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by
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The analysis of the information in contingency tables 1s an aspect
of multivariate (multiple variates) analysis with particular application
to qualitative or categorical as well as quantitative variables.

The analysis is concermed with counts in multiway cross-
classifications or multiple contingency tables. Multiway contingency
tables, or cross-classifications of vectors of discrete random variables,
provide a useful approach to the analysis of multivariate discrete data. {

The method of analysis presented will bring out the various inter-
relationships among the classificatory variables in a multiway cross-
classification or contingency table in many dimensions. The illustration
of the procedure is an application to Marine cohort data considering the
relation of boot camp completion on home of record, level of education,
and race.

The procedure is based on the Principle of Minimum Discrimination
Information Estimation, associated statistics and Analyses of Information.
General computer programs are available to provide the necessary results
for inference. An analysis of a four-way contingency table is presented
’ for 1illustration of the techniques.
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THE GEORGE WASHINGTON UNIVERSITY
Graduate School of Arts and Sciences

Econometric Research on Navy ldanpower Problems

THE ANALYSIS OF CONTINGENCY TABLES -
A METHODOLOGICAL EXPOSITION®

by
S. Kullback

1. Introduction

The primary purpose of this report is to present an exposition of
the methodology underlying the analysis of the information in contingency
tables. We shall stress the concepts, techniques, analyses and inferences
without entering into extensive technical statistical proofs or detailled

references to the bibliography at the end.

It is useful to note that we are concerned with an aspect of
multivariate (multiple variates) analysis with particular application to
qualitative or categorical as well as quantitative variables. The basic
data we deal with are counts in multiway cross-classifications or multiple
contingency tables. Multiway contingency tables, or cross-classifications
of vectors of discrete random variables provide a useful approach to the

analysis of multivariate discrete data.

As we shall see, the analytic procedures serve to bring out various
interrelationships among the classificatory variables in a multiway
cross~classification or contingency table in many dimensions. Classical

problems in the historical development of the analysis of contingency

*

This report was prepared under the Navy All Volunteer Force Man-
power R&D Program of the Office of Maval Research under Contract Number
NO0O14-67-A-0214, Task 0016, Project NR 347-024.
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tables concerned themselves with such questions as the independence or
conditional independence of the classificatory variables, or homogeneity
or conditional homogeneity of the classificatory variables over time or
space, for example. Such classical problems turn out to be special cases
of the techniques we shall discuss. These techniques result in analyses
which are essentially regression type analyses. As such they enable us
to determine the relationship of one or more 'dependent" qualitative or
categorical variables of interest on a set of "independent" classificatory
variables as well as the relative effects of changes in the "independent"
variables on the "dependent' variables. In particular such problems as
the determination of possible factors and ineasures of their effect in
affecting failure or success in boot camp or decisions as to reenlistment

lend themselves to the analysis we shall examine.

The methodology is based on the Principle of Minimum Discrimination
Information Estimation, associated statistics and Analyses of Information.
General computer programs are available to provide the data for the

inferences.

2. Contingency Tables

We shall first present some examples of contingency tables to help
clarify some of the terminology and, so to speak, set the scene. We shall
use values obtained from the Marine COHORT File of 1966.

The simplest example of a contingency table is a one-way table with
one classification, and several categories. The distribution of recruits

by home of record is such an example, with four categories.

TABLE 2.1

HOME OF RECORD

East North Weat South Total
4201 4552 2840 5130 16723

There are not very many interesting questions tha¢ may arise for

Table 2.1. The most likely question would be whether the distribution of
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the occurrences is consistent with the distribution of potentiai recruits

in the U.S. population by corresponding geographical classification.

A two-way contingency table arises when each observation has two

classifications with different possible numbers of categories for each
classification. An example of a 2x2 two-way contingency table arises when

we distribute the recruits by Race and Success in Boot Camp.

— — ~a———

) TABLE 2.2a

Success in Boot Camp

Fail Pass
White 511 12637 13148
Non-white 73 1629 1702
584 14266 14850

Race

We index the row categories by i , 1 = 1 White, 1 = 2 Non-white,
and the column categories by j , j = 1 Fail, j = 2 Pass, and denote the

occurrences by x(i1j) , that is, the notation

Variable I Index [ 1 i 2
i White
i Fail

Race Non~white

Boot Camp Completion Pass

Thus Table 2.2a is represented as in Table 2.2b.

TABLE 2.2b

Success in Boot Camp

Fail, j=1 | Pass, j=2
White, i=1 x(11) x(12) x(1°) J
Non-white, 1=2 x(21) x(22) x(2°)

x(°1) x(*2) x(**) = n

Race

The sum of the entries across a row provide the corresponding row mar-
ginals and the sum of the entries down a column provide the corresponding

. column marginals. In the notation a dot is used to indjcate summation
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over a particular index. For Tables 2.2a and 2.2v the related values

are
x(11) = 511
x(12) = 12637
x(21) = 73
x(22) = 1629
x(1*) = x(01) 4+ x(12) = 13148
x(2*) = x(21) + x(22) = 1702
x(*1) = x(11) + x(21) = 584
x(*2) = x(12) + x(22) = 14266
x(**) = x(11) + x(12) + x(21) + x(22) = 14850

but we usually use n = x(*°*)

For two-way 2x2 tables the primary question of interest is whether
the row and column variables are independent. Thus in the two-way Table
2.2a the interest is in whether success in boot camp is the same for the
two race categorles. To answer this question one estimates the cell
entries under the hypothesis of independence as a product of the margin-
als, that is, aunoting the estimate by x*(ij) one uses x*(ij) =
x(i*)x(*3)/n . Some appropriate measure of the deviation between x(i})
and x*(ij) is then used to determine whether the differences are
"larger" than one would reasonably expect under the hypothesis of indepen-

dence.

The estimated two-way table under the hypothesis or model of

independence is given in Table 2.2c.

TABLE 2.2c

ESTIMATE UNDER INDEPENDENCE

*
x (13)

I 3 =2
1= 1| x()x(1)/n | x(L)x(+2)/n |x(1°)

i= 2] x(2)x(*1)/n | x(2*)x(*2)/n |x(2*)

-1

l x(°1) x(*2) n
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Note that the estimated table has the same marginals as the observed

table x(ij) .

A common statistical measure of the association or interaction
between the variables of a two-way 2x2 contingency table is the cross-
product ratlo, or its logarithm. The cross-product ratio is defined by

x(11)x(22

(2.1) *(12)x(21) °

though we shall be more concerned with its logarithm

x(11)x(22)
(2.2) log S (12)x(21)
We shall use natural logarithms, that is, logarithms to the base e ,
rather than common logarithms to the base 10, because of the nature of the
underlying mathematical statistical theory. Note that with the estimate
for independence, or no association, the logarithm of the cross-product

ratic 1s zero.

* * x(1)x(*1) x(2°)x(*2)
x (1)x (22) _

* log L ] n L ] L] n .
x*(12)x" (21) x(1)x(*2) x(2°)x(-1)
n n

(2.3) 1log = logl=20.

The logarithm of the cross-product ratio is positive if the odds satisfy

the inequalities

x(11) x(12) or x(11) 5 x(21)
x(21)  x(22) x(12)  x(22) °

since then we get for the log-odds

xSlleSZZZ - x§112 _ x(12)
log J11)x(aD) ~ 198 X(z21) ~ 1°8 x(22) ~ °

= xgllz _ x(21)
log (12) ~ 108 y(32) ~ O -

The logarithm of the cross-product ratio is negative if the odds satisfy

the inequalities

x(11) = x(12) x(11)  x(21)
x021) < x(22) °F x(12) © x(22) °’

since then we get for the log-odds
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x(IDx(22) | . x(1l) x(12)
log 112)x(21) = 198 x(z1) ~ 198 x(22) O

Cox@1) x(21)
log 112y ~ 198 3(22) < 0 -

The logarithm of the cross-product ratio thus varies from =-» to +» .
Later we shall consider procedures for assessing the significance of the
deviation of the logarithm of the cross-product ratio from zero, the value
corresponding to no association or no interaction. Thus for the two-way
Table 2.2a we have

511 x 1629 832419

log =55 17037 = 198 922501 = 108 0.902
= '0. 1031 .

We note that the odds of failure for White are 511/12637 = 0.04044 and
the odds of failure for Non-white are 73/1629 = 0,04481.

Similar procedures apply to the case of a two-way rxc contingency

table, that is, one with r rows and ¢ columns.

TABLE 2.3a
TWO~-WAY rxc CONTINGENCY TABLE
{ 1l 2 04D c

1 x(11) | x(12) Neote x(1lc) x(1*)
x(21) | x(22) | ... x(2c) | x(2°)

r x(rl) | x(r2) | ... | x(re) | x(r*)
x(*1) | x(*2) | ... x(*c) n

Under a hypothesis or model of independence of row and column categories
x*(ij) = x(1*)x(*3)/n . Even if the row categories, say, are not randomly
observed but selected with respect to some characteristic, say time or
space, the mathematical procedures are still the same for determining
whether the column categories are homogeneous over the row categories,

time or space for instance. In the latter case we may consider the two-

S

A . e W .
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way table as a set of one-way tables. Terms which cover both the case of

independence and homogeneity are 'association' or "ir eraction," that is,

we question whether there is association or interaction among the variables.

The estimated two-way rxc contingency table under the hypothesis

or model of independence is given in Table 2.3b.

TABLE 2.3b

ESTIMATE UNDER INDEPENDENCE

x" (1)
] 1 2 c
x(1*)x(*1)/n | x(1*)x(*2)/n x(1*)x(*c)/n | x(1°*)
x(2*)x(*1)/n | x(2*)x(*2)/n x(2+)x(*c)/n | x(2°)
x(r*)x(*1)/n | x(r*)x(*2)/n x(r*)x(*c)/n | x(r*)
x(*1) x(*2) x(*c) n

Note that the estimated table has the same marginals as the observed

Table 2.3a.

A three-way contingency table arises when each observation has three
classifications with different possible numbers of categories for each
classification. The simplest three-way contingency table 1s 2x2x2, that
is, with two categorizs for each classification. An example of a three-
way 2x2x2 contingency table is the following cross-classification of
recruits by AFQT (I and II, III and IV), Race (White, Non-white), Success
in Boot Camp (Fail, Pass).
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i TABLE 2.4a
AFQT
I and TI ITI and IV
Race [White Non-white White Non=-white
BCC Fail 143 0 618 130 891
Pass 4989 113 7398 1459 13959
5132 113 8016 1589 14850

We denote the occurrences in the three-way Table 2.4a by x(ijk) with the

—

notation
Variable Index 1 2
AFQT 1 I and II IIT and IV
Race j White Non-white ﬂ
Boot Camp Completion k Fail Pass
In the general notation we have Table 2.4b.
TABLE 2.4b
{
{i=1 i=2
J=1 | J=2 | =1 |3=2 i.
k=1 x(111) | x(121) | x(211) } x(221) | x(°°1)
k=2 | x(112) | x(122) | x(212) | x(222) | x(**2)
x(11+) | x(12°) | x(21+) | x(22°) n
The two-way marginals are {
x(11*) = x(111) + x(112)
x(12+) = x(121) + x(122)
x(21-) = x(211) + x(212)
x(22+) = x(221) + x(222)
x(1+1) = x(111) + x(121)
x(1°2) = x(112) + x(122)
x(2°1) = x(211) + x(221)
x(2:2) = x(212) + x(222)
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x(*11) = x(111) + x(211)
x(°12) = x(112) + x(212)
x(*21) = x(121) + x(221)
x(°22) = x(122) + x(222) .

The one-way marginals are

x(11°) + x(12°)
x(21+) + x(22°)
x(11*) + x(21¢)

x(le*) = x(111) + x(112)
x(2°°) = x(211) + x(212) x(221) + x(222)
x(*1°) = x(111) + x(112) + x(211) + x(212)

+ x(121) + x(122)
+
+
x(121) + x(122) + x(221) + x(222)
+
+

x(*2*) = = x(12°) + x(22°*)
x(°°1) = x(111) + x(121) x(211) + x(221) = x(1°1) + x(2°1)
x(*+2) = x(112) + x(122) + x(212) + x(222) = x(1°2) + x(2°2)

The entries x(ijk) 1in Table 2.4b may also be considered as three-way

marginals.

With more variables there are more possible questions of interest.
One may be irterested in whether any pair of the variables are independent
or show no interaction or association. One may be interested in condi-
tional independence, that is, whether a pair of variables are independent
given the third variable. One may be interested in whether the three
variables are mutually independent or whether one of the variables is
independent of the pair of the other variables. These questions of inde-
pendence, no interaction or association are all answered by considering
estimates which are explicitly represented in terms of products of

various marginals. We list some of these estimates.

Mutual independence of 1, j, and k xI(iJk) = x(i°')x('j°)x('°k)/n2
Independence of 1 and (jk) jointly x:(ijk) = x(1*+)x(*jk)/n
Conditional independence of i and j given k x;(ijk) = x(i°k)x(*jk)/x(*°k)

As might be expected, these estimates also apply in the general three-way

rxsxt contingency table.

We note that the estimate under mutual independence of 1 , j ,

and k has the same one-way marginals as the observed table x(ijk) .
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Xy (1L1) = (i )x( 1)x (- 1) /n”

XFLL2) = % (Lo dx (e 1) 2 (o2 2) /n

x¥(121) = x(L1+)x(-2)x(+ 1) /n”

xF(122) = x(1-+)x(-2:)x(++2)/n"

x¥(211) = x(2+)x(-1)x(-+1)/n’

X}(212) = x(2+)x(-1)x (2 2) [

x¥(221) = x(2*)x(-2)x( 1) /u?

x}(222) = x(2++)x(-2:)x(++2)/n°

X¥(lee) = xT(111) + x)(112) + %7 (121) + x] (122)
= x(1**)x(*1*)/n + x(1**)x(*2*)/n
= x(1e+)

x[(200) = x}(211) + x}(212) + x](221) + x](222)
= x(2°*)x(*1*)/n + x(2°*)x(*2*)/n
< x(2++)

x7(+10) = x7(111) + x}(112) + x](211) + x](212)
= x(1**)x(*1*)/n + x(2-*)x{"1*) /n
= (91%)

xJ(+20) = x}(121) + x](122) + x[(221) + x](222)
=2 129

* * * * *
xl( 1) = xl(lll) + xl(_12l) + x1(211) + xl(221)

= x(*°1)
k... - X ® * X
xl( 2) xl(112) + xl(122) + xl(212) + x1(222) J
= x(.lz)
However, the two-way marginals of the estimate under mutual independence A

of 1,3, and k differ from the two-way marginals of the observed ‘

table x(ijk) . Thus, for example ,

- 10 -
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* * *
X3 (110) = x}(111) + x; (112)
- x(1e2)x(+1+)x(**1)/n% + x(1**)x(*1*)x(**2)/n

= x(1**)x(*1*)/n ,

|

and the latter value is not necessarily equal to x(11°+) .

The estimate under the hypothesis or model of independence of {
and (jk) jointly has the same one-way marginals and the same two-way

jk-marginal as the observed table x(ijk) .

x:(lll) = x(1e+)x(*11)/n

T T e e T

x:(112) = x(1le*)x(*12)/n
x:(121) = x(1**)x(*21)/n
x:(122) = x(1**)x(*22)/n

x:(le) = x(2¢*)x(*11)/n

| x:(212) = x(2++)x(*12)/n
x:(221) = x(2¢°)x(*21)/n
x:(222) = x(2**)x(*22)/n

xE(1ee) = x2(111) + x:(112) +xhq21) + x* (122)
= x(1e)x(*11)/n + x(1**)x(*12)/n + x(1**)x(*21)/n + x(1°*)x(*22)/n

= x(1lee){x(°11) + x(*12) + x(*21) + x(*22)]/n

x(loo)

Similar results follow for the other one-way marginals.

x*(-11) = x:(lll) s x:(211)
= x(lee)x(e11)/n + x(2+¢)x(*11)/n
w x(*11)

x:(-lz) - x:(112) + x:(212)
w x(1lee)x?+12)/n + x(2+)x(*12)/n

= x(°12)

-11 -
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* * *
xa( 21) xa(121) + xa(221)

x(1**)x(*21)/n + x(2°*)x(*21)/n .

x(*21)

x:('22)

* *
xa(122) + xa(222)

x(1°*)x(*22)/n + x(2**)x(*22)/n

x(*22)
T However, for the other two-way marginals, for example,

* * X
xa(ll ) = xa(lll) + xa(112)

= x(le)x(*11)/n + x(1**)x(*12)/n

x(1e°)[x(°11) + x(*12)])/n

x(1**)x(*1*)/n ,
and the latter value 1s not necessarily equal to x(11l¢) .

x:(l'l)

* *®
xa(lll) + xa(121)

x(1**)x(*17)/n + x(1**)x(*21)/n

x(1e*)[x(*11) + x(*21)]/n

x(1*)x(**1)/n ,
and the latter value is not necessarily equal to x(1°1) .

The estimate under the hypothesis or model of conditional inde-
pendence of 1 and j given k has the same one-way marginals and the

same two-way ik- and jk-marginals as the observed table x(ijk) .

x;(lll) = x(1+1)x(+11)/x(++1)

X} (112) = x(1+2)x(+12)/x(++2)
x) (121) = x(1+1)x(+21)/x(++1) T
X (122) = x(1+2)x(+22)/x(++2) l
X (211) = x(2°1)x(+11)/x(++1) !
{
- 12 -
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xb(212) =

o
~~
N
N
P
~r
|

x(2°2)x(°12)/x(**2)

x(2°1)x(*21)/x (1)

5 x(2°2)x(*22)/x(**2)

Ux U’e
~ —~
[ N
. N

N
~r ~
[ ] [ ]

x;(lll) s x;(112) + x;(121) % x;(122)

= x(1°1)x(°11)/x(*°1) + x(1°2)x(*12)/x(**2)

+ x(1°1)x(*21)/x(**1) + x(1°2)x(*22)/x(**2)

= x(1°1) + x(1°2) = x(1°°) .

Similar results follow for the other one-way marginals.

X, (1°1) =

X, (1+2)

X (111) + x(121)

x(1*1)x(*11)/x(**1) + x(1*1)x(*21)/x(**1)
x(1°1)

X (112) + x'(122)

x(1°2)x(*12)/x(**2) + x(1°2)x(*22)/x(**2)

x(1+2) ,

and in a similar manner we have

x:(2°1) =
x:('ll) =
x;(-12) -

x(2:1) , x5(2°2) = x(2:2)

x (111) + x (211)

x(QeL)x(11)/x(**1) + x(2:1)x(*11)/x(**1)
x(*11)

x (112) + x (212)

x(1°2)x(*12)/x(**2) + x(2°2)x(*12)/x(**2)

x(*12) ,

and in a similar manner we have

Xy (+21) =

x(*21) , x;(°22) - x(*22) .

However, for the other two-way marginals
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X (110 = x*(111) + x;(112)

= x(1°1)x(*11)/x(**1) + x(1*2)x(*12)/x(*+2) ,
and the latter value is not necessarily equal to x(11+) .

e remark that one of the constraints in the deterrination of the
estimates was that they have certain marginais the same as the observed

table.

For the three-way table in addition to the types of independence,
inicraction or assoclation just discussed, there arises an additional one,
important historically and practically. This is known as no three-factor
or no second-order interaction. No three-factor or no second-order
interaction implies that the logarithm of the association measured by the
cross-product ratio for any two of the variables is the same for all the
values of the third variable, that is, there is no second-order interaction

if

x(LDx(221) |, x(112)x(222)
x(12D)x(211) -~ ™ x(122)x(212) * 1

x(111)x(212) _ ,  x(121)x(222)
(2.4) n I xGID) - M (o2 * bk

x(1i1)x(122) _ x(211)x(222
In T 12)x(l2L) ~ Mo x§212)x(221) » Ja ko

One 1is concerned with the possible hypothesis or model of no

in

second-order interaction when none of the other types of independence are
found. However, in this case, the corresponding estimate cannot be ex-
pressed explicitly in terms of observed marginals although the estimate
is constrained to have the same two-way marginals as the observed table.
Straightforward iterative procedures exist to determine the estimate
under the hypothesis or model of no second-order interaction. For the
general three-way rxsxt contingency table there are of course many more
relations among the log cross-product ratios like (2.4) which must be
satisfied, but the iterative proceduraes to determine the estimate extend

to the general case with no difficulty.

We may be concerned with a set of two-way tables for which it {is

of interest to determine whether they are homogeneous with respect to a

- 14 -
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third factor, say space or time. Such problems may also be treated as
three-way contingency tables using the space or time factor as the third

classification.

For four-way and higher order contingency tables the problem of
presentation of the data increases, as do the variety and number of ques-
tions about relationships of possible interest and varieties of i:teraction.
The basic ideag, concepts, notation and terminology we have discussen for

the one-, two- and three-way contingency tables extend to the more general

cases as we conside: the methodology.

3. Discrimination Information

To make the discussion more specific and with no essential restric-
tion on the generality, we shall present it in terms of the analysis of
four-way contingency tables. Let us consider the collection of four-way

contingency tables RxSxTxU of dimension rxsxtxu . For convenience let

us denote the aggregate of all cell identifications by ! with individual
cells identified by w 8o that the generic variable is w = (i,j,k,%) ,
i=1,...,r, §=1,...,8, k=1,...,t, £ =1,...,u . Suppose there are
two probability distributions or contingency tables (we shall use these
terms interchangeably) defined over the space & , say p(w), m(w),

g p(w) = 1, é T(w) = 1 . The discrimination information is defined by

W
m(w)

(3.1) I(p:m) = 5 pw) in

The basis for this definition, its properties, and relation to other
definitions of information measures will not be considered in detail in

this exposition. For the particular types of application to which we

shall restrict this exposition the m-distribution, m(w) , in the definition
(3.1) according to the problem of interest may either be specified, or it
may be an estimated distribution. The p-distribution, p(w) , in the
definition (3.1) ranges over or is a member of a family of distributions

of interest.

Of the various properties of I(p:m) we mention in particular the

( fact that I(p:m) >0 and =0 {1if and only if p(w) = m(w) . 1

- 15 -
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4. MSaimuin Discrimination Information Estimation

S e % TR T e

Many problcus .. .lie analysis ot contingency tables may be charac-
terized as estimating a distribution or contingency table subject to
certain restraints and then comparing the estimated table with an observed
table to determine whether the observed table satisfies a null hypothesis
or model implied by the restraints. In accordance with the principle of
minimum discrimination information estimation we determine that member of
the collection or family of p-distributions satisfying the restraints
which minimizes the discrimination information I(p:m) over all members
of the family of pertinent p-distributions. We denote the minimum dis-

*
crimination information estimate by p (w) so that
*
* *
(4.1) I(p :m) =L p (w) n 2;%%% = min I(p:m) .

Unless otherwise stated, the summation is over  which will be omitted.

In a wide class of problems which can be characterized as "smcothing"
or fitting an observed contingency table the restraints specify that the
estimated distribution or contingency table have some set of marginals
which are the same as those of an observed contingency rable. In such
cases T(w) 4s taken to be either the uniform distribution 7 (ijkZ) =
1l/trstu or a distribution already estimated subject to restraints contained
in and implied by the restraints under examination. The latter case
includes the classical hypotheses of independence, conditional independence,
homogeneity, conditional homogeneity and interaction, all of which can be
considered as instances of generalized independence and will be considered
in some detail in this report. By generalized independence is meant :he
fact that the estimates may be expressed as a product of factors which are

functions of appropriite marginals.

5. Minimum Discrimination Information Statisti

1C

To test whether an observed contingency table is consistent with
the null hypothesis or model as represented by the minimum discrimination
information estimate we compute a measure of the deviation between the
observed distribution and the appropriate estimate by the minimum discrim-

ination information statistic. For notational convenience and later

- 16 -
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computational convenience let us denote the estimated contingency table
in terms of occurrences by x*(m) = np*(w) . For the "smoothing" or
fitting class of problems, that 1is, with the restraints implied by a set
of observed marginals (those of a generalized independence hypothesis),

the minimum discrimination information (m.d.i.) statistic is

(5 1) 2L(xix ) = 28 x(d) o —2)
x (w)

which is asymptotically distributed as a xz with appropriate degrees of
freedom under the nuvll hypothesis.

The statistic in (5.1) is also minus twice the logarithm of the
classic likelihood ratio statistic but this is not necessarily true for

other kinds of applications of the general theory.

6. Minimum Discrimination Information Theorem

We now present a theorem which is the basis for the princlple of
minimum discriminetion information estimation and its applications. We
shall present it in a form related to the context of this discussion on

the analysis of contingency tables.

Let us consider the space  mentioned in Section 3 and the dis-
crimination information introduced in (3.1). Suppose now, for example,
that there are three linearly independent statistics of interest defined

over the space  ,

(6.1) T () Ty(w) , Ty(w)

Let us determine the value of p(w) which minimizes the discrimination
information

W

(6.2) I(p:m) = I p(w) n 205

over the family of p-distributions which satisfies the restraints

= a7 =

ot




IR=-1T1LG

1
fon]

L T (@)p(w) = 0]

5 Tz(w)p(w) = 0,

(6.3) &
o *
3 13(m)p(a) = 03
* * * .
where Ul » Uy s vy are specified values, and n(w) is a fixed distri-
bution.

If n(w) satisiies the restraints (6.3), then of course the
minimum value of [(p:7) {is zero and the minimizing distribution is
*
p (w) = 1(w) . More generally, the minimum discrimination information

theorem states that tne minimizing distribution is gliven by

exp (rlTl(w) + rsz(w) + I3I3(m))n(m)
M(Tl,TZ,TB)

*
(6.4) P w) =

where

(6.5) M(Tl,T2,73) = | exp (IlTl(w) + T2T2(w) + 13T3(m))n(m)

is a normalizing factor so that £ p*(w) =], and the 1's are para-
meters which technically are in essence undetermined Lagrange multipliers
* * *
whoge values are defined in terms of Ol , 02 . 03 by
* 3 M(
B, = — v LT
ST MOE)T)0Ty)

= (L exp ('lTl(n) + TZTz(w) + T Tj(m))Tl(m)n(m))/M(tl,kz,IB)

3

*
=L T (wp (v)

* 3 .
82 =57 In M(Tl,:z,lj)
2
= I exp g"lll( ) + Tsz(m) + 13T3(m))Tz(m)n(m))/M(il,Iz,r3)
(6.6) 2

= 7 Tz(w)P (w)
* 3 i ‘
03 = 5;; &n J(Il. 2,13)

= (L exp( LTL(“) + 12T2(u) + r3Tj(M))T3(w)n(w))/M(Il,r2,r )

3

*
I T (wp (o) .

3
We can now state a numbcr of consequences of the preceding.

- 18 -
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*
We note first that p (w) 1s a member of an exponential family of
distributions generated by 7(w; and as such has the desirable statistical
properties of members of an exponential family which include all the

common and classic distributions. We may also write (6.4) as

*
p(w) _ _ .
(6.7) n (@) n M(rl,rz,r3) + TlTl(w) + rsz(w) + IBTB(w)

=L + tlTl(w) + tsz(w) + I3T3(w)

with L = -n M(t The regression or log-linear expression in

1072073 -
(6.7) for in (p*(w)/n(w)) with Tl(w) 5 Tz(m) 3 Tj(m) as the explanatory

variables and 1 as the regression coefficients plays an impor-

"% 2°g
tant role in the analysis we shall consider,.

y T

We note next that the minimum value of the discrimination information
(6.2) is

8 F *+ *+ 6* L i
(6.8) I(p :7m) = rlel T262 1485 - n M(rl’IZ’T.)

*
where the 6 's are defined in (6.3) and the +t('s are determined to
sat‘sfy (6.6). Using the value in (6.7) it may be shown that if p(w) is
any member of the family of distributions satisfying (6.3), then

%* *
(6.9) I(p:m) = I(p :m) + I(p:p ) .

The pythagorean type property (6.9) plays an important role in the analysis

of information tables.

7. Computational Procedures

An "experiment' has been designed and observations made resulting
in a multi-dimensional contingency table with the desired classifications
and categories. All the information the analyst hopes to obtain from the
"experiment" is contained in the contingency table. In the process of
analysis, the aim is to fit the observed table by a minimal or parsimonious

number of parameters depending on some or all of the marginals, that is,

- 19 -
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to find out how much of this total information is contained in 4 summary
consisting of sets of marginals. Indeed, the relationship between the
concept of independence or association and interaction in contingency
tables and the role the marginals play is evidenced in the historical
developments in the extensive liiLerature on the analysis of contingency
tables, Thus, the 8*'s 1in the preceding discussion will be the mar-

ginals of interest.

7.1. The T(w) Finctions. The T(w) functions for the RxSxTxU

table turn out to be a basic set of simple functions and their various
products. Thus, for example, the T(w) function associated with the

one-way marginal p(2...) 1is

(7.1) Tg(ijkl) =1 for 1 =2, any J,k,2
= 0 otherwise

since

(7.2) T p(iike) Tg(ijkl) - p(2...)

Similarly the T(w) function associated with the one-way marginal p(..

for example, is

(7.3) Tg(ijkl) =1 for k=3, any 1,§,2
= 0 otherwise

since

(7.4) L p(1jke) Tg(ijkl) = p(..3.) .

Thus for the rxsxtxu table there are

(r-1) linearly independent functions Ts(ijkl), a=1,...,r-1

"
—
-

(s-1) linearly independent functions Rf(ijkl), 8 cey8=1
(7.5)

(t=1l) linearly independent functions T$(ijk£), y = 1,...,t-1

[ ]
—
-

(u-1) linearly independent functions gy(ijkl), § SR T R

since, for example,

5 R
L I T (1jk2) = rstu .
a=1

-20 -
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We have arbitrarily excluded the functions corresponding to o =r,
B =8, y=1¢t,8 =u as amatter of convenience. We could have sclected

a=1,8 =1, y =1,8 =1 or any other set of values.

The T(w) function associated with the two-way marginal p(12..)
say, is Ty(ijki) T5(iike) since from the definition of T|(ijk#) and
Tg(ijkz) it may be seen that

(7.6) TR(13k2) T3(13k2) =1 for L =1, J = 2, any k2
= 0 otherwise

aud

(7.7) I p(ijke) TH(13k2) “3(13ke) = p(12..)

For convenience we shall write Tg(ijkl) Tg(ijki) = qsg(ijkl) , etc. Thus
the T(w) function associated with any two-way marginal is a product of

two appropriate functions of the set (7.5).

Similarly the T(w) function associated with any three-way marginal
will be a product of three of the appropriate functions of the set (7.5),

for example,

(7.8) I p(13k2) Th(1k2) Ti(1jke) T(13k2) = p(2.13)

R S T RST, , .
For convenience we shall write Ta(ijkl) TB(ijkl) TY(iij) = 1hsy(13k2) .
etc.

Similarly the T(w) function associated with any four-way marginal
will be a product of four of the appropriate functions of the set (7.5),

for example,

(7.9) I p(i3k8) Th(1jke) Ti(ijkl) Tf(ijkz) Tg(ijkl) = p(2112)

For convenience we shall write Tg(ijkl) Tg(ijkl) Tz(ijkl) Tg(ijkl) =

RSTU
Togys (13k2)

- 21 -
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We note that there are a total of

Nl = (r=1) + (s-1) + (t-1) + (u-1)

N2 = (r-1)(s-1) + (r-1)(t-1) + (r-1)(u-1) + (s-1)(t-1)
(7.10) + (8-1)(u-1l) + (t-1)(u-1)

N3 = (r-1)(s-1)(t-1) + (r-1)(s=1)(u-1) + (r-1)(t-1)(u-1)

+ (8-1)(t-1)(u-1)

N (r-1) (s-1) (t-1) (u-1) ,

4
respectively, of the simple linearly independent functions and their

products two, three, four at a time, It may be verified that

(7.11) rstu - 1l = N = Nl + N2 + N3 + NA .

These values of the number of T(w) functions (or associated tau para-
meters) appear as appropriate degrees of freedom in the analysis of

information tables.

*
7.2, The Estimated p (w) Values, In the usual least squares

regression analysis procedure, one first computes the regression coeffi-
cients and then gets the values of the estimates. In the methodology we
use we reverse the procedure. Instead of trying to obtain the values of
the 1's from (6.6) (which is possible) we shall first obtain the values
of the estimates p*(m) by a straightforward convergent iterative
procedure and then derive the values of the 1's from (6.7). We shall
not discuss the details of the iteration here, as they are in the computer
program and have been described elsewhere. The iteration may be described
as successively cycling thrcugh adjustments of the marginsls of interest
starting with the n(w) distribution until a desired accuracy of agree-~
ment between the set of observed marginals of interest and the computed

marginals has been attained.

7.3. The 1 Values or Interaction Parameters. From the definitions

of the T(w) functions in Section 7.1 it is clear that they take on only

the values 0 or 1 for each value of w . From the nature of the T(uw)

-22 -
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functions the .et of regression or log-linear Equations (6.7) will have
some with a single 1 value which can be determined. Then there will be

's already

a set with one additional unknown value and some of the 1
determined. These new unknown 1 values can be then determined. This
process of successive evaluation 1is carried on until all the values of

1 are determined. They are also available as output of a general com-

puter program,

8. Graphic Representation

A useful graphic representation of the log-linear regression (6.7)
is given in Figure 8.1 for a 2x2x2x2 contingency table. This is the
analogue of the design matrix in normal regression theory. The blank
spaces in Figure 8.1 represent zero values. The (ijk&)=-columns are the
cell identifications in the same lexographic order as the cell entries
for the estimates in the computer output. Column 1 corresponds to L
which is essentially a normalizing factor. Each of the columns 2 to 16
represents the corresponding values of the T(w) functions, columns 2
to 5 those for the one-way marginals, columns 6 to 11 those for the two-
way marginals, columns 12 to 15 those for the three-way marginals, and
column 16 that for the four-way marginal. For convenience the columns
are also arranged in lexographic order. The tau parameter associated
with the T(w) function is given at the head of the column. The full
representation with all the columns of Figure 8.1 generates the observed

values. Thus the rows represent

8.1y  gp RCLIEE) o x(ilkd) _ 0, riTi(ijkl) + oo+ ot

T(11kR) nn(13kL) 11'1
13k 1 Jk 3k 1 gke
+ oo+ T T TUIKE) 4 e+ T T (k)

where n(i1jk¢) 1in the 2x2x2x2 case is 1/2x2x2x2 and the numerical
values of L and the taus depend on the observed values x(ijk&) . The
design matrix corresponding to an estimate uses only those columns asso-
ciated with the marginals explicit and implied in the fitting process.
This is a reflection of the fact that higher order marginals imply certain

- 8 -
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‘ W 1 23 4 5 6 7 8 9 10 11 12 13 14 15 16
RN RN R R R (st Rt YR R i
1111 (1] 11 1 1 1 1 1 1 1 1 1 1 1 1 ]
1112 |1| 111 1 1 1 1
11211111 1 1 1 1 il
1122111 1
1211 (1] 1 1 1 1 1 1
T 1212011 | 1
122111} 1 1 1
L 12 22 1R -
21111 1 1 I 1
21121 11 1
212111 1 1 1!
212211 1
292 Tl (F] 11 1
221211 1
2221 }1 1
222211

Figure 8.1, Graphic representation.

lower order marginals, for example, the two-way marginal x(ij..) implics,
by summation over i and Jj , the one-way marginalis x(.j..) , x(i...) ,
and the total n = x(....) . Thus the estimate based on fitting the one-way
marginals will use only columns 1-5. The values of L and the taus for this
estimate will be different from those for x(ijk&) and depend on the esti-
mate x;(ijkz) X Thus if we denote the estimate based on fitting the one-way
marginals as xl(ijkl) , the representation in Figure 8.1 implies

e

*
x> (1111) J
1 . 1 j k L
in == L+rl+rl+tl+rl i
xI(lllZ) 3o ]
i ———-;;r- =L 4+ Tl + Tl + tl |
(8.2) . : ‘ 4
x
x,(2222) - |
in ————— =], '
nw
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The estimate based on fitting the two-way marginals will use columns 1-11
since the two-way marginals also imply the one-way marginals. The valuers
of L and the taus for this estimate will be different from those for the 1
observed values or other estimates and depend on the values of the estimate
which we denote by x;(ijkl) . For the estimate fitting the two-way
marginals the representation in Figure 8.1 implies

*
xz(llll)

9.n-—————-L+ri
nm 1

§ . k. 8. 4. ik, 42 . 4k . 4% . ke
el =5 AU IR ARTIR A AU Al SR e

*(1112)

X

2 } . 4. k. i, ik, ik
in s L + Tl + Tl + Tl + 111 + 111 + Tll

(8.3 . ; 5

*
x2(2222)

fn ——=1.
nn

The representation for the uniform distribution corresponds to column 1 only.

Note that in accordance with (7.10) and (7.11)

N1 =1+1+1+1 = 4 (columns 2 to 5)

N2 =14+1+1+1+1+1=26 (columns 6 to 11) !
N3 =1+1+1+1 = 4 (columns 12 to 15) i
NA =] = 1 (column 16)

N =16 -1 =15 =4 +6+4+1.

9. Analysis of Information

|
[]
{

Although the preceding discussion has at times been in terms of 1
probabilities, estimated probabilities or relative frequencies, in practice ‘
it has been found more convenient not to divide everything by n , the total J
number of occurrences, and deal with observed or estimated occurrences, that _
{s, with nn(1jk&) = n/rstu , x(1jk8) , x(1...) , x(.jk.) , x (ifk®) = 1
np*(ijkl) , etc. The analysis of information is based on the fundamental
relation (6.9) for the minimum discrimination information statistics. Spe-
cifically if np:(w) = x:(w) is the minimum discrimination information ‘

*
estimate corresponding to a set H8 of given marginals and xb(w) is the 2 ‘
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minimum discrimination information estimate corresponding to a set l%
of given marginals, where Ha is explicitly or implicitly contained in

Hb , then the basic relations are

21(x:nm) = ZI(x::nn) + 21(x:x:)
2I(x:nn) = ZI(x;:nn) + ZI(x:x;)
(9.1)
ZI(x;:nn) - ZI(x::nn) + ZI(x;:x:)

2I(x:x:)

ZI(x;:x;) + ZI(x:x.;)

with a corresponding additive relation for the associated degrees of

freedom.

In terms of the representation in (6.4) or (6.7) or Figure 8.1 as
an exponential family, for our diccussion, the two extreme cases are the
uniform distribution for which all +1's are zero, and the observed con-
tingency table or distribution for which all N = rgtu -1 1's are

needed.

Measures of the form 21(x:x:) , that is, the comparison of an
observed contingency table with an estimated contingency table, are called
measures of interaction or goodness-of-fit. Measures of the form
2I(x;:x:) » comparing two estimated contingency tables, are called mea-
sures of effect, that is the effect of the marginals in the set Hb but
not in the set Ha or the taus in x; but not in x: + We note that
ZI(x:x:) tests a null hypothesis that the values of the <t parameters in
the representation of the observed contingency table x(w) but not in the
representation of the estimated table x:(m) are zero and the number of
these taus is the number of degrees of freedom. Similarly 21(x;:x:)
tests a null hypothesis that the values of the 1 parameters in the repre-
sentation of the estimated table x:(w) are zero and the number of these

taus is the number of degrees of freedom.

We summarize the additive relationships of the m.d.i. statistics

and the associated degrees of freedom in the Analysis of Information

Table 9.1.
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TABLE 9.1

ANALYSIS OF INFORMATION TABLE

Component due to Information D.F.
'.*
H, : Interaction zI(x.xa) Na
2k ix" N
Wy : Effect (xb.:a) N, - Nb
Interaction 21(x:xb) Nb

*
Since measures of the form ZI(x:xa) may also be interpreted as measures
of the 'variation unexplained" by the estimate x: , the additive rela-

tionship leads to the interpretation of the ratio

* Uk * k
ZI(x:xa) - ZI(x.xb) i ZI(xb.xa)

9.2) x *
ZI(x:xa) ZI(x:xa)
*
as the percentage of the unexplained variation due to X, accounted for
*
by the additional constraints defining X The ratio (9.2) 1is thus H
similar to the squared correlation coefficients associated with normal

distributions.

We remark that the marginals explicit and implicit of the estimated
table x:(m) which form the set of restraints Ha used to generate x:(w) H
are the same as the corresponding marginals of the observed x(w) table
and all lower order implied marginals. It may be shown that 21(x:x;) Is
approximately a quadratic in the difterences between the remaining mor-
ginals of the x(w) table and the corresponding ones as calculated from

*
the xa(w) table. {

Similarly ZI(x;:x:) is also approximately a quadratic in the
differences between those additional marginal restraints in l-lb but not ‘
in Ha and the corresponding marginal values as computed from the x:(m)

table.

As may be seen, because of the nature of the T(w) functions

described in Section 7.1 or indicated in Figure 8.1, the 1's are deter-
mined from the log-linear regression Equations (6.7) (see (8.2) and (l1.3))
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as sums and differences of values of #n x*(ijkl) . A variety of statis-
tics have been presented in the literature for the analysis of contingency
tables which are quadratics in differences of marginal values or quadratics
in the 1t's or the linear combinations of logarithms of the observed or
estimated values, The principle of minimum discrimination information
estimation and its procedures thus provides a unifying relationship since
such statistics may be seen as quadratic approximations of the minimum
discrimination information statistic. We remark that the corresponding

approximate Xz's are not generally additive,

We mention the approximations in terms of quadratic forms 1in the
marginals or the t's as a possible bridge connecting the familiar pro-
cedures of classical regression analysis and the procedures proposed here
to assist in understanding and interpreting the analysis of information
tables. The covariance matrix of the T(w) functions or the taus can
be obtained for either the observed table or any of the estimated tables,
as well as the inverse matrices as part of the output of the general

computer program.

10. Outliers

We define outliers as observations in one or more cells of a con-
tingency table which apparently deviate significantly from a fitted model.
These outliers may lead one to reject a model which fits the other
observations. For example, in multi-dimensional contingency tables in
which time or age is one of the classifications there may occur an age
effect such that a model may be rejected for the entire table but a model {
taking the possible age effect into account may lead to an acceptable

partitioning of the model.

In other cases even though a model seems to fit, the outliers con-
tribute much more than reasonable to the measure of deviation between the J
data and the fitted values of the model. 1In other words, the outliers

*
make up a large perc.ntage of the "unexplained variation” 2I(x:x )

A clue to possible outliers is provided by the output of the com~ 1

puter program. In the computer output for each estimate five entries are

- 28 -
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<y listed for each cell. The fourth of these is titled OUTLIER and {its
numerié¢al value provides a lower bound for the decrease in the corre-
sponding ZI(x:x*) if that cell were not included in the fittiug
procedure., Since the reduction in the degrees of freedom is one for ecach
omitted cell, values of OUTLIER greater than say 3.5 are of interest. The
basis for the OUTLIER computation and interpretation follows. Let x:
denote the minimum discrimination information estimate subject to certaln
marginal restraints., Let x: denote the minimum discrimination infor-
mation estimate subject to the same marginal restraints is X, except
that the value x(wl) , say, 1is not included, so that xb(ml) = x(ml) 5
The basic additivity property of the minimum discrimination information
statistics states that
2L(xix.) = 2(x ix0) + 2U(xix)
a a
or

* * x %
ZI(x:xa) - ZI(x:xb) = ZI(xb:xa)

These results are summarized in the Analysis of Information Table 10.1.

TABLE 10.1
ANALYSIS OF INFORMATION TABLE

Component due to Information D.F.
*
H : 21(x:xa) N

x X
Hb : Same as Ha but omitting x(ml) ZI(xb:xa)

ZI(x:x:) N, = N -1
But
*(w)) %, ()
21(x 12 = 2% (0)) n A x; (w) 0 3
xa(wl) Q—wl xa(w)
(10.1)
x(w; ) . xp ()
s 2{x(w,) n —/—— + ¢ (w) 2n .
. x*(w ) f1-w L x*(w)
a1 1 a

and using the convexity property which implies that
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4 EoxpW)
* xb(w) . (Q"“’l b 2
(10.2) I ox tn—— & 1 x (@) ta Y —L
) Q-wl xa(w) Q—wl I x (w)
Q-wl a
n - x (wy)
- W
= (n- ":(“’1)) in x: S
"o xa(wl)

we get from (10,.1) that

*
I xp(w)
x % > X(U)l) * Cz-ml = )
ZI(xb:xa) -2 x(wl) in 54—+ (Z xb(w)) in i
(10.3) Xglu)  \8uy 2 xa(“’))
Wy '

x(wl) n - x(ml)
=2 x(wl) in — + (n - x(wl))ln . .
xa(wl) n - xa(wl)

The last value can be computed and 1s listed as the OUTLIER entry for each

®
cell of the computer output for the estimate X,

The ratio

2(xixy) - 2(xing)  20(xyix)

(10.4)
ZI(x:x:) 21(x:x:)

then indicates the percentage of the '"unexplained variation' due to the

outlier value.

11. The 2x2 Table

It may be useful to reexamine the 2x2 table from the point of
view of the preceding discussion. The algebraic details are simple in this

case and exhibit the unification of the information theoretic development.

Suppose we have the observed 2x2 table in Figure 11.1.

x(11) | x(12) { x(1.)
x(21) | x(22) | x(2.)

x(.1) I x(.2) ' n

Figure 11.1.
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1f we obtain the m.d.i. estimate fitting the one-way marginals, the
generalized independence hypothesis 1s the classical independence hy-
pothesis and the minimum discrimination information estimate {is x*(ij) =
x(1.)x(.3)/n . The representation of the log-linear regression (6.7) as
in Figure 8.1 for the full model is given in Figure 11.2, The entries in

the columns Ty s Ty s Ty

i J L Ty Ty | T,
1 11 1 1
1 241 (1

2 11711 1

2 21011

Figure 11.2.

are, respectively, the values of the functions Tl(ij) , Tz(ij) , T3(ij)

61 = x(1.) , 62 = x(.1) , 83 = x(11) ,

and the colimn headed 1 corresponds to the normalizing factor (the

associated with the marginals

negative of the logarithm of the moment-generating function as in (6.7)).

We recall the interpretation of Figure 11.2 as the log~linear

relations

n 5£l£L =L+ 1, +1,+T
nw 1 2 3

in XL, =L+ 1
nn 1
(11.1)

fn 53%11 =L+ 1

n 2

2,[1‘5‘-2—2'1-14-

nnw

From (11.1) we find

L = ¢2n (x(22)/n/4) ,
i (2(12) /x(22)) ,
= 2n (x(21)/x(22)) ,

T, = &

-

(11.2)

(x(11)x(22) /x(12)x(21))

—
-4

w
[ ]
to
=]
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T, - &n x(12) - n x(22) ,

(11.3) T, = &n x(21) - &n x(?2) ,

2

T, " 2n x(11) + &n x(22) - &n x(12) - &n x(21)

If we call T the matrix with columns the columns of the design matrix

of Figure 11.2, that is,

|3
]

(11.4)

- e
o © -
© ~ O
©C O ©

and define a diagonal matrix D w'th main diagonal the elements x(13)

that is,
x(11) 0 G 0

0 x(12) o0 0
0 0 x(21) O
0 0 0 x(22)/ ,

(11.5) D=

then the estimate of the covariance matrix of el = x(1.) , 02 = x(.1) ,

6, = x(11) for the observed contingency table is L = LYPIt where
A A
A1 Ay
(11.7) A, | =A. - A AT A
) =22.1 =22 =21 =11 -12

1)
and A is 1 x1, 522 is 3x3, 521 - 512 is 1 x3 . It is

-11
found that
x(1.)x(2.) x(11) - x(1)x(.1)  x(11)x(2.)
n n Py
L o=} x(11) - x(1.)x(.1) x(.1)x(.2) x(11)x(.2
2 - o _ib_lx )
(11.8) x(11)x(2 IS -
)ns .2 _&_LnS‘_). x(11) - _&_{-)_
=32 =

- Ara—-——-—-—'-——“
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and the inverse matrix 1is

1, L e TN \
x(12) x(22) x(22) x(12) x(22)
-1 1 1 1l 1 1
GBI %(22) x(21) ' x(22) ~x(ZT) " x(22)
1 1 I N SR S e |
x(12) " x(22) x(21) x(22) x(11) " x(12) " x(21) x(22y

We remark that the matrix in (11.9) is the covariance matrix of the 1's

in (11.3).

Note that the value of the logarithm of the cross-product ratio, a
measure of assocliation or interaction, appears in the course of the analysis
a: the value of T4 for the observed values x(1j) , and that Ty = 0 for
x (1)) , the estimate under the hypothesis of independence, for which the
representation as in Figure 11.2 does not involve the last column since it

is obtained by fitting the one-way marginals.,

*
The log-linear relations for the estimate x (ij) are

*
x (11
in A =1 + Tl + r2
e
(11.10° S L
*
in x (21 = L+
nn 2
*
on X 22 -1 ,
nn

*
where the numerical values of L , 10T in (11.10) depend on x and

differ from the values in (11.1).

The nminimum discrimination information statistic to test the null
hypothesis or model of independence is 21(x:x*) with one degree of free-

dom. In this case the quadratic approximation is

2
(11.11) ZI(x:x*)z(x(ll)-x(l'):('l))( 1, 1,1, 1)

* * * *
x (11) x (12) x (21) x (22)

E— __ — - e g .
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*
Remembering that x (1j) = x(i.)x(.j)/n , the right-hand side of (11.l1)

may also be shown to be

/
(11.12) W= 3 (x(19) - x(1)x(3)/n) 2/ BLDXC)

the classical xz-test for independence with one degree of freedom. Another
test which has been proposed for the null hypothesis of no association or

no interaction in the 2x2 table is

-1
(11.13) (2n x(11) + %n x(22) - 2n x(12) - 2n “(21))2(;(il)+x(iz)+x(;1)+x(;2)> ,

*
which may be shown to be a quadratic approximation for 2I(x:x ) in terms

of 1 with the covariance matrix estimated using the observed values and

3
not the estimated values. We remark that if the observed values are used
to estimate the covariance matrix then instead of the classical xz-test in
(11.12) there is derived the modified Neyman chi-square

2o 5 (x(19) - x(L.)x(.§) /) /x(19)

(11.14) Xy

12. An Analysis

In order to coordinate and relate the various definitions, concepts,
parameters, computational features, etc. discussed in the preceding sec-
tions we shall consider in detail the analysis of a specific contingency

table.

Table 12.1 1s a four-way contingency table of 14,053 marines who
enlisted in 1966 or 1967, cross-classified on the variables home of
record, level of education, race and boot camp completion. We denote the
occurrences in the four-way cross-classification or contingency Table 12.1

by x(ijkt¢) with the notation

Variable Index 1 2 3 4
Home of Record i East North West South
Level of Education b Below H.S. H.S. Above H.S.
Race k White Non-white
Boot Camp L Failed Passed . o
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For this data we are interested in the possible relationship of success
in boot camp as a dependent variable on the independent or explanatory
variables home of record, level of education, and race. To obtain a
smoothed estimate of the observed cross-classification utilizing signifi-
cant effects and interactions we shall examine a sequence of minimum
discrimination information estimates based on nested sets of fitted
marginals. That is, each successive estimate uses a set of marginalé
which explicitly or implicitly contains the marginals of the preceding
estimate and also additional ones to determine the effect of the addi-
tional marginals or their associated interaction tau parameters. The
analysis of information table permits us to judge the significance or

non-significance of these effects or interaction tau parameters.

12.1. Fitting Nested Sets of Marginals. Since we are interested in

the possible relationship of success in boot camp on home of record, level
of education and race, we first fit the marginals x(ijk.) , x(...%)

since the corresponding estimate x*(ijkl) = x(ijk.)x(...2)/n 1is that
under the null hypothesis or model of independence of success and the
joint variable (home of record, level of education, race) or no inter-
action between success and the joint variable. In other words we first
want to determine whether the 24 columns of Table 12.1 are homogeneous

or not with respect to the underlying probabilities of passing or failing.

The associated m.d.i. statistic 1is
* *
2I(x:x ) = 2 L £ I T x(13k2) tn(x(1jke)/x (1jkR)) = 160,551

with 23 degrees of freedom. We reject the hypothesis of independence or

no interaction. We therefore shall look for explanatory effects,

In Figure 12.1 there is given the complete schematic for the log-
linear representations. The representation for the estimate of joint
independence x*(ijkﬁ) = x(1jk.)x(...2)/n uses columns 1-17, 21-22,

26-31 cor:ic.:i nding to all the marginals explicit and implicit in the
fitted r - n-. onstraints. We can also interpret 2I(x:x*) as testing

a null hy. -t ‘. or model that the 23 tau parameters in the representa-
tion of x ‘v 3ot in x* are zero, that is, the parameters corresponding

to columns ' @ 20, 23-25, 32-48.

- 36 -

- e A

. ]



4
9
IR-Hin
N e — — - — =l
- [
B M =t
€ e
-~
- -
~ - -
~ -~y
- -
-
g Az L
-
-
- -t
LAl - - -
@ =
-
’ -
g A~ £y
AN
- -
-
-~ M
.
- _{
- -
~
o~ — - — e
< -
- -
s 2 —sfea — ol =
- -
- -
] - o~ = =
. - -
P
] 2 a~ - — —
. -
- -
- ) ) - -
- - —
- -
~
—~ - -
= -
w
L A R
= -~
-
AN - -
-~ i
-
g - -
- N
- -
-~
-~ —
- -
-~
~
- -
- -t
-
—
-~ — o~
N wm
E B 9
R A — 3
- - <
-
E B %
DN e - "
N e~ .~
IH
- - v
L= -
™ e
e
~
- o
N
e
8 2d--
Sl —— - el 4
o R ] - o+ ot — —
~ = = - - - et
et et —
~ - = ~t - - ‘
PR
~ - - -l -
~ ﬂ"—i - — -t - ~
~N e ot e ot —t B
=YY e inla o
- 4
- - ot .
o Al - -
@
o -’ - foet - — — be
~ - - -t X
o - -
- i
Z e I e ] e
o - I
e v‘-ﬂ-‘ Ll -t - -t -
~ o ~ p—t — —t -
- e e
@ M
- -~ -4 v -t oy
LU K]
bolEE. ol E ) — - - ‘
~ —~ -
-~ - -
~ -t
- - ™ ot el o) 4
~ Lalal
- - ey -
- e 1
= B -t
Q =
o oy ot
-y -
o Wt~
@ et - ot -y ot el ot - = - ot e - = - ot - = - F - £l -
* N ot ot ool ot et =t ot o ot vt oot o4 fot ot ot
w - bt -t - e ol 4 et o, et ot -y
- - m L I I L e R I ]
-~ e ot ot ot ot ot vttt 1
~ - ol et oot ot ot plfomt et o -y
- I L R R R L R R L e ] e P R e R ) L I I R e e R L e I N o e ]
ot feree e 1
L e R ] e e o R o R ] e ] I L ) R T B N ] S L T N
L R ] L R R ] L R ] R N R Rl Y R T I N R ] R N SRR Y
Lol e R e L G I R ] R R R R ] T I I L R ] I N R T N L e R N R ] I L R W)
- —t-—n-—--n—-n-a—:r!qun_bn'n&ﬂﬂuunnnﬂnnnn Ao s v eler o sleeee




'I|I|||||l||IIllIIIIIIIllIIlIIIlllllIlllll""'lF"""""""""""""""""""""'_'_'_

v_,___

TR-1116

The value of 21(x:x*) 18 s0 large that we reject the model ot
Joint indepenudence. We therefore proceed to fit a sequence of nested
marginals all including x(ijk.) and various combinations of two- and
three-way marginals containing success with other variables. We summa-
rize some results in the truncated Analysis of Information Table 12,2.
We have not included all the intermediate fitting sequences for concise-
ness. We remark that although the measure of the effect of additional
marginals or their associated parameters may vary according to the
sequence in which they have been added, significant effects tend to
remain significant and non-significant effects tend to stay non-
significant so that the first overall survey should determine the
estimates and interaction parameters which warrant further investigation.
For example, the effect of adding x(..k&) to x(ijk.) , x(i..) ,
x(.3.2) 1s given in Analysis of Information Table 12.3 as 21(x::x:) =
1.410 with one degree of freedom, but the effect of adding x(..kL) to
x(1jk.) , x(1j.2) 1is given in Analysis of Information Table 12.2 as
ZI(X::x;) = 1.239 with one degree of freedom. In neither case is the

effect or the corresponding tau parameter r?i significant,

The columns of Figure 12.1 which occur in the log-linear repre-
sentations of the estimates retained in Analysis of Information Table
12.2 are

Marginals Fitted Estimate Columns of Figure 12.1

x(13k.), x(...8) x* 1-17, 21-22, 26-31
x(13k.), x(1..8), x(.3.2) Xy 1-24, 26-31

x(1jk.), x(1j.2) X 1-24, 26-37
x(1jk.), x(13.2), x(..kR) g 1-37 .

From the analytic form of the log-linear representation or by
taking differences of appropriate rows of Figure 12.1 within the columns
used for the estimate, the log-odds of fail to pass for each of the
estimates are given by the respective parametric representations in (12.1)
where the superscripts relate to the variables and the subscripts range
over the possible indices. The values of the parameters depend of course

on the corresponding estimate.

- 38 -
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) TABLE 12.2
ANALYSIS OF INFORMATION TABLL
Component Due to Information D.F.
i x(13k.), x(...2) 21(x:x*) = 160.551 23
; a) x(1jk.), x(i..2), x(.3.2) ZI(x::x*) = 138.732 5
2I(x:x:) = 21.819 18
l m)  x(ijk.), x(1j.%) 2L(x}:xy) = 7.384 6
G A(x:x) = 1435 12
e) x(1jk.), x(ij.2), x(..k2) 2I(xg:x%) = 1.239 1
ZI(x:x:) = 13.196 11
l 2 * 2 . %*
I(x:x ) - I(x.xa) 138.732
N * 160.551 - 0-86
2I(x:x ) '
2 . * 2 . *
Toax ) - 20(xixy) 146116 _ 5 ol
- X
2L(xix) 160.551
2I(x:x") - 2L(x:x
Toux) = 2L(xix,) 149 355 ==
= )
e 160.551
TABLE 12.3
ANALYSIS OF INFORMATION TABLE
Component Due to Information D.F.
a) x(ijk.), x(1..2), x(.§a) 21(x:x:) = 21.819 18
*
£) x(igk.), x(1..0), x(.3.8), x(..kt)  2I(xgix,) = 1.410 1
zx(x:xg) = 20.409 17

®_
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* (13k1) |
X
tn L - Tg i Til + rjl
* 1t
x (13k2)
a
*
x (1ik1l)
(12.1) AU rif + rﬂi + rigf ‘
b x” (13k2) |
|
*
i x (13kl)
. n —%—————— = Ti + Tii + rii + Tti + rigi
' xe(ijk2)

X We recall that parameters with indices i = 4 and/or j = 3

and/or k =2 and/or % = 2 are by convention set equal to zero.

*
We remark that xm(ijkl) , determined by fitting the marginals
x(1jk.) , x(1j.%) , 18 expressible explicitly as

(12.2) x;(ijkﬁ) & x(1§k.) x(13.2) /x(1]. )

{ and is the estimate under a null hypothesis that race and success are
conditionally independent given home of record and level of education.
In Analysis of Information Table 12.2 the value ZI(x:x;) = 14,435 ,

+ 12 degrees of freedom, indicates an acceptable fit of this model. Fur-
thermore, 21(x::x;) = 1,239 , one degree of freedom, Iimplies that the
additional effect of the marginal x(..k&) 1s not significant or that
in the parametric representation of the log-odds in (12.1) the parameter
Tli measuring the effect of race on the dependent variable success is
not significant. We therefore investigate the estimate x; in greater

detail. The values of x;(ijkl) are given in Table 12.4. {

%
In the expression for the log-odds under xm in (12.1) ri is

iz i
an overall average, L") and le

level of education on boot camp completion and 1

are the effects of home of record and

132 “
ij1

effect of home of record x level of education on boot camp completion.

is the interaction

The numerical values of the tau parameters are given in Table 12,5, We
recall that by convention parameters with an index corresponding to

1 =4 and/or j =3 and/or L =2 are equal to zero. ‘
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4 TABLE 12.5

*
VALUES OF PARAMETERS IN LOG-0DDS FOR X IN (11.1)

T} = 4454347 LY - 0.292478 |
: T = 0.728653 1Y = -0.689433
[ Y = 0.041549 r;{i = ~0.602435
, til = -1.632427 33t = -1.003045
o 37 = 1.312903 r§ii = 1.137932
r%i = 0.648130 ri%f = 0.360697
From the parametric representation of the log-odds in (12.1) and

the values in Table 12,5 one can determine differences in the log-odds
assoclated with changes in various categories. Thus the differences in
the log-odds (fail to pass) as one changes the home of record, for fixed

level of education,are given by

E-N E-W E-S
Below H.S. 0.9970 0.7287 0.4362
H.S. 1.0007 1.3110 0.0392
Above H.S. 0.6871 2.3611 0.7287

The differences in the log-odds as one changes the level of education for

fixed home of record are given by

.

Below H.S.-H.S. H.S.-Above H.S.
East 1.0617 -0.0413
North 1.0654 -0.3549
West 1.4420 1.0088
South 0.6648 0.6481

.

For easier interpretation, we convert the log-odds values to ratios

of the odds of failure. . «

- 42 -
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.
]

\ E-N E-W E-S
r
Below H.S. 2.7 2.1 1.6
H.S. 2.7 3.7 1.0
4
Above H.S. 2.0 10.6 2.1
Below H.S.-H.S. H.S.-Above H.S.
East 2.9 0.96
Nerth 2.9 0.70
+‘ West 4,2 2v. 7
South 1.9 1.9

Note that the odds of failure in boot camp of a recruit with home

of record East and Above H.S. level of education are 10.6 times the odds
of a recruit with the same level of education but home of record West.
Recruits with home of record East or North but with level of education
H.S. do better than recruits with same home of record but Above H.S. level

of education.

* *
We have also computed the odds of failure xm(ijkl)/xm(iij) and
listed the results in increasiag values. The odds are expressed to 1,000, 1

that 18, 5 to 1,000, 6 to 1,000, etc.

Home of Record Level of Education 0dds 1
West Above H.S. 2 ]
West H.S. 6 {
North H.S. 9
South Above H.S. 12
North Above H.S. 12 J
South H.S. 22
East H.S. 23 ‘
East Above H.S. 24
North Below H.S. 25 ‘
‘ West Below H.S,. 26
i South Below H.S. 43
East Below H.S. 67
-43 -
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Note that the overall odds of failure for this data are 311/13742 =

0.0226 or 23.

For ease of comparison and inference, we also list the foregoing

results by home of record and level of education.

West North South East
Above H.S. 2 12 12 24
H.S. 6 9 22 23
Below H.S. 26 25 43 67

*
Examination of the computer output for xm(ijkl) shows that for

West, Above H.S., Non-white, Fail, the value of OUTL1ER 1is 4.28. From

Table 12.1, we see that the corresponding observed values are given by

the two-way table

West, Above H.S., x(33kR)

White Non-white
Fail 0 1 1
Pass 421 19 440
421 20 441

and from Table 12.4,the corresponding estimated values are

*
West, Above H.S., xm(33k2)

White Non—white”

Fail 0.955

420.045

1.000
440.000

421.000

20.000

Testing the observed two-way table West, Above H.S., x(33kfL) for
independence of race and boot camp completion by the statistic

x(33k.)x(33.2)

2 x(33..) )- 2{§ E x(33kL) &n x(33k1)

£ I x(33k) 2n<x(33k£)
k £

+x(33.0) tn x(33..) - I x(33K.) tn x(33.) - I x(33.0) tn x(33.2)}

- 44 -
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ylelds the value 6.236, one degree of freedom. (Tables of 2n &n n ,
n an integer 1 to 10,000, are available for such calculations.) The
*
contribution of West, Above H.S. to the value of ZI(x:xm) is obtained

by the computer as

2(0 n m + 1 &n 6‘.—0—4-5- + 421 in ‘-—-—"420.045 + 19 &n 19.955)

and yields the same value 6.236.

Because the value 6.236 is statistically significant at the 0.02
level, the OUTLIER statistic has shown an '"unusual" situation for

x;(ijkl) corresponding to West, Above H.S.

We shall consider the procedure to account for outliers after we

*
examine the estimate xa

In viaw of the fact that the Analysis of Information Table 12.2
shos no significant effects for the estimates following x: and since
ZI(x:x:) = 21.815 , 18 degrees of freedom, implies an acceptable fit,
let us examine the estimate x: with possible outliers in mind. The

values of the estimate x: are given in Table 12,6.

The log-odds of fail to pass for x; are given in (12.1) with
the parameters having the same interpretation as those for x; except
that there i1s no interaction effect. The values of the parameters for

x: are given in Table 12.7.

For the estimate x: the ratio of the odds of failure between
different homes of record is the same for all levels of education and,
of course, the ratio of the odds of failure for different educational
levels is the same for all homes of records For the ratio of odds, and

odds, see Tables 12.8. 12.9 and 12.10.

Examination of the computer output for x: shows an OUTLIER value
of 5.20 for West, Above H.S., White, Fail and an OUTLIER value of 3.54
for South, H.S., Non-white, Fail. The corresponding observed and esti-

mated cell entries are
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TABLE 12.7

TR-1116

PARAMETER VALUES IN LOG-ODDS REPRESENTATION

* X
xa Xb X
r’i -4.192224 | ~4.059831 | -4.105023
18
Tll 0.285423 0.288534 0.364671
i2
171 -0.680394 -0.680769 -0.602516
il
131 -0.889058 -0.771589 -0.690762
iL
Tll 1.168221 1.025047 1.019191
hE .
T21 0.212164 0.067678 -0.001819
TABLE 12.8
RATIOS OF THE ODDS OF FAILURE
* *
xa xb X
East/South 1.3311.33 1.44 (H.S.; Non-white 0.75)
North/South 0.51 (0,51 0.55 (H.S.; Non-whice 0.29)
West/South 0.41 [ 0.46 0.50 (H.S.; Non-white 0.26)
Below H.S./H.S. [2.50 |2.61 2.78 \(South, White)
1.45 )(South, Non-white)
H.S./Above H.S. |1.24 |1.07 (West, Non—white)

- 47 -
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TABLE 12.10

ODDS OF FAILURE, EXPRESSED TO 1,000

TR-1116

West North South East
*
X 6 8 15 20
a
* | 0 White,
Above H.S. X 8 Non-white 9 17 23
* | 0 White,
xc 8 Non-white 2 15 24
x~ 8 9 19 25
a
H.S. x;‘ 9 9 18 25
* 16 wWhite,
xc 8 2 32 Non~white 24
*
X 20 25 49 65
a
Below H.S. x: 22 24 48 64
x: 23 25 46 66
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‘ West, Above H.S.

x(33ke) x4 (33kL)
r White Non-white White Non=white
: Fail 0 1 2.599 0.123
[ Pass 421 19 418.401 19.877
421 20 421.000 20.000
)
- South, H.S.
x(42k2) x:(42k£)
White Non-white White Non-white
Fail 34 16 32.557 9.611
Pass 1741 508 1742.443 514.389
1775 524 1775.000 524.000 -

*
12.2., The Estimate xm(ijkl) Adjusted for Outliers. For all estimates

considered under the nested marginal hypotheses, a requirement was that
x*(ijk.) = x(ijk.) . Accordingly for the model with interaction we require
the modified estimate to be fitted using the marginals x(ijk.) , x(ij.%)
derived from all observations except the outliers x(3311) and x(3312)

We shall use the observed values as the estimates for the outlier cells.
Thus if we denote the modified estimates by x:(ijkl) we have x:(3311) =
x(3311) and x%(3312) = x(3312) . l

Because of the marginals used for fitting, it turns out that the
values of the modified estimate, x:(ijkz) are equal to the values of the ‘
original estimate x;(ijkz) (since x:(ijkz) = x(1ik.)x(1].8)/x(1]..))
except, of course, for the cells (3311) and (3312) , and to satisfy the
requirement that x:(ij.z) = x(1j.2) 1t follows that x:(3321) = x(3321) ,

x:(3322) = x(3322) . The associated Analysis of Information Table 12,11
follows.

- 50 -
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TABLE 12.11

ANALYSIS OF INFORMATION TABLE

Component Due to Information D.F.
m) x(ijk.), x(13.%) 2D(x:xy) = 14.435 12
r) x(ijk.), x(1j.2) less 2I(x5:x}) = 6.235 1

x(3311), x(3312) 21(x:x:) = 8.200 11

* * *
Note that since xr(ijkl) = xm(ijkl) except that xr(3311) =
*
x(3311) , xr(3312) = x(3312) , x:(3321) = x(3321) , x:(3322) = x(3322) ,
the value of the measure of effect ZI(x::x;) is the same as that earlier

derived in the test for conditional independence.

The global inference that race and boot camp completion are condi-
tionally independent is valid except for West, Above H.S., and with the
estimate x: the odds of failure for White are zero whereas they are 53

in 1,000 for Non-white.

Since 2I(x¥:x*)/2I(x:x) = 6.235/14.435 = 0.43 , we conclude that
the outlier value West, fbove H.S. accounts for 43% of the '"unexplained

variation" ZI(x:x;) .

12.3. The Estimate x:(ijkl) Adjusted for Qutliers. We sghall first

derive a2 revised estimate for x:(ijkl) adjusted for the outlier x(3311) ,
x(3312) , that is, we fit the marginals x(ijk.) , x(1..2) , x(.j.%)
excluding the observations x(3311) , x(3312) (West, Above H.S., White,
Fail; West, Above H.S., White, Pass). Thus if we denote the new estimate
by x;(ijki) we have x,(3311) = x(33ll) , x/(3312) = x(3312) . The
values of the estimate x; are given in Table 12.12.

In particular, note that for West, Above H.S., the corresponding

observed and estimated cell entries are

-~ 51 -
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West, Above H.S,

x(33k2) xp, (33k2)
White Non-white White Non-white
Fail 0 1 0 0.158
Pass 421 19 421 19.842
421 20 421 20.000

The associated Analysis of Information Table 12.13 follows.

TABLE 12.13

ANALYSIS OF INFORMATION TABLE

Component Due to Information D.F.
a) x(ijk.), x(1..2), x(.3.2) 21(x:x;) = 21.819 18 r
b) x(ijk.), x(1..2), x(.].%) zx(x;:x;) = 5.868 1

less x(3311), x(3312) ﬁ

21(x:x;) = 15.951 17

Note that the OUTLIER entry in the computer output for x: » West, Above
H.S., White, Fail 18 5.199 which is less than 5.868 as it should be.
Also, since ZI(x;:x:)/ZI(x:x:) = 5.868/21.819 = 0.27, the outlier values

account for 27% of the "unexplained variation" ZI(x:x:)

The computer output for the revised estimate x; yields for South,
H.S., Non-white, Fail the OUTLIER entry 3.69. Accordingly we now get a {
new revised estimate x:(ijkl) . The estimate x:(ijkl) is obtained by
fitting the marginals x(ijk.) , x(1..8) , x(.3.%) , as for x: and x*
except that the values x(3311) , x(3312) , and x(4221) , x(4222) are
not included, that is, x:(3311) = x(3311) , x:(3312) = x(3312) , x:(4221) - 4
x(4221) , x:(4222) = x(4222) . The values of the estimate x:(ijkz) ore
given in Table 12.14.
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\ In particular, note that for West, Above H.S., and South, H.S.,

the corresponding observed and x:(ijkl) estimates are

West, Above H.S. South, H.S.
x(33kL) x(42kR)
White Non-white White Non-white
Fail 0 1l 34 16
Pass 421 19 1741 508
), 421 20 1775 524
* *
xc(33k2) xc(42k1)
White Non-white White Non-white
Fail 0 0.1%4 28,743 16
Pass 421 19.836 1746.257 508
421 20.000 1775.000 524 .

The associated Analysis of Information Table 12.15 follows.

TABLE 1z.15

ANALYSIS OF INFORMATION TABLE

Component Due ta Information D.F.

a) x(ijk.), x(1..2), x(.3.%) ZI(x:x:) = 21.819 18

b) x(i3k.), x(1..8), x(.j.L) less ZI(x::x:) - 5.868 1
ZELLLRRESSE) 20(x:xy) = 15.951 17 ‘

¢) x(ijk.), x(1..2), x(.J.2) less 21(x::,§) = 4,511 1

x(3311), x(3312), x(4221), 21xixt) = 11,440 ¥

x(4222)
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Note that the measure of effect ZI(x::x;) = 4,511 1is greater than the

OUTLIER entry for South, H.S., Non-white, Fail, 3,691, as it should be. ;
Also, since ZI(x::x;)/ZI(x:x;) = 4,511/15.951 = 0.28 , the outlier

values x(4221), x(4222) account for 28% of the "unexplained variation"

zx(x:x;) 3

The log-odds for the estimates x; and x: are also given by the

parametric representation

*
(12.3) o AL by Uy W
x (13k2)
similar to that for x: . The values of the parameters corresponding to

* and x* are given in Table 12.7 and the ratio of odds and odds of
b c
failure in Tables 12.8, 12.9 and 12.10.

We note that the results for home of record West and North are
better than those for home of record South and East, even accounting for

the outlier values.

13. Zero Marginals

As may be noted from the analysis in Section 12, zero occurrences
in cells of the observed contingency table present no special problem
provided that no marginal entering into the fitting specification 1is zero.
When the latter is the case, however, the interpretation may be distorted
because of inflated degrees of freedom. A procedure to circumvent this
problem is similar to that used for getting revised estimates when out-
liers are indicated. We shall present the procedure in terms of a

specific example.

A four-way cross-classification of 16,723 marines based on the
variables home of record, level of education, AFQT, and boot camp comple-
tion is given in Table 13.1. We denote the occurrences in the four-way

observed cross-classification or contingency table by x(ijk&) with the

notation

2

- 56 -
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} Variable Index 1 2 3 4 5
Home of Record i East North West South
Level of Education h| Below H.S.| H.S. | Ahove H.S.
AFQT k I II I11 IVA|IVE
Boot Camp Completion L Fail Pass

As in the analysis in Section 12, we are interested in the possible rela-
tionship of the variable fail or pass, as a dependent variable, on the

independent or explanatory variables home of record, level of education

and AFQT.

We summarize the results of fitting a sequence of nested marginals

in the truncated Analysis of Information Table 13.2.

TABLE 13.2

ANALYSIS OF INFORMATION TABLE

Component Due to Information D.F.

a) x(1jk.), x(...2) 21(x:x:) = 182.828 59

e) x(ijk.), x(i..2), x(..k8), x(.j.L) ZI(x::x:) = 119.182 9
ZI(x:x:) = 63.646 50 L

n) x(ijk.), xt..k2), x(1j.%) 21(x::x:) = 16.268 6

21(x:x;) = 47.378 44

We note that ZI(x:x:) = 182,828 , 59 degrees of freedom, with
x:(ijkl) = x(1jk.) x(...2)/n rejects the null hypothesis that boot camp
completion is independent of the joint variable (home of record, length
of education, and AFQT).

The value of 21(x:x:) = 47.378 , 44 degrees of freedom, implies
that x; is a good estimate and the value 21(x::x:) = 16.268 , 6 degrees

of freedom, implies that the marginal x(ij.2) and its associated inter-
action parameter for boot camp completion with home of record and level of
education is significant. The values of x;(ijkl) are given in Table 13.3.

_—a A e X A-
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The log-odds of fail to pass are given by the parametric representation

X
x (1jkl)
(13.1) n -%—————— - ri + T;i + Tii + rti + ri;i 3
xn(iij)

We note that in Table 13.1 no failures were recorded for recruits
with home of record West and level of education H.S. for all AFQT's, that
is, the observations x(32kl) for k = 1,2,3,4,5 are all zero. As a
consequence, the marginal x(32.1) = 0 , and the estimates x:(32k2)
based on fitting the marginals x(ijk.) , x(..k&) , x(1j.L) are equal
to x(32kg) . This distorts the interpretation on the basis of degrees

of freedom and significant interaction parameters.

We shall therefore follow a procedure somewhat similar to that for

OUTLIERS adjusting for the zero marginal values., The adjusted procedure
is to delete the observations x(32ki) from the estimation procedure.
The revised estimates are derived by fitting the marginals x(1jk.) ,
x(..kL) , x(ij.2) excluding the cells with home of record West and level
of education H.S., that is, the cells (32kf) and using the observed
values x(32kf&) as the estimates for those cells. The revised procedure

ylelds the Analysis of Information Table 13.4.

TABLE 13.4

ANALYSIS OF INFORMATION TABLE

Component Due to Information D.F.
r)  x(ijk.), x(1..2), x(.3.2), 21(x:x}) = 51.534 45
x(..k2), excluding x(32kL)
8) x(ijk.), x(..k&), x(1j.2), 2I(x::x:) - 4,153 5
excluding x(32kt) 2I(x:x*) = 47.381 40
8

Note that ZI(x:x:) has 45 degrees of freedom compared to 50 for 21(x:x:)

and ZI(x:x;) has 40 degrees of freedom compared to 44 for 21(x:x:) g
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We now see that ZI(x;:x:) = 4,153 , 5 degrees of freedom, implies
that adding x(ij.4) to the set of fitted marginals, or the associated
interacti~n parameters for home of record by level of education by failurc,
are not significant and 21(x:x:) = 51,534 , 45 degrees of freedom ,
implies that x:

given in Table 13.5.

is an acceptable fit., The values of x:(ijkl) are

The parametric representation of the log-~odds of failure in boot

camp using the estimate x:(ijkl) is given by

*
x7(13kl1)
(13.2) LN ——— - rz + Iii + Tgi + rti
x:(iij)
Thus the log-odds depend only on an overall average effect ri and addi-
tive effects due to hone of record rii , level of education rgi , and

AFQT rti , with no interaction effects. The values of the parameters

in the representation of the log-od<s are

L b}

T} = -4.376837 3% = 0.481840
o1t = 0.145880 52 = -0.665526
11} = -1.148652 T3y = ~0.712272
tih - -0.759926 t5Y = ~0.639670
Il = 1.029758 Thr = -0.289594

For convenience we tabulate the odds of failure (to 1000) in Tables
13.6 and 13.7. Note that the overall odds of failure for this data
(excluding West, H.S.) are 183/14888 = .0123 or 12,

Within a given home of record and for the same level of education
the results for AFQT I, II, and 1II are apparently the same, with in-
creasing odds of failure respectively for AFQT IV A and IV B.

The results for home of record North and West are consistently

better than those for home of record South and East.
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TABLE 13.6¢
ODDS OF FAILURE x:(ijkl)/x:(iJRZ) T0 1000
‘ East North West South
[ AFQT I
Below H.S. 21 6 8 18
H.S. 12 k] 0 10
. Above H.S. 7 2 3 6
AFQT II
Below H.S. 20 5 8 17
H.S. 12 3 0 10
j Above H.S. 7 2 3 6
AFQT III
LI
Below H.S. 21 6 19
H.S. 12 3 11
Above H.S. 8 2 7
AFQT IV A
Below H.S. 30 8 12 26
H.S. 18 5 0 15
Above H.S. 11 3 4 9
T IVB
Below H.S. 41 11 16 35
H.S. 24 6 0 20
Above H.S. 15 4 6 13 ‘




Below
H.S.
Above

Below
H.Sl

Above

Below
H.S.

Above

Below
H.S.

Above

0DDS OF FAILURE x:(ijkl)/x:(inZ) TO 1000

H.S.

H.S.

H.S.

HQS.

H.S.

HIS‘

H.S.

Hls.

TABLE 13.7

North
1 11 111 IV A IV B
6 6 8 11
3 6
2 2 3
West
I II III IV A IV B
12 16
0 0 0
South
1 II 111 IV A IV B
18 17 19 26 35
10 10 11 15 20
6 6 7 9 13
East
I 11 III IV A 1V B
21 20 21 30 41
12 12 12 18 24
7 7 8 11 15
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