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Abstract 

The augmented predecessor  Indexing method is a procedure for efficiently 

updating the basis representation,  flows and node potentials in an adjacent 

extreme point   (or "simplex" type) method for network problems,  utilizing  ideas 

due to Ellis Johnson in his proposed application of a triple-label re- 

presentation to networks.    The procedure is extended here to accommodate 

the more complex basis structures and updating processes of the generalized 

network problem,  specifying rules for expediting  the calculations. 
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1.0     INTRODUCTION 

The  augmented predecessor indexing (API) method [10],  is  a procedure 

for efficiently updating the basis representation flows and dual evaluators 

in transportation and network optimization problems.    This procedure, which 

is based on Ellis Johnson's triple label representation [12],   has been recently 

incorporated into computer programs,   for transportation problems with noteworthy 

success.     Computational studies demonstrate these computer programs   [9,16]   to 

be substantially faster than those previously available,   solving 100 x 100 

transportation problems in iJi  seconds and 1000 x 1000 transportation problems 

in 15 seconds on the CDC 6600.     In this paper we show how the API method can 

be extended to generalized network problems,  making it possible to update the 

more complex "quasi-tree" basis structures of these problems with the same 

types of  computational efficiencies that result for ordinary network problems. 

The potential applications for an efficient and clearly organized caaputer 

code for generalized network problems are significant,  due to the wide range 

of problems that can be given a generalized network formulation   [h,   ^,  6,  11]. 

The computational advantages of a special purpose algorithm lor these problems 

as opposed to a general purpose linear programming method are demonstrated by 

the studies of [3,  9>  !''>  15»  16]  wuich show that special purpose transportation 

and network codes  (utilizing the updating procedures which are extended in 

this paper)   solve transportation and network problems 1^0 times faster than 

the state-of-the-art commercial linear programming code,   QPHELIE. 

The  following sections introduce the generalized network problem 

and describe  the procedures of the extended API method,   focusing on con- 

siderations relevant to computer implementation. 
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2.0    THE GENERALIZED NETWORK PROBLEM 

The generalized network problem may be defined as 

Minimize     Z)      c. .x. . (1) 
(i,j)€A     iJ ij 

subject to   Z/      a . .x, . = b , peN (2) 
(i,j)cA     P'1J ij   P 

x.j > 0, (i,j) e A (3) 

where A is  the set of arcs and N is the  set of nodes for the network.    Each 

arc {i,j)f   i-f^j,  has a nonzero coefficient  in exactly two of the node equa- 

tions  (2),   i.e.,  the two equations corresponding to the arc's endpoints. 

Specifically,   a    , . / 0 only if p = i or p = j.    In an ordinary network 

a.   . .   = -1 and a.   ,.  =1,   but in a generalized network a.   . .  and a.   . .   can be 

any two nonzero quantities.    Typically,  however,  a.,   . .  is assumed to be -1 
•-, ij 

and a,   . .  is assumed to be positive,   in which case a.   . ,  is called the 

"multiplier" of the arc directed from node i to node j.    This multiplier 

can be  thought of as a factor which magnifies or attenuates the  flow x. . 

across the arc,  according to whether a.   ...   is greater or less than on.e. 

A generalized network can also contain arcs which are "self-loops," 

leading from a node back to itself.     That  is,   for some nodes i,   there may 

exist  "arcs"  (i,i)   in A.    In this case,   a    H1  ^ 0 only if p = i.     Such self- 

loops are customarily used to introduce slack variables into the problem (to 

change inequalities into equations)   and have been called slack loops   ['j, 

p,   1*13-4214]. 

The quantities b    of the node equations represent the supplies  and 

demands  at the nodes, where b    > 0 is  interpreted as a demand,  b    < Ü is 

interpreted  as a supply. 

The non-negativity inequalities  (3)  are often supplemented by upper 

bound inequalities of the form u      > x   .,   in which case the problem is re- 

ferred  to as  capacitated,  and the quantitiee u. ,   are called the arc capacitiec 
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The inclusion of these capacities does not alter the basic structure of the 

problem, or the procedures we shall give for exploiting it. 

3.0 THE TRIFLE-LABEL REPRESENTATION 

The triple-label representation is a standard way to record and mani- 

pulate trees in computer list processing.  Its application to network 

problems was proposed by Ellis Johnson, who showed that it could be used 

efficiently to organize the labeling and flow augmenting operations of a 

maximal flow algorithm [12], sketching seme of the fundamental ideas that 

were later elaborated in the API method. 

The triple-label scheme orients the tree so that it is in fact an 

"arborescence"; that is, for some single node which is identified as the 

"root", the arcs are oriented (by labels) so that the unique path from any 

node to the root node of the tree is a directed path. The triple-label 

representation may be viewed as inducing an "ancestry relationship" on a 

tree, each node carrying three labels, or node indexes, which name the 

father, the eldest son, and next younger brother of the given node.  In 

particular, a node is taken to be the father of all its immediate successors, 

these latter constituting a set of brothers, arbitrarily sequenced from 

eldest to youngest. Thus, the root node is the ancestor of all nodes, and 

h';B no father (immediate predeseccor).  Nodes at the extremities of the 

tree have no sons (immediate successors) and the "last" of a set of successors 

of a given node has no younger brother. The father, eldest son, and next 

younger brother in these three extreme cases are given a "dummy" name which 

corimunicates their nonexistence. 

By the use of these labels it is possible to find all ancestors or all 

descendants of a given node in an obvious manner, and this constitutes the 

4- 
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essential convenience of the triple-label representatiun.     (It should be 

noted,   however,   that a "threaded list" representatic.    [13]   shares this 

convenience,   and the API method as described in this paper can as readily 

be implemented wich the latter,  using the relationships developed in Suction h.) 

The basis structure of a generalized problem is not a tree,   as in the 

pure network problem,  but a set of disjoint quasi-trees,  i.e.,   connected 

graphs which have a single loop [2,5,6,15].     We stipulate that the triple- 

label representation be applied initially to each quasi-tree in the basis 

so that the  arcs of the loop are oriented uniformly clockwise or counter- 

clockwise,   thus making each node on the loop its own ancestor.     (A self-loop, 

which contains only one arc, may simply be assigned the orientation it  receives 

in the network.)    The trees (that are identified by suppressing all loop arcs) 

are oriented as arborescences,  whose roots consist of the nodes that lie 

on the loop.     Hence each loop node has ein "equal"  status a,"  an ancestor of 

all nodes in the quasi-tree,  and every node has a father.     (The immediate 

successors of a given node are arranged as usual,   from eldest brother to 

youngest in any fashion desired.)    We  shall call this the  "rooted loop" 

orientation.     This orientation,   of course,   has nothing to do with the 

"true orientation" - i.e.,  actual direction of the arcs in the network. 

i<.ü    THE EXTENDED API METHOD 

^.1    Basis Representation of an Incoming Arc 

In any quasi-tree possessing a rooted-loop orientation,   it  is  clear 

that a sequential trace of th:» p^c'ecessors of a given node  (from father  to 
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grandfather to great grandfather,  etc.)  generates a backward path which 

contains all arcs on the loop.    For simplicity we shall suppose that such 

a path is simple,   i.e.,  not traced beyond necessity (hence,   as soon as  a 

node on this path is encountered a second  time,   the trace is  stopped). 

The path itself therefore duplicated no arcs and duplicated only a  single 

node - the node at which the loop is entered (which may be the starting node 

for the trace).     The procer'are of an adjacent extreme point algorithm 

identifies an Incoming arc and an outgoing arc,   respectively from among  the 

nonbasic and the basic arcs.    The addition of the incoming arc and the 

removal of the outgoing arc produces a changed set  of quasi-trees.   and this 

operation constitutes a fundamental step of a standard iteration,   or "basis 

exchange"  step of linear programming methods.     An important aspect  of this 

step is to identify the set of arcs on which flows will change,  or more 

precisely,   the  set of basic arcs which provide  a linear representation of 

the nonbasic incoming arc.    The following observation characterizes this 

set of arcs. 

Remark 1;     The basic arcs that have a nonzero coefficient in the basis 

representation for an incoming arc (u,v)  are contained in the backward paths 

P    and P    from node u and node v. u v 

Proof:    The validity of the remark follows  inmedlately from the fact that the 

network P    UP    consists of one or two "stripped" quasi-trees which represent 

a linearly Independent  subsystem of the full basis,   containing, as many 

variables  (arcs)  as equations (nodes).    To provide a more useful justifica- 
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tion, we will show how to constructively generate a representation of 

(u,v) from arcs of P sind P . First note that to satisfy a node require- 

ment r. for any node i that has exactly one incident arc (i,j), it is 

ij 
necessary to assign a flow w. . to (i,j) precisely equal to r. / a. 

This in turn transmits a node requirement to node j of -a, , . w. .. 

(if the arc incident to node i is (j,i)^ the double subscript ij should 

be replaced in the preceding by ji.) The constructed representation of 

(u, v) begins by setting node requirements at nodes u and v of a    and 

a    respectively. These requirements and their transmitted requirements 

are met by assigning appropriate flows to successive arcs of the noninter- 

secting portions of P and P .  (This "domino" procedure of assigning 

flows and transmitting requirements down a path is standard. We need 

to show that the procedure can be satisfactorily brought to conslusion 

on the paths P and P , leaving no transmitted node requirements unsatis- 

fied.)  If these paths do not intersect or if the paths encounter a loop before 

meeting then they vransmit requirements to the node(s) where they meet the 1OOP(E}, 

and the flow for the loop arcs that accomodate these requirements are 

generated by the procedures of [8, 15]. If these paths intersect before 

encountering a loop, then they transmit a requirement to their intersecting 

node (the sum of the two requirements generated by the nonintersecting 

portions of the paths), and flows are then determined exactly as before 

in the intersecting portions of their paths until reaching the loop, where- 

upon the procedures of [ 8, 15] may be used.  (A zero imbalance may be 

transmitted to the first node of the intersection, in which case all sub- 

sequent arcs receive 0 flow and no further determination is necessary. This 
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is the situation which occurs in ordinary network problems.) Thus, all al- 

ternatives are resolved, leaving no "dangling" node requirements, and the 

basis representation of (u,v) is completed by the specified assignment of 

flows to the arcs of F and P .  (From the fact that a basis representation v v  v 

is unique, it follows that the one determined is the one sought.) 

The preceding construction of the basis representation is particularly 

useful to determine the outgoing arc in the primal simplex method.  For 

explicitness in the present context, the outgoing arc is identified quite 

simply by considering the flow w. . thus generated for each are (i,j), 

and computing the upper bound value a  that satisfies x. . - ow. . > 0 

(i.e., or < x. ./w. . for w. . positive ). The arc which provides the 

most restrictive upper bound a  * for a  becomes the outgoing arc, and 

the new flow value of each of the arcs (i,j) in the basis representation is 

x, . - o * w. ,, with the flow value x  of the incoming arc itself equal to 
ij      ij uv 

cr *•  For the capacitated problem a  represents the value to be assigned 

either to x  or u  - x , depending on whether currently x  = 0 or x =u . 
UV     UV     UV7   r o ^   UV UV  UV 

In  the latter case,   the  representation  sought if., of the negative of the arc 

(u,v),  giving requirements of -a and -a at nodes u and v.     For u,uv     v,uv 

this case, a ir,  also limited by the inequalities u. . > x. . - QW. , tor all M        ij - ij    ij 

arcs in the basis representation o < u . The new flow values are determined - uv 

exactly as before for the variables x, ., but if a* * u  then no arc enters IJ uv 

or leaves  the babis,   and x      is simply set equal to Q* = u        or u    -a* = 0, uv * J M uv uv ' 

ns  appropriate. 
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k.2    Updating the Basis 

A crucial concern of the extended API method is to impart the rooted- 

loop orientation to the updated basis by appropriate reindexing, thus makinc 

it possible to take advantage of this orientation in the manne; described in 

Sections ^.1 and ';.3>  The basis exchange step modifies the composition 

of the quasi-trees in the basis in any of a variety of ways, depending 

un the relation of the incoming and outgoing arcs to the current basis 

and to each other. For example, the endpoints of the incoming arc can 

lie in two separate quasi-trees^ or in the same quasi-tree, and may at the 

same time lie either on a loop or a "tributary" of a quasi-tree, creating 

difi'erert possible configurations in each case. The outgoing arc may dis- 

connect two quasi-trees that have been joined by the incoming arc, destroy a 

previously existing loop in one of these quasi-trees, disconnect a newly created 

loop from an old loop, break one or the other of a new and old loop presently 

connected, or break overlapping loops on any of three possible chains.  Ln 

spite of this proliferation of cases (there are something like 17 of them, 

depending on which configurations are identified as "equivalent"), it is 

possible to accommodate every alternative by a single, easily stated rule. 

This rule automatically generates the appropriate indexing scheme without 

reference to the manner in which loops are created or broken, or to their 

relation to each other.  If it were not a matter of convenience to do so 

(for reasons to be discussed later) there would be no need to identify 

which arcs lie in which loops, or even to identify the presence or absence 

of loops, in order to determine the updated indexing which permits the basis 

exchange paths and other updating calculations to be carried out. To describe 
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this rule, let P denote one of the backward paths from the incoming arc 

(u,v) that contains the outgoing arc. (Either or both of Pu and Pv  will 

contain this arc, but only one of these paths is selected.)  Define the 

"upper path" P* corresponding to P to be the portion of P that lies between 

the incoming and outgoing arcs.  (P* contains at least one node, but may 

contain no arcs if the incoming and outgoing arcs are adjacent.)  Then the 

updating rule which achieves an appropriate reorientation of the basic 

arcs for all of the cases indicated may be stated as follows. 

Remark 2; 

If  the basis for  a generalized  network problem has a  rooted-loop orien- 

tation,  then the new basis after the basis exchange step will also have a 

rooted-loop orientation by the following steps: 

1. Reverse the orientation of  all arcs in P*. 

2. Orient the incoming arc so that it "begins" this redirected path; 

i.e., the endpoint of the incoming arc which is not on P* becomes 

the predecessor of  the endpoint which is. 

Proof: 

Consider  the network that  consists of  the current basis after deleting 

the outgoing arc but  before adding the incoming arc.    Tie connected  sub- 

network consisting of all arcs that  can be reached  from nod»s of  P*  is a 

tree,   since  the removal cf both the  incoming and outgoing arcs  implies that 

this subnetwork can contain no  loops.   (This may readily be verified  by    an 

examination of  cases.)    Moreover,  this tree  is an arborescence due to  the 

fact  that  every subtree uf a rooted-loop structure  is an arborescence.     The 

root of  this arborescence is easily  identified as  the node of  the upper  path 

which  is an endpoint  of   the outgoing  arc  since  the removal  of  this arc   leaves 
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the indicated endpolnt without a predecessor, a condition that only the 

root node satisfies.    A characteristic of an arborescence Is that reversing 

the direction of every arc  lying on some path from the root node creates a 

new arborescence,  whose root  is the opposite endpolnt  of  the  reversed  path. 

Thus,  the reversal of     P*       creates an arborescence rooted at the node 

which la an endpolnt of the  Incoming arc.     Now there are two possibilities: 

either the opposite endpolnt of  the  incoming arc lies in this same arborescence 

or  it does not.     If it does,  the addition of the incoming arc creates a 

loop, and an arc which joins any node of an arborescence to the root node, 

directed  toward  the latter,  creates a rooted-loop quasi-ttee, as desired. 

In the other case,  the incoming arc grafts the arborescence to a üisjcint 

network which,  by the known structure of the basis and the previously es- 

tablished orientation of  the arcs, must be a  rooted-loop quasl-tree.     But 

since the arborescence is connected by its root node,  using an arc directed 

from the quasl-tree to the arborescence,  the rooted-loop structure is main- 

tained. 

The simplicity of the operation described  in Ren irk 2 makes it  highly 

attractive from a computational standpoint.     It should be noted  that  the 

process of generating the new basis structure can be viewed  in terms of 

deleting and adding arcs.    An arc reversal consists of deleting the arc in 

one direction and  then adding  it back  in the reverse direction.     Denoting 

an arc  with an  Induced orientation from  1  to J  by  [l,j]   - which may cor- 

respond either to the arc  (i,j)  or  (j,l) - the rules for deleting and adding 

arcs may be  stated as follows. 

To delete   [i,j] :    Case  1;     J   is  the eldest  son of   1:     Narae J's  next 

younger brother as the  (new)  eldest  son of  1.    Case 2:    J   is not  the eldest 

son of  1:     Identify j's next older  and  next  younger  brother,  and  name  the 

latter to  be the   (new) next  ycunger brother of  the former. 
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To add arc  [itj]:    Name 1 as the predecessor of j,  name the eldest 

son of  1 to be j's next younger  brother and name j  to be the new eldest  son 

of  i. 

In carrying out  the foregoing operations,   the use of  a  standard  dummy 

Index   (e.g.,   0)  to name a nonexistent eldest  son or next younger brother 

makes It unnecessary to check for exceptional cases,     it  Is also unnecessary 

to modify (or  "clear")  the Index labels that name j's predecessor and next 

younger brother when deleting  li,j]   since j will always receive appropriately 

reassigned labels In the process of updating Lite oasis network. 

U,3    Updating Node Potentials and Integrating Computations 

The determination of the node potentials   (dual evaluators)   it^,   IcN,   so 

that  the marginal cost CJ -IT., a.,   ..   -n.a.   . .    for each basic arc   (1,1)   in 

the network,  equals 0, can be performed efficiently using the guidelines of 

[8*15).    The principal observations to be made In the present  setting are two. 

First,  updated calculations need only be made for descendents of  the first 

endpolnt of  the Incoming arc In the updated basis.   (Note that   this consists 

of  the nodes of P* and their descendants  ifter  the updating step.)    Thus, 

If   the  incoming arc does not create a new loop   (i.e., connects two previ- 

ously disjoint quasi-trees)  or if a newly created loop is broken by the out- 

going arc,  then the new node potentials are straightforwardly computed-using 

the existing potential of  the first  node of the incoming arc - by fanning 

out  '.hrough the arborescence that  is identified  in the proof of  Remark  2. 

In such a fanning out process,  as soon as the potential for a node's pre- 

decessor has  been updated,  the  potential  for  the node  itself   is  immediately 

updated;  e.g..  If IT.is known for arc   (1,J) oriented as  [J,i],   then    n  - 

^'^1*1   11   * c11^ al 11   *     None of  the other node potentials  In the network 

need  to be examined.    On the other  hand.   If  the Incoming arc creates a new 



-12- 

loop that survives the deletion of the outgoing arc which Is Instantly 

determined by reference to Pu and Pv - then the new node potentials are 

first computed for this loop (following [8,15]) after which the remaining 

potential', to be updated are determined by fanning out to the successorJ 

of these nodes. 

The second observation to be made Is that the updating of the node 

potentials can be coordinated with the updating of the flow values over 

the portion of the network where both of these Introduce change.  Similarly, 

the determination of the "loop factor" for a new loop can be carried out 

simultaneously with the reverse trace of Pu and Pv to identify the basis 

representation of the Incoming arc.  In this connection, the use of stored 

loop factors to accelerate calculations involving pre-existing loops (as 

discussed in [6 ,8]), makes it desirable to keep track of loops currently 

in the basis.  Because of the automatic manner In which the trace of the 

backward paths Identifies a current loop (or loops) of Interest, and also 

pinpoints the Identity of a newly created loop, a particularly simple and 

efficient scheme for making use of loop factors is possible.  When a loop 

is created (Initially or In a basis exchange step), the loop factor is recorded 

(Indexed) by the nodes in the loop.  That is, this number is attached to 

each node In the loop (using a node length array).  As soon as ^ backward path 

identifies a loop, the loop factor may be retrieved from any node in the 

loop.  When a loop is destroyed,   there is no need to locate or erase the 

loop factor in the node list since the process of loop detection oy  backward 

paths restricts attention to nodes whose loop factors are current. 

Thus, to conclude, while the underlying structures and processes of 

the generalized network problem are somewhat more complex than those of the 
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ordlnary network problem, the extended API method conveniently accommodates 

this additional complexity by means of simple rules that enable the auxiliary 

computational processes (e.g., those of [8]) to be Implemented effectively. 
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