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ABSTRACT

A simplified model is presented for the heat transfer and sub-
sequent temperature distribution in a thin metal target being impacted
by a cylindrical projectile. The mechanism for the temperature gen-
erated is based on the linear Fourier law or diffusion assumption., An
example of the transient temperatures in an aluminum target impacted
by a steel projectile is given. The calculated temperature profiles
are not in agreement with practical experience.

It is concluded, based on this example, that this model is not ap-
propriate for impact problems. /A more refined model is suggested,
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INTRODUCTION

The objective of the Small Arms Ammunition Technology Project
1J562604A010 is the improvement of the performance of small arms
munitions. Task 01 of this project deals with the ballistic effects of
projectiles and part of the work performed under that task is describ-
ed in this report.

This study was undertaken to investigate the resulting temperature
effects when an impacting projectile transfers its kinetic energy to a
target plate by the formation of a plug. The method used was to employ
a simplified analytical model which would yield a one-dimensional tem-
perature distribution in the plate. The linear Fourier Law was chosen
as the tool for this problem in order to investigate whether it would
yield results in reasonable agreement with experiment,

The mechanisms occurring during the impact of a projectile on a
target constitute a complex phenomena. Both target and projectile are
deformed, become highly stressed and, possibly, fractured. Efforts
to analytically explain these phenomena occurring between striker and
target rely upon obtaining accurate physical models for the observed
behavior of both components during the impact process. Certainly one
anticipates any reasonable model to account for the exchange of momen-
tum, mass, and energy between the target and projectile. It is the con-
cept of energy exchange which is of prime consideration in this report.

During {ne impact of a projectile on a target, it is a well-known
experimental result that both the target and projectile will show a
transient increase in temperature. Many factors (such as materials,
impact velocity, obliquity, and failure mode) will strongly influence
the temperature rise in the target and projectile. if plate failure
occurs, several failure mechanisms may be interacting: spallation,
shattering, petalling, or plugging. This analysis assumes that only
plugging occurs,

A knowledge of the temperature distribution in the target is im-
portant for several reasons. Very localized melting and, possibly,
vaporization may occur in the immediate vicinity of the impact point.
For all metals of practical interest, the yield strength is reduced by



temperatures approaching the melting point. 1 Phase changes near

the impact point would seem to be dependent in part on the temperature,
its gradient and duration. The stress and deformation fields will also
he strongly influenced by the temperature gradient, This latter factor
will, of course, be important when considering failurc at other than the
impact point., This study of the temperature distributicn in impacted
plates was undertaken because of the effect of increase in temperature
on ballistics performance.

An exact formulation of the problem would, in general, involve the
integration of highly difficult equations describing the coupling of the
stress, deformation, and energy fields in the target and projectile.
The present treatment establishes an approximate solution of the
linear heat transfer problem by classical techniques. An already
existing simplified ballistic model is used to provide input param-
eters such as materials, properties, impact velocities, and geom-
etries, into a classical heat transfer model. The final result is the
transient temperature at any position in the target during and after
penetration, '

THEORY

Nomenclature

a constant (Equation 7)

A constant (Equation £3)

b constant (Equation 7)

c constant (Equation 7)

Co (approximate) hydrodynamic wave speed in target (Equation 23)

Co (approximate) hydrodynamic wave speed in projectile (Equation 23)

lL. J. Hageman et al, HELP (Vol 1), BRL CR39 (AD 726459), 1971,

pg 24.



h
J
K

Zﬁoﬁol(poco + ano) , constant (Equation 4)
Joules' constant (778 ft-lbf/Btu)
thermal conductivity (Btu/hr-ft- ")

Ko(n) modified Bessel function of second kind, order zero (Equation 15)

K, (n) modified Bessel function of second kind, order one (Equation 15)

L

o o© 3

D 9

v

Vo

length of projectile

constant (Equation 23)

transform parameter

hydrodynamic component of pressure in target
p/a (Equation 15)

heat flux (Btu per unit area per unit time)
constant (Equation 14)

radial coordinate

radius of projectile

time (measured fromimpact)

time necessary for projectile face to traverse target thickness
thickness of target plate

projectile velocity

initial projectile velocity or impact velocity

V(r,t) difference between actual and ambient temperature (°F)

w
Yo

work (ft-1b¢)
yield strength of plate
axial location of projectile-target interface
ThV,/(C, + hV /2)
thermal diffusivity (f&® /hr)
mass density of plate (lb.-sec?/ft*)
mass density of projectile (lbs-sec?/ft*)

denotes the Laplace transform of a variable



The Ballisti‘c Model

During the normal impact of a cylindrical projectile on a flat
thin plate, one possible mode of target failure is the shearing out of
a plug. During this process, the initial kinetic energy of the pro-
i.ctile is partially absorbed by the target in the form of deformation,
increased internal energy, and heat. Heytilaz has presented an approx-
imate model for the residual velocity and minimum perforation velocity
of cylindrical flat nosed projectiles impacting relatively thin plates.
Previous more approximate models3 do not present specific expressions
for the forces acting on the target during deformation; the Heyda model
presents these required expressions. It is the purpose of this analysis
to present a mathematical model relating the mechanical work done by
certain of those forces and the heating in the target.

Following Figure 1 and the notation of referenc=: 2, one has a pro-
jectile of constant length L, radius R, density p,, impacting a plate
of thickness T, density p,, and yield strength Yoo In Heyda's model
it is assumed that two components of pressure resist the motion of the
projectile through the plate.

The first component, of very high intensity, is of magnitude P,.
Because of the fact that this pressure may create a thin fluid zone at
the projectile nose target interface, this component is calculated
according to the hydrodynamic theory of impact. This calculation
implies that material strength properties (i.e., yield strength, hard-
ness, etc), as well as elastic or plastic flow, are ignored,

The second component of pressure is the resistance of the plug
at its periphery to shear, It is only this component, one assumes here,
that performs mechanical work which may be converted to heat energy.

The shear stress at the plug plate periphery is assumed to be
constant and to obey the Tresca criterion, thus being of magnitude YO/Z
at all times during penetration. Therefore, the total resisting shear
force has a value, according to Heyda, 2 of

21, F. Heyda, '"Ballistic Impact into Metal Plates, "' General Electric
Co. (SSL) Technical Memorandum Report TM 70-002, pp 1-10, Feb-

ruary 1970.

3R. F. Recht and T. W. Ipson, '"Ballistic Perforation Dynamics, "
J Appl Mech, Trans of ASME, pp 384-389, Saptember 1963,
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Figure 1. Projectile-Target Impact; Coordinate System

Y0
= ) (27R)(T - 2) (1)

where Z is the projectile target interface location or, equivalently,
the approximate length of the plug forward of the target;

T is the target thickness; and
e is the yield strength in tension,
The total approximate mechanical shear work done as the projectile

moves from Z=0to Z=T is

T
j Y mRT?

W= YR (T - Z)dZ = — (2)

o

In what follows it will be assumed that heat is transferred only in
the radial direction (the heat transferred through the thickness being
negligible) and that the velocity of the plug is approximately that of

5



the projectile target interface. Thus, if one divides the right hand side
of Equation 2 by the product of the area available for heat transfer,
(27RT), the time interval, t;, required for the interface to transverse
the target thickness, and Joules' constant, one has

Y, o
43t

Q= (3)

which is an approximate expression for the heat per unit area per unit
time, or heat flux, delivered to the target at the location r = R.

A value for t; may be found as follows, If the projectile at any
time t is treated as a rigid body then, from Newton's law, a force
balance and integration leads to an expression for the projectile ve-
locity V(t). Since V is a function of t, and the location of the interface
Z is also a function of t, then the chain rule of calculus provides a
functional relation between Z and t. In accordance with Heyda, 2
this relation is

dZ

. h
&* - 2 V(Z) (4)

where h/2 is the (approximate) constant ratio between the initial inter-
face speed and the impact velocity, V.

Integrating Equation 4, one easily shows that
te T

2 dZ

In performing the integration in Equation 5, utilization is made
of the following expressions for the velocity V(Z)

2y, F. Heyda, ''Ballistic Impact into Metal Plates, '' General Electric
Co. (SSL) Technical Memorandum Report TM 70-002, pp 1-10, Feb-
ruary 1970,
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which follow easily from reference 2 (pp 6 and 7). Here P, is the
(approximate) amplitude of the hydrodynamic shock wave which is
assumed to vanish for t > t.. The quantities Z, and t, are, re-
spectively, the location and time at which the initial hydrodynamic
component of pressure P is attenuated (to zero) by a rarefaction
wave returning from the free plate surface. Carrying out the in-
tegration of Equation 5, with V(Z) being given by Equation 6,

leads to

2
tf = ——icl 1n [—b + ch + C1/3 (a- szr + czrﬁ) I/B] 3

- In [..b + (ca)"/’] 4+ 1n [-b' +cT + c"/” (a' - 2b'T + cTz)llaJ +

-ln |-b' tcz +ct/? (ar - 2b 2 '/*

rtc (a' - 2b Zr+ch) (7.a)
where

a = Voa

a' = a-4POZr/;—)° Lh

b = 2[P,+Y,T/R]/py Lh

b' = ZYoTlﬁoth

c = b'/T (7.b)

are introduced for convenience,

2.1. F. Heyda, "Ballistic Impact into Metal Plates, " General Electric
Co. (SSL) Technical Memorandum Report TM 70-002, pp 1-10, Feb-

ruary 1970.
?



The calculation of t{ above allows the heat flux given by Equation
3 to be determined, It will be assumed that the total heat per unit area
is deposited at r = R in the time interval te. Thus, Q will be assumed
to have the simple form depicted in Figure 2. Other estimates for the
time required for plate failure, based on arguments other than those
presented here, are given in reference 2, pp 13-14,

.

Q/Q, = H)I—H(t-t )

HEAT FLUX, Q

e e
(o) + =

f
TIME, ¢t

Figure 2. Assumed Variation of Heat Flux with Time

The Heat Transfer Solution

Assuming the heat generated varies only with the radial coordinate
and time, and the linear Fourier law of conduction as valid, one has the
equation of heat transfer in the polar cylindrical coordinate system of
Figure | for » target of inner radius R and infinite radial extent as

25, F. Heyda, ''Ballistic Impact into Metal Plates, '' General Electric
Co. (SSL) Technical Memorandum Report TM 70-002, pp 1-10, Feb-

ruary 1970,



Fv o1V 1 av
rf r 9dr o t
(8)
V=V(r,t); r>R, t>0
subject to the initial condition of constant ambient temperature
V(r,0) = 0 (9)
and the boundary conditions
Lim V(r,t) = 0; t>0 (10)
r- e
AV 1
— = — . > 1
5T (Rt = Q) t>0 (1)

Here V is the temperature above ambient, a is the thermal diffusivity,
and K is the thermal conductivity.

The initial condition, Equation 9, specifies the initial temperature
throughout the plate to be ambient. The boundary condition, Equation
10, requires the temperature to approach ambient as the radius ap-
proaches infinity for all values of time. The condition, Equation 11,
is a specification that the heat flux, Q, is applied at the sheared
surface, r = R.

The method of solution closely parallels that of Carslaw and Jaegar, *

who, using the Laplace transform technique with Q(t) given by

Q(t) = QHIt) (12)

4H. Carslaw and J. Jaegar, Conduction of Heat in Solids, 2d ed, pp 338-
340; Oxford, England: Oxford University Press; 1959,

9



where

H(t) = (13)

obtained a two-term asymptotic solution valid for small time for the
system Equation 8 through Equation 11, Omitting the intermediate
details, one takes the transform of the above system with the Q(t)
of Equation 13 replaced by that of Figure 2, i.e.,

]

Q)= Q, [He) - Hie-to | (14)
to obtain the solution for the transformed temperature, T/ (r,p)

_ .-Ptf
Virp) = =2 (- ™) Kotan
! K PaK) (g, R)

(15)

where p is the transform parameter, ¢ = p/d; K, (n) and Kl(n) are
modified Bessel functions of the second kind of zeroth and first order,
respectively, (One notes that Equation 15 is identical to Equation 16
(p 338 of reference 4) if t; is allowed to approach infinity. )

It is necessary to invert Equation 15 to obtain V(r,t). The formal
integral solution, as presented in reference 4, does not lend itself easily
to simple numerical evaluation. Instead, an asympototic expansion solu-
tion is presented. Fromthe general theory of reference 4 we expand
the Bessel functions of Equation 15 in asymptotic series of the form

e\ 4’ -1 @n’-1)@n’- 3P) |
Kn‘""(zn) * [“ tren T 2t (8P ' '

n=01,2, ... (16)

‘H.Cnnhw and J. Jaegar, Conduction of Heat in Solids, 2d ed, pp 338-
340; Oxford, England: Oxford University Press; 1959,

10



Carrying the expansions in general form, retaining five terms,
and 1nverting, the final result,

V(r,t) = Vl (r,t) + Vz(r,t) (17)
where
iz 4
2Q ; .
Vilrt) = (“Tm) E , @) @i’ ¢, x
j=0
L(j+1) r - R
i erfc (W) (18)

4 .
2Q | 12 . jl2
Vy(r,t) = - —2 H(t-tg) (M) z : 2) (a[t-tf]) =

K r
30

x| 1S i(jH) erfc AR (19)
) 2<a (t-t,) > /2

In Equations 18 and 19, the C; are given in the Appendix and the nth
order repeated error function is defined as

i™ erfen = I (U it £ dE: nul,R... (20)

n

and

erfcn = 1 - - s e-8 dé (21)
n



The expansion given above is somewhat more accurate than that
given in reference 4. One notes that five terms appear in the present
expansions as opposed to two in reference 4. One also sees that the
first two terms in Equation 18 are exactly those of reference 4, lend-
ing credance to the present procedures.

In evaluating the error functions appearing in Equat.ions 18 and 19,
provision is made to ensure the highest possible numerical accuracy.
By numerical experimentation it was found that the standard use of the
recursion formula®

i(n) erfcn = - -Z* i(n-l) erfcn+-zl'; i(n-Z) erfcn (22)

in computing the nth order error function in terms of the (n-1) and
(n-2) order functions may be inaccurate if the argument, 7, is small.
It was concluded that for n 2 0.4, 0 <7n s 4; this inaccuracy is small
and the application of Equation 22 is acceptable. However, when

n < 0.4, a technique due to Gautschi® is employed. In this technique
a certain class of difference equations whose solutions are the re-
peated error functions, are numerically solved. Although extremely
accurate, the amount of computation is large and, hence, usage is
restricted to n < 0.4. All computations are performed to 15 sig-
nificant figures.

The use of asympotic expansions is generally acceptable for small
values of time. In a related problem, Carslaw and Jaegar4 recommend
that at/R® be less than 0.02 and r/R be not small, One finds, however,
that for r = R, the present expansion for Equation 18 introduces neg-
ligible error for times up to about at/R?® = 0.7. Asymptotic expansions
depart from the exact solution in an unpredictable manner after their
range of validity is exceeded. In practice, this range is found by
erratic or unexpected behavior in the solution. In the present study
this was estimated to be about at/R® = 0.7. For times beyond this
value, the solution is disregarded,

4
H. Carslaw and J. Jaegar, Conduction of Heat in Solids, 2d ed, pp 338-
340; Oxford, England: Oxford University Press; 1959,

R. Abromowitz (ed), Handbook of Mathematical Functions, U.S. Dept of
Commerce, Bureau of Standards, pp 299, June 1964,

6W. Gautschi, '""Recursive Computation of the Repeated Integrals of the
Error Function, ' Mathematics and Computation (M. T, A.C), Vol 15,
pp 227-232, 1961.
12



The heat conduction equation (Equation 8) has been postulated on
the basis of no heat transfer in the Z or target thickness direction,
This is not completely realistic since, in practice, the target surfaces
(Z=0and Z = T) are not insulated and may conduct heat to the surround-
ing environment. The amount of error incurred by this assumption is
thought to be small. Ingersoll et al’? and Boley and Weiner8 present
laborious theories which might allow the error to be estimated.

EXAMPLE PROBLEM

As a numerical example, the impact at 4000 fps of a steel projectile
on an aluminum target was investigated. The target was assumed to be
1/4 inch thick, have a yield strength of 75 x 10® psi, with a density of
5.39 seca-lbf/ft‘. The projectile has a length of 3 inches, a radius of
0.6 inch, and a density of 15,29 seca-lbf/ft‘. In order to estimate the
hydrodynamic sound speeds in the target and projectile, it was assumed
that the increase in density in both target and projectile, due to shock
compression, is small. Then the approximate expressions of Huang
and Davids? are applicable. These are

ce=22, T 2= (23)
where n = 3.55, A =232 x 10® bar for aluminum and n = 3,53,
A = 480 x 10° bar for steel.
(The assumptions concerning the approximations embodied in

Equation 23 are presented in Huang and Davids (pp 39-50).9 In the
case of steel, whose shock wave structure varies with the pressure,

7L. R. Ingersoll et al, "Theory of Earth Heat Exchanges for the Heat

Pump, ' Heating, Piping and Air Conditioning Journal, pp 115-118,
May 1950,

8B. Boleyand J. H. Weiner, Theory of Thermal Stresses, pp 160-163;
New York: John Wiley; 1960.

Iy, Huang and N. Davids, ''Shock Dynamics of Hypervelocity Impact
of Metals,' J Franklin Inst, pp 39-50, 1963,

13



n and A are not truly constant but depend upon the pressure, P,
lowever, the error incurred in calculating €, by using the values
given above will not exceed 14 percent, )

In addition, the diffusivity, a, for aluminum was assumed to be
2.4 f®/hr, and the conductivity to be 80 Btu/hr-ft- °F; these values
are taken as representative of aluminum alloys. The pressure, P,
is calculated as shown in Reference 2 (Equation 5, p 4); the calculation
of other constants in the ballistic model follows Heyda.

The temperature distributions above ambient as a function of time
at several locations are shown in Figures 3 and 4. The curve of
Figure 3, which corresponds to the location r = R (0.6 in, ) or the
projectile periphery, indicates a temperature rise of about 34 x 10" °F
within 7. 6 usec after impact. This decreases rapidly until at about one
second it is sensibly back to 33° F above ambient,

Figure 4, which corresponds to the locations of r = 0,058 ft (0.70
in.) and 0,067 ft (0.80 in, ) indicates maximum temperatures of 110°
and 50° F above ambient at about 0. 05 and 0.2 second, respectively.
As in the case of the interface location, at one second both these tem-
perature profiles are tending to ambient, about 30° F above.

(Actually, in the course of computation, none of these temperature
profiles reaches ambient. As the point in time in which the asymptotic
expansions are no longer valid, at 2.5 second for the radii calculated,
the temperatures have decreased to between 18° and 21° F above.)

At a radial location of 1.2 inches, the temperature rise is negligible
at the end of 0.1 second, The heat flux, Qo' has a numerical value
of 4,75 x 10° Btu/ft? -sec, and t;is 7.6 usec.

2J. F. Heyda, ''Ballistic Impact into Metal Plates, ' General Electric
Co. (SSL) Technical Memorandum Report TM 70-002, pp 1-10,
February 1970.

14
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at the Interface: r=0.6 in.
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CONCLUSIONS AND RECOMMENDATIONS

The preceding numerical example presents four points:

1. The maximum temperature at the interface is far in excess of
the melting point of aluminum;

2, The maximum temperature rises at 0.1 and 0.2 inch from the
interface are lower than is thought to be true from practical experience;

3. The time required for the temperature to approach ambient
(several seconds) seen:s too short; and

4, Essentially no temperature rise occurs within 0.1 second at
a location 0. 6 inch from the interface.

It is concluded that, based on this example, the mechanism of energy
transfer postulated is not valid for the current problem.

The explanation for the lack of agreement with practical experience
is found by noting that the present model assumes that: all available
shearing work done is converted to thermal energy in the target; no
account is made for the energy required for either target or projectile
deformation; and the classical Fourier heat transfer mechanism is
applicable.

It is seen (viz, Equations 18 and 19) that the magnitude of the tem-
periture is in direct proportion to the value of Q  as determined by the
present ballistic model. Qo' in turn, decreases with an increased
value of te. If a more refined ballistic model were to substantially
increase the value of t,, the maximum interface temperature would
tend to decline and the time required to approach ambient would tend
to increase. (The aforementioned values of ''time-of-plate-failure'
of reference 2 might provide some guidance in this respect,)

It is suggested that a new model, incorporating these latter features
(neglected in the present work), be constructed. The equations of
motion, or equilibrium equations, together with the continuity or mass
conservation relation, could be coupled with the conservation of energy
equation and solved simultaneously. This formulation is very attract-
ive from the points of view that

2.I. F. Heyda, "Ballistic Impact into Metal Plates, ' General Electric Co.
(SSL) Technical Memorandum Report TM 70-002, pp 1-10, February 1970,

17



1. The energy to deform the target is considered;
2, The increase in internal energy is accounted for; and

3. The temperature will tend to propagate outward from the
impact point along with the transverse and radial waves of deformation,

18
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APPENDIX
Coefficients in the Asymptotic Expansion

Using the expansion (Equation 16), Equation 15 may be written as

R .
t S
Yir,p) = Q, (1-¢"FH) (_R_) e-q(r-R) # i=1 + (A1)
1+ Z b;/(q)
he i=l -

where the d; and b; are deduced from Equation 16, By representing
the division of the two series of Equation Al by

1+ E d,/(q)!

= 14+ z: Ci/(q) (A2)
1+ 2 b/ (q)t =1 _

i=1

where the C; areto be determined, it follows by induction that

C =21
o

=1
Ca=dy-by- D Ciby s n=1,23... (A3)
j=1

The first five terms of the series in Equation A3 are

C, =1
17 7 (8)] ir R



oy 2 3, L, 1
27 82 [2rf 7 Rr 2R

3 [ 25 8)3 11 9
C3=-%7% |27 " 2»7 Y 2R%: ZRrZ]

3
or 3 [1225 3321 (8) 75 99 ]

(8)% 8rd T BR% ' 2R3 ' ZRe3 T aRerl

Substitution of Equation A2 into Equation Al and the use of standard
inversion tables yields Equations 17 through 19.

21



