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ABSTRACT 

Many Monte Carlo simulation problems lend themselves readily 
to tne application of variance reduction techniques.   These techniques 
can result in great improvements in simulation efficiency.   This docu- 
ment describes the basic concepts of variance reduction (Part I), and a 
methodology for application of variance reduction techniques is presented 
in Part II.   Appendices inciude the basic analytical expressions for 
application of variance reduction schemes as well as an abstracted 
bibliography. 

The techniques considered here include importance sampling, 
Russian roulette and splitting, systematic sampling, stratified sampling, 
expected values, statistical estimation, correlated sampl   g, history 
reanalysis, control variates, antithetic variates, regression, sequential 
sampling, adjoint formulation, transformations, orthonormal and con- 
ditional Monte Carlo.   Emphasis has been placed on presentation of the 
material for application by the general user.   This has been accomplished 
by presenting a step by step procedure for selection and application of 
the appropriate technique(s) for a given problem. 
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BASIC CONCEPTS OF VARIANCE REDUCTION 
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EXECUTIVE S\3MMARY 

Monte Carlo simulation is one of the most powerful and commonly 
used techniques for analyzing complex physical problems.   Applications can 
be found in many diverse areas from radiation transport to river basin 
modeling.   Important Navy applications include analysis of antisubmarine 
warfare exercises and operations, prediction of aircraft or sensor perform- 
ance, tactical analysis, and matrix game solutions where random processes 
are considered to be of particular importance.   The range of applications has 
been broadening and the size, complexity, and computational effort required 
have been increasing.   However, such developments are expected and desir- 
able since increased realism is concomitant with more complex and extensive 
problem descriptions. 

In recognition of such trends, the requirements for improved simula- 
tion techniques are becoming more pressing.   Unfortunately, methods for 
achieving greater efficiency are frequently overlooked in developing simula- 
tions.   This can generally be attributed to one or more of the following reasons: 

• Analysts usually seek advanced computer sj stems to perform 
more complex simulation studies by exploiting increased 
speed and/or storage capabilities.   This is often achieved 
at a considerably increased expense. 

• Many efficient simulation methods have evolved for specialized 
applications.   For example, some of the most impressive 
Monte Carlo techniques have been developed in radiation trans- 
port, a discipline that does not overlap into areas where even 
a small number of simulation analysts are working. 

• Known techniques are not developed to the point where they can 
be easily understood or applied by even a small fraction of the 
analysts who are performing simulation studies or developing 
simulation models. 



In addition to the above reasons, comprehensive references describing ef- 
ficient methodologies to improve Monte Carlo simulation are not available. 
It is the intent of these volumes to help alleviate the above shortcomings in 
Monte Carlo simulation. 

This document is the third of three volumes which present techniques 
and methods for developing efficient Monte Carlo simulations.   Each volume 
is essentially a self-contained discussion of useful techniques which can be 
applied in reducing computational effort in one of the following three major 
aspects of Monte Carlo simulation: 

• Selecting Probability Distributions - Volume I 

• Random Number Generation For Selected Probability 
Distributions - Volume IT 

• Variance Reduction - Volume III 

The purpose of these volumes is to provide guidance in developing 
Monte Carlo simulations that accurately reflect the behavior of various char- 
acteristics of the system being simulated and are most efficient in terms of 
computational effort.   The basic intent is to provide understanding of the con- 
cepts and methods for reducing analysis and computational effort as well as 
to serve as a practical guide for their application.   They have been prepared 
primarily for the systems analyst and computer programmer who have a 
basic background and experience in simulation and elementary statistics. 
Thus, the material is presented so as to preclude extensive knowledge of 
statistical techniques or of extensive literature search.   However, it is 
assumed the reader has a grasp of the fundamentals of Monte Carlo methods, 
simulation modeling, and elementary statistics. 

. 



VARIANCE REDUCTION 

1.   INTRODUCTION 

A useful feature of Monte Carlo simulation is that the analyst has 

the flexibility to dictate his simulation conditions and sampling plans to 

a much greater extent than does an experimenter in a real world environ- 

ment.   This extra latitude provides an excellent opportunity for optimal de- 

sigi: of simulations to obtain estimates with minimal sampling size.   This 

will effectively reduce the time and effort involved in computation as the 

number of trials necessary to achieve a given accuracy is thereby reduced. 

In view of the large number of situations where simulation results can be 

substantially improved, it is fair to say that no simulation problem has been 

justly treated until the possibility of applying variance reduction techniques 

has been seriously considered. 

The procedures which are available in the design of a Monte Carlo 

simulation for minimizing the required sample size are generally called 

variance reduction techniques.   The intent here is to provide the analyst 

with an understanding of and an appreciation for several variance reduction 

techniques and to provide a useful guide for selecting and using the most 

appropriate technique for his particular problem. 

It is difficult to provide a complete perspective on variance reduction 

techniques.   This is primarily due to the fact that there are an infinite num- 

ber of ways Monte Carlo simulation can be accomplished for a given problem 

and each could conceivably be used to calculate the simulation objective al- 

though with greatly different efficiencies.   However, it appears fair to say 

that the approach to improving simulation efficiency was not seriously 
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considered until the work on the atomic bomb during the Second World 
(\A\ 

War. hid work initially involved the use of "straightforward" Monte 

Carlo simulation for nuclear particle transport, but early in these investi- 
(18) gations Von Neumann and Ulam       applied certain variance reduction tech- 

niques.   A systematic development of these techniques was presented by 
(19) Harris and Lahn about 1948.v    '  Although comprehensive, this detailed work 

is difficult to apply to general problems. Subsequent application and develop- 

ment of variance reduction techniques has been almost exclusively carried 

out within the radiation transport community. This has resulted in limited 

application in other areas wAere Monte Carlo simulation is used. It is the 

purpose of this document to provide a ruechanism to aid in a wider application 

of variance reduction. This has been attempted by presenting the material 

in two parts. 

Part I, BASIC CONCEPTS OF VARIANCE REDUCTION, presents 

the fundamental principles and relationships among several variance reduc- 

tion techniques.   Part I is intended to provide the reader with a background 

and an understanding of variance reduction.   It is recommended that the user 

who is not familiar with the basic concepts review Part I before attempting to 

implement variance reduction. 

Part II of this volume, APPLICATION OF VARIANCE REDUCTION 

TECHNIQUES, comes as close as currently practical to being a step-by-step 

procedure for application of variance reduction.   However, the reader should 

have an understanding of the basic principles involved.   In most cases con- 

siderable ingenuity and insight will also be necessary.   The approach here has 

been to present a conveniextf. characterization of the various methods con- 

sidered for purposes o/selection.   This is followed by a summary of guide- 

lines on how to actually apply each method. 
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This volume also includes other information useful in applying vari- 
ance reduction techniques   to Monte Carlo problems.   Appendix / presents 
a summary of the pertinent analytical formulations and Appendix 5 is an 
abstracted bibliography of useful references. 



2.   CHARACTERIZATION OF VARIANCE REDUCTION TECHNIQUES 

In this section the general characteristics of variance reduction tech- 

niques will be introduced.   In Section 3 each method will be discussed in detail. 

2.1       C LASSIFICAT ION OF TECHNIQUES 

As the name implies, variance reduction is concerned with increasing 

the accuracy of Monte Carlo estimates of parameters.   A simulation using one 

or more reduction techniques can be contrasted with what may be considered 

the crude (sometimes called direct or straightforward) Monte Carlo approach 

where an attempt is made to create true-to-life or actual models of the process. 

In crude sampling, flows through the model and sampling probability distribu- 

tions are chosen to reflect the real situation as exactly as possible.   On the 

other hand, variance reduction techniques attempt to increase the effectiveness 

of the Monte Carlo method by: 

• Modifying the simulation procedure 
• Utilization of approximate or analytical information 
• Studying the system witWn a dillerent context or abstract 

representation 

Based on these approaches a general classification of several known variance 

reduction schemes is presented in Table 2.1.   Many of the techniques presented 

in Table 2.1 are related and it is difficult to arrive at a completely distinct 

classification.   However, the manner in which they are presented here is useful 

for subsequent discussions. 

Modifying the sampling process is usually achieved by using more ef- 

fective sampling techniques or altering the sampling distributions.  As an 

example consider the problem of estimating the probability of an early failure 

\n a piece of electronic equipment, and suppose that the failure distribution 

for this equipment is exponential with a very long mean time between failures 

(MTBF).   In a crude Monte Carlo evaluation the ratio of the number of early 

failure to the total number of simulated failures is very small.   Thus, in 

Preceding page Wank 7 



TABLE 2.1 

Classification of Variance Reduction Techniques 

MODIFICATION OF THE SAMPLING PROCESS 

• Importance Sampling 
• Russian Roulette and Splitting 
• Systematic Sampling 
• Stratified Sampling 

USE OF ANALYTICAL EQUIVALENCE 

• Expected Values 
• Statistical Estimation 
• Correlated Sampling 
• History Reanalysis 
• Control Variates 
• Antithetic Variates 
• Regression 

SPECIALIZED TECHNIQUES 

Sequential Sampling 
Adjoint Formulation 
Transformations 
Orthonormal Functions 
Conditional Monte Carlo 

order to generate confidence in an estimate for the probability of early 

failure, one must simulate a very large number of failures.   The num- 

ber of simulated events required can be substantially reduced, however, if 

the failure distribution in the simulation is suitably modified.   In particular, 

if an exponential distribution with a short MTBF is substituted for the actual 

failure distribution, more early failures v ill be observed, and thus a more 

accurate answer can be de^ivedwiifc lesp simulation effort.   This procedure 

is referred to as importance sampling.   Of course, the modifications intro- 

duced in the sampling distribution must be accounted for when determining 

the desired estimate since the failure processes, (actual and modified) are 
not the same. 



The above example, simulating events of very low probability, illus- 
trates one area where variance reduction techniques are always beneficial, if 
not an absolute necessity.   If the occurrence of an event in a process is on the 
order of one in a thousand, then one would expect an event to occur only once 
in every thousand direct simulations of the process.   Since the accuracy in 
measuring an event is related to ehe number of times it occurs, the crude 
simulation has to be run many thousands of times before much accuracy is 
achieved.   The common variance reduction procedure in these cases involves 
altering the simulation In atanown way so that the rare events can be ob- 
served more frequently. 

Other forms of variance reduction are based on the fact that analytic 
procedures are usually preferable to simulation.   Thus, reverting to simu- 
lation implies the problem does not have a readily available analytic solution. 
However, in many cases segments of the process may be amenable to deter- 
mining a closed form solution.   In other cases, the overall process or seg- 
ments of the process may be closely correlated to a simpler, approximate 
process with known analytic solutions.   In both situations substantial improve- 
ment can be realized by taking advantage of this knowledge.   This class of 
techniques is described by the term ''use of analytical equivalence". 

As a simple example of the use of analytical equivalence, consider 
again a piece of electronic equipmer*.   Suppose this time, however, that the 
failure distribution of the equipment is not exponential, but assume that the 
exponential distribution may serve as a first approximation to it.   The correla- 
tion approach to variance reduction involves investigating the failure proper- 
ties of this equipment by vüüqg advantage of this knowledge and simulating 
the difference between (he actual and the approximate exponential failure rate 
instead of simulating the actual process.   The properties of the actual process 
can then be inferred using the analytic properties of the exponential distribu- 
tion and the results from the simulation on the difference between the actual and 
exponential distribution.   This approach is called control variates. 



In addition to sampling modilication and analytical equivalence, there 
are certain specialized techniques that can be used to achieve variance 

reduction.   These procedures may include the application of one or more of 

the above techniques in its implementation.  One powerful procedure is called 

sequential Monte Carlo.   In order to effectively employ variance reduction in 

a simulation, some knowledge about the process and the answers to be genera- 

ted must exist.   One way to gain this information is through a direct simula- 

tion of the process.   Results from this simulation can then be used to define 

variance reduction techsün^s which will refine and improve the efficiency of 

a second simulation.   In complex problems, several iterations may be called 

for. 

Another procedure which often proves valuable in developing variance 

reduction procedures is to consider the process from various viewpoints. In 

many flow processes, for example, hints for effective importance functions 

can be gained by considering the process in reverse or looking at the mathe- 

matical adjoint of the problem under study. However, as with many of the 

specialized techniques described in Table 2.1, it is not adequately developed 

for general application. 

Generally variance reduction techniques can be aimed at reducing the 

variance of the estimate of only one parameter or aspect of the process 

being simulated.   Using variance reduction techniques on one parameter can 

reduce the effectiveness of the simulation to estimate other parameters.   It 

is very important, therefore,to first determine all of the results which will 

be desired from the simulation before searching for a technique to apply to a 

given situation. 

If several quantities (parameters) are to be estimated by the simula- 

tion, the selection of a variance reduction technique has to be considered 

from the standpoint of all of these parameters.  In many circumstances it 

10 



may be beneficial to create a different Monte Carlo method to estimate each 

parameter. The goal for each simulator would be efficient measurement of 

a specific parameter. 

Each of the techniques or procedures introduced in Table 2.1 will be 

discussed in detail in subsequent sections. 

2.2       VARIANCE REDUCTION AND KNOWLEDGE OF THE PROCESS TO 
BE SIMULATED 

As the discussion of the previous section suggests, variance reduction 

can be viewed as a means to use known, usually qualitative, information about 

the process in an explicit and quantitative manner.   In fact, if nothing is known 

about the process to be simulated, variance reduction cannot be directly 

achieved.   (However, sequential sampling may be used to generate the required 

knowledge.)  The other extreme from no knowledge is complete knowledge, 

and in this case a zero variance simulation can be devised.   Put very simply, 

variance reduction techniques cannot give the user something for nothing; it 

is merelv a way of not wasting information.   Therefore, the more that is known 

about the problem, the more effective variance reduction can be and the more 

powerful are the techniques that can be employed.   Hence, it is always impor- 

tant to clearly define as much as is possible what is known about a problem. 

Knowledge of a process to be simulated can be qualitative and/or 

quantitative.   Both are useful.   It is important to use all the information avail- 

able, and in fact it may be useful to do limited crude simulations of the process 

to gain some knowledge, especially if a little data might lead to extensive 

insight.   Selection of a variance reduction technique(s) for a particular simu- 

lation is thus peculiar to that simulation, and general procedures are difficult 

to establish.   However, the mental exercise and the initial groundwork that 

must be established in order to select or evalute the usefulness of applying 

these techniques is almost always worth the effort.   Searching for a technique 

11 



forces the simulation designer into asking the basic questions of: (1) "What 

answers are to be generated from the simulation/' and (2) what is known about 

the behavior of the process"? 

Problem definition is thus of paramount importance.   Before consider- 

ing variance reduction techniques it is important to characterize aspects of 

the problem which might indicate which might be fruitfully applied.   To evalu- 

ate the usefulness of these methods for a particular problem it is necessary 

to: 

• List all of the parameters to be estimated from the simulation. 

• Determine all the available knowledge on the internal workings 
cf the process to be simulated. 

In fact,clearly delineating such information is the basis for the approach pre- 

sented in Part n, APPLICATION OF VARIANCE REDUCTION TECHNIQUES. 

2. 3       INTEGRAL REPRESENTATION 

In principle a Monte Carlo procedure can be interpreted as a method 

for evaluating an integral, or more graphically, the area under a curve.   Since 

integrals can also be evaluated by analytic or numerical methods, reverting 

to Monte Carlo simulation implies either a very complex integration or, 

more generally, an inability to represent the problem in integral form.   Knowl- 

edge that the Monte Carlo proc dure does have an integral representation and 

determining the explicit form of that integral is fundamental to understanding 

and developing variance reduction techniques. 

An intuitive justification for the integral representation can be given 

by considering how the Monte Carlo method works.   The model of the process, 

or simulation, is cxe/*r/$&d numeroixs times.   Conclusions about the process 

are drawn by averaging the individual outcomes.   From a probabilistic view- 

point, averaging is a means for estimating particular types of integrals known 

as expectations or expected values. 

12 



Symbolically, suppose g(X ,... ,X )  is the outcome or result obtained 
from a simulation.   The X. values represent a particular outcome* from 
each of the random processes affecting the characteristic of the system being 
estim: ed.   To simplify the presentation, let x represent the vector 
(x.f...yx).   If f(x)  denotes the probability density function of 3 (i.e., 
joint probability density function of x^,..., x ),   then the objective of the 
Monte Carlo simulation is to estimate the integral 

I  = E[g(x)] = JgS)f(x)dx    . (2.1) 

A crude application of Monte Carlo would obtain an estimate I by 
selecting a random sample X.,... ,3tN from f(x)  and compute the sample 
mean using 

N 
I   . sj^g^) (2.2) 

i=l 

(14) The law of large numbers ensures the convergence of I to I  in most cases.   ' 

It is, of course, true that 1 is a random variable and that the expected 
value of I equals  I.   That is, 

E[I]  = I (2.3) 

It is said that I is an unbiased estimator for I when (2.3) holds.   This is 
important to keep in mind when estimators for variance reduction are con- 
structed since variance reduction can lead to biased estimators unless care 
is taken. 

* 
Using general notation, X represents a particular outcome of the random 
variable x. 

13 



An estimate of the error in the estimator I is given by the sample 
o 

variance S ,  where 

i=l (     l«l ) 
2 2 S    is commonly used as an estimate for a ,   the population variance, 

which is defined as 

o2  = E[(gS)-I)2] (2.5) 

o 
S    is also used as a basis for evaluating the effectiveness of Monte 

*,    o 
Carlo simulations.   A basic measure for such effectiveness if E[(l-I) ].   It is 
easy to see that 

E[(I-I)2] = a2/N (2.6) 

Note that as N -» -, E[(i-I)2] -♦ 0. ** 
9 2 2 

Now, since a    is estimated using S ,   an estimate for E[(f-I) ] is con- 
structed using 

The estimator    s    is often used as an absolute measure of the accuracy of 
a simulation. 

It is assumed that a simulation will consist of N statistically independent 
histories. 
Since E[(l-l) ] -* 0 as N ->»,   then I is said to be a consistent estimator 
lor I. 

14 



Use of the integral representation provides a convenient mechanism 
to develop and apply variance reduction in simulation, and if possible, such 
a representation should be established.   As a trivial example of how this might 
be accomplished consider the queueing system shown in Fig. 2.1.   Here t 
indicates time.   Further it is assumed that f (t),... ,f (t)  are probability 
density functions for the time required to go through the corresponding box. 
p..   and p*2 are respective probabilities for going along the paths indicated. 
Similarly for p«.   and p,«. 

It is easy to see that the average time to pass through the system 
is given by 

I  = J  ^f^+Pj^+p^W+f^ + fg^+p^fg^ + f^ldt 

=  J  tf(t)dt 
0 

which has the same qualitative form as Eq. 2. i.   Such integral representa- 
tion can greatly simplify the application of variance reduction techniques 
and will be used as a basis for the discussion presented later. 

»u f2(t) "21 * v« — 

f^t) f4(t) f   It)   - . f7(t) I5W 
P22 

i 

*%» l,W IS 

Fig. 2.1.   Schematic of a Simple Queueing System 
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2.4       EFFICIENCY OF VARIANCE REDUCTION 

This section presents the basic ideas and practical expressions for 

estimating the efficiency of variance reduction techniques. 

2.4.1 General Concepts 

The measure introduced in the previous discussion that will be used 
*    2 to evaluate the effectiveness of a simulation was E[(I-I) ].   This is estimated 

o 
using s    defined by (2.7).   That is, 

( N ) 
s2 = (fr^ s2>2,*i>-M (2-8) 

2 • s    is an estimate for the variance of I.   It can be shown that 

E[s2]  =  E[(i-I)2]  = (T2/N (2.9) 

where a    is the variance of g(x)  and N is the sample size or the number 

of histories. 

It can be seen from (2.9) that, as the number of histories,   N,   in- 

creases, the closer I will come to I. 

Another way to consider this is in terms of intervals of uncertainty. 
(14) For example it is known from basic statisticsv   ' that, with high probability 

the estimate I will fall between I - ko/^T and I + kaZ/T where k is some 

constant.   Thus for a fixed k,   the convergence of the estimate is related 

to the number of histories ,   N,   and the variance of g(x). 

Two approaches can be taken to increase the accuracy of the estimator, 

I.   One is to increase the number of histories.   The other is to reduce the 

variance  (o)  associated with each observation.   The disadvantage of increasing 

the number of iterations (i.e., the size of N)  is obvious.   For example, to re- 

duce the interval of uncertainty by a factor of two, thus doubling the accuracy, 
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four times as many histories would be required (for a fourfold increase in 

computing time).   Eventually it becomes prohibitively expensive to gain 

further accuracy by increasing the number of histories.   Therefore, 

achieving variance reduction which reduces the variance associated with 

each history,   a,   is highly desirable for improvements in the answers. 

To evaluate the efficiency gained in the use of variance reduction 

techniques it is clearly desirable to have a quantitative measure.   This can 

readily be established based on the ideas introduced above.   Suppose two 

simulation method exist for estimating the same parameter I.   Let the 
2 

variance per history associated with the first simulation method be a1   and 
2 that associated with the second be  a«.   It is desired that the result be known 

within an uncertainty of  c (i.e., the estimate I fall in the interval I-c 
2  2    2 to I+c).   For this to happen with high probability will require N- = k a Jt 

histories for the first method.   For the second method, it will require 
2 2    2 N?    k oJ(    histories.   In general the two methods will require different 

amounts of computational effort to generate each history.   Let the computer 

time taken per history by the first method be  t.   seconds and by the second 

t9 seconds.   Then the total time required for the first method to achieve the 
2 2       2 desired accuracy would be k cr1t1/c .   Total time for the second method 

2 2       2 would be k OWWC •   The relative efficiency of the two simulation methods 

is given by the ratio of the computing times required.   Thus, 

♦   2 t^i 
efficiency  =  c  = -^-j- (2.10) 

which is the relative time advantage gained by using the second method. 

In most appUcations a variance reduction method is being compared 
2 

to crude sampling.   That is,   t.   and a.   would be that obtained when crude 
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sampling is used, while t,  and a»  refer to the computation using the vari- 

ance reduction methorl. 

2.4.2   Estimation of Variance Reduction Efficiency 
2 

The difficulty in usvng definition (2.10) for efficiency is that a1   and 
2 a« are rarely known.   However, it is reasonable to replace them by tt\eir 

estimators and get an estimator for  e , 

c  = 

ts2 tlSl 

v; 
(2.11) 

where 

N, 
S'   = V1 

N, 

iiE^-'l 
i=l 

(2.12) 

with 

N, 

1 i=l 
(2.13) 

and A-,... ,^LT    being a random sample obtained with crude Monte Carl 

Also, 1 

si.   ** 2      N2-l 

N, 

^ '^ ■!j 

(2.14) 

with 

h = r2|j>? (2.15) 
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and X',... ,X'    being a random sample obtained using variance reduction. 
1 N2 

It is important to recognize that  c is a random variable and in practi- 
2 2 cal application will be subject to random variations.   In fact, as S1   and  S« 

f.re second order quantities, they will be subject to much larger variation 

than first order parameters such as I. 

Note that the use of (2.12) and (2.14) assumes that independent ran- 

dom histories were available.   However, the application of many variance 

reduction techniques will not produce histories that are statistically indepen- 

dent.   This is particularly true when stratified, systematic sampling, or 

Russian Roulette and splitting are used.   In some cases correlated sampling 

and history reanalysis will also produce samples Una! are not independent. 

In cases where a truly random sample is not available (or suspected 

to be not available), it is convenient to use a batching process to estimate 

the sample variance.   The general guidelines to follow in application of batch- 

ing are: 

1. Obtain a sample, say gß^J,... ,g(^J   consisting of N  his- 
tories (which may or may not be independent). 

2. Group the histories into batches such that the batches are in- 
dependent and equivalent.   For example, \t may be possible 
to arrange the histories so that the sample contained within 
any batch will be independent from the samples in any other 
batch.   However, the samples within a batch may be correlated 
with each other.   In the case of stratified sampling, each batch 
must consist of the same number of samples from the same 
strata.   (Tj'pically, the number of batches,   Ng,   should be be- 
tween 10 and 50.) 

3. Construct an average in each batch for the parameters being 
estimated.   That is, if g(5L),..., g(3tN )  are contained in 

tch 1, then set 1 1 batch 

Nl 

h-lt,*^ (216) 
1
   i=l 

where it is assumed that there are N1   sample in each batch. 
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4.    Construct a final estimate for  I using 

i = i ^ i. (2. IT) 
Bl.l 

2 
5.    Obtain an estimate for  a    from 

S2 = 

NB N 
1      V  (T Si)2 -     B 

NB 
^2 :2 

B   i=l 
(2.18) 

In essence, each batch is being considered as a separate small simu- 

lation run.   Parameters are estimated as the average of the estimates ob- 

tained in each batch.   The sample variance of the different batch estimates pro- 

vides a basis for estimating the variance of the final average.   This technique 

is completely general; it will work in all cases no matter what combination 

of variance reduction techniques are being used nor what kind of parameter 

is being estimated.   Batching may not provide the best estimate in all cases; 

usually a better estimator can be constructed for any particular techniques 

being used.   However, there frequently are easily-missed subtleties in en- 

suring that an estimator is based on independent and equivalent samples.   It 

is generally best to avoid the analysis required to generate an estimator valid 

for the particular methods employed - and also avoid the pitfall of constructing 

an erroneous estimator - by using batching to calcaVsftp variances. 

2.4.3  Estimation of Confidence Intervals 

In some applications, it is of interest to calculate confidence inter- 

vals for estimated parameters when variance reduction is used.   Under the 
(14) usual   assumptions,v      the confidence interval of size a can be obtained 

from the following expression: 
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where a may be obtained from Table 2.2.  The value of S may be obtained 

using (2.4) or (2.18).   Then, the interval 1 - — ; I + IL is said to be 

a 100 a% confidence interval for the estimate of I. 

2.5  THE PITFALLS OF OVERBIASING AND UNDERBIASING 

The goal of variance reduction is improved efficiency, that is, making 

the best use of computing time to simulate events which are most significant 

to the final answer.   In modifying the sampling to bring this about, it is 

possible to overshoot the mark and produce a sampling scheme that is so 

strongly biased as to be less efficient than crude samp' ing.   This is termed 

'overbiasing' or 'oversampling'.   The opposite term,  'underbiasing' or 

'andersampling', is used to apply to the crude or slightly modified sampling 

scheme when the result   depends heavily on infrequent events and not enough 

observations occurred for good statistics. 

It is a general characteristic of both overbiased and underbiased 

situations that most of the time the answers generated are too small.   Thio 

produces an apparently consistent bias in the results which can be more 

troublesome than poor confidence intervals in the result.   Furthermore, 

variance estimates are also generally small so that the confidence intervals 

calculated in the simulation will tend to indicate that the results are much 

more accurate than they really are.  This generates a false sense of security 

and faith in results which are actually consistently bad. 

As an extremely simplified example, consider a simulation in which 

there are basically two classes of events.  One type of event  (X )  occurs 

frequently (fCXJ = .9999) but contributes only a small amount (gOO ■ .01) to 

the final result while the other type  (event X«)   is rare (f(X2) = . 0001) but 
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makes a large contribution (g(X2) = 100) when it does occur.   In this example, 
the integral I being estimated has the correct value: 

I  = E (probability of event 1)* (value of event  i' 
i 

= KXjfcQCj) ♦ f(x2)g(x2) 

= .02 (2.20) 

However, using crude Monte Carlo with a moderate (several hundred to a 
thousand) number of histories, event X. would very probably never occur 
and the 'underbiased' answer would be recorded as 

Iu  -- g(X1)   =  .01 (2.21) 

If it was realized that X,  events made such a heavy contribution to the re- 
sult, one natural response would be to modify the simulation so that X„ 
events occurred frequently (see the discussion of importance sampling in 
Section 3.1.1 for an explanation of the /ormuias used in this example).   If 
this modification was carried to excess, say new probabilities of f*0Us< ^999 
and  POL) • . 0001  were used, then X.  events would not occur in a run of 
moderate size and the 'overbiased' estimate would turn out to be 

The proper modification for this example is to let X1   and X, events occur 
with equal probability,   f*(X J = i*(X«) =. 5.   Then, the contribution from 
each history is 

««vSjI *   oi- ^-.02 . lOvJJjJ. loo- Jp 
(2.23) 



and the final estimate from a small sample would be 

t  =   .02 (2.24) 

The above example is somewhat extreme but illustrates the general nature 
of most simulations where variance reduction is needed. The underlying dis- 
tribution is highly skewed with the large majority of cases making little or 
no contribution to the final answer while a small number cf cases can make 

large contributions.  In both the 'overbiased' and 'underbiased' example, 
the final estimates were smaller than the correct value and this is also a 
general characteristic of such cases.   In the example, if a set of 100 his- 
tories was simulated using crude Monte Carlo, then mast likely there 
would be no X,  events observed and the (incorrect) estimate would be  .01. 
Once in every 100 sets of 100 histories, a single X,  event would be simu- 
lated.   For that set of histories the estimate would be 

1'   -  1/100(99. .01 + 1-100]« 1.01  , (2.25) 

a number ve^y much larger ivvan the correct value.   (Notice that this makes 
the estlmalion average out correctly in the long run.)  Unfortunately, at this 
stage the human factor enters the problem.   Most users confronted with several 
similar runs giving values of .01 and one run giving 1.01 will decide that the 
1.01 estimate was the result of some input mistake or computer error, and 
throw out that run. 

In this example the variance estimates produced would be zero 
for all rutiS except the one in a hundred which had a mean value of  1.01. 
For this case the relative siaxv^rd «tomUon would be almost 100%, a sure 
sign of insufficient sampJing. 

Therefore caution is recommended in simulations where most his- 
tories contribute a small bit to the answer but a few histories contribute a 
large value, and complete faith should not be placed in estimates of variance 
«specially when the results are smaller than expected or if the possibility of 
overbiasmg or underbiasing is suspected. 
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3.   VARIANCE REDUCTION TECHNIQUES 

To provide a reasonable presentation of variance reduction, it is 
imperative that some organization be given to relate the various techniques. 
To this end the techniques or approaches for achieving variance reduction 
were grouped in the following three classes which were introduced in the 
previous section. 

• Modification of the sampling process 
t     Use of analytical equivalence 
• Specialized techniques 

A summary of the specific variance reduction techniques in each of these 
classes was presented in Table 2.1. 

The techniques which modify the sampling process effectively alter 
the probability distributions of the random variables so that the more signi- 
Pc-nt events are observed more often.   The use of analytical equivalence 
exploits analytical expressions and expected values to explain or approxi- 
mate the majority of the phenomena., thus leaving only the most interesting 
portions of the process to be simulated.   Specialized approaches encompass 
the more sophisticated techniques for achieving variance reduction. 

In this section of the report, the techniques presented in each of these 
three classes is discussed in detail. 

3.1       MODIFICATION OF THE SAMPLING PROCESS 

Variance reduction techniques in this class include: 

• Importance Sampling 
• Russian Roulette and Splitting 
t     Systematic Sampling 
t     Stratified Sampling 



These hare several common characteristics in that they all reduce 
the variance of the estimate by sampling from a probability distribution dif- 
ferent from the true physical distribution.  In this way more of the interest- 
ing events will be observed, i. e., more of the events that contribute to the 
result being estimated will be observed and less computing time will be 
spent on events of no importance to the results. These techniques also pre- 
serve the actual physical process of the system in the simulation mode.  Only 
the probabilities are altered; the flow of events remains essentially the same. 

3.1.1.1 General Concepts 

Under this scheme the sampling distributions which would be used in 
the direct simulation are replaced with ones which force the sampling into 
more interesting, or important regions.   For instance, in tossing a pair of 
dice, if one is interested in the occurrence of a three, one could weight or 
bias each die toward the numbers one and two.   The biasing of the sampling 
distributions is done in a Irnown fasAion so that this information can be used 
to alter the computation of the results so as to uhbias the answers. 

Mathematically the importance sampling idea can be illustrated by 
considering a Monte Carlo estimate of a parameter I where 

I = E[g(x)] - ;g(x)f(x)dx   . (3.1) 

The direct or straightforward Monte Carlo procedure would be as follows: 

e     Select a random aanq^ft X1,... ,XN from the distribution with 
density Ux) 1 ^ 

•     Estimate I using 

N 

1=1 



As indicated in Section 2.3, the sampie variance for this estimate is given 

i=l i=l 
(3.3) 

Now suppose the sampling was not from f(x),   but rather from a 
distribution f*(xV   Then it is clear from (3.1) that I may be expressed as 

I  = f SÖteV(x)dx 
f*(x) 

(3.4) 

where it is assumed f*(x)  does not go to zero when g(x)f(x)  is not zero. 

Now, if a sampling procedure were set up which selected a random 
sample X.,...^^ from f*(x),   then the new estimator for I would be 
given by 

N g(X1)f(X1) 

i=l ' 
(3.5) 

Thus, when X.   is selected from f*(x), the sample is weighted by mgm \ 

in the final result. Also, the sample variance is given by 

i=l 

N   rgOC^fOCj) 

WJT'h 
N WMJP 

"PBqTj - lj } (3.6) 

It is of interest to consider the expected value of the square of the difference 
between I* and I.   That is, 
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2. 
£[»! -1)  ]  =  E 

/i  ^e(W   \ 
ITT 2^    MX.)   -l) 
\      1=1 l       / 

i irrg(x)f(x)i f*(x)dx -1' (3.7) 

Now it is seen that if 

f*(x) . gWfW r (3.8) 

then £[(!. -1) ]  = 0, a desirable situation.   But this implies the ridiculous 
condition that I  is known.   (This is the extreme situation indicated previously 
in that if the answer is known, a sampling scheme can be developed with ex- 
pected zero variance.)  However, (3.8) does suggest that if something close 
to the form ^'x» ^ can be conveniently selected for f*(x)  then a large 
improvement in the simulation should be possible.   For example, consider 
Fig. 3.1. which qualitatively shows   f(x) and      ^ W .   A reasonable sampling 
function f*(x) which approximates €^iLxi is indicated,   f*(x) is called the 
importance sampling function since it tends to emphasize the areas where the 
expression   cflBS   is most important.    f*(x)  couid be something as simple 
and easy to work with as an exponential or normal distribution.   The aim of 
importance sampling can, therefore, be to concentrate the distribution of 
sample points in the parts of the interval which are most important.   This 
demonstrates again the utilization of knowledge of the process to accomplish 
variance reduction.  It is desirable of course that f*(x) be easy to work with 
(i. e., integrable) which is usually a conflicting requirement to having f*(x) 
as close to g(x

I
)f(x) as possible. 

+Note that if g(x) ever changes sign, a zero variance sampling function is not 
so easily obtained since i*(x) must be non-negative to be a density function. 
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Fig. 3.1.   Illustration of the Importance Sampling Concept. 

3.1.1.2 Compariaou oi importance Sampling with Straightforward Sampling 

Unless carefully implemented, importance sampling has the potential 
of giving worse results than crude sampling.   This can be seen by a com- 
parison of the expected values of the sampling variances in the two situations. 
That is, from (3.3) and (3.6), 

E[S2-S*]  = E[S2]-E[sJ] =  Jg2(x) [l -f^lttOdx (3.9) 

There is no assurance (3.9) WUWäpositive.   Therefore, in selection of 
f*(x),   a worse resuJt could be obtained from the selection of f*(x) over 
f (x) as the sampling distribution.   This can be avoided, however, by care- 
ful selection of the importance function f *(x). 



3.1.1.3 Extensiotis of Importance Sampling Concepts 

One extension of interest in variance reduction is in applications 
involving two or more variables.   To see how an importance function can 
be developed in the general situation consider the integral 

I x   f*(x) 
(3.10) 

Now, if a random sample £.,...,£» is obtained from the importance func- 
tion f*(x),   then the estimator for I is 

L 

The sample variance is of the sr me form as (3.6). 

As in (3. f), consider 

(3.11) 

2i E[(iriri = E 
1   N   g^g^ 21 

■»liJSgf"**■■'} 
(3.12) 

2, As in(3.7), the "best" (i.e., when E[(I -I) ] = 0) importance func- 
tion to select is 

f*^. *m r (3.13) 

The arguments for selecting f*(x) is, therefore, identical to those 
used for selection of f*(x).   However, in practice it is generally difficult to 
develop f*(x) due to the multidimensional aspects.   An alternate approach 
is to try to select some sort of conditional importance function.   For example, 
suppose x = (x,y).   Then an importance sampling function for x, say f*(x) 
can be developed as follows: 



I  = ;    g(x,y)£(x,y)dxdy = /     g(x,y)f(x)f(y|x)dxdy 
x,y x,y 

■ Ixv
Ö7i^L)Wf(y|x)dxdy  . 

1   igCK^Y^OCj) 

1=1 i' 

(3.14) 

Now, if X1,...,XN  is selected from f*(x)  and Yj,...,YN selected 
from f(y |Xi)f*(Xi),   then the estimator for I    is 

(3.15) 

The sample variance in this case is 

2        1    »fg^rgP^       f 
S    = N^lZ^    TOT""1! 

t=ll 1 J 

N 

N-l )     N2-r 
i=ll ~Fm     'll T 

(3.16) 

In a manner similar to that used to arrive at (3.12) it is easy to see that 

But 

E[VI)2J" 1 U x,y 

2 

gfoyWx) m f*(x,y)dxdy -l' 

=   1 j^ fttf ;y g
2(x,y)f(y|>c)dydx -12 j 

E[g2(x,y)|xJ -  f g2(x,y)f(y|x)dy 
y 

(3.17) 

(3.18) 
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so the "best" importance function is 

.    f( ata^^wj 1/2 
f*(x)  =    l™^lt ^U^J  (3.19) 

jJE[g2(x,y)|x]}      f(x)dx 

1/2 
which reduces (3.17) to -JJ- j[j|E[g2(x,y)|x] j       f(x)dx]2 j . 

In the general multidimensional case, it follows that the importance function 
for x should be 

1      2     H.     I1/2 

tHx)  n   f(x) [E[g (x^|x^  (3 20) 

j|E[g2(x,?)lxlt      f(x)dx 

where y refers to all the random variables except x. 

The estimator for I  and the sample variance are given respectively 
by expressions similar to (3.15) and (3.16). 

The selection of the "best" importance function implies of course 
that the answer being sought is known.   Thus, it is clear that the arbitrary 
selection of the best importance function would be a matter of luck.   How- 
ever, an understanding of the above formulations can lead to guidance to 
selecting an importance function.   For example consider (3.20).   In this 
case it may be possible to obtain an estimate for E[g2(x, y)|x] by perform- 
ing a simulation for fixed values of x and selecting an approximate form for 
the results.   This and many other variations become readily evident when 
serious considerations of importance sampling are undertaken.   General 
guidelines for achieving such benefits are out! !ned in Part H oi this document. 
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3.1.1.4 General Areas oL Applicability for Importance Sampling 

Application of the importance sampling technique can be very useful 

in simulations which are attempting to estimate very low probability events. 

One of the major areas to which this method has been applied is in nuclear 

physics in calculating probabilities concerning nuclear particle behavior. 

Examples are estimating the probability of penetrating a shield or barrier   or 

analysis of the wandering of particles within nuclear reactors.   Application 

of these techniques can also prove fruitful in problems which are more oriented 

towards operations research.   For example, in vulnerability studies of weapons, 

the number of critical hits on a target can be increased by reducing the circular 

error probability (CEP) of the weapon from that normally expected.   Another 

application is in queueing problems where improvements in estimates for the 

waiting time can be achieved by increasing the arrival rate or increasing the 

sen ico time. 

The effectiveness of importance sampling techniques are, of course, 

directly related to the ability to select good importance sampling distributions. 

This, in turn, is related to what might be called a priori or beforehand knowl- 

edge of the process being simulated.   In essence, il the answers to the ques- 

lions being sought are : •. 7»TOXima^ely or qualitatively known,   then very good 

iir.portance functions can be determined.   In less favorable situations, the use 

of importance sampling might involve an iterative simulation procedure.   For 

example, results from an initial simulation might be used to generate impor- 

tance sampling distributions in a second simulation.   Such iterations could 

proceed through several stages. 

It is also worth noting that in importance sampling, as is the case for 

most variance reduction procedures, the samples obtained from the resulting 

s^iuulation may be less effective lor estimating certain quantities than crude 

sampling.   Since the importance functions are selected to increase the ef- 

fectiveness of estimating specific quantities or parameters, the estimation of 
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other parameters, not involved in this selection, can be greatly impaired by 
this procedure. 

3.1.2 Russian Roulette and Splitting12'14> 16> 19> 20> 36) 

3.1.2.1 General Concepts 

This technique can be very effective in problems which are charac - 
terized by a series of events.   Examples are random walk, random movement 
of a submarine on maneuvers, subsystems in series, etc. 

Generally, simulation of a series process of this type can be structured 
such that during the simulation it can be examined at various stages.   At one 
or more of these stages it may be possible to establish whether or not the 
process is in an interesting or uninteresting state.   (Interesting means likely 
to contribute to the desired result.)  If the state of a given stage is not of 
interest, then one might want to restrict further investigation; that is, kill 
off the process with a known probability (Russian Roulette).   If, however, the 
process is in an interesting state, one may want to conduct additional investi- 

gations; that is, increase the number of simulations starting from that de- 
sirable situation (splitting). 

This technique can also be particularly useful for simulations involv- 
ing a large number of discrete situations.   For example, consider a queueing 
system in which a large number of individuals are being tracked.   Then at a 

certain stage in the problem, one of these individuals can be selected and 
removed from the system with probability p.   If this individual is not re- 
moved from the system he is allowed to continue through the system with a 
weight (l-p)-l= i/q.   This can be repeated with more individuals (with the 

same or different values of p)  until the number of individuals being tracked 
is reduced to a desired size. 

Conversely the number of individuals being tracked in the system 

can be  ncreased by splitting.    For example,  suppose an individual 
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has an assigned weight   w,    then he can be replaced by   n   individuals 
each having a weight w' = w/n.   The n individuals can then proceed inde- 
pendently through the system, except that the weight assigned at the splitting 
must be maintained. 

It should be evident from the above descriptions that Russian Roulette 
and splitting techniques can be useful when simulating events of low proba- 
bility and thus its application can prove beneficial in many of the same situa- 
tions where importance sampling may be indicated.   Indeed, there is a great 
resemblance between the two methods in that both force the simulation into 
interesting areas by moUification of the sampling distributions.   The differ- 
ence between the two is the method of choosing the important areas.   Russian 
Roulette and splitting is an "after-the-fact" or passive approach which uses 
a straightforward simulation but limits or increases the sampling as a func- 
tion of the events which occur during the simulation.   Importance sampling, 
on the other hand, attempts to force the paths into the more interesting areas 
by a prior alteration of the underlying random process. 

3.1.2.2 Application to a Two-Stage Problem 

To illustrate some of the more fundaments/aspects of Russian 
Roulette and splitting, consider the two-stage process in Fig. 3.2.   Let X 
denote the random observations from the first stage, and Y denote the ob- 
servations from the second.   Suppose the parameter to be estimated is 

I  = E[g(x,y)] (3.21) 

Crude sampling would generate pairs of values X^Y^... ;XN,YN and 
estimate I using 

N 

i=l 
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Suppose, however, it can be determined from the characteristics of 
the problem that certain values of X would proifejMy lead to more interesting 
results than others.  On this basis then, Russian Roulette and splitting would 
be implemented by dividing the first stage into the following two mutually 
exclusive sets of states: 

T The set of states where Russian Roulette is used and the 
simulation is terminated with probability p = 1 - q.   If the 
simulation continues, the estimated parameter is weighted 
by 1/q. 

t,:    The set of states where splitting is employed by breaking each 
simulation reaching a point in R2 to/o n simulations to be con- 
tinued from this point in the process.   The weight assigned to 
each new simulation is l/n of the weight of the original simulation. 

This procedure would be then repeated for N starting situations as shown in 
Fig. 3.3.   It is clear the sampling process has been modified and thus the 
estimator must be adjusted accordingly.   In this case the estimator becomes: 

I  = ME —q— +   Lj   JL—f (3.23) 

'XifRl X.cR2 3=1 

It can easily be shown that I is an unbiased estimator for I. 

Estimation of the sample variance in this case is easy to accomplish. 
Defining Ij (i.e., Ij = 0, g(Xi,Yi)/q, or .2- g(Xi,Yj) as the contribution to the 
estimator from history i,   and since 

N 

I  =   ^YX (3.24) 

then the sample variance is estimated using 

(3.25) 
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Alternately, batching as described in Section 2.4.2 could be used, although 
(3.25) is recommended. 

3.1.2.3 Application to a Three-Stage Problem 

Although the basic concepts of Russian Roulette and splitting are as 
simple as presented above, they can be applied to rather large multistage 
problems.   To illustrate this, consider the three-stage problem shown in 
Fig. 3.4 where it is shown within the context of a crude sampling.   Assume 
Russian Roulette and splitting is applied between the first and second stages. 
The procedure may be accomplished as follows (&«£ also Fig. 3.5). 

1. First general j a value for x, X.. If X.cR^, the history is ter- 
minated with probability p. = l-q.d. e., Russian Roulette). If the history 
is killed, there is no contribution to the estimator. 

2. If the history is not killed, a value for   y, Y., is selected.   The history 
now has a weight  l/q,.   If Y.cR«-,  \Jae history is terminated (Russian 
Roulette) with probability p. = l-q«.   If the history is not terminated here, a 
value of  z, Z.   is generated.   The weight of the history is then ((Mfo)'   and 
the contribution to the estimate for I is 

fO^Y^Zj) i. 

^2 

3. If the history is not killed on X (with weight l/q^ and Y^R^ 

then the history is split into  n« histories.   Next,   ru values for Z; 
B>t* • • • »li.    are generated and assigned weights 

11 lUg 

of this history to the estimator is 

■ 
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4. If X.cR12, then the history (with weight 1) is split into n^ values 

¥„..., Yn    and assigned weights 1/n^. 

5. Now, each Y.(weight = 1/nJ, | ■ 19.«. ,1.  is considered in turn. 

If Y.€R21, the history is killed with probability p2 = l-q2.   If killed, 

there is no contribution to the estimator.   If the history is not killed here 

a value for Z,   say Z.,   is selected.   The weight of Z.  is l/fn^).   The 

contribution to the estimator in this situation is now given by 

YcR "l^ 
21 

6. If Y.  (weight  1/nJ (R22> this history is split into tu histories. 

Then n0 values of Z are selected Z......, Z.      and a weight of r-=- I Jl       '   Jn2 ^ n-n« 
is assigned to each.   The contribution to the estimator along this patn is 

V^k=1 
n
ln2 

This procedure is repeated N times as indicated in Fig. 3.5.   For each X 

selected then the contribution to the estimator ia>for X.cR**, 

A Y^   ^i^i'2^ ^ 

Y.cR. 
i ^2 

Y^ w****1**) r 
i'"21 

JLä 
Yi<*22 ^ 

Vi 

i 

(3.26) 

and if X.cR,* 

\' 

„ gQC^Y^Z^ 

"A 
^ Atg^t^ 
La nln2 

(3.27) 
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Assuming the entire process is repeated N times (i.e.,: N starting values 
for  x, X-,... ,X    are selected) the estimator Is 

I = 
N 

1 Vt = I 
i=l YifcR22 J=1 

Vl 

( 
"a 

EISE 
f R22 ^ YJ^I 

nlq2 
(3.28) 

The procedure, although rather complex to write down as formal ex- 
pressions can be seen to be rather straightforward. 

As in the two-stage case, the best estimation to use for the sample 
variance is 

S2  = N 
in 

i r^ 42 «2 

i=l 

7 

(3.29) 

2 
S  can then be used to compare the efficiency of Russian Roulette and Splitting 
to the crude sampling. 

3.1.2.4   Weight Standards for General Application 

For a general application of Russian Roulette and splitting, it is best 
to introduce the concept of weight stamfards.   Let us presume that the problem 
has been broken up into several regions,   R-, R«,..., R».   (These 'regions' do 
not necessarily denote geometrical volumes, but rather ranges of the random 
variables that describe a state in the system being studied.)   For each region, 
there will be a high weight, Wj,., a low weight, w,., and an average weight, 
WA"   Now' whenever a history enters region i,   the current weight,   w,   of 
the history is compared to the weight standards as follows: 
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1. If w < w,., Russian Roulette is implemented as follows: 

• With probabUity  1 - —,   the history will be killed. 
wAi 

• With probability -^- ,   the history will survive with a new 
wAi 

weight of w...   (Note that the expected weight surviving 

from this process is  w,   which it must be to conserve 
weights). 

2. If w > w„.,   splitting is implemented as follows: 

• Find n such that w - nwAv*cN^li• 

• Create n histories which start from this point with a 

weight wAi. 
w-nwAi 

• With probability   ,   create one more daughter 
wAi 

history to start Ircnv this point with a weight w...   (This 

procedure conserves the expected weight while making all 

histories start from this point with the same weight,   w...) 

3. If w,. < w < wft..,   do nothing to the history. 

The underlying assumption in the above procedure is that each region de- 

scribes a volume of approximately constant importance.   The importance 

varies from region to region in a manner inversely proportional to the 

average weight,   w..   Thus, histories moving into a region of higher im- 

portance (lower weight) will be split while those moving into a region of 

lower importance (higher weight) will suffer Russian Roulette.   For maximum 

efficiency in allocating computer time, all histories in a region of constant 

importance should have the same weight.   The use of a fixed average weight 

standard, rather than fixed splitting parameter,   n,   or fixed Russian Roulette 

probability,   p,   ensures this in a multiregion setting. 
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The high and low weight standards,   wH and w,, are only used to 
define upper and lower limits for triggering the Russian Roulette and 
splitting processes.   If Russian Roulette and splitting are the only variance 
reduction techniques being employed and the history weights are not other- 

wise being varied, it is probably best to set wu = wA = WT •   (-)n ^ie otlier 

hand, if there are other techniques in use which are changing the history 
weights, it is best to put a spread between wH and w,   within which the 
weight is allowed to vary.   If the spiead between wH  and w.   is too small, 
there will be a loss oS efficiency due to computing time spent in the book 
keeping involved with frequent Russian Roulette and splitting actions. Con- 
versely, if the spread is too large, there will be a loss of efficiency as 
equal amounts of computing time are expended on histories with unequal 
weight. 

To estimate expected values and variances, the contribution from a 
single original history is computed using 

h = 2 «^jMfy (3-30) 

j 

where the summation runs over all contributions from split histories,   j. 
which originated from the same initial history,   i.   Then the final estimate 
of I for N initial histories is 

* -   * jn (3.31) 
N 

I 
i=l 

and the sample variance is given by (3.29). 
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3.1.2.5    Selection of Criteria for Russian Roulette and Splitting 

One difficulty in the application of Russian Roulette and splitting is in 
the selection of values for the parameters being used, either weight standards 
or Russian Roulette kill probability and number of splittings.   The ideal approach 
would be to select these parameters to minimize the variance in the estimate 
as was done with importance sampling; however, this is generally not practical. 
Consequently, intuitive information along with practical limitations (e.g., com- 
puter storage) and simplifications must be resorted to.   For example, if it is 

'felt* that a certain range of Y  is twice as important than the remainder of 
the range of Y,   then a splitting with n = 2 of histories inside the important 
range or a Russian Roulette kill factor of . 5 outside the range would be not 
unreasonable.   A clue to the optimum standards to be selected is given by the 
results of analysis for importance sampling (3.20) or stratified sampling (see 
Section 3.1.4).   In both cases the resulting weights will be proportional to 
E[g2(x)] ■*^*.   Thus the weight standards in a given region should be inversely 

proportional to the root mean square average of the 'pay-off or result function 
i. e., weight standards should be high in regions of low value and low in regions 
of high value. 
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3.1.3 Systematic StmpU^7'12'14'20'23'24'36) 

3.1.3.1 General Concept 

Systematic sampling is a procedure that modifies selection from the 
sample space in a somewhat structured manner.   This serves to reduce the 
random variation that is introduced into the results when crude Monte Carlo 
sampling is used.   An important characteristic of systematic sampling is that 
if used it will always result in a reduction in variance from the that obtained using 
crude sampling.   Also, the method rarely involves any significant effort to 
implement.   Unfortunately, the improvement is generally less than impressive 
although as a general rule it should be used whenever the opportunity arises. 

Its potential application can generally be associated with initial or 
starting conditions in a problem.   For example, systematic sampling could 
be applied to the distribution of interarrival times of individuals entering a 
queueing system, the initial position of a submarine in simulation of an ASW 
exercise, etc.   Generally, any Monte Carlo problem which has a probability 
distribution to characterize the initial conditions can be considered as a candi- 
date for application of systematic sampling. 

Two methods commonly used for systematic sampling will be described 
below.   As will be seen, systematic sampling is similar to stratified sampling 
to be described next.   Stratified sampling can be considered an optional form 
of systematic sampling. 

In each of the methods to be presented below, the usual form of the 

integral. 

L I  =  /     g(x)f(x)dx (3.32) 

will be considered. 

46 



- -     .-Hi" 

3.1.3. 2   Method I for Systematic Sampling 

In the first method lor applying systematic sampling, assume the 
range of the density function f(x)  is broken up into N equal regions each 
having an area  1/N (N should typically vary between 5 and 50).   This 
scheme is shown in Fig. 3. 6 for both the probability density f(x) and the 
cumulative distribution function   F(X) = j     f(x)dx 

Area ■ 1/N 

Li     .    Ifl   , L; 
mm        »I«     I« m     • • • «- LN 

LI  i L2 ih \r—+-1 ••• |* LN 

X m 

Fig. 3. 6.   Interval characterization for systematic sampling 
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It is clear that 

-7 f(x)dx      ;      j=l,...,N (3.33) 

j 

Now, assume a sequence of random numbers,   R,,..., R    is selected from 
the uniform distribution on the interval (0,1).   This form of systematic 
sampling will then generate the following sequence of numbers 

For each value of i, this procedure effectively assigns a value of R..  to 
each interval j. 

The next step is to determine X^ from 

R« -L 
The estimator for I is 

n n     N 

'-TTZ^-W EZg(v (3-36) 
i=l i=l   j=l 

where 

N 

Ij  =  -jf ^g^ij)       ;      l = l,...,N (3.37) 

is the contribution from the ith batch of histories. 
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The sample variance is computed using 

s2 = ^Jt/^Tr-n (3.38) i?rrS,i2"tl 

8.1. S. 3 Method n for Systematic Sampling 

A second and generally better method to perform systematic sampl- 
ing Is to allocate N independent samples to each interval defined in Fig. 3.6 
rather than scale each random number R^ into N Intervals.  This can be 

accomplished by selecting R..; 1 « 1,... ,n; j = lf... fN random numbers from 
a uniform distribution U(0,1).   Then,   n random numbers are allocated to 
each of the N Intervals using 

The values of   X.. are then determined from 

A R'    =/     f(x)dx (3.40) 

The estimators for the sample mean and variance In this case are given by 
3.36 and 3.38 respectively. 

Of the two methods described above, the second will always give the 
better answer in the sense of smaller variance.   However, Method n re- 
quires that a larger number of random samples be selected from U(0,1). 
Generally it is recommended that Method II be used in spite of the slightly 
additional computation effort required.   In both cases, the efficiency of 
systematic sampling compared to crude sampling Is approximately propor- 
tional to N2. 
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3.1.4 8trrtfl.dSMnpU^1'6'7'"'"■14'15'M-U'"■32-S>> 

3.1.4.1 General Concept 

Stratified sampling (sometimes called quota sampling) is similar to 
systematic sampling with additional considerations directed toward structur- 
ing the sampling process so that regions of large variance will receive more 
samples.  In this sense, therefore, stratified sampling seeks to combine 
the systematic and importance sampling schemes.   Alternately, stratified 
sampling can be viewed as a special case of systematic sampling where opti- 
mal distribution of samples is attempted. 

Generally, all the problem characteristics that serve to define the 
applicability of systematic sampling apply to stratified sampling.  However, 
if additional information on which portions of the sampling distribution tend 
to contribute more to the total variance is available, additional reduction in 
the variance can be achieved using stratified sampling. 

Assume the sampling range for f(x) is broken up into N regions of 
length L*,...,LN. In this case, however, assume L. is selected accord- 
ing to some specified P. where 

•fir*! 
x)dx      ;     j = l,...,N (3.41) 

Schematically this structure is sin&ar to that in Fig. 3.6.  In fact, if 
P. ■ 1/N,then this structuring irould be the same as systematic sampling. 

A general rule to follow for selecting the P. is to select them such that the 
variation in g(x)f(x) is the same in each of the intervals. 

Once the intervals L.,..., L*. are selected, the next requirement 

is to define the number of samples to assign to each interval. 
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More specifically, let n. be the number of samples assigned to inter- 
val L. where , 

J 
N 

The n.  samples can be assigned to Interval li. as follows: 

(3.42) 

by 

Select R-., ...,11^. from U(0,1).   TTien,   X..CL. are determined 

tWdx i = 1,..., n. (3.43) 

An unbiased estimate for I is 

N 

^ n. I) «rtxtj) 
i=l 

L** 
j=l 

J'j 

where 

To see that (3.44) is unbiased consider 

•'xcL.   J 

from which it follows that 

g(x)dx 

(3.44) 

(3.45) 

(3.46) 

'■S'A (3.47) 
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To select the n.,   consider 

E[(I - 1)^] = E 
^ * ll 

=  E 
N 

IgVrVl 
N   P2a2 

(3.48) 

where 

2 - [     ^ Erf* - Ijl2* " njEfCfj - y2] 

VLJ j 
(3.49) 

is the variance in the interval  L... 

Now, if the n. are selected to minimize (3.48) subject to (3.42), then it 
can be shown (24) that n. should be selected to satisfy 

J=i 

(3.50) 

Thus, the sample size in each interval should be selected to be proportional 
to the fraction of the variance in each interval.   The obvious difficulty is, of 

2 
course, that the a.   are not known.   However, they can be estimated using 

J ' 
SJ2  =nfi2>(V  'V-£l 

i     i=l J j —^ 
(3. 51) 

where nj  samples are arbitrarily selected in each interval. An iterative 
scheme can be structured to estimate n. as the sampling is carried out. 



The sample variance using stratified sampling may be estimated using 

2 N    p2   «M ÜL n PZ 

1=1  i    ui j=i ' 

nJ 

3 i=i 
(3. 52) 

or a batching procedure (see Section 2.4.2) could be used. 

As in the case of systematic sampling, the efficiency of stratified 
sampling in comparison with crude sampling is ii N2. 

3.2       ANALYTICAL EQUIVALENCE TECHNIQUES 

This group of variance reduction techniques is based on using prior 
knowledge of the processes involved to form analytical or approximate solu- 
tions to the problem being simulated.   This is another means to utilize informa- 
tion about the process and is also based on the fact that it is generally beneficial 
to use analytical solutions to parts of the problem whenever sufficient prior 
knowledge allows.   This may mean that a related process is solved exactly 
using analytical or other low variance techniques and that the difference be- 
tween the exact and related processes is derived by Monte Carlo techniques. 
AH of the techniques discussed below are based on this concept and many are 
very closely related in the principles and ideas involved. 

3.2.1  Expected Value<18-19'20'35'36) 

This technique is based on the fact that analytic determinations are 
usually preferred to results gained through simulation.   Thus any portion of a 
process which can be analytically determined should be replaced by its analy- 
tical x epresentation in the model whenever that can be done without losing an 
essential element from the simulation.   The name "expected mlue'* refers to 
the basic notion that Monte Carlo simulation of any parameter is equivalent to 
estimating its expected value, i. e., evaluating an integral.   Thus any portion 
of the simulation which can be evaluated analytically can be replaced by its ex- 
pected value, and this is likely to improve the efficiency of the simulation. 



. 

To demonstrate the application of the expected value technique, con- 
sider the two-dimensional integration. 

I ■ JJ,f(x,y)g(x,y)dxdy    . (3.58) 

This could, for example, be a two-stage problem such as that described under 
Russian Roulette and splitting (Section 3.1.2) and shown schematically in 
Fig. 3.7. 

Select a 
Value 

for x from f (x) 

Select a 
Value 

for y from f(y)x) 

Score 

-►    g(xl y) 

Fig. 3.7.   Crude simulation of a two-step process 

where first a random sample X is selected from the density function f(x) and 
then a random sample Y is selected from the conditional distribution f(y|X). 
Now, if this is repeated N times, the crude Monte Carlo estimator for I is 

N 
I  = i E^xi'Yi> • 

i=l 
(3. 54) 

Assume, however, that it is possible to compute the expected value of the con- 
ditional probability in the second stage given the result of the first stage,   X.. 
That is, suppose E[g(y|x)] Is known analytically. 

Then the simulation could be performed by simply generating N values 
for X , X^,..., Xj. and using the expected value estimator given by 

N 

i=l 
(3. 55) 
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This is an unbiased estimator for I since   Ep^l * I   . 

The sample variance is given by 

N I"    N "I 

i=i L 1=1 J 

It is easy to show that this approach will always give results that are better 
than the straightforward Monte Carlo procedure. 

The trivial nature of the above description should not be interpreted as 
indicating limited potential for this technique.   Indeed, its application often 
results in a difficult simulation becoming as easy one.   Furthermore, it can 
find application in a vast number of problems.   For example, in computing 
the average time spent in a queueing system, the simulation of the server(s) 
can be replaced by the mean service time.   In radiation tran»port, the 
stochastic absorption of particles is almost always replaced by a weighting 
system involving the expected absorption percentage. 

It is not always possible, of course, to calculate the expected value of a 
process in the simulation - if all expected values could be calculated analytically 
there would be no need for simulation.   Even if the expected value can be cal- 
culated, it may not be possible to replace the process by its expected value. 
The entire distribution involved in the process may be important in the simula- 
tion, or in other words, the second and higher moments may be important to the 
final answer and not just the first moment or expected value.   In a few cases, 
replacing the stochastic process can actually reduce the efficiency.   This may be 
true whenever the stochastic process is one of the decision points where the 
simulation may be terminated.   Replacing the termination decision by its ex- 
pected value involves assigning a weight to the history and modifying that weight 
to allow for the expected percftff&ge of terminations at each decision point. 
When the survival probability is small, this can lead to computing time being 
wasted in simulating a history which may have a vanishingly small  .eight after 
passing a few decision points. 



Several significant aspects must be considered before the expected 
value techniques can be implemented.   Generally, these are: 

1. Identify those parts of the overall simulation for which the 
expected value can be determined efficiently. 

2. For each such process identified in 1., a determination must 
be made as to whether the random nature of the process is an 
essential element of the overall simulation or whether it may 
be replaced by a deterministic process without loss of desired 
realism in the model, i. e., does the fact that the stochastic 
process results in a range of outcomes rather than a single 
expected value affect the final answers of the simulation? Or, 
put in different terms, replacing the random process by its 
expected value preserves the first moment of the distribution 
but alters all the higher order moments.   If these higher order 
moments are important to the overall answer (e. g., in deter- 
mining a probability distribution) then the stochastic process 
cannot be replaced by its expected value.   On the other hand, 
if the higher order moments do not contribute to the final result, 
then replacement by the expected value can be considered.   For 
a particular physical system, the determination of which stochastic 
elements are essential may depend on the particular parameters 
being estimated. 

3. Finally, it must be determined if the ««placement of the random 
process by its expected value will l/Wease the efficiency.   This 
is generally true, but not always.   If the process in question is 
a branch point where the history may go in either of two (or more) 
directions, then replacing the stochastic event by its expected 
value requires splitting the history with each part going in one of 
the directions and carrying the probability of that branch as a 
weight.   Should enough of these events be encountered the number 
of tiplit histories which must be computed can easily expand be- 
yond a reasonable bound.  Alternatively, one of the branches of 
the decision cut be to terminate the history; in this case the his- 
tory is not split but continues from the branch point with a weight 
representing the survival probability.   This can easily lead to 
histories with very low weights whicfc usually represents a loss 
in efficiency in the calculation.   Again, this determination is 
likely to depend on the particular parameters of interest in the 
calculation. 
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Once the decision has been made to replace the stochastic 
process by its expected value, the implementation depends on 
the role of the process in the overall simulation. Specifically, 

1. If the process is one of selection of a random variable, 
then the process becomes merely a deterministic setting 
of the variable to its expected value and the simulation 
proceeds as before with no change in estimators. 

2. If the process represents a decision between terminating 
or not terminating the history, then the history continues 
but with a reduced weight representing the probability of 
survival.   That is, 

wM1„ = w .. • p., (3. 57) new old    rs 

where p   is the probability of survival (non-termination) at 
the decision point and wold and Wnew are the weights of 
the history before and after the replaced random process. 
For any parameter being calculated, an estimate for each 
history can be made by summing the contributions from 
that history.   That is. 

M Wy g(X  ) (3. 58) 
j 

where   w« is the weight of the ith history at the time of the 
jth contribution to the final result.   Then the final estimate 
and the sample variance are given by 

f 
N 
I 
1=1 

■ i'fl ^ (3.59) 

and 

•A^^^] s2 -^i !^ F/iT-'n «Mo) 
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If the contributions to a parameter from a history would 
have come from the terminations in the process which was 
replaced by its expected value, then the loss of weight at 
each such step is the proper estimate for the expected 
terminations.   In this case we set 

h - E (woId,ij "  wnew, ij*' *<V =S wold, l^ *<V 
1 i 

(3. 61) 

where ] denotes the jth occurrence of the replaced event 
in the ith history. The estimators for I and S2 remain 
as in (3. 59) and (3.60) above. 

3.    If the process represents a decision between two or more 
branch points, then the history must be split and followed 
from that point on as two separate histories, each taking a 
different branch and carrying a weight equal to the proba- 
bility of that branch.   Parameters are estimated by summing 
weighted contributions from all daughter histories resulting 
from an original parent history, using formulas identical to 
(3.58), (3. 59), and (3.60). 

In cases 2 and 3 above, histories may develop weights which are 
very small.  As this may entail spending a good deal of computing time 
calculating histories that can make only a trivial contribution to the result, 
the efficiency may be very low.   To remedy this, Russian Roulette (see 
Section 3.1.2) can be used to eliminate those histories whose weights be- 
come too small. 

Figure 3.9 shows a schematic flow of a multistage simulation when a 
branch process that is a possible termination point for a history is replaced 
by its expected value.   This may be contrasted to Fig. 3.8 which shows the 
crude Monte Carlo approach to the same simulation and Fig. 3.10 which 
shows statistical estimation used on the same problem. 
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3.2.2 SUMjücaltottaation«12-18'19'20'34'35'36' 

It is not essential, and frequently not efficient, for a simulation of 
a physical process to be carried out to the natural termination of the process 
in estimating final outcomes.   It is always proper to stop the simulation at 
any point and to calculate through analytic or numerical means the expecta- 
tion of reaching any final outcome.   Indeed, the sooner the simulation is 
stopped and the more analytic calculations are done, the lower the variance 
will be.   Obviously, however, the sooner the simulation is stopped the more 
complex and difficult the analytic calculations become and the point is quickly 
reached wher- the overall efficiency is less despite the gain in variance re- 
duction.   At the last step in the simulated process, the probability of reaching 
the various final outcomes needs to be determined in order to do the simula- 
tion.   Thus, it is generally advantageous to use analytic expectations for the 
final step.  Whether the analytic calculations should be carried beyond the 
final step will depend on the particular process and results desired, but 
genera  . it is less efficient to use analytic expectations for more than the 
last step. 

If the process being simulated is a once-through process, i. e., the 
final step can be reached only once each history, ttoen the use of expected 
outcomes is equivalent to the expected value technique.   If the process is 
iterative or repetitive with many passes through a branch point where a final 
outcome is possible, there are two ways of using the analytic computations. 
One is by the expected value technique as outlined in the previous section. 
The other is called statistical estimation and should be used whenever the 
expected value technique would be inefficient.   In statistical estimation the 
stochastic process is not removed from the simulation, but the expected value, 
rather than the result of the simulation, is then used in the estimation. 

Consider a simulation consisting of many repetitive steps in which 
one step is a random choice between arriving at some final outcome,   Y.  , 
or continuing through the simul xtion process with some other value of y . 
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Let the probability of Yf at this step be P(Yf | X) where X denotes all the 
other random variables determined at earlier steps in the process.   In crude 
Monte Carlo, a random number,   R  , would be generated at this step, and 
if R < P(Yf | X)  , then the history would be terminated with a score of 1.   If 
R > P(Yf 15?)  , the history would continue with no score being made.   After 
N histories the estimate for the probability of reaching Yf would be 

*c<Yf> = B (3.62) 

where n is the number of histories which terminated at Y.  .   In statistical 
estimation, no change is made in the simulation process, i.e., a random 
number,   R  , is drawn and tested to see if the history continues or is termin- 
ated.   However, the estimation or scoring technique is changed.   Every time 
the particular step is encountered, a contribution of  P(Yf JX) is added to the 
estimate, regardless of what the actual outcome of the simulation was.   Then 
the final estimate is given by 

SE^f 

N 

<Y'>4E E^f'V (3.63) 

i=l      j 

where the j  summation runs over all occurances of the (possibly-) final 
step in the course of the i     simulation.   An estimate of the variance may 
be calculated from 

N 

s2 = frr E (*, - hw) 2       N 

i=l 

N 

N   /Li P?- 
i=l 

«WV 

(3.64) 

where 

ri - ^>oW 
th is the estimate resulting from the i     history 

(3.65) 
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The schematic flow for the statistical estimation technique in a multi- 
stage process is shown in Fig. 3.10 where it can be contrasted with the use 
of crude Monte Carlo (Fig. 3.8) and expected value technique (Fig. 3.9) for 
the same process. 

If the calculations do not get too complicated, the statistical estimation 
procedure can be extended to using the probability that the simulation will 
reach the desired end in one or two more stages.   If the analytic calculations 
of such expected values are difficult computationally, then statistical estima- 
tion may be less efficient than crude estimators.   In employing statistical 
estimation, the actual simulations which reach the desired end point must 
be neglected to avoid double counting and only the 'statistically estimated' 
results used. 

The use of statistical estimation will always improve the variance 
but it can be particularly useful if the probability of reaching the desired 
end point is small at all intermediate stages.   It becomes not just useful but 
essential when the probability of the end point becomes vanishingly small. 
In such a case no actual simulations would reach the desired end point and 
the crude Monte Carlo estimator would give a zero result.   If there were 
many intermediate stages which could, with very low probability, reach the 
desired end point, then statistical estimation might calculate the desired 
result with good accuracy. 
oooo       io* ^ c«     n    (8,9,12,14,16,18,19,20,34,36) 3.2.3  Correlated Sampling   >  »    '    »    »    >     »    *    * 

3.2.3.1  General Concept 

Correlated sampling can be one of the most powerful variance reduc- 
tion techniques due to the wide applicability of the technique as well as to the 
large efficiency gains which can be obtained. Frequently the primary objec- 
tive of a simulation study is to determine the effect of a small change in the 
system. A crude sampling approach would make two independent runs, with 
and without the change in the system being modeled, and subtract the results 
obtained.   Unfortunately the difference being calculated is often small compared 
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to the two separate results while the variance of the difference will be the 
sum of the variances in the two runs.   Thus the relative uncertainty in the 
difference is generally very large and it can easily happen that the effect 
being calculated is smaller than its statistical uncertainty.   In such cases 
the use of correlated sampling can be essential to obtaining a statistically 
significant result.   If, instead of being independent, the two simulations 
use the same random numbers at comparable stages in the computation, the 
results can be highly correlated.   The effect of this correlation is to reduce 
the variance of the difference in the two results while not changing the vari- 
ance in either individual result.   As a consequence the effect of the difference 
in the system will be known to a much greater accuracy than it would be 
otherwise.   Another way of viewing correlated sampling through random 
number control is to realize that the use of the same random numbers vill 
generate identical histories in those parts of the two systems which are the 
same.   Thus any difference in the results will be due directly to the differ- 
ence in the systems and not to random noise from the unchanged, but sto- 
chastic, elements in the rest of the stimulation.   This obviously leads to 
a gain in efficiency compared to the uncorrelated case. 

There are several types of situations where the use of correlated 
sampling is indicated.   These include: 

• The effect of a small change in the system is to be calculated. 
• The difference in a parameter in two or more similar cases 

is of more interest than its absolute value in any one case. 
• A parametric study of several problems is to be performed. 

This has greatest potential when the problems are relatively 
similar in nature. 

• The answer to one of several similar problems is known accur- 
ately. The answers to the unknown problems can often be esti- 
mated from the known result. 
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3.2.3.2 Analytical Formulation 

To provide insight into tie concept of correlated sampling, consider 
the following integrals which characterize different (but hopefully similar 
or related) problems: 

Ij  = J^Wgj^dx (3.66) 

and 

l2  = J^fciW^ (3.67) 

of primary interest is the difference 

A = Ij -I2    . (3.68) 

The obvious crude approach is to select N values of X from fAx), 

say Xv...,Xli and N values of Y from f2(y), say Yj,...^ and 
compute 

N N N 

*-h-h- i* Zfei<xi)-^Yi)i = w E«i(xi) - ZEHV 
i=l i=l i=l 

(3.69) 

The variance in  A is 

or2(A)   =  ajfij) * al(l2) - 2 cov (I^y (3.70) 

where 

2 
ajflj)   =  Iffij-Ij)1] (3.71) 

ajtfj)  = E[(i2-i2)2] (3.72) 
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and 

ccvari2) = Etdj -ij) (ig -VI = t&tty'hh (3,73) 

A A 

Now if L  and I« are statistically independent (i.e.,no correlation) then 

coy(lvl2)  = 0 (3.74) 

and 

a2(A)   =  CTJÖJ) + cr^Ig) (3.75) 

A A 

However, if the random variables L   and !„  are positively correlated then 

cov^,^) ^ 0 (3.76) 

and the variance in the correlated case will be less than that realized with 

no correlation. 

3.2.3.3 Implementation of Correlated Sampling 

The key to reducing the variance of the estimate of A in (3.69) is 

to ensure positive correlation between the estimators L  and  I«.   This 

can be achieved in several ways although the easiest to implement is to ob- 

tain correlated samples through random number control.   Specifically, this 

can be accomplished by using as many of the same random numbers as pos- 

sible in paired situations in the two simulations.   One way this might be 

accomplished is by using the same sequence of pseudo-random numbers in 

the two simulations.   For example, in the above problem the same sequence 

of uniform random numbers,   R-,...,IL, from U(0,1) could be used to 

generate the two sequences X-, ...,XN and ¥-,...,¥„ by using 

Rj    =  /        fjWdx   = / 
•'-co y_a> 

f2(y)dy (3.77) 
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Clearly the random variables X. and Y. are positively correlated since 
they both used the same Rj . In fact, if f j is very similar to f2 , the 
random sequences will be very highly correlated. 

As another example, consider a multistage problem where many of 
the events which occur at various stages are not subject to the differences 
in problem structure.   Then, identical random numbers should be used at 
those stages which are not impacted by &e problem differences to produce 
some positive correlation between the two simulations and to eliminate sta- 
tistical noise from parts of the system which are unchanged. 

It is difficult to be specific as to how random number control should 
be applied in a general problem.  As a general rule, however, to achieve 
the maximum correlation, the same random numbers should be used whenever 
the similarities in problem structure will permit this to occur. 

Use of the same sequence of random numbers in two separate runs means 
that the histories generated will be identical up to the point where the difference 
in the system first comes into play.   This complete correlation will obviously 
eliminate all variance in the difference due to the first, common part of the 
simulation.   In addition, it is possible to save computational time by doing the 
first simulation and storing the knowledge of the state of the system at the 
first point in the history where the difference in the two systems affects the 
simulation.   The second simulation could then start at this point rather than 
recomputing the identical first part of the history.   However, this frequently 
requires more programming effort to implement than is justified. 

If it is possible to return to the same sequence of random choices after 
the calculations concerned with the perturbation, then obviously all the variance 
in the simulation will be associated with the perturbation, with maximum ef- 
fectiveness.   However, this is generally not possible.   Usually the perturba- 
tion forces a difference in decision and the two histories proceed in divergent 
directions following the perturbation.  At the completion of one history and 



the start of the next, it is then necessary to re-synchronize the random num- 
ber sequences to begin the next histories identically. 

In order to estimate the variance in A cbtained through the use of 
correlation, it is necessary only to view A as if it were being directly simu- 
lated and to calculate the sample variance of the difference as 

c2 t   N S "in httf* 
i=l 

(3.78) 

where 

Ai = ^Cty - g2(Yi) 

(18) 

(3.79) 

3.2.4 History Reanalysis 

3.2.4.1  General Cone ept 

History reanalysis is essentially a form of correlated sampling except 
that one does not actually run a second simulation using the same random 
numbers as in the first.   Instead, the detailed results of the first simulation 
are reanalyzed to calculate an answer for the second process.   In this case 
the first process is treated as an altered or 'biased' modification of the second 
process.   In addition to the reduced variance obtained by the correlation, 
history reanalysis reduces the computational time involved by not actually 
performing the second simulation.   This can often lead to quite high effici- 
encies for this technique. 

Since history reanalysis is a form of correlated sampling, it will 
apply to the same types of problems indicated in Section 3.2.3.1.   However, 
there is an additional constraint that the differences in the systems being 
simulated must be expressible as a diiierence in a probability distribution 
or in the scoring function. 
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3.2.4.2 Analytical Formulation 

For the purposes here, it is assumed that there are two problems 
of interest which involve estimating Ij and Ig as given by 3.66 and 3.67. 
It is assumed that a random sample X.,... ,XN has been obtained from 
Mx).   The estimator for L  is as usual 

N 

i=i 

(3.80) 

Since 

g9(x)f9(x) 
I2  = Jf2(x)g2(x)dx  = Jf^x) Z

f (x)
Z     dx   , 

an estimate for I„ can be obtained using 

(3.81) 

N 

N   2~t 
i=l 

g2(xi)f2(xi) 
(3.82) 

where f^Xj) ^ 0 is implied whenever g^^X.) / 0.   This is of course 
very reminiscent of the formulas for importance sampling (see Eq. 3.5). 
The sample variance for I» is 

N 
s2 = ITi  {NS 

i=l 

g2(xi)f2(xi) 
-i: (3.83) 

which may be used in efficiency calculations.   However, to properly calculate 
the effect of the correlation, it is necessary to estimate the variance of the 
difference directly.   That is, if 

is the difference in the i    history and 

(3.84) 
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*• il th (3.85) 

i=l 

is the average difference, then the sample variance is 

s2  -     1 S  - in Iv^Ä^pf-*] (3.86) 

Alternatively, batching (Section 2.4. 2) can be applied to the differences. 

3.2.4.3  Further Considerations 

The equations in the preceding section show that by simulating 1*  and 

biasing the results appropriately, an estimate for I, can be readily generated. 

This can obviously be generalized to the case oi three or more similar 

problems.   The time saving gained by not making several separate simulations 

is obvious.   In addition, there will be all the advantages of high correlation due 

to the use of a common set of random numbers. 

However, the use of history reanalysis is not universally beneficial 

and may sometimes be less efficient than independent simulations.   The simu- 

larity of the equations for history reanalysis to those of importance sampling 

has already been noted.   It should then be clear that the random sample 

X||... ,XN which has been chosen from L(x)  is not likely to be the optimum 

choice, in the sense of 'importance', for the simulation of g2(x)f2(x).   Thus, 

the variance of I«  is likely to be greater than that which would be obtained 

from a direct simulation of I».   Hopefully, the gain in efficiency effected by 

the correlation and reduced computation will more than offset this variance 

increase but this will not be true in all cases.   Obviously the more similar 

the two cases are, the more optimum the selection will be for computing l«. 

Thus, history reanalysis works best for the problems which are most similar 

which are the cases where variance reduction is most necessary. 
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There is an important class of problems where history reanalysis is 
trivially accomplished.   This occurs when 

|g^(x)f^(x)  ,   in some region A 
(3.87) 

0        ,    elsewhere 

An example of this is a simulation that is run for a fixed real-time interval, 
Tj,   and it is desired to know the results of a case that was limited to a shorter 
time interval,   T,.   Then history reanalysis consists of making a single simu- 
lation with the longer time limit,   T ,   scoring for the first case all events, and 
scoring for the second case only those events for which time is less than T«. 

Several extensions readily come to mind.   Most significantly, parame- 
tric studies to determine the impact of several forms of a sampling distribution 
can be readily performed.   This capability is often overlooked in simulation 
studies resulting in considerable unnecessary expense. 

3.2.5 Control Vartates'11'14-20-24-34-36' 

3.2.5.1  General Concept 

In many situations where analytic models are difficult or impossible 
to develop, there exist simplications or approximations to the problem having 
analytic or closed form solutions.   In these situations, the analytic information 
can be beneficially exploited to reduce variance by what is referred to as con- 
trol variates.   With this technique, instead of estimating a parameter directly, 
the difference   between the problem of interest and some analytical model is 
simulated.   The variance reduction, or increase in accuracy in estimating the 
parameters of interest, is directly related to the degree of correlation between 
the analytic and the true process.   Application of this technique is again very 
general and should prove very useful when analytical representations of simpli- 
fied models for the system exist. 
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The control variate method has several of the features similar to those 
of the correlation technique and indeed in some instances is addressed within 
the context of correlation.   However, the manner in which this technique is 
applied is somewhat distinctive and, therefore, will be treated separately here. 

3.2.5.2 Analytical Formulation 

Again consider the integral 

g(x)f(x)dx (3.88) 

Assume that it is possible to determine a function h(x)  whose expected 
value is known (or analytically determinable) and which closely approximates 
g(x).   Qualitatively such a situation is shown in Fig. 3.11.   Let 

■;. 
9 = /    h(x)f(x)dx (3.89) 

../-OB 

and assume that 6  is known 

Then I can be expressed as 

+• +00 

I -  t  h(x)f(x)dx + /    [g(x) - h(x)]f(x)dx 

/    [g(x) -h(x)Jf(x)dx  = 0+^ (3.90) 
•/-00 

= e + 

The function h(x)  is called the control variate for g(x)  and may be some 
approximation (or guess) to g(x). 
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g(x) - Original 
Function 

f(x) - Density Function 

Fig. 3.11   Illustration for Control Variates 

Now, since h(x)  has been selected so that the first integration can 
be completed, simulation is required only on the second term, 

■.■/ 
[g(x) - h(x)]f(x)dx (3.91) 

If crude sampling is used to simulate L,   then a random sample would 
be obtained by selecting Xj,... ,XN from f(x)  and using 

N N N 
i = e + I/N^ gftj) - I/N]£ MXj) = e + I/NJ^ ^ (3.92) 

i=l i=l H 
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where 
A 
Ä.   = gCXj) -hCXj) (3.93) 

An estimate for the sample variance for purposes of efficiency calculations is 

given by 

•* • iri Mi Äf ■ **! <3-94) 

where 

N 
A   =  1/N J^ A. (3.95) 

i=l 

The use of control variates is but another manifestation of the use 

of information about the problem to reduce the variance.   In this case a 

knowledge of the approximate behavior of the system was used to advantage. 

Its effectiveness is greatly dependent, however, on how good h(x)  can be 

selected to approximate g(x). 

It is worthwhile to note that if an approximate shape for g(x) is not 

known, it is often possible to obtain an approximation by simply selecting a 

few values of x and plotting the results.   A straight line fit to the results or 

some other simple formulation may significantly improve the efficiency of the 

simulation. 

3.2.6 Antithetic Variate8(9' "■12'14'28'34'36' 

3.2.6.1  General Concept 

The concept of antithetic variates is somewhat related to that for con- 

trol variates except that, rather than seeking a function that is similar to the 

function being estimated, a function is sought which is negatively correlated. 
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The estimation process is then structured to exploit this negative correlation 
to reduce the variance in the estimator.   The basic idea can be used to develop 
very sophisticated and powerful methods.   Two methods will be presented below. 

3.2. A. 2 Method I for Antithetic Variates 

The use of antithetic variates can be introduced very simply as follows: 
consider again the parameter 1 to be estimated where 

I  =f    g(x)f(x)dx (3.96) 

Assume an unbiased estimator I.  for I exists.   For example, if 
crude sampling is used 

N 
Ij   =   I/NJ] gCX.). (3.97) 

i=l 

Suppose a second unbiased estimator,   I« for I also exists. 

A third unbiased estimator 6 for 1 can be constructed using 

6   =  1/2^+I2) (3.98) 

and 

E[e] = i 

The variance in the estimator 6 is given by 

a2(8)   =   1/4 a2^) + 1/4 a2(I2) + 1/2 cov (1^) (3.99) 

Now, if L   and I« are selected such that they are negatively correlated, 
then 

cov (^»Ig) < 0 (3.100) 
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If covU-,!«)  is sufficiently large (negatively), then 

a2(e) < a2^) (3.101) 

and 

(T2(e)<(T2(l2) (3.102) 

Thus, the combined estimator e  of K   and Ig will have a smaller variance 

than either I-   or ^o' 

The estimator,   I0,   is called the antithetic variate since it is an 
■ A 

estimator that compensates for the variation in L.   This is, of course, the 

concept of negative correlation. 

There is a convenient manner in which an antithetic variate can be 

obtained.   This is as follows: 

Consider the estimator *    to be derived from crude sampling.   To 

accomplish this a set of random numbers R-,...,IL* will be generated from 

ü(0,1)  and the corresponding values of X, say X-,... ,XN can be obtained 

from 

X. 

R.  = /     f(x)dx      ;      i = l N (3.103) 

It is clear that {X.}   are from the distribution f(x).   Now consider genera- 

tion (i another set of values of X, X',... ,XJj using 

Xi 
1-R.   =f     f(x)dx      ;      i = l>...,N (3.104) 

•'-00 

Again X',. • • »XJ, will be from the distribution f(x).   The pairs of values 

of X.  and X;   are, of course, correlated since the same random numbe 
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R.  was used to generate both values of X.   Furthermore, these values of 
X.  and X.'  are neglatively correlated.   That is, small X.  corresponds 
to large X*.   This is shown conceptually in Fig. 3.12. 

Defining 

ej = i/ifcOty ♦ g(Xj)] (3.1J5) 

Then the estimator for I using the antithetic variates is 

N N 

i=l i=l 
(3.106) 

X.   1. 

NOTE:   Small Xi Implies 
Large Xi - i. e., 
Negative Correla- 
tion 

Fig. 3.12 Schematic Showing a Method to Generate Antithetic Variates 
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The sample variance is determined from 

s2(e) N i       N      2    A 

wn I] (ei ■e) ■ in 1 K £ #i" ^ 
i=l i=l 

(3.107) 

3. 2.6.3 Method II for Antithetic Variates 

A second approach to antithetic variates that has proven very success- 
ful is to use a combination of stratified sampling along with antithetic vari- 
ates.  Corsder a case with 2 strata as shown in Fig. 3.13.   Assume the range 

a 

x 

Fig. 3.13 Method 11 for Application of Antithetic Variates 
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of f(x)  is broken up by Xa into the ranges  -oo<x<Xa and Xa<x<oo.   Now, 
suppose a random number is selected from 11(0,1),   Then select X. from 

oRj  = /    f(x)dx (3.108) 

and select X.' from 

+ (l^R.   = /    : f(x)dx  . (3.109) 

Clearly X.  and X;  are distributed according to f(x)  within their appropriate 
ranges.   Also,   X^ and X? are negatively correlated since small X.  implies 
large X: and vice versa.   Now define 

6i • og(Xi) + (l-a)g(Xi') (3.110) 

An unbiased estimator for I is 

N N 
e = I/N]£ 8. = I/N^^X.) + (i-a)g(x')] (3.111) 

i=l l«l 
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and the sample variance is 

.2   » L,y,#-f S*  = fpi a/N^f-^) (3.112) 

(       1-1 

If a =  1/2, then Eq. 3. Ill reduces to Eq. 3.106. 

The difficulty in the use of this second approach is in the selection of 
a.  A general rule is to select a such that 

g(Xa) = ag(XL)   +  (l-a)g(Xu) (3.113) 

where X„  and X.   are the upper and lower limits of the range of f(x). 

An alternate approach is to utilize a trial and error method to test various 
values of a and estimate the improvement realized in the efficiency. 

It is important to recognize that the choice of a will not impact the 
simulation In the sense that the estimator will still be unbiased.   However, it 
may result in some loss of efficiency if a poor value is selected. 

3.2.7  Regression(7,11,14) 

3. 2.7.1 General Concepts 

Regression techniques have found limited application in Monte Carlo 
simulation in spite of the seemingly important advantages that 

• They can be applied to a wide variety of Monte Carlo simulations 

• They will produce unbiased estimates 
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• They can be applied in a situation where correlation is known 
to exist and will take advantage of such correlation 

• If applied to a situation where no correlation exists, nothing is 
lost except the additional computational effort involved 

Its use appears to be rather limited due to the effort involved in 
formulation of the appropriate estimators and the difficulty encountered 
when attempts are made to view a practical simulation problem within the 
context of known formulations of the regression method. 

3.2.7.2 Analytical Formulation 

To formalize the regression method, assume a. set of integrals 
L,... ,1    are to be estimated.  Assume a set of estimates §.,...,6   (n^p) 
are available satisfying the condition that 

E[8j] = a^ + ... +ajpIp    ,    j = l n (3.114) 

where the matrix 

*11 * * * alp 

*oi • • • a«» 
A-   I    n ^     I (3.115) 

nl np 

is known.   It is assumed that a sample is available consisting of N  indepen- 
dent sets of simulated values for 9.,   namely 6..,... 6N.   ;   j = lf..., n. 
Then 

N 

Sj =   fr 2Ceij  ; J"1»«..." ^.116) 
i=l 



and the column matrix 

e = (3.117) 

can be readily constructed. 

Now, an estimate for the matrix f is desired where t is defined as 

1. 

(3.118) 

It will be recalled from elementary statistics that the minimum variance 
unbiased estimator for I  is given by 

f   .(X**-1*)-1*'*-1! (3.119) 

where 

ll,,,vln 
v21,,,v2n 

V = (3.120) 

lvnr,,vnn 

AM It* 

is the covariance matrix for e.,...,9    and A    is the transpose of A 



That is 

VJJ  = E[{ 6. - £(8^1 Sj - Eiefl] i = 1 n (3.121) 

Unfortunately v.. is usually not known.   However, an estimate for V,   can 

be obtained using 

N 

^ij  "iC^ki'V  (^"V   ; i=l,...,n (3.122) 
k=l J = 1,..., n. 

where 9. ; i - 1,..«v a are obtained from Eq. 3.116. 

and 

^U*'^In 
v21,,v2n 

V=|    * I (3.123) 

^2n,,,vnny 

The new estimator is therefore 

I*   = (AT V"1A)-1ATr1e (3.124) j 

This is still unbiased since 

E[i*] = I (3.125) 

It is recommended that batching be used to obtain an estimate for the 
. 2 variance a . 
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As it is formulated above, the regression technique is very easy to 
apply. All that is required is to obtain v and d from the sample values 
and use Eq. 3.124 to obtain an unbiased estimator for I. 

In spite of its relatively simple formulation which is based on some 
elementary statistical concepts, the method is difficult to apply in practice 
primarily because it is generally difficult to formulate the estimators 

8.,...,9 .   It has evidently been applied in only trivial situations and reali- 
zation of its full potential must await additional development and experience. 

Clearly, one characteristic a problem should have before attempting to apply 
this method is a linear combination of the estimator and parameters to be 
estimated as indicated by Eq. 3.114. 

3. 3       SPECIALIZED TECHNIQUES 

In the foregoing sections several very useful and well developed 
Monte Carlo techniques were presented and discussed.   There are, however, 

a large number of additional procedures that might warrant consideration in 
situations where some of the preceding techniques proved ineffective.  These 
are either not well developed (e.g., orthonormal) or they may be extremely 

specialized and have therefore found application in very specific problems 
(e.g., the adjoint method).   It must be recognized,however, that the application 
of these specialized techniques may bo necessary to achieve a reasonable 

answer in very difficult problems but should be resorted to after this becomes 
abundantly clear.   These specialized techniques are however fertile fields 

for further research into variance reduction. 

3.3.1  Sequential Samplii^14'19> 25> ^ 34) 

Occasionally there is little or no a priori information concerning the 
expected results of the simulation or perhaps «hat koowledge there is strictly 



qualitative with no quantitative values on which to base a choice of an impor- 
tance function or Russian Roulette or splitting standards.   In such a case it 
may be possible to use sequential sampling.   This is not a specific variance 
reduction technique but rather a general approach to the use of other techniques. 
In sequential sampling an initial run is made with little or no variance reduc- 
tion used.   Then the results of this first run are analyzed to calculate an 
importance function or used to estimate Russian Roulette standards, strati- 
fied sampling parameters, etc.   A second run is made using a variance re- 
duction technique with the parameters estimated in the first run.   Now these 
results can be analyzed in conjunction with the first set of histories, to improve 
the estimation of the sampling parameters.   A third run can then be made using 
the improved sampling parameters and this 'self-learning' process can be 
carried out through an indefinite number of stages with the efficiency of the 
sampling improving at each stage.   Despite the simplicity and intuitive appeal 
of such an approach, little or no work on sequential sampling has been per- 
formed. (There has been some development of 'self-learning' techniques applied 
to stratified sampling, and preliminary work is in progress in some other 
areas.)  Consequently little can be said regarding implementation techniques, 
trade-offs of computation required to estimate sampling parameters versus the 
efficiency gain from improved sampling, or possible pit-falls (e.g., can an 
initial choice of 'underbiased' or 'overbiased' parameters lead to estimation 
of parameters that are even more underbiased or overbiased with the sequen- 
tial process feeding on itself destructively?) 

3.3.2 Orthonormal Functions(14,19> 25> 30> 34) 

The use of orthonormal functions in general Monte Carlo simulations 
has received little attention, although it ooes have potential for greatly im- 
proving simulation efficiency when it is applied to problems having a large 
number of dimensions. 



Basically, the approach is to first define a sei of orthogonal functions 

over a region of multiple integration.   Next, a sampling scheme must be 

structured that will permit efficient sampling over this region from a joint 

probability density function.   In general the procedures to accomplish these 

tasks are not well developed and will not be further discussed here.   This does 

not imply, however, that the potential gains that can be realized with this 

technique are not worth the effort but only that no general guidelines or problem 

approach can be presented to provide reasonable assurance that the effort 

would be fruitful. 

3.3.3 Adjoint Method(15,17,21) 

In formulating the mathematical equations for the simulation of a 

process, it frequently is the case that there is another set of equations, "in- 

verted" or "adjoint" with respect to the first, that is mathematically equivalent 

in the sense that a solution to one set of equations will also give a solution to 

the second set.   This second set, the adjoint equations, may not represent any 

real process but can be simulated anyway.   Depending on the nature of the 

problem and the result being calculated, it may be easier or more efficient 

to simulate the adjoint equations than to simulate the direct process.   It may 

also be possible to split the problem into two parts, one of which is best simu- 

lated directly and one of which is best simulated by the adjoint process. 

There is a close interrelationship between the adjoint solution and the 

importance of sampling in the direct simulation.   This leads to interesting 

possibilities such as using approximate methods or a simplified process to cal- 

culate the adjoint, then using the adjoint solution to generate importance 

sampling for a full simulation of the direct equations.   Another alternative 
is a form of sequential calculation where direct and adjoint solutions alternate 

with each solution serving as the importance function for sampling the next 

solution. 
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As with many of the more powerful variance reduction techniquep, 
the adjoint has been exploited very successfully in the area of raoiation trans- 
port.   This was possible due to the formulation of the radiation transport 
problem in a precise (although difficult to solve) linear integral equation where 
an adjoint formulation could be easily established. 

Unfortunately, in most Monte Carlo simulations such a compact 
formulation is not generally available and furthermore would be difficult to 
develop.   However, the concept of the adjoint offers some intriguing possibili- 
ties.   For example, rather than tracing an individual history through the sys- 
tem in a natural manner, (i. e., from start to finish) it is possible to trace 
the individual from a final exit point to the starting position.   As an example, 
should an adjoint formulation be developed with respect to antisubmarine war- 
fare application it would not simulate in a forward manner to determine events 
that result in a submarine kill, but would rather start from a submarine kill 
and trace backward through the simulation to determine what sequence of 
events could have led up to the kill.   Many other applications could be en- 
visioned which could exploit the use of the adjoint cr backward formulation. 
This technique must however await further development and use before it be- 
comes a generally applicable method such as is found in importance sampling 
or correlation. 

3.3.4   Transformations^4'12,34) 

The transformation method is essentially a special form of importance 
sampling.   It differs from other types of importance sampling in that a priori 
information about the process is formulated in a parametric, closed-form 
representation which is then used to alter the sampling procedure by the 
transformation.   For example if an approximate, parametric representation 
of the importance function is known, then a transformation can generate an 
altered process where the important areas have greater probability and the 
unimportant areas have low probability. 



This method has been largely employed in radiation transport 
calculations where the functions of interest frequently have an approxi- 
mately exponential form.   There an exponential transform generates an 
altered process with a greatly reduced variance. 

3.3.5   Conditional Monte Carlo^ ^ ^ 34) 

If the particular problem being investigated is very complex in that 
it deals with a complicated sample space or the probability density function 
is difficult to select from, it may be possible to embed the given sample 
space in a much larger space in which the desired density function appears 
as a conditional probability.   The larger space and its accompanying density 
are chosen to be much simpler in definition although they involve more 
variables.   Simulation of the large problem can be much simpler than the 
original complex problem, and, despite the added computation required to 

calculate the conditional probabilities, the gain in efficiency can be quite 
high.   Furthermore, the added degrees of freedom gained by the added 
variables and the choice of a space and density function in which to embed 

the original problem can be utilized to secure additional variance reduction. 

Despite the potential power of conditional Monte Carlo for solving 
complex simulation problems, it has seen very little use.   In large part this 
is due to the creative leap needed to view the problem in a larger context and 
to design the larger space in which to embed the problem.   In addition, while 

the theoretical basis for this technique has been developed, very little in the 
way of practical examples or applications has been produced, and the method 

is still not well understood. 
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4.   SELECTION OF VARIANCE REDUCTION TECHNIQUES 

Unless one is very familiar with the concepts of variance reduction, 

the selection of a promising approach for a particular problem can cause 

considerable difficulty due to the large number of possibilities available. 

This section of the report will be directed toward aiding the analyst in selec- 

tion and implementation of an appropriate variance reduction technique or 

techniques.   This is accomplished by way of a systematic procedure to: 

• Define the problem information that can be used as a basis 
to select an appropriate technique or techniques. 

• Select the specific technique or techniques that should be 
considered for a given problem. 

• Provide basic guidelines to implement the selected procedure. 

Each of these aspects are described in Sections 4.1 through 4.3 respectively. 

There are several approaches to use tht information of this part 

with that of Part I.   The first, and probably the most effective, is to review 

briefly the material in Part I and then proceed to defining the available 

information on the problem, selecting the appropriate technique and proceed- 

ing to its implementation.   Alternately, the required information for selection 

of the particular variance reduction technique could first be defined and the 

procedure selected prior to reviewing the material in Part I. 

4. i   DEFINITION OF PROBLEM INFORMATION 

The usefulness of variance reduction techniques is ultimately deter- 

mined by how effectively known information about the problem is utilized. 

Problem definition is thus of paramount importance.   Before considering 

variance reduction techniques, it is essential to characterize the aspects of 

the problem that might indicate which techniques could be fruitfully applied. To 
evaluate the usefulness of these methods for a particular problem, it is helpful 
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to know the information defined in Table 4.1.   Such information is not strictly 
required as certain approaches (such as sequential sampling) can generate 
useful information, but this is not generally accomplished without cost.   Thus 
prior information is highly desirable.   The more that is known, the better 
the ultimate results will be.   This information will be used in conjunction with 
the characteristics of the techniques described in the next section. 

Consider item 1 in Table 4.1.   Here it is required to clearly define 
which parameters are to be estimated.   This could include mean values, vari- 
ances or probabilities.   Furthermore, if it is known that the problem is such 
that sensitivity or perturbation studies are to be performed, it is important that 
this be recognized at the outset.   Additional information of significance in- 
cludes the sequential nature of a problem, as well as identifying any input 
conditions that are random variables. 

Under the second item in Table 4.1, the significance of integral 
formulations for parameters to be estimated is pointed out.   The importance 
of integral formulations cannot be over-emphasized since it is this basic in- 
tegral structure which is used to understand almost every variance reduction 
method.   In addition to the analytical forms, the knowledge of various 
expected values in the problem and the availability of simplified analyt- 
ical expressions which are positively or negatively correlated with the 
parameters whose expected values are being estimated can provide key 
information as to the variance reduction approach to be finally implemented. 

Next, identifying intermediate events or parameters which assume 
significance relative to their importance, unimportance or insensitivity to 
the problem outcomes can provide valuable information.   A key ingredient for 
improving the efficiency of multistage simulations is identification of variables 
or outcomes in the problem that will probably lead to either important or un- 
important outcomes of the final events.   Finally, identifying those final outcomes 
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TABLE 4.1 

Recommended Problem Information to be Defined Prior to Selecting 
and Implementing Variance Reduction Techniques 

1. Define nature of the problem relative to 

•     expected values (means, variances^ probabilities, etc.) tobe 
estimated 
sensitivities, perturbations or variations of parameters of interest 
possible mathematical formulations (e.g., integral equations, 
expected values, etc.) 
any sequential characteristics such as iiiuepcndent paths, outcomes 
dependent on intermediate steps, etc. 
input conditions which are random variables to be sampled 

2. Identify portions of the problem or parameters to be estimated that can be 

expressed in an analytical form su :h as single or multidimensional 
integrals, differential and/or integral equations 
solved analytically, such as expected values, variances, probabilities, 
etc. 
represented by approximate, simplified positively correlated analy- 
tical expressions 
represented by approximate, simplified negatively correlated 
analytical representations 
established as relatively not important to final outcomes compared 
to other aspects of the problem 

3. Identify variables in the problem which 

are very important to the expected outcome 
are not expected to significantly impact the results 
over their range of variation have relatively little effect on the 
problem 
are strongly correlated with other variables 

ocate final events or outcomes of the problem which 

have very small probabilities 
have very large probabilities 
have outcomes relatively insensitive to problem parameters 
have known probabilities of occurrence from intermediate stages 
in the problem 
are linear combinations of other events or random variables 
have known correlation with other events or outcomes 
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which occur with large or small probabilities, are insensitive to problem 

parameters, have correlation with other events, or the final events which 

have known probabilities of occurrence from Intermediate stages will also 

prove to be very useful in effectively reducing the variance. 

It should also be recognized that, in general, variance reduction tech- 

niques are aimed at reducing the variance of only one parameter or aspect 

of the process being simulated.   Using variance reduction techniques designed 

for one parameter will usually reduce the effectiveness of the simulation to 

estimate other parameters.   It is very important, therefore, to determine all 

of the results which will be desired from the simulation before searching for 

a technique to apply to a given situation.   If several quantities are to be esti- 

mated by the simulation, the selection of a variance reduction technique has 

to be considered from the standpoint of all of these parameters.   In many cir- 

cumstances it may be beneficial (or even necessary) to implement a different 

variance reduction technique for each parameter.   This might be accomplished 

in the extreme case by developing a different simulator for each parameter of 

interest. 

4. 2  SELECTION OF VARIANCE REDUCTION TECHNIQUE(S) 

A comprehensive summary of the variance reduction techniques considered 

in Section 3 is shown in Table 4.2.   Here, each alternative is described briefly 

along with the suggested criteria for application.   In addition, advantages, dis- 

advantages, and typical applications are noted.  As will be seen many of these 

techniques are interrelated, although their method of application may differ 

substantially. 

Also shown for each technique is the section numbers of this report in 

which details of the approach can be found.   The first section noted refers to 

the material in Part I and the second references Part II.   As may be seen 

from a brief review of Table 4.2, there is substantial variation in the criteria 
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to be used for selecting various techniques.   This indicates, of course, the 

importance 0/problem de\vnition and the value of known information prior to 

selecting an approach. 

The results of the information requirements defined as noted in 

Table 4.1 can readi.'y be used in conjunction with Table 4.2 to define a recom- 

mended variance reduction approach.   For example, if at a certain stage in 

the problem it is known that a certain range of variables would not be of 

interest to the final outcomes relative to a second range of the variables, the 

application of importance sampling or Russian Roulette and splitting is sug- 

gested by Table 4.2.   The next step would be to proceed to the sections 

indicated. 

A list of references which describe one or more of the various aspects 

of each of these techniques is included in the corresponding section indicated 

u. Part I. 

4.3  PROCEDURES FOR IMPLEMENTATION OF THE SELECTED VARIANCE 
REDUCTION TECHNIQUES 

This section presents general guidelines to implement the more im- 

portant variance reduction techniques.   For convenience, the order in which 

the methods were presented in Part I will be followed here.   It is recommended 

that the material presented here be used in conjunction with that presented in 

the corresponding section of Part I.   Specifically, the implementation guide- 

lines are presented in the following subsections: 

4.3.1 Importance Sampling 
4.3.2 Russian Roulette and Splitting 
4.3.3 Systematic Sampling 
4.3.4 Stratiiied Sampling 
4.3.5 Expected Value 
4.3.6 Statistical Estimation 
4.3.7 Correlated Sampling 
4.3.8 History Reanalysls 
4.3.9 Control Variates 
4.3. \0 Antithetic Variates 
4.3.11 Regression 
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No procedures are presented for implementation of the specialized techniques 
(sequentiaJ sampling, orthonormal functions, adjoint method, transforinations 

and conditional Monte Carlo) presented in Section 3. 4 since these are not con- 

sidered to be well enough developed for general application. 

It should be mentioned that the material presented here is intended as 

a basic guide to provide general procedures for implementation of the variance 

reduction technique selected from Table 4.2.   In many cases, it is difficult 

to provide anything more than a rather general description of the steps to be 

implemented.   However, where possible specific formulae or recipes vAnch 

have generai applicability were included.   The specific analytical formulae 
of interest are also summarized in Appendix A. 

4.3.1  Importance Sampling 

Importance sampling is the term for modifying the sampling procedure 

in a manner '.hat will tend to emphasize the more important aspects of the 

problem.   The results must be corrected to account for this modification. 

importance sampling is, in many cases, necessary for obtaining ^ 

reasonable answer and, in other cases, can give outstanding improvements in 

efficiency.   This is particularly true when very small probability events can 

contribute significantly to the outcome of the problem. 

One danger with the application of importance sampling is that it can 

lead to results worse than that obtained using straightforward sampling.   Such 

a situation can occur when the importance function is not carefully selected. 

Furthermore, the method requires a fairly good understanding of the problem. 

4.3.1.1  Implementation Guidelines for Importance Sampling 

The general considerations that should be followed in application of 

importance sampling are as follows: 
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1.    AUempt to identify one random variable x for importance 
sampling and its density function f(x).   Express if possible 
the expected value being estimated as 

I=Jg(x)f(x)dx (4.1) 

2. Determine the functional form of g(x). This may be known 
analytically in trivial cases.   In complex simulations, it 
may be possible to input selected values of x (not necessarily 
from f(x))  and actually obtain an estimate for the form of g(x). 

3. Plot the shape of f (x)g(x) and select an imporlance iunction 
/*(x) that is "similar" inform to g(x)f(x). A sketch of the 
basic ideas involved is shown in Fig. 4.1. 

NOTE: Select f*(x) to approximate 
g(x)f(x) 

Fig. 4.1.   Qualitative Description of Importance Sampling 
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4.    The new estimator for I is 

N g(xi)f(Xi) 

'i = H 2 f^rr (4-2) 
i=l ' 

where X1,... ,X    is a random sample from f*(x). 

5.    The estimator for the sample variance is given by 

S2 N r i ^WJ2 J (4.3) 

i a random sample X1,..., XN  usmg 
from f(x)  and estimate L   and S^ . 

6.    Obtain a random sample X«,... ,X„ usfrg crude Monte 
Carlo 

Obtain an estimate for the efficiency of importance sampling 
using 

ts2 
c  =   -^r (4.4) 

where t    and t  are the times required to obtain N samples 
with and without importance sampling respectively. 

It should be noted that  c  is a random variable and is subject to 

uncertainty which will depend on the sample size N.   Thus, it is usually 

a good practice to make N as large as reasonably possible to obtain a 

good estimate for  c.   In the event several random variables are involved 

in the problem, the suggested procedure is: 

1.    Identify one random variable x for importance sampling 
and express the estimator as 

T       IfCxHJg^JmyfodyJdx (4.5) 

"here the vector y is all the remaining random variables. 
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2.    For a range of values of x,   estimate E[g (x,y|x)] where y 
are selected from Uieir corresponding probability distribu- 
tions.  If yi»'"»yn are random samples of y,   then 

g2(x,y|x)  =   i 2 «Wl^ (4.6) 
i=l 

is used to estimate E[g (x,y|x)] . 

Select f*(x) to approximate 

f(x)E[|2(x,y|x)ll/2  . 

(This can sometimes be accomplished graphically.) 

Estimators with importance sampling are now respectively 

V 
i=l 

N   gtf^WXj) 
■PIXT (4.7) 

and 

,2 N in 
1=1 L        *     J 

(4.8) 

The efficiency is computed in the same manner as in the previous case 

4.3.2 Russian Ro.<lette and Splitting 

Russian Roulette and splitting is a powerful technique that is easiest 
to apply when the problem is characterized by a series of events.  Examples 
are found in problems in queueing, series subsystems, radiation trans- 
port, random walk, etc. 
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This technique is in essence a simplified form of importance 
sampling.   One potential difficulty with Russian Roulette and splitting is 
the possibility that it may lead to a large number of histories being traced 
through the system at one time.  While Russian Roulette is generally easy 
to implement, incorporating splitting, (especially in an existing program), 
may be more difficult due to the need to ztore problem conditions and later 
'restart' in mid-history.   Following a 'split', the program must continue 
with the simulation of one of the histories until it terminates, and the 
program must then go back to the point oi the split and restore the 
program conditions at that time so that the next 'daughter' simulation 
can proceed. 

The general steps that can be followed for Russian Roulette and 
splitting are: 

1. Identify stages in the problem for which the possible conditions 
at those stages can be divided into regions  R-,R«,... ,RN 
such that all the points in any one region have roughly the 
same importance. 

2. Choose average weight standards,  w^., i = 1,   N, for each 
region that are inversely proportional to that region's im- 
portance.   The mean weight standard at any stage should be 
roughly the average weight expected to reach that stage from 
the previous stage. 

3. If no other variance reduction techniques are being employed, 
set high and low weight standards,   wH.  and w^.,   equal to 
the average,   w^..   If there are other variance reduction tech- 
niques in use whibh are causing weight changes, then Wfj.  and 
WL-   should be spaced sufficiently far above and below w^.   so 
that there is no unnecessary Russian Roulette and splitting'but 
also so that there is not a wide variation of weights among his- 
tories of roughly the same importance. 

4. Whenever a history arrives at a particular stage in region 
R. with a weight w, carry out the following manipulations: 

a.    If w < wL , play Russian Roulette: 

i.    Kill (terminate) the history with probability 1 -—?- »or 
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ii.   Let the history survive (continue) carrying a new 
weight w A  with probability w/w A . 

b. IX w,    < w < WJJ   ,   continue the history with weight w. 

c. If w>Wu , carry out splitting: 
ni 

i.    Determine n such that 0<w-nwA <wA 

ii.   Split the history into  n 'daughter* histories which 
start at this point with weight wA   . 

w-nw^. i 
iii. With probability   ,   create lae more daughter 

Ai 
history with weight wA  . 

5.   In scoring, accumulate the outcomes from all daughter his- 
tories which originated from the same initial or parent history. 
That is, form estimates 

Ij   =  53«(Xt)w4 (4.9) 
l, daughter of j 

6.   Form the final estimate by averaging estimates from N 
starting histories 

N 
* 1    ^C ** * 1 = ^ VJ (4-10>     i 

and calculate the sample variance: 

,2 
S 

r   N     i 
- JL    i  VT2   T2 

L    j=i       J 
(4.11) 

4. 3.3 Systematic Sampling 

There are two ways to implement systematic sampling.   Both are 
presented below although it is generally recommended that Method n be 
used.  The application of systematic sampling can be generally most ef- 
fective when initial conditions for a problem are selected from a probability 
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distribution, although other applications can be identified.   In any event 

it is convenient to consider the usual integral form 

i' I  =/    g(x)f(x)dx 

Method I 

(4.12) 

In this method, systematic sampling is implemented as follows: 

1. The cumulative distribution for f(x) is determined as indicated 
in Fig. 4.2. The range (0,1) is divided into N intervals, each 
of width  1/N as indicated.   N  should vary between 5 and 50. 

2. A random sample  Rj,... ,Rn of size  n  is selected from the 
uniform distribution U(0,1). 

3. Using the sequence, Rj.... ,R , n numbers are allocated to 
each interval using. 

i - J'Rl ■ 
i = 1,..., n 

(4.13) 

4.    Determine the values of X.. from 

R'j -L 
f(x)dx 

i = 1,..., n 
(4.14) 

F(X)  = 

±1 [^ ... [, 

Fig. 4.2.   Systematic Sampling 

LN 
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5.    Once the values for X..  are obtained, the estimator used for 
I is J 

'•aitZrfV- ht\ (415) 
i=l  j=l i=l 

where 

N 

j=l 

6. Estimate the sample variance using 

n 
q2        n       1  VT2    T2 

1=1 

Method n 

(4.17) 

In this method, the sampling is structured as follows: 

1. The cumulative distribution for f(x) fs determined as indicated 
in Fig. 4.2.   The range (0,1) is divided into N intervals, 
each of width  1/N.   N should vary between 5 and 50. 

2. n sets of N random numbers each,  RJJ, ... »R^;...; 
ILj,... »R^ are selected from U(0,1). 

3. n random numbers are allocated to each interval according 
to 

"ir'-rr1 ; 1:{:::::.; '4l8) 

4. The values of X..  are determined from 
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5. The estimator for the integral I  is then obtained with 

i-wt i><v ■it*1« (*■*» 
i=l    j=l i=l 

where 

N 

6. The estimate for the sample variance is obtained using 

S2  -    n S    = iTT 
i=l 

(4.22) 

It should be noted that the difference between Method IT and Method I 
is that the random numbers are generated independently in each of the  N 
intervals.   This requires more effort than Method I, although Method II 
will generally give better results. 

4.3.4 Stratified Sampling 

This variance reduction technique, sometimes called quota sampling, 
is similar to systematic sampling in that specific numbers of samples are 
generated in each of several intervals spanning the sample space.  In sys- 
tematic sampling the number of cases in each interval is determined from 
the 'natural' proportions of the process being simulated.   In stratlfjerf 
sampling, on the other hand, the number of samples in each interval is 
chosen to optimize the accuracy of the simulation. 
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Stratified sampling can be implemented in the following steps: 

1.    Break the range of the random variable being simulated into 
N intervals of length Lj,..., Lj, as indicated in Fig. 4.3. 
Typically N should be between o  and 50.   Each L* is 
selected so the variation in g(x)f(x)  is approximately the 
same. 

2.    Determine P*, the probability that x will be in the interval L*, 
from J ' 

xcL, 
x)dx      j = 1, ...,n (4.23) 

-H-5UJ samples 

Fig. 4.3.   Illustration of Systematic Sampling 
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3. Arbitrarily assign n.* ; ] = 1,... ,N as the number of 
samples to select fron each interval where En! = n, the 
total number of samples desired.   Select R*     r i = 1,... ,n.'; 
j = 1,...,N from U(0,1). 

%ij 

4. Determine X'   from 

R- P, + 

and determine 

f f(x)dx 

S ,2 
n'. i 

«j-i 

nj 
l Ä   2 
tfs 

i-Otj,) - r, 

where 

5. Determine n.  using 

n 
Ffi. 

where n is the total 

l?vn)- 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

sample size to be selected (i. e., 
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6.    Select R..    ;   i = n! + 1,.. .,n.   ; j = l,...,N from 11(0,1) 
and determine X      ;   i = nW lf..., n    ; j = lt...,N from 

| VJ
+
E

P
^JL  

f(x)dx 
(4.28) 

2 
7.    Estimate I  and a    using 

1 • S"'1 
I] (4.29) 

S2 

where 

i;¥f[^^-*'f] 
j=i j    i i i=i J 

(4. 30) 

1    ^ 
J   i=l 

2 
The efficiency of stratified sampling can now be estimated using S    as 
determined in the last step. 

If the 

(4.32) 
^   '^      "1J   "'" 

are known or can be estimated from a priori knowledge of the system being 
simulated, ttu 
directly from 
simulated, then steps 3 and 4 can be omitted and n.  can be determined 

110 



nP.a. 
fij *    ^J J (4.33) 

Alternatively, steps 3 through 5 can be performed iteratively to determine 
a best set of values for n^,..., n,. 

4.3.5   Expected Value 

In any simulation consisting of several stages, it may IM that the 
expected value of some of the stages is either known or can be determined 
analytically.   In such cases the possibility of achieving variance reduction 
through replacing one of the random stages by its expect jd value should be 
investigated.   The steps which must be taken to determine if replacement 
by an expected value is feasible are: 

1. Identify the stochastic processes in the overall simulation for 
which the expected value can be calculated efficiently. 

2. For each stochasUc process identified in 1., determine if the 
random element in the process is an essential part of the 
simulation model.   If the fact that the process randomly takes 
on a range of values affects the rest of the simulation, then 
the process cannot be replaced by its mean value.   If, on the 
other hand, only the first moment of the random distribution, 
and not any higher moments, affects the rest of the simulation, 
then it is possible to replace the random process by its first 
moment or expected value.   For any given physical system, 
the determination of which stochastic elements are essential 
usually depends on the particular parameters being estimated. 

3. u axandom process can be replaced by its expected value 
without loss of realism, that will always reduce the variance. 
However, it may not improve efficiency as it may cause 
excessive computation.   If the process in question is a branch 
point where the history may go in either of two (or more) direc- 
tions, then replacing the stochastic event by its expected value 
requires splitting the history with each part going in one of the 
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directions and carrying the probability of that branch as a 
weight.  Should enough of these events be encountered the 
number of split histories which must be computed can easily 
expand beyond a reasonable bound.   Alternatively, one of the 
branches of the decision can be to terminate the history; in 
this case the history is not split but continues from the 
branch point with a weight representing the survival proba- 
bility.   This can easily lead to histories with very low weights 
which usually represents a loss in efficiency in the calculation. 
Again, this determination is likely to depend on the particular 
parameters of interest in the calculation and it is impossible 
to give general guidelines. 

Figure 4. 4 shows, in abbreviated form, the considerations used 

in choosing between expected value, statistical estimation, and crude 

Monte Carlo techniques for the simulation of a random process. 

Once the decision has been made to replace a stochastic process 

by its expected value, the implementation depends on the role of the 

process in the overall simulation.   Specifically, 

1. If the process is one of selection of a random variable, then 
the process becomes merely a deterministic setting of the 
variable to Us expected value and the simulation proceeds as 
before with no change in estimators, that is, if y is to be 
selected from f(y), then set 

y=E[f(y)] (4.34) 

and continue the simulation. 

2. If the process represents a decision between terminating 
or not terminating the history, then the history continues 
but with a reduced weight representing the probability of 
survival.   That is, 

wnew = wold,p8 (4.35) 

where ps  is the probability of survival (non-termination) 
at the decision point and WQJ^ and wn     are the weights of 
the history before and after the replaced random process. 

For any parameter being calculated, an estimate for each 
history can be made by summing the contributions from that 
history.  That is. 
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Consider P Stochastic Process that is 
Part oi a Simulation Process 

No 

Can the Expected 
Value be Computed 

Analyticuily? 

I Yes 

;d V No 

IYCP 

Is it Efficient to Replace the 
Process by its Expected Value? 

JN° 

Can the Expected Value be 
Used in Calculating Contri- 
butions to the final result? 

I Yes 

Use SUiUStoai Estimation 

(Can the Process be Replaced \ 
by its Expected Value without | 
Loss of Necessary Stochastic / 
Detail in the Simulation?        V 

Simulate the Stochastic Process 
but Use Expected Value Estimator 

Use Crude Monte Carlo 

Simulate the Stochastic Process 
and Use Hit or Miss Estimators 

Use Expected Value Technique 
Replace Process with Expected 
Value in Simulation and 
Estimators 

Use Crude Monte Carlo 

Simulate the Stochastic Process 
and Use Hit or Miss Estimators 

Fig. 4.4    Problem Characteristics and the Choice of Crude Monte Carlo, 
Expected Value, and Statistical Estimation Techniques 
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\ = E wij K(Xij^ <4-36) 
j 

f h fh 
where   w..  Is the weignt of the i    history at the time of the j    contribution 
to the final result.   Then the final estimate and the sample varianc i are 
given by 

I   =   1/N>   I. (4.37) 

and 

''•Jkhp-V (4. 38) 

If the contributions to a parameter from a history would have come 
from the terminations in the process which was replaced by its expected 
value, then the loss of weight at each such step is the proper estimate for 
the expected terminations.   In this case we get 

I.   =   Yiv^ u-w        J.g(X..) = Vw,. .^d-p )-g(XJ)       14.39) i       Z^x old, ij    new, ij        ij       Z^   old, ij      ^s   BV ij 
j j 

fh fh 
where j denotes the j     occurrence of the replaced event in the i 
history.   The estimates for I and S    remain as in (4.37) and (4.38 
above. 

3.   If the process represents a decision between two or more branch points, 
then the history must be split and followed from that point on as two 
separate histories, each taking a different branch and carrying a weight 
equal to the probability of that branch.   Parameters are estimated by sum- 
ming weighted contributions from all daughter histories resulting from an 
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original parent history, using formulas identical to (4.36), (4.37) and (4.38). 
In cases 2 and 3 above, histories may develop weights which are very small. 
As this may entail spending a good deal of computing time calculating his- 
tories that can make only a trivial contribution to the result, the efficiency 
may be very low.   To remedy this, Russian Roulette (see Section 4.1.2) can 
be used to eliminate those histories where weights become too small. 
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4.3.6 Statistical Estimation 

It is not essential, and frequently not efficient, for a simulation of 
a physical process to be carried out to the natural termination of the process 
in estimating final outcomes.   It is always proper to stop the simulation at 
any point and to calculate through analytic or numerical means the expecta- 
tion of reaching any final outcome.   Indeed, the sooner the simulation is 
stopped and the more analytic calculations are done, the lower the variance 
will be.   Obviously, however, the sooner the simulation is stopped the more 
complex and difficult the analytic calculations become and a point to quickly 
reached where the overall efficiency is less despite the gain in variance re- 
duction.   At the last step in the simulated process, the probability of reaching 
the various final outcomes needs to be determined in order to do the simula- 
tion.   Thus, it is generally advantageous to use analytic expectations for the 
final step.   Whether the analytic calculations should be carried beyond the 
final step will depend on the particular process and results desired, but 
generally it is less efficient to use analytic expectations for more than the 
last step. 

If the process being simulated is a once-through process, i.e., the 
final step can be reached only once each history, then the use of expected 
outcomes is equivalent to the expected value technique.   If the process is 
iterative or repetitive with many passes through a branch point where a final 
outcome is possible, tnere are two ways of using the analytic computations. 
One is by the expected value technique as ou lined in the previous section. 
The other is called statistical estimation and should be used whenever the 
expected value technique would be inefficient.   In certain cases where the 
probability of the desired final outcome is extremely small, statistical estima- 
tion may be the only way to obtain an answer.    Figure 4.4 shows, in abbrevi- 
ated form, the considerations used in choosing between statistical estimation, 
expected value, and crude Monte Carlo techniques for the simulation of a 
stochastic process. 
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Statistical estimation is implemented as follows: 

1. Identify the stochastic processes in the simulation which have 
the desired final outcome as one possible alternative. 

2. Each time such a process is encountered in simulating a history, 
a contribution of 

g(^,^)f(^|3t) (4.40) 

is scored, where g(x, y)  is the function being integrated by the 
simulation.   Yf   is the desired outcome of the particular process 
at hand,   X   denotes the current state of all the other variables 
in the system, and f(Yf Eft ) is the conditional probability of obtain- 
ing outcome Yf  given X   as the status of the system. 

3. Do not modify the simulation itself, but continue to model the 
stochastic process by drawing a random number and probabilis- 
tically selecting an outcome, i. e,, select a Y from f(yfft 

4. Do not mix statistical estimation with crude Monte Carlo, i. e., if 
the outcome of Step 3 turns out to be Yf,   no additional scoring 
is made.   The contribution at /his step remains g(5t., Yjf(Yf |X.). 

5. Form an estimate for the entire history by summing the contri- 
butions 

\ «E f*ij» Vf(Yf i*^ • (4-41) 

j 

where j  runs over all occurrences of the particular process 
being estimated in the ith history. 

6. The final estimate is average^ over all histories 

i=l 

and the sample variance is 

,2 S* N   I 1   v^2    T2 (4.48) 
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4.3.7  Correlated Sampling 

Correlated sampling can be one of the most useful variance 
reduction techniques due to the wide applicability of the technique as 
well as to the large efficiency gains which can be realized. 

There are several types of situations where the use of correlated 
sampling is indicated.   These include: 

• The effect of a small change in the system is to be calculated. 
e The difference in a parameter in two or more similar cases 

is of more interest than absolute values in any one case. 
e A parametric study of several problems is to be performed. 

This has greatest potential when the problems are relatively 
similar in nature. 

• The answer to one of several similar problems is known 
accurately.   The answers to the unknown problems can often 
be estimated from the known result. 

The aim of correlated sampling is to produce a high positive cor- 
relation between two similar simulations so that the variance of the dif- 
ference in results is considerably smaller than it would be if the two simu- 
lations were statistically independent.   Unfortunately, there is no general 
procedure that can be implemented in correlated sampling.   However, the 
following procedures can convey some notion of the methods useful in 
producing correlation.   Let us begin by considering two similar simulations 
involving only a single variable, i.e., it is desired lo estimate 

A = Ij - I2 (4.44) 

where 

[i ■/ «i (xjf^xjdx (4.45) 
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and 

■■■/: g2(y)Vy)dy (4.46) 

Then the implementation of correlated sampling proceeds as follows: 

1.    Generate a random sample X* XN from f.(x) and a 
sample Yj,..., YN from £2(7) using 

f2(y)dy ;   I-!,...,« (4.47) 

where R. ; i = 1,..., N is a random sample from U(0,1). 

2.    Estimate A using 
N .      N 

^■irU t*i<xi>-*2<Yi>i = * 

where 

\ - 1,^ - g2(Yi) 

Estimate the sample variance using 

i=] 
1 (4.48) 

(4.49) 

«2       N S =irr A2    \2< 
H ^  Ai ■ " 

(4.50) 

(Batching may also be used.) 

If fJx) is similar to My),   the random samples X,,... ,XN 

and Y-,...., YN will be highly correlated.   If g1(x) is also similar to gJiy) 
then the estimates will also be highly correlated.   This will greatly reduce 
the variance in A,   as the history values,   A.,   will reflect almost totally 
the real differences in gAx)tAx) and ggWofa) and not random "noise" 
due to a difference in random numbers used. 
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In the more general case the simulation involves a sequence of 
random variables x ■ x^x,,... ,x.   and the integrals being estimated are 

Ij =/g(x)«(jOdx =   JJJ!.. fii*v*2 XjP^x^fCxglxj).... 

(4.51) 

and similarly for I«.   The procedure now is as follows: 

1. Identify, to the maximum extent possible, <vhere identical 
random numbers can be used on both problems. Clearly, 
when parameters are changed between the problems, this 
may not always be possible. However, it may be possible 
to use the same uniform random numbers throughout. (In 
sequential or multistage problems it may be possible to 
precompute once the portions of the simulation which will 
be identical in the two cases and then use these computations 
in the two simulations, thereby reducing the computational 
effort required.) 

2. For each history  i,   generate a random sample Rji,.. •. Rye 
from the unit uniform distribution   U(0,1).    Solve for 
XJJ,.. -.X.^ using 

Ri/ -      'i(xjlxirxi2 xi(H))<hj <4-52) 

-to 

and for Y.-,..., Y.. using 

3.    Form an estimate for each history 

J, = *xi*iV*w • • • »V " h{YiVYi2) V      (4-54) 

A A 
= ^i " ^i 
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4.    Calculate the final estimate by 

H 

1=1 

ao J the sample variance 

MH^H 82 8   ' fn 

(Alternatively, batching can be used to calculate the variance.) 

In most practical problems one does not want to develop a completely 
new simulator to estimate the difference in parameters but is rather faced 
with the problem of using an exist! ry simulator program which was designed 
to solve a single case.   Thus two separate runs must be made, but the cor- 
relation generated in step 2 can be retained if the basic random sample 
Rir R12,' " ' Rlk'     ^l' *' *' *Wk is 8enerated in both programs.   Here 
the property possessed by the congruential uniform random number gener- 
ator of always producing the same sequence of numbers when given the same 
starting value becomes very useful.   It is then only necessary to ensure that 
the two separate runs start with the same random value and they will con- 
tinue to generate the same sequence Rij. • • • »^MU-   However, this is not 
quite enough for most simulations.   It is usually the case that k,   the num- 
ber of random variables in a history, is itself a random variable and can 
vary from one simulation to the other due to the difference in the problem 
solved.   Thus, for the maximum correlation the random number generator 
should be set at the start of each history to a value that is common in both 
runs, i.e., force the values R.., R,., R«.,...,R^ to be the same in 
both runs and all the rest of the random sequence will be identical in the 
two cases.   If step 1 identified portions of the simulation which could be 
identical in the two cases, it would be desirable to force common starting 
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values on the random number generator at the start of each such portion 
of the simulation and not just at the start of the history. 

To generate values R,.,R,«,R......, Rj.- which are themselves 
random numbers but are consistent in the two runs, a second random 
number generator is used which does nothing but generate starting values 
for the main random number generator used in the simulation.   As this 
second generator is used only once each history, it is unaffected by the 
difference in the two cases and will generate identical starting values in 
both runs.   (Note that one should use the binary integer produced by the 
second generator and not the floating point random number as a starting 
value for the main random number generator.) 

Having made two separate runs which are correlated, the problem 
then is to compute the difference estimates.   To estimate the variance 
produced by the correlation one must 55re the estimates, L.   and I,.,   pro- 
duced each history (or each batch, if batching is used), and then in a sep- 
arate calculation obtain the estimated difference and the sample variance 
from 4.54, 4.55, and 4.56. 

4.3.8   History Reanalysis 

History reanalysis involves generating a series of histories for 
one case and then reanalyzing them to generate an estimate for a similar 
case.   This combines the advantages of a saving in computer time with cor- 
related sampling (Section 4.3. 7) since only one simulation was run to get 
two results which are correlated due to the use of identical random numbers. 

Basically, the types of problems to which history reanalysis can 
be useful are a subset of those where correlated sampling is useful.   That 
is, when differences in similar problems are to be addressed or when 
sensitivity analyses are to be performed (see Section 4.3.7).   In addition, 
it is necessary that the difference in the cases studied be expressable as a 
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difference in the random distributions used or in the pay-off function, 
g(x),   and not be a difference in deterministic elements of the simulation. 
It is commonly a sensitivity analysis where history reanalysis is likely 
to be most effective. 

As in the case of correlated sampling, there is no general pro- 
cedure that can be followed in history reanalysis.   However, the following 
procedure illustrates the general principles used to derive the results for 
one problem (IJ from another problem (L) where, as usual. 

and 

4 " / h{x)ti{li)dK 

•Mi 
(4.57) 

H   ' /   K2(x)f2(x)dx ' (4-58) 

1.    Generate a random sample X.,...,^ from tAx), 

2.    Obtain an estimate for I- from 

N 

i=l 

2 
and for a. using 

(4.59) 

(4.60) 
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3.    Obtain an estimate for I« from 

i=l *    i 
(4.60) 

2 
and for a« from 

s2= irrf]r£ 
1    i=l 

g^) ■? (4.61) 

The above procedure could clearly be used in the analysis of several 
other integrals and also for the differences in integrals (as was the case used 
for correlated sampling). 

In problems of a sequential (or multistage) nature there may be several 
points at which reanalysis of the original problem is performed in a manner 
similar to that described above.   Care must be taken however to avoid poten- 
tial difficulties where branching decision, etc. are based on the outcome of 
prior events in the problem.   These must be appropriately accounted for, but 
the general procedure outlined above can be useful. 

For proper use of history reanalysis, fjfr) cannot be zero for any 
point x where f2(x) is not also zero.   The converse, however, is not true. 
In fact there is a large set of cases where history reanalysis is most useful 
where gfi) is the same as g2(x) and f2(x) {^l(x) {JJ j^J*2.   In this case 

the "weights" used in calculating I«, i2W_   are either i or o and we have 
f 1 tXi) 

as a replacement for 4.61 

12 = fr  Z     BxOCj) (4.62) 
'2X.CR2 

and as a sample variance 

S2 = 
N, 2 ri 
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where N, is the number of histories for which X.cR*.   As an example of this 
kind of case consider a simulation of an antisubmarine mission where the 
problem is limited by the total mission time.   It is desired to calculate kill 
probabilities for a range of mission times.   The simulation is run for the 
longest time of interest, and the histories can then be reanalyzed to deter- 
mine kill probabilities for shorter times by simply ignoring the kills which 
occur after the time in question. 

One worn in history reanalysis is that f ^(x) may be too differ%?&. 
from f2(x) to do a reasonable job of estimating I..   The result may be that 
4.61 will prove to be an 'overbiased' or 'underbiased' estimation.   It is 
recommended that users be aware of the considerations mentioned in 
Section 2.5 whenever using history reanalysis. 

4.3.9   Control Variates 

In the calculation of an integral 

g(x; /(x) dx, {4. 63) 
■/ 

if an approximate function,   h(x) - g(x),   can be found such that 
9 =   /* h(x) f(x) dx is known or can easily be determined analytically, 

then the control variate technique should be used. 

In this case the integral I may be written as 

l = ^MxJfWdx + /^[(gfx) - h(x)]f(x)dx (4#M) 

= e> r!![g<x)-h(x)]f(x)dx = 9+I1 
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Then, the simulation is not performed on I directly, but rather on the expected 
difference between g(x) and h(x), I.. 

The procedure to follow in itnpiementation of control variates is 
straightforward.   Namely, 

1. Express the parameter or parameters to be estimated in integral 
form as indicated above. 

2. For each expected value, I, attempt to obtain an approximating 
function h(x) whose expected value, 6, is known. 

3. Structure the simulation such that the difference between h(x) 
and g(x) given by 

H^rü [g(x).h(x)]f(x)dx (4.65) 

is simulated. 
4. Generate a random sample X1 XN from f(x) and estimate I, 

using i « i 

4-   tf   AW^ 'h{Xi^ (4-66) 

whose sample variance is given by 

IN ) 
^   IJ («(Xjj-hCX,)]2 -F|j (4.67) I 

Frequently, the real process being simulated will give clues as to 
potential approximating functions.   However in many cases an approximate 
value for g(x) will not be available.   This can sometimes be achieved by the use 
of a sequential sampling procedure in which a few simulations are performed 
to obtain an approximate representation to g(x).   Clearly, the better the apnrox- 
imation for g(x) that can be obtained, the better the results will be. 

The extension of the control variate concept to multiple dimensional 
integrals is clearly evident and is accompanied with the usual complications 
associated with such extensions. 
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4.3.10 Antithetic Variates 

When two estimators for a parameter of interest are known, then 
it is possible to combine them to form a third estimator.   If the two 
original estimators are negatively correlated, then the combined esti- 
mator can have a variance which is smaller than the variance of either 
of the original estimators.   The usual method for achieving negative cor- 
relation is to manipulate the random number generation.   Although there 
are many different ways this can be achieved, the following formulation 
(which uses a variation of stratified sampling) is very easy to implement. 

1. Express, as usual, the parameter (or parameters) to be estimated 
in integral form as 

I = /Ü gWWdx (4.68) 

2. Select a value for the parameter o 0 < a < 1) and select X. and 
XJ for i = 1 Nfrom * 

OR. = JJf(x)dx U-W) 

and 
x: 

1 - OR. = J J f(x)dx. 

where R.; i = 1,..., N is a random sample from U(0,1), 

3.    Construct the unbiased estimator 9 using 

Ä       1   £ * 

(4.70) 

B = R 2,s, (4-71) 
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where 

ft = otg^X.) + (1 - <|g(Xp ;i = l N 

with the sample variance 

,2 

(4.72) 

S' ■^UIM (4.73) 

Selection of an appropriate value for a is not always clear. One use 
of antithetic variates uses a = 1/2. Another approach is to perform several 
simulations for various values of a and estimate the efficiency as a function 
of or. 

4.3.11 Regression 

The application of regression techniques to reduce variance in simula- 
tions can be associated with problems in which a set of integrals L,..., I 
are to be estimated from a set of estimators 0,,..., 6 (n 2 p) satisfying 

= 1 E[e] = A E[I] = 

where A is a known n x p matrix of the form 

(4. 74) 

ir * 
Ä = 

.a m 
(4.75) 

^nr* ••Sip- 

Based on the concept of minimum variance unbiased estimators, the following 
procedure may be used to obtain an estimate for I using regression. 
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1.    Perform a simulation N times to obtain N values for each 
6 8     Define these values as 

lei ' i = 1,... ,n 

2.    Obtain the sample means 

e 

and construct the matrix 

1     ^ 
i =   IT    k^ ^i1 i = 1»-'n (4.76) 

«   =1 

Estimate the covariance matrix 

where 

V-l <eki-'i>'^-ej';itl n 

j = l,...,n 

A 
V. 

4.    The unbiased estimator for I is obtained from 

(4. 78) 

(4.79) 

A -»T    A .1   -»   .1  -4 T   A _1A IA   on\ 
I = (A     V^ A) ' A1 V  *• C4-80) 

(A   is the transpose of A.) 

L is recommended that an estimate for the sample variance be 
obtained by batching. 
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APPENDIX A 

SUMMARY OF ANALYTICAL EXPRESSIONS FOR 
APPLICATION OF VARIANCE REDUCTION TECHNIQUES 

A convenient summary of the basic expressions used in implement- 

ing the more important variance reduction techniques is presented in Table 

Al.  For the most part the table is self explanatory.   However, it aYvould be 

noted that all possibilities are not considered.   For example, the results of 

applying Russian Roulette and splitting \& shown for a two-stage problem 

only. 

Also It should be noted that the specialized techniques which were 

introduced in Part I were not included here. 
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1. Bracken, J., McCormick, G.P., "Selected Applications of 
Non-Linear Programming," John Wiley & Sons, New York, 1968. 

A book that presents several selected optimization problems.   Of 
particular interest here is the application of optimization methods 
to selection of optimal strata for sampling in the sense of minimum 
variance. 

2. Burt, J.M. andM.B. Carman, "Conditional Monte Carlo:  A Simu- 
lation Technique for Stochastic Network Analysis," Management 
Science, 18, No. 3, 207-217, Nov. 1971. 

This paper is concerned with a simulation procedure for estimating 
the distribution functions of the time to complete stochastic networks. 
The procedure, called conditional Monte Carlo, is shown to be sub- 
stantially more efficient (in terms of the computational effort 
required) than traditional simulation methods.   The efficiency of con- 
ditional Monte Carlo and its use in conjunction with other Monte Carlo 
methods is illustrated for the Wheatstone bridge network.   The 
applicability oi vhe procedure to larger networks, as well as other 
stochastic systems, is discussed, and a general method is given for 
its implementation. 

3. Clark, C.E., "Importance Sampling in Monte Carlo Analyses," 
Operations Research, 603-620, Sept-Oct. 1961. 

Some Monte Carlo analyses require hundreds of hours of high speed 
computer time.   Many problems of current interest cannot be handled 
because the computer time required would be too great.   Statistical 
sampling procedures have been developed that greatly reduce the 
required computer time.   Importance sampling is one of these.   This 
paper is vn elementary description of importance sampling as used 
in Monte Carlo analyses. 

4. Clark, F. H., "The Exponential Transform as an Importance Sampling 
Device - A Review," Oak Ridge National Laboratory (AEC) ORNL- 
RSIC-14, 1-50, January 1966. 

The exponential transform is reviewed, with emphasis on its use as a 
guide to effective importance sampling in the solution of theBoltzmann 
equation by Monte Carlo methods.   Contributions of various workers 
are assembled, along with numerical results.   Special consideration is 
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given to approximate forms and to effective practical methods. 
Problems related to negative effective cross sections, tracking acrcss 
discontinuities, directional biasing in inhomogeneous media, and high 
variance in back-scattered components are specifically treated. 

5. Conveyou, R.R., V.R. Cain and K.J. Yost, "Adjoint and Importance 
in Monte Carlo Application," Nuclear Science and Engineering, 27, 
219-234, 1967. 

The use of the Monte Carlo method for the study of deep penetration 
of radiation into and through shields entails the use of sophisticated 
methods of variance reduction to make such calculations economical 
or even feasible.   This paper presents an exposition of the most use- 
ful methods of variance reduction.   The exposition is unified by con- 
sistent exploitation of adjoint formulations to estimate expected values, 
as in previous work, and further to evaluate the variance of the resulting 
estimates. 

The connection between adjoint formulations and the choice of biasing 
schemes is also investigated.   In paxticular, it is shown that the 
value function (the solution of the integral equation of the adjoint 
formulation) is always a good choice for importance function biasing; 
a sharp upper bound, independent of the particular problem is found 
for the resulting variance.   Predicted (analytic) and experimental 
(Monte Carlo) results are also given for a simple one-dimensional 
problem. 

6. DeGrott. M.H. and N. Starr, "Optimal Two-Stage Stratified Sampling, " 
The Annals of Math. Statistics, 40, No. 2, 575-582, 1969. 

This paper develops effective approximations to the optimal sampling 
for situations where the total number ol available observations is 
large, and, therefore the optimal number of observations that should 
be obtained at the first stage will also be large in a two strata popula- 
tion where the sampling is accomplished in two stages.   The techniques 
can be extended to multistrata problems provided the observations at 
each strata have a normal distribution. 

7. Ehrenfeld, S. and S. Ben-Tuvia, 'The Efficiency of Statistical Simu- 
lation Procedures," Technometrics, 4, No. 2, 257-275, May, 1962. 

Various methods for improving the efficiency of statistical simulation 
of complex systems are described and illustrated for simple queueing 
situations.   The paper proposes that the efficiency and effectiveness 
of statistical simulations can be increased through the adaptation of 
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experimental design principles which exploit any qualitative knowledge 
surrounding the problem under study.   Some techniques explored are 
stratified sampling, sequential sampling, importance sampling and the 
use of concomitant information. 

8. Evans, D.H., "Applied Multiplex Sampling," Technometrics, Vol. 5, 
No. 3, August 1963. 

Multiplex sampling is an extension of standard Monte Carlo methods 
for estimating characteristics of the distribution of a response when 
the response is a function of several variables, each of which comes 
from a known distribution.   The extension is required when each 
variable is available in a variety of distributions.   Depending on the 
number of variables there are many possible different combinations 
each of which, in general, will give a different distribution to the 
response.   If characteristics of the response are to be estimated for 
many or all o£ these combinations, there will be a plethora of Monte 
Carlos to be performed if usual procedures are followed.   This in 
turn can require a great number of observations of the response; if 
these are difficult to obtain, e.g., if they must be determined experi- 
mentally, the carrying out of such a program can easily prove imprac- 
ticable.   Multiplex sampling is a method for estimating the character- 
istics for all the different distributions for the response by using a 
relatively small number of observations.   This is accomplished by 
sampling from an efficient sample space and then using weighted 
sampling formulas.   The functional form for the probability density 
function describing this sample space is derived in a companion paper; 
here we assume this form and consider the practical aspects. 

9. Fishman, G.^., "The Allocation of Computer Time in Comparing Sim- 
ulation Experiments, " Operations Research, 16, 280-295, March- 
April,  1968. 

This paper investigates the problem of efficiently allocating computer 
time between two simulation experiments when the objective is to make 
a statistical comparison of means.   For a given level of accuracy the 
results show that significantly iess computer time is required when 
the sample sizes are determined according to a certain rule than when 
the sample sizes are equal.   A graphical analysis suggests that small 
errors in estimating the population parameters of the allocation rule 
do not significantly affect the efficient allocation of time.   The influence 
that the degree ol autocorrelation has on the time allocation is also 
investigated; results show that small differences in the autocorrelation 
functions are important when each process is highly autocorrelated. 
Positively correlated samples for the two experiments are examined 
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and incorporated into the efficient allocation rule.   It is shown that 
their use leads to a saving in computer time.   A two-stage procedure 
is described wherein initial estimates of the population parameters 
are computed which permit the experimenter to estimate how many 
more observations to collect on each experiment.   The procedure is 
simple and straightforward to implement and should be of practical 
value.   When the computer time requirements turn out to be prohibitive, 
we suggest using negatively correlated replications on each experiment. 
This may be accomplished by using antithetic variates.   The two-stage 
procedure also applies in this case. 

10.     Garman, M.B., "More on Conditioned Sampling in the Simulation of 
Stochastic Networks, " Management Science, Vol. 17, No. 1, 
September 1972. 

The technique of conditioned sampling has been shown to improve 
simulation efficiency in the estimation of stochastic activity network 
duration.   This paper describes a method for generalizing the condi- 
tioned sampling approach from its current use of product-form 
estimators to the use of product/convolution-form estimators.   Esti- 
mators of the latter type are constructed and demonstrated to require 
fewer samples per realization (hence increased estimation accuracy) 
in almost aJi networks.   An algorithm for estimator construction is 
presented and proven to apply to any given activity network.   It is also 
shown that the derived product-convolution-form estimators may require 
a precedence structure within the sampling sequence which creates their 
corresponding realizations. 

11. Gaver, D.P. Jr., "Statistical Methods for Improving Simulation 
Efficiency," Carnegie-Mellon Universtiy, Pittsburgh, Pa., August 1969. 
AD694445 

The paper presents a variety of statistical devices for improving the 
effectiveness of computer simulations of random processes.   The 
methods are illustrated by examples from a queueing problem that is 
inadequately treated by analytical approaches. 

12. Goertzel., G. and M. H. Kalos, "Monte Carlo Methods in Transport 
Problems." Progress in Nuclear Science, Series I, Volume n, 
Pergamon Press, p. 315-369. 

The article is devoted to the discussion of the applications of the Monte 
Carlo method in the field of nuclear energy.   An account of the theory 
is given, including preliminary material on random and pseudorandom 
numbers and on choosing from probability distributions.   The target 
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game and the transport game are described in detail, with the 
emphasis put on generality.   The final section deals with specific 
applications to some shielding and reactor core calculations. 

13.     Hague, J. F., "Variance Reduction in the Monte Carlo Method for 
Determining the Volume of Multidimensional Non Analytic Solids, " 
Nuclear Instruments and Methods, J7, 194-200, 1967. 

A Monte Carlo method for finding the volume of any definable object 
located within a unit cube is considered.   The method, which does 
not require the surface of the solid to be described by an explicit 
function, is developed into suitable program form and is tested for 
"cylinders, spheres and pyramids in 2, 4 and 6 dimensions.   Variance 
reduction factors, over straightforward Monte Carlo, of up to 30 for 
a 6-dimensional "cylinder, " and 3 lor a 6-dimensionaI "pyramid" are 
obtained.   An example is given of the application of the method to high 
energy particle physics. 

14. Hammersley, J.M. andO. C. Handscomb, Monte Carlo Methods. 
Methuen & Co. Ltd. London, 1964. 

One of the most useful references available today on Monte Carlo, it 
presents the general Monte Carlo concepts and methods, techniques, 
for generation of random numbers and applications to problems in 
solution of lineir equations, reactor shielding, statistical mechanics 
flow In random media (percolation processes) and multivariable systems. 

15. Hartley, H.O. and J. Rao, "Variance Estimation in Linear Models 
Applied to Stratification Problems, " Biometrics. 23, 380, 1967. 

It is well known that for sampling from finite populations with numerous 
strata the allocation of one unit per stratum often results in highest 
efficiency.   On the other hand, it will not in general be possible to 
obtain unbiased estimates of the variance of the stratified estimator. 
Various solutions (including the so-called collapsing of strata into 
pairs) have been tried but most of these are afflicted by an unknown 
bias.   The present approach uses a linear model which will usually 
result in a considerable reduction of the bias in variance estimation. 
The problem is reduced to the following general problem in variance 
estimation for linear models.   Given a familiar linear model y = X   + e, 
where the residual vector e consists of n independent elements with 
mean vector 0 und the variance vector   2.   if X is assumed to repre- 
sent an x by k matrix the total number of unknown parameters is k + n 
and these are clearly not estimable.   However, if at least k linear 
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restrictions are assumed to hold between the elements of   2 the problem 
becomes estimable.   For specific linear restrictions unbiased estimators 
are derived.   Specifically, the application to the above stratification 
problem is discussed. 

16. Householder, A.S. (Ed), "Monte Carlo Methods," National Bureau 
of Standards Applied Mathematics Series 12, June 1951. 

Proceedings of a Symposiuxn held June 29, 30 and July 1, 1949 on 
Monte C rlo Methods.   Papers included several Monte Carlo 
applications and random number generation. 

17. Irving, D.C., "The Adjoint Boltzmann Equation and Its Simulation 
by Monte Carlo." ORNL-TM-2879, May 18, 1970. 

The Boltzmann equation for neutron transport is discussed in both 
integro-differential and integral form.   The 'value* or 'importance' 
equation is derived and shown to be equivalent, in the integral form, 
to the adjoint of the collision density.   However, the value is also 
equivalent to the adjoint of the flux when the adjoint operation is 
carried out on the integro-differential equations.   Possible ways of 
simulating both the forward and adjoint equations by Monte Carlo are 
discussed.   Because the value equation is a 'flux-like' equation, direct 
simulation of it proves tobe unwieldy.   Instead, a 'collision density' 
for adjoint particles, equal to the value or adjoint flux times the 
total cross section, is introduced.   The equation for this ad June ton 
collision density may be simulated by the same routines as were used 
for the forward calculation and only the cross sections need to be 
changed.   The extension of this to problems involving multiplying 
media is also included. 

18. Kahn, H. and A.W. Marshall, "Methods of Reducing Sample Size in 
Monte Carlo Computations, " Operations Research, 1_, 263-278, 1953, 

This paper deals with the problem of increasing the efficiency o£ Monte 
Carlo calculations.   The methods of doing so permit one to reduce the 
sample size required to produce estimates of a fixed level of accuracy 
or, alternatively, to increase the accuracy of the estimates for a fixed 
cost of computation.   Few theorems are known with regard to optimal 
sampling schemes, but several helpful ideas of very general applica- 
bility are available for use in desiging Monte Carlo sampling schemes. 
Three of these ideas are discussed and illustrated in simple cases. 
These ideas are (1) correlation of samples, (2) importance, and 
(3) statistical estimation. 
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19. Kahn, H., "Modification of The Monte Carlo Method, " The Rand 
Corporation Publication. 

The theory behind several useful variance reduction methods such as 
importance sampling, sequential sampling, correlation, Russian 
Roulette and splitting. 

20. Kahn, H., "Applications of Monte Carlo, " The Rand Corporation, 
Santa Monica, Calif.   AECU-3259, 1-250, 19 April 1954. 

A classic report that provides a comprehensive and detailed survey 
of random number generation and variance reduction techniques. 
Several examples pertaining to the area of radiation transport are 
presented to demonstrate the applicability of variance reduction. 

21. Kalos, M. H.. "Monte Carlo Integration of the Adjoint Gamma- 
Ray Transport Equation, Nuclear Science and Engineering; 33, 
284-290 (1968). 

The adjoint transport problem for gamma radiation is formulated and 
prescriptions for its Monte Carlo solution are given.   Emphasis is 
put upon requirements for calculation of effects in shielding against 
fallout and the differential effect of source position.   Results are 
given for two Äihiations:  a detector three feet above a uniform infinite 
source of 1. 25-MeV photons, and another detector placed in an open 
pit with a similar source. 

22. Karcher. R. H., "Static Fault 'Tree Analysis by Monte Carlo With 
Some Results," Homes & Narver, Inc., Sept. 1967. 

In this paper a Monte Carlo method for evaluation of fault trees is 
presented along with some results.   Of particular interest is the 
application of importance sampling for improvement of the sampling 
efficiency. 

23. Koop, J. C., "Short Communications on Splitting a Systematic Sample 
for Variance Estimation, " The Annals of Math. Statistics 42, No. 3, 
1084-1087, 1971. 

Variance estimation in systematic sampling by splitting the sample 
into equal halves can lead to very serious bias.   The expression for 
this bias relative to the true variance is given in terms of intraclass 
correlation coefficients.   The danger of serious bias is still present 
when successive pairs of units are treated as "independent" replicates; 
an expression for this relative bias is also given. 
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24. McGrath, E. J., "Fundamentals for Operations Research," West Coast 
University, 1970. 

A graduate level text book which includes a chapter on Monte Carlo 
simulation.   Variance reduction techniques considered include sys- 
tematic and stratified sampling, importance sampling and use of 
control variates. 

25. Moshman, J., "The Application of Sequential Estimation to Computer 
Simulation and Monte Carlo Procedures, " J. Assoc. Computing Mach., 
5, 343-aW, 1968. 

This paper considers a number of sequential techniques for estimating 
the parameters of Gaussian and binomial populations.   Some techniques 
will be exact ones; others will have symptotic validity.   In every case 
it is possible by proper programming, and possibly some preliminary 
analysis, to have the computer evaluate the sample obtained thus far 
and determine whether additional samples are required to obtain some 
specified precision.   In some cases, the evaluation is made after each 
sample unit; in other cases, evaluation takes place at certain intervals. 

26. Nagel. P.M., "A Monte Carlo Method to Compute Fault Tree Probabil 
Probabilities," System Safety Symposium, Seattle, Wash.. June 8-9. 
1965. 

This report presents a discussion of the application of Monte Carlo 
methods to the fault tree and demonstrates a methodology to reduce a 
large simulation into a smaller simulation for application of impor- 
tance sampling.   A small fault tree example is analyzed to demonstrate 
the technique. 

27. Nilsson, G., "Optimal Stratification According to the Method of Least 
Sequences," Skandmavisk.   Aklurarietidskuft, 1967, p. 128-136. 

A method is presented that selects the optimal set of points of stratifi- 
cation in the sense of minimum variance. 

28. Page, E. S., "On Monte Carlo Methods in Congestion Problems:   II. 
Simulation of Queueing Systems," Operations Research, 13, 300-305, 
March 1965. 

In this paper the application of the antithetic variate technique to reduce 
variance is shown to possess advantages in a simple queueing system 
and its application to more complex situations is proposed. 
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29.     Pugh, B.L., "Some Examples of Stochastic Distortion, a Monte Carlo 
Technique," SP-1584. System Development Corp., Santa Monica, 
Calif. March 6, 1964. 

The effects of importance sampling on the variance of a Monte Carlo 
estimation of tail probabilities is presented for both the exponential 
and the gamma distributions.   Also presented is the effect of the dis- 
tortion on the required sample size for a desired accuracy-confidence 
statement. 

30. Pugh, E. L., "A Gradient Technique of Adaptive Monte Carlo, " 
SP-1921/000/01, System Development Corp., Santa Monica, Calif. 
Sept. 8, 1965. 

A technique of Monte Carlo estimation is presented which is "adaptive" 
in the sense that its efficiency increases as the sampling proceeds.   It 
is based on sequentially estimating the gradient of the variance and 
following the path of steepest descent.   The technique is applied to a 
problem of estimating the survival probability of a repairable machine. 

31. Relies, Daniel A.. "Variance Reduction Techniques for Monte Carlo 
Samples from Students Distribution," Technometrics, Vol. 12, No. 3. 
August 1970. 

A Monte Carlo design is presented for estimating the variance and 
cumulative distribution function oi translation and scale invariant 
statistics based on independent Student random variables.   One obvious 
application is studying estimates of the location parameter from a 
symmetric, possibly long-tailed distribution.   The method itself 
amounts to suppressing some of the variability in the sampled objects 
by integrating these objects over appropriate regions of the underlying 
probability space.   Indications are that, in cases of interest, the vari- 
ability is thereby considerably reduced, as is illustrated in an applica- 
tion concerning trimmed and Winsorized means. 

32. Sarndal, C. E., "The Use of Stratification Variables in Estimation by 
Proportional Stratified Sampling," Amer. Statistical Assoc. J., 63, 
1310-1320, 1968. 

This paper deals with proportional stratified sampling in the situation 
where the estimation variable X is difficult and expensive to observe, 
while the possible erroneous stratification variable Y is easy and 
inexpensive to get at.   The usually biased estimate 
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is compared with the unbiased estimate 
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en, 

where the P. are stratum weights and y^ and x^ are means of the units 
sampled from the i:th stratum.   The two estimates are similar in that 
they utilize information from only those population units that make up 
the sample.   While Ia is the more inexpensive estimate, L is usually 
preferable if one judges by the size of the mean square error, which, 
among other things, depends on the number of strata and the location of 
the stratum boundaries.   In particular, the properties of I and L are 
discussed in connection with an example involving the bivanate normal 
distribution. 

33. Serfling, R.J., "Approximately Optimal Stratification," Amer. Statis- 
tical Assoc. J., 63, 1298-1309, 1968. 

The cum   f method of Dalenius and Hodges for approximately optimal 
construction of strata is utilized to approximate the variance of the 
stratified estimate, for estimation of the population mean of a random 
variable Y by the technique of stratified random sampling.   The approxi- 
mation provides a basis for choosing optimally, for fixed cost, the num- 
ber of strata to be constructed and the total sample size to be used.   It 
also facilitates other purposes, such as the comparison of optimal 
stratification with optimal simple random sampling.   The study is carried 
out for the situations of stratification on the estimation variable and of 
stratification on a covariable closely associated with the estimation 
variable. 

34. Shreider, Yu. A., "The Monte Carlo Method," Pergamon Press, 
1966. 

A general Monte Carlo reference that addresses the general principles, 
application of simulation to evaluation of definite integrals, neutron 
physics, servicing processes, communications theory and generation 
of random variables.   A limited amount ot material is presented on 
the formal aspects of variance reduction. 

35. Spanier, J., "An Analytic Approach to Variance Reduction," SIAM 
J. Appl. Math., 18, No. 1, 172-190, January 1970. 

This paper presents a study of the variance of the weight of particles 
actually transmitted through slabs of various dimensions.   Similar 
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techniques may be used to study estimates of transmission which are 
collision types, i.e., estimators which record, on every collision, the 
probability of direct transmission on the next flight. 

36. Spanier, J. and E.M. Gelbard, "Monte Carlo Principles and Neutron 
Transport Problems," 1-234, Addison-Wesley Publishing Co., Reading, 
Mass. 1969. 

A comprehensive reference presentit^ lundamentals of Monte Carlo, 
discrete and continuous random walk processes, standard variance 
reduction techniques and several applications to radiation transport 
problems. 

37. Van Slyke. R. M., "Monte Carlo Methods and the Pert Problem," 
Operations Research. U, 839-860, 1963. 

In this paper the results of a Monte Carlo simulation of PERT networks 
are given.   First the concept of using Monte Carlo methods to give solu- 
tions to PERT problems under less restrictive assumptions is discussed. 
Results are given for the accuracy obtainable, for the computer time 
required and devices for reducing computational effort.    Finally, 
a "criticality" index is defined for each activity.   This index is 
.imply the probability that the activity will be on the critical path. 
The ramifications and uses of this parameter, which are not available 
using current techniques, are developed. 
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