e S PEE, S—— [

i o e T ——

AD.-763 657

NUMERICAL MODEL FOR MIXED REGION
COLLAPSE IN A STRATIFIED FLUID

J. P. Dugan, et al

Naval Research Laboratory

Prepared for:

Advanced Research Projects Agency

June 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




NRL Memorandum Report 2597

" Numerical Model for Mixed Region Collapse
in a Stratified Fluid

J. P. DuGaN

Non-Acoustic ASW Task Group
Ocean Sciences Division

and

A. C. WARN-VARNAS AND S. A. PIACSEK

Plasma Dynamics Branch
Plasma Physics Division

AD 763657

June 1973 0 R e
T JUL 80 1973 ||

Reprod f[l‘.‘ ! & '-?rﬁ—r A ' ~ .’(
NATIONAL TECHENICAL <o [_""1,
INFORMATION SERVICE Al

NAVAL RESEARCH LABORATORY
Washingtor, D.C.

Approved for public release: distribution unlimited.



UNCLASSIFIED

Secunty Classification

DOCUMENT CONTROL DATA-R & D

Security classilication of title, body of abstract any indexmg annotation must be entered when the overall report o1 classihied)
1} OWIGINATING ACTIVITY (Corporate author) 8. REFORT SECUNRITY CLASSIFICATION
UNCLASSIFI
Naval Research Laboratory LA ED
2h. GROUP
washington, D.C. 20375 1

3 REPORT TITLE

f NUMERICAL MODEL FOR MIXED REGION COLLAPSE IN A STRATIFIED FLUID

4 DESCRIPTIVE NOTES (Type of report and Inclusive dates)
An interim report on a continuing problem,

S AU THOR(SI (First name, middie tnitial, {ast name)

-

J. P, Dugan, A. C. Warn-Varnas, S. A. Piacsek

& REFORT DATE 74, TOTAL NO OF PAGES th. NO OF REFS
June 1973 v/ 17
B, CONTRACT OR GRANT NO w4, O‘(IGIN’AYOR‘S REPORT NUMBE RI(S)

NRL 83K03-54 and 77K03-54 and 77GO1-11

h. PROJECT NO

WF-11-125-703

NRL Memorandum Report 2597

b OTHER REFORT NOLS) (Any other numbers that may be assigned
this report)

Arpa Order no, 2152
d.

DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

.I! SUFRPLEMENTARY NOTES 12 SPONSORING MILITAKRY ACTIVITY
Department of the Navy

rtz‘s’"°adv“a‘.|f:b|'er°::,py£ Naval Air Systems Command

! Washington, D,C, 20360

T An‘vu.\("— dnd
Advanced Research Projects Agency
Arlirgton, Virginia 22209

The collapse of a homogeneous fluid mass immersed in a stably stratified fluid
is studied numerically, A finite difference formulation of the Navier-Stokes
equations in the primitive variables is solved in a large box several times che
size of the mixed region. The formulation conserves totel energy in the box in the
special case where the viscosity is zero. The shape of the homogeneous region and
its energy content are followed in detail. Confirming a previous speculation made
from a crude analyticol theory, most of the energy in the homogeneous fluid mass
is shown to be transforred to the exterior fluid in cne Brunt-Vaisala period. The
predictions agree with available analytical models in initial and intermediate
stages and with a previous tank experiment in the inte:mediate and late stages of
collapse.

DD o ATS (PAcE N ) UNCLASSIFIED

. Secunty Classihication




UNCLASSIFIED

Security Classification

KEY WOROS

LINK A LINK B

LINK €

ROLE

wT ROLE wT

ROLE wT

VR P, 1 e o

Stratified fluids

Internal waves

Density vurrents
Nurnerical methods
Numerical hydrodynamics

Navier-Stokes equation

e

DD "¥r.1473 teacx)

(PAGE 2)

UNCLASSIFIED

Security Classification




= m——

e

1

TABLE OF CONTENTS

Abstract

Problem Status
Authorization
Introduction

Numerical Analysis
Results and Discussion

References

ii

i1

i1

13




ABSTRACT

The collapse of a homogeneous fluid mass immersed in a stably !
stratified fluid is studied numerically. A finite difference formu-
lation of the Navier-Stokes equations in the primitive variables is
solved in a large box several times the size of the mixed region.
The formulation conserves total energy in the box in the special case
where the viscosity is zero. The shape of the homogeneous region and
its energy content are followed in detail. Confirming a previous
speculation made from a crude analytical theory, most of the energy
in the homogeneous fluid mass is shown to be transferred to the
exterior fluid in one Brunt-Vaisala period. The predictions agree
with available analytical models in initial and intermediate stages
and with a previous tank experiment in the intermediate and late
stages of coliapse.
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NUMERICAL MODEL FOR MIXED REGION COLLAPSE IN A
STRATIFIID FLUID

Introduction

The flow phenomena accompanyiig the collapse of a homogeneous
fluid mass immersed in a stratified fluid have been the center of
some attention over the past ten years. The fluid mechanical model
has various applications iu geophysics and in «ngineering but the
flow phenomena are complex enough to have yie.ded only marginally to
analysis.

The model is taken to be & cylindrically shaped homogeneous
fluid mass immersed in a lineariy stratified fluid. The cylindrical
region is initially circular in shape and the density of the mixed
fluid within is equal to the density of the exterior fluid at the
axis of the cylinder. Since the surrounding fluid is assumed {o be
stably strniified, the fluid in the upper part of the mixed region is
heavier. and that in the lower part lighter, than its surroundings.
Thus, when released from rest, the region expands horizontally while
collapsing vertically to the level of equilibrium of the homogeneous
fluid. The motion of the mixed region occurs 2t the ecxpense of the
potential energy originally stored in the initial configuration.

The distortion from the circular shape causes motions in the exterior
fluid that eventually radiate the energy away in the form of internal
gravity waves.

Previous studies aimed directly toward the collapse process have
been mostly experimental (cf. Schooley and Stewart L1J, Schooley 2,
we | 3] ). There have been several numerical experimente (Wessel "7,
padmanabhan et al L5), Vasiliev et al (6]) but only one relevant
analytical effort (Bell and Dugan i 7]). There have been analytical
contributions to certain aspects of the collapse process by Hartman
and Lewis 9! and Schooley and Hughes 91 but these will be excluded
from discussion because of severe limitations of the linearized
equations of motion in the fully mixed case.

Numerical experiments aimed at clarifying the physical processes
should be most enlightening but they have not been entirely success-
ful. The physical model solved numerically by Padmanabhan et al 53
s an idealized one in which fluid motions exterior to the homogeneous




region are ignored. Thus, no energy can be tiransferred to the
exterior fluid and the model could be an accurate one only for the
initial stage of collapse. In the initial stage, though, those
predictions are at variance with an analytical solulion of the same
model (cf. Bell and Dugan [7]) and it appears that the solution did
not conserve energy. Wessel [4] solved the Navier-Stukes equations
numerically in such a way that exterior fluid motions were included

in the computation. Gross corroboration with the experiment of

Wu [3] was obtained but the calculation was not accurate enough to
attempt detailed predictions of energy balances. Finally, Vasiliev

et al [6] have solved numerically a particular physical model that
retains some aspects of the growth of a mixed region due to turbulence
as well as the resulting collapse. However, no comparisons with other
data or conclusions were made.

In summing up the previous contributions, there remain several
outstanding questions about the mechanics of the collapse process.
rirst, the results for the initia’ stage of collapse are contradic-
tory. Bell and Dugan [7] discuss several enalytical models for the
initial stage that would appear to be mechanically convenient. How-
ever, in those models the homogeneous region is assumed to conserve
its energy and this is a questionable hypothesis. The experiments
of Wu 3] are not helpful in answering this question because the
experimental method masked the initial stage, and the numerical
predictions of Wessel [4] and vasiliev et al [6)are not accurate
enowh. Second, there has been no analytical or numerical method that
is adequate to predict the phenomena in the late stage of collapse.
Last of all. the energetics of the motions and the resulting physical
implications have not been explored.

This paper is written to ansver these questions. The Navier-
stokes equations in the Boussinesq approximation are solved numerically
in a large box. The fluid is assumed to have constantly increasing
density with depth except for a circular region that is initially
constrained to be homogeneous. The numerical method follows along
lines laid out by Williams 10 and Piacse< and Williams "11]and it
conserves the total energy in the box remarkably well. The source
of energy for the fluid motions is the potential energy initially
stored in the homogenenus region. The rate of energy transfer from
the homogeneous region to the surrounding fluid is followed in detail
and the result substantiates the speculation of Bell and Dugan 7,
that the mixed region does not conserve its energy even in the early
stege. Also, confirming another speculation of Bell and Dugan 7,
the viscous stresses aie shown to affect the solution only at a late
stage of collapse.

Numerical Analysis

The Navier-Stokes equations are solved by an adaptation of a
method proposed by Williams (10] and Piacsek and Williams N1 . The
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equations of motion are
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where (u,w) are the (x,2z) components of velocity, p is the pressure,
T 1is the temperature, VJ 1is the kirematic .iscosity, and W, is the
thermometric diffusivity. The operalor D/p¢ ic the convective
derivative Wy % V. % and the density is related to the temper-
ature by the relatlon = e.[ L~&(T=-To)] where « is the thermal
expansion coefficient. The first two equations represent the con-
servation of momentum within the Foussinesq approximation wherein
density changes are assumed negligible in the accelera.!on terms.
The third equation represents the condition of incompressibility and
the last one the conservation of energy. Thes: equations are to be
solved subject to approximate boundary and initial conditions. The
boundary conditions are taken to be no-stress conditions with the
temperature (density) fixed at the top and bottom of a rectangular
box. In detail, the boundary conditions are

€Ls=0

2w ‘T = (23\
a*HKe*eo on x=0,b
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on ¥=0,d
»
;{ . &ST

’ where T is fixed on z =0 and d, and b and d are the horizontal
and vertical sizes of the box, respectively. The initial condition
is specified as quiescent with horizontal. equally spaced isopycnals
except for a circular region in which the fluid is totally mixed.




A Poisson equation for the pressure can be derived from equations

(1) so that (3)
9P =2-%H+vg :

where 0 is the veloecity divergence andg represents the nonlinear and
viscous terms in the Navier-Stokes equations. The integral form of
this equation is

[folgwp+dx-glv =0
$lEP*&u-@)ndswo (1)

has to be satisfied around the boundary. Since the no-stress boundary
conditions are to be imposed, the boundary condition on equation (3)
is of Neumann type and it is important that the finite~difference form
of equation (3) satisfy the integral (4) on the boundaries.

so that

In order to esteblish the finite-difference scheme for solving
the abovz equations, the difference operator

b = R [F e - 4 (k- 4]

and the sum operator
T e L [FO ) e d0x-4))

nre defined in the notation of Grammeltvedt [12] . These operators
Yorm a linear commutative and distributive algebra for which various
vperator rules and identities can be constructed, such as
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A quadratically conservative scheme in the sense of Piacsek and
Williams 11] can be constructed for the rele.ait equations as
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where varisbles are defined on the staggered grid as snown in Figure 1. !

Figure 1
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The terms of the form

%u(sxﬁ" +3,F")
force the finite-difference scheme for the nonlinear terms to be
quadratically conservative regardless of whether the divergence is
zero or not. In other words, the gquadratic conservation is algeberaic
and is independent of the accuracy of the solution in the sense of
how close the divergence is to being zero. This does introduce an
error proportional to the divergence (which is not identically zero
during the computation) into the integrals of linear quantities.
However, these linear conservation integrals are not as necessary or
as meaningful a requirement for computational stability as are the
quadratic ones.

DT T S —

The nonlinear terms are evaluated at time 1, thus constituting
the "leap-frog" method (Richtmyer [13], p. 17) which has a time
truncation error of O( t2) and a von Neumsnn condition of

st &A%/ pRtwl]

The viscous terms are lagged in time at time level t-at and are subject
to the stability criteria of

T

and the pressure and temperature terms are time centered (evaluated
at time t ).

Another instability that can appear is aliasing (Phillips [14]).
This instability arises when waves that are too short to be resolved
by a given set of grid points are misrepresented. Such instabilities




are controlled successfully by using schemes like this one that main-

tain the integral constraints of physical importance on the quadratic

quantities u%, w?, and T2. For a three-level time scheme like this
] one, computational modes are present due to the fact that a first order
J continuum equation in time has been raised to a second order difference
equation in time. The computational modes are usually small and it
takes several hundred time steps for serious deviations from the
correct solution to arise. These computational modes are suppressed
by periodically averaging over adjacent time steps.
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The governing equation (3) in the finite-difference notation is
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1
The Harlow and Welch [15] numerical strategem to drive the (ivergence, i
&, to z:ro was applied. This is necessary because a degree of round- 1
off error is inevitable and it leads to tne creation of &an artificial
divergence. The computational strategem works as follows: since the
divergenc% ﬂthe computation at a given time step t-at is not exactly

zero (Q %0) but tha’, of time €+at ought to be zero (&{“ﬂ:o)
t -
JQ.K is treated as equal to - 09* d‘/z at .

The actual solution of equation (6) with the predictors (9) is
by partial Fourier reduction. The boundary conditions (2b) on the
pressure are made homogeneous by a simple transformation and the
pressure is then expanded in a Fourier cosine series in the vertical
direction. The expansion and decomposition are accomplished by means
of fast Fourier transforms. The equation that has to be solved then
takes the form

’

( Sxx" \.\3 Por (‘.g.\ (7)

where n refers to the Fourier mode number,’~ is the eigenvalue for

"
the nth mode, and S;“ is the transformed source function. This is a

tridiagonal equation in x and it can be solved subject to the
Neumann boundary conditions by means of a tridiagonal algorithm
(Varga 167). For the degenerete case n=0, the matrix is no longer
riiapgnally dominant and the algorithm breaks down so the equation is
solved as a marching problem in this case., The integral constraint
(4) i{s satisfied by the finite-difrerence formalism within round-off
so this degenerate case poses no problem.

The normal checks on the computation for consistency and conver-
sence were made but, since the computation of Padmanabhan et al [5]
apparently dissipated energy in a physical model where none should
have been dissipated, it was felt especially important to prove that
the present method did conserve energy at least approximately in the
case of zero viscosity.
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Figure £
Total energy in computation box

In Figure 2, the total energy in the box is plctted versus time. The
time axis is scaled by the Brunt-Vaisala frequency N vhere

T
NUe-F S
¢

and §' is the density profile of thz exterior fluid. The energy is
conserved to within 5,0 for 14 periods which is over 2500 time steps.
This is remarkable considering that the initial condition data
includes a discontinuity and that in such a long run the mixed region
is highly elongated so that it virtually disappears into the grid
spacing.

Results and discussion

The box size chosen for the computations is elongated so that
the collapsing mixed region can expand unrestricted by the sidewall
boundary. The initial mixed region is taken *o be a quarter circle in
a corner of the box since the problem exhibits both horizontal and
vertical symmetry about the mixed region centerline. The distance to
the top of the box is 4 radii and that to the side is 16 radii. The
number of grid points was varied somewhat to check for convergence
of the solution but the majority of the results are for 50X200 grid
points.

Figure 3 shows a sequence of mixed region shapes taken at
intervals of one-sixth of a Brunt-Vaisala period. The shape is
obtained from particle tracers that are massless points pushed along
by the velocity field. The short-time history of the width of the
mixed region is shown in Figure 4 along with the theoretical pre-
diction of Bell and Dugan [7] for the accelerative stage. Actually,
the numerical result is comprised of two curves which bound the
region size above and below; the uncertainty is entirely in the plot-
ting routine utilized to display the results. That theory (as well as
similar ones of Padmanabhan et al [5] and Mei [17] ) essentially
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Figure 3
Mixed region shape
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Figure 4
Mixed rezion width

assumed that the potential energy that was originally stored in the
mixed region is converted to kinetic energy but no energy is trans-
ferred to the surrounding fluid. In other words, that theory neglects
all motions in the surrounding fluid. This can only be an ayproxima-
tion since all changes of shape of the mixed reg.on force accommo-
dating motions in the surrounding fluid. It is plausible to extend
that theory slightly by making the assumption that, for short times,
all motions inside the mixed region cause comparable motions outside
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the region. Assuming that the kinetic energy of the motions in the
two regions are equal, the governing equation for the mixed region
width in the accelerative stage thai is comparable to the governing
equation derived by Bell and Dugan [7] is

- y 3 =

2L+ R +o b1 =0, e '
The solutior of this equation is identical to that of Bell ,and Dugan
| (7] except that the time axis is shifted by a factor of 2° . This
curve falls right on the mean of the numerical results so this
' modified essumption is at least consistent with the numerical result.
E This result is interesting because of its physical implications.
Evidently, the potential energy of the mixed region initially is
lost to an equipartition of kinetic energy between the fluid iaside
and outside the mixed region and no potential energy is stored in the
exterior fluid in this stage of collapse.

Figure 5 is another plot of the width of the mixed region versus
time. The dots are the raw data from the tank experiments of Wu [i

i -5

%a. =1
R
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g

/

1 2 5 10 20 50 100
TIME (M1

I
2

Figure 5
Mixed region width

and the solid line is the intermediate stage theory of Bell and Dugan
[7] . The circles indicate the numerical prediction of *“he region
width in the case of zero viscosity and the triangl~s irdlicate the
prediction in which the molecu ar viscosity is on ihe scale used by
Wu [3] . The agreement of the numerical results with the theory and
the experiment is quite gcod. This result confirms the speculation
of Bell and Dugan [7] that viscous effects are important only late

in the collapse. It also sheds some doubt on the accuracy of the
numerical methods used by Palmanabhan et al [5] since the inviscid
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and viscous results differed mucii eariier in time in those predictions.

Some physical insight is gained by considering the energetics
of the motions. From the mixed regicn shapes of the form shown in
Figure 3, along with tabulations of energy densities, it is possible
to determine the amount of potential and kinetic energy in the mixed
region av any given time. TFigure 6 is a plot oT these energies versus

f 100 —

BO

T
o

ENERGY (% OF TOTAL)
o
o
o
\
o

40}
P
o o
EU i & a -] ﬂ.\
o a =
K
Ln .
1'::"0 2 4 6
TIME (Nt)
' Figure 6

Energy balance of mixed region

P, potential energy, [T

K , kinetic energy, Fil

S, residual energy, [

e, potential energy, numerical
A , kinetic energy, numerical
a, residual energy, numerical

time. The energies are normalized by the total potential energy
originally stored in the mixed region. These computations are for
zero viscosity (as shown above, viscous effects are not important in
the early stage) so the energy transferred to the exterior fluid is
just the total energy minus the sum of the potential and kinetic
energies in the mired region. The analytical predictions of the
theories of Bell and Dugan [7) are also illustrated in Figure 6. It
is remarksble that the results agree as well as they do because the
analytical results for the energetics assumed an elliptical-shaped
mixed region even for times for which the numerical results show the
) shape to be quite different from an ellipse. The numerical result
confirms the analytical prediction that most of the energy has been
transferred to the surrounding fluid by the end of one Brunt-Vaisala
period and it leads to the conclusion that the energy transfer
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mechanism operates quickly. In turn, this leads to the conclusion
that flow models that assume energy conservation in the mixed region
(including those of Mei [17] , Padmanabhan et al [5 , and the early
time models of Bell and Dugan [7] ) have very limited applicability
to the real problem of mixed region collapse.

A plot of the potential and kinetic energy in the whole box
versus time is also of interest and is shown in Figure 7. Although

100 l

80+
POTENTIAL

60

a0}
XINETIC

20_,////”'_——_———_—___-———__-_—__
o 0 217 4‘7 6w
TIMF {Nt)
Figure 7
Energy balance of computation box

ENERGY (% OF TOTAL)

initially all of the energy is potential, the collapse transforms
roughly one-quarter of it to kinetic energy. This prediction is
consistent with the fact that there is an equipartition between kinetic
and potential energy in small amplitude internal gravity waves. The
time-averaged mean of the kinetic and potential energies is not the
same but this discrepancy is attributed to the method of computing the '
potential energy. The zero level of potential energy is assumed to

be that of the linearly stratified fluid outside the collapse region.
However, in a box of finite size, the final equilibrium state is
distorted from the linear stratification by the homogenous fluid lying
on the mixed region axis. This distortion fully accounts for the
discrepancy between the means of kinetic and potential energies so
that equipartition is in fact achieved.
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