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POJNT' PPOCF-,SSES 1N EPIDEM1 sL(Y3Y

by

J. Gani

University of Sn.ffleId

i. Introduction

J!F In his basic paper on stochastlc point. prcces•_3 Fttr, lj,,

(1 9 5 4) first presented bome general methous for MWX•cv prcessts

(Xlt)), applicable to the theory of epidemics.

These methods consisted eceentially in tne at.ri-a' ion nf Et

symbolic equation

I.

119X, tI
for the characteristic function f(O ) ( e (f t t'. process

X(t), with 6 operating only on f. The functi-r, : p' x, L

defined as

tlm b{.e - i 2)

':..

given that X.t) = x. An analogous equation for ,, rLti•i iity

generating function P(z) ý fk-i in z.) of the pr ),-os%' czr, %t15 !e

derived, which corresponds to the resuits from trje forwrd K.-lmogorov

equation. The method can be extended to vector vaiued Markov prcceses.s

" {x(t)W

i,- 4. ,



In the context of epidemics, a point process in time t will

have associatcd with it some random vector X(t) whose components

may be one or more of the following random variables, susceptibies

R(t), infectives S(t), carrieru Y(t), their locations (L(t)j in

the plane, and other related random variables such as the cost C(t)

of the epidtimic. For convenience, epidemic processes tre usually

assumed to be Markovian.

It il the purpose of this review to outline some of the recent

work carried out ia mathematical epidemiology. In selecting the

material to be discussed, several valuable developments have

necessarily had to be omitted. Readers interested in a comprehensive I
survey up to 1967 should consult Dietz (1967); a broad sketch of

current trends in epidemic theory is provided by the 17 communications

in the WHO Symposium in Quantitative Epidemiology (1971). This is to

appear In priit very shortly.

In the present, paper i have, while attempting to cover a wide

range of topics, been guided in my choice largely by personal interests,

My hope is that I shell succeed in making those recent developments

which have attracted my attention of as much interest to my readers

as myself.

The paper consists of six sections: t.he first ic devoted to

chain bizrmial methods and their use in tbe statistical aualysis of j
measles and hepatitis data. A second considers time dependent results

for cqr1'1'r-b,,_-n4- admice tnd the "-e of matrix met.hods in computing

probabilities of their final size. The third surveys the application

2



of perturbation techniques to the general stochastic: c idemic, rind

the estimation of infection and removal parameters '.. 4ýhis "c ite c

the basis of smallpox data. The fourth section sinmnari:cr. eaymin-)cLt'c

results for the general stochastic epidemic when the initial popula-

tions of susceptibles and infectives are both very large In the

"fifth, some recent results are outlined on the costs of epidemics,

r these depend on the stochastic path integral under the infective

curve. Finally, a brief account is given of the analysis of space-

time interactions in epideidc processes. We now proceed to develop

tb•ce main themes.

1.

:2I
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2. Chain binomial methods

A simple advance in the discrete time treatment of small snaLe

epidemics has been the reformulation of Greenwood and Reed-Frost chain

binomial models as Markov chains. A brief outline of this was first

presented by Gani (1969) and later developed in detail by Gant and

Jerwood (1971). Consider a discrete time epidemic process in which the

latent period of the infection i3 taken as the unit of timei let the

random variable St denote the number of infected individuals just

prior to time t 0 0, 1, ... , who become infectious at t, while Rt

is the remaining number of susceptibles. Clearly Rt = Rt+1 + -9t+I

If 0 < p = l-q < 1 is the probability of contact between any

2 individuals, then in the Greenwood model where the number of

infectives at time t, when these are non-zero, is assumed not to

influence the probability of infection during (t, t+l),

r rtr r
PrR+, = rt+l=Rt rt) (t - TP ; . q

rt+I. t t+i-

(2 1)

(t 0, 1, ... )

This clearly indicates the Markovian nature of (RE For r k, say,
t0

the tranrHi+i-'.ic probability matrix of the process can be written as

StI

S i.



rt+I

0 1 2 ... k

0 1 0 0 0

I p q 0 0
r 2 2 PQ, (2.2)

2 p 2pq q ...

.k rk kp1 k k-2 2 k
k p kp q

k
where Q - diagfl, q . , q ), and P is the remaining matrix with

Szeros in the di'gonal.

The epidemic process is assumed to stop at time T = t when

r t.1- rt > 0. The probability of this event is given by

Pr{T - t) =.AýPtQE, (2.3)

* where A - [0, 0, ... 0, 1) is a (k+l) row vector, and E is the

(k+l) column vector of umit elements. From (2.3), the p.g.f. of time T

to termination of the epidemic is seen to be

Aý.(I - eP)"' OE (0 < 0 < 1) (2.4)

A similar expression can readily be obtained for the Joint p.g.f. of T

and the final number of infected cases at the end of the epidemic.

"n the case of the Reed-Frost model, the number of infected

cases ast at time t affects infection during the interval (t,t+l), and
* ' .r . . .

.i I 5
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I

Pr[S = s+, Rt + = rt -st+ilSt st, Rt rt
rt•' st st(rt-stl

S- )t-l qt t t+ (2.5)
st+:" (rt - t).

From this, it is clear that tSt,Rt) form a bivariate Markov chain.

Techniques used in the manipulation of this chain are similar to those

outlined earlier, though the matrices are now larger and more compli-

cated.

The Greenwood model may be considered as a Markov chain imbedded

in a continuous time pure death process. Though there are some similar-

ities in their characteristics, the Reed-Frost model does not, however,

correspond to the Markov chain imbedded in a simple stochastic epidemic.

But the reformulation of thece chain binomial models as Markov chains

enables us to overcome the restrictiveness of the Greenwood and Reed-

Frost infection schemes. For example, the Markov chain imbedded in the

simple stochastic epidemic (for a single latent period), or in the

general stochastic epidemic may serve equally well as suitable models.

We may also, in the Greenwood and Reed-Frost type models, use non-homo-

geneous Markov chains to simulate changes in the probability p of

infectious contact, possibly due to inoculation. An example of this is

considered In detail in the final section of Ouni and Jerwood's

(1971) paper.

At a more practical level, Bailey and Alff-Steinberger (1970)

have used information from basic chain binomial models to estimate

parameters from an associated continuous time Markov process with

6
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Aq

infection parameter •. In this, the instant of infection is followed
c2

by a latent period •, which is normally distributed N(.,a ), and is

succeeded by an infectious peri d of constant length oe. On the basis

of Hope Simpson's measles data, assuming either a Greenwood or Reed-

Frost model in households of two or three people, Bailey and Alff-

Steinberger found that V, a were of the order of 3 and 7 daye

respectively.

A similar analysis of Dr. K. Peterson6 data on infectious

hepatitis assuming a Reed-Frost model yielded values of 16 and 22 duys

for W, a. It should be pointed out that in this case, differences

in the cut-off point of the data resulted in sizable differences in the

estimates, but a perfectly satisfactory fit is obtained from the model

whether the cut-off point was 9-10 or 12-13 days.

.- - v.o



3. Time-dependent results for carrier-borne epidemics

An interesting dev L4io'..=nt in the continuous time stuchastic

theory of epidemics i- Gillian Denton's (1971) time-dependeut it.olut,idc

for the carrier-borne infection previously discussed by Downton (19)68).

Consider a closed population initially consisting of n > I susceptibles

and a > . carriers at time t = 0. If at time t > 0 there are

0 < r < n susceptibles and 0 < s < n + a - r carriers, ulth thf!

remaining n + a - B - r individuals removed finm the population, then

the transition probabilities for the process in the interval (t, t + bt)

are given by

Pr[(r,s) -. (r-l, s+l)) when a susceptible Is infected,
aud becomes an unuLe•ected

- Trrs Bt + o(bt) carrier;

Pr((r,s) -) (r-l,s)) when a sunceptiblr. is infected,

detected and removed;
- (l-w) rs 6t + o(bt)

Pr[(r,s) -4 (r, s-1)) when a carrier is detected and
remov.ý2.

-ps bt + o(6t)

Here the infection rate is taken as 1, ano the relative carrier removal

rate as p, while the probability that an Infective becomes an undetected

carrier is 0 < iT < 1.

The probability gernerating function P(z,w,t) = (rs ) zr Js,

where p r(t) is the probability of r susceptibles and a carriers

8 i
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at time t > 0, Civen that these are respectively n and a at

t 0, satisfies the second order partial differential equation

L = W(r + 7r) 311 *+ W)P3

subject to the initial condition P(z,w,0) -zw. If we write
n

P(zpt) = • zf(w,t) as in Gani (1967), and take Laplace transforms
r=O

OtF (w,e) = f e f (w,t) dt, Re e > 0 ,
r r• ~0

with respect to time t, (3.1) can be reduced to a set of first order

"partial differential equations.

These can be written in matrix form as

A(w) 3+OF =+ aE, (3-2)

where F' F'(w,e) = (Fn(w,O), ... , (W,e)), E' = (1, 0, ... , 0),

and A(w) is given by the (n+l) x (n+l) matrix

. fA(w) = w(n+p)-p

-nw(7rw+l-Tr) w(n-l+p) - p

-(n-1) w(irw+l-r) w(n-'-+p) -0

iT ... ... o

. I-w( Tr, l- 7) Wp- P

-Mi

i 9
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ate solution to (3.2) is ther obtained using Geni's (1967) method;

this is

nia-iIi-:L n+a+1 .

F(O 3 n+ F(0,0 L .a
i=O J=O l- a+l - .1+1

(5.3) +

Here the suffix nul indicates (n+l) X (n+l) northwest truncation

of the matrix, B is the 2(n+l) x 2(n+l) matrix

* (JA'(0(O) + ei]/O j(j+l) A 02 c

wlhAk(o) = k A(w)/ kj 1 2an

withA )pw k 1, 2, and F(0,O) is given by

F(O,e) rl Bj)n+! 0 1 B]jn+1 E] (3.5) ¶
j .=O Ja+l

It should be noted that all products 71 Bj are taken from left to right

in 1trict decreasing order of J, and 1 = I by definition.
k

If the probability of an epidemic of total size n-r, not count-

in& the original a carriers, i& denroed by Pn-r (0 < r < n), then

it follows that

P-r = lm p ro(t) - lim OFr(O,e) = lim O[F(0,e)) n.

t- e0-.0 e..0,o

a result readily obtained from (3.5). In carrying out the necessary I

calculations, Gil.ian Denton discovered that if P(n,a) denotes the

matrix

10
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nf-a -1 n+a
P(n,a) lim 1_( B) [ i B)

e-4 0 J=0 n+l Ja n+l

which, with the exception of the final vector E is lim GF(OO),

then

P(n,a) -- (P(n,l))a(36

r 7
Further, the first, second, ... , (n+l)th coltmns of P(n,a) correspond

to the vectors of probabilities of the total size of the epidemic for a

initial carriers and n, n-i, ... , 0 initial susceptibles respectively.

As is pointed out in the paper, these results lend considerable

power to the matrix method used, particularly if one is concerned with

computing values of the probabilities of the epidemic size for in-

creasing values of the initial susceptible population up to n.

These can be obtained straightforwardly from a knowledge of the matrices

SB in (3.4). The result (3.6) also holds, with the obvious minor

* modifications in the Bj, for the case of the general epidemic

considered by Gani (1967).

oi
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4. The general stochastic epidemic

Current stuales of the general stochastic epidemic have been

concerned with theoretical developments involving the use of perturbation

techniques, as well as more practical methods for the estimation of

parameters relying on electronic computation.

An earlier application of perturbation techzlques was made by

Bailey (1968) to the simple stochastic epidemic involving only

susceptibles and infectives. This gave asymptotically valid approxi-

mations for a large population of size N. After a change of time

variable T = Nt, the m.6.f. Md(,,T) m e1(T) of the proportion

t(T) of susceptibles at time T in the deterministic case is known

to satisfy the partial differential equation

6Md 0 Md .•d

the infection rate being taken as unity. The initial condition is

Md00 =, where r=(N-n)/n is the initial ratio of

infectives to susceptibles.

In the stochastic model the equivalent equation for the m.g.f.

is

N N(lee-6/)
FT a

Approximating to the first order in N ,1 this reduces to

(12

/4
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with the same initial condition M(0,0) = ee/(lv) = e as be~fore.

Using only the first order perturbation on the corresponding dctterministic

process, Bai]ey was able through an eigenfunction approach to obtain use-

ful approximations for the mean, variance and epidemic curve of the simple

stochastic epidemic.

Recently Weiss (1971) has suggested an alternative perturbation

method depending on the moments vr . r of the proportion t of

susceptibles. These satisfy the differential difference equations

dr, E ' (-I) j r N-_j(Vr -- r(v r) -++ N2) lVrj

(4.3)

*if Vr is expanded in powers of N 1  ab

0r " - > " ÷ r • + " ~) ,, 1 -1 ( 2 ) -2 . )

V + I/lN + V 2N2 + (4.4

and the first tv... terms substituted in (4.3), a simple set of differ-

entlal difference equations is derived which can readily be solved.

An identical technique is applicable to the general stochastic epidemic,

where the populat4on now consists of susceptibles, infectives and

removals, i.e., individuals who become immune or die. In Daniels'

(1971) application of perturbation techniques to the general stochastic

epidemilc, a slightly different approach through the cuaulant generating

function is used. It is shown that the first approximations to the

three second order cusulants of the process satisfy the set of

diflerential equations 13

, - --...- -..-...-.---- -, ....13
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W') rxy -Y _ C) K~'
K2 1 20

K.() j-2xy + 2 y x-y-p xf2 J (4-5)
02 1

(1) (1)

Lee K0 - Y "-P LO 02

Here, x a K1 0 , y K are the first order cumulants, which are the

solutions of the deterministic equations for the susceptibles and

infectives in the process), p being the relative removal rate. While

(4.5) cannot be solved explicitly, numerical approximations are

7 obtainable.

The validity of the general stochastic epidemic model has some-

times been called into question. Thus, an analysis of datu and estima-

tion of parameters for such a model would prove extremely valuable. In

a recent paper, Bailey and Thomas (1971) htive made extensive use of an

IB system 360 (Model 40) computer tco analyse data from a smallpox

epidemic of 30 cases in a community of 120 in SE Nigeria. After a

detailed discussion of the likelihood functions based on periods betweent successive removals, and the number of such removals, the ML estimators

of the infection and removal rates were calculated. Theue are

respectively

.oo168 + .00047, r 162 + .050 (4.6)

th ,

so that the relative removal rate was found to be o - 97 + 2.

To cut down the rather lengthy time taken for an exact determina-

tion of the likelihood function, a gamma type approximation was used for

the distribution of periods between the (u-l)th and uth removas, when

14
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there were a remaining infectives, given the pasi, history of the

process. Computation using this approximate method was then speeded up

by a factor of 18, without seriously affecting the accuracy of the
V

estimates. Further work is to be done to establish the value of the

approximation for larger bodies of data.

4,
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"5. Asymptotic results for the general epidemic
: 'I

In some recent work, Nagaev and Startsev (1970) have obtained

some interesting new asymptotic results for the general stochastic

epidemic. Let n and m respectively be the initial susceptibles and

infectives in such a model. Then, the transition probabilities of the

associated imbedded Markov chain are known to be

'Pr((r,s) -, (r+l,s)) n-r____ -~pn~r Pr'

Pr((rs) -- (r,s+l) + - r (1

where r, s are infectives and removals respectively, p being the

relative removal rate. The absorbing boundary for this MWrkov chain

is the straight line s - m+r.

If V and T are the final size and duratioz: of the

epidemic starting with n initial susceptibles, it is difficult to

obtain explicit results for their probabilities directly from the Markov I

chain formulation. Clearly, if we define (X as independent random.

variables, geometrically distribuzed with probabilities (pj) of
k

success, and S- X , then
J-0

FrZVy > k) - Pr(So < m, 81 < m+l, ... , < +k. (5.2)

But though (5.2) is a well understood probability, its explicit expression

is not easily obtained. Nagaev and Startsev have, however, succeeded

16

S__--__.-.-_.. . ._.. -__--" -- - -- --- " . . .. A



in deriving several asymptotic results for it when n and m are

large; these results depend on the relation of m and n as they

both tend to infinity. Typical of these are the following:

Theorem 1. The probrV-'.,., "y of the final size of a general stochastic

epidemic is given asym. '.tically, for large n and m, such that

m - o(n) where a 5 exists for which 0 < 5 < 2< 1-8 or

l+?j < P- o(m), by-n

Pr(vn > a - xbn) - *(x) ( + 1 o(l)) , (5.•)

[2 3 1/2whr m(P + Ef)/( - l)if P-> I,

Sn n n

a nb 1/2
na' na(l + )/V(l-0)

~~~ I i if <1.

P- (1-a) -n
n

*()i h tnjr omLditbuonfcin.
I ~Further, in (5.5) a denotea the solution of a + P n(- a) 0, and

t I
SO(X) is the standard normal distribution function.,

Theorem 2. Let I= (- where o( 'nd. n 3 /r-2n

then in this case the probability of the final size of tbt epidemic ib

given asymptotically by

nPr -n an A a O(x)(1 + o(1), (5.4)

where a - ,bn , (2n3/m)1/.

' 17
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Theorem 3. Let > 8 > 0, then the probability of the final size

of the epidemic is asymptotically of the Poisson form

k1
r - k) - ep(-nm/p) (•. o(+)) (55)i

These results, quite apart from their analytic interest, are

clearly useful .in characterizing the behavior of the general Xtochastic

epidemic in large closed populations with big initial numbers of both

suaceptibles and infectives.

. .. • 1
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S ~6. The cost of' epidemics

A different problem, initiadly broached by B,4ker (1970) and

developed by Jexvood (1970) in a recent note and his Ph.D. thesis

(1971), is the cost of epidemics. Jerwood specifies the cost of % simple

stochastic epidemic in a total population of N individuals with i

initial infectives, as

C aaWi + bTi , (6.1)

where a, b > 0 are constants. In this, Ti is the duration of the

epideh1c and W i S(t) dt the area under the stochastic path
0

between 0 and T1  traced by the number of infectives S(t) at

time t. The definition (6.1), a linear combination of the duration of

the epidenic and the total man-hours lost by infectives, seems realistic

though possibly too simple. Using the method due to McNeil (1970),

the Laplace-Stieltjes transform of the cost ib found to be

C (+) =T l+0[J f + b Re e > 0, (6.2)

SJul i(N-J) -

Ii iwhere the Infection rate is taken as 1 for simplinity.

For the general stochastic epidemic, also starting from i

initial Infectives and a susceptibles in a total population N, the

cost may be written as

Ti
ii

Ce .- [aS(t) + b) dt aw +bTis (6.3)
0 is

19



where a, b > 0 are again constants, S(t) represents the number of

infectives at time t, and Tis, Wis are respectively the duration

time of the epidemic and the area fTis S(t) dt under the stochastic
0

Infective path between 0 and TIs.

If we deflnc the Joint Laplace-Stieltja& transform (p 5 (o(,e 2 )

of (WisT 1 ) as

pis(e1,e - S(e 1 iws 2Ti5  , i) Re , e0 > , (6.4)

then we can, again using Mcleil's (1970) technique, show that these

satisfy the bivarlate difference equntion

(65

Here p is the relative removal rate, and ("a(ee2 ) 02(eI + +8+0).

We obtain formally that

I iis 11 + Z kl~-

J 1 ' s P k lJ -- k C l s( 6 . 6 )

(i - 1,... , N-sj a = Op lp.. N-1).

Jerwood has examined in some detail the distributions of

(W Tis), their expectations M (W ) NS (T1,), and hence

the expectation S(cIs) of the cost. He has found that (K{s,N 1S)

satisfy the respective difference equations

20



(s+p)Mis 1 + PM±.l,S s1 B -i+',6(

( S + O ) N i s I + P N i . I , s  +l, s_ l •

The first equation can be solved to give results of the form

' ~ ~i~s i~ -- la-j

Es " ()(+) j (6.8)

where the P are themselves positive solutions of the equations

13-
Ss s-j

Z' ~ ~ Rs ( j 1, 2, . N).
J=l i p

The (M,,) are shown to have the simple bounds

_I< < L+_•s (6.9)
t ~~p -is-- p'

and graphical information computed for the behavior of (MI, vhen

* i = 1, 4, 7; s = 3, has demonstrated that these bounds are reasonably

good.

"The equation for the (N,,) yields

I I -k1

i- ) sN (6.1o)"is S+ + k k•+i,,-l
-ll

where Nio = k k'i/p. Hence they caui be evaluated recursively without

difficulty.

A large number of interesting problems remain unsolved in tlbs

area; several of these are currently under Investigation.
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7. Space-time interections in ep2demirs

"A problem of great importance in epidemiology haz been the

identification of clustering among reported cases of a disease. Knox

(0964 ab) investigated methods for deciding whether lelaaemIa cases

occurring at small listance from each other aluo occurred close in

tire; such space-time clusterinE v would support the theory that the

disease was contagious. His method was later improved upon by Barton

and David (1966); a further extension by Pike and Smith (1968) allowed

for limited periods of suwceptibillty and infectiousness.

Barton a"d David specified Knox's procedure in graph-theoretic

terms. Let X be the number of pairs of cases from among the .

reported which are found to bef

(i) living within a fixed distance 5 from each other
kii) infected within a fixed time period r of each other.

4

Adjacency matrices S and T of size-n x n may be written such that

SI 1 if case j is at a distance no greater than 6 from case iSiii

and is 0 otherwise, vnile T = 1. if case J occurs within a period T

of i and is 0 otherwise. By definition, 8j T jj 0 0. The measure j
X of space-time clustering is then given by

TJ

Ihis integer is found to be distributed approximately as a Poisson

variable and can consequently be used as a test atatlsatc. Details of

other giaph-theoratic structures of use in epiduhiology way be found in

Tautu (197o0.
22
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k I+
In Knox's method the space and -time measures related to cases i

and 3 are either 0 or 1. But Sj, Ti3  need not necessarily be re-

strir.ted to these values; any reasonable measure of contact in space

and time may be used. The variable X will thea remain an indicator

of space-time clustering; its first two mcnents In this general case

have been obtained by Barton and David (1966). Mantel (1967) later

developed a generalized regression approach to the clustering problem

of which the Knox and Barton and David results are special cases.

Here a statistic - s

S(72)

is defined where S Ri, are respectively functions of the space and
ii. ii

time coordinates of cases 1, J. Testing of the statistic is curried out

by Monte Carlo methodsp or in some cases where it appears Justifiable,

by the 'jse of an approximte normal distribution for U - (Z)- /Z.

In a recent paper Klauber (1971) considers an extension of

• Mantel's method to test clustering between two sets of points. His

methods are to be applied to the diagnocis of lymphatic leukaemia cases

in both man and pet cats. Let (X,' Yi, Ti) (i , 1, 2, I) and

(X Y ( 1- 1, 2, ... , J) represent the space and time

Scoozilnates of two sets of observations, say on men and cats respectively.

Then we may define the space and time distances between case i among

men and case j among cats by

23
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S ~St[Xi-X~ + -Y Y )21/2) , = R(Jji- T*J) (7-3~)

where S, IR are given functions, for example the reciprocals of the

distances between cases, plus some adjustable constant.

The statistic (7.2) may still be used; it can be compared to

its randomization distribution by assuming one set of points fixed,

i j and the coordinates of the other randomly permuted, or both sets may i

be taken as random. The mean and variance of Z can be found for both

randomization models, and in some instances the approximate standard "

normal variable U = (Z - (Z)V/Z may again be used as the test

statistics. As might be expected, this approximation improves for

larger samples. Two examples are given of tests based on empirical

data) one of them is concerned with lymphoma cases for 117 cats and

93 dogs in California, where no statistical significance at a reasonable

level was found for clustering.

It will be apparent from this brief sketch of current work in

epidemiology that the field is in a state of rapid development. The

intrinsic interest of the problems considered, and the liveliness of

research in this area will, I hope, encourage more probabilists and

statisticians to contribute to it in future.
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