— - v — had d

AD-763 404

ON A UNIFIED THEORY OF ESTIMATION
IN LINEAR MODELS

C. R. Rao

Purdue University

R

Prepared for:

p : Office of Naval Research

S May 1973

oy

DISTRIBUTED BY:

, National Technical information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 2215;

RN NN o Srn rbh T AR b e ke

4
A
!

¥




P—

AD 763404

PURDBUE UNIVERSITY

|
S
%’7’ -~ % P

J =3
RS 4
>

o)

DEPARTMENT OF STATISTICS

NATIONAL TECHNICAL
INFORMATION SERVICE

VS Cepartment ot Commarta
ngled v 3 J218)

DIVISION GF MATHEMATICAL SCIENCES

e ot W04
e et
k Aprr: o )
\ e ed
3 P

o
M«ﬁ
- ot ’ ) TR s D e N R R SR B L TN NS LS T S T S S A
R e — ot et Lor sl 1.

»'@;ﬁ;gmxﬁmwwwnmuwwh@m Ve et e o

PURRN V.
by T T
B’E{v‘fﬁ"%m

TR I
S I
T P R
¢ *T»\gg@.;..hl?-’

3

So- o
¥




T T e e - e - ‘

- On a Unified Theory of Estimation

: in Linear Mndels *
by
' C. R. Rao !

' Indian Statristical Institute
and

Indigna University

wa

Department of Statistics

! Division of Mathematical Scisnce :
Mimeograph Series #319 i

.
& HMay 1973 - g
N _ |
| : .- !
Purdue University JE S 4
{ ¥. Lafayette, Indiana b -~ e g
47907 \_ﬂ,,,J—«w"” i H
*These research lecture notes were partly sponsored by the Office of Navail ?
Research Contract N0OG14-67-A-0226-00014 at Purdue University. Reproduction %
in whole or in nart is permitted for any purpose of the United Scates Government. %
< . %
! 5
: j
%
<ol

et il et b
- —— A ol S 4 et
#a | e e Bha




Preface

In March of 1873 Professor C. R. Rao gave a special series of
colloquium lectures at Purdue University. The first three lectures

were on a unified theory of estimation in the Gene ral Gauss Markov

linear model. During the lectures, notes were taken of the material

presented by Professor Rao. This report is a presentation of these

lecture notes together with additional details cf proofs which

Professor Rao kindly supplied.

The responsibility for the correctness and accuracy of these notes
lies with the note taking committee composed of Professors Cote and

myself, Dr. T. Santner and Mr. A. K. Bhargava. The committee thanks

Professor Rao for his patience in answering questions which arose during

the preparation of these notes. Special thanks are also due to Mr. A. K.

Rhargava for his substantial efforts in preparing these notes.

E. M. Klimks
Collogquium Chairman
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1.1 INTRODUCTION

In a series of papers the lccturer developed two approaches towards
a unified treatment of the General Gauss-Markoff (GGM) linear model
Y, X8, UZV) where V, the dispersion matrix of Y, may pe singular and X
may be deficient in rank. One is called the inverse partition (IPM) method
wiich depends on the numerical evaluation of a g-inverse of a partitioned
matrix. Another is an analogue of least square theory and is called unified
least square {UL3) method.

It may be noted that Aitken's [1] approach (which is called generalized
izast squares) is applicable only when V is non-singular although the require-
ment that X is of full rank can be relaxed.

Tre 2im of these lectures is to bring out the salient features of tnese
two methods and to point out some interesting features of linear urbiased

estimztion when the dispersion matrix of the cbservations is singular.

1.2 STATEMENT OF THE PROBLEM

Consider the zriplet
v 2
(1.2.1) (Y, X8, oV)

where Y is an nxl vector of ranwwm variables, X is a given nxm matrix and 3

is an unknown mxl ve:tor. Furthermore,

E(Y)

X8

2

and D(Y) = 0"V

where 02 is unknown.
We refer to set up (1.2.1) as the General Gauss-Markoff {(GGM} model. Ne

assumption is made about R(V) and R(X} where R{-) denotes the rank cf the

matrix arguument.
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The problem is to estimate 8 and 0“. An associated problem is that ‘

of testing hypotheses e.g. Test HO: P'B = W, where P is a given kxm matrix,

on the basis of the given model.
The classical method of solving the above problem is the method of
least squares. Various types of difficulties can arise i.e. the parameters

may not be independent and the variables may be related in the following sense:

(a) R(X) <m

() RV} <n (v} =0

If neither of the above tw> difficulties is present then a solution to the

problem of estir»lion of B is the 8 which minimizes {8 is not estimable if R(x)im)

Q = (¥Y-X3)'V™* (Y-X8).

2. PRELIMINARIEQ
2.1 Notction

The fol!lowing notation will be used throughout.

(a) The vector space generated by the columns of a matrix X is represented
by £(X) .

(b) The vector space orthogonal to_&£(A) is denoted by,l(Al) where At is a
matrix of maximum rank with its columns orthogonal to the columns of A.

(c) If Vv is a n.n.d. (non-negative definite) matrix the expression

Hpll = (prvpy/?

*;here p is a vector i3 called the V-norm of p.

{¢«} The BLUE (best linear unbiased estimator) is the linear untiased
estimator with minimum variance,

{e} (X:V) denotes a partiticned matvix and R(X) the rank of matrix X. A

matrix with ali zerc entries is denoted by 0.




2.2 Some Results on g-inverses of a Matrices

Def. 2.2.1 Let A be an mxn matrix. A g-inverse of A is an nxm matrix

Generalize : inverses have tbe following properties.

(a) AA'B =B @ = AK i.e._4(B) C.£(A).

(®)

denoted by A™, satisfying the condition

AATA = A

Proof:

Sufficiency is obvious. To pronve necess.ty chocse

Let A be of order mxn and le- A be any g-inverse of A.
Then
{ 1) A general solution of ti 2 homogeneous equation
Ax = 0
is
x = (I-A"A)z,

where z is an arbitrary ve tor;

(ii) a2 general sclution to a cor<istent non homogeneous equation

Ax = y

x=Ay+ (I-A"A)z,
where z is an arbitrary vecto:-
{ i} Note that this is equivalent to saying that the orthogonal space
of A' =_g{I-A"A) which foliows from the fact that
A(I-ATAY = 0

and R(I-A"A) = n-R(A).




I ———r

rvmw "

(ii)

follows since a general solution of Ax = y is the sum of a

parti:cular solution of Ax = y and a general solution of Ax = 0.

{c) The projecticn operator on_g£(x) is

( 1)

(ii)

(d) _&xh

Px = X(X'X) X', which is unique for any choics of the g-inverse,
when the inner product (x,y) = x'y, and

PX
then the inner product (x,y) = x'Ay, A being a p.d. matrix.

X(X'AX) X'A, which is unique for any choice of the g-inverse,

Proof of (i): By property {a), we have X'X(X'X) X' = X'. Then

O P,o= X(X'X)NTX(X'X) X' = X(X'X) X! = Py

X

so that Py is idempotent.

Further [(X'X) ]' is also a g-inverse of X'X. Then by

uniqueness for choice of g-inverse

Py = XI(X'X) 7 ]'X' = X(X'X) X' = Py

so Py is symmetric. Thus Px is the projection operator.

Proof of (ii): The proof is the same as in (1). We establish

PX is idempotent and AP, is symmetric.

X

= J[I-(X") X'].

Proof: Let R(X?) = r.

Then

X'[I-(X*)7X'] = X'=X"(X")°X' = X'-X*' = 0




Next we show that R[I-(X') X'] = n-r.
This follows easily from the fact that the matrices [I-(X') X'l,

I and (X') X are all idempotent. Therefore

R[I-(X')"X'] = Trace{I-(X') X'] = Trace I - Trace (X'} X' = n-r
{e} Consider the equation
(2.2.1) AXA = A
Then four alternative representations of a general solution to

(2.2.1) are, with P, as the projection operator on #(4),

A
( i) X=A" +U- A AUAA™
((ii) X = A" + {I-ATA)V+(I-AA")

(iii) x- 7 + U - PyiUP,

( iv) X

A+ W(I-P,) + (I-P,,) V

whe-e A" is a particular g-inverse and U, V, W are arbitrary matrices.
Proof:

Verification of these identities is straightforward and ieft to the
reader.
(f) The equation AXB = C has a solution if and only if
(2.2.2) AA'C BB = C.
In such a case a sclution is given by
(2.2.3) X =ACB + Z-A"A Z BB
where Z is arbitrary.
Necessity of (2.2.2) follows from the fact that if the equations are
consistent there exists a matrix X such that
AXB = C
Then AA~ C BB = AA” AXBB'B = AXB = £. Sufficiency is trivial since
here A'CB™ is clearly a solution. Observe that X defined by (2.2.3)

satisfies the equation

AXR

c.
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Also any arbitrary solution X of this equation is obtainable
through the formula (2.2.3) by a suitable choice of the matrix Z;
for example,

Z=1X-A C3B
is such a choice. This shows that (2.2.3) provides the general

solution.

{g) (A generalization of richer-Cochran's Theorem.)

k
Theorem 2.2.1. Let A be mxpimatricesof rank T, i = 1,2 cek? Y oro= .

Then the following are equivalent:

- t - [
(1) Ai Aj =0 1%)

(ii) I =

1 - 1t
: Ai (AiAi) Ai

[N e Fo

1
Proof: Rao and Mitra [4] prove a more general result, Theorem 2.8.1 on

p. 33-34.
(h) Let V be a n.n.d. matrix and X be any given matrix. If there exists a

matrix U such that

KV + XUX') = g(V:X).
Then,

R{X-V + x0X')™ X] = R[X'].
Proof:
See lLemma 5.2.2 for the proof.

(i} Def. 2.2.2. A matrix denoted by A;(N) is said to be % minimum N-norm
inverse of A if

~

A=Y
is a solution ¢f the consistent-equation
Ax -,
with the smallest N-norm (being defined as ¢§7§§) where

N is an n.n.d. matrix.
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gemark 2.2.1

( i) A&(N) need not bz unique

( ii) {A;m)} c A7}

(iii) A;“N) =G

if and only if

——

AGA = A

(GA) 'N

NGA

(j) Let Ax = y b2 a not necessarily consistent equation then a mz2irix denoted

+ by A;(M) is said to be M-least square inverse of A if

-

= Ay Y

minimizes the quadratic form
(Ax-y}' M(Ax-y)

where M is a p.d. matrix. x is called a M-least squares solution

of Ax=y.

Remark 2.2.2

( 1) A;(Ml need not be unique

’

( ii) {A;_m)} < {A7}.

A

{AGA
MAG

r (iii) G = Az(M) if and only if (AG) 'M

(k) Def. 2.2.3 A matrix denozed by A;N (=A*) is said to be a minimum N-norm

M-least squares inverse of A if

r X = A+q is an M-least sguare solution of Ax=y with a

minirum N-norm, where M and N are p.d. matrices.
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Remagh~g.2.3

(1) A" is unique

(ii) if G = A" then following holds (and conversely)

AGA = A

GAG = G
(GA}*N = NGA (N p.d.)
(AG)'M = MAG (M p.d.)

2.3 Duality Theorem

Theorem 2.3.1

(X’)P;(V) = [x_ -1 ]'

AV
Proof: Let G=X ., .
(v )
Then
(2.3.31) G' = {X ]

svly
Frem the definition of G (Remarks 2.2.1 (iii)), we have
xe) v = vl oxe.
Therefore
XGY = V{XG)',
and
(G*'X')' v = V{(G'X").

Again by Rematks 2.2.1 (iii) we have

MV}~
combining (2.3.1) and {2.3.2) gives the result.

(2.3.2) G' = (X')

>t
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2.3.1 Application of vuality Theorem

(Another p-uo? of the Gaass-Markoff Theorem).

Consider the following minimization problem. Minimize

(v-x8)' v (v-xs).
A solution to the above problem is:

(2.3.3) B =X~ LY
(v )
Consequently an estimate of p'8 is p'8 = p'X’

ev
Next, suppose we want to find an estimate of p'8 by L'Y such that

Y.

(3} X'L = p (unbiasedness)

(b} L'VL = minimum.

A solution to above problem is given by

L= (X P

Thus an estimate of p’B is
vy = ptfryty” '
L'y P L(X )M(V)] Y.
By the Duality Theorem, this soluticn can be written as

L'y = p'[X7 AL
gV 7}

From {2.3.3), the right hand side can be written as p'é which is a least

squares solution.

P B LR

L=

"
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2.4 Computation of A~ (Shows existence).

Let A be an nxn metrix of rank T <n.
(a) 1f A is symmetric then it has a spectral decomposition

- ] 1 M 1
A= AIPIPI + 12P2P2 +...4 ArPrPr

where Al, Az...Ar are non-zero eigenvalues of A with corresponding

eigen-vectors P

1 Pz,...,Pr. In such a case

__1_ . 1 . L - e o sl
A = 11 PIP1 + X;'pZPZ +o..4 xr PrPr with Pin—O ifj.

(b) If A is not symmetric then it has a singular value decomposition

(see [4] p. 38, [3] p. 42)

- »n 1 [} 1 L
A= Althl + AZPZQ2 +...4 ArPrQr

where P,,P,,...,P_ are the eigen vectors of AA' and
1272 v

QI’QZ"“’Qr are the eigen vectors of A'A

Xi are the positive square roots of the eigenvalues of A'A.

In this case

=L g p L o
A = ;Y lel oot 3 Qrpr
1 T

Remark 2.4.1 pl’PZ""’pr are orthogonal to each other

and QI’QZ""’Qr are orthog nal to each other.

3.1 Condition of Consistency

Consider the (LM model
”
(3.1.1) (Y, X8,07 V).

It may be noted that the Gauss-Markoff model with restrictions on the

parameter §

(3.1 (Y,X8,62%);C = Rg




P
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can be written as the G2M model

2
(3.1.3) (Yoo X8, 07V)),
where
A _ X _,Vve
(3.1.4) Ye - (C): xe - (R)) VB = (0 O)'

When V is singular in (3.1.1) there are sore natural restrictions on
the random vector Y and possiblyv on the parameter vector 8.
One such restriction on Y is given by the following:
Lemma 3.1.1
L'X =0, L'V = ¢ implies that L'Y = 0 with probability 1i.
Proof: The conditions
E(L'Y} = L'XB = 0

Var(L'Y) = L'VL = 0

imply that L'Y = 0 with probability 1. As a consequence of the

above lemma, we have:

Theorem 3.1.1

{a) Y € #(v:X) with probability 1.
This is called the consistency of the model.

(b) R(VY) = t < n, implies the existence of an (nxs) matrix K such that
K'V =0, Here s = (n-t) and the choice of K = v* works.

(c) cov{K'Y) = 02

(c) says there exist s independent linear fuactions of Y which are constants with

probability 1.

Remzrk 3.1.1

Another way to state the above result is:
Y—Yo €_4(V) where Y

vector.

K'VK = 0 implies that K'Y =C (constant vector) with prob. 1.

0 is an observed value of Yor Y = Y0 + VZ where Z is an arbitrary




{a) Restrictions on the random variable Y

K'Y = C.

Therefore Y lies on the hyperplane ¥X'Y = C.

We show that Y lies on a hyperplane through the origin.

Let D C% Then

D'K'Y

D'C = 0;
i.e., N'Y = G, vhere N' = D'K'. This implies thzt

n
Y €_4(N).

{b} Restrictions on tThe paramete B8

E(¥'Y) = K'X8 = C.

Therefore,

D'K'X8 = 0(D=CY) = N'X8 = 0

Yy~

where N' = D'K'.

3.2 Unb;3asedness of 3 Linear Estimator

Let us consider the model (1) and find the c¢ondition for a linear

function L'Y to be unbiased for p'Sb.

~
t
.
N

.1) E(L'¥) = L'XB = p'(B)

shich must hold for ail & such that

‘e =0
Then there exists a vector A such that

L'X - p' = A'N'X

ot p = X'{L-Na)

—

Thus we have the fsllowing lemmas.

=
i
1
3
1
[
t
i
|
l MLRERL NI




Lemma 3.2.1
A necessary and sufficient condition that p'8 admits of a linear

unbiased estimator is that p € £(.{'). ’

Lemma 3.2.2
If L'Y is unbiased for p'8 then it is necessary ard suf;«ient that

there exists a vector X such that

(3.2.2) X'(i-N2) = p

Lemma 3.225

If L'Y i5 an unbiased estimator of p'R then there exists a vector M

such that

X'H=p
and L'Y = M'Y with prob. 1.
Proof:

et .

Take M = L-NA (X as defined by (3.2.2)).
Then M'Y = L'Y - A'N'Y = L'Y with prob. 1. Also note that

X'M = X'L - X'NA = p. q.e.d

Remark 3.2.1

( i) Note that when V is of full rank or when the cobservation Y is unknown,

the condition for umnbiasedness of L'Y for p'B is

X'L=1p
which is usually given in textbooks.
This is not trve in general as (3.2.2) shows.
(i1) Lemma (3.2.3) shows that the entire classof unbiased estimators of
an estimable function p'8 can be generated by M'Y where M satisfies the

condition X'M = p.




14 1

Thus to find the mi.amum variance unbiased estimater of p'8 we nead to
determine M such that
M'VM is minimum

subject to the condition X'M = p.

(iii) The result of Lemma 3.2.2 is based on the knowledge of the matrix N,
which can be computed if V and a sample observation or the r.v. Y are
known.

However if we want L'Y to be unbiased for p'R irrespective of the
subspace to which Y may belong then the condition is

X'L = p.
Fortunately, in view of Lemma 3.2.3 the formulae we develop for the
BLUE of p'8 and for the estimation of 02 are valid no ratter which

particular subspace Y may beleag to.

4., THE IPM METHOD

4.1 Preliminaries

The Inverse Partition Matrix {IPM) Method requires the computation

of a g-inverse of the partitioned matrix

. - C C

(4.1.1) v X - 1 2
X* 0 c. -C

3 4

where V and X are derined as in the model (3.1.1).0Once a g-inverse is

computed by a suitable procedure we seem to have a Pando.a's box supplying

all the ingredients needed for obtaining the BLUE's, their variances and
covariances, an unbiased estimate of cz, and test criteria withsut any
further computations except for a few matrix multiplications. Thus the

problem of inference from a linear model is reduced to the numerical

w~

problen of finding an inverse (a g-inverse) of the symmetric matrix given

P

in (4.1.1).

[N
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Ke summarize some results about g-inverse of a partitioned matrix in

the following.

Theorem 9_1.1

Let Vv, X, Cl' CZ’ 53, C4. be as defined in (4.1.1). The following hold:
- c! C!

( 1) v X = ! is another choice of g-inversa.

X 0 Cé -C&
.. v .

( ii) X C3 X=X=X C2 X

( 1ii) v 62 X' =X Cé V=X C4 X' =X Cé Xt =V C% X' =X C3 v

{ iv) Xr C1 X=0,V Cl X=0, X C1 Vv=20,V C1 V+ X C3 V=V

] = = ] [od = t
( v) \ Cl v C1 V=YV Cl V=YV Cl v 1 V=YV Cl v
{ vi) Trace V C1 = R{(V:X) - R(X)

i

C
( vii) 1\) is a g-inverse of (V:X)
C

< [
\

(viii) =

is another choice of g-inverse.
X 0 C! -C

i

!

Proof: i
The result (i) is proved by taking transposes of eithor side of (4.1.1).

(ii) and (iii). Weobserve that the equations

Va + Xb = 0 {
(4.1.2) {ia = x4
[ are solvable for any d, in which case
a= C2 X' d
] (4 1.3) {

‘b

- '
C4 Xt d

is a seclution.

Substituting (4.1.3) in (4.1.2) and omitting d, we have

" a“ _ml__.&g

v
PR

s et T
e,

‘k"‘[

rv'mt

)
X

b Gia N
»
e e,
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t .
veC,Xt=X C4 X'

2
£ C2 X=X,

(4.1.4)

In view of (i) we can replace Cd’ C, - C&, Cé in (4.1.4) to obtain

2

V Cp X' s X Cp X

‘G .t t = 1!
X CS X' =X

{(4.1.5)

Multiplying both sides of the first equation in (4.1.5) by X CS’ we obtain
(4.1.6) X C3 \ Cé Xt = X C3 X C& X' = X Ca X*.

So that X 23 X' is symmetric.

Then (4.1.4-6) prove the results (ii) and (i i).
(iv) We observe thit the equations

P

Va + Xb =~ Xd,
(4.1.7)
X'a = 0,

are solvable for any d. Then,

a = C1 Xd,
(4.1.8)
b C3 Xd,

is a solution. Substituting (4.1.8) in (4.1.7) and omitting d, we have

\Y C1 X+ X C% X = X,
{(4.1.9) '
X* C, X =0,
1
But X L3 X =X=v C1 X = 0.

Also, V Ci X =0 in view of (i).

The result V C3 V+«XC,V =Veasily follows.

3

{V) NWe observe that the equations

Va + Xb = Vd,
(4.1.10)
X'a =0,

4re solvable for any d. One solution is

PR . 9
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M

1 vd,
(4.1.11)

Y=¢ .
r3 Vd

Substituting in (4.1.10) and omitting d

v C1 V+X C3 V=1V,
(4.1

X' C, v

1 0.

This implies that

3N .V =V =
(4.1.13} v C1 v L] Va+v Cl X C3 V=Y C1 V=y C1 v C1 v,
since V C1 X = 0.

Also, since V £1X=0,

1

and v C1 V is symmetric,

i (4.1.14) Vel Ve V=V Qy,

P {(vi) To prove (vi) we use the result

R(AAT) = R(A) = Tr(aa”) for any g-inverse A~ of A.
/ \
v X C1 C2 v Cl + X CS Vv C2 - XC
X = Tr
t _ '
Xt 0 C3 C4 X' ¢ X' C

1 ? ‘/

S

4

= Tr(y Cl + X 53) + Tr X' C,

-

= Tr(V Cl) + R(X C3) + R(X' CZ)

(4.1.15) = Tr{v CI) + R(X) + R{X").

} Moreover,

/

vV X
} (4.1.16) R( = R(V:X) + R(X).
X' 0

Equating (4.1.i5) and (4.1.18) we have

‘ Tr V €y = R(V:X; - R(X).

The results (vii) and (viii) are proved by direct verification.

.




18

Remark 4.1.1

{ i) The resulrs (ii), (iii) and (iv) of above theorem are necessary
and sufficient for relation {4.1.1) to hold.

{ ii) C2 and Cé are in fact minimum V-norm g-inverse of X'.

(iii) (Ci:C;) is a minimum V-norm g-inverse of (t.).

As remarked earlier the inverse matrix (4.1.1) is like a Pandora’s Box
which gives all that is necessary for drawing inference on the 8-parameters<.
We state the results in Theorem 4.2.1 which demonstrates the use of the sub-

matrices in (4.1.1).

4.2 Main Resulgg

Theoxgg 4,2.1

Let Cl’ CZ’ CS’ C4 be as defined in (4.1.1). Then the following hold:

( ij [Use of C2 or CS]' The BLUE of an estimable parametric function

p'8 is p'B where
(4.2.1) é = C!
i 1i) [Use of C4]. The dispersion matrix of é is 02 C4 in the serse,

- ?
{(4.2.2) Var(p'8) = ¢~ p' C4 P
- a a4 2 2
(4.2.3) Cov{p'S, q'B) = ¢ p'C4q = 0°q'Cyp,
where p'8 and q°B are estimable.

(iii) [Use of CI]' An unbiased estimator of 02 is

-2 -1

(4.2.4) SRR 2 A C1 Y

where

f = R(V:X) - R(X)

SRR A b amon. o Jett ekt S st st stevatiren
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( i) 1f L'Y is an unbiased estimator or p'S then
X'L = p. !
Subjec? to this conditien

V(L'Y) = o°L'VL,

or L°VL has to be minimized to obtain the BLUE of p'B.

Let L, be an optimum choice and L be any other vector such that

X'L = X'L,.

Then

L'VL = (L~L_ + L)' V(L-L, + L,)

= (L-L,)' V(L-L,) + LIVL, + 2LLV(L-L,} > LIVL,,

TS

iff L}Y(L-L,) = O whenever X'(L-L,) = 0; i.e., VL, = -XK,
for a suitable K,.

Then L, and K, satisfy the equations

0
P

VL XK
(4.2.5) {XI£*+ *

We observe that the equations (4.2.5) admit a solution and any °“wo
solutions Ll' and Lz, satisfy tne condition

V(L. - Ly,) = 0.

Since (4.2.5) is consistent, a2 solution is given by

1}

' L, = Cpp L, = Cip
: or
X, = -C4p K, —C4p

Then the BLUE of p‘§ is

LLY = p'C)Y = pC,Y.

( ii) We use the fact that p = X'M for some M. Then

N g AN el




. 2
Var(p'CZY) G M'(XC%V)CZX'M

= o‘M'xcq(x'czx')M Using Theorem 4.1.1 (iii)
2

= o'M'XCAX'M Using Theorem 4.1.1 ( ii) 4
2

= ¢ p'Cdp.

Similarly,

n

. 2 2 .-
Cov(p’Cqu'CéY) ¢p'Cq = 07q'7,p-

(1i11) Sirnce X‘CIV

(]

0 and X'CIX = 0, using Theorem 4.1.1 ( iv),
Y'CIY = (Y - XB)! Cl(Y-XS).
We have

02 Tr Cl[E{(Y-XB) (Y-x8)'1}]

E{(Y-X8)'C,(Y-X8)]

,
o® Tr CV = GZ[R(V:X) - R(X)],

where the last equality follows from (vi) of Theorem 4.1.1.

Theorem 4.2.2

Let P'B be the vector of BLUE's of a set of k estimable parametric

functions P'SB, Rg = Y'CIY and f be as defined in Theorem 4.2.1. If

5
Y - Nn(XB,o‘V), then:

( 1) P'é and Y'C,Y are independently distributed with

(4.2.6) P& - N (P'8, 3°D)
i and
22
2 - .
! 4.2.7) Y'C,Y - oty

where D = P'C4P.

(ii) Let P'8 = w be the null hypothesis. The null hypothesis is consistent iff

(4.2.8) DDu =u

-~

where u = P'8 - w.
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If the hypothesis is consistent, then

.
(4.2.9) F=ul u .

: , h = R(D)

ch?ﬁa

has a Central F distribution on h and f degrees of freedom when the
hypothesis is true, and a non-central F distribution when the hypothes:=

is false.

Proof (i)
The result (4.2.6) 1s easy to establish.

(4.2.7) foliows since

C, + ¢} ¢, + 4
Y (———3Y = (Y-XBJ (-—5—) (Y-XB)
and by
vC VC,V = VCV
and
i =
VCIVC,V = VCV

which is an NAS condition for a x2 - dist. (See Rao [3] p. 188 and also
Rao and Mitra [4].)

n
The degrees of freedom of the x™ is

Tr VC1

Since P'R is estimable,

P = QX for some Q.

Then P'8 = QXC, Y.
Cl + C!

The condition for independence of Y'(———i——lq Y and QXCSY is

C1 + Ci
V{ 5 =) VC%X'Q'QXCsv

which is true since

c, + C! C, +
! g
V(=) VCIX' = V(=

Using Theorem 4.1.1 (ii) and (iii).

K V:X) - R(X) = 1, using Theorem 4.1.1, recult {vi).
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(ii) The hypothesis P'B8 = w is consistent for any vector M.
Var[M' (p'8-w;] = 0 = M'(P'8-w) = 0,
i.c., M'DM = 0 = M'u = 0 or u €4{D), for which a NAS condition
is D0 u = u, for any g-inverse D -7 1.

Since dispersion matrix of u = ¢°D and

DB D = D,

*‘;§~ T X% h = R(D),
Using the result proved in (i), Rg is distributed as xi
independently of u. Hence the result (4.2.9) follows.
Q.E.D.

In Theorem 4.2.2 the numerator of the F statistic for testing the
linear hypothesis p'B = w was obtained in the form U'D U which involved the
estimation of deviations in individual hypotheses, computations of their
dispersion matrix and its inverse.

Theorem 4.2.3 provides an alternative method of computing the numerator

as in the thecry of leasi squares.

Theorem 4.2.3

Let Cl be as defined in (4.1.1) and

e X ek
o o P =1t

E, E,
X' P 0

for any choice of the g-inverse. Further let Y have a MVN distribution.

Then the hypothesis P'§ = w is consistent iff

v 0 X El Y Y
0 0 p?

B TS

TR T

1%
(L9

+,
e

,,,
o it
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in which case

YyYy! .Y R
'I‘l (h' EIKW - Y Cl\ and ]

- i
T2 =Y ClY

2.2
are independently distributed as ¢”x  on

_o v ox
d = R (% prf - R(V:X} and

la)
1}

R(V:X) - R(X)

degrees of freedom recpectively.

Hence,

~3

n

al~
oo

SISy

|3
has the F distribution on d and f degrees of freedom.

5. UNIF1ED LEAST SQUARES METHOD (ULS)

5.1 Statement of the Problem

Suppose we i1ave a GGM model
(5.1.1) (Y,%8,62V).
{a) Wnen V = 1 and X is of full rank in (5.1.1) Gauss [2] propounded th.

famous theory of least squares which postulates that the best estimate

8 of 8 is obrained by minimizing the sum of squares
(5.1.2) {(Y-X8)' (Y-X8)

Gauss showed 1n fact that 8 is the BLUE of 8 and that an unbiased

estimator of 2 is

£y

(5.1.3) & = (Y-XB)' (Y-XB)/n-r with

]
]

R(X).
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(b} If V 4 1 but non-singular we make the transformations
_oy-1/2
Yt = ¥V Y

_ o172
X, =\ X

{5.1.4)

and reduce the problem to the origina! Gaussian nodel

(5.1.5) (Y., X8 ¢°I)
t t

to which the theory of least squares is appiicable.
thus we are led to minimize
-1
. - H S ¢ = YRt -
5.1.6) (Yt XtB) (Yt ntS) (Y-XB)Y' V = (Y-XB)

which is the procedure proposed by Aitken [1].

. . . . . -1 .
(¢) 1€V is sirgular, Aitken's procedure fails as V = does not exist.

(e.g. if V is symmetric and n.n.d. with R(V) = r < n).
In such a case V has the followine spectral decomposition

V = AIPlPi 4.4 Xr?rPr .

Let Pr+1""’Pn denote eigenvectors corresponding to 0 eigenvectorn.

Suppose F. = Y2 i -1 r

i 5 i 325.-.,T.

Py 2.-1 2

Then Var(F!Y) = 3 F!VF, = 6 A .P!VP. = ¢~.
i SO 1 i1

”
Cov(F.YF.Y) = ¢"PIVP. = 0.
i""j iti

j=1,2,..

Also let B, = P .,n-T, then

7

T3

Var(B'Y) = B'VB, = 0.
j 13

Letting

F

"

(F,, F

2,...,Fr1,

B=1¢(5.,28 ,B

CIE7 TRRERL AU
7
the given model (Y,X8,0°V) is reduced to (F'Y, F'X8,a°1_) with

constraints 3'X3 = B'Y = C.

tJ
S
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This is a simple Gauss model with restri.iions on the parameter.
Hence the original problem is reduced to

minimize: (F'Y - F'X8)' (F'Y - F'Xg),

1

such that ' X8 C,;

or
(5.1.7) minimize (V-XB)' FF' (Y-XB),

suck that B'X8 = (.

o =12 -1/2
Since F = (Al Pl,..,xr Pr),
FE =t ppr o e Al e pr ooyt
1 1"y " r r r

Tierefore FF' can be identified with V™ and (5.1.7) can be reformulated .«

inimize. (V.ye - vy
(5.1.8) §mirimize:r (V-X8)' V7 (Y-X8),
such that B'X8 = C.

Remark S5.1.1

Here V  can be taken azs any g-inverse of V. The solution to (5.1.8) is

obtained by soiving the equation

Cyig™ v DY ¥ o
(5.1.9) f X'V X8 + X' Bx = 'V y

(R*Xa = C,
Let
X'v X X'B\ ~ Ry
B'X 0 H
/ 3

Then the solution of {(5.1.9) is
B = H,X'V' Y « H.C
1 2
and

Var{p'a) = czp'H]x'v‘ W oXH!p.
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Also, as before we can calculate

(n Ry = min  {Y-Xg)! Vo (Y-XB),
B'X8 = C

(2) Rf = min (Y-X8)' V (Y-XB).
B'XB = C
P'B =W

(3) Tue F statistic (4.2.9) for testing

- t
HO. P'B

"

W is

R-R

o2
3
7 -

Motivated by the kr~wledge that Aitken's procedure fails when V is singular,
we raise the following ques:ion. Does there exist a matrix M regarilsc - ¢
whether ' is singular or not such that the foliowing conditions hcla”

(2) The BLUE or any estimable (pe#{X')) parametric function p'g ic n'v

where 8 is a stationery point of the fuaction

(5.1.10) {Y-XB8)'" M(Y-XB)

i.e. where the derivative of (5.1.10) with respect to 8 vanishes is zer
. . . 2. .
b) An unbiased estimator of ¢° is obtained as

(5.1.11) 3 = (Y-XB)' M(\-XB) : £

where

f = R{(V:X} - R(X).
{c) Rf = stationary value of
(5.1.12) {Y-XB)* M(Y-X8)
under the restriction P'8 = W,

2 .
RO = stationary value of

(5.1.13) (r-X8)' M{Y-X8)
and ,
2z 2
R T
T i

-
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Remark 5.1.2 ‘

1~

It can be assumed, M may “e chosen to be symmetric. Theorem 5.2.1 ond ”

',;i provide complete answers to the questions (a) and {b). We show that % i-
singular or not, the choice should be
e (5.1.14) M= (V+ XUX'")"

for any symmetric g-inverse where U is any symmetric matrix such that

;_f HV:X) =_f(V + Xux').
. in particular we can always choose

- . (5.1.15) M= (Vs KEXX)T

for any choice of g-inverse where k is an arbitrary non-zero constant. (cY cannot

hold for any choice of M for all testable hypotheses.

5.2 Some¢ Prcliminary Lemmas

Lemma 5.2.1 Let T be a matrix such that R(X'TX)} = R(X). Then
- (5.2.1) X(X'TX)™ (X'TX) = X
Proof:
If R(C'TX) = R(X), then for any vector X,
X'TX\A = 0 if and only if Xa = 0.

This result together with the identity

.
_~
(€2

.2.2) 0 = X'TX(X'TX)” X'TX - X'TX = XTX[(X'TX)” X'TX - 1],

yields {5.2.1}).

lemma 5.2.2 Let U be symmeiric and V be n.n.d. matrices such that

$5.2.3) AVXY =4V + XUXY)

R[X*(V + XWX')™ X} = R(X")
- Yroof:

 * m—

Tae result is casy to estabiish using Lemma 5.2.1.




e

Lemma 5 .3 Let X6 be the BLUE of XB. Then the unbiased estimatnr -f . is
(5.2.4) £ ly-x8) 'V (v-XB) = £ L(Y-XB) ' (V + XUX')" (Y-X8)
where
f = R(V:X) - R(X) and U is defined in Lemma 5.2.2.
The left-hand side expression in (5.2.4) is well-known.and the equivalencs

with the right-hand side follows easily observing that Y-X3 cH(V).

Theorem 5.2.1

Let (Y,X8,0°V) be a GGM model and M be a symmetric matrix such that
(XTMV) < g(X'MX)
in which case

(Y-X8)' MCY-X8)

as a function of 8 has stationary values. Further let 8 be a stats ‘it

If p'é is the BLUE of p'B for every pE€4X'). Then it is necessary t:::.
{(5.2.5) R(X'MX) = R{X)

and M is of the form

(5.2.6) (G + XIX"')™ + K

for any symmetric choice of g-inverse where Uand X are any symmetric .. * ‘es
such that

(5.2.7) HWVIX) =_g(V + XU

{(5.2.8) VKX = 0 X*'KX = O

Conversely: If M is of the form (5.2.6) with {5.2.7) and (5.2.8) truc, -en
R(X'MY) = R(X} and p'8 is the BLUE of p'8

for every p€4(X').

Proof:

Equating the derivative of (Y-Xg)'M (Y-Xg8) to zero, we cbtain

(5.2.9) X'MXg = X'My




which is consistent since_#(X'MX) D #(X'MV) and YEHV:X) with probabil:i+ 1.
In this case

(5.2.10) B = (XM XMy

is a statiomary point.

Let p = X'L. Then p’é is the BLUE of p'8 and it follows by derimiticen ’

(5.2.11) LEX(X'MX) ™ X'MX = L*X.

Since L is arbitrary in (5.2.11), we have

X(X'™MX) ™ (X'MX) = X = R(X'MX) = R(X},
which proves (5.2.5) .

If p'é is the BLUE of p'B for every pC#{X') then applying the lemma or r .17

of Rao [3], we have
(5.2.12) L'X(X'MX) ™ X'MVZ = 0 for any L,
where Z is a matrix of maximum rank such that
X'Z = 0.
Then (5.2.12)= X(X'MX) ™ X'MVZ = 0° X'MVZ = 0
1 {5.2.13) = VMX = XQ
for some Q.
Now there exists a symmetric matrix U such that
(5.2.14) X'M(V + XUX')MX = X'MX.
Let W = X'MX. Then it can be verified easily that one choice of ! i=

WO{-X"MVMX + W)W,

v

where W~ is a symmeitic g-inverse of W.
Multiplying both sides of (5.2.14) by X(X'MX) and using (5.2.13} and Ler': 5.2 1.
we obtain

, (5.2.15) (V + XUX')MX = X.
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If a’(V + XUX') = 0 then from {5.2.15) a'X = 0 and hence a'V = 0 and
vice-versa, which proves (5.2.7).Choosing a symmetric g-inverse znd 2
symmetric K, let ‘
(5.2.16) M= (V- XUX")" + K.
Substituting (5.2.16; in (5.2.15), we obtain (5.2.8). ‘
The converss is easy to prove using Lemma 5.2.2.
Theorem 5.2.2
Let 8 be a stationary point of (Y-X8)'M(Y-XB) where M is a symmetric
matrix such that
A(XTMX)Y O (X' MV).
if p'é is the BLUE of p'8 for every pC#{X*') and for all YEHV:X),
(5.2.17) o% = £ (v-xB) 'M(Y-xB)
is an unbiased estimator for 02, then it is necessary and sufficirert the.
M is a symmetric g-inverse of V + XUX' where U is any symmetric matriv - -»

that_g{V:X) = g£(V + XUX'}).
we have already seen that M is of the form (5.2.6) and K satisfies (5.. -
If (5.2.17) is the same as (5.2.4), then
(Y-X8) *K{Y-XB) = 0 = Y'KY.
ing (5.2.8) for all YEMV + XUL'), which implies that VKV = 0 in additi -
to (5.2.8). Then,
(V + XUX'I[(V + XUX')™ + KJ(V + XUX') = (V + XUX")

which shows that M is a g-inverse of (V + XUX').

Remark 5.2.1

( 1) 1In Theorem™.Z.l we showed that M is a symmetric g-inverse of
(V + XUX'). It may be seen that the expression g

(Y-X8)'(V + XUX')™ (Y-XB)
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is independent of the choice of a g-inverse and in practice one can use
any g-inverse.
(11) If Vv +«+ XUX' is a n.n.d. matrix then
(Y-XB)'(Y + XUX')™ (Y-XB)
is independent of the choice of the g-inverse, is non-negative and cbtains

a minimum at 8 where the derivative vanishes.

We can always choose U in such a way that V + XUX' is n.n.d. and satisfies

{5.2.7). For example Ucan be any p.d. matrix.
(iii} It may be seen that (V + XUX')  need not be a g-inverse of V.
If there exist a matrix U such that V + XUX' satisfies (5.2.7) and
v+ Xux') '} < (v}
then it can be shown that a NAS condition is:
A(V) 0_g(XuX') = {0}.

Sucn a chojce of U can be made if necessary.

Theorem 5.2.3

Let M be chosen as in Theorem 5.2.2 and P'8 be a set of k estimable furr* ons 1.¢
A(P) < #(X').
Then P'8 are the BLUE's of P'S and the dispersion matrix of P'g is

(5.2.18)  D(P'8) = o“B'[(X"(V + XUX")™ X)" - U]?

Let W = (V + XuXx!).
Then
P'8 = PUX'W X) T X'WTY
and
(5.2.19) D(P'B) = ozp'(x'w‘ X)© X'W™OV[P'(X'W X)T X' ;

Write V = V + XUX' - XWX!

W - XIX' in (5.2.19).
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Then, repeatedly using the relation (a) of Section 2.2 we out (5.2.18).
Finally, to test the hypothesis

P'8 = W.
We proceed as follows:

Let u = P'8 - W and

D(u) = o°D, R(D} = h. !

The hypothesis is consistent if
(5.2.20) o0" u = u,

If (5.2.20) ho'ds, then the null distribution of the statistic

u'h a 82
5 ¢
2

is the F distribution on h and f degrees of freedom when Y - MVN(XE,a“V).

(5.2.21) F =

The results (5.2.20) and (5.2.2]) are proved in section 4.
In Theorems 5.2.1 and 5.2.2, it is shown that there exists a matrix M,

whether V is nonsinguiar or not, such that a stationary value £ of
(Y-XB) "M(Y-X8)

provides the BLUE of an estimable function p'B8 as p'B, and an unbiased
. 2.
estimator of o 1is

o = £ (y-X8) "M(Y-XB).

So far we have an analogue of the ieast squares theory in the general carce.
The first departure from the least squares results is the expression

(5.2.18) for the dispersion matrix of P'é, which contains the extra term

UZP'UP. It can be shown that there exists no choice of M unless_g(x) c_£V)

such that

(5.2.22)  D{P'R = 0P (X'MX) P

for 21l P such that P'8 is estimable.




Since (5.2.22) does not hold, there ecxists no choice of M, unless
£(x) © _#(V), which cnables the cunputation of the numerator of the F-

statistic, (5.2.21), in the form

u'D'u = min  (Y-XB)'M(Y-XB} - min(Y-X8)'M(Y-XB)
P'B=w

for all testable hypotheses of the form P'8 = w.

However Rao {6] and Mitra [10] have shown that a2 suitable choice of

M can be made provided the null hypothesis is written in a nodified but

an equivalent form. The computation of such an M is somewhat complicated
and it is much simpler to compute the F-statistic as in Theorem 5.2.3, using
the simple choice of M as in Theorems 5.2.1 and 5.2.2 for estimating P'3-w
and 32. Note that M can always be chosen as (V+XX') , which satisfies the

conditions of the Theorem 5.2.2 {see Rao and Mitra [12]).

6. BLUE'S AS PROJECTIONS

5.1 Projection Operators

It is well known that when V is nonsingular the BLUE of X8 is obtained

) - 2
by the orthogonal projection of Y on _#{x), using the norm ||xi|= (x'V lx)l/ »

which is the same as the projection of Y on_g(x) along_#(VZ), where Z = x*t.

[Note that_#(x) and_g(VZ) are disjoint subspaces whether V is nonsingular or
not]. We prove the corresponding results when V is singular. Naturally,

the results have to be stated ia a slightly different manner since v does
not exist (hence the norm [|x|| cannot be defined as in the nonsingular case),
and_g(x) and_#(VZ), although disjoint, may not span the entire space En(hence
the projection on_#(x) along #(VZ) is not properly defined).

Definition 6.1.1. wnet I be an n.n.d. (non-negative definite) matrix

of order n and define f-norm as

(6.1.1) Heddo = (xtrx) 2.

)
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Further let A be an nxm matrix. We call pAZ a projector into_#(A) under

the Z-norm if

[
A Pag) © AA)
(6.1.2)

Hy—PAzﬂ2 < |ly - AAI|X for all y€E", A€g".

The following lemma is easily established (see Mitra and Rao, [11]).

Lemma 6.1.1. 1If p@r is as defined in (6.1.2), it is necessary and

sufficient that

(6.1.3) APy ) (A

4 n Y1 = = t
(6.1.4) (P I'E P = P = (P )L
{6.1.5) ZPAZA = ZA

Definition 6.1.2. Let U and W be two matrices such that_g(U) and

MW} are disjoint, which together may not span the entire space. Any

vector a€HU:W) has the unique decomposition

as o)+ a, a S AUR a, €_gW).

Then pU]W is said to be a proiector onto_g{U) along (W) iff
1.6) t,, @ = ‘N).
(6.1.6) pUlW a = oy for all o € _4(U:W)
i The folle~ing lerma is easily established.

Lemma 6.1.2. If PU]W is a projector as given in Definition 2, then

it is necessary and sufficient that

} {(6.1.7) pUIW u=u, pUIW W=20
and one choice of PU]W is
(6.1.8) PU}W = U(GY) G,

where G' = W' and (GU)~ is any g-inverse of GU.
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6.2 Applications
The following theorem provides expressions for the BLUE's in terms
of proiection operators as described in definitions 1 and Z.

Theorem 6.2.1. Consider the G.G.M. model (Y, X8, 02V). Then the

following hold:

( 1) Let L'Y be an unbiased estimator of p'B with the property L'X = p',

and define L, = (I-PZVJL, where Z = X*. Then Ll Y is the BLUE of p'8.

( #1) Let S = V+XX', S” be any n.n.d. g-inverse of S, and Z = X*. Then

(6.2.1) (PéV + ?XS-) a=a for any a &€_g(V:X)

i.e., the sum of the projection operators on the left hand side of

(6.2.1) is an ide1itity in the space _#(V:X) =_#VZ:X).

{iii) The BLUE of X8 is
' 2 (1-P! = )Y =
6.2.2) (1-P2,)Y (sz )Y (leVZ)Y
where the projection cperators are as described in definitions 1 and 2.
Proof of (ij. SincedgxPZV) c 42y, Piv X = 0 and hence

E(L'P), Y) =L'" - P, X=0,

L]
v FAY
giving

E{LLY) = E(L'Y) - E(L'P%VY) = E(L'Y)
so that L,Y is unbiased for p'B8. Further

Ly VZ = L'(I-sz)' Vi =0

using the conditions (7.4) and (7.5), which shows that L)Y has minimum
variance.

Proof of (ji). Since {{V:X; =_g(VZ:X) we need only verify that

1 . - ¢
(Pl * Pyg-) (VZ:X) = (VZ:X)

which follows from the definitions of the prrojection operators.
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Proof of (iii). From (i) it follows that the BLUE of XB is

- ' )
(1 sz){
and from {ii) we have
-p! =
(1 pZV)Y (sz_)Y

To prove the last part of the equality in (6.2.2), consider the unique
decomposition

(6.2.3} Y = XY1 + VZY2

on the disjoint subspaces_g(x) and _#(VZ). Note that XYl = (PXIVZ)Y where

PXIVZ is the projector onto_g(x) along 4(VZ). Now

Xp = E(Y) = XE(Y,) + VZE(Y.),
1 2
= x[8-E(Y¥,)| = VZE(Y,) = 0

since _#(x) and 4(VZ) are disjoint. Then E(XYI) = E(Y), so that XY1 is
unbiased for x8,
Further from {6.2.3)

Cov(Y,2'Y) = X Cov(Yl,Z'Y) + VZ Cov(Yz,Z’Y)

- £ 3
{(6.2.4) = VI = XD1 + V202 for some D1 and D2

= VZ(I—DZ) = XD1 = 0 = Cov (XYI,Z'Y)

which shows that XY1 is the BLUE of E(XYI) = xB.
Theorem 6.2.1 is thus completely proved.
Notc that, following (6.1.8), we can represent

(6.2.5) = X(GX) G

Px|vz

where G' = (VZ){ When V=1, we have G = X' giving the BLUE of xg as

(6.2.6) (PX‘VZ)Y = X{X'X) X'Y.
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When y is nonsingular, we havs G = xrv! giving the BLUE of x2 as

1

(6.2.7) y = xex'vo i Txevly.

px]vz
Thus (6.2.5) provides the well known formulae (6.2.6) and (6.2.7) in 4
the particular cases considered.

In these lectures we have cornsidered the problem of estimating
p'8 by L'Y such that L'VL is a minimum subject to X'L = p, which provides

a complete solution to the BLUE. However, this approach does not provide

all possible re -esentations of the BLUE. For this, one has to minimize

L'VL subject to the condition X'L-p €_#(X'N) where N is as defined in
Section 3.1, The latter problem cailed BLUE(W), BLUE in wider sense, which

is of some theoretical interest is selved in Rao [9].

Note. The references given at the end of the notes constitute the material
on which the lectures were based. For reference., to related work by cther

authors the reader is referred to bibliographies in Rao [S] and [6]. It may
be noted that Goldman and Zelen [13] were ~he first to consider the case of

nonsingular V in a systematic way isipg generalized inverses.
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