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ABSTRACT 

The collapse of a homogeneous fluid mass  immersed in a stably- 
stratified fluid  is stuiied numerically. A finite difference formu- 
lation of the Navier-Stokes equations in the primitive variables  is 
solved  in a large box several times the size of the mixed region. 
The formulation conserves total  energy in the box in the special case 
where the viscosity is zero. The shape of the homogeneous region and 
its energy content are followed in detail. Confirming a previous 
speculation made from a crude analytical theory,   most of the energy 
in the homogeneous fluid mass is shown to be transferred to the 
exterior fluid in one Brunt-Vaisala period. The predictions agree 
with available analytical models  in initial and intermediate stages 
and with a previous tank experiment in the intermediate and late 
stages of collapse. 
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NUMERICAL MODEL FOR MIXED BEGION COLLAPSE IN A 
STPATIFI^D FLUID 

Introduction 

The flow pLenomena accompanyü.g the collapse of a homogeneous 
fluid mass  immersed   in a stratified fluid havt been the center of 
some attention over the past ten years.    The fluid mechanical model 
has various applications ir. geophysics and  in -.ngineering but the 
flow phenomena are complex enough to have yielded only marginally to 
analysis. 

The model  is taken to be a cylindrically  shaped homogeneous 
fluid mass  immersed   in a linearly stratified fluid.    The cylindrical 
region  is   Initially circular  in shape and the density of the mixed 
fluid within  is equal to the density of the exterior fluid at the 
axis of the cylinder.    Since the surrounding fluid is assumed to be 
stably strnufied.   the fluid in the upper port  of the mixed region is 
heavier,   and that   in the lower part lighter,   than  its surroundings. 
Thus,   when released from rest,   the region    expands horizontally while 
collapsirv vertically to the level  of equilibrium of the homogeneous 
fluid.    The motion of the irixed region occurs at the expense of the 
potential energy originally stored  in the initial configuration. 
The distortion from the circular shape causes motions in the exterior 
fluid that eventually radiate the energy away  in the form of internal 
gravity  waves. 

Previous studies aimed directly toward the collapse 
been mostly experimental (cf. Schooley and Stewart [l], 
Wu [ 3l ). There have been several numerical experiments 
Padmanabhan et al Lc/j, Vasiliev et al 'S]) but only one 
analytical effort (Bell and Dugan | '[]) . There have been 
contributions to certain aspects of the collapse process 
and Lewis [81 and Schooley and Hughes ,'1 but these will 
from discussion because of severe limitations of the lin 
equations of motio:;  in the fully mixed case. 

process have 
Schooley    2], 
''Vessel    '»"l, 

relevant 
analytical 
by Hartman 
be excluded 

earized 

Numerical  experiments aimed at clarifying the physical processes 
should be nost enlightening but they have not been entirely success- 
ful.      The physical model solved numerically by Padmanabhan et al     5J 
is an  idea]ized one in which fluid motions exterior to the homogeneous 
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region are ignored.    Thus,  no energy can be transferred to the 
exterior fluid and the model could be an accurate one only for the 
initial sta^e of collapse.    In the initial  ^tage,   though,  thosr 
predictions are at variance with an analytical soluLion of the same 
model (cf. Bell and Dugan [Vj )  and it appears that the solution did 
not conserve energy.    Vessel     [k]   solved the Navier-Stokes equations 
numerically  in such a way that exterior fluid motions were included 
in the computation.    Gross corroboration with the experiment of 
Wu [3J   was obtained but the calculation was not accurate enough to 
attempt detailed predictions of energy balances.    Finally,   Vasiliev 
et al   [o]  have solved numerically a particular physical model that 
retains some aspects of the growth of a mixed region due to turbulence 
as well as the resulting collapse.    However,   no comparisons with other 
data or conclusions were made. 

In summing up the previous contributions,  there remain several 
outstanding  questions about the mechanics of the collapse process. 
r'irst,   the results for the  initia-1   stage of collapse are contradic- 
tory.    Bell  and Dugan   [7J  discuss several analytical models for the 
initial stage that would appear to be mechanically convenient.    How- 
ever,   in those models the homogeneous region  is assumed to conserve 
Ltl energy and this  is a questionable hypothesis.    The experiments 
of Wu   .5]   are not helpful  in answering this question because the 
experimental method masked the initial  stage,   and the numerical 
predictions of Vessel     ih]   and Vasiliev et al   r6]are not accurate 
enough.    Second,   there has been no analytical or numerical method that 
is adequate to predict the phenomena in the late stage of collapse. 
Last of all,   the energetics of the motions and the resulting physical 
implications have not been explored. 

This paper is written to ansv/er these questions.    The Navier- 
"t.okfcs equations  in the Boussinesq approximation are solved numerically 
in a large box.    The fluid  is assumed to have constantly  increasing 
density with depth    except for a circular region that   is  initially 
constrained to be homogeneous.    The numerical method follows along 
lines laid out by Williams    1)]   and Piacse.c and Williams    1L and  it 
conserves the total energy in the box remarkably well.    The source 
of energy for the fluid motions is the potential energy  initially 
stored  in the homogeneous region.    The rate of energy transfer from 
the homogeneous region to the surrounding fluid is followed  in detail 
and the result substantiates the speculation of Bell and Dugan   '7] 
that the mixed region doss not conserve  its energy even  in the early 
otage.    Also,   confirming another speculation of Bell and Dugan   T",, 
the viscous stresses are shown to affect the solution only at a late 
stage of collapse. 

Numerical  Analysis 

The Ilavier-rtokes equations are solved by an adaptation of a 
method proposed by Williams   '10]  and Piacsek and Will iam?    11,    .    The 

mttatumi  ■ -ajfl 
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(1) 

equations of motion are 

vrtiere (u, w)  are the (x, z)  components of velocity,     p    is the pressure, 
T    is the temperature,    0     is the kjreroatic   .iscosity,  and  v(   is the 
thermometric diffusivity.    The operaljr'^/'^•t I.: the convective 
deri/ative  V^ 4-V. ^ and the density   is  related to the temper- 
atur-; by the relatTön   f = f«t L-*.(.T-To^   wtiere    «C    is the thtrraal 
expansion coefficient.    The first two equations represent the con- 
servation of momentum within the I-oussinesq approximation wherein 
density changes are assumed neglirible ir; the accelerav, on terms. 
The third equation represents the condition of   incompressibility and 
the last one the conservation of energy.    'I7ies'j equations are to be 
solved subject to approximate boundary and   initial  conditions.    The 
boundary conditions are taken to be no-streas conditions with the 
temperature (density)  fixed at the top and bottom of a rectangular 
box.    In detail,   the boundary conditions aie 

a so 

on xsO)^ (2aN 

and 

o«   * = O,^ (a») 

where T is fixed on z = o    and    d,   and    b and    d    are the horizontal 
and vertical  sizes of the box,   respectively.    The initial  condition 
is specified as quiescent with horizontal,   equally spaced isopycnals 
except for a circular region  in which the fluid is totally mixed. 

^ ■Ml 
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1 
A Poisson equation for the pressure can be derived from equations 

(l)  so that 

where £. is the velocity divergence and g represents the nonlinear and 
viscous terms in the Navier-Stokes equations,    ^e integral form of 
this equation is 

so that 

has to be satisfied around the boundary.    Since the no-stress boundary 
conditions are to be imposed,  the boundary condition on equation (j) 
is of Neuirann typt and it is  important that the finite-difference form 
of equation (3)   satisfy the  integral {k)  on  the boundaries. 

In order to estpblish the finite-difference scheme for solving 
the above equations,  the difference operator 

and the sura operator 

are defined  in the notation of Grammeltvedt [12]   .    Biese operators 
form a linear commutative and distributive algebra for which various 
uperator rules and identities can be constructed,   such as 

A  quadratically conservative scheme in the sense of Piacsek and 
Williams [11]   can be constructed for the rele.crt equations as 

„t 

(5) 
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where variables are defined on the staggered grid as suown in Figure 1, 

Figure 1 

Computation grid 
•    horizontal velocity 

X ■    vertical velocity 
"~^ x    pressure and temperature 

The terms of the form 

force the finite-difference scheme for the nonlinear terms to be 
quadratically conservative regardless of whether the divergence is 
zero or not.    In other words,  the quadratic conservation is algeberaic 
and is independent of the accuracv -f the solution in the sense of 
how close the divergence is to being r.ero.    This does introduce an 
error proportional to the divergence (which is not  identically zero 
during the computation)   into the integrals of linear quantities. 
However,   tnese linear conservation integrals are not as necessary or 
as meaningful a requii-ement for computational stability as are the 
quadratic ones. 

Ihe nonlinear terras are evaluated at time    t,   thus constituting 
the "leap-frog" method (Richtmyer [13],  P- 17) which has a time 
truncation error of 0(   t2)  and a von Neumann condition of 

The viscous terms are lagged in time at time level t-at and are subject 
to the stability criteria of 

* < ^KY 49 
and the pressure and temperature terms are time centered (evaluated 
at time t ). 

Another instability that can appear is aliasing  (Phillips [l'0). 
This instability arises when waves that are too short to be resolved 
by a given set of grid points are misrepresented.    Such instabilities 

—-—-—   - 
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are controlled svccessfully by \ising schemes like this one that main- 
tain the integral constraints of physical importance on the quadratic 
quantities u", w2, and T2.    For a three-level time scheme like this 
one, computational nodes are present due to the fact that a first order 
continuum equation in time has been raised to a second order difference 
equation in time.    The computational modes are usually snail and it 
takes several hundred time steps for serious deviations from the 
correct solution to arise.    These computational modes are suppressed 
by periodically averaging over adjacent time steps. 

The governing equation (3)  in the finite-difference notation is 

wheri 

and 

ß*9 Sk^u. V ^w 

(6) 
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The Harlow and Welch [1!?] numerical strategem to drive the divergence, 
«(5,   to z^ro was applied. This is necessary becctuse a degree of round- 
off error is inevitable and it leads to the creation of an artificial 
divergence. The co-nputational strategem works as follows:     since the 
divergence in the computation at a given time step ^-A't  is not exactly 

zero S* AV 

J* is 

J^O) but the', of time "t+d'i ought to be zero 

treated as equal to - J^   / j, &£  . 

i& tAt 
CO), 

The actual solution of equation (6) with the predicto/s (5)   is 
by partial Fourier reduction. The boundary conditions  (2b) ci the 
pressure are made homogeneous by a simple transformation and the 
pressure  is then expanded in a Fourier cosine series  in the  vertical 
direction. The expansion and decomposition are accomplisned by means 
of fast Fourier transforms. The equation that has to be solved then 
takes the form 

U^-V^.f»^ (7) 

where n refers to the Fourier mode number, A.    is the eigenvalue for 

the nth mode,   and Q     is the transformed source function. This is a 

triiiiagonal equation in x and it can be solved subject to the 
Neumann boundary conditions by means of a tridiagonal algorithm 
fVarga Tirl). For the degenerfte case    n=0,   the matrix is no longer 
'iia^mally dominant and the algorithm breaks down so the equation  is 
solved as a marching problem in this case. The  integral constraint 
CO   is satisfied by the finite-difference formalism within round-off 
c;o this degenerate case poses no problem. 

The normal checks on the computation for consistency and conver- 
gence were made but,   since the computation of Padmanabhan et al  [5] 
apparently dissipated energy in a physical model where none should 
have been dissipated,   it was felt especially important to prove that 
the present method did conserve energy at least approximately in the 
cast: of zero viscosity. 

^ 
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Total  energy  in computation box 

In Figure 2,  the total energy in the box is plotted versus time, 
time axis is scaled by the Drunt-Vaisala frequency    N    where 

The 

M .-!-« 

and p    is the density profile of tha exterior fluid.    The energy is 
conserved to within 5l1/0 for l^ periods which is over 2500 time steps. 
This  is remarkable considering that the initial condition data 
includes a discortiuuity and that in such a long run the mixed region 
is highly elongated so that  it virtually disappears  into the grid 
spac ing. 

Results and discussion 

The box size chosen foi the computations  is elongated so that 
the collapsing mixed region can expand unrestricted by the sidewall 
boundary.    The initial mixed region is taken +o be a quarter circle in 
a corner of the box since the problem exhibits both horizontal and 
vertical symmetry about the mixed region centerline.    The distance to 
the top of the box is k radii and that to the side is l6 radii.    The 
number of grid points was varied somewhat to check for convergence 
of the solution but the majority of the results are for   50X200 !?rid 
points. 

Figure 5 shows a sequence of mixed region shapes taken at 
intervuls of one-sixth of a Brunt-Vaisala period.    The shape is 
obtained from particle tracers that are massless points pushed along 
by the velocity field.    The short-time history of the width of the 
mixed region is  shown in Figure k along with the theoretical pre- 
diction of Bell and Dugan   [Y]   for the accelerative stage.    Actually, 
the numerical result  is comprised of two curves which bound the 
region size above and below> the uncertainty is entirely in the plot- 
ting routine utilized to display the results.    That theory (as well as 
similar ones of Padmanabhan et al   [5]   and Mei  rl,rj    )   essentially 

8 
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Figure 5 
Mixed region shape 

Figure k 
Mixed region width 

assumed that the potential energy that was originally stored in the 
mixed region is converted to kinetic energy but no energy is trans- 
ferred to the surrounding fluid. In other words, that theory neglects 
all motions in the surrounding fluid. This can only be an arproxima- 
tion since all changes of snope of the mixed reg.'on force accommo- 
dating motions in the surrounoing fluid. It is plausible to extend 
that theory slightly by marine the assumption that, for short times, 
all motions inside the miced region cause comparable motions outside 

- -       •_...   —■----  -■■- --■ — 
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the region.    Assuming that the kinetic energy of the motions in the 
two regions are equal,  the governing equation for the mi-.ed region 
width in the accelerative stage that is comparable to the governing 
equation der. ved by Bell and Dugaii   [7]   is 

1(1 ^K|P%«%-1 o. (8) 

The solutljr of this equation is  identical to that of Bell ,and Dugan 
[7]  except bhat the time axis is shifted by a factor of 2    .    This 

curve falls right on the mean of the numerical results so this 
modified assumption is at least consistent with the numerical result. 
This result i6 interesting because of its physical implications. 
Evidently,  the potential energy of the mixed region initially is 
lost to an equipartition of kinetic energy between the fluid inside 
and outside the mixed region and no potential energy is stored in the 
exterior fluid in this stage of collapse. 

Figure 5 is another plot of the width of the mixed region versus 
time.    The dots are the raw data from the tank experiments of Wu  [5] 

50       100 

Figure  5 
Mixed region width 

and the solid line is the intermediate stage theory of Bell and Dugan 
[7]   .    The circles indicate the numerical prediction of "he region 
width in the case of zero viscosity and the triangl ;s ir^icate the 
prediction in which the molecu.'O" viscosity is on one scale used, by 
Wu [5]   .    The agreement of the numerical results with the theory and 
the experiment is quite good.    This result confirms the speculation 
of Bell and Dugan [7]   that  viscous effects are important only late 
in the collapse.    It also sheds some doubt on the accuracy of the 
numerical methods used by Pa-lmanabhan et al  [51   since the inviscid 

10 
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and viscous results differed mucli earlier in time in those predictions. 

Some physical insight  is gained by considering  ehe energetics 
of the motions.    From the mixed regien shapes of the form shown in 
Figure 5,   along with tabulations of energy densities,   it  is possible 
to dete~mine the amount of potential and kinetic  energy ill the mixed 
region at any given time.    Figure 6 is a plot of these energies versus 

2 4 

TIME (Nf) 

Figure 6 
Energy balance of mixed region 

"p , potential energy, m 
K i  kinetic energy, [7] 
5)  residual energy, [7] 
© potential energy, numerical 
A l kinetic energy, numerical 
0 residual energy, numerical 

time. The energies are normalized by the total potential energy 
originally stored in the mixed region. These computations are for 
zero viscosity (as shown above, viscous effects are not important in 
the early stage) so the energy transferred to the exterior fluid is 
just the total eneigy minus the sum of the potential and kinetic 
energies in the mixed region. The analytical predictions of the 
theories of Bell and Dugan [7] are also illustrated in Figure 6. It 
is remarkable that the results agree as well as they do because the 
analytical results for the energetics assumed an elliptical-shaped 
mixed region even for timef for which the numerical results show the 
shape to be quite different from an ellipse. The numerical result 
confirms the analytical prediction that most of the energy has been 
transferred to the surrounding fluid by the end of one Brunt-Vaisala 
period and it leads to the conclusion that the energy transfer 

11 
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mechanism operates quickly.    In turn,  this leads to the conclusion 
hhat flow models that assume energy conservation in the mixed region 
(including those of Mei [17]  ,  Padmanabhan et al [5]   ,   and the early 
time models of Bell and Di«an   [7]   ) have very limited applicability 
to the real problem of mixed region collapse. 

A plot of the potential and kinetic energy in the whole box 
versus time is also of interest and is shown in Figure 1.    Although 

100 

^\___ 
3   80 1 POrENTIAL 

Z   60 
O 

1 
^~  

KINETIC 
■  20 
D 

 1 — 
2w 6» 

TIMF  (Nil 

Figure 7 
Energy balance of computation box 

initially    all of the energy is potential,  the collapse transforms 
roughly one-quarter of it to kinetic energy.    This prediction is 
consistent with the fact that there is an equipartition between kinetic 
and potential energy in small amplitude internal gravity waves.    The 
time-averaged mean of the kinetic and potential energies    is not the 
same but this discrepancy is attributed to the method of computing the 
potential energy.    The zero level of potential energy is assumed to 
be that of the linearly stratified fluid outside the collapse region. 
However,   in a box of finite size,  the final equilibrium state is 
distorted from the linear stratification by the homogenous fluid lying 
on the mixed region axis.    This distortion fully accounts for the 
discrepancy between the means of kinetic and potential energies so 
that equipartition is in fact achieved. 

12 
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