigated the use of these basis vectors as substitutes for the Karhunen- 

Loeve basis vectors and finds that they are superior to the Fourier basis vectors and comparable to 

the Karhunen-Loeve in reducing the mean-square-error in basis restricted transformations while 

maintaining the computation simplicity of a transformation which does not depend on the picture 

statistics. 

A somewhat different definition of the cosine transform is given by Cooley et alJ '4' along 

with the necessary operations required to compute the cosine transform with the Fast Fourier 

Transform. However, the auxiliary operations are somewhat involved and the length of the trans- 

form must be chosen so that the modified data is correct for a fast Fourier transform. 

In order to take advantage of subsequent processing algorithms, it may be desirable to have the 

Fourier coefficients be a real autocorrelation sequence. This requires that the data sequence be ex- 

tended so that it is symmetric about the first data value This automatically assures that any subse- 

quent periodic extension is continuous but also results in a data vector which has an odd number of 

values. A third cosine transform can be defined for the symmetrized data even though the resulting 

sequence length is odd. This transform can then be computed with the chirp-Z algorithm or direct- 

ly by the modification of the Fourier transform: 

N-l 

I 
n=l 

G(k) ■ g(0) + Re V    g(n)e-Jkn/(2N-1) 

—      -—     ■-■   —     -   -   -   -   - ——~—..          ■ m-      ■ - 



Even though these symmetrized transforms conceptually use a symmetrized data sequence, 

their implementation is no more comphcated than CZT of the onginal data length and only re- 

quires a change m the CZT reference function. The performance will be that of a sequence which 

has been extended to be cont.nuous white the transform will be real and half of an autocorrelafon 

function. 
The th.rd cosme transform is recommended as the primary transform for unapc process.ng m 

the horizontal direction and may easily be used on the video in real Urne. Its use m the vert.cal 

directum must be compared with other transforms, however, since memory must be employed for 

intermediate storage and this memory increases l.nearly with the size of the transform i.. the vertical 

direction. 

.. 

SLANT TRANSFORM 

In ord-r to have a b-tter match between the charactenstics of television mages and the basis 

vectors of the orthogonal transformations used to transform these images, Shibata and 

Enomotol 151 introduced a transform of which the second basis vector decreased in uniform steps 

over Us length. Pratt, Welch, and Chen"61 have developed the slant transform in such a manner 

that .t preserves the "sequency" properties of the Walsh-Hadamard transform as well as maintains a 

"fast" algorithm for computation. 

Unfortunately, the transform is no longer binary and multipliers nnut be used in the computa- 

tion. Thus, the transform may either be computed dig.tally or by means of a transversal filter with 

as many weighting networks as there are basis vectors in the transformation. These considerations 

appear to limit the applicability of the slant transform to applicat.ons such as the vertical encoding 

of television images; here the significant improvement m performance of the slant transform offsets 

lack, at present, of a simple real time computation implementation. 

WALSH-HADAMARD TRANSFORM 

The Walsh-Hadamard transform in one dimension has basis vectors which are the discrete Walsh 

functions. The discrete Walsh functions are an orthonormal sequence of length N canonically de- 

fined for N = 21, q a positive integer. The values of the Walsh functions are +1 and -1. The "sequen- 

cy" property of the Walsh functions exists when the basis vectors are ordered by the number of sign 
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li changes which occur in each basis vector; the number of sign changes increases linearly through the 

non-negative integers from 0 to 2^ - 1. This corresponds to the number of sign changes which occur 

for the discre-o Fourier Transform as it increases in frequency from DC to frequency 2(^",. 

The canonical Hadamard matrix of length 8 is of the form 

H(3) ■ 

Sequ«ncy   0 

7 

3 

4 

I 

6 

: 

5 

1   1 

T i 

i T 

T T 

T T 

i T 

T i 

i i 

The first 8 Walsh functions ordered by sequency are of the form 

sequency 0 1,1, 

1 1 1 

2 1 1 

3 1 1 

4 1 T 

5 1 T 

6 1 T 

7 I | 

One factorization of H(3) into sparse matrices which gives a "fast" algorithm similar to the 

fast Fourier transform''7' is of the form 

1   1 > 

H(3) = 

l I   I 

i 
ii n 

11 i 

i i 

1 0 i o| i          1 i 
- 

0  1  0  1 | i           i 

i o T o 1 i    i       i 

_o_jqJi h i 

| 1  0  1  0 
 1  

i         |7 
io 1 0 1 i       i   T 
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The corresponding signal flowgraph is of (he inrm 
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etc. 

X:(5) X3(5) 
etc. 

'X,^)                  X2(6) X3(6) 

X(7)/_   ^XjC?)                X2(7) XjC?) 

which is observed to have no multiplication other than ±1. This makes possible a simple hardware 

implementations of the algorithm and its computation for large block size. 

The importance of large block size becomes significant when it is observed that the one- 

dimensional Walsh-Hadamard transform of size N2 is the complete two-dimensional Walsh- 

Hadamard transform of size N if the input vector to the one-dimensional transform is obtained by 

appending successive rows of the two dimensional data together, starting with the first row.  In 

terms of minimizing the auxiliary memory, this t»' -dimensional property may be significant. How- 

ever it imposes constraints on the scanning of the original image and a "pipeline" implementation 

would b.' required for real time computation. 

Alternatively, a transversal filter implementation of the Walsh-Hadamard transform is possi- 
II Kl 

ble1      . This implementation requires that the number of weighting networks be equal to the size 

of the transform which becomes large if a one dimensional transform is used «or two-dimensional 

processing. 

The basis vectors of length 8 in "sequency" order and shifted for real time implementation by 

transversal filtering are of the form 
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The large number of weighting networks can be eliminated through the use of an electronically 

variable tap weight implementation. If the basis vectors of the transformation are imagined to be in 

"sequency" order and successively shifted to the right with increasing "sequency," then a tap weight 

"sequency" can be derived that will successively compute each Walsh-Hadam rd transform coeffi- 

cient using a transversal filter with 2 N - 1 taps. The time behavior of a 15-tap filter is shown as tap 

weights for an electronically variable tap weight implementation of the form 

_ — *■ time 

Tap  1 

: 

3 

4 

5 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0 0 0 0 0 0 0 

1 0 0 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 

0 0 0 

0 0 

1 

o T 
0 0 

0 0 0 

0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 0 

Ü 
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HAAR TRANSFORM 

The Haar tramt'orm in one dimension has basis vectors which arc the discrete Haar functions. 

The Haar finctions are an or'honormal sequence   |0   | characterized by two parameters m and n 

For a sequence of length N ■ 2(?. n ■ {(), I q{ and m ■  \\. 2 :n"'} . A transform of 

length N - 2   has the basis vectors in the form 

0O -     1.1.1,1,1.1,1,1 

*j ■ ji, i. i. i.T.T.T. i 

<p\ ■ (2H,214.2%.2H,0,0.0,oj 

0- - Io.0.0.0.2*i.2vi.2*i.2Vi) 

<t>\ T 1:. 2,0. (uuuu)| 

0^ ■  lo.O, 2.3.0, D.O. 0 

p3 = jo. 0,0.0,:. 3.0.0j 

$* -- jo.o. 0,0.0. o, 2,2 

:i 
In general lor N = ^ 

f -.(n-l)/: 

..(n-l)/: 

0 

m-1   ,     ^m + 1/2 
,11-1 ,n-I 

.n-l 2I,-| 

m-1 
0< T < rand - »n-l >n-l 

m 

The Haar translorm may be of interest in image encoding since it is a generalized dillerential 

encoding. In normal dillerential encoding, N-l first differences of successive data points are trans- 

mitted as well as the first data pjint. However, if an error occurs in any of the differences or in the 

first data point, then all subsequent reconstructed values are in error    Hie Haar transform tends to 
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overcome this difficulty by transmitting N/2 COntigUOUi differences and N/2 - 1 compound dit'l'er- 

ences as well as the si'.m of data values. 

From an implementation viewpoint, the Haar transform is interesting since it has several con- 

venient hardware implementations. There are "fast," transversal, and recursive filter implementa- 

tions. 

The "last" implementation of the Maar transform is particularly convenient because the 

original matrix has many zeroes.  That is. instead of requiring a number of operations proportional 

to N log-> N the number of operations required for the Haar transform is proportional to N. 

Corresponding simplifications are possible in a transversal filter implementation since the 

number of weighting networks is only 1 + log2N since many of the weighting networks may be used 

for the computation of more than one Haar coefficient 

The use of the Haar transform as the vertical transfo.m for image encoding should be investi- 

gated since log-, N + I delay line memories may be used as recirculating integrators for the recursive 

calculation of the coefficients of the transform. This transform is second only to a differential 

pulse code modulation in memory requirement as a vertical transform while simultaneously provid- 

ing some protection against error propagation. The Haar transform does not have a "sequency" 

property, although it may be considered to sample the input waveform at progressively coarser 

intervals' *9'. 
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4.  HARDWARE  IMPLEMENTATION FEASIBILITY 

Laboratory tests at NUC have been made to determine the feasibility of implementing the 

vario is candidate compression systems. A computational system architecture tor performing the 

two-dimei sional image transformation which meets the ARPA requirements of low cost, low power, 

and low weight has been determined. This architecture is described in more detail in NUC TN 1026 

which is attached as Appendix D. 

Two areas of technology have been investigatec in detail; surface wave devices and charge 

coupled devices. These devices, along with multipliers, provide a means of implementing a real time 

video transform processor. The block size which can be built for a two-dimensional transform is a 

function of the transform technology and the memory technology. The memory primarily impacts 

the choice of the vertical dimension transform. 

A surface wave device presently under construction at NUC has been designed to implement 

the chirp-Z-algorithm for the Fourier transform. The overall time delay of the filter response is 

related to television scan rates and has been chosen as 1/4 of 53.5 ßs. It was judged reasonable 

to divide this into 64 sample intervals, which led to the choice of 0.209 /is as the sample interval. 

Implementation of the filter at bandpass was achieved by further subdivision of the sample 

interval into an integer number of periods that correspond to a frequency in the range 25-30 MHz. 

The chosen integer was 6, and the corresponding period (frequency) was .0348 ^s (28.7 MHz). 

Each sample of the chir^ function was represented by a group of three finger-pairs separated by a 

space of three carrier wavelengths. 

The chirps sweep from ^ero to about 2.4 MHz to zero to 2.4 MHz and back to zero again (an 

inverted-W-FM). They are represented on the surface wave device as an amplitude modulated series 

of 28.7 MHz finger groups, each group being weighted by the amount of overlap of its fingers. One 

pair of sine and cosine chirp filters is interrogated by one input signal and the other pair by a second 

input signal. The four outputs are combined according to the complex CZT algorithm. 

A charge transfei device (bucket brigade) transversal filter has been built by Texas Instruments 

as part of a study funded by Rome Air Development Center, it is a 200 stage device capable of 

operating at around 0.2 MHz. At present it is undergoing evaluation at NUC. It appears to be 

capable of implementing a modeled cosine transform. 
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Th! extension of these technologies to the sizes and speeds necessary for video signal process- 

ing appears to be straightforward. The preliminary production cost, power, and weight of the vari- 

ous system components are given in Table 1. 

In the course of the television bandwidth reduction study, the television sync signal was identi- 

fied as a major area which had not been thoroughly considered. It is desirable to provide a high AJ 

margin on the sync signal so thai the display will remain stable under adverse conditions. Prelimi- 

naiy feasibility studies have indicated that the RPV status could be included on the sync channel. 

Table 1. Preliminary System Production Costs, Power, Weight 

: 

a 

Development Costs 

Transversal filter 

51 2 Taps CCD 

SWD 

9 munths     1 2 months development dme 

Power < 1 watt 

Memory for vertical transform 

16 X 256 CTD 

SWD 

9-1 2 mo. development time 

Power < 2 watts 

TV sync + data encoder 

SWD 

Power *  1.2 watts 

TV Transform data encoder 

LSI 

Power < 5 watts 

S50-75K 

in house (S50-75K) 

Weight < 1 lb 

S50-75K 

S100K 

Weight < 1 lb 

$120K 

Weight < 1 lb 

10K 

Weight < 1 lb 

Production Costs 

%    5.00 

100.00 

S   15.00-20.00 

100.00 

20.00 

$   10.00-20.00 
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5.  RECOMMENDATIONS FOR FOLLOW-ON TASKS 

A computational system architecture has been determined tor performing the two-dimensional 

image transformation whi;;h meets the ARPA requirements of low cost, low power, and low weight. 

The recommended transform for at least the horizontal scan direction is the cosine transform. It 

has performance equivalent to the optimal transform. The choice of the transform in the verti- 

cal direction is impacted by the memory available in the RPV. Continued system design and mem- 

ory development will be necessary for the airborne computational system. 

The following tasks are recommended for follow-on work' 

(a) Continue collaboration with the University of Southern California to develop and evalu- 

ate various transform techniques. 

(b) Continue airborne system design. 

(c) Determine and develop necessary memory technology. 

(d) Design and develop transform data encoder compatible with modem. 

(e) Provide television sync encoding with large AJ margin. It is also recommended that the 

down link data be ircluded in the television sync system. 

(f) Integrate system components at NUC. 

(g) Simulate the channel and evaluate the AJ of the video system. 

(h)   Field test the system eighteen months after receipt of ARPA order, 

(i)    Monitor continuing work at Wright Patterson on necessary operator requirements for 

various missions with Decision Science. 

(j)    Design and develop ground station display and postprocessing. 
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.. 
REPORT SUMMARY 

This report details the results of the first phase of a NUC program on image bandwidth p-duc- 

tion tor application to the ARPA RPV problem of sending television images ove, spread spectrum 

channels. This report presents primarily a study and feasibility testing phase. 

It has been found that significant bandwidth reductions are available by means of linear trans- 

formations applied to the image and filtering in the transform domain. Such techniques are the 

only presently known methods to obtain large redundancy reduction ratios. Bandwidth reductions 

by a factor of 6 are easily attainable without significant picture degradation. Reductions by a fac- 

tor of 1 2 only slightly degrade the picture. 

The image redundancy reduction has been done on a high speed general purpose computer at 

the University of Southern California Image Processing Institute. The Naval Undersea Center has 

determined that the linear transform techniques developed at USC and NUC can be implemented in 

real time with small low cost hardwar> suitable for the ARPA RPV. 

For example, the Fourier transform may be implemented in this manner by utilizing the chirp- 

Z-transform algorithm which provides an exact decomposition of a discrete Fourier transforrr into 

premultiplication by a discrete chirp, correlation with a discrete chirp, and postmultiplication by a 

discrete chirp. The hardware required to implement this algorithm L thus the equivalent of a com- 

plex filter, a pair of complex multipliers, and a pair of complex sequence generators. The compula- 

tion time required is linear in the desired discrete transform length, and the cost is nearly linear in 

the length. The sequence generators may be read-only memories, and the filter may be provided by 

a transversal filter device. High speed acoustic surface wave implementation will permit a two- 

dimensional transform to be realized as a succession of one-dimensional transforms. When high 

speed CCD devices become available they will provide direct replacement for the surface wave 

filters. 

The principal result of this preliminary iuudy phase of the program is the recommendation that 

a hardware development and implementation phase be initiated. A flight test of the bandwidth 

reduction system is feasible eighteen months after initiation of the hardware development phase. 

An overall bandwidth reduction of the order of 20 db appears to be feasible without significant 

picture degradation. 
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APPENDIX A 

USC PHOTOGRAPHS AND REPORTS 

This appendix contains transformed photographs done under contract N00123-73-C-1507 at 

the University of Southern California. The second part of Appendix A is an article by Ali Habibi 

and Ronald S. Hershel. Ali Habibi is tl e principal investigator for the USC contract. A more 

formal USC report will be presented by the hr.age Processing Institute at a later date. 
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(a)   Original (b)   Karhunen-Loeve 
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(c)    Fourier (d)   Hadamard 

I 

Figure 9.    The original and the encoded pictures using one- 
dimensional transformations and DPCM systems,   1 bit/pixel, 
M =  16. 
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Figure  10.     1 he encoded pictures using the cascade of one- 
dimensional transformations and DPCM systems,  2 bits/ 
pixel,   M =   16. 
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0 A UNIFIED REPRESENTATION OF DPCM AND TRANSFORM CODING SYSTEMS 
by 

All Habibi and Ronald S.  Hershel 

Abstract 

We consider a transform coding s^dtem that uses a  lower-triangular 

transformation to uncorrelate the data.     Based on this  transformation we 

propose a generalized DPCM system and show that at high bit rates it per- 

forms almost as well  as coding by the method of principal components 

(Karhumen-Loeve transforaaticn). 

This study connects  the  transform coding system to the DPCM encoder 

by showing  that the proposed system simplifies to a standard DPCM encoder 

for markov data. 

I.     Introduction 

Two important classes of coding systems  that are based on eliminating 

the correlation of  the data prior to quantization and subsequent encoding 

are the differential pulse-code modulation   (DPCM)   and  the transform coding 

systems.    Both classes have received a great deal of attention in the 

recent literature and have been uied successfully in coding pictorial 

data. Historically both teciniques were developed  separately and are 

treated individually and often by entirely different groups of researchers. 

The only establish, d link between the two systems  is  the  fact that both 

attempt to generate a set of uncorrelated signals prior to quantization by 

a memoryless quantizer or a  set of quantizers.     The Karhunen-Loeve trans- 

formation,  also known as the method of principal components for sampled 

data, generates the uncorrelated signal by using an orthogonal transforma- 

tion that diagonalizes  the autocovariance matrix of the data.     The DPCM 

system,  on the other hand,   is designed based upon modeling the data by a 

markov process,  then using a best linear prediction to obtain the set of 

uncorrelated signals. 

This research was supported by the Naval Undersea Center,  San Diego under con- 
tiact N00123-73-C-1507 and by the Advanced Research Projects Agency of the 
Department of Defense and was monitored by the Air Force Eastern Test Range 
under contract F08606-72-C-0008.    The authors are with the Department of 
Electrical Engineering,  University of Southern California,  Los Angeles,  Ca. 90007 
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In this paper we will consider the DPCM system and show that it is 

indeed a member of the class of transform coding systems where a lower 

triangular matrix is used to transform the data to a set of uncorrelated 

signals. This approach will provide a fresh outlook to the theory of the 

DPCM system realizing that the DPCM system is a special case of a more 

general coding system where a lower triangular matrix is used to transform 

the data to a set of uncorrelated signals.  This system, unlike coding by 

unitary transformations, combines the operation of the transformation with 

that of the quantizers.  The entries of the lower triangular operation are 

related to the covariance matrix of the data.  For an n  order markov 

process the triangular operator has n off-diagonal bands with identical 

elements within each band.  Thus, for this special case the transformation 

is performed recursively and is identical to the linear predictor in an n 

order DPCM system. 

II.  Transformation by Lower-Triangular Operators 
T Consider an N-dimensional data vector X = (x,,x_,.,.,x, )  and let 

12     b 
X represent a sample vector from an ensemble of N-dimensional zero mean 

random variables.  X can also be considered as a vector of N samples {x.} 

that results from sampling a continuous random process uniformly over a 
T finite interval.  A vector Y = (y, »y_f..»y )  can always be generated from 

12     n 
a linear combination of x.'s as 

i 

yl = X1 

j-l 
y. «= x. - I Jl, .x, 
3   1  k-1  ^ k 

for j = 2,...N (I) 

or in vector form 

LX (2) 

where L is a unit lower-triangular matrix; i.e., 

I 
: 

; 

:: 

;: 
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L = 

1 0 0 0 

"»a 1 0 0 

-Si "Si 1 0 

0 0 

0 o 

0 0 

-I        -I 
VN-I

X 

(3) 

Denoting the covariance matrices of X and Y by C and C respectively, (2) 

implies that 

CY = L Cx L (4) 

Cholesky has shown that for every symmetric positive definite matrix C 

there exists a real non-singular lower-triangular matrix L such that matrix 
T (8) 

L C L is diagonal.    Martin and Wilkinson have considered numerical 
K 

algorithms for finding L and C and have developed efficient techniques 
3,    .    (9,10) 

requiring only N /6 multiplications. 

The fact that the transformation (2) diagonalizes the covariance 

matrix of X indicates that the elements of Y are uncorrelated. 

Some of the significant properties of the transformation by the unit 

lower-triangular operator are: 

1) The unit lower-triangular operator L is not unitary; thus trans- 

formation (2) does not preserve the length of a vector.  As a result though 

the determinant of the covariance matrix of X is invariant under this trans- 

formation, the trace of the covariance matrix is not invariant. 

2) This transformation does not share the optimum concentration of 

energy in the first M £ N components of Y exhibited by the method of 

principal components.  Indeed, for an n  order markov process the variances 

of the Y components, except the first n components, are all equal. 

3) Tremsformation with the lower triangular operator L does not 

require a transformation delay. 
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Note that if the components of x are samples from an n*^ order 

markov process the stochastic linear model of (1) will be 

n 

j  ^  k=1 ^ J-J 
j = 1,2,...fN (5) 

where x - 0 for i = 0,-1,-2,... .  Then the operator L will be a banded 
n 

matrix of n+1 bands; i.e.. 

1 

-a. 

-a 
n 

0 

1 

-a. 

-a 

0   0 

0 0 

1 0 

n-1 -a. 1 

-a. 

-a 
n 

0 

1 

-a. 

o 

o 

0 

0 

0 

(6) 

I 
] 

Transformation of an N vector with operator L requires less than nN 
2 " 

multiplication as compared to N /2 - N multiplications needed for trans- 

formation with the unit lower-triangular operator L in its general form. 

Furthermore, since transforming with Ln operator requires only the n most 

recent components of x, this transformation can be perfomed by using a 

feed-back loop identical to one in an nth order DPCM system to perform the 

transformation recursively.  In this case the complexity of the transforma- 

tion is independent of the dimensionality of X and depends only on the order 

of markov process n.  The block diagram of the system using the feed-back 

loop for operation L X is shown in Figure 1. 

] 

.; 

: 

:: 

111•  Coding by the Method of Principal Components 

Before proceeding with the lower triangular transformation we will 

briefly review coding by the method of principal components and block 

quantization.  The block diagram of this system is shown in Figure 2. Huang 
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and Schultheiss    considered this problem first and proved that given a 

total number of binary digits N6  (a finite capacity digital channel) the 

average coding error is minimum if vector X is transformed to an uncor- 

related vector Y by an orthogonal operator A and Y is quantized by block 

quantization.  Matrix A is an operator that diagonalizes the covariance 

matrix of X and the block quantization of Y involves issigning N0 binary 

digits to N components of Y proportional to the logarithms of their 

variances d.; i.e. , 

,: 

m, = 6 + 1   =--; 
1      Jen 10 

'In 

Kl l/N 
(7) 

N 
where |cx| is the determinant of covariance matrix C and E m = NO 

X    1=1 i 

This rule was obtained by observing that optimal quantization of Gaussian variables 
m. 

y using a quantizer with 2 1 levels introduces a quantization error q 
♦ i 

such that 

9      0     -ni./2 

1{«J) = i{yj) do) 1 
(8) 

Substituting (7) in (8) gives 

i^)S |CX|
1/N (10)-e/2 = A (9) 

;: 

D 

Q 

D 

Equation (9) indicates that the block quantization of Y results in an equal 

quantization error A for all components of Y.  Note that (9) does account 

for the inaccuracies due to using integers for m., thus A should be viewed 

as the lower bound of the quantization error.  Since each quantizer is 

independent and the quant: .ation error is additive, the quantized vector Y* 

is 

• -2m £n 2 
Huang and Schultheiss use an approximation that involves 2  1 

further studies of the problem have shown that (8) is a better 

approximation.  '  ' 

but 
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and 

Y = AX + Q 

E{QQ } = Al 

(10) 

(11) 

where I is the identity matrix.  This gives 

that 

*      -1 
X = X + A Q 

gives a reconstructed vector X such 

(12) 

The total error for the system is the trace of the covariance matrix of the 

error vector X-X , thus from (12) the average coding error is 

2   1     r. i 
eb = - tr {AI} = A (13) 

It is interesting to note that the above coding system not only minimizes 

the coding error but it also gives an uncorrelated error in the signal 

domain which is a desirable property in many applications of the coding 

system. 

Note that if all components of Y are quantized using G bits for each 

compor^rt the total coding error would be the same as it would result by 

coding the components of X directly.  This can be seen by noting that using 6 

bits per component the average ceding error is 

«J - i tr [A"1 .(A W] 

where the components of the quantization error Q are uncorrelated with 

variances equal to E{y2}(io)-e/2-  Therefore 

(14) 

h i°-e/2 tr[A" Cy(A"
1)T] = 10 -6/2  2 

X (15) 

where ax is the common variance of {x.} and (15) is the average coding error 

that results by quantizing the components of x vector directly. We note in 

passing that this result is true for any transformation that generates an 

uncorrelated Y vector including the transformation by the lower-triangular 
operator L. 
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IV.  A Generalized DPCM System 

Transformation of vector X by the lower-triangular operator L results 

in a vector Y where the components of *  are uncorrelated and in general have 

unequal variances.  Components of Y are quantized uring the block quantiza- 

tion technique discussed in Section III and are transmitted.  Vector X can 

be reconstructed at the receiver, within some level of degradation, by 

operating on the coded vector Y+Q with operator L"
1
.  The average coding 

2 . 
error E; IS 

L 

L   N 

(16) 

where A is defined by (13).  The readers will note that (16) is subject to 

sünilar inaccuracies as (18) and thu« it also should be viewed as a lower 

bound or the performance of this coding system. 

Comparison of (13) and (16) show that using lower-triangular operator, 

a non-unitary matrix, rather than the method of principal components to un- 

correlate the data prior to its block quantization results in an inferior 

coding system. This is evident from the fact that L-1 is a unit lower- 

triangular matrix, thus 

tr [L"1(L'1)T] > tr I 
(17) 

I 
1 

When compments of X belong to a first order markov process the 

block diagram of the above coding system is shown in Figure 3a. Then only 

two quantizers are used where one encodes ^ and the other y2 through yN; 

since y through yN have identical variances. From published literature 

the performance of this encoder improves by including the quantizer in the 

predictor loop as shown in Figure 3b. This combines the operation of the 

quantizer with the transformation and is identical to a DPCM system with 

the stipulation that a separate quantizer is used to encode the first com- 

ponent of the differential signal. Naturally the effect of using only one 

quantizer is negligible for large N; thus two systems are identical. 

Since L is a triangular matrix, the operation of the quantizers can 

be combined with the transformation to give a generalized DPCM system. We 

propose a combination of the transformation and the block quantization, 

similar to cr.e in the DPCM system, and show that the performance of the 

generalized DPCM system at high bit rates approaches the performance of the 

4G 
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encoder using the  method of principal components and the block quantization. 

This system uses N2/2 - N multiplications to transform the data and requires 

no coding delays.  It simplifies to an n  order DPCM encoder if components 

of data X belong to an n  order markov process. 

The block diagram of the generalized DPCM system is shown in Figure 

4.  The components of input vector X.,«.,...ill. are operated upon in sequence 

at times t,#t„,...,t respectively.  Switches S , i = 1,2,...II are closed at 
1  2     N * 

t and remain open at all other times. Variables z., i = 1,...,N are 
i » 

generated recursively and are stored in separate locations. z^  through z 

are read out at each t. and are multiplied by variables C^ through C., 

respectively, to form z.  which in turn is stored at time t.^.  Vector C 

is the j  row of the matrix (L-I) at time t for j = 1,2,...,N. 

Denoting the components of the quantized signals by {y^, the recur- 

sive relation for iz.} from the block diagram is 

*  i"1 
z. = y. + I    I. .z. 
1   *  j-1 lj : 

for i = 2,3,...,N (18) 

and z.   = y,»   furthermore 

and 

Y = Y + Q 

Y =Lx + (L-I)Q 

(19) 

(20) 

I 
1 

where Y is the signal at the Input of the quantizer, Q is the vector of 

quantization error.  These equations indicate that vector Z = (z ,z ,... 

z )T is identical to the reconstructed vector X at the receiver. Thus 

from (19) 

and 

X - X = Q 

Y = Y + (L-I)Q 

(21) 

(22) 

where Y refers to the uncorrelated vector LX. From (22) and realizing the 

fact that E{y.q.} = 0 for j = 1,2,...,1-1 
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i-1 i-l 
B{JJ) = Eiyh   *     I       I     l^l^  E{qiqj}     1 = 2,...»N (23) 

and E{yJ} = E{yJ}.  Note that {qJ are in general correlated since they 

result from quantizing correlated variates {y.}.  This hampers an accurate 

analysis of this system however assuming fine quantization of {yj the 

correlation of {q.}aro negligible and if block quantization of {y^ is per- 

formed optimally, using the variances of {y^from (8) and (23) 

i = 2,.. . ,N (24) 

and E^q2} - A. Equations (23) and (24) specify variances of {yJ in terms 

of the covariance matrix of the data Cx and the bit rate 9. From (21) and 

(24) the average coding error for the generalized DPCM system is 

C~ = T: 
A (25) 

i 

where A, defined by (9), is the coding error by the Mthod of principal 

component.  Analogous to (9) the error given by (25) also should be treated 

as a lower bound for the performance of the generalized DPCM system. 

Figures 5 and 6 show the performance of this system as given by (25) and the 

performance of the optimum system (method of principal components) for two 

non-markov procesres.  These processes are defined by their autocovariance 

functions 

(T) = 
1 + 0.2 x 

T = 0,1,2,... (26) 

I R2(e) 1 + 0.05 T 
0,1,2,, (27) 

T 18 
— 

-   
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These figures also show the coding performances of PCM and the rncoder that 

uses transformation by operator L and block quantization separately. 

For the special case where {x.} is an n  order markov process the 

operator L is replaced by L of(l6).Then the elements of vector C remain 

,.  , ,   ,-i x      <- fn„  ; - i 9 ^      n    This also makes the variances fixed for all t., except for j - I, &, 3 , n, 

of the components of the transformed vector, again except the first n com- 

ponents, identical.  Thus the block quantizer will consist of only n+1 

quantizers.  This reduces the generalized encoder to an n  order DPCM 

system with the stipulations that; first, n+1 quantizers are used to encode 

the differential signal, second the quantizers are designed using the 

variance of the differential signal where the effect of the quantization 

error is accounted for.  Naturally the degradation of the encoder due to 

using only one quantizer becomes negligible for large values of N. 

For the case of the first order markov process the coding error from 

(25) for large values of N is 

eG = 
do)-e/2 (1-0*) 

1 - (10)-e/2 al 
(28) 

The numerator of (28) is the coding error of the first order markov process 

by the method of the principal components for large values of N.  The excess 

error due to usr.g an improved DPCM rather than the method of the principal 

components is less than 1.1% for o^ = 0.9 and 6 = 2, and reduces sharply at 

higher bit rates. 

:. 

: 

V.  Conclusions 

We have considered a transform coding system that combines a lower- 

triangular transformation with a block quantizer to convert a set of sampled 

data to a string of binary digits which can be converted back into a replica 

of the data.  Separating the operation of the quantizer from that of the 

transformation, as in the unitary transform encoders, results in a correlated 

coding error at the receiver and a rather inefficient coding system.  How- 

ever, combining the operation of the quantizers with the transformation of 

the data such that the coding errv-r at the receiver is uncorrelated improves 

\ 
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the coding efficiency of the system significantly. The resultant encoder 

is only slightly suboptimum to the system that uses the method of principal 

components at low bit rates. At high bit rates the performance of both 

systems ure identical. This was verified for a number of processes with 

different autocovariance functions. 

Transformation by the lower-triangular operator involves no coding 

delay and requires less than half as many multiplications as the method of 

principal components requires. 

Combination of the transformation and the quantization is similar to 

the procedure employed in the DPCM system.  Furthermore the proposed encoder 

reduces to an improved form of DPCM encoder for markov processes, thus it is 

referred to as a generalized DPCM encoder. 

The fact that the generalized DPCM system reduces to a DPCM encoder 

for markov processes establishes a link between the DPCM and the transform 

coding systems making a unifoed approach to coding by these two techniques 

possible. Furthermore we have shown that the theoretical performance of a 

modified DPCM system is optimum at high bit rates. At low bit rates it is 

only slightly suboptimum to the encoder using the method of principal com- 

ponents. 

I 
i 
T • 
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Fig    1     Block Diagram of the System Performing Transformati on 

Y = L    X n 
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i: 

This report c3escribes a signal processing interpreter which was developed 

as part of the ARPA sponsored program for image transmission via spread spectrum 

links.    The signal processing interpreter SPIN3 is an interactive program for 

use at a time-sharing demand terminal.    It provides the user with the equivalent 

of a calculator designed to perform signal processing operations and provides 

the software equivalent of a large number of nodules for breadboarding a ccrplete 
signal processing system. 

This interpreter is meant to be used by engineers and scientists who are 

familiar with signal processing, but who may have no knowledge of prograimdng. 

The signal processing interpreter is particularly useful for the rapid 

investigation of systems whose ocnplexity precludes a cotplete analytic study, 

and whose utilization of new components may make hardware breadboarding 

undesirable because of cost and procurement time limitations. 
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a 
The signal processing interpreter is an interactive program for use at a 

tiine-sharing demand terminal. It provides the user with the equivalent of a 

calculator designed to perform signal processing operations - the software 

equivalent of a large collection of modules for breadboarding a complete signal 

processing system. Such a system might include an information source, a source 

encoder, a channel encoder or modulator, a channel with noise, janming, and 

multipath, a channel decoder or derodulator, and an information decoder. 

Typically, one vrould wish to compare several such systems operating through 

each of several channels. 

Ihe ccmplexity and variety of the systems and channels will frequently 

preclude a ocnplete analytic comparison, while cost and procuranent time limit 

the flexibility of a hardware breadboard of a system utilizing new components. 

The to critical requirements for such a signal processing interpreter 

are:  (a) It must include the most frequently needed signal processing operations, 

with a provision for readily adding new operations as the need arises; and 

(b) It must be easy to use by engineers aid scientists who are familiar with 

signal processing, but who may have no knowledge of prograiraüng. 

The signal processing interpreter SPIN3 which will be described here was 

developed as part of the ARPA ifonwrad program for image transmission via 

spread spectnm links. The comand set is imant to be general enough for a 

variety of signal processing prcilems. In addition, special ocrtrands are 

available for examining and processing portions of pictures in order to facilitate 

the oarparison of proposed image transmission systems. 

II. 1 
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III 

i. 
:; 

HOW TO USE THE SIGNAL PROCESSING IfHIRPREIER 

The signal processing interpreter is structured around an operational stack. 

Such stacks are used in many corpilers, in the Burroughs B5000 caiputer, and in 

the HP-35 calculator [1,2,3]. The stack structure used in the signal processing 

interpreter is in fact identical to that used in ehe HP-35 except for the 

differences necessitated by dealing with ccrplex vectors rather than real 

scalars. 

Tne stack consists principally of the cotplex vectors X,Y,Z, and T. There 

is also a storage vector S which is effected only by the cotmand STORE, and 

which effects the stack only through the oannand RECALL. Associated with each 

of these vector registers is an integer NX, NY, NZ, NT, NS which indicates the 

current dimension of the associated vector. 

After the user performs the start up procedure described in Appendix B, 

and also after the successful oonpletion of any ccrtmand, the interpreter will 

solicit a contnand by displaying the message "PIEASE ENTER NEXT CCMMAND". Ihe 

user may then enter any conmand (up to 25 characters enclosed in single quotes) 

and then depress the carriage control key to send the carmand to the oonputer. 

One of the five following outcones will then result: 

a) The oenmand will be recognized and performed, mi a new conmand 

will be solicited. 

b) The carmand will be recognized, and the program will request 

the user to enter additional data fron the keyboard. 

c) The ccmnand will be recognized, but not yet inplemented. In 

this case, the user will be so informed, and a new oormand will be solicited. 

In many cases, the desired ocrmand may be replaced by a short sequence of 

camands which have already been inplemented. 

d) The ocrnand will not be recognized; the user will be so informed; 

and a new oormand will be solicited. 

e) The attenpted ccmnand is not in the form of an expression of zero 

to twenty-five characters enclosed in single quotes. This will produce an error 
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exit fron the signal processing interpreter and an Algol error nessage will be 

displayed. At this point one can use the procedure described in Appendix B 

to got back to the signal processing interpreter, Lut all of the stack's vector 

registers will be reinitialized.  (It is planned to modify the program in the 

near future so that read errors will only resuJ t in an attenpt to reread.) 

The following types of comnands are available: 

a) operations on a single vector 

b) operations on a pair of vectors 

c) stack manipulations 

•i) exiting fron the signal processing interpreter. 

If the operation has a vector argument, then the X vector is used as the 

argument. Similarly, if the operation has a single vector result, the result 

is placed in X. If a vector function of a vector argument is evaluated, the 

previous value of the X vector (i.e. the argument) is destroyed unless seme 

special action is taken to save it, such as storing it in S. Figure 1 shows 

the stack movements for this case. 

old 

t - 

z - 

y - 

X - 

new 

—T 

— Z 

—Y 

f(x) -»-X 

Figure 1. Stack movements for a vector function of a vector argument 

If the operation is an output operation, such as printing or plotting, the 

X vector is used, and the entire stack is left unchanged. If the operation is 

a call on a function generator such as TONE or CHIRP, or a conmand to accept a 

vector input fron the keyboard, the vector is placed in the X vector register, 

destroying the previous contents of X. 

If the operation evaluates a vector function of a pair of vectors, then X 

and Y are used as the argunents. Ite result is placed in X, and the stack is 

lowered. The previous contents of X and Y are lost. These actions are shown 

in Figure 2. 
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old 

t 

z 

y 
X 

new 

z 
-Y 

-X >f(x,y) 

Figure 2. Stack novements for a vector function of two vector arguments 

For most functions of two vector arguments, the dimensions of the two argument 

vectors are first autanat-Lcally made equal by extending the shorter one with 

zeros to the dimension of the longer one. The only exception at present is 

the oonmand APPEND X TO Y, which leaves a resultant of dimension NX + NY in X. 

The stack operation corrmands are identical to those of the HP-35, except 

for ROLL UP, which is an exact inverse to ROLL DOWN. Their effects are shewn 

in Figures 3-8. 

.- 

:: 

new 

;; 

Figure 3.    Stack movements for the cannand 'enter' 

old 

t- 

z - 

y 

x 

new 

•►T 

•►Z 

'Y 

-X 

Figure 4.    Stack movements for the ccmnand 'xy interchange' 
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old 

t - 

z - 

y - 
X - 

s — 

new 

—Z 

-(DDST) 
S 

Figure 5. Stack novements for the ccromand 'store' 

new 

Figure 6.    Stuck movements for the ccntnand 'recall' 

The ccrtitiands 'clear x' and 'clear'  respectively set either the x register 

or all registers to zero.    These tMO cattnands are not yet iitplenented. 

Figure 7. Stack novements for the cannand 'roll down' 
(not yet inplemented) 

Figure 8. Stack novements for the oomand 'roll up' 
(not yet inpleinented) 
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PUT«) DCIINSIONS 

Several extensions of the signal processing interpreter are likely in the 

near future. In order of probable inplementation they are: 

a) Increasing the maximum vector dimension. 

b) Implementing the ocmtiands which are currently recognized but not 

yet implemented. 

c) Providing a re-read when read errors occur. 

d) Providing additional addressable vectors with addressable store 

and recsll ccrtimnds. 

e) Providing for user-definable compound ccmnands end synonyms for 

present ccrmands. 

f) Providing for ambiguity function calculation and the use of more 

sophisticated plot programs. 

IV. 1 

66 

■ — -— - - •.■ 



i   jiiiw.Ii.ii|nnimiii.l!ipMW     iiuiiiMi        ,i        i-n WiiWl i|IUip.l iinMapg|r«MnPV«>»-n«ll.ilimpiiaii«l  ""■   «  "" «II  l I  ««IILWWI 

.. 

BIBLIOGRAPHY 

1. Katzan, Harry, Advancad Prxy^rartrujic, Van Nostrand Reinhold, 1970 (Chapter 4, 

Basic Ccnpiler Methods). 

2. Vfegner, P., An Introduction to Stack Ocnpilation Techniques, Introduction 

to System Prograimung, Chapter 7, pp. 101-121, edited by Peter Wegner, 

Academic Press, New York, 1964. 

3. HP-35 Operating Manual, Hewlett Packard, Cupertino, California. 

4. Bomstein, I., Demand Terminal User's Guide, NUC, Pasadena. 

5. Uhrich, M. L., Fast Fourier Transform Without Sorting, IEEE Transactions 

on Audio and Electroaooustics, Vol. AU-17, June 1969, pp. 170-172. 

6. Rabiner, L. R., R. W. Schäfer, and C. M. Rader, The Chirp Z-Transform 

Algorithm, TF.KK Transactions on Audio and Electroacoustics, Vol. AU-17, 

1969, pp. 86-92. 

: 

a 
: 

i 
j 

ö 

:i 
D 

V.l 

G7 

aMHI mil— ii -"™-J-- —-  -■ - 

J 



«■PWFWBPPPW»""«^ i"i"  

:: 

1 

APPENDIX A 

COWANDLIST 

This table lists all ccnriands which are recognized by the signal processing 

interpreter, even if the cotmand is not yet implemsnted. Cotmands vMch are 

recognized but not yet implemented are followed by (N). 

OPERATIONS ON A SINGLE VECTOR: 

fft 

reversal 

chirp generator 

tone generator 

I czt I I conjugation 

input vector 

print vector 

plot cotplex vector 

picture line 

set x dimension 

function generator 

mirror 

sum absolute values 

pointwise square magnitude 

constant function 

raise to the power 

absolute value 

plot(N) 

noise generator(N) 

quantizer (N) 

histogram (N) 

| oorrelation parameter (N) 

hadamard transform (N) 

| A.1 

^8 

"—*—llta-^-^' ~~*iaaamammmm*mm—^^...    ,.._      - ..—-.JJ 



mtum ji*ii*TC^wnHianHnMHqnff«pn«P>i*,^<raiRMPil«milfinPOTBHiTC!^«iiOTw>«n«i    ii 11, i^^mmmmmm^mmmmmmiimmmimmmmmmmmmnimmmmilfmimi'^^IStff 

oosind transform (N) 

kl transform (N) 

rectangular to polar (N) 

threshold (N) 

binary plot(N) 

shift (N) 

print inax(N) 

scale (N) 

autoscale (N) 

exponential(N) 

modified log(N) 

OPERATIONS ON A PAIR OF VECTORS: 
multiplication 

periodic convolution 

subtract 

append x to y 

periodic correlationtN) 

correlation(N) 

go]ay sequence generator (N) 

add(N) 

STACK OPERATIONS J 
enter 

store 

recall 

xy interchange 

clear(N) 

clear x(N) 

roll down(N) 

roll up(N) 
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APPENDIXE 

START UP AND SIGN OF PROCEDURES 

This section assumes that the signal processing interpreter is to be used 

from a demand terminal on a Univac 1108 operating under EXEC VIII. In the 

exanples belcw, user entries are underlined to distinguish them from the 

computer's replies. 

A) START UP PROCEDURE: 
UD108A. (enter the terminal's SITEID) 

UNIVÄC 1108 TIME/SHARING EXEC VERS 27.20.164 12  (the system 
identifies itself to the user) 

(SRUN ABCD (enter a short run card) 

gASCAZ 60*ARPA.  (assign the program file) 
• ■ 

READY (the system responds wten the file is available) 

Ö@ADDyL 60*AKt
;A.BEGIN (bring in the remaining needed executive control 

conmands autcmatically) 

_ @ASG,AZ 60*PICSET1.  (the file containing the USC master picture set 
1 is assigned) 

READY 

@USE 10.,60*PICSm. (the name 10 is associated with the picture 
set file) 

READY 

@XQfr 60*ARPA.SPIN3 (the signal processing interpreter is called) 

B) SIGN OFF PROCEDURE: 
'EXIT'  (the user exits from the signal processing interpreter) 

EXIT FROM SIGNAL PROCESSING INTERPRETER 

EXIT ALGOL-SIMULA LIBRARY 

EXECUTION TIME 2.2 SECONDS - LIBRARY CF  SEPT 19,1969 

@FIN (t)ie user terminates the run) 

(accounting information is then received by the user) 

B.l 
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:J 

0    RESTART AFTER AN ERROR EXIT: 

gXQT 60*ARPA.SPIN3 

SIOiAL PROCESSING MTERPRETER,VERSION 1 

PLEASE ENTER NEXT COMMAND 

. 

1 
0   j 

; 

i 

. 
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I 
1 
1 
; 
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APPEIMXC 

DETAILED COtlAND DESCRIPTION 

This appendix only describes the ccrdnands which are currently implemented. 

Comnands which are currently recoonized but not yet inplenented will be 

documented when available. 

FFT replaces X by its FFT of length NX. itie previous contents of X is 

destroyed. Ihe current X dimension, NX, must be a power of two. 

REVERSAL X is replaced by X(0), X(NX-l), X(NX-2), . . . X'l), i.e. each index 

is replaced by its negative modulo NX. This is the sane type of reversal which 

is produced by two forward discrete Fourier transforms in succession. 

CHIRP GENEKATQR generates a corplex chirp of length NX, i.e. X(k) =el7rk2//NX: 

for k=0, 1, . . . NX-1. The previous contents of the X vector is destroyed. 

TONE GENERATOR generates uniformly spaced sanples of a sine wave. The nunber 

of sanples, frequency, and sampling increment are requested of the user. The 

resulting sinusoid is placed in the real part of the X vector, and zero is 

placed in the imaginary part of the X vector. The previous contents of the X 

vector is destroyed. 

CONJUGATION replaces the X vector by its cotplex conjugate. 

INPUT VECTOR allows the user to manually input a ocnplex vector. First he 

is asked for the dimension of the vector he would like to input. He then 

enters each term in the form REAL,IMAGINARY followed by a carriage return. 

If the nunber to be entered is purely real, the imaginary part can be replaced 

by an extra carriage return. The previous value of the X vector is destroyed, 

and the entered vector is placed in X. The real and imaginary parts may have up 

to 5 digits preceding the decimal point and up to 3 digits following the decimal 

point. 

PRINT VECTOR prints the X vector. 

PI£T CCMPI£X VECTOR normalizes the X vector to a maximum absolute value of 1, 

prints the maximum absolute value prior to nomalization, prints the normalized 

C.l 
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X vector, and similtaneously plots the real and inaginary parts of the normalized 

X vector. 

PICnJRE T.I-NIE replaces the X vector by a section of a line of picture fron the 

USC Image Coding Master Set No.l. The user is asked to specify the picture 

number (1-9) and the line number (1-256). The length of the section written 

into X is the smaller or 256 or NX. 

SET X L^-MENSION allows the user to reset NX. Inmediately following the oormiand, 

he enters an integer (1-512). If the integer entered is smaller than the 

previous value of NX, it replaces the previous value and the current dimension 

of tlie X vector is reduced. If the integer entered is larger than the previous 

value of NX, then the X vector is filled out with zeros to the new length, and 

the entered integer is the new value of the dimension, NX. 

FUNCTION GENERATOR at present only generates a linear ranp, i.e. XOO^k for 

k=0, 1, . . . NX-1. The previous contents of the X vector is destroyed. 

MIRROR replaces NX by 2(NX)-1. The first NX entries of X (i.e. X(0), . . . 

X(NX-l)) are left unchanged. For k=l, . . . NX-1 X(NX-l+k) is set equal to 

X(NX-k). In other words, the sequence is extended to length 2(NX)-1 so as to 

have mirror synmetry (with indices modulo 2(NX-1)) about the zero index point. 

SUM ABSOLUTE VALUES prints out the sum of the absolute values of X(0), . . . 

X(NX-l). 

PQINIWISE SQUARE MAGNITUDE replaces each of X(0), . . . X(NX-l) by the square 

of its absolute value. Ihe previous contents of the X vector is destroyed. 

CONSTANT FUNCTICN lets the user enter a ccrplex number in the format 

REAL IMAGINARY, and each of X(0), . . . X(NX-l) is set equal to the entered 

value. Note that a space is used tere as the delimiter between tlie real and 

imaginary parts. The previous contents of the X vector is destroyed. Other 

than the required space, the input is free format. 

RAISE TO THE POWER permits the user to enter a real number (with decimal point), 

and each catponent of the X vector is raised to that pewer. The previous 

contents of the X vector is destroyed. 

ABSOLUTE VALUE replaces each element of the X vector by its absolute value, 

destroying previous contents of the X vector. 
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;; 

:: 

MULTIPLICATION exterids the shorter of the X and Y vectors to the dimension 

of the longer one.    Then X is replaced by the pointwise product of the two 

vectors, and the stack is lowered. Ihe original values of the X and Y vectors 

are destroyed. 

PERIODIC OONVQUTTICN assumes that at least the larger of NX,NY is a power of 

two. The shorter vector is automatically padded out with zeros to the larger 

dimension, and X is replaced by the periodic convolution. Ihe stack is lowered, 

and the original values of the X and Y vectors are destroyed. 

SUBTRACT pads out the shorter of the X and Y vectors to the larger of the two 

dimensions, and X is replaced by Y-X. The stack is lowered, and the original 

values of the X and Y vectors are destroyed. 

APPEND X TO Y the X vector is replaced by X appended to Y, i.e. by Y(0), . . . 

Y(NY-l), X{0), . . . X(NX-l), and the new value of NX is the sum of the previous 

X and Y dimensions. The stack is lowered, and the previous values of the X 

and Y vectors are lost. 

,. 
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APPENDIX D 

SOFIWRE DESCRIPTION 

Ihe software associated vdth the signal prooessing interpreter is contained 

in ürfo UNIVÄC 1108 Fastrand files; a program file called 60*ARPA., and a data 

file called 60*PICSEr 1. 

UM data file contains the USC Image Coding Master Set No.l, conprising 

nine pictures, each 256 lines long. Each line consists of 256 words, and each 

word is an integer in tha range 0-255. 

Ihe program file contains symbolic, relocatable, and eJasolute versions of 

the signal processing interpreter SPIN3 and its associated external Algol 

procedures and Fortran subroutines. The program file also contains assorted 

test programs and file manipulation programs which were used in the course of 

developing the software. 

The Algol programs are all in WIVAC 1108 Algol, and the Fortran subroutines 

are all in UNIVÄC 1108 Fortran V. Ihp signal processing interpreter and the 

external procedures it uses are shown in Table 1. 

PROGRAM 
NAME 

SPIN3 

ATAB 

FFTSP 

MULT 

READV 

TYPE 

Algol 

Algol 

Fortran 

Fortran 

REV Fortran 

CHIRP Fortran 

TONE Fortran 

STAR Fortran 

PGONV Fortran 

Fortran 

FUNCTICN PERTORMED 

signal processing interpreter, main program 

procedure for cotimand recognition via table lookup 

complex FFT with results in normal order 

subroutine for pointwise multiplication of two complex 
vectors 

subroutine for periodic reversal of a ccnplex vector 

subroutine to generate a ccnplex chirp 

subroutine to generate uniformly spaced samples of a 
sinusoid 

subroutine to replace a vector by its corplex conjugate 

subroutine to perform the periodic convolution of two 
ccnplex vectors 

subroutine to let user manually enter a ccrplex vector 
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CPDOT 

LINE 

CZT 

BEGIN 

Fortran 

Fortran 

Algol 

ELT 

subroutine to normalize, print, and plot a oonplex 

vector 

subroutine to read a picture line fron a suitably 
structured mass storage file 

procedure to perform a discrete Fourier transform 
via the Chirp Z-Transform algorithm 

elesnent to add control cormands to the run stream to 
get ready to use the signal processing interpreter 
together with the picture data file 

DESCRIPTION OF THE MAJOR PROGRAMS! 

SPINi _.  , . . 
SPIN3 is the signal processing interpreter main program. Upon foxst being 

entered, the program prints an identification message. It then jumps to the 

statenent labeled START. O» successful completion of an action by the mam 

program (possibly including a call to an external procedure) also results in 

a jump to START. 
When START is reached, the current dimansion of the X vector is prmted, 

togrth« with a request to the user to enter the next ccnmand. At this point, 

control is transferred to the external Algol procedure ATAB, which reads a 

string variable (up to 25 characters enclose in single quotes) and returns the 

variables ICCM and CHECK to the main program. The boolean variable CHECK is 

set equal to true if the string is racxxjnized by ATAB, otherwise it is set 

equal to false. If CHECK is false, then the r^ssage "COMMAND NTT RECOGNIZED" 

is printed, and the program again junps to START. If CHECK is true, then the 

integer ICOM is used to determine to which of the labels Ll, L2, etc. control 

is to be transferred. If the ccxtmand is recognized by ATAB, but not yet 

imputed in SPIN3, a jump is performad to the statement labelled SOCN; the 

user is notified that the camand is not yet implanented, and the program 

imam to START. 
When one of the statetents labelled H, 12.  etc. is reached, tte requested 

action is perfomsd by the main program or an external procedure or both. In 

general, stack operations and short cortputations are performed by the main 

: 
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program, while relatively ocrplicated operations are performed by external 

procedures. In all cases, the external procedures return information to the 

main program only through their argument lists. While this method pays sore 

penalty in address cortputation time, it greatly facilitates the addition of 

new procedures, changing the maximum array dimensions, and other modifications 

as additional requirements are placed on the signal processing interpreter. 

The vectors, X, Y, Z, T, S currently have maximum dimension 512 complex, but 

this paramster could be easily increased if desired. 

i 

ATAB 

ATAB is an Algol procedure which reads and iT^cognizes signal processing 

cenmands. A string variable S is read, and is cotpared with each oi the 

variables in the string array T. If a match is found, the integer ICOM is set 

equal to the corresponding index in T, and the boolean variable CHECK is set 

equal to true. If no match is found, CHECK is set equal to false. 

FFTSP 

FFTSP is a Fortran subroutine to perform an FFT en a complex vector having 

a dinension which is a power of two. It is a minor modification of Uhrich's 

FFT algorithm [5]. The main changes fron Uhrich's algorithm are that 

conmunication is only through the argument list, and that N=2 is specified 

in the call rather than m. 

CZT 

CZT is a straightforward implementation of the Chirp Z-transform algorithm 

described by Rabiner et al [6]. It may be used to perform the discrete Fourier 

transform of a vector of arbitrary dimension (up to the maxirautn specified in 

the main program and the FFT subroutine). 
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:: 
APPENDIXE 

S/m£RUN 

:. 

u 
(USER ENTRIES ARE UNDERLINED^ COWENTS ARE IN PARENTHESES) 

UD108A (user enters his terminal's siteid) 

UNIVÄC 1108 TIME/SHAKENG EXEC VERS 27.20.225 01 

@RL1U ABCD (user enters a short run card) 
DATE: 062273    TIME: 142232 
(§ASG,AZ 60*ARPA.  (user assigns the program file) 
READY 

flMPtL 60*ARPA. BEGIN 

@ASG,AZ 60*PICSEri. 
READY 

(SUSE 10,60*PICSET1. 
READY 

(tliis (xmand adds a prestored set of control ccmnands 
to the run stream to conplete the initialization) 

(the data file containing USC Master Picture Set 1 is 
assigned) 

(the internal filename 10. is identified with the external 
filename 60*PICSm.) 

@XQT 60*ARPA.SPIN3 (the signal processing interpreter is called) 
SIGNAL PROCESSING INTERPRETER,VERSION 1 
NX= 

PLEASE ENTER NEXT CQWAND 
'FUNCTION GENERATOR'  (requests generation of a linear ramp) 
ENTER DESIRED FUNCTICN IENGTH 
8 
NX= 

8 
PI£ASE ENTER NEXT COMMAND 
'PRINT VECTOR'     (prints the contents of the X vector) 
QCEX          COMPLEX VALUE 

0            .000 .000 
1          1.000 .000 
2          2.000 .000 
3          3.000 .000 
4          4.000 .000 
5          5.000 .000 
6          6.000 .000 
7          7.000 .000 

FINISHED PRINTING VECTOR 
NX= 

E.l 
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PI£ASE ENTER NEXT COMMWCl 

^9S1    (stores the contents of the X vector in the S vector register) 

8 
PIfiASE ENTER NEXT OQ^MAND 
VigT     (X is replaced by its discrete Fourier transform) 

8 
PLEASE ENTER NEXT OOWAND 
': H   C VECTOR'     {prints the contents of the X vector) 
INDEX 

0 
1 
2 
3 
4 
5 
6 
7 

CCMPI£X VALUE 
28.000 .0C0 
-4.000 9.657 
-4.000 4.000 
-4.000 1.657 
-4.000 .000 
-4.000 -1.657 
-4.000 -4.000 
-4.000 -9.657 

FINISHED PRINTING VECTOR 
NX= 

8 
PIEASE ENTER NEXT COMMAND 

^P^'  Recalls S into X, so X new contains the linear ranp) 

8 
PLEASE ENTER NEXT COMMAND 

MIRROR'  (generates a syitnetric function of length 2(NX)-1 by appending 
to X its rtuxror image about the zero index point) NX= 

PLEASE ENTER NEXT COMIAND 
IPRDTC VECTOR'     (prints the contents of the X vector) 

INDEX 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

COMPIEX VALUE 
.000 .000 

1.000 .000 
2.000 .000 
3.000 .000 
4.000 .000 
5.000 .000 
6.000 .000 
7.000 .000 
7.000 .000 
6.000 .000 
5.000 .000 
4.000 .000 
3.000 .000 
2.000 .000 
1.000 .000 

FINISHED PRINTING VECTOR 
NX= 

i 
I 
1 
I 
I 
1 
I 

in 

a 
n 

0 

il 

I I 
E.2 
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1 
1 
1 
r 

:: 

.. 

i 

15 
PLEASE ENTER NEXT OQWIAND 
'CZT'     (replace X by its discrete Fourier transform, oortputed via tte 
NX= Chirp Z-Transfom Algorithm) 

15 
PLEASE ENTER NEXT 0CM1AND 
'PRENT VECTOR1     (print the contents of the X vector) 
INDEX OOMPLEX VALUE 

0 56.000 .000 
1 -22.881 .000 
2 -.261 .000 
3 -2.618 .000 
4 -.300 .000 
5 -1.000 .000 
6 -.382 .000 
7 -.558 .000 
8 -.558 .000 
9 -.382 .000 

10 -1.000 .000 
11 -.300 .000 
12 -2.618 .000 
13 -.261 .000 
14 -22.880 .001 

FINISHED PRCNTING VECTOR 
NX= 

15 
PLEASE ENTER NEXT OCMMAND 
'PLOT COMPLEX VECTOR'     (normalize X to a maximum absolute value of 1.0, print and plot) 

CHARACTER REAL PLOT USES R,9k*ZIAIK PLOT USES I A 
MAX ABS VALUE IN ARRAY= 56.00000 

1 1.00000 .00000 
2 -.40859 .00000 
3 -.00467 .00000 
4 -.04675 .00000 
5 -.00535 .00000 
6 -.01786 .00000 
7 -.00682 .00000 
8 -.00997 .00000 
9 -.00997 .00000 

10 -.00682 .00000 
11 -.01786 .00000 
12 -.00535 .00000 
13 -.04675 .00000 
14 -.00467 .00000 
15 -.40858 .00002 

I 
' 

E.3 

— 
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R 

I 
I 
I 

RI 
I 

RI 
I 
I 
I 
I 

RI 
I 

RI 
I 
I 

NX= 

15 
PI£ASE ZNTER NEXT CXXWAND 
'EXIT'     (exit fron the signal processing interpreter) 
EXIT FRCM SIQJAL PROCESSING INTERPRETER 
EXIT ALGOL-SIMULA LIBRARY 
EXEOTTICM TIME 000000.918 SBCCNDS - LIBRARY OF      SEPT 19,  1969 
(3FIN    (tenrdnate tlie run and call the accounting routines) 

RUNID:    ABCD ACCOUNT:     XXXXXXXX 

CPU TIME        00:00:0;.102 | $.300/SEC 

CORE SBCS 

I/O REPS 

WDS XFD(E2) 

CARDS IN 

PAGES 

81 | $.300/CBS 

51 | $.300/CRF 

902 | $.000A«RD 

21 | $.001/CRD 

5 | $.040/PGE 

TOTAL FUN COST   (TEMATIVE) 

= $ 

= $ 

= $ 

= $ 

= $ 

= $ 

= $ 

INITIATION   TIME:      14:22:31-JL)N 22,1973 

PRGOECT: XXXXXXXXXXXX 

.33 

.24 

.15 

.00 

.02 

.20 

.94 

VERSICN:       27.20.225 01 

Q 

D 

D 

:: 

;: 

****LINE INACriVE**** 

E.4 
81 
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APPENDIX C 

APPLICATION OF MAXIMUM ENTROPY ESTIMATION TO IMAGE TRANSMISSION 

The intensity of an image line may be represented by a nonnegative function l(x), on the 

interval [0, L|. The Fourier transform of 1 is nonnegative definite, and hence may be regarded as 

an autocorrelation function. Reconstruction of the image line from a truncated version of the 

Fourier transform of the image is thus mathematically equivalent to the determination of a spectral 

density function from a truncated autocorrelation function. If desired, I(x)may be replaced by its 

mirror symmetrized version g(x)- l(|x|). The Fourier transform of g is a real autocorrelation 

function. 

For wide-sense stationary random processes with all-pole spectra, the method maximum en- 

tropy provides an accurate means to extrapolate a truncated autocorrelation function and to use the 

extrapolated autocorrelation function to form a spectral estimator having much finer resolution 

than that of conventional (Blackman-Tukey type) estimators that use the truncated autocorrela- 

tion function. 

We propose to address three problems in order to determine the applicability of maximum 

entropy estimation to reduced redundancy image transmission: 

a. Applicability of the all-pole spectrum model. 

b. Feasibility of a real-time computational algorithm. 

c. Accuracy requirements for hardware to implement a real time computational algorithm. 

82 
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HIGH SPEED SERIAL ACCESS LINEAR TRANSFORM IMPLEMENTATIONS 

H J. Whitehouse. J. M. Speiser, and R.W. Means 

Naval Undersea Center 

r.n Diego. CA 92132 

INTRODUCTION 

The time required to perform signal processing computations is determined largely 

by the time required to perform linear transformations on data vectors. The choice of 

algorithm and implementation structure strongly affects both the processing time and the 

implementation complexity via the required number of multiplication times and via the data 

storage and transfer structure. 
Any linear transformation that takes a sequence of N data points into a sequence ot 

N transform points may be regarded as a multiplication of a vector by an N X N matrix. A 

direct implementation that uses a single multiplier requires N- multiplication times and N" 

words of storage. The Fast Fourier Transform (FFT) requires a number of multiplications 

proportional to N logT N. 
This paper discusses a numbe; of transform implemen.ations that have a simple 

serial access data flow and a computation time proportional to N. These transform imple- 

mentations which consist of two complex multipliers and a complex convolver as a module, 

provide an effective method by which the equivalent of a large number of multipliers can be 

used in a processing architecture with a simple data How. The transform structure discussed 

here may be used for different types of transforms including the Discrete Fourier Trans- 

form (DFT) by a change of the constants provided in a local store. If a crossconvolver is used 

in this structure, it may be used also to perform direct high .peed linear filtering and 

crosscorrelation. 

1 
I 

STRUCTURE OF TRANSFORMATIONS 

Several types of elementary linear transformations on data vectors may be viewed as 

building blocks for the implementation of more general linear transformations. Among 

these elementary transformations are multiplication by a diagonal matrix (Fig. 1), convolu- 

tion (Fig. 2). and circular convolution (Fig. 3). A transformation of particular importance 

for signal processing is the discrete Fourier transform.   Tne chirp Z-transform (CZT^ 

algorithm [ 11 decomposes the DFT into a premultiplication by a discrete chirp, a convolu- 

tion with a discrete chirp, and a postmultiplication by a discrete chirp (Fig. 4), since 

N-l N 

■n'l 
uTTiim gm = e iTrn^/N 

m=0 

I 
m=0 

ei7r(n-mr/N L-iTrirr/Ng   \ 

H', 

rfflUMUriMB -■ -■   - 
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9N-1 80 N-l- 

'N-l 

•N-l 

I' 

\ 

\ 1'° \ 
1 9N-l/ aN-l / 

Fig. 1. Multiplication by a diagonal matrix 

If the reference functions used in the convolver and the multipliers are varied, the same 

architecture used to implement the CZT may be used to implement a wider class of linear 
transforms (Fig. 5). 

A linear transform may be implemented by this architecture if and only if its kernel 

decomposes appropriately. For a continuous transform 

G(u) -    j k(u,t)g(t) dt 

the required decomposition is 

k(u,t) • a(t)b(u-t)c(u) 

if a convolution ;? to be used as the intermediate operation.   Similarly, if a correlation 

is to be used as the intermediate operation, the required decomposition is 
k(u, t) = a(t) b(t + u) c(u). 

If the kernel is smooth and nonvanishing, a necessary and sufficient condition for 
decomposition is 

aiogk . aiogk .. 1 /ak . dk \     .    . f   , 
ät     *    3 "     = ic ^ äT    ä~ü /   =       y functlon of * Plus any function of u 

;.i 
; 
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«N-l-   • ■«0 

1 1 1 
1 

1 
»0 h bN-1 

1 1 1 
1 

p 

/- \ / bN-l    bN-2 
b0        bN-1 

ho   \ 
fll 

\GN-1 /        \bN-2   bN-3    •••   bN-l/   \9N-1^ 

Fig. 3. Circular Convolution 

e-i7rmZ/N 

Fig. 4. Chirp Z-transform Implementation of the DFT 

*  b 

G = Q|^g 

• DENOTES EITHER CONVOLUTION OR CIRCULAR CONVOLUTION 

Fig. 5. Architecture Composed of a Compound of Elementary Transformations 
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An alternative necessary and sufficient condition is 

33 log k , a3 log k „ 0 

9t-du      3t äu- 

where the plus sign corresponds to the convolution decomposition and the minus sign corre- 

sponds to the correlation decomposition. 

For a discrete transformation of the form 

Gm = 2 km,n Sn 

the corresponding required factorization "or a convolution decomposition is 

km,n _ an bm-n cm 

where the necessary and sufficient condition for factorization (assuming that the kernel is 
nonvanishing) is 

^m+l .n " ^m n- I  = any function of m phis any function of n 

where 

•Vn = logkm,n 

An alternative necessary and sufficient condi.ion is 

wm,n " 0 

where 

km,n = logkm,n 

Um,n " kjn+^n - km)n~l 

vm,n = um+l,n - um,n 

wm,n = vm,n+l - vm,n 

If the discrete transform is to be applied to a data vector of length N, then all sub- 

scripts are to be interpreted modulo N. 

A listing of some of the more useful decomposable transforms is shown on the 

following page. 

N5i 
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Decomposable Transforms 

TRANSFORM 

FOURIER 

LAPLACE 

HILBERT 

FOURIER COSINE» 

FOURIER SINE* 

KERNEL 

e -itu 

-tu e 
J_ 
t-u 
cos tu 

sin tu 

•NOT STRICTLY DECOMPOSABLE BUT 
REALIZABLE WITH SAME HARDWARC. 
AS DECOMPOSABLE TRANSFORMS 

COMPLEX ARITHMETIC 

Complex arithmetic operations applied to sampled data may be implemented n 

parallel or interleaved form. The parallel implementations (Figs. 6 and 7) follow directly 

► REAL OUTPUT 

► IMAGINARY OUTPUT 

9 • a = (gR + ig|) (aR + ia,) = (gR aR - g, a,) + i (gR a, + g, aR) 

Fig. 6. Complex Arithmetic Multiplier (parallel implementation) 

5^0 

Ii 
: 

;; 

: 

: 

i 
i 
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I ) ► REAL OUTPUT 

► IMAGINARY OUTPUT 

I 
I 
I 

g*b = {gR + ig|)*(bR + ib|) = (gR* bR - g, •b|) + i (gR •bi + g, •bR) 

Fig. 7. Complex Arithmetic Convolver (parallel implementation) 

from the definition of a complex multiplication and a complex convolution. The operation 

of the complex convolver with interleaved arithmetic (Fig. 8) may be understood by an 

examination of the operations on the data samples in the even and odd positions in the data 

vector. 

We wish to evaluate 

g*b = (gR + igi)*(bR + i b|) ■ (gR*bR - g|*b|) + i (gR*h| + g|*bR) 

9N-1,I 

'O.R • 

—rth 
9|M-1,R    • • 9l,l 
 HH-T— 

'N-Z.R 

9l,R 90,l 

'O,! JU-2.i 

—^WT)—►—•      •-—-<—(i) 

90.R 

'N-1,l 

I 

OUTPUT 

♦-♦ 

Fig. 8. Complex Convolver with Interleaved Arithmetic 

' tn 
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so the desired real term is 

2, bn,Rgm-n,R   "  2 bn,Igm-n,l 
n n 

and the desired imaginary term is 

Z bn,Igm-n,R   + 2 bn,RSm-n,l 
n n 

Lot 

x2k = Sk.R 

x2k+l  = 8k,I 

y2k = bk,l 

y2k+l " bk,R 

At an even shift position, say m = 2p, 

2 xky2p-k =X x2sy2p-2s =Xgs,Rbp-s,I 
k even s s 

>        xk y2p-k " 2 X2s+1 y2p-2s- 1  ■ J g  1 bp-s- 1 ,R 
k odd s s 

and the two terms must be combined with a relative delay.   At an odd shift position, say 
m = 2p+l 

2 xky2p+l-k =2X2sy2p+l-2s =Xg^Rbp-s,R 
k even s s 

Z        xky2p+l-k = 2 X2s+1 y2p+l-(2s+l) =X x2s+l y2(p-s) 
k odd s s 

= Z^lVs,! 
s 

and the two terms must be combined with zero relative delay. 

A DISCRETE FOURIER TRANSFORM IMPLEMENTATION 

Ler us examine the discrete Fourier transform decomposed via the CZT algorithm, 
and implemented with the parallel form of the complex arithmetic. 

I 
: 

] 

:: 

i 
i 
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N   I N-l 
Q     -   \   e-i27rmn/N„    m e-i7rm*-/N   V    e+i7r(m-n)-/N /g-iTrrr-ZNg  \ 

n=0 n=0 

The complex operations ihat we wish to implement are shown in Fig. 5 where 

an " cn      e irrn-zN 

h    = e+i7rm-/N 
um 

for n = 0 N-l 

m = 0, . . . 2N- 2 If correlation is used 
for 

fm = 0, . . . JN-j it corr 

Im = 0 N-l ifcircul ilar correlation is used 

When the parallel implementation of the complex arithmetic is used, the DFT archi- 

tecture of Fig. 9 results.  If the data vector dimension N is even, then bm+|Nj = b,^, and a 

circular convolution of length N may be used in place of the convolution of length 2N- 1. 

CONVOLUTION IMPLEMENTATION WITH TRANSVERSAL FILTERS 

The convolution operation may be implemented in highly parallel form as a trans- 

versal filter. Such ;> 'liter is shown in Fig. 3 with the output of the filter connected back to 

the input so that it may be used for circular convolution. Various acoustic transversal filters 

(21 have been described that are suitable for use in a fixed transform implementation if the 

signal processing can proceed without interruption during each block of the input signal. If 

interruption of the signal processing is required, nonacoustic transversal filters may be em- 

ployed (3). The three types of filters which will be examined here employ, respectively, 

acoustic surface waves, cha ge transfer phenomena, and signal propagation in digital shift 

registers. 

Acoustic Surface Waves 

For signal processing at sample rates above 10 MHz, acoustic surface waves are at- 

tractive. Figure 10 shows a possible surface wave electrode configuration. Aluminum elec- 

trodes are usually deposited on a piezoelectric material such as ST quartz, and they act to 

launch and receive the acoustic waves. Each transducer is composed of a pair of interdigi- 

tated electrodes and can act as a tap the weight of which is proportional to the length of the 

interdigitation which intercepts the acoustic wave. Since the launch transducers are usually 

many ws ^lengths long, the resulting waves are well collimated and several filters may be 

implemented simultaneously on a singk substrate. Since both the registration of the multi- 

ple filters and the weight of the filter taps are photo-lithographically determined, good 

umWinity and repeatability are possible. 

rl 
.^ 
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When it is desirable to implement more than one transform with the same liurilware, 

then programmable filters are required. These filters must have the weighting function 

specified in advance after which they operate as ordinary transversal filters with one excep- 

tion     at the present time only binary tap weighting is possible so that several programma- 

ble filters must be used simultaneously with a binary decomposition of the weighting 

function. 

Surface wave filters with up to 1 ^8 digitally switched taps have been built. [4,51. 

A representative programmable '"ilter is shown in Figure ll.lt consists of a 128 tap trans- 

versal filter with binary taps that are switched under the control of a shift register. Each tap 

may be connected to either of two busses. The output signal is the difference of the two 

summed bus signals and is provided by a differential transformer. The signal may be applied 

at either of transducers A or B, and the weight vector enters at the terminal labeled "Code 

in." 

Charge Transfer Devices 

For signal processing at sample rates up to 10 MHz, when short duration interrup- 

tion of the signal processing may occur, charge transfer devices such as charge coupled de- 

vices (CCD) and bucket brigade devices offer many advantages. These devices are fabricated 

by MOS technology from silicon and are small in size. There are, however, two limitations: 

there is charge transfer inefficiency and thermally generated charge combines with the signal 

so that the storage time of the signal is less than a second at room temperature. Since the 

carriers representing the signal are moved through the device by clock voltages applied to an 

overlying set of electrodes, the propagation of the data signal may be interrupted by stop- 

ping the clock. Figure ! 2 adapted from 16] shows a three phase CCD transversal filter and 

the method of sensing the charge. Figure 13 shows a 21 sample chirp filter [7]. 

A programmable CCD filter is currently under development by General Electric for 

the Naval Undersea Center. This filter will be built using a module size of 64 samples and 

will have a 4 MHz sample rate.  Its construction is such that either the binary or the analog 

signal may be considered as the input and the other signal considered as the weight. Unlike 

the fixed reference CCD filter previously discussed, this filter has provision for cascading of 

modules without degradation of the signal by charge transfer inefficiency. 

:: 

Binary Shift Register Crossconvolvers 

When signal processing must be interrupted indefinitely, semiconductor shift register 

equivalents of programmable transversal filters are most suitable. Such a convolver module 

(Fig. 14), has been developed by TRW for NavElex under the name of LSI Correlator (8). 

This ievice may be considered as a bim ry crossconvolver and its use is similar to the 
a 
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AL ELECTPODES 
CLOCK FUNCTION REQUIRED 
TO SHIFT INFORMATION 
FOWARDONEBIT 

-^(t) 

i 

J. 

I 
0, DRIVER 

i 
i 

u 

1—w 

i 
(-1 

DIFFERENTIAL 
CURRENT 

METER 

iz: 
03 DRIVER 

OUTPUT 

-O 0- DRIVER 
b ' 0 b<0 b>0 

(bl 

Adapted from IEEE JOURNAL OF SOLID STATE CIRCUITS (April 1973). 
in press. 

Fig. 12. Charge-Cou Meti Transversal Filter 

programmable transversal filters previously described. However, it is restricted to binary 
signals and binary weights. The use cf multiple binary correlation modules to attain multi- 
ple level quantization is described in [3].   Figure 15 shows a configuration suitable for 
multilevel operation of one of the channels.  The LSI correlator is available in either 
a module size of 64 bits at a 20 MHz clock rate or a module size of 8 bits at a 100 MHz 

clock rate. 
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Fig. 15. Correlator Configuration for 3-Bit Signal vs Binary Reference 

LINEAR TRANSFORM PROGRAMMABLE SIGNAL PROCESSING ARITHMETIC UNIT 

The linear and bilinear operations most needed for signal processing are: matched 

filtering or replica correlation, the discrete Fourier transform, and crosscorrelation. These 

transforms represent an excessive computational load for a general purpose digital computer 

and a heavy computational load even for a digital computer structured for signal processing. 

The decomposable transform architecture may be used to provide a single module which can 

perform the above operations in a time proportional to the data block length. Such mod- 

ules may be configured under computer control to permit not only changes in task assign- 

ment but also an exchange among data block length, accuracy, and speed. Figure 16 shows 

such a module and the contents of the local stores for matched filtering, crosscorrelation, 

and the discrete Fourier transform. 

Serial access delay line memories may be used in the modular building blocks for 

high speed non-digital implementations. If interruptions of the processing are infrequent, 

then ultrasonic delay lines are preferred, since they offer large storage capacity, convenient 

tapping, and low power dissipation. Where frequent processing interrupts are required, 

charge coupled devices with their controllable clock rate may be used. The corresponding 

modular building block for digital implementations is a contiguously tapped binary shift 

register crossconvolver. 
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FOR LINEAR TRANSFORMS 
a. b, c ARE LOCAL STORES 

18 

FOR MATCH FILTERS AND CROSS CORRELATION 
a = 1        b-  {bj) c=l 

0<j<N-1 

FOR THE DFT VIA THE CHIRP-Z ALGORITHM 

, „ e-l7rn2/N        b = ei7rn2/N -i7rn2/N 
a_ e ..... ...       D = B c- e 

0<n<N-1 0<n<2N-2      0<i <N-1 

* denotes convolution 

Fig. 16. Linear Transform Programmable SPAU Module 
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