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Abstract

The augmented predecessor indexing method is a procedure for efficiently
updating the basis representation, flows and node potentials in an adjacent
extreme point (or "simplex" type) method for network problems, utilizing ideas
due to Ellis Johnson in his proposed application of a triple-label re-
éresentation to networks., The procedure is extended here to accommodate

the more complex basis structures and updating processes of the generalized

network problem, specifying rules for expediting the calculations.
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1.0 INTRODUCTION

The augmented predecessor indexing (API) method [10], is a procedure
for efficiently updating the basis representation flows and dual evaluators
in transportation and network optimization problems. This procedure, which
is based on Ellis Johnson's triple label representation [12], has been recently
incorporated into computer programs, for transportation problems with noteworthy
success. Computational studies demonstrate these computer programs [9,16] to
be substantially faster than those previously available, solving 100 x 100
transportation problems in 1.l seconds and 1000 x 1000 transportation problems
in 15 seconds on the CDC 6600. 1In this paper we show how the API method can
be extended to generalized network problems, making it possible to update the
more complex '"quasi-tree" basis structures of these problems with the same
types of computational efficiencies that result for ordinary network problems.
The potential applications for an efficient and clearly organized caumputer
code for generalized network problems are significant, due to the wide range
of problems that can be given a generalized network formulation [4, &, €, 11].
The computational advantages of a special purpose algorithm for these problems
as opposed to a general purpose linear programming method are demonstrated by
the studies of (3, 9, 14, 15, 16] wuich show that special purpose transportation
and network codes (utilizing the updating procedures which are extended in
this paper) solve transportation and network problems 150 times faster than
the state-of-the-art commercial linear programming code, OPHELIE.
The following sections introduce the generalized network problem
and describe the procedures of the extended API method, focusing on con-

csiderations relevant to computer implementation.
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2.0 THE GENERALIZED NETWORK PROBLEM

The generalized network problem may be defined as

Minimize ) ciixij (1)
(i)j)€A N
subject to 2 a ..Xx,.=b eN 2
J (1,3) €A p,ij71] p’ P (@)
X520, (1,)) €A (3)

where A is the set of arcs and N is the set of nodes for the network. Each
arc (i,Jj), i#j, has a nonzero coefficient in exactly two of the node equa-
tions (2), i.e., the two equations corresponding to the arc's endpoints.

Specifically, ap 1j f Oonly if p =1 or p = jo In an ordinary network
’

a, ., ==-1 and a, .. =1, but in a generalized network a, .. and a, .. can be
1,15 Jsij 1,1] Js»1J
any two nonzero quantities. Typically, however, a, i3 is assumed to be -1
<y
and a, ., is assumed to be positive, in which case a, .. is called the
3,1 Jdrid

"multiplier" of the arc directed from node i to node j. This multiplier

can be thought of as a factor which magnifies or attenuates the flow xij

across the arc, according to whether aj 1j
s

A generalized network can also contain arcs which are "self-loops,"

is greater or less than one.

leading from a node back to itself. That is, for some nodes i1, there may
exist "arcs" (i,i) in A. In this case, B 14 # 0 only if p = 1. Such self-
loops are customarily used to introduce slack variables into the problem (to
change inequalities into equations) and have been called slack loops [9,

p. 413-k2k],

The quantities bp of the node equations represent the supplies and
demands at the nodes, where bp > 0 1is interpreted as a demand, bp < 0 is
interpreted as a supply.

The non-negativity inequalities (3) are often supplemented by upper
bound inequalities of the form u,, > xij’ in which case the problem is re-

ij -
ferred to as capacitated, and the quantities u

iJ

are called the arc capacities.

—
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The inclusion of these capacities does not alter the basic structure of the

problem, or the procedures we shall give for exploiting it.

3.0 THE TRIPLE-LABEL REPRESENTATION

The triple-label representation is a standard way to record and meni-
pulate trees in computer list processing. Its application to network
problems was proposed by Ellis Johnson, who showed that it could be used
efficiently to organize the labeling and flow augmenting operations of a
maximal flow algorithm [12), sketching some of the fundamental ideas that
were later elaborated in the API method.

The triple-label scheme orients the tree so that it is in fact an
"arborescence"; that is, for some single node which is identified as the
"root", the arcs are oriented (by labels) so that the unique path from any
node to the root node of the tree is a directed path. The triple-label
representation may be viewed as inducing an "ancestry relationship'" on a
tree, each node carrying three labels, or node indexes, which name the
father, the eldest son, and next younger brother of the given node. 1In
particular, a node is taken to be the father of all its immediate successors,
these latter constituting a set of brothers, arbitrarily sequenced from
eldest to youngest. Thus, the root node is the ancestor of all nodes, and
h~s no father (immediate predeseccor). Nodes at the extremities of the
tree have no sons (immediate successors) and the "last" of a set of successors
of a given node hac no younger brother. The father, eldest son, and next
younger brother in these three extreme cases are given a "dummy' name which
comunicates their nonexistence.

By the use of these labels it is possible to find all ancestors or all

descendants of a given node in an obvious manner, and this constitutes the




essential convenience of the triple-label representation. (It should be

noted, however, that a "threaded 1list" representatic: [13] shares this

convenience, and the API method as described in thi:c paper can as readily

be implemented wich the latter, using the relationships developed in Section 4.)
The hasis structure of a generalized problem is not a tree, as in the

pure network problem, but u set of disjoint quasi-trees, i.e., connected

graphs which have a single loop [2,5,6,15]. We stipulate that the triple-

label representation be applied initially to each quasi-tree in the basis

s0 that the arcs of the loop are oriented uniformly clockwise or counter-

clockwise, thus making each node on the loop its own ancestor. (A self-loop,

which conteins only one arc, may simply be assigned the orientation it receives

in the network.) The trees (that are identified by suppressing all loop arcs)

are oriented as arborescences, whose roots consist of the nodes that lie

on the loop. Hence each loop node has an "equal" status a3 an ancestor of

all nodes in the quasi-tree, and every node has a father. (The immediate

successors of a given node are arranged as usual, from eldest brother to

youngest in any fashion desired.) We shall call this the "rooted loop"

orientation. This orientation, of course, has nothing to do with the

"true orientation" - i.e., actual direction of the arcs in the network.

4,0 THE EXTENDED AP. METHOD

L,1 PBasis Representation of an Incoming Arc

In any quasi-tree poussessing a rooted-loop orientation, it is clear

that & sequentiel trace of tho preecessors of a given node (from father to




grandfather to great grandfather, etc.) generates a backward path which

contains all arcs on the loop. For simplicity we shall suppose that such

a path is simple, i.e., not traced beyond necessity (hence, as soon as a
node on this path is encountered a second *ime, the trace is stopped).

The path itself therefore duplicated no arcs and duplicated only a single
node - the node at which the loop is entered (which may be the starting node
for the trace). The procecire of an adjacent extreme point algorithm

identifies an incoming arc and an outgoing arc, respectively from among the

nonbasic and the basic arcs. The addition of the incoming arc and the
removal of the outgoing arc produces & changed set of quasi-trees. and this
operation constitutes a fundemental step of a standard iteration, or "basis
exchange" step of linear programming methods. An important aspect of this
step is to identify the set of arcs on which flows will change, or more
precisely, the set of basic arcs which provide a linear representation of
the nonbasic incoming arc. The following observation characterizes this

set of arcs.

Remark 1: The basic arcs that have a nonzero coefficient in the basis
representation for an incoming arc (u,v) are contained in the backward paths

Pu and Pv from node u and node v.

Proof: The validity of the remark follows immediately from the fact that the
network P U P consists of one or two "stripped" quasi-trees which represent

8 linearly independent subsystem of the full basis, containing as many

variables (arcs) as equations (nodes). To provide a more useful justifica-



tion, we wiil show how to constructively generate a representation of
(u,v) from arcs of P, and P . First note that to satisfy a node require-
ment ry for any node i that has exactly one incident arc (i,j), it is
necessary to assign a flow Wy to (i,]J) precisely equal to ry / 8 357
This in turn transmits a node requirement to node j of 'aj,ij wij'

(If the arc incident to node i is (j,i), the double subscript ij should

be replaced in the preceding by ji.) The constructed representation of

(u,v) begins by setting node requirements at nodes u and v of 8, uv and i
J

&, uv respectively. These requirements and their transmitted requirements
I4

are met by assigning appropriate flows to successive arcs of the noninter-

secting portions of Pu and Pv. (This "domino" procedure of assigning

flows and transmitting requirements down a path is standard. We need

to show that the procedure can be satisfactorily brought to conslusion

on the paths Pu and Pv’ leavirg no transmitted node requirements unsatis-

fied.) If these paths do not intersect or if the paths encounter a loop before
meeting then they transmit requirements to the node(s) where they meet the loop(s),

and the flow for the loop arcs that accomodate these requirements are

generated by the procedures of [8, 15]. If these paths intersect before

encountering a loop, then they transmit-a requirement to their intersecting ’
node (the sum of the two requirements generated by the nonintersecting {
pertions of the paths), and flows are then determined exactly as before ;
in the intersecting portions of their paths until reaching the loop, where- j
upon the procedures of [ 8, 19] may be used. (A zero imbalance may be

transmitted to the first node of the intersection, in which case all sub-

sequent arcs receive O flow and no further determination is necessary. This



-7~

is the situation which occurs in ordinary network provlems.) Thus, all al-
ternatives are resolved, leaving no "dangling" node requirements, and the
basis representation of (u,v) is completed by the specified assignment of
flows to the arcs of Fv and Pv' (From the tact that a basis representation

is unique, it follows that the one determined is the one sought.)

The preceding construction of the basis representation is particularly
useful to determine the outgoing arc in the primal simplex method. For
explicitness in the present context, the outgoing arc is identified quite

simply by considering the flow w thus generated for each are (i,j),

ij

and computing the upper bound value « that satisfies x, .

>0
ij -

= dle

(i.e., o S'xij/wij for Wiy positive ), The arc which provides the
most restrictive upper bound o * for o becomes the outgoing arc, and
the new flow value of each of the arcs (i,j) in the basis representation is

X -a* wij’ with the flow value Xy of the incoming arc itself equal to

ij

a *. For the capacitated problem ¢ represents the value Lo be assigned

either to x oru - x , depending on wheliir currently x =0 or x =u .
uv uv uv uv uv uv

In the latter case, the representation sought i: of the negative of the arc

(u,v), giving requirements of -a and -a at nodes u and v. For
u, v,uv

this case, o is also limited by the inequalities uij > X;o - Qwij for all

arcs in the basis representation o < Uy The new flow values are deternined

exuctly as before for the variavles x but if o* = uuv then no arc enters

iy’

» + = - =
or leaves the basls, and xuv is simply set equal to o* Uy or Uy O,

as appropriate,




L,2 Updating the Basis

A crucial concern of the extended API method is to impart the rooted-
loop orientation to the updated basis by appropriate reindexing, thus making
it possible to take advantage of this orientation in the manne: described in
Sections 4.1 and 4.3. The basis exchange step modifies the composition
of the quasi-trees in the basis in any of a variety of ways, depending
on the relation of the incoming and outgoing arcs to the current basis
and to each other. For example, the endpoints of the incoming arc can
lie in two separate quasi-trees, or in the same quasi-tree, and may at the
same time lie either on a loop or a "tributary" of a quasi-tree, creating
differert possible configurations in each case. The outgoing arc may dis-
connect two quasi-trees that have been joined by the incoming arc, destroy a
previously existing loop in one of these quasi-trees, disconnect a newly created
loop from an old loop, breask one or the other of a new and old loop presently
connected, or break overlapping loops on any of three possible chains. In
spite of this proliferation of cases (there are something like 17 of them,
depending on which configurations are identified as "equivalent"), it is
possible to accommodate every alternative by a single, easily stated rule.
This rule automatically generates the appropriate indexing scheme without
reference to the manner in which loops are created or broken, or to their
relation to each other. If it were not a matter of convenience to do so
(for reasons to be discussed later) there would be no need to identity
which arcs lie in which loops, or even to identify the presence or absence
of loops, in order to determine the updated indexing which permits the basis

exchange paths and other updating calculations to be carried out. To describe

|
1




this rule, let P denote one of the backward paths from the incoming arc
(u,v) that contains the outgoing arc. (Either or both of Py and Py will
contain this arc, but only one of these paths is selected.) Define the
"upper path'" P* corresponding to P tc be the portion of P that lies between
the incoming and outgoing arcs. (P* contains at least one node, but may
contain no arcs 1f the incoming and outgoing arcs are adjacent.) Then the
updating rule which achieves an appropriate reorientation of the basic

arcs for all of the cases indicated may be stated as follows.

Remark 2:

If the basis for a generalized network problem has a rooted-loop orien-
tation, then the new basis after the basis exchange step will also have a
rooted-loop orientation by the following steps:

1. Reverse the orientation of all arcs in P*%,

2. Orient the incoming arc so that it "begins' this redirected path;
i.e., the endpoint of the incoming arc which is not on P* becomes
the predecessor of the endpoint which is.

Proof :

Consider the network that consists of the current basis after deleting
the outgoing arc but before adding the incoming arc. Tve connected sub-
network consisting of all arcs that can be reached from node:s of P* is a
tree, since the removal ¢f both the incoming and outgoing arcs implies that
this subnetwork can contain no loops. (This may readily be verified by an
examination of cases.) Moreover, this tree is an arborescence due to the
fact that every subtree of a rooted-loop structure is an arborescence. The
root of this arborescence is easily identified a3 the node of the upper path

which is an endpoint of the outgoing arc since the removal of this arc leaves
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the indicated endpoint without a predecessor, a condition that only the
root node satisfies. A characteristic of an arborescence is that reversing
the direction of every arc lying on some path from the root node creates a
new arborescence, whose root is the opposite endpoint of the reversed path.
Thus, the reversal of P* creates an arborescence rooted at the node
which is an endpoint of the incoming arc. Now there are two possibilities:
either the opposite endpoint of the incoming arc lies iIn this same arborescence
or it does not. If it does, the addition of the incoming arc creates a {
loop, and an arc which joins any node of an arborescence to the root node,
directed toward the latter, creates a rooted-loop quasi-tree, as desired.
In the other case, the incoming arc grafts the arborescence to a cisjcint
network which, by the known structure of the basis and the previously es-
tablished orientation of the arcs, must be a rooted-loop quasi-tree. But
since the arborescence is connected by its root node, using an arc direcied
from the quasi-tree to the arborescence, the rooted-loop structure is main-
tained.

The simplicity of the operation described in Renark 2 makes it highly
atrtractive from a computational standpoint. It should be noted that the
process of generating the new basis structure can be viewed in terms of
deleting and adding arcs. An arc reversal consists of deleting the arc in
one direction and then adding it back in the reverse direction. Denoting
an arc with an induced orientation froum 1 to j by {1,j] - which may cor-
respond either to the arc (i{,j) or (j,1) - the rules for deleting and adding
arcs m;y be stated as follows.

To delete [1,i]: Case 1: Jj 1s the eldest son of 1: Name j's next

younger brother as the (new) eldest son of {. Case 2: j is not the eldest
son of 1: Identify j's next older and next younger brother, and name the

larter to be the (new) next ycunger lLrother of the former.
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To add arc [1,{]: Name i as the predecessor of j, name the eldest

son of 1 to be j's next younger brother and name j to be the new eldest son
of 1.

In carrying out the foregoing operations, the use of a standard dummy '
index (e.g., 0) to name a nonexistent eldest son or next younger brother i
makes it unnecessary to check for exceptional cases. It 1s also unnecessary
to modify (or "clear") the index labels that name j's predecessor and next
younger brother when deleting [1,j] since j will always receive appropriately

reassigned labels in the process of updating Lue vasis network.

4,3 Updating Node Potentials and Integrating Computations
The determination of the node potentials (dual evaluators) my» 1eN, so

that the marginal cost Cyy "7y 84 44 - for each basic arc (i,j) in
1

"5%3,1d
the network, equals 0, can be performed efficiently using the guidelines of
[8,15]. ‘The principal observations to be made in the present setting are two.
First, updated calculations need only be made for descendents of the first
endpoint of the incoming arc in the updated basis. (Note that this consists
of the nodes of P* and their descendants after the updating step.) Thus,

if the incoming arc does not create a new loop (i.e., connects two previ-
ously disjoint quasi-trees) or if 8 newly created loop is broken by the out-
going arc, then the new node potentials are straightforwardly computed-using
the existing potential of the first node of the incoming arc - by fanning

out “hrough the arborescence that is identified in the proof of Remark 2.

In such a fanning out process, as soon as the potential for a node's pre- ‘

decessor has been updated, the potential for the node itself is immediately ol

updated; e.g., 1if wjis known for arc (1,j) oriented as [j,1], then "=

('"aaj,ij + cij)/ 4,13 None of the other node potentials in the network .

need to be examined. On the other hand, if the incoming arc creates a new
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loop that survives the deletion of the outgoing arc which is instantly
determined by reference to P, and P, - then the new node potentials are
first computed for this loop (following ([8,19]) after which the remaining
potential-, to be updated are determined by fanning out to the successor
of these nodes.

The second observation to be made is that the updating of the node
potentials can be coordinated with the updating of the flow values over
the portion of the network where both of these introduce change. Similarly,
the determination of the '"loop factor'" for a new loop can be carried out
simultaneously with the reverse trace of P, and P, to identify the basis
representation of the incoming arc. In this connection, the use of stored
loop factors to accelerate calculations involving pre-existing loops (as
discussed in [6 ,8]), makes it desirable to keep track of loops currently
in the basis. Because of the automatic manner in which the trace of the
backward paths identifies a current loop (or loops) of interest, and also
pinpoints the identity of a newly created loop, a particularly simple and
efficient scheme for making use of loop factors is possible. When a loop
is created (initially or in a basis exchange step), the loop factor 1is recorded
(indexed) by the nodes in the loop. That is, this number is attached to
each node in the loop (using a node length array). As soon ass backward path
identifies a loop, the loop factor may be retrieved from any node in the
loop. When a loop is destroyed, there is no need to locate or erase the
loop factor in the node list since the process of loop detection oy backward
paths restricts attention to nodes whose loop factors are current.

Thus, to conclude, while the underlying structures and processes of

the generalized network problem are somewhat more complex than those of the
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ordinary network problem, the extended API method conveniently accommodates
this additional complexity by means of simple rules that enable the auxiliary

computational processes (e.g., those of [8]) to be implemented effectively.



References

Balas, Egon. '"The Dual Method for the Generalized Transportation
Problem," Management Science 12, 7 (1966), 555-568.

Balas, Egon and P.L. Ivanescu {Hammer). '"On the Generalized Trans-
portation Problem," Management Science 11, 1 (1964), 188-202.

Barr, R.S., F. Glover, and D. Klingman. "An Improved Version of the
Out-of-Kilter Method and a Comparative Study of Computer Codes,"
C.S. #102, Center For Cybernetic Studies, University of Texas at
Austin, 1972.

Charnes, A. and W.W. Cooper. Management Models and Industrial Applications
of Linear Programming, Vol. I-II, New York: John Wiley and Sons,
Inc., 1961.

Dantzig, G.B. Linear Programming and Extensions Princeton, N.J.: Princeton
University Press, 19672,

Eisemann, Kurt. '"The Generilized Stepping Method for the Machine Loading
Model," Management Science 11,1 (1964), 154-177.

Glover, Fred and D. Klingman. 'On the Equivalence of Some Generalized
Network Problems to Pure Network Problems,” To appear in Mathemati-
cal Programmiix.

Glover, Fred and D, Klingman. "A Note On Computational Simplications In
Solving Generalized Transportation Problems." To appesar in

Transportation Science,

Glover, Fred, D. Karney, D. Klingman, and A. Napier. "A Computation
Study on Start Procedures, Basis Change Criteria, and Solution
Algorithms for Transportation Problems,'" [o appear in Management
Science.

Glover, Fred, D. Karney, and D. Klingman. '"The Augmented Predecessor
Index Method for Locating Stepping Stone Paths and Assigning Dual
Prices in Distribution Problems," Transportation Science, 6, 1(1972),
171-180.

Jewell, W.S. "Optimal Flow Through Network with Gains," Operations
Research 10,4 (1962), 476-499.

Johnson, Ellis. ''Networks and basic Solutions," Operations Research,
14,4 (1966), 89-95.

Knuth, D.E. The Art of Computer Pr gramming: Vol. l, Fundamental
Algorithms, Reading, Mass.: Addison-Wesley, 1968.

/'



14. Lourie, Janice. "Topology and Com

putation of the Generalized Trans-
portation Problem,"

Management Science 11,1 (1964), 177-187.

15. Maurras, J.F. "Optimization of the Flow Through Networks With Gains,"
Mathematical Programming 3,2 (1972), 135-145,

16. Srinivasan, V. and G.L. Thompson, "Benefit Cogt Analysis of Coding
Techniques for the Primal Transportation Algorithm," To appear
in ACM.

/4"




