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Abstract

This paper presents a computationally efficient method for
solving generalized network problems with an additional linear con-
straint. The method is basically the primal simplex method special-
ized to exploit the topological structure nf the problem. The method
is similar to the specialization of Charnes and Cooper's Double Reverse
Method by Meier, and Klingmsn and Russell for constrained pure network
problems. It couples the augmented predecessor index method with a
double pricing procedure to yield an "inverse‘compactification” which
reduces the arithmetic calculations required in pivoting. We also show,
how to simplify and accelerate the steps of updating costs and finding
basis representations by taking advantage of the quasi-triangularity of

8 basis.




1. INTRODUCTION

In this paper we present s computationally efficient method for solving
generalized network problems with an extra linear constraint. Such linear
models occur frequently in network applications. For example, a variety of
scheduling models, such as constrained machine scheduling models (2, I, 11],
copper refining process models [8], sewage treatment models [12], and power
transformer inventory models [14], fall into this class of problems. Also,
cash flow models [2, 19]) and gas blending models [2, 3] are of this type.
Motivation for the development of & conputationally efficient solution method
is reinforced by the potential use of such & method to solve subproblems gen-
erated by branch-snd-bound and cutting plene procedures for integer generalized
network problems.

The proposed solution method is basicelly the primal simplex method
specialized to take advantage of the sugmented predecessor index method (9]
used in codifying generalized network solution algorithms (1, 4, 6, 11]. Our
approach is similar to that used by Maier [13], and Klingman and Kussell
[9, 10] for solving constrained pure network problems. In particular, it
couples the augmented predecesscr index method with a double pricing procedure
(similer to the Poly-w technicue of Charnes and Cooper [2]) to yield an
"inverse compactification" which significantly reduces the arithmetic calcu-
lations reguired iin pivoting. We show also how to simplify and accelerate
the steps o! updating costs and finding basis representations by exploiting

the quasi-triangularity of a basis.
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2.0 THE GENERALIZED NETWORK PROBLEM

The generalized network problem with an extra constreint may be defined

Minimize e, X, . (1)
(1,3)ea 101

subject to La .X,,=b eN 2
J (i’J)EA P;lJ iJ p 2 p ( )
La, x . =d (1)

(i)j)eA 174 0

where A is the cfet of arcs and N is the set of nodes for the network. Each
arc (i,j), i#j, has a nonzero coefficieut in exactly two of the node equations
(2), i.e., the two equations corresponding to the arc's endpoints. Speci-

fically, a_ .. f O only if p=1ior p=J. In wl ordinary network a, ,. = -1
p,1J i,ij
a, .. =1, but in a generalized network a, .., and a, .. can be any two
Jsld 1,1) Js1d
nonzero Quantities. Typically, however, a, 1j is assumed to be -1 and aj i
b o

ir acrumed to be positive, in which case a:J 1] is called the "multiplier" of
’

the arc directed from node i to node j. This multiplier can be thought of

and

ac 8 factor which magnifies cor attentuates the flow xij across the arc, ac-

cording to whether 1 is greater or lesrs than one,

Jr1d
A generalized network can also contain arcs which are "self-loops,'

'
leading Irom a node back to itself. That is, for some nodes i, there may

exist "arcs" (i,i) in A. In this case, ap,ii# 0 only if p = 1. Such self-

loops & € curtomarily ured to introduce slack variebles into the problem, (e.g., to
change inecualities into eguations and have been called slack loops { 3, p. 413~
b2k}, In addition, there meay be a slack variable for equation (L). If =o,

we will denote thir variable for convenience as x50’ creating a "cpecial” arc

(0,0)eA whicn har no endpoints; i.e., O{N. Thus, a does not exist for any

0’ 1\‘

ij (i.e., a = 0 tfor all peN). These conventions make it poscsible to accomo-

p,00

date all problem variebles by means of & uniform notation, simpliiying the stutement

n
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of a number of results. (Prescriptions involving a and a when r=s=0,
r,rs 8,rs

for example, are to be ignored, whereas prescriptions involving oo OF dOO

are to be followed as specified.)

The quantities bp of the node equations represent the supplies and demands

at the nodes, where bp > 0 is interpreted as a demand, and bp < 0 is interpreted as

a supply.

3.0 STRUCTURE OF BASIC SOLUTIONS

The structure of u basis for problem (1) - (4) is related in a simple
fashion to the structure of a basis for an ordinary generalized network
problem ((1)-(3)). We will make several preliminary observations concern-
ing this structure and the implications of this structure for identifying
variables and marginal cost values given & basis. These observations are
relatively direct speclializations and/or extensions of well-knowan results about
linear programming problem: and generalized network problems and will be presented
without proofe{Il, 2, 3, 4, 6, 9, 10, 13, 14). In section 4 we will make us= of these
foundations to deveiop basis updating procedures that provide an efficient speciali-
2ation of the primal simpler method to the current problem.

Our first observation characterizes the topological structure of the

basis for problem (1) - (L).

Remark 1: A basis for (1)=(k4) consists of a spanning collection of disjoint
subnetworks, one of them a tree with 2 additionel arcs, and each or the

remeining rubnetworkg & tree with one additional arc.

(It should be noted that the

1"

"nodelesr" a:rc (0,0) corresponding to a rlack variable for (l) ouslities

ac & "tree with ¢ additional arc:," cince the number of arcs in a tree is one




less than the number of nodes, whereas the arc (0,0) itself, having no endpoints,
contains two arcs more than a "tree" on zero nodes.)
We shall refer to the subnetworks of the basis identified in Remark 1
as quasi-trees, and refer to the particular quasi-tree with 2 additional
arcs as the distinguished quasi-tree. The remaining subnetworks of the
basis will be called ordinary quasi-trees.
By pruning a ouari-tree we will mean removing those arcs which connect
to nodes that have exactly one arc incident to them, and repeating the process
in the connected network that results, until all nodes remaining have at

least 2 arcs incident to them.

Remark 2: Pruning an ordinary quasi-tree leaves & single loop (with every
node of order 2) and pruning the distinguished quasi-tree leaves either two
loops connected by a chain or two "overlapping" loops composed of 3 arc-
disjoint chains which share common endpoints (in each case, with two nodes of
order 3 and all remaining nodes of order 2). [An exception occurs if the dis-
tinguished tree is the arc (0,0) in which case pruning leaves the guasi-tree

just as it war - with 1 arc and O nodes. ]

We will call an arc of the distinguished quasi-tree removable if its

elimination leaves an ordinary quasi-tree.

Remark 3: An a-c is removable if and only if it is contained in tne dis-

tinguirkted cuari-tiee after piunine,

The network that rerults from the basis network upon eliminating u re-
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movable arc will be celled a reduced bacis. Thus, a reduced basis is a col-

lection of ordinary cuasi-trees, and quelifies as a basis for the ordinary
generalized network problem (in which equation (4) it absent).

Relative to a specified removable arc, we shall define the reduced
equation (L)

) = T
WA .

to be the equation that results after "pricing out" the original equation (/)
with the set of arcr of the reduced basic. That is the coefficients dij of
equation (L) are treated ms though they are objective function coefficients
and the "pricing out" identifies

f,.=d,, - m& .. - .8, ..
ij iJ i1,1j J Jsid

where m ard m, are the node multipliers determined by the procedures for

J
the ordinary generalized network problem such that Iij=o for all arcs of the

reduced basis (see, e.g. [ ¢]). The ouantity f, equals d,- L)nb bp. To price -
peN

out the objective function (1) (i.e., to determine the marginal costs of the
arcr) for the problem (1)-(4) involves two steps. First, (1) is priced-out
with the reduced basis, to yield "updeted objective function cozfficients"

*
cij given by

(6)

c,.*=c¢,. - m*a, .. - m.*¥a, ,.
ij 35 - TRy 85 J Jd,id

where the node potentials m * and "J* are determined as in [ © ] so that
cij* = 0 for all (i,j) in the reduced basis. The second step is then achieved

as indicated in the following remark.

Remark 4: Let (r,r) denote the removable arc and define ¢ = Cirs/rr"' Then

[}

the uodated objective function coefficients relative to the full bLasis for

(1) = (&) (i.e., the basis that includes the removable arc) are given by

c,.' = ¢,

* o PR
ij 1:" efi‘j’ (1,J)€A.

[=




The coefficients of (5) pisy a role not only in identifying marginal costs

for the arcs, but also in determining the basic solution, as seen to rollow.

Remark 5: The values of the variables in the basic solution to equation 2)
and (4) are the same as for equations (2) and (5). Movever,
the value of the variable X (corresponding to the removabie arc (r,s))
is fo / frs’ and the values of the other hasic varisbles are those for the ordinary
generalized network problem (solving (2) relative to the reduced basis), with

b_and b replaced by b - a (fo/frs), and bs-as’rs (fo/frs), respectively.

r,rs

4,0 UPDATING THE BASIS

The preliminary remarks of the preceding section may be applied in direct
form to determine the values of the variables and the node potentials (dual
evsluators) for a starting basis for problem (1)-(4). At subsequent iterations
of a primal simplex algorithm, however, the values of the variables and node
potentials are determined more conveniently and efficiently by reference to the

values in the precediag iteration. It is this protlem which we now uddress.

By the standard rules of the primal simplex method, the "incoming var-
iable" (i.e., the variable wahich is chosen to enter the basis during the basis
exchange step) is selected to he a nonbasic variable with a negative marginal
cost in the updated objectaive function. Having identified sucn
a variable, which we will hereafter designate xuv’ it is necessary to identiry

its basis representation.

By defirition, the basis rcpresentation of (u,v) is the "basic solution"

to the equations (2) and (4) with d, replaced by duv’ bu replaced by o v b, re-

placed by av T

, and all other bp,peW replaced by O. Thus, strictly speaking,
b

Remark 5 can be applied to generate this representation. However,the besis structure

and the predominance of the bp's that are replaced by C muakes it possib.e to simplii,




the calculations to a notable extent. To accomplish this in a convenient way,
and to facilitate the calculations involved in o*her updating operations of the
basis exchange step, we will vrganize our results around the use of the aug-
mented predecessor indexing (API) metnod for generalized network problems [ 5 1,
demonrtrating how to take advantage of the API method in the present context.
Thus, following [ 51, we specify that the arcs of the initial reduced
basis are given a rooted-loop orientation; i.e,, in each quasi-tree of this
basls, a predecersor indexing is arrigued that identifies eacn loop node as
the predececsor of all other nodes, including itself. Each tree that results
by suppressing the loop arcs is oriented as an arboresceace which is rooted
at its respective loop node. In each guasi-tree of the reduced busis, su

oriented, the backward path Pi from a given node i consists of the su~cession of nodes

and arcs tomed by starting et node i and proceeding from predecessor to

predeces:or until some nodeis intersected a second tiuie. Thus, the backward path from
any node always containsall loop arcs rithcut duplication and duplicatesonly the node.
at which the loop is entered. The desired basis representetion for the incoming

arc (u,v) ,which in turn mekes it poseible to determine the outgoing arc, is

given by the following remark.

Remark €: The arcs which receive a nonzero weight in the full basis represen-
tation of the incoming arc (u,v) are contained in the backward paths PJ and
Pv f.om nodes u and v, and if fuv # 0, also include tne removable arc (r,s) toget-

her with the arcs contained in the backward paths Pr and Ps from nodes r and s.

Proof: Tnre proof of thi: remark follows the reasonin~ of [9,6,11] noting that

if f $# 0, then arc (r,¢) mu:t sssume a nonzero weign® oy Remark © (with £

replaced oy fuv’ epplying Remark © to detfinition of the vasis representation).

The effect of imparting a nonzero weight to (r,s) (when oo #0) in turn requires

an assignnent of welights vo arcs of Pr and ¥ (if these paths exist; i.e., unless




1=r=)) to e:olve "imbalance'-or node reouiremeuts-taus created at nodes r and s.
It should be noted that the patis pu’Pv’Pr and Ps of Remark © may intersect(or rot)

in a variety of ways. In fact, because u and v may eitner or botn duplicate the
nodes r and s, the number of distinct nodes (ard backwark paths) involved may be
anywhere rrom ¢ tq 4.

For Remark © to be ureful, we need to specify how to determine the basis
rep erentation fiom the indicated backward paths. This is accomplisned by
reference to Remark 5 and the "pruning" procedure characterized in Section 3
restricted to Pu’Pv’Pr and Pr' Note that to ovrune tre network which consists
of these paths (hence which consists o portions of one to four quasi-trees of
the reduced basis), the nodes to be examined first oy the pruning process are u,v,
r and s, removing their attached arcs, proceeding then to the predecessors of
these nodes on the backward paths, and so forth. Thus, the sequence of steps

that accomnlirh  the pruning are already conveniently "pre-programmed" by the
reouences of the backeard paths themselves, subject only to the gqualification

that no arc may be removed which cucceeds & node at which two or more paths

intersect until the "previous" arcs on all of the interacting paths nave been removel,

In the construction of the basis representation, weights are assigned

to the arcs in the order in which they are removed by this process. At the

time a given arc (i,j) is dropped, it is the only arc incident to one o1 its
endporints (cay node i, for example), and thus the weight LAY Lo be assigned tu

(¥

the a. ¢ is uniouely dete:mined oy the node requiremert at this rode, Speci-

fically if node 1 her & reculrement ~f Ty then tie weight attacued to arc (i,.J)

i: eiven ov w, . = ~ /o, , .. he assignment of the welgnt w, . to tre arc
b Vi, i,

not only retistier the requirement st noage i, ot course, out alco transmits

tecuirenent L ITLI to node j, wiich ic added to whatever other requirement has

t (VIR Y]

thus far accumulated at . (If the arc incident to riode i is (i,./) the index i, i:

replaced ty L) In this rashion, the pruning process automatically ascigns weioht:

-

tov successive arcs ot Pu’rv’p sP , wiver ar appropriate set o! node requiremerts

r

.



at the initial nodes of these paths. Ultimately the pruning process applied
to the network of Pu’ Pv, Pr, Ps’ leaves only a loop or set of loops, scuae
of whore nodes have received requiremerts transmitted by arcs that lead .nto
them along the backward patns. The assignment of weights to the loop arcs to
meet these requirements is then determined by the computations prescribed in
[ 6,14

The pruning approach just outlined it the standard way for exploitling the
predecessor indexing scneme, smended slightly to accommodate the more involved
structure of the basis for the current problem., We camplete this prescription
for assigning weights to the hasic arcs by indicating the node requirements

that are attached to nodes u, v, r and s to initiate the procedure.

Remark 7: The requirements at nodes u, v, r and s for determining the basis

P

-~

) & -8

representation of arc (u,v) are respectively a . f f
P (u,v) P Y8y v,iv’ “r,rs uv/ rs

,uv

-a f /f » except that if node r c¢r s corresponds to node u or v, then tne
s,rs uv’ 'rs
requirements for such corresponding nodec are obtained by summing the indivi-

dual requirements indicated for these nodes.

Proof: The specified requirements are a consequence of Remark © applied

t> the definition of the bacic representation replacing fo’ ba and bv by fuv’

a and a , end replacing v and o by O, unless r or s corresponds to
u,uv v,uv r 3

u or v, in which cace br or tc takes instead tne velue indicated for bu or bv'

Utilizing tre bacis representation determined for tne incoming arc (u,v) oy
Remark 7 and its preceding discussiou, the outgoing arc wniclh is determined
by the primal simplex method is identiried by the customury rules, whici. are

detajled in tne context ot the generalized network prooclem in [ ¢ ].




The statement of these rules remains as in [ © ], provided allowance is made
for the fact that the removable arc (r,s) is included in the basis representation
with a weight of fuv/frs'

The final goal in specifying an efficient procedure for exploiting the
problem (1)-(4) 1s to determine an appropriate scheme for updating the values
of the variables, the node potentials and the rooted loop orientation for the
new basis that results from the basis exchange step. Updating the values of
the variables 1is actually quite simple, irvolving nothing beyond the rules
already specified in [ © ]. Determining the new rooted-loop orientation is
more crucial, providing the foundation for generating new node potentials.

A cectral consideration affecting the new rooted-loop orientation is the
influence of the removable arc, and the possibility that this arc may have to
change its identity. We will show that it is possible to accommodate this
consideration in a particularly simple way, integrating a required change of
identity of (r,s) with the other changes induced by the basis exchange,
resulting in a minimal amount of updating effort - indeed scarely more than
required for the ordinary generalized network problem. The resuit that makes
this possible 1is the following.

Remark 8: The removable arc is required to change its identity if and only
if the outgoing arc does not lie on either of the two backward paths Pu and
Pv. Moreover, whenever such a change of identity is necessary, the role of
the new removable airc may be taken by the incoming arc (u,v).

Proof: 1If neither Pu and Pv contains the outgoing arc, the addition of (u,v)
has created a quasi-tree containing too many arcs to be contained {n the re-
duced bacis. This follows from the fact that the assertion is true for the
"gtripped" quasi-tree consisting of Pu, Pv and (u,v), and thus must be true
for the full quasi-tree since the latter i{s created by attaching trees which

T(Y
4V




add as many arcs as nodes (rince the roots of these trees already lie in P; and

Pv)' Thus the full guasi-tree is the new distinguished quasi-tree, and some I
arc in this pruned segment of this quasi-tree must assume the role of the '
removable arc. But in fect the pruned segment is precisely the subnetwork '
composed of P s Pv and (u,v), permitting (u,v) to be the arc specified. On the |
other hand, if the outgoing arc irs contained in Pu or Pv’ then the changes in the |
reduced baric are those for the ordinary generalized network problem, producing !

a new reduced basics chich consists of ordinary quasi-trees. Thus, in this case l

the removatle arc need not change its ilentity.

The chief significance of Remark 8, by means of which it is possivle I
to give a simple prescription for updating the rooted-loop orientation, is

made evident in the folluowing result.

Remark §9: If arc (r,s) ie the outgoing arc, then no change in orientation

ir required. Otherwise, by substituting (r,s) for (u,v) in the role of the
ircoming arc whenever (u,v) takes the role of the new removable arc, tne up-
dating ol the rooted-loop orientetion is accomplished by the same rules tnat

apply to the ordina:ry generalizeda network problem.

Proof: Provided (r,s) is not the outgoing arc; whenever (u,v) becomes the new
removeble arc, (1,s) actually becomes tre "incoming arc" relative to the reauced

basir, in accordance with the chances specified in Remark 8.

The application vt Remark 9, an indicateaq in its statement, simpl, reducer
to 8 di.ect appli~ation of the ruler for the API method given in { » J. It J
follows that th~ updating o: node potentials likewise reduces precicely to the

11



procedu:e indicated in [ 6 ] - a somewhat unexpected but pleasantly satis-
fying result. In the present setting, of course, the updating of tnese poten-
tialr is epplied rsimultaneously to the coefficients of (1) and (&), giving
rise to the coefficients fij and ci,j* from wnich the final updated form of

(1) is determined by Remark 4.
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