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FOREWORD 

The work reported herein was conducted at the Arnold Engineering Development 
Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, 
Tennessee. 

The test results presented were obtained by ARO, Inc. (a subsidiary of Sverdrup 
& Parcel and Associates, Inc.), contract operator of AEDC, AFSC. The work was done 
under ARO Project No. VK008 to develop efficient and productive operating techniques. 
The time period was from July 1971 to September 1972. The manuscript was submitted 
for publication on March 19,  1973. 

The authors wish to express their appreciation to Cord Link of the ARO, Inc., Central 
Computing Organization for his help with the photogrammetry aspects of this work and 
to Manual Brown of the VKF for the mechanical and electrical engineering work required 
in the development of this system. 

This technical report has been reviewed and is approved. 

JIMMY W. MULLINS A. L. COAPMAN 
Lt Colonel, USAF Colonel, USAF 
Chief Air Force Test Director, VKF Director of Test 
Directorate of Test 
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ABSTRACT 

The development of the phase-change paint technique has provided access to a wealth 
of information in the form of photographs of heating rate patterns on wind tunnel test 
models. However, difficulty is experienced in the transformation of the data from the 
photographs to modelcoordinates because of the distortion of the model image caused 
by oblique camera views. This report documents the unique capabilities recently developed 
at the AElXJ-Vky tor transformation of the photographic information into a model axis 
system and for presentation of the data in machine generated plots. 
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NOMENCLATURE 

Constants in transformation equations (Eq. 6) 

Specific heat of model material, Btu/lbm-°R 

Focal length of camera lens (see Fig. 11), in. 

Heat-transfer coefficient based on Taw = T0 

Heat-transfer coefficient based on Taw = 0.9To 

Heat-transfer coefficient based on Taw = 0.85To 

Reference heat-transfer coefficient, Btu/ft2-sec-°R 

Heat-transfer coefficient, Btu/ft2-sec-° R 

Thermal conductivity of model material, Btu/ft-sec-°R 

Model length, in. 

Points in u,v plane surrounding arbitrary point on melt line (see Fig. 
13) 

Reference points in tracing plane 

Scale factor between XTYT plane and u,v plane (see Fig. 12) 

Temperature, °R or °F as noted 

Elapsed time from initial exposure of model to free-stream airflow, sec 

Film plane coordinate system 

Coordinates of reference points Rl and R2 in u,v plane 

u,v coordinates of the ith  model geometry point where i includes all 
model points 

u,v coordinates of arbitrary point on melt line (see Fig. 13) 

u,v coordinates of points surrounding arbitrary point on melt line (see 
Fig. 13) 

VI 
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Vi2,v34 Interpolated value of v between P^ and P3P4, respectively (Eq. 
10 and 11) 

Wx Interpolation weight factor for x model coordinate (Eq. 9) 

Wul2,W„34 Interpolation weight factors between ui ,U2 and 113,114 (Eq. 12) 

Xm ,Ym ,Zm Model axis system (see Fig. 9) 

XmmjYmm,Zmm Model surface coordinates in model axis system (see Fig. 9) 

XCYCZC Camera axis system (see Fig. 11) 

Xmc,Ymc,Zmc Coordinates of camera origin in model axis system 

XCm,YCm,ZCm Coordinates   of   model   surface   in   camera   axis   system   after 
translation and rotation through 0 and 0 

XT ,Yx Tracing plane coordinate system (see Fig. 12) 

(XTRI>YTRI) Coordinates of reference points Rl  and R2 in tracing (XT,YT) 

(XT R 2 ,YT R 2 ) plane (see Fig. 12) 

XraR1 >YmR1,ZmR1     Coordinates of reference points PjR1  and" PTR2  
m moa"el axis 

mR2'  mR2' mR2    system 

Xi2,X34 Model X station containing points 1, 2 and 3, 4, respectively (see 
Figs. 9 and 13) 

Xm! ,Xm 2, Model x coordinate of points !> 2, 3, and 4 

Model Y coordinate of points 1, 2, 3, and 4 

Model Z coordinate of points 1, 2, 3, and 4 

Model angle of attack, deg 

Angle between YT axis and u axis (see Fig. 12), deg 

Elevation angle of camera line of sight relative to the Xm ,Ym 

plane (see Fig. 10), deg 

xm 3 »^1114 

Ym 1 >*m2> 

Ym 3 > * m 4 

zm 1 j^rri 2» 

zm 3 )Zjti4 
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p Density of model material, lbm/ft3 

0 Rotation angle about the Zm axis (see Fig. 10), deg 

TEMPERATURE SUBSCRIPTS 

aw Adiabatic wall 

i Initial temperature prior to exposure to airflow 

o Stagnation 

pc Phase change 

w Model wall 

vin 
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SECTION  I 
INTRODUCTION 

Aerodynamic heating considerations played an important role in the design of the 
Mercury, Gemini, and Apollo vehicles. The Space Shuttle thermal protection system is 
typical of today's aerodynamic heating problems, and advanced interceptors and hypersonic 
transports represent the next generation of heating problems. Just as the configurations 
have become more sophisticated over the years, so have the testing techniques to handle 
these aerodynamic heating problems. Jones and Hunt (Ref. 1) pioneered development of 
the phase-change paint technique and Compton (Ref. 2) has documented preliminary 
heating results obtained by using an infrared camera. These thermal mapping techniques 
can provide a complete heating distribution on a given model surface. However, the 
transformation of the data to plots has been a drawback particularly in the case of 
phase-change paint data. 

The basic phase-change paint data consist of sequenced photographs or motion-picture 
film which show the progression of the phase-change paint melt lines. Nossaman (Ref. 
3) and Throckmorton (Ref. 4) discuss some of the difficulties in attempting to automate 
the transformation of the melt lines from the photographic plane to data plots. The staff 
of the VKF has been particularly concerned about the automation of the data reduction 
process because of the large volume of photographs generated during a typical test. For 
example, during a space shuttle orbiter reentry test (Ref. 5), three cameras were used 
to simultaneously photograph the top, side, and bottom model surfaces, and approximately 
5000 photographs were obtained per day. Of these about 200 were used to extract heating 
data. 

The purpose of this report is to document the procedures developed at the VKF 
to convert the information contained on phase-change paint photographs to 
machine-generated model axis data plots. The procedures previously employed consisted 
of overlaying a model grid and reading the coordinates ot the melt line of a given 
photograph and then using charts to determine the corresponding value of the heat-transfer 
coefficient (for example, see Refs. 6 and 7). This technique is extremely tedious and 
time consuming if a significant number of data "plots are rejguJredT However, it shoifftt- 
be understood that in cases of complex model geometry the actual phase-change paint 
photograph may be the best way to present the data. 

SECTION II 
TEST PROCEDURES 

The phase-change paint technique of measuring the heat transfer to a model surface 
was developed by Jones and Hunt (Ref. 1). This technique assumes that the model wall 
temperature response is similar to that of a semi-infinite slab subjected to an instantaneous 
and constant heat-transfer coefficient. The surface wall temperature rise for a semi-infinite 
slab is given by the equation 
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T      -   T. 

T       -   T. aw 
L-  -   1   _  eh erfc b (1) 

where b = h\/t"VpciT- 

A specific value of the wall temperature (Tw) is indicated by a phase-change paint 
(Tempilaq®). These paints change from an opaque solid to a transparent liquid at a specified 
phase-change temperature (Tpc). For known values of Ti, Taw, t, and Vpck, the 
heat-transfer coefficient (h) can be calculated as a function of the time required for the 
phase change to occur by using Tw  = Tpc. That is, 

h - -^S (2) 
v1 

where b comes from the solution of Eq. (1) since the left-hand side is known. 

Prior to each run, the model is cleaned and cooled with alcohol and then spray 
painted with Tempilaq. In most cases, the windward and leeward surfaces are sprayed 
with different paints since the leeside surface temperatures are generally lower than the 
windward surface temperatures. The model is installed on the model injection mechanism 
at the desired test attitude, and the model initial temperature (T,) is measured. The model 
is then injected into the airstream for approximately 25 sec and during this time the 
model surface temperature rise produces isotherm melt lines. The progression of the melt 
lines is photographed with 70-mm sequenced cameras operating at two frames per second. 
Typical examples of phase-change paint photographs obtained during a run are presented 
in Fig.  1  (Appendix), and a typical camera arrangement is illustrated in Fig. 2. Figure 
3 illustrates the film plane distortion of a model caused by the oblique camera viewing 
angles and shows that linear scaling from photographs should be avoided. 

During each run, the tunnel stagnation conditions and the time of each picture are 
recorded on magnetic tape as well as the model initial temperature and the phase-change 
paint temperature (Tpc). As previously mentioned, these parameters are used in the solution 
of Eq. (1) and provide a value of heat-transfer coefficient which is associated with each 
picture. A sample printout illustrating this phase of the data reduction technique is 
presented in Fig. 4. It should be emphasized that the basic information presented in Fig. 
4 is simply a tabulation of the semi-infinite slab equation sojution for_yarious times. Of 
course, to be useful these calculated heat-transfer parameters must be associated^ with a 
melt line on the photograph obtained at_ a^corresponding time. Also note that Fig. 4 
includes heat-transfer coefficients calculated for assumed adiabatic wall temperatures of 
T0, 0.9To, and 0.85To. The use of three values of Taw provides an indication of the 
sensitivity of the heat-transfer coefficients to the value of Taw assumed. As can be seen, 
there are large percentage differences in the values of the heat-transfer coefficients. 
Therefore, if the data are to be used for flight predictions, the value of Taw /T0 is obviously 
very important. 
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SECTION  III 
DATA REDUCTION PROCEDURES 

Plots illustrating typical axial and spanwise comparisons of data and theory are shown 
in Fig. 5. These types of plots are frequently the desired results of a phase-change paint 
test. Therefore, the problem is to convert the information from the phase-change paint 
photographs (Fig. 1) into heat-transfer rate distribution plots (Fig. 5). Figure 6 is a 
schematic of how this is done, and the sections that follow provide the details of the 
procedures. In general, the steps are: 

1. Interpret and trace melt lines from photographs, S 
2. Record melt line coordinates on magnetic tape, 
3. Mathematically transform the model coordinates into 

the film plane and overlay the melt line, 
4. Interpolate to determine body coordinates of the 

melt line, and 
5. Machine generate the desired data plots. 

3.1 RECORDING MELT LINES 

A film editing machine (Fig. 7) is used to review the 70-mm film obtained during 
the test. When the observer comes to a frame of interest he simply traces the melt contour 
on Mylar® film and records the picture frame number with the tracing. Since the 
determination of the proper melt line requires some judgment (Ref. 4), an engineer familiar 
with the test is needed to supervise or perform the task of making the melt line tracings. 
Experience has shown that the number' of hours required to make the tracings is 
approximately equal to the wind tunnel hours required to obtain the photographs. 

These melt line tracings and the corresponding reference points and frame numbers 
are recorded on magnetic tape by using an analog tracing system (Fig. 8).1 The frame 
number links a value of heat-transfer coefficient (see Section II) with the picture plane 
coordinates of the melt lines and the reference points are used in scaling. 

3.2 TRANSFORMATION OF  MODEL COORDINATES TO FILM PLANE 

The mechanics of the model coordinate transformation to the fdm plane require that 
the three-dimensional model coordinates which are recorded in the model axis system 
first be transformed into the camera axis system and then into the two-dimensional film 
plane coordinate system. A double subscript notation used to identify the axis systems 
and points is illustrated as follows: 

1 Experience has shown that it is more efficient to perform a two-step operation in recording the melt lines as 
opposed to going directly from the photographs to the magnetic tape. 
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X X component 
m model axis system 

m        model surface points 

X X component 
m model axis system 

c        camera focal point 

X X component 
c camera axis system 

m model surface points 

The model surface coordinates (Xm m ,Ym ,Zm m) are measured using a Sheffield 
Cordax measuring machine as illustrated in Fig. 9. The location of the camera focal point 
(Xmc, Ym<., Zmc) and the camera line of sight are specified in the model axis system. 
The direction of the camera line of sight is defined by two angles (4> and 0), where 0 
is the rotation angle around the Zm axis and 6 is the elevation angle with respect to the 
Xm Ym plane. The z axis of the camera coordinate system is coincident with the camera 
line of sight (see Fig.  10). 

Given the model coordinates and the camera parameters, each point on the model 
is transformed into the film plane, thereby constructing a mathematical "photograph" 
of the model (Fig. 11). That is, the three-dimensional model coordinates are transformed 
into a two-dimensional film plane coordinate system which is designated as the u,v plane. 
The mechanics of the transformation are outlined in the remainder of this section. 

Each model surface point in the model axis system is translated and rotated to the 
camera coordinate system by the following transformation: 

— sin <j> cos <j> 0 

— sin 0 cos d> —  sin 6 sin <j> cos 8 

cos Q cos <f>             cos d sin <j> sin 6 

K   - x
m 

Y      - Y m m 

Z     - z m m 

(3) 

Projection of these coordinates onto the film plane (u,v plane) is obtained by 

(4) 
"'ft)     -ft) 

where f is the distance from the focal point to the u,v plane. This distance is the same 
as the lens to film distance in the camera (Fig.  11). 

4 
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There is now a set of (u,v) points for the set of model geometry points 
(Xm m >Ym ,Zm ). The next step is to scale the melt line coordinates to this same u,v 
plane. 

The melt line coordinates are recorded in the tracing plane as illustrated in Figs. 
8 and 12. These coordinates must also be transformed onto the film plane before the 
model coordinates of the melt line can be determined. 

In general, the transformation of a point from the tracing plane to the u,v plane 
is given by 

u  =   (ScosjSJY-j-  *■  {Ssinj8)XT  -   C 

(5) 
v =  (Scos/3)XT -  (Ssin/S)YT -   D 

where the nomenclature is illustrated in Fig.  12. Letting A = S cos ß and B = S sin 
ß gives 

u = A YT +  B XT j- C 

v = AXT-BYT+D 
(6) 

where A, B, C, and D are four unknowns, These unknown coefficients are solved for 
by using two known points called reference marks. The two reference marks are identified 
in the tracing plane (Fig. 12) as (PTRI> ^TR2)- The known model coordinates of these 
points are (XmR1, YmR1, ZmR1) and (XmR2> YmR2, ZmR2), and the tracing plane 
coordinates are (XTRI YTRI) and (XTR2,YTR2). The model coordinates are transformed 
into the u,v plane by Eqs. (3) and (I) to give (URI,VRI) and (UR2,VR2). Substitution 
into Eq. (6) gives 

un,  = AYx      -  BXT      +  C 1 'RI 'RI 

vR1 = AXT      - BYT      + D 
J Ri 'ni f?. 

R2 TR2 TR2 

VR2 =  AXTR2 -  BYTR2  .  D 

The simultaneous solution of these equations for A, B, C, and D allows all points on 
the melt line to be transformed from the tracing plane to the u,v plane by applying Eq. 
(6) to each melt line point. 
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3.3   INTERPOLATION OF MELT LINE POINTS TO DETERMINE 
BODY COORDINATES 

As described in the previous two sections, the points along the melt line and the 
model surface coordinates are transformed into the film plane axis system (u,v plane). 
The next step in- the data reduction process is to interpolate in the u,v plane to determine 
the model coordinates (Xm, Ym, Zm) of the melt lines. 

A search is made in the u,v plane to find the point (ui,vi) which is a minimum 
distance from the melt line point (up,vp). That is, the minimum of 

V (u    -  u.)2  +  (v    -   v.)2 v   p r *   p r 

for all model geometry points is found (see Fig. 13). After the point Pi is found, a 
search is made to find the second nearest point to the point (up,vp). This point (P2) 
is restricted to the same model station2 as Pi so that Pi and P2 both have the same 
Xm model coordinate which is designated, X^. At a different model station, the third 
and fourth closest points to the melt line point are determined such that the melt line 
point falls within a quadrilateral as illustrated in Figs. 13 and 14a. The points P3 and 
P4 are also restricted such that they have the same value for the Xm model coordinate 
(designated X34). Model station X34  is adjacent to model station Xj2. 

To determine the (Xm,Ym,Zm) model coordinates of the melt line point (up,vp), 
a simple linear interpolation technique is applied which uses weighting factors. For "example, 
since the unknown melt line point is inside the quadrilateral bounded by the model Xm 

coordinates (X12 and X34), it is known that its Xm model coordinate has a value between 
X12 and X34. A weighting factor (Wx) is calculated such that 

ft    =  0 when v„ lies on the same model station as X      and X      (see Fig. 14b) 

and 

W    =   1 when v   lies on the same model station as Xm   and Xm . 
" 3 4 

Then the Xm  model coordinate of the unknown point is given by 

X
m =   X12 +  fX34-X]2)Wx (8) 

2As described at the beginning of this section, the model coordinates were recorded at constant model stations, 
and therefore, adjacent spanwise points have the same Xm model coordinate. 
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As illustrated in Fig. 14b the value of the weighting factor (Wx) goes from 0-to 
1 depending on the magnitude of vp. The factor Wx is calculated by the ratio: 

v  - v, p 12 
Wx = ^^ (9) 

34 12 

where 

VI2   =   vl   +   (v2"vl)Wul2 (See   Fi«-   14c> (10) 

and 

V34   =   v3   +   (v4-v3)Wu34 (11) 

As can be seen, the technique used to calculate V12 and V34 is similar to that used 
to calculate Xm (Eq. 8). The weighting factors (Wul2 and W„34) are given by the 
equations: 

u    — u. 
^     _ _p ; 

n 12 „   _ „ 

u   — u, 
W =      p        3 

u34        u   _.„ 

(see Fig. 14d) (12) 

'4     "8 

Note that; Wul2 = 0 when up = u1} and W„i2 ■ 1 when up = u2. 

The procedure described above and illustrated in Fig. 14 is used to calculate the 
model Xm coordinate of an arbitrary point on the melt line. The procedure used to 
calculate the model Ym coordinate of the melt line points is similar. The equations are: 

Y
m  =  Y12  +  (Y34-Y12)ffx        (seeEq.8) (13) 

where 

Y12 - Ymi - <Ym2-Ymi)Wul2 (14) 

and 

Y34 = Ym3  *  (Ym4-Ym3)Wu34 (15) 

Substitution and simplification yield 
Ym =  Ymi(l-Wul2)(l_Wx) 

+ Ym2(Wu]2)(l-Wx) (16) 

+  Ym3(Wx)(l - Wu34) 

+   Ym4(WxXWu34) 



AEDC-TR-73-90 

In a like manner, it can be shown that 

zm = zm.(i-wul2)(i-wx) 

+   Zm<fful2>(l-W; 
(17) 

+   Z-3< V1 " Wu34> 

+   Zm4(ffx)(Wu34) 

3.4    DATA PRESENTATION 

With the model coordinates of a melt line and the corresponding heat-transfer 
coefficient stored on tape, the final step is to present the data in a convenient form. 
Several methods were considered before selection of the format illustrated in Fig. 15. 
Presented in Fig. IS3 is the final data reduction of the run illustrated in Fig. 1. There 
are three parts to the final data presentation: 

1. Figure ISa: tabulated heating parameters for each selected picture plus run 
conditions and model attitude. 

2. Figure 15b to i: the model coordinates Xm ,Ym of the melt line for different 
levels of heating presented with a planform view of the model outline. Of 
course, for a side-mounted camera a side view of the model outline would 
be presented. It should be emphasized that the melt line (or heating level) 
coordinates are in the model axis system and do not include the distortion 
associated with a photograph. 

3. Figure 15j: axial and spanwise data plots. Once the melt lines are 
transformed into the model coordinate system, it is relatively simple to 
machine generate this type of data plots. 

SECTION IV 
CONCLUDING REMARKS 

The difficulty in converting heat-transfer-rate information from phase-change paint 
photographs to data plots has been a drawback to the phase-change paint technique. This 
report documents the unique capabilities recently developed at the AEDC-VKF for 
transforming the photographic information obtained from phase-change paint tests into 
a model axis system and then presentation of the data in machine-generated plots. 

'This figure was taken directly from Ref. 8, and additional examples of AEDC-VKF reduced paint data may 
be found in Refs. 9 through 12. 



AEDC-TR-73-90 

The procedures described in this report deal with the specific problem of extracting 
information from phase-change paint photographs and correcting for camera viewing angle; 
however, it should be noted that many of these same procedures could be applied to 
extracting information from any photograph. For example, these procedures could be used 
on thermographic phosphor, shadowgraph, schlieren, and oil flow photographs. 
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White - Paint 
Black - Model 

Fig. 1  Typical Examples of Phase-Change Paint Photographs 

13 



Top-Mounted 70-mm 
Sequenced Camera (T) 

Top View 

O U Side-Mounted 70-mm 
Sequenced Camera (S) 

Q^^ 
Bottom-Mounted 70-mm 
Sequenced Camera (B) 

O 
Side View 

Fig. 2 Typical Installation for Phase-Change Paint Test 
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Fig. 3   Illustration of Model Distortion Caused by Camera Viewing Angle 
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Fig. 4  Printout of Parameters Stored on 'Tunnel Tape" 
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Fig. 6  Schematic Illustrating Reduction of Photographs to Useful Heat-Transfer Parameters 
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Fig. 7   VKF Film Editing System 
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Fig. 8   VKF Analog Tracing System 
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^m 

Typical  Model Coordinates 

Model   Stations 
(Up  to  80  Sta) 

a.   Illustration of Model Coordinate System 

b.   Sheffield Cordax Coordinate Measuring Machine 
Fig. 9   Model Surface Coordinate Measurement Technique 
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+ Z m 

Camera Focal Point 

a Z-Axis 
of Sight) 

Fig. 10 Sketch Illustrating Rotation Angles 
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■ Film Plane Coordinate System 

to 

Arbitrary Model 
Point Transformed 
to Film Plane 

Mote:  f Is negative number 
u 

Fig. 11   Sketch Illustrating the Transformation of a Model Surface to the Film Plane 
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(XTR2,
Y
TR2) 

(UR2,  VR2) 

(XmR2»
YmR2'

ZmR2 ' 

ß is the Angle from the YT Axis to the U Axis 

S is the Length of a Line in u,v Plane Ratioed 
to the Length of the Same Line in the XT,Y>J 
Plane 

(See Eq. 5) 

u 

Fig. 12  Illustration of Transformation from XT YT Plane to u,v Plane 
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Note:  Known Coordinates For Each Model Point Are (u,v) As Well As the 
Corresponding Model Coordinates (Xm, Ym, Zm) 

All Points on This 
Line Have Same Model 
Xm Coordinate, X,2—7 

(ui,vl>^-^# 

P2 
-Meltline Point 

*3 

/P4 
x34  (Along 

%S        * This Line)- 

® 

J        - _E i 
ul2       u2"ui 

Wul2 " ° 

u!2 - 1 

® 
"1  Up «2 

Fig. 14 Details of Interpolation Technique 
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