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ABSTRACT

The dissertation investigates the optimization of object code produced 

by compilers of higher level languages. Its primary goal is the isolation

of a set of primitives which lead to a concise description and

correspondingly concise implementation of program optimizations. In

addition to being powerful enough to provide a concise representation, the

primitives are also basic enough to apply to a wide range of languages and 

optimization techniques.

The concept of similarity functions is introduced. A set of new

optimizations described in terms of the similarity notion is proposed. A 

translator is described which implements code motion, redundant expression 

elimination, and new similarity-induced optimizations using the primitives 

developed in the dissertatioa Examples are presented demonstrating the

effect of these optimizations.
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CHAPTER I 

INTRODUCTION

Since the advent of the first FORTRAN compilers, the loss in object 

code efficiency incurred by the use of higher-level languages has concerned 

both programmers and compiler designers alike. The proponent of a language 

intended for compilation, even though he may argue that the cost in lost 

efficiency is far outweighed by the power and elegarKe of his language, 

must generally supply a compiler which produces reasonably efficient code 

in order to attract a community of users. The new breed of "languages for 

implementation of systems" is measured against this criterion of efficiency

in the extreme.

This thesis investigates the area of object code optimization in the 

presence of conlrol (low. Its major goal is the isolatioti of a set of

primitives which lead to a concise definition and a correspondingly concise 

implementation of program optimizations. In addition to being powerful

erx>ugh to provide a concise representation, these primitives must also be 

basic enough to apply to a wide range of languages and optimization 

techniques.

The search for a set of primitives to describe a collection of varied

optimizations is motivated initially by a desire to achieve a uniform



gyg'^.T y^">yy -r »i.Mj.nmi!||a;

INTRODUCTION 2

representation of these optimization strategies. A uniform representation,

in turn, leads to an implementation which can be easily structured into 

combinations of the set of primitives. As a result the same clarity and 

concision which is inherent in the primitives is reflected in the

implementation. In order to demonstrate this correlation between the 

description and implementation of various optimizations, a later chapter 

will discuss the structure of an actual optimization pass within a real

compiler which uses the primitives.

The identification of a collection of primitives produces anotlier

benefit. The ability to perform formal manipulations on these primitives

aids in exposing new optimization strategies and helps identify the common 

characteristics of apparently unrelated techniques. This effect is, of

course, more difficult to document. It has been our experience that even 

tlx>ugh the discovery of an optimization strategy may not develop solely 

from manipulating the primitives, the ability to grasp the essential 

characteristcs of an optimization is significantly enhanced by the

availability of a set of objects which can be used to describe that 

strategy concisely.

A BRIEF HISTORY OF OPTIMIZATION

Our investigation has evolved through a set of selections among 

various alternatives and been motivated by several goals, some already
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described above and others yet to be stated. Any such evolution of ideas

builds upon the work of our predecessors who have investigated the problem 

of object code optimization. We will not attempt to produce a complete

catalog but instead will select those efforts which have guided our choices 

among alternatives either by contrast or in parallel.

In June, 1965 an article by J. Nievergelt[N65] provided a principle 

for this area of investigation that seems to remain valid today. He states

a limiting constraint on the extent of optimization strategies

corresponding to our own: a programmer can optimize his program by relying 

to a great extent on his knowledge of what that program is to do. Indeed 

his initial encoding of the solution was already a significant optimization 

of some less well-defined general problem solving technique. The

optimizations we consider are restricted to those which depend on the form 

of the program only. The results of this thesis show that there continues 

to be a significant gain in object code efficiency resulting from this 

level of optimization. As the sophistication of programming languages 

progresses, it becomes the responsibility of the optimizing compiler to

remove the burden of the more tedious details of low-level optimizations 

from the user. Indeed, as the c'ass of operators and the complexity of

data structures grow in power and breadth, the programmer becomes further 

removed from the target machine (as does the language, perhaps). At some 

point, then, he is no longer capable of dealing with (or better; he should

no longer be as concerned with) the complexities of optimizing his
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constructs.

In August, 1965 C.W. Gear[G65] summarized and collected information on 

the state-of-the-art of machine independent optimizations and proposed a 

three pass compilation incorporating those strategies. That collection of 

optimizations remains the basis for most of today's investigations.

A significant amount of research into the area of optimization has 

centered around the work of F. Allen[A69,A70], J. Cocke[C70], and 

J. Schwartz[CS70]. Their influence is very evident in the optimizations of 

the FORTRAN-H compiler which are described by E. Lowry and

C. Medlock[LM69]. The autliors state that at the cost of a 40 percent 

increase in compilation time they produce code which is 25 percent smaller 

and which executes in one-third the time of that produced by the FORTRAN-G 

compiler. These measurements indicate the real effectiveness of the 

collection of optimizations implemented in FORTRAN-H.

Much of the work done by Allen and Cocke concerns itself with the 

processing of the control flow structure of programs and hence contains a 

considerable amount of graph-theoretic investigation related to control 

flow representation. We have chosen instead to restrict the control flow 

semantics to a go-to-iess form of control as exhibited in Bliss[B71 ,WRH71 ] 

and concentrate on primitives which relate to the data flow semantics of a 

program. These data flow primitives concentrate heavily on exposing the 

issue of re-ordering evaluations in a language independent manner. Since
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the suggestion to eliminate the goto by Dijkstra[D6S], a debate has 

proceeded on the merits of the proposal[H72,W71.W72]. Our own experience 

in reading, writing, and compiling go-to-less programs (in the Bliss sense) 

supports the adoption of this programming style. Moreover, the assumption 

of this form of control flow has had a significant impact on our 

investigation of optimization since it enables us to enumerate a small set 

of control environments and restrict our attention to optimizations related 

to those control structures. Previous investigations into optimization

techniques described in the more general control flow environment, in 

general, assume that the program can be converted to a representation which 

is essentially modeled by the control flow semantics of Bliss.

The preliminary notes written by Cocke and Schwartz[CS70] appear to be 

the single most comprehensive catalog of optimization techniques available.

Throughout the thesis we will refer to the collection of optimizations 

described in that text as the set of "classical" optimization strategies. 

The text by Cocke and Schwartz provides us with another motivation for 

proposing a set of primitives. Most of the descriptions of optimization

techniques and their implementations are presented in terms of algorithms 

which often cover several pages and which are closely related to

intermediate representations of the program. A major point in introducing 

our primitives is to demonstrate an alternative method for describing and 

implementing optimizations which is considerably more concise, 

understandable, and independent of the intermediate representatioa
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Finally, anyone investigating the area of optimization must be aware 

of the interaction of this area with the study of the equivalence of 

programs and the detection of potential parallelisro in a computatioa The 

issue of equivalence of programs arises from recognizing that an 

optimization strategy is concerned with transforming a program P to a 

program P' which is input-output equivalent to P. The area of program 

equivalence is broad in scope but there has been some work done by A. Aho 

and J. Ullman[ASU70,AU70] from the viewpoint of an application to

optimization. In general, however, their work has been restricted to 

straight-line programs.

Many optimization techniques involve the re-ordering of the evaluation 

of expressions in a program. Equivalently those expressions, whose order 

Of evaluation can be interchanged, can in fact be executed in parallel with 

sufficient interlocks. Some very interesting work in representing the

inherent parallelism in a program has been done by R. Shapiro and 

K Saint[SS69] using Petri Nets. While the Petri Net model provides an 

elegant framework for their investigations, this thesis prop>oses primitives 

which are more easily implementable in the environment of a compiler.

In addition to the influence of the above work, another principle has 

directed our selection among several areas of program optimizatioa We 

intend to investigate only machine independent optimizations. Thus, for 

example, we will not discuss "peephole” otpimizatioa Typically 

optimizations of this class exploit the instruction set of a particular
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computer by combining a sequence of several operations into a single 

machine instruction. Also the thesis will not investigate the area of 

register allocation. Although this area still requires extensive 

investigation, the time space constraints on a dissertation have led us to 

concentrate on those machine independent optimizations which most directly 

evolve into the new optimizations presented later in the thesis.

THESIS OUTLINE

The thesis contains five chapters and two appendices. The remainder 

of the introduction summarizes our initial assumptions and gives a brief 

introduction to Bliss. Chapter II introduces the primitives and describes 

various optimizations techniques in terms of those primitives. Chapter III 

discusses a concept called similarity which is then used to describe an 

additional collection of new optimization techniques. Chapter IV presents 

a set of examples illustrating the various optimization strategies proposed 

in Chapters II and III. Chapter V contains a summary of our results and 

suggestions for future research.

INITIAL ASSUMPTIONS

It is inappropriate that a thesis in the area of optimization should 

tie itself to a single language or single target machine. On the other

I
",

I
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hand some assumptions are necessary to form the starting point of an 

investigation. The viewpoint adopted throughout the thesis holds that the 

optimization algorithms operate on a tree representation of the source 

program. The syntax analyzer produces a tree in which each control

environment and each operator of the source program is represented by a 

unique node. In the case of an operator its subnodes are its operands 

whereas in the case of a control environment the subnodes are its 

subcomponents. For example the program text 

if eo then X«-ei*e2 else Y«-B 

is represented as

<if-then-else>

/\ 
ei 62

Terminal nodes are always literals or names. The following notational 

convention is observed for a node, e, such as the if-then-else expression 

above:

e[operator] = <if-then-else> 
e[« of operands] = 3 
e[operandi] = eo 
e[operand2] = X«-ei*e2 
eioperandai = Y«-B

The goal of the optimizer is to produce a transformation of this tree 

which is more optimal in accordance with whatever time/space guidelines the 

target machine (and perhaps) the user has imposed The variability in
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target machines is factored out of the optimizations strategies by: (1)

allowing input of the characteristics of the target machine to decision

making procedures of the optimizer, and (2) requiring that the optimizer 

encode sufficient information for the code generators and temporary storage 

allocators of a particular machine to use in their decisions.

The validity of any reshaping of the program tree is dependent upon

the semantics of both the control flow and data flow of the source

language. The discussions involving references to control structures are 

couched in terms of flow diagrams such as the following.

/A

V
I I

"case/if-then-else" expression "while-do" expression 

While they have their obvious counterparts in the syntax of many languages, 

all development is independent of a particular syntax.

The major assumption about the control flow semantics, as was stated 

above, is that the language is go-to-less. The thesis does not consider

the problem of detecting programs which fit this model nor the problem of 

transforming programs into this form. This area has been examined 

extensively by a number of people. As a result of this go-to-less 

assumption the tree emitted by the syntax analyzer gives a complete

K
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representation of the control flow semantics without further analysis.

In addition to treating the control flow semantics in a general 

fashion, we wish to factor out of the development the issue of side-effects 

which result from the semantics of the language's data flow. To this end, 

a primitive relation, essential predecessor, whose function is to remove 

the language dependent issue of side-effects, will be introduced. Given a 

particular language, the semantics of the applications of side-effects 

within that language define this relation.

The initial assumptions of the thesis are summarized:

(1) algorithms employing the optimization primitives assume a tree 

representation of the source program as input and produce a similar 

representation as output;

(2) target machine independence is achieved by parameterizing the

optimization algorithms and requiring them to produce information 

for subsequent machine dependent optimizations in the output

representation;

(3) the control flow semantics of the source language are assumed 

to be go-to-less; and

(4) language dependent data flow semantics are to be isolated by 

primitive ordering relations so that subsequent development becomes 

language independent.
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A SHORT BLISS PRIMER

Throughout the thesis we will present examples to clarify and motivate 

concepts as they are introduced. Bliss (and occasionally Algol[AL60]) will 

be the languages used in these examples. We emphasize that Bliss is 

introduced for use as a syntactic representation of the control structures 

and its use does not reduce the language-independence of the optimizations. 

Bliss is sufficiently Algol-like in many aspects so that a brief 

introduction to the language should be sufficient for understanding the 

examples. More detailed information on Bliss is available 

elsewhere[B71,WRH71].

INTERPRETATION OF NAMES

A Bliss program operates with and on a number of storage "segments". 

A segment consists of a fixed and finite number of "words". A word may be 

"named"; the value of a name is called a "pointer" to the word 

Identifiers are bound to names by declaratons. Thus the value of an 

instance of an identifier, say x, is not the value of the word named by x, 

but rather a pointer to x. This interpretation requires a "contents of" 

operator for which the symbol "." has been chosen.

This context independent interpretation of identifiers as pointers is 

maintained consistently throughout the language. It is the operators of

I



PT'-''’-'

INTRODUCTION
A SHORT BLISS PRIMER

Bliss which place an interpretation on the value of an expressioa So, for 

example, the assignment operator V" interprets its right hand operand as a 

value which is to be stored in the word pointed to by the value of the left 

hand operand. As a result the effect of the Algol assignment statement

"A:-B*C" is identical to the Bliss assignment "A*-.B+.C". This

interpretation of names also allows the computation of pointers in Bliss so 

that the effect of the assignment "(A*3)«-.(A*5)" is to store the value of 

the fifth location past A into the third location past A.

CONTROL STRUCTURES

Bliss is a block-structured, go-to-less, "expression language". That 

is, every executable construct, iticluding those which manifest control, is 

an expression and computes a value. Expressions may be concatenated with 

semicolons to form expression sequences. An expression sequence is 

evaluated in strictly left-to-right order and its value is that of its last 

(rightmost) component expression. A pair of symbols, begin and end, or 

left and right parentheses, may be used to embrace such an expression 

sequence to form a simple expressioa A block is a special case of the

construction which contains declarations.

Other than expressions and fur»ctions, control mechanisms in Bliss fall 

into four classes: conditional, selection, looping, and leave. The

conditional expression
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if eo then ei etee 63

is defined to have the value e^ just in the case that e© evaluates to true 

and e2 other (Vise. The abbreviated form "jf e© then ej"is considered to be 

"it eo then ei else 0".

The conditional expression provides two-way branching. The case and 

select expressions provide n-way branching:

case eo of set e^; 63; — ; en tes

select eo of nset ej: 63; ™ ; e3n_i: e3„ tesn

The case expression is executed as follows: (1) the expression eo is 

evaluated, (2) the value of eo is used as an index to choose one of the 

ej's (l<j<n). The value of eo is constrained to lie in the range l<eo^a 

The value of the case expression is ei (i=eo). The select expression is 

similar to the case expression except that eo is used in conjunction with 

the e3j_i's to choose among the e3j's. The execution of the select 

expression above is described by the following, equivalent Bliss

expression.

(T«-eo; V«—1; if ei egl .T then V«-e3; ... 

il e3n-i egl .T then V*-e3n; .V)

Hence the value of the select expression is that of the last e3j to be 

executed or -1 if none of them is executed.

The loop expressions imply repeated execution (possible zero times) of 

an expression until a specific condition is satisfied. There are several
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forms, some of which are:

do eo while ex

incr <id> from eo to ei ^ 62 ^ ©3

In the first form the expression eo is repeated so long as ei satisfies the 

Bliss definition of true. The second form is similar to the

"step ... unt'l" construct of i^'sOu except 'i/ tn-e control vanabie, <id>, 

is local to the incr expression, and eo, ei, and e2 are evaluated only once 

(before the evaluation of the loop body, 63). Except for the possibility 

of a leave expression within 63 (see below) the value of a loop expression 

is uniformly taken to be -1.

The control mechanisms described above are either similar to, or 

slight generalizations of constructs in many other languages. Of

themselves they do not remove the inconveniences generated by removing the 

goto. Another mechanism is desirable — the leave mechanism. A leave is a 

highly structured form of forward branch which is constrained to terminate 

coincidentally with some control environment in which the leave is nested. 

The general form is:

leave <label> with <expression>

where <label> must be attached to a control environment within which the 

leave expression is nested. A leave expression causes control to

immediately exit from a specified control environment. The <expression> 

defines the value of the environment.
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Finally, functions are defined and called in Bliss in a manner similar 

to that in Algol, except that there are no specifications arxi all 

parameters are implicitly call-by-value. The value of a function is the 

value of the expression forming its body.
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CHAPTER II

OPTIMIZATION PRIMITIVES

This chapter develops a set of primitive relations, functions, and 

operators to be used in defining a class of feasible object code 

optimizations. There are several goals that direct this development.

First, the primitives are to form a basis for a set of concise

descriptions of various optimizations. The compact notation of the system 

of primitives provides a basis for succinct descriptions of optimization 

strategies which in the past have often been described by lengthy 

algorithms.

Second, the primitives make possible a uniform representation of a 

large class of optimizations. The pyramid effect resulting from a buildup

of primitives defined in terms of combinations of more basic primitives 

creates this uniformity. In addition this buildup produces a common basis

for describing a wide range of optimizations.

Finally, the collection of primitives must allow an implementation of 

optimizations which is as concise as their descriptions. This final goal

directs the selection among a number of different sets of primitives

satisfying the preceding two criteria.



OPTIMIZATION PRIMITIVES *'

PRIMITIVE ORDERING RELATIONS

The problem of object code optimization can be viewed as the search

for a transformation T which when applied to a program P produces an 

program P' that is more efficient. In general the optimization of a 

program effects a trade-off among a number of measures of program

"efficiency". The most important include: size of the object code,

execution time, and the amount of storage for data including user requested 

space and compiler generated temporary storage. The primitives presented 

in this thesis will concentrate on exposing the set of feasible

optimizations in a program. Even though a particular aspect of a program 

could be optimized (i.e. feasible), it may not be desirable because it 

only moderately decreases one of the above measures while increasing the 

cost of another. It should also be pointed out that the notion of 

efficiency for an algorithm P cannot always be divorced from the data on 

which P executes. The optimization strategies to be considered and the

primitives to be developed are in the class of data independent

optimizations that are realizable at compile time. Data sensitive

optimizations in general require the collection of run-time statistics

which can be used subsequently in re-compilation of the program. As the

various optimization strategies are described their effect on the measures

listed above will be noted.

We approach the problem of describing feasible optimizations for a 

program P by considering the ordering relations inherent in a
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representation of P. There are several: the lexical order of the input 

text, the precedence-induced order of evaluation, both data-sensitive and 

data-insensitive order induced by control flow, a leftmost, depth-first

tree order, and so fortK Two such orderings are of interest to the 

development.

The first is the order relation that results from considering a 

program as a mapping from its set of input variables to its set of output 

variables. Stated another way, this ordering, called the essential 

ordering and symbolized by is tfe ordering on evaluation of

expressions that results from the application of the data flow arxf control, 

flow semantics of a language L to the set of expressions E in a program P. 

The optimizations to be considered will regard the essential order in a 

program as immutable.

The second ordering to be defined allows the selection of subsets of 

the total set of expressions in a program which at a given point are of 

interest to an optimization strategy. The following set of examples helps

motivate the particular definition given for Bliss.

A representation of a program defines (at least partially) an

evaluation order on its set of expressions. For example, the compound 

expression

begin ei; 62;... ; e„ end "

defines an ordering implying that evaluation of ej precedes evaluation of

s.

\
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62 and so on. However the ordering inherent in this particular

representation may or may not correspond to the -<-ordering. The -<-ordering 

might allow a number nf permutations of the components of this compound 

expression. Consider the expression 

ei ♦ e2-

While the -<-ordering requires that the evaluation of ej arxt e2 precede the 

evaluation of the sum, some languages may not define the -<-ordering between 

the evaluation of the operands e^ and e2-

The initial ordering on a program is symbolized by "o". Intuitively 

the relation e < e' expresses the notion that in a straightforward 

evaluation (i.e. that performed by a classical one-pass, non-optimizing 

compiler) of this representation of the program the evaluation of e would 

necessarily have preceded the evaluation of e'. This ordering reflects the 

precedence relationships of the program as exemplified in the addition 

expression above. It also reflects the sequential nature of execution as 

in the case of the compound expressioa It does not, on the other hand, 

necessarily reflect tlie subnode relationship between nodes. Again, it is 

to be emphasized that the purpose of this ordering relation is to enable us 

to select subsets of expressions over which particular optimization 

strategies will operate.
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Definition

The initial ordering on the set of expressions E of a Bliss program is 
defined as follows:
Let e be a well-formed Bliss expression.

Define S(e)={e' < E: e' <i e and e' is a subexpression of e} U {e}.

One of the following cases applies for e:
(1) ex <binop> e2: 6] <i e, e2 < e
(2) <unop> ex: ex < e
(3) begin ex; ... ;6n end: ej < Sfej+x) Usi<n), e„ -<1 e
(4) case ep of set ex;... ; e„ tes: ep < e, ep < S(ej) (1 <i<n)
(5) if ep then ex else e2: ep «s S(ex), ep <i S(e2), ep e
(6) select ep of nset ex:e2;... ; e2n-i:e2n tesn:

ep < e, e2i-x < e (l<i<n), ep < S(e2i_x) (l^i^n),
021-1 ** S(e2„) (l<i<n)

(7) while ex do 02: ex < Siez)
(8) ^ ex while e2: ex < Siez)
(9) incr I from ex to 02 ^ 63 ^ e*:

ex <J 02 < ea < e, ex < Siez), ez < SCea), 03 <1 S{e4)
(10) ep(ex,... , e„): Oj < S(ej+x) (0^i<n), e„ < e
(11) leave <label> with ex: ex < e.

Then e initially precedes e' (notation: e e') if and only if in the 
•d-transitive closure of E there is a subset {ex, ... ,eit) such that 
e <1 ex -d ... < Ok < e'.

Consider the following piece of program text:

ep; ii ex then 62 else ea; e*; ^ 05 while ep; e7»-e8+e9*exo 

where ep, ... ,exp < E. In addition define:

exi: if ex then e2 else 03, ex2= ^ ©5 op; 

exa: eg * exp, ex*: ep ♦ exa, exp: ey *- ex*.

The following lattice illustrates the total set of d-relations that hold 

among the expressions ep, ... ,exs. (e; d ej if there Is a path downward 

from ej to ej).
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eo

62 63 6u

ei2 es

As the set of primitives continues to emerge, we will point out more 

detailed motivation for some components of the «j-ordering definition.

DECOMPOSITION OF -(-ORDERING

In the case of simple non-control expressions such as exs the 

<i-ordering reflects the precedence-induced ordering of the binary 

operation. For example the expression ex3 initially precectes ex*. The
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same relation, i.e. e^a -< ei*, held in the essential ordering. The 

differences between the initial and essential orderings must be examined in 

more detail.

Most languages contain control environments whose components are 

potentially <»-order independent. Consider the following compouruJ 

expression:

(A .8; C - .D; E (- .F),

where A. ... ,F are distinct variables. Certainly the <i-order of execution 

of these th'-ee assignments can be altered. For example 

(E .F; A .8; C «- .D)

produces the same effect. Even within the context of a simple expression 

such as

.A ♦ .8 + .C * .D

the commutivity of the "+" operator is reflected in the fact that the 

<-order of the two multiplications is not defined. Nevertheless, the 

<i-order still reflects the requirement that both products be evaluated 

before the addition. Considering a third case,

.A * .8 + F()

is an expression where the semantics of Bliss and Algol differ. In the 

case of Bliss neither the ■a-order nor the -(-order of evaluation of the 

product ".A ♦ .8” and the function call "F()" is well-defined The usual 

interpretation of the semantics of Algol, on the other hand, imposes a 

strict left-to-right evaluation in the presence of the potential
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side-effects resulting from the call on F. Our observations to this point 

on the <-order and -<-order can be summarized by noting that in general the 

«j-order is weaker than the ■<-order, i.e. e •< e' implies that e < e' 

whereas the converse does not necessarily hold. That is, in some 

instances, the fact that e has been placed "before" e’ (in the o sense) by 

the programmer is essential and sometimes it is not.

The optimization strategies discussed below will alter the o-ordering 

in a program. Since the validity of such an alteration is constrained by 

the •<-ordering, a means must be provided for expressing the validity of 

transformations of a program. Given a pair of expressions e, e' where 

e < e', two aspects of the essential ordering can be identified that decide 

the validity of an optimizing transformation re-ordering e and e'. The 

first of these orderings reflects the relationship between an expression e 

and those of its subexpressions essential to its evaluation.

Definition

Let ei, B2 ( E. ei is a necessary constituent of ea (station: 
ei < 02) if and only if (iff)

(1) ex is a subexpression of 02, and
(2) evaluation of 62 requires prior evaluation of ex.

At first sight conditions (1) and (2) above may appear redundant. 

Indeed, if the language is Algol, they are redundant. However, in an 

expression language like Bliss, the following example illustrates their 

non-redundaiKy.
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Example

Let ei: .A4=.B, 62; ei+.C, 63: D«-ei, e*: (63; 62). Then the following 
relations hold: ei < 62, ei < 63, 02 < e*, 03 i. e4.t

Notice that the <-relation reflects a relationship only between values of 

expressions. In the example above the existence of e* in a program 

requires that e3 be executed at some point. However e3 4. e* indicates that 

the value of 04 can be computed without prior computation of the value of 

03. The second ordering related to the essential ordering deals with the

issue of side effects.

Definition

Let ei, e2 < E. The expression ei is an essential predecessor of ez 
(rK>tation: ei « 03) iff

(1) ei <02
(2) the evaluation of the sequences {ei,e2} and {e2}

({62.61! and {ei}) produce distinct values for 02 (ei).

Example

Let ei: A«-.A+1, 02: C<-.B*.A+.D, 03: E«-.A»{A«-.A+1), 04: D«-.B*.C, 05: 
.B*.A. The following relations hold in the context of the compourKi 
expression: (03; 02; 04). ei « 02, ei < 63 and ei « 03, ei •</: 04, 
es < 02 and 05 02.

It is important to state precisely the relationship between the 

orderings < and « and the -(-ordering. If these orderings are considered in

t Uniformly, a slash through a relational operator denotes the 
complementary relation.
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their standard mathematical representations as subsets of ExE, then their 

relationship can be stated as: {-<}«= {<} U {«). Hence it follows that if 

e < e' or e « e' then e -< e'; or equivalently if e does not precede e' in 

the ■<-ordering then e / e' and e -jfe e'.

This section concludes by defining a relation on ExE which makes some 

of the subsequent discussions more convenient. Independent expressions are 

those whose -(-ordering is not determined by the semantics of the language.

Definition

Let ei,e2 < E. e^ is independent of ea (notation: ei o ea) iff
©1 < ©2» ©2 i ©ii ©1 -9*: ©2> ©2 ©1-

The usefulness of these primitive relations will become apparent during the 

discussion of the classical optimization strategies involving code motions.

SIMILARITY FUNCTIONS-AN INTRODUCTION

Another primitive notion to be used in defining optimization 

strategies is a class of real-vaiued functions defined on the domain ExE. 

called similarity functions. Chapter III will contain a more detailed 

discussioa

First, we introduce an equivalence relation called congruence on ExE 

which is an extension of the equality relation on E. Intuitively, two
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expressions are congruent if there exists a one-to-one correspondetice 

between them that preserves the tree structure and in which the 

corresorKling nodes are identical operators or terminals. More precisely, 

the elements of E, considered as ixxies in the tree representation, can be 

decomposed into non-terminal (N) and terminal nodes (T). Moreover T itself 

can be decomposed into names and literals. Recalling from our description 

of the tree representation of an expression in Chapter I that a node in E 

specifies its operator and operands, the notion of congruence is defined as 

follows.

Definition

Let e, e' « E. e is congruent to e' (notation: e = e') iff either 
(1) e, e' < N,

e[operator] = e'[operator],
e[# of operands] = e'[# of operands]=n, and
e[operandj] s e'[operandj] (l<i<n);

(?) e, e* < T,
e and e' are equal literals or identical names.t

The idea for the similarity function grows out of the recognition that 

common subexpressions, which among other characteristics are congruent, are 

a rich source of optimizable expressions in a program. This observation 

suggests the consideration of those expressions which are "almost" common 

subexpressions but fail only because they are not quite congruent. As an

t The statement that e and e' are identical names is stronger than 
character string equality. Here we mean that they in fact refer to the
unique variables accessible by that identifier within the present 
environment.
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example, let e; .A«.B«.C and e': .A+.B«(.0«.E). When viewed in the form of 

the tree representations of e and e':

e: ♦
/\ 

.A •
A 

/\.0 . .

.D '.E

a strong correspondance is noticeable in the overall super-structure of the 

expression trees. The intuitive notion, then, of a similarity function is

that it is a measure of how "close" two expressions come to being

congruent. This intuition leads to the following minimal requirements for 

a function to be considered a similarity function:

a is a similarity function only if

(1) a: ExE - [0,oo),

(2) o(ei,e2)=0 iff ei s e2, and

(3) tr(ei,e2) - a(e2,ei) for ail ei,e2 < E. (symmetric)

These three requirements should elicit the intuition that a satisfies 

the requirements of a metric on E. That is indeed a reasonable intuition.

What if not clear at this point is whether the additional metric

requirement of the triangular inequality would add anything to the notion 

of a similarity functioa It is clear, on the other harid, that the above 

restrictions are rx)t sufficient to provide in themselves a very interesting

class of functions. Further discussion of the characteristics of this
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class of functions is deferred to Chapter III.

Given a particular similarity function, a, a parameter & (very 

cr-dependent) can be selected in terms of which the following relation on 

ExE can be defined.

Definition

e is strongly similar to e' (notation: e e') iff a(e,e') < S. t

The primary reason for interjecting this brief introduction to the 

similarity function at this point has been to establish the interconnection 

between the concepts of congruence, strong similarity, and the notion of 

similarity function. Throughout the remainder of this chapter the 

similarity function will be used in the very restricted sense of

congruence. Chapter III will concentrate on exposing the overall

motivation and usefulness of the concept.

This section concludes by introducing one more relation on ExE. Later 

on in Chapter II there will be a discussion demonstrating how the set of 

"redundant computations" as defined in Cocke and Schwartz are exposed by 

our primitives. For the present the notion of common subexpression, which 

specifies a subset of the collection of all redundant expressions, is 

defined in terms of the primitives developed so far.

t Local context will be sufficient to distinguish the use of "<" as a 
symbol for "less than" and for "necessary constituent".



OPTIMIZATION PRIMITIVES
SIMILARITY FUNCTIONS-AN INTRODUCTION

Definition

e and e' are common subexpressions {notation: e » e') iff
(1) ese',
(2) e <J e' or e' < e, and
(3) assuming e < e', V e" such that e <» e" e’, e e"

The intuition to be conveyed by this definiton of a common

subexpression is that if e = e', then (1) the values returned from the 

evaluation of e and e' are always identical and (2) the control flow of P 

is such that whenever e' is evaluated then e has been evaluated prior to it 

(or vice versa). The components of the definition mirror this intuition by

saying that (1) e and e' are congruent, (2) the evaluation of e initially

precedes e' (or vice versa) by definition of the <i-ordering, and (3) all 

the expressions that intervene between e and e' have the property that they 

do not produce side-effects that affect the value of e (equivalently: e') 

nor does e produce side effects on them. The latter condition says

intuitively that the evaluation of e' is unnecessary since its value is

available from the evaluation of e.

CODE MOTION OPTIMIZATIONS

The literature on object code optimization in the presence of control 

flow identifies a collection of optimization strategies called code

motions. This set of optimizations falls into two subcategories: (1) 

moving evaluations of expressions to less frequently executed points in the
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program ar»d (2) avoiding unnecessary re-evaluation of expressions whose 

component values have not changed. The definition of common subexpression 

in the preceding section is an example of category 2.

CODE MOTION IN LINEAR BLOCKS

The collection of code motion optimizations about to be described are 

all predicated on a recursive, inside-out approach for their detectioa 

For example, in detecting code motions relative to an if-then-else control 

environment, the detection proceeds by first invoking the optimization on 

the "then” and "else" expressions. The optimization on each of these

expressions will (1) detect the feasible optimizations within its own local 

environment, and (2) return information to be used in detecting 

optimizations relative to the if-then-else environment. This overall 

approach requires that a means be provided for stating precisely what

information about the sub-components of a control expression is required in

order to detect optimizations for the control expression itself. The

notion of a linear block is introduced for this purpose. Roughly speaking,

fi corresponds to those subexpressions of e through which a linear (i.e. 

<i-order) flow of control passes.

Definition

Let e < E and E'= {e‘ < E: e' is a subexpression of e}. The linear 
block (i relative to e (notation; P|e) is the set (i\e - {e' € E': 
e' <i e}.
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Since in the context of the use of P|e the expression e is quite often 

obvious, "le" is simply omitted in most cases. By convention, the linear 

block relative to e, will be denoted by (3|. In flow diagrams, linear 

blocks are depicted as unbroken vertical lines (flow passing from top to 

bottom):

Example

Consider the expression: 
jf eo

then (ei; ^ ez while e^-, e<) 
else (es; jf ee then ej else eg) 

and define:
eg: ^ ez while eg, ei©: if eg then 07 else eg, 
eu: (ei; eg; e*), and ejg: (eg; ei©)- 

Then (3u= {ei, eg, e4} and 0i2= {es. eg, ei©}.

Consider a linear block (3 that contains the element e: A«-.B<‘.C. We 

wish to develop a concise description of the potential movability of e 

backward (to the top) or forward (to the bottom) of the block. It may be 

feasible to move the evaluation of .B*.C backwards even though the entire 

expression e cannot be moved. For example:

(F(.A); A«-.B*.C...

Assuming F does not produce side effects on B or C, we recognize that the 

evaluation of .B*.C can be moved backward to the head of the linear block
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whereas the store into A must follow the parameter evaluation for the call 

on F. In our terminology, the expression F(.A) is an essential predecessor

of e but not of .B^.C. On the other hand the evaluation of .B*.C can never 

be moved forward to a point after the evaluation of e sirKe .B*.C is a 

necessary constituent of e.

The following definition defines three sets which make the succeeding 

definition less cumbersome.

Definition

Let e ( (3, a linear block.
pro-dominator((3,e) = {e' < |3: e' < e, e' « e or e « e'}, 
epi-dominator(0,e) = {e* < |3: e < e', e « e' or e' « e}, 
post-dominator(^J,e) = {e' < (3: e < e', e' e}.

The pro-dominator set contains those elements of (3 which initially precede 

e such that they produce a side effect on e or e produces a side-effect on 

them. The epi-dominator set differs from the pro-dominator only in that 

its elements initially follow e. Intuitively the pro-dominator 

(epi-dominator) contains those elements of (i which prevent the movement of 

e backward (forward) to the head (tail) of (3 because they produce a 

side-effect on e or vice versa. The post-dominator set consists of those

elements of (3 which initially follow e and are not independent of e. Hence 

the post-dominator consists of those elements which prevent the movement of 

e forward either because of a side-effects relationship or because their 

evaluation requires the evaluation of e. It follows from the definitions
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of "«“ and "o" that: epi-dominator(0,e) C post-dominator(3,e)-

Definition

Let be a linear block.
prolog(3) “ {e < (3: pro-dominatOr((J,e) - 0}, 
epilog(3) « {e < 0: epi-dominator(0,e) ■ 0}, 
postlog(/3) » {e C (3: post-dominator(P,e) = 0}.

Note that it follows immediately that postlog(f3) E epilog((3).

Example

Let e: (A<-.B; jf .A gtr .B then C«-.B*.C; D«-.C; B«-.X*.Y; X»-3). Then 
(3 = {.B, A^.B, .A, -B, .A gtr .B, .C, D«-.C, .X, .Y, .X*.Y, B«-.X*.Y, 
X«-3}. Note that in our discussions of code motion and the related 
subsets of linear blocks, constants (names and literals) will not be
listed since they do not enter into the feasibility of code motions.
Now:

prolog((3) = {.B, A«-.B, .B, .X, .Y, .X*.Y}, 
epilog(3) = {.C, D«-.C, .Y, X«-3), and 
postlog((3) = {D«-.C, X«-3}.

Observe that the second .B in prolog(0) is the right operand of
.A gtr .B and that the .C in epilog(fi) is V'e right side of the store
D-.C.

These sets define those expressions that can be moved forward or

backward relative to the head or tail of (i. At this point the utility of

these sets is not yet clear but their usefulness becomes apparent in the 

context of control environments. In particular the next two sections on 

optimization strategies for branching and loop control environments stress

the expressive power of the primitives for generating concise descriptions

of a variety of optimizations.
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CODE MOTION IN FORKED CONTROL

Consider a branching control construct of the form

/i\
02

\i/
0n

(•

where < functions as a selector among the n branches. This form of control 

represents both if-then-else and case types of control environments. The 

following sections describe several optimization strategies relative to 

this form of control environment.

ALPHA-OMEGA CODE MOTIONS

The first form of feasible optimization exploits the code motions of 

the linear blocks fii, ... so that the following flow diagram results:
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A\
fil' fi2

V
<■

The linear blocks a and w contain those expressions factored forward and 

backward from all of the branches, (Jj.

Example

Let (5i: (A-.X*.Y; Y^3) and 02= (B*-.X*.Y; Y^3). Consider the
expression: jf < ihen (3i ejse fiz. A feasible optimization is to let
a: T«-.X».Y, a;: Y^3, |3i': A-.T, 0z': This yields the expression:
(jf (T«-.X*.Y; <) then A*-.T else B«-.T; Y*-3).

A primary goal of the development of our optimization primitives is to 

provide a means of concisely describing the set of feasible members of sets 

such as a and w. To that end an operator on the power set of E ts

introduced
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Definition

Let El, ... ,E„ be subsets of E. The formal intersection of the sets 
Ej is defined as

aE( = {e < E: V i, l<i<n, 3 ei < E| such that e as ei}.

While formal intersection is different from ordinary set intersection the 

analogy should be obvious: formal intersection differs from set

intersection in that the equivalence relation of equality of elements is 

replaced by that of congruence.

Example

Let (3i and fi2 be as defined in the preceding example. Then 
(3i A (32 = {.X, .Y, .X«.Y, Y^3}. We reinforce the fact that the "a" 
operator differs from ordinary set intersection by noting that fii fl 02 
= 0.

The notion of formal intersection provides us with a powerful tool to

concisely define the sets a and eo.

Given a forked control environment with branches
©li — >eni the domain of elements (a) available for
pre-evaluation is described by: a S A prolog(|3j). The 
domain of elements (m) available for post-evaluation is 
described by: a; S a postlog(|3i).

The optimizations described by the sets a and to are examples of

optimizations that save space, do not effect time, but may prolong the

life-time of temporary storage locations.



OPTIMIZATION PRIMITIVES
CODE MOTION IN FORKED CONTROL

POST-MERGE RE-EVALUATIONS

In addition to the goal of providing a collection of primitives that 

allow a concise definition of a variety of optimizations, these primitives 

should also be "complete" in the sense that they may be used to describe 

the class of "redundant" computations in a program. Consider the following 

example:

.A*.B

It is apparent that the product that follows the merge point need not be 

re-evaluated. The set of expressions available for this optimization is

described by:

A epilog(0j).

Recall that an element of the epilog set cannot in general have its 

evaluation moved to the end of the linear block. The value, however, of 

such expressions is not altered by the expressions that succeed them in the 

block.
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In practice, a more general case can be considered For example:

■A^.B

.A*.B

once again the evaluation of the product after the merge is not necessary. 

Since .A«.B does not appear in the right hand branch, it would not be an 

element of the formal intersect of the epilog of the branches. The 

extension is straightforward.

Consider
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//\

\i/
<•

3I
1

Given a forked control environment with selector 
expression < and branches ei, ». ,6n, define 
ej- = «; e.) and 0/ = ai’lej', l<i<n. Then the set 
of expressions whose evaluation at the merge point 
would be redundant is the set: a epilogtfJj').

WASP-WAISTING

There is. another class of optimizations one might consider in a 

branching control environment. Consider the example:

/\

V
e' where e = e'

Assume the unspecified portions of the branches are such that the
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simultaneous motion of e and e' backward as well as forward is impossible. 

One can consider an optimization which because of the altered appearance of 

the flow diagram, we call "wasp-waisting".

\/

/\

\/

The jump to and return from the common evaluation point can be accomplished 

by subroutine call and return instructions or by re-testing the brarKh 

condition. Wasp-waisting turns out to be a particular case of a more 

general class of optimizations using the notion of similarity, which will 

be discussed in Chapter III.

CODE MOTION IN LOOPS

The looping constructs to be considered consist of a body fii and a 

predicate 02 to be evaluated on each iteratioa This section will consider 

two types. A "do-while" form has its test at the bottom of the loop.
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fT 

fi2

A "while-do" form has its test at the top of the loop.

Other forms of loops such as counting types can be modeled by these forms.

LOOP INVARIANT EXPRESSIONS

The first optimization strategy considered is the pre-evaluation of

the "loop invariant expressio .s", i.e. those whose values do not change on

any iteration of the loop. In terms of the primitives developed, the

description of the set of loop invariant expressions is straightforward.

Given a loop control environment, the set of loop 
invariant expressions is described by:
prolog(^) n epilog(|3), where is the linear block
relative to the compound expression fiz) in the 
"do-while" case and (fiz; fii) in the "while-do" case.

The description has intuitive appeal since it simply states that any
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expression whose evaluation is not affected by occurring either before or 

after the loop is not changed by execution of the loop.

CYCLIC RE-EVALUATIONS

The cyclic nature of loop control gives rise to a particular class of 

"redundant" computations. Consider the following example:

.A*.B

.A*.B

.A*.B

Clearly the expression .A*.B is not invariant throughout the loop. However 

if the expression .A*.B were pre-evaluated at entry to the loop and stored 

in a temporary T and if after each recomputation of A or B the expression 

.A*.B were again evaluated in T, there would be no need to re-evaluate 

.A*.B at the top of the loop on each iteratioa The restructured 

computation is:

#

i
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T-.A*.B

Given a loop control envrionment where (i is the linear 
block relative to the expression (|3i; ^2) ("do-while")
O'" (02; 01' ("while-do"), the set of expressions whose 
evaluations at the head of 0 are redundant to
evaluations at the tail of (i are described by the set;
prolog(P) A epilog(fJ).

Comparison of this set with the set of loop invariant expressions 

described above reinforces the distinction between the notions of formal 

intersection and set intersection In the case of a loop invariant 

expression e, the expression e itself appeared in both the prolog and 

epilog sets whereas an element of the formal intersect is simply an

expression which has a formally identical image in both the prolog and 

epilog sets. Since the first instance of .A*.B can be moved backward, it

appears in the prolog but the redefinition of A prevents its appeararKe in 

the epilog. However the second instance of .A*.B can be moved forward and
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so appears in the epilog.

POST LOOP RE-EVALUATIONS

Finally, let us point out how loops particpate in the exposure of the 

set of redundant expressions to their surrounding environment.

In the case of a "while-do" construct

the set of expressions whose values are available on 
exit from the loop is the set epilog(€; 0z)-

For the case of a "do-while" construct

the set of available expressions on exit is epilog 
«; 0i; ^2).
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CODE MOTIONS AND LEAVE EXPRESSIONS

To this point our discussion has been limited to go-to-less control 

structures. In this section we consider the effect of introducing the 

Bliss "leave" mechanism for exiting control environments. In particular, 

are the set of primitives powerful enough to describe the code motion 

optimizations in the presence of leave expressions?

Consider the following example: 

eo;

LOOP: while ei ^

(ea; if 63 then leave LOOP with e4; es; es)} e;

The flow diagram for this expression is:

eo

LOOP: 4— 

ei 

62 

©3

\
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The class of code motion optimizations we have been discussing can be 

divided into three subclasses: (1) moving an evaluation backward, (2) 

moving an evaluation forward, or (3) eliminating an evaluation because it 

is available on all control paths leading to the present evaluation. The 

linear block relative to the leave expression participates in optimizations 

of class (1) in a manner analogous to the optimizations proposed for an 

expression of the form:

jf 03 then e* dse (es; ee).

As for optimizations of the classes (2) and (3), it is analogous to 

optimizations for the expression:

if <arbitrary predicate> then e* 

else while ei do (62; 63; 65; ee).

In effect a leave expression is a forking construct whose

optimizations involving backward motion of code behave as though the fork 

is local to the environment surrounding the leave and whose optimizations 

involving forward motion of cocie behave as though the fork terminates at 

the termination point of the labelled expressioa As a particular example, 

the set of expressions whose evaluation is available on termination of the 

LOOP expression above is the set: epilog(eo;e«) a epilog(eo;ei).
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STRENGTH REDUCTION

A classical optimization in the presence of iterative loop control is 

"strength reduction". Basically strength reduction exploits the inductive 

behavior of the control variable in a loop in the attempt to replace 

relatively expensive operations with less expensive ones by applying

recursion relations to express the expensive operation in terms of the less 

expensive one.

The following example illustrates the technique. Assume a segment of 

storage named A has been structured so that access to the l-th element of A 

is defined by the Bliss expression: A*3*.l*5. The loop which follows wiH 

zero out every 3*K-th element of A starting at the (3*M+5)-th element and 

ending at the (3*N*5)-th element of A.

incr I from .M to .N ^ .K ^ (A*3*.l*5)«-0

Note that on each iteration of the loop the relatively expensive 

multiplication 3*.l must be re-evaluated in the loop body.

Strength reduction on such a loop transforms the loop expression above 

to the following:

incr I from (A*3*.M+5) to (A+3*.N*5) ^ 3* K ^ .l«-0.

This latter loop has the same semantic eff.ect as the former but now there 

are rx) multiplications taking place in the loop body.

Unrolling the first few iterations of the original loop will help 

motivate the discussion which follows.
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(0) l«-.M

(1) |f .1 .N then <endloop>;

(2) (A*3*.U5)«-0;

(3) l«-.k.K;

(A) if .1 gtr .N then <endloop>;

(5) (A^3*.l+5)-0;

(6) l^-.H.K;

etc.

Notice that the accessing expressions in (2) and (5) are congruent. They 

are not common subexpressions, however, because of the intervening 

re-evaluation of I at (3). This unrolled representation of the loop 

example suggests an investigation into a more general form of the strength 

reduction notioa

STRENGTH REDUCTION-A GENERALIZATION

Consider the following question: given e, e' ( E and e < e', can one 

characterize the cases in which there exist an expression Ae arxl a function 

F such that e’ s F{e,Ae) and the computational cost of F(e,Ae) is less than 

the computational cost of e' evaluated in the usual manner? We have already 

seen two cases:

(1) Clearly the example of a strength reduction optimization in 

the preceding section fits this situatioa In general it reduced
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the cost of execution.

(2) The second case involves the redundant expression elimination 

discussed earlier in the chapter. The sequence (X«-e; 

Y*-e <op> e') will make use of the fact that it need not recompute 

the left hand operand of <op>. Such optimizations save both time 

and space.

Our discussion of strength reduction examines the possible extensions 

of the notion and the corresponding difficulties in exploiting those 

extensions. In the process of this development the primitives already

developed are used and a few specialized notions are defined.

PRIMITIVES FOR STRENGTH REDUCTION

Returning to the context of the unrolled strength reduction example 

presented above, the necessity of stating more precisely the interaction 

between the re-evaluation of I and the corresponding change in the value of 

A+3*.H5 is evident. We begin by proposing a definition that describes the 

set of expressions involved in the evaluation of e, e' and all the 

expressions between them in the •«-ordering.

Definition

Let e, e' < E, e «i e' and E’= {e" < E: e e" «j e'}. The interval
from e to e’ (notation: int(e,e')) is defined as the set 

E' U {e < E: e" < E‘, e a suoexpression of e"}.
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Example

Let e:(exj 62; ea; e*) where ea: ^ ej while eg. Then int(e2,e4) -
{©21 ©a, 65, ee, 64}. Similarly int(ei,S4) =
{©1. ©2. ©3i ©4. ©5i ©e}- Contrast this with the linear block (}|e.
^^1© “ {©ii ©2. ©3. ©4} does not include es and e$ because of the 
definition of the o-ordering.

The notion of linear block is defined relative to a single expression. 

As a result it is impossible to talk about the linear block relative to an

interval. This difficulty is resolved by defining the minimal expression

containing an interval, which will be called the cover of the interval. In

some cases the cover will itself be an expression in the program. Consider 

the case, however, where the expressions e and e' appear in a compound 

expression (as did the two instances of A+3*.l+5 in the unrolled loop 

example above). For example let e":(ei; e; e2; 63; e'; e4; es) be the 

minimal expression containing e and e'. The interval from e to e' is the

set {e, e2, 63, e'} and the cover should not contain expressions which will

not enter into the consideration of what occurs as execution passes from e

to e’. Hence the cover, in this case, will be defined as the compound

expression (e; 02; 63; e') which does not occur as an expression in the

program.

Definition

Let e, e' < E, e < e', and let e" be the minimal expression in E which 
contains the elements of int(e,e') as subexpressions. The cover of 
int(e,e') is defined as

e", e" not a compound expression
cover (e,e’)='

,c, otherwise.
c is defined as follows. Let e";(ei; ... ; ei;
Then c is the compound expression {e,i .„ ; ej) where:

5 6j» “• 5 ©n)*
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V X < int(e,e') 9 K, isk<j such that x is a subexpression of Ck, 
and

V eic, i<k<j, 9 x < int(e,e‘) such that x is a subexpression of eu.

Refering to the preceding example, it follows from the definition of a 

cover that cover{ei,e3) =■ (ex; e2; 63) and cover(es,ee) = 63.

The next concept is well understood but is defined for completeness.

Definition ‘ •

Let eo, ... ,e„ < E and let lx, ... ,l„ be variables. A linear
polynomial e in the n variables lx, ~. ,!» is denoted by 
e<lx, — ,ln> is an expression of the form 

eo ♦ ex*.lx ♦ ... ♦ e„*.l„.

STRENGTH REDUCTION WITHOUT LOOPS

Now the conditions that make a strength reduction optimization

possible in an environment such as the specific unrolled example above can 

be described. Let e, e' < E, e <1 e‘, and e s e’. Let e (and e') be linear 

polynomials in n variables: e<lx, ... ,ln> (e'<lx, — ,ln>). Let 0 be 

the linear block relative to cover(e,e'). Assume that for all k, l<k<n,

the only redefinitions of Ij (if any) in int(e,e') are of the form:

lj*-.lj^Aj where Aj < prolog(|3) ft epilog(/3). Also assume that the

coefficient expressions ep, ... ,e„ are elements of prolog(|3) (1 epilog((?). 

Define: Ae » e<lx+Ax, ... ,ln*An> - e<li, ... ,l«>. The following two

observations can be made:
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(1) Ae is a polynomial (Ae<Ax,... ,An>) and moreover

if e=eo+ei*li+ ... +en*l„ then Ae=ei*Ax* ... +en*A„.

(2) value(e’)=value{e)+value(Ae).

Example

... X*-3^^.U4*.J*5; l«-.T+2; J«-.J+7; Y*-3».l+a*.J+5; ._ Let e be the
right side of the assignment to X and e' the right side of the 
assignment to Y. We see: Ae=(3*{.l+2) + 4*(.J+7) ♦ 5) - (3*.l+4*.J+5) 
= 34. And so value(Y) = value(X) ♦ 34.

Admittedly, the above example is biased by the fact that both the 

polynomial coefficients and A| and Aj are all constants. If, for example, 

the re-definition of I were: l<-.l+.K, then Ae = 3*.K+28. The product 3*.K 

is more palatable if we consider a sequence such as:

Xi«-e; l^.l+.K; J<-.J+7;

X2«-e; l♦-.l♦.K; J<-.J+7;

X„^e; l«-.l*.K; J4-.J*7;...

Now the evaluation of Ae occurs only once and the successive stores in the 

Xj's can be accomplished by the sequence:

Ae«-3*.K+28;

Xi«-.e;

X2*-.Xi-*-Ae;

X3«-.X2+Ae;

X|i,«-.X*_i*Ae;
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Assume that the sequence of names Xi, X2, ... X*_i, X» is computable in the 

sense that a function f exists such that for all I, 2<i<m, X|=f(Xj_i). 

Then the sequence of stores above strongly suggests an unrolled loop.

STRENGTH REDUCTION WITH LOOPS

The observations made in the preceding section can be restated within 

the context of a looping control expression.

Given a loop of the form: incr I from eo to ei ^ 63 ^ 
63, let e, a subexpression of 03, be a polynomial in I 
for which we wish to perform a strength reduction 
optimization. Let e<l> = e'*.ke" and let (i be the 
linear block relative to 03. Then the following
conditions must hold for the strength reduction to be 
feasible:
(1) e',e” < prolog((3) ft epilog«3), i.e. e',e" are
loop invariants,
(2) the only redefinition of I is tlie loop increment 
l♦-.l♦e2. (The semantics of Bliss require that e2's 
value be evaluated prior to loop entry and perserved. 
Hence e2 is loop invariant.)

The strength reduction optimization is realized by transforming the 

original loop to the following:

incr I from (eo; r«-e<eo>) to ei ^ (02; Ae«-e'*e2)

^ (63'; IV.lUAe);

where 63' is obtained from 63 by replacing e by .1*. If e were the only 

expression in 03 that accessed the value of I then a more significant 

strength reduction of the form:

incr I from e<eo> to e<ei> ^ e'»e2 ^ 03'

i...
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can be performed where again ea' is obtained by replacing e with .1 in 03. 

This loop has only one induction variable and the "to** test on ej[ has been 

replaced by e<ex>. The following section examines extensions of the 

strength reduction notion and the corresponding problems.

STRENGTH REDUCTION EXTENDED

In the preceding sections on strength reduction a set of requirements 

was imposed in order that a specific form of strength reduction would be 

feasible. Consider what occurs as we begin to relax some of those 

requirements. First of all, what effect does the removal of the linearity 

requirement on polynomial have? For example let e: 3*.h.l - 4*.l ♦ 7. 

Then Ae = (3*(.HA|)*(.kA,) - 4*(.HA,) ♦ 7) - (3*.l*.l - 4*.l ♦ 7) - 

6«.I«A| ♦ 3«A|*A| - 4*A|. The computation of Ae still involves a

non-constant multiplicative term; 6«.I«A|. Strength reduction on M>6«.I*A| 

removes the necessity of performing this evaluation on each iteration of 

the loop. Then AM = 6*(.I+A()<'A| - 6*.I«A| = 6*A|*A|. This allows a 

transformation of the loop

incr I from 0 to .N ^ 3 ^ F(3*.l*.l-4*.h7);

l«-7; T-3-.N-.N-4*.N+7; M-0j 
while .1 leg .T do 

besin
F(.l);
l«-.U(.M+15);
M«-.M*54;

end;.



OPTIMIZATION PRIMITIVES 
STRENGTH REDUCTION

In general if the expression e upon which a strength reduction is being 

performed is an n-th degree polynomial, then n-1 additional variables, like

M in the example above, must be introduced in order to maintain the partial 

accumulations.

Having removed the linearity requirement for polynomials, consider the 

possiblity of relaxing the polynomial requirement itself. The point of the 

redu'tion in strength optimization is to replace an expensive operation

with a less expensive one. In the case of multiplication and addition, the

feasibilty of such a replacement comes from the inductive relationship

between the operands of the successive multiplications and the fact that a

product can be accumulated by a sequence of additions. This overall

relationship is reflected in the fact that given a n-th degree polynomial 

e<l> then the polynomial Ae ° e<HA|> - e<l> is always of degree n-1. 

There are two critical points here:

(1) Ae is a polynomial and so a closed form solution is available 

to the difference e<kA|> - e<l>, and

(2) Ae is of degree n-1, which means that successive reductions

will eventually reduce all multiplications to additions.

Hence the question remains: are there other strength reductions

besides those between and "♦"? All the preceding development holds

equally well if we replace by exponentiation and by For

example the loop:

incr I from 1 to .N ^ 1 ^ A[.I]«-.X <exp> .Ij



OPTIMIZATION PRIMITIVES 
STRENGTH REDUCTION

can be replaced by the following expression in which no exponentiation 

occurs:

incr I from 1 to .N by 1 
do (A[.I]«-.J;

The section on strength reduction began by asking the question: given 

e, e' < E and e < e', can one characterize the case where e' « F(e,Ae) and 

the cost of computing F is less than the cost of computing e’? The attempt 

to isolate the essential characteristics of strength reduction with a view 

to extending the notion initially motivated that questioa Subsequent 

discussion has pointed out two directions for extension: (1) strength

reduction in non-looping environments and (2) strength reduction between 

non-polynomial expressions. The primitives were able to define the 

feasible strength reductions independent of the presence of the loop 

control environment. The challenge remains in case (1) to discover an

algorithm for directing the search through the set E for pairs (e,e‘) on 

which a strength reduction can be performed. Loops have the property that 

they both localize the search and, in the case of incr loops, immediately 

identify an induction variable. As for case (2), the challenge is to 

discover a more general means of constructing closed-form representations 

of the recursion relation F. Polynomials have the property that the 

expression Ae is an easily identifiable polynomial itself.
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REDUNDANT EXPRESSIONS

Several references have been made in the preceding sections to the 

concept of redundant expressions in a program. In the present section we 

demonstrate that our primiti'/es expose the set of redundant expressions in 

a program consisting of the forked and looping control environments 

discussed above. The following definition is a direct quote from the text 

by J. Cocke and J. Schwartz, t

Definition

An operation A<^B (i.e. an operation which combines two inputs A and B 
to give some sort of result, which we write as A*B) is redundant if 
there ex sts no track in the program graph, either beginning at the 
program c -try block, or beginning at any assignment of a new value to 
one of the variables A or B, which reaches the given operation without 
passing through some preceding calculation of the result A*B.

The definition of common subexpression identified a collection of 

redundant expressions, i.e. if e = e', then e' is redundant (assuming 

e < e'). The fact that e e' implies that every control path that leads 

to an evaluation of e' has previously evaluated e. There is no intervening 

assigment to the components of e since by part(3) of the definition of 

common subexpression: V e", e 3 e" 3 e', e e".

Assume that e' is a redundant expression and that e is the congruent 

expression that "creates" this redundancy. Furthermore, assume that this

t cf. [CS70], pp. 427-428.
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redundancy was not exposed by the optimization techniques presented above. 

Now if e ■ e’, then e' would be redundant. Hence one of the three 

conditions for a common subexpression must not hold. The first corxJition, 

viz. e B e', must be satisfied by e and e‘ since congruence is a property 

of redundant expressions. If the second condition (e <i e') is assumed to 

hold, then the third condition of the c-s-e definition indicates the 

existence of an expression e" such that e <jt e". However, the existance of 

the expression e“ again violates the definition of redundancy for e and e'. 

Thus we have only to consider the cases in which e ft e'.

There are. three cases to consider for forking control environments:

e e' e e e"

e* e'

CASE 1 CASE 2 CASES

In case 1; the expression e' is not redundant since no control path leads 

from the left-hand branch to the right. Notice, however, that

optimizations have been proposed above which attempt to combine the two 

evaluations. The a and u optimizations expose the feasibility of

simultaneously moving the evaluations of e and e’ backward or forward. 

Wasp-waisting is a feasible optimization for those cases where forward or 

backward motion is impossible. In case 2, e' is not redundant since
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control potentially passes down the right-hand branch and so does not 

evaluate e. Finally in case 3, e' is potentially redundant since the

expressions e and e" are evaluated on each control path. If no side-effect 

producing expressions occur between the evaluation points of e and e" arxl 

the evaluation point of e', then e' is redundant. This class of redundant 

expressions, as described in the section on post-merge re-evaluations, is 

detected by the formal intersection of the epilogs of the branches.

A "do-while" looping environment presents three cases to consider in 

which e 4 e':

e' 

e 

e

CASE 1 CASE 2 CASE 3

For convenience, we define x l^e the set of loop-invariant expressions in 

a loop. Thus X “ prolog((3) f1 epilog(3) where (3 is the linear block 

relative to the body and predicate of the loop. In case 1, the evaluation 

of e' is redundant only if e’ < x- The redundancy of e' in case 2 does not 

require that e < x but simply that e € epilog(/3). Case 3 is exac'ly the 

situation discussed in the section on cyclic re-evaluations. In this case 

e' is redundant if e’ < prolog(/J) A epilog«3).
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The "while-do" form of loop presents the following cases for 

consideration:

e

e’

el e'

CASE 1 CASE 2 CASE 3 CASE A CASE 5 

Again let x be the set of loop-invariant expressions. Let fii and 02 be the 

linear blocks relative to the while and ^ expressions respectively. Let 

fi “ 0l(0i; 02)- In both cases 1 and 2, the expression e' is redundant only

if e' ( X- In case 3, e' is redundant if e' < epilog(0i). e' is not 

redundant in case A since there is no guarantee that the ^ expression will 

be executed. Finally, case 5 is again an example of a cyclic re-evaluation 

and so e' is redundant if e' < p''olog(0) A epilog(0'}.

SUMMARY

A primary goal of the thesis is to propose a collection of primitives 

for describing object code optimizations which are powerful enough to 

provide concise descriptions of optimizations. The set of primitives 

presented in this chapter was motivated, defined, and used in describing 

the code motion, redundant expression elimination, and strength reduction
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optimizations discussed in Cocke and Schwartz. The collection of

paragraphs delineated by vertical lines describe these optimizations.

Their coiKision is self-evident.

The primitives also apply to a broad class of optimizations. In 

particular, it would be inappropriate that disjoint collections of

primitives would be used in describing each class of optimizations. An 

examination of the set of descriptions shows that most of the primitives 

permeate through alt the descriptions. The ordering relations (o, <, <e, <) 

and the subsets defined in terms of them (prolog, epilog, postlog) are used 

consistently throughout the chapter. As a result, although the

optimizatior^ themselves may on the surface appear to be unrelated, the

primitives provide a homogeneous description of them. This homogeniety, in 

turn, leads to a compact, cleanly structured implementation.

Another objective of the thesis is that the primitives be language 

independent. This objective has been achieved by isolating the language 

dependent relationships in the "necessary constituent" (<) and "essential 

predecessor" («) relations. The ability to isolate these language 

dependent relationships contributes significantly to the concision of the 

descriptior^.

The primitives have been developed in a representation-independent 

manner. No inherent characteristics of the primitives are concerned with 

the data structure of the program's representatioa Hence there is no

b.
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implied implementation strategy underlying the primitives. Again, this

contributes to their concision and clarity. This aspect of the primitives 

allows relative freedom in implementation strategies. In addition it has 

resulted in a set of primitives that can be manipulated purely on a formal 

level. Potentially, this can lead to results whose discovery would be 

hopelessly obscured by any specific representatioa

Finally, previous investigations in the area of object code 

optimizations often describe optimizations in terms of lengthy algorithms 

which manipulate particular representations. Our primitives have succeeded 

in partitioning those algorithms into operators, relations, arxl the

characteristic functions of particular sets of expressions. Hence, we are 

able to describe optimizations m terms of the primitives without regard to 

the representation of the program or the particular implementation details 

of the primitives. A good example of the effect of the homogeniety, 

concision, and representation-independence is the discussion of the 

completeness of redundant expression elimination in the preceding sectioa



CHAPTER III 

SIMILARITY FUNCTIONS

In Chapter II a collection of primitives was developed to concisely 

describe previously known optimization techniques. This chapter examines a 

class of real-valued functions called similarity functions to be used in 

conjunction with the primitives of Chapter II in describing a set of new 

optimizations. These optimizations produce dramatic reductions in object 

code size in certain cases where the classical optimizations presented 

earlier have little effect. In particular an example presented in Chapter 

IV shows a 28 percent savings in a 1000-word program resulting from these 

techniques. This reduction is to be contrasted with the 6 percent savings 

that results when the same program is optimized using only the classical 

optimizations.

The presentation of similarity in this chapter is divided into three 

sections: (1) a discussion of the origins of the similarity concept, (2) 

the development of a particular similarity function, and (3) an examination 

of a collection of optimization techniques based on the concept.

<::3
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ORIGINS OF THE SIMIL/.RITY CONCEPT

The optimization techniques described in Chapter II fell into two

categories: (1) moving the evaluation of expressions either to reduce

frequency of execution (e.g. pre-evaluation of loop-invariant expressions)

or to eliminate parallel evaluations (e.g. alpha-omega code motions) and

(2) avoiding the unnecessary re-evaluation of an expression (e.g. a common

subexpression). The initial stimulus for the similarity concept arises

from a consideration of the sets of expressions on which optimizations from

category (2) operate. If e and e' are a pair of expressions such that the

evaluation of e' is made unnecessary by the prior evaluation of e, then e

and e' are congruent and can be translated into identical code sequences.

The phrase "identical code sequence" is to be interpreted loosely as

meaning an identical sequence of machine code operations ignoring the

possibility of different temporary accumulators. The key intuition is that

although congruent expressions are translated into identical code

sequences, the converse does not follow. That is, identical code sequences

can be produced for the evaluation (or partial evaluation) of expressions

which are not congruent. For example, the code sequence

LOAD T2,Ti 
MULT T2,T2 
MULT T2,A 
MULT Ti,B 
ADD T2,Ti
ADD T2,C

can be used to evaluate e: A*X*X+B#X-C or e': A*Y*Y+B*Y+C by loading Tj 

with X or Y respectively. In terms of the tree representations of
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e and e':

e':

/\ /\.

/\ /\
/\ /\

Y Y B Y

the similarity of the code sequences produced for these two trees, and 

consequently the possiblity of using a single sequence such as that above, 

arises from the common superstructure of the two trees. The notion of a 

similarity function is introduced precisely in order to measure the degree 

of identity of the superstructures of two trees. The similarity notion 

provides a coherent mechanism for identifying expressions whose evaluations 

can be merged into identical code sequences.

Additional intuition for the similarity concept is derived from a 

consideration of the requirements imposed on a pair of expressions e aixl e 

by the definition of common subexpression. There are three: (1) e is 

congruent to e' (ese’); (2) e initially precedes e' (e<ie'); and (3) none of 

the expressions intervening between e and e' have a side-effects 

relationship with e (V e", e a e" s e‘, e e" and e" e).

The class of optimizations considered in Chapter II uniformly imposed 

condition (1). That set of optimizations was described in terms of formal 

intersection or ordinary set intersection. Because congruence is an
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inherent characteristic of these two operators, those optimization

strategies necessarily dealt with sets of expressions that were congruent. 

The same optimization techniques did, on tlie other hand, consider cases in 

which conditions (2) and (3) did not hold. In the collection of code

motions related to forking environments, the sets a and u> contained

expressions that did not satisfy condition (2) since in the initial

ordering of tlie program those expressions were on parallel brarKhes' and 

hence did not initially precede one another. The optimizations involving

strength reduction and cyclic re-evaluations relaxed condition (3) by 

allowing the existence of intervening side-effects related expressions.

Naturally enough, since several optimization strategies involved relaxation 

of conditions (2) and (3), one is led to consider relaxing condition (1).

As a framework for the ensuing discussion, we will present examples of 

optimization techniques involving a relaxation of condition (1) which were 

not exposed by the primitives developed to this point. For example: 

if eo
then (ei; ... ; Bk; A«-.B+.C*.D) 
else (ek*i; ... ; Cn; A^.B+.C*.E).

Clearly both assignments to A can be evaluated by the code sequence

MULT T,C 
ADD T,B 
STORE T,A

where on the then and else branches T has been loaded with D and E 

respectively. Hence, an optimization strategy for this expression consists 

of replacing the expression with:
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(if eo
then (ei; ... ; Bk; T«-.D)
else (e^+i; ... ; e„; T«-.E); A«-.B+.C*.T).

The to set for forked control environments described in Chapter II did not 

expose this optimization since the assignment expressions are not 

congruent.

The preceding optimization technique depends on the fact that, 

although the expressions are not quite identical, they are very close to 

being identical. Hence one of the properties of a similarity function must 

be the quantification of this notion of “closeness". In addition, the 

measurement must be sufficiently fine so that it can distinguish degrees of 

"closeness” rather than compute a simple boolean irxlicating "close" or "not 

close". These observations point out a major distinction between the

similarity concept and the primitives developed in Chapter II. Those

primitives served to expose the feasible optimizations in a program. For 

the most part, the optimizations were not only feasible but also desirable 

since, in general, they reduced both object code size and execution time at 

the potential expense of prolonging the life-time of temporary memory 

locations. However, many of the optimization techniques described in this 

chapter will effect more significant trade-offs between code size, 

execution time, and temporary storage. As a result, similarity functions 

are to provide the necessary data in terms of which the desirability of

initiating a particular optimization can be measured. The feasibility of

the optimizations exposed by similarity will be described in terms of the



SIMILARITY FUNCTIONS
ORIGINS OF THE SIMILARITY CONCEPT

primitives developed in Chapter II.

This aspect of a similarity function is illustrated by the following 

example:

eo

Assume that the previous optimization strategy which moved part of the 

evaluation to a point after the merge is precluded by the fact that es and 

07 produce side-effects on constituents of the assignment to A and so block 

the forward motion of tne assignments within their respective linear 

blocks. A possible optimization of this example consists of replacing the 

control expression above with



SIMILARITY FUNCTIONS
ORIGINS OF THE SIMILARITY CONCEPT

©i;

T*-.B;

©e;

T«-.C;

Y
A«-e2+e3*(e4*.T)j

/\

©s

The jump to and return from the common evaluation point of the 

expression A«-e2+63*(e4+.T) incurs an overhead cost associated with the 

execution of the additional control. This overhead did not occur in the

preceding example since the common code sequence was entered after the

merge. The decision to invoke this optimization must be made in terms of 

the trade-off between (1) the amount of code saved by the common code 

sequence, and (2) the space and time overhead incurred by the introduction 

of additional code for control. The measurements involving code size are 

computable at compile time. Measurements involving execution time can at 

best only be estimated at compile time with assumptions relating to factors

such as depth of loop nesting arxt equi-probable selection of parallel

branches in forked control environments. If the similarity function is to

!
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be a useful tool for describing optimization strategies such as those 

listed above, then it must provide the information required to evaluate 

these trade-offs.

The two preceding examples involved optimization techniques that

altered the control flow of the original program. The second example 

models the standard programming construct of a call to a single parameter 

procedure. This latter observation opens up a whole spectrum of 

applications for the similarity concept. The fact that the two assignments 

to A are on parallel branches of a forked construct is not essential to the 

feasibility of the optimization strategy. The effectiveness of invoking 

the optimization technique is measured in terms of the trade-off between 

the cost of the parameter mechanisms and calling sequence overhead and the 

cost of the parameterized code sequences which the "almost identical" 

expressions can share.

EXAMPLES OF SOME SIMILARITY FUNCTIONS

Chapter II presented a minimal set of requirements to be satisfied by 

a similarity function. They reflect the notion that members of this family 

of functions are to "measure" the degree of identity of the superstructure 

of pairs of expressions.

(T is a similarity function only if 

(1) a: ExE [0,oo),
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(2) a(ei,e2)=0 iff ei s 62, and

(3) a(ei,e2) - ff(e2,ei) for all 61^2 < E. (symmetric)

These requirements alone, however, do not suffice to convey the notion of a 

measurement of "almost-congruence". For example the function:

"0 if e s e’ 

otherwise

satisfies requirements (l)-(3) but conveys precisely the same information 

as the "a" relation. A similarity function must provide a more selective

measurement.

C(e,e’)

A first approximation to a similarity function is provided by the 

function F defined below. F does a coordinated tree walk returning from 

each corresponding pair of nodes which are not congruent with a value, of 1. 

The following algorithmt gives a precise description of F.

t These algorithms are presented in pseudo-Bliss. Their translation to 
"true" Bliss would require specification of data formats to a level of 
detail exceeding our present needs.



end;

ife<Lxore'€L then return 1; 

if e < L
then return literalvalue(e) ^ literalvalue(e');

return name(ei * name(e')

end;
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Example

Let eo: .E*.B*.D, ei: .A*.B».C, ea: .A*.B*(.C+.E), 63: .A+.B*(.D+.E).
Then F(eo,ei)»2, F(ei,e2) - F(ei,e3) » F(e2,e3) ■ 1.

In effect, F provides a count of the number of dissimilar rxxles in a pair 

of expressions. It does not, however, provide a very selective measure 

since it does not distinguish between the pairs (ei,e2) and (e2,e3). The 

expressions 02 and 03 are more alike in some intuitive sense because their 

dissimilarities occur at a lower level in the tree. A function which could 

distinguish between such pairs would be preferable since differerKes at a 

greater depth correspond to longer identical code sequences.

The following function G incorporates the weighting factor of tree 

depth by a slight modification of F. The difference between F arxl G occurs 

at the point of the recursive call where the reciprocal of the number of 

operands is inserted as a multiplicative factor. The procedure for G is:
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routine G(e,e’)»

begin local S;
|f e < N e' < N then return 1}

if, e < N then 
begin

if e[operator] ^ e'[operator] 
then return 1;

it e[« of operands] ^ e’[« of operands] 
then return 1;

S<-0;
her I from 1 to e[# of operands] ^

S*-.S*(l/e[# of operands])*
G(e[operandi], e'[operand)]);

return .S;
end;

it e < L xor e' < L then return 1;

it e < L
then return literalvalue(e) ^ literalvalue(e');

return name(e) ^ name(e’)

end;

The function, G, produces a finer measure on pairs of expressions than 

F. For example, let ej, B2 and ej be as defined in the preceding example. 

G{ei,e2)=0.25 and G(e2,e3)=0.125 whereas F(ejt,e2)=F(e2,e3)=1.0. However, 

if we define e: (.A*l )*(.A+2)*(.A*3), e': (.3»1)*(.B*2)*(.B*3), and e":

(.A+1)*(.B*2)*(.C*3), then G(e,e') = G(e',e") = G(e,e") = 0.5. Hence G 

does not reflect the fact that the pair e,e' can be implemented as a 

single-parameter subroutine whereas a subroutine implementation of the pair 

e,e" requires three parameters.
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The final similarity function presented here is the one that has been 

implemented in the optimization pass which produces the examples in Chapter 

IV. SIGMA initializes the variables NPARMS to zero and COSTAV to the 

estimated object code size of the expression e. Whenever the recursive 

subroutine S encounters a pair of dissimilar subexpressions of e and e' it 

calls the subroutine TRYPARMS. The subroutine TRYPARMS determines if a new 

parameter must be created. If so, it increments NPARMS by one and 

decreases COSTSAV by the estimated object code S'ze of the parameter 

subexpression of e. When control returns to SIGMA from S, the variable 

NPARMS contains the number of parameters necessary to evaluate the pair e, 

e' by a common code sequence and COSTSAV contains an estimate of the size 

of the object code sequence sharable by the expressions.

routine SIGMA(e,e')=

! The subroutine S does a coordinated tree walk on the 
! expressions e and e' setting the variables NPARMS to 
! the number of parameters and COSTSAV to the amount 
! of code saved by the shared code sequertces. The 
! subroutine TRYPARMS (not defined here) increments 
! NPARMS and decrerr«nts COSTSAV by e[cost] if a new 
! parameter must be created. e[cost] is the amount 
! of code necessary to evaluate the entire expression e.
! e[count] is the number of formally identical 
! instances of this expressioa

begin own NPARMS, COSTSAV, M;
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routine S(e,e')« 

begin
if e < N xor e' < N

then return TRYPARMS(e,e')j

jf e t N then 
begin

if e[operator] ^ e’[operator]
then return TRYPARMS(e,e');

if e[« of operands] ^ e'[* of operarKis] 
then return TRYPARMS(e,e');

if e s e' then return;

incr I from 1 to e[# of operands] ^
S (e[operand j ],e'[operand j ]): 

return
end;

ii e < L and e' < L 
then return

if literalvalue(e) ^ literalvalueCe') 
then TRYPARMSfe^');

i^ e < I and e' < I 
then return

if name(e) ^ name(e') 
then TRYPARMS(e,e’);

TRYPARMS(e,e')

end;

end;

if e = e' then return 0;
NPARMS«-0; COSTSAV^efcost];
S(e,e’);
M<-e[count] + e'fcount]; 
(.M».NPARMS*.M*1 )/((.M-l KCOSTSAV)

The final expression in the body of SIGMA requires some explanation. 

The numerator is the estimated cost in code size of the overhead required 

to set up parameters (.M^.NPARMS), call (♦.M), and return (♦!) from a
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similarity-created subroutine. The denominator is the amount of code saved 

by replacing M-1 of the expressions with calls to a common sequence of 

code. Hence if SIGMA(e,e')<l, then code size will be reduced by 

implementing e and e' as calls on a common subroutine.

The application of the similarity function SIGMA (more precisely its 

subroutine S) partitions an expression into a body and a collection of 

parameter expressions. In subsequent discussions, bodv(e) refers to the 

expression resulting from the removal of the parameter nodes in e, and 

parms(e) refers to the set of sub-expressions identified by S as parameters 

of e.

Example

Define: ei: (.A^l )*(.A+2)-(.A+3), ez: {.B*l )«(.B+2)*(.B*3), 
ey. (.A*l )«(.B*2)*(.C*3), e*: .A*.B*(.C*.E), 
eg: .A+.B*{.D*.E), e$: .A+.B, e/: .A+.C

The following table shows the values returned from F, G, and SIGMA.

each sharing common basic characteristics with SIGMA. Indeed this

I

3m

F G SIGMA
ei,e2 3.0 0.5 0.625 = (2*1+2*1 )/8
©1.63 3.0 0.5 1.125 = (2*3*2+l)/8
ei,es 1.0 0.125 1.5 = (2*l+2+l)/4
66,e7 1.0 0.5 2.5 = (2*l*2*l)/2

It must be emphasized that we have presented an example of a

particular similarity function that has produced extremely interesting

results in our optimization pass. There are a variety of such functions
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particular similarity function ignores the execution time overhead

resulting from introducing subroutine linkages and so identifies those 

optimizations that minimize object code size as "desirable" without regard 

to their effect on execution time.

Throughout the remainder of this chapter, the existence of a 

similarity function, a, whose essential characteristics are mirrored by 

SIGMA and its subroutine S will be assumed. The following sections will 

present a collection of optimization techniques defined in terms of 

similarity and the primitives defined in Chapter II.

CONVERTING EXPRESSIONS TO SUBROUTINES

A programmer selects macros and procedures to define in his program on 

the basis or logically coherent units of computation. Macros (expanded in 

line) save time by avoiding execution time linkage and parameter passing 

mechanisms at the expense of increasing object code size. Closed 

procedures, on the other hand, reduce object code size at the expense of 

run-time overhead. The decision to choose a macro over a procedure or vice 

versa is typically made on the basis of some rough and usually intuitive 

estimate of the rjtio of the object code size to the frequency of 

occurence.

An optimization strategy described in terms of similarity eliminates
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this decision for the programmer by expanding the simple (i,e. 

non-recursive) procedures in line. The decision to close some of these 

procedures or portions of them is made on the basis of information 

collected by a similarity function. This process, that identifies

expressions to be implemented as closed subroutines, operates only on the 

form of the program. As a result it can identify computationally coherent 

sequences which do not possess a logical coherence that would lead to their 

identification as a macro or procedure by the programmer. The examples in 

Chapter IV demonstrate that these situations occur in real programs!

Similarity can be used to identify those expressions which oc.cur 

sufficiently often that their implementation as subroutines will reduce 

object code size. The similarity function SIGMA returns a value which is 

the ratio of the overhead to amount of code saved by creating a subroutine 

out of a pair of expressions. If that ratio is less than 1, then a savings 

in code size results.

As we mentioned above, the value returned from SIGMA(e,e‘) indicates 

whether a subroutine creation is desirable, however it does not imply that 

such a creation is also feasible. Consider the example of an expression e 

that is to be implemented as a subroutine with a single parameter. 

Furthermore assume that for one of the calls on e the actual parameter 

expression contains .X as an operand. Finally assume that the subroutine 

implementation adopts a call-by-value convention for parameters. Thus, the 

value of X will be accessed during the parameter evaluation prior to
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evaluation of the expression e. If the expression e alters the value of X

prior to the original evaluation point of the parameter expression, then

tlie data flow semantics for e have been violated Furthermore since the

parameter expression can appear within a loop contained in e, it is not

sufficient that no re-evaluation of X precede the parameter expression.

This set of observations can be summarized as follows:

A subroutine cre.^tion from the expression e and e‘ is 
feasible if p ( prolog (|3) ft epilog{(3) V p < parms(e),
p' < prolog((3') II epilog(3') V p' < parms(e'), where
$ = (Jicover(e) and fJ* ■= 0'|cover(e’).

The criterion that SIGMA(e,e')<l is sufficient to guarantee that the 

subroutine implementation of e and e' will reduce code size. It is quite 

reasonable to define a controlling heuristic that weighs the amount of code

saved against the storage required for parameters (especially if they are

passed in registers) and some expected value of increased execution time. 

This observation argues for a function DELTA which is SIGMA dependent and 

encodes the heuristics to be applied in deciding the desirability of

implementing a set of expressions as a subroutine. Hence the decision to

evoke these optimizations will be made by a predicate of the form: aieje') 

< &(e,e’). Logically the function & is defined in terms of the expressions

e and e'. However, in an implementation of S, one expects the subroutine 

DELTA to share information collected by SIGMA. In particular DELTA should 

have access to the own variables NPARMS and COSTSAV. A straightforward 

extension of the notion of strong similarity makes the dependence of S on 

the expressions e and e' explicit: e » e’ iff ff(e,e') < &(e,e’). The
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examples in Chapter IV demonstrate the results that occur when S is set to 

a constant value of 1.0. We will refer to this optimization technique 

which creates subroutines from sets of strongly similar expressions as the 

strong similarity subroutine optimization ($3 optimization). Throughout 

the remainder of the chapter, we will fix the interpretation of & to be 1.0 

and as a result e as e‘ iff o(e,e') < &*1.0.

PARTIAL POST-EVALUATION IN FORKS

The S3 optimization will generally use subroutine call and return 

instructions in its implementation. The next few sections point out cases 

that simplify the linkage mechanism.

Reconsider an example presented earlier in the chapter

if eo
then (ei; ... j eit; A«-.B+.C*.D) 
else (en+i;... ; e„; A«-.B+.C*.E).

The two assignments to A are strongly similar making it feasible to apply 

an S3 optimization to them. However, the optimization:

(if eo
then {ej; ... ; Ok; T»-.D)
else (en*i;... ; e„; T«-.E); A»-.B+.C*.T).

avoids a subroutine mechanism. The following general description applies 

to optimizations of this form:
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Given an n-way branching environment

N^/
a partial post-evaluation 
expressions e^ < fii, ... 
body(ei) < postlog(^Jx), - 
and p < prologi|3|cover(ej)) R epilog(/3|cover(ej)) V p < 
parms(ej), 1 <i<n.

of the strongly similar 
I e„ ( 3n is feasible if 

, body(en) ( postlogfft,)

This optimization is accomplished without adding additional linkage 

mechanism and so saves space without increasing execution time.

WASP-WAISTING — REVISITED

In Chapter II a brief reference was made to an optimization we called 

"wasp-waisting". A representative example is 

if eo
then (ei; ...; ea ... ;ej) 
else (ej+i;... ; e^j ... ; e„)

where e( s en. The optimization strategy for this example consisted of 

replacing the expressions Ci and Ok with calls to a common subroutine. The

S3 optimization technique extends this strategy to cases in which the

expressions ej and e,( are not formally identical but only strongly similar.

The feasibility requirements for a wasp-waisting optimization are identical
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to the requirements for an S3 optimizatioa The difference between the two 

optimizations lies in the possibility of implementing the subroutine call 

by a simple branch instruction and '.he return by retesting the selector.

GENERATING CONDITIONAL SUBROUTINES

Consider the following example

/\

V

where e =£ e* and e' is an expression involving .X. Compile time data flow 

analysis clearly indicates that e and e' are not redundant expressions 

because of the potential assignment to X. At run time, on the other hand, 

whenever control passes down the right hand branch, the post-merge 

evaluation of e' is unnecessary.

An optimization strategy consists of replacing e and e' by calls on a 

subroutine which conditionally executes depending on a boolean value. The 

form of the subroutine is
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if <boolean> then (<subr-body>; <boolean>*-false).

The boolean is set to true initially and reset to true at the point of the 

store into X or anywhere on the left branch of the fork. This optimization 

technique saves space as does any S3 optimizatioa It also saves time 

presuming that the time to evaluate the subroutine body exceeds the time 

involved in setting and testing the booleaa

GENERATING LOOPS

The optimizations described by similarity to this point have involved 

the introduction of additional branches and subroutine calls. This section 

will investigate two optimization strategies described using similarity 

which introduce loops into a program.

Consider a compound expression e: (ei; 02; ... ; e„) in which ei

ej, l<i,j<n and (for simplicity) assume the set parms(ei) is a singleton 

{Pi}, l<i<a 

Case 1:

lixiependent of the relationship between the corresponding 

parameters of the expressions, this compound expression can be 

implemented by a control environment which models the Algol for 

statement

for I :« pi, P2, ... , p„ ^ e"<l> 

where e"<l> is body(ej) in which parm(ei) = I.
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Case 2:

If in addition the parameter expressions are such that 

Pi-l~Pi = Ap, l<i<n and Ap ( prolog(P|e) D epilog(0|e) then the 

compound expression e can be implemented by 

incr I from Pi to p„ ^ Ap ^ e"<l> 

where e"<l> is as described in case 1.

The restriction to single parameter subroutines can be removed by updating 

a set of control variables, one for each parameter, on each iteration of 

the loop. Both examples reduce object code size and replace the subroutine 

linkage mechanism of the $3 optimizations with loop control. In addition 

case 2 reduces both time and space costs by incrementally computing 

successive parameters.

The pair of optimization strategies relates quite closely to our

discussion of strength reduction in Chapter II. In particular we sought a

technique for discovering a relation F such that given a pair of

expressions e and e', F(e,Ae)=e'. Both cases 1 and 2 provide solutions.

The relation F is precisely the loop body expression e" and the parameter 

Ae is the loop variable I. The fact that e' e guarantees that the size 

of the object code to compute F(e,Ae) is less that that required to 

evaluate e' in the ususal manner. Case 2 also demonstrates the discovery

of an inductive relationship among the expressions ei, e2, ..., On without 

assumptions on the form of the expressions. In particular no restriction

to polynomial expressions is required.



SIMILARITY FUNCTIONS 
GENERATING LOOPS

SIMILARITY AND ITERATIVE TECHNIQUES

The next optimization described in terms of similarity arises often in 

algorithms concerned with various foriris of iterative analysis. A simple

example motivates the usefulness of the optimization strategy.

The following algorithm accumulates in S the trapezoidal approximation 

to the definite integral of F over the interval [Xo,Xn]:t

incr I from .Xq+AX to .Xp ^ AX ^
S<-.S ♦ ((F(.I-AX) + F(.l))/2) ♦ AX.

The important item to note here is that on the k-th iteration of the loop 

the value of F(.I-AX) is precisely the same as the value of F(.l) on the 

(k-l)-st iteration. Recognizing this relationship between F(.I-AX) and 

F{.l), an optimization strategy that requires only one evaluation of F per 

iteration is given by:

if .Xo+AX teg .X„ th^ OLDF«-F(.Xo);
incr I from .Xq*AX to .X„ ^ AX ^ 

begin
NEWF^F(.I);
S-.S+((.OLOF+.NEWF)/2)*AX;
OLDF«-.NEWF

end.

A description of the expressions in a loop body for which this 

optimization is feasible is given by:

t The loop models the "calculus-text" description of the trapezoidal, rule, 
even though a numerical analyst would not program it in this form.
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Given a loop jncr I from eo to ei ^ ez ^ 63 where f 
and g are subexpressions of 03, f =« g, let parms(f)={p) 
and parms(g)={p*e2}. Then it is feasible to eliminate 
the evaluation of f on each iteration of '.he loop (and 
replace it by the old value of g) if body(f) ( 
prolog{/33) (t epilog(fJ3) and body (g) < prolog{(J3) f1 
epilog ((33).

The restriction that body(f) and body(g) be loop invariant is equivalent to 

stating that on any two ite’’ ‘.ions of the loop the evaluations of f(c) and 

g(c) produce the same value for a fixed parameter c.

SUMMARY

In the preceding sections the similarity function has been used to 

decribe a variety of apparently unrelated optimization strategies. This 

fact reflects its usefulness as a unifying primitive which can be employed 

in describing a wide range of concepts. Indeed this property may be 

sufficient justification in itself for proposing the similarity notion.

However, the ensuing chapter presents a strong case that similarity 

has very practical application in an optimizing compiler. The reductions 

in code size that result from application of the optimization alone are 

remarkable. In addition the $3 optimizations demonstrate interesting 

results in identifying computationally coherent expressions from analysis 

of a program's form. Sometimes these computationally coherent expressions 

correspond to those which the programmer considered logically coherent and 

sometimes not.
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CHAPTER IV 

EXAMPLES

Chapters II and III propose a number of optimizations. This chapter 

discusses the relative significance of some of these optimizations in some 

specific cases. A program is described which implements both the 

optimizations described in Chapter II and the $3 optimization (using the 

particular similarity function, SIGMA, described in Chapter III). The

chapter is subdivided into two parts: (1) a description of the prc^ram and 

the form of its output and (2) a discussion of a set of examples which show 

the effect of the optimizations.

The purpose of the program is the evaluation of the effectiveness of 

the S3 optimization as compared with the classical optimizations of Chapter 

II. Therefore, it was not to our purpose to construct a complete compiler. 

However, since the Bliss-10 compiler already accepts Bliss syntax and 

produces PDF-10 machine code, we have chosen the POP-10 as the target 

machine and will demonstrate shortly that the estimates produced by our 

program correspond to the actual number of machine language instructions 

prod'jced by Bliss-10. To enable the comparison between the classical 

optimizations and $3, the program is constructed so that programs may be 

compiled with various subsets of the optimizations enabled.
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KATE

The program KATEt is a translator from Bliss to a three-address code. 

KATE may be thought of as four modules each of which works on a 

representation of the program and global information prepared by other 

modules. The first module, LEXSYN, performs lexical and syntactic analysis 

on the source text, build? a symbol table and produces a tree 

representation of the program as described in Chapter I. The second 

module, FLOW, implements the optimizations described in Chapter II except 

for strength reductioa Ommision of strength reduction does not effect the 

comparison between the classical optimizations and $3 since it has 

relatively little effect on object code size. The third module, S3, 

implements the S3 optimization described in Chapter III. The fourth

module, CODE, produces a three address code and an estimate of the number 

of PDP-10 instructions that would result if the three address code were 

translated into real machine code. The following diagram illustrates the 

possible paths which KATE can follow in translating source text to three 

address code.

t For those who feel that acronyms require interpretations, we suggest 
Algorithmic Iranslating Engine. The K, of course, is silent.

1wj
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€
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source-*

LEXSYN

LEXSYN- FLOW-

LEXSYN—*FLOW-*S3*

CODE-* 3-address code

Although the FLOW module can be thought of as a separate pass over the 

representation produced by LEXSYN, in fact, it processes the tree from the 

inside out while the tree is being built by LEXSYN. The FLOW module is 

invoked by LEXSYN at the completion of each linear block to build the 

Prolog, epilog, and postlog sets. As syntactic analysis is completed for 

each control environment, flow is called to invoke the various optimization 

strategies. In particular a node representing a forked control expression 

points to the a and w sets for the expression and each node representing a 

looping control expressions points to the x Ooop invariant expressions) 

and p (cyclic re-evaluations) set for that expression S3, on the other 

hand, makes a completely separate pass since it must have information on 

ah occurences of strongly similar expressions to make its decisions. 

LEXSYN, FLOW, and S3 implement the primitives developed in Chapters II and 

III. However, CODE requires more detailed explanation of its output to 

facilitate understanding of the examples.

CODE

The CODE module translates the tree representation of the program into
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a three address code. The machine code operations which are used in CODE 

were selected to facilitate an accurate estimate of the number of 

PDP-10[P70] machine language instructions that would result from the three 

address code. Again, the PDP-10 was cliosen because the Bliss-10 compiler 

enabled us to verify the accuracy of the estimates made by CODE.

The three address code is formatted as:

operator operandi, operand2, operands.

Each operator has a fixed number (0,1,2,3) of operands. The operand of an 

instruction can be:

(Da name — e.g. X
(2) the value pointed to by a name — e.g.
(3) a level of indirection on (2) — e.g. ~X 
(A) a constant
(5) a label.

The following table lists the machine code operations and describes their 

semantics. In general ei and 62 are the operands of the opcode and 63 is 

the result returned to the parent node of the subnode which produced the 

result.

- (5
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^9

opcode operands

ADD
SUB
MUL
LTSH
RTSH
DIV
MOD
GTR
LEQ
LSS
GEQ
EQL
NEQ
AND
ANDCR
ANDCL
ANDCB
OR
ORCR
ORCL
ORCB
LD
LDN
LDC
XCT
FARM
DPARM
CALL
RTRN
BR
BRT
BRF
INC
DEC
SSCAL

e 1,62,63
61,62,e3 
61,62,63 
61,62,63
61.62.63
61.62.63
61.62.63
61.62.63
61.62.63 
61,62,63 
61,62,63 
61,62,63 
61,62,63 
61,62,63 
61,62,63 
61,62,63 
61,62,63
61.62.63
61.62.63
61.62.63
61.62.63 
61,62,63 
61,62,63 
61,62,63 
61,62 
61
61
61,62

61
61,62
61,62
61
61
61,62,63

semantics

e3*-ei+e2
63*-ei-e2
e3*-ei*e2
e3«-eiTe2
63’-6iT(-62)
63<-6i/62 ^
e3«-ei mod 62
63‘-6i>62
63«-8i<e2
e3«-ei<e2
63«-ei>e2
e3*-ei=e2
63^ei-'e2
e3«-ei and 02
e3«-ei and not 02
e3«-noi ei and 02
e-j«-not ei and not 62
63«-6i or e2
63*-6i or not 02
e3*-not ei or ez
ei<-not ei or not ez
ei*-ez (63 is value of exp.)
ei«—62 ( " >
ei*-not ez { " )
execute inst. at ei+e2
set up parameter ei ^assumes stacK
deallocate ei parameters (discipline
save PC+1; PC<-ei; value in 62 
PC»-saved value 
PC^ei
if ei then PC«-ei 
if not 61 then PC«-e2
ei«-ei+l
ei«-6i-l
save 025 PC«-ei; value in 63

An example of output from KATE demonstrates the use of these 

operations.
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begin own l,Vt 10],X,Y,Z,A,B,C,D,F; 
X—.Y-.Z; V[2*.l]—.Y-.Z; 
Z«-.A*.B*.C*.D; F(.Z) 

end eludom

ADD .Y,.Z,-Ti 2*

LDN X,.Ti,-.Ti 1*

MUL 2..I..T2 2*

ADD V,.T2,.T2 0-

LDN .T2.Ti,-.1i 1*

MUL .A,.B,.Ti 2*

MUL .C,.D,.T2 2*

ADD .Ti,.T2rTi 1*

LD Z,.Ti.Ti 1*

FARM .Z !♦

CALL F^To 1*

DPARM 1 1*

TOTAL COSTn 15

The following points should be noted:

(1) The code generators are table drivea They attempt to do peephole 

optimization on a very local level. For example, note that the expression 

-.X-.Y was converted to -(.X+.Y).

(2) CODE allocates temporary storage (Ti and T2) in a straightforward 

manner. If a temporary location is allocated to a redundant expression, it 

remains reserved for the value of that expression uniil the last occurence 

of the use of that value. In the example above the product 2*.l was formed 

in T2 since the last use of the value in T^ followed the index ccmputatioa

(3) Note that there is only one instruction for transferring the value 

stored in one memory location to another. In particular a LD instruction 

can correspond to (a) loading a temporary — LD Tp^A, (b) storing a 

temporary into a user-defined memory location -- LD A,.Tp, or (c)
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transferring the contents of one memory location to another — LD A,.8.

mates of the number of 

^n actual POP-10 code

! column of numbers to the right contains

instructions required by each operation.

e for this example is:

MOVE Ti,Y
ADD Ti,Z
MOVNM Ti,X
MOVE T2.I
IMULI T2,2 (or: ASH T2,1)
MOVNM Ti,V(T2)
MOVE Ti,A
IMUL Ti.B
MOVE T2.C
IMUL T2,D
ADD Ti,T2
MOVEM Ti,Z
PUSH SS,Z
PUSHJ $S,F ;SS points to the stack
SUB 8S,[ 1000001]

In particular notice that KATE estimates 0 as the cost of 

V+T2 since the addition can be accomp'ished by indexing.

(5) The indentation exhibiting the columns of asterisks 

resting of linear blocks and the number at the base of a 

cumulative total of the code size for that linear block, 

comparison of the number of instructions in critical regions 

loops.

the operation

indicates the 

column is the 

This facilitates 

such as inner

VALIDATION OF KATE'S ESTIMATES

The estimates of object code size are generated on an instruction by
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instruction basis. Corresponding to each machine code operation produced 

by KATE there is a 12x12 table. An index into the table is computed by 

analyzing each operand into one of twelve staten:

0, 1, -1, L, N, .N, ..N, T, .T, ..T, .T', ..T’.

L is a literal (absolute value greater than 1), N is a user defined storage 

location, T is a compiler defined temporary (whose contents may be 

destroyed by the execution of the instruction), and T' is a temporary whose 

contents must be preserved.

In order to demonstrate that the numbers produced by KATE are in fact 

reasonable when applied to sequences of code, a comparison was made between 

the estimates produced by KATE and actual POP-10 machine code produced by

Bliss-10. Both compilers were run with all optimization turned off. This

was done since even tiwugh the two compilers apply different sets of

optimizations, they both produce straightforward, simple machine code with 

all optimizations turned off. We have selected two examples (to be

examined in more detail for other purposes later in the chapter) to 

exemplify the results. The first example is a large sub-program taken from 

the Bliss-10 compiler itself. Bliss-10 produces 983 POP-10 instructions. 

The estimate produced by KATE is 979 instructions. The difference is less 

than 0.57..

A second example, an implementation of the quadratic formula, is small 

enough to be reproduced in its entirety. The source text is the following:
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begin
macro

POSROOT(A,B,C)-(-B)/(2*A)+SQRT(DISC(A,B,C»/(2*A)J, 
NEGROOT{A,B,C)={-B)/(2*A)-SQRT(DISC(A,B,C))/{2*A)», 
DISC(A,B,C)=B«B-4*A*CS; 

external SQRT; 
global ERROR.R1.R2; 
routine ROOT(X,Y.Z)= 

begin
if DISC(.X,.Y,.Z) jss 0 then ERROR*-1 else 
if DISC(.X,.Y,.Z) eg! 0 then 

(R1*--.Y/(2«.X); R2*--.Y/(2*.X)) 
else (R1 *-POSROOT{.X,.Y,.Z);R2*-NEGROOT(.X^Y,.Z)); 

end;
end eludom

The output on the left column of the next page is produced by KATE; the 

output on the right is produced by Bliss-10. In the Bliss-10 output: 

A H -/}(8F), B « -3(8F), and C » -2(SF).

I

1;
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KATE

pool:

mi
me .V,.Tf|.-.1iI
mi .V..Y. T$r
mi
mi
r*uB .lSr..TS3..T$C
thph .mr
cm i
oi’isprt I
nuL r..x..ur
Die
SUB
1 0 Pl..mr^..T10
mi r..x..isi
oiv .V..1S1.-.U1
mil .Y..V..T$r
mi
mi .1S3..F..1S3
5UB
PmPM

50PT..TS0
DPhPM 1
mi T..X..T*?
OIV .nr»..i$r..T$o
ADO
ION

1:

pr..i*!.-.ui

^LO
PTPN

T$0-0..!♦«

lOlfiL COST. 66

mi •
mi 4..x..itr 7 •
mi 1 •
suo 1 •
ISS 0 •
BPf .ISl.LSi 1 •
LO FPPOR.I.I ? •
OP L*C 1 •

3

mi z •
mi 2 •
mi 1 •
suo 1 •
t'l TS1.0..1$I 0 ■
BPr .1S1.LS3 1 •
mi C..X..t$I 2
DIV 2

LON Pl.-lSI.-.Itl 1
mi r..x..T»i z
DIV z
LON p:..i$i.-.t$i 1
PP L»1 1

1 •
1 •

66

Bliss-10

LCKTSs

JSP ir..ENUO
MOVE <M.-3«if»
1MU 04.-3($F*
MOLT
«<SH os.r
imi os.-r««f*
SUB 04.5
JUMPGT 04 .Lrcca
MOVtl $V.I
mivcM fV.fPPOP
JPS! ss.11536
MOVE or.-3isr>
imu 07.-3»»r>
MO'l |0. 4ISF)
hSM 10.z
IMUl. ip.-r<$n
SUB 07.10
JUMPN 0?.Lr4C«
MD'.'E 12.-4ISFI
mSH i:.i
MO'.’N 0S.-3C1F*
IDIV os.ir
MO'/F.M OS.PI
mA $v.-4i$r 1
mSH $V.l
MO'.’N 04.-3l»Fl
imv 04.3
mi’.TM 04. pr
JPSI SS.L1S36
MO\1 $V.*3'SFi
imi sv.-3i»n

ir.-4($Fi
nSH ir.t
imx ir.-r«sFi
sun sv.ir
PUSH »S.3
PUSHJ SS.SVPl
sun $S.IO‘W'l.
rUM o5.-4isn
• iSH 05.1

0G.-3IV)
lOlV 06.5
WT 04.*4l*f »
ASH 04.1
lOIV SV.4
mod SV.6
wtn $V.P1
my»*E $V.-3«SF1
imi SV.*3‘SF»
MOVE io.-4*$r»
*iSM 10.r
imi lO.riiFi
sun tv. 10
rusM tS.3
rusHj tS.SCJPT
sun tS.IOOOtXU
mz ll.-4J$F»
hSM 11.1
MOVN ir.-3itr»
lOIV ir.ii
MO*’E 0S.“4f$Fi
ASM 05.1
IDIV tv.5
SUO tv.ir
MOVNM tv.p.**
5rT^ tv.o
JPST tS.EXT.O

MODULE LCNGTH .67*0

K
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The additional instruction (JSP 12..EIMT.0) in Bliss-10 executes routine 

entry code. These examples demonstrate that the estimates of object code 

size produced by KATE are indeed reliable predictions of the actual number 

of PDP-10 machine language instructions that would be generated from the 

three-address code.

The remainder of Chapter IV discusses three examples which contrast 

the effect of the classical optimizations and the S3 optimization

introduced in Chapter III. The examples demonstrate the potential of the 

S3 optimization for producing significant reductions in object code size. 

KATE was run in three modes on the examples: (1) NOOPT: no optimizations, 

(2) ALLBUTSIM: S3 by-passed, (3) ALLOPT: S3 included.

QUADRATIC FORMULA

The first example involves three implementations of a program to 

evaluate the quadratic formula. The main routine, ROOT, is identical in

all three implementations. The difference occurs in the evaluation of the 

square root.
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Rl:

SQRT is a subroutine 

implementation of the sequence 

{(Xn2+A)/(2x„)} which

converges to square root of A. 

(Newton’s method).

BEGIN
ri»»TPO

01 iiC ‘.B. C «*B*B-1 *B*C* I 
fOrUi^PO G'.*PT;
CLOOi‘1 fPPOP.Pl.Pr;
PnulINF P00in(.y.e»«

B(C!N
If OlSCf .X..V..2) LS5 0 IlffN EPPOP-I CLSE 
!«■ OISC«.x..T..?i cgt 0 1ICN 

iPi«-.Y/ir«.x»* Pc--.v/«r*.x“
USF <PJ*POSPOOM.K..t..2WPr*NrGPOOU.K..Y..2llJ 

ENOi
POUIINL S«3PHX*^

BEGIN
lOCBL Xl.KJj aOOiM. EPSILON HBCPO lNriN!lY««777777ti 

XJ^lNflNITY:
WHILE i.XJ-.xn CTP .EPSILON

00 IXI^.XJ: XJ*f.Xl».XI*.X>/t2*.Kin;
.XJ

END:
END ELlfOOn

R2;

SQRT IS the expression 

resulting from expanding the 

sequence in Rl to the fourth

term.

BEGIN
l*1TP0

P0SP00HM.B.Ctr*-B»/*r*M»»5'JPT(DISC*PB.C»f/(r*A»i.
Mrpnonft.B.ci=(-Bf/«r»H»-sgpnoi5C‘A.B.c«i/ir*flif.
DI5Ctrt.0.C‘*n*B’«*»»*C».
SQfX (X>*f X n$.
SQPTi k irMSOf (Xi*4 iM*(XM/tr*M»(fX)44in«

( n4«MX«»4netXU/(r«lS0(fXW4)«4»(XUniSl 
GLOR*M. rPPOP.Pl.Pr;
POUUNE POOTlX.X.^^- 

BICIN
If 0ISC«.X..V..2I LSS P then EPPOP*! ELSE 
IF 0ISC».X..Y..2i EOL 0 U«N 

fpi*-.Y/*r».xn pz*-.v/fr*.xu 
ELSE <PI*P05P00T(.X..>..2isPr«^NECP00If.X..Y..2n»

CNt»
END ELUDON

R3:

SQRT is a macro identical to

the subroutine in Rl.

BEGIN
HnCPH

pnspooTiA.p.r»»f'Oi/«c*A^»G'JPTioisriA.B.cn/«r*Aff. 
Nf CP00TlA.B.C«»» - B>/ir*A> S'JPffOISC«A.B.C»I/(r*AJ|. 
0ISCiA.B.C»-n*B-4*M»CS.
S')P1»X>^»XI*X; XJ*1NFIN|TY{

MHILE f.KJ-.xn C1P .EPSILON
00 IX|*.XJ; XJ*I .Xl*.Xl*tKn/ft«.Xl Mf

lNriNiTYri*77rrr$»
CLOB^H EPPDP.Pl.Pr.EPSILONJ 
PWITINf P00HX.Y.2W 

BICIN LOCAL XI.XJ;
ir DISCI.X. Y..21 LSS 0 TfCN EPPOP-I ELSE 
IF OlSr.f ,X.,Y..21 E«X A THEN 

iPI--.Y/iC*.Xf; Pr--.Y/iC».XK 
ELSE iP|-P05POOTf.X..Y..2l;PC^NECPOOn.X,.V..2n* 

END:
END ELUOOn

4
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The results of running KATE on Rl, R2, and R3 are summarized in the 

following table:

Rl R2 R3

^ MAAPTNOOPT 86 196 108

ALLBUTSIM 52 42 62

ALLOPT 52 42 47

The output produced by KATE in the ALLOPT mode for each example is 

reproduced on the next three pages.
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- R1 --
eeciN

MmCFO
P0Sf>00Tif^.B.C)«(>8(/(r«Hi«&gPnD{SC(A.B.C))/(4*A)t* 
MrGPnOTiM.B.C»«(*B>/(r*<)»-SOBTtOISC<A.B.CU/<Z«AIS. 
01SC>M.B.C>>B*B-4«H«Cti 

FOPW»*PO S'JPTj 
CLOPfH tPPOP.PI.P2:
POUtlNC POOTiK.T.21*

BtGlN
IF 01SCt K..y..2l LSS 0 iHfN tPPOP*! tLSE 
IF 0ISCI.JC..V..2I tot 0 THtN 

•P|*-.t/i2*.K>: P2*-.t/»2*.X'‘ 
tLSt fPl*POSPOOtC.X..Y,.2l:P2-»CCPOOTl.X..t..2n:  

EM)i

POOTi

Lt3:

hUL .Y,.t..1*l 2 •
ttU. 4..K..TS2 2 •
flUL .1*2..2..1*2 1 •
SUB .1*1..1*2..1*1 1 •
LSS .1*1.0..1*2 e ■
BPf • 1*2.L*1 1 •
LO EPPOP.l.l 2 •
BP L*2 1 •

3

MUL 2..x..1*2 2 ■
OIV •Y..1*2.-.1*3 2 ■
EUL .1*1.0..1*4 0 •
BPF 1S4.LS3 1 •
LON P|..1*3.-.1*3 1 •
LON P2..1*3.-.1*3 t •
BP L*4 1 «

3

PUPfl .1*1 1 •
Cmi L S0PT..T*0 t •
OPPPfl 1 1 •
OIV .T»rt..I»2..1»P 1 •
sue .1*p..1*3..1*0 1 •
LO Pi..1*0..1*0 1 •
PhPN .1*1 1 •
C»CL sgpi..i*o 1 •
OPhPH 1 1 •
OIV .1*0..1*2..1*0 1 •
HOO .1*3..1*0.-.1*3 1 «
LON P2..1*3.-.1*3 1 •

L«41

ItZi

LO
ttUL
»»no
nut
DIV
LO
BP

XI. .XJ..XJ 
.XI..XI..1*1 
.1*1..X..1*1 
2..XI..1*2 
.1*1..1*2..1*1
XJ. .1*!..!*] 
1*6

1*7:
LO
P1PN

1*0..XJ..1*0

END ELUOOn

lOTrtl C0S1- 52

LO
PTPN

i*n.o..i*o

• 32

POUTINt 50PHX»- 
BEGIN

lOCPL XI.KJ; GL08HL EPSILON: H»<PO INriN|Tt»«777?77*s 
KN.X: KJ»INFIN|TV:
WHILE I.XJ-.XI) GIP EPSILON 

00 «Xl*.XJj XJ»f .XI«.XI«.X)/I2* xin:
.XJ

ENO:

S0P1:

L*8:

LO KI..X..X
LO XJ.777777.777777

sue .XJ..XI..T*!
CtB .1*1..EPSILON..1*
BBT .1*1 .L*7
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O€0lH
HmCPO

pospooT(ft.B.ci«i-8»/i>«>*sopnoi5C»A.B.cn/*r*ftis-
^rC(;POOT<A.e.Ci<^(-B)/(^«Al•SO(*1iOISC<A.B.CM/f^•Al$. 
OlSCiA.6.C)cB*B*4«A«Ct. 

v)«i nn«()( I IS.
54P1 ( X Ut l$gM X l«4 )*4*> X> 1X1*4111*

I U4«f ix.)*4n«(xn/i;«iS0Mxi*4)«4«(VimtSj 
CLOPfM. CPPOP.PI.PZj 
PDIJUNE POOTlX.V.£>.

BCGIN

ir oisc( Lss P rHCN rppop*^! else
IF DISCI.X..»..£! EOL P IHEN 
iRi»‘.Y/ir«.xi; pr*-.t/ir*.xn 

ELSE iPUPOSPOOT(.X..Y..?l:P:*NECPOOn.X..y,.2ni 
ENDS

PQOT:

LSI;

nuL .V,.t..TSI z
rw. 4..X..TS: z
nuL .TSC..^..1S^ 1
SUB .T»1..TS:..IS1 1
LSS .t»i.o..tsr p
BPF .TSr.LSl 1
LO EPPOP.l.I z
BP L»r 1

h
nuL c.-x.-isr 2
Olv .V..1SC--.1S3 2
EOL 1$l.n..TS4 e
BPF .1$4.tS3 1
ION PI..TS3.-.TS3 1
ION Pr..T»3.--TS3 1
BP L*4 1

h
r*no .TS1.4..TS4 2
nm tS4..IS4..TSS 2
WUL 4..TSI..ISS 2
POO .ISS..TS6..1S5 1
nuL 4..4S4..TS4 1
miL C..TS4..1S6 2
oiv .TSS..1f6.TS6 2
WL •1S4..1S1..TS4 1
nut r..TSS.TSS I
oiu .1S4..1SS..1S4 1
wo .TSG..1S4. TSB 1
DIU .TSB..TSr..T$6 1
SUB .l»6..T$3..ts: 2
LO pj..Tsr..Tsr 1
POO 1$3..1S6.<.TS3 t
LON PZ..TS3.-.TS3 1

L»4»

L»rt

LO

PTPN

TfP.p..TSO

END ELUOOn
lOTAL COST- 4r

3P



EXAMPLES
QUADRATIC FORMULA

103

- R3 -
BEGIN

rVCFO
Pn5P00Tift.B.C'*C-B>/'r*fti*5»3PT«01SC'«.B.Cn/<C»AlS. 
NEGPOOTin.B.C t-(-Bi/<C*r4i-SgPnoiSC(ft.e.Cn/rz«Aif. 
O15C<H.B.C»«0*B-<*««C1.
SOPtim^i «]»x: xj»INT!IUtY:

UMUE i.xj-.xii CIP .EPSILON
DO IXK.XJ: XJ»i .KI*.X|*(xn/(;«.K]llt

■VJIt.
INF|Nin»«77rr?»:

GLOB< EPPOP.PI .Pr.EPSlLONs 
POUTINF POOH*.>.?»«

BEGIN LXAt MI.KJi
IF OISCl.x..V..^l LSS 0 IHIN fPPOP*l ELSE 
IF 0I5C(.K..V..?l EOl C HffN 
iPI**.r/ir*.*<j PC*-,v/i2*.xM 

ELSE 'P1*P05P00TI .*,.V..2l:Pr^NECPOOfl 
END:

WUL .V..Y..T*! 2 •
MUL 4..X..t»r 2 •
nuL 1 •
SUB 1 •
LSS .T»|.0..|»2 e •
BPF .t$r.i*3 1 «
LO tPPOP.I.I 2 •
BP LS4 1 •

LS3:

3

MUL r..x.i»2 2 •
OIC .Y..U:.-T$3 2 •
VJL .t»10..1»4 0 •
PPF .T$1.iss 1 •
LDN P|..T$3.-.1»3 1 •
LDN p:..i$3.-.t»3 1 •
BP LS& 1 •

L»5:

3

SSCBL 5*1 .E*l 1 «
Stl:

LD 1 •
LO KJ.77777.77777 2 •

L*ri

SUB 2
CTF .1*4..EPSILON..TS4 1

BPF • I*4.L*I0 1

LO KI..XJ..KJ 2
MUL .X1..X|..1*4 2
MOO .1*4..1*1..1*4 1
MUL r..*i.i*5 2
DIV .1*4..1*5..1*4 1
LO XJ..1*4*.1*4 1

BP L»7 1

L*10:

DIU .KJ..1»r..1»4 2 •
PTPN 1 •

ESt:

SUB .1*4..T*3,.T*5 2 •
LO P|..1*S.1SS 1 •
5SCPL 5»|..*1..1*4 1 «
BOO .1*3..1*4.-.1*3 1 «
LON P?..1*3.‘.1*3 1 •

L»^t
LO
PTPN

T*O0..T»O

END ELUDOn

TOlPt cost* 47

ix
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Notice that the $3 optimization had no effect on either R1 or R2. In 

the case of R3, on the other hand, a 2S7, improvement was realized by 

applying $3 optimization. The most interesting comparison, however, is 

between R1 and R3.

Both programs R1 and R3 represent the same logical structure to the 

programmer. The decision to declare SQRT as a macro or a routine does not 

effect that structure. Typically one expects the choice between the two is 

made in terms of some superficial estimate of the resulting time/space 

trade-off. The S3 optimization makes that same decision but more 

precisely. Indeed the S3 optimization did more than simply decide to open

or close the SQRT computation in R3. The 107. reduction realized in R3 as 

compared with R1 results from:

(1) not requiring parameters for Si since DISC(.X,.Y,.Z) is 

available in Ti and 2*.X is available in T2, and

(2) creating a strong similarity subroutine (Si) for 

SQRT(DISC(.X,.Y,.Z))/(2«'.X). Notice that this expression has no 

"logical identity" (as subroutine or macro) in the algorithm but 

S3, analyzing only the form of the program, identified it as a 

computational unit. •

Item (2) is the critical point. The results in this example and the 

examples which follow demonstrate that computationally coherent expressions 

(candidates for $3 optimization) do not necessarily correspond to the 

logically coherent expressiorc idoniified by the programmer as a macro or
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subroutine. Most discussion on optimization strategies which consider

opening or closing subroutines has centered on examing those expressions 

which the programmer has identified as logically coherent. Similarity 

operates independently of the programmer's selectioa

GADD-SUB

The second example comes from the Bliss-10 compiler. The routine

GADD-SUB (abbreviated: GAS) generates code for add and subtract operations. 

The source and output from KATE’s compilation of GAS in ALLOPT mode is 

reproduced in appendix A.

This version of GAS differs from the original version in the Bliss-10

compiler in that several of the macro declarations here were routines in

the original. In particular, LITV, REGAK, TVRP, and RLITP were routines in

the original version. The results of compiling GAS with NOOPT, ALLBUTSIM, 

and ALLOPT modes and of compiling the original with ALLBUTSIM are 

summarized as follows:

GAS

i.L
IMOOPT 979

ALLBUTSIM 914 6.^7.

ALLOPT 697

ORIGINAL 855

28 77, 18.27.

1

L2
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Again the difference in code size that results when $3 decides which 

expressions to close is striking. The table that follows is Keyed to pages 

in appendix A and serves as a guide to locating the $3 optimizations in the 

output.

SSNAME SEMANTICS

51 GNEG(.Y)
52 LITV(n)
53 RLITPfn)
Ss RLEX(.X)
Se GANL(ni,NAMELEX(.x),n2)
S7 GLTRLX)
Sio GASCOMMUTE
S12 (X-GLTR(.X);REGAK(.X))T23
Si5 REGAK(.X)
S26 LITV(SLEX(n)) neg 0
S30 TVRP(n)
532 SIGN(.X)
533 GNEG(GAS(.ABSX,.ABSY,.ADDPOSSIBLE))
S35 (if .ADDPOSSIBLE then ADD etee SUB)T27

9L S12

CALLS COST PAGE

2

3

4

4 
2

5 
10

2

3

4 
3

5 
2 
2

3

7 
5 
2

8 
3

12 
5 
12 
1 1 
15 
2 
8 
9

122

122

122

123

123

124

124

125 
125 
127

127

128 
131 
131

There are several observations to make about the results of S3. In 

the original source for GAS the routine REGAK was a single parmeter 

subroutine. The S3 optimization created a zero parameter subroutine S15 

since all calls within GAS to REGAK passed the same parameter .X. Ss is a 

case where S3 recognized that two calls on GANL passed the same second 

parameter and so created a new two parameter subroutine. S12 and S35 are 

examples of formally identical expressions which were not assigned a 

logical name (via macro or routine declaration) in the original source.

It is interesting to observe that the subroutines of the original text
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were re-recognized as subprograms by S3. One might ask why a good 

programmer would not have identified himself all the choices made by $3. 

In the case of GASCOMMUTE, it would seem natural for the programmer to have 

made that identification. However, it is extremely unlikely that the same 

programmer would have identified S$, S12, S33, and S35 as code sequences to 

be closed although closing them did reduce code size by slightly less than 

More importantly, this example demonstrates that he need not be forced 

to make the choice between open and closed subprogram. An S3 optimization 

can be used to perform this analysis.

CPOLY

The final example is selected from the algorithms section of the 

Communications of the ACM[JT72]. CPOLY is a Fortran program to find all 

the zeros of a complex polynomial. Being a translation of an Algol 

procedure, it conformed easily to Bliss control svntax. In addition, the

translation to Fortran had precluded recursive calls among the various 

subroutines. The source for CPOLY is reproduced in Appendix B.

CPOLY was transcribed into two Bliss versions with the body of 

SUBROUTINE CPOLY as the main body of the Bliss program. In one version the 

remaining subroutines were declared as macros. KATE compiled this program 

in NOOPT, ALLBUTSIM, and ALLOPT modes. KATE also compiled a second version 

in which the original subroutines remained as routines. The results are
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summarized below: 

CPOLY

IMOOPT 2557

ALLBUTSIM 2460 3.87,

ALLOPT 952 62 77 14.37

ORIGINAL 1106 i
The results are quite similar to those obtained in the GAS example. 

The large variation (62.77 vs. 3.87) between invoking the S3 optimization 

and not invoking it results from the size of the subroutines involved and 

the frequency of the calls on them. The savings of the ALLOPT compilation 

over the ORIGINAL results primarily from two characteristics of the

program:

(1) Several of the subroutines, viz. SCALE, CAUCHY, NOSHFT, and 

FXSHFT were called only once. S3 simply compiled them in line.

(2) Many of the procedures are passed parameters which are

identical at all call sites. S3 reduced calling overhead by

renrxjving those parameters

S3 OPTIMIZATION AND EXECUTION TIME

The preceditrg discussion on the effects of the S3 optimization has 

cofKentrated on reductions in code size. Since S3 reduced program size by
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introducing subroutines, it is natural to assume that program execution

time has been increased. In this section we will report on some

preliminary analysis which demonstrates that such an assumption is not

valid. We chose CPOLY for our analysis over GADD-SUB since the latter

program is simply a large decision tree and has no loop expressions.

Our main difficulty in analyzing the effect of S3 on execution time is 

selecting a reasonable metliod for performing a static evaluatioa For

example, consider the problem of estimating the execution time of a

branching control expression. There are three obvious alternatives: (1)

select a particular branch, (2) average the execution times of the branches

(assuming equi-probable selection of a branch), or (3) compute a weighted 

average of the branches (assigning a probability of selection to each 

branch). The added constraint that we intended to collect the data by hand 

compelled us to choose the first alternative and to limit our investigation 

to the inner loop of CPOLY which we identified as the loop in VRSHFT called 

from FXSHFT.

Two control paths through VRSHFT and the subroutine called by VRSHFT 

were selected. The first path was chosen by selecting those branches which 

entail the largest number of instructions. That is the longest (deepest) 

path through VRSHFT and its calls. The number of instructions executed in 

the orginal version was 3630*NN ♦ 10360 and for the S3-produced version 

3810«NN ♦ 6090. The pa-ameter NN is the degree of the input polynomial 

plus one aixJ is constrained to be <50. Thus in the worst case (NN-50) the
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S3 version requires 2.5X more execution time than the original. As NN 

decreases the performance of tlie S3 version improves. If NN=«10, then the 

S3 version requires 5.5Z jess execution time than the original.

The second control path which we selected was shorter (i.e. fewer 

instructions per iteration): The original version executed 860-NN + 3030

instructions whereas the S3-produced version executed 860*NN ♦ 1840. The 

NN-terms in the equations are identical since no S3-created (and not 

specified by the programmer) subroutines were executed in the NN-dependent 

loops. If NN=50, then S3 reduced execution time by 2.57.; and if N=10, then 

S3 reduced execution time by 107.

The effect of S3 optimization on the execution time of a program 

clearly requires more study than that given by this preliminary analysis. 

The purpose of presenting the results of this initial investigation is to 

dispel the assumption that S3 optimization necessarily increases the 

execution time of a program. Indeed that had been our assumption before we 

studied the effects of S3 on CPOLY more closely.

SUMMARY

Having produced a set of numbers measuring the effects of the program 

KATE on a few examples, it is important to place this information in the 

proper perspective. Chapter II introduced a collection of primitives used
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to describe the class of classical optimization techniques. The 

effectiveness of those optimizations is not an issue to this thesis. The 

success of the Fortran-H experiment which embodies those optimizations has 

already verified their utility. The merit of Chapter II lies in the 

concise statement of these optimization strategies and a correspondingly 

simple implementation of them.

The similarity notion, on the other hand, is a new concept. Chapter 

III described a number of optimizations in terms of similarity. We 

selected one of those, the $3 optimization, and implemented it in KATE. S3 

was selected because it dealt with an area of object code optimization not 

touched by Chapter II — the opening and closing of subprograms. CocKe and 

Schwartz discuss this area in some detail. However they concentrate on 

working with subprograms already identified by the programmer rather than 

on discovering the subprograms independent of the programmer. In addition, 

they only consider opening subprograms and reducing the amount of linkage 

code. The results that KATE produced are not to be interpreted as 

conclusive evidence that. S3 optimization will produce a I0t to 157, 

reduction in program size across the board. The results ^ say that S3, 

which is concisely and coherently describable in terms of the similarity 

notion, has potential for producing significant reductions in object code 

size.

Finally, if one examines any of the above examples, he can find places 

where KATE could have done better or where, if the original program were
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restructured, S3 would not have produced the same favorable results. We do 

not propose a contest between programmer and compiler to discover some 

minimal program. We see the S3 optimization in the following light. Let 

the programmer design the logical structure of his program and identify his 

computational sequences on the basis of their logical coherence. An S3 

optimization can decide for him between implementing those sequences as 

closed or open subprograms.



CHAPTER V 

CONCLUSION

This final chapter is divided into two sections. The first section 

summarizes the results of our investigatioa The second part suggests 

future directions in which this study can progress.

SUMMARY OF THESIS RESULTS

Chapter II motivated, defined, and used a collection of concepts for 

describing code motion, redundant expression elimination, and strength 

reduction optimizations. The concision of those decriptions demonstrates 

that the goal of discovering a set of primitives sufficiently powerful to 

enable concise descriptions of a class of optimizations has been achieved. 

Furthermore, the descriptions are independent of the intermediate

representation of the program. Language independence has been accomplished 

by isolating language-dependent characteristics in the ordering relations 

(<, -<, «, <). Finally, although the optimizations themselves may on the 

surface appear to be unrelated, the primitives provide a homogeneous 

description which, in turn, leads to a compact, cleanly structured 

implementatioa

■ J
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A new concept, similarity, was introduced in Chapter III. A

colllection of new optimizations was defined in terms of the similarity 

notion. One of these new optimizations, S3, was examined in greater 

detail. The discussion in Chapter III (and the analysis in Chapter IV)

demonstrates that S3 opens a significant new area of investigation into 

program optimizations. Previous research in optimization has done very 

little in the area of optimizations involving subprograms. No work, known 

to us, has investigated the possibility of using a compiler to determine 

the computational units to be implemented as closed subroutines.

FUTURE RESEARCH

In the process of doing this research a number of areas of possibile 

future investigation have emerged. Some of them are short-range and

reasonably well-defined while others are long-range and less specific.

The program KATE implemented the primitives of Chapter II and the 

similarity function, SIGMA, defined in Chapter III. The evolution of the 

primitives and the construction of KATE proceeded in parallel during pur 

investigation. Each process provided information for the development of 

the other. However the major emphasis lay in the developi'ient of the 

primitives. Now that the primitives have evolved to their present state,

it would be worthwhile to reconstruct KATE and observe the effect on the 

resulting program. Since optimizing compilers are noted for being
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expensive in terms of both time and space, one might conentrate on

examining alternate implementations of the primitives which reduce this

overhead.

Chapter III developed a particular similarity function, SIGMA. That 

function was evolved with tlie S^ optimization technique in mirxl It is not 

clear that SIGMA is the appropriate similarity function for all the

optimizations defined in Chapter III. An obvious area of investigation 

lies in discovering other useful similarity functions. Particularly, one

might examine similarity functions which are sensitive to execution time 

overhead and the use of temporary storage. The set of optimizations

described in terms of the similarity concept in Chapter III are new. In 

addition to developing new similarity functions, there is certainly the 

potential for discovering more optimizations defined in terms of 

similarity.

Another area of investigation is related to the notion of strength 

reduction. In Chapter II we began the section on strength reduction by 

posing the problem of discovering a relation F, such that F(e,Ae) « e* and 

the cost o^ evaluating F(e,Ae) is less than the cost of evaluating e. The 

statement of this problem is motivated by the observation that strength 

reduction seems too specialized. The restriction to polynomials and 

looping environments is reasonably restrictive. The thesis described the 

feasibility of strength reduction optimizations in non-looping 

environments. The generalization to non-polynomial expressions, on the
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other hand, remains an open question. The problem consists of discovering 

a set of non-polynomial expression pairs (e,e') for which there exists a 

closed-form relation F satisfying the equation F(e,Ae) •= e’,

Finally and, to our mind most importantly, a spectrum of questions

opened by the S3 optimization technique remains to be studied. S3 was 

developed in the context of an investigation into object code optimization. 

Irxfeed one area of study is an investigation into modifications to the 

heuristics implemented in SIGMA and reconsideration of the overall

structure of the S3 module in KATE. There are, however, other directions 

to be pursued.

At the end of Chapter IV we presented a brief summary of a preliminary 

investigation into the effect of S3 optimization on the execution time of a 

program. That investigation suggests two area for future study. First,

there is the problem of performing a static analysis on the execution time 

of a program. Can one determine a meaningful data-independent measure of 

execution time? Can a program be analyzed to determine the kind of

informatic a that must be known about the input data in order to perfrom a

valid analysis? Presumably a programmer makes some assumptions about the 

data input to a program in order to decide among alternative algorithms. 

Perhaps those assumptions can be incorporated into a static analysis of 

execution time. Second, tlie function SIGMA was designed to minimize object 

code size. How does one design a similarity function that is more 

ser>sitive to execution time? There are obvious parameters like loop depth

J
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and calling overhead. It seems clear, however, that heuristics encoded in 

a execution-time-sensitive similarity function require the same kind of 

information used in a static evaluation of execution time. Hence these two 

areas appear to be closely related.

In analyzing the form of a program, KATE discovers a set of 

computationally coherent expressions. Our initial investigation into tNs 

area, discussed in Chapter IV, demonstrated deviations from the selections 

made by the programmer. It is interesting to consider what one might learn 

about the structure of programs by analyzing the results of allowing an $3 

pass to select subprograms. Will $3 consistently outperform the programmer 

in terms of reducing program size? Do the (potentially) different 

subprograms selected by S3 provide significant feedback on the programmer's 

choice of logically coherent subprograms?

Some current research by S.L Gerhart[GE72] involves the verification 

of API. programs. One aspect of this work is corKerned with investigating 

the effect of the powerful APL operators on the verification process. For 

example, one observes that an algortihm represented by a nested-loop 

expression in Algol can perhaps be represented by a single operator in APL. 

As a result, a verification of the APL program should proceed with less 

difficulty than the verification of the corresponding Algol program since 

the effect of the involved Algol control expressions has been captured in a 

single operator. Intuitively this models a mathematician's approach to 

generating a large, involved proof. He typically identifies a set of

\
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sub-goals (lemmas — macros — subroutines). Having verified the 

sub-goals, he proceeds to combine these into a verification of the original 

theorem. It seems promising, then, to investigate the usefulness of 

similarity for discovering sub-goals and thereby reduce the complexity of 

the verification process.

These last two suggestions are not directly related to the area of 

object code optimization, but are natural outgrowths from observing the 

effect of S3. They offer a wide range of interest for future study.

li-

/
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ID AHGY..f$l..lSl 1
»>N0 2
LO pes>..T«i..isi I
«N0 .V.-4IV1..1S3
IQL .T$3.0.T$< 0
OPT TS^.LSl 1
BPF r.t»3 3 •
P»*‘f1 -X 1 •
SSD^ sti.eti 1 •

s
PmPM Y 1 •
CmU wen.. ISP 1 «
DP»^ri 1 1 «
P1PN 1 •

11

.l»n 1 •
PkPM n 1 •
CALL CAS..ISO 1 •
OPAPH 3 1 •
10 U4..TSP..TS4 1 •
pp LS4 1 ■

1:
12

.V.4Pf»»>..Tt6 2 •
ppr .U6.LSS 1 m
to TSS..Y..TS5 1 ■
BP IS6 1 •

: ‘‘

f«N0 •
07L -t*7.0..I$I0 0 •
PPF •ItJO.LS? 1 •
10 T»10..*..T$|0 •
5SCK ssr.Esr 1 •
AOD .UIP.1..TS12 •
AOO .1*10.0..IS13 0 «
BPf .1»13.L»M 1 «
►•00 IT..1*IC..1*13 1 ■
LO »*U...1*13..1*11 I •
BP LSI? 1 •

tt
3

ID T*l|,.1*ir..T»|| 1 «
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PIPN 1 •
eS3:

BPr .1*M.LiI3 ? V

mNO .X.17r.-77..I»I5 2 «
P»*PM .TtlS 1 «
pMTri .Y I •
ftOO e •
P»4PI1 ] m
C«LL CPS..TW 1 m
OP»«n 3 1 «
mNO .*.lP037?..t$l5 z ■
OP .ISO..TtlS..TftB 1 •
10 l»ir..TW..T»12 1 •

LtM 1 •
IZ

Ltl3i
EOt .T»7.Z-14..T»I6 1 •
Bpr TtlG.LtlS 1 •
PMPti 0 1 •
p(4Pti .X 1 •
PWFfl .V 1 •
CmU CPNL..T»e j *
OPMPtI 3 1 •
LO UJ5..TW..T$|5 1 V

BP LS16 1 •
7

L»I5:
(4X) x.r..Ttrn e ■
E«3L 1 «
0pr .itro.Ltzi 1 •
SBCBL ssstts 1 ■

SftSr
rtND .X.377..T»Z| z *
PIPN 1 •

Its.
HUi .T»ri.n..T»ZZ 0 •
BPf .Tscc.Lsrs 1 ■
OP .TS7.M..T*rC z
PNO .T».:r.-^oo..T»r? 1
tot .Ttc:.r<<..T»rr 1
LO T»:o..ifze..T*?p 1
BP L»Zi 1

6
L*."3

10 T»ro.P..T»re 1 a
1

L»Ci:
LO T»|7..1»CP..Tt|7 1 ‘ a
BP itzz 1 a

M
LtZU

LO T$|7.0..1»17 1 a
I

Ltrr:
BPf .I»17.L»17 1 a
SBT.rtL 5»S..M..T*n 1 a
LO ii.:r..T»ri..T»r3 1 a
LO T*r3..Y..T»:3 1 a
SSCMt StG.ttG 1 a

SS6:
piipn -T»cr 1 a
PNO .X.|771W..Tt:4 z •
OP 1 a
PnPt1 .Ttr4 1 a
PpPtI .T»C3 1 a
C«L GONL..T*0 1 a
DP»^ 3 ] a
P1PN 1 a

€»8: .
LO T»I6..TW..T*16 1 a
BP L».:n 1 a

IS
L»I7:

tot .T»7.ron..T»7 1 a
BPf • T»7.Ltc7 1 a
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LO 1110..Y..1110 1

5SCOL si?..«t..1111 1

ID IV,«L lit..1111..Till 1

oNO . »vniut.i7rr7.'’..Tni r

t*JL .1111.0..Till n

itOD Y.3..T17 0

mod 51.. .11.-’.. 117 1

PISH 40...117..1ir 3

ODO ?*>»>o..ii7..iir 1

f»NOCP .1111..117..1111 I

ID lire..111!..1176 1

BP L130 1

10 11?6.0..T1?6 1

Ltan:
ppr
ftOO
PnPf1
P»«PM
DXL
QP»^
LD
BP

L»:5:
5SCK

Sir.
PMPtI
C»4.l
DPPPH
PTPN

E«r:
OP
ID

Lire-.
LD

i*ro:
10

LilG:
LD

L»M:
10

LilO:

.Tirfi.lirs 
v<.*PLUf .n..Tir6 
. lies
. K
ni>TPTVP..TtO

T»r5..un..Tirs
Lire

ssr.Et?

, V
CLiP..Ifrt
1

.liP..Y..TW
T»rs..T$o..iirs

TtI6..TirS..?tl6 

ISIS.-ISI6..1115 

Tiir.-Ills-.111? 

116..111?..116

115.. TIG..115

114.. 115.. 1M

124

98

ID
BP

tit:
mND
t'A
RPF
S5CPL

5110:
BPF
55CAL
LO
BP

L139:

L134:
P«Pf1

11?..114..11“
LI?

.Y.-400.,115
115.0..116 
116.L131 

SUP.£110

.F.L133 
511..*1..11P 
TIG..110..116 
1134

116..V..116

.116
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.T»| 1 •
000 V.1..TS6 9 •
Pfipfl ..T»S 1 •
ChU GAS..TSO 1 •* 0P»*PI1 3 •
P1PH I •

E»1P:
ID 1 •
BP L»3T 1 •

16
L%3lt

inn .i»3.roo..T$3 1 ■
BPT .1»3.L»3S 1 •
XCT .F.L»37 2 •

LS37«
BP L*-10 J •
BP LS4I 1 «
LO 1S3.27I..IS3 1 ■
BP 1 •

2
L$<1:

LO Tt3.rrs..i*3 1 •
1

L»ir:
ITSH .1*3.33..1*3 1 •
SSCrtL S»ir.E*I7 1 *

S»1C:
SSCAL S»7..M..T»0 I •
LO X..T»0..1*0 I •
S5CAL s»is.e»i5 1 •

SSIS^
POO I 9

MOO PT..T»1S..T»15 9 «
oDO .X.5..T*16 z •
ONO .■T*IS.TS16..1*16 1 •
BPt -T*16.L*43 1 9

LO T»ir...t*15..1»U 1 9

BP L»44 1 •
2

LS43!
PMPtl • X 1 ■
CMLL CnA..T*0 1 •
DP»>Pn 1 1 9

LO T»ir,.i*n..T*ir I •
4

L*1<t
PTPN 1 •

CSIS:
L15H .nl^.^7..^*l6 2 *
P1PN 1 •

E»ir:
OP ■TS3..1»16..T*3 J •
OP • v.^omxi. 1*^ z •
PhP?1 .T*CS 1 •
C»«LL C«A..|*0 1 V

DPPPfl 1 •
OP .T*3..1*P..1»3 1 9

LO INSY..T*3..1*3 1 •
ID T*B..X..T*6 ] •
BP LS36 1 «

37
L»3S:

EOL .u5.ron..i»rs 1 •
RPF .T*:5.l»4S t V

S^PL S*in..M..T*A 1 «
LO 1*3..1*0..1*3 1 9

BP L*4B 1 9

3
LS15:

AND .v.|onr*Ao..T*C5 2 •
tOL .r..i»:5..i»:5 I •

f LO AOOPossi0L..i*rs..T*rs 1 •
AND .ABSt.-400..1*r6 2 9

EQL .T*r6.244..T*ll 1 •

b.
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fiHO
&pr
PmPH
DHL

BPT
i*HO
OP
LO
OP

.T*n..«DOPQSSia ..T$ll 

.TSlt.lftH?.>!
PFCP..IW
1
.TSO.LtS!
.Hest.irrHoo..T$?

L»sr

LSSI:
I »*NO 2 •
^ DJL .1$.“7.0..T$^7 0 •
! SSCOL 1 •
i wg .Uvl.0..l»30 0 *
i 1^ .l»r7..IS3Ci..Ttr7 1 •
! BPF •TSr?.LS53 1 m
i p»«pf1 • uci 1 •
j p»»pn .hBSV 1 •
[ »«ND .K.l77777..T$77 2 9
j PPPH .TSZ7 1 m
! Cmu CMNL..1fO 1 •
' OPMPM 3 I •
1 10 T$7.,T$n.,1$7 1

BP L*5< I ' •
L%S3:

9

SSCOL S*7..*I..T»0 1 ■
ONO .F«St.J7740P..t»C7 Z •
OP .TS0..TS?7..T$0 1 •
to T*7..UP..T$7 1 *

L*5H:
5

10 T*n..1$7..1$J| 1 •
L»sr:

CO

LO T$rS..TSii..T$r5 1 •
0P L*5» 1 •

3C

hNO .Pnsx.-4P0..TS7 z •
IQL .l»7.r44..1tC7 1 •
OPF .TS:7.LS5S 1 •
S5C0L S»in..M..T»0 1 •
LO t •
BP L»5R 1 •

l*5S:
3

f«00 f»05».r.. .$31 0 •
tgi . .T$3i .P ..1S3I 1 •
OPF .1$3I .l$61 1 •
MNO .l$I3.377..T$3e •
NfO .1$3r.n..t$3Z 0 •
OPF .T$3r.l$63 z •
OP .T$7.41..T$7 J
fNO .l$7.-4f»0..T$7 ]
ig( .1S7.Z44..T$7 1
ID t$3l..1$7..l$31 1
OP L$64 1

L»B3:
to T$3I.0..7$3I 1

L»04;
LO 1$3n..l$3l..t$3f' 1 •
BP L$6T 1 *

LS61:
1C

LO T$3n.o..l$3Ci 1 •
l»6r!

1

BPT -T$30.L$57 1 ■
S5C0L 5$5..*|..TS7| 1 •
ID Ttl3..0BSV..Ttl3 1 •

126
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SSCAL
RPT
LO
SSCflt

s»r6:
mNO
IW
hNO
»«DO
BPr

LO
BP

lt?Zt
NTQ
PTPN

ttZSi
ID
BP

LS67s

LSrO:
»iND
BPF
^NO
LO
55CBL

SS30:
PiiPM
CmLL
DPtiPn
ppr
PhPH
CmLL
DP»V»rt
BOO
BOO
cut
OP
LO
BP

Lsrs:

LS7B:
PTPN

E»30:

BNO
LO
SSCBL
pbph
PmPM
PHPtt
CALL
OPBpn
SSCBL

StVi

St3..M. TtH 
.UM.LfS? 
T$7..Y..T$? 
StZB.^tZB

.117.177777..]*3^ 

.T134.J..IS35 

.117.177777..T131 

.T13-t.O..T136 

.T136.L171 
L1..113S..T136 
1133...1136..1133 
L17Z

Tt33..1135..1133

.1133.0..1135

U31.. 1135.. 1131 
L170

1131.0.1131

. 1131..mOOPOSSIBL..1131 

.1131 .L165 

.Y.377..1131
1137.. 11Z1..1137 
5130.E130

.1137
PfGP..110
I
.110.L17S
.1137
11PP..110
1
.ii37.<.,im 
R1..1141..11<fl 
..1141..OPIIOPECBO..1141 
.110..1141..110
1140.. 110..1140 
LITE

1140.0..1140

.Y.177.V7..1131 
11:3.. 1131.. 1K3 
S16..*1..110 
.110 
.YPCC 
0
CI4S..110
3
S13Z.C13C

BPF .1140.L173 2 •
LO xpec..fi.“i..ii?i 1 •
LO Ypfn..1131..1131 1 •
BP L174 1 •

4:
3

LO XPCC..1131..1131 • I
ID YPEG..11CI..11ZI 1 ■

1:
2

LO iirr..xpFC.-ii72 1 * •
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»*N0 2 •
PIPN 1 •

F.$3r:
OP 1 •
ID I$30..T$0..J»30 1 •
BP LS&6 1 •

44
L»6r>:

PmPM • TS.’I 1 9

PttPfl . Y 1 •
r*»pn .r J •
C«IL CMS..T$0 9

opwipn 3 j 9

p»4pn 1 •
OP .1$5.1i..TS5 1 •
PMPfl .1SS 1 •
pt«pfi 0 1 •
C**LL GhS. Tfrt 1 •
CPmPH 3 1 •
LD 1$3i»..!$0. I$30 1 •

IZ
LSB6:

LO 1 9

BP ISBP ‘ •
84

L$5:’t
»YBSY.r..TSU 0 •

t'?L 1 •
BPf . I$-*I .LSJ*'«I 1 9

uHO •mPS^.37?..TS4? 2 •
WO . 1S4.-.‘7..T$1Z 0 •
DPr •1$»r.L»103 b 9

OP .is:6.44..TsrR 1 •
PM) .•.«:s.'4oo..T»;:6 1 *
C*X -Ts:6.r44..tsr6 ] •
ID TS-il..|»r6..tS41 1 •
BP l*|04 1 •

s
IS103,

LD IS4I,P..1*4J 1 ■
1

LO T*&..T$4J,.T$S 1 •
BP isior 1 •

12
tilOl:

LD

IMLC:

IS3.0..T$R I 9

BPF - TSR.Lir? 1 9

SSCBL \ ■
LO tS3i»..tS0..1$30 1 •
BP LSI CO t •

3
LS77:

1 D 1$I3..^'BSX..1$|3 1 9

S'iC»X. SS3..*1..TS14 1 9

BPf . tsm.lsh:*? b •
LO ts:..«03k..is7 1 •
BSC ML SSr6.M..?S35 1 •
ID TS41..1S35..TS4I 1 •
BP LSUO 1 •

4
L*lO.-;

to TS4J.0..1S4J 1 •
1

BPF .1S4I.LSI05 1 ■
hNO .X.-17740J..1S4I 2 •
PHPfl .1S41 t •
p»»pn . » 1 •
PmPM .r 1 •
Dill CMS. TS»4 I •
DPhPM 3 9

LD mBSX..TSO..ISO t •
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»«N0
rtOD
»>CX)
»«NO
BPf
r.ip«
PMTfl
PmPH
CmII
or^rf>h
p»ipn
C*iLL
DP»4m
LO
BP

lt\U’
BPf
PfiPtl
CmLL
DP»<^
10
BP

Ltll3:
LO

LtlH:

.X.|7?777..T*3S

.HBSx.iooooi.ffrs

fWS<.l.Tf43

■ Tf4c.i$m 
T$3S 
itrs

0
015.-1*0
3
.1*0
CNrc..!«o
i
1*41..1*0.-1541 
1*117

.-1*4r.L*ll3 

.1535 
CBFG. -1*0 
I
l*4r..1*0..1*47 
1*114

1*47..1*35.-1*47

phph .1*47
PMPtI .15:6
P»«PH ..1*43

L CHS.-150
OPHpfl 3
LD 1*41..1*0..1*41

t*iir>
LO T»S.-1*41..1*5
BP L»|i^

L*l«'5:
to 1*13..^«5Y..1*13
SSCOL 553.-M.15I4
BPF .1*14.L*117
SSC»K 5*76..*1..1*35
LO 1*:G..1*35,.1*76
BP L5170

L»lir:
LO 1*76.0.-1*76

L*I70:
BPf .T*76.L*1I5
SSCflL 5*10..*1.-1*0
LO 7*41..1*0..1*41
BP L*116

L*115t
PnPII . Y
CiiLL ut«>..1*0
DPpPtI 1
PrtPtI . K
ChLL OCPP..T*0
DP»'PM 1
MNO .1*»Y..T*0..1*0
OPT .1*o.L*I7I
BPF .HOOPOSSIBL.LS173
LO 1*33.7.'3. 1*33
BP L*I74

L*173r
LO 1*33.776..1*33

L»ir4.
L1SM T*33.33..U33

i U
iMD

le

129

'X
"’V
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PhPh .H 1
CmU 1
DThP^ 1 1
ID X..TS0..1t0 1
S^iCRL s»i5..*i.,T$ir 1
t TSM 1
OP .1$33..T»ir.l*33 1
P»iPH .♦>nst 1
C»*LL 1
0*»MPf1 1 1
ID 1
PmPH .110 1
r»YLi CMH..T10 I
DPilPn 1 1
OP .1*33..1*0..1*33 1
LO INSl..1*33. 1*33 1
ID i*::6..r.. lire 1
BP ttirr 1

:i:
PnPn . K 1
C»«l.L u»np..iK» 1
OPMpn 1 t
w*f . uo.tiirs z
SSC»)L S1IO..M..T10 1
LD 1*33.I*D..1*33 t
BP i*ire 1

tfttrs:
PmPH X 1
P»«PM y 1
CM1.U pfGer»iPCH..i*rt 1
DP»'Ptt r 1
i«NO 2
LD H0S'..i*ir..i*ir 1
tM} .t.-l»>» 1*14 Z
ID MB‘j»..l*H.. f*14 1
»oo P.0.113S 0
10 i*3:'..**ns’'..i*3r 1
ebCMi e*io..4|.,i$4i) 1
\ 0 .l*3^...1*40..1*4P 1
MOO p.i.i*4r 0
ID inr..4«sf. T*3.' 1

S*30..*l .1*40 1
10 .1*4C..1*40..1*40 1
.*N0 .1*40.. I*4i),. 1*40 1
D»r .i*4o.i*irr 1
r»ipri . X 1
P.«PH . y 1
CmIL SHOULOCXCH .1*0 i
0P»^ r 1
0Pf .1*M.1*131 z
escoL S*10..«1..1*»( 1
10 1*40..1*0..1*40 1
BP L*i3r 1

31:
S‘.CAL S*3r..«l..l*31 1
RPf .1*31.1*133 2
mod y.4..i*4b 0
hOO Pl...t*4S..l*4S 1
MOO .l*4e.O. 1*46 0
WD .. 1*46..'4TC.. 1*46 1
uSS> .MOOPO^Siei..1*45..1*46 1
BW .1*46.1*135 t
SSCrtL
in
BP

S»in.M..!tn
1«44..TSn..Tt44
L»I36

ttiaS:
sstml

St33:
PhPM
PuPn
f»*«Pti

Sfl3.C»33

.MRS*

.POSY

.ADOPOSSIBL

130
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CnCL O^..TiO 1
DP»^ 3 1
P»^ .TW
CHLt dCG.ltn 1
OPMPfl t 1
PTPN 1

Et39:
LO Tt44..rtA..T«41 1

L»13G:
LO T*43..T*M..T*43 1 «
BP LSI 34 1 •

LS133:
Z9

SSCPL S»3S.rS3S 1 •
St3S:

0PF .fOOPOSSI8L.l»l37 3 •
LO T444.CrO..Tt44 1 «
0P Ltl40 1 •

L»I37:
2

LO T»44.Zr4,.1$44 1 m

Ltl^O:
t

L1SH .T*44.33..T*44 1 •
SSCAL S*ir..«I..T*16 i «
OP .Tt44,.TS16..1*44 1 ■
PTPW 1 •

Ct35:
thph .ftOSif 1 «
C»4.L GLIP..1»rt 1 •
OP»»P»l 1 1 •
PwPM .T*.4 t •
CmLL PTCPP.-Ttn 1 •
OPrtPM 1 1 •
OP .T*44..T*0..T*B 1 •
LO INST..T*n..T*c4 1 •
LO 1S43..X..TS43 1 •

20
L*134i

10 T*4P..f»43..1«4rt 1 •
44

L*l3Ct
LO TS14..T«4P,.T«14 1 •
BP l*l») 1 «

5S
L*ir7:

BPf ..T*35.L»|4| 3 •
S5C»K S»3C..M.T*3! 1 m
BPr 1*31.1*143 Z •
S5CPL S*33..M.1»'> 1 •
LO 1»3S..1*0..TS3S 1 •
BP L*144 1 •

3
L*I43;

ssr*K S»35..M.t»44 1 •
PrtPtI .Y 1 «
C»4.L rienoPYA..urt 1 ■
OPPPrt 1 1 •
OP .1*44..7*0..T*44 1 •
LO l»IS1.. 7*44.. 1*44 t •
LO T»3S..*..1*35 1 •

?
1*144..

LO 7*40..7*35..7*40 1 •
BP L*I4Z 1 •

IS
L«I41:

OPT ..7*4r.L*|45 3 ■
SSCPL s*in..«i..7to 1 t

LO ^*35..7*0..7*35 1 •
BP L*I46 t •

3
L»145:

SSCPL S*3Z..*1..7*3I 1 •
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BPr
HPF

I 0 
BP

ID

Ltisr:

C»< I
OPmPH
RPF
Ssr*K
r».Fn
PhPM
rtiPti
C»CL
OP*ytm
LO
BP

Ltini:
P»tPn
C»HL
OPoPn

. 1*31 L*M? 

.fOOPOr.SI8l .L*l&l 
S*l‘'.«l..t*0 
TSH..T*n..T»M 
ItlSZ

itisr
r»ipn
c»«u
o»'»«Pn
10
r.f.c«L
RPF
»«N0
f'Mpn
p»iFn
PMPn
Cmu
OPmPh

p».pn
TmIL
DPmPM
LO
BP

C0LTP..T»0

5*3." .M.. 1*31 
.1*31.1*153 
.x.-inooii]..T*31 
. 1*31 
• HBSt

Dm5..T*0
3
.1*i>
cm:c. . 1*0

T*<3..1*0..1*13 
1*154

LSI53:
pMpn
PmFM
Pi4pn
CHU
DPrtPfl
LO

. *

.F*nsY
I
GhS..T*0
3
T*43..T*n..T*43

T*44..1*43..1*44

l*4r..1*44..1*42 
1*150

L*|47t

PMpn
D'LL
DP.^Ptl
PPF
OPf
PmPH
C*<l
OT..Pn
rMPfi
r»*pfi
p»»Pfi
(•«Ll
OPwpn
LO
BP

. X
Pt»i0Y..1*O

.1*0.1*155 

.M00l»0SSI«. .L»157 
• <»05»
Cl TP. T*n 
I
.l*i>
. M
O
GftS..T*i1
3
1*43..1*0..1*43 
L*160

.OB5t
Pt*«T..1»0
I
T*0.L*16I 

5*7..M..1*0
. T*rt
.»*OSV
1
CHS..1*0 
3
1*31..1*0..1*31 
1*16:

.oesY 
Cl IP. .1*0 
I

a4
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p*ypn .1$D 1
PmPW . 1 1
FmPM 1 1
CmLL OiS.. 1$0 1
DPnPn 3 1
PmPH .1*0 1
r»H.L CNTG. . !tO 1
OPPPH 1 1
ID TS3I. .i*n..l»3I 1

L*I6C:
ID Tt13. TMI..TM3 I

LD Tt<4. .T*l3..TfM 1
BP L«1S6 1

LtlS&t
BSCftL M..ffO 1
PfiPtl . )$n

133

PuPtl I ' t

MND .Y.IO«v»rtO..T*13 2 •
OP .r..TS13..1$13 1 «
pMPn -1»13 1 •
CKL CPS..ISO 1 ■
DPuPfl 3 1 •
LD

LSISG^

TSO.. ItM 1 •
le

LD

L»I50:

T»4C. 1M1..1S42 1 •
57

10

ISI.46:

1*3S..1»*:..T535 1 •
94

to

L»Hr:

1S<P.-1»35. T*4p 1 •
101

LD

L»l»?:

1 •
iro

LD

L»ir6:

Tt33..1SH..1t33 1 •
194

ID

L*l":

T*r6..1»33.-1»r6 t •
203

LD

HUB:

T*4|..I$?6..T»4I •
236

ID

LtlOB:

T»5.1»41..T*5 i •
250

LO

1 tlOrt:

t»30..T»b..U3n * •
303

LD

L»BOt

i»rr..Ti3n..itr7 1 •
323

LD

l»5B:

1 *
422

LO

L*Bn-.

i*rs..T*u..T»rs 1 •
430

LD

L»46i

Tt3..TSrS..U3 I •
472

LO

L»3Gi

1»6..T»3..|»6 1 •
470

LO

L%3Z‘.

Tt4..T*6..T*4 1 •
518

10 1 •
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i%:t
to T$0..t«r..l»n
PIPN

I •
I •

69?

T0T«L COSI* 69?

O
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Algorithms
L.D. Fosdick 
Editor

Submittal uf an nlcoriihm for cmisidcralion for piililicntion in 
C'ommunic:ilion> of llw A< M iniplirs unrcslricliil use of Ihc 
alsorillim Hiihin a runiiHitir i\ piTmK>ihli’.

Editor'n note: Hh- ulannilmis ih scnhctl here are tiuihihle lui /ii<;v«c7/r 
lape /nun the De/uiitineiit of Coin/niter Seienee. L'niyer.\ity ot 
Co/ornJii. lioulJer. CO tiiiJO'. I he in.\r fur the Iti/v is f 16.00 {.V.S. 
aiij Ciiiuiiho or SIS00 le/si uhere) If the user seiuls a snuill /ope 
{tel. less thon I Ih.) the ulKorilhms will he copieJ on it niiil reliirnetl 
to him ut o ch.irye of SIO /HI tU S. tuily). All onlersare to he prepaid 
with checks pauihle to ^IC A/ AlKorithins. The ulyorithnt is recorded 
as one file ot HCl) SO eharacter card imayes at SS6 !i P.I., even 
parity, on seten truck tape. W-'c will supply the alftorithm at a 
density o/ SIS) B.P I. if reipiested. The cants )or the algorithms are 
sei/iHuiced starting ut 10 and incremented hy 10 The sequence niimher 
is right justified in column SO Although ti e’ will make eeery attempt 
to insure that the algorithm cimlarms to the description printed here, 
we cannot guarantee it, nor can «<• guarantee that the algorithm is 
correct.—L.D.F.

Algorithm 419

Zeros of a Complex 
Polynomial [C2]
M.A. Jenkins
Queen’s University, Kingston, Ontario, Canada 
and
J.F. Traub* [Reed. 10 Aug. 19701
Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA 15213

Key W ords and I’hrascs: roots, roots of a polynomial, zeros of a 
polynomial

CR Categories: 5.15

Description
The subroutine CPOLY is a Konr.in program to find all the 

zeros of a complex poly nomial by the three-stage complex algorithm 
described in Jenkins and Traub |4|. (An algorithm for real ixily- 
nomials is given in |.A|.) The algorithm is similar in spirit to the 
two-stage algorithms studied by Traub il, 21. The program finds the 
zeros one at a time in roughly increasing order of modulus and 
deflates the polynomial to one of louer degree. The program is 
extremely fast and the liming is quite insensitive to the distribution 
of zeros. Extensive testing of an Algol version of the program,, 
reported in Jenkins [.A|. has shown the program to lx; very reliable.

The program is written in a poitable subset of ANSI Fortran 
It has been successfully used on the IBM .A60 C5. the GE 635 and 
the CDC 6600. The program is a translation of the Algol 60 pro
cedure r/in/.i.vro/ini/ir appearing in [31.

MCO\. the final subroutine of the I'rogram. sets four variables
Copyright > W72. Association lor Computing .Machinery, Inc.
General iXTinissioii to republish, but not for profit, an algorithm 

is granted, provided that reference is made to this publication, to 
its date of issue, and to the fact that reprinting privileges were 
granted by ix'rmission of the AsstKiation for Computing Machinery.

* This work was done while J.F. Traub was at Bell Telephone 
Laboratories.

which vlesctilv the precision and range of the lloating ixnni aritn- 
nKtic Iving used. Instructions for selling MC(l\ variables are give ; 
in the MCO.\ coniinenls. The algorillim will accept polynomuU 
maximal degree 49.

The authors would like to thank K I’aciorek and M T Di'Ian 
fur their assistance in pre|varing the Fortran version of the program 
and P. Husinger and C. Lawson for suggesting impruvenK-nis to tiie 
program.
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Algorithm
susaouiiN' CPm.MOP«,nai,ot&«t(,tt>na,ZEaoi,r(iii 

nxus i«t i€»ns or < cuppiei poitNO«i»i. 
opp, OPI - oouaiE paiciSKM victoas or pepi tuts 
|P>.IN>«> Piais or IHE COEMICIISIS IN 
oaoEP or DECaiasiNO popiks.
D(&RfC • INTfOtit OEORFE Of POlTNOaiAl.
/(•ORe <e*oi * outrur dousu p«(cision vccf3«& of

C t(AL IkHO IMiCINARV PARIS OF iHf /FROS.
C fail - output lOOICRl PARRRfKR* IRuE OHIV IF
C UROING COEFMCIINT IS /IRQ Oh IF CPOLV 
C HAS FOUND FFMfcR 1*4«N OCGPtC /(ROS.
C tHF PROGRAM HAS btl\ RRItrCN 10 RfOUCC Ih( CHANCE OF 
C OCCURRING. IF II OOiS CCCURt tMFRe IS Still A P'^SSIftllllT t4At 
C tHF /ERCJFINCCR Mill WORH PROVIDIO tME OVERFLOrCO OUANtItT IS 
C RIPLACIO 6Y A lAHGf '.uHAtR.
C lOHHON AREA

COHRON/Cin!)AL/PR.P|.HR,H|,aPReOPt.OHR.OM|,SHR,SH|»
• SR«SialMet|,PV4.PVt•AHl.MRE^flA,INfIN.NN

OOUeLE PMiCISlON SRtSietR,ri,PV4aPVl«ARF.HRr,CTA,|NF|N,
P PRlSOI.PI<SOI*HRISOI.HMSOIeaPMSO»*CP|ISOI.OH4(SOI*
• 0HUSC».ShRIS9»,Sm|«S'^I

C to LhAN,;e ThF Sta CF P ilVNOPlAlS WHICH CAN BF SOLVED. REPlAIF 
C iHf Di«FNSUN Jf iHi ARpiArS IN tM( COHHON AhtA.

OOUBtf PRfCISiON II.VV.COSR.SINft.SMAiN'I.RASF.AII.ER.tl.AW;.
• OPRIll.OPII I ).2{«ORf ll./EROim.
• C**0C»SCAlf «C AuCHY.OSWRt 

LOGICAL FAlt .Cony
IN7‘..',FR DFGRff.LNtl.CNi;

C IHlIlAlllATfnN r.f ffNSlANiS
CAii hccniita.infin.shalho.basei
ARC • LIA
tIRE > ?.0U0«3S0Rt W.ODOlPEtA 
III • .tCMOotP

• -It
COSR • -.0A0ISR47A 
SINR • .RRtSfrAf,*
FAIL • .FAlSC.
HH • OFCRIF*!

C AIGORIIHR fails II «*t LEADING COCFFICIINI IS ICR3.
IF lOPRUt . . '.CJO .OR. OPMII .HF. 0.0001 00 fO 10

FAIL •.to.
REtURN

C REHOVE tHF ZEROS At THE ORIGIN IF RNV.
10 IF iQPRlHNt .NF. 0.000 .OR. OPIINNI .«lE. 0.0001 C9 T9 23 

ICNNZ • OfG«tlE-NN*2 
zfrcriionnzi • O.OOO 
IFRClIinNS?! > 0.000 
HH • NN-I
CO to 10

C HAM A COPT OF THE lOEFFIClENf S.
20 00 30 1 l.NN
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SO CONUlOf

C SC»i» f**l •Cl»*lO«l*l..
Bsa • SCAIF (S‘4.^Ht,f U.iNf l*«,Sl**L*lO»MSn
I* (Bsa ,m. uouo) co tu *o
00 » I • l»V4 

9BIII •
ai< 11 • e*«u*at 1II 

IB COiriBuC
c SM«T r««| AiCOailHM F0« 0'4E i(«Q.

♦ 0 l» ms.Of. ?» 60 fo BO 
c c*tCm*u i**r mnal /rai *su Nftu«M.

6Alt coiiTtot‘p4ui,>p|i.'i.pi«uitPinitic<ja«u(6acfi«
• n«ctiot',4(tii 

• E H.AS
C ;*lCui*TE osl*. A LOME* dOuHb ON TMC NQOUIUS Of tME EEAOS.

B9 03 69 I • l.SN
B-AII I • CNJOlPMIIt^ll 111 

60 COsr|N>;E
BS9 • CauCmtinn.Sha.vhII

i ?u»f6 I'iO* fO COStai.1 2 "AJUM PASBEB NifH OII^E^CNI BEOUfNIES 
■i, Lf BMIMS.

00 100 CBM • I,?
C »I6BT SIA6€ CAlC'JlATinN. NO SHlfl. 

cut SJShFKBI
C INBcA 133P IV BfiKI A SHIM.

33 BC CNt? * 1,0
C s*«lf{ r» ChCSEn ■11*1 "OOuluV oBD ABO AMPLITUDE aOTAtEO BT 
C BA 0E6ACES EB'** ThC t^aEVlOUS Sm|EI.

ttl . (.» ',H*Ai-Sl 4«»Tf
rt • ^its**««A*cosa*Tf
lA a III 
S* a BSOAIA 
SI a B*.0«TT

L StCCNO stage CALCt^..At|OB, Efl^O SHIFT.
CALL F «S1F M lS*CsW*rA.ntCPNVI
IF l.-Sjr. CJNIO UJ 10 60 \

C iHf SECOND StAr.f jyPPS Ul«tCrL» fO Th€ lH|6f> STAGE lff»AII3B.
C IE SUCCESSFUL TmE lt«0 IS SIC«<fO AND TmE POLTBOmUL DEFLATED. 

|UN•«^ a DfcCAEE-NNai 
n«Ca(IONB?l • /*
ItACiimNN^I • <1 

• BN-l
to 10 I > 1«NN

PMdl a WPAlIt 
Pill I • tPIIII 

70 CiiBTIBUE
on 10 AO

B3 CUBTIBUE
C IF T**E ITERAIIOB IS UBSUCCESSFUL ABOThEB SHIM IS CHOSEB.

BO CDNIINuF
L IF 4 S‘«1MS FAIL. IhE OyTIK LOOP IS AEPEATEO M|TH ANOIHCB 
C UF ShIFIS.

103 CC'.TIBUE
C T**E /EA-^FIBCfA HAS failed CN IhO HAJOB PASSES.
C AcTuAn EmpTt handed, 

fail « .lAuE.
AETUAB
END
SjBACuTINE boshfulii

C fHf CEAlVlflVt P')l»BO«|AL AS THE IBITIAL H
C P.LTB.-MIAL ABO COsPyTlS tl NU-ShIFT h PQLVB3m|ALS. 
t CO—'DN A«EA

CO*-3N/',lOsAl/P4,P|,N»,M|,OPA.OPI.OH6,aH|,SH«,SHl,
• SA.SI<tA*T|.PVA.PVttAAl«MB(,MA«|NFr«,NB

DOUBLE PBfUSION SB.Sl.tB.f l,PV»,PVI,ABf,BAf,ilA,lBF|B«
• P4I S'^ I .PI <B6I I BOI (Hi I BOl tOPAI BOI tOPI I SOI .UHAIBOIa
P G-41IBOI *ShAIBO» »SM| ISOt
OOUBIE PRECISION xNt.Tl.d.CNOO 
N • BB-l 
NM| a B-l 
CO 19 I • laB 

ANI • NN-t
HBItl a SB| APRI n/FLOATIBl 
Him • KNiPPim/FLOATINI 

10 CONTINUE
m >9 JJ • 1 all

IF (C«*C:MHR|n|.h||N1 1 .IE. E IAPIO.ODOpCmuOI PR4 BI .P| IB I ll 
p CD IC JO

CALI COMIOI -P«INNI.-PIIBNI,hic|NI,M||NI,M*T|I 
03 70 1 • l.NMl 

J a NN-l 
Tl « HMlJ*|l
T? a M|ti-|l
M«li| . t4*T|*ltPT7aPR(j|
HiiJi a TR#T2all«t!aP||il 

70 CONIINUI
HAI II a 06111 
Him a Pim
63 IC BO

C IF |H| COBSIAnI FCRm is ESSENIIAILT lEROa Sh|FI M COE FMC IENI S. 
10 U3 aO I a laNMl

J a BN-I 
H6MI a HBM-tl 
H|(J| a H|CJ.||

A9 CONIINUE
H«m a 0.000
Him a O.OuO 

S3 continue 
BtTuRB 
‘.NO
i.‘AO'lllB« F tSHFm7.|P.naC3 4VI 

c C«P.T>> L? FIIEO'ShIFI m Ptl«BfM|AiS AND TESTS FOR 
C C-N4‘i>.BCI.
C ;MI1AT*S a V*.a| APL t-ShIF T UtAAIKIN AND RFTU6NS WITH THE 
c £Pp<i.-«iMATC /(PC IF Successful.
*. i2 • LI«|T CF FMEO S**IFT SUPS 
L f*tt - A0P63«t-AU /EAJ IF COBV IS .TRtE.
C 13BW - LlSICAL INCILAIINf. CO*a¥lRGtBCC OF STAGE I |Tt6AI|0B 
L LCMa*.!*! AAFA

CrM<a iN/ri IPAI/P^.PI .HP, Ml, WPP .gPl.UHR, JHl^SHR.SHlt
• SPaM.<**aT| .0V4.PVI , A4l •■■t .F TA, INF IN.NN

t .• -- ISHJS S6.Slal-aTI.PVP.PPlaAAF.M6F ,F TA.IBFIN,
• P6I^ I ,.•! IB . t .H4| NCI *H| IBOl.UPRi SOI .QP| IBOl .QHRISOI*
• OHIIS l.'>Mri|A<'|»SH|IB3l
ojuALf pBtcisitiN ;B»nam-a('Tt.svsR«svsttC*AOo 

LOGICAL COKV.ICSf.PABO.BJta

N a NN>t
C IVAIUATF P AT S.

CALL POl VI VINN.SRaStaPHaPlaUPNaUPlaPVRaPvn 
ItSf • .IPUi.
PASO a .FALSE.

C CAlCulAtC FlHSt I a 'PISf/MISI.
CAU CAlCffBOOLI

c F»A|N LOUP FtP ONf StCOBO STAGE STEP.
IKJ BU J - 1.L7 

niR • TR 
on a It

C CDMPulf NIAI H PtHtNCMIAL RNU NEU T.
CALL NIVlHIhOOil 
CALL CAlCIlBOnit 
IR a SR*TR 
71 • Sl*t|

C lESI FOM C0SV(AGF‘<I UNLESS SIRGE T MRS FAILED ONCE OR THIS 
C IS IMI LRSt H P'HVNUMIAI.

IF I enoi .116. .NOT. lESI .OA. J .10. 171 GO 10 BO 
IF iCMnr)irR>ni4,Ti-(itii .oi. .boopcmu»i/r«/i it G3 f) 60 

IF I.NOT. PASOI to TO 10
C IHC UFA6 COKVEPGFNCI TEST HAS Bl f N PASSED TMICF. START ThE 
C IHIHU STAGE IfEMATlOB, AFTER SAVING ThC CURAIBT h PULVNOBIAl 
C. AND SHIFT.

CU 10 I • UN
HRIII
Him

SMRIll 
SHI III

10 CuNTINUf
SVSR a SR 
SvSI • SI
CALI VSSMFTII0.7R.7UCONVI 
IF ICONVI RETURN

C the ITERATION FAILCU TO CONVERGE. TURN OFF TESTING RNO R1SI3RE 
C M.SaPV AND I.

lESt • .FRLSE.
00 70 I > UN

HRtn • SMRCIt 
Him > SHim 

70 CCNIINUE
SN • SVSR 
SI a SVSI
CALL POlVEVINN.SRaSI.PRaFUOPRaOPUPVRaPVII 
CALL CALCIIBOOLI 
CU TO BO

>0 PASO • .TRUE.
CO TO SO

60 PASO a .false.
BO CONTINUE

C attempt an ITERATION M|TH FINAL H PULVN0m|AL FROM SEC9N0 STAGE.
CALL VRSHFIllOtlRa/UCONVl
RE TURN
END
SUBROUTINE VKShfTILJ./R.7I.CQNVI 

C CARRIES OUT ThE ImIkO SIAGE ITERATION.
C IJ ' LIBIT CF STEPS IN STAGE J.
C 7Ra7i - UN CNThT contains The INITIAL ITERATE. IP TMf 
C ITERAIION CCNVEMtfS H CONTAINS THE FINAL IICRRTE 
C ON Fill.
C CONV - .TRUE. IF ITERAIION CONVERGES 
C COMMON AREA

COMMOB/ClOPAL/Paa.PI .HR.Hl.QPR.OPUOHR.OMl.SaM.SHU 
p SRaSI.l6.Tt .PVft.PVUARt .MRE.f TA.INFIN.NN 

DOUBLE PRECISION SR.SI,tH.T|.PVRtPVI.A6F,B6E.ETA.INF|N.
• PRISOUPtlBOl.HRIBOUHMSOi.UPRIBOt.OPIISOUUHAIBOU
• QH|IBOI.ShRIBOI.SMI(SOI

nOuBEC PRECISION /R ,7 I.HP.BS. OMP.Rt l STP.Rl. P.’.CMnO.OSORT. ERRE V. TP 
LOGICAL COBV,8.BOOL 
CONV a .FALSE.
8 a .FALSE.
SR a IR
SI • 71

C MAIN LOOP FCR stage THREE.
DO 60 1 > I.LJ

C EVALUATE P AT S AND TEST FOR CONVERC*NCE•
CALL PmvEVINN.SR.SI.PR.PUUPRaOPl.PVR.PVll 
HP a CMOOlPVR.PVn
MS a CMOOISR.SII
IF IMP .Ct. 70.0D0PERREVINN.QPR.0PUMS.MP,ARC.MRM|

p CO TO 10
C POIVNCBIAI VALUE IS SMALLER IN VALUE THAN A R3UN0 ON THE ER13R
C IN EVALUATINC P. TEmm|NATE THE ITERATION.

CONV a .TRUE.
7R a SR 
71 a SI 
RETURN

to IP II «EU. I> CO in 60
If 16 .OR. HP .ll.OMP .OR. RElStP .CE. .OBOOl

• CO TO JO
C IIERRTtON HAS stalled. PROBABIV A CLUSTER OF lEROT.. 09 S F|lEO 
C SHIFT STEPS INTO THE UUSTER 10 FORCE ONE 7FR3 TO OOMINRTE.

TP ‘iSTP 
B a .TRUE.
IF (RELStP .LI. ETRI IP • PTR 
R1 a OSORTItPI 
R/ > SR*lt.noCaRtl-S|PRI 
SI a SRPRIaSt*!l.OOOvRlI 
SR a R7
CALL PniVEVINN.SR.SUPRaPUOPRaUPIaPVRaPVt I 
OU 70 J a US

CALL CALCriBOOLI 
CALL NtITHiBOOLt 

70 CUNIINUE
ONP • INF IN

CO TO SO
c HIT IP polynomial value INCREASES SICNIPICANTLV.

)Q IF IMP0.1OO .CT. OMPt RETURN
60 OMP • MP

C CALCUL6TE NEAT ITERATE .
BO CALL CALCTIROOLI

CALL NEtlMlBOntl 
CALL CALCIIBOOLI 
IF (BOi*Ll CU 10 60 
RELSTP a CMuCITM.MI/CHOOISRaSlI 
SR • SRaIR 
SI • Sl«ll



r
APPENDIX B 137

*0 CONI|*iU»
«f
• •IfJ
sup4puti«ii c4iCfiftorui 

C Cn«»titis f • >risi/His».
t fcooi - incKAi* VII iKuf u Hivi IV ivvfstuiiv h«o.
t U>i«»*rvN

SMI,
• •"M«Ff4. l‘4f
OOU6lf #<iictvic*« V»« VI , Im, r I .441 •! 14, Isf 1^,

• »4| Vv*l,P|IV^ >»»«‘<O:>«M|tV0lwPIIIV0l,gt*MV9t,U>«4fS0U
• OHi IV3I, S>*M( V9I »Vm| I voi 

OJUOIC 44ICIVI0*. mV4,nV|.CH00 
10SIC41 »0C>1•* •

C CV4tU4fC HIVI.
C4LI ^OlVI VI'4,V«.V1,M4,M|,0H«,0H1,HV4.MVII
BOOl • C«OPfi4l4a,MV| I .Lt. 44{ •|0.000*L**OD<HIU^|,H|l<«) I
IF IBPfUl GO fC 10

C4tl coi 14101 II
tcn.nN 

to U • O.'TO 
tl • 0.CP3 
4EtU«N 
fO
Subroutine neitmisooh 

C C4LCUL4ICV INC NFII SHlflFO H rtitTND«l4l .
C eOOl - LCCIC4L* If .1401. MIVI IS isventialw ee«o 
C tOWNC.N 44E4

CCN*0N/r.L0B4L/fK.4| t H» , H | , QPR ,QP | , Q..« , qh | . Sm.< , VNI ,
• S4.SI•T4,T|,»V4.fV|.4RE,«4E,Ff4.|NfIN,NS

OOUBiE MECIVION ' 4»S I , t«, T | , Pvrf ,Pv | , 44f ,«4C * E I A. INF IN,
• ^KIV^I.PtlVCI.HitlVOl.HKVOl.OPMI V0l,0FIIV0l,0H4IS0lt
• 0M|tV0),V'««(IVCI,SM||S01 

OOuBtE PBECIVION II.t; 
iOGICAt BOOi
H • NN-l
N«| • N-l
IF I BOOH GO TO

00 10 j • ;.N
Tt • OhBfJ*|I 
T2 • QntIJ-lt
HtIJI • T4*T|>1 ■•T^fOPMJ|
Hlljl > T4*i;*l|*ri«0P|(il 

10 CONTIMiE
NAIt I > QPA111 
Him • QP| (It 
•tIVRS

t IF MIS! IS /Fir 4iPl4CE H WITH CH,
70 DO 10 i • ?,N

MAIJI . ^MAIJ.II 
HIIJI • WHltJ-ll 

JO COifINUf
MAI 11 • c.rco 
Him • fl.oco
AtTUPN 
t 40
VUAROyl INF POLVt VINN.S«.V1«PII.P| •04,01 • PVR,PVt I 

C EV41U4TFV 4 POlTN'>P(4i P AT V BV TMf MOANEt AECUPAENCE 
C PLACIS> The P4ail4L SU»V IN g 4S3 The C0*»PUIF9 ¥UUt IN PV. 

UOUBIE P4fCtVI0« PPfNNl.PIlKNI.CAINNI.OlINNI.
• SP,VI.PVR,PV|.T 
W«m - PAIll
oim • Pint
PVt • 04(1)
Pvl • 01(11 
00 lU 1 « 7,N*I

1 • Pi4k4sa>pi4t4si*ppm 
p¥i • Pv4*si4PviPS4«pim 
pwk • T
OAiii • pva 
Qtlll • Ptfl 

to CONTINUE 
At’UNN 
ENC'
rouoif APFCISIC* function tP4CvlV(,O«,0l ,NS»i«P.AHE,H4E)

C BOUNDS IMF E-RCP IN EV4Lu4T|Na TMF POIV.NONUl BY iMt HOANE*
C HECURNE 4CF.
C Ot.lil - 1H| P4MTI4L SU<*V 
C "S -HOOUlUV CF l••E PJINT
C M» -HOOUIUS OF PU.VNJ|H|4i Y4iUF
C A«€. "4F -fa«'>4 nOUNOV MS crppirx 4rOITir*N 4N0 hUITIPUCBTON 

00U31? PRiCISION QAtNN|.0ltNNl,«*S,NP,4PF.'i4t,E,CH0D 
E • C**OCl 44|l),«|(l)|*»iPF/(4Wt^«l(Ui 
00 10 I • t,'«N

E • E •HV*CPPOIOm ll,«.l 1111 
10 CONTINUE

EHREV • l•IA4t*HNEI•NP•llBE
NETukN
ENO
OOUBIE PRECIVION FUNCTION C4UCMT|NN,PT,0I 

C C4uCHf C tHPUTlS 4 l.'JP(4 or JND ON Tm* MQOuU OF THf ItBOS OF 4 
C P0lV «UH|4l - PT IS TMf H0r.;tui OF TMf CUFFF ICIf NlS . 

rOUBCF P»ECfStCN UlNNI.Pf(NN},«,Xli,F ,Ol.DF.
• J4BS,C6YP.O(.CC
PTINNI « -PT(NN)

c COMPUTE uppfp estimate of eoiriu,
N • NN-l
• • OElPI ininGI-PTlflNII - OiOGIPTlim/FLOPrCNI I 
If IPTIM.IO.P.'-COt cn Tu ?0

C If NFhTON STIP 41 ImC ORIGIN IS BFITEB* OSf If.
IM • -PlINNI/PtIM 
If IaH.t r.iI laiH

C CHOP THi |Nf(«<AAi tc.ll UNITL F«*0.
70 IM a I4.1un 

F a Pim 
00 JO 1 - 7,NN

F • F4|M«MTMI 
>0 CONMNUr

IF IF.ir. 0.0001 GO 10 40
A • IM
GO 10 70

40 01 a K
C CO NCHlON |lF«4l|nN UNlli I CONVEBCfS 10 T«0 OECIMAL PL4CES .

M4E .IC. Mil KFTUAN

SO IF IU4BVI0I/4I .it. .OBSOOl CO IQ 10 
0111 • Pill I
00 60 I • 7.NS

0111 • ««i-ii4i*PTm 
BO coHiiNur

f • OINNI 
OF a gm 
on 64 I a 7,N

C>» • 4.*4«a;(||
64 CONT|a«Uf

01 a t/MF
I a ■-(II 
CO TO 40

TO C4UCNY a ■
4FIUAN
ENU
OOuaif PPtCIVlCN f. nCUON VC4lEtNN,MI.(l4,|M IN,.a4iN0,44V I 

L «l TU4NS 4 VC41E • ICI 4 »MUlllPLV Ih( CnmCKifS • Ttf 
t P0LYNCMI41. IMF VC4.IN. |V (UMiF 10 4V0ir OWEHftOH 4N? ID 4¥JU'
C ilNUtfrCIID ONIHPlLr. tNtfsrtPING HllN The CnNlF«iG(NCE 
C CMIIIRI.IN. IMF F4^i‘« ts 4 PDMift OF THf B4Si •
c PI - Moouiov »if c.?t»»:.i*MS Of p 
c tl4,INr|N,SH4lNn,r«4.: • C.'-NvlPNTS nESCfllMlNC IMF 
C »l04l|Ni POINT AR|l*t'IC.

OOUOlf PPECIVIC. •'T4\NI,CI4.|NF|N,SM4tN.'1.B%St,H|.lO,
• M4l,H|N,t,SC,. hT.OlUG 

C find l.4i(0fVI 4N0 V«R..tiT MUQUl I Of COEF F |C I INI S.
Ml a dscmtiinmm 
13 a S«4LNr)/Ft4 
M44 a O.OOe 
MIN a IM IS 
DO 10 I a |,NN

t a Pllll
II fl .CT. M4CI M4t • I
IF II .Nf. V.r'? .4N0. ■•LT.MISI M|N a |

to CONTJNU*
C SC41E ONH IF IHf^C 44: vEhY L4PGE CA YC«Y SM411 COnpONtNlS. 

SCAtF a 1.009 
IF |M|N .GF. LC .4%^
■ a lO/PiN
IF (I .CT. l.OG.t G.' TO 70

SC a I.009/ICS;aT(M4X140S0PIIM1NII 
GO in JO

70 SC a I
IF lINflN/SC .CT. a4M SC • 1.000 

JO I a ococ(SCi/ots;i-ASci • .voo 
SC41E • 64SFPPL 
BE TUAN 
ENO
SUAKUUTINC Cf>m?<4A,4l,BA,ei,C4,CI I 

C COMPLEI OIYISION C « a -• 4VUI0liG OYFAHOm.
OOU'Jlf P4(CtVIC*. £-,4|,Bn,BI,CB,CI,A.0,T,INFIN.04BS 
IF IBA .Nf. O.Ot ' .r.M. ei .NF. O.OCOI GO TU 10

C DIVISION 6T /fAO, C a infinity.
cue MCON ( l,tN>|N,l,TI 
CB a INF IN 
Cl a INFIN 
BFICRN

10 IF I046SIM41 .G*.« rABSiniit cu ro 70
B a OH/Ml 
0 a BtaPaBK 
CB a (4B*AaA||FG 
Cl a (4i«A-A<.|/9 
BEID4N 

70 B • 61/FB
0 a BAapaBI 
CB a |4il«A|aA|/p 
Ct a l4l-4R*BI/(.
METUBN 
END
DOuBlf PBFCISICn F.MTIPN CMQDIA.II

c FOOuiuv Of 4 coMPiEf s.«eEB AvnioiNr. hvepflom.
OJuOLf PAFCIStCN A,|,44,A|,O4BS,0SguB|
4A a OAOSIHI 
4i a DAesm
IF 144 .GF. All g: 70 10

CHOC a AMCS^A! (t.OOO«CAA/AI l••7)
BfTL4N

10 IF CAR .If. All G7 T** ?0
CMQC a A4P0'..*TI|.000a(4l/AP|P47)
AC TCKN

70 CMOD a AA4osoRri?.?:ci 
RETURN 
ENO
SUBA3UTINF MCOs((ti,|SF|NV,S«ALSO.BASF I 

C MCOn PAUVIOES haO'I ,£ IJNSTANIS OSfO IN VARIOUS PARTS V TA«
C PROGRAM, IMF uVfR "ta F)tHfk SET THEM OlRFCTiY tlR uSl Thc 
C ST4ICH1NTS BFinu TO C'»-»UTI |M|M. ThF MEANING OF !«( F3UA 
C CONSTANTS ARE -
C eta ' TMf MA«|Mv- -'lATIVE RfPRFSFNl4I|ON IRAOR 
C RMICm can Rf OfVCRlnc: ii THE SPAUIVt POSITiVf 
(. FtOATING-POIMT Nj-B-R S tCM THAT l.OOO a f TA IS 
C GRCAKR THAN I.OU?.
C INFINT TmE lAAGcVT F t tJAT | NG-PO INI NUM»?R 
C VMAINO ThF VMALI:VI »rVIIIVC FI.OAIING-POlNT NUMBFH 
C BASE IMF BASF .t T-f FlOAlING-POlnT NU-4fR StSTIh JSCJ
C IFT I BE TmC NU-A*R *.f fASE-OIGlfS IN EACh F( JAT |NG-MniNT 
C NUHiFRlOOUBlI PRfCHl.NI. Then FTA IS FITmER .44it«P||-t|
C UR B*4|l-T| OCPFNOI «G .U MHtTMER ROUNPING Oh IPunCAIIDN 
C IS USED.
C LFT M B£ TMC (ARGFST En^PNENT AND N IMF SHAHEST FIMONFNT 
C IN TM| NUH6IR STSIE-. TMN IMFINY IS 11-PA$t -TIMBASI **4 
C AND SHAINO IV n4Vt4«N.
C IMI VAIUFS for m4V£,T.»,N BEIOH CnnAfVMC^NO TO |Mt |Bm/>43.

OnuhLl PRFCIVIC* CTA.1NF|NV.SM41NU,B4VE 
INUGIR m,n,T 
BASE a 16.000
1 a 14 
M • 6J 
N a -64
FTA a BASF44I1-TI
INFINT a nAV<a|l.::--R4VF4P|-T|f«|IASFPP|M.||
SHAlNO a IPAV(4a(Na it I/6AVE**}
RETURN
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