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ABSTRACT

The dissertation investigates the optimization of object code produced
by compilers of higher level languages. Its primary goal is the isolation
of a set of primtives which lead to a concise description and
correspondingly  concise  implementation of program optimizations. In
addition to being powerful enough to provide a concise representation, the
primitives are also basic enough to apply to a wide range of languages and

optimization techniques.

The concept of similarity functions is introduced. A set of new
optimizations described in terms of the similarity notion is proposed. A
translator is described which implements code motion, redundant expression
elimination, aﬁd new similarity-induced optimizations using the primitives
developed in the dissertation. Examples are presented demonstrating the

effect of these optimizations.
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CHAPTER |

INTRODUCTION

Since the advent of the first FORTRAN compilers, the loss in object
code efficiency incurred by the use of higher-level languages has concerned
both programmers and compiler designers alike. The proponent of a language
intended for compilation, even though he may argue that the cost in lost
efficiency is far outweighed by the power and elegance of his language,
must generally supply a compiler which produces reasonably efficient code
in order to attract a community of users. The new breed of "languages for
implementation of systems" is measured against this criterion of efficiency

in the extreme.

This thesis investigates the area of object code optimization in the
presence of control flow. Its major goal is the isolation of a <et of
primitives which lead to a concise definition and a correspondingly concise
implementation of program optimizations. In additon to being powerful
enough to provide a concise representation, these primitives must also be
basic enough to apply to a wide range of languages and optimization

techniques.

The search for a set of primitives to describe a collection of varied

optimizations is motivated initially by a desire to achieve a uniform
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representation of these optimization strategies. A uniform representation,
in turn, leads to an implementation which can be easily structured into
combinations of the set of primitives. As a result the same clarity and
concision which is inherent in the primitives is reflected in the
implementation. In order to demonstrate this correlation between the
description and implementation of various optimizations, a later chapter
will discuss the structure of an actual optimization pass within a real

compiler which uses the primitives.

The identification of a collection of primitives produces another
benefit.  The ability to perform formal manipulations on these primitives
aids in exposing new optimization strategies and helps identify the common
characteristics of apparently unrelated techniques. This effect is, of
course, more difficult to document. It has been our experience that even
though the discovery of an optimization strategy may not develop solely
from manipulating the primitives, the ability to grasp the essential
characteristcs of an optimization is significantly enhanced by the
availability of a set of objects which can be used to describe that

strategy concisely.

A BRIEF HISTORY OF OPTIMIZATION

Our investigation has evolved through a set of selections among

various alternatives and been motivated by several goals, some already
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described above and others yet to be stated. Any such evolution of ideas

builds upon the work of our predecessors who hiave investigated the problem

of object code optimization. We will not attempt to produce a complete

catalog but instead will select those efforts which have guided our choices

among alternatives either by contrast or in parallel.

In June, 1965 an article by J. Nievergelt{N65] provided a principle
for this area of investigation that seems to remain valid today. He states
a limiting constraint on the extent of optimization strategies
corresponding to our own: a programmer can optimize his program by relying
to a great extent on his knowledge of what that program is to do. Indeed
his initial encoding of the solution was already a significant optimization
of some less well-defined general problem solving technique. The
optimizations we consider are restricted to those which depend on the form
of the program only. The results of this thesis show that there continues
to be a significant gain in object code efficiency resulting from this
level of optimization. As the sophistication of programming languages
progresses, it becomes the responsibility of the optimizing compiler to
remove the burden of the more tedious details of low-level optimizations
from the user. Indeed, as the c'ass of operators and the complexity of
data structures grow in power and breadth, the programmer becomes further
removed from the target machine (as does the ianguage, perhaps). At some
point, then, he is no longer capable of dealing with (or better; he should

no longer be as concerned with) the complexities of optimizing his
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constructs.

In August, 1965 C.W. Gear[G65] summarized and collected information on
the state-of-the-art of machine independent optimizations and prerosed a
three pass compilation incorporating those strategies. That collection of

optimizations remains the basis for most of today's investigations.

A significant amount of research into the area of optimization has
centered around the work of F. Allen[A69,A70), J. Cocke[C7@]}, and
J. Schwartz[CS70). Their influence is very evident in the optimizations of
the FORTRAN-H compiler which are described by E. Lowry and
C. Medlock[LM69]. The authors state that at the cost of a 4@ percent
increase in compilation time they produce code which is 25 percent smaller
and which executes in one-third the time of that produced by the FORTRAN-G
compiler. These measurements indicate the real effectiveness of the

collection of optimizations implemented in FORTRAN-H.

Much of the work done by Allen and Cocke concerns itself with the
processing of the control flow structure of programs and hence contains a
considerable amount of graph-theoretic investigation related tc control
flow representation. We have chosen instead to restrict the control flow
semantics to a go-to-iess form of control as exhibited in Bliss[B71,WRH71]
and concentrate on primitives which relate to the data flow semantics of a
program. These data flow primitives concentrate heavily on exposing the

issue of re-ordering evaluations in a language independent manner. Since
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the suggestion to eliminate the goto by Dijkstra[D68], a debate has
proceeded on the merits of the proposal[H72,W71,W72]). Our own experience
in reading, writing, and compiling go-to-less programs (in the Bliss sense)
supports the adoption of this programming style. Moreover, the assumption
of this form of control flow has had a significant impact on our
investigation of optimization since it enables us to enumerate a small set
of control environments and restrict our attention to optimizations related
to those control structures. Previous investigations into optimization
techniques described in the more general control flow environment, in
general, assume that the program can be converted to a representation which

is essentially modeled by the control flow semantics of Bliss.

The preliminary notes written by Cocke and Schwartz[CS70Q] appear to be
the single most comprehensive catalog of optimization techniques available.‘
Throughout the thesis we will refer to the collection of optimizations
described in that text as the set of “classical" optimization strategies.
The text by Cocke and Schwartz provides us with another motivation for
proposing a set of primitives. Most of the descriptions of optimization
techniques and their implementations are presented in terms of algorithms
which often cover several pages and which are closely related to
intermediate representations of the program. A major point in introducing
our primitives is to demonstrate an alternative method for describing and
implementing optimizations which is considerably more concise,

understandable, and independent of the intermediate representation.
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A BRIEF HISTORY OF OPTIMIZATION

Finally, anyone investigating the area of optimization must be aware
of the interaction of this area with the study of the equivalence of
programs and the detection of potential parallelista in a computation. The
issue of equivalence of programs arises from recognizing that an
optimization strategy is concerned with transforming a program P to a
program P' which is input-output equivalent to P. The area of program
equivalence is broad in scope but there has been some work done by A. Aho
and J. Uliman[ASU70,AU7Q0] from the viewpoint of an application to
optimization. In general, however, their work has been restricted to

straight-line programs.

Many optimization techniques involve the re-ordering of the evaluation
of expressions in a program. Equivalently those expressions, whose order
of evaluation can be interchanged, can in fact be executed in parallel with
sufficient  interlocks. Some very interesting work in representing the
inherent parallelism in a program has been done by R. Shapiro and
H. Saint[SS69] using Petri Nets. While the Petri Net model provides an
elegant framework for their investigations, this thesis proposes primitives

which are more easily implementable in the environment of a compiler.

In addition to the influence of the above work, another principle has
directed our selection among several areas of program optimization. We
intend to investigate only machine independent optimizations. Thus, fc;r
example, we will not discuss “peephole” otpimization. Typically

optimizations of this class exploit the instruction set of a particular -




INTRODUCTION 7
A BRIEF HISTORY OF OPTIMIZATION

computer by combining a sequence of several operations into a single

machine instruction. Also the thesis will not investigate the area of

register allocation. Although this area still  requires extensive

investigation, the time space constraints on a dissertation have led us to

concentrate on those machine independent optimizations which most directly

evolve into the new optimizations presented later in the thesis.

THESIS OUTLINE

The thesis contains five chapters and two appendices. The remainder
of the introduction summarizes our initial assumptions and gives a brief
introduction to Bliss. Chapter Il introduces the primitives and describes
various optimizations techniques in terms of those primitives.  Chapter Ill
discusses a concept called similarity which is then used to describe an
additional collection of new optimization techniques. Chapter IV presents
a set of examples illustrating the various optimization strategies proposed
in Chapters Il and Ill. Chapter V contains a summary of our results and

suggestions for future research.

INITIAL ASSUMPTIONS

It is inappropriate that a thesis in the area of optimization should

tie itself to a single language or single target machine. On the other
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hand some assumptions are necessary to form the starting point of an
investigation. The viewpoint adopted throughout the thesis holds that the
optimization algorithms operate on a tree representation of the source
program. The syntax analyzer preduces a tree in which each control
environment and each operator of the source program is represented by a
unique node. In the case of an operator its subnodes are its operands
whereas in the case of a control environment the subnodes are its
subcomponents. For example the program text
if eg then Xeejse; else Y«B

is represented as

R N A
X = Y B
Y
e] e

Terminal nodes are always literals or names. The following notational
convention is observed for a node, e, such as the if-then-else expression
above:

e[operator] = <if-then-else>

e[# of operands] = 3

eloperand;] = e

e[operand;] = X«e)+e;

e[operand3] = Y«B

The goal of the optimizer is to produce a transformation of this tree

which is more optimal in accordance with whatever time/space guidelines the

target machine (and perhaps) the user has imposed. The variability in
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target machines is factored out of the optimizations strategies by: (1)

allowing input of the characteristics of the target machine to decision

making procedures of the optimizer, and (2) requiring that the optimizer

encode sufficient information for the code generators and temporary storage

allocators of a particular machine to use in their decisions.

The wvalidity of any reshaping of the program tree is dependent upon
the semantics of both the control flow and data flow of the source
language. The discussions involving references to control structures are

couched in terms of flow diagrams such as the following.

|
4\

| |
"case/if-then-else" expression "while-do" expression

While they have their obvious counterparts in the syntax of many languages,

all development is independent of a particular syntax.

The major assumption about the control flow semantics, as was stated
above, is that the language is go-to-less. The thesis does not consider
the problem of detecting programs which fit this model nor the problem of
transforming programs into this form. This area has been examined
extensively by a number of people. As a result of this go-to-less

assumption the tree emitted by the syntax analyzer gives a complete
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representation of the control flow semantics without further analysis.

In addition to treating the control flow semantics ir a general
fashion, we wish to factor out of the development the issue of side-effects
which result from the semantics of the language's data flow. To this end,

a primitive relation, essential predecessor, whose function is to remove

the language dependent issue of side-effects, will be introduced. Given a
particular language, the semantics of the applications of side-effects

within that language define this relation.

The initia! assumptions of the thesis are summarized:
(1) aigorithms employing the optimization primitives assume a tree
representation of the source program as input and produce a similar
representation as output;
(2) target machine independence is achieved by parameterizing the
optimization algorithms and requiring them to produce informaticln
for  subsequent machine dependent optimizations in the output
representation;
(3) the control flow semantics of the source language are assumed
to be go-to-less; and
(4) language dependent data flow semantics are to be isolated by
primitive ordering relations so that subsequent development becomes

language independent.
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A SHORT BLISS PRIMER

Throughout the thesis we will present examples to clarify and motivate
concepts as they are introduced. Bliss (and occasionally Algol[AL6@])) will
be the languages used in these examples. We emphasize that Bliss is
introduced for use as a syntactic representation of the control structures
and its use does not reduce the language-independence of the optimizations.
Bliss is sufficiently Algol-like in many aspects so that a brief
introduction to the language should be sufficient for understanding the
examples. More detailed information on Bliss is available

elsewhere[B7 | WRH711].

INTERPRETATION OF NAMES

A Bliss program opefates with and on a number of storage "segments”.
A segment consists of a fixed and finite number of "words". A word may be
"named”; the value of a name is called a “pointer” to the word.
Identifiers are bound to names by declaraions. Thus the value of an
instance of an identifier, say x, is not the value of the word named by x,
but rather a pointer to x. This interpretation requires a “contents of"

operator for which the symbcl "." has been chosen.

fhis context independent interpretation of identifiers as pointers is

maintained consistently throughout the language. It is the operators of
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Bliss which place an interpretation on the vaiue of an expression. So, for
example, the assignment operator "«" interprets its right hand operand as a
value which is to be stored in the word pointed to by the value of the left
hand operand. As a result the effect of the Algol assignment statement
"A:=B+C" is identical to the Bliss assignment "A«.B+C" This
interpretation of names also allows the computation of pointers in Bliss so

that the effect of the assignment "(A+3)«.(A+5)" is to store the value of

the fifth location past A into the third iocation past A.

CONTROL STRUCTURES

Bliss is a block-structured, go-to-less, "expression language”. That
is, every executable construct, including those which manifest control, is
an expression and computes a value. Expressions may be concatenated with
semicolons to form expression sequences. An expression sequence is
evaluated in strictly left-to-right order and its value is that of its last
(rightmost) component expression. A pair of symbols, begin and end, or
left and right parentheses, may be used to embrace such an expression
sequence to form a simple expression. A block is a special case of the

construction which contains declarations.

Other than expressions and functions, control mechanisms in Bliss fall
into  four classes: conditional, selection, looping, and leave. The

conditional expression
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if eg then e} else e;
is defined to have the value e; just in the case that eg evaluates to true

and e, otherwise. The abbreviated form "if eg then e;"is considered to be

"if ep then e; else 0"

The conditional expression provides two-way branching. The case and
select expressions provide n-way branching:
case ep of set e); ez; .. ; ey tes

select eg of nset e;: ez; ... ; exn-1: €2, tesn

The case expression is executed as follows: (1) the expression ep is
evaluated, (2) the value of ey is used as an index to choose one of the
ej's (l<jsn). The value of ep is constrained to lie in the range 1<ep<n.

The value of the case expression is e; (i=eg). The select expression is

similar to the case expression except that ep is used in conjunction with
the ezj_1's to choose among the ezj's. The execution of the select
expression above is described by the foliowing, equivalent Bliss
expression.
(Teeg; Ve-1; if 1 eql .T then Veep; ..
if ezn-1 gl .T then Veey,; .V)
Hence the value of the gselect expression is that of the last e;; to be

executed or -1 if none of them is executed.

The loop expressions imply repeated execution (possible zero times) of

an expression untili a specific condition is satisfied. There are several
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forms, some of which are:
do eg whie e
incr <id> from ep to e; by ez do e3
In .the first form the expression e¢ is repeated so long as e) satisfies the
Bliss  definition of true. The second form is similar to the

“step .. untl” construct of Aigo, except ‘I, tre contrg!l variabie, <id>,
is local to the incr expression, and eg, ej, and e, are evaluated only once
(before the evaluatior: of the loop body, e3). Except for the possibility
of a ieave expression within e3 (see below) the value of a loop expression

is uniformly taken to be -1.

The control mechanisms described above are either similar to, or
slight generalizations of constructs in  many other languages. Of
themselves they do not remove the inconveniences generated by removing the
goto. Another mechanism is desirable -- the leave mechanism. A leave is a
highly structured form of forward branch which is constrained to terminate
coincidentally with some control environment in which the leave is nested.
The general form is:

leave <label> with <expression>
where <label> must be attached to a control environment within which the
leave expression is nested. A leave expression causes control to
immediately exit from a specified control environment. The <expression>

defines the value of the environment.
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Finally, functions are defined and called in Bliss in a manner similar
to that in Algol, except that there are no specifications and all
parameters are implicitly call-by-value. The value of a function is the

value of the expression forming its body.




CHAPTER I

OPTIMIZATION PRIMITIVES

This chapter develops a set of primitive relations, functions, and
operators to be wused in defining a class of feasible object code

optimizations. There are several goals that direct this development.

First, the primtives are to form a basis for a set of concise
descriptions of various optimizations. The compact notation of the system
of primitives provides a basis for succinct descriptions of optimization
strategies which in the past have often been described by lengthy-

algorithms.

Second, the primitives make possible a uniform representation of a
iarge class of optimizations. The pyramid effect resulting from a buildup
of primitives defined in terms of combinations of more basic primitives
creates this uniformity. In addition this buildup produces a common basis

for describing a wide range of optimizations.

Finally, the collection of primitives must allow an implementation of
optimizations which is as concise as their descriptions. This final goal
directs the selection among a number of different sets of primitives

satisfying the preceding two criteria.
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PRIMITIVE ORDERING RELATIONS

The problem of object code optimization can be viewed as the search
for a transformation T which when applied to a program P produces an
program P' that is more efficient. In general the optimization of a
program effects a trade-off among a number of measures of program
"efficiency"”. The most important include: size of the object code,
execution time, and the amount of storage for data including user requested
space and compiler generated temporary storage. The primitives presented
in this thesis will concentrate on exposing the set of feasible
optimizations in a program. Even though a particular aspect of a propram
could be optimized (ie. feasible), it may not be desirable because it
only moderately decreases one of the above measures while increasing the
cost of another. It should also be pointed out that the notion of
efficiency for an algorithm P cannot always be divorced from the data on
which P executes. The optimization strategies to be considered and the
primitives to be developed are in the class of data independent
optimizations that are realizable at compile time. Data sensitive
optimizations in general require the collection of run-time statistics
which can be used subsequently in re-tompilation of the program. As the
various optimization strategies are described their effect on the’ measures

listed above will be noted.

We approach the problem of describing feasible optimizations for a

program P by considering the ordering relations inherent in a




OPTIMIZATION PRIMITIVES 18
PRIMITIVE ORDERING RELATIONS

representation of P. There are several: the lexical order of the input

text, the precedence-induced order of evaluation, both data-sensitive and

data-insensitive order induced by control flow, a leftmost, depth-first

tree order, and so forth. Two such orderings are of interest to the

development.

The first is the order relation that results from considering a
program as a mapping from its set of input variables to its set of output
variables. Stated another way, this ordering, called the essential
ordering and symbolized by "<", is the ordering on evaluation of
expressions that results from the application of the data flow and control.
flow semantics of a language L to the set of expressions E in a program P.

The optimizations to be considered will regard the essential order in a

program as immutable.

The second ordering to be defined allows the selection of subsets of
the total set of expressions in a program which at a given point are of
interest to an optimization strategy. The following set of examples helps

motivate the particular definition given for Bliss.

A representation of a program defines (at least partially) an
evaluation order on ifs set of expressions. For example, the compound
expression

begin ey; ep; ... ; e, end ,

defines an ordering implying that evaluation of e; precedes evaluation of
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e and so on However the ordering inherent in this particular
representation may or may not correspond to the <-ordering. The <-ordering
might allow a number nf permutations of the components of this compound
expression. Consider the expression

e) + ey

While the <-ordering requires that the evaluation of e; and e, precede the
evaluation of the sum, some languages may not define the <-ordering between

the evaluation of the operands e; and ej.

The initial ordering on a program is symbolized by "<" Intuitively

the relation e <« e expresses the notion that in a straightforward
evaluation (ie. that performed by a classical one-pass, non-optimizing
compiler) of this representation of the program the evaluation of e would
necessarily have preceded the evaluation of e'. This ordering reflects the
precedence relationships of the program as exemplified in the addition
expression above. It also reflects the sequential nature of execution as
in the case of the compound expression. It does not, on the other hand,
necessarily reflect the subnode relationship between nodes. Again, it is
to be emphasized that the purpose of this ordering relation is to enable us
to select subsets of expressions over which particul_ar optimization

strategies will operate.
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Definition

The initial ordering on the set of expressions E of a Bliss program is
defined as follows:
Let e be a well-formed Bliss expression.

Define S(e)={e' ¢ E: &' a e and €' is a subexpression of e} U {e}.

One of the following cases applies for e:
(1) e; <binop> e;:e; «e,epae
(2) <unop> ej:e; a €
(3) begin ey; ... ;e, end: e; < S(ej,y) (I<icn), e, a €
(4) case eg of set ey; ... ; e, tes: ep < e, eg a Sle;) (1<i<n)
(5) if ep then e; else ez: eg < Sley), ep < Slez), ep v €
(6) select eg of nset ej:es; ... ; €2n-1:€2n tesn:
ep a e ep_) ae (l<isn), eg < Slezi-y) (1<izn),
epi_1 < Slep,) {1<icn)
(7) while e} do ep: e} < 3(82)
(8) do e while ez: ) < S(ep)
(9) incr | from e to e, by e3 do ey:
e) aep ae3 dae e; aSle),e; aSles), ez aSles)
(10) egley, ... , €n): €; < Slej,y) (Q<i<n), e, < €
(11) leave <label> withe): e} < e.

Then e initially precedes e' (notation: e <« e') if and only if in the
a-transitive closure of E there is a subset f{ej, .. ,.ex} such that
e ae; 4. 49 a¢e€.

Consider the following piece of program text:

eo; if e; then e; eise e3; e4; do es while eg; ez-eg+eg*eo

where eg, ... ;.20 ¢ E. In addition define:

The

e;1: if e; then e; else e3,  ej2: do eg while eg;
e13: eg * €10, ©14:€8 * €13, €15 €7 « €4

following lattice illustrates the total set of a-relations that hold

among the expressions eg, .. 15 (e; < e; if there is a path downward

from e; to e;).
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As the set of primitives continues to emerge, we will point out more
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