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ABSTRACT

The development of the phase-change paint technique has provided access to a wealth
of information in the form of photographs of heating rate patterns on wind tunnel test
models. However, difficulty is experienced in the transformation of the data from the
photographs to model coordinates because of the distortion of the model image caused
by oblique camera views. This report documents the unique capabilities recently developed
m'ﬁft?ansformation of the photographic information into a model axis

system and for presentation of the data in machine generated plots.
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NOMENCLATURE

ABCD Constants in transformation equations (Eq. 6)

c Specific heat of model material, Btu/lbm-°R

f Focal length of camera lens (see Fig. 11), in.

H(TO) Heat-transfer coefficient based on T,y = T,

H(.9TO) Heat-transfer coefficient based on T,,, = 0.9T,

H(.85TO) Heat-transfer coefficient based on T, = 0.85T,

HREF Reference heat-transfer coefficient, Btu/ft2-sec-°R

h Heat-transfer coefficient, Btu/ft2-sec-°R

k Thermal conductivity of model material, Btu/ft-sec-°R

L Model length, in.

Py,P;,P;,Py Points in u,v plane surrounding arbitrary point on melt line (see Fig.
13)

Prey:PTR 2 Reference points in tracing plane

S Scale factor between Xt Yt plane and u,v plane (see Fig. 12)

T Temperature, °R or °F as noted

t Elapsed time from initial exposure of model to free-stream airflow, sec

u,v Film plane coordinate system

Eﬁ:;:::;; Coordinates of reference points R1 and R2 in u,v plane

(ujv;) u,v coordinates of the ith model geometry point where i includes all
model points

(up,vp) u,v coordinates of arbitrary point on melt line (see Fig. 13)

(u;,v1)(uz,v2)  u,v coordinates of points surrounding arbitrary point on melt line (see
(u3,v3)(ug,vs) Fig 13)
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Interpolated value of v between PP, and P3P4, respectively (Eq.
10 and 11)

Interpolation weight factor for x model coordinate (Eq. 9)
Interpolation weight factors between u;,u; and uj,uq (Eq. 12)
Model axis system (see Fig. 9)

Model surface coordinates in model axis system (see Fig. 9)
Camera axis system (see Fig. 11)

Coordinates of camera origin in model axis system

Coordinates of model surface in camera axis system after
translation and rotation through ¢ and 6

Tracing plane coordinate system (see Fig. 12)

Coordinates of reference points R1 and R2 in tracing (Xt,YT)
plane (see Fig. 12)

Coordinates of reference points Prp, and Py, , in model axis
system

Model X station containing points 1, 2 and 3, 4, respectively (see
Figs. 9 and 13)

Model X coordinate of points 1, 2, 3, and 4

Model Y coordinate of points 1, 2, 3, and 4

Model Z coordinate of points 1, 2, 3, and 4

Model angle of attack, deg
Angle between Yt axis and u axis (see Fig. 12), deg

Elevation angle of camera line of sight relative to the X, ,Ym
plane (see Fig. 10), deg

vii
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p Density of model material, lbm/ft3
¢ Rotation angle about the Z,, axis (see Fig. 10), deg

TEMPERATURE SUBSCRIPTS

aw Adiabatic wall

i Initial temperature prior to exposure to airflow
o Stagnation

pc Phase change

w Model wall

viii
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SECTION |
INTRODUCTION

Aerodynamic heating considerations played an important role in the design of the
Mercury, Gemini, and Apollo vehicles. The Space Shuttle thermal protection system is
typical of today's aerodynamic heating problems, and advanced interceptors and hypersonic
transports represent the next generation of heating problems. Just as the configurations
have become more sophisticated over the years, so have the testing techniques to handle
these aerodynamic heating problems. Jones and Hunt (Ref. 1) pioneered development of
the phase-change paint technique and Compton (Ref. 2) has documented preliminary
heating results obtained by using an infrared camera. These thermal mapping techniques
can provide a complete heating distribution on a given model surface. However, the
transformation of the data to plots has been a drawback particularly in the case of
phase-change paint data.

The basic phase-change paint data consist of sequenced photographs or motion-picture
film which show the progression of the phase-change paint melt lines. Nossaman (Ref.
3) and Throckmorton (Ref. 4) discuss some of the difficulties in attempting to automate
the transformation of the melt lines from the photographic plane to data plots. The staff
of the VKF has been particularly concerned about the automation of the data reduction
process because of the large volume of photographs generated during a typical test. For
example, during a space shuttle orbiter reentry test (Ref. 5), three cameras were used
to simultaneously photograph the top, side, and bottom model surfaces, and approximately
5000 photographs were obtained per day. Of these about 200 were used to extract heating
data,

The purpose of this report is to document the procedures developed at the VKF
to convert the information contained on phase-change paint photographs to
machine-generated model axis data plots. The procedures previously employed consisted
of overlaying a model _grid and reading the coordinates of the melt line of a given
photograph and then using charts to determine the corresponding value of the heat-transfer
coefficient (for example, see Refs, 6 and 7). This technique is extremely tedious and
time consuming if a significant number of data plots are required. However, it shouli~

\—.————_B—g
be understood that in cases of complex model geometry the actual phase-change paint

photograph may be the best way to present the data.

SECTION 11
TEST PROCEDURES

The phase-change paint technique of measuring the heat transfer to a model surface
was developed by Jones and Hunt (Ref, 1). This technique assumes that the model wall
temperature response is similar to that of a semi-infinite slab subjected to an instantaneous
and constant heat-transfer coefficient. The surface wall temperature rise for a semi-infinite
slab is given by the equation
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1 - el erfcb (N

where b = byt \/pck.

A spemfic value of the wall temperature (T} is indicated by a phase-change paint
(T empxlaq ). These paints change from an opaque solid to a transparent liquid at a specified
phasechange temperature (T,;c). For known values of Tj, Tyw, t, and Vpck, the
heat-transfer coefficient (h) can be calculated as a function of the time required for the
phase change to occur by using Ty = Tpc. That is,

h - Dpck 2)
Vi

where b comes from the solution of Eq. (1) since the left-hand side is known.

Prior to each run, the model is cleaned and cooled with alcohol and then spray
painted with Tempilag. In most cases, the windward and leeward surfaces are sprayed
with different paints since the leeside surface temperatures are generally lower than the
windward surface temperatures. The model is installed on the model injection mechanism
at the desired test attitude, and the model initial temperature (T;) is measured. The model
is then injected into the airstream for approximately 25 sec and during this time the
model surface temperature rise produces isotherm melt lines. The progression of the melt
lines is photographed with 70-mm sequenced cameras operating at two frames per second.
Typical examples of phase-change paint photographs obtained during a run are presented
in Fig. 1 (Appendix), and a typical camera arrangement is illustrated in Fig. 2. Figure
3 illustrates the film plane distortion of a model caused by the oblique camera viewing
angles and shows that linear scaling from photographs should be avoided.

During each run, the tunnel stagnation conditions and the time of each picture are
recorded on magnetic tape as well as the model initial temperature and the phase-change
paint temperature (Tpc). As previously mentioned, these parameters are used in the solution
of Eq. (1) and provide a value of heat-transfer coefficient which is associated with each
picture. A sample printout illustrating this phase of the data reduction technique is
presented in Fig. 4. It should be emphasized that the basic information presented in Fig.
4 is simply a tabulation of the semi-infinite slab equation solution for various times. Of
course, to_be useful these calculated heat-transfer parameters must be associated with a
melt line on the photograph _obtained at a corresponding time. Also note that Fig. 4
includes heat-transfer coefficients calculated for assumed adiabatic wall temperatures of
To, 0.9T,, and 0.85T,. The use of three values of T,, provides an indication of the
sensitivity of the heat-transfer coefficients to the value of T, assumed. As can be seen,
thére are large percentage differences in the values of the heat-transfer coefficients.
Therefore, if the data are to be used for flight predictions, the value of T, /T, is obviously
very important.
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SECTION 11i
DATA REDUCTION PROCEDURES

Plots illustrating typical axial and spanwise comparisons of data and theory are shown
in Fig. 5. These types of plots are frequently the desired results of a phase-change paint
test. Therefore, the problem is to convert the information from the phase-change paint
photographs (Fig. 1) into heat-transfer rate distribution plots (Fig. 5). Figure 6 is a
schematic of how this is done, and the sections that follow provide the details of the
procedures. In general, the steps are:

1. Interpret and trace melt lines from photographs, —
Record melt line coordinates on magnetic tape,

3. Mathematically transform the model coordinates into
the film ‘plane and overlay the melt line,

4, Interpolate to determine body coordinates of the
melit line, and

5. Machine generate the desired data plots.

3.1 RECORDING MELT LINES

A film editing machine (Fig. 7) is used to review the 70-mm film obtained during
the test. When the observer comes to a frame of interest he simply traces the melt contour
on Mylar® film and records the picture frame number with the tracing. Since the
determination of the proper melt line requires some judgment (Ref. 4), an engineer familiar
with the test is needed to supervise or perform the task of making the melt line tracings.
Experience has shown that the number of hours required to make the tracings is
approximately equal to the wind tunnel hours required to obtain the photographs.

These melt line tracings and the corresponding reference points and frame numbers
are recorded on magnetic tape by using an analeg tracing system (Fig. 8).! The frame
number links a value of heat-transfer coefficient (see Section I1} with the picture plane
coordinates of the melt lines and the reference points are used in scaling.

3.2 TRANSFORMATION OF MODEL COORDINATES TO FILM PLANE

The mechanics of the model coordinate transformation to the film plane require that
the three-dimensional model coordinates which are recorded in the model axis system
first be transformed into the camera axis system and then into the two-dimensional film

plane coordinate system. A double subscript notation used to identify the axis systems
and points is illustrated as follows:

lExperience has shown that it is more efficient to perform a two-step operation in recording the melt lines as
opposed to going directly from the photographs te the magnetic tape.
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X X component
m model axis system
m model surface points

X X component
m model axis system
¢ camera focal point

X X component
c camera axis system
m model surface points

The model surface coordinates (Xm ,,,Ym,,,Zm,,) are measured using a Sheffield
Cordax measuring machine as illustrated in Fig. 9. The location of the camera focal point
(Xm¢» Ymgs Zm) and the camera line of sight are specified in the model axis system.
The direction of the camera line of sight is defined by two angles (¢ and @), where ¢
is the rotation angle around the. Z axis and & is the elevation angle with respect to the
Xm Ym plane, The z axis of the camera coordinate system is coincident with the camera
line of sight (see Fig. 10).

Given the model coordinates and the camera parameters, each point on the model
is transformed into the film plane, thereby constructing a mathematical "photograph"
of the model (Fig. 11). That is, the three-dimensional model coordinates are transformed
into a two-dimensional film plane coordinate system which is designated as the u,v plane.
The mechanics of the transformation are outlined in the remainder of this section.

Each model surface point in the model axis system is translated and rotated to the
camera coordinate system by the following transformation:

X, -~ sing cos ¢ 0 X - X,

m
Y. — s8in 0 cos ¢ ~ sin § sin ¢ cos 6 Y, - Y, (3)
Z, cos 0 cos ¢ cos 4 sin ¢ sin 8 Z -1,

as the lens to film distance in the camera (Fig. 11).

xC
u = = vV =
m

where f is the distance from the focal point to the u,v plane. This distance is the same

4
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There is now a set of (uyv) points for the set of model geometry points
(Xm s Ym g sZm py )- The next step is to scale the melt line coordinates to this same u.y
plane,

The melt line coordinates are recorded in the tracing plane as illustrated in Figs,
8 and 12. These coordinates must also be transformed onto the film plane before the
model coordinates of the melt line can be determined,

In general, the transformation of a point from the tracing plane to the u,v plane
is given by

-]
[]

(Scos B)Y + (SsinB) Xy - C
(5)

<
]

(Scos B)Xp ~ (Ssin B)Y - D

where the nomenclature is illustrated in Fig. 12. Letting A = S cos § and B = S sin
B gives

u

AYp + BXp =« C
(6)

v

AXp -~ BYp + D

where A, B, C, and D are four unknowns, These unknown coefficients are solved for
by using two known points called reference marks. The two reference marks are identified
in the tracing plane (Fig. 12) as (Prg, Prg,). The known model coordinates of these
points are (Xmgy, Ympys Z g1) and (Xmg2: Ympas Zmgy), and the tracing plane
coordinates are (XTRI YTRI) and (XTR2 s YT g 5). The model coordinates are transformed
into the u,v plane by Egs. (3) and (4) to give (ur1,Vr1) and (uga,vR2). Substitution
into Eq. (6) gives

“Rl = AYTR] - BKTRI + C
\'H] = AXT - BYvr + D
R1 R1
Q)]
VR2 = AXTR2 - BYT}12 + D

The simultaneous solution of these equations for A, B, C, and D allows all points on
the melt line to be transformed from the tracing plane to the u,v plane by applying Eq.
(6) to each melt line point.
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3.3 INTERPOLATION OF MELT LINE POINTS TO DETERMINE
BODY COORDINATES

As described in the previous two sections, the points along the melt line and the
model surface coordinates are transformed into the film plane axis system (u,v plane).
The next step in-the data reduction process is to interpolate in the u,v plane to determine
the model coordinates (X;, Ym, Zm) of the melt lines.

A search is made in the u,v plane to find the point (u;,v;) which is a minimum
distance from the melt line point (up,vp). That is, the minimum of

W’lp - “i)2 + (vp - Vi)2

for all model geometry points is found (see Fig. 13). After the point P, is found, a
search is made to find the second nearest point to the point (up,vp). This point (P,)
is restricted to the same model station2 as P; so that P; and P, both have the same
Xm model coordinate which is designated, X;,. At a different model station, the third
and fourth closest points to the melt line point are determined such that the melt line
point falls within a quadrilateral as illustrated in Figs. 13 and 14a. The points P; and
P4 are also restricted such that they have the same value for the X,, model coordinate
(designated X34). Model station X34 is adjacent to model station Xj,.

To determine the (Xm,Ym,Zm) model coordinates of the melt line point (up,vp),
a simple linear interpolation technique is applied which uses weighting factors. For'example,
since the unknown melt line point is inside the quadrilateral bounded by the model X,
coordinates (X2 and X34), it is known that its X;; model coordinate has a value between
X12 and X34. A weighting factor (Wy) is calculated such that

W_. = 0 when v_ lies on the same model station as X_ and X_ (see Fig. 14b)
x P ™ Mo

and

W_. = 1 when v_ lies on the same model station as X_ and X_ .
x p m, m,

Then the X, model coordinate of the unknown point is given by

m

2As described at the beginning of this section, the model coordinates were recorded at constant model stations,
and therefore, adjacent spanwise points have the same Xy, model coordinate,
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As illustrated in Fig. 14b the value of the weighting factor (W) goes from O-to
1 depending on the magnitude of vp. The factor Wy is calculated by the ratio:

v =V
p

12
W o= — 9)
X "34 - Vi
where
Vl2 = vy + (VZ-vl)wulz (see Fig, 14¢) 10)
and
Vg = vy + (vy=va¥W o4 (11

As can be seen, the technique used to calculate V;, and V34 is similar to that used
to calculate X, (Eq. 8). The weighting factors (Wyj3 and Wy34) are given by the
equations:

u -,
wulZ = u, - u,

(see Fig. 14d) (12)
, u - uy
Wu34 = u, =u,

Note that; Wy;2 = O when up = uy, and Wy32 = 1 when up = us.

The procedure described above and illustrated in Fig. 14 is used to calculate the
model X,, coordinate of an arbitrary point on the melt line. The procedure used to
calculate the model Y,; coordinate of the melt line points is similar. The equations are:

Y, = Yy + (Ygu =Y )W (seeEq.8) (13)
where

Yio = le + (sz-le)V&’ul2 (14)
and

Yag = Yo, + (Vo =Y )W (15)

Substitution and simplification yield
Y = le(l - W12 -W)

+ sz(wulz)(l - WX) (16)
+ Yms(wx)(:l - Wu34)
+ Ym4(wx)(wu34)

7
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In a like manner, it can be shown that

Zm = Zml(l - Wu12)(1 - Wx)
¢ Zp (B 1= W)

amn
+ Zm:‘l(wx)(1 = Wu34)

+ Zm4(wx)(wu34)
3.4 DATA PRESENTATION

With the model coordinates of a melt line and the corresponding heat-transfer
coefficient stored on tape, the final step is to present the data in a convenient form.
Several methods were considered before selection of the format illustrated in Fig. 15.
Presented in Fig. 153 is the final data reduction of the run illustrated in Fig. 1. There
are three parts to the final data presentation:

1. Figure 15a: tabulated heating parameters for each selected picture plus run
conditions and model attitude.

2. Figure 15b to i: the model coordinates X, ,Yy, of the melt line for different
levels of heating presented with a planform view of the model outline, Of
course, for a side-mounted camera a side view of the model outline would
be presented. It should be emphasized that the melt line (or heating level)
coordinates are in the model axis system and do not include the distortion
associated with a photograph.

3. Figure 15j: axial and spanwise data plots. Once the melt lines are
transformed into the model coordinate system, it is relatively simple to
machine generate this type of data plots.

SECTION IV
CONCLUDING REMARKS

The difficulty in converting heat-transfer-rate information from phase-change paint
photographs to data plots has been a drawback to the phase-change paint technique. This
report documents the unique capabilities recently developed at the AEDC-VKF for
transforming the photographic information obtained from phase-change paint tests into
a model axis system and then presentation of the data in machine-generated plots.

3his figure was taken directly from Ref, 8, and additional examples of AEDC-VKF reduced paint data may
be found in Refs. 9 through 12.
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The procedures described in this report deal with the specific problem of extracting
information from phase-change paint photographs and correcting for camera viewing angle;
however, it should be noted that many of these same procedures could be applied to
extracting information from any photograph. For example, these procedures could be used
on thermographic phosphor, shadowgraph, schlieren, and oil flow photographs.
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Fig. 1 Typical Examples of Phase-Change Paint Photographs
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Fig. 8 VKF Analog Tracing System
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Typical Model Coordinates

Model Stations
(Up to 80 sSta)

a. llustration of Model Coordinate System
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b. Sheffield Cordax Coordinate Measuring Machine
Fig. 9 Model Surface Coordinate Measurement Technique
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Melt Line

Fig. 13 General Overall Illustration of Interpolation Technique
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