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PTeface

In March of 1973 Professor C. R. Rao gave a special series of

colloquium lectures at Purdue University. The first three lectures

were on a unified theory of estimation in the Gene :al Gauss Markov

linear model. During the lectures, notes were taken of the material

presented by Professor Rao. This report is a presentation of these

lecture notes together with additional details cf proofs which

Professor Rao kindly supplied.

The responsibility for the correctness and accuracy of these notes

lies with the note taking committee composed of Prof.ssors Cote and

myself, Dr. T. Santner and Mr. A. K. Bhargava. The committee thanks

Professor Rao for his patience in answering questions which arose during

the preparation of these notes. Special thanks are also due to Mr. A. K.

Bhargava for his substantial efforts in preparing these notes.

E. M. Klimko
Colloquium Chairman
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i.1 INTRODUCTION

In a series of papers the kLcturer developed two approaches towards

a unified treatment of the General Gauss-Markoff (GGN) linear model

(Y, X8, a 2V) where V, the dispersion matrix of Y, may be singular and X

may be deficient in rank. One is called the inverse partition (IPM) method

wiich depends on the numerical evaluation of a g-inverse of a partitioned

matrix. Another is an analogue of least square theoiy and is called unified

least square (ULS) method.

It may be noted that Aitken's [1] approach (which is called generalized

ieast squares) is applicable only when V is non-singular although the require-

ment that X is of full rank can be relaxed.

Th,.e aim of these lectures is to bring out the salient features of tnese

two methods and to point out some interesting features of linear unbiased

estimation when the dispersion matrix of the observations is singular.

1.2 STATEI.LNT OF THE PROBLEM

Consider the triplet

(1.2.1) (Y, ^10 a2V)

where I is an nxl vector of rano'm variables, X is a given nxm matrix and B

is an unknown mxl v'.tor. Furthermore,

EMY) = x6

and D(Y) = a2V

where a2 is unknown.

We refer to set u. (1.2.1) as the General Gauss-Markoff (GG1) model. No

assumption is made about R(V) and R(X) where R(-) denotes the rank rf the

matrix argument.

M,
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The problem is to estimate 8 and a2. An associated problem is that

of testing hypotheses e.g. Test H0: P'8 w, where P is a given kxm matrix,

on the basis of the given model.

"Thc classical method of solving the above problem is the method of

least squares. Various types of difficulties can arise i.e. the parameters

may not be independent and the variables may be related in the following sense:

(a) R(X) < m

(b) R(V < n CIV = O)

if neither of the above tu difficulties is present then a solution to '_he

problem of estir-'.lon of a is the A which minimizes (8 is not esti.'able if R(x)jTm)
Q = CY-X5)Vi Y-XB).

2. PRELIMINARIE_

2.1 Notztion

The fo2lowing notation will be used throughout.

(a) The vector space generated by the columns of a matrix X is represented

by._XX).

(b) The vector spaee orthogonal toAt(A) is denoted byX(A') where A I is a

matrix of maximum rank with its columns orthogonal to the columns of A.

(c) If V is a n.n.d. (non-negative definite) matrix the expression

IlpI! = (p'vp) 1 /2

•;h-ýre p is a vector i3 called the V-norm of p.

(c) The BLUE (best linear unbiased estimator) is the linear unbiased

estimator with minimum variance.

(e) MX:V) denotes a partitioned matrix and R(X) the rank of matrix X. A

matrix with all zerc entries is denoted by 0.
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2.2 Some Results on g-inverses of a Matrices

Def. 2.2.1 Let A be an mxn matrix. A g-inverse of A is an nxm matrix

denoted by A-, satisfying the condition

AA A = A

Generalize. inverses have t)he following properties.

(a) AA B = B = AK i.e..4(B) C.1•(A).

Proof:

Sufficieucy is obvious. To prove necessity choose

K= B.

(b) Let A be of orde" mxn and le A be any g-inverse of A.

Then

(i) A general solution of ti i homogeneous equation

Ax 0

is

x = (I-A A)z,

where z is an arbitrary ye, tor;

(ii) a general solution to a coiristent non homogeneous equation

Ax= y

is

x = A y + (I-A A z,

where z is an arbitrary vecto:-

Proof:

(i) Note that this is equivalent to saying that the orthogonal space

of A' =•fI-A A) which follows from the fav:t that

A(I-A-A) = 0

and R(I-A A) - n-R(A).



(ii) follows since a general solution of Ax = y is the sum of a

parti.ular solution of Ax = y and a general solution of Ax = 0.

(c) The projection operator onA4(x) is

(i) P = X(X'X)-X', which is unique for any choic- of the g-inverse,

when the inner product (x,y) = x'y, and

(ii) PX = X(X'AX) X'A, which is unique for any choice of the g-inverse,

then the inner product (x,y) = x'Ay, A being a p.d. matrix.

Proof of (i): By property ta), we have X'X(X'X) X' = X'. Then

P = X(X'X) XX(X'X) X' = x(X'X) X' = P

so that P is idempotent.

Further ((X'X)-]' is also a g-inverse of X'X. Then by

uniqueness for choice of g-inverse

Pix' Xr(X'X)-lX, = X(Xl'x)X, = P

so PX is symmetric. Thus PX is the projection operator.

Proof of (ii): The proof is the same as in (1). We establish

PX is idempotent and APX is symmetric.

(d) .,C(X"') =_,[I-(X')-X'].

Proof: Let R(XI) = r.

Then X'[I-(X')-X'] = X'-X'(X')-X' X'-X' 0

[4.

L _
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Next we show that R[I-(X')-X'] = n-r.

This follows easily from the fact that the matrices [I-(X')'X'I,

I and (X')fX are all idempotent. Therefore

R[I-(X')-X'] = Trace[I-(X')-Xl] = Trace I - Trace (X')-X' = n-r

(e) Consider the equation

(2.2.1) AMA = A

Th'en four alternative representations of a general solution to

(2.2.1) are, with PA as the projection operator on.4'(A),

( i) X = A + U - A-AUAA-

( ii) X = A- + (I-A A)V+W(I-AA-)

(iii) X - + U - PAUP

( iv) X A- + W(I-PA) + (I-,A') V

whe-e A- is a particular g-inverse and U, V, W are arbitrary matrices.

Proof:

Verification of these identities is straightforward and left to the

reader.

(f) The equation AXB = C has a solution if and only if

(3.2.2) AA'C B-B = C.

In such a case a solution is given by

(2.2.3) X = A-C B- + Z-A-A Z BB-

where Z is arbitrary.
Proof:
Necessity of (2.2.2) follows from the fact that if the equations are

consistent there exists a matrix X such that

AXB = C

Then AA- C B-B = AA" AXBB-B = AXB = C. Sufficiency is trivial since

here A'CB" is clearly a solution. Observe that X defined by (2.2.3)

satisfies the equation

AXB = C.
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Also any arbitrary solution X of this equation is obtainable

through the formula (2.2.3) by a suitable choice of the matrix Z;

for example,

Z = X-A C B

is such a choice. This shows that (2.2.3) provides the general

solution.

(g) (A generalization of Fizher-Cochran's Theorem.)
k

Theorem 2.2.1. Let A be mxpjmatricesof rank ri i = 1,2,...,k,) r = in.
1 1 1.=1l

Then the following are equivalent:

(i) A. A. =0 ij
k 

t - A
(ii) I = 7 Ai (Ai A) A.i=l 1 2

Proof: Rao and Mitra [4] prove a more general result, Theorem 2.8.1 on

p. 33-34.

(h) Let V be a n.n.d. matrix and X be any given marriX. If there exists a

matrix U such that

X(v + Xux') =,(V:X).

Then,

R[X'IV + XtX')- X] = R[X'I.
Proof:
See Lemma 5.2.2 for the proof.

(i) Def. 2.2.2. A maltrix denoted by A•l(N) is said to be , minimum N-norm

inverse of A if

is a solution Lf the consistent-equation

Ax - ,

with the smallest N-norm (being defined as x'INx) where

N is an n.n.d. matrix.

S'• ,I , l- • :. n •a~m ! €I 'I I- A • '•l • • u~ l ' Ad"



Remark 2.2.1

( .) A(N) need not be unique

(ii) {A!(4)} C {A}

(iii) AM-(N) =G

if and only if

AGA = A

(GA)'N = NGA

(j) Let Ax = y be a not necessarily consistent equation then a matrix denoted

by A9 (M is said to be M-least square inverse of A if

A- y

minimizes the quadratic form

(Ax-y)' M(Ax-y)

where M is a p.d. matrix. x is called a M-least squares solution

of Ax=y.

Remark 2.2.2

C i) A need not be unique

(ii) {A (.1I 1 C (A-}.
9- (AGA

(iii) G = A£?M) if and only if " AGA =,A

÷L (A)M= %AG)i adt eamnmmNnr

Mk) Def. 2.2.3 A matrix denoted by A+ (=A") is said to be a minimum N-normMi
M-least squares inverse of A if

x = A~q is rmn M-least square solution of Ax=y with a

min;-rum N-norm, where M and N are p.d. matrices.

.1'



Remark 2.2.3

( i) A+ is unique

(ii) if G = A+ then following holds (and conversely)

AGA = A

GAG = G

(GA)IN = NGA (N p.d.)

(AG)' M = •AG (M p.d.)

2.3 Duality Theorew

Theorem 2.3.1

WX) - .)= [Xz-~ l]
M(V) Z(V- I

Proof: Let G

Then

(U.3.1) G' = [X-c

From the definition of G (Remarks 2.2.1 (iii)), we have

(XG)'V"I = v- XG.

Therefore

XGV = V(XG)',

and

(G'X')' V = V(G'X').

Again by Remarks 2.2.1 (iii) we have

(2.3.2) G = (XI) (V).

Combining (2.3.1) and (2.3.2) gives the result.
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2.3.1 Application of Juality Theorem

(Another p-.,oo, vf the Gaass-Markoff Theorem).

Consider the following minimization problem. Minimize

(Y-XB)' V-I (Y-XB).

A solution to the above problem is:

(2.3.3) B X -1 Y
= (V_)

Consequently an estimate of p'B is p'8 p'X Y.

Next, suppose we want to find an estimate of p'8 by L'Y such that

(a) X'L = p (unbiasedness)

(b) L'VL = minimum.

A solution to above problem is given by

L = (X')M(V) p

Thus an estimate of ple is

L'Y = p' (X')M(V).1Y.

By the Duality Theorem, this solution can be written as

L'Y = p' [X -1 ]Y.
E(V )

From (2.3.3), the right hand side can be written as p'• which is a least

squares solution.
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"2.4 Computation of A- (Shows existence).

Let A be an nxn matrix of rank r < n.

(a) If A is symm.etric then it has a spectral decomposition

A = AlPlP! + 1,)p pý +...+ X p +,2 rrr

where Al. A2"" r are non-zero eigenvalues of A with corresponding

eigen-vectors Pl. P2#'... P r" In such a case

A- 1 p, + - p p' +. L 1 + L p P' with P!P.=0 ifj.A I I P A 2• 22 A r r IS~r

(b) If A is not synmnetric then it has a singular value decomposition

(see [4] p. 38, [3] p. 42)

A = A P1Q + APQ p .+ Q"1 1 2 2Q2 +. + ArPQrr

'where PlP2,"'Pr are the eigen vectors of AW and

-Q!'Q2'''Qr are the eigen vectors of A'A
SI. are the positive square roots of the eigen'vlues of A'A.1

In this case

A- Qp,

Remark 2.4.1 PlP 2 ,...,Pr are orthogonal to each other

and Q1 ,Q 2 ,. .. ,QT are orthoL hal to each other.

3.1 Condition of Consistency

Consider the CLM model

(3.1.1) (Y,

It may be noted that the Gauss-Markoff model with restrictions on the
"parameter 8

(3.1 (YXB,o 2 V) C R1



can be written as the GfjM model

(3.1.3) (Ye XeBi a2Ve),

where

(3.1.4) Ye= (C) Xe = )R' e V0"

When V is singular in (3.1.1) there are soime natural restrictions on

the random vector Y and possibly on the parameter vector S.

One such restriction on Y is given by the following:

Lemma 3.1.1

L'X = 0, LIV = C implies that L'Y = 0 with probability 1.

Proof: The conditions

E(L'Y) = L'XO = 0

Var(L'Y) = LVL = 0

imply that L'Y = 0 with probability 1. As a consequence of the

above lenmma, we have:

Theorem 3.1.1

(a) Y EA(V:X) with probability 1.

This is called the consistency of the model.

(b) R(V) = t < n, implies the existence of an (nxs) matrix K such that

K'V = 0. Here s = (n-t) and the choice of K = V I works.

(c) cov(K'Y) = a2K'YIK = 0 implies that KY = C (constant vector) with prob. 1.

(c) bais there exist s independent linear functions of Y which are constants with

probability 1.

Remark 3.1.1

Another way to state the above r-esult is:

Y-Y0 E4V) where Y is an observed value ov Y or Y YO + VZ where Z is an arbitrary

vector.

SI
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(a) Restrictions on the random variable Y

K'Y = C.

Therefore Y lies on the hyperplane )"Y = C.

We show that Y lies on a hyperplane through the origin.

Let D = C . Then

D'K'Y = D'C = o;

i.e., N'Y = G, where N' = D'K'. This implies thzt

Y EA(N).

(b) Restrictions an the paramete B

E(K'Y) = K'Xa = C.

Therefore,

D'K'XB = O(D=-C) - N'XB = 0

where N' = DIKI.

3.2 Unb5msedness of a Linear Estimator

Let us consider the model (1) and find the cindition for a linear

function L'Y to be unbiased for p'S.

(3.2.1) E(L'V) = L'XB = p')

,jhich must hold for all a such that

N'ý.' = 0

T'hen there exists a vector X such that

L'X - p= X'N'X

or p X'(L-NA)

Thus we have the foilowing lemmas.

LALJ
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Lemma 3.2. 1

A necessary and sufficient condition that p'8 admits of a linear

unbiased estimator is that p •A[(').

Lemma 3.2.2

If L'Y is un-biased for p'S then it is necessary and suf-, ient that

there exists a vector X such that

(3.2.2) X'(L-N).) = p

Lemma 3.2.3

If L'Y i3 an unbiased estimator of p'8 then there exists a vector M

such that

= p

and L'Y - M'Y with prob. 1.

Proof:

Take M = L-NX (A as defined by (3.2.2)).

Then N'Y = L'Y - X'N1Y = L'Y with prob. 1. Also note that

X'M = X'IL - X'NX = p. q.e.d.

Remark 3.2.1

(i) Note that when V is of full rank or when the observation Y is unknown)

the condition for unbiasedness of L'Y for p'B is

X'L = p

which is usually given in textbooks.

This is not true in general as (3.2.2) shows.

(ii) Lemma (3.2.3) shows that the entire classof unbiased estimators of

an estimable function p'S can be generated by M'Y where M satisfies the

condition X'M = p.



14

Thus to find the m..,imum variance unbiased estimator of p'8 we need to

determine M such that

M'VM is minimum

subject to the condition X'M = p.

(iii) The result of Lemma 3.2.2 is based on the knowledge of the matrix N.

which can be computed if V and a sample observation on the r.v. Y are

known.

However if we want L'; to be unbiased for p'S irrespective of the

subspace to which Y may belong then the condition is

X'L = p.

Fortunately, in view of Lemma 3.2.3 the formulae we develop for the

BLUE of p'B and for the estimation of a are valid no ratter which

particular subspace Y may belong to.

4. THE 1PM METHOD

4.1 Preliminaries

The Inverse Partition Matrix (1PM) Method requires the computation

of a g-inverse of the partitioned matrix

(4..1) 0 ( C

where V and X are defined as in the model (3.1.1)Once a g-inverse is

computed by a suitable procedure we seem to have a Pando.a's box supplying 4

all the ingredients needed for obtaining the BLUE's, theii variances and

2covariances, an unbiased estimate of a , and test criteria without any

further computations except for a few matrix multiplications. Thus the

problem of infere,.ce from a linear model is reduced to the numerical

problem of finding an inverse (a g-inverse) of the symmetric matrix given

in (4.1.1).

;5-4



We summarize some results about g-inverse of a partitioned matrix in

the following.

Theorem 4 1.1

Let V, X, CI, C2 , C3, C4 , be as defined in (4.1.1). The following hold:

i)= (1 3) is another choice ,f g-inversz.

( ii) X C3 X X = X C2 XC' V = C4 X'= XC'CX

(iii) V C2 X X C C4 X = X C = C3 X XC 3 V

( iv) X, C1 X 0, V C1 X 0, X' C1 V = 0, V C1 V + X C3 V = V

C v) Vc 1 vC 1 V =VC V=VC!VC v=vc! V

( vi) Trace V C1 = R(V:X) R(X)

t ( v1i) is a g-inverse of (V:X)

(viii) ~V x is another choice of g-inverse.

Proof:

The result (i) is proved by taking transposes of eith-,r side of (4.1.!).

(ii) and (iii). Weobserve that the equations

(4.1.2) Va + Xb = 0

X'a = X'd

are solvable fo.: any d, in which case

a = C2 X' d

(4 1.3) Lb = -C 4 XI d

is a solution.

Substituting (4.1.3) in (4.1.2) and omitting d, we have
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(1V CL 2 = X C4 X'

(4.1.4)

A, C 2 Xv :X',

In view of (i) we can replace C4 C2 C4,C n(..4 ooti

(4.l.S) i:C x' = x q• X'

't Ct X1 = X1

Multiplying both sides of the first equation in (4.1.5) by X C.3, we obtain

(4.1.6) X CT V C!X, = X Cq = x q3 X'.

So that X C' X' is symmetric.

-4

Then (4.1.4-6) prove the results (ii) and (i i).

(iv) We observe th-t the equations

1Va + Xb Xd,
(4.1.7) X'a =0,

are solvable for any d. Then,

{ a = C1 Xd,
(4.1.)

b = C- Xd,

is a solution. Substituting (4.1.8) in (4.1.7) and omitting d, we have

V C1 X + X C3 X X,
(4.i. 9)

X' C X =0.

.3 1But I C.. I = X •¢C X = 0.

Also, V Cj X = 0 in view of (i).

The result V C V + X C3 V = V easily follows.

(V) We observe that the equations

Va + Xb = Vd,
(4.1.10)

X'a = 0,

are solvable for any d. One solution is
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a = C1 Vd,

,b = C3 Vd.

Substituting in (4.1.10) and omitting d

V C1 V + X C3 V =V,

X' CIV =0.

Tlis implies that

(4.1.l1N) V C1 V CI V + V CI X C3 V = V C1 V = V C1 V C1 V,

since V C1 X = 0.

Also, since V r; X = 0,

(4.1.14) V C! V CI V = V C, V,

and V C1 V is symmetric.

(vi) To prove (vi) we use the result

R(AA ) = R(A) = Tr(AA-) for any g-inveise A- of A.

V x C1I C 2) C1 + X C3 V Cq X C
xf C 3 - C4 Tr X? C1 X' Cp

~ Q:Vi 2:X/
=Tr(V C 1 4. X ý:3 ) + Tr X' C2)

Tr(V CI + R(X C3 ) + R(X' C2 )

(4.1.) Tr(V CI + R(X) + R(X').

Moreover,

(4.1.16) ( )= R(V:X) + R(X).

Equating (4.1.15) and (4.1.16) we have

Tr V C1 = R(V:X; - R(X).

The results (vii) and (viii) are proved by direct verification.



Remark 4.1.1

( i) The results (ii), (iii) and (iv) of above theorem are necessary

and sufficient for relation (4.1.1) to hold.

( ii) C and C! are in fact minimum V-norm g-inverse of X'.
2 .

(iii) (C':C!I) is a minimum V-norm g-inverse of (,.

As remarked earlier the inverse matrix (4.1.1) is like a Pandora's Box

which gives all that is necessary for drawing inference on the B-parametere.

We state the results in Theorem 4.2.1 which demonstrates the use of tile sub-

matrices in (4.1.1).

4.2 Main Results

Theorem 4.2.1

Let C1, C2, C3, C4 be as defined in (4.1.1). Then the following hold:

C i) [Use of C2 or C3]. The BLUE of an estimable parametric function

p'0 is p'8 where

f4.2.1) A = CI Y or =C 3 Y

2 2

ii) [Use of C4 ]. The dispersion matrix of ; is a2 C4 in the serse,

(4.2.2) Var(p'A) = o" p' C4  P'

(4.2.3) Cov(p'B, q'A) = a2p'C 4q = a2q'C 4p,

where p'B and q'B are estimable.

(iii) [Use of C1]. An unbiased estimator of a2 is

(4.2.4) f2 - y, CI Y

where

f = R(V:X) - R(X)

)
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Proof:

( i) If L'Y is aji unbiased estimator of p'I then

X'L = p.

Subject to this condit.ion

V(L'Y) = a2L'VL,

or L'VL has to be minimized to obtain the BLUE of p'S.

Let L, be an optimum choice and L be any other vector such that

X'L = X'L*.

Then

L'VL = (I-L + L.)' V(L-L• + Lj)

rL-L,)' V(L-L,) + +,VL, ' 2L'V(L-L,) > LYVL,,

iff L'V(L-L.) = 0 whenever X'(L-L,) = 0; i.e., VL, = -XK,

for a suitable K,.

Then L, and K, satisfy the equations

( .VL. + XK, = 0(4.2.5) X'L* p

We observe that the equations (4.2.5) admit a solution and any -wo

solutions LI* and L2* satisfy the tndition

V(LI* - L2 ,) = 0.

Since (4.2.5) is consistent, a solution is given by

L, = C2P L. = Cýpor
K. = -C4P K* = -C4P

Then the BLUE of p'B is

L'Y = p'C•Y = P$C3 Y.

(ii) We use the fact that p = X'M for some M. Then

-Moo"." M
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Var(p'C Y) = a M'(XCV)C 2X'M

= a2 M'XC (X'C X'IM Using Theorem 4.1.1 (iii)
4. 2

= oaM'XC 4X'M Using Theorem 4.1.1 ( ii)

2
= a PIC 4 P.

Similarly,

Cov(p'GCYq'CýY) = a 2 p'C 4 q a 2 q',:4P.

(iii) Since X'CiV = 0 and X'CIX = 0, using Theorem 4.1.1 (iv),

Y'CIY = (Y - X8)' CI(Y-XB).

We have
E-(Y-Xa)'C (Y-Xa)] = a2 Tr C] E{(Y-XB) (Y-XB)')]

= Tr CV [R(V:X) - R(X)],

where the last equality follows from (vi) of Theorem 4.1.1.

Theorem 4.2.2

Let P'8 be the vector of BLUE's of a set of k estimable parametric

2 = aeofunctions P'B, R0 = Y and f be as defined in Thcorem 4.2.1. If

Y - N (Xa, 2 V), then:

n

(i) P'B and Yt C!Y are independently distributed with

2(4.2.6) P' x - NR(P'8, a D)

and
2 2

(4.2.7) YIC - 0 2Xf

where D = P'C 4P.

(ii) Let P'S = w be the null hypothesis. The null hypothesis is consistent iff

(4.2.8) DD-u =u

whr-'.e u = P'S - w.
I.

4i
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If the hypothesis is consistent, then
R2

(4.2.9) F = u'Du h R(D)

h f'

has a Central F distribution on h and f degrees of freedom when the

hypothesis is true, and a non-central F distribution when the hypothes.•,

is false.

Proof (i)

The result (4.2.6) is easy to establish.

(4.2.7) follows since

C, + CO I C + C,
y,((Y.X( 2 (Y-XB)

and by

VCIVCIV = VC V

and vccl, VV

which is an NAS condition for a X - dist. (See Rao [3] p. 188 and also

Rao and Mitra [4].)

The degrees of freedom of the x is

Tr VC1 = RV:X) - R(X) = f, using Theorem 4.1.1, r•,-ult (vii.

Since P'8 is estimable,

P' z QX for some Q.

Then P'S = QXC 3 Y. +

The condition for independence of Y'( 2 Y and QXC 3 Y is

C + C'
V( 2 ) VCX,'Q'QXC3 V = 0

which is true since

C - C' C + Ct
I 1 -1 1

S.) VC'X' = V( 2 )

Using Theorem 4.1.1 (ii) and (iii).

L _
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(ii) The hypothesis P'8 w is consistent for any vector NI.

Var[M'(p'ý-w] 0 M'(P'B-w) : 0,

i.e., NI'DM = 0 =M'u = 0 or u EAD), for which a NAS condition

is DO u = u, for any g-inverse D •

Since dispersion matrix of u = o-D and

DDD= D,

u'D-u - 2 =

a t
2 2

Using the result proved in (i), R0 is distributed as X2

independently of u. Hence the result (4.2.9) follows.

Q.E.D.

In Theorem 4.2.2 the numerator of the F statistic for testing the

linear hypothesis p'S = w was obtained in the form U'D U which involved the

estimation of deviations in individual hypotheses, computations of their

dispersion matrix and its inverse.

Theorem 4.2.3 provides an alternative method of computing the numerator

as in the thecry of least squares.

Theorem 4.2.3

Let C1 be as defined in (4.1.1) and

V 0 X E1 E2

0 0 P1 E:
E3 E4)

', P 0

for any choice of the g-inverse. Further let Y have a NIVN distribution.

Then the hypothesis P'I w is consistent iff

0 0 P? E3 W W
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in which case

T = ( Y'CIY and

T2 = Y'C Y

are independently distributed as a2x2 on

"d = R X - R(V:X) and

f = R(':X) - R(X)

degrees of freedom respectively.

Hence,
T1  T 2

"d f-

has the F distribution on d and f degrees of freedom.

S. UNIFIED LEAST SQUARES METHOD (ULS)

5.1 Statement of the Problem

Suppose we iave a GGM model

(5.1.1) (Y,XB, 2v).

(a) When V = I and X is of full rank in (5.1.1) Gauss [2] propounded th.

famous theory of least squares which postulates that the best estimte

Sof S is obtained by minimizing the sum of squares

(5.1.2) (Y-XB)' (Y-XB)

Gauss showed in fact that 9 is the BLUE of B and that an unbiased

estimator of 2is

(5.a.3) = (Y-Xe)' (Y-Xi)/n-r with

r = R(X).

44
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(b) If V j I but non-singular we make the transformations

Y.4 V-112 y

X 1 V1/2 Xt

and reduce the problem to tne original Gaussiarn nodel

(5.1.5) (Yt, XtB a21)

to which the theory of least squares is applicable.

".,us we are led to minimize

"S.1.6) (Yt-Xt )' (Yt-X t) = (Y-Xs)' V-I (Y-XB)

which is the procedure proposed by Aitken [1].
-1

(c) PF V is sirgular, Aitken's procedure fails as V does not exist.

(e.g. if V is symmetric and n.n.d. with R(V) = r < n).

In such a case V has the followinq spectral decomposition

V = A P Pi +...+ X P P'
I I rrr

Let P r+l ... ,Pn denote eigenvectors corresponding to 0 eigenvector',.

Suppose F. -1/2 p. i = ,,2... r.
1 1 1

Then Var(F!Y) -- F!VF. = a 1 .

Cov(F.F .Y) a 2' PVP. 0.

Also let B. = P j = 1,2,..• ,n-r, thenSr*•• -

Var(B!Y) = B'VB. = 0.3 ~ 3

Letting

F = (Fl, F2 ,...,Fr),

1=(' B2 .... Bn-r)'

the given n-rdel (Y,XB,o 2V) is reduced to (F'Y, F'XB,o21) wih

constraints B'IX = B'Y = C.



25

This is a qirnple Gauss model with restri'.iLns on the parameter.

Hence the original problem is reduced to

minimize: (F'Y - F'X8)' (F'Y - F'X6b

{such that B'X5 C

or

(5.1.7) fminimize (v-xe)' FF' (Y-XB),

•such that B'X8 = C.

Since F = (X11/2 1/ -l/2 p )S '~ r r

FF' X_ I P Pi ... X-1 P P' = V-1 1 r r r

Therefore FF' can be identified with V- and (5.1.7) can be reformulated .,

(5.1.) j•minimize: (Y-Xs)' I- (Y-XB),5such that B'XB = C.

Remark 5.1.I

Here V can be taken as p g-inverse of V. The solution to (5.1.8) is

obtained by soiving the equation

X'V- X' BA v
B'X8 C.

Let

B X 0 H1 3I

Then the solution of (5.1.9) is

i = JI,X'V" Y - H2 C

and

Var(p'j) c 2
2'H X'V_ VV_ XH,'p.
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Also, as before we can calculate

(1) R = nin (Y-XF)' V-(Y-X$),B0'X = C

(2) 2_= mrin (Y-X8)' V-(.-XB).
I B'X= CP'B = W'

(3) The F statistic (4.2.9) for testing

HO: P'8 W is

2 R 2  5,2I'R0."'0

h f"

Motivated by the kr-wledge that Aitken's procedure fails when V is singular,

we raise the following ques:ion. Does there exist a matrix M regari!V "

whether I i3 singular or not such that the following conditions h01,1 ^
(Pj The BLUE of any estimable (pEAjX')) parametric function p'• i .

where S is a stationery point of the function

(5.1.10) (Y-Xa)' M(Y-XS)

i.e. where the derivative of (5.1.10) with respect to B vanishes is ze,

-22

(b) An unbiased estimator of 2 is obtained as

(5.1.11) 2 = (Y-XB)' M(',-Xg) f

whcre

f = R(V:X) - R(X).
2

(c) R = stationary value of

(5. .12) (Y-XS)' -%(Y-XS)

under the restriction P' =W,

2
R = stationary value of

(S.1.13) (i-XS)' M(Y-X8)

and 2 2 2
R.-R R6

IF h

•lliall r~r I~ I I€ l'•!•P .-•P!i• I 'if'l~~l •q'V
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Remark 5.1.2

It can be assumed, M may 'e chosen to be symmetric. Theorem 5.2.1 , 2

provide complete answers to the questions (a) and (b). We show that "'

singular or not, the choice should be

(S.1.14) N! = (V + XIx')

for any symmetric g-inverse where U is any symmetric matrix such that
i •(V: X) =_'.(V + XUX').

.n particular we can always choose

i (5.1.15) .•l = (V + 2 XX')-

for any choice of g-inverse where k is an arbitrary non-zero constant. (c) cannot

hold for any choice of M for all testable hypotheses.

5.2 Some Prtli.minary Lemmas

Lemma 5.2.1 Let T be a matrix such that R(X'TX) = R(X). Then

(5.2.1) X(X'TX) (X'TX) = X

Proof:

If R( 'TX) = R(X), then for any vector A,

X'TXX = 0 if and only if XX = 0.

This result together with the identity

(5.2.2) 0 = X'TX(X'TX) X'TX - X'TX = X'TXC(X'TX) X'TX - 1,

yields (5.2.1).

Lemma 5.2.2 Let L be symmetric and V be n.n.d. matrices such that

.-5.2.3) _,'(V:X) =.A(V + XOX')

Then

R[X'(V - XUX')- X] = R(X')

Uroof:

'Te result is :asy to establish using Lemma 5.2.1.
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Lemma 5 .3 Let X6 be the BLUE of XM. Then the unbiased estimat-, ,r is

(5.2.4) f (Y-X)V (-X) = f-I(y-XA)'(V + Xlx')" (Y-X8)

where

f R(V:X) - R(X) and U is defined in Lemma 5.2.2.

Proof:

The left-hand side expression in (5.2.4) is well-known.and the equiva!erc,

with the right-hand side follows easily observing that Y-Xý EtA'(V).

Theorem 5.2.1

Let (Y,XB,o4V) be a GGM.I model and M be a symmetric matrix such that

..I(X',kfk) qj_'(X'MX)

in which case

(Y-Xe)' ,m•Y- Xa)

as a function of 5 has stationary values. Further let A be a star, ,nt.

If p'B is the BLUE of ple for every pýAX'). Then it is necessary-

(5.2.5) R(X'MX) = R(X)

and M is of the form

(5.2.6) (G + X C)- + K

for any s)ynetric choice of g-inverse where U and K are any symmetTi t. --

such that

(5.2.7) _,Y(V:X,) :C(V X+x')

(5.2.8) VKX = 0 X'KX = 0

Conversely: If M, is of the form (5.2.6) with (5.2.7) and (5.2.8) trut, .-ff

R(X'•M) = R(X) and p'S is the BLUE of p'I

for every p.WX').

Proof:

Equating the derivative of (Y-X6)1M (Y-X8) to zcro, we obtain

(5.2.9) X'MXB = MY
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which is consistent since._J(X'MX) DX(X'W) and YEXV:X) with probabill" I.

In this case

(5.2.10) 6 = (X'MX) X, MY

is a stationary point.

Let p = X'L. Then p'A is the BLUE of p'S and it follohs by derinitIth ,

(5.2.11) L'X(X'MX) X'MX = L'X.

Since L is arbitrary in (5.2.11), we have

X(X'MX) (X'MX) = X R(X',IMX) = R(X),

which proves (5.2.5).

If p'B is the BLUE of p'1 for every pEAX') then applying the lenwra ,',r p -,7

of Rao [3], we have

(5.2.12) L'X(X'MX)- X'MVZ = 0 for any L,

where Z is a matrix of maximum rank such that

X'Z = 0.

Then (5.2.12)> X(X'MX)} X'MVZ = 0 X'NvZ = 0

(5.2.13) =VMX = XQ

for some Q.

Now there exists a symmetric matrix U such that

(5.2.14) X',M(V + XUX')MX = X'MX.

Let W = X'MY. Then it can be verified easily that one choice of Ui

W (-X'MAVM + W)-

where VC is a symmetric g-inverse of W'.

Multiplying both sides of (5.2.14) by X(X'MX)- and using (5.2.13) and Le-':- 5.2 i.

we obtain

(5.2.!S) (V XUX')MX = X.



- -,,u--u-u-

30

If a'(V * XUX') = 0 then from (5.2.15) acX = 0 and hence a'V = 0 and

vice-versa, which proves (5.2.7).Choosing a symmetric g-inverse end a

symmetric K, let

(5.2.16) M - (V - Xt1X')" + K.

Substituting (S.2.16; in (5.2.15), we obtain (5.2.8).

The converse is easy to prove using Lemma 5.2.2.

Theorem 5.2.2

Let B be a stationary point of (Y-X6)'M(Y-XB) where M is a symmetric

matrix such that

if p'A is .'he BLUE of p'B for every pý[XI) and for all YAV:X),

(5.2.17) a2 = f(Y-X_),'M(Y-Xi)

is an unbiased estimator for a 2, then it is necessary and sufficier th.,.

M is a symmetric g-inverse of V + XUX' where U is any symmetric matri -.

that.A((V:X) =4'(V + XIX').

Proof:

We have already seen that H is of the form (5.2.6) and K satisfies i.

If (5.2.17) is the same as (5.2.4), then

(Y-Xi)'K(Y-Xý) = 0 = Y'KY.

ing (5.2.8) for all YEAV + XUi'), which implies that VKV = 0 in addit-

to (5.2.8). Then,

(V + XuX')[((V x+x') + K](V + xux') = (V + Xox')

which shows that M is a g-inverse of (V + XUX').

Remark 5.2.1

( i) In Theorem4S.2.1 we showed that M is a symmetric g-inverse of

(V + XUX'). It may be seen that the expression

(Y-Xs)'(V + XlI,) (Y-XB)
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is independent of the choice of a g-inverse and in practice one can use

any g-inverse.

(ii) If V ; XUX' is a n.n.d. matrix then

(Y-XB)'(V + XUXI)- (Y-XB)

is independent of the choice of the g-ifzverse, is non-negative and obtains

a minimum at A where the derivative vanishes.

We can always choose U in such a way that V + XUX' is n.n.d. and satisfie4

(5.2.7). For example Ucan be any p.d. matrix.

(iii) It may be seen that (V + XUX') need not be a g-inverse of V.

if there exist a matrix U such that V + XUX' satisfies (5.2.7) and

(v -. XuX')- C {V-}

then it can be shown that a NAS condition is:

4(V) fln(XUX') = {01.

Sucho a choice of U can be made if necessary.

Theorem 5.2.3

Let M be chosen as in Theorem 5.2.2 and P'S be a set of k estimable fun,- ,,ns i.C

AM(P) CA(X').

Then P'S are the BLUE's of P'S and the dispersion matrix of P'S is

(5.2.18) D(P'5) a o24'[(X'(V + XUX')- X) - U]P

Proof:

Let W : (V + XUX').

Then

p'e = P'(X'W X) X'W-Y

and

(5.2.19) D(P'i) = a P'(X',W X) X'W V[P'(X'W- X) X'W-;

Write V = V + XUX' - XUX'

= W - XZ(' in (5.2.19).

E IL,.afedfm .@
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Then, repeatedly using the relation (a) of Section 2.2 we ';t (5.2.18).

Finally, to test the hypothesis

P'S = W.

We proceed as follows:

Let u = P'i - W and

D(u) = a2D, R(D) = h.

The hypothesis is consistent if

(5.2.20) DD- u = u.

If (5.2.20) ho'ds, then the null distribution of the statistic

u'D u -2
(5.2.21) F= -= O

is the F distribution on h and f degrees of freedom when Y - MVN(X6,o2 V).

The results (5.2.20) and (5.2.21) are proved in section 4.

In Theorems 5.2.1 and 5.2.2, it is shown that there exists a matrix M,•

whether V is nonsingular or not, such that a stationary value B of

(Y-xB) 'M.(Y-XB)

provides the BLUE of an estimable function p'e as p'A, and an unbiased

estimator of oa is

a2 = f (Y-Xa)'M(Y-Xi).

So far we have an analogue of the !east squares theory in the general caae.

The first departure from the least squares results is the expression

(5.2.18) for the dispersion matrix of P'S, which contains the extra term.

a2P'UP. It can be shown that there exists no choice of V1 unlessA(x) c.'4V)

such that

2-(5.2.22) D(P'S' = o P'(X'MX)-P

for all P such that P'I is estimable.
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Since (5.2.22) does not hold, there exists no choice of M, unless

.4(x) C _X(V), which enables the uxiputation of the numerator of the F-

statstic, (5.2.21), in the form

u'D u = rain (Y-X8)'M(Y-Xa) - min(Y-X5)'M(Y-X8)
P 'B=w

for all testable hypotheses of the form P'B = w.

However Rao [6] and Mitra [10] have shown that a suitable choice of

M4 can be made provided the null hypothesis is written in a modified but

an equivalent form. The computation of such an M is somewhat conplicated

and it is much simpler to compute the F-statistic as in Theorem 5.2.3, using

t!-e simple choice of M as in Theorems 5.2.1 and 5.2.2 for estimating P'.-w

and a2. Not.. that M can always be chosen as (V+XX')-, which satisfies the

conditions of the Theorem 5.2.2 (see Rao and Mitra [12]).

6. BLUE'S AS PROJECTIONS

6.1 Projection Operators

It is well known that when V is nonsingular the BLUE of Xe is obtained

by the orthogonal projection of Y on.•ax), using the norm HIxiJ= (x'V Ix)1/2

which is the same as the projection of Y on_'(x) along.A-(VZ), where Z = X1.

[Note thai_.f(x) andctVZ) are disjoint subspaces whether V is nonsingular or

not]. We prove the corresponding results when V is singular. Naturally,

the results have to be stated iii a slightly different manner since V-l does

not exist (hence the norm 11x11 cannot be defined as in the nonsingular case),

and-(x) and_(VZ), although disjoint, may not span the entire space n (hence

the projection on.A'(x) alongA4t(VZ) is not properly defined).

Definition 6.1.i. Let r be an n.n.d. (non-negative definite) matrix

of order n and define E-norm as

(6.1.1) IlxE (x 1x)2
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Further let A be an nxin matrix. We call PAE a projector into_(A) under

the E-norm if

(6.1.2)

SIy-PAf(z <. ly - AtII, for all yEE n, \EE.

The following lemma is easily established (see Mitra and Rao, [11]).

Lemma 6.1.1. If PAE is as defined in (6.1.2), it is necessary and

sufficient that

(6.1.3) .dgCP AE) Ct(A)

(6.1.4) (')' PAZ : AL : (P)1,)'

A6.1.Z) =AEA = (A

EPAr"=E

Definition 6.1.2. Let U and W be two matrices such thatA(U) and

•AK) are disjoint, which together may not span the entire space. Any

vector a.4U:W) has the unique decomposition

a = a, ý a 2: ̀ I EO•(J) , a.. E.#,,TW) .

Then PU .I' is said to be a projector onto.-AU) along_,t(W) iff

(6.1.6) Ptp• a = 1  for all a E.,4(U:W).

"The folleo, ing le.rna is easily established.

Lemma 6.1.2. If P is a projector as given in Definition 2, then

it is necessary and sufficient that

(6.1.7) puJW U = u, - • W = 0

and one choice of PUJW is

(6.1.8) Pu;w W U(GU) G,

where G' = W and (GU)" is any g-inverse of GU.
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6.2 Applications

The following theorem provides expressions for the BLUE's in terms

of projection operators as described in definitions 1 and 2.

Theorem 6.2.1. Consider the G.G.M. model (Y, Xa, o 2 V). Then the

following hold:

( i) Let L'Y be an unbiased estimator of p'B with the property L'X =

II
and define L, = (I-Pzv)L, where Z = X . Then L" Y is the BLUE of p'B.

(ii) Let S = V+XX', S- be any n.n.d. g-inverse of S, and Z = X'. Then

(6.2.1) (Piv + Pxs-) a = a for any a E.A1V:X)

i.e., the sum of the projection operators on the left hanJ side of

(6.2.1) is an ideitity in the space _4(V:X) =.AVZ:X).

(iii) The BLUE ot XB is

C6.2.2) (I-P )-)y = (PX=vz)Y

where the projection operators are as described in definitions 1 and 2.

Proof of (0). Sincet(Pzv) c4(Z), P•- X = 0 and hence

E(L'PivY) = L' Pi X = 0,

giving

E(%L.Y) = E(IL'Y) - E(L'PivY) = E(L'Y)

so that L4Y is unbiased for p'B. Further

LI VZ = L'(I-Pzv)' VZ = 0

using the conditions (7.4) and (7.5), which shows that L'Y has minimum

vari ance.

Proof of (ii). Since OV:Xj =_.'(VZ:X) we need only verify that

(PZv $ PS") (VZ:X) = (VZ:X)

which follows from the definitions of the projection operators.
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Proof of (iii). From (i) it. follows that the BLUE of XS is

and from (ii) we have

(1-Pv)Y = (Pxs_)Y

To prove the last part of the equality in (6.2.2), consider the unique

decomposition

(6.2.3) Y = XYI + VZY 2

on the disjoint subspaces j(x) andjAVZ). Note that XYI = (Pxvz )Y where

PxIVz is the projector onto.j(x) alongJ(VZ). Now

Xp r(Y) = XE(Y1) + VZE(Y2),

x[S-E(Y)I = VZE(Y 2) = 0

since-4t(x) and,(VZ) are disjoint. Then E(XY1 J E(Y), so that XY1 is

unbiased for xS,

Further from (6.2.3)

Cov(Y,Z'Y) = X Cov(YIZ'Y) + VZ Cov(Y2 ,YvY)

(6.2.4) VZ = XD1 + VZD2  for some and D2

VZ(I-D 2 ) = XD1 = 0 = Coy (XYIZ'Y)

which shows that XY1 is the BLUE of E(X-Y1  = xB.

Theorem 6.2.1 is thus completely proved.

Note that, following (6.1.S), we can rtpresent

(6.2.5) PxJVz = X(GX) G

wherc C' = (VZ) . When V=I, we have G = X giving the BLUE of xS as

(6.2.6) (PxJvz)Y X(X'X) X'Y.
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When V is nonsingular, we havý G = X'V- 1 giving the BLUE of xa as

(6.2.7) P Y X(X'V'Ix)'xv- I

Px IV-Z XXWXXVY.

Thus (6.2.5) provides the well known formulae (6.2.6) and (6.2.7) in

the particular cases considered.

In these lectures we have considered the problem of estimating

p'B by L'Y such that L'VL is a minimum subject to X'L = p, which provides

a complete solution to the BLUE. However, this approach does not provide

all possible re -esentations of the BLUE. For this, one has to minimize

L'VL subject to the condition X'L-p Et(X'N) where N is as defined in

Section 3.1. The latter problem called BLUE(W), BLUE in wider sense, which

is of some theoretical interest is solved in Rao [9].

Note. The references given at the end uf the notes constitute the material

on which the lectures were based. For reference, to related work by other

authors the reader is referred to bibliographies in Rao [5] and [6]. It may

be noted that Goldman and Zelen [13] were --he first to consider the case of

nonsingLlar V in a systematic -jay isirg generalized inverses.
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