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ABSTRACT 

A simplified model is presented for the heat transfer and sub- 
sequent temperature distribution in a thin metal target being impacted 
by a cylindrical projectile.    The mechanism for the temperature gen- 
erated is based on the linear Fourier law or diffusion assumption.    An 
example of the transient temperatures in an aluminum target impacted 
by a steel projectile is given.    The calculated temperature profiles 
are not in agreement with practical experience. 

It is concluded, based on this example, that this model is not ap- 
propriate for impact problems.    A more refined model is suggested. 
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INTRODUCTION 

The objective of the Small Arms Ammunition Technology Project 
1J562604A010 is the improvement of the performance of small arms 
munitions.    Task 01 of this project deals with the ballistic effects of 
projectiles and part of the work performed under that task is describ- 
ed in this report. 

This study was undertaken to investigate the resulting temperature 
effects when an impacting projectile transfers its kinetic energy to a 
target plate by the formation of a plug.    The method used was to employ 
a simplified analytical model which would yield a one-dimensional tem- 
perature distribution in the plate.    The linear Fourier Law was chosen 
as the tool for this problem in order to investigate whether it would 
yield results in reasonable agreement with experiment. 

The mechanisms occurring during the impact of a projectile on a 
target constitute a complex phenomena.    Both target and projectile are 
deformed, become highly stressed and, possibly, fractured.    Efforts 
to analytically explain these phenomena occurring between striker and 
target rely upon obtaining accurate physical models for the observed 
behavior of both components during the impact process.    Certainly one 
anticipates any reasonable model to account for the exchange of momen- 
tum, mass,  and energy between the target and projectile.    It is the con- 
cept of energy exchange which is of prime consideration in this report. 

During the impact of a projectile on a target, it is a well-known 
experimental result that both the target and projectile will show a 
transient increase in temperature.    Many factors (such as materials, 
impact velocity, obliquity,  and failure mode) will strongly influence 
the temperature rise in the target and projectile.    If plate failure 
occurs,  several failure mechanisms may be interacting: spallation, 
shattering, petalling,  or plugging.    This analysis assumes that only 
plugging occurs. 

A knowledge of the temperature distribution in the target is im- 
portant for several reasons.    Very localized melting and, possibly, 
vaporization may occur in the immediate vicinity of the impact point. 
For all metals of practical interest, the yield strength is reduced by 



temperatures approaching the melting point.        Phase changes near 
the impact point would seem to be depmdent in part on the temperature, 
its gradient and duration.    The stress and deformation fields will also 
be strongly influenced by the temperature gradient.    This latter factor 
will, of course,  be important when considering failure at other than the 
impact point.    This study of the temperature distribution in impacted 
plates was undertaken because of the effect of increase in temperature 
on ballistics performance. 

An exact formulation of the problem would,  in general,  involve the 
integration of highly difficult equations describing the coupling of the 
stress, deformation,  and energy fields in the target and projectile. 
The present treatment establishes an approximate solution of the 
linear heat transfer problem by classical techniques.    An already 
existing simplified ballistic model is used to provide input param- 
eters such as materials, properties,  impact velocities,  and geom- 
etries, into a classical heat transfer model.    The final result is the 
transient temperature at any position in the target during and after 
penetration. 

THEORY 

Nomenclature 

a constant (Equation 7) 

A constant (Equation 23) 

b constant (Equation 7) 

c constant (Equation 7) 

C0 (approximate) hydrodynamic wave speed in target (Equation 23) 

C0 (approximate) hydrodynamic wave speed in projectile (Equation 23) 

1L.  J.  Hageman et al,  HELP (Voll),   BRL CR39 (AD 726459),   1971, 
pg 24. 



h 2Po^o/(PoCo + Po^o^ • con8tant (Equation 4) 

J Joules' constant (778 ft-lbf/Btu) 

K        thermal conductivity (Btu/hr-ft-"F) 

K0(r;) modified Bessel function of second kind,  order zero (Equation 15) 

K^irj) modified Bessel function of second kind,  order one (Equation 15) 

L        length of projectile 

n constant (Equation 23) 

p transform parameter 

P0      hydrodynamic component of pressure in target 

q*        p/a   (Equation 15) 

Q        heat flux   (Btu per unit area per unit time) 

Qo      constant (Equation 14) 

r radial coordinate 

R radius of projectile 

t time (measured from impact) 

t£        time necessary for projectile face to traverse target thickness 

T        thickness of target plate 

v projectile velocity 

v0       initial projectile velocity or impact velocity 

V(r,t) difference between actual and ambient temperature (°F) 

W        work (ft-lb£) 

Y0      yield strength of plate 

Z        axial location of projectile-target interface 

Zr       ThV0/(C0 + hV0/2) 

Ct thermal diffusivity (ft*/hr) 

p0 mas» density of plate (Ib^-secVft*) 

p mass density of projectile (lb£-8eca/ft4) 

— denotes the Laplace transform of a variable 



The Ballistic Model 

During the normal impact of a cylindrical projectile on a flat 
thin plate, one possible mode of target failure is the shearing out of 
a plug.    During this process, the initial kinetic energy of the pro- 
jectile is partially absorbed by the target in the form of deformation, 
increased internal energy, and heat.   Heyda2 has presented an approx- 
imate model for the residual velocity and minimum perforation velocity 
of cylindrical flat nosed projectiles impacting relatively thin plates. 
Previous more approximate models^ do not present specific expressions 
for the forces acting on the target during deformation; the Heyda model 
presents these required expressions.    It is the purpose of this analysis 
to present a mathematical model relating the mechanical work done by 
certain of those forces and the heating in the target. 

Following Figure 1 and the notation of reference Z, one has a pro- 
jectile of constant length L,  radius R, density p0,  impacting a plate 
of thickness T,  density p0,  and yield strength Y  .      In Heyda* s model 
it is assumed that two components of pressure resist the motion of the 
projectile through the plate. 

The first component, of very high intensity,  is of magnitude P . 
Because of the fact that this pressure may create a thin fluid zone at 
the projectile nose target interface, this component is calculated 
according to the hydrodynamic theory of impact.    This calculation 
implies that material strength properties (i.e., yield strength, hard- 
ness, etc), as well as elastic or plastic flow, are ignored. 

The second component of pressure is the resistance of the plug 
at its periphery to shear.    It is only this component, one assumes here, 
that performs mechanical work which may be converted to heat energy. 

The shear stress at the plug plate periphery is assumed to be 
constant and to obey the Tresca criterion, thus being of magnitude Y0/2 
at all times during penetration.    Therefore, the total resisting shear 
force has a value,  according to Heyda, ^ of 

2J. F. Heyda, "Ballistic Impact into Metal Plates, " General Electric 
Co. (SSL) Technical Memorandum Report TM 70-002, pp I-10, Feb- 
ruary 1970. 

3R.   F.  Recht and T.  W.  Ipson,   "Ballistic Perforation Dynamics, " 
J Appl Mech, Trans of ASME, pp 384-389, September 1963. 
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Figure 1."    Projectile-Target Impact; Coordinate System 

(>)(2*R )(T -  Z) (1) 

where   Z    is the projectile target interface location or,   equivalently, 
the approximate length of the plug forward of the target; 

T    is the target fhickne88; and 

Y0 is the yield strength in tension. 

The total approximate mechanical shear work done as the projectile 
moves from Z = 0 to Z = T is 

■■!. 
Y0TrR (T Z) dZ 

YoffRT3 

(2) 

In what follows it will b« assumed that heat is transferred only in 
the radial direction (the heat transferred through the thickness being 
negligible) and that the velocity of the plug is approximately that of 



the projectile target interface.    Thus,  if one divides the right hand side 
of Equation 2 by the product  of the area available for heat transfer, 
(2nRT),  the time interval, t^, required for the interface to transverse 
the target thickness, and Joules1 constant,  one has 

Y0T 
0=      (3) 

4Jtf 
V 

which is an approximate expression for the heat per unit area per unit 
time, or heat flux, delivered to the target at the location r = R. 

A value for t, may be found as follows.    If the projectile at any 
time   t   is treated as a rigid body then,  from Newton's law,  a force 
balance and integration leads to an expression for the projectile ve- 
locity V(t).    Since V is a function of t,  and the location of the interface 
Z is also a function of t, then the chain rule of calculus provides a 
functional relation between Z and t.    In accordance with Heyda, <- 
this relation is 

where h/2 is the (approximate) constant ratio between the initial inter- 
face speed and the impact velocity,   V0. 

Integrating Equation 4,  one easily shows that 

tf T 

tf =   1 dt = T -TTTT (^) 

In performing the integration in Equation 5, utilization is made 
of the following expressions for the velocity V(Z) 

?J. F. Heyda, "Ballistic Impact into Metal Plates," General Electric 
Co. (SSL) Technical Memorandum Report TM 70-002, pp 1-10, Feb- 
ruary 1970. 



4v 

\p"oLh    +   ?oRLh/Z      +    Po 
voa - l^ + TTTnri2   + sriii ^ 0 - z   zr 

^ ■/, 

vo 
4P0Zr       /  4YoT\ 

PoLh     "    V7oRLh/: 
■      -  ■  = ' -       +  7?      Z    -s Z ^ T 

■poRLh^ '       r 

which follow easily from reference 2 (pp 6 and 7).    Here P    is the 
(approximate) amplitude of the hydrodynamic shock wave which is 
assumed to vanish for t > tr.    The quantities Zr and tr are,   re- 
spectively, the location and time at which the initial hydrodynamic 
component of pressure P   is attenuated (to zero) by a rarefaction 
wave returning from the free plate surface.    Carrying out the in- 
tegration of Equation 5, with V(Z) being given by Equation 6, 
leads to 

tf   =   -J—ITS"      I«   [-b+cZr + c1/8  (a - 2bZr + cZr
a) ^j    + 

In    ^-b + (ca)*/»]   + In   [-b1 + cT + cl/8 (a1 - 2b'T + cl*)    J   + 

In    l-b' + cZr + c1/8   (a' - 2^ Zr + cZ/)1   J (7.a) 

where 

a     =     V0* 

a'   =     a.4P0Zr/p0Lh 

b    =     2[Po + Y0T/R]/p0  Lh 

*   =     2Y0T/p0LhR 

c     =   b'/T 

are introduced for convenience. 

2 
nc J.   F.   Heyda,   "Ballistic Impact into Metal Plates," General Elect 

Co.  (SSL) Technical Memorandum Report TM 70-002, pp I-10,  Feb- 
ruary 1970. 

7 

(7.b) 



The calculation of t£ above allows the heat flux given by Equation 
3 to be determined.    It will be assumed that the total heat per unit area 
is deposited at   r = R   in the time interval   t{.    Thus,    Q will be assumed 
to have the simple form depicted in Figure 2.    Other estimates for the 
time required for plate failure,  based on arguments other than those 
presented here,  are given in reference 2,  pp 13-14. 

;1 
X 

Q/Q0 =   HC^-HCt-tp 

•"b 

Figure 2.     Assumed Variation of   Heat Flux with Tim« 

The Heat Transfer Solution 

Assuming the heat generated varies only with the radial coordinate 
and time,  and the linear Fourier law of conduction as valid,  one has the 
equation of heat transfer in the polar cylindrical coordinate system of 
Figure 1 for R target of inner radius R and infinite radial extent as 

•J.  F.  Heyda,  "Ballistic Impact into Metal Plates, " General Electric 
Co.    (SSL) Technical Memorandum Report TM 70-002, pp 1-10,   Feb- 
ruary 1970. 

8 



d8v      ± jv_     _i_ ^_v 
dy3 r    br    '   Of     at 

(8) 

V = V(r,t);   r> R ,    t > 0 

subject to the initial condition of constant ambient temperature 

V(r, 0)   =   0 (9) 

and the boundary conditions 

Lim       V(r,t)   =   0;    f>0 (10) 
r -   • 

~   (R.t)   = —    Q(t):    t> 0 (11) 
Or K 

Here   V   is the temperature above ambient,    a   is the thermal diffusivity, 
and K is the thermal conductivity. 

The initial condition, Equation 9,  specifies the initial temperature 
throughout the plate to be ambient.   The boundary condition.  Equation 
10,  requires the temperature to approach ambient as the radius ap- 
proaches infinity for all values of time.    The condition.  Equation 11, 
is a specification that the heat flux, Q, is applied at the sheared 
surface,    r = R. 

A 
The method of solution closely parallel« that of Carslaw and Jaegar, 

who, using the Laplace transform technique with Q(t) given by 

Q(t) = Q0H(t) (12) 

H. Carslaw and J. Jaegar, Conduction of Heat in Solids, 2d ed, pp 338. 
340; Oxford,   England: Oxford University Press; 1959. 



where o I    t < 0 
H(t)   =        j (13) 

\   ]    t  >   0 

obtained a two-term asymptotic Holution valid for Hrnall time for the 
system Equation 8 through Equation 11.    Omitting the intermediate 
details,  one takes the transform of the above system with the Q(t) 
of Equation 13 replaced by that of Figure Z, i.e. , 

Q(t) = Q0     [Hit) - H(t-tf)J (14) 

to obtain the solution for the transformed temperature,   V(r,p) 

Q          (l - e"ptf) K0(q.r) 
V/r _v _    —2.      _i L Ü  (15) 
^'P' K pqK^q^) U" 

where   p   is the transform parameter,  q3 = p/d;   K   (rj) and K. (TJ) are 
modified Bessel functions of the second kind of zeroth and first order, 
respectively.    (One notes that Equation 15 is identical to Equation 16 
(p 338 of reference 4) if  tf is allowed to approach infinity. ) 

It is necessary to invert Ecuation 15 to obtain   V(r, t).   The formal 
integral solution,  as presented in reference 4, does not lend itself easily 
to simple numerical evaluation.   Instead,  an asympototic expansion solu- 
tion is presented.    From the general theory of reference 4 we expand 
the Bessel functions of Equation 15 in asymptotic series of the form 

K (y?) =/JLV* e-T7   ri4    4na-l (4na-lM4na-(3>
a) 1     . 

n a 0, 1,2,   ... (16) 

H.Carslaw and J.  Jaegar, Conduction of Heat in Solids,   2d ed, pp 338- 
340; Oxford,  England: Oxford University Press; 1959. 

10 



Carrying the expansions in general form,   retaining five terms, 
and inverting, the final result. 

V(r,t) =  Vj (r,t) +  V2(r,t) 

where 

(i7: 

V^r.t) 
v     '       j=o 

1        erfc [zm^] (18) 

V2(r,t) s - 
K 

H(t.t£)   UM^I i/2 ^   (2)J (aMf]) 
J=0 

j/2 

x   Cj .(j+i)     , i erfc / -R \ 
\2<a(t-tf)> llz I 

(19) 

In Equations 18 and 19, the C< are given in the Appendix and the n 
order repeated error function is defined as 

i(n)erfcT;s i(n'1'   erfc ^ d C :   n = 1, 2... (20) 

and 

erfcr; =   1 d{ (21) 

II 



The expansion given above is somowhat more accurate than that 
given in reference 4.    One notes that five terms appear in the present 
expansions as opposed to two in reference 4.    One also sees that the 
first two terms in Equation 18 are exactly those of reference 4,  lend- 
ing credance to the present procedures. 

In evaluating the error functions appearing in Equations 18 and 19, 
provision is made to ensure the highest possible numerical accuracy. 
By numerical experimentation it was found that the standard use of the 
recursion formula 

.(n)        , «    .(n-1)        , 1      .(n-2)       t ._,. 
i        erfc?;=-   -L- i erfcT7 + —   i erfcr? (22) 

n en 

in computing the n     order error function in terms of the (n-1) and 
(n-2) order functions may be inaccurate if the argument, 7], is small. 
It was concluded that for 77 ^ 0,. 4,  0 <. f) <  4;   this inaccuracy is small 
and the application of Equation 22 is acceptable.    However,  when 
») < 0. 4,  a technique due to Gautschi    is employed.    In this technique 
a certain class of difference equations whose solutions are the re- 
peated error functions,  are numerically solved.    Although extremely 
accurate,  the amount of computation is large and, hence, usage is 
restricted to r\ < 0.4.    All computations are performed to 15 sig- 
nificant figures. 

The use of asympotic expansions is generally acceptable for small 
values of time.    In a related problem, Carslaw and Jaegar^ recommend 
that   ort/R8 be less than 0. 02 and r/Rbe not small.    One finds,  however, 
that for r = R,  the present expansion for Equation 18 introduces neg- 
ligible error for times up to about Qft/Ra = 0.7.    Asymptotic expansions 
depart from the exact solution in an unpredictable manner after their 
range of validity is exceeded.    In practice,  this range is found by 
erratic or unexpected behavior in the solution.    In the present study 
this was estimated to be about  art/R? =0.7.    For times beyond this 
value,  the solution is disregarded. 

4 
H. Carslaw and J. Jaegar, Condttction of Heat in Solids,   2d ed,  pp 338- 
340; Oxford,   England: Oxford University Press; 1959. 

R.  Abromowitz (ed).   Handbook of Mathematical Functions,   U.S.   Dept of 
Commerce,   Bureau of Standards, pp 299,  June 1964. 

bW.  Gautschi,   "Recursive Computation of the Repeated Integrals of the 

Error Function," Mathematics and Computation (M. T.A. C),   Vol 15, 
pp 227-232,   1961. 

12 



The heat conduction equation (Equation 8) has been postulated on 
the basis of no heat transfer in the Z or target thickness direction. 
This is not completely realistic since,  in practice,  the target surfaces 
(Z = 0 and Z = T) are not insulated and may conduct heat to the surround- 
ing environment.    The amount of error incurred by this assumption is 
thought to be small.    Ingersoll et al' and Boley and Weiner^ present 
laborious theories which might allow the error to be estimated. 

EXAMPLE PROBLEM 

As a numerical example,  the impact at 4000 fps of a steel projectile 
on an aluminum target was investigated.    The target was assumed to be 
1/4 inch thick, have a yield strength of 75 x l(f psi, with a density of 
5.39 seca-lbf/ft*.    The projectile has a length of 3 inches,  a radius of 
0.6 inch,  and a density of 15. 29 8ec3-lb£/ft*.    In order to estimate the 
hydrodynamic sound speeds in the target and projectile,  it was assumed 
that the increase in density in both target and projectile,  due to shock 
compression,  is small.    Then the approximate expressions of Huang 
and Davids" are applicable.    These are 

c a  =   JiA    .      c8 =    ^ (23) 
0 Po     ' Po 

where   n - 3. 55,    A = 232 x 103 bar for aluminum and   n = 3. 53, 
A = 480 x 103 bar for steel. 

(The assumptions concerning the approximations embodied in 
Equation 23 are presented in Huang and Davids (pp 39-50).       In the 
case of steel,  whose shock wave structure varies with the pressure, 

L.   R.  Ingersoll et al,  "Theory of Earth Heat Exchanges for the Heat 
Pump," Heating,   Piping and Air Conditioning Journal,  pp 115-118, 
May 1950. 

8B.   Boleyand J.   H.  Weiner,  Theory of Thermal Stresses,  pp 160-163; 
New York: John Wiley; 1960. 

'Y.   Huang and N.   Davids,   "Shock Dynamics of Hypervelocity Impact 
of Metals," J Franklin Inst,  pp 39-50,   1963. 

13 



n   finrl    A    aro not truly ronntant but (l<penfl upon the prcHHurc,   P  . 
However,   the error inrurred in calculatiliK   ^0   by usinK the values 
piven above will not exceed 14 percent. ) 

In addition,  the diffusivity,   a,    for aluminum was assumed to be 
2.4 ftrVhr,  and the conductivity to be 80 Btu/hr-ft- 0F; these values 
are taken as representative of aluminum alloys.    The pressure,   P0, 
is calculated as shown in Reference 2 (Equation 5,  p 4); the calculation 
of other constants in the ballistic model follows   Heyda. 

The temperature distribution« .vbove ambient as a function of time 
at several locations are shown in Figures 3 and 4.    The curve of 
Figure 3,  which corresponds to the location r = R (0. 6 in. ) or the 
projectile periphery,   indicates a temperature rise of about 34 x lO"  "F 
within 7.6 ^tsec after impact.    This decreases rapidly until at about one 
second it is sensibly back to 33° F above ambient. 

Figure 4,  which corresponds to the locations of r = 0.058 ft  (0.70 
in. )   and 0. 067 ft (0. 80 in. ) indicates maximum temperatures of 110" 
and 50° F above ambient at about 0.05 and 0.2 second,   respectively. 
As in the case of the interface location,  at one second both these tem- 
perature profiles are tending to ambient,  about 30° F above. 

(Actually,  in the course of computation, none of these temperature 
profiles reaches ambient.    As the point in time in which the asymptotic 
expansions are no longer valid,  at 2.5 second for the radii calculated, 
the temperatures have decreased to between 18° and 21 0 F above. ) 
At a radial location of 1. 2 inches, the temperature rise is negligible 
at the end of 0. 1 second.    The heat flux,  Q ,  has a numerical value 
of 4.75 x 106 Btu/f^-sec,  and tf is 7.6 jxsec. 

2J.   F.  Heyda,   "Ballistic Impact into Metal Plates," General Electric 
Co.  (SSL) Technical Memorandum Report TM 70-002,  pp 1-10, 
February 1970. 

14 
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CONCLUSIONS AND RECOMMENDATIONS 

The preceding numerical example presents four points: 

1. The maximum temperature at the interface is far in excess of 
the melting point of aluminum; 

2. The maximum temperature rises at 0. 1 and 0. 2 inch from the 
interface are lower than is thought to be true from practical experience; 

3. The time required for the temperature to approach ambient 
(several seconds) seems too short; and 

4. Essentially no temperature rise occurs within 0. 1 second at 
a location 0. 6 inch from the interface. 

It is concluded that,  based on this example, the mechanism of energy 
transfer postulated is not valid for the current problem. 

The explanation for the lack of agreement with practical experience 
is found by noting that the present model assumes that:   all available 
shearing work done is converted to thermal energy in the target; no 
account is made for the energy required for either target or projectile 
deformation; and the classical Fourier heat transfer mechanism is 
applicable. 

It is seen (viz.  Equations 18 and 19) that the magnitude of the tem- 
perature is in direct proportion to the value of Q   as determined by the 
present ballistic model.    Q0, in turn, decreases with an increased 
value of t»    If a more refined ballistic model were to substantially 
increase the value of t,,  the maximum interface temperature would 
tend to decline and the time required to approach ambient would tend 
to increase.    (The aforementioned values of "time-of-plate-failure" 
of reference 2 might provide some guidance in this respect. ) 

It is suggested that a new model, incorporating these latter features 
(neglected in the present work), be constructed.    The equations of 
motion, or equilibrium equations, together with the continuity or mass 
conservation relation, could be coupled with the conservation of energy 
equation and solved simultaneously.    This formulation is very attract- 
ive from the points of view that 

2J.  F.  Heyda,   "Ballistic Impact into Metal Plates, " General Electric Co. 
(SSL) Technical Memorandum Report TM 70-002, pp 1-10,   February 1970. 
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1. The energy to deform the target Is considered; 

2. The Increase in internal energy is accounted for; and 

3. The temperature will tend to propagate outward from the 
impact point along with the transverse and radial waves of deformation. 
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APPENDIX 

Coefficients in the Asymptotic Expansion 

Using the expansion (Equation 16),  Equation 15 may be written as 

V(r,p) = 
Qo(1-e"ptf) /R 
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where the d. and b^ are deduced from Equation 16.   By representing 
the division of the two series of Equation Al by 
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where the C- are to be determined, it follows by induction that 
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The first five terms of the series in Equation A3 are 
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Substitution of Equation A2 into Equation Al and the use of standard 
inversion tables yields Equations 17 through 19. 

21 


