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ABSTRACT 

Thin bodies with a small degree of asymmetry are 

assumed to travel with a constant forwird speed in the 

free surface of an infinitely deep ideal fluid.    The 

boundary-value problem for the velocity potential due to 

asymmetry is derived and its solution formulated in terms 

of Fredholm integral equations.    A numerical scheme based 

on the finite-element method is developed and applied for 

two cases of length/draft ratios, namely 7 and 20, at 

different Froude numbers.    Graphs of side force, added- 

resistance, heeling- and yawing-moroent coefficients are 

presented as functions of Froude numbers.    The results 

indicate a general tendency which agrees with some experi- 

mental results obtained after this work was finished, 

though the discrepancy between the values for different 

element sizes indicate that further investigation in 

the numerical procedure are necessary. 
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Introduction 

The potential flow around asymmetrical bodies 

in the presence of a free surface is of interest in 

many problems of ship hydrodynamics. Asymmetry in 

ships can either be permanent as in catamarans, or 

temporary due to rotations of synunetric hulls in 

yaw or roll. The purpose of this work is to investigate 

theoretically the forces and moments acting on such 

bodies for the case of a steady translational motion 

in an ideal fluid.  The solutions are limited to thin 

bodies with a small degree of asymmetry. These restrictions 

are employed so as to yield a well defined boundary-value 

problem having a solution which lies within the scope 

of the potential theory. 

The treatment of hydrodynamic problem was based 

mainly on information deduced from the theory of low- 

aspect ratio wings.  Davidson and Schiff (1946) pointed 

out that larger changes in the wave-making pattern are 

observed when the Froude number is larger than 0.19. 

Hu (1961) solved this problem for a yawed ship by the use 

of an iterative perturbation method based on the asymptotic 

expansion of the Kernel function of the integral equation 

for small Froude numbers. He found that the magnitudes 

of the forces and moments acting on the ship increase 

rapidly as the Froude number increases up to F «0.35 and 
n 

then remain mainly constant. 
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Tht solution of the boundary-value problem leads 

to a P*«dholm Integral equation of the first kind for 

the doublet moment distribution similar to the usual 

representation of a lifting surface. Due to the 

complicated form of the Kernel function approximate 

numerical methods must be applied to solve this integral 

equation. 

In this work a numerical solution is used based 

on the finite-element method, where the region of 

integration is divided into small rectangular elements 

and the unknown doublet moments are defined by an 

approximating function within each element. In doing 

that and performing the integrations within each element 

analytically, the integral equation reduces to a set 

of linear algebraic equations that can be solved for the 

unknown doublet strength. We carry through this 

procedure for two cases, one when L/T-lb  and one when 

L/T'l.    The results are summarized in tne concluding 

section of this work. 
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I.    Mathematical Formulations 

It will be convenient in formulating this problem 

to introduce three right-handed coordinate systems. 

One is fixed in space, Oxyz, with Oy directed oppo- 

sitely to the force of gravity, Ox coincides with the 

direction of motion,  and Oxz lies in the plane of the 

undisturbed free surface.    Of the other two coordinate 
1111 

systems, one is fixed in the body, Oxyz, and one is 

moving with the body, Oxyz, but is taken in such a way 

that the (x,z)-plane coincides with the mean water 

surface, and Ox makes an angle 6 with Ox. Further, 
1111 

Oxyz and Oxyz coincide when the body is at rest (see 

Figure 1). 

Figure 1 

Plan View of an Asymmetric and Yawed Body 

x 
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The hull form will be described by the surface 

or more explicitly by 

z' m f (x'.y') for the starboard surface 
8 

and   a' "/■ (x'th') for the port surface. 

Define  / (x',y')       and fjx'rt')      by 
fQ(*',V'> ' V2 [fJx'M') + fp(x'ty') ] 
ft(x'ty') ' 1/2 [fg(x'ty')  - fp(x'>y<) ] 

The functions f and f. will be assumed to have con- 

tlnuous derivatives with respect to each variable, 

«' « / (x'ty')    Is the position of the "mean camber sur- 

face," and 2ft(x'>y')    Is the local thickness. Thus 

the equation of the hull surface can be written In 

the form 

HJx'ty'.z')  -«'-[/ (x'.y'} t f.(x'ty')]  - 0 
1 a t (1-1) 

When the body Is moving, Its trim, heel and the 

position of Its center of gravity relative to Oxyz 

will change.    Let     a     be the trim angle, measured 

positively In the bow-up direction,    e      be the heel 

angle measured positively clockwise and let    ^      be the 

amount by which the origin     0'   is raised (see Figure 

2).    Then Oxyz and Oxyz are related by the equations 

x' « x aoea +   Ky ~ h) ooa6 + a ar«6] aina 

y' m ~x aino + [(y ~ h) coaö + z 8tn9] ooao 

a' * ~Cy ~ h) nn6 + z eoaQ 
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and x » x' oosa - y' aina 

y " h + [x' eina + y' ooaa] aoee - «' eine 

a « [x' eiua + y' oosa] ainB + a' ooaQ 

Figure 2 

Coordinate Axis 

(1-2) 

Let us define 

H(xty,z) - .(y - h) sine + z ooa* -  [f^x'fx.y^), y'fx.y.z)] 

t fti*'(*,y.*)> y'fx^tz)]] 

which describes the hull in the system Oxyz. 

(1-3) 

The motion of the fluid, which is assumed irrota- 

tional, is most easily described in the systems Oxyz 
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or Oxyz. Let *(i,yti)  be the velocity potential In 

the fixed system and *(x,y,a)    that In the moving 

system. Then 

*(&,$,*) - ♦r* - u0 0086't,  p, 2 - Uo eint't) (1-4) 

Both the velocity potentials ♦ and 4» satisfy 

Laplace's equation 

**'= *xx+  ^ + *z*'0 {I'5) 

The absolute velocity of the water described In the 

moving coordinates Oxyz has the components 

(u - Uo ooab, v, w - u0 8in6)  « ($„ -  u0 aoe6,  f . 4 - u«, 8tn6^ 
X y        a 

This velocity Is continuous everywhere In the fluid 

except possibly at the wake, which will be assumed 

to occupy a thin sheet that joins the body at Its aft 

end and extends Infinitely along the negative x-*xis. 

For more discussions concerning this assumption we 

refer to Thwaltes  (1960)  or Robinson I Laurmann  (1956, 

1.15).    The pressure In the fluid can be computed 

from Bernoulli's Integral, once    $    Is found, as 

P/p - u0(t ooat + Mini) - gy - 2/2(^1 + & + &)    • 
* * x      V      * d-6) 

Let the equation of the free surface be 

y - YCxtz) » Jus - Uo008it z - u08in6)    . 
(1-7) 

Then the potential function $(xtytz)    must satisfy two 

boundary conditions on this surface.    The first Is the 

kinematic boundary condition 

*x& *(***h ») ^te.aJ ' *y + tz^z' 

* uJY 0086 + Y 8in6)    . (1-8) 
X z 
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The second is the dynamical boundary condition 

gY(x$z) - u0[$ (x, Y(xiz), z) ooab + <ji eint] + 

+ i/2k2
x + ** * **]- ö . a-9) 

There are corresponding kinematic and dynamic 

boundary conditions to be satisfied on the body's 

wetted surface 5  . The kinematic condition is u 
-(u - u0oo86) H (x,y,z) - vH (x,y,z) -  (w - ujaind) H (xtytz} » 0 x y z 

= U0[H (x,ysz) aoe6 + H (x,ytz) sind]    , (1-10) 

where 

fix(x*y,*) ' -(fox> t ftxf) «osa + (f^, ± fty,) sim    , 

Hy(x,y,z) = -sine -  [(fQx, ± ftx,) eina + (f^, * ft ,> ooea] oosQ    t 

fiz(xtytz) = 0086 -   i(faxf * ftx'* 8ina * (f   , t fty') C08a^ 8ine    * 

^       (1-11) 

The dynamical boundary conditions on the body are 

simply the equations of static equilibrium of the 

forces acting on the body. These equations can be 

written down in various ways to conform to the physical 

situation of the problem. Here we will confine our- 

selves to finding the hydrodynamic force components 

acting upon the body and the moments, about the origin 

0'. Denote the projection of the wetted hull onto the 
tiit 

Oxyz plane by S      ,  the water pressure on the starboard 

side of the hull by Pg(x,y1z}      and the pressure on 

the port side of the hull by  P (x,y,z)        ,    Then 

? » JJ P(x,y,z) n ds   , 

'Sw 
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Fx' ' l\s    W'V'» fax'  - V*'*'^ /P«' ^'^   * 
yp 

Fy, - ||      [P^x^a; f8y,. Pp(xtyta) fpy,] dx' dy'   t 
wp 

F»' " ||      I -?8
(x»y»z) + pJx*y**)] dx' dy'   . 

VP (1-12) 

m - f [     Prx^^a; •  r? ^ n; de   , 

w 

mx - 1L K * (-y' - ''v - v-*' * a'^';}dr' *' * 
wp 

^ -11    {p8 * ra'' 4x' +x,)' P
P' 

r-a V + x,;}<ic' ^' ' 
swp 

% ' 11      K •  fe'^' - ^%x^ - pp ' (*'fpy' - * V;} **' **'   ' 
* (1-13) 

A kinematic condition must also be satisfied on 

the ocean bottom. Where this last is assumed to be 

of infinite depth, the condition may be written as 

lim ♦   « 0   . 
y*m    y (1-14) 

Finally there are the conditions at infinity, 

to insure that waves will only follow the body 

fo[[x2 + a2] -1/2)   a» xz + z2 **   for   x > 0   t 

0(1) OB x1 + z7- ■* <*   for   x < 0   . 
(1-15) 

Various modifications of this problem are possi- 

ble, depending upon the physical situation.    In parti- 

cular, the wave resistance of a catamaran can be 

determined if we add one further condition analogous 

to (1-14)  to be satisfied on its plane of symmetry. 
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II. Method of Solution 

One of the properties of the problem formulated 

in the preceding chapter which makes it mathematically 

intractable is that it is nonlinear. In order to 

obtain a solution, we will use the method of perturba- 

tion expansion as an approximation to linearize the 

problem. 

Perturbation Expansion; 

It is obvious from the nature of the problem 

under consideration that the disturbance caused near 

the free surface is dependent on two perturbation 

parameters. One represents the "thinness" effect of 

the body 0 , where in the limit as ß -v o, the body 

degenerates to a cambered plane of zero thickness. 

The other parameter e describes the asymmetrical 

effects due to camber and incidence angle, he £ + 0  , 

the problem becomes one of a symmetrical body aligned 

with the incident flow. 

We begin by imbedding the hull form (1-1) in a 

family of hulls as follows 

(II-l) 

tf^it'.y') t ^(x'.y')   . 

Also  «  can be written in the form 
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6- eö^   . 

(II-2) 

We tentatively    assume that all the physical variables 

can now be expanded as an asymptotic series in terms 

of the two parameters    ß   and     e   .    Thus we obtain 

as the basic expansions 

4(xtytBi&*t) - M{lü)(x,y,z) + e*<01Vx.j/,aJ + Be*Ul) +..., 

Y(xtz;&,t) - &Y^0)(x,z) + tY^ (x.z) + ßey(11) +..,, 

<x(ttt) - ßo(10,  + ßea(ll)  +...> 

h(&,c) » öhW  + ßeh^1^ +..., 

B(&tt)  » ße(10i + $ee(lrt +...    . 

(II-3) 

Here it should be noted that this analysis may 

not be applicable where the solution of the problem 

is singular, such as near the leading edge of the body. 

We refer to Van Dyke (1964, 4.4) for more discussion 

concerning the treatment of such problems. 

The problem may now be linearized by substitu- 

ting the foregoing expansions in Laplace's equation 

and the boundary conditions, besides expanding in a 

Taylor series where necessary, and collecting terms of 

the same order. The result of these operations is a 

sequence of linear boundary-value problems for the 

potential functions t*10*, *(01), *(11), ••.  • The 
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flrst of these, which represents the differential 

equations for the potential function    ())t01)    ,  is the 

well-known problem for the wave resistance of thin 

ships.    The velocity potential      (|^01^      , which is 

the first-order term due to the asymmetry of the body, 

must satisfy the following equations : 

A^üD  = 0    , y < o  t 

^ (x,0,z) + K*(01)   = 0    , 
a 

rxx = 9/*o    i 

t®» (x,y,±0) = uJ&W  - fll) )    on   S0   , ox 

lim   (^J01) (x,ytz) = 0   , 

,(01). . 
x' -fa']-1/2] .2  j.  „21 

0(1) 
ae   x* + z* + m   for 

x > 0   , 

x < 0   . 

(II-4) 

The free surface   y^oi)   is determined by 

y(0l) (Xt!l)  B Uo/^(01)^0,2;     . 

(II-5) 

The velocity potential ^^^  represents the lowest- 

order term due to the combined effect of thickness 

and camber and/or the incidence angle. The solution 

for this potential function will not be given here, 

though it may be of value for investigations in the 
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futur«. We will confine ourtelves in the subtequent 

analysis to finding the velocity potential ♦ 0l 

First let us apply the method of Green functions to 

solve the boundary-value problem (II-4) for this velo- 

city potential. 

Method of Green Functions; 

As is usual in this method, it relies upon the 

ability to construct a function of the form 

G(xtytzi 5, T> ^'^(PiQ)'r'l+G0(xtyt.zi & n, C^* 

where 

r-[(x~iMy-n)2H*'t)2y/2 

and G0     is harmonic in the region occupied by fluid, 

or in the case of this linearized problem, in the 

region below the equilibrium free surface. 

Dimensionless quantities will be used in all the 

expressions hereafter, by comparing lengths to half 

the length of the body i   and velocities to u0 

Also, 

^xtytBjmuel}(3!3gti), Ol/M   ' 

Equations (11-4) will then become, after droppirq 

the tildes, 

xx y 
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♦_(01)rx^tö;-6O) .f£  onSe t 

lim     *J01) (xtytz) - 0   , 

{0(lx2 + B
2
T

1
/

2
) 

,(01) = ■ .2 j. .2 aa   x* + a* + <*   for • 

0(1) 

x > 0 , 

x < 0 

(II-6) 

where    so is that part of the   xy   pitne v.hich is bounded 

\>Y -1 < x < 1       and    -t < y < 0     , and    T    in the dimen- 

sionless draft. 

v/e require the following of     G    : 

Zim     G   " 0   , 
vt*. 

{oa? + w1/2) 

ae   Z2 + t.2 ■* ^ for 

0(1) 

5 < 0   , 

\i> 0   , 

(I--7) 

Consider now the region of fluid bounded by the 

free-surface plane    iF    , the two sides of   so and the 

wake    w   , a circular cylinder   iR  with   Oy   as the 

axis and a radius    R   , and a horizontal plane at 

y * -*>     closing the bottom of the cylinder.    Then by 

Green's Theorem we have the follovins formula 

\ 
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^♦(01) (P) - If      M») (l,*,V G(PiKt*,0 - ^01)Cv) da   , 
S(Q) 

||     |(^Q1>   (^tW G(PiK^O) - 
S0Hi 

- *m (i,r\t+0) GJPH^O)) - 

- (^ol)^ni-ö; G(PH,n,0) - 

j: 

|| (^OJJ rc.<W G(P;l,0,V - ^0l)Cr|) dCrfn 

- Ziw   ff (^01) (Kt^) G(Pn>r\tV - ^01)G) dtfn 
n-K.« {'     * 

W21Tde I!, in/?^01^ - *WGR)   . 

Substituting (TI-6) and (I1-7) in the above formulE, 

we obtain 

4^M (P) - - ||   G^PH^O) k^ (t.»r\,+0) - ♦l01' (Z,r\>-0)] dCdn 

S0+U 

T; 
|||rU?

(01,C- ♦^^  dCdC i 

o f2TT fO 
¥• J     ie I     dn 0(1)   . 

The second inte :r;.l :n;-y be integrated by parts to give 

- i- I  i* G - ^ J nj d»   , 

where this line integral ia ttlcen around the interrection 
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of lp   and  J:  . As R**    ,  both this integral 

and the third one converge to tero. We finally have 

♦ 
2T.C a,,, ^ s0-w 

(♦(ül) (^,+0)-^°^ (K.n,.0)]dKdr\ 

{11-9) 

It should be noted here that the above analysis 

was done in more detail following Wehausen (1963) and 

the same final result was obtained. 

The solution for the Green functions is well 

known for several physical situations, many of which 

are given in Wehausen and Laitone (1960). Here we 

use one form given by Eggers and others (1960), which 

is suitable in our analysis. 

' K[(y+r])+iü ) [ K[(y+r])-iüi J 
e l   dk+ e 1   dk 
K-y aeo'B 

,0l 

(c-Y aeoz6 o 

(II-9) 

where c and o     represent the indented paths of the 

contour integration around the pole as shown in the 

figure below 
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Y fl«029 1 0 

Y„fleo26 

—vy— 

and 

r^x-VUfy+^+fz-O2]1'2, 

ü *(x-Ooo8ü+(z-i.)8in9, 
1 

In handling the above countour integrals, we should 

be cautious since its integrands are not only oscilla- 

tory, but also possess a singularity at K-Y» aea26 

for each value of e  •  It turns out, however (see 

Appendix A), that by a proper choice of integration 

path in the complex plane, this integral can be simpli- 

fied considerably, namely 

G(xtytBjK^iO'ji-jr1-
Re ^f «e^ede. 

e dp + 
P+Q 

1 1 

U 
7 

* e dp 
p+p 

a      2 

-4y< 
'5 y0Bea2B(y+r\) 

H(-iji ) e 8in[y0(x-Z)8eoB ]. 

aoe[y (B-t)8inQ8eo2ü]8tia2üdü, 
(11-10) 
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where 

p *y0a9o2B [(y+r\)+ia ], p «Y0 8eaz6l(u+r\}~iü ]  . 
1 12 i 

and B(x) is the Heavyslde function, defined by H(x)~l 

for x > 0 and   H(x)*0      foxx<0 

Differentiating this function with respect to 

c   , we obtain 

G (*ty ,»&.*,0) - i - 1   - Bei? {*   aecj^e sine cfe. 
? ,,35,3^   j__ 

1 I 

r»   "Pi 
AT i\ if" e    T i \ 1   dp - 

-^2     ffC-w;   e 0 ein(y0\(x-V)' 

X 8in{y0\ A* - 1 ' s) X2 d\ 

-2Y      «C-w; e(oX2(y'hr])   einl2y\(x-V] d\t  (II - 11) 

where we have made the substitution    x » eece        in the 

last integrals. 

Determination of the Volocity Potential    (t<01) 

The integral equation for the velocity potential 

4(00      , as in  (II-8),  represents a distribution of 

doublets over the surface    50 and the wake   w     .    The 

moment   \i(xty)    of such a distribution is 

4vV(xty) - ♦(01) (x,y,+0) - (f <01) (x,y,-0). 
(11-12) 

Therefore, the velocity potential ^V   ,  after deleting 

the superscript (01) , can be written in the following 

form 



t(xtyta)  » II -G (x,ytZiltr\tO) v(i*r\) didr\   . 

50+M (11-13) 

Now the linearized dimenslonless pressure (based 

on the pressure i. pu0
z     ) associated with this velo- 

2 

city potential can be found from (1-6)  as 

?(x,ytz) » S^Cx,«/,«; 

Accordingly, the pressure jump across the plane   * * 0 

is 

P(x,yt+0) - P(x,yt-0) - 2 l*x(xty,+0) - *x(x,yt-0)] , 

' 2 [t(x,y,+0} - tfxrft-Ortx   . 

From (11-12), this becomes 

P(x,yt+0) - P(x,y,~0) -   8T(\Xx(x,y) 
(11-14) 

Since the pressure must be continuous across the 

wake, then from  (11-14),    u      must vanish on the 

wake.    It follows that    v     is constant along lines 

parallel to the x-axis in the wake and therefore 

V^}y) = v(T>y>   * for   x< T     . 

(11-15) 

where x » T(y)    is the equation of the aft end of the 

body. Also, since the velocity potential must be con- 

tinuous everywhere outside the surface s0   and  w  , 
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therefore it follows that 

(11-16) 

On the other hand, due to the expected singularity at 

the leading edge of the body, there will be a discon- 

tinuity in MX at this edge (see Appendix D). 

Equation (11-13) may now be written as 

■ r 

*(xty,*)  =   -Gjx,y,z;!.tr\t0) v(Tty) ftdn + 

Gr(xty,ziKt(\tC) vd,^) didr\    . 
(11-17) 

The velocity potential $     can be then determined 

once the distribution function \i(x,y)      is known. 

To find y  , we apply the linearized, kinematical 

boundary condition (II-6) on the surface 50  to the 

above equation: 

0    z+oTz v'w 
G u(T,r\) dtdn + G \i(l,r\) drfv 

* -6 + f   (x,y)    . 
cx (11-18) 

This is a Fredholm integral equation of the first kind 

for the unknown doublet moment yte,!/^  , The closed 

analytical solution of this integral equation is beyond 

our resources because of the complicated nature of the 

kernel function. Consequently, a numerical approach, 

based on the finite-element method, will be used in 

the following chapter to obtain an pproximate solution 

for the doublet moment v(xty)   . 
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III. Solution of the Integral Equation 

For convenience in subsequent calculations, the 

surface S0   vill  be approximated by a rectangular plane 

and the coordinate system Oxya   will be shifted to the 

system shown in Figure 3. Thus T(y) « 0       .    Let 

us divide S0    into rectangular elements determined 

by a finite number of nodal points as in Figure 3. 

^ 

y 

n*N+l 

%+l 

Hn 

n-1 

2 

(m,n+l) 

(mtn. 

7y 
'Ä 

(m+l,n+l) 

(m+ltn) 

m-1 
^m        ^m+1 m-M+l 

Figure 3 

The Surface 50 Divided into Finite Elements 

Now in order to solve the integral equation (11-18) 

approximately, but to any required degree of accuracy, 

it is convenient to assume that the presumed piece-wise 
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eontinuous function \i(xty)   over the surface  S0      can 

be approximately determined by a finite number of 

values vfx^y^       at the nodal points, as described 

below. Where the nodal values of  u define an 

approximating function within each element, the Integrals 

In (11-18) can be performed analytically over the 

elements and over the seml-lnflnlte strips. 

I 
Ban 

1 

(mtn+l) 

(mtn) 

y 

-^ 
n 
JL 

(m+ltn+l) 

2A, 

Q(m+ltn) 

Figure 4 

A Rectangular Element 

Consider the rectangular element shown in Figure 4. 

If the function  M  is to be continuous between 

adjacent elements it is necessary for  u  to vary in 

a linear way along the sides of the elements. Then, 

coincidence of v    at the nodes will automatically 

Insure coincidence at intermediate points. The function 

y  within the element may be written as 



-2*- 

4LWn fntn 

+ CA5 + C-ICAn + r\) v, m+ltn+l 

or 

nC^n; 
4ACAn 

^mfJ^^Vr^ V«"^"C;rn^"n; ^'n 

" ^W^V^ V^I ^V^^n"^ V:,«^) 

for 

«m < 5 < Wi    ' % ' n ' V2    • 
(III-l) 

Now by satisfying equation  (11-18)  at a number 

of points on     50   equal to the unknown      y's     , the 

integral equation reduces to the following set of 

linear algebraic equations in      v'e   i 

N 

n»! 
lim   3 
B-*0   Tz 

'*n+1 v(O^) dA G (xityj,z;t,tT\t0) dt. + 

N       M 
+ 1       I       Ivn   * 
n*l   ml     z+0   9« 

*n+l dn *•**! GJx.ty.tz;Ktr\t0) \i(t,r)) dMn 
**     T*     if 

m 

(111-2) 

To facilitate evaluation of the above integrals, 

we will define the following variables: 
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t - x - i t 

q - y - r\    , 

a ■ j/ -f n - 2T    , 

Xht6} » p 00a2fl + (y + r\. 2i)    . 
y9 (III-3) 

Then G   may be written in the form 

G (t,qtetB) - z/( t2 + q2 + a2)3/z   - a/( t2 + 82 + z2)^2   - Ä« J* 

AT I _ eine de 
00 

e-p [l/( K-h it»)2   - l/( X- M2]    dp 
o 

M] j?r u; «Y oX a flinryoX * t-i    • 

-2Yo r 

JT ainftoX^T • «; X2 dX 

6( ü) «YoX * Bin(*(0Xt) d\t (III-4) 

where 

ü) ■ t ooae + a etnö   , 

ü « _ let f ^ÄTT • «;   . 
A 

Also equation (III-l) may be represented as 

4** ( B
q )] '^'[v]' iQ\)   > 

(III-5) 

where in this system of notations ( B
q ) means the same 

equation is applicable to both the variables, a corres- 

ponds to the upper subscript and q   to the lower one; 

A     is the r-rer of the element which is equal to 

^ACAn    f [uj is the row matrix 

[y] - (Mm,n* Vml.n» ^mtn+U ^m+l.n+l] (III-6) 
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and {Q\) is th« column matrix 

{« \)- 

mml -t)- (( 8 ) 
q Jn+1 ~ (*)) 

t(tm - t; • rr J In+l " (*)) 

+-(^i -*>• << Vn- (*)) 

*(tm -t)- ((* >n-
( 

"n*! ' < 8q UH "ml t( ? >n+l *1 1 

*»'   (q U+l *K '*< q >n+l ±1 <V 
"ml '   tq'n K+i q n 

±1 t 

K-   (eq ;n % -l q 'n 
1-1 t-   (*q) 

It follows that (III-5) may also be expressed in the form 

wM*;)-Kgn- ■ <aq> 

t 

where [ f jp ] is the row matrix 

irpi-ilrp^ r§;2, r«;3, r;;J] 

This may also be written as 

(III-7) 

1 . 

8 
+t  '   ( 8 ) it        +( ° )    ,   +1 +tm+l      l q   n+1       m+l <*   n+1 

%'   (q ^1       '+t
m       '+( ? ^1   " 

it. m+l q   n 

I m q  n 

(*> ^ ^^n  ^ m+l 

ttm       t(*q)n      11 

(III-8) 

Consider now the contribution of the wake to the 

integral in equation (111-2), which we will denote 



-25- 

Tltn 
toy   %* (*i*yj> .    Here 

where 

(111-9) 

«Vn+l     -*1 

'+( Vn        t* 

rhn V-e may then write    JW
J (x^y.)        as follows: 

J,n 3   / 
V (H^o* ' z^ 311 z+0 % 

(t\ + &2q) dq 

(111-10) 

x f* (z dt/( t2+q
2 + z2;3/2 )+ fg

n+1 rai + ^s) dB 

x fl dt{ z/( t2 + s2 + z2)%/2  ^ /?e ! f^ flt«e de 

^r |" e"p u/r x + tw;2  - i/r x - tw;2 ] * + rf0 

'» 12 

^ Jj eYo   8 [H(S)8in(yo\t)Bin(y0\Ä
T~n ' z) ' \z + 

+ (l/2ye)6(G)8in(2yoW) d\   .   (Ili-ll) 

This function io evaluated in Appendix 3, and in re- 

ference to this may be vritten as 

Jwn(xi'yö) mißi* 62] • ■ 

P2,1. 

■ +  [<*\>  *2]  ' 

hlt2   bl,3 

$2,2   b2lS 

This may now be exprensed in the form 

Tl,n 
Bl    (xi'yi> 

V  ^i'^ ' [ *!>*> n.n+l 1' ' 

tyn(xi*Vj)' (111-12) 



-26- 

wher«, from (111-10) 

^n <*i>y/ 

2An 

-<Wi   1 

• 

\i 

2Sn 

v. -i ^2 ' ^,3 

k'*(^ [^     -J Ki k 2. 

1 

^2,2 + b2,J' 

111-13) 
Consider next the contribution of the surface 

to the integral in equation  (111-2), which we will 

denote by     /''" te.,«/.;       .    From (III-4)   and  (III-7) 

this may be written as follows: 

^n (*j*yi) ' I™L.V 8     ' i'o0 z+0 3 a In 
dq 

tjn+i   (*\ + hq)+(&3 + M'* 

'm (t2 + q2 + z2)* 
dt 

'n+1 
da 

n 

WJ 
[COJ + Ojaj-fTaj + a^a;*]* 

'm 

•f *  1'   siw6 do i?e t       e 

(t2+82 t*2)* 

f 1 1 ■] dp + 
[rx + M2    (x - iw;2J 

v- 4Yd «('^"{Hdi) ain(y0H)8in(y xfitt-z)-*2 + 

+ (l/2y0)6(S)8in(2y0Xt)) d\\ dt.j (111-14) 

It turns out  (see Appendix C)  that this expression 

may be written as 

and < = 1,2,3,4 

Substituting for     ( \>K       from (III-8),  we may 

express    «^|*n ^i^^     in the for,n 

Am2'n (H^3) 

Afn (x^yj) (111-15) 

[Al-* (xi,yj). 

Jj*« (x^yj) - [wl- 
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where 
A*'* (xityö) Wl^n+l -tml -^n^J 1 al,l 

AV (*i'yj> 1 . -*m     In+l *ffl ^«+2 -1 a2,l 

Af* (Xi,y.) 

*    • 

-***!% VJ ^ 
-1 

\i 

*V (Wj). '*m     % -*m -^ 
1, k^ 

+1 
I 

'*„,+! 8n+l     Vi     8n+l   -1 

*m     8n+l   ^m       '8n+l     1 

t     .   8 -t     ,     -8 1 m+1    n m+1       n 

m ■    n m n J 

alt2 
+ al,Z + al>4 +altS 

a2t2 
+ a2t3 * a2>4 +a2tS 

a3t2 
+ a3>Z + aZ,4 +a3tS 

l4t2 
+ a4,2 + a4t4 +a4tS] 

(111-16) 

We may now write equation  (111-2)   in the form 

n 
llvi.n'Vl.n+l J. 

BJ*" (xity^      N     M 

n-2 
l^n (WS} ■t"r 

l i m ■ {*r w] nrl m*l 

6 " fax rxi^jJ ' ic = l,233t4    . 
(111-17) 

The left-hand side of this equation can be written as 

N 

J2 [Bl      ^i-y^ *l.n + Br ^ »l.n+l + 

M 

I 
m*l 

M+1 w    , , ^ 
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+   f    Af* (xityö) + A*-1'* (x  y)   %A + 
mm2 v J m2 

N+l +1 (4'K"3 'w * 'T' "i-'j' "i.K+1-'-1 'w »s 

ffl«2 ■' 

^ *Y (^ * A72tN (X^ö) ^m]+ 

N     M 

«=2 np*& 

From equation (II-6) , we find that 

»m,! ' 0   > m = 1,2,...^+!    . 

Finally, we can write the set of the linear al- 

gebraic equations for   vm in the form 

N+l    M+l 

(111-18) 

where 

C^Cx^y.) - A^U-.y.) + A^'^y.) + 
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m » 2tZt...,M   t n * 2t3t...tN   ; 

m » 2,3t...tM   ; 

n - 2,3,...tN   ; 

n m 2t3t... tN   ; 

U   «7 
cM+iim

(xi»y3) m A4  (^»yj)  ; 

(111-19) 

Equation  (111-18)  can now be solved numerically 

for a given body moving with a constant velocity    u 

at an angle of attack   6   . 
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IV. Numerical Results and Conclusions 

A computer program was developed, based on the 

numerical analysis given in Appendix D, to compute 

the moment distribution y as well as the forces and 

moments acting on a yawed and/or cambered body. 

The numerical scheme was first applied to the 

case of zero speed, where the free surface is regarded 

as a rigid wall and thi  flow is the same as that 

around a fully submerged double body consisting of 

the ship and its image over the free surface. The 

curves in Figures 5 and 6 show the results of such 

computations and are compared to similar results given 

by Thwaites (1960, p. 343) for rectangular wings. 

The effect of the free surface was then considered 

for a small Froude number (F = uj/gl  » 0.1) and the 

computations were made for two different values of 

the length/draft ratio, L/T-l  and L/3'=20.  The results 

showed a very slight deviation from the values obtained 

for the case of a rigid surface. 

Computations were carried out for a yawed body 

having a length/draft ratio equal to 20 at different 

Froude numbers and two values were used for the number 

of nodal points in the longitudinal direction, W=5 and 

/f»10. Also one run was made for the same body with tfs20 

and F »0.34. The results of these computations are 

shown in Figures 7-11. 
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There Is a large discrepancy between the 

results obtained when M  is set equal to 10 and those 

obtained for W-5 and M*20  in the range of Proude 

numbers between Fn-0.225 and Fn-0.45. Norrbin {I960, 

p. 379) pointed out that "for a surface ship running 

at Froude numbers exceeding F « u0//gL  »0.3, wave 

formation is generally found to cause a change in 

trim and stability characteristics." Hu (1961) 

found out that the lateral stability derivatives have 

increased about 50% above their values at zero speed 

for a Froude number Fn-0.35. Due to the lack of 

experimental daca at higher Froude numbers, it is 

difficult to predict the behavior of the force and 

moment coefficients in this region. On the other 

hand, there is the possibility that the numerical 

analysis is divergent for the particular value M'lO 

in the range of Froude numbers where this behavior is 

encountered. 

Conclusions 

Although one of the purposes of this study has 

been to investigate theoretically the side forces and 

moments acting on a yawed body in a free surface, an 

equally important one has been the testing of the 

applicability of a numerical method for solving the 

complicated integral equation that arises. The agreement 
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of the results obtained by this method with those 

obtained by other methods when the Froude number Is 

small seems to Indicate that the method Is 

fundamentally sound. For higher Froude numbers the 

Inconsistency of the values for W-10 with those for 

iV>5 and iV"20 indicates that further investigation of 

numerical stability in this region is necessary. Further 

experimental work supplementing Norrbin's measurements 

is also desirable. 



-33- 

LIFT COEFFICIENT ON RECTANGULAR WINGS 

No Free Surface 

tn 

U Computed 

^ Experiment 

1.0   2.0   3.0 

ASPECT RATIO 

1. 0 5. 0 6. 0 

Figure 5 
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CHORDWISE  LOADING AT THE CENTER SECTION OF A SQUARE WING 

e 
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0                   .2                 .4                 .6                 .8               1.0 

T.E.                                                    X/21                                  I.E. 

Figure 6 



o 

-35- 

SIDE FORCE COEFFICIENT 

For Yawed Body        L/T «20 
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Figure 7 
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Figure 8 
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ADDED RESISTANCE COEFFICIENT 
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Figure 9 
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HEELING MOMENT COEFFICIENT 
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Figure 10 
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Figure 11 
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Appendix A 

Green function      Cfx^s^nj^       is given by equa- 

tion   (II-9).    Consider now the integral with respect 

to   K   in this function, which we will write in the form 

 ^S—-_ exp f-Kae'^ ] +  S£   -.    exp [-Kae * ] 
ic - Y secHe 

d (A-l) 

where 

•-'7 ^b 
-ae      * (y + T\) + iu   , a > 0   . 

Therefore       -a ooeii = y + T\ < 0   , -JL<^<X 
2 -    - 2 

and w = a sinty   . 

Let us evaluate the above integrals over the 

straight line K^re1*0   in the complex    < -   plane.     Then 

we obtain 

&sl!! exp tare1 ^'-V * 
0 .re^o-y^eo'Q 

dre iti 

re^0-y .8ea2Q 
exp [-ape    T" T j 

The oscilatting part in these integrals will vanish 

if we set tj* \|» in the first one and    <b0- -ty   in the 

second.    Then it becomes 

-or 

,' r - Y0
8ec ee 

6 

<rav    .   dr = 

s-P 

^' p ^ p 
dp -f 

p-p 

/,' p ^ p Oo 2 

dp 
(A-2) 

where 

p   ■ yoaeo2Q  [(y + r\) + iu] 

P2 » Yofleo29  fCj/ + n-l - tu] 
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We will apply now Cauchy's Theorem for contour 

Integration to evaluate the Integrals In  (A-l) .    The 

paths of integration will be completed as shown in 

the figures below to form a closed contour. 

For i|) < 0 

In order that the integrals along the arc converge 

to zero as ä ->• »  , it is necessary and sufficient that 

-ir/2 <^0 + ij; <_ TT/2  , This requirement is satisfied 

by the previous choice of  ^0 . 

If ü < 0    , we must take into account the residue 

at the pole at K ■ Yo8eo26; if  S > ö l  there is no 

residue. By using the result given in (A-2), the integral 

in (A-l) can be written as 

" e"p r 1   +  _ 1 _ l^fa + H(-ü) {Residue] 

where   tff-SJ  is the Heavyside function. 
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Pinally we will now evaluate the residue at 

K > Yo fleo2 e as  follows: 

-Re Is. ^   ti9aee
2e n [-Jo**01* [(y + *>+i*\ + 

^ eY0 8e<?2e [ri/ -f nJ - id)] I 

Im Y0 ' 

Im 2Ye 

L de a^e [joaeo2e t r^ n^ iuj  _ 

Yo seo2e [ rj/ + n-» - tw]! ^ 

•IT 

o 
Y0 seo2e [ri/ f n-) - iw]j 

de ae0
2e eYo 8eo2e ^ ^ ^ • Qoe[y0(z - ?; atne aec2e] 

-4Y£ 

^   Ig^Yo sece  fx - C^ _ e"^Y0 seoe Tx - ^] 

\y0BBcH (y + *) , Hn[      eat (x_v] 

X ooe[yo(z - t.) eine seo2e ] flec2e de (A-3) 
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Appendix B 

The ltiiJZi±ii     Integral 

This integral is defined by equation  (111-11). 

We may write it in the following form: 

X f     dt/(tl + qz + a2//2   - 

(B 
■Z 

n+I ra   + ae) da \     dt/(tl + a1 + z1)*'1 - 
Ja '       2 IT.. n i 

M    dt \ n*1 (a   + a a) da fl  ainQ dB 

"[^'"^TiTW-Tr^P-14^ 

* 2Ye f   eft f "^  ro   +Oia) da f eYoX''[2Y ^r Ü; 

AT ainfyHJainfyJ./tt-zJ'X2 + &( ü)ain(2yoW) d\ 

(B-l) 
Now we will evaluate each of the above integrals 

in  (B-l)   separately and determine the limit of its 

derivative with respect to   a as a * ö .    Consider 

the first integral, which we will write as 

Ji ' " Ln+3 ^  * M^ <*? C rr 
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After Integrating this once over t, we have 

J    * -B 
1 

v / ^ " 1  > 

The integration of the second term in each of the above 

integrals can be easily performed if we make the sub- 

stitutions Vj - ; 5 + ll + z*    in the first and v2 " ^ + x\ + z* 

in the second. Thus 

Jj « ß .{h-1^ tan toil. z    j 

tan'11& 7% 7 7„i 

+ $ 

[• - z \ooth 
W + *i + q^j 

J 
The contribution of   «^  to J^teity*)    is 

Define 

^«J   «   /(jr^   +  X4 

We may then write the above equation as 

(B-2) 

lim   !£.-[(5 ,  ß   ]' 
'2,2 (B-3) 
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where 

1 ^     >    f«nrf     #^ 

ooth-1 >*.' ■ i"M 
%+i' TT 
QÜh 

"i ) 
- ooth.-1 (&*'] 

(B-4) 

The second Integral in (3-1) may be written as 

J2'-z (a   + <x e) de 
1       2 TP + -$!■ zhW  ' 

By compariso\ -.'itli     J*    this rr y now be expressed as 

Jo » a z       l 

r     , «n i fl«^i 1 

+ a 

21 .i^-.^ZSI^.^-^11151 t 
r^i«. The contribution of this to   Jw   (x^y^) is 

Zim   Hi» (a , a ]  ' 
a-»-ö 32 1      2 

hl,2 

'2,2 

where 

(B-5) 

'2,2 
1 1 ' 

\*n+l     8n. 

b2t2 " 
ln 

f \ 

\ 

xj 

ooth' 

l8n+J       8n ) 

sn+l 

i 
ooth' 

0n 

(B-6) 
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In the third term In (B-l), the Integral over t 

has an Improper upper limit and consequently changing 

the order of integration would not be desirable. To 

avoid this difficulty, we write this term as follows, 

f-n/2 
^    ?      \ k'hl dt   \ n+i   (ci1+a08)d8   f        sine dB  . "*-* J        J       I 2    .1/* xk a. 

• 00 A • r X     0 

0 

Now this integral is in a proper form and is similar 

to the integral I,  in Appendix C. Therefore the 

contribution of this to ^"(X^VJ)  can be expressed 

in the form 

lim )il t ara2 ] (B-7) 

where 

h 

2,3      ^^       2,3 {B-8) 

For numerical computations, the upper limit of summation 

has changed to a finite value k that is found to achieve 

the desired numerical accuracy. 
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Finally we will evaluate the contribution of 

the last term in (B-l). The value of this integral 

will depend upon the sign of w.  Since 

0 ■ (x.  - 5; cos6 + s sine 

where 

K < 0 and x.  >  0     , 

therefore the sign of GS will depend upon z  sine. 

In the limit as « ■► 0, S > 0 and consequently Ht-ü) * 6(.u) 

Hence it follows that the contribution of this integral 
1  n 

to Jw*   (x^ty.)  vanishes. This result is expected since 

this integral represents the contribution due to the 

waves generated behind the doublets at ^ - 0. We now 

have the following formula for J,*n(x.»y,) 

0. 

^'n'*i'V - "W • 
01>1 +   [Qtra2] 

hiybitz 

2t 2    2t 31 

(B-9) 
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APPENDIX C 

Th« J%*(*VVA> Infgral 

This Integral is defined by equation (111-14).    Applying the formula 

for integration by parts to the third term of this integral, we obtain 

.2, Y0 8«o 8 Re i i    f   «-Pdf' 
J I x -f t 

1 
tw x - tu 

• Y0 w^e ^ ^ gal        r 
x   ■/■ u 

- Y0 ««o26      /    e"P 

a 

2u 2u) 
2       2 2       2 dp . 

After changing the order of integration of the last three Integrals in 

^l*n^xi*y^»  lt "'y be bitten as 

•CVV - u*h J„       *     A       (t2 + 7 + *V/2       dt + 

*n m 

+   z 
8   **   L   ~17T7TJWr 

n m 

dt + 
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Tf ü (I) 

y    fl ? rn+1     r**1 

IT    J 

- Ca^ + <x4 aJa tone f Co^ + a^ aj aece.wj . f 2(0 
2       2 

«" 
^-yl  du ^ ^yf   /   Bin (y xV) 1rä—yl  du + ^Y?   /   sin rv.X^X2 - J • «; • 

*n+I   .   ,2 ""^ rn+I Y xs     r 
- \2 dk Je      e0      <** Jt      m) ' 8in% W 

n m 

•  [Co# + a e) + (a   + ct a) ' t] dt + 
12 S H 

^ 2Y0 j* dX j*^1 «YoX2* d0 j/1*1 ör ü; 8in(2y0Xt) • 

•  tfa   * o a; * fo   ^ o a; • t] dt (c-l) 

Each of tha above integrala will be evaluated aeparately; also the limit 

of ita derivative with reapcct to a aa a ■♦ o will be calculated. Consider 

the flrat integral, which can be written as 

j% Jtm (t2 + q2 + z2)V2 
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Intagratlng one« over t, 

I.   ■   a 
>! rsj ♦ 82,; Vl 

1         a 

*.2 

/fo -      / 

V'2 * C: * ^ 

fR      *   ft      /7)    . 

V ̂ <-2 

dq 

A similar Integral to the first one above has been performed In Appendix B; 

therefore 

I,   -   6, ton -3 ^mtfln+l 
i« • T. ton •1 I tmtfn 

n*-ltn+l. B • T. m+ltn 

ten -1 tnßn+l 
8  .   T - tan 

mtn+l: 

-1 fVn 

m.ni 
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V « \Mth-lj*hntl\   . „a-irmthn 
ml mt-l 1] 

■ ^f-r] ■ --frl 

■*3' * 

i- 

aoth" 
JT miMn+l ooth' 

H+l 
ml^n 

%+l 
ooth 

.T -J Vn 
<n/J 

"ß4 * B I ^ml.n+l ' ^mf Jin
; " rrm,n+J " rm,nJ I * 

vh«r« 

2 T   -   V«2 + t2 + q- 

DlffermtUtlng this equation with respect to z  and taking the limit as a ■♦• o 

we obtain 

lim 
**o 

"l 
IT i    t. ml 

%ml,n 
L   ^n 

%mi.n+l 
%+l   J 
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m 

m.n 

'n V3 

*   Be ooth 
/fltJ 

OOtÄ -   ooth -3 

m 

*   ß. 

ja 
1    ^n 

ol*J 

V2 

oot/i -irm.n 

^n 
. 00th-i\S*ti 

+   0. 
•      • •     * 

(Q, 
tJ 
m.« 

(C-2) 

«here 

.ij -V^ (C-3) 

Thm th» contribution of r. to fa*
n(x.t\j.) can be expressed In the following 

font 



-57- 

lin,~L "  [*1* *2' h* h]   ' < 
22tl (C-4) 

Con»id«r th« second Integral In (C-l).    Thl« can be written 

■ n+l iml 
I»  -   a J'n    \     a*: s*: z*>v*    dt 

By coaparlson with Iv the contribution of this Integral to f^fx^yJ 

can be expressed In the form 

3I2 [wvaJ • ^ 
%lt2 

ht2 

ht2 
(C-5) 

where 

*^ m4-l wfi,n     'rt 

«1 i»Ö 
SI /ffl 

'nH-ltn+l l8/n« 



-58- 

m   Lö mtn        n mtn+l 

'<P 
ij 

$ 

n+1 

ooth '1        n*1**    . ooth-1       JSthUti 
tru-l mfl 

ooth '«Ail   . ^fc-M—üSiUti 
\ *, 

- oot/i 
m m 

%'\> 

L     m,n        n - 
4- ootlx % 

l'3  <>  J mtn+l        nfl-i 

*4   l 
{2J 

(C-6) 

whare 

■V^ 2 
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Conildcr the third integral in (C-l), which will be written as 

■11/2 8 U n        m 

2  . .2 
+ K^+a^u  88o9])\d (in *   * "j . 

1 x    + (Ji 

By Integrating the last term over w, we have 

(C-7) 

UcijHx^)' (<xs+(x4a) * I tone j« fct 

£    2 
a -«j 

-An m 
x -Hü ml 

2   2 

•f^o-+o,«.,»aeoe» 

2   2 

x y«). 
WL An m 

WfJ 

/  2   2 
w 

2   2 
x ■HiT 

m 

2    2 

O       9 

m 

dm 

■ [CoJ+a2al-fo3-farffl()«Z tanej • 

V...2 +« 
An wfj 

IX -Hü. mil 

■£n 

2   2 
 m 

2   2 
m' '' 

■2(aMi48) eeoB • tan'1 (^l) 

-tan'1 A   - xLf2 te - tan"1 (% 
«   J       i. a x J 
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Slnce this equation Is In a proper form, then It li possible now to take 

the Holt of the derivative with respect to Z as Z*o before Integrating 

over 5.    Than it becomes 

1 1  (a1+a2»)*2 eine ooeQ • nn-l 2 2 2 a c 
8    + t    .    .00« 9 X    + tr,, 008  6 2  , +2      —2. 

-t. m 
1 

a
Z + t2

m ooah 
m 

2 ^ J       2a X    + t     008   9 m 

- (a, +ctj8) »tanQ . 

,22 g 
' 8 +t   ooa 6 

- Ä«   I -T—Ö g" 

ffl ' 

+ 2 
18   + t   1 ooa Ü 

a2 + t2 oo82e, 
5        2 2 

iX    + tml 008  e 
2        2        2 

X    + tl 008   9 

Integrating now over 8, we obtain 

•o-»2 8in9 
,,     2A   t_,oo89 

tan-l\ rum 
i*!008*+Bnen+1, 

■tan -1 
2An trnfl008 

<t2mlooB2Q+xn.xn+li 

tan 
.  i    2An t aofl6 -j f        ri   n 

2      2 
it 008   9*8   »8   .- m n   nrii 

-ton 
ii    2L- taoaQ 

•11 'I    m 

l^ooa^x^x^. 

■fo„,8in9 0089 
mtn+l 

m.n 

.if"7 

m 

m.n 

*2 P008 •8809 ton -II       ^n^mfJ0089 

-ton 
,,    2A n t 0089 

•11 'I    m 
2      o 

t  008   e^T'X^.- w n   nri/_ 
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-v»"9 |[vi«" "ttn» <:L> - •„«« ^i, rti 

m*i«»h ■ 'L' •» "Wi /f»:,,«' 

- «L«»2« - «^ «« niw3jB/r^^ "wfj1- 

m nfl mtn+l ' mtn+l 

* (t2 ooah - eh   in (0 n /Tm   )] "i               n mtn    ntn I 

2 2 r 

vhtrt 

r^^ - a2 ^ tWe, 

ß^'^- «2 + t2«w2e. 

Tha contribution of 1^ to ^(x^yj)  can than ba axprassad as 

(C-9) 

1*1» a2*  V a4] 

f ahl> 

^,3 

. ^3 > 

(C-10) 
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where fron (C-6) and (C-7) 

%! ■ ^ f.-% f V^ tan ■i I 2tn VJ X 

^L + Sn Sn+2 X21 

ten 
1   I       2An *«..,   ^ 

l4l + xn xn+l X2I 
ton -1/    ZAn*»,x 

'» + sn sn*l ^ 

-tan ■21    2V«X 

i^ * Än Vi ß2 
dX 

00 QO /■ 

^ rlWiJn^
/r

Wfi,n.I^ " tm   ^ ^n^n^ " 

^(%tn^mtn^
)dX 

+ 2 <t> I v^ 
*mf J f xn ^n+i X 

tan'1 I     2^tmX     2\\d\ 
{tm + % xn+l X 

%3      w / e-p dp   / x/?17 

i   i 
{s«^ ^ ^«fi,^/^,«.^ 

^ ^n^^«^^ " 5n ^ ' V1^^ 

tntn   mtn 

i 
'■T-   {** ^n+l^.n* - ** (%n+l\n>)dX 
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o       1 

« / 

-»J '«" "WA«.,,«' -«» ^I,„^,^I 

*« "" <\n*l/V*.n*l> ■ <»  ^.A,^'» ^ 

-^7 x^ 
^ '^.nH^rnLn' •* '%n*,/%n"  * 

vhtr« we have mad« the aubstltutlon X ■ 0006 In the above integrals. 

Consider next the fourth tern in ( C-X) 

8n+l ., ,2  Vi 

H(ü) 8in(yoW . 

m 

KOj + a2 B) + (a3 * a4 «;• t] dt   . 
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It Is poaaibl« here to take the limit of the derivative with respect to 

a   aa a-»■ 0 before integrating over t and   e.    Then 

UmTlm4y3
o   / X3 V x2.j   d\j       e0   ds J       H(-t) ein (y0W 

n m 

[(^ + o,Ji) + (as + a4a)* t] dt   . 

Integrating over t , then 

8n+l „ .2, 

Urn 2_£. -4 Y* /    X2Vx2-3   d\  j       e0      {Ccy-agflJ« gf^-Hxf)' g2)da , 

0n 

where 

-Ä r-v ^m • 008(V v - rr8in rV V1 • 
0 

(C-12) 

Integrating over a  , we obtain 

00 

lim Y*---* y0 J   V^-2   trctj ^ + a3 ?2;^3 + (0L2g1 + a^ ^;' ^)dX   , 

where „ « 

g'j - e - e J 

^-e rV:--TT;-e r«   772;   ' 
^ Yo (C-13) 
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Th« contribution of thi» integral to   «^'"fx,^ J can be 

expressed as 

[V  *  {akt4
} and   k- lt2tZt4   , (c-14) 

«riiere 

a it4 '-*\[ tt' vj' g2' & > 

a2t4 ' -
4Yo f »^^ ' 92' g4' d\   , 

t4--4yojStt- g2. g3. d\   t a3 
l 

*4t4 " '4yo J    ^ • 02- 04' <&    - {C-15) 
M 

Finally the last integral in (C-l) can be written as 

-Ka   + as) + (a   + a a) ' t] Bin(2yXt) dt        (c-16) 

integrating over   t   we obtain 

h ' '2y
0 I    X ix f n+1 S0^* f«   + a s; - ra   * a a) /)tt • s] 

einCSY XA^IT • a) da 

forKm<*i**tt<Km+1 

Differentiating with regard to s and taking the limit as n •*■ 0t I 

I 
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y obtain 

lü,*. .4y\ f \* ÄrZdk fn*3 (a   * a 0; J'**9 dB 

Th« contribution of thi« integral to   ^lin(xjty.)   can be s       1 
written as 

where 

[ak]  '  {aktS
} <**   k ' 1^3'4   *    %l

<a!i<^l   . 

(C-17) 

\S ' -^o J    ÄT-* • 94' dk   , 

%Sm0   ' 

4,5 

He can now write   Jm,nCa5..i/J   as 0       1 "j 

and k » 1,2,3,4    . (C-18) 
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l 

Appendix D 

Numerical Analysist 

To determine the unknown values of y numerically 

we have to compute the coefficients of the matrix 

given in (111-19) at a number of suitable control 

points (x-th •)      on s  equal to the number of the 

unknown p'a .  It is known from the potential theory 

of double distributions that the limit of the normal 

I derivative of the potential exists on a0    under the 

condition that the moment y have a continuous second 

derivative with respect to 5 and n in a neighbor- 

hood of the point (x^tyj)       Iwe refer the reader to 

Kellogg, 1929, pp. 168] for more information. Accord- 

ingly, the control points should be taken inside the 

elements rather than at the nodal points for our 

analysis. 

In order to be able to compute the values of y 

near the forward end of the body accurately, a different 

perturbation scheme should be used to solve the non- 

linear problem formulated in Chapter I near that edge. 

We thereby obtain a local solution that complements 

the solution we have, and will be matched with it 

in the next section [see Van Dyke, 1964, 4.9 for more 

discussion concerning this method of solution]. Instead, 

we will assume that the behavior of y near to this 
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edge can be expressed by the following relation 

(l-D) 

»x 

Furthermore/ to simplify the numerical computations 

this relation is approximated by a straight line, 

which bounds the same area as that given by the above 

equation/ namely/ 

VM+2  m   VM/3 

Obviously/ there will be a discontinuity in the pres- 

sure jump at this forward end of the body. To obtain 

the forces/ the integration of the pressure jump has 

to be extended to a point just off this end. 

The control points (xi,yj)      will be taken as shown 

in the figure below. 

—0 ~ 
j'N 

-0 1^; T]/4 

T 

-*• X 
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Now, to compute the coefficients of the matrix 

for these control points, we need some efficient 

means of evaluating the double intrgrals in (C-ll), 

which we will denote by Dm'n  (a,h)       ,  and the inte- 

grals in (C-15), which we denote by Im*n (ath) 

The dm*n  (a.b)      Integrals; 

These integrals can be written in the form, 

Dm'n   (a,b)  - |o e"
p dp ji F(atbiVt\)  d\       . 

We will approximate the integral with respect to p 

by using the integration formula for exponential 

integrals given by Abramowitz (li*68, 25, 4.45). The 

result is the following: 

n 
Dm*n   (a,h)  '     I    Wi   '   Fjfa.biPi)   + Bn       > (D-2) 

i'l 

where p^ is the t   zero of the Laguerre polynomial 

L (p)    , w.    is the weight function given in tables 

by Abramowitz, and R      is the truncation error, 

The function F.(tt8iP.)    is now defined by 

F1(atb;Pi)  - f F(atb;pit\) d\ 

The general behavior of the integrand F(t,8}Pit\) 

is as shown in the figure below. 
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This Integral is evaluated numerically as follows: 

F(atbip.t\) d\    + 

'   \: 

f    " Jo   M 
+  i    TJ   F(atbipit]i) d]i (D-3) 

where X2 is the value of X at which the function 

F(\)    starts decreasing monotonically toward zero. 

Each of the above integrals in (D-3) is computed 

numerically for each value of p^ by using Lhe tra- 

pezoidal rule. 

rm.n The f,n  (a.b)    Integrals; 

These integrals can be written in the form 
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Im*n  (atb)  - ji F2(atbi\) d\      . (D-4) 

The general behavior of the integrand F2(atb;\)     is as 

shown in the figure below 

Numerically, the improper upper limit of inte- 

gration will be replaced by a finite value  Ao  .  A 

simple error expression E(a,bi\ti)    can be derived as 

a function of the parameters a,b    and Xo  as follows: 

E(alb;Xo) Ixo F2(a'b'X)  dX 

The function    F2(atbiX)    in the above integral can 

be simplified considerably if we consider values of 

A    where    A >>  2     .    Consequently the above  integral 

can be approximated analytically.    This expression can 

be used to find values of    Ao    that achieve  the 

desired numerical accuracy.    Knowing    Ao     ,   the inte- 

gral in  (D-4)   can be evaluated by the use of the 

trapezoidal rule. 


