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1. INTRODUCTION

The transmission of standard commercial television images from . remotely piloted vehicle (RPV)
to a distant observer requires a large bandwidth channel in order to protect the video information
against jamming and interference. This protection can be gained from spread spectrum techniques. In
many RPV situations, however, the available channel bandwidth is barely sufficient or is insufficient
to transmit the television signal directly. [n these cases the video in formation can be transmitted only
if the redundancy present in the original images is greatly reduced. This report discusses the feasibility
of redundancy removal at real time rates with small, lightweight, low power hardware suitable for the
ARPA RPV transmission. It is desirable to be able to vary the amount of redundancy removed to
permit the observer to select from the available tradeoffs of resolution, bandwidth, scan rate, and
jamming environiment,

Image redundancy reduction by a fzetor of ten without serious image degradation has been
achieved by the use ¢f ‘iicar transformations and filtering in the transform domain. Such techniques
are the only methods presently known to obtain such large redundancy reduction factors, They are
also the only methods known which will allow the redundancy reduction ratio versus degradation
to be continuously varied. Baar, Hadamard, Fourier, and Karhunen-Loéve transforms have all been
successfully used in this way, but the processing has been accomplished on laige dignal computers at
much slower than real time rates. Examples of these redundancy reduced photographs are given in
Appendix A. The feasibility that the required transforms can be performed with a high throughput
processor structure which utilizes parallel access to a serially shifting data stream is explored. The
processor structure may be implemented by sriall, lightweight, low-power hardware using transversal

filters. Other methods of television bandwidth reduction such as slow framv rate and image sensor

improvements are also presented.
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2. VIDEO DATA SPECIFICATIONS

PSYCHOPHYSICAL STUDIES

The amount of information that an operator needs to ettectively operate an RPV for various
missions is not a well-detined quantity. Rather it is a subject of some controversy in the litcmlurc[ l ].
The Aerospace Medical Research Laboratory (AMRL) at Wright Patterson Air Force Base has been
conducting such psychophysical experiments tor an RPV mission. The speed and altitudc ot the
Wright Patterson RPV's mission differ trom the speed and aititude ot the ARPA RPV. The Wright
Patterson studies may theretore have limited applicabitity to the ARPA RPV mission.

However, Wright Patterson has sponsored woik at Virgini, Polytechnic Institute and State Uni-
versity in order to determine a more general measure of video image quality. This work has met with
some suceess and has been reported in conference procccdingsl 2] and in a final report to the Acro-
space Medical Research Laboratory. At this time it is undergoing review by AMRL and by USC.

In the absence of definitive results there are several tentative conclusions that have been reached.
Since the ARPA RPV has a stow speed, low altitude mission, and since the human operator response
time is approximately one-quarter of a sccond, the information rate (i.e., frame rate for television)
nead only be approximately four trames per second. Again, since the ARPA RPV has a relatively stow
speed, the time delay of the information for control and reconnaissance is not of ¢ritical importance.
However, it is important in the target designator mission and should always be less thun the human
response time, prelerably much less.

The image quality necessary is more difticult to estimate. The resolution of home quality tetevi-
sion is the best available estimate at this time. The Virginia Polytechnic stuay should answer this in
more detail. The camera itself has a very important role and the vidicon is not the best camera for
RPV missions. The Navy, through NAVELEX, is developing charge-coupled device cameras which will
offer a better alternative to the vidicon.

The value that color will provide to an RPV operator is also a subject of controversy. Studies
have been made with contradictory results. This subject will continue to be investigated. The Univer-
sity of Southern California has performed independent studies in this area. Their work will be detailed
in a fater report. If it is determined that color i necessary, then the primary implementation diffi-

culty will be in the color camera.
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BANDWIDTH COMPRESSION

The amount of bandwidth requircd to digitally transmit teievision images is determined by the

bit rate. The television bit rate is given by
B.R. = N*B*F |

where N is the number of picture elements (p:xels) per video irame, B is the number of quantization
bits per picture element, and F is the frame rate. The number of pixels per frame is a measure of
resolution. The number of bits per pixel is a measure ot the dynamic range of the sensor and the
display. The frame rate for broadeast television is determined by the avoidance of flicker in the
display. Broadcast television has set this at thirty frames per second.

Let us consider a channel over which the digitized television is to be transmitted. Let the
channel bit rate be a given quantity. It is, in most applications, a number fixed by considerations
other than video bandwidth. 1t is determined :n part by assumptions of white noise i a given band-
width and a specified bit error rate which implies a given signal-to-noise ratio at the receiver.

A relative compressior. ratio (in dB) can then be defined for use in comparing various band-

width compression schemes as

CR. = 10 log (chanr\l;slBt:(l[t: rute)

United States broadeast television has thirty frames per second, 52§ lines per frame with 480
useable lines and a 4:3 aspect ratio. Studio quality TV is stored digitally with 6 bits per picture
element, 640 picture elements per line, and 480 lines per frame. Tl data rate for studio quality
television is 55.3 megabits per second. Let us postulate a 20.0 megabit channel data rate. The
relative .ompression ratio for conventional studio quality television is <4.4 dB: that is, the channel
is inadequate. Home quality television does not have the resolution of studio quality. The Univer-
sity of Southern California has determined that a sampied image of 256 by 256 with 6 bits per pixel
is comparable to home quality television. This has a data rate of 11.8 megabits per second. The
C.R. for home quality television for the 20.0 megabit channel is 2.3 db.

Computer studies in pictare transform encoding have shown that the transforms allow the
average number of bits to be r~duced to approximately one bit per picture element without picture
degradation. Optimum transform encoding has reduced this to one-half bit per pixel. Let us con-

sider the C.R. available for a .56 by 256 frame at 4 frames per second with a trausform encoder
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capable of preserving »icture quality at one bit per picture element. The data rate is 262 kilobits
per second and the C.R. for a 20 n egabit channel is 18.8 db.

If it is determined that the resolution of home television is adequate for RPV missions, then
the linear transform frame encoding plus a reduced frame rate will give a relative compression ratio
of 18.8 db. The feasibility of a real t:me hardware implementation of this bandwidth reduction will
be discussed in section IlI.

The amount of AJ available on the redundancy reduced data will depend on the subsequent
coding algorithms used to encode the data. A coding scheme is being investigated that offers an
additional 10 db of AJ. A computer emulation of the system has been programumed which will
allow the testing of this and other proposals. This emulation is described in Appendix B.

Signal reconstruction by an inverse transform at the ground :tation is straightforward. Addi-
tional processing may enhance the picture. One such procedure is described in Appendix C. Recon-
struction enhancement will be investigated more fully in the next phase of the program. Appendix

A contains a report by Habibi and Hershel which discusses a general reconstruction method.
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3. TRANSFORM ENCODING

INTRCDUCTION

The use of unitary transforms for image encoding has been evaluated for use as intratframe
encoding techlliques[3]. In addition, these techniques may also be applied to interframe and multi-
spectral encoding. However, all unitary transformations are information preserving and no band-
width reduction results from the application of the transform to the tmage. Instead, the transforms
redistribute the variance associated with each picture clement (pixel); so that subsequent to the
transforni, basis restricting operations on the transform coefficients will result in bandwidth reduc-
tion. Upon reeconstruction of the original image from the basis restricted transform coeffieie its, a
degraded version of the original image can be obtained. Unfortunately, the interrelationship be-
tween the type of transform, the form of the noninvert:ble operation, and the type of degra-
dation in the reconstructed image is very complicated and subjeetive. The universally used analytic
criterion of the mean-square-error is. at present, the best technique for transform comparison.

For the particular operation of basis restriction by truncation. a particularly simple
interpretation of the bandwidth reduction can be made. The transforms may be viewed as a vari-
ance redistributing operation that approximately decorrelates the transtorm coefficients while trans-
forming the variance associated with each picture element into the low-order coefficients of the
transform. Under the assumption that each set of picture elements can be considered as a sample
function from a wide sense stationary random proeess with correlation function rm, there exists an
ontimum discrete transformation, the Karhunen-Loeve transformation, which totally decorrelates
the transform coefficients and maximally compacts the variance to the low-order coefficients. All
other transformations ean be compared in their performance by comparing their transform coeffi-
cient decorrelation and viriance compaction with this optimum transformation.

This intuitive interpretation ean be made rigorous through the use of the rate-distortion criteri-
on[4]. It has been found from experience that the closer the eigenvectors of the transformation
approximate the eigenvectors of the optimum Karhunen-Loéve transformation, the greater the vari-

ance compaction Will be and the more the coeffiecients ean be truncated while maintaining a fixed

rate distortion or mean-square-error.




The use of two-dimension transfors can provide improved performance over the use of trans-
formations on a line-by-line husisls] . The most direct approach is to scek a two-dimensional trans-
form which simultaneously decorrelates the transtorm coefticients and compacts the variance into a
corner of the two-dimensional transform coefficierit space. One method is 1o find a two-
dimensional transform which can be represented as the product of a transtorm in one direction and

a transform in the other direction. Assuming that a two-dimensional picture can be considered as a
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sample function from a randoin process with two-dimensional corrclation r le., witha
correlation coetficient r in direction one and a correlation coefficient ry in direction two, then the
optimum discrete transformation is the successive use of two Karhunen-Loéve transformations; the
first with parameter ry, and the second with paraineter r,.

Another varable of interest in transform cncoding is block size. For a one-dimensional signal
the block size is the number of elements of the transform and the pertormance of the transform
improves monotonically with increasing block size. For two-dimensional images, transform per-
formanee also increases with increased number of elements in each dimension of the transtorm.
However, two dimensional transtorms usually require intermediate memory to store the transform
coefficients in the tirst direction while the transform is being computed in the second direction.

Also of interest in two-dimeusjonal transform encoding are mixed transforms, e.g., one hori-
zontal transform and one vertical transform. Although performance increases with the number in
¢ach direction of elements in the traustorm, performance varies with the particular transform chos-
en. However, memory requirements tend to increase linearty with the number of elements in the
second transform direction since all of the coefficients must be stored from the first transform. The
amount of intermediate memory may be minimized by the use of a small block size for the image in
the second direction, but performance may not be optimized by this choice. The choice of a mixed
transform thus interacts with the overall system design and the available memory for coefficient

storage.

KARHUNEN-LOEVE TRANSFORMATION

if a continuous time functicn of zero mean and autocorrelation functionr, = eIl s consid-
ered to be a sample function from a wide-sense stationary random process, then this time function

can be expanded by the Karhunen-Loéve expunsion[(’] and the resulting coefficients will be uncor-

related. For a discrete function of zero mean and autocorrelation function RT = r'”, which nay be
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considered as a sample function from a first-order Markov process, a similar discrete Karhunen-
Loéve transformation may be defined”] _ This transformation diagonalizes the covariance matrix
and is optimal in the mean-square error sense for a restricted set of basic functions that do not span
the complete space.

The discrete Karhunen-Loéve expansion is given by [7] for the case N = 2m as

2m
G(k) = z —2———2g(n) sin {wn [k -(Q2m+1)/2] +n1r/2} k=1,2,...,2m
n=1 2m+A
n
where
Do | -12
n 2

1 -2rcosw,tr
and [wn} are the positive roots of

-(1 -rz)sinw
2

tan 2mw =

{cos w - 2r + 1° cos w)

Since the discrete Karhunen-Loéve expansion involves both the solution of a transcendental
equation and the evaluation of the autocorrelation function of the data to be transformed, real time
computation of this transform is quite complex. However, Habibi and Wintz [3)have shown that
Karhunen-Loéve transformations using approximate autocorrelation functions are satisfactory for
many applications. In addition, Pratt at USC is examining the use of corrected Fourier coefficients
as a practical way of computing approximate Karhunen-Loéve expansions.

The preceding considerations suggest that the Karhunen-Loéve expansion should be used only
for small block sizes and that under these conditions either precomputed expansions or interpola-
tion may be used. This complexity may be justified for wwultispectral encoding or for reduction of

the memory required for a mixed transform.

DISCRETE FOURIER TRANSFORM

Since the discrete Fourier transform is asymptotic to the Karhunen-Loéve transformationlg] )

evenl though the basis vectors are picture independent, the Fourier transform represents a logical




choice for real time implementation. The Fourier transform exists for all lengths N, The basis

vectors are complex and are given by

n _ -j2mnk/N
¢ = gieAl
k

If the input sequence is real, then the Fourier coefficients will be conjugate even. 1t the input
sequence is real and even then the Fourier coefficients will be real and even. If the input sequence
is non-negative and symmetric, then the Fourier coefficients will be an autocorrelation sequence.

Many methods exist for the computation of discrete Fourier coefficients. The Goertzel algo-
rithm requires a number of computations proportional to NZ but can be used for all lengths N.
When N is highly composite *“‘fast’ transformations can be used! 91 Thus, if N is of the form 29,
then the number of computations can be made proportional to Nq. Although *“fast’ algorithms
have been successfully used on General Purpose Computers they are too slow for real time computa-
tion since the algorithm iterates q times before achieving a solution. This problem can be overcome
by the use of q processors in a pipeline architccture[ 10 , although this increases the complexity of
the processor.

A linear filter implementation also exists for the discrete Fourier transtorm which is both
easily implemented and suitablc for rcal time computadon. This algorithm, called the chirp-Z-
transformb 11 s based on the substitution nk = [n2 +k2- (n- k)2] /2 and can be used for any
length sequence N. The transform may be summarized as a premultiplication by a discrete chirn,
convolution with a discrete chirp of twice the length, and postmultiplication by a discrete chirp.
This transform may be computed with either acoustic surface wave filters or charge transfer de-

2],

vices

DISCRETE COSINE TRANSFORM

Certain properties of Foutier transforms should be observed wiien using the discrete Fourier
transform (DFT). The DFT is the Fourier series representation of periodically extended data and as
such has convergence properties which depend oi the input data. 1f the periodically extended data
is discontinuous, then the convergzuce will be of the order of 1/n; if, however, the periodically
extended data is continuous, then the convergence will be of the order of l/nz. ite cosine trans-

form makes the data appear to be coniinunus.
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A discrete cosine transtorm of a data sequence g(n), n =0, 1,. .., (m - 1) can be defined as

N-1
G(0) = 2Y2)N 2 g(n)
n=0
N-1
G(k) = 2/N z 57} cos [ + 1) ki [2N) k=1,2.....(N=1)
n=0

The basis vectors are a class of discrete Chebyshev polynomials which are real and are given by

cos [(2n + 1) kw/2N]

%

Ahmed[ 13] a5 investigated the use of these basis vectors as substitutes for the Karhunen-
Loéve basis vectors and finds that they are superior to the Fourier basis vectors and comparable to
the Karhunen-Loéve in reducing the mean-square-error in basis restricted transformations while
maintaining the computation simplicity of a transformation which does not depend on the picture
statistics.

A somewhat different definition of the cosine transform is given by Cooley et al.[14] along
with the necessary operations required to compute the cosine transform with the Fast Fourier
Transform. However, the auxiliary operations are somewhat involved and the length of the trans-
form must be chosen so that the modified data is correct for a fast Fourier transform.

In order to take advantage of subsequent processing algorithms, it may be desirable to have the
Fourier coefficients be a real autocorrelation sequence. This requires that the data sequence be ex-
tended so that it is symmetric about the first data value. This automatically assures that any subse-
quent periodic extension is continuous but aiso results in a data vector which has an odd number of
values. A third cosine transform can be defined for the symmetrized data even though the resulting
sequence length is odd. This transform can then be computed with the chirp-Z algorithm or direct-

ly by the modification of the Fourier transform:

N-1
G(k) = g(0) + Re z o(n) e=Skn/(2N-1)
n=|]
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Even though these symmetrized transforms conceptually use a symmetrized data sequence,
13 their implementation is no more complicated than CZT of the original data length and only re-
quires a change in the CZT reference function. The performance will be that of a sequence which
has been extended to be continuous while the transform will be real and half of un autocerrelation
function.
The third cosine transform is recommended as the primary transform for IMage pProcessing in
' the horizontal direction and may casily be used on the video in real time. 1ts use in the vertical

direction must be compared with other transforms, however, since memory must be employed for

intermediate storage and this memory increases linearly with the size of the transform i1. the vertical ==
direction.

wtd
SLANT TRANSFORM -

re

In order to have a better match between the characteristics of television images and the basis

vectors of the orthogonal transformations used to transform these images, Shibata and

| Enumoto[ 15] introduced a transform of which the second basis vector decreased in uniform steps -
over its length. Pratt, Welch, and Chcn[ 16] pave developed the slant transform in such a manner i
that it preserves the “sequency’” properties of the Walsh-Hadamard transform as well as maintains a -
“fast™ algorithm for computation. I}
Unfortunately, the transform is no longer binary and multipliers must be used in the computa- “
tion. Thus, the transform may either be computed digitally or by means of a transversal filter with
as many weighting networks as there are basis vectors in the transformation. These considerations o
appear to limit the applicability of the slant transform to applications such as the vertical encoding
of television images; here the significant improvement in performance of the slant transform offsets -

lack, at present, of a simple real time computation implementation.

WALSH-HADAMARD TRANSFORM

The Walsh-Hadamard transform in one dimension has basis vectors which are the discrete Waish
functions. The discrete Walsh functions are an orthonormal sequence of length N canonically de-
fined for N = 29, q a positive integer. The values of the Walsh functions are +1 and -1. The “'sequen-

cy” property of the Walsh functions exists when the basis vectors are ordered by the number of sign

10




changes which occur in each basis vector: the number of sign changes increases linearly through the
non-negative integers from 0 to 29 - 1. This corresponds to the number of sign changes which occur
for the discre'e Fourier Transform as it increases in frequency from DC to frequency 29-1,

The canonica! Hadamard matrix of length 8 is of the form

111 111 Sequency 0

i)l =
—_l —] —

I 111711 7
1111111 3
TT11711 4
H@3) = -
I 111111 1
A T T 6
11111111 2
ITT1T1T1171 5

The first 8 Walsh functions ordered by sequency are of the form

—
-
—

1
] 00 1
]
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— == = ==
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One factorization of H(3) into sparse matrices which gives a “fast™ algorithm similar to the

fast Fourier transform[ 17] is of the form
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The corresponding signal flowgraph is of the {orm

X (O)R—-——?Xl :0) < X5 (0) ——=>X3(0)
Xz(l)>l<tx3(|)

178X, (2) X3 (2)
etc.
X2 3) X3 (3)
X511 X5 (4)
- etc.
X: (5) X3 (5)
Xz (6) X3 (6)
etc.
X2 (7) X3 (7)

which is observed to have no multiplication other than +1. This makes possible a simple hardware
implementations of the algorithm and its computation for large block size.

The importance of large block size becomes significant when it is observed that the one-
dimensional Walsh-Hadamard transform of size N2 is the complete two-dimensional Walsh-
Hadamard transform of size N if the input vector to the one-dimensional transform s obtained by
appending successive rows of the two dimensional data together, starting with the first row. In
terms of minimizing the auxiliary memory, this tw -dimensional property may be significant. How-
ever it imposes constraints on the scanning of the original image and a “pipeline”’ impiementation
would b2 required for real time computation.

Alternatively, a transversal filter implementation of the Walsh-Hadamard transform is possi-
blel 18] This implementation requires that the number of weighting networks be equal to the size
of the transform which becomes large if a one dimensional transform is used for two-dimensional
processing.

The basis vectors of length 8 in “sequency” order and shifted for rea! time implementation by

transversal filtering are of the form

12
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The large number of weighting networks can be eliminated through the use of an electronically
variable tap weight implementation. If the basis vectors of the transformation are imagined to be in
“sequency’” order and successively shifted to the right with increasing “sequency,” then a tap weight
“sequency”’ can be derived that will successively compute each Walsh-Hadam 'rd transform coeffi-
cient using a transversal filter with 2 N - 1 taps. The time behavior of a 15-tap filter is shown as tap

weights for an electronically variable tap weight implementation of the form

—» time
Tap | 10000000

I 2 11000000

3 11100000
I 4 11110000

5 11111000
l 6 11111100
’ 7 1TTTI1I110
l 8 ITT11TT1 -
' 9 oT1111171
[ 10 001 TTT11
| 11 po@TTill
‘ 12 00001111
: 13 00000111
[ 14 00000011
' 15 00000001
|
' 13




HAAR TRANSFORM
The Haar tran<form in one dimension has basis vectors which are the discrete Haar functions.

d 3 m .
The Haar functions are an orthonormal seqguence {on } characterized by two parameters m and n.

tora sequence of length N =2 n= { 0.1..... q} ard nr = {l. 2., an-l } . A transform of
length N = 23 has the basis vectors in the form
00 = {1.1.1, }
. P
il N T l]
ol = 124 2% 3% 3% 0,0,0, 0]
o) { % % W —v,l
- - ) - 3 2 YA
o7 = {0.0.0.0.2% 2% 2% 2%,
ob % 12.2,0.0.0.0.0.0
Al =]
¢; =10,0,2,2,0,0,0,0
¢ = 10.0.0.0.2.3.0.0
b < v 3
d)z =10,0,0.0,0.0.2.2
in general for N = 24
[ 2(n-1)/2 m-l o m# /2
2n-| 31‘.-]
= hl
mo_ ] _yn-D)2 Ll egedt
% 2 Hn-1 an-1
m-1
L 0 ()\T<—-Tl-dnd———< T<|

The Haar transform may be of interest in image encoding since it is a generalized differential
encoding. In normal differential encoding, N=-1 first differences of successive data points are trans-
mitted as well as the first data point. However, if an error occurs inany of the difterences orin the

first data point, then all subsequent reconstructed values are in error. The Haar transtorm tends to

14
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overcome this difficulty by transmitting N/2 contiguous differences and N/2 - | compound differ-
ences as well as the sem of data values,

From an implementation viewpoint, the Haar transform is interesting since it has several con-
venient hardware implementations, There are “fast,” transversal, and recursive filter implementa-
tions,

The “tast™ implementation of the Haar transform is particularly convenient because the
original matrix has many zeroes. That is, instead of requiring a number of operations proportional
to N log, N the number of operations required for the Haar transtorm is proportional to N.

Corresponding simplitications are possible in a transversal filter implementation since the
number of weighting networks is only I +log,N since many of the weighting networks may be used
for the computation of more than one Haar coefficient,

The use of the Haar transform as the vertical transfeam for image encoding should be investi-
gated since logy N + 1 delay line memories may be used as recirculating integrators for the recursive
caleulation of the coefficients of the transform. This transform is sccond only to a differential 5
pulse code modulation in memory requircment as a vertical transform while simultaneously provid-
ing some protection against ¢rror propagation. The Haar transform does not have a “'sequency™
property, although it may be considered to sample the input waveform at progressively coarser

" C
mtcrvals“ )].
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4. HARDWARE IMPLEMENTATION FEASIBILITY

Laboratory tests ai NUC have been made to determine the feasibility of implementing the
varions candidate compression systems. A computational syste. architecture for performing the
two-dimer sionul image transforimation which meets the ARPA requirements of tow cost, low power,
and low weight has been determined. This architecture is described in more detait in NUC TN 1026
which is attached as Appendix D.

Two areas of technology have been investigated in detail: surface wave devices and charge
coupled devices. These devices, along with multipliers, provide a means of implementing a real time
video transform processor. The block size which can be built for a two-dimensionat transform is a
function of the transform technology and the memory technology. The meinory primarily impacts
the choice of the vertical dimiension transform.

A surface wave device presently under construction at NUC has been designed to implement
the chirp-Z-algorithm for the Fourier transform. The overall time delay of the filter response is
related to television scan rates and has been chosen as 1/4 of 53.5 ps. It was judged reasonable
to divide this into 64 sample intervals, which led to the choice of 0.209 ps as the saiple interval.

Implementation of the filter at bandpass was achieved by further subdivision of the sample
interval into an integer number of periods that correspond to a frequency in the range 25-30 MHz.
The chosen integer was 6, and the corresponding period (frequency) was .0348 us (28.7 MHz).

Each sample of the chirp function was represented by a group of three finger-pairs separated by a
space of three carrier wavelengths.

The chirps sweep from zero to about 2.4 MHz to zero to 2.4 MHz and back to zero again (an
inverted-W-FM). They are represented on tue surface wave device as an arplitude modutated series
of 28.7 MHz finger groups, each group being weighted by the amount of overlap of its fingers. One
pair of sine and cosine chirp filters is interrogated by one input signat and the other pair by a second
input signal. The four outputs are combined according to the comyplex CZT algorithm.

A charge transfer device (bucket brigade) transversal fitter has been built by Texas Instruments
as part of a study funded by Rome Air Development Center. It isa 200 stage device capable of
operating at around 0.2 MHz. At present it is undergoing evatuation at NUC. 1t appears to be

capable of implementing a modified cosine transform.
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Th extension of these technologies to the sizes and speeds necessary for video signal process-
ing appears to be straightforward. The preliminary production cost, power, and weight of the vari-
ous system components are given in Table 1.

In the course of the television bandwidth reduction study, the television sync signal was identi-
fied as a major area which had not been thoroughly considered. 1t is desirable to provide a high AJ
margin on the sync signal so that the display will remain stable under adverse conditions. Prelimi-

naty feasibility studies have indicated that the RPV status couid be included on the sync channel.

Table 1. Preliminary System Production Costs, Power, Weight

Development Costs Production Costs
Transversal filter
512 Taps CCD §50-75K $ 5.00
SWD in house ($50-75K) 100.00
9 months — 12 months development (ime
Power < | watt Weight < 1 Ib
Memory for vertical transform
16 X 256 CCD $50-75K $ 15.00-20.00
SWD S100K 100.00
9-12 mo. development time
Power < 2 watts Weight <1 Ib
TV sync + data encoder
SWD $120K 120.00
Power = 1.2 watts Weight << 1 lb
TV Transform data encoder
LSt 10K $ 10.00-20.00
Power < 5 watts Weight <1 Ib
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5. RECOMMENDATIONS FOR FOLLOW-ON TASKS

A computational system architecture has been determined for performing the two-dimensional
image transformation which meets the ARPA requirements of low cost, low power, and low weight.
The recommended transform for at least the horizontal scan direction is the cosine transtorm. It
has performance equivalent to the optimal transform. The choice of the transform in the verti-
cal direction is impacted by the memory available in the RPV. Continued system design and mem-
ory development will be necessary for the airborne computational system.

The foiiowing tasks are recommended for follow-on work"

(a) Continue collaboration with the University of Southern California to develop and evalu-

ate various transform techniqucs.

(¢) Determine and develop necessary memory technology.
(d) Design and develop transform data encoder compatible with modem.
(e) Provide television sync encoding with large AJ margin. It is also recommended that the

down link data be ircluded in the television sync system.

(f) Integrate system components at NUC.

(g) Simulate the channel and evaluate the AJ of the video system.
(h) Field test the system eighteen months after receipt of ARPA order.
(i) Monitor continuing work at Wright Patterson on necessary operator requirements for

various missions with Decision Science.

(j) Design and develop ground station display and postprocessing.

o ", . e . i et

(b) Continue airborne system design. |
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REPORT SUMMARY

This report details the results of the first phase of a NUC program on image bandwidth reduc-
tion for application to the ARPA RPV problem of sending television images ove. spread spectrum
channels. This report presents primarily a study and feasibility testing phase.

1t has been found that significant bandwidth reductions are available by means of linear trans-
formations applied to the image and filtering in the transform domain. Such techniques are the
only presently known methods to obtain large redundancy reduction ratios. Bandwidth reductions
by a factor of 6 are easily attainable without significant picture degradation. Reductions by a fac-
tor of 12 only slightly degrade the picture.

The image redundancy reduction has been done on a high speed gencral purpose computer at
the University of Southern California Image Processing Institute. The Naval Undersea Center has
determined that the linear transform techniques developed at USC and NUC can be implemented in
real time with small low cost hardwar ~ suitable for the ARPA RPV.

For ex»mple, the Fourier transforin may be implemented in this manner by utilizing the chirp-
Z-transform algorithm which provides an exact decomposition of a discrete Fourier transform into
premultiplication by a discrete chirp, correlation with a discrete chirp, and postmultiplication by a
discrete chirp. The hardware required to implement this algorithm is thus the equivalent of a com-
plex filter, a pair of complex multipliers, and a pair of complex sequence generators. The compuia-
tion time required is linear in the desired discrete transform length, and the cost is nearly linear in
the length. The sequence generators may be read-only memories, and the filter may be provided by
a transversal filter device. High speed acoustic surface wave implementation will permit & two-
dimensional transform to be realized as a succession of one-dimensional transforms. When high
speed CCD devices become available they will provide direct replacement for the surface wave
filters.

The principal result of this preliminary study phase of the program is the recommendation that
a hardware development and implementation phase be initiated. A flight test of the bandwidth
reduction syster is feasible eighteen months after initiation of the hardware development phase.
An overall bandwidth reduction of the order of 20 db appears to be feasible without significant

picture degradation.
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APPENDIX A

USC PHOTOGRAPHS AMD REPORTS

This appendix contains transformed photographs done under contract N0O123-73-C-1507 at
the University of Southern California. The second part of Appendix A is an article by Ali Habibi
and Ronald S. Hershel. Ali Habibi is tt e principal investigator for the USC contract. A more

forimal USC report will be presented by the lLinage Processing Institute at a later date.
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(a) Original (b) Karhunen-Loeve

(c) Fourier (d) Hadamard

] Figure 9. The original and the encoded pictures using one-
‘ dimensional transformations and DPCM systems, 1 bit/pixel,
M = 16.
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(a) Karhunen-Loeve (b) Fourier

(c) Hadamard

Figure 10. 7The encoded pictures using the cascade of one-

dimensioral transformations and DPCM systems, 2 bits/
pixel, M = 16,
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A UNIFIED REPRESEWTATION OF DPCM AND TRANSFORM CODING SYSTEMS

by
Ali Habibi and Ronald S. Hershel

Abstract

We consider a transform coding system that uses a lower-triangular
transformation to uncorrelate the data. Based on this transformation we
propose a generalized DPCM system and show that at high bit rates it per-
forms almost as well as coding by the method of principal components
(Karhumen-Loeve transforaaticn).

This study connects the transform coding system to the DPCM encoder
by showing that the proposed system simplifies to a standard DPCM encoder

for markov data.

I. Introduction

Two important classes of coding systems that are based on eliminating
the correlation of the data prior to quantization and subsequent encoding
are the differential pulse-code modulation (DPCM) and the transform coding
systems. Both classes have received a great deal of attention in the
recent literature and have been used successfully in coding pictorial

&=7) Historically both techniques were developed separately and are 3

data.
treated individually and often by entirely different groups of researchers.
The only established link between the two systems is the fact that both
attempt to generate a set of uncorrelated signals prior to quantization by
a memoryless quantizer or a set of quantizers. The Karhunen-Loeve trans-
formation, also known as the method of principal components for sampled
data, generates the uncorrelated signal by using an orthogonal transforma-
tion that diagonalizes the autocovariance matrix of the data. The DPCM
system, on the other hand, is designed based upon modeling the data by a
markov process, then using a best linear prediction to obtain the set of

uncorrelated sigrals.

This research was supported by the Naval Undersea Center, San Diego under con-
tract N00123-73-C-1507 and by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the Air Force Eastern Test Range
under contract F08606-72-C-0008. The authors are with the Department of
Electrical Engineering, University of Southern California, Los Angeles, Ca. 90007
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In this paper we will consider the DPCM system and show that it is

- —

indeed a member of the class of transform coding systems where a lower
triangular matrix is used to transform the data to a set of uncorrelated
J signals. This approach will provide a fresh outlook to the theory of the
3 DPCM system realizing that the DPCM system is a special case of a more
l 3 general coding system where a lower triangular matrix is used to transform
the data to a set of uncorrelated signals. This system, unlike coding by
unitary transformations, combines the operation of the transformation with
that of the quantizers. The entries of the lower triangular operation are
i related to the covariance matrix of the data. For an nth order markov

process the triangular operator has n off-diagonal bands with identical

i eeed e O e ENE BN

elements within each band. Thus, for this special case the transformation

is performed recursively and is identical to the linear predictor in an nth

i

order DPCM system.

i

II. Transformation bv Lower-Triangular Operators

-

Consider an N-dimensional data vector X = (xl,x ,...,xb)T and let

2
X represent a sample vector from an ensemble of N-dimensional zero mean

Smsa ]

random variables. X can also be considered as a vector of N samples {xi}

that results from sampling a continuous random process uniformly over a

LR

finite interval. A vector Y = (yl,yz,...,yn)T can always be generated from

a linear combination of xi's as 3
i
L i
L]
j-l -I
= x, - L L _.x for j = 2,...N (1
Y3587 o e’k ) ) .

or in vector form

Y = LX (2) o

where L is a unit lower-triangular matrix; i.e.,




g=q ==

1

.

[ 1 0 0 0 .. 0 q
=0 14 0 0 A 0
-231 -232 i 0 as @ 0 0
L= . 5 1 5 (3)
-2 ) . 2 i
! N-1,2 N,N-1T ]

Denoting the covariance matrices of X and ¥ by Cx and C_ respectively, (2)

Y
implies that

=L L 4
Cy Cy (4)
Cholesky has shown that for every symmetric positive definite matrix Cx
there exists a real non-singular lower-triangular matrix L such that matrix
L Cx LT is diagonal.(s) Martin and Wilkinson have considered numerical

and have developed efficient techniques
(9,10)

algorithms for finding L and CY
requiring only N3/6 multiplications.
The fact that the transformation (2) diagonalizes the covariance
matrix of X indicates that the elements of Y are uncorrelated.
Some of the significant properties of the transformation by the unit

lower~triangular operator are:

1) The unit lower-triangular operator L is not unitary; thus trans-
formation (2) does not preserve the length of a vector. As a result though
the determinant of the covariance matrix of X is invariant under this trans-

formation, the trace of the covariance matrix is not invariant.

2) This transformation does not share the optimum concentration of
energy in the first M < N components of Y exhibited by the method of
principal components. Indeed, for an nth order markov process the variances

of the Y components, except the first n components, are all equal.

3) Transformation with the lower trianqular operator L does not

require a transformation delay.
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Note that if the components of X are samples from an n~ order
markov process the stochastic linear model of (1) will be

T

Y. =x, - I ax

q j = 1'21000,N (5)
33 L, Kitk

where x; = 0 for i = 0,-1,-2,... . Then the operator Ln will be a banded

matrix of n+l bands; i.e.,

[ 1 0 o 0 0
'Ql 1 0 0 s s e
= b LRI 0
Q2 Ql 1 0
L = (6)
n an an-l s al 1 0 dig 0
0 -Gn vos -QZ -Ql 1l 0 cee
_0 0 s o e 0 -Qn LY -al lJ

Transformation of an N vector with operator L requires less than nN
multiplication as compared to N /2 - N multlpllcatlons needed for trans-
formation with the unit lower-triangular operator L in its general form.
Furthermore, since transforming with Ln operator requires only the n most
recent components of X, this transformation can be performed by using a
feed-back loop identical to one in an nth order DPCM system to perform the
transformation recursively. In this case the complexity of the transforma-
tion is independent of the dimensionality of X and depends only on the order
of markov process n. The block diagram of the system using the feed-back

loop for operation Lnx is shown in Figure 1.

III. Coding by the Method of Principal Components

Before proceading with the lower triangular transformation we will
briefly review coding by the method of principal components and block
quantization. The block diagram of this system is shown in Figure 2. Huang
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and 5chu1theiss(ll)

considered this problem first and proved that given a
total number of binary digits N0 (a finite capacity digital channel) the
average coding error is minimum if vector X is transformed to an uncor-
related vector Y by an orthogonal operator A and Y is quantized by block
quantization. Matrix A is an operator that diagonalizes the covariance
matrix of X and the block quantization of Y involves assigning NO binary
digits to N components of Y proportional to the logarithms of their

variances di; i.e.,

2 4 !
= —£ .  n —32_
et e M TTIA @
ey |
N
where ch, is the determinant of covariance matrix C, and ) m, = N6.
i=1

This rule was obtained by observing that optimal quantization of Gaussian variables
m,
Yy using a quantizer with 2 ! levels introduces a quantization error 9

such that*
-m,/2

E{yi} (o) * (8)

"

2

E{qi}
Substituting (7) in (8) gives

Bla;) = o YN 1072 -4 (9)

Equation (9) indicates that the block quantization of Y results in an equal
quantization error A for all components of Y. Note that (9) does account
for the inaccuracies due to using integers for mi, thus A should be viewed
as the lower bound of the quantization error. Since each quantizer is
independent and the quant. .ation error is additive, the quantized vector Y*
is

-2m, 4n 2

]

Huang and Schultheiss use an approximation that involves 2 : but
further studies of the problem have shown that (8) is a better
approximation.(12'13)
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Y =AX +Q (10)
and
E{QQT} = AI (11)

*
where I is the identity matrix. This gives a reconstructed vector X such

that

* -1
X =X+A7Q (12)

The total error for the system is the trace of the covariance matrix of the

*
error vector X-X , thus from (12) the average coding error is

Z [~

ei tr {AI} = A (13)
It is interesting to note that the above coding system not only minimizes
the coding error but it also gives an uncorrelated error in the signal
domain which is a desirable property in many applications of the coding
system.

‘Note that if all components of Y are quantized using 6 bits for each
comporernt the total coding error would be the same as it would result by
coding the components of X directly. This can be seen by noting that using 8

bits per component the average ccding error is

2 1 -1 Aaly -1.7T
e, =5 tr [A77 E{QQ*} (&™) "] (14)
where the components of the quantization error Q are uncorrelated with
variances equal to E(yf}(lo)'e/z. Therefore
2 1. .-8/2 -1 -1,Ty _ . =8/2 2
g = 10 tr[a c,(d )] =10 0y (15)

2, , . .
where Ux 1s the common variance of {xi] and (15) is the average coding error
that results by quantizing the components of X vector directly. We note in
pPassing that this result is true for any transformation that generates an

uncorrelated Y vector including the transformation by the lower-triangular
operator L.

a5




IV. A Generalized DPCM System

Transformation of vector X by the lower-triangular operator L results
in a vector Y where the components of Y are uncorrelated and in general have
unequal variances. Components of Y are quantized uring the block quantiza-
tion technique discussed in Section III and are transmitted. Vector X can
be reconstructed at the receiver, within some level of degradation, by
operating on the coded vector Y+Q with operator L_l. The average coding
error 82 is

L

ei = % tr [L—l(L-l)T] (16)
where A is defined by (13). The readers will note that (16) is subject to
similar inaccuracies as (18) and thus it also should be viewed as a lower
bound or the performance of this coding system.

Comparison of (13) and (16) show that using lower-triangular operator,
a non-unitary matrix, rather than the method of principal components to un-
correlate the data prior to its block quantization results in an inferior
coding system. This is evident from the fact that Ln1 is a unit lower-

triangular matrix, thus

er L™ > e 1

When components of X belong to a first order markov process the
block diagram of the above coding system is shown in Figure 3a. Then only
two guantizers are used where one encodes y1 and the other y2 through yN;
since Y, through Yn have identical variances. From published literature
the performance of this encoder improves by including the quantizer in the
predictor loop as shown in Figure 3b. This combines the operation of the
quantizer with the transformation and is identical to a DPCM system with
the stipulation that a separate quantizer is used to encode the first com-
ponent of the differential signal. Naturally the effect of using only one
quantizer is negligible for large N; thus two systems are identical.

Since L is a triangular matrix, the operation of the gquantizers can
be combined with the transformation to give a generalized DPCM system. We
propose a combination of the transformation and the block quantization,
gimilar to c¢ne in the DPCM system, and show that the performance of the

generalized DPCM system at high bit rates approaches the performance of the
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encoder using the method of principal components and the block quantization.
This system uses N2/2 - N multiplications to transform the data and requires
no coding delays. It simplifies to an nth order DPCM encoder if components
of data X belong to an nth order markov process.

The block diagram of the generalized DPCM system is shown in Figure
4. The components of input vector xl,xz,...,xN are operated upcn in sequence

1" 72 N
ti and remain open at all other times. Variables ziy i=1,...,N are

at times t_,t.,...,t_ respectively. Switches Si, i=1,2,...N are closed at

generated recursively and are stored in separate locations. z, through zj

are read out &t each tj and are multiplied by variables C1 through Cj'

respectively, to form zj+1

is the jth row of the matrix (L-I) at time tj for j =1,2,...,N.

which in turn is stored at time tj+1' Vector C

*
Denoting the components of the quantized signals by {yi}, the recur-

sive relation for 1zi} from the block diagram is

for i =2,3,...,N

Y =lx + (L-1)Q

A
where Y is the signal at the input of the quantizer, Q is the vector of
quantization error. These equations indicate that vector Z = (21'22""'
T . \ * .
zN) is identical to the reconstructed vector X at the receiver. Thus

from (19)
(21)
Q =Y + (L-1)Q (22)

where Y refers to the uncorrelated vector LX. From (22) and rcalizing the

fact that E{yiqj} =0 for j = 1,2,...,i-1




2 -9_
t z ,  i=la-l
T Ely?) =ely5} + L I &% Elqg.aq.} i=2,...,N (23)
i 1 i, ] ik b |
i j=1 k=1
- and E{yi} = E{yi}. Note that {qi} are in general correlated since they

4 result from quantizing correlated variates {§;}. This hampers an accurate
4

analysis of this system however assuming fine quantization of {91} the

correlation of{qi}are negligible and if block quantization of {yi} is per-

formed optimally, using the variances of {?i}"from (8) and (23)

5 (10)"9/2 [+::x|]‘m
= i =2,...
-L E{qi} = o [cx|1fﬂ . 2 i ’ N (24)
1 - (10) ~ E 4,
i [3=1

.Y
and Efqi} = A. Equations (23) and (24) specify variances of {yi} in terms
of the covariance matrix of the datz Cx and the bit rate 6. From (21) and

-

(24) the average coding error for the generalized DPCM system is

o N 1
e2ulbl x : oy (25)
% G NJ|, i-1 N
i=2 & 2
l+:_i-" L lij
- lj’l
b where A, defined by (9), is the coding error by the meti:od of principal
= component. Analogous to (9) the error given by (25) also should be treated
: b as a lower bound for the performance of the generalized DPCM system.
\ Figures 5 and 6 show the performance of this system as given by (25) and the
' :I performance of the optimum system (method of principal components) for two
non-markov procesces. These processes are defined by their autocovariance
‘[ functions
= 1
RI(T) = > 1=0,1,2,... (26)
1+0.2T7
.
R (8) &——te== T #0,1,2,::. (27)
2 1+ 0.057 rees
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These figures also show the coding performances of PCM and the ecncoder that 4
uses transformation by operator L and block quantization separately.

For the special case where {Xi} is an nth order markov process the
operator L is replaced bylhof(lﬁmhen the elements of vector C remain
fixed for all t., except for j =1,2,3,...., This also makes the variances
of the componénts of the transformed vector, again except the first n com-
ponents, identical. Thus the block quantizer will consist of only n+l
quantizers. This reduces the generalized encoder to an nth order DPCM
system with the stipulations that; first, n+l quantizers are used to encode
the differential signal, second the quantizers are designed using the
variance of the differential sigral where the effect of the quantization
error is accounted for. Naturally the degradation of the encoder due to
using only one quantizer becomes negligible for large values of N.

For the case of the first order markov process the coding error from

(25) for large values of N is

(10)"%/2 (l-ai)
R = - (28)
G 1 - (10) 0/2 “i

The numerator of (28) is the coding error of the first order markov process
by the method of the principal components for large values of N. The excess
error due to usi'.g an improved DPCM rather than the method of the principal
components is less than 1.1% for al = 0.9 and 6 = 2, and reduces sharply at

higher bit rates.

V. Conclusions
We have considered a transform coding system that combines a lower-
triangular transformation with a block quantizer to convert a set of sampled
data to a string of binary digits which can be converted back into a replica
of the data. Separating the operation of the quantizer from that of the
transformation, as in the unitary transform encoders, results in a correlated i ¢
coding error at the receiver and a rather inefficient coding system. How-

ever, combining the operation of the quantizers with the transformation of

the data such that the coding errcr at the receiver is uncorrelated improves
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the coding efficiency of the system significantly. The resultant encoder

is only slightly suboptimum to the system that uses the method of principal

T e ——

-
L
l
]: components at low bit rates. At high bit rates the performance of both

systems ure identical. This was verified for a number of processes with
]: different autocovariance functions.

Transformation by the lower-triangular operator involves no coding

delay and requires less than half as many multiplications as the method of

I principal components requires.

~— Combination of the transformation and the quantization is similar to

e —— T,

& the procedure employed in the DPCM system. Furthermore the proposed encoder

reduces to an improved form of DPCM encoder for markov processes, thus it is

referred to as a generalized DPCM encoder.

———

The fact that the generalized DPCM system reduces to a DPCM encoder
for markov processes establishes a link between the DPCM and the transform

coding systems making a unifoed approach to coding by these two techniques

i3 possible. Furthermore we have shown that the theoretical performance of a
e modified DPCM system is optimum at high bit rates. At low bit rates it is

- only slightly suboptimum to the encoder using the method of Principal com-
s ponents.
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ABSTRACT

This report describes a signal processing interpreter which was developed
as part of the ARPA sponsored program for image transmission via spread spectrum
links. The signal processing interpreter SPIN3 is an interactive program for
use at a time-sharing demand terminal. It provides the user with the equivalent
of a calculator designed to perform signal processing operations and provides
the software equivalent of a large number of modules for breadboarding a complete
signal processing system.

This interpreter is meant to be used by engineers and scientists who are
familiar with signal processing, but who may have no knowledge of programming.

The signal processing interpreter is particularly useful for the rapid
investigation of systems whose complexity precludes a camplete analytic study,
and whose utilization of new camponents may make hardware breadboarding
undesirable because of cost and procurement time limitations.
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INTRODUCTION

The signal processing interpreter is an interactive program for use at a
time-sharing demand terminal. It provides the user with the equivalent of a
calculator designed to perform signal processing operations - the software
equivalent of a large collection of modules for breadboarding a camplete signal
processing system. Such a system might include an information source, a source
encoder, a channel encoder or modulator, a channel with noise, jamming, and
multipath, a channel decoder or demodulator, and an information decoder.
Typically, one would wish to campare several such systems operating through
each of several channels.

The camplexity and variety of the systems and channels will frequently
preclude a camplete analytic comparison, while cost and procurement time limit
the flexibility of a hardware breadboard of a system utilizing new components.

The two critical requirements for such a signal processing interpreter
are: (a) It must include the most frequently needed signal processing operatinns,
with a provision for readily adding new operations as the need arises; and
(b) It must be easy to use by engineers and scientists who are familiar with
signal processing, but who may have no knowledge of programning.

The signal processing interpreter SPIN3 which will be described here was
developed as part of the ARPA ~ronsored program for image transmission via
spread spectrum links. The camand set is meant to be general enough for a
variety of signal processing preblems.  In addition, special commands are
available for examining and processing portions of pictures in order to facilitate
the comparison of proposed image transmission systems.

II.1
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HOW TO USE THE SIGNAL PROCESSING INTERPRETER

The signal processing interpreter is structured around ai operational stack.
Such stacks are used in many campilers, in the Burroughs B5000 camputer, and in
the HP-35 calculator [1,2,3]. The stack structure used in the signal processing
interpreter is iu fact identical to that used irn the HP-35 except for the
differences necessitated by dealing with complex vectors rather than real
scalars.

The stack consists principally of the complex vectors X,Y,Z, and T. 'here
is also a storage vector S which is effected only by the cammand STORE, and
which effects the stack only through the command RECALL. Associated with each
of these vector registers is an integer NX, NY, NZ, NT, NS which indicates the
current dimension of the associated vector.

After the user performs the start up procedure described in Appendix B,
and also after the successful completion of any cammand, the interpreter will
solicit a command by displaying the message "PLEASE ENTER NEXT COMMAND". The
user may then enter any camand (up to 25 characters enclosed in single quotes)
and then depress the carriage control key to send the cammand to the computer.,
One of the five following outcames will then result:

a) The conmand will be recognized and performed, and a new comand
will be solicited.

b) The command will be recognized, and the program will request
the user to enter additional data from the keyboard.

c) The camand will be recognized, but not yet implemented. 1In
this case, the user will be so informed, and a new command will be solicited.
In many cases, the desired cammand may be replaced by a short sequence of
commands which have already been implemented.

d) The command will not be recognized; the user will be so informed;
and a new cammand will be solicited.

e) The attempted command is not in the form of an expression of zero
to twenty-five characters enclosed in single quotes. This will produce an error

III.1
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exit fram the signal processing interpreter and an Algol error message will be
displayed. At this point one can use the procedwe described in Appendix B

to get back to the signal processing interpreter, but all of the stack's vector
registers will be reinitialized. (It is planned %o modify the program in the
near future so that read errors will only result in an attempt to reread.)

The following types of commands are available:

a) operations on a single vector

b) operations on a pair of vectors

c) stack manipulations

d) exiting from the signal processing interpreter.

If the operation has a vector argument, then the X vector is used as the
argument. Similarly, if the operation has a single vector result, the result
is placed in X. If a vector function of a vector argument is evaluated, the
previous value of the X vector (i.c¢. the argument) is destroved unless same
special action is taken to save it, such as storing it in S. Figure 1 shows
the stack movements for this case.

old new
t T
z -7, =
Y =Y ue
X f(X) ——=-X

Figure 1. Stack movements for a vector function of a vector argument .

If the operation is an output operation, such as printing or plotting, the
X vector is used, and the entire stack is left unchanged. If the operation is
a call on a function generator such as TONE or CHIRP, or a camand to accept a
vector input fram the keyboard, the vector is placed in the X vector register,
destroying the previous contents of X.

IZ the operation evaluates a vector function of a pair of vectors, then X
and Y are used as the arguments. The result is placed in X, and the stack is
lowered. The previous contents of X and Y are lost. These actions are shown t

in Figure 2.
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new
=T

T 7y
Yy \Y
« >f (x,y) —

Figure 2. Stack movements for a vector function of two vector arguments

For most functions of two vector arguments, the dimensions of the two argument
vectors are first autamatically made equal by extending the shorter one with
zeros to the dimension of the longer one. The only exception at present is
the command APPENC X TO Y, which leaves a resultant of dimension NX + NY in X.

The stack operation commands are identical to those of the HP-35, except
for ROLL UP, which is an exact inverse to ROLL DOWN. Their effects are shown
in Figures 3-8.

oid ngw/
. ——(wosT) "

3. Stack movements for the cammand 'enter'

Figure 4. Stack movements for the command 'xy interchange'
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———
e g
—= (LOST)

Figure 5. Stack movements for the command 'store'

old
£ = (L08T)

: _F#_.,—-*""ﬂﬂpd‘-
x-c’//i/'/"

Figure 6. Stack movements for the cammand 'recall’

The commands 'clear x' and 'clear' respectively set either the x register
or all registers to zero. These two camands are not yet implemented.

Figure 7. Stack movements for the caommand 'roll down'
(not yet implemented)

.
—

T
z
¥
X

Figure 8. Stack movements for the command 'roll up'
(not yet impleirented)
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PLANNED EXTENSIONS

Several extensions of the signal processing interpreter are likely in the

near future. In order of probable implementation they are:

a) Increasing the maximum vector dimension.

b) Implementing the cammands which are currently recognized but not
yet implemented.

c) Providing a re-read when read errors occur.

d) Providing additional addressable vectors with addressable store
and receall cammands.

e) Providing for user—-definable compound commands @nd synonyms for
present camands.

f) Providing for ambi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>