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Fig. 1 Two-dimensional tiow past a submerged body.

Fig. 2 The a complex plane.
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Notation

a Va2 - first and second order dimensionless amplitude of
free waves in two-dimensional flow

A - velocity strainirg function

b 2,c 2  - coetticients in the solution of ilow past a source-

sink body

B' -. beam (half)

B - auxiliary function

C - Eu].er '- nstant

Do wave drag in two dimensions (D = D'!/0.5 P'U'L#)

f' Z' -complex potential in two dimensions (f = f'/U'L')

6f' ( ' - hip surface equation in three dimensions (f f'/L')

fW (z) - dimensionless free waves potential

g - acceleration of gravity

hf - submergence de-th (h=.h'/L')

I:n - imaginary part

Lf - reference length (generally body length)

PIQ - wave spectrum functions

- wave drag in three dimensions (R =R'/0.5 p'U' 2 L ' )

Re -- real part

T' - maximum half thickness of the body in two dimensions

t(x) - dimensionless thicKness distribution

- an - -
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iv-

X- hotizontrl coordinate positive in the direction ot
motion of the body (x x'iL')

- upwai:as vertical coordinate in two dimes'Lzcions;
horizontal, normal to x', coordinate in three
dim.!nsions (y = y'/L'

Z' complex variable z' = x' + iy' in two dimensions,
upwards vertical coordinate in three dimensions
(z= z'/L')

Z - complex conjugate of z = x 4 iy

u IV velocity compoiurits in x' and y' dixc,-tions,
respectively (u - u'/L' ; v=v'/,')

w complex velocity w' =u' - iv' in two dimensions,
vertical vclocity component in threc dimcnsions
(w = w' /U)

U' - velocity of uniform flow at infinity upstream

- coordinates in the Fourier transtorm plaAe

6 - small angle

6z, 6x - coordinate straining functions

E:- zlenaerness parameter (c ='/L' in two dim.,
c = B'/L' for th Jn ships)

- artificial viscosity

- auxiliary variables

0 - water density

' - velocity potenti.l (dp - !UL'

- tream function (-''/U'L')

- Fourier transform of

w - function related to the exponential integral

T (X) - slope of the body profile in two dimensions.
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V

Abstract

The linearized theoiy of I rec-surtace gravity tlcw past sub-
merged or tloating bodies is bas.d on a perLurbation expansion of
the velocity potential in the slenderness parameter , while the
Froude nurber F is kept fixed. It is shwn tLhat although the
ftee waves amplitude, and the associated wive resistance, tend to
zero as F-+ 0, the lineai-ized solution is not uniform undei thit;

limit: the ratio between th1e second order dnd tirst order teri,
becomes tunbounded for F -+ 0 and f ixed i. This nonvnitormlty I
(called "the second Froude number paradox" in a previous work) i.

related to the nunlinearity of the iree-surface condition. Cri- I
teria of uniformity of th1e thin body expawion, conmining t and

F, are derived for both two- and threo-dimensional flows, Those
criteiiu dp Id on th shape ot the leading (and trailiny) edge.

as the shape becomes finer the linearized solution becomes valid
tor sma.lier F.

Uniform first order approximations are deiived by two al.tcr-

native meth-ods: velocity straining and coordinate straining.

In the first case the unitorm unperturbed velocity in the free-
s.-face condition is replaced by a v,,riable velocity distribution.

Th<. second method leads to an apparent displacement of the most.

si .. ular points of the body skeleton. In both cases the para-

meter E: appears not only in the wave amplitude, as implied by
Le Liiin body expansion,, but also in the wave nurTbe- function.

The nonuniformity of the usu ,l thin body UxpaIsion i1, thelt-1ore,

similar to that encountered in problems charactelizcd by multiple

scales.

4
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INTRODUCTION

'rile linearized theory ot free-uurlace yiavity flow past sub-

merged or loating bodies is based on the ausumption that the

body causeb a bnall dtaturbance -I a unitorm i low. Such an appro-

ximation Is incorporated in a systematic asymptotic expansion of

thc velocity potential by assuming that (beam 'lenqh ratio

fox a thin ship, dr.aft<'iength ratio for a flat ship, body length

submergence depth ratio in the case of deep submergenc--' tends to

zero while the Froii~lc niaber " (F.rr ,'o-h , I C€..'~ e'" uh--

mergence depth.respuctively) is kept taxed.

In previous works (Salvesen, 1969; Dagan, 1972a) it has been

shown that it is not legitimate to let F # 0, for a fixed £ , in

the linearized solution, or in ot'-ur word. that the usual approxi-

mation is not uniform in F. 'Iwo "small Froude number paradoxes"

Ive ben Tonnu- atc in thi- _ojiLuxt 6i)agan, 19 /2b) and ad-hoc

SLniformizztion procedures have been suqy 2sted (Ogilvie, 1968;

Dagan, 1972b) , leading to a quasi-linearization of the free-surface

condition. It has been proved (Tuck, 1965; Salvesen, 1969;

Dagan, 1972a) that the smdl Froude numbicr nonuniformity is

associated with the nonlinearity of the free-surface condition.

Itk all cases detailed computations have Leen cariie3 out only

for two-dimensional ;lows.

in the present study the oroblem oi the small Froude number

nonuniformity is attacked in a different way, the results being

Sdifferent of tho~e obtained previously. For the first time

the influence of the bluntness of the bow on the small F iulution j
i discu2sed in detail and the analysis is extended to thiee-

dimensional flow in gepera! and to flow past thin ships in vaitLi-

cular.
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It is worthwhile to mention here that the problem xt related

mainly to three-dimvnsional appl cations, niric, a laige class ol

ships operate at relatively lu,. Froud± riumbera and in nost such

cases the usual theory of wdve t-.'istance has been futuid to bot

unsatisfactory. We begin, nevertheless, with studying -he tw-

dimensional flow because the use of the powerful tuol of analytr-

cal functions in this case pcnnits to clarity sozit. maeLtCX. Of

principle much easier than in three-dimensions.

Obviously, there are various pobs;ible factors related to the

discrepancy between wave resi2tance as measured in experiments dnd

as predicted by the linearized theory, like viscous effects or the

bow breaking wave. This should not deter us, however, from seeking

a consistent solution for the wave resistance in the frame o: the

potential tiow theory.

L

i:
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3.

PAI

TWO-DIMENSIONAL FLOW PAST SURMeRGED BODIES

i ]. .-----71-he Thini Body M.axi sion_ __

We consider a steady unniform flow from infinity past a

submerged body (Fig. 1). Let Z' = X' 4 iy' be la complex variable,

w =Us - iv the cumlex velocity, f' = 0' + i the complex pcten-

tial, r' the free surface elevation, 2L' the body length, h' the

submergence deptn, 2T' the thickness and U' the velocity of uni-

form flow. First, variables are iiade dimensionless by referring

k them to L' and U' , i.e., z ' / 'iL' ; f = f/L ; w w '/U'

h = V/L' ; 'T'/L' a-c! ' / , ' 1/2

Unuer an expansior of the nnaiytical function f(z;E,h,F)

in a s L,11 c asymptotic series

f -- -Z + Cf (Z;hL, F) + L (z;hF) +.. i I

the following sets of equations are obtained for fi and f2

from the expansion of the exact equations (Wehausen and Laitone,

1960)

df
,Lr i r 2lm,(iE2  . .- i l) = 0 (i.2;

(y =0)

rl =j < Ji (1.3)

±i * 0(× - ; y - -) (1. 4)

11
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where r, = Fri 1 + 2 + ... and y = -h±ct(x) is the equation of

the body profile, asuimed to be sym.netrical for the sake of

s implicity'!

Im(iF' dz f ) = P2(x) = -F2(3 U2+ V2 ) +F (iu

dz 2l

n; +0u(1.7)
2 1

f - 0 (x , ; y -o ) (.8) !

2I
'2 =  u.t (Ixj < 1 , y =-h-t0) (1.9)

in addition, a Kutta-Jonkovsky condition has to be imposed

in thu case of a sharp trailing edge in order to make circulation

unique.

it ca n b. sh..n S lvoei,, 1969) that far behind the body

the strea-function has the expressions

= Irn(a, e ) (X (1.10)

' 2 = Im,(a2 e- X) +const (x -- ) (.1)

The wave resistance is given by the following expression

D Ica+ c2a 2 (1.12) i

where D = D'/O,5 ptJ 2 L '  Hence, by expanding D

D =c 2 D 1 + 3 D2 + O(c') (1.13)

4)

"~ - - - -~ - - -fl
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J.

we have

D1 , a I  ; 2 =  Re(ala 2 )  (1.14)

The ;ethod of determirning f1  and f solutions of

Eqs. (1.2) - (1.8), is well known. Let w1  and w be the

first order linearized solutions of the velocity of flow past

tne body or its image, respectively, in an infinite domain,
i.e.,

l-ih dz
W (Z) T- - / T ) (1.15)s z - z

where z xs +iy s  is the coordinate of a point along the

skeleton (IxsI < 1, y,=-h), Re i dt/x and

l+ih dz

T (X Wl(z) (1.16)-l1 % 7 z - z ''I'"' iT1+ih1

Then, the solution for i may be written as

fl = f+ fl. w (o) -()da (Ir z < im o (1.17)

where
00-io 00 i
ao-jr e) e

ed = f - dp (1.18)

Io
the A plane being cut along Imr -0 , Re A > 0, and the p
plane is along Im(p+C) = 0, Re (p+;) > 0.

The second order solution satisfying (1.6) and regular
in the lower helf plane (we consider here only the free-surface
second order effect aind disregard (1.9), which leads to less

-~~~~V - A-~ ~ ~--
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6.

severe effects as F 40) may be written as

f 2 (z) =()w(')da (IMz < IM 0) (1.19)

2. The Second Order Solution (free-surface effect)

We are going now to transform (1.19) such that f, will be

expressed as an integral over analytical functions of o . First,

we have, by integration by parts

CO av
r1''du d I (u v+v1) 0)( ~do
U1 v I  . 11

-wd = r--r/ (l1v)o-

- ::l' do (1.20)

As far as the free waves are concerned, the last integral in (1.20)

renders the well-known Stokes second order waves of amplitude

O(e - 2 h / 2 ) Under the limit F-,0 these waves are negligible,

as compared to the remaining terms which are O(e - h/F 2 ), and will

be neglected in the sequel.

Hence, by (1.19) and (1.20) we have under these conditions

1 1  (1.21).2 V2 - UI _ iUlVl) W(=

U1 and v I ,which are obtained 1rom (1.17).may be written along

the real axis as follows

| | | | || | | || | | |I
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A
w+io

11(x) [W 1 J T+wW ( (),X-rr d- (1.22)
u - X-

- +io

I ( i[w (x)-w I) -;- J [w I (C) . ) --+io
- (T)I()dt (1.23)

- .,.

where w is defined, similarly to (1.18), as

-ix et
f dX (1.24)
0

Substituting (1.22) and (1.23) in (1.21) and integrating by

parts we obtain f2  (for details see Appendix I) in its final -

irmi as]

1O L
f 2 (z) C (a { , -u (a +

2 1

i W(a) + Wu ( 0 ) ] W/ W(T)-- 2 F-dT w ( )do (1.25)

Besides the term containing the Stokes second order waves we have

neglected in deriving (1.25) also the term related to the cunstant

part of i2 (1.11), which is associated with the DC part of
p2 (x), and does not contribute to the wave resistance.

Ai i
P+ I i == i iii i i i i iii i ii i i i i i iiI
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3. Illustration of Results: The Source-Sink Body

(i) The comei..a 8 oo

Rather thau pursuing a general discussion of the second order

solution under the limit F--O, we begin with a simple case which

can be solved in a closed form.

We consider a closed body generatev by a source at z 1- ih

and P sink at z t = -1-ih. In view of our interest in three-

dininqional applications we consider only the thickness effect

(the influence of circulation, generated by distributed or con-

centrated vorticity, may be analyzed in a similar way). This is

the first order representation of a straight thin body with blunt

leading and trailing edges.

tw (i..1 (1.26), (] 17) and (1.25) wc have:

Z-Z£ 1 1 Zt
i in - + t (F (1.26)

- 1 1 1 2 u 1 1 7T1 1 (127)

W z- v . z-zt£ ;zt ;Wl +-U (1.27)

f 1 , ] ! 1 1 1 + )

+2 - T _' -+ C -=-.

TF a( =- )c . P128 =- -

k F.. . . ..k -- It__
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The integration in (1.28) can be carried out exactly. The

first term, resulting from (w1 w U contributes by the

residues at a = z£ and a = zt" The last terms are more
k t

intricate, but still tractable, at least for x-- .

We consider now the expansion of fl (1.26) and f2  (1.28)

for small F

(ii) The near .eZ d on-t

For F 2 - 0, W(z-z /p 2) can be expanded in an asymptotic

series for fixed z as follows

ZZ ("- n2n
- (. )l (1.29)n ( n z - z £ )

This expansion is valid, however, only for Iz -itI > 6 and

- r + < arg(z-z < 0, where 6 and are arbitrarily small

fixea quantities (for details see the discussion of the related

exponential integral function in Copson, 1965).

Substitution of (1.29) and the similar expansion of

[z-zt/F 2 ] into wI , obtaining by differentiation of fl (1.26),

yields

w= w + wI + 0(F2 ) (-+Z < arg(z-) < 0) (1.30)

Hence, wI degenerates at zero order into the rigid wall solution,

i.e., the solution of flow past the body in the presence of a rigid

wall at y=0. However, this limit js not uniform and in parti-

cula:c ie not valid far behind the body, i.e., for x- - - and y

kept fixed. For arg(z-z 1 ) > -T+9 expansion (1.29) has to be

I :
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10.

~z /F2 -iz/F 2

supplemented by the tezii 27wie e which rerset

precisely the trailing waves. For this reason (1.30) may be

called the nearfield expansion

The rigid wall solution, arnd the subsequent terms of (1.' 0),

may be obtained also by expanding first the linearized free sur-

face condition (1.2) for F2 - 0 and solvi-c, term by term. In

contrast with the previous procedure, howevet, (1.30) is thus

obtained as a uniformly valid solution in the entire z _plane.

This difference in results, manifest in the lower half plane

y <0' behind the body, has been called "the first small Froude

number paradox" in a previous work (Dagan, 1972b). Although

the wave term is exponentially cmall for y <h, as compared to

the powers of F 2  in (1.30), it is the only one which does not

tend to zero for x y= fixed and which is associated with

wave resistance.

Similarly, the near field expansion of f 2 kz) may be

obtained fr'.. (1.28) for F 2 -1eO by expanding w z-a/F 2  and

computing the residue contributions at z k and z t The

reiau~t is 0(F2) and is a rational function of z with poles

of different orders at z = Z and z = z- * -ence, Cf1  is

O(W while Of sOEF') and the near field expansion of

f is uniform as F2 -*O.

The free waves potential is obtained in (1.26) and (1.28)

by letting x-*-~ The firnt order solution (1.26) yieldsX

f 2j(e -e~kF )eZ/ = 4(sin rr)eh/e1ZF (1.31)
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~11.

In the second order solution (1.28) w(z-o/F2 ) is first replaced
-iz/F2 jo/F 2

by 2wi e e/. Integration yields (for details see

Appendix II)

w 1 z£/2 iz/F2 -zF ehF
f2 " - 1 [(b 2+ic 2)e + (b2-ic 2)e ]elZ/F +O(e h/F)

(1.32)
1 1 l 1 ( ar g 1 nwhere b 2 -. (1+2C+ n4+ln ) , c2  and

C is Euler constant. If h << l, c2 - 0 and (1.32) becomes

2b2  , -h/F2 -iz/F 2  -h/F2fw _ = (cos e e + 0 ) (1.33)

Hence, the amplitude of the free waves has, by (1.10), (1.11),

(1.31) and (1.32) the orders

-h/F 
2

aI = O(Ce -  ) (1.34)

2 2
C2a 2 = 0(c e h//F 2) (1.35)

and althouga for F2 * 0 and h and c fixed both ca1  and

C 2a2 tend to zero, their ratio becomes unbounded like c/F2 .

This ncnuniforrnity of the thin body e-pansion has been

called in a previous work "the second small Froude number paradox"

(Dagan, 1972b) and it has been described previously by Salvesen

(1969). Eq. (1.35) shows that the usual linearized theory is

valid, for the source-sink body, only if C/F 2 
- o(1), i.e.,

for large Froude numbers based on thickness. I
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12.

4. Generalization for Bodies of Different Shapes

2. u

Since for an arbitrary thickness distriution W' alaW

are represented by source distributions (1.15), (1.16) the results

of the previous sction may be extended to thin bodies of any

shape. It is easy to 4scertain that: the near field solution,

based on (1.17) and (1.29), has the rigid wall approximation as a

leading term and is uniform in the sector r- 6 <arg(z-l-ih) , 0

as F2 - 0.

The nonuniformity of the expansion of the free waves depends

essentially on the bluntness of the leading edge (for the sake of

simplicity we consider bodies of a smooth shape and assume that

viscous effects ensure anyway that the trailing edge has a fine

shape). The free waves, at first order, are represented by

w -iZ/F 2  i/F 2

f 2e w 0) e do (1.36)

which has been obtained from (1.17), the integration path

circumventing the skeleton of the image of the body -1 < a-ih < 1
in the upper halt plane. For F2 _0 the integral in (1.36)

may be expanded in the usual manner, the lowest order term beikg

provided by -:he highest singularity of w (a), at a = 1 +ih.

We have seen that for a source-like blunt shape a I O(e- h/F').

For an elliptical shape, (i.e. W Il//--ih ) of the leading

edge, (1.36) shows that a =O(Fe'I/Z ). Similarly, for a wedge

like shape (w ' ln(a-l-ih)) we obtain a )O(F2 1n reh

1j
(see Lighthill, 1964).

U

I
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To estimate the order of the amplitude of the free waves
at second order we have to use the expression of f2  (1.25),

with w(z-o/F 2) replaced by 2 7ie
- i /1 ic/Fz The computation

is facilitated by the observation, supported by the detailed

solution of the previous section, that the order of the lowest

term in F is determined by the term (wTi(c)]2 in the integral

of f2 (z) (1.25), the other terms contributing at an equal or

higher order. Hence, the order of fw is determined by integrals
2

of the type

-iz/F 2  i0/F 2
e f [wi (a) e do . (1.37)

We have, therefore, for an elliptical leadjILg edge
= h/FI and fo a F- 112F-

a 2  (e and for a wedge-like shape a, F ).

Tn eA.-ch .h far waves aitilitude: anci consequently the wavc

resistance, is not uniform for r2 -0, the nonuniformity becoming,

however, weaker, as the shape of the edge becomes finer. The

results are collected in the following table:

TABLE 1

The shape The singularity Order of Order of Order of Order of the

of the of w1  a for foz ratio strainingofth of wI  a

2 
-

(z-l-ih) e-h/r e- ", 2/F2  c/F2  r

) h-h 2

ln (z-l- ih) F2 ln Fe -h /F e-I/F 2 2" F F nF in rL fF ._ _ _ _ _ _ _ _ _ _
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The column btlore the last suwnrarizes the main tindings: the

quantity appearing there has to be small in order to ensure that

the usual linearized thin body approximation is ur..form. It is

worthwhile to mention that in all the examples in which detailud

computations have been carried out so far (Tuck, 1965, for a

circular cylinder; zalvesen, 1969, for a hydrofoil and Dagan,

1972a for a source) , the shapes were blunt.

5. Derivation of Uniform Small Froude Number Solutions

(i) V1aoaitU etrafi nin

The nonuniformity of the free waves expansion is assumed to

originate from the illegitimate expansion in an . power

series of an exponential of type exp[icF(z)/F 2 ] for /./2  O(Ij(

'uh a teriIi way iesult from the straining of the tree-surface

velocity due to the presence of the body. To make the idea more

precise let us replace the first order free surface condition (1.2)

by

2 df

IriniF 2 (l+cA) - f] = 0 (y =0) (1.38)

where I+cA is a strained velocity. A(z;h,F) is assomed to be

analytical and A -0 for x- . A is obviously related to w1

and under the usual thin body expansion (1.1) it is cast in

!1.6). We now keep it in the first order equation and

solve for f with boundary conditions (1.4), (1.5) (again, we

do not consider the second order body effect (1.9)).
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Th swution is immedlatcly obtained as follows

f = [f I+ tl U _H() exp(-
V .+EX(O) P f)d (1.39)

z

where
t u 9, u

(Wl+w) (l+F Re A) (w +wu) Re A
B(o) f -- '---" - dp = 2in w1(z) + do (1.40)

For c = o(i) we are generally entitled to expand in a power

series the terms D(A) and (I +cA) "  in (1.39) and (1.40).

This yields

z£ 'u -iz'r , u 2

f - I w I . e  - ' " ' +0L1(J) (. 41)z 0

We did not expand, however, the la&t exponential in (1.39) since

under the limit F- 0 the ratio c/FZ is not necessarily small.

Eq. (1.41) proves our assertion on the effect of a first order

velocity straining.

The uniformization procedures of the small Froude number

solution suggested in previous works are underlain by sirrilar

ideas. Ogilvie (1968) has arrived to a free-surface condition

similar to (1.38) by intuitive reasoning: as the wave length of

th. frev wavel becomes small compared to the length scale of the

velocity field w, the velocity variation has to be included

in a first order approximation. Moreover, it was suggested that
k u

as F - 0 A = 2(w +w I ) for y - 0, since for F : 0 w degene-

rates into the rigid wall solution w1 =w I +w I . An ecuation

I
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similar to (1.38) is then obtained from the exact free-ourface

condition by expandiag with I r (w w) ab the basic unperturbed

velocity field.

Dagan (1972b) has arrived at a similar result by using a i

quasi-linear equation as a model of the nonlinear free-surface

condition (in both works the more awibitiou6 task of solving the

problem of a small Froude number flow past a body of finite

thickness has been undertaken).

Although the arguments are plausible in principle, the

assumption that A= z(wz +Wl) is opon to criticism, since it

has been shown here that the degeneracy into the rigid wall

solution is not uniform.

Instead, we are going t3 determine here the straining

&us&%1.L..n A(?) In -- dif jAL way. we assume tj~dt foe x -

f in (1.41) includes the first order term f ( 1.36), as well

as the lowest order term in F appearing in f (1.23). We- 2w " "

require, therefore, that under an additional expansion for

cA/F2 = o(1), (1.41) should degenerate into the thin body expar-

sion (1.1). Expanding the exponential in (1.41) givev for x

2c eiz/F 2  f u a
fw=2 e iF / 1 U (a) eia/F' d -

2i a -iz/F 2  Uir/F_
- ef A(a)do f W kT)C dtr+O0(c 2 ) (1.42)

The first term in (1.41) recovers the first order solution itw

(1.36). The second term may be identified with the F lowest

order term of f2 (1.25), which may be wiitttn as

2=
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Cf e- iz/F 2  
' io/F 2

2 e f [w 2 e

4i u R. u i /'F 2 (
[W1 (a) +wl(C)] I WI (Oe dpdo (1.43)

Identification of A such that the integrands, i.e., the lowest

F term of P2 (o), in (1.42) and (1.43), becoma identical yields

UZiz/F22 {WI) ei/£u

A(z;h,F) = -.-F + 2 (wlZ+w I )
eiT/F

2
w wI e i-/FdT

z

(w U121' £ U,+ 2 (w +wl; (1.44)
wU W +W1

Hence, the velocity straining function A is found to be

diff rent than thatsuggested in previous works, which included

only the last term of (1.44), but failed to take into account

the singular term related to (w9-w ) in (1.25). The reasoz

is quite transparent: this last term is identically zero for

y = 0 accord..ng to the rigid wall solution. The rigid wall

solution is not uniform, however, and the singularities of f

(1.17) and of fl 4 fl are different at the location of the1
image of the bcdy across the free-surface.

Obviously, for F-0 and cA/F 2 _O(3) the exponential

in (1.41) cannot be expanded like in (1.42). By the same token,

the transfer of the velocity straiiiing factor cA into the

right hand side of the second order free-surface condition (1.6)

is not legitimate for small V:roude numbers 'n general.
I

I
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Computing the wave amplitude with the aid of (1.41) is a

difficult task in the two-dimensional case and becomes extremely

tedious in three-dimensions. For these reason we consider sub-

sequently a simplified procedure for rendering the solution uniform.

(i.) Cocrcdinate atrainine

We assume now that the exponential terms which cause the

small Froude number nonuniformity are a result of a coordinate

straining. Lighthill method (see Van Dyke, 1964) implies

an infinitessimal straining of the physical plane and deriving

the straining function from the equations of flow. We adopt

here a modified technique applied by Van Dyke (1964) to the case

of inviscid flow past airfoils: we carry out the straini'g in

the solution, rather than in t-he equations, and determine the

straining function from the re-v2rement that the second or del

term sthould not be more singular than the first.

To illustrdte the method we begin with the example of a

source-sink body (Section 1.3). The straining has as effect a

virtual displacement of the images of the two singularities from

z' 2 t to zz + 6z£, zt +6t . respectively, with 6z, = O(E)

and 6t = 0(c).

The first order tenn of the free wave expansion becomes now

by using (1.17) and (1.27) for x-

fw e-iZ/F2 f ( 1 - e i/F 2do (1.45)

-0 o-z -6 o-z t-6z t

For E= o(l) and F fixed we can expand in (1.45) and obtain
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w'-/F: j (-z) 2  ( ) 2 o +d
r

r i6z t  io/F 2

1e e- do

w 2 - z / Z £/ F 2 i z t / F 2
Sfl - e-i / (6z£ e - Szt e ) (1.46)

Hence, the first term of (1.46) recovers f (1.31).
1w

Consequently, the second order term of the free waves potential
wwill be made up this time from f2  (132) plus the last term

of (1.46), provided that the straining is of order .

We determine now 6z and 6z from the requirement that

2 k t

the term of order c/F 2  in the amplitude of the free waves,

which is the origin of the small F nonuniformity, should vanish

in the solution, separately for the source and the sink, We thuL

obtain

6z - T- (b 2 +ic 2 ) (1.47)

z t = (b 2 - ic 2 ) (1.48)

where b2 , c 2 are given in (1.32).

The uniform first order solution, valid for c/F 2  0(j),

is easily derived from (1.45)

-iZ/F + 6 i (Z + 6z )/F'
f 2i - e t (1.49)

By using (1.47) and (1.48) we finally obtain from (1.49)

w-[h-(cr-,/2) ]IF 2  i- (cb2/2r.) _/2

S-.4e sin e(J..50)
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The coefficient c 2  (1.32) is associated with the second

order interaction between the source and the sink; it has the

effect of diminishing the effective submergence depth of the

body (when h -0 this term vanishes). b, is associated with

the nonlinear effects of the leading and trailing edges singulari-

ties upon themselves. It manifests in an apparent change of the

body length and consequently in a shift of the curve of the ampli-

tude (and wave resistance) as function of F.

Again, (1.50) shows that the small Froude number nonuniformity

is a result of an illegitimate expansion of the exponential and

trigonometric functions in (1.50) in an £ power series for

c/F2 = 0(l). In other words, when the straining becomes of the

order of the wave length, it has to be maintained in the first

order approximation.

We are going nou to generalize the procedure for a body of

arbitrary thickness distribution T(x s ) = dt/dx. The straining

has now as effect a continuous infinitessimal displacement of

the image of the body skeleton from z to Zs + 6Z s The first

order solution ((1.16) and (1.17)) becomes

2  io/F 1 T (xs
f - 2 e -iz/F do e i a / F  dx - (1.51)

l a a-z -Z
s S

where z = x + ih. The straining has been taken into account

only in the denominator of (1.51), because only the residues at

-- - 6z 0 are contiributing to the lowest order terms in F.
S 8

An infinitessimal change of the limite of integration or of

T(x ) in (1.15) yields higher order terms. !I
I
I
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For 6z - 0(c) and F fixed the integrand in (1.51) may

be expanded as follows

W 2 -iz/F 2  1 T ia/F 2

f - e j do f dx - e -

-w -1 - Za z

2 I T6z
S /F2  do j dx (1.52)

S ao ) 2

-z 2  1 z 2 2 /

-4ic e-iz f s/Fdx + 4e / T (X 1 s ei dxs-I s _s

The first term in (1.52) is precisely flW (1.36); the unknown

straining tunction 6z is now determined from the requirement

that the second term of (1.52) should cancel the lowest F term

of fw (1.43), i.e..

1 s/F 2

f T(X )6Z e dx =
-1 *8 8

EF2  (0w()I 1 (w +W U f wu~~j 2 4 dP)e a/F do (1. 53)
=1 1- V -' + '1 -FY

To determine 6z sin a simple way, advantage is taken of the

fact that the lowest F terms in (1.53) are assc~iated with the

singularities of the edges (an intermediate point of discontinuity

can be easily accounted). What matters, therefore, is 6z and

6z~ . Any continuous straining between the edges is acceptable

as far as the most singular terms are concerned. Assumiing, for

the sake of simplicity, a linear straining we have

6z -6z 6-. +6z
6z x + (154

-is zs2
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Substitution of (1.54) into the left hand side of (1.53) j
yields for the lowest F term

1 izs/F'

(6 + it r'(x) e dx . (1.55)

Equating the lowest F terms resulting from the integration in I
the r.h.s. of (1.54) and from (1.55) renders in an unique manner

6zI + 6zt  An additional relationship is obtained from the

requirement of separate cancelation of the leading and trailing

edges waves (obviously, for a fine shape of the trailing edge

6zt = 0).t I

The estimates of Section 1.4 permit to evaluate the order

of the straining 6z for different types of leading edge

singularities. The results are given in the last column of
Table 1. Ths ;traininq bOeou, weah as the shape of the leading

edge becomes fine and it is F dependent, excepting the source-

like case.

6. Conclusions

It has been shown that the slenderness small parameter c

appears in the expression of the potential of the free waves

generated by a submerged body not only in the amplitude, but

also as the ratio e/F 2 in the wave number. Like in other

problemi chatacterized by two scales (Cole, 1968) a power

expansion in c does not render a uniform solution unless

c/F 2 _ o(l); this last estimate has been sharpened and shown

to deptnd -r the nature of the leading (and trailing) edge

singularity.

!I
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Two procedures of rendering the small Froude number solution

uniform have been suggeeted: free-surface velocity straining and

coordinate straining. The first procedure has the advantage of

making uniform the second order pressure term, whose integration

yields the amplitude of the free waves; for this reason the

velocity straining is easily expressed with the aid of the first

order solution. Computing the uniform solution is, however,

extremely difficult. The coordinate straining ensures the uni-

formity of the expansion of the free wave amplitude (and the

wave resistance) and the computation of the straining factors is

more difficult than in the first case. Once determined, however,

they provide immediately the uniform first order solution.

Two problems have not been touched: (i) the second order

body effect,and (ii) circulation. As for (i) it has been shown
p..V.c... (Dgan, 1972a) thaL the body correction is uniform as

S. 2  2 -3h/F 2
-0 (e.g., for a source =). Circulation may

have an important influence on the wave amplitude (Salvesen, 1969).

It can be treated similarly to the thickness with no problems of

principle. We have purposely considered the effect of thickness

solely because the two-dimensional solution oerves here only as

a case study for the three-dimensional flow problem. In appli-

cations, two-dimensional flows are generally at high Froude numbers.
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PA " II !

THREE-DIMENSIONAL FikQIS

1. The Thin Body Expansion and Fourier Transforms

Let now z be a vertical coordinate, while the axis x

and y lie in the horizontal plano of the unperturbed free

surface. * is the dimensionless velocity potential which is

expanded in a thin body approximation as follows

0(X,y,z;e,F,...) = -x+C0l(x,y,z;F,.0.) + 2 2 (x,y,z;F,...) +... (2.1)

where F = U'/(gL') I/2  is again the length Froude number.

The free surface conditions satisfied by the harmonic

functions and *2, given here for the sake of completeness,
are

F + Z'- - 0 (z .0) (2.2)

2o

P.2 (X2F + - 1.1 P2 (x'y)

= F 2 (3ul I+ 2v + U 1y+ 2w x F 2Z )  (z=0)(2.3)U7

where ul, vl,W1  are the first order x,y,z velocity components and

p +0 represents the "artificial viscosity" added in order to

i I,

t=
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satisfy the radiation condition (we introduce it rather for an easy

account of the integration paths in the complex plane).

The body boundary conditions differ depending on whether one

considers slender or thin, submerged or surface piercing bodies.

For this reason they will be formulated separately in the sub-

sequent examples.

Again, like in the two-dimensional case, we consider here

the part of the second order solution which is regular in z <0

and satisfies (2.3), and do not investigate the second order body

correction as well as the tine integral correction, since the

nonlinearity of the free surface condition is the most severe

as F-0.

We summarize now the different Fourier transforms to be used

in the sequelt with 9 denoting the Fourier transform of

with respect to x,y, we have

I f dx j dy O(x,y,z)e i(cx+y)/ '  (2.4)
0(,0z CO 2"3") F

O(x,y,z) =_ da f da(a,B,z)e - (2.5)

where a,8 are coordinates in the transform plane. We shall also

use the convolution transform which may be written as

-' ~ -1 
00

ry.y _f dv fdi 4Ivi)y1(u-va-r) (2.6)

where *,p are arbitrary functions which have FT (Furrier

transform).
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t

Let now represont the first order potential of flow

past the body in an infinite domain and the same for the

flow past the image of the body across the plane z -0. Then,

the well known (Wehausen and Laitone, 1960) firott orde- srlution

01 satisfying Laplace equation and (2.2) becomes

i 4- + (2.7)

where r ~- wI p,  0)e 
z/ F 2

1 -2F2 ' p-(z < 0) , (2.8)

W u 30 /3z and p = V 8. By (2.5) we have

rI - - i u ! 0 e ...... . .. (2.9)
-o - -O U

being understood that w -0 in the final expressions ($r is

regular for z < 0 and r _.0 for z- ).

The FT of the second order solution, regular for z <0 and
satisfying (2.3), is similarly given by

F2P2 (a,B) ez/F2

(a = - . - - (2.10)

From (2.3) and (2.6) P2 (sa) may be written after a few

integrations by parts as follows

P (a,8.1 - ir f dv I dT {[3(c-v)v 2 +2(S-T)vr+ ( v12

2(a-v) 2 V3 - (a-u)V ]r(V,'T,0)¢I(,X-,S-T,0)} (2.11)

1I I
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It seems that all the terms of P2 (x,y) (2.3) contribute at the
same F order in the expression of P2 (0,8). It is sufficient,

therefore, to single out one of these terms in order to estab-

lish the asymptotic behavior of *2 as F -0. Like in the case
of two-dimensional flow (Sec. IS), it is convenient to select the

term w! ( aw1 /3x) and to write

P2 (xyF) n -2Fw - (z 0) (2.12)

being understood that (2.12) expresses the asymptotic dependence

of P2  on the variable F.

Finally, it is sometimes convenient to operate with pola"

coordinates in the transform plane, a- p cos e and 8 = p sin .
Then, if the potential ow = c2 of the far free waves is

written in the followina form

-Tr/21 (( di) +/(0)](x sec +y sin eSec2 8+iz sec 26)/F 2
2

*W =Re f dO [QO+P0] secO(~~

-7t/2 (2.13)

the dimensionless wave resistance is given by (Maruo, 1966)

- Tr/2

0.5p'U' 2R = f [Q2 (6) +P 2(8)]sec 3 0 dO (2.14)
- r/2

where p' is the fluid density. The amplitude functions P and Q

result from the thin body approximations *i and *2 and can be
written as

P cP I + C2P_

(2.15)

Q = EQ1 + Q2

4
-4
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which leads by substitution in (2.14) to

R= L2 R1 + ESR 2 + ... (2.16)

2. Small Froude Number Solution for An Isolated Source

(i) Firet order ooution

Like in the two-dimensional case we begin the study of the

limit F 10 of the thin body solution with the example of an

isolated source, because of its simplicity and because the source

is the fundamental singularity underlying any slender or thin

body solution.

The potentials of flow in infinite domains are

k 1 1
Ol1 5 - [ [x2 +y 2 + (z+h)2]l/2 (2.17)

uIu1 1 . (2.1..)

Ois = - I-F [X2 + y 2 + (z-h) 2 1/2 (2.18)

The source is located at x=y = 0 , z =-h (the reference length

L' is left unspecified). In the frame of the first order approxi-

mation 0 = -x + 1  represents the flow past a slender body of

revolution with a blunt nose and of semi-infinite length

(- <x < 0). The small parameter c is equal to i(r'/L') 2 , where

r Is the radius of the body circular cross-section. j
I
I

.. . : I-.
, i I i I
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The expression of 1, (2.9) is~ well known (see, Wehausna'
is

and Laitone, 1960)

e-i [x+8y+ip(z-h)]/F
r 1 e

d 0 e- i xcos 6+ ysin + i (z-h) I/F 2  
2-seCe -P se-c- • sec 2 e do

(z h, U-*0) (2.15)

E u r

Like in the two-dimensional case, i -01 + € can be

expanded as F - 0 in a near field solution. For this p,,p...

let write again *I (2.19) as follows
is

r~ ~ G go s(yF)a e-i [x.ip (z-h) ]/F 2
l

r1 ffC(yF ej(Xi(h]F
Ts r cc(yFdO -- da. (2.20)

We consider now the complex a plane. The function

p = /al + a' has its branch lines depicted in Fig. 2 with the

values of the argument selected such that for a, 8 reals p is

real and positive, such that the condition 0for z-

is identically satisfied.

I

I ! !
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The poles i- (2.20) are a = 11 { [l+ (1+4032)/2 1l/2

and have to be circumvented from below. We can now swing the

integration path from the real axis in the a plane to the

branch cuts. The result is easily found to be made up of the

so called local disturbance *i sc and the free waves term
w l

01si

rloc 1 e- /F (Y/ 2)d
1 --- 1 Xo y/3)2

× -s e{(14) 2 sin[y(z-h)/F 21 +, [s(z-h/F 2 ]J 2
o (8+s) * +y2

(2.21)

where Y = is' + 2as , and

2 2(al 2 C (z-h)/F
W 2 csin( c6 x/d 2)6cc&(6Y/F2 ) e

is W-- d =o 2ct,-c -%

r /2

= 1 /2 sin[(x cos +y sinesec2 )/F 2 )e(-h)sec8 A'sec e de

(x<O) (2.22)

Like in the two dimensional case 0 oc is regular for z < h

and tends to zero algebraically for 1x1 -+' . After a change of

variables it can be expanded uniformly in an F2  power series for

F- O and fixed x,yz (with x 2 +y 2 + (z-h) 2 > 0); as a result
r loc u

2u i + O(F2).Ols .
w

The free wave potential l is different of zero only for

x < 0. Because of the exponential term, it is negligibie with

respect excepting in an arbitrarily thin wedge z-h-- 6x
is

(x < 0, 6 arbitrarily small). Again, like in the two-dimensional1
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case 4 r loc is not an uniform approximation of r and for x
c s is is
Ole dominates the solution.

Summarizing, as F-0 *ls -0 + €s + O(F2 ), where
Z uIs
is +f ig is the rigid wall solution, but the limit is not uniform

for z-h = 6x (x <0), where it has to be supplemented by i "

(ii) Sooond order *oluttion-(the-rree w,'.ae potential)

In contrast with the two-dimensional case, now it is not

possible to obtain the solution in a closed form. It is relatively

easy, however, to evaluate the order of 02 for F- 0 by retaining

only part of the terms of P2  (2.12), as it has been done in

Section 14. Like in two-dimensions w1 may be written as (see (2.7))

w w A, -w u w (2.23)is is is i Wls

where in the case of a source (2.17-2.18)

z+h (2.24)
W 4n [X2 +y2 + (z+h)2]/(

u 1 z - h

1 - (2.25)Wi TIT [x2 +y 2 + (z-h)2]3/2

and wr, 34) /Dz (2.20). After substituting ..1 in P2 (x'Y)

(2.22) it can be sl.own that the term -2F2wis (w . /x) contributes

to the lowest order term of ¢2 as F-*0. Hence, by (2.22) and

(2.25),

|
I

I
I-
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U

P 2
(a , 0 ) %-2F'w u is . 4ia (wU)2 (z 0) (2.26)

2 s Ix is

~ -4ioL F2[wU (af) 2  4iF2[Wu (p,e)]2sec 6
22 (a,S ) 2 s -- is (2.27)

a - p-il P- sec 2 e -iw sec 8

The Fourier transform of (wU 2 is easily found in polaris
p,O coordinates. From (2.25) -;.e have

(W1 (X,y,0 ) ] = 1 (2.28)

is 16 W(x2 +y 2 +h 2 )3

and by (2.4)

h2  Tr 0 1ior cos ( 6-) IF 2

U- 2 h e hT) r
(w ) - 32-rT dx r (rri (2.2i9)cs(8/F

where x = r cos ), , y =r sin X . Integration in (2.29)

(Gradshteyn & Ryzhik, 1965) yields

h 2

(wu )2 = _h y j (,rI) r dr - 2ph (2.30)
,o7r, Tr dr7 K h

0

where J and K_. are Bessel functions of the first kind and

of the second kind (modified), respectively. By using (2.27),

(2.30) and (2.5) we obtain
00 K ph F eip (xcrs +ysin+iz) /,F2s c

P -.

2S "
L 64 F . O dp (2.31)

2s; T, c:11 ecle- iisec

Like in the two-dimensional case it can be shown that the near

field expansion of (2.31) yields a uniform F2 power series expan-

sion of "
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The free waves term of 2s (2.31) may be written as

- 1 /2 sec 6eK 2 (h sec 2e/F2)oS(wxec6+yssecesece)/F2j x
2a 'v =''rF _"- T/2

x e zsec2 / 2 ec e d6 (2.32)

As F-0, K_2 (h secle/F 2) can be expanded in an asymptotic series

which yields for the leading term of 2
w 2s

1 / , e(zh)ser (2)/T2d6+O() (2.33)
-,r/2

(iii) Diaouviion ol 'eauZte

We are now in a position to discuss the final, and most

important, topic of this section, namely that of the uniformity

of the free waves expansion 0s EO 1 + C 2 s under the small
6 is 2

Froude number limit. Eqs. (2.22) and (2.33) show that the thin

body solution is not uniform unless C/F 3 = o(l); the latter

condition originates from the comparison of the amplitude

functions P1 (6) and Q2 (6) in (2.22) and (2.33), respectively.

The same condition ensures the convergence of the coefficient of

wave resistance (2.16). Taking the submergence depth as reference

length, we can write in term of variables with dimensions

C r 92 2 U;
FT. ^V z ..4 ( 2  (2.34)

where r' is the radius of the body generated by the source.

This ratio has to be compared with the criterion T'g/U'2 = o(l)

which ensures the uniformity of the thin body solution in two

dimensions.

!
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We can continue and analyze, like in Section 14, uniformity

criteria of the thin body expansion for F-* 0 in the case of

bodies of revolution with milder singularities at the nose (and

the tail). From the applications point of view, however, it is

of interest to focus the analysis on the case of thin ships rather

than on t.hat of submerged slender bodies.

3. Small Froude Number_ Soution for Thin Ships

(i) GeneraZ. Firet ordcr soZution

Let y = ±cf(x,z) be the equation of the surface of the ship,

where c = B'/L' is the beam length ratio. The first order

velocity potential *i is obtained by integration, over the

area o. the center plane S , of the potential of an isolated

source
isf..)i

-2 i (x- ,y,z-) dxdz (2.35)

u + r
where Ois = is- 4s €is is given in (2.17). (2.18) and (2.19)

with z replacing -h. For the sake of simplicity we consider a

symmetrical ship solely.

iL The essential difference, in the present context, between i

(2.35) and in all the other cases (of submeryed bodies)

considered in the preceding sections, stems from the fact that
L

the body is now piercing the free-surface. Consequently, the/Fe-hsec2 6/F z

exponential factor eh/F and e , present in the

two- and three-dimensional solutions, respectively, does not

appear anymore in (2.35) for the waterline (z=0) singularities.

For F 0 and h fixed, the exponential factor ensured previously

LI
I|I
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the rapid decay of the free waves amplitude and of the wave

resistance coefficient no matter how blunt the shape was. It

also ensured the separation of the near field expansion and of

the free waves potential.

In the case of a thin ship the shape has to be sufficiently

fine in order to ensure the finiteness of the velocity potential.

It can be shown, for instance, that for a source-like bow shape

the second order potential is not integrable. Since usual shapes

are far from being so blunt, we shall limit the discussion here

to wedge like bodies, i.e., with singularities associated with

finite entrance and shoulder angles at most (the case of an

elliptical bow is also less interesting).

Further simolifications of the L Yi -rc achieved if we

take into consideration the well known asymptotic properties of

(2.35) as F0 (see, for instance, Lunde, 1963):

(i) the dominant contribution originates from the shape at the

waterline f(x,O), and (ii) from the singularities of f(x,O) ,

i.e., from the points of discontinuity of Df(x,O)/Dx. For this

reason we consider the simple example of flow past a wedge-shape

cylindrical bow, i.e.,

f(XZ)= -x (-l<x<, -1<z<0)

(2.36)

f(x,z) = 1 ( x<- -h < 0)
I

the reference length being the forebody length. f (2.36)

incorporates the essential features of any smooth shape between

= 0 and x=-1 with the same angle discontinuities. The

influence of the stern is also disregarded because as will be

shown later, the most singular terms are associated with the I
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interaction between the singularity at x0 (or xm--) with

itself and not with the interaction between the different singu-

larities.

From (2.35), (2.19) and (2.36) we inmmediately obtain forr + 0u

iFi U -1 -- p (1 - i(z+iyizF2
r - il'a~(e ) i (-y-p-iic i)z

r Od (le - hF) (le - ip OCXe/F)
- IT d Ji / de dp--osec'e..i~jseC19 X

x - i p (x cos e8+y sine +iz) /11e.'2237

se (2.37)

The near field expansion, i.e., the local disturbance r loc
1*2

be found like in (2.21) and again 0 1oc 20 + O(F 2 ). The free

waves potential is found from (2.37) as follows

w =2F2 /2 ( -h sec28/Fl ) ( i  sece/ ) ×

Tr -?/2

x ei(x cos+y sine-iz)/'F 2 cxs d (2.38)

As F -0 a lowest order term in (2.38) is obtained, for

instance, from integration over ei(X cos 8e+y sin -iz)/F 2 cos e ,

i.e., from the potential of a wedge of infinite draft and of con-

stant aperture angle, which leads to I = O(F) for fixed

x,y (x2+y2  # 0) and z=0. By (2.14) the coefficient of wave

resistance derived from this term is, at first order, R - O(C 2 F').

Hence, for z-=0 w is no more exponentially small, as F-0,

in comparison with the near field solution; moreover, for

I
i i I I I I I I I I I I II I i
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(x2 +y 2 )/F 2 - 0(l) and z-0 it becomes of the same order as the

second term of the near field solution, i.e., O(F2 ). For any

fixed z <0 the decay is, however exponential.

(ii) Second order solution (the free waves Potentiall

To estimate the order of Ow we again retain, like in
U2

Section I12(ii), only w1  in the expression of w1  (2.23).

For f given by (2.31) we immediately obtain

u 1 0 0 1
Wd d-{ .1 1f

-i -h [(x-x 2 +y 2 + (z+z) 2I / 2

in -(X 2 +Y2) 1/2 _ x] (E(x+1)2+y 2+h 21l/ 2 _X-11(2391f[(x l1+y2 -l/ 2  ) 2 )1/2 - -l
= - i (-'4vini''y2 /x (2.39)L L I i - X - l}[ I(X2+V ?+h 2 ) 1 / - X)

Based on the results of the preceding section we can retain in

(2.39) only the term originating from the singularity at x -0,

for an infinite draft, in order to estimate the term of lowest

order in F, i.e.,

U% in [(x2+y2)1 / 2 -x] (2.40)

P2 and 2 have the expressions (2.12) and (2.10), respec-

tively. The FT ot w U (wu/x) has the following estimate

aw iY/F 2  lnx 2 +y2 ) 1I/ 2 -X icx/F2

(w U ) 1 e f' dy 1/2 e dx =
_7 -0 (x 2 +y 2 )

1 f dX f (In r(l-cosX)leirpcs (e)/Fcdr (2.41)
r, 0



HYDRONAUTICS, Incorporated

38.

where the last expression in (2.41) has been obtained by sub-

stituting polar coordinates in the xy and a,8 planes. The

order of magnitude of (2.41) may be estimated from the in r

term

U 1 .u 1 ir p cos(x-e)/F'(w (Inr e dr
-T 0

I F2
(C + in r + In FP) (2.42)

where C is the Euler constant (Gradshteyn & Rhyzhik, 1965).
By (2.42) and (2.10) we have

F'(C+lnr+ In P-2 In F) pZ/F 2

2 (P-scc . i- c e) Sec

w

Finally, the estimate of the lowest order term of becomes

(2.5)

2 F F21n F Im f itde ei(x sec O+y sin6sec 2 eiz sec2 8)/F 2 (2 .4 4 )

(iii) Dieoueion of (2.8) ta

Inspection of (2.38) and 2 (2.44) shows that the

amplitude functions are O(EF 2 ) and O(c 2 F21n F), respectively.

Hence, the expansion of the free waves potential is not uniform

for fixed c and F -0, alth-iugh the singularity is much milder

than that corresponding to a blunt submerged body. To ensure the

validity of the thin body solution the condition I in F1 = o(l)
must be satisfied, i.e., IB'ln[U'/(gL')I 2 ]/L'I << 1, where L'

is the forebody length (it is worthwhile to mention that this

criterion is not different of that valid for two-dimensional flow

_ _ _ _
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past a body of similar shape, Table 1). This criterion is only

m arginally satisfied by typical slow commercial ships. It is

emphasized, however, tnat this is an asymptotic estimate and the

actual ratio between the waves amplitude may be evaluated only
w wfrom detailed computations of ow and " Obviously, the above

condition applies also to the expansion of the coefficient of wave

resistance (2.16).

Again, similarly to the two-dimensional flow, blunter bow

shapes will impose more stringent criteria of validity of the thin

body solution for small F.

4. Derivation of Uniform Small Froude Number Solutions

The argument is similar to that given in Section 15: we

assume that the presence of the body causes a free-surface velocity

straining which has to be incorporated in the first order solution

since it causes a change of the wave nunber and not only of the

wave amplitude.

If we assume that all the terms of P 2  (2.3), (2.11) contri-

bute to the F lowest order terms of , w the simple straining

of the horizontal uniform velocity of Section IS, is not sufficient.

The generalized straining suggested by the free surface conditions

yields

+.- 0~~= (zO - 0 .0) (2.45)

4z ;1X
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(2.45) is supposed to replace both (2.2) and (2.3); we are going

to prove that only for c - o(l) and F fixmd it does indeed

separate into these two equations.

Keeping the body boundary condition in its first order ver-

sion, we write, like in (2.7)

u r
4 = €I- *1 +

where *r is harmonic and regular for z <0. Substituting (2.7)

into (2.45) and using the FT relationships (2.4) and (2.6) we

obtain from (2.45)

ir (a, 8F) icId TK(ci,,,;F) 4r Nv, ;F)

2F2u(,,16

(2.46)

where

K = [3(c-v)c 2 + 2(8--)c8 - 2(c-v)2u 3 - (a-v)cz]iO(c-v,B-t) . (2.47)

r(a'B;F) I= satisfies, therefore, the Fredholm integral

equation (2.40). This equation degenerates precisely into the

FT of the thin body free surface conditions (2.2) and (2.3) if

the integral equation is solved by successive approximations.

This is legitimate, however, only for sufficiently small values

of the combination between c and F which multiplies the

second term of (2.46); this combination depends on the order
of K , which in tuni depends on the order of $i"A sufficient

condition is, however, c = o(l) F = 0(l).

_ __ ____ ____ _ _ _ _ _ _ ___
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In those cases in which F is so small that the usual thin

body expansion is not uniform, r , solution of (2.46) is pre-

sumably a valid approximation of the exact solution for small

and F.

Solving (2.46) is an extremely difficult task. We consider,

therefore, the method of coordinate straining as an alternative

simplified approach.

(ii) Coordinate etraining

Again, the argument is the same as in the case of two-

dimensional flow: it is issumed that the nonlinear free surface

effect manifests in a stiaining of the coordinates which results

in a virtual displacement of the system of singularities represen-

ting the image of the body.

We begin the discussion of the method witl the case of thin

ships. The first order free waves potential may be written as

follows (2.22), (2.35)

2 r/2 C2
-Im{- ff af xZ 67 exp(i ((x-x)secO6+ y'sin 6sec2

- i(z+z)sec 2 ]/F 2 )sec2 8 d} . (2.48)

Like in (1.49) we may assume now that in the exponential

function of (2.48) x and z are replaced by x+ 6x and z+ 6z#

respectively, where 6x, 6z are straining functions of order c

which depend on x, z and F. Such a general and complicated

straining is, nowever, unnecessary; fiom the discussion of Sec.

113 it is seen that in order to ensure uniformity for F -0 it

is enough to consider the displacement I
_iI
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of the most sivn'ular points of 3f(x,O)/ax, i. . in the case of

finite jumps of af/3x, the points of abrupt angle changes at

the water-line. Obviously, for z-0, 6z- 0 and the straining

is horizontal solely. Along these lines let us consider, for

instance, the singularity associated with the bow for a cylindri-~W
cal ship of finite draft. First, before straining, 0 1 becomes

by integration by parts

w 2iF 'f (b,0) rr/2 C

x, Im n f expi[(x-ib)seOe y sin 0sec2 e-

-iz sec 2 e]/T 2 )CMsedu (2.49)

where xb is the abscissa of the bow for z-0; for the sake of

simplicity we may take (like in Sec. 113) af(x,,,O)/ax - -1 which

is Lantamount to defining E as the tangent of the entrance angle.

Assuming now that the free surface nonlinear effect leads to a

straining 6 X ,1b becomes

2ie I/2
lb ~ -IT e~[X-x 0 ) sec 0+y sin 6 sec2

-

-iz secz ]/ p 2 } os0 8dO (2.50)

Like in Sec. 15 6xb = O(c) is sought by requiring that for

fixed F and r = o(l), the thin body expansion W W + 2oW

b 1~b+ 4 2b
of the free waves potential remains uniform as F- 0, i.e., the

second order approximation is not more singular than the first.

The expansion of b (2.50) for (x-jb) 2 +z 2 
# 0 yilds

1+ Im It- /2 exP{i (x-- ) e c 0 + y in 0 se(2 .5e1)]/ deIb+ - /2(2.51)

I
___mm m ______ m ___ m iT :m ~ _= _ _ I
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6X b has now to be determined such that the last term ofbw

(2.51) should cancel the lowest F order term of 4 2b it2 w
turns out that this is possible for the estimate of 2b given

in (2.44). As result 6xb = O(CF 2 ln F) which is the same as

in the two-dimensional case (Table 1). 6xb can be substituted

in 0Ib which becomes a valid approximation even if

c n F - 0(1). Obviously, the nonuniformity of the thin body usual

approximation in the latter case is a result of the expansion of

the wave number function in (2.50) in an c power series.

The expression of th tr.- waves ib (2.50) differs from

ib (2.49) only by a c'ar, ; ! of phase resulting from an apparent

displacement of the bow, w:,tch i. velccity dependent. The same

is true for the cuve repe.ntin the coefficient of wave resis-

tance as function of F. Tht rei:ult is, zt least in principle,
in agreement with -x-eriment.! "iW:c

If there are other points of slops discontinuity, additional

-training factors have to be incorporated in If the pro-

Atkine is applied to a submerged body there is at. additional free-

dL m tn selecting a vertical str;Aining; the choice between horizon-

tal. r,;d vertical strainings depends on whether we have t, zance]. P

or Q type functions in the expression of R (2.14). In the

cafte of a source-like blunt nose (Sec. 112) the straining is of

order £/F as compared to the order c in two-dimensional flcws
t 'a1A 1 ).

Since our estimate of the lowest order term of ¢2 (2.44)
wais based only on part of the expression of P2(x'y) (2.3), it

2 o
..s not su:'e that the complete wave spectrum functions P'(8) j
an, Q(9) of are the same - s in (2.44). If they are different2 2
th e coordicate straining may be successful only if we assume that
6x, is a function of , which makes the straining less meaningful

tnet:, in tl-.e case of two-dimn-nsional flow. This question is, how-

evex, ef.,. open at pressent.
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5. Conclusions

The results oWx!ained Ln the atudy' ok- the sim~all e'routle niurdcr
limit of the thin body e .prior~ in the case cf- he-~.e~~a

flows do not diff,,r In principle from~ those pertianinc; to tL.c-

dimensuionaal f lcw3; the computations, hwce-vr, aire much mor(e ted.ru.
Again, the nonunif'rmrn hehnvior of t.L;e itxp'anis-n of the p--' entjal

of the free w&ves is a-parently rela~ted to twe px,---er.'- of thF.

small parameter c in the wave nvxber o2 the EpectrtL- function,
arid not only r the wimpitude. Lt is wor.thwhile t,-- ment.Ion thf-1
the nonlinem-r eff,:cts ce:;nside%:ed here:- are a c~~with terrrv; of

the second ord.--c pressure whlch result. from t-ic loce.] distiroance
of the free-ouLfave. The intciactio.-2 between the i-irst .' v e':.--nd
order free waves yielcfa terkiw which aze of higher order ac F- 0.j

A rltizy ittti-'od o:rend-ring unifoi-mi the expanslonr

of the free wave!,, potent-ial ! ,,qqestkd here is t1-, card in Ct e

straininag. It xesni1r- in an app.n;:-ent. hori~ontAJ displacement of

the singularities of the wa.ter-lne contour in tlie :'a,:r- of thin

ships. This displacement- is of t~l; order of txe bean- and ,t~s

dependance on th)e Froucie nurdber is r'ela Led to 't nature of t~he
singularity. The actual. %a1uc- ot t.,) Stralriing t.actorg hae t~o

be computed numericall- to r (' a. : tjc(ula case. Th, Uu"ic

of the straining~ btecom~es appreciaU).e to'r blur~t bd .roving at

low speeds.
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APPENDIX I

Derivation of fIEL _1_,251

The expression of f2  (1.21) beuomes, by substitution of

U1  (1.22) and v (1.23)

1u 2-( ) 1 L
- I ,% w(-T)~ (w 1(o) -w - w. (a) - w 1 () X

COa-T CO O -T 1a-! 2'+) (frr-% df w1 T, I(p) d T2 f wU( )W
-. Cc~ -W 1112 +

O-T, V -T- ,O-T1,  -T2
+ - 1 !"! 1 "'2" Fz 'r L' ' z

By integration by parts it can be shown that

I W -W- d-a- (-p __f . W-y~lw:+d A2

T 1  -T -T O-T
no 1TIC- 2 cc1 CT1 1 -T 2W( d - -iF + w-(+- (-FY-)) W(: +)& (A.3)

-''i 1 714 2

Py residues we also have

W (T(2) w 1(T1 W 2 dT 2  2ni U() w1 1  dT -2Tri w!(a) (A.4)
-T 2 2 W1 -= o - 1 1

Substituting (A.2), (A.3) and (A.4) in (A.1) rasults in the final

expression of f2 (z) (1.25).
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Derivation of fp ( i .322

The complete expression of f2 is given in (1.29). By

residues we obtain fcr the last integral of (1.28)

/" jL ___ _ (F-a) dp i [w(-- W- ( A.5)
- -z£ - t  F 2  

F 2  o-z

We represent now w like in (1.18)

a-z£ iX,,F 2

w() } j e d). (A.6)
r2 0 +C- z

and similarly w(a-zt IF2). To derive the expression of the far
iz/F1ia/F?free waves we replace w(z-a/F 2) by 2vi e-iz/F e. With

these transformations the lost term of f2 becomes

S 1. e /F do (A.7)

wr' 2 0  - -Z -Zt  - z -zt +-z t X+-Z t

Again, by using the residue theorem in the last integral, (A.7)
becomes

2 f

2 1 1 _ 1.1 T. -0

Ii -V e iX/F2

-e d) (A. 8)

i 0

I



where hrlmz =Imi and Rez -1, Riz r-i,.tt £

Integrating in (A-8) and adding the residues of the tULrstterm of f 2 (1.28) -leads to the final 1expresson of- fw (1. 32).

-2L

A
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FIGUkE I - TWO-DIMENSIONAL FLOW PAST A SUBMERGED BODY


