
AD-763 382

EXTENSIONS OF THE AUGMENTED PRE-
DECESSOR INDEX METHOD TO GENERALIZED
NETWORK PROBLEMS

Fred Glover, et al

Texas University

Prepared for:

Office of Naval Research

February 1973

DISTRIBUTED BY:

KHJi
National Tachnical liforMtioo Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

EXTENSIONS OF THE AUGMENTED
PKEDBCESSOR INDEX METHOD TO
GENERALIZED NETWORK PROBLEMS

by

F. Glover*

D. Klingman**

J. Stutz***

CENTER FOR
CYBERNETIC

STUDIES
IhM'niversitynf Iexa>

Austin.Texas 7H712

NATIONAL IfcCHNlCAL
rNFORMATlON SERVICE

OT'

Research Report
CS 124

EXTENSIONS OF THE AUGMENTED
PREDECESSOR INDEX METHOD TO
GENERALIZED NETWORK PROBLEMS

by

F. Glover*

D. Klingman**

J. Stutz***

February 1973 ■ .J

* Professor of Management Science at the University of Colorado,
Boulder, Colorado

** Associace Professor of Operations Research at the University of Texas
Austin, Texas

;** Assistant Professor of Operations Research at the University of Texas
Austin, Texas

This research was partly supported by a grant fron the Farah Foundation and
by CNR Contracts N00014-67-A-0126-0008 and N00014-67-A-0126-0009 with the
Center for Cybernetic Studies, Ihe University of Texas. Reproduction in
whole or in part is permitted for any purpose of the United States Govemnent.

CENTEK FDR CYBEFNETIC STUDIES

A. Chames, Director
Business-Eoonanics Building, 512

Ihe University of Texas

Austin, Texas 78712

IK
ill:

Unclassified
Security Classification

KEY WO RDS

Networks

Generalized Network

Cieneralized Transportation

Sequential Linked Lists

ii

LINK B

DD .?o"r..l473 'BACK
»'•l 0I0J-UI4-«»0C

I'nclassified
S^iunly Ctltllfu allon

ÜJiciassing'i
Sfciinty Classification

DOCUMENT CONTROL DATA -R&D
iSvcunlv clatsiticmtion of titlo, body of abstract and indtxtng annotnlion must be tntered whm the ovcruU report is rltttaitttd)

i ORIGINATING ACTiviTv (Corporate author)

Center for Cybernetic Studies
University of Texas at Austin

2«, REPORT SECURITY CLASSIFICATION

Unclassified
2b. cnouP

1 REPORT TITLF

Extensions of the Augmented Predecessor Index Method to Generalized
Network Problems

i DESCRIPTIVE UOTES (Typ» ol report *nd,inctu»lve dmlea)

i lulHomsi (Flrtl nmm*. middl* Initial, Imtt name)

F. Glover
D. Klingman

J. Stutz

e «EPOR T o* T E

February 1973
7a. TOTAt NO OF PACES

^7 *C

7b. NO OF HE FS

16
• • CONTRACT OR GRANT NO

NR-047-021
b. PROJEC T NO

N00014-67-A-0126-0008
c.

N00014-67-A-0126-0009

»a. ORIGINATOR'S REPORT NUMBERIS)

Center for Cybernetic Studies
Research Report CS 124

9h. OTHER REPORT HOtSl (Any other numbar» that may be asalgneri
thlt raporl)

10 OISTRIRUTION STATEMENT

This document has been approved for public release and sale; its
distribution is unlimited.

II SUPPLEMENTARY NOTE» 12 SPO^ SORING MIUI TARV AC Tl VITV

Office of Naval Reasearch (Clde 434
Washington, D. C.

IJ ABSTRACT

The augmented predecessor indexing method is a procedure for
efficiently updating the basis representation, flows and node potentials in
an adjacent extreme point (or "simplex" type) method for network problems,
utilizing ideas due to Ellis Johnson in his proposed application of a triple-
label representation to networks. The procedure is extended here to
accommodate the more complex basis structures and updating processes of the
generalized network problem, specifying rules for expediting the calculations.

0 .?r.,t473 (PAGf '
10! -807-681 I

Trirlassified
Srcunlv CI»s»ific »iifio

«II<0«

Abstract

The augmented predecessor Indexing method is a procedure for efficiently

updating the basis representation, flows and node potentials in an adjacent

extreme point (or "simplex" type) method for network problems, utilizing ideas

due to Ellis Johnson in his proposed application of a triple-label re-

presentation to networks. The procedure is extended here to accommodate

the more complex basis structures and updating processes of the generalized

network problem, specifying rules for expediting the calculations.

;v

-/-

1.0 INTRODUCTION

The augmented predecessor indexing (API) method [10], is a procedure

for efficiently updating the basis representation flows and dual evaluators

in transportation and network optimization problems. This procedure, which

is based on Ellis Johnson's triple label representation [12], has been recently

incorporated into computer programs, for transportation problems with noteworthy

success. Computational studies demonstrate these computer programs [9,16] to

be substantially faster than those previously available, solving 100 x 100

transportation problems in iJi seconds and 1000 x 1000 transportation problems

in 15 seconds on the CDC 6600. In this paper we show how the API method can

be extended to generalized network problems, making it possible to update the

more complex "quasi-tree" basis structures of these problems with the same

types of computational efficiencies that result for ordinary network problems.

The potential applications for an efficient and clearly organized caaputer

code for generalized network problems are significant, due to the wide range

of problems that can be given a generalized network formulation [h, ^, 6, 11].

The computational advantages of a special purpose algorithm lor these problems

as opposed to a general purpose linear programming method are demonstrated by

the studies of [3, 9> !''> 15» 16] wuich show that special purpose transportation

and network codes (utilizing the updating procedures which are extended in

this paper) solve transportation and network problems 1^0 times faster than

the state-of-the-art commercial linear programming code, QPHELIE.

The following sections introduce the generalized network problem

and describe the procedures of the extended API method, focusing on con-

siderations relevant to computer implementation.

-2-

2.0 THE GENERALIZED NETWORK PROBLEM

The generalized network problem may be defined as

Minimize Z) c. .x. . (1)
(i,j)€A iJ ij

subject to Z/ a . .x, . = b , peN (2)
(i,j)cA P'1J ij P

x.j > 0, (i,j) e A (3)

where A is the set of arcs and N is the set of nodes for the network. Each

arc {i,j)f i-f^j, has a nonzero coefficient in exactly two of the node equa-

tions (2), i.e., the two equations corresponding to the arc's endpoints.

Specifically, a , . / 0 only if p = i or p = j. In an ordinary network

a. . . = -1 and a. ,. =1, but in a generalized network a. . . and a. . . can be

any two nonzero quantities. Typically, however, a., . . is assumed to be -1
•-, ij

and a, . . is assumed to be positive, in which case a. . , is called the

"multiplier" of the arc directed from node i to node j. This multiplier

can be thought of as a factor which magnifies or attenuates the flow x. .

across the arc, according to whether a. ... is greater or less than on.e.

A generalized network can also contain arcs which are "self-loops,"

leading from a node back to itself. That is, for some nodes i, there may

exist "arcs" (i,i) in A. In this case, a H1 ^ 0 only if p = i. Such self-

loops are customarily used to introduce slack variables into the problem (to

change inequalities into equations) and have been called slack loops ['j,

p, 1*13-4214].

The quantities b of the node equations represent the supplies and

demands at the nodes, where b > 0 is interpreted as a demand, b < Ü is

interpreted as a supply.

The non-negativity inequalities (3) are often supplemented by upper

bound inequalities of the form u > x ., in which case the problem is re-

ferred to as capacitated, and the quantitiee u. , are called the arc capacitiec

-3-

The inclusion of these capacities does not alter the basic structure of the

problem, or the procedures we shall give for exploiting it.

3.0 THE TRIFLE-LABEL REPRESENTATION

The triple-label representation is a standard way to record and mani-

pulate trees in computer list processing. Its application to network

problems was proposed by Ellis Johnson, who showed that it could be used

efficiently to organize the labeling and flow augmenting operations of a

maximal flow algorithm [12], sketching seme of the fundamental ideas that

were later elaborated in the API method.

The triple-label scheme orients the tree so that it is in fact an

"arborescence"; that is, for some single node which is identified as the

"root", the arcs are oriented (by labels) so that the unique path from any

node to the root node of the tree is a directed path. The triple-label

representation may be viewed as inducing an "ancestry relationship" on a

tree, each node carrying three labels, or node indexes, which name the

father, the eldest son, and next younger brother of the given node. In

particular, a node is taken to be the father of all its immediate successors,

these latter constituting a set of brothers, arbitrarily sequenced from

eldest to youngest. Thus, the root node is the ancestor of all nodes, and

h';B no father (immediate predeseccor). Nodes at the extremities of the

tree have no sons (immediate successors) and the "last" of a set of successors

of a given node has no younger brother. The father, eldest son, and next

younger brother in these three extreme cases are given a "dummy" name which

corimunicates their nonexistence.

By the use of these labels it is possible to find all ancestors or all

descendants of a given node in an obvious manner, and this constitutes the

4-

-4-

essential convenience of the triple-label representatiun. (It should be

noted, however, that a "threaded list" representatic. [13] shares this

convenience, and the API method as described in this paper can as readily

be implemented wich the latter, using the relationships developed in Suction h.)

The basis structure of a generalized problem is not a tree, as in the

pure network problem, but a set of disjoint quasi-trees, i.e., connected

graphs which have a single loop [2,5,6,15]. We stipulate that the triple-

label representation be applied initially to each quasi-tree in the basis

so that the arcs of the loop are oriented uniformly clockwise or counter-

clockwise, thus making each node on the loop its own ancestor. (A self-loop,

which contains only one arc, may simply be assigned the orientation it receives

in the network.) The trees (that are identified by suppressing all loop arcs)

are oriented as arborescences, whose roots consist of the nodes that lie

on the loop. Hence each loop node has ein "equal" status a," an ancestor of

all nodes in the quasi-tree, and every node has a father. (The immediate

successors of a given node are arranged as usual, from eldest brother to

youngest in any fashion desired.) We shall call this the "rooted loop"

orientation. This orientation, of course, has nothing to do with the

"true orientation" - i.e., actual direction of the arcs in the network.

i<.ü THE EXTENDED API METHOD

^.1 Basis Representation of an Incoming Arc

In any quasi-tree possessing a rooted-loop orientation, it is clear

that a sequential trace of th:» p^c'ecessors of a given node (from father to

-5-

grandfather to great grandfather, etc.) generates a backward path which

contains all arcs on the loop. For simplicity we shall suppose that such

a path is simple, i.e., not traced beyond necessity (hence, as soon as a

node on this path is encountered a second time, the trace is stopped).

The path itself therefore duplicated no arcs and duplicated only a single

node - the node at which the loop is entered (which may be the starting node

for the trace). The procer'are of an adjacent extreme point algorithm

identifies an Incoming arc and an outgoing arc, respectively from among the

nonbasic and the basic arcs. The addition of the incoming arc and the

removal of the outgoing arc produces a changed set of quasi-trees. and this

operation constitutes a fundamental step of a standard iteration, or "basis

exchange" step of linear programming methods. An important aspect of this

step is to identify the set of arcs on which flows will change, or more

precisely, the set of basic arcs which provide a linear representation of

the nonbasic incoming arc. The following observation characterizes this

set of arcs.

Remark 1; The basic arcs that have a nonzero coefficient in the basis

representation for an incoming arc (u,v) are contained in the backward paths

P and P from node u and node v. u v

Proof: The validity of the remark follows inmedlately from the fact that the

network P UP consists of one or two "stripped" quasi-trees which represent

a linearly Independent subsystem of the full basis, containing, as many

variables (arcs) as equations (nodes). To provide a more useful justifica-

-6-

tion, we will show how to constructively generate a representation of

(u,v) from arcs of P sind P . First note that to satisfy a node require-

ment r. for any node i that has exactly one incident arc (i,j), it is

ij
necessary to assign a flow w. . to (i,j) precisely equal to r. / a.

This in turn transmits a node requirement to node j of -a, , . w. ..

(if the arc incident to node i is (j,i)^ the double subscript ij should

be replaced in the preceding by ji.) The constructed representation of

(u, v) begins by setting node requirements at nodes u and v of a and

a respectively. These requirements and their transmitted requirements

are met by assigning appropriate flows to successive arcs of the noninter-

secting portions of P and P . (This "domino" procedure of assigning

flows and transmitting requirements down a path is standard. We need

to show that the procedure can be satisfactorily brought to conslusion

on the paths P and P , leaving no transmitted node requirements unsatis-

fied.) If these paths do not intersect or if the paths encounter a loop before

meeting then they vransmit requirements to the node(s) where they meet the 1OOP(E},

and the flow for the loop arcs that accomodate these requirements are

generated by the procedures of [8, 15]. If these paths intersect before

encountering a loop, then they transmit a requirement to their intersecting

node (the sum of the two requirements generated by the nonintersecting

portions of the paths), and flows are then determined exactly as before

in the intersecting portions of their paths until reaching the loop, where-

upon the procedures of [8, 15] may be used. (A zero imbalance may be

transmitted to the first node of the intersection, in which case all sub-

sequent arcs receive 0 flow and no further determination is necessary. This

-7-

is the situation which occurs in ordinary network problems.) Thus, all al-

ternatives are resolved, leaving no "dangling" node requirements, and the

basis representation of (u,v) is completed by the specified assignment of

flows to the arcs of F and P . (From the fact that a basis representation v v v

is unique, it follows that the one determined is the one sought.)

The preceding construction of the basis representation is particularly

useful to determine the outgoing arc in the primal simplex method. For

explicitness in the present context, the outgoing arc is identified quite

simply by considering the flow w. . thus generated for each are (i,j),

and computing the upper bound value a that satisfies x. . - ow. . > 0

(i.e., or < x. ./w. . for w. . positive). The arc which provides the

most restrictive upper bound a * for a becomes the outgoing arc, and

the new flow value of each of the arcs (i,j) in the basis representation is

x, . - o * w. ,, with the flow value x of the incoming arc itself equal to
ij ij uv

cr *• For the capacitated problem a represents the value to be assigned

either to x or u - x , depending on whether currently x = 0 or x =u .
UV UV UV7 r o ^ UV UV UV

In the latter case, the representation sought if., of the negative of the arc

(u,v), giving requirements of -a and -a at nodes u and v. For u,uv v,uv

this case, a ir, also limited by the inequalities u. . > x. . - QW. , tor all M ij - ij ij

arcs in the basis representation o < u . The new flow values are determined - uv

exactly as before for the variables x, ., but if a* * u then no arc enters IJ uv

or leaves the babis, and x is simply set equal to Q* = u or u -a* = 0, uv * J M uv uv '

ns appropriate.

-8-

k.2 Updating the Basis

A crucial concern of the extended API method is to impart the rooted-

loop orientation to the updated basis by appropriate reindexing, thus makinc

it possible to take advantage of this orientation in the manne; described in

Sections ^.1 and ';.3> The basis exchange step modifies the composition

of the quasi-trees in the basis in any of a variety of ways, depending

un the relation of the incoming and outgoing arcs to the current basis

and to each other. For example, the endpoints of the incoming arc can

lie in two separate quasi-trees^ or in the same quasi-tree, and may at the

same time lie either on a loop or a "tributary" of a quasi-tree, creating

difi'erert possible configurations in each case. The outgoing arc may dis-

connect two quasi-trees that have been joined by the incoming arc, destroy a

previously existing loop in one of these quasi-trees, disconnect a newly created

loop from an old loop, break one or the other of a new and old loop presently

connected, or break overlapping loops on any of three possible chains. Ln

spite of this proliferation of cases (there are something like 17 of them,

depending on which configurations are identified as "equivalent"), it is

possible to accommodate every alternative by a single, easily stated rule.

This rule automatically generates the appropriate indexing scheme without

reference to the manner in which loops are created or broken, or to their

relation to each other. If it were not a matter of convenience to do so

(for reasons to be discussed later) there would be no need to identify

which arcs lie in which loops, or even to identify the presence or absence

of loops, in order to determine the updated indexing which permits the basis

exchange paths and other updating calculations to be carried out. To describe

-9-

this rule, let P denote one of the backward paths from the incoming arc

(u,v) that contains the outgoing arc. (Either or both of Pu and Pv will

contain this arc, but only one of these paths is selected.) Define the

"upper path" P* corresponding to P to be the portion of P that lies between

the incoming and outgoing arcs. (P* contains at least one node, but may

contain no arcs if the incoming and outgoing arcs are adjacent.) Then the

updating rule which achieves an appropriate reorientation of the basic

arcs for all of the cases indicated may be stated as follows.

Remark 2;

If the basis for a generalized network problem has a rooted-loop orien-

tation, then the new basis after the basis exchange step will also have a

rooted-loop orientation by the following steps:

1. Reverse the orientation of all arcs in P*.

2. Orient the incoming arc so that it "begins" this redirected path;

i.e., the endpoint of the incoming arc which is not on P* becomes

the predecessor of the endpoint which is.

Proof:

Consider the network that consists of the current basis after deleting

the outgoing arc but before adding the incoming arc. Tie connected sub-

network consisting of all arcs that can be reached from nod»s of P* is a

tree, since the removal cf both the incoming and outgoing arcs implies that

this subnetwork can contain no loops. (This may readily be verified by an

examination of cases.) Moreover, this tree is an arborescence due to the

fact that every subtree uf a rooted-loop structure is an arborescence. The

root of this arborescence is easily identified as the node of the upper path

which is an endpoint of the outgoing arc since the removal of this arc leaves

-10-

the indicated endpolnt without a predecessor, a condition that only the

root node satisfies. A characteristic of an arborescence Is that reversing

the direction of every arc lying on some path from the root node creates a

new arborescence, whose root is the opposite endpolnt of the reversed path.

Thus, the reversal of P* creates an arborescence rooted at the node

which la an endpolnt of the Incoming arc. Now there are two possibilities:

either the opposite endpolnt of the incoming arc lies in this same arborescence

or it does not. If it does, the addition of the incoming arc creates a

loop, and an arc which joins any node of an arborescence to the root node,

directed toward the latter, creates a rooted-loop quasi-ttee, as desired.

In the other case, the incoming arc grafts the arborescence to a üisjcint

network which, by the known structure of the basis and the previously es-

tablished orientation of the arcs, must be a rooted-loop quasl-tree. But

since the arborescence is connected by its root node, using an arc directed

from the quasl-tree to the arborescence, the rooted-loop structure is main-

tained.

The simplicity of the operation described in Ren irk 2 makes it highly

attractive from a computational standpoint. It should be noted that the

process of generating the new basis structure can be viewed in terms of

deleting and adding arcs. An arc reversal consists of deleting the arc in

one direction and then adding it back in the reverse direction. Denoting

an arc with an Induced orientation from 1 to J by [l,j] - which may cor-

respond either to the arc (i,j) or (j,l) - the rules for deleting and adding

arcs may be stated as follows.

To delete [i,j] : Case 1; J is the eldest son of 1: Narae J's next

younger brother as the (new) eldest son of 1. Case 2: J is not the eldest

son of 1: Identify j's next older and next younger brother, and name the

latter to be the (new) next ycunger brother of the former.

-11-

To add arc [itj]: Name 1 as the predecessor of j, name the eldest

son of 1 to be j's next younger brother and name j to be the new eldest son

of i.

In carrying out the foregoing operations, the use of a standard dummy

Index (e.g., 0) to name a nonexistent eldest son or next younger brother

makes It unnecessary to check for exceptional cases, it Is also unnecessary

to modify (or "clear") the Index labels that name j's predecessor and next

younger brother when deleting li,j] since j will always receive appropriately

reassigned labels In the process of updating Lite oasis network.

U,3 Updating Node Potentials and Integrating Computations

The determination of the node potentials (dual evaluators) it^, IcN, so

that the marginal cost CJ -IT., a., .. -n.a. . . for each basic arc (1,1) in

the network, equals 0, can be performed efficiently using the guidelines of

[8*15). The principal observations to be made In the present setting are two.

First, updated calculations need only be made for descendents of the first

endpolnt of the Incoming arc In the updated basis. (Note that this consists

of the nodes of P* and their descendants ifter the updating step.) Thus,

If the incoming arc does not create a new loop (i.e., connects two previ-

ously disjoint quasi-trees) or if a newly created loop is broken by the out-

going arc, then the new node potentials are straightforwardly computed-using

the existing potential of the first node of the incoming arc - by fanning

out '.hrough the arborescence that is identified in the proof of Remark 2.

In such a fanning out process, as soon as the potential for a node's pre-

decessor has been updated, the potential for the node itself is immediately

updated; e.g.. If IT.is known for arc (1,J) oriented as [J,i], then n -

^'^1*1 11 * c11^ al 11 * None of the other node potentials In the network

need to be examined. On the other hand. If the Incoming arc creates a new

-12-

loop that survives the deletion of the outgoing arc which Is Instantly

determined by reference to Pu and Pv - then the new node potentials are

first computed for this loop (following [8,15]) after which the remaining

potential', to be updated are determined by fanning out to the successorJ

of these nodes.

The second observation to be made Is that the updating of the node

potentials can be coordinated with the updating of the flow values over

the portion of the network where both of these Introduce change. Similarly,

the determination of the "loop factor" for a new loop can be carried out

simultaneously with the reverse trace of Pu and Pv to identify the basis

representation of the Incoming arc. In this connection, the use of stored

loop factors to accelerate calculations involving pre-existing loops (as

discussed in [6 ,8]), makes it desirable to keep track of loops currently

in the basis. Because of the automatic manner In which the trace of the

backward paths Identifies a current loop (or loops) of Interest, and also

pinpoints the Identity of a newly created loop, a particularly simple and

efficient scheme for making use of loop factors is possible. When a loop

is created (Initially or In a basis exchange step), the loop factor is recorded

(Indexed) by the nodes in the loop. That is, this number is attached to

each node In the loop (using a node length array). As soon as ^ backward path

identifies a loop, the loop factor may be retrieved from any node in the

loop. When a loop is destroyed, there is no need to locate or erase the

loop factor in the node list since the process of loop detection oy backward

paths restricts attention to nodes whose loop factors are current.

Thus, to conclude, while the underlying structures and processes of

the generalized network problem are somewhat more complex than those of the

'

-13-

ordlnary network problem, the extended API method conveniently accommodates

this additional complexity by means of simple rules that enable the auxiliary

computational processes (e.g., those of [8]) to be Implemented effectively.

References

1. Balas, Egon, "The Dual Method for the Generalized Transportation
Problem," Management Science 12, 7 (1966), 555-568.

2. Balas, Egon and P.L. Ivanescu (Hammer). "On the Generalized Trans-
portation Problem," Management Science 11, 1 (1964), 188-202.

3. Barr, R.S., F. Glover, and D. Klingman. "An Improved Version of the
Out-of-Kilter Method and a Comparative Study of Computer Codes,"
C.S. #102, Center For Cybernetic Studies, University of Texas at
Austin, 1972.

A. Chames, A. and W.W. Cooper. Management Models and Industrial Applications
of Linear Programming, Vol. I-II, New York: John Wiley and Sons,
Inc., 1961.

5. Dantzig, G.B. Linear Programming and Extensions Princeton, N.J.: Princeton
University Press, 196^.

6. Eisemann, Kurt. "The Generalized Stepping Method for the Machine Loading
Model," Management Science. 11,1 (1964), 154-177.

7. Glover, Fred and D. Klingmf.n. 'On the Equivalence of Some Generalized
Network Problems to Pure Network Problems," To appear in Mathemati-
cal ProgrammiüK-

8. Glover, Fred and D. Klingman. "A Note On Computational Simplications In
Solving Generalized Transportation Problems." To appear in

Transportation Science.

9. Glover, Fred, D. Karney, D. Klingman, and A. Napier. "A Computation
Study on Start Procedures, Basis Change Criteria, and Solution
Algorithms for Transportation Problems," fo appear in Management
Science.

10. Glover, Fred, D. Karney, and D. Klingman. "The Augmented Predecessor
Index Method for Locating Stepping Stone Paths and Assigning Dual
Prices in Distribution Problems," Transportation Science, 6, 1(1972),
171-180.

11. Jewell, W.S. "Optimal Flow Through Network with Gains," Operations
Research 10,4 (1962), 476-499.

12. Johnson, Ellis. "Networks and basic Solutions," Operations Research,
14,4 (1966), 89-95.

13. Knuth, D.E. The Art of Computer Pr gramming: Vol. 1, Fundamental
Algorithms, Reading, Mass. : Addison-Wealey, 1968.

/"/

14. Lourle, Janice. "Topology and Computation of the Generalized Trans-
portation Problem," Management Science 11,1 (1964), 177-187.

15. Maurras, J.F. "Optimization of the Flow Through Networks With Gains,"
Mathematical Programming 3,2 (1972), 135-145.

16. Srinlvasan, V. and G.L. Thompson, "Benefit Cost Analysis of Coding
Techniques for the Primal Transportation Algorithm," To appear in ACM.

/6'

