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Introduction

In his basic paper on stochastic point prccesses  Bart jotr
(1954) first presented some general methous for Murkcev process-s
(X(t)}, applicable te the theory of epidemics.
These methods consisted essentially in tne deriva'ion of a

symbolic equation

Af 9
ﬁ = lp(ie, die’ tf v1.1,
for the characteristic function f{6) = g(elex"'. ¢7 40w process

X(t), with 5%5 operating only en f. The functicn 3 4, x, 1} {o

defined as

i
5ty 0

18 X(t+Bt )1-X(1 i} N
£ - ' il 2
5 BT, f !

given that X(t) = x. An analogous equation for the protutility
generating function P(z) = fi-1 #n 2) of the pricess can also %e

derived, which corresponds to the resuits feom the forward Kolmogorov

equation. The method can be extended to vector vaiued Markov prccesses

(x(t))
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In the context of epldemics, a point process in time t will
have associatlced with it some random vector K(t) whose components
may be one or more of the following random variables. susceptibies
R(l), infectives B3(t), carriers Y(t), their locations (L(t)j in
the plane, and other related random variables such as the cost C(t)
of the epildemle. For convenlence, epldemic processes ure usually
assumed to be Markovian.

It 1e the purpose of this review to outline some of the recent
work carried ocut in mathematical epidemiology. Ia selecting the
material to be discussed, several valuable developmente have
necessarily had to be omitted. Readers interested in & comprehensive
survey up to 19€7 should consult Dietz (1967); a broad sketch of
current trends in ecpidemic theory 1is provided by the 17 communications
in the WHO Symposium in Quantitative Epidemiology (1971). This ia to
eppear in p:iAt very shortly.

In the present paper I have, while attempting to cover a wide
range of topics, been guided in my cholce largely by personal interests.
My hope isthat I shell succeed In making those recent developments
which have attracted my attention of as much interest to my remders
as myself.

The paper consists of six scctions: the first ic devcted to
chain biromial methods and their use in the statistical analysis of
measles and hepatitis data. A second considers time dependent results
for cerrier-bome “pldemice, »nd *hﬂ vse of matrix methods in computing

probabilities of their final size. The third surveys t.he application

e T

5 ey A St i Se s,

T T T e . A - \ttlleaiin ol i €3BT B

:;.
\J

T mw ;‘

F

- @

v

———————— e e

rT PR

A :’-;;'\b-—au

PO )

: o A S S J R
e 2t gn T S TR EIRAE S — . 1 < el sl “"d




g g Y

R E i
T e

s

T

3
&
LA
.

R et e )

. ‘ ,*‘ﬂ'ﬂ;' 1AM Rays s Wt

Loyt

P

of perturbation techniques to the general stochastic ciidemic, and
the estimetion of infection and removal parameters .. this mal2l on
the basis of smallpor data. The fourth section summarizee asymaiotic
results for the general stochsetlc epldemic when the initinl popula-
tions of susceptibles and infectives are both very large. In the
f1fth, some recent results are outlined on the coste of epidemics,
these depend on the stochastic path integral under tne 1lafective
curve. Finally, e brief account is given of the analysis of space-
time interactiions in epidemic processés. We now proceed to develop

these mein themes.
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) 2. Chain binomial methoda

k A simple advance in the discrete time treatment of small scale
% epldemics has been the reformulation of Greenwood and Reed-Frost chain

binomiai modele as Markov chains. A brief outline of this was first

presented by Gani (1969) and later developed in detail by Gani and

o a o

F' : Jerwood (1971). Consider a discrete time epidemic process in which the

latent period of the 1nfection 13 taken as the unit of time; let the

S a e e

random variable St denote the number of infected individuals Just

. prior to time t =0, 1, ... , who become infectious at t, while Rt
4

‘ is the remaining number of susceptibles. C(learly Rt = Rt+1 + St+1'

i If 0<p=1-q< 1l is the probability of contact between any
2 individuals, then in the Greenwood model where the number of

infectives at time +t, when these are non-zero, 1e assumed not to

& inufluence the probability of infection during (t, t+l),
!
E r, ! roToo Ten
' Pr{ =r, |R =1} = Y — TP q I
; Rev1 t+117t t Ty1- (rt rt+£7. -
(2.1)
(tao, l, oa-) \
L
) Thie clearly indicates the Markovian nature of {Rt]i For r0 =+ k, say,
i .
: the trancftic. probebility matrix of the process can be written as i
)
]
!
’ § {
| .
{ .
oy
L {.,



S T P

§
A
b
; L
i
!
T ,
0 1 2 k

7
0 1 0 0 0 ,
- 3
1]y q 0 R ¢ ( . :
r =P+ Q, 2.2) :
t 2 2 §
: 2 |»p 2pq q Y 3
4 S
: ' -1 ky k22 K !
i k pk kpk a (a)p q a 3
; ' 4

: "
where Q = disg{l, q, ... , ¢ ), and P 4s the remaining matrix with
% zercos in the divgonal.
¥

E The epidemic process is assumed to stop at time T =t  when i

——

ro.q " r > 0. The probubility of this event 1s glven by

Pr{T = t) = A];Pt'lQE , (2.3) ’

where A]; = {0, O, ... , 0, 1) 48 a (k+1) row vector, and E 18 the

(k+1) column vector of unit elements. From (2.3), the p.g.f. of time T

to termination of the epldemic is seen to be

AT - 6P) oaE (0<6<1). (2.4)

T AT R T TS TIPS T eI ey e e

A simjlar expressi~m can readily be obtained for the Joint p.g.f. of T

and the tinal number of infected cases at the end of the epidemic.

¥ “n the case of the Reed-Frost model, the number of infected

cases s, at time t affects infection during the interval (t,t+l), and 1

b - - _ s




PriS, ) = 8,05 Ry =Ty - 8,18 =8, R = 1]
t
Ty» B, Beuy 8 (-8 ) N
a ™t -5 ), (L-4q7) q . (2.5)
Beel® VTt £+l

From this, it is clear that [St’Rt] form a bivariate Markov chain.
Techniques used in the manipulation of this chain are similar to those
outlined earlier, though the matrices are now larger and more compli-

cated.

The Creenwood model may be conseldered as a Markov chain imbedded

in a continuous time pure death process. Though there are some similar-
ities in their characteristics; the Reed-Frost model does not, however,
correspond to the Markov chain imbedded in & simple stochastic epidemic.
But the reformulation cf thece chain binomial models &s Markov chains
enables us to overcome the restrictiveness of the Greenwood and Reed-
Frost infection schemes. For example, the Markov chairn imbedded in the
simple stochastic epidemic (for a single latent period), or in the
general stochastic epidemic may serve equally well ag sultable models.
We may also, in the Greenwood and Reed-Frost type models, use non-homo-
géneoua Markov chains to simulate changes in the probability p of
infectiocus contact, possibly due to inoculation. An example of this is
considered in detail in the final section of Gani and Jerwood's
(1971) peper.

At a more practical level, Bailey and Alff-Steinberger (1970)

have ueed information from basic chain binomial models to estimate

parameters from an assocliated continuous time Merkov process with

o b

e ————_ - —
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infection parameter A. In this, the instant of infection is followed
by a latent period ¢, which is normally distributed N(p,Ue), and is
succeeded by an infecticus perd )d of constant length . On the basis
of Hope Siumpson's measles data, assuming either a Greenwood or Reed-
Frost model in households of two or three people, Bailey and Alff-
Steinberger found that ., 2 were of thc order of O and 7 days
respectively.

A eimilar analysis of Dr. K. Petersonb data cn infectious
hepatitis assuming a Reed-Frost model yielded values of 16 and 22 days
for u, a. It should be pointed out thet in thie case, differences
in the cut-off point of the data resulted in sizable differences in the
estimates, but a perfectly satisfactory fit is obtained from the model

whether the cut-cff point was 9-10 or 12-1% days.

———

——
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3. Time-dependent regsults for carrier-borne epidemicsa f

An interesting dev:ivpment in the continuous time stuchastic
theory of epidemics ie Gillian Denton's (1971) time-dependent soluticn
for the carrier-borne infection previously discussed by Downton (1968).
Congider a closed population initially consisting of n > 1 gusceptibles
and & > 1 carrlers at time *t = 0. If at time t > O there arec
0<r<n suscepliblesand O0<8s8<n +u ~r carriers, wilth the
remaining n +a - 8 - r individuals removed from the population, then
the transition probabilities for the procese in the interval (i, t + bt)

are ziven vy

e~

. detected and removed;
a (1-7) re8 5t + o(8t)

Pr{(r,s) - (v-1, 8+l)] when a sueceptible 15 infected, .
and becomee an uuietected { 4

= nrs 6t + o(5t) carrier; :

i

{

?

, H
Pr{(r,s) -» (r-1,8}) when a susceptible {8 infected, 1 1

i

Pr((r,s) = (r, 8-1)} when a carrier is detected and
removo.l.

= ps Bt + o(dt)

Here the infection rate is taken as 1, &ana the relative carrier removal

rate &5 p, while the probabllity that on infective becomesz an undetected

carrier 18 O0< < 1.

- . ‘. lt_@iﬂhr‘r__“

The probability generating function P(z2,w,%t) = 2: prB(T) 25 .8,
, r,e ,
vhere pra(t) is the probabllity of r susceptibles and 8 carriere

8

T Y = ot

.

—— e g
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at time t > 0, iven that these are respectively a and a at

t = 0, satisfies the second order partial differential equation

. 2
g%.—_w('wv+l-z-7r]aiﬁf%+(l-w)pg§: (3.1

subject to the initial condition P(z,w,0) = z'w . If we write

n
P(z,w,t) = zzzrfr(w,t) as in Gani (1967), and take Laplece transforms
r=0

-6t fr(w,t) dt, Re 6 >0,

0
F (“:9) = f €
T 0
with respect to time t, (3.1) can be reduced to a set of first order
partial differential equations.

These c¢an be written in matrix form us
oF a
A(w) Se * OF = w E , (3.2)

where F' = F'(V)e) = (Fn(")6>) ey Fo(wle)]: E' = (1, 0, ... , 0}

and A(w) is given by the (n+l) X (n+l) matrix

Alw) = | w(n+p)-p

-nw( Tw+l-m) w(n-14p) - p

=(n-1) w{mi+l-m)  w(n-"4p) - o

T

PY PO

A e —

- e .-
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k-1
~in ‘trict decreasing order of J, and NI B, = I by definition.

The sciution to (3.2) 1s ther obtained using Geni's (1967) method; !

this is
: nrﬁﬂ. wi 1-L ( | n+a+l .. al i-1
F(w,0) = -~ {1i B,) F(0,8) - v=10 1 8, £
) o i. 4=0 J n+l {1 o j=a+l J n+l

(5.3) !
Here the suffix n+l indicates (n+l) X (n+l) northwest truncation ;
: 1
of the matrix, BJ is the 2(n+l) x 2(n+l) matrix .
|
1 2 |
0y v omp  aa41) 4N 0)/2 A
BJ = (}.h) ‘,
I 0 :
L
(k) k :

with A'K (0) = 3* A(w)/ow ‘WO, k =1, 2, and F(0,0) 1s given by
n+e -1 fa! n+a '
F(c,e) = { m B,} | [-4 ( m B) E] . (3.5) !
3=0 J'n+l Lo J=a+l J'ntl !
It should be noted that all products Tl By are taken from left to right !

J
ke
If the probabllity of uan spidemic of total size n-r, not count-

ing the original a carriers, 1c dennted by Pn-r (0 <r <n), then

it fzllows that

P = Um p_{(t) = lm 6F (0,0) = Um 6(F(0,8)) _ ,.
LR 9-0 T 90 n-1

a result readily obttained from {3.5). 1In carrying out the necessary

calculntions, Gillian Denton discovered that 1i‘ P(n,a) denotes the

matrix

10
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a'e nra -1 n+a
P = 1lim = { B,) { B
(n,a) 60 ° JEO 3 n+l J=2+l J]n+l !

which, with the exception of the final vector I 1s Jim 6F(0,0),
840
then

P(n,e) = (P(n,1)}* . (3.6)

Further, the first, second, ... , (n+l)th columns of P(n,a) correspond

to the vectors of probabilities of the total size of the epidemic for s

initial carriers and n, n-l, ... , O 1initial susceptibles respectively.

As is pointed out in the paper, these results lend considerable
pover to the matrix method used, particularly if one is concerned with
computing valuee of the probabilities of the epidemic size for in-
creasing values of the initial sueceptible population up to n.

These can be obtalned stralghtforwardly from a knowledge of the matrices
BJ in (3.4). The result (3.6) also holds, with the obvious minor

modifications in the B,, for the case of the general epidemic

J
considered by Gani (1967).
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4. The general stochastic epidemic i

Current studlies of the general stochasgtic epidemic have been
concerned with theoretical developments involving the use of perturbation
techniquee, a8 well as more practicel methods for the estimation of
parameters relying on electronic computation.

An earlier application of perturbation techniques was made by
Bailey (1968) to the simple stochastic epidemic involving only

susceptibles and infectives. This gave asymptotically valld approxi- -

-
N 2o 2t Lo S i b ot ™ B B

mationa for a large population of size N. After a change of time -
variable T = Nt, the m.g.f. Md(G,T) = eet(T) of the proportion .
; ¢(T) of susceptibles at time T in the deterministic case is known

to satisfy the partial differential equation

2
oM "M, M

d.oe d . &2 ), (k.1)
3T (’b—eé_ LI

o

the infection rate being teken as unity. The initisl condition is

e e

6/(1
Md(G,O) =e /(1+7), where 7 = (N-n)/n 1s the initial ratio of
infectives to susceptibles.

In the stochastic model the equivalent equation for the m.g.f.

e e m m e

ol : . n

is

! : . M O/N, /M M .
! ..ﬁsu(l-e/) 3—65-&;>.

nt‘R oty e
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. Approximating to the first order in N'l, this reduces to
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: with the same initial condition M(6,0) = ee/(lvr) = en@/N as beiore.
Ueing only the first order perturbation on the corresponding deteministic

process, Bailey was able through an elgenfunction approach to obtain use-

" 2

ful approximations for the mean, variance and epidemic curve of the simple

z stochastic epidemic,

Recently Weise (1971) has suggested an alternative perturbation

~ >

o~y e

method depending or the moments A g(g’) of the proportion & of

susceptibles. These satiefy the differential difference equations

3
!
, i |
» dv ’ - r=2 ¢ {
i _r - -1 AW T -J - .
; a = Ty + N 3}30( D (ya2) W0y vy) ||
. (b.3)
§ If v, 1s expanded in povers of ) M
| 3 '
: ¥
b (1)
g vow WO AL @ (4.4) :
r ] r
‘ )
¢ and the firgt two terms substituted in (4.3), a eimple set of differ- 1
¢ ential difference equations is derived which cen readily be solved. R
An identical technique io applicable to the general stochastic epidemic, ¥
: vherc the populat.;on ncw consists of susceptibles, infectives and
: removals, 1.e., individuals who become immune or die. In Daniels'
‘ (1971) application of perturbation techniques to the genersl stochastic
‘ epidemic, a slightly different approach through the cuaulant generating g
! {fupction 1s used. It is shown that the first spproximations to the h
r , !
; three second order cumulants of the process satisfy the set of |
b diflerential equations 13
P&
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Here, x = Kgé), y = Kéi) are the first order cumulants, which are the

solutions of the deterministic equations for the susceptibles and
infectives in the process, p being the relative removal rate. While
(4.5) cannot be solved explicitly, numerical approximations are
obtainable.

The validity of the gencral stochastic epidemic model has some~
times been called into question. Thus, an analysis of datu and estima-
tion of parameters for such a model would prove extremely valuable. 1In
a recent paper, Balley and Thomas (1971) have made extensive use of an
IBM system 360 (Model 40) computer to analyse data from a smailpox
epidemic of 30 cases in a community of 120 in SE Nigeria. After a
detalled discussion of the likelihood functions based on periods between
successive removals, and the number of such removals, the ML estimators
of the infection and removal rates were calculated. Theue are

reapectively

8 - .00168 + .00047, T - 162 + .050 {4.6)

80 that the relative removel rete was found to bde 3 = 97 + 22,
To cut down the rather lengthy time taken for an exact deteruina-

tion of the likelihood function, a gamma type approximation was used for

the distribution of periods between the {u-1)th and uth remavals, when

-l ok ek e MR
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'i there were o remaining infectives, given the pasi, histor& of " the

-l

process. Computation using this approximate method was then speeded up

.t

by a factor of 18, without seriously affecting the accuracy of the
estimates. Further work is to be done to establish the value of the

approximation for larger bodies of data.
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5. Asymptotic results for the general epidemic

' In some recent work , Nagaev and Startsev (1970) have obtained
some interesting new asymptotic results for the general stochastic
epidemic. Let n and m respectively be the initialrsuscepti'bles and
infectives in such a model. Then, the transition provabvilities of the

asdoniated imbedded Markov chain are known to be

pr((r,s) —o(r+]7.,a),] - .__D-r

p+n-1r pr’

(5.1)
Pri(r,e) -+ (r,8+1)) = —_— . .

. p+n-r
where r, 8 are infectives and removals respectively, p being the

relative removal rate. The absorbing boundary for this Markov chain

is the straight line s = m+r,
Ir v, and Tn are the final size and duration of the
epidemic starting with n initial suscéptiblea, it 1s aifficult to
obtain explicit results for their provabilities directly from the Markov
chain formulation. Clearly, if we define (X J) as independent random
variables, geometrically distributed with probabilities (p J] of

X
succees, and Sk = z X., then

j0 Y

Friv, > k) =~ Pr(S,<m, 8, <m#l, ..., 8, < m+k]. (5.2)

But though (5.2) 18 & well understood probability, its explicit expression

is not easily obtained. Nagaev and Startsev have, however, succeeded

16
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in deriving several aeymptotic results for it when n and m are
large; these results depend on the relation of m and n as they

both tend to infinity. Typical of these are the following:

Theorem 1. The prob -t “y of the final size of a general stochastic
epidemic is given asym;".tically, for large n and m, such that
m = o(n) where a & exists for which 0< 8 < g— <18 or

146 < & « o(m), vy

Priv, >a - xb ] = ¢(x) (1 +0(1)), (5.3)
where . r
= ® +2§)/(2 1y ]l/ o es:
Enii [m no, n n
8~ o %y = : 2 1/2
na [ na(l + LQ)/(]-"G)]
- ir B¢,
£(1-a) -1 n
L

Further, in (5.3) o denotes the solution of a + % tef{l-a) = 0, and

®(x) 4a the standard normsl distribution function..

Theorem 2. Let |g| = |m(1 - %)l-.w, where B = o(m) ané: n/m}- o(ﬁ'a),
then in this case the probability of the final size of the epidemic 1s

given asymptotically by

Priv 28 - xb) =0(x)(1+0(1), o (5.4)
vhere a = +aan, b, - (2n3/m)1/h.
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Theorem 3. Let é% > 8 > 0, then the probability of the final size

of the epidemic is asymptotically of the Poisson form
(nm(g}k . .
Priy =k} = tr— exp(-nm/p) | (1 + o(1l)) . (5.5)

These results, quite apart from their analytic interest, are
clearly useful in characterizing the behavior of the general :stochastic
epldemic in large closed populations with big initial numberse of both

susceptihles and infectives.
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6. The cost of epidemics

A different problem, initially broached by Backer (1970) and
developed by Jerwood (1970) in a recent note and his Ph.D. thesis
(1971), is the cost of epidemics. Jerwood specifies the cost of 3 simple
etochastic epidemic in a total population of N individumls with 1
initial infectives, ac

C, = aW, + bT

1 4 Y (6.1)

where a, b > 0 are constants. In this, T, 1se the duration of the

i
T
epidemiz and W, = [ 1 8(t) at the area under the stochastic path
(o]
between O and T, traced by the number of infectives 8(t) at
time t. The definition (6.1), a linear combination of the duration of
the epidemic and the total man-hours lost by infectives, seems realjstic
though possibly too simple. Using the method due to McNeil (1970),

the Laplace-3tieltjes transform of the cost 18 found to be

CI(B) = Nii {i + 2L5§%§E%71—91}71 , Re8>o0, (6.2
Il
vhere the infection rate i1s teken as 1 for simplicity.
For the general atochastic epidemic, also starting from 1
initisl lnfectivés and B susceptibles in a total population N, the
ca8t may be written as

'Tia

Cp * é {a8(t) + b) At = aW,, *+ bTig '(6.5)

19
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vhere a, b > 0 are again constants, 8(t) represents the number of

infectives at time t, and T 8’ W

n are regspectively the duration

is
Ti

time of the epidemic and the mrea [ *® S(t) dt under the stochastic
0

infective path beiween O and Tis‘

If we definc the Joint Laplace-Stieltjas transform cpis(ol,e2)
of {wis’Ttn) as

9% 57%T14 )
?

9, ,(0,,8,) = Ble Re 6., 6,> 0, (6.4)

2

then ve can, again using Mcleil's (1970) technique, show that these

satisfy the bivariate difference equation

%e®18 " P Pio1,8 T ® P14),6-1 (6.5)

Here p 1is the relative removel rate, and 015(91,92) = (6l + 621-1+B+o)-

We obtain formally that

i 1
£, 8 L
@, = I += 2 o L 0nm }
ie Jml X PR k+l,8-1 32k ajs (6.6)
(i x 1,... F} H"B’ 8 = 0, 1, see g N‘l)-

Jerwood has examined in some detail the distributions of
(Hu,Tu}, their expectatione M“ ~ e(w“), Nia - E(T“), and hence
the expectation E(Cu) of the cost. He has found chat (l(i.,Nm)

satisfy the respective difference equations

20
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) : =
- (8 +p) Mg =1 +oM ) o* My g1 6.7)
} -l -
: (8 +0) Nyg =1 +eN_q ot 3N1+1,a-l .
¥ The first equation can be solved to give results of the form
!, . i+8 < p 1+e-
M, =—- 6.8

where the BJ are themselves posjtive solutions of the equations

8-
. -L =E 6 a “e e .
f Z' (PEE) ey =2 (6 21,2, ..., N) ;

e

The [Mis] are shown to have the simple bounds \

Py

<M

T |~

i+8 .

and graphical information computed for the behavior of {Mis] wvhen

1 =1, 4, 7; 8 =3, hes demonstrated that these bounds are reasoasbly

good. |

AP TRALREAW WPII0 RS W o et gy
.

: The equation for the [Nia} ylelds
:
N, - 2( )k(lu ) (6.10) ""
. is ~ sip k Nk+1,a-1 U :
' k=1 Y
' where Nio = Z} k-l/b. Hence they can be evaluated recursively without ;
k=1
difficulty. :

A large number of intereeting problems remain unsolved in this

area; several of these are currently under investigation.
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7. Space-time interectione in epidemics

A problem of great importance in epidemiology has Leen the
identification of clustering among reported cases of a disease. Knox
(1964 a,b) investigated methods for deciding whether lewkaemia cases
occurring at small distance from each other also ;ccurred close in
tire; such epace-time clustering would support the theory that the
discase was contagious. His method wes later improved upon by Barton
and David (19€6); a further extension by Pike and Smith (1968) allowed
for limited periods of sukiceptibility and infectiousness. |

Barton and Devid specified Knox's procedure in graph-theoretic
terms. Let X be the number of peirs of cases fyom among the
reported which are found to bve -

(1) Udving within & fized dietance & from each other

(11) infected within & fixed time perfod t of each other.
AdjJacency matrices S and ‘I‘T of size n X n may be written such that
513 a1l '1f case J is at a distance no greater than 6- from case 1
and is O othervise, wnile TiJ =1 1f case J occurs within a period 7

of 1 and 18 O otherwise. By definition, =T . =» 0, The measure

8
Jd 4
X of space-time clustering is then given by

1 .
xaaé'%;s“w“ . (7.1)

1his integer is found to be distributed approximately as a Poisocn
varieble and can consequently be ueed as a test statistic. Details of

Other graph-theoratic structures of use in epidemiolbﬁy uay be found in
Tautu (1970 .
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In Knox's method the space and time measures related to cases 1

PR
it

and J are either Oor 1. But S1 need not necessarily be re-

Ty

stricted to these values; any reasonable measure of contact in space

] )
LA e Ureeasil .

and time may be used. The variable X will the. remain an indicator
of space-time clustering; its first two momente in this general case
have been obtained by Barton and David (1966). Mantel {1967) later

developed a generalized regression approach to the clustering problem

[P TR ST R

of which the Knox and Barton and David resulis ere special cases.

L% e

Here a statistic

NP r o e, (oo TN B LS R W - WA

i

z-§§%J%J (7.2) !
? 9 . . '
i ¢
: : is defined where Sij' RiJ are respectively functions of the space and
:
) 1 time coordinetes of cases 1, J. Testing of the statistic is curried out
[ .
) by Mconte Carlo methods, or in some cases where it appears justifiable,
: by the use of an approximate normal distribution for U = (Z- E(Z))/uz.
13

. In a recent paper Klauber (1971) considers an extension of

PN AN

Mantel's method to test clustering between two sets of points. His
methods are to be applied to the diagnoeis of lymphatic leukaemia cases
in both man end pet cats. Let (xi, Y, Ti} (1=1,2, ... , I) end

*

(%,Y

*
5 TJ] (J =1, 2, ... , J) represent the space and time

coordinates of two sets of observations, say on men and cats respectivély.

Then ve may define the space and time distances between case i amcng

men and case J among cats by

x L T TRRIAT WA o AR -t PE I ERELD MR ANt B N s o e @
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o 8,y = stlx, - X%« (v, - ¥)P1MR) Ry =BTy -1} (7.3)

[

where S, R are given functions, for example the reciprocals of the
distances between cases, plus some adjustable constant.

The statistic (7.2) may still be used; it can be compared to
> its randomization distribution by assuming one set of points fixed,
L i and the coordinates of the other randomly permuted, or both sets may

\ : be taken as random. The mean and variance of Z can be found for both .
]
)

randomization models, and in scme instances the approximate standard 'i

normal variable U = (Z - S(Z)]/az mey again be used as the test {
statistice. As might be expected, this approximation improves for
larger samples. Two examples are given of tests based on empirical .1
data; one of them ie concerned with lymphoma cases for 117 cats and
93 doge in California, where no statistical significance at a reaéonable ' 1

level was found for clustering.

It will be apparent fram this brief sketch of current work in

’ . epldemiology that the field is in a state of rapid development. Tke ) {
: intrineic interest of the problems considered, and the liveliness of ) X
N research in this area will, I hope, encourage more probabilists and .
; statisticians to contribute to it in future. :
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