AD-763 999

126.00

villes " the water of very signed and going

PERSISTENCE OF VIRUS AND BACTERIA IN SEAWATER

William D. Won, et al

California University Oakland, California

8 August 1972

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port. royal Road, Springfield Va. 22151

5

67. CC 9781

JUNE 1973 JOURNAL OF THE ENVIRONMENTAL ENGINEERING DIVISION

PERSISTENCE OF VIRUS AND BACTERIA IN SEAWATER

By William D. Won¹ and Harold Ross²

INTRODUCTION

Recent years have seen a rapid growth of interest in the prevervation of ecological factors of our marine environment and a concurrant expansion of interest in the exploitation of coastal ocean areas for food production and sea bottom mineral resources. As a result of the former interests, large coastal communities now look to the ocean as an economical receiver of municipal sumtary wastes, given only limited treatment, thereby forestalling or at least delaying the needs for costly advanced treatment of fresh water which might re-enter the consumer use cycle. It is apparent, however, that the ocean, particularly the Atlantic coastal shelf, comprised of relatively shallow water bordered by a megalopolis, cannot be considered an infinite since for such wastes, and that the microbiological flora of these waters could be changed drastically by such dumping.

Examples of the need for study of the possible contamination of specific areas of occan are readily apparent when considering the operations of offshore free divers during mineral exploration, repair work, or even recreational bathing at beaches quite remote from the "deep water disposal" point.

Aquanauts, in the recent Tektite program (7) resided and worked in an excrement-polluted marine environment for several periods. In the presence of such a background, undents of acute skin and eat infections of undetermined etiology have been observed. (These unpublished incidents have been recorded in the Medical Log, Textite II Program, Mission Number 3.2, May 11-18, 1970). Since

Note --Discussion open until November 1, 1973. To extend the closing date one month, a written request must be filed with the Editor of Technical Publications, ASCE. This paper is part of the copyrighted Journal of the Environmental Engineering Division, Proceedings of the Appendix Soviety of Civil Engineers, Vol. 99, No. EE3, June, 1973. Manuscript was submitted for review to possible publication on August 8, 1972.

"Assoc Research Bacternologist, Naval Biomedical Research Lab School of Public Health, Univ of California, Berkeley, Lad

²Research Assoc., Naval Biomedical Research Lab., School of Public Health, Univ. of Calif., Dakland, Calif

205

NATIONAL TECHNICAL INFORMATION SERVICE

JUNE	1973

WERE SERVER + 1 ... vous in the south out out in the service of the state

the immediate possibility of more serious infections is a real concern to those working in such environments and the implication of the presence of viable infective organisms in spite of the massive dilution and adverse growth conditions present is also of concern to those proposing occan outfalls for waste treatment plants, the writers investigated the survival choracteristics of certain typical enteric organisms. (Escherichia cob and Echo 6 Virus) under a simulated marine environment.

Although seawater has been known to be bactericidal and virucidal, there are antagonist.; factors capable of lowering these properties. The bactericidal property has been ascribed to several factors including: sunlight, salinity of the water (1); the presence of powerful oxidants (3); the presence of bacterio-phage (6,9); and certain filterable, thermolabile agents of marine origin (2). Most + of these factors, (salinity, chemicals in solution and heat labile, filterable toxic ' substances) were likewise virucidal (4). On the other hand, the addition of simple organit matter reduced substantially the bactericidal power of seawate: (5,8), ' but reduction in activity against poliovirus was not apparent (4).

TABLE 1.—Summary 1	Teolo of i	Materials	Usad
--------------------	------------	-----------	------

		Organic Supplements": Each in Triplicate Flask						k
Test *±st agent number (1) (2)	Feces (3)	Peptone (4)		C'45- aruino soid (5)	Casitone (7)	Yeazt extract (8)	Trypti- case soy broth (9)	
E. coh Echo 6 virus	1-7	x x	x	x	x x	x x	x x	x

*Each test series paired with test agent in unsupplemented water as control. Note: Test total number separate flask serv (3 each) = 14

This paper concerns studies on the protective effect of low concentrations of organic substances on the survival rate of bacterial and viral models, i.e., E. coll and type 6 Echo virus, representative of the enteric flors in sewage (see Table 1) Studies employing these models demonstrated a correlative relationship between the rate of bacterial survival and the degree of organic "pollution." and between the viral survival and the temperature of the water.

MATERIAL AND METHODS

206

Seawater.—Coastal ocean water samples were collected in sterile, clean plastic bottles at a 30-ft (9.2-m) depth, 0.25 mile (402 m) offshore from the Van Dam State Park about 150-miles (241-km) north of San Francisco, Calif. These samples were colorless and clear measuring 52° F (11° C) and pH 8.2. These were packed in ice for transportation to the laboratory, about a 3-hr trip. Sterilization was by pressure filtration through a Hercules ST-3 type pad.

Stock Organic Additives .-- Bacto-peptone, Difco heart infusion broth, Bacto casamino acids, Bacto-casitone, Bacto yeast extract, and trypticase soy broth

EE3

200 C 000 C 0

EE3

となったいないのないである

BACTERIA IN SEAWATER

(EBL) each at 5,000 ppm (5.0 mg/ml) were individually dissolved and autoclaved in seawater. The resultant loss of CO_2 here was not considered important since orly small volumes of the stock solutions were used to supplement the final media. A 25% (w/v) fresh human feces was homogenized in seawater with a Waring Blender and autoclaved at 250° F (121°C) and 21 psiz for 20 min.

Bacterial Preparations.—The E. coli (ATCC 9637) was grown in BBL trypticase soy broth for 24 hr at 85° F (30° C) yielding consistently 1 × 10⁴⁶ organisms/ml The culture, which was to serve as an inoculum, was diluted with normal salme water to 10° organisms/ml; 2.0 ml were introduced into 200 ml of sterile seawater contained in a 500-ml erlenmyer flask, to yield a final concentration of 1 × 10° organisms/ml. Each flask was artificially polluted with an organic substance in concentrations ranging geometrically from 2.5 ppm to 500 ppm (2.5 µg/ml to 500 µg/ml). The suspensions were placed on a gyratory shaker operating at 200 strokes/min at 38° F-40° F (3° C-5° C) and 72° F (22° C). Samples were withdrawn at regular intervals and assayed for number of viable cells by dilution and plating on Bacto blood agar base plates which were then incubated at 85° F (30° C) for 24 hr.

For microscopic examination, drops of bacterial suspension were deposited on top of previous dried drops in order to increase the number of cells per field. The smears were stained with Gram stain in the conventional manner.

Viral Preparations .-- A type 6 Echo virus, originally obtained from Fort Baker, San Francisco, was propagated in roller tube cultures of embryonic monkey kidney 104 (Microbiological Associates, Rockville, Md.) monolavers in Leibowitz's L-15 medium without serum. When cellular destruction was complete the cultures were frozen and thawed for 3 cycles to release the intracellular virus. The pooled virus material, which was to serve as the inoculum, was dispensed in 3 oz prescription bottles, 20 ml each, and stored at -94° F (-70° C). Virus titers were determined by the end-point dilution method by inoculating 0.1 ml of serial 10-fold dilutions in L-15 into each of four monkey kidney culture tubes per dilution. The cells were maintained in L-15 with 2% inactivated fetal call serum and incubated in a roller drum at 95° F (35° C). The tubes were examined microscopically first at 72-hr intervals, and at 48-hr intervals thereafter for the rest of the 14-day incubation period. These preparations contained about 1034 50% tissue culture infective doses (TCID) per 1.0 ml. For survival studies 2.0 ml of 10⁻² saline dilution of the pooled virus preparation was added to each flask to yield about 10*4 TCID₁₀/1.0 ml As in the E. coli suspensions each viral suspension received a concentration of an organic substance and aged on the gyatory shaker at 38° F-40° F (3° C-5° C) and 72° F (22° C) Samples were taken at regular intervals and assayed immediately.

RESILTS AND ANALYSIS

Figs. 1-4 depict the protective influence of low levels of representative noncostbohydrate organic additives on a constant density of bacterial cells $[1 \times 10^{\circ}$ organisms/ml) at 38° F-40° F (3° C-5° C). In all instances the apparent survivals were found to be greater in the organic additive-supplemented water than in the controls. However, as may be noted, the survival enhancing capacity of these substances differed. The substance most effective appeared to be Bactopeptone (Fig. 1) As is shown, bacteria in the control died eff at a relatively 114 m

JUNE 1973

npris to a construction of the second s

fast rate leaving approximately only 1.0% of the population surviving a 10-week exposure, after which time, viability was consistently undetectable upon assay. In contrast, better survival occurred when the water was supplementd with traces of peptone. Water supplemented with 125 ppm and 250 ppm (125 .ng/ml and 250 µg/ml) of peptone elicited the highest survival and the longest persistence of the organisms (20 weeks). Similar results were achieved using heart infusion (Dhfco) supplemented water (Fig. 2). The survival response effected by otb. organics (fecal maternal, yeast extract, casitone, casamito acids, trypticase soy, etc.) was less marked and all were of the same general magnitude (yeast and fecal tatterial—Figs. 3 and 4 are typical). Increasing the concentration,

FIG. 1.—S'mvivel Pattern of E coll as Alfected by Varying Concentrations of Pepto. In Seewater at *F-40* F (3* C-5* C)

208

FIG. 2.—Survival Pattern of E. coll as Affacted by Varying Concentrations of Heart Infusion Broth in Seawater at 38" F-40" F (3" C-5" C)

by increments, to 1,000 ppm (1.0 μ g/ml) did not significantly augment the protective effects of these materials.

Of additional interest was the observation that in the presence of organic substances, the morphology of the cells as well as the colonies appeared to be more stable. In seawater without additives the bacterial cells changed from the characteristic short rods to minute coccoidal forms in about 14 days. Cells suspended in water containing a low level of organic matter the eccecidal forms appeared at 22 days; whereas at the higher organic levels, these occurred at about 35 days

With respect to the colony development, a parallel, varying degree of effect was likewise noted. A small percentage of tiny colonies requiring an additional

EE3

work of the second second second states and the states of the second second states and the second states a

EE3

A CONTRACTOR OF A CONTRACT OF A CO

مر به وجار به المراجع المراجع المراجع المراجع المراجع المراجع المراجع المرجع المرجع المرجع المرجع المرجع المرجع

L'AND THE REAL PROPERTY OF

BACTERIA IN SEAWATER

209

and a set a strate water that a state being the set of the state of the set of the set

24 hr of incubation to develop into countable sizes began to occur in the control populations at about the 3rd week and increased gradually up to maximum of about 35% at the 7th week. In contrast, these abnorma, tiny, slow growing colonies did not begin to appear in the high level peptone-supplemented water until after a 6-week exposure and did not reach maximum (35%) until the 13th week. It is possible that the coccoidal form is the consequence of an adaptive response to the stress imposed by an adverse environment. Further, a portion of the surviving population, more exacting in nutritional demand may have been selected.

FIG. 3.—Survival Pattern of E. coli as Alfected by Verying Concentrations of Yeart Extract in Serwrater at 38"-40" F (3" C-5" C) FIG. 4.—Survival Pattern of E. coll as Affected by Verying Concentrations of Fecal Material In Seawater at 32° F-40° F (3° C-5° C)

At 72° F (22° C), the effect of adding organic substance to seawater elicited a markedly different response, as shown in Fig. 5. Apparently, at this temperature the organic material completely overwhelmed the bactericidal properties of the seawater, permitting growth. For example, at 500 ppm (500 µg/ml), peptone, trypticase soy, and apparently feces, readily initiated and supported progressive bacterial growth for about 6 days, followed with a stationary phase leasting 3 weeks and then a sequential exponential decline proceeding at such a rate that viability in the order of about 50 organisms /ml persisted up to the 17th week. However, it has been established that, among the varied toxic substances, seawater contains a toxic principle which is thermola^{N-R}e. Sterilization by autociaving, filtration, or even aging affects its potency (1,2). Accordingly, in this respect, the protective activity of the organic additives observed may nay be

FIG. 5.-Inactivation Rate of Echo & Virus in Seawater as Function of Temperature

natural, aerated seawater did not apprecibly change the survival capacity of the virus at either 38° F-40° F (3° C-5° C) or at 72° F (22° C). Fig. 6 compares the inactivation rate of the virus at 38° F-40° F and 72° F in unmodified, filtered

BACTERIA IN SEAWATER

100740 700 4822

and any for the state of the state

211

NOT B ATIMS

Statia .

シャッシュ おかくたいないないがん やくいいてい たんかい ないたい ないたい ちょうちょう ちょう ちょう たいちょう しんしょう しんかったい たいちょう ちょう ひょう

seawater. Inactivation was more rapid at 72° F than at 38° F-40° F. A cold environment appears to be more effective than organic pollutants in enhancing the persistency of the virus to provide a potential source of disease hazards for humans who come in contact with viral contaminated waters.

SUMMARY AND CONCLUSIONS

atter - manualized a fisher a source to the

Survival of Escherichia coli and Echo 6 virus was studied in aerated seawater (shaking) under ambient conditions at 38° F-40° F (3° C-5° C) and 72° F (22° C). The addition of low concentrations of organic substances, including feces, enhanced bacterial survival at 38° F-40° F. At 72° F these organics became growthpromoting for E. coli, sustaining a 40-fold population increase, enabling viability to persist for 18 weeks. On the other hand, the addition of organic substances did not enhance viral survival. The mitial inactivation rate for this virus was greater at 72° F than at 39° F-40° F.

ACCNOWLEDGINENT

The work herein was sponsored by the Office of Naval Research under a contract with the Regents of the University of California. The writers thank H. M. S. Watkins for supplying the virus and tube cultures for this study.

APPENDOX.-REFERENCES

- 1 Carlucci, A. F., and Pramer, D., "Factors Affecting the Survival of Bacteria in Seawater," Applied Microbiology, Vol. 7, 1959, pp. 388-393
- 2 Greecberg, A E., Survival of Enteric Organisms in Seawater," Public Health Reports.
- Vol 71, 1956, pp. 77-86 3 Johannesson, J. K., "Nature of the Bactericidal Agent in Scawater," Nature, Vol 180, No 4580, 1957, pp. 285-226
- 4. Matossian, A. M., and G. A. Garabedian, "Virucidal Action of Seawater," American Journal of Epidemiol, Vol. 85, 1967, pp. 1-8.
- T., "Viability of Sewage Bacteria in Seawater," Sewage and I.s. thal 5 Orlob, G Wastes, Vol 28, 1956, pp 1147-1167
- Spencer, R., "A Marine Bacterrophage," Nature, Vol. 175, 1955, pp. 690-691
 United States Department of the Interior, Tektite II Program Plan, April 1, 1970
- 8 Vaccaro, K. F., et al., "Viability of Escherichia coli in Seawater," American Journal
- of Public Health, Vol 40, 1950, pp 1257-2366 9 Waksman, S A, and M Hotchhiss, "Viability of Bacteria in Seawater," Journal of Bactenology, Vol 33, 1937, pp 389-400

EE3

+ . the start.

٠.

ACCESSION IN	
¥7/5 #20	mi's Sector
CSIL, CALLAR	
ENTERSTEINES/AV	
Cal AL	ut/a Utili
412	
110] [

ביאים איני שלאבל אינייר בייר אינייניינייי

9781 PERSISTENCE OF VIRUS AND BACTERIA IN SEAWATER

KEY WORDS: Bacteria; Environmental engineering; Eschernehus coll; Organic compoundo; Sen water; Survival, Viruse

ASSTRACT: At a temperature of 3^{s} F - 40° r bacterial survivals (Escherichus coh) were significanti) enhanced in seawater deliberately "poliuted" with small cooccurations of organe materials (25 ppm - 500 ppm) including peptone, heart infision, easimous acid, yeast exitact, trypticast soy, and human force. In a samete enviror menual temperature the survival enhancing property of these substances became growth promoting resulting in a 40-fold population increase followed with a marked increase in microbial persistence lating at least 18 weeks. These substances were also capable of stabilizing cell and colony morphology. The same phenomenon was not observed in parallel experiments with Echo 6 virus. In this instance, cold temperature per se appeared more effective in enhancing survival tune. Inactivation rate was gradual and the virus persisted r + 14 weeks at 31° $r + 40^{s}$ F. contrasted sharply with an 8-day persistence at an environmental temperature of 72° F

REFERENCE: Won, Wilham D., and Ross, Hatold, "Persistence of Virus and Bacteria an Sexwater," Journal of the Environmental Engineering Division, ASCE, Vel. 99, No. E23, Proc. Paper 9781, June, 1973, pp. 205-211