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ABSTRACT

Thin bodies with a small degree of asymmetry are
assumed to travel with a constant forward speed in the
free surface of an infinitely deep ideal fluid. The
boundary-value problem for the velocity potential due to
asymmetry is derived and its solution formulated in terms
of Fredholm integral equations. A numerical scheme based
on the finite-element method is developed and applied for
two cases of length/draft ratios, namely 7 and 20, at
different Froude numbers. Graphs of side force, added-
resistance, heeling- and yawing-moment coefficients are
presented as functions of Froude numbers. The results
indicate a general tendency which agrees with some experi-
mental results obtained after this work was finished,
though the discrepancy between the values for different
element sizes indicate that further investigation in

the numerical procedure are necessary.
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Introducticn

The potential flow around asymmetrical bodies

in the presence of a free surface is of interest in
maAQ'problems of ship hydrodynamics. Asymmetry in

ships can either be permanent as in catamarans, or
temporary due to rotations of symmetric hulls in

yaw or roll. The purpose of this work is to investigate
theoretically the forces and moments acting on such
bodies for the case of a steady translational motion

in an ideal fluid. The solutions are limited to thin

bodies with a small degree of asymmetry. These restrictions

are employed so as to yield a well defined boundary-value
problem having a solution which lies within the scope
of the potential theory.

The treatment of hydrodynamic problem was based
mainly on information deduced from the theory of low-
aspect ratio wings. Davidson and Schiff (1946) pointed
out that larger changes in the wave-making pattern are
observed when the Froude number is larger than C.19.

Hu (1961) solved this problem for a yawed ship by the use
of an iterative perturbation method based on the asymptotic
expansion of the Kernel function of the integral equation
for small Froude numbers. He found that the magnitudes

of the forces and moments acting on the ship increase
rapidly as the Froude number increases up to Fn = 0.35 and

then remain mainly constant.
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The solution of the boundary-value problem leads
to a Foedholm integral equation of the first kind for
the doublet moment distribution similar to the usual
representation of a lifting surface. Due to the
complicated form of the Kernel function approximate
numerical methods must be applied to solve this integral
equation.

In this work a numerical solution is used based
on the finite-element method, where the region of
integration is divided into small rectangular elements
and the unknown doublet moments are defined by an
approximating function within each element. In doing
that and performing the integrations within each element
analytically, the integral equation reduces to a set
of linear algebraic equations that can be solved for the
unknown doublet strength. We carry through this
procedure for two cases, one when 1/7=20 and one when
L/T=7. The results are summarized in tae concluding

section of this work.



I. Mathematical Formulations

It will be convenient in formulating this problem

to introduce three right-handed coordinate systems.

One is fixed in space, Oxyz, with 0; directed oppo-
sitelyto the force of gravity, (.);c coincides with the
direction of motion, and 5;; lies in the plane of the
undisturbed free surface. Of the other two coordinate
systems, one is fixed in the body, é;;;, and one is
moving with the body, Oxyz, but is taken in such a way
that the (x,z)-plane coincides with the mean water
surface, ee?'Ox makes an angle ¢§ with Ox. Further,

Oxyz and Oxyz coincide when the body is at rest (see |

Figure 1). i

Figure 1

Plan View of an Asymmetric and Yawed Body
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The hull form will be described by the surface

Hl(z',y',z') =0
or more explicitly by

3' = fs(x',y') for the starboard surface
and 3' = fp(:c',y') for the port surface.

Define fc(z',y') and ft(z',y') by
fla'sy') = 1/2 f (x'5y') + Fple'sy')]
Fyla'sy') = 1/2 [fglx'sy’) - £ (' sy") ]
The functions fc and ft will be assumed to have con-

tinuous derivatives with respect to each variable,
3! = fo(x',y') is the position of the "mean camber sur-
face," and 2f,(z',y') is the local thickness. Thus
the equation of the hull surface can be written in
the form
Hl(x',y',z') =3 - [fc(x',y') t ft(:c',y')] =0
(1-1)
When the body is moving, its trim, heel and the
position of its center of gravity relative to Oxyz
will change. Let o be the trim angle, measured
positively in the bow-up direction, 6 be the heel
angle measured positively clockwise and let h  be the
amount by which the origin 0' is raised (see Figure

2). Then Oxyz and 0':&5 are related by the equations

z' = x cosa + Iy - h) cosd + z 8ind] sina
y' = -x 8ina + [(y - h) cosd + 3 8ind] cosa

8' = ~(y - h) 3inb + a3 cosb



and 2 =zx' cosa - y' sina (1-2)

y=h+ [z sina + y' cosal cosd - 2’ ging

8 = [x' gina + y' cosa) aind + 3’ cogd

Figure 2

Coordinate Axis

Let us define

H(x,y,2) = =(y - h) 8ind + z cogh - [f;(x'(x,y,z), y'(z,y,2))
tf, (=" (2,80, y'(x,y,2))] (I-3)
. which describes the hull in the system Oxyz.

The motion of the fluid, which is assumed irrota-

tional, is most easily described in the systems Oxyz

WEPEP



or Oxyz. Let ¢(3,5,z) be the velocity potential in
the fixed system and ¢(x,y,s) that in the moving
system. Then

o(%,5,8) = ¢(% - u, coeb*t, §j, & - u, eins't) (I-4)
Both the velocity potentials ¢ and ¢ satisfy

Laplace's equation
Ad

Oa'ngg'ﬁOEiBo
(I-5)

8¢ = 0y + °yy * bgg = 0
The absolute velocity of the water described in the
moving coordinates Oxyz has the components

(U - uo co88, v, W - U, 8itns) = (¢x - Up coss, ¢y’ ¢, = o aing)

This velocity is continuous everywhere in the fluid
except possibly at the wake, which will be assumed

to occupy a thin sheet that joins the body at its aft
end and extends infinitely along the negative x--xis,
For more discussions concerning this assumption we
refer to Thwaites (1960) or Robinson & Laurmann (1956,
1.15). The pressure in the fluid can be computed
from Bernoulli's integral, once ¢ is found, as

P/o = uy(4,0088 + ¢,8in8) - gy - 1/2(¢§ + ¢5 + ¢2)
(1-6)

Let the equation of the free surface be

y = Y(x,8) = Y(X - uo0088, 8 - u8ins) .
(1-7)

Then the potential function ¢(x,y,3) must satisfy two
boundary conditions on this surface. The first is the
kinematic boundary condition

o (2, Y(x,3), 2) Y (z,8) - o * 9 Y, =

= uo(YzooaG + Y;ains) . (I-8)



The seoond is the dynamical boundary condition
g¥(x,3) - uo[%(x, Y(z,3), 3) coss + ¢zein6] +

+ 1/2[¢; + 62 + ¢§]= o . {I-9)
There are corresponding kinematic and dynamic

boundary conditions to be satisfied on the body's

wetted surface Sw . The kinematic condition is

-(u - u,co8t) Hx(x,y,z) - va (x,y,8) - (w - u,8iné) Hz(x,y,z) =0 |

%'s

H (x,y,8) + ¢ |, H (x,y,2) + ¢_|o H (x,y,3) = !
wx:: ySwy:: zswz z
{

|

= uo[Hx(x,y,z) coss + H (z,y,2) sins] , (I-10)

where i

Hx(x,y,z) = '(féx' L fipr) cosa + (féyy t’fty') gina

Hy (2,y,3)

-gind - [(féx' t fygr) 8ino + (féy' ¢ f}y') cosa) cosb ,

H,(2,y,3) = cosd - l(fp.0 t 1) sina + (f;y' t fly') cos &) aing

(I-11)

The dynamical boundary conditions on the body are
simply the equations of static equilibrium of the
forces acting on the body. These equations can be
written down in various ways to conform to the physical
situation of the problem. Here we will confine our-
selves to finding the hydrodynamic force components
acting upon the body and the moments, about the origin
0. Denote the projection of the wetted hull onto the

0;(;"2' plane by Swp , the water pressure on the starboard

side of the hull by P (x,5,2) and the pressure on

the port side of the hull by Pp(x,y,z) . Then

i=” P(z,y,3) n ds ,
Sw




Fou= ”S [P’(z,y,:) Foqt -Pp(z,y,z) fpz' )de' dy' ,
wp
Fy. - ”S [P,(:c,y,z) f,yo- Pp(z,y,z) fpy,l dz' dy'
wp
Fyr = ”S [-Pa(:c,y,z) + Pp(z,y,z)l dx' dy' .
vp (I-12)

“ P(z,y,8) * (FX %) ds ,

S

m -”S {P © ey - sy') - Pp(-y "'"-fpy')} de' dy'

m = |

me ] {P,- (5'Fgyr = ' Fagr) = By * (&' = ' hpe)} " T
(1-13)

JS {P * (3" fax' +z') - Pp : ("'fpx' + x')} dx' dy'

A kinematic condition must also be satisfied on
the ocean bottom. Where this last is assumed to be
of infinite depth, the condition may be written as
lim ¢ .
Y+ (1-14)
Finally there are the conditions at infinity,
to insure that waves will only follow the body
o(lx? + 83 "1/2) apz?2 + 32+« for 2>0 ,
¢(x,y,8) =
0(1) a8 2 + g2 +» for 2 <0 .
(I-15)
Various modifications of this problem are possi-
ble, depending upon the physical situation. In parti-
cular, the wave resistance of a catamaran can be

determined if we add one further condition analogous

to (I-14) to be satisfied on its plane of symmetry.



II. Method of Solution

One of the properties of the problem formulated
in the preceding chapter which makes it mathematically
intractable is that it is nonlinear. In order to
obtain a solution, we will use the mothod of perturba~-
tion expansion as an approximation to linearize the

problem.

Perturbation Expansion:

It is obvious from the nature of the problem
under consideration that the disturbance caused near
the free surface is dependent on two perturbation :
parameters. One represents the "thinness" effect of
the body 8 , where in the limit as g > 0, the body
degenerates to a cambered plane of zero thickness.

The other parameter  describes the asymmetrical

effects due to camber and incidence angle. As ¢+ (0 ,
the problem becomes one of a symmetrical body aligned
with the incident flow.

We begin by imbedding the hull form (I-1) in a
family of hulls as follows

3t = ef g (xty')  of 0 (')
(II-1)

Also § can be written in the form




5 = 51,
(11-2)
We tentatively assume that all the physical variables
can now be expanded as an asymptotic series in terms
of the two parameters B8 and ¢ . Thus we obtain

as the basic expansions

¢(x,y,3;8,¢) = 8e010) (z,y,5) + c¢(°1)(x.y,z) + 8oV 4.,
Y(z,3;8,¢) = Y10 (x,2) + eY(pl){x.z) + ey U 4.,
alB,e) = Ball0) + gealD) ...,

hee,e) = 8h(10) 4 gD 4.,

8(8,c) = 8o(10 4+ oD 4.,

(I11-3)

Here it should be noted that this analysis may
not be applicable where the solution of the problem
is singular, such as near the leading edge of the body.
We refer to Van Dyke (1964, 4.4) for more discussion
concerning the treatment of such problems.

The problem may now be linearized by substitu-
ting the foregoing expansions in Laplace's equation
and the boundary conditions, besides expanding in a
Taylor series where necessary, and collecting terms of
the same order. The result of these operations is a
sequence of linear boundary-value problems for the

potential functions ¢(10, o@D, 410, ..., The



e <A

first of these, which represents the differential f

RO ST

equations for the potential function ¢(°1) , is the

well-known problem for the wave resistance of thin

AT AR

ships. The velocity potential ¢(°) , which is
the first-order term due to the asymmetry of the body,

: must satisfy the following equations :

' A¢(01) =0 , y < 0 >
2
4’4&)'1) (x,0,2) + '<¢y(01) =0 , K=g/ug

RS ek A

“ %(01) (x,y,10) = uo(Gm - fc(al:)) om So ,

; 1im ¢y(°1) (x,y,8) =0 ,

AR
%
o(lx? + 22]°1/2) x>0 , |
601 = aa x? + 22 + = for :
0(1) x <0 . g
(I1-4)

The free surface Y(01) ig determined by

y(0)) (2, 2) = uo/g¢a§°1) (x,0,2)

(II-5)

The velocity potential ¢(ln represents the lowest-
order term due to the combined effect of thickness
and camber and/or the incidence angle. The solution
for this potential function will not be given here,

though it may be of value for investigations in the




future. We will confine ourselves in the subsequent

analysis to finding the velocity potential o(°‘)

Pirst let us apply the method of Green functions to
solve the boundary-value problem (II-4) for this velo-

city potential.

Method of Green Functions:

As is usual in this method, it relies upon the

ability to construct a function of the form
Glx,y,8; € rg =G (P;Q)=r 14G,(%, 4,8, 5 v )
where
z-((x-;)2+(y-n)2+(..-;)2)1/2

and G, is harmonic in the region occupied by fluid,
or in the case of this linearized problem, in the
region below the equilibrium free surface.

Dimensionless quantities will be used in all the
expressions hereafter, by comparing lengths to half
the length of the body 1 and velocities to u, .
Also,

o(2,y,8)mu23(%,5,8), G=1/2G .

Equations (II-4) will then become, after droppirg
the tildes,

24(00) =g, y<0,

800 (, 0.z)+v°¢y(°1) =0, vl /i,



%(01) (x,y,%0) = st | fg) onS, ,

Lim ¢;°" (z,y,8) =0 ,

Y
o(lx? + 22T1/2) x>0,
o1 o as x% + 32 > ® for
|0(1) x<0.
(I11-6)

where S, is that part of the ay plene which is bounded
by -1 <x<1 end -T<y<0 ,end T is the dimen=-
sionless draft.

Ve require the following of G
&G=0 ,
GEE(z,y,z;E,O,n) + YO Gn =0 ,

lim G =0 ,
N
orlg? + t2171/2) £<o0 ,
G = as €2+cz+°°for
0(1) £>0 ,
(I:=7)
Consider now the region of fluid bounded by the
free-surface plane i, , the two sides of 5, and the

F

veke w , & circular cylinder I, with Oy as the

R
exis and o radius £ , &nd a horizontel plane at
y =-= closing the bottom of the cylinder. Then by

Green's Theorem we have the follovingz formule

S

v;r,‘,'.f.. sk



-14-

ene(01) (P) = IJ (00 (€,n,8) G(P;E,n,E) - O(OI)GVJ s ,
S(Q)

- J[ {68 a0 esen0) -
S ot
- 40 (g,n,40) G (P;E,0,0)) -

- (o §°1’ (€,n,=0) G(P;E,n,0) -

- %0 (g, n.20) GC(P;E.HJO)]}

+ ” (8899 (¢,0,%) Gp;e,0,2) - ¢V, ) dedn

Ip

- 1im Jj (¢'$01) (E,ﬂ,C) G(P;E.n.c) - Q(OI)Gn) dEdﬂ

e

B
2T 0 (01
+ jo de f_“ dn R(e{OV G - ¢V Gp)

Substituting (1I-6) end (II-7) in the above formule,

we obtain

4r9 (®V (P) = - ” G, (P;€,,0) [0 (8,n,40) - $408) (g,n,-0) ) dedn
St

1 [ 01) o _ 4 (01)
7;” 31'[% G-¢ GE] dede
| M
27 0
+ J de I dn 0(1)
0 -h

The second inte-r:..l n-y be integrated by perts to give
-l -
Y,; e - 9Gdny ds

where this line inte;ral is tvken sround the intercection



of I, and IR . As = , both this integral

and the third one converge to sero. We finally have
¢ (V1) nr,y,z)s‘ljj G;(P;E,n,O).
275

(6401 (£,n,+0)-¢ OV (€, n,-0))dEdn
(II-8)

It should be noted here that the above analysis
was done in more detail following Wehausen (1963) and
the same final result was obtained.

The solution for the Green functions is well
known for several physical situations, many of which
are given in Wehausen and Laitone (1960). Here we

use one form given by Eggers and others (1960), which

is suitable in our analysis.

G(x’y.'z; E: n, C). %‘-- %I-Re.}ﬂl"g- ,002 8do .

k((y#n)+iG ) k((y#n)-i5_)

Xjle I dk+le 1 dkl,
K-y oeecze K-yoaec‘e
% ) J

(I1-9)
where c1 and c2 represent the indented paths of the
contour integration around the pole as shown in the

figure below ;

et
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S o

Y,8ec?0

and
r1=((x-£)2+(y+n)2+(z-c)2)1’2,
al-cx-z)coee+(z-c)aine.

In handling the above countour integrals, we should
be cautious since its integrands are not only oscilla-
tory, but also possess a singularity at «=vo sec?6
for each value of g . It turns out, however (see
Appendix A), that by a proper choice of integration
path in the complex plane, this integral can be simpli-

fied considerably, namely

Glz,y,8;E,n,8)= -1-,.- 41 -Re -}Sﬁ sec?6do.

" .
7
w =P . P
XU e dp +J e dp]
+ +
09 Dl 0 p 02
3 v, 8ec?8(y+n)
-4y, H(-wx) e ain[y,(x=-£)seco ).
0

coa[Yo(z-C)sineeeczeleeczede,
(11-10)



where
91'Yo“°29 [(y+n)~+‘£ml 1, P,V sec?s [(y+n)~13al] .

and H(z) is the Heavyside function, defined by H(z)=I
for > 0 and H(x)=0 for x <0 .
Differentiating this function with respect to

t , we obtain

2
G (z,y,8;6,n,0) =38 -2 _pe Yo i sec'o aing de.
¢ rd ri’ m g

® =P
X iJ e 1 - 1 do -
0 (otp )2 (p#p )?
1 2
y A2(y+n)
-4y | H(-w) e ° 8in(y A (x-£)).
o J1
X gin(yor AT -1 ° 3) A2 d)

2
-zyoﬁ 50 &N WV gintay Mz-£)) &, (11 - 11)
where we have made the substitution ) = sece in the

last integrals.

Determination of the Valocity Potential (01

The integral equation for the velocity potential
00D, as in (II-8), represents a distribution of
doublets over the surface S, and the wake w . The
moment yu(x,y) of such a distribution is
dru(z,y) = ¢ OV (x,y,40) - ¢ (0D (2, -0).
(11-12)
Therefore, the velocity potential ¢4(V) , after deleting
the superscript (01) , can be written in the following

form

At



¢o(z,y,8) = ” 'Gc(x:yazsi.n.(?) u(g,n) dedn
Set (1I-13)
Now the linearized dimensionless pressure (based
on the pressure .%.puc,2 ) associated with this velo-
city potential can be found from (I-6) as
P(z,y,8) = 2¢,(x,y,8)
Accordingly, the pressure jump across the plane 3 = 0

is
Plx,y,+0) - P(:c,y,-O) =2 [¢x(x:y:+0) - ¢x(x:y:'0)] N

=2 lo(x,y,+0) - ¢(z,y,-0)]x .

From (I1I-12), this becomes

P(z,y,+0) - P(z,y,-0) = 8Tugplz,y) :
(1I-34)

Since the pressure must be continuous across the
wake, then from (II-14), M, must vanish on the
wake. It follows that u 1is constant along lines

parallel to the x-axis in the wake and therefore

pla,y) =u(ly) , for z<T
(II-15)
where = = T(y) 1is the equation of the aft end of the
body. Also, since the velocity potential must be con-

tinuous everywhere outside the surface S, and v ,




therefore it follows that
ulz,-1) =0
(11~-16)
On the other hand, due to the expected singudarity at
the leading edge of the body, there will be a discon-
tinuity in W, at this edge (see Appendix D).
Equation (II-13) may now be written as

o(x,y,8) = JJ -Gc(x,y,z;e,n,o) u(T,y) dedn +
W

+ J[ G, (x,y,3;6,0,0) ul(E,n) didn
Jsc

[}

(I11-17)
The velocity potential ¢ can be then determined

once the distribution function u(z,y) is known.

To find  , we apply the linearized, kinematical

boundary condition (II-6) on the surface S, to the

above equation:

tglg, = tim 2 [JI G,u(Tyn) dedn + JJ Gyu(Ean) dedn

0 93
b -iad ) So

=-5+f (x,y)
cx (I11-18)

This is a Fredholm integral equation of the first kind
for the unknown doublet moment u(z,y) . The closed
analytical solution of this integral equation is beyond
our resources because of the complicated nature of the
kernel function. Consequently, a numerical approach,
based on the finite-element method, will be used in

the following chapter to obtain an ~pproximate solution

for the doublet moment u(z,y) .



III. Solution of the Integral Equation

For convenience in subsequent calculations, the

surface S, will be approximated by a rectangular plane

and the coordinate system Oxyz will be shifted to the

system shown in Figure 3. Thus T(y) =0 . Let

us divide S, into rectangular elements determined

by a finite number of nodal

.

points as in Figure 3,

| B

n=N+1
(myn+1 (mt1,n+1)
(myn (m+l,m)
So
g-m €ﬁ+1 e
Figure 3

The Surface S, Divided into Finite Elements

Now in order to solve the integral equation (II-18)

approximately, but to any required degree of accuracy,

it is convenient to assume that the presumed piece-wise




continuous function y(z,y) over the surface S, can
be approximately determined by a finite number of

values unﬁvyn) at the nodal points, as described
below. Where the nodal values of 1 define an
approximating function within each element, the integrals
in (II-18) can be performed analytically over the

elements and over the semi-infinite strips.

b
A
(myn+1) (m+l,n+1)
e E—-OT
n
24n A = 7
(m,n)
O- Q) (m+1,1)

Figure 4

A Rectangular Element

Consider the rectangular element shown in Figure 4.
If the function 1 is to be continuous between
adjacent elements it is necessary for u# to vary inm
a linear way along the sides of the elements. Then,
coincidence of 1 at the nodes will automatically
insure coincidence at intermediate points. The function

u within the element may be written as

g



B

rC P

WlE,n) = ] [(u; “Bn - w +
4AEAN Mt

+ (AE + E)(&n - n) Mop1 m * (AE - E)(bn + n) u

+
1, m,nel

(06 + BN+ 0 w m]
]

or
wlgyn) = _ 1 f(g  =g)(n ,=n) u =(E=8)(n, 1=n) Bpu7 p =
? 28E0n me1 n+l myn &ni n+l m+l,n
= (Epygm8) (ny=n) Hm, n+1 +(Ey=8) (ny=n) My nel
for

Em<€<5m+1’ My <N < My o
(II11-1)

Now by satisfying equation (II-18) at a number

of points on S, equal to the unknown u's , the

-]

integral equation reduces to the following set of

linear algebraic equations in u's :

N " 0
Zl lim %_ J ntloyeo,n) dn J GC( i,yj,z;E,n,O) dg +
n= a¥0 9da

n
n

N
+ ] im 3 (™ gn [Fml Gy (2,4 :383€,1,0) u(k,n) didn
n=l mel a0 38 ¢ L
nn m

[ e 3

= -5 + fcx(xi,yj) .
(I1I-2)

To facilitate evaluation of the above integrals,

we will define the following variables:
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tex-§¢ ,
qQ=y-n,
8= y+n-2t ,

2
P 2% 4ty +n- 20

Yo ' (I11-3)

Then G mey be written in the form

x(p,8) =

Gc(t,q,a,z) =3/(t>+ q2 +3)¥2 2/( t% + 8% + 32)¥2 _ e ;'.,-0

3 .
X‘Lg.abw maJ e [1/( x +iw? - 1/(x-w? do -
0

2
- 4721“ B ©) eY°A s,ain(ygx *t)
1
X ainlyorVA%-1 * 3) 32 dA

- 2
-w,ro(we“*’amngwdh (111-4)
1
where

w=tcosd + 3 8ind ,

We-dt+ AT 8) |

Also equation (III-l) may be represented &s
u(t, (;)) =%'[u]' @ ,

(111-5)
where in this system of notations (g ) means the same
equation is applicable to both the variables, & corres=-
nonds to the upper subscript end ¢ to the lower one;

A  is the rrer of the element which is equal to

44¢An y [¥] is the row matrix

(] = [¥myns Mmpl,me Mm,mels ¥mel,nel) (111-6)
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anda (@3} is the column matrix

Fltpyy = t) * (( ; e = ( g )]
- . 8 - (8
@ }ie te = t) (G )= ()
- . 8 - 8
tlt,, =) (G- (g))

by = t) * ((8), - (8))
L J

4

)

. 3
w1 ' (31 ttmer 10 q Inel

. a8 (8 8
et (20 . H Gy H (&)
. 8 = Iy 8
ttag (8 )y Ftgy Fg), A t
i . 8 , 8
L+tm (2), b, t(2), M| |t- (] )J
/

It follows that (III-5) may also be expﬁessed in the form
[

b | (e
u(t,(q))=[(g)1 X »
(I11I-7)
Lt- (%)
where [ (g )] is the row matrix ’
[+ a o a
”B”'[((e’l’(3’2'(8)3’(3)..“
This may also be written as
- . 8 8 -
g (q)n+1 1 t(q )n” +1
' 8 1 =-¢7 8
) A R Hog Iy
(g1 =2 10v] " ,
8
ttqg 0 ( )’1 o ;(q)n t1
8
Ft, ' (g /n tt, tlg )y
(I1I-8)

Consider now the contribution of the wake to the

integral in equation (III-2), which we will denote
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e et S g—

«25-
by J,f,’"(’-‘,;ayj) . Here
w(o, ¢8))=0%) 4 (%) (8
where
8 -
t( q )n+1 +1
a 1 . .
( B ); =m [ul,n.‘ ul’n.f.]]
;(g)n t1
(II1-10)
‘e may then write Jz,’n(zi,yj) as follows:

T3Pz ) = Lim -a—Uq"” (81 + B2g) dg
w (Tl 0 35 g,

; 841
X ﬁt (3 dt/( t2 + g2 + 22)¥/2 )4 L
n

xff dt{a/( t2 + o% + 22)¥/2 4+ pe ! jﬁ- 8ind do

-+

X J: e P /0 x + 10?2 - 1/( x - iw)? ] do + 4¥%

o 2
X Jl gvor’e (H(&?ain(yokt)sin(yox/iz -1°38)" 2+
*+ (1/2y )8(B)ein(2y At)) d\ . (I1I-11)

This function is evalueted in Appendix 3, and in re-
ference to this mey be vritten as
by,1 (b1,2 b1,3
Tt agyg) = (81, 8) - + [ag, ay) *

bs, 1 by, 2 ba,3

This may now be expressed in the form
myn
BI, (xi,yj)
I,n .
Jw’ (xi:yj) =[U1,n" uz’m_z ]

gy zyy,) (11I-12)

(al + uzs) ds

e e e B e S .




where, from (III-10)

\ ( 3

(glsh « ( 1 ( (
Bi’ CIRTY "Iy 1| |P1,1 ey ! b1,2 +by3
1 » . 1.
) - _ | S 4
[ 2an 4 [ 28n [
gl
By’ (25045 Lq, -1 b, ) -8, 1 h’g,g + by 3
(II1-13)

Consider next the contribution of the surface
to the integral in equation (III-2), which we will
denote by J';"” (x;,y;) . From (II1-4) and (III-7)

this may be written as follows:

q tme1 (By + Baq)#(By + Bq)t
{z J n+l dg J m+ 4 dt

qn tm (tz + q2 + 32)%

Jpn (z, go¥g) = Lim &
340 33

8

8 t
+1 m+1
| s [(a, + a,8)+(ag + aye)t]"
&n *m

® -p
+l¥sin6deﬁei[e l - l do +
™). . (x +iw?  (x - iw)?

+ 4&[,7“23(3(&) gin(y Mt)ein(y MWA2-1-5):2% 4
+ (1/2y,)8(G)sin(2y \t)) dA dt.} (I11-14)

(t2 + 82 + g2) P

It turns out (see Appendix C) that this expression
may be written as
I (x

p¥5) = BT la 1} + lod{a 5+ a5+ a g4 aK’5}

and « = 1,2,3,4 .
Substituting for 2 ) from (III-8), we may
express Jp" (x;,y;) in the form
'A’;’” (.'ci,yj)W

J'g)n ("‘i’yj) = [lJ] * .
'3 (x,y5) (I1I-15)

? (“’z:yJ
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r 3
me1 Ine1 “tmel e 1,1

tmo dne1  tp Aney -1 as,1

9y

= 1- * ' 4
| myn K
A3 (:ct,yJ) -tm”.qn bl q, -1 a3,1
myn
hA4’ (x'L‘yJ)J \ tm qn -tm -qn IJ \a4, 1J
. -1
bme1 Onel meg  Cmar 71 a1,2*%41,3%%,4 ¢+ a4 5
- - +
+1 tm 1 tm 8yt ! a2,2 * a2,3 as,4 +a2,5
a 1
bme1 ®n TPm1 P 1| | 93,27 93,313,445
=t . Sn tm 8, -1y | ay 2 + 9,3 + ag 4 + 04’5J

(I1I-16)

We may now write equation (III-2) in the form

fBI, (x ) N M
1 ‘L’yJ mn
. 3 " {A R CINE )}
nzl 1,n*"1,ntl nZJ mzl 3 S
lBI " (x, Y
’L
=6-f, (”i:yj) s «=1,2,3,4 . (I11-17)

The left~-hand side of this equation can be written as

gls" l,n
- (1™ iotg) w1, B ) v #

myn
+ mzl [Az’ (z. ,yJ) T As (:ci,yj) “m,n+1) +

Ml 1,n k-1,n
K-
* KZ'Z (/12 (@gsy;) uen + Ag ™ (‘”i'yj) “K,n+1)}
+’{ [Bz’n(a: )+A1"(x )] +A"(x .)
P e B AL 2857 ug g 22Y57 W1 n
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m-1,n
+ Y A7 Cci,yj) + Ay 2 (zi,yj) "m,n}"'

m=2
N+1 o

{ 31""1 (x, 2243 ) o+ A1 k=1 (p ,y ) u1 + A‘::"‘I (xi,yj) .t
|<-2 ?

M
+ ] A1 (e,

w2 O pug) + AT )y ‘}

N
1,n 1 n M, n
= nZI { Bl’ (zi,yj) + Al’ (xi,yj) M1,m + A2' (xi,yj) ”M+1,n} +

N+l
1,n-1 1,n-1 Myn-1
+ nzz{ By (x y J o+ A (x ,yJ) My n"' A (x,, yJ')uMH,n} +

M m-1,1

Z { (x, ,y J o+ A2 (xi,yj) um,l +

Am-J,IV (x

m,N
+ A5’ (xi,yj) + 4, 1:,yJ.) “m,N+1} +

+z Z AT (2g,y5) + Ay n(xi,yj)+

oY
n=2 me=2 L

- -1,n-1
+ AP (apy ) + AT Gy

From equation (II-6), we find that

Finally, we can write the set of the linear al-

gebraic equations for u, " in the form

N+l M+l
) Cn,n(%5387) Vg = Fap(@pot ) = 8

n=? ma]
(III-18)

where

Cm,n(xi’y,j) A’"’”(z By ) + 4G -1, "(x.,y ) +



. =29~

3

+ A’;'"'I (2;045) + A':'J’n'l (2,4 )

m'z,s’.l.’M F] n’z,s’...,”

.
L]

m,N m-1,N
cm N+1(x1,’y ) = As’ (”i’yj) + A4 ’ (xi,yj)

»

me=2,3,...,M

Cus,n(syy) = ARz, p¥;) + A" zys)

n L d 2’3'..',”

N
n 1,n=1
€1 ulEpb ) = By’ () + B Ny ) +

-1
+ AI’ (:c:.,y )+ Al’" (i’yj)

L

n=2,8,000,8 ;

M, N
C'M*I‘”H(xi,yj) - A4’ (xiayj) H

Cq N+1(‘”1.'y.7) = B (.'c ,yJ) + AI’N(:cz,yJ) .

(I11-19)

Equation (III-18) can now be solved numerically

for a given body moving with a constant velocity u,

at an angle of attack ¢ .,




IV. Numerical Results and Conclusions

A computer program was developed, based on the
numerical analysis given in Appendix D, to compute
the moment distribution u as well as the forces and
moments acting on a yawed and/or cambered body.

The numerical scheme was first applied to the
case of zero speed, where the free surface is fegarded
as a rigid wall and th: flow is the same as that
around a fully submerged double body consisting of
the ship and its image over the free surface. The
curves in Figures 5 and 6 show the results of such
computations and are compared to similar results given
by Thwaites (1960, p. 343) for rectangular wings.

The effect of the free surface was then considered
for a small Froude number (F = u,//gl = 0.1) and the
computations were made for two different values of
the length/draft ratio, [/T=7 and [/T=20. The results
showe& a very slight deviation from the values obtained
for the case of a rigid surface.

Computations were carried out for a yawed body
having a length/draft ratio equal to 20 at different
Froude numbers and two values were used for the number
of nodal points in the longitudinal direction, M=5 and
M=10. Also one run was made for the same body with M=20
and Fn-0.34. The results of these computations are

shown in Figures 7-11.
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There is a large discrepancy between the
results obtained when ¥ is set equal to 10 aﬁd those
obtained for M=5 and M=20 in the range of Proude
numbers between F =0.225 and F=0.45. Norrbin (1960,
P. 379) pointed out that "for a surface ship running
at Froude numbers exceeding F_ = u //gLl = 0.3, wave
formation is generally found to cause a change in
trim and stability characteristics." Hu (1961)
found out that the lateral stability derivatives have
increased about 50% above their values at zero speed
for a Froude number F =0.35. Due to the lack of
experimental daca at higher Froude numbers, it is
difficult to predict the behavior of the force and
moment coefficients in this region. On the other
hand, there is the possibility that the numerical
analysis is divergent for the particular value M=10
in the range of Froude numbers where this behavior is

encountered.

Conclusions

Although one of the purposes of this study has
been to investigate theoretically the side forces and
moments acting on a yawed body in a free surface, an
equally important one has been the testing of the
applicability of a numerical method for solving the

complicated integral equation that arises. The agreement
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of the results obtained by this method with those
obtained by other methods when the Froude number is

small seems to indicate that the method is

fundamentally sound. For higher Froude numbers the
inconsistency of the values for N=10 with those for

N=5 and N=20 indicates that further investigation of
numerical stability in this region is necessary. Further
experimental work supplementing Norrbin's measurements

is also desirable.
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Appendix A

Green function  (G(z,y,3;¢,n,0) is given by equa-
tion (II-9). Consider now the integral with respect

to « in this function, which we will write in the form

L Ty P e ] +Jc s P
2 (A-1)
where
-_ae'iw=(y+n)+iw, a>0
Therefore ~-aco8y=y +n<0 , -121__<_w5_121
and b =a siny

Let us evaluate the above integrals over the
straight line c=re®® in the complex « - plane. Then

we obtain
44 . X ,
J e Lanei (b }*J 4ttt e (00
] re

ret®o-y sec?o tPo_y gec?s
The oscilatting part in these integrals will vanish
if we set ¢ =y in the first one and ¢, -¥% in the
second. Then it becomes

J ——ﬁ%—-wd“l ____a'_“iz__i dr =
01' r - yBec“be 02, r - y,8ec<te

e'p e'p
= dp + ] dD
!
Jcl PEe ey ? 7P, (A-2)
where
Py = yosecze [(y + n) + tw]

Py = yo8ec?d [(y + n) - iw)
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We will apply now Cauchy's Theorem for contour
integration to evaluate the integrals in (A-1). The
paths of integration will be completed as shown in

the figures below to form a closed contour.

ey s82"8

b

':'-'ql or
For ¢ > O 1

For ¢ <0

In order that the integrals along the arc converge
to zero a8 R+~ , it is necessary and sufficient that
-n/2 < ¢t y<n/2 -, This requirement is satisfied
by the previous choice of ¢, .
If <0 , we must take into account the residue
at the pole at « = yo8ec?0; if &>0 , there is no
residue. By using the result given in (A-2), the integral

in (A-l) can be written as

lm e P [F?I’Ti' + D_*l‘—b'z']dp + H(-B) {Residue}
0

where H(-0) is the Heavyside function.
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Finally we will now evaluate the residue at

kK =y, 8ect 8 as follows:

-Re %.2 F. d6 sec?e ni [-eYo 8ec<d [(y + n) + iu] +

+ gvo sec2e [(y + n) - 'im]]

Yo 8220 [ (y + n) + 14

0
=Imy, J‘l de sec?s [e
2

AT gec20 [(y + n) - iw}] +

m
" r ds sec?s [eY° sec?0 [(y + n) + iu]
0

Yo 8ec26 [(y + n) - iu]]

I
2 2 ,
= Im 2y, l do sec?p Yo 8€C® (y +n) . o, [yo(8 - £) 8ine sec?e)
0
X [eiyo secd (x - &) _ e-iyo sectd (x - E)]

3

2 2

= -470[ Yo 8670 (y #n) . oy by, seco (z - £)]
0

X coslyo(z - 1) aind sec?s ] sec?o do (A-3)



Appendix B

n
The ":,' (x;5¥;)  Integral

This integral is defined by equation (III-11).

We may write it in the following form:

q
Py ) = tind | o J "1 8 +8q)dg
IR M T g, 1

]
xr dt/(t? + q* + z%) /2
T

8 )
-zJ”*I(a +aa)dardt/(t2+a’+z’)/z-
8y l : %:

A

00 8 i
J dtJ"” (o +aa)dajz gind do
z 8 1 2 -7

i n '2'

-p , i i
XI:e Re [w-m}dp'ﬁ

8 -
+ 2y, r dt J 3 (a +a2) de reY°>‘ ey B W)
z, ‘s 1

i n

X ain(yokt)ain(yovx!-l'z)')\’ + 6( U)sin(zyokt)) d\ ]

(B-1)
Now we will evaluate each of the above integrals

in (B-1) separately and determine the limit of its

derivative with respect to s as s +0 . Consider

the first integral, which we will write as

Une1 dt
= - + )
Jl # an (Bl qu dq o (t? + q2 + sz)'/z

S A A ¢ S oL dr s Kb 2 B

s o R e~ B Sk



After integrating this once over t, we have

s ( ) [—"l (2 ﬁ—T-;zi )]
JI--z an By * 8,40 (g2 4 82 T Vgt 4 zi+s dq
In+1 1 z; A
=& {81. Jq [q2+32- (q% + 82) »}q!+s12:+zz_|dq+
n
In+1 q z19
) lq [qf,,, a2 = (q% + 3%) @T+;xir+ zZqu}'
n

The integration of the second term in each of the above

integrals can be easily performed if we make the sub-

stitutions v; = 71—32—{ in the first and vy = v/q2 + :ct!. + 82

q“ + x5 + 3
in the second. Thus
q -1 9n+l
-1 1n 1 In
JI'BI [tan r-tdﬂ T-]+

xcq XL
-1 %— -1
+ [tan Vsl + 5+ Que1 tan = /el + g + q:]] *

+ 82 {% [Zn(qfl + 3¢) - Zn(q,zl_,,l + zz)] -
GRS, NAEELE:
- cOth e ————————— .

xi x‘,: J

-2 [coth"l

The contribution of J; to Jf,:"(xi,yj) is

my 1 1 1 ™ 1
lim ol = B {(qn+1 - ;n-) Tz ['qn+1 + 3 Quy1 - Tan * zt/qn]} *

3+0 2
Sn_ V(T R ) -
+ 82 {Zn Tnel [coth ( e * “’1,/“"1:)
- coth’ ! (/g2 + xzz/"‘i)]}
Define
Qinj = qu + xtz'
(B-2)
We may then write the above equation as
b
; oJ 1,1
lim l=(8,B8 )"
0 127 by g (B-3)

R



et

vhere
, 1 'y 1 af,;-}' Q;’j
1,1 'q—nTI.- ﬁl -?"'1-1 qn-l.-l .- qn ?

LT I Qﬁﬁ] %7
b2,1 in +1J -[coth z; - coth z; .

(B~4)
The second integral in (3-1) may be written as

8n+1 © it
-- Tl 3T
J2 3 en (ml + aza) ds v T 732 7 370

By comperisor vith J this m' v now be expressed es
y/ 8nt1
Jp=a {[tan‘l ;ﬂ'- tan-! T]*

. 2.8 - . 2.8 ]
+ [tan 278 + xg. + 82 - tan Rl q acg. + e: +

n+l

3
ta { T [Zn(ai +3%) - In(8l,; + 32)] - }

%
-3 [coth'l st + x} ’ ;"["'1 - ocoth™! -z_-iu] .
z; i
1 {
The contribution of this to Jw’n(xi.yj) is
by, 2
tim ¥2=(a, a1 { "},
a0 92 12 by (B=5)

where

(B-6)
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In the third term in (B-1), the integral over ¢
has an improper upper limit and consequently changing
the order of integration would not be desirable. To

avoid this difficulty, we write this term as follows,

x 8 /8
Jg o= - % ¥ J k1 g J "1 (e +ay8)de J sinb do .
k=i Tk 8, -n/2
ST i R
x J ¢ Ry | (x + 1w)? (X~ tw)?® Idp .
0

Now this integral is in a proper form and is similar
to the integral Ia in Appendix C. Therefore the
contribution of this to Jz‘"(zi,yj) can be expressed

in the form

b
o/ 1,3
3 N
:.i,? 2z [“1002 ] b ' (B=7)
2,3
where
k
blla - kf‘i a1,3 ’
k
b2,3 = kfi az,s . (B-8)

For numerical computations, the upper limit of summation
has changed to a finite value kX that is found to achieve

the desired numerical accuracy.



Finally we will evaluate the contribution of
the last term in (B-1). The value of this integral

will depend upon the sign of &. Since
Q= (”i - £) cosé + g siné

where

£ <0 and z, >0 ,

therefore the sign of @ will depend upon 3 siné,
In the limit as 2 + 0, @ > 0 and consequently H(-i) = §(-w) = 0,

Hence it follows that the contribution of this integral

I,n
v

this integral represents the contribution due to the

to J (”i’yj) vanishes. This result is expected since

waves generated behind the doublets at { = 0. We now

have the following formula for Js’"(zi,yj)

1 b, b1,2%P1,3
] - . 2 .
Jw (xilya’) [81:82] b2 1 + [alaazl b +b
’ 2,2 72,3
(B=9)

-
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APPENDIX C

The J’:’"(zi, ¥ Ji Integral

This integral is defined by equation (III-14). Applying the formula

for integration by parts to the third term of this integral, we obtain

2 . -p 1
-yoacceRezf d[x+w'z-%]

8 +u  + W0

After changing the order of integration of the last three integrals in

J':’n(xi,yj), it may be written as

m+1 (8 +82q) + (B +84q)t
Jm: (z.,yi) - lzm a—z- { f dq f 3/2 dt +

+z)

t
m+1 (a1+ a, 8) + (as + o 8l)t

dt +
(tz + 32 + a2)3/2




B S

v % Sar1 Y
* ."_o_f tand aeoze de f e'pdpf daf [(“1 + a, 8) -
T 0 8, w

2

2w
- (03 + u4 8)s tand + (m.3 + a, 8) aece-wJ . [m— -

-—.,21—2-] dw+4y§f:ain (Yokvkz-l-z)-

z° +

b1

nt1 v 2% f _
-Azdk_/;n SO [, H@ ety e

* [(a +a8)+ (a6 +a8)° t] dt +
1 2 ) .

8 2 t
+ 2y, rdx L"” o' G It’"” 8(T) sin(2y)t) *
1 n m

s (o +08)+(a +ae) . t) dt (C~1)
1 2 3 [

Each of the above integrals will be evaluated separately; also the limit
of its derivative with respect to 2 as z + 0 will be calculated. Consider

the first integral, which can be written as

q

nel  tme (8,48, q) + (By + B, q) t
I, = ‘f d"f z_ 2 233 at .
q, t (t” +q° + 2°)




Integrating once over t,

st

I (BI+82q) L

1 = '—2—:_2__ s 2
q Q"+
n \/q tt gt

q
" n+l

- m dq-j (By+8,q) -
-,/2 2 2 q
q+tm+z n

dq | .

. 1 i 1
2 2 2 2 2 2
'\/q ttoqta '\/q tt +a

A similar integral to the first one above has been performed in Appendix B;

therefore
_1 [tetd 1 [t 14
I B R -
m+1,n+1 mein

_1/t,4 _1[t.4
. | tam 1 'm‘n-’;l - g 1 am.nT
myn+1 myn



-55-

r T
P [m,,-z(_m%z.m) - ,oth-z(%ﬁ)J-
m+1

T T
- [coth-z(-’—nltn_*l) - coth-l(—'gdl)J .
m m

T T
+ =8 3 [ 1 [Ooth- ! (M.) - aoth- 1 ( —"".—112)] -
n+l

T T
- |ooth~d|antl| | -1l mn .
qn+1 qn

© By s ,(Tm-l,nﬂ - 2'mvl-l,n) - (Tm,n+1 - 2’m,n) ’

where

T = '2 + tz + qz .
Differentiating this equation with respect to gz and taking the limit as 3 + ¢

we obtain

1 8 1 01:, J Qia j
lim = " % : miln _ mel Jntl
o m1 W U1




[ ]
|
Q
s
o3
L
[y
————
3
s
\__’
[}
g
&
]
2
£
<
<+
~
v
-
N —

Qia.f Qi:J'
, + Bg ooth'z LN | aopn | LD

Qilj QiJlj
coth~ 1|l | _ gotn~ 1| Zanitl
qn qn+1

iyd i,d iyd _ gtad _
+ By lmmi-l,n - Qm;-l,nﬂ) - (Qm:n m,n+1)| > (C-2)

where

¢d «\[+dd . (c-3)

Then the contribution of I, to b ’n(x.,y.) can be expressed in the following
T 8 1291

forn




b

T THETAL i s e

( \
91,1
oI a
:::5;1 - (825 8 850 8,) * ¢ a: ? (C-4)
\“4,1)

Consider the sacond integral in (C-1), This can be written as

t

P+l MJ , ta 8) + (a, + a, 8):t
I, = a_/ ds 2 — 372L dt
8 (t + 9 +z)

n m

By comparison with I 1 the contribution of this integral to J’:’n(zi,y .7')

can be expressed in the form

( \
%1,2
ol a
”’"Eﬁ = [az' %91 B “4] ' J % ? ’ (¢=5)
3% 03‘2
a
\ 4’2)

where

i, 1,
CPTER ~d (T R

m+1,n+1




L& ) - & s ]
tm S mn S)m,n+1 8 ne1
1, i,d
) d
a o oth ml-l n ocoth 1 m+1,n+1
2 (1 (2 tm-z
1,4 1,
& 9"
- |ooth™? -—t'-"-‘l - coth _’:.n.’.‘_"'_l. s
m . m
i,d 1,
o N B [N
a ={ooth () /() | - coth™ [ (%) /) -
8 /1) ‘ §'mkl,n "8 n m+l,n+1 8 ne1

id 1
- ooth™? (Q) /03) ] + ooth” [(Q) /(g) J
& n myn+1 n+l

. 1,d i,d
a, ; [(g) - ] [(Q) - J ,
o 2) m+l,n m+1 n+l1 m,n m,n+1
(c-6)

vhere
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Consider the third integral in (C-1), which will be written as

Y /2 ® el Umea '
Ia - -% f tand uaze de f Pl dp f dsf I [(azmza)-(asm4e)'z tanb)+ %
-n/2 0 5, ;
+ [(a4a,8)0 me])ld 1n Lt
3048 2+l

(c-7)

By integrating the last term over w, we have

2 2 2
8°+w 8%+
[(“14'“39)'(03*“4’)'3 tme]-[m( 7 mt1 )-zn( 3 il )J+

E= L")

X H

ud, EW,
+(a.3+a4a."aeae° Wprq in -7 | - Y, n T3
m+1

m+1
2. 2
8
t[m M xzmz dw
m
] 82+w:+1
= [(opa,0-tagra,02 tant] + | an | 52| -
L)
me
2 2
&+ W
] (7—-';-” -2(03+a4a) s6cd * { 8 [tan'1 (—"}1-) -
LR

W m W
~tan~ ! (-'-"-)] - x[tan'1 (L) _ oy (__m_)J .
8 x z




Since this equation is in a proper form, then it is possible now to take
the 1limit of the derivative with respect to Z as Z*o before integrating

over S. Than it becomes

, 1 1
(a,+0,8)2 ainb cosd * |t - -
172 ml| g2 3 . ooaze 32 + tfﬂ coaze

1 1 .
-t 3 - 3 - (m3 +a4a) tanb .

m 2 2 2 2
8 +tmoose x +tmcose

82+t2 coaze 32+t2 cosze
m+1 m 2 1
o :c2+t2 ooaze " 2 t2 coeze vEe ez + t2 ooa?‘e i
m+1 m m+1

s

- 1 )-zz( 1 -( )
2 2 2 2 2 2 2 2 2 :
8 +tmoose x+tlzaoae :c+tmaoae

Integrating now over &, we obtain

20 t_ _.cosb 2A. t ., 008
a,°2 aind tan'l( 7 0 2”"'1 )-tan'l( 7 al ';*1 )
t t

%
mﬂcoa +an 8n+1 cos 0+x °x

m1 n “n+l

24, t_co8b 2A,, t_coeb
tan'l ( n’m ) -tan'l( nz m )
+1

2 2 K 2
tmaaa 0+s o tcos 9+xn L

+a2-sin6 oco8d {1t _ . n

m+1

d«.J
%I,MI ) tm

1,n

r’*.n; 1 T od ;
m+1,né m,n+
I.t',.j' )'tml'{rz','j' ) - tmlm
m+l,n myn

F ] 2]

240, t_. 0080 2A . t_ooe®
(—ﬁ?—l) +2 L— *gecd|tan 1( 3 n m# )-tan'l( 3 nz n )
L L
tm+1°°8 6+.'cn 2.1 t,co8 9+:cn :en +1



3 s iy i,d iy
'“3 tand I[ an (PM;I,M-J /rm’m-l) s, in (I‘mﬂ‘n /]‘ N ]

n+1z"(‘;;g,n+ ‘;t:zﬂ) - zn”"“t»;-j,n /‘tl:;fl)] I

Doja ‘——'

2 2
a, tand l [(tmz""’ 8- 'n+1) I (0, mt1 Tma,ned’

2 2 2
- (tm”coa 0~ an) n (sz’n /T

m-l,n)

2

- (t 008 )R.n (Qm

N+l /I‘ n+1

2 2 2
+(tmaoa6-an) n (Q T n)]

mn ' “m,

2 2

pooe 6

+e Yo ) [R.n mml,m-l/ m+1,n - mm,n+1/ m,n)]l

where

Qi’ - :cz + tzaoazﬂ .

(c-9)
The contribution of I 3 to J':‘"(x 22 Y j) can then be expressed as
r a 3 \
%,3
[a;, ag, a5, a,] * P , (c-10)
23,3
%43
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where from (C-6) and (C-7)

e [ [ o )

n n+l

-1 2Antm+1)‘ \ -3 2At A
tan 3 7| - tan 3 3 -
t +2 x A/ t +8 S A

m+1 n “n+l n n+l

20t A
-tan'l(z nim 2” A
t? + 2 x+18

To “’dplf AT {t

(on @ /T -

m+1 m+l,n

- n (8

m-ln+1/r Jl-t [n (@ /T )-

m+1,ntl m mn “mn

- m,n+1/r n+1)] dh

RV 20t .. A 28y t, A
+ 2(%-) f AM ltan'l ( 7 D mt 2) - tan”? (
0 1 tm+1 + xn xn+1 A tht xn ‘”n+1
) e d wx A1 (s . n (9 /T )
3,37 P n+1 mt1,n+1’ " 1 nel
0 1
- O st Tnones?] - S, [0 (1 Tme1
- n mm,n/rm, J1}Ydx +
/{2 )}dk

mt1,ntl “mtln m,n+1

> [ 2-1
A
+(Y-£')f 5 {an (@ /9 ) = in (§
1

i



s -p 2-1
-5 f ¢ " dp ’ f MA {S:u U @1 a1, ne?
0o

szlmm ) -t (® /T )1}

m,n+1/r n+1 ml,n/rml n mn’ “myn

IF

{tllﬂn( - fn (R

m+1,n/rm+1,n)]

m1, n+1/r 1, n+1

2[2"

]
<

/T < (R /T 1Y dA

m,n+1 m, n+1 mn’ "myn

{8n (0

m+1,n+1/ m1, w - (

)}dx

&
\
13

y n+1/ myn

vhere we have made the substitution ) = gecd in the above integrals.

Consider next the fourth term in ( C-1)
’

® Stl .2 ‘m
" Y A .
I, =4 yﬁ f sin (y 2 / a1, z)-xzdxf ¢ ? daf H(W) sin(y\t)
1 ‘ an tm

[(u1 + a, 8) + (“3 + o, 8)e t] dt




It is possible here to take the limit of the derivative with respect to

% as 3+ Obefore integrating over ¢ and &. Then

t
oI
lim gt = 4 Y3 fxs Vg dxf Yo f H(-t) sin (Y \t)
%0
*n
[(al + “2") + (m'3 + u4a)' t] dt .
Integrating over ¢ , then
® Bnt1 2
aI Y A8
. 4 2 2v/,2 0 . .
81235—--4 yo[ A A“=1 dA [ e {(a1+aza) gl+(a3+a4a) gzlda R
1 8
n

where

g1 = H (-tml)cos(yo)\ tm_l)-H(-tm)aoa(YoA tm) R
L] [ ] - 1 y -
gy = H ('trm-l) [tm+1 coa(YaA tm”) _;a—x-sm (YOJ\ tm+1)]

. . - 1 g
- H (-tm) [tm aos(Yo)\ tm) Vo-ram (YOA t‘m)] .

(c-12)

Integrating over 8 , we obtain

ar 3

. %4 V32 . .

ﬁ:g-é——-dyof A-1 {(a1 gy + 03 gy)0g5 + (0 g7+ % g5 94}dk s
1

where
2 2
Y.A'8 Y A's
g3-eo ntl _ o "

YAa

Gy= o ""'1(3 1

n+l

(C-13)
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The contribution of this integral to J:’”(xi,yj) can be

expressed as

(%] {“k,4} and k =1,2,3,4 , (C~14)

vhere

“1,4""’¢»I‘:'i'1‘91"’2'dA )

"2,4""""%[‘:16'1'91'94'‘ﬂ ,

“3,4"‘Yof'x' 7N TR
Wi -4y, r: AT gp * gq° dr . (c-15)

Finally the last integral in (C-1) can be written as

8 2 t
IS-ZYordAJ"*I eY°“deI"'*1 80w -
1 en tm
‘{fa +a8)+(a +as). t) einl2y At) dt (C-16)
1 2 ‘ (] » [}

integrating over t we obtain

8 2 T
.rs--zyorxdxf"”e““[(a +08) - (a +aa)/f’-1°z]
1 2 ) "

1 s,

ain(2y ONV-I * 8) ds
for Em <z + AT < Em+1

=0 otherviee.

Differentiating with regard to % and taking the limit as 3 + 0,

bt

B S 2 VI

Gz awr W



we obtain
oI 8 12
lmel ety | N ATTD ™ (0 +a08) 6 g
20 LI 2 1 8 1 2
n

--4y°rv'x!-1[a"g3+az.g4] a , Em<”£<€m+1'
1

The contribution of this integral to J’:’n(zi, j) can be

written as
(3] {"k,s} ad k =1,2,3,4 , Ep <% By .

(C-17)
vhere

41’5--4Y°I:|5: -1 s a

“z,s"”or'x’ 7B
1

n
We can now write J’:’ (:ci,yj) as

n
J':’ (”i‘yd) = [B,) ° {ak,l} A R {ak‘z tap gt t ak,s} .

and k = 1,2,3,4 . (c-18)



Appendix D

Numerical Analysis:

To determine the unknown values of |, numerically
we have to compute the coefficients of the matrix
given in (III-19) at a number of suitable control
; points (zi,yj) on 30 equal to the number of the
unknown yu’s . It is known from the potential theory
of double distributions that the limit of the normal
derivative of the potential exists on 8, under the
condition that the moment u have a continuous second
derivative with respect to £ and n in a neighbor-
hood of the point (234 4) [we refer the reader to
Kellogg, 1929, pp. 168] for more information. Accord-
ingly, the control points should be taken inside the
elements rather than at the nodal points for our
% analysis.

In order to be able to compute the values of
near the forward end of the body accurately, a different
perturbation scheme should be used to solve the non-
linear problem formulated in Chapter I near that edge.
We thereby obtain a local solution that complements
the solution we have, and will be matched with it
in the next section ([see Van Dyke, 1964, 4.9 for more

discussion concerning this method of solution]). Instead,

we will assume that the behavior of y near to this

e T Aot i Bk s ki e

el ey e
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edge can be expressed by the following relation

up(z) = uy o V1 - (3/28E) (1-D)

Furthermore, to simplify the numerical computations
this relation is approximated by a straight line,
which bounds the same area as that given by the above

equation, namely,

UMr1 = VM/3

Obviously, there will be a discontinuity in the pres-
sure jump at this forward end of the body. To obtain
the forces, the integration of the pressure jump has
to be extended to a point just off this end.

The control points (zi,yj) will be taken as shown

in the figure below.
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Now, to compute the coefficients of the matrix
for these control points, we need some efficient
means of evaluating the double intrgrals in (C-11),
which we will denote by D™" (aq,b) , and the inte-

grals in (C-15), which we denote by I™" (a,b) .

The D™" (a,b) Integrals:

These integrals can be written in the form,

p™* (a,b) = fo e~P dp Jx Fla,b;p,A) dX .
We will approximate the integral with respect to o
by using the integration formula for exponential
integrals given by Abramowitz (1468, 25, 4.45). The

result is the following:

n
p™" (a,b) = [ w,  Fyla,b;e;) + R, ,  (D-2)
1=]
where p; 1is the ith zero of the Laguerre polynomial

Ln(p) ;oW is the weight function given in tables

by Abramowitz, and Rn is the truncation error,

2
R = (n!) F(Zn)

n = a7 F1 (ts8if) 5, (0 < E <)

The function Fz(t,a;pi) is now defined by

F,(a,bi0,) = jl Fa,bip,\) dA .

The general behavior of the integrand F(t,a;pi,k)

is as shown in the figure below.

et
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This integral is evaluated numerically as follows:

)Y A
Fl(a,b;pi) = Il + Jkl F(a,b;pi,x) dx +

1
A2
+ Jo o Flabipnw) du (D-3) 5

where ), is the value of A at which the function
F()) starts decreasing monotonically toward zero.
Each of the above integrals in (D-3) is computed
numerically for each value of P; by using Lhe tra-

pezoidal rule.

The I™" (a,b) 1Integrals:

These integrals can be written in the form
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IM® (2. b) = Jx Fz(a,b;l) dx . (D-4)

The general behavior of the integrand Fz(a,b;k) is as

shown in the figure below

%FZ(AL\

\_/ -
A~

~

Numerically, the improper upper limit of inte-
gration will be replaced by a finite value i, . A
simple error expression FE(a,b;);) can be derived as

a function of the parameters a,b and A, as follows:

Ef(a,b;\y) = JAo Fz(a,b;k) dx

The function Fg(a,b;A) in the above integral can

be simplified considerably if we consider values of

A where X >> 1 Consequently the above integral
can be approximated analytically. This expression can
be used to find values of 1A, that achieve the
desired numerical accuracy. Knowing Ay, , the inte-
gral in (D-4) can be evaluated by the use of the

trapezoidal rule.



