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Abstract 

This paper presents a computationally efficient method for 

solving generalized network problems with an additional linear con- 

straint.     The method is basically the primal simplex method special- 

ized to exploit the topological  structure of the problem.     The method 

is similar to the specialization of Charnes and Cooper's Double Reverse 

Method by Meier,  and Klingman and Russell for constrained pure network 

Problems.     It couples the augmented predecessor index method with a 

double pricing procedure to yield an "inverse compactification" which 

reduces the arithmetic calculations required in pivoting.    We also show, 

how to simplify and accelerate the steps of updating costs and finding 

basis representations by taking advantage of the quasi-triangularity of 

a basis. 
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1.     INTRODUCTION 

In this paper we present h computationally efficient method lor solving 

generalised network problems with an extra linear constraint.     Such linear 

models occur frequently in network, applications.     For example,  a variety of 

scheduling raodelr,   such  at- constrained machine  scheduling models  [2,   'i,   11], 

copper refining process models [8],   sewage treatment models [12],   and power 

transformer inventory models  [IM»   fall into this class of problems.   Also, 

cash flow models  [2,  1^]  and gas blending models  [2,   3]  are of this type. 

Motivation for the development of  a computationally efficient  solution method 

is reinforced by the potential use of such a method to solve subproblems gen- 

erated by branch-end-bound and cutting plane procedures for integer generalized 

network problems. 

The proposed solution method is basically the primal simplex method 

specialized to take advantage of the augmented predecessor index method   [5] 

used in codifying generalized network solution algorithms  [1,   h,  6,   11].     Our 

approach is similar to that used by Maier  [13];   and Klingman and Russell 

[9>  10]  for solving constrained pure network problems.     In particular,   it 

couples the augmented predecessor index method with a double pricing procedure 

(similar to the Poly-w technicue of Chames and Cooper  [2])  to yield an 

"inverse corapactification" which significantly reduces the arithmetic calcu- 

lations  reouired ir. ^voting.    We show also how to simplify and accelei ate 

the steps of updating costs and 1 inding basis representations by exploiting 

the quasi-triangularity of a basis. 



2.0 THE GENERALIZED NETWORK PROBLEM 

The generalized network problem with an extra constraint may be defined 

Minimize 2JC..X, . (l) 
(l,j)eA 1J 10 

subject to L a    . .x, . » b , peN (2) 
{i,j)eA ^  iO        P P 

0 < x   . < u    ,   (i,j)6A (3) 
—    ij  —   ij 

^d x   . a (i.) 
(i,0)eA iJ 1J        0 

where Ais the  ret of arcs and N ir the   set of nodes for the network.     Each 

arc (i^j),   i/j^  has a nonzero cDefficieut in exactly two of the node  eouations 

(2),   i.e.,   the two equations corresponding to the arc's endpoints.     Speci- 

fically,   a    . .  ^ 0 only if p = i or p = j.     In a.i ordinary network a.   . .   = -1 
PJIJ l»ij 

and a    . .  = 1,  but in a generalized network a.   . .  and a.   . .  can be any two 

nonzero Quantitier.     Typically,  however,   a.   . .  is assumed to be -1 and a. 

ir aE-fumed to be positive,  in which case a    . .  is called the "multiplier" of 

the arc directed from node i to node J.     This multiplier can be thought of 

ae a factor which magnifies or attentuates the flow x..  across the  arc,   ac- 
ij 

cording to whether a. . . is greater or lesf than one. 

A generalized network can also contain arcs which are "self-loops," 

leading from a node back to itself.  That is, for some nodes i, there may 

exist "arcs" (i,i) in A. In this case, a  •-^ 0 only if p = i.  Such self- 

loopr a e customarily ured to introduce slack variables into the problem, (e.g., to 

change inecualitiet-. into eouationf: and have been called slack loopc [ 3, p. ^13- 

k2U],     In addition, tnere may be a slack variable for equation {h).     If so, 

we will denote thir variable for convenience as x n, creating a "special" ^rc 

(0,0)€A which bar nr- endpoints; i.e., O/N.  Thus, a  . . does not exist for any 
0, ij 

ij   (i.e.,   a     vi " ^ *or ^^ P0^)*     These  convention^ make it possiule to accomo- 

date all problem variables by means of a uniform notation,   simplifying the statement. 



of a number of resultr.     (Prescriptionr involving a and a when r=s=0, 
r^ xs s^ rs 

for example,  are to be ignored, whereas prescriptions involving c^- or d-Q 

are to be followed as specified.) 

The quantities b    of the node equations represent the supplies and demands 

at the nodes,  where b    > 0 is interpreted as a demand, and. b   < 0 is interpreted as 

a supply. 

3.Ü    STRUCTURE OF BASIC SOLUTIONS 

The  structure of a basis for problem (l)  - (h)  is related in a simple 

fashion to the structure of a ba.^is for an ordinary generalized network 

problem ((l)-(3))' We will make  several preliminary observations concern- 

ing this structure and the implications of this structure for identifying 

variables and marginal cost    values given a basis.    These observations are 

relatively direct specializations and/or extensions of well-known results about 

linear programming problems and generalized network problems and will be presented 

without proofed, 2,  3,  k, 6,  9,  10, 13,  14],  In section k we will make usa of these 

foundations to develop basis updating procedures that provide an efficient speciali- 

zation of the primal Fimple/ method to the current problem. 

Our first observation characterizes the topological structure of the 

basis    for problem (l)  - (h). 

Remark 1:    A basis for (l)-^)  consists of a  spanning collection of disjoint 

subnetworks,   one of  them a tree with S additional arcs,   and each of the 

remaining rubnetworkg a ^ree with one additional arc. 

(It  should be noted that the 

"nodelerr" 8;c  (0,0)   corresponding to a  rlack variable for (It)   oualiiies 

ar. a "tree with i additional arc," tince  the number of arcs in a tree is one 
/ 
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less than the number of nodep, whereas the arc (0,0)  itself, having no endpoints, 

contains two arcs more than a "tree" on zero nodes.) 

We shall refer to the subnetworks of the basis identified in Remark 1 

as quasi-trees,   and refer to the particular quasi-tree with 2 additional 

arcs as the distinguished quasi-tree.    The remaining subnetworks of the 

basis will be called ordinary quasi-trees. 

By pruning a puari-tree we will mean removing those arcs which connect 

to nodes that have exactly one arc incident to them,   and repeating the process 

in the connected network that results,   until  all nodes remaining have at 

least 2 arcs incident to them. 

Remark g;    Pruning an ordinary quasi-tree leaves a single loop (with every 

node of order 2)   and pruning the distinguished quasi-tree leaves either two 

loops connected by a chain or two "overlapping" loops composed of 3 arc- 

disjoint chains which share common endpoints  (in each case, with two nodes of 

order 3 and all   remaining noder of order 2).     [An exception occurs if the dis- 

tinguished tree is the arc (0,0)   in which case pruning leaves the quasi-tree 

just a." it war - with 1 arc and 0 nodes.] 

We will  call an arc of the distinguished quasi-tree removable if its 

elimination leaves an ordinary quasi-tree. 

Remark 3:    An a-c is removable if and only if  it is contained in tne dis- 

tinguirt.ed ruari-t^ee after p:unin'j. 

The network  that  rerults from the bails network upon ellxainating a re- 

■ 



movable arc will be celled a reduced barir.  Thuc, a reduced basis is a col- 

lection of ordinary cuasi-trees, and Qualifies as a basis for the ordinary 

generalized network problem (in which equation (h)  iz  absent). 

Relative to a specified removable arc, we shall define the reduced 

equation (4) 

to be the equation that results after "pricing cut" the original equation (h) 

with the set of arcr of the reduced basir. That is the coefficients d. . of 

equation (k)   are treated as though they are objective function coefficients 

and the "pricing out" identifies 

f. .   =   d. ,   -  TT.&.    . .   -   TT.a.    . . 
ij        id        i i>id        J  J>iJ 

where rr.   and n.   are the node multipliers determined by the procedures for 

the ordinary generalized network problem such that t^.'O for all arcs of the 

reduced basis (see,  e.g.   [ t]).    The Quantity f-  equals d»- Z] TT   b .     To price- 
peN p    p 

out the objective function (l)   (i.e.,  to determine the marginal costs of the 

arc:)   for the problem (l)-(ii)  involves two steps.    First,   (l)  is priced-out 

with the reduced basir,   to yield "updated    objective function coefficients" 

c. * given by 

c. * = c. .  - n.*a.   . .  - Tt.*a.   . . (6) 
ij ij        i    i,i,i        J    J,ij 

wheie the node potentials rr.* and n.* are determined as in [ 6     ]   so that 

c. .* «■ 0 for all  (i,j)  in the reduced basis.     The second step is then achieved 

as indicated in the following remark. 

Remark  k:     Let  (r, r)   denote the removable arc and define 6 = c«     /f    .     Then 
  rs'   rs 

the uodateu  ob.jective function coefficients relative to the full  basis  lur 

(l)  -  (k)   (i.fr.,   the basis that includes the removable arc)  are given  by 

V • V"8V (i'J)€A- 

■^ftj^ifcWHW'M 



The coefficients of (5) play a role not only in identifying marginal costs 

for the arcs, tut also in aetemining the basic solution, as seen to follow. 

Remark ^;    The values of the variables in the basic solution to equation (2) 

and (i*) are the same as for equations (2) and (5).     Morever, 

the value of the variable x      (corresponding to the removable arc (r,s)) 

iß fg / f    ,  and the values of the other bssic v«rinbles ere those for the ordinary 

generalized network problem (solving (2)   relative to the reduced basis), with 

br and bs replaced by br - ar^rs (f0/frs),  and b^^  (f^fj,  respectively. 

h.O    UPDATING THE BASIS 

The preliminary remarks of the preceding section may be applied in direct 

form to determine the values of the variables and the node potentials  (dual 

evaluators)  for a starting basis for problem (l)-(^).    At subsequent iterations 

of a primal simplex algorithm,  however,  the values  of the variables and node 

potentials are determined more conveniently and efficiently by reference to the 

values in the preceding iteration.     It is this problem which we now address. 

By the standard rules of the primal simplex method,  the "incoming var- 

iable" (i.e.,  the variable which is chosen to enter the basis during the basis 

exchange step)  is  selected to he a nonbasic variable with a negative marginal 

cost in the updated objective function.    Having identified sucn 

a variable, which we will hereafter designate x    ,   it is necessary to identify 

its basis representation. 

By definition,  the basis representation of (u,v)   is the "basic solution" 

to the equations   (2)   and  (h) with d,, replaced by d    ,  b    replaced by a        , b    re- ^ v   " v   / 0      ' uv      u      ' u,uv     v 

placed by a        1   and all other b ,pe!] replaced by 0.    Thus,   strictly speaking. 

Remark 5 can be  applied to generate this representatio:..     However,the basis structure 

and the predominance of the b   's that are replaced by 0 makes it possitut.- to simplify 

■    ■ 



the calculations to a notable extent. To accomplish this in a convenient way, 

and to facilitate the calculations involved in o*her updating operations of the 

basiF exchange step, we will organize our results around the use of the aug- 

mented piedeceFBor indexing (API) raetnod for generalized network proolems T ^ ], 

demonrtrating how to take advantage of the API method in the present context. 

Thuf, following [ 5 ], we specify that the arcs of the initial reduced 

basis are given a rooted-loop orientation; i.e., in each quasi-tree of this 

basis, a predecerror indexing is aFElgued that identifies each loop node as 

the predecessor of all other nodes, including itself. Each tree that results 

by suppressing the loop arcs is oriented as an arborescfMce which is rooted 

at itp respective loop node.  In each quasi-tree of the reduced bt^sii >, so 

oriented, the backward path P. from a given node i consists of the su^ces&ion of nodes 

and arcs formed by starting at node i and proceeding from predecessor to 

oredecesfor until some node is intersected a second tine. Thus, the backward path from 

any node always contains all loop arcs ;ithout duplication and duplicates only the node, 

at which the loop is entered.  The desired basis representation for the incoming 

arc (u,v);which in turn makes it possible to determine the outgoing arc, is 

given by the following remark. 

Remark c;  The arcs which receive a nonzero weight in the full basis represen- 

twtion of the incoming arc (u,v) are contained in the bacKward paths P and 

P  I om node; u and v, and if f i  0, also include tne removable arc (r,s) toget- v uv x 7 . 

Her with the arcs contained in the backward paths P and ? frjm nodes r and s. r    r     s 

Proof: The proof of thi; remark follows the reasoning of [5,6,Hi noting that 

if f  / 0, then arc (r,r) must assume a nonzero weignt oy Remark 5 (with f 

replaced by f , applying Remark ':> to definition of the oasis representation). 

The effect of imparting a nonzero weight to (r,s) (when f  ^0) in turn requires 
uv 

an assignment of weightt oo arcs of P and P (if these paths exist; i.e., unless 



i=:r=0) to e.'Olve "imiJal8nce"-or nodt reouirenents-tnus createa at nodes r ai.d K. 

It should be noted that the paths P ,rr,P and P of Remark 6 may interEect(or not) 

in a variety of ways.  In fact, because u and v may eitner or both duplicate the 

nodes r and s, the number of distinct nodes (and backwark paths) involved may be 

anywhere from & tq 4. 

For Remark 6 to De ureful, we need to specify how to detennine the basis 

rep erentation fiom the indicated backward paths. This is accomplisned by 

reference to Remark 5 and the "pruning" procedure characterized in Section 3 

restricted to P ,P ,P end P .  Note that to orune tne network which consists 
u v r     r 

of these pat-ns (hence which consists o:.' portions of one to four quasi-trees of 

the reduced basis), the nodes to be examined first by the pruning process are u,v, 

r and s, removing their attached arcs, proceeding then to tne predecessors oi 

these nodes on the backward path.-, and so forth. Thus, the sequence of steps 

that accomnJirh  the pruning are already conveniently "pre-programmed" by the 

reouence; of the backward paths themselves, subject only to the qualification 

that no arc may be removed v/hich succeed? a node at which two or more paths 

intersect until the "previous" arcs on all of the interacting paths nave been removed. 

In the construction of the basis representation, weights are assigned 

to the arcs in the order in which they are removed by this process. At the 

time a given arc (i,j) is dropped, it is the only arc incident to one oi its 

endpoints (say node i, for example), and thus the weight w. , to be assigned to 

the a c is uniouely deteimined oy the node requiremer.L at this node.  Speci- 

fically if nade i ha.' a repuireraent of r., then tne weight attacr.ed to arc (ij.i) 

i: given by w, . = r./a. , ..  The assignment of the weight w. . to the arc 
ij   V i,ij i., 

not only ratislie; the reouirement at node i, of course, out also transmits a 

lecuirement -w..i>. ., to node j, which is added to whatever other requirement has 

thus lar accumulated at j,  (If the arc incident to node i is (i,,:) the index ij i: 

replaced by ji.) In this fashion, the pruning process automatically ascigns weights 

to successive arcs of P ,P ,P ,P , k'iver. an appropriate set of node requirements 



at the initial nodes of these paths. Ultimately the pruning process applied 

to the network of P , P , P , P , leaves only a loop or set of loops, some u      v       r      s <i r 

of whore noder have received reouirements transamitted by arcs that lead into 

, them along  the backward paths.     The arrignment  of weights  to the loop arcs to 

meet these requirements is then determined by the computations prescribed in 

f 6,lkh 

The pruning approach just outlined is the  standard way for exploiting the 

predecessor indexing scheme,   amended slightly to accommodate the more involved 

structure of the basis for the current problem.    We conplete this prescription 

for assigning weights to the basic arcs by indicating the node  requirements 

that are attached to nodes u,   v,   r and s to initiate the procedure. 

Remark 7:     The requirements at nodes u,   v,   r and s for determining the basis 

representation of arc (u.v)   are respectively a        ,   a    .   ,   -a        f    /f      and 
u, uv  v,iv   r,rE uv' rs 

-a   f /f , except that if node r or s corresponds to node u or v, then tne 
s,rs uv' rs    ' r ' 

requirements for such corresponding nodes are obtained by summing the indivi- 

dual requirements indicated for these nodes. 

Proof;  The specified requirements are a consequence of Remark 5 applied 

to the definition ^f the basis representation replacing f , b and b by f , r r 0    o       u V uv 

a and  a ,   and replacing  o    and  b    by 0.   unless  r or  s corresponds to u, uv v>uv r s 

u or v,   in which case b    or D     takes instead tne value indicated for b    or b . 
r    s u    v 

Utilizing tne ba.-as representation determined for tne incoming arc (u,v) by 

Remark 7 and its preceding aiscussion, tne outgoing arc which is determined 

by the primal simplex method is identiiied by the customary rules, whlcr. are 

detailed in tne context ol tne generalized network prooJem in [ 6 ]. 



The statement of  these rules remains as In [     6    ], provided allowance is made 

for the fact that the removable arc  (r,s) is included in the basis representation 

with a weight of f    /f    . * uv    rs 

The final goal in specifying an efficient procedure for exploiting the 

problem  (l)-(4)   is to determine an appropriate scheme for updating the values 

of  the variables, the node potentials and the rooted loop orientation for the 

new basis that results from the basis exchange step.    Updating the values of 

the variables is actually quite simple,  invol-'lng nothing beyond the rules 

already specified in [    6 ].    Determining the new rooted-loop orientation is 

more crucial,  providing the foundation for generating new node potentials. 

A ct.:tral consideration affecting the new rooted-loop orientation is the 

influence of the removable arc, and the possibility that this arc may have to 

change its identity.    We will show that it  is possible to accommodate this 

consideration in a particularly  simple way,   integrating a required change of 

identity of   (r,8) with the other changes induced by the basis exchange, 

resulting in a minimal amount of updating effort - indeed scarely more than 

required for the ordinary generalized network, problem.    The result that makes 

this possible  is the following. 

Remark 8: The removable arc is required to change its identity if and only 

if the outgoing arc does not lie on either of the two backward paths P and 

P . Moreover, whenever such a change of identity is necessary, the role of 

the new removable avc may be taken by the  incoming arc   (u,v). 

Proof:     If neither P    and P    contains the outgoing arc,  the addition of   (u,v) 

has created a  quasi-tree containing  too many  arcs to  be contained   in the re- 

duced basis.     This follows from  the fact  that  the assertion  is true for  uhe 

"stripped" quasi-tree consisting of  P  ,  P    and   (u,v),  and  thus must  be  true 

for the full quasi-tree since  the latter   is created by attaching  trees which 

10 
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add as many arcf as nodes (;ince the  roots of these trees already lie in P    and 

P ).     Thus the full quasi-tree is the new distinguished quasi-tree,   and some 
« 

arc in this pruned segment of this quasi-tree must assume the  role of the 

removable arc.     But in fact the pruned  segment is precisely tne  subnetwork. 

composed of P ,  P    and (u,v),  permitting (u,v)  to be the arc  specified.     On the 
u 

other hand,   if the outgoing arc ir contained in P    or P ,   then tne changes in the 

reduced barif are those for the ordinary generalized network problem,  producing 

a new reduc«d basir chich consists of ordinary quasi-trees.     Thus,   in this case 

the  removable arc need not change its ilentity. 

The chief significance of Remark 8,   by means of which it  is possible 

to give a simple prescription for updating the rooted-loop orientation,   is 

made evident in the following result. 

Remark 9:     If 8re (t, s)  le the outgoing arc,   then no change in orientation 

ir   required.    Otherwise,  by  subptituting (r, s)   for (u,v)   in the role of the 

incoming arc whenever (u,v)   takes the  role of the new removable arc,   the up- 

dating oT the rooted-loop orientation is accomplished by the same rules tnat 

apply to the ordinary generalized network problem. 

Proof:    Provided (r,s)   is not the outgoing arc; whenever  (u,v)   becomes the new 

removable arc,   (i',s)  actually becomes the "incoming arc"  relative to the reduced 

btGJc,   in  accordance with tne changes  specified in Remark 8. 

The application of RemarK <*,   ar  indicated  in its  statement,   simpl,,     reducer 

to a direct application of the  ruler for the API method given in  [   ',>  ].     It 

follows tnat th" updating ot  node potentials likewise reducer, precisely to the 

ii 

■ 
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procedue indicated in [ 6 ] - a somewhat unexpected but pleasantly satis- 

fying result.  In the present retting, of course, the updating of these poten- 

tialr is applied rimultaneously to the coefficients of (l) and (b),  giving 

rise to the coefficients f.. and c. * from which the final updated form of 

(l) is determined by Remark k. 

12 
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