AD-763 363
FOLERANCE LIMITS FOR THE MAXWELL DISTRIBUTION WITH EMPHASIS ON THE SEP. (SPHERICAL ERROR PROBABLE) Marlin A. Thomas, et al laval Weapons Laboratory Dahlgren, Virginia une 1973
DISTRIBUTED BY:
National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

C CONTRACTO - DA INVOL

0

ONAL TECHNICAL RMATION SERVICE

.

•

Output the set interview (depuises subley) Image: Set interview (depuises subley) Iavail Weapons Laboratory UNCLASSIFIED Iavail Weapons Laboratory Image: Set interview (depuises subley)	DOC Security classification of this body of the	UMENT CONTROL DATA	K & D e-entered when the overall report is classified.
Waval Weapons Laboratory WCLASSIFIED Dailgreen, Virginia 22448 M. Genor Account Title M. Genor DOLERANCE LIMITS FOR THE MAXWELL DISTRIBUTION MITH EMPHASIS ON THE SEP Decomponent of the model and advire detect Outcomponent (Type of them and advire detect) M. Genoritie and advirest and advire detect Automotify and a model and advirest E. Taub M. OTHERS ON THE SEP Dure 1973 Jac Object Advisor Account No. OF PAGE Dure 1973 Jac Object Advisor Account No. OF PAGE Dure 1973 Jac Object Advisor Account No. OF PAGE Dure 1973 Jac Object Advisor Account No. OF PAGE Dure 1973 Jac Object Advisor Account No. OF PAGE June 1973 Jac Object Advisor Account No. OF PAGE June 1973 Jac Object Advisor Account No. OF PAGE June 1973 Jac Object Advisor Account No. OF PAGE June 1973 Jac Object Advisor Account No. OF PAGE June 1973 Jac Object Advisor Account No. OF PAGE June 1973 Jac Object Advisor Account No. OF PAGE June 1973 Jac Object Advisor Account No. OF PAGE June 1974 Jac Object Advisor Account No. OF PAGE June 1975 Jac Object Advisor Account No. Of PAGE	OHIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION
International Society of the second	Vaval Weapone Laboratory		UNCLASSIFIED
International State of the second state of state as a condition state of the second state of th	Dahlgren. Virginia 22448		
IDLERANCE LIMITS FOR THE MAXHELL DISTRIBUTION HITH EMPHASIS ON THE SEP DESCRIPTIVE NOTES OF THE MAXHELL DISTRIBUTION HITH EMPHASIS ON THE SEP DESCRIPTIVE NOTES OF THE MAXHELL DISTRIBUTION HITH EMPHASIS ON THE SEP DESCRIPTIVE NOTES OF THE MAXHELL DISTRIBUTION HITH EMPHASIS ON THE SEP DESCRIPTIVE NOTES OF THE MAXHELL DISTRIBUTION HITH EMPHASIS ON THE SEP Martine Colspan="2">DESCRIPTIVE NOTES OF THE SEP DESCRIPTION OF THE MAXHELL DISTRIBUTION HITH EMPHASIS ON THE SEP DESCRIPTION OF THE MAXHELL DISTRIBUTION HITH EMPHASIS ON THE SEP DESCRIPTION OF THE MAXHELL DISTRIBUTION OF PAGES TO DESCRIPTION OF THE SEP Notes of the Colspan="2">Security Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Description of the Colspan="2" A colspan="2" Colspan="2" Colspan="2" Notes colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2"	REPORT TITLE	میں ایک ایک میں ایک اور ایک ایک میں ایک ایک ایک ایک ایک ایک ایک ایک ایک ایک	
TOLERANCE LIMITS FOR THE MAXUELL DISTRIBUTION MITH EMPHASIS ON THE SEP DESCRIPTIVE NOTES (7)per of report and inclusive dates) AUTHORIZATION DISTRICT THE MAXUELL DISTRIBUTION MITH EMPHASIS ON THE SEP DESCRIPTIVE NOTES (7)per of report and inclusive dates) AUTHORIZATION OF GRAFT MO. A FMORE TOTE A FMORE TOTE A FMORE TO BERNIT MO. A FMORE TO BERNIT MO. A FMORE TO BERNIT MO. A FMORE TOTE A CONSTRUCT A GENERAL TO BE A CONSTRUCT A GENERAL THE SEP A FMORE TOTE A CONSTRUCT A GENERAL THE ADDR AND A CONSTRUCT A GENERAL THE SEP A FMORE TOTE A CONSTRUCT A GENERAL THE ADDR AND A CONSTRUCT A GENERAL ADDR AND A CONSTRUCT ADDR AND ADDR AND ADDR AND ADDR AND A			
DESCRIPTIVE Notes (Type of report and inclusive dates) AUTHORIGY (Pirzy name, middle initial, dat name) Var 11 A. Thomas, John R. Crigler, Bary W. Gemmill and Audrey E. Taub Provent Date June 1973 A CONTRACT ON GRANT NO. A CONTRACT ON GRANT NO. A PROVET NO. Num 1973 A CONTRACT ON GRANT NO. A PROVET NO. Num 1973 A CONTRACT ON GRANT NO. A PROVET NO. Num 1973 A CONTRACT ON GRANT NO. A PROVET NO. Num 1973 A CONTRETUCTION STATEMENT Approved for public release; distribution unlimited. A DIMPRETURATION STATEMENT Approved for public release; distribution unlimited. Automation of P (percent of the population below the bound), Y (confidence level), and n (sample size). Y, and n considered are P = 50, 75, 90, 95, 99; y = .75, 50, .95, .99; y = .75, .90, .95, .99; y = .75, .90, .95, .99; y = .2(1)25(5)100(10)200(50)300(100)1000, While the formulation is sufficiently general to be of use to anyone who deals with Hawell data; examples are restricted to the area of weapon systems analysis. It is in this area that the analyst is often confronted with the problem of estimation is about the target center is trivariate normal with common standard deviation os is	FOLERANCE LIMITS FOR THE MAXWELI	DISTRIBUTION WITH EM	PHASIS ON THE SEP
Autorial (Pert Amer, middle middle hermanne) Harlin A. Thomas, John R. Crigler, Gary W. Gemmill and Audrey E. Taub REPORT Date June 1973 CONTRACT ON ERANT NO. A ROLLET NO. MULTR-2954 A Differ REPORT NUMBER(13) A DIFFE	DESCR.PTIVE NOTES (Type of teport and Inclusio	e dates)	
A Total No. Thomas, John R. Crigler, Gary W. Gemmill and Audrey E. Taub NEPORTEXTE June 1973 CONTACT ON GRANT NO. PROJECT NO. PRO	ALLTHOBIAL /First man middle Juliint Instances		
Marriel A. Indungs, John A. Offger, Taub REPORTEXTC June 1973 CONTRACT OR CANT HO. Secontract or Cant Ho. Secont o	(and in the second s	~~	
Report CATE 10. TOTAL NO. OF PAGEE 10. NO. OF HERS June 1973	Garv W. Gemmill and Audrev E. Ta	aub	
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 <t< td=""><td></td><td>7. TOTAL NO.</td><td>OF PAGES TO NO OF DEFE</td></t<>		7. TOTAL NO.	OF PAGES TO NO OF DEFE
Approved for public release; distribution unlimited. Null TR-2954 Approved for public release; distribution unlimited. Touraccutary mores Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), y (confidence level), and n (sample size). Values of P, y, and n considered are P = .50, .75, .90, .95, .99; y = .75, .90, .95, .99; n = 2(1)25(5)100(10)200(50)300(100)1000, While the formulation is sufficiently general to be of use to anyone who deals with flaxwell data, examples are restricted to the area of weapon systems analysis. It is in this area that the analyst 's often confronted with the problem of esti- mating the radius of a sphere which will include 100P% of the future burst points form an all burst weapon. Under the assumption that the distribution of burst points about the target center is trivariate normal with common standard deviation in all three directions, this development will enable him to attach a confidence statement to the percent of the population encompassed. In particular, it will enable him to determine, on the basis of test firings, the radius of a sphere which will encompass at least 100P% of the future burst points with 100y% confidence. MILLASSIFIED Security Classification	June 1973	20	UP FAVEC IN NUL OF NEFS
Null TR-2954 A Distribution statement Approved for public release; distribution unlimited. "Supplecentrate worts Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ and n considered are P = .50, .75, .90, .95, .99; γ = .75, .90, .95, .93; n = 2(1)25(5)100(10)200(50)300(100)1000,=. While the formulation is sufficiently general to be of use to anyone who deals with flaxwell data, examples are restricted to the area of weapon systems analysis. It is in this area that the analyst ': often confronted with the problem of estimating the radius of a sphere which will include 100% of the future burst points form an air burst weapon. Under the assumption that the distribution of sufficient will enable him to attach a confidence statement to the percent of the population encompasted. In particular, it will encompass at least 100P% of the future burst points with 100y% confidence. DD 100#.1473 (PAGE 1) WACLASSIFIED M 101.807.601 id	CONTRACT OR GRANT NO.	98. ORIGINATO	R'S REPORT NUMBER(5)
NUL TR-2954 Approved for public release; distribution unlimited. INFORMATION STATEMENT Statement of the population below the bound); Y (confidence level), and n (sample size, 198; Y = .75, .90, .95, .99; n = .2(1)25(5)100(10)200(50)300(100)1000, While the formulation is sufficiently general to be of u			
Approved for public release; distribution unlimited. TOUPLEMENTARY NOTES Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ , and n considered are P = 50, .75, .90, .95, .99; γ = .75, .90, .95, .99; n = 2(1)25(5)100(10)200(50)300(100)1000, ∞ . While the formulation is sufficiently general to be of use to anyone who deals with flaxwell data, examples are restricted to the area of weapon systems analysis. It is in this area that the analyst is often confronted with the problem of estimating the radius of a sphere which will include 100P% of the future burst points about the target center is trivariate normal with common standard deviation c in all three directions, this development will enable him to attach a confidence statement to the percent of the population encompassed. In particular, it will enable him to determine, on the basis of test frings, the radius of a sphere which will encompass at least 100P% of the future burst points with 100y% confidence.	D, PHOJECTNO.		NWL TR-2954
Approved for public release; distribution unlimited. Approved for public release; distribution unlimited. AUGPLEMENTARY NOTES Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ , and n considered are P = 50, .75, .90, .95, .99; γ = .75, .90, .95, .99; n = 2(1)25(5)100(10)200(50)300(100)1000,. While the formulation is sufficiently general to be of use to anyone who deals with Haxwell data, examples are restricted to the area of weapon systems analysis. It is in this area that the analyst is often confronted with the problem of esti- mating the radius of a sphere which will include 100P% of the future burst points from an air burst weapon. Under the assumption that the distribution of burst points about the target center is trivariate normal with common standard deviation σ in all three directions, this development will enable him to attach a confidence statement to the percent of the population encompasied. In particular, it will enable him to determine, on the basis of test firings, the radius of a sphere which will encompass at least 100P% of the future burst points with 100y% confidence. M D101-807-601 M D101-807-601	2.	Pb. OTHER REF	ORT HQ(3) (Any other numbers that may be assigned
Approved for public release; distribution unlimited. "BUPPLEMENTARY NOTES [2: BPONSOAUNG MILITARY ACTIVITY Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ , and n considered are P = .50, .75, .90, .95, .99; γ = .75, .90, .95, .99; n = 2(1)25(5)100(10)200(50)300(100)1000			
Approved for public release; distribution unlimited. TRUPPLEMENTARY NOTES Is SPONDORING MILITARY ACTIVITY ADDITION TO BE ADDITIONED ADDITION ADDITIONATES ADDITION ADDITIONATION ADDITIONATION ADDITIONATION ADDITION ADDITIONATION ADDITION ADDITIONATION ADDITION ADDITIONATION ADDITION ADDITIONATION ADDITIONATIONATION ADDITIONATION ADDITIONATION ADDITIONATION ADDITIONATIONATION ADDITIONATION ADDITIONATION ADDITIONATION ADDITIONATION ADD	D DISTRIBUTION STATEMENT		
Approved for public release; distribution unlimited. SUPPLEMENTARY NOTES Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of p (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ , and n considered are P = .50, .75, .90, .95, .99; γ = .75, .90, .95, .99; n = 2(1)25(5)100(10)200(50)300(100)1000,. While the formulation is sufficiently general to be of use to anyone who deals with Haxwell data, examples are restricted to the area of weapon systems analysis. It is in this area that the analyst is often confronted with the problem of esti- mating the radius of a sphere which will include 100P% of the future burst points from an air burst weapon. Under the assumption that the distribution of burst points about the target center is trivariate normal with common standard deviation ε in all three directions, this development will enable him to attach a confidence statement to the percent of the population encompassed. In particular, it will enable him to determine, on the basis of test firings, the radius of a sphere which will encompass at least 100P% of the future burst points with 100y% confidence. M 0101-807.6801 M 0101-807.6801 M 0101-807.6801 M 0101-807.6801			
Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ , and n considered are P = .50, .75, .90, .95, .99; γ = .75, .91, this area that the analyst is often confronted with the problem of estimating the radius of a sphere which will include 100P% of the future burst points form an air burst weapon. Under the assumption that the distribution of burst points about the target center is trivariate normal with common standard deviation ε in all three directions, this development will enable him to attach a confidence statement to the percent of the population encompassed. In particular, it will enable him to determine, on the basis of test firings, the radius of a sphere which will encompass at least 100P% of the future burst points with 100 γ % confidence.	Approved for public releases di	tribution unlimited	
Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ , and n considered are P = .50, .75, .90, .95, .99; γ = .75, .90, .95, .99; n = 2(1)25(5)100(10)200(50)300(100)1000, While the formulation is sufficiently general to be of use to anyone who deals it is in this area that the analyst is often confronted with the problem of estimating the radius of a sphere which will include 100P% of the future burst points from an air burst weapon. Under the assumption that the distribution of burst points about the target center is trivariate normal with common standard deviation c in all three directions, this development will enable him to attach a confidence statement to the percent of the population encompassed. In particular, it will enable him to determine, on the basis of test firings, the radius of a sphere which will encompass at least 100P% of the future burst points with 100 γ % confidence.	SUPPLEMENTARY NOTES	12. SPONSORIN	G MILITARY ACTIVITY
Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ , and n considered are P = .50, .75, .90, .95, .99; γ = .75, .90, .95, .99; n = 2(1)25(5)100(10)200(50)300(100)1000, \approx . While the formulation is sufficiently general to be of use to anyone who deals with Maxwell data, examples are restricted to the area of weapon systems analysis. It is in this area that the analyst is often confronted with the problem of estimating the radius of a sphere which will include 100% of the future burst points from an air burst weapon. Under the assumption that the distribution of burst points about the target center is trivariate normal with common standard deviation ε in all three directions, this development will enable him to attach a confidence statement to the percent of the population encompassed. In particular, it will enable him to determine, on the basis of test firings, the radius of a sphere which will encompass at least 100P% of the future burst points with 100 γ % confidence.			
Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ , and n considered are P = .50, .75, .90, .95, .99; γ = .75, .90, .95, .99; n = 2(1)25(5)100(10)200(50)300(100)1000, While the formulation is sufficiently general to be of use to anyone who deals with Maxwell data, examples are restricted to the area of weapon systems analysis. It is in this area that the analyst is often confronted with the problem of estimating the radius of a sphere which will include 100P% of the future burst points from an air burst weapon. Under the assumption that the distribution of burst points about the target center is trivariate normal with common standard deviation c in all three directions, this development will enable him to attach a confidence statement to the percent of the population encompassed. In particular, it will enable him to determine, on the basis of test firings, the radius of a sphere which will encompass at least 100P% of the future burst points with 100y% confidence.			-
Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ , and n considered are P = .50, .75, .90, .95, .99; γ = .75, .90, .95, .99; n = 2(1)25(5)100(10)200(50)300(100)1000, While the formulation is sufficiently general to be of use to anyone who deals with Maxwell data, examples are restricted to the area of weapon systems analysis. It is in this area that the analyst is often confronted with the problem of estimating the radius of a sphere which will include 100P% of the future burst points from an air burst weapon. Under the assumption that the distribution of burst points about the target center is trivariate normal with common standard deviation c in all three directions, this development will enable him to attach a confidence statement to the percent of the population encompassed. In particular, it will enable him to determine, on the basis of test firings, the radius of a sphere which will encompass at least 100P% of the future burst points with 100y% confidence.			
D FOEM 1473 (PAGE 1) N 0101-807-6801 IA <u>UNCLASSIFIED</u> Security Classification	ABSTRACT		
	Tolerance limits are formu tolerance limit factors for the P (percent of the population be size). Values of P, γ, and n c .90, .95, .99; n = 2(1)25(5)100 While the formulation is si with Maxwell data, examples are It is in this area that the ana mating the radius of a sphere wi from an air burst weapon. Unde points about the target center c in all three directions, this statement to the percent of the enable him to determine, on the will encompass at least 100P% of	lated for the Maxwell upper tolerance bound low the bound), γ (con onsidered are P = .50, (10)200(50)300(100)100 ufficiently general to restricted to the are lyst is often confront hich will include 100P r the assumption that is trivariate normal w development will enab population encompasse basis of test firings f the future burst point	distribution, and a table of is provided as a function of fidence level), and n (sample .75, .90, .95, .99; $\gamma = .75$, 0, ∞ . be of use to anyone who deals a of weapon systems analysis. ed with the problem of esti- % of the future burst points the distribution of burst with common standard deviation be him to attach a confidence d. In particular, it will , the radius of a sphere which nts with 100 γ % confidence.
	Tolerance limits are formu tolerance limit factors for the P (percent of the population be size). Values of P, γ, and n c .90, .95, .99; n = 2(1)25(5)100 While the formulation is s with Maxwell data, examples are It is in this area that the ana mating the radius of a sphere wi from an air burst weapon. Unde points about the target center c in all three directions, this statement to the percent of the enable him to determine, on the will encompass at least 100P% o D MOV 05.1473 (PAGE 1) (N 0101-807-6801	lated for the Maxwell upper tolerance bound low the bound), γ (con onsidered are P = .50, (10)200(50)300(100)100 ufficiently general to restricted to the are lyst is often confront hich will include 100P r the assumption that is trivariate normal w development will enab population encompasse basis of test firings f the future burst point	distribution, and a table of is provided as a function of fidence level), and n (sample .75, .90, .95, .99; $\gamma = .75$, 0, ∞ . be of use to anyone who deals a of weapon systems analysis. ed with the problem of esti- % of the future burst points the distribution of burst with common standard deviation le him to attach a confidence ed. In particular, it will , the radius of a sphere which nts with 100 γ % confidence. UNCLASSIFIED Security Classification
	Tolerance limits are formu tolerance limit factors for the P (percent of the population be size). Values of P, γ, and n c .90, .95, .99; n = 2(1)25(5)100 While the formulation is su with Maxwell data, examples are It is in this area that the ana mating the radius of a sphere w from an air burst weapon. Unde points about the target center c in all three directions, this statement to the percent of the enable him to determine, on the will encompass at least 100P% G	lated for the Maxwell upper tolerance bound low the bound), γ (con onsidered are P = .50, (10)200(50)300(100)100 ufficiently general to restricted to the are lyst is often confront hich will include 100P r the assumption that is trivariate normal w development will enab population encompasse basis of test firings f the future burst pot	distribution, and a table of is provided as a function of fidence level), and n (sample .75, .90, .95, .99; γ = .75, 0,∞. be of use to anyone who deals a of weapon systems analysis. ed with the problem of esti- % of the future burst points the distribution of burst ith common standard deviation be him to attach a confidence d. In particular, it will , the radius of a sphere which nts with 100y% confidence. <u>UNCLASSIFIED</u> Security Classification
	Tolerance limits are formu tolerance limit factors for the P (percent of the population be size). Values of P, γ, and n c .90, .95, .99; n = 2(1)25(5)100 While the formulation is s with Maxwell data, examples are It is in this area that the ana mating the radius of a sphere wi from an air burst weapon. Unde points about the target center c in all three directions, this statement to the percent of the enable him to determine, on the will encompass at least 100P% o D FOEM 1473 (PAGE 1) N 0101-807-6801	lated for the Maxwell upper tolerance bound low the bound), γ (con onsidered are P = .50, (10)200(50)300(100)100 ufficiently general to restricted to the are lyst :: often confront hich will include 100P r the assumption that is trivariate normal w development will enab population encompasse basis of test firings f the future burst point	distribution, and a table of is provided as a function of fidence level), and n (sample .75, .90, .95, .99; $\gamma = .75$, 0, ∞ . be of use to anyone who deals a of weapon systems analysis. ed with the problem of esti- % of the future burst points the distribution of burst with common standard deviation le him to attach a confidence ed. In particular, it will , the radius of a sphere which nts with 100 γ % confidence. <u>UNCLASSIFIED</u> Security Classification

1. I manufation of the second second

٠

NWL TECHNICAL REPORT TR-2954

June 1973

TOLERANCE LIMITS FOR THE MAXWELL DISTRIBUTION WITH

EMPHASIS ON THE SEP

Marlin A. Thomas John R. Crigler Gary W. Gemmill Audrey E. Taub

ž

NAVAL WEAPONS LABORATORY

DAHLGREN, VIRGINIA 22448

Approved for public release; distribution unlimited.

FOREWORD

The work covered in this Technical Report was performed in the Mathematical Statistics and Systems Simulation Branch (KCM), Operations Research Division, Warfare Analysis Department. The date of completion was 4 May 1973.

This report was reviewed by Mr. Carl M. Hynden, Jr.

Released by:

sh a me

RALPH A. NIEMANN, Head Warfare Analysis Department

iU

ABSTRACT

Tolerance limits are formulated for the Maxwell distribution, and a table of tolerance limit factors for the upper tolerance bound is provided as a function of P (percent of the population below the bound), γ (confidence level), and n (sample size). Values of P, γ , and n considered are P = .50, .75, .90, .95, .99; γ = .75, .90, .95, .99; n = 2(1)25(5)100(10)200(50)3C0(100)1000, ∞ .

While the formulation is sufficiently general to be of use to anyone who deals with Maxwell data, examples are restricted to the area of weapon systems analysis. It is in this area that the analyst is often confronted with the problem of estimating the radius of a sphere which will include 100P% of the future burst points from an air burst weapon. Under the assumption that the distribution of burst points about the target center is trivariate normal with common standard deviation σ in all three directions, this development will enable him to attach a confidence statement to the percent of the population encompassed. In particular, it will enable him to determine, on the basis of test firings, the radius of a sphere which will encompass at least 100P% of the future burst points with 100Y% confidence.

and the second second

CONTENTS

FOREW	DRD	Page i
ABSTR	ACT	ii
I.	INTRODUCTION	1
II.	DERIVATION OF THE MAXWELL DISTRIBUTION,	1
III.	PROBABILISTIC DEVELOPMENT	3
IV.	UPPER TOLERANCE BOUND FOR THE MAXWELL DIS- TRIBUTION	5
v.	CONCLUSIONS	12
REFERI	3NCES	14
APPENI	XIC	

Distribution

INTRODUCTION

A measure of dispersion often applied to air burst weapons is the SEP (Spherical Probable Error). This parameter is the radius of a mean-centered sphere which includes 50% of the trivariate probability, or in terms of a particular weapon, it is the radius of a sphere centered on the target center within which 50% of the rounds will burst. Its bivariate counterpart for ground burst weapons is, of course, the CEP which is the radius of a mean-centered circle which includes 50% of the <u>bivariate</u> probability. Estimation of the SEP involves firing a sample of n independent rounds at a target arbitrarily placed at the center of the Cartesian coordinate system. The radial burst distances of these rounds from the target center, denoted by $\{r_i\}_{i=1}^n$, are then recorded and used to compute an estimate of SEP, say SEP, which is taken as the radius of a sphere within which 50% of the future rounds from this weapon will burst.

SEP is only a point estimate of SEP and, as such, it will vary from sample to sample. To provide a measure of precision concerning the percent of the population encompassed, the probability that a sphere of radius SEP will include at <u>least</u> 50% of the future rounds is considered. Since this probability is found to be quite low, an alternative procedure is suggested through the development of tolerance limits for the Maxwell distribution. This alternative procedure enables one to increase this probability (or confidence) to more reasonable levels not only for 50% of the trivariate probability but also for 75%, 90%, 95% and 99%. The development is an extension of Thomas et al. (1973) for the CEP and is sufficiently general to be useful to those other than the weapon systems analyst.

DERIVATION OF THE MAXWELL DISTRIBUTION

The use of the SEP as a measure of dispersion requires the assumption that the burst points of a weapon about the target center are distributed according to the uncorrelated trivariate normal distribution with common variance σ^2 in all three directions (sometimes referred to as the spherical normal distribution). If one lets the trivariate random variable (X,Y,Z) designate the miss distance of a burst point from the target center (arbitrarily placed at the origin) in the x, y, and z directions respectively, this density is given by

$$f(x,y,z) = (2\pi\sigma^2) e^{-(x^2+y^2+z^2)/2\sigma^2}, -\infty < x,y,z < \infty.$$
(1)

Consider now the distribution of the radial burst distance from the target center, i.e., the distribution of $R = (x^2 + y^2 + z^2)^{\frac{1}{2}}$. _:ans-forming to spherical coordinates by letting

$$X = R \sin \emptyset \cos \theta$$
$$Y = R \sin \theta \sin \theta$$
$$Z = R \cos \theta$$

it is easy to show that the density of the trivariate random variable $(\mathtt{R}, \pmb{\theta}, \theta)$ is

$$g(r, \emptyset, \theta) = (2\pi\sigma^2)^{-3/2} e^{-r^2/2\sigma^2} r^2 \sin \emptyset$$
 (2)

for r > 0, $0 < \theta < 2\pi$, and $0 < \emptyset < \pi$. The marginal density of R is now obtained by integrating $g(r, \emptyset, \theta)$ over the entire range of both θ and \emptyset . It turns out that the density of R is

$$h(r) = (2/\pi)^{\frac{1}{2}} (r^2/\sigma^3) e^{-r^2/2\sigma^2}, \quad r > 0.$$
 (3)

This density is commonly referred to as the Maxwell density and represents the distribution of the radial burst distances from the target center under the spherical normality assumption. (See, for example, Lindgren (1968).) Its counterpart for ground burst weapons is referred to as the Rayleigh distribution and is the distribution of the radial miss distances in the ground plane.

Using the density in (3), one can establish the relationship between SEP and σ by solving

 $P(R < SEP) = \int_{0}^{SEP} h(r)dr = .5$ (4)

for SEP in terms of σ . Since h(r) is not integrable in closed form, numerical procedures can be employed to show that SEP = 1.5382 σ . Hence, if the population standard deviation σ were known for a given weapon-totarget range, a sphere of radius 1.5382 σ centered on the target center would encompass 50% of the trivariate probability or 50% of the future burst points from this weapon under similar conditions. (In the bivariate analogy for ground burst weapons, it is well known that CEP = 1.1774 σ .)

Unfortunately, σ and hence SEP are never known and must be estimated from test firings. To estimate σ , n rounds are fired at a target at a given range and the distances of the burst points from the target center are recorded. If these distances are designated as r_{i} , it is easy to

show that the maximum likelihood estimate for σ is given by

$$\hat{\sigma} = \left\{ \sum_{i=1}^{n} r_{i}^{2} / 3n \right\}^{\frac{1}{2}}$$
 (5)

and thus the maximum likelihood estimate for SEP is given by

などのないないとれたいないとないでいたがないないというというないないである

Suppose now that one estimates SEP with SÊP as given in (6) above. One cannot state that a sphere of radius SÊP will encompass 50% of the future rounds from this weapon (under similar conditions) with certainty since SEP is a continuous random variable which varies from sample to sample. However, as a measure of precision, one could consider the probability that a sphere of radius SEP encompasses at least 50% of the trivariate probability (at least 50% of the future burst points). This probability will be explored in the next section.

PROBABILISTIC DEVELOPMENT

This section concerns the development of an expression for the probability that a sphere of radius $\hat{SEP} = 1.5382\hat{\sigma}$ encompassing at least 50% of the trivariate probability However, to keep the development general, this will be accomplish. by obtaining an expression for the

probability that a sphere of radius $k\hat{\sigma}$ encompasses at least 100P% of the trivariate probability. The mathematical expression for this probability is

Prob
$$\{\int_{0}^{k\hat{\sigma}} (2/\pi)^{\frac{1}{2}} (r^{2}/\sigma^{3}) e^{-\frac{\pi^{2}}{2}\sigma^{2}} dr \ge P\} = \gamma$$
 (7)

where γ is the quantity sought. Letting $y = r^2/\sigma^2$ in the integral in (7), one obtains

$$\Pr_{O} \{ \int_{0}^{k^{2} \hat{\sigma}^{2} / \sigma^{2}} (2\pi)^{-\frac{1}{2}} y^{\frac{1}{2}} e^{-y/2} dy \ge P \} = \gamma .$$
(8)

The integrand in (8) is recognized as a chi-square density with three degrees of freedom. Hence (8) can be written as

Prob {
$$F(\frac{k^2y^2}{\sigma^2}) \ge P$$
} = Y (9)

where F denotes the cumulative distribution function for the chi-square with three degrees of freedom. Since F is a one-to-one function, (9) can be expressed by

Prob
$$\left\{\frac{k^{2}\hat{\sigma}^{2}}{\sigma^{2}} \ge F^{-1}(P)\right\} = \gamma$$
 (10)

or

Prob
$$\{\hat{\sigma}^2 \ge \frac{\sigma^2 F^{-1}(F)}{\kappa^2}\} = \gamma$$
. (11)

Note that F^{-1} (P) is the 100P percentage point of the chi-square density with three degrees of freedom. Tabular values of F^{-1} (P) are available from - prious sources, most notably from <u>Biometrika Tables for Statisticians, Vol. I</u> where they are presented to six significant digits for a wile range of values of P. For P = .50, the value of P under present consideration, $F^{-1}(.50) = 2.36597$.

Using the maximum likelihood estimator for $\hat{\sigma}$ as given in (5), it is easily shown that the density of $W = \hat{\sigma}^2$ is given by

$$f(w) = \frac{(3n)^{3n/2} w^{3n/2} - 1 e^{-3nw/2\sigma^2}}{\Gamma(3n/2) 2^{3n/2} \sigma^{3n}}, \quad w > 0.$$
(12)

Therefore, equation (11) can be expressed by

$$\int_{0}^{V} f(w) dw = 1 - \gamma$$
(13)

where f(w) is given in (12) and $v = \sigma^2 F^{-1}(P)/k^2$. It appears from (13) that y, the probability under question, is a function of the unknown parameter σ . A simple transformation reveals that it is not. Letting $z = w/\sigma^2$ so that $w = \sigma^2 z$ and $dw = \sigma^2 dz$, equation (13) becomes

$$\int_{0}^{v'} \frac{(3n)^{3n/2} z^{3n/2} - 1 e^{-3nz}}{\Gamma(3n/2) 2^{3n/2}} dz = 1 - \gamma$$
(14)

where $v' = F^{-1}(P)/k^2$. Equation (14) is free of the unknown parameter σ so that the probability γ is a function of only P (% of the population), k (multiplying constant for $\hat{\sigma}$), and n (sample size).

Recall now the question posed at the end of the last section, namely, with what probability (or confidence) can one state that a

sphere of radius SEP = $1.5382\hat{\sigma}$ will encompass at least 50% of the trivariate probability. This probability can be obtained from equation (14) by setting k = 1.5382, P = .50, and solving for γ for various values of n. This equation was solved with k and P set as above for sample sizes of n = $2(1)25(5)100(10)200(50)306(100)1006,\infty$. The results are set out in Table 1 and reveal that this probability or confidence is quite low, i.e., less than .50 unless one has an infinite sample size (tantamount to having complete knowledge about the unknown parameter σ). To increase this confidence to more reasonable levels, it is clear that one must increase the multiplying constant above 1.5382. This will be discussed next through the development of tolerance limits for the Maxwell distribution.

UPPER TOLERANCE BOUND FOR THE MAXWELL DISTRIBUTION

Making confidence or probability statements concerning the percent of the population which lies below an estimate of the SEP involves the concept of an upper tolerance bound. In the more general sense, an upper tolerance bound, $U(P,\gamma)$, is a point defined such that at least 100P% of the population 1'es below it with 100Y% confidence. (See, for example, Bowker and Lieberman (1972), Proschan (1953), or Thomas, et al. (1973).). $U(P,\gamma)$ is constructed as a function of the estimate(s) of unknown population parameter(s) based on a random sample from the population in question. For the case at hand in which one is sampling from a trivariate normal distribution with common variance, there is only one unknown parameter, i.e., σ , and the upper tolerance bound will be formulated as a function of the estimate of this parameter. (Since only the radial distance between burst point and target is under consideration, this can also be viewed as sampling from the Maxwell distribution with parameter σ . See equation (3).)

The maximum likelihood estimator for σ as given in (5) can be shown to be a sufficient estimator for σ , so that the upper tolerance bound should be of the form $U(P,\gamma) = k(P,\gamma,n)\hat{\sigma}$. The constant $k(P,\gamma,n)$ (tolerance limit factor) is to be determined such that one is 100 γ % confident that at least 100P% of the population lies below $U(P,\gamma)$. While a value of P = .50 is of primary concern here, other values could well be of interest so the general notation will be used. Deleting the arguments for notational simplicity, $k(P,\gamma,n)$ is sought such that

Prob
$$\{\int_{0}^{k\hat{\sigma}} (2/\pi)^{\frac{1}{2}} (r^{2}/\sigma^{3}) e^{-r^{2}/2\sigma^{2}} dr \ge P\} = \gamma$$
. (15)

duranting telefoldship breading the direction of the feature of th

This is, of course, precisely equation (7) of the last section which reduced to equation (14). While equation (14) was originally derived for the purpose of evaluating γ for fixed values of P, k, and n, it can also be used to evaluate k for fixed values of P, γ , and n. The value of k so obtained would be an exact tolerance limit factor which,

PROBABILITY	THAT AT LEAST	50% OF POPULATION	LIFE UTTUTH OF
			DIES WIININ SEP
~			
	<u> </u>	n	<u> </u>
2	.4232	60	
3	.4373	80	•4860
4	.4457	55	•4865
5	.4574	70	•4870
6	.4556	/5	. 4875
7	.4580	80	•4879
8	·4505 /616	85	.4882
9	•4010	90	.4886
10	•4030	95	•48 89
20	•4000	100	.4891
11	•4672	110	
12	.4686	120	,4896
13	.4699	120	.4901
14	.4710	140	•4905
15	•4720	140	.4908
16	.4728	150	.4911
17	•4737	170	•4914
18	.4744	170	.491/
19	.4751	100	.4919
20	.4757	190	.4921
	••••••	200	•4923
21	•4763	250	6021
22	•4768	300	•4331
23	.4774	400	+4737 101C
24	.4773	500	•4740
25	.4783	600	+4931 4056
••		500	+4930
30	•4802	700	4950
35	.4816	800	.4962
40	•4828	900	.4964
45	•4838	1000	1066
50	•4846	8	1 0000
55	•4854		****

÷

Table 1

3

when multiplied times $\hat{\sigma}$, would provide the upper tolerance bound $U(P,\gamma)$. As aforementioned, the interpretation of $U(P,\gamma)$ is that one is 100 γ % confident that at least 100P% of the population lies within a pohere of radius $U(P,\gamma)$. For a particular weapon at a specified

m-to-target range, this means that one is $100\gamma\%$ confident that least 100P% of the future rounds from this weapon, fired under similar conditions, will burst within a sphere of radius U(P, γ) centered on the target center.

To utilize the above concept, it is necessary for one to have a table of tolerance limit factors at his disposal for reasonable values of P, γ , and n. Hence, equation (14) was solved for k for P = .50, .75, .90, .95, .99; γ = .75, .90, .95, .99; and n = 2(1) 25(5)100(10)200(50)300(100)1000, ∞ . The solutions were obtained using Simpson's integration rule and successive binary cuts beginning with an appropriate starting value for the upper limit v'. The computations were performed on the CDC 6700 at the Naval Weapons Laboratory. Tolerances were set to provide an accuracy in k of four decimal digits; the values of k are set out in Table 2 for the above listed values of P, γ , and n.

As an example of employing this procedure, suppose eight rounds are fired at a target to obtain the radius of a sphere about the target center within which at least 50% of the future rounds (under similar conditions) from this weapon will burst with 95% confidence. The radial miss distances from the target center are shown below. All measurements are in feet.

	•
201.	.92
52	98
210	10
120	120
1400	17
40	+ + / / ^
90,	40
85.	.84
111/1	11

It can be verified that $\sum_{i=1}^{8} r_i^2 = 132,169.9603$ and hence that

 $\hat{\sigma} = 74.21$

and

SÊP = 1.5382ô = 114.15

Table 2

TOLERANCE LIMIT FACTORS FOR THE MAXWELL DENSITY

			Υ = .75					γ = .90		
<u>а</u> г	.50	.75	· 9	.95	66.	.50	.75	.90	.95	66.
2	2.0271	2.6712	3.295	3.6841	4.4389	2.5378	3.3441	4.1251	4.6122	5.5571
i ۳	1.8999	2.5036	3.0883	3.4530	4.1604	2.2602	2.9784	3.6739	4.1077	4.9493
t- 1	1.8343	2.4171	2.9816	3,3336	4.0166	2.1222	2.7966	3.4497	3.8570	4.6472
Ś	1.7932	2.3630	2.9148	3.2590	3.9267	2.0378	2.6852	3.3123	3.7034	4.4622
9	1.7647	2.3254	2.8685	3.2072	3.8643	1.9798	2.6089	3.2182	3.5982	4.3354
~	L.7435	2.2975	2.8341	3.1687	3.8179	1.9372	2.5527	3.1489	3.5207	4.2423
~ ~~	1.7271	2.2758	2.8073	3.1388	3.7818	1.9043	2.5094	3.0954	3.4609	4.1699
6	1.7138	2.2584	2.7858	3.1147	3.7528	1.8779	2.4746	3.0526	3.4130	4.1122
10	1.7029	2.2439	2.7680	3.0948	3.7289	1.8563	2.4461	3.0173	3.3736	4.0648
11	1.6936	2.2318	2.7530	3.0780	3.7086	1.8381	2.4221	2.9878	3,3405	4.0249
12	1.6857	2,2214	2.7402	3.0637	3.6914	1.8225	2.4016	2.9625	3.3122	3.9909
13	1.6789	2.2123	2.7290	3.0512	3.6763	1.8090	2.3838	2.9405	3.2877	3.9613
14	1.6728	2.2044	2.7192	3.0402	3.6631	1.7972	2.3682	2.9213	3.2662	3.9354
15	1.6675	2.1973	2.7105	3.0305	3.6514	1.7867	2.3544	2.9043	3.2472	3.9125
16	1.6627	2.1910	2.7027	3.0218	3.6409	1.7774	2.3421	2.8891	3.2302	3.8920
17	1.6584	2.1853	2.6957	3.0140	3.6314	1.7690	2.3310	2.8754	3.2149	3.8736
18	1.6545	2.1802	2.6893	3.0068	3.6229	1.7613	2.3210	2.8630	3.2011	3.8569
19	1.6509	2.1754	2.6835	3.0003	3.6150	1.7544	2.3118	2.8517	3.1884	3.8417
20	1.6476	2.1711	2.6782	2.9944	3.6079	1.7480	2.3034	2.8414	3.1769	3.8277
21	1.6446	2.1671	2.6733	2.9889	3.6013	1.7422	2.2957	2.8319	3.1662	3.8149
22	1.6418	2.1635	2.6687	2.9838	3.5952	1.7367	2.2886	2.8230	3.1564	3.8030
13	1.6392	2.1600	2.6645	2.9791	3.5895	1.7317	2.2820	2.8149	3.1472	3.7920
24	1.6368	2.1569	2.6606	2,9747	3.5842	1.7270	2.2760	2.8073	3.1387	3.7818
25	1.6345	2.1539	2.6569	2.9706	3.5792	1.7227	2.2700	2.8002	3.1308	3.7722
30	1.6251	2.1415	2.6416	2.9535	3.5587	1.7045	2.2461	2.7707	3.0978	3.7325
35	1.6180	2.1321	2.6300	2.9405	3.5430	1.6907	2.2279	2.7482	3.0727	3.7022
40	1.6123	3.1246	2.6208	2.9302	3.5305	1.6798	2.2135	2.7304	3.0528	3.6783
45	1.6076	2.1185	2.6132	2.9218	3.5204	1.6708	2.2017	2.7159	3.0365	3.6587
20	1.6038	2.1133	2.6069	2.9147	3.5118	1.6633	2.1918	2.7037	3.0230	3.6423

-

and the second second second

1 ŝ

the the state

، المشاطين والد

Table 2 (continued)

TOLERANCE LIMIT FACTORS FOR THE MAXWELL DENSITY

¥= .75

γ = .90

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>م</u>	.50	.75	06*	.95	66.	• 50	.75	.90	•95	66.
1.5976 2.1052 2.5968 2.9034 3.4983 1.5928 2.0989 2.5891 2.8948 3.4928 1.5928 2.0989 2.5891 2.8912 3.4796 1.5908 2.0939 2.58830 2.8912 3.4796 1.5874 2.0918 2.55830 2.8879 3.4796 1.5874 2.0918 2.55830 2.8879 3.4760 1.5833 2.0880 2.5777 2.8879 3.4766 1.5833 2.0880 2.5777 2.8879 3.4766 1.5811 2.0880 2.5777 2.8879 3.4766 1.5792 2.0880 2.5777 2.8879 3.4760 1.5792 2.0880 2.5777 2.8873 3.4671 1.5774 2.0787 2.5641 2.4728 1. 1.5774 2.0787 2.55617 2.8775 3.4673 1. 1.5774 2.0773 2.55617 2.8641 3.4728 1. 1.5774 2.0773 2.55617 2.8649 3.4429 1. 1.5774 2		1.6004	2.1090	2.6015	2.9086	3.5046	1.6570	2.1834	2.6934	3.0114	3.6284
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.5976	2.1052	2.5968	2.9034	3.4983	1.6514	2.1762	2.6844	3.0014	3.6165
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.5950	2.1018	2.5927	2.8988	3.4928	1.6466	2.1698	2.6766	2.9926	3.6057
1.5908 2.0963 2.5839 2.8912 3.4736 1.5874 2.0918 2.5830 2.8879 3.4760 1.5874 2.0918 2.5833 2.8879 3.4760 1.5874 2.0918 2.5577 2.8879 3.4726 1.5833 2.0898 2.5779 2.8879 3.4726 1.5833 2.0880 2.5777 2.8875 3.4671 1.5833 2.0864 2.5777 2.8775 3.4671 1.5792 2.0809 2.5770 2.8775 3.4671 1.5792 2.0809 2.5770 2.8775 3.4671 1.5792 2.0809 2.5770 2.8775 3.4671 1.5792 2.0787 2.5641 3.4672 $1.$ 1.5792 2.0787 2.5575 2.8775 3.4672 $1.$ 1.5774 2.0733 2.5557 2.8716 3.4672 $1.$ 1.5774 2.0733 2.5557 2.8516 3.4467 1.5723 1.5774 2.0733 2.55575		1.5928	2,0989	2.5891	2.8948	3.4879	1.6424	2,1642	2.6696	2.9848	3.5964
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.5908	2.0963	2.5859	2.8912	3.4835	1.6386	2,1592	2.6634	2.9779	3.5880
1.5874 2.0918 2.55757 2.8850 3.4760 1.58269 2.0888 2.5779 2.8873 3.4728 1.5846 2.0880 2.5779 2.8873 3.4671 1.5811 2.0835 2.5770 2.8735 3.4671 1.5811 2.0864 2.5737 2.8735 3.4671 1.5792 2.0809 2.5770 2.8735 3.4671 1.5792 2.0809 2.5790 2.8735 3.4671 1.5774 2.0787 2.5617 2.8735 3.4620 1.5774 2.0787 2.5617 2.8756 3.4621 1.5774 2.0787 2.5617 2.8641 3.453 1.5734 2.0749 2.5617 2.8641 3.453 1.5733 2.0719 2.5557 2.8641 3.453 1.5733 2.0703 2.5557 2.8641 3.453 1.5704 2.0703 2.5557 2.8640 3.4407 1.5704 2.0703 2.5512 2.8526 3.4407 1.5704 2.0693 2.5512 2.8526		1.5890	2.0939	2.5830	2.8879	3.4796	1.6351	2.1546	2.6578	2.9717	3.5805
1.5859 2.0898 2.5779 2.8823 3.4728 1.5846 2.0880 2.5757 2.8775 3.4671 1.5811 2.0864 2.5737 2.8775 3.4671 1.5811 2.0809 2.5757 2.8775 3.4671 1.5811 2.0835 2.5700 2.8775 3.4671 1.5792 2.0787 2.5641 2.8703 3.4520 1.5794 2.0787 2.5641 2.8700 3.4562 1.5704 2.0787 2.5617 2.8641 3.4562 1.5713 2.0779 2.5557 2.8641 3.4562 1.5734 2.0733 2.5557 2.8641 3.4562 1.5734 2.0733 2.5557 2.8641 3.4562 1.5713 2.0705 2.5557 2.8641 3.4529 1.5713 2.0719 2.5557 2.8641 3.4407 1.5704 2.0705 2.5557 2.8641 3.4429 1.5713 2.0705 2.5557 2.8642 3.4407 1.5661 2.0633 2.5557 2.8642		1.5874	2.0918	2.5803	. 2.8850	3.4760	1.6320	2.1506	2.6528	2.9660	3.5737
1.5846 2.0880 2.5757 2.8798 3.4698 1.5833 1.5811 2.0835 2.5737 2.8735 3.4671 1.511 1.5811 2.0835 2.5737 2.8735 3.4671 1.511 1.5792 2.0809 2.5737 2.8735 3.4671 1.5792 1.5774 2.0787 2.5669 2.8735 3.4580 1.1571 1.5774 2.0787 2.55617 2.8669 3.4542 1.1573 1.5774 2.0773 2.55555 2.8661 3.4530 1.1573 1.5734 2.0719 2.55555 2.8617 3.4453 1.1573 1.5733 2.0719 2.55557 2.85755 3.4467 1.1573 1.5704 2.0705 2.55575 2.85755 3.4407 1.15713 1.5704 2.0693 2.55575 2.85756 3.4407 1.15713 1.5704 2.0636 2.55512 2.85756 3.4407 1.15513 1.5661 2.0632 2.5415 2.8576 3.4407 1.15513 1.5663 2.0633		1.5859	2.0898	2.5779	2.8823	3.4728	1.6292	2.1468	2.6482	2.9609	3.5675
1.5833 2.0864 2.5737 2.8775 3.4671 1.5792 2.0809 2.5700 2.8735 3.4622 1.5792 2.0809 2.5569 2.8700 3.4580 1.5774 2.0787 2.5661 2.8735 3.4580 1.5774 2.0787 2.5661 2.8700 3.4580 1.5774 2.0767 2.55617 2.8669 3.4542 1.5774 2.0749 2.5595 2.8617 3.4580 1.5734 2.0719 2.5595 2.8617 3.4530 1.5734 2.0719 2.5595 2.8617 3.4463 1.5713 2.0719 2.5595 2.8617 3.4463 1.5704 2.0705 2.5557 2.8516 3.4407 1.5713 2.0705 2.5557 2.8516 3.4407 1.5713 2.0705 2.5541 2.4569 3.4407 1.5704 2.0693 2.5546 3.4407 1. 1.5713 2.0705 2.5512 2.8516 3.4407 1.5605 2.0633 2.5512 2.8516		1.5846	2.0880	2.5757	2.8798	3.4698	1.6266	2.1434	2.6440	2.9562	3.5618
1.5811 2.0835 2.5700 2.8735 3.4622 1.5774 2.0787 2.56641 2.8700 3.4580 1.5774 2.0787 2.5617 2.8669 3.4580 1.5774 2.0787 2.55617 2.8669 3.4580 1.5774 2.0787 2.55617 2.8669 3.4542 1.5774 2.0749 2.5595 2.8611 3.4542 1.5734 2.0719 2.5595 2.8617 3.4530 1.5723 2.0719 2.5557 2.8517 3.4463 1.5713 2.0705 2.5557 2.8518 3.4463 1.5713 2.0705 2.55512 2.8519 3.4463 1.5713 2.0705 2.55526 2.4407 1.1 1.5713 2.0705 2.5552 2.8546 3.4407 1.571 2.0705 2.5526 2.4403 1.1 1.5661 2.0633 2.5526 2.8546 3.4233 1.5663 2.0633 2.5415 2.8516 3.4233 1.5663 2.0636 2.5415 2.8546		1.5833	2.0864	2,5737	2.8775	3.4671	1.6242	2.1402	2.6401	2.9518	3.5566
1.5792 2.0809 2.5669 2.8700 3.4580 1 1.5774 2.0787 2.5617 2.8641 3.4542 1 1.5760 2.0767 2.55617 2.8661 3.4542 1 1.5760 2.0773 2.55595 2.8617 3.4542 1 1.5734 2.0719 2.55595 2.8617 3.4542 1 1.5734 2.0719 2.55575 2.8575 3.4429 1 1.5713 2.0719 2.55575 2.8575 3.4407 1 1.5713 2.0705 2.55512 2.8575 3.4429 1 1.5713 2.0705 2.55512 2.8575 3.4429 1 1.5713 2.0705 2.55526 2.4407 1 1 1.5704 2.0693 2.5526 2.4402 1 1 1.5601 2.0633 2.5512 2.8516 3.4233 1 1 1.5635 2.0663 2.5415 2.8516 3.4233 1 1 1.5635 2.0633 2.5521 2.8516 <		1.5811	2.0835	2.5700	2.8735	3.4622	1.6199	2.1346	2.6332	2.9441	3.5472
1.5774 2.0787 2.5641 2.8669 3.4542 1.5746 1.5766 2.0749 2.5595 2.8641 3.4510 1.5734 1.5734 2.0733 2.55595 2.86617 3.4480 1.5734 1.5734 2.0719 2.55575 2.85955 3.4429 1.15723 1.5713 2.0719 2.55575 2.85755 3.4429 1.15713 1.5713 2.07055 2.55512 2.85755 3.4429 1.15713 1.5704 2.0693 2.55526 2.85756 3.4429 1.15704 1.5695 2.0703 2.55526 2.85746 3.4238 1.15633 1.5635 2.06633 2.5415 2.8462 3.4233 1.15633 1.5635 2.06633 2.5415 2.8416 3.4233 1.15577 1.5635 2.0633 2.5415 2.8416 3.4233 1.15577 1.5535 2.0633 2.5415 2.8416 3.4233 1.15577 1.5535 2.0523 </td <td></td> <td>1.5792</td> <td>2.0809</td> <td>2.5669</td> <td>2.8700</td> <td>3.4580</td> <td>1.6162</td> <td>2.1298</td> <td>2.627L</td> <td>2.9373</td> <td>3.5391</td>		1.5792	2.0809	2.5669	2.8700	3.4580	1.6162	2.1298	2.627L	2.9373	3.5391
1.5760 2.0767 2.5617 2.8641 3.4510 1.5734 2.0749 2.5595 2.8617 3.4480 1.5734 2.0719 2.5557 2.8575 3.4429 1.5734 2.0719 2.5557 2.8575 3.4429 1.5733 2.0719 2.5557 2.8575 3.4429 1.5713 2.0705 2.5557 2.8575 3.4429 1.5713 2.0705 2.5551 2.8575 3.4429 1.5704 2.0693 2.5552 2.8575 3.4429 1.5695 2.0682 2.55526 2.8546 3.4429 1.5695 2.0683 2.5512 2.8524 3.4368 1.5600 2.0633 2.5415 2.8462 3.4293 1.5635 2.0633 2.5415 2.8416 3.4233 1.5600 2.0557 2.5320 2.8416 3.4233 1.5577 2.0553 2.54415 3.4233 1. 1.5576 2.0533 2.8416 3.4233 1. 1.5576 2.0526 2.5237 2.8416 <t< td=""><td></td><td>1.5774</td><td>2.0787</td><td>2.5641</td><td>2.8669</td><td>3.4542</td><td>1.6130</td><td>2.1255</td><td>2.6219</td><td>2.9314</td><td>3.5320</td></t<>		1.5774	2.0787	2.5641	2.8669	3.4542	1.6130	2.1255	2.6219	2.9314	3.5320
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.5760	2.0767	2.5617	2.8641	3.4510	1.6101	2.1217	2.6172	2.9262	3.5257
1.5734 2.0733 2.5575 2.8595 3.4453 1.5723 2.0719 2.5557 2.8575 3.4407 1.5713 2.0705 2.5557 2.8575 3.4407 1.5704 2.0693 2.5556 3.4407 1. 1.5704 2.0693 2.55526 2.8556 3.4407 1. 1.5695 2.0663 2.55526 2.8556 3.4368 1. 1.5661 2.0663 2.55526 2.8554 3.4368 1. 1.5635 2.0633 2.5512 2.8524 3.4368 1. 1.5635 2.0633 2.5512 2.8462 3.4368 1. 1.5635 2.0633 2.5415 2.8462 3.4293 1. 1.5635 2.0633 2.5415 2.8416 3.4238 1. 1.5577 2.0533 2.5415 2.8416 3.4233 1. 1.5577 2.0523 2.5231 2.8233 3.4161 1. 1.5576 2.0533 2.8416 3.4071 1. 1. 1.5560 2.0523		1.5746	2.0749	2.5595	2.8617	3.4480	1.6075	2.1183	2.6130	2.9215	3.5201
1.5723 2.0719 2.5557 2.8575 3.4429 1.5713 2.0705 2.5541 2.4556 3.4407 1.5704 2.0693 2.5526 2.8556 3.4407 1.5704 2.0693 2.5526 2.8556 3.4407 1.5695 2.0682 2.5512 2.8524 3.4368 1.5661 2.0636 2.5512 2.8524 3.4368 1.5661 2.0636 2.5415 2.8462 3.4368 1.5635 2.0603 2.5415 2.8462 3.4293 1.5636 2.0503 2.5415 2.8416 3.4293 1.5577 2.0526 2.5320 2.8339 3.4161 1.5577 2.0503 2.5291 2.8277 3.4071 1.5546 2.0485 2.5291 2.8277 3.4071 1.5526 2.0471 2.5252 2.8233 3.4018 1.5526 2.0449 2.5225 2.8217 3.3981 1.5528 2.0449 2.5225 2.8203 3.3981 1.5528 2.8203 3.3981 1. </td <td></td> <td>1.5734</td> <td>2.0733</td> <td>2.5575</td> <td>2.8595</td> <td>3.4453</td> <td>1.6052</td> <td>2.1152</td> <td>2.6092</td> <td>2.9173</td> <td>3.5150</td>		1.5734	2.0733	2.5575	2.8595	3.4453	1.6052	2.1152	2.6092	2.9173	3.5150
1.5713 2.0705 2.5541 2.4556 3.4407 1.5704 2.0693 2.5526 2.8554 3.4387 1.5695 2.0682 2.5512 2.8540 3.4368 1.5661 2.0636 2.5512 2.8546 3.4368 1.5661 2.0663 2.5456 2.8462 3.4368 1. 1.5635 2.0603 2.5415 2.8462 3.4293 1. 1.5635 2.0663 2.5415 2.8462 3.4293 1. 1.5635 2.0503 2.5415 2.8462 3.4203 1. 1.5577 2.05526 2.5320 2.8339 3.4109 1. 1.5577 2.0503 2.5291 2.8277 3.4071 1. 1.5546 2.0485 2.5269 2.8253 3.4061 1. 1.5526 2.0471 2.5255 2.8233 3.4018 1. 1.5528 2.0449 2.5225 2.8203 3.3981 1. 1.5528 2.0449 2.5225 2.8203 3.3981 1. 1.5528 2.0449		1.5723	2.0719	2.5557	2.8575	3.4429	1.6031	2.1125	2.6058	2.9135	3.5104
1.5704 2.0693 2.5526 2.8540 3.4387 1 1.5695 2.0682 2.5512 2.8524 3.4368 1 1.5661 2.0636 2.5456 2.8462 3.4368 1 1.5661 2.0636 2.5456 2.8462 3.4293 1 1.5660 2.0657 2.5415 2.8462 3.4293 1 1.5635 2.06603 2.5415 2.8462 3.4293 1 1.5635 2.0653 2.5415 2.8416 3.4238 1 1.5635 2.0553 2.5538 2.8352 3.4161 1 1.5577 2.0553 2.5291 2.8339 3.4161 1 1.55546 2.0485 2.5291 2.8233 3.4071 1 1.5526 2.0471 2.5253 2.8233 3.4018 1 1.5528 2.0449 2.5225 2.8233 3.4018 1 1.5528 2.0449 2.5225 2.8203 3.3981 1 1.5518 2.0449 2.5225 2.8203 3.3981 1 <td></td> <td>1.5713</td> <td>2.0705</td> <td>2.5541</td> <td>2., 8556</td> <td>3.4407</td> <td>1.6012</td> <td>2.1099</td> <td>2.6027</td> <td>2.9100</td> <td>3.5062</td>		1.5713	2.0705	2.5541	2., 8556	3.4407	1.6012	2.1099	2.6027	2.9100	3.5062
1.5695 2.0682 2.5512 2.8524 3.4368 1 1.5661 2.0636 2.5456 2.8462 3.4293 1 1.5635 2.0636 2.5415 2.8466 3.4293 1 1.5635 2.06536 2.5415 2.8466 3.4293 1 1.5635 2.0557 2.5358 2.8352 3.4238 1 1.5577 2.0557 2.5320 2.8379 3.4161 1 1.5577 2.05526 2.5320 2.8379 3.4109 1 1.55560 2.0503 2.52291 2.8237 3.4071 1 1.5546 2.0485 2.5269 2.8233 3.4041 1 1.5526 2.0471 2.5252 2.8233 3.4018 1 1.5528 2.0449 2.5225 2.8203 3.3981 1 1.5518 2.0449 2.5225 2.8203 3.3981 1 1.5528 2.0449 2.5225 2.8203 3.3981 1 1.5588 2.6469 2.6469 2.6469 2.6469 2.6		1.5704	2.0693	2.5526	2.8540	3.4387	1.5994	2.1076	2.5998	2,9068	3.5023
1.5661 2.0636 2.5456 2.8462 3.4293 1 1.5635 2.0603 2.5415 2.8416 3.4238 1 1.5635 2.0557 2.5358 2.8416 3.4238 1 1.5577 2.0557 2.5358 2.8352 3.4161 1 1.5577 2.0526 2.5320 2.8379 3.4161 1 1.5577 2.05236 2.5320 2.8379 3.4109 1 1.5560 2.0503 2.5291 2.8277 3.4071 1 1.5546 2.0485 2.5269 2.8253 3.4071 1 1.5546 2.0471 2.5252 2.8233 3.4018 1 1.5526 2.0471 2.5257 2.8217 3.3981 1 1.5518 2.0449 2.5225 2.8203 3.3981 1 1.5518 2.0449 2.5225 2.8203 3.3981 1 1.5518 2.0449 2.5225 2.8203 3.3981 1 1.5518 2.0449 2.5225 2.8203 3.3681 1		1.5695	2.0682	2.5512	2.8524	3.4368	1.5978	2.1055	2.5972	2.9038	3.4988
1.5635 2.0603 2.5415 2.8416 3.4238 1. 1.5600 2.0557 2.5358 2.8352 3.4161 1. 1.5577 2.0557 2.5358 2.8352 3.4161 1. 1.5577 2.0556 2.5320 2.8379 3.4161 1. 1.5560 2.0503 2.5291 2.8277 3.4071 1. 1.5546 2.0485 2.5269 2.8253 3.4041 1. 1.5535 2.0471 2.5252 2.8233 3.4018 1. 1.5526 2.0471 2.5257 2.8233 3.4018 1. 1.5528 2.0479 2.5257 2.8217 3.3998 1. 1.5518 2.0449 2.5225 2.8203 3.3981 1. 1.5518 2.0449 2.5225 2.8203 3.3981 1.		1.5661	2.0636	2.5456	2.8462	3.4293	1.5912	2.0968	2.5865	2.8919	3.4844
1.5500 2.0557 2.5358 2.8352 3.4161 1. 1.5577 2.0526 2.5320 2.8309 3.4109 1. 1.5560 2.0503 2.5291 2.8277 3.4071 1. 1.5560 2.0503 2.5291 2.8277 3.4071 1. 1.5546 2.0485 2.5269 2.8253 3.4041 1. 1.5535 2.0471 2.5252 2.8233 3.4018 1. 1.5526 2.0471 2.5252 2.8233 3.4018 1. 1.5526 2.0479 2.5225 2.8217 3.3998 1. 1.5518 2.0449 2.5225 2.8203 3.3981 1. 1.5518 2.0469 2.5225 2.8203 3.3981 1. 1.5528 2.0760 2.5225 2.8203 3.3681 1.		1.5635	2.0603	2.5415	2.8416	3.4238	1.5864	2.0905	2.5787	2.8832	3.4739
1.5577 2.0526 2.5320 2.8309 3.4109 1. 1.5560 2.0503 2.5291 2.82.7 3.4071 1. 1.5546 2.0485 2.5269 2.825.1 3.4041 1. 1.5546 2.0485 2.5269 2.825.1 3.4041 1. 1.5535 2.0471 2.5252 2.8233 3.4018 1. 1.5526 2.0471 2.5252 2.8233 3.4018 1. 1.5526 2.0449 2.5225 2.8203 3.3981 1. 1.5518 2.0469 2.5225 2.8203 3.3981 1. 1.5518 2.0760 2.5033 2.3681 1.		1.5600	2.0557	2.5358	2.8352	3.4161	J. 5798	2.0817	2.5679	2.8710	3.4593
1.5560 2.0503 2.5291 2.82?7 3.4071 1. 1.5546 2.0485 2.5269 2.825.1 3.4041 1. 1.5535 2.0471 2.5252 2.8233 3.4018 1. 1.5535 2.0471 2.5252 2.8233 3.4018 1. 1.5526 2.0459 2.5237 2.8217 3.3998 1. 1.5518 2.0449 2.5225 2.8203 3.3981 1. 1.5518 2.0469 2.5003 3.3681 1.		1.5577	2.0526	2.5320	2.8309	3.4109	1.5752	2.0757	2,5605	2.8628	3.4494
1.5546 2.0485 2.5269 2.825.1 3.4041 1. 1.5535 2.0471 2.5252 2.8233 3.4018 1. 1.5526 2.0459 2.5237 2.8217 3.3998 1. 1.5518 2.0449 2.5225 2.8203 3.3981 1. 1.5529 2.0449 2.5225 2.8203 3.3981 1. 1.5529 2.0469 2.5003 3.3681 1.		1.5560	2.0503	2.5291	2.82.7	3.4071	1.5719	2.0714	2,5551	2,8568	3.4421
1.5535 2.0471 2.5252 2.8233 3.4018 1. 1.5526 2.0459 2.5237 2.8217 3.3998 1. 1.5518 2.0449 2.5225 2.8203 3.3981 1. 1.558 2.0260 2.5225 2.8203 3.3981 1.		1.5546	2.0485	2.5269	2.825.1	3.4041	1.5694	2.0680	2.5510	2.8522	3.4365
1.5526 2.0459 2.5237 2.8217 3.3998 1. 1.5518 2.0449 2.5225 2.8203 3.3981 1. 1.5323 2.0260 2.5023 2.7055 3.3682 1.		1.5535	2.0471	2.5252	2.8233	3.4018	1.5673	2.0653	2.5476	2.8484	3.4320
1.5518 2.0449 2.5225 2.8203 3.3981 1. 1.5382 2.0260 2.5003 2.7055 3.3682 1		1.5526	2.0459	2.5237	2.8217	3,3998	1.5656	2.0630	2.5448	2.8453	3.4282
1 5387 7 0760 7 5003 7 7955 3 3687 1		1.5518	2.0449	2.5225	2.8203	3.3981	1.5642	2.0611	2.5425	2.8427	3.4251
		1.5382	2.0269	2.5003	2.7955	3,3682	1.5382	2.0269	2.5003	2.7955	3.3682

S

6

*

Table 2 (continued)

Â

ه خار و مواصل الا وي به ا

r mining and a straight the second

TOLERANCE LIMIT FACTORS FOR THE MAXWELL DENSITY

γ = .95

γ = .99

۵. ۲	•50	.75	06 •	.95	66*	•50	.75	.90	.95	66•
2	2.9463	3.8825	4.7892	5.3547	6.4517	4.0344	5.3163	6.5579	7.3322	8.8344
ŝ	2.5305	3.3346	4.1134	4.5990	5.5413	3.1934	4.2081	5.1908	5.8037	6.9928
4	2,3309	3.0715	3.7888	4.2361	5.1040	2.8199	3.7158	4.5836	5.1248	6.1748
ŝ	2.2108	2.9133	3.5937	4.0180	4.84.2	2,6050	3.4328	4.2344	4.7344	5.7044
9	2.1296	2.8062	3.4616	3.8703	4.6633	2.41 18	3.2467	4.0050	4.4778	5.3952
7	2.0704	2.7282	3.3654	3.7627	4.5336	2.3630	3.1139	3.8411	4.2946	5.1745
80	2.0250	2.6684	3.2915	3.6802	4.4342	2.2870	3.0137	3.7175	4.1564	5.0080
δ	1.9888	2.6207	3.2327	3.6144	4.3549	2.2271	2.9347	3.620I	4.0475	4.8767
10	1.9591	2.5816	3.1845	3,5605	4.2900	2.1787	2.8709	3.5414	3.9596	4.7708
11	1.9344	2.5490	3.1443	3.5156	4.2358	2.1386	2.8180	3.4762	3.8866	4.6829
12	1.9132	2.5212	3.1100	3.4772	4.1895	2.1044	2.7731	3.4208	3.8246	4.6082
13	1.8950	2.4971	3,0803	3.4440	4.1496	2.0752	2.7346	3.3732	3.7715	4.5442
14	1.8790	2.4761	3.0544	3.4150	4.1146	2.0498	2.7011	3.3319	3.7253	4.4885
15	1. 8649	2.4575	3.0314	3,3894	4.0838	2.0275	2.6717	3.2956	3.6847	4.4397
16	1.8523	2.4409	3.0110	3.3665	4.0562	2.0076	2.6455	3.2634	3.6487	4.3962
17	1.8410	2.4260	2.9926	3.3459	4.0314	1.9898	2.6221	3.2344	3.6163	4.3572
18	1.8308	2.4125	2.9760	3.3274	4.0090	1.9738	2.6009	3.2084	3.5872	4.3221
19	1.8215	2.4003	2.9609	3.3105	3.9887	1.9592	2.5818	3.1847	3.5607	4.2903
20	1.8130	2.3891	2.9470	3.2950	3.9700	1.9460	2.5643	3.1632	3.5367	4.2613
21	1.8052	2.3788	2.9343	3.2808	3.9529	1.9339	2.5484	3.1435	3.5147	4.2348
22	1.7980	2,3692	2.9225	3.2676	3.9371	1.9227	2.5336	3,1253	3.4944	4.2103
23	1.7913	2.3604	2.9117	3.2554	3.9224	1.9123	2.5199	3.1084	3.4754	4.1875
24 .	1.7850	2.3522	2.9015	3.2441	3,9088	1.9028	2,5073	3.0929	3.4581	4.1666
25	1.7792	2.3445	2.8921	3.2336	3.8960	1.8938	2.4556	3.0784	3.4418	4.1470
30	1.7551	2.3128	2.8529	3.1898	3.8433	1.8569	2.4469	3.0183	3.3747	4.0661
35	1.7368	2.2887	2.8232	3.1565	3.8032	1.8292	2.4104	2.9733	3.3244	4.0054
40	1.722/	2.2696	2.7997	3.1304	3.7716	1.8073	2.3816	2.9378	3.2846	3.9576
45	1.7106	2.2541	2.7805	3.1088	3.7458	1.7896	2.3582	2,9089	2.2524	3.9187
50	1.7008	2.2412	2.7646	3.0910	3.7242	1.7748	2.3388	2.8850	3.2256	3.8865

÷.

2

10 H H

-

** * ł ŧ

•

--

Table 2 (continued)

TOLERANCE LIMIT FACTORS FOR THE MAXWELL DENSITY

γ=.95

-7

, *'|¦;-|k

12

66• = λ

55 1.6924 2.2301 2.7510 3.0758 3.7059 1.7515 2.3080 2.8470 3.1861 3.8154 70 1.6788 2.2122 2.77289 3.0640 1.7515 2.3080 2.8470 3.1861 3.8154 70 1.6738 2.2122 2.77289 3.0640 1.7515 2.3080 2.8470 3.1865 3.1316 3.914 75 1.6638 2.1933 2.7117 3.0319 3.6531 1.77264 2.7756 3.1376 3.7780 80 1.6550 2.1982 2.6918 3.0036 3.6432 1.7708 2.27555 3.1146 3.7780 9100 1.6550 2.1872 2.5987 3.6432 1.7703 2.2745 3.0724 3.7595 9100 1.6549 2.1870 2.6918 3.0034 3.6432 1.7763 2.8063 3.0724 3.7595 3.7595 9100 1.6549 2.1872 2.9973 3.5632 1.7763 2.8064 3.7663	۵. د	.50	.75	.96	.95	66.	.50	.75	•90	.95	66.
60 1.6852 2.2206 2.7792 3.0626 3.6601 1.7713 2.2395 2.8818 3.1561 3.81561 75 1.6683 2.7192 3.0511 3.6626 1.7332 2.2395 2.8818 3.1561 3.781 75 1.6638 2.7193 3.0319 3.6531 1.7737 2.2895 2.8818 3.1511 3.789 80 1.6638 2.1983 2.7717 3.0319 3.6526 1.7733 2.2845 2.81318 3.1516 3.789 90 1.6650 2.1872 2.6978 3.0056 3.6526 1.7703 2.8643 3.793 910 1.6550 2.1872 2.6973 3.0054 3.6188 1.7703 2.2445 1.7663 3.795 910 1.6549 2.1652 2.9713 3.5120 1.6673 3.0754 3.0453 110 1.64349 2.1643 2.9713 3.5180 1.6679 2.7764 3.0453 3.640 1100 1.64349 </td <td>55</td> <td>1.6924</td> <td>2.2301</td> <td>2.7510</td> <td>3.0758</td> <td>3.7059</td> <td>1.7623</td> <td>2.3223</td> <td>2.8646</td> <td>3.2028</td> <td>3.8590</td>	55	1.6924	2.2301	2.7510	3.0758	3.7059	1.7623	2.3223	2.8646	3.2028	3.8590
65 1.6788 2.2122 2.7789 3.0511 3.6640 1.7233 2.2848 2.8183 3.11511 3.796 75 1.6632 2.2049 2.7119 3.0610 3.6640 1.7733 2.2842 2.8183 3.1151 3.795 85 1.6597 2.1924 2.7119 3.0034 3.6432 1.7137 2.2803 3.1355 3.765 95 1.6550 2.1870 2.6918 3.0034 3.6522 1.7708 2.2533 2.7757 3.1146 3.775 90 1.6550 2.1877 2.6918 3.0034 3.6202 1.7083 2.2717 3.0925 3.749 910 1.6539 2.1777 2.6918 3.0034 3.6120 1.6996 2.2777 3.0423 3.749 910 1.6439 2.1543 2.6514 2.9578 3.660 3.0724 3.061 120 1.6639 2.0744 3.5544 1.6713 2.2135 3.0724 3.0734 3.672	60	1.6852	2.2206	2.7392	3.0626	3.6901	1.7515	2.3080	2.8470	3.1832	3.8354
70 1.6732 2.2049 2.7119 3.0410 3.6640 1.7338 2.2848 2.8133 3.1131 3.736 3.736 75 1.6683 2.11924 2.0013 3.6531 1.7724 2.27550 2.8063 3.1136 3.780 85 1.6578 2.1982 2.6018 3.0024 3.6640 1.7264 2.27550 2.8063 3.1146 3.752 95 1.6556 2.1872 2.6618 3.0034 3.6188 1.7137 2.25542 2.1756 3.1046 3.740 95 1.6556 2.1174 2.6613 3.0034 3.6188 1.7033 2.2211 2.7756 3.0756 3.740 910 1.65242 2.1754 2.6813 3.0034 3.6181 1.6713 2.2184 3.0756 3.0756 3.740 110 1.6439 2.1547 2.6443 2.6431 1.6657 2.7264 3.0764 3.6701 1120 1.6434 2.16442 2.5578 1.66576 <t< td=""><td>65</td><td>1.6788</td><td>2.2122</td><td>2.7289</td><td>3.0511</td><td>3.6762</td><td>1.7421</td><td>2.2956</td><td>2.8318</td><td>3.1661</td><td>3.8148</td></t<>	65	1.6788	2.2122	2.7289	3.0511	3.6762	1.7421	2.2956	2.8318	3.1661	3.8148
75 1.6682 2.1193 2.6711 3.033 3.6531 1.7264 2.2750 2.8063 3.1176 3.789 80 1.6538 2.1870 2.6918 3.0034 3.6132 1.7139 2.2562 2.7795 3.1145 3.759 95 1.6556 2.1870 2.6618 3.0034 3.6188 1.7139 2.2562 2.7795 3.1145 3.759 95 1.6556 2.1870 2.6618 3.0034 3.6188 1.7033 2.27445 2.77668 3.1746 3.7787 100 1.66495 2.16812 2.9978 3.6120 1.66967 2.27345 2.0756 3.6763 3.7785 1130 1.66492 2.16812 2.99789 3.5188 1.66967 2.77264 3.0495 3.670 1130 1.65449 2.1450 2.6544 2.6544 1.6576 2.0493 3.670 1140 1.6578 2.1659 2.5971 3.5714 1.6670 2.1726 2.0493 3.670	20	1.6732	2.2049	2.7198	3.0410	3.6640	1.7338	2.2848	2.8183	3.1511	3.7967
80 1.6638 2.1924 2.7044 3.0237 3.6432 1.7137 2.2562 2.7955 3.1146 3.752 95 1.6556 2.1177 2.6918 3.0096 3.6432 1.7137 2.2583 2.7857 3.1146 3.752 95 1.6556 2.1177 2.6918 3.0096 3.6120 1.6997 2.2311 2.7763 3.1046 3.752 100 1.6556 2.1177 2.6812 2.9978 3.6120 1.69987 2.2334 2.7612 3.0724 3.7719 110 1.6549 2.1563 2.6712 2.9977 3.5998 1.6670 2.21247 2.0874 3.771 120 1.6539 2.1450 2.6743 3.5718 1.6670 2.12142 2.0754 3.074 3.701 150 1.6549 2.1450 2.6714 2.5718 2.77066 3.0295 3.650 160 1.6549 2.1450 2.6441 2.5514 1.6670 2.1196 2.0914	75	1.6682	2.1983	2.7117	3.0319	3.6531	1.7264	2.2750	2.8063	3.1376	3.7804
85 1.6597 2.1870 2.6978 3.0164 3.6343 1.7137 2.2583 2.7766 3.11046 3.757 95 1.6556 2.1877 2.6812 2.0096 3.6262 1.7083 2.2511 2.7768 3.1094 3.740 95 1.6556 2.1177 2.6863 3.0034 3.6128 1.7033 2.2514 2.0976 3.703 110 1.6495 2.1754 2.0722 2.9978 3.5182 1.6973 2.7766 3.0724 3.771 120 1.6495 2.1543 2.6643 2.9789 3.5582 1.6906 2.2721 2.7766 3.0724 3.771 130 1.6531 2.1944 2.6472 2.9789 3.5584 1.6670 2.1726 3.0566 3.680 140 1.6131 2.1494 2.64410 2.9578 3.650 1.6670 2.1764 3.0515 3.640 160 1.6272 2.1341 2.6432 2.9789 3.5578 1.6670 2.1	80	1.6638	2.1924	2.7044	3.0237	3.6432	1.7198	2.2662	2.7955	3.1255	3.7659
90 1.6560 2.1822 2.6918 3.0034 3.6128 1.7083 2.2511 2.7768 3.1046 3.724 100 1.6535 2.1777 2.6863 3.0034 3.6128 1.7033 2.2277 2.7617 3.0956 3.724 110 1.6439 2.11559 2.6722 2.9977 3.5928 1.66987 2.2277 2.7480 3.0724 3.701 120 1.6439 2.1159 2.6613 2.9789 3.5928 1.66906 2.2277 2.7480 3.0724 3.701 120 1.6549 2.1559 2.6614 2.99789 3.5544 1.6773 2.1705 3.0384 3.660 140 1.6311 2.1450 2.6454 2.9544 3.5544 1.6573 2.1704 3.0143 3.662 150 1.6548 2.1410 2.6451 2.9529 3.5544 1.6576 2.7704 3.0143 3.612 160 1.6520 2.1314 2.65456 1.6576 2.1723 <	85	1.6597	2.1870	2.6978	3.0164	3.6343	1.7137	2.2583	2.7857	3.1146	3.7527
95 1.6526 2.1777 2.68813 3.0034 3.6120 11.703 2.2445 2.7687 3.0956 3.7791 110 1.6439 2.11736 2.6812 2.9978 3.6120 1.6987 2.2277 2.7612 3.0872 3.7791 120 1.6439 2.1543 2.6612 2.9978 3.6120 1.66966 2.2277 2.7643 3.0724 3.701 130 1.6439 2.1543 2.6673 2.9712 3.5892 1.66966 2.2277 2.7264 3.0724 3.701 140 1.6349 2.1543 2.6611 2.9512 3.55802 1.6679 2.7024 3.0215 3.650 170 1.6220 2.1311 2.6410 2.9514 3.5544 1.66716 2.1704 2.0215 3.640 170 1.6220 2.1311 2.6410 2.9514 3.5544 1.66716 2.1704 2.6901 3.0143 3.651 180 1.6220 2.1311 2.64216 1.65516	<u>06</u>	1.6560	2.1822	2.6918	3.0096	3.6262	1.7083	2.2511	2.7768	3.1046	3.7407
100 1.6495 2.1736 2.6812 2.9978 3.6120 1.6987 2.2334 2.7612 3.0872 3.7713 110 1.6439 2.11599 2.66143 2.9789 3.5892 1.6606 2.2277 2.7480 3.0724 3.7013 120 1.6439 2.1543 2.66743 2.9789 3.5598 1.6606 2.2277 2.7480 3.0724 3.7013 140 1.6311 2.1643 2.9784 3.5718 1.6670 2.1966 3.0595 3.650 150 1.6278 2.1440 2.6410 2.9524 3.5518 1.6670 2.1966 3.0215 3.640 160 1.6220 2.1341 2.6325 2.9578 3.5544 1.6676 2.1845 3.0215 3.640 3.613 160 1.6220 2.1341 2.6325 3.5546 1.6566 2.1996 3.0215 3.640 160 1.6249 2.1410 2.6325 3.5546 1.6556 2.1986 3.0016	95	1.6526	2.1777	2.6863	3.0034	3.6188	1.7033	2.2445	2.7687	3.0956	3.7298
110 1.6439 2.1663 2.6722 2.9877 3.5998 1.6906 2.2277 2.7480 3.0724 3.701 120 1.6331 2.1599 2.66475 2.9789 3.5892 1.6835 2.21184 2.77565 3.6863 150 1.6311 2.1450 2.66475 2.9789 3.5892 1.6673 2.7705 3.6403 150 1.6278 2.1450 2.66475 2.9584 3.5644 1.6670 2.7076 3.0295 3.6607 160 1.6228 2.1450 2.64592 2.9584 3.5548 1.6670 2.7026 3.0295 3.6607 160 1.6220 2.1450 2.64502 2.9479 3.5578 1.6670 2.1966 3.0143 3.6616 170 1.6220 2.1374 2.65365 2.9434 3.5564 1.66576 2.1908 2.7024 3.0215 3.6401 180 1.6172 2.1311 2.6538 2.93257 3.5518 1.6556 2.1856 2.6901 3.0016 3.6151 250 1.6167 2.11283 2.6254 2.93256 3.5646 1.6556 2.9736 3.6151 160 1.6172 2.1121 2.6316 2.9439 3.5564 1.6556 2.1764 2.6901 3.0777 3.6237 180 1.6172 2.1121 2.6116 2.9195 3.5456 1.6549 2.1764 2.6946 2.9960 3.6156 200 1.6172 2.1108 2.6092	100	1.6495	2.1736	2.6812	2.9978	3.6120	1.6987	2.2384	2.7612	3.0872	3.7198
120 1.6391 2.1599 2.6643 2.9789 3.5892 1.6635 2.2184 2.7365 3.0596 3.6861 140 1.65149 2.1543 2.6475 2.9584 3.5544 1.6677 2.7105 3.0384 3.6601 150 1.6511 2.1494 2.6475 2.9584 3.5544 1.6677 2.1966 2.7705 3.0384 3.6601 160 1.6278 2.1410 2.6410 2.9554 3.5544 1.6677 2.1966 2.7704 3.0215 3.640 170 1.62248 2.1374 2.6410 2.9554 3.5518 1.6657 2.1960 3.0143 3.616 170 1.6215 2.1311 2.6325 2.9434 3.5518 1.6516 2.1764 2.6946 3.0016 3.616 190 1.6172 2.1311 2.6234 3.9545 1.6516 2.1764 2.6946 3.0016 3.616 3.616 250 1.6172 2.1311 2.6234 3.5544 1.6516 2.1764 2.6946 3.0016 3.616 250 1.	110	1.6439	2.1663	2.6722	2.9877	3,5998	1.6906	2.2277	2.7480	3.0724	3.7019
130 1.6349 2.1543 2.6475 2.9712 3.5800 1.6773 2.2102 2.77264 3.0483 3.6502 140 1.6311 2.1494 2.6514 2.9584 3.5544 1.6670 2.1966 2.7705 3.0384 3.6602 150 1.6278 2.1450 2.6479 2.9584 3.5518 1.6670 2.1966 2.77056 3.0215 3.6401 170 1.6220 2.1341 2.6335 2.9479 3.5518 1.65586 2.1808 2.6901 3.0077 3.6523 190 1.6192 2.1341 2.6335 2.9434 3.5464 1.6549 2.1808 2.0043 3.613 200 1.6172 2.1341 2.6335 3.5464 1.6549 2.1808 2.0143 3.613 200 1.6151 2.1783 2.6356 2.1874 1.6549 2.1808 2.9736 3.613 200 1.6151 2.1833 3.5518 1.6549 2.1806 2.9736 2.9736 </td <td>120</td> <td>1.6391</td> <td>2.1599</td> <td>2.6643</td> <td>2.9789</td> <td>3.5892</td> <td>1.6835</td> <td>2.2184</td> <td>2.7365</td> <td>3,0596</td> <td>3.6865</td>	120	1.6391	2.1599	2.6643	2.9789	3.5892	1.6835	2.2184	2.7365	3,0596	3.6865
1401.6311 2.1494 2.6514 2.9644 3.5718 1.6718 2.2030 2.7175 3.0384 3.660 150 1.6278 2.1450 2.6459 2.9584 3.5578 1.6670 2.1966 2.7096 3.0295 3.650 160 1.6248 2.1410 2.6410 2.9529 3.5578 1.6670 2.1966 2.7024 3.0215 3.640 170 1.6220 2.1374 2.6366 2.9479 3.5518 1.66525 2.1908 2.7024 3.0215 3.640 180 1.6172 2.1311 2.6325 2.9434 3.5564 1.6576 2.1855 2.6901 3.0077 3.623 200 1.6172 2.1171 2.6116 2.9322 3.5546 1.6516 2.1764 2.6991 3.0077 3.616 200 1.6172 2.1171 2.6116 2.9199 3.55181 1.6516 2.1764 2.99560 3.619 200 1.6004 2.1089 2.6014 2.99966 3.5045 1.6616 2.1764 2.9956 3.619 200 1.6004 2.1089 2.5779 2.8822 3.4728 1.6516 2.1744 2.6446 2.9956 3.563 200 1.5918 2.00978 2.5874 2.8822 3.4728 1.6516 2.1742 2.6446 2.99345 3.553 200 1.5816 2.0998 2.5779 2.8822 3.4728 1.6516 2.1742 2.6449 2.99345 </td <td>130</td> <td>1.6349</td> <td>2.1543</td> <td>2.6475</td> <td>2.9712</td> <td>3.5800</td> <td>1.6773</td> <td>2.2102</td> <td>2.7264</td> <td>3.0483</td> <td>3.6729</td>	130	1.6349	2.1543	2.6475	2.9712	3.5800	1.6773	2.2102	2.7264	3.0483	3.6729
160 1.6278 2.1450 2.6459 2.9584 3.5578 1.6670 2.1966 2.7024 3.0215 3.640 170 1.6220 2.1374 2.6410 2.9529 3.5578 1.6625 2.1908 2.7024 3.0143 3.631 170 1.6220 2.1374 2.6316 2.9479 3.5518 1.6586 2.1855 2.6901 3.0143 3.631 180 1.6172 2.1311 2.6326 2.9332 3.5518 1.6549 2.1808 2.6901 3.0077 3.632 200 1.6172 2.1311 2.6524 2.9332 3.5161 1.6549 2.1764 2.6446 3.0016 3.616 200 1.6151 2.1171 2.6116 2.9199 3.5181 1.6516 2.1772 2.6596 2.9736 3.563 200 1.6606 2.1171 2.6116 2.9936 3.5181 1.6532 2.1742 2.6449 2.9745 3.563 200 1.6606 2.1772 2.1742 2.6449 2.9563 3.563 200 1.55918 2.093	140	1.6311	2.1494	2.6514	2.9644	3.5718	1.6718	2.2030	2.7175	3.0384	3.6609
160 1.6248 2.1410 2.6410 2.9572 3.5578 1.6625 2.1908 2.7024 3.0215 3.640 170 1.6220 2.1374 2.6366 2.9479 3.5518 1.6586 2.1855 2.6901 3.0143 3.631 180 1.6172 2.1311 2.6325 2.9434 3.5464 1.6516 2.1176 2.6901 3.0077 3.631 200 1.6172 2.1311 2.6288 2.9392 3.5464 1.6516 2.1764 2.6901 3.0016 3.616 200 1.6151 2.1171 2.6116 2.9199 3.5181 1.6516 2.1723 2.6796 2.9736 3.503 200 1.6606 2.1171 2.6116 2.9199 3.5181 1.6516 2.1723 2.6796 2.9736 3.582 200 1.66064 2.1089 2.6014 2.9940 3.615 3.517 2.6246 2.9736 3.563 200 1.5816 2.077 2.6244 2.9742 3.563 3.563 200 1.5816 2.0884 3.4561 <td>150</td> <td>1.6278</td> <td>2.1450</td> <td>2.6459</td> <td>2.9584</td> <td>3.5644</td> <td>1.6670</td> <td>2.1966</td> <td>2.7096</td> <td>3,0295</td> <td>3.6502</td>	150	1.6278	2.1450	2.6459	2.9584	3.5644	1.6670	2.1966	2.7096	3,0295	3.6502
170 1.6220 2.1374 2.6366 2.9479 3.5518 1.6586 2.1855 2.6960 3.0143 3.631 180 1.6172 2.1341 2.6328 2.9332 3.5464 1.6516 2.1764 2.6901 3.0077 3.623 190 1.6172 2.1311 2.6228 2.9332 3.5464 1.6516 2.1764 2.6901 3.0016 3.616 200 1.6172 2.1171 2.6116 2.9199 3.5181 1.6516 2.1723 2.6796 2.9960 3.616 250 1.6066 2.1171 2.6116 2.9199 3.5181 1.65162 2.1723 2.6796 2.9736 3.582 300 1.6004 2.1089 2.6116 2.9199 3.5181 1.6572 2.1442 2.6796 2.9736 3.563 400 1.5918 2.0975 2.8874 2.8822 3.4728 1.6063 2.1442 2.6449 2.9192 3.517 500 1.5816 2.0843 3.4561 1.6063 2.1442 2.9192 3.517 2.5635 3.517	160	1.6248	2.1410	2.6410	2.9529	3.5578	1.6625	2.1908	2.7024	3.0215	3.6406
180 1.6195 2.1341 2.6325 2.9434 3.5464 1.6549 2.1808 2.6901 3.0077 3.623 190 1.6172 2.1311 2.6288 2.9392 3.54.14 1.6516 2.1764 2.6846 3.0016 3.616 200 1.6151 2.1283 2.6254 2.9354 3.5467 1.6516 2.1723 2.6796 2.9960 3.609 250 1.6066 2.1171 2.6116 2.9199 3.5181 1.65362 2.1723 2.6796 2.9960 3.609 300 1.6064 2.1089 2.6014 2.9936 3.5045 1.6147 2.1723 2.6746 2.9736 3.535 400 1.5816 2.0842 2.8822 3.4728 1.6147 2.1166 2.9192 3.503 500 1.5816 2.0892 2.8772 3.4654 1.6663 2.9144 2.9736 2.9736 3.503 600 1.5816 2.0864 3.4651 1.6732 2.1142 <td< td=""><td>170</td><td>1.6220</td><td>2.1374</td><td>2.6366</td><td>2.9479</td><td>3.5518</td><td>1.6586</td><td>2.1855</td><td>2.6960</td><td>3.0143</td><td>3.6313</td></td<>	170	1.6220	2.1374	2.6366	2.9479	3.5518	1.6586	2.1855	2.6960	3.0143	3.6313
190 1.6172 2.1311 2.6288 2.9392 3.54.14 1.6516 2.1764 2.6846 3.0016 3.619 200 1.6151 2.1283 2.6254 2.9354 3.5367 1.6485 2.1723 2.6796 2.9960 3.609 250 1.6066 2.1171 2.6116 2.9199 3.5181 1.6362 2.1723 2.6796 2.9960 3.609 300 1.6004 2.1089 2.6014 2.9086 3.5045 1.6147 2.1560 2.6449 2.9572 3.563 300 1.5918 2.0975 2.5874 2.8929 3.4856 1.6147 2.1277 2.6449 2.9345 3.535 400 1.5918 2.09795 2.8822 3.4728 1.6063 2.1166 2.9192 3.517 500 1.5816 2.0898 2.4561 1.6063 2.11642 2.6449 2.9192 3.513 700 1.5816 2.0892 3.4651 1.6063 2.11642 2.9192 3.513 700 1.5783 2.0733 2.8634 3.4561 1.	180	1.6195	2.1341	2.6325	2.9434	3.5464	1.6549	2.1808	2.6901	3.0077	3.6229
200 1.6151 2.1283 2.6254 2.9354 3.5367 1.6485 2.1723 2.6796 2.9960 3.609 250 1.6066 2.1171 2.6116 2.9199 3.5181 1.6362 2.1560 2.6596 2.9736 3.582 300 1.6066 2.1171 2.6116 2.9199 3.5181 1.6362 2.1442 2.9572 3.563 300 1.6004 2.1089 2.6014 2.9086 3.5045 1.6147 2.1277 2.6449 2.9572 3.563 400 1.5918 2.0975 2.8872 3.4856 1.6147 2.1142 2.6449 2.9736 3.517 500 1.5816 2.0898 2.5779 2.8822 3.4728 1.6061 2.1166 2.9192 3.517 700 1.5816 2.0842 2.8744 3.4651 1.5055 2.1022 2.9192 3.517 700 1.5776 2.0842 2.8684 3.4561 1.5915 2.0972 2.8994 3.493 700 1.5776 2.0862 3.4455 1.5915 2.0972	190	1.6172	2.1311	2.6288	2.9392	3.54.14	1.6516	2.1764	2.6846	3.0016	3.61/56
250 1.6066 2.1171 2.611.6 2.9199 3.5181 1.6362 2.1560 2.6596 2.9736 3.582 300 1.6004 2.1089 2.6014 2.9086 3.5045 1.6272 2.1442 2.6449 2.9572 3.563 400 1.5918 2.0975 2.5874 2.8929 3.4856 1.6147 2.11277 2.6449 2.9572 3.563 500 1.5859 2.0898 2.5779 2.8822 3.4728 1.66063 2.1166 2.6109 2.9192 3.517 500 1.5859 2.0898 2.5779 2.8822 3.4534 1.6001 2.1166 2.6109 2.9192 3.517 700 1.5816 2.0842 2.8822 3.4561 1.5953 2.1085 2.9192 3.503 700 1.5783 2.0798 2.5655 2.8684 3.4561 1.5915 2.0972 2.8994 3.493 800 1.5776 2.86684 3.4561 1.5915 2.0972 2.8994 3.493 800 1.5776 2.8619 3.4455 1.	200	1.6151	2.1283	2.6254	2.9354	3.5367	1.6485	2.1723	2.6796	2.9960	3.6098
300 1.6004 2.1089 2.6014 2.9086 3.5045 1.6272 2.1442 2.6449 2.9572 3.553 400 1.5918 2.0975 2.5874 2.8929 3.4856 1.6147 2.11277 2.6246 2.9345 3.535 500 1.5859 2.0898 2.5779 2.8822 3.4728 1.6063 2.1166 2.6109 2.9192 3.517 500 1.5816 2.0842 2.5779 2.8822 3.4728 1.6001 2.1166 2.6109 2.9192 3.517 700 1.5781 2.0842 2.8822 3.4561 1.5953 2.1085 2.9192 3.503 700 1.5783 2.0798 2.55655 2.8684 3.4561 1.5953 2.1022 2.8994 3.493 800 1.5776 2.9736 2.8595 3.44503 1.5915 2.0972 2.8994 3.493 800 1.5776 2.85646 2.85656 3.4455 1.5915 2.9932 2.8994 3.493 900 1.5776 2.8703 2.5876 2.85966	250	1.6066	2.1171	2.6116	2.9199	3.5181	1.6362	2.1560	2.6596	2.9736	3.5828
400 1.5918 2.0975 2.5874 2.8929 3.4856 1.6147 2.1277 2.6246 2.9345 3.535 500 1.5859 2.0898 2.5779 2.8822 3.4728 1.6063 2.1166 2.6109 2.9192 3.517 600 1.5816 2.0842 2.5779 2.8822 3.4728 1.6001 2.1166 2.6109 2.9192 3.517 700 1.5816 2.0842 2.5779 2.8824 3.4634 1.6001 2.1085 2.6009 2.9192 3.503 700 1.5783 2.0798 2.5555 2.8664 3.4561 1.5953 2.1022 2.8994 3.493 800 1.5783 2.0793 2.55655 2.86684 3.4561 1.5953 2.1022 2.8994 3.493 800 1.5734 2.07763 2.86366 3.45503 1.5915 2.0972 2.8994 3.493 900 1.5734 2.0763 2.4561 1.5984 2.6972 2.8924 3.485 000 1.5736 2.0734 2.5576 2.85966	300	1.6004	2.1089	2.6014	2.9086	3.5045	1.6272	2.1442	2.6449	2.9572	3.,5631
500 1.5859 2.0898 2.5779 2.8822 3.4728 1.6063 2.1166 2.6109 2.9192 3.503 600 1.5816 2.0842 2.5709 2.8744 3.4634 1.6001 2.1085 2.6009 2.9080 3.503 700 1.5783 2.0798 2.55655 2.8684 3.4561 1.5953 2.1022 2.5870 2.8994 3.493 800 1.5783 2.0798 2.55655 2.86364 3.4561 1.5915 2.1022 2.5870 2.8994 3.493 800 1.5756 2.0763 2.5612 2.8636 3.4503 1.5915 2.0972 2.8924 3.493 900 1.5734 2.0734 2.5576 2.8596 3.4455 1.5884 2.0931 2.5819 2.8868 5.478 900 1.5716 2.0710 2.5546 2.8556 3.4445 1.5884 2.0776 2.8819 3.472 000 1.5716 2.0710 2.5546 2.8556 3.44414 1.5887 2.0769 2.7955 3.368 0. 1.5	400	1.5918	2.0975	2.5874	2.8929	3.4856	1.6147	2.1277	2.6246	2.9345	3.5358
600 1.5816 2.0842 2.5709 2.8744 3.4634 1.6001 2.1085 2.6009 2.9080 3.503 700 1.5783 2.0798 2.5655 2.8684 3.4561 1.5953 2.1022 2.5932 2.8994 3.493 800 1.5756 2.0763 2.5612 2.8636 3.4503 1.5915 2.0972 2.5870 2.8924 3.493 800 1.5756 2.0763 2.55612 2.8636 3.4455 1.5915 2.0972 2.5870 2.8924 3.485 900 1.5734 2.0734 2.5576 2.8596 3.4455 1.5884 2.0931 2.5819 2.8868 5.478 900 1.5716 2.0710 2.5546 2.85562 3.44414 1.5857 2.0936 2.5776 2.8819 3.472 90 1.5716 2.0710 2.5546 2.8556 3.44414 1.5857 2.0896 2.7756 2.8819 3.472 90 1.5382 2.0269 2.7955 3.368 3.472 9.368 9.472 9.368 9.472 9.7	500	1.5859	2.0898	2.5779	2.8822	3.4728	1.6063	2 .1166	2.6109	2.9192	3.5173
700 1.5783 2.0798 2.5655 2.8684 3.4561 1.5953 2.1022 2.5932 2.8994 3.493 800 1.5756 2.0763 2.5612 2.8636 3.4503 1.5915 2.0972 2.5870 2.8924 3.485 900 1.5734 2.0734 2.5576 2.8596 3.4455 1.5884 2.0931 2.5819 2.8868 5.478 000 1.5716 2.0710 2.5546 2.8562 3.4414 1.5857 2.0896 2.5776 2.8819 3.472 •• 1.5382 2.0269 2.5003 2.7955 3.3682 1.5382 2.0269 2.5003 2.7955 3.368	£00	1.5816	2.0842	2.5709	2.8744	3.4634	1.6001	2.1085	2,6009	2.9080	3.5038
800 1.5756 2.0763 2.5612 2.8636 3.4503 1.5915 2.0972 2.5870 2.8924 3.4850 900 1.5734 2.0734 2.5576 2.8596 3.4455 1.5884 2.0931 2.5819 2.8868 5.478 000 1.5716 2.0710 2.5546 2.8562 3.4414 1.5857 2.0896 2.5776 2.8819 3.472 a 1.5382 2.0269 2.5003 2.7955 3.3682 1.5382 2.0269 2.5003 2.7955 3.368	700	1,5783	2.0798	2.5655	2.8684	3.4561	1.5953	2.1022	2.5932	2.8994	3.4934
900 1.5734 2.0734 2.5576 2.8596 3.4455 1.5884 2.0931 2.5819 2.8868 5.478 000 1.5716 2.0710 2.5546 2.8562 3.4414 1.5857 2.0896 2.5776 2.8819 3.472 •• 1.5382 2.0269 2.5003 2.7955 3.3682 1.5382 2.0269 2.5003 2.7955 3.368	800	1.5756	2.0763	2.5612	2.8636	3.4503	1.5915	2.0972	2.5870	2.8924	3.4850
000 1.5716 2.0710 2.5546 2.8562 3.4414 1.5857 2.0896 2.5776 2.8819 3.472 1.5382 2.0269 2.5003 2.7955 3.3682 1.5382 2.0269 2.5003 2.7955 3.368	900	1.5734	2.0734	2.5576	2.8596	3.4455	1.5884	2.0931	2.5819	2.8868	3.4782
** 1.5382 2.0269 2.5003 2.7955 3.3682 1.5382 2.0269 2.5003 2.7955 3.368	000	1.5716	2.0710	2.5546	2.8562	3.4414	1.5857	2.0896	2.5776	2.8819	3.4724
	8	1.5382	2.0269	2,5003	2.7955	3.3682	1.5382	2.0269	2.5003	2.7955	3.3682

11

ophilities

Provide Address

્ર છે. આ પ્રકૃત સામાન્ય છે. આ ગામ છે. છે. છે. છે.

From Table 1, it is seen that one is only 46% confident that a sphere of radius SEP = 114.15 will include at least 50% of the future bursts from this weapon. To increase the confidence or probability to 95% as specified, one refers to Table 2 under P = .50, Y = .95, and n = 8 to find the tolerance limit factor k (.50, .95, 8) = 2.0250 (vice 1.5382).

This is then multiplied times $\hat{\sigma}$ to obtain U(.50, .95) = k(.50, .95, ?)

 $\hat{\sigma} = (2.0250)(74.21) = 150.28$. Hence, a sphere of radius 150.28 feet about the target center will include at least 50% of the future bursts from this weapon under similar conditions with 95% confidence. Should the experimenter want to increase the confidence to 99%, he would refer to Table 2 under P = .50, $\gamma = .99$, n = 8 to find k(.50, .99, 8) = 2.2870. This, when multiplied times $\hat{\sigma}$, provides U(.50, .99) = 169.72 feet. Finally, should one want the radius of a sphere which would include 95% of the bursts from this weapon (vice 50%) under similar conditions with 95% confidence, he simply refers to Table 2 to find k(.95, .95, 8) = 3.6802. This is then multiplied times $\hat{\sigma}$ to obtain U(.95, .95) = 273.11 feet.

CONCLUS IONS

The tolerance limit factor, k(P,v,n), derived in this report can also be expressed as a function of chi-square percentage points. Referring to equation (11), it can be shown that $3n\sigma^2/\sigma^2$ is distributed according to the chi-square distribution with 3n degrees of freedom. Hence, one could write equation (11) as

$$\operatorname{Prob}\left\{\frac{3n\hat{\sigma}^2}{\sigma^2} \geq \frac{3nF^{-1}(P)}{k^2}\right\} = \gamma$$
(16)

where, as before, the arguments of k have been deleted. In order for equation (16) to be satisfied, one must have $3nF^{-1}(P)/k^2 = \chi^2_{3n,1-v}$ or

 $k = \left\{\frac{3nF^{-1}(P)}{\chi^{2}_{3n,1-\gamma}}\right\}^{\frac{1}{2}}$ (17)

where $\chi^2_{3n,1-\gamma}$ is the 100 (1- γ) percentage point of a chi-square density with 3n degrees of freedom. Utilizing this notation, $F^{-1}(P)$ can be expressed as $\chi^2_{3,P}$ so that k(P, γ ,n) can be written as

$$k = \{\frac{3n\chi_{3,p}^2}{\chi_{3n,1-\gamma}^2}\}.$$
 (18)

Hence, should one need a value of k not tabulated in this report, it can be obtained by refarring to a table of chi-square percentage points and computing k as in (18) above.

÷.

REFERENCES

Biometrika Tables for Statisticians, Vol. I, edited by E. S. Pearson and H. O. Hartley, 1958. Cambridge University Press, Cambridge.

Bowker, A. H. and G. J. Lieberman, 1972. <u>Engineering Statistics</u>, Prentice-Hall, Inc., Englewood Cliffs, N. J.

Lindgren, B. W., 1968. <u>Statistical Theory</u>, The MacMillan Company, Collier-MacMillan Limited, London.

Proschan, F., 1953. Confidence and tolerance intervals for normal distributions. Journal of the American Statistical Association, 48, 550.

Thomas, M., J. Crigler, G. Gemmill, and A. Taub, 1973. <u>Tolerance</u> <u>Limits for the Rayleigh (Radial Normal) Distribution with Emphasis</u> <u>on the CEP</u>, NWL Technical Report TR-2946, Naval Weapons Laboratory, Dahlgren, Virginia.

÷...,

And the second s

11

16.J.

1

tra Wi

Best Available Copy