AFML-TR-73-97

A NEW TEST OPERATOR, VJ, BASED ON CLASS FREQUENCIES

WALODDI WEIBULL 1012 LAUSANNE SWITZERLAND

TECHNICAL REPORT AFML-TR-73-97

MAY 1973

Approved for public release; distribution unlimited.

20071128048

AIR FORCE MATERIALS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/25 June 1973 - 250

A NEW TEST OPERATOR, VJ, BASED ON CLASS FREQUENCIES

WALODDI WEIBULL

Approved for public release; distribution unlimited.

FOREWORD

The research work reported herein was conducted by Prof. Dr. Waloddi Weibull, Chemin Fontanettaz 15, 1012 Lausanne, Switzerland under USAF Contract No. F44620-72-C-0028. This contract, which was initiated under Project No. 7451, "Metallic Materials", Task No. 735106, "Behavior of Metals", was administered by the European Office, Office of Aerospace Research. The work was monitored by the Metals and Ceramics Division, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio under the direction of Mr. W. J. Trapp, AFML/LL.

This report covers work conducted during the period 1 February 1971 to 30 April 1972. The manusscript was submitted for publication by the author in May 1972.

This technical report has been reviewed and is approved.

W. J. TRAPP

Actg Asst for Reliability Metals and Ceramics Division Air Force Materials Laboratory

ABSTRACT

The test statistic X^2 of the Chi-square test may, if applied to a proper sample, be used for selecting distribution functions. When examining its use for this purpose its decision power was found to be very small due to a kind of pooling, an inherent property of its definition. In order to eliminate this pooling, a new test statistic, denoted by VJ, was introduced. It is defined by the number v. of sample elements which fall within each of r properly¹ defined classes into which the space of the variable x has been divided. In fact X² may be regarded as a statistic obtained from VJ by a pooling procedure. For this reason VJ was expected to have a much larger decision power than X² as was verified by the example that the decision power for a specified case being 6.6% for X² was raised to 69.1% for VJ.

The properties of VJ have been thoroughly examined. In particular the class limits yielding the largest decision power have been determined with the result that, in some cases, the decision power was found to be somewhat larger than anyone so far attained.

The statistic VJ can also be used for stating whether a hypothetical distribution is acceptable or not and also for selecting the most probable one within a set of such distributions. Necessary tables for the practical use have been prepared.

iii

TABLE OF CONTENTS

Section		Page
I	Introduction	1
II	Signification of the symbol VJ	2
III	Fundamental properties of the statistic VJ	2
IV	The shape operator VJ and its decision power	5
V	The use of VJ for testing the acceptability of an assumed distribution function	6
VI	The effect of pooling on the decision power of VJ	10
References		10

LIST OF TABLES

ſable		Page
I	Number of mass points K_{t} for some N and r.	12
II	Number of different types of VJ for some N and r, pseudo-standardized samples	12
III	Different types of VJ for $N = 10$, $r = 4$ and 8, pseudo-standardized samples	13
IV	Decision power DP of the shape operator VJ, pseudo-standardized variables	14
V	Decision power DP of the shape operator VJ, pseudo-standardized variables	15
VI	Test levels of the mass points VJ, pseudo- standard.variables, $N = 6$, $t_c = 0$, 0.250, 0.375, 0.500, 1.000	16
VII	Test levels of the mass points VJ, pseudo- standard. variables, $N = 10$, $t = 0$, 0.250, 0.375, 0.500, 1.000	17 - 20

LIST OF TABLES (CONCLUDED)

Tables

IIX	Test levels of the mass points VJ, pseudo- standardized Weibull samples, $\alpha = 1.0$, N = 20, $t_c = 0$, .125, .250, .375, 1.0	- :	23
IX	Test levels of the mass points VJ, pseudo- standard. normal samples, $N = 20$, $t = 0$, .125, .250, .375, 1.0	-	25
x	Test levels of the mass points VJ, pseudo- standard. Weibull samples, $\alpha = 0.1$, N = 20, t = 0, .125, .250, .375, 1.0	26	
XI	Tests of the hypothesis that the distributions of VJR and VJS are identical for equal class probabilities	27	
XII	Test levels of the mass points VJ, pseudo- standardized variables, $N = 10$, $r = 4$, $p_i = 1/r = 25\%$	28	
XIII	Percentiles of pseudo-standardized variables for N = 10, N = 20, and various distribution functions	29	
XIV	The effect of pooling on the decision power of VJ	29	

INTRODUCTION

I

Let the space of the variable x with the distribution function F(x) be divided into r parts (classes) without common points. The corresponding values of the given probability function will be denoted by p_1, p_2, \dots, p_r ($\Sigma p_r = 1$) The test statistic X^2 of the classical Chi-square test of goodness-of-fit is defined by

$$X^{2} = \sum_{i}^{r} (\mathbf{v}_{i}^{2} / \mathbf{N} \cdot \mathbf{p}_{i}) - \mathbf{N}$$
(1)

where v are the observed and N.p = v the expected class i frequencies. For the particular case, that all the expected frequencies are equal to v = N/r, equ.(1) takes the form

$$X^{2} = \frac{\Gamma v_{i}^{2}}{1} v_{o} - N$$
(2)

It is evident that X^2 is, in this case, invariant under permutations of the order of the observed frequencies v. For example, if N = 8, r = 2, v = 4, then $X^2 = 8.0$ as well i for $v_1 = 0$, $v_2 = 8$ as for $v_1 = 8$, $v_2 = 0$.

The test statistic X^2 , which is a variable of the discrete type, has, in this example, the total mass of its distribution concentrated in the five mass points: 0,0.5,2.0,4.5 and 8.0. If we, alternatively, introduce a new test statistic VJ, defined by the possible pairs of observed class frequencies, which may be regarded as the coordinates of the mass points, that is

$$VJ = (v_1, v_2) \tag{3}$$

then the total mass of its distribution is concentrated in the nine points: $(0,8),(1,7),\ldots,(8,0)$. Thus it can be said that X² is derived from VJ by a procedure which is equivalent to the pooling of classes of a continuous test statistic. It is easily proved that a pooling procedure can never increase the decision power of a test operator (Cf.Reference [1]), but may, in some cases, catastrophically reduce it, as will be illustrated in the sequel. A more general definition of VJ, than that given by equ.(3), will now be presented.

SIGNIFICATION OF THE SYMBOL VJ

II

The symbol VJ will be used to denote as well a test operator as a test statistic. The test operator VJ is defined by the procedure of dividing the space of the variable x into an arbitrary number r of classes with the upper limits c_1, c_2, \ldots, c_r which may be selected without regard to any distribution function. Such an operator may be denoted by VJA. Alternatively, the division of the space can be specified by the class probabilities p_i , in which case it may be preferable to take all the probabilities equal to

$$\mathbf{p}_{i} = \mathbf{1}/\mathbf{r} \tag{4}$$

1 . 1

The corresponding class limits for any hypothetical distribution function F(x) are then given by

$$c_i = F^{-1}(i/r) - F^{-1}((i-1)/r)$$
 (5)

If F(x) is the distribution function of the population R, the operator may be denoted by VJR. The result of its acting upon random samples from the population S may be denoted by VJRS.

From any given sample x_1, x_2, \ldots, x_N the number of elements falling within the i:th class, that is, the observed frequency v_i , is determined. The value of the test statistic VJ, thus obtained, will be denoted by

$$VJ = (v_1, v_2, \dots, v_r) \quad (\Sigma v_i = N) \tag{6}$$

where the r values v may be regarded as the coordinates of the mass points of i the distribution of the statistic VJ.

III

FUNDAMENTAL PROPERTIES OF THE STATISTIC VJ

The statistic VJ is a variable of the discrete type. The total mass of its distribution is concentrated in a finite number K of mass points, where

$$K = (N + r - 1)! / N! (r - 1)!$$
(7)

In the particular case of pseudo-standardized samples, defined by the sample elements

$$\mathbf{t}_{i} = (\mathbf{x}_{i} - \mathbf{x}_{1})/(\mathbf{x}_{N} - \mathbf{x}_{1})$$
(8)

the number of non-fixed elements of the sample is reduced to (N-2), since t = 0; $t_N = 1$. Thus the number of mass points becomes

$$K_{+} = (N + r - 3)! / (N - 2)! (r - 1)!$$
(9)

Some values of K₊ are presented in Table 1.

These many mass points may be brought together into groups, called <u>types of VJ</u>. Each type consists of all possible permutations of a given set of values of v. The number of different types are listed in Table 2 for ⁱ some values of N and r.

As an illustration, the types and the corresponding numbers of permutations are given for N = 10, r = 4 and r = 8, pseudo-standardized samples, in Table 3.

The number of permutations NP is given by the formula

$$NP = (N-2)!/n_1!n_2!n_3!$$
(10)

where $n_1 = the number of frequencies v_1, n_2$ that of frequencies v_2 , and so on. Hence

$$En_{i} v_{i} = N - 2 \tag{11}$$

Also the values of X^2 , corresponding to each type of VJ are included in Table 3.

The statistical properties of VJ are completely described by its distribution, that is, the set of probability masses p_{t} of each of the K or K_t mass points. This distribution can be computed, for any given situation, by means of Monte-Carlo studies, as will be described in the following.

Even with modern computers the number K will be too large for large enough samples, and some kind of pooling may be required.

From Table 3 different stages of pooling may be distinguished. The total number of mass points K_t may be grouped according to:

- 1. The types of VJ
- 2. The values of X^2
- 3. The number NE of empty classes

with a reduction of the number of mass points as indicated below for N = 10.

Stam of pooling	Nr. of ma	ass points
Stage of pooring	r = 4	r = 8
VJ, ungrouped	165	6435
Types of VJ	15	22
\mathbf{x}^2	14	18
NE	4	8

The reduction of the decision power due to the poolings will be illustrated below.

The test operators VJ may, just like other operators, be made to act upon three different types of samples, transformed by use of the following formulas:

1. $u_i = x_i - x_i$ producing location invariance

2. $s_i = x_i / x_N$ producing scale invariance (12)

3. $t_i = (x_i - x_1)/(x_N - x_1)$ producing both scale and location invariance

If the distribution function, including its shape parameter, if any, is known, then the sample $\begin{bmatrix} u \\ i \end{bmatrix}$ depends only on the scale parameter β , and the sample $\begin{bmatrix} i \\ s \end{bmatrix}$ only on the parameter quotient μ/β . In any case, the sample $\begin{bmatrix} t \\ i \end{bmatrix}$ depends only on the shape parameter α . These three types of operations may be used for two different purposes

- 1) to decide, with known decision power, between two different values of β , μ/β , or α , and
- to test whether an assumed value of these parameters is acceptable on the basis of a preassigned level of significance.

The present report will deal only with the shape operators.

IV

THE SHAPE PARAMETER AND ITS DECISION POWER

The most important property of an operator, its decision power DP, is determined by comparing the distributions of the actual test statistics. It is evident that these distributions depend not only on N and r but also on the class limits selected. Thus, the fundamental problem will be to determine that set of class limits which will yield the highest decision power.

To this purpose the computer programs 1/72, 2/72, and 3/72have been written by Göran W.Weibull. A large number of random samples, usually 10,000, of a given size N and belonging to a normal population or Weibull distribution with given shape parameter α are generated and transformed into t₁-samples. For an arbitrary set of class limits t_c, the frequency functions of the test statistic VJ = (v₁, v₂) (Program 1/72) VJ = (v₁, v₂, v₃) (Program 2/72) and VJ = (v₁, v₂, v₃, v₄) (Program 3/72) are determined.

obtained frequency dbns, the decision powers have been computed for various combinations of normal and Weibull distributions and class divisions. The results for the dbns: 1.0, 0.1, 0 and N = 6,10,20, r = 2,3,4 are listed in Table 4, and N = 6,10,20; r = 4 and α = 1.0,0.9,0.7,0.5,0.3,0.1, and 0 (normal dbn) in Table 5, where also the estimation powers EP (Cf.Ref[1]) are given.

The EP of the most powerful shape operator, so far obtained, denoted by T(i,j,k), is also presented for N = 20 and is found to be somewhat lower than that of VJ.

THE USE OF VJ FOR TESTING THE ACCEPTABILITY OF AN ASSUMED DISTRIBUTION FUNCTION

Suppose, for illustration purpose, that we will test whether a given sample of size N = 10 is drawn from a normal population or not by use of the shape operator VJ specified by the class limits $t_c = 0, 0.250, 0.375, 0.500, 1.$

After having transformed the sample into a t-sample by use of equ.(8), the number of elements v_1 i within each of the four classes are determined. This procedure yields a test point

$$VJ = (v_1, v_2, v_3, v_4) \quad (\Sigma v_i = 8)$$

The question now arises whether this test value is acceptable or not. To this purpose the distribution of VJ is computed by use of Program 3/72 which generates 10,000 random normal samples and counts the number v corresponding to each of the 165 mass points. If v the number corresponding to the actual test point is zero or very small, the hypothesis of normality will be rejected.

The critical value of $\mathbf{v}_{\mathbf{v}}$ can be put in relation to a preassigned level of significance e by use of a statistic called the test level and denoted by TL (Cf.Ref.[1]). It is thus defined: Let n be the number of mass points which have a $\mathbf{v}_{\mathbf{v}} = \mathbf{i}$ (i=1,2,ⁱ3,...), then

$$TL = \Sigma(i.n_{i})/\Sigma v_{v}$$
(13)

that is, TL is equal to that relative number of mass points which have $v \leq i$. In this way there will be assigned a definite value of TL to each mass point. The computation of the TL-distribution is included as a part of Program 3/72.

The criterion of rejection now becomes: The hypothesis that the sample belongs to an assumed population is rejected if

TL ≤ e

Some values of TL are presented in Table 6,7 and 8,9,10

for N = 6, 10 and 20, respectively, and for various hypothetical distributions.

By use of these tables it is quite simple to decide whether an assumed distribution function is acceptable or not and also which of various dbn functions is the most probable one. Suppose we have obtained a test value

$$VJ_{test} = (0, 1, 2, 5)$$

using the class limits indicated in Table 7, then four of the hypothetical dbns are acceptable, but the normal one is the most probable. Three of the dbns are rejected on the basis of a 5% level of significance.

A test value VJ = (0,1,6,1) motivates the rejection of all normal and Weibull distributions, which will be taken as a strong indication that the examined sample is not a simple but a composed one.

So far, the operator VJ has been specified by a set of class limits t selected without regard to the corresponding class probabilities p. This way of proceeding requires individual TL-tables for each hypothetical function.

It is, however, possible to produce a TL-table of more general applicability by selecting the class limits according to a given set of class probabilities, preferably all of them equal to $p_i = 1/r$. It seems plausible that we then will have the correct individual TL-functions by using the (r+1) class limits

 $t_c = F^{-1}(c/r)$ (c = 0,1,...,r)

(15)

This statement seems self-evident when the operator is acting upon a sample, where the non-ordered elements are independent of each other, but not at all, when it is acting upon a t-sample, where the elements within each sample form an individual entirety.

The important hypothesis that an operator VJ, defined by a given set of class probabilities (instead of a set of class limits t), yields a distribution which can be used for any distribution function, provided that the class limits are selected according to equ.(15), has been proved by use of

three different tests in the following way:

Program 3/72 was applied to 3x10,000 random t-samples of size N-2=8, drawn from the normal, the Weibull, $\alpha = 1.0$, and the Weibull, $\alpha = 0.1$, populations. The expected frequencies \mathbf{v} of the 3x165 mass points of VJ were determined for the class limits $\mathbf{t} = 0, 0.303, 0.500, 0.697, 1.0;$ $\mathbf{t} = 0, 0.090, 0.227, 0.445, 1.0;$ and $\mathbf{t} = 0, 0.380, 0.585,$ 0.763, 1.0, respectively. These class limits yield class probabilities with insignificant deviations from $\mathbf{p}_i = 25\%$.

The hypothesis that these three sets of obtained frequencies v_v belong to the same population was tested by use of three tests fully described by Dixon & Massey [2]: a) the sign test b) the number-of-runs test, and c) the rank-sum test, applied to fourteen of the fifteen types of VJ. The type VJ = (2,2,2,2) was excluded as having only one pair of elements. The results are presented in Table 11 with the following comments.

<u>The sign test</u> is based on the signs of the differences between the corresponding values of v. If some of the differences are zero, they will be excluded and the sample size reduced. The number of positive and negative differences are listed in the first column of the sign test. The sample size is equal to their sum. If r denotes the number of times the less frequent sign occurs, Table A-10a of Ref.[2] gives the critical value of r for 1, 5, 10, and 25 per cent levels of significance. From this table the values listed in the second column of the sign test have been taken. For example, for one plus sign and eleven minus signs, the size = 12, r = 1. A value of r less than or equal to 1 is rejected on the 1% level of significance.

Of the 28 tested samples there are

1	where	the	sample size	e is	s too smal	11	for	deci	sion
1	where	the	hypothesis	is	rejected	on	the	1%	level
3	11	81	11	11	11	11	11	5%	11
1	11	11		11	11	11		10%	**
22	11	11	**	11	11	11	"5	25%	**

There is no reason to reject the hypothesis on the whole.

The number-of-runs test is used for testing the random arrangement of the plus and the minus signs. The total numbers of runs observed are listed in the first column of the nr-ofruns test, and in the second column the chance of obtaining a value less than or equal to these numbers, taken from Table A -11 of Ref.[2]. On the whole, rejection of the hypothesis seems unmotivated.

The rank-sum test provides another means of testing the hypothesis. The two samples are arranged in order of size and rank scores are assigned to the individual observations. The sums of the ranks of each sample are denoted by T_1 and T_2 . Table A-20 of Ref.[2] has been used for obtaining the rejection percentages, of which there is only one small value (2.5%). This test is strongly in favour of accepting the hypothesis.

On this condition, the three sets of v, based on 30,000 random samples, can be pooled. The corresponding TLvalues have been computed and are presented in Table 12, which is applicable to any hypothetical distribution, if the test value VJ have been determined by use of the class limits given by equ.(15). The limits for r=4 and r=8 are identical with the percentiles listed in Table 13.

A graphical representation of these percentiles as functions of the shape parameter α of the Weibull distribution is shown in Fig.l. This graph is quite useful for a determination of the test value of VJ. Since the given sample has been transformed into a t-sample, the order statistics t may be plotted on a separate paper using the scale of t. By shifting this plotting horizontally, the number of p sample elements within each of the classes are easily

counted for any wanted a.

It is of interest to note that the percentiles of the normal distribution, which are plotted against $\alpha = 0$, coincide very closely with those of $\alpha = 0.28$. Hence, there will be no possibility of deciding between these two distributions by means of the operator VJ.

THE EFFECT OF POOLING ON THE DECISION POWER OF VJ

In the table on page 4, three different stages of pooling the probability masses of the statistic VJ and the corresponding reduction of the number of its mass points have been indicated. It is expected that these considerable reductions will strongly affect the decision power.

For illustration purpose, the shape operator VJ, pseudostandardized variables, N = 10, $t_c = 0$, 0.250, 0.375, 0.500, 1.0, will be taken as an example.

From the tables of the expected frequencies $v_{,v}$, corresponding to the 165 mass points and computed by use of Program 3/72, the expected values of $v_{,v}$ corresponding to each of the mass points of the reduced sets, are obtained by summing the $v_{,v}$ values within each group. In this way the required probability distributions are easily computed, and from them the decision powers. The results are listed in Table 14, which demonstrates the catastrophic effect of the poolings on the decision powers, and, in particular, the weak decision power of the test statistic X^2 of the Chi-square test of goodness-of-fit. This result implies that this test will, except for very large samples, frequently fail to reject false hypothetical distributions.

REFERENCES

1.	Weibull, W.,	"Outline of a theory of powerful selection	1
		of distribution functions",	
		AFML-TR-71-52, March 1971.	

2. Dixon, W.J., "Introduction to Statistical Analysis". Mc Graw-Hill Book Comp., Inc., New York 1957

N-2 T	2	3	4	5	6	7	8	
2 3 4 5 6 7 8 9 10 11 12 13 18 23 28 33 8 43 48	3 4 5 6 7 8 9 10 11 12 13 14 19 24 29 34 39 44 49	- 10 15 21 28 36 45 55 66 78 91 105 190 300 435 595 780 990 1225	- 35 56 84 120 165 220 286 364 455 560 1330 2600 4495	- 126 210 330 495 715 1001 1365 1820 2380 7315	- - - 462 792 1287 2002 3003 4368 6188	- - - 1716 3003 5005 8008	- - - 6435	

Table I. Number of mass points K for some N and r

Table II. Number of different types of VJ for some N and r, pseudo-standardized samples

N-2 T	2	3	4	5	6	7	8	9	10
23	2	-3	-	-	-	-	-	-	-
4 5 6	3	4 5 7	560	7	-	-	-	-	-
7 8	4 5	8 10	11 15	13 18	14 20	15 21	22	-	-
9 10	5 6	12 14	18 22	23 29	26 34	28 37	29 39	30 40	41

		r	= 4			r = 8			
	Type of	N: P	r.of ermu-	x ²		Type of	Nr p	. of ermu-	x ²
	VJ	tat	ions		_	VJ	ta	tions	
1	8000	4	4	24	1	8000.0000	8	8	56
2345	0017 0026 0035	12 12 12 6	12	17 12 9 8	2 3 4 5	0000.0017 0000.0026 0000.0035 0000.0044	56 56 58	196	42 32 26 24
6 7 8 9	0116 0125 0134 0224 0233	12 24 24 12 12	84	11 7 5 4 3	6 7 8 9 10	0000.0116 0000.0125 0000.0134 0000.0224 0000.0233	168 336 336 168 168	1176	30 22 18 16 12
11 12 13 14 15	1115 1124 1133 1223 2222	4 12 6 12 1	35	6 3 2 1 0	11 12 13 14 15	0000.1115 0000.1124 0000.1133 0000.1223 0000.2222	280 840 420 840 70	2450	20 14 12 10 8
<u> </u>	<u>Tc</u>	otal	165		16 17 18 19 20	0001.1114 0001.1123 0001.1222 0011.1113 0011.1122	280 1120 560 168 420 56	1960 588 56	12 8 6 4 2
					22	1111.1111	1	1	0

Table III. Different types of VJ for N = 10, r = 4 and 8,

pseudo-standardized samples

Total 6435

Table IV. Decision power DP of the shape operator VJ.

Class limits .125 .250 .375 .500 .625 .750 .875 Program 1/72: N = 6:r = 21.0 vs 0.1 46.0 50.1 51.8 50.5 41.9 35.3 22.0 1.0 vs 0 41.2 43.9 40.9 40.0 30.1 26.3 15.4 0.1 vs 0 4.9 9.1 10.8 13.0 11.8 9.0 6.9 Program 1/72: N = 10; r = 2 1.0 vs 0.1 65.6 73.9 74.2 69.8 61.0 50.0 34.7 1.0 vs 0 60.8 64.0 60.9 55.1 46.3 32.6 31.7 0.1 vs 0 8.2 14.3 18.0 20.6 20.3 17.5 11.6 Program 1/72: N = 20; r = 21.0 vs 0.1 91.1 94.2 93.9 90.7 84.0 70.8 46.7 1.0 vs 0 85.2 88.4 85.0 77.8 65.0 49.3 31.5 0.1 vs 0 14.3 23.7 31.1 35.9 35.4 29.5 19.4 .125 .250 .500 .375 .625 .750 Class limits .250 .375 .500 .625 .750 .875 Program 2/72: N = 6: r = 31.0 vs 0.1 50.1 53.6 51.8 50.5 41.9 35.3 1.0 vs 0 43.9 45.5 42.8 40.0 30.1 26.3 0.1 vs 0 9.1 10.8 13.1 13.1 11.8 9.3 Program 2/72: N = 10; r = 31.0 vs 0.1 73.9 75.6 74.5 69.9 61.2 50.0 1.0 vs 0 59.8 65.4 61.2 53.1 46.3 34.0 0.1 vs 0 18.0 14.9 20.7 21.5 20.6 17.5 Program 2/72: N = 20: r = 3 1.0 vs 0.1 94.6 95.1 93.6 90.7 84.3 71.1 1.0 vs 0 89.3 88.6 85.2 77.8 65.4 49.7 0.1 vs 0 23.7 31.3 37.0 37.1 36.0 30.6 .125 .250 .375 .500 .625 Class limits .250 .375 .500 .625 .750 .500 .375 .625 .750 .875 Program 3/72: N = 6: r = 41.0 vs 0.1 55.1 55.2 52.5 50.5 41.9 1.0 vs 0 47.0 45.8 42.4 40.0 30.2 0.1 vs 0 11.3 13.1 13.5 13.2 11.8 Program 3/72: N = 10: r = 41.0 vs 0.1 77.2 77.2 74.7 70.5 61.6 1.0 vs 0 68.3 69.1 56.5 62.5 46.4 0.1 vs 0 19.6 22.0 23.0 22.7 20.9 Program 3/72: N = 20; r = 41.0 vs 0.1 95.8 95.6 94.2 91.4 84.6 1.0 vs 0 89.1 90.7 85.6 78.4 65.4

pseudo-standardized variables

37.4 38.9

39.0

37.3

0.1 vs

0

32.9

	pseudo-standardized variables									
N = 6	$N = 6; r = 4; t_0 = 0; 0.250; 0.375; 0.500; 1.000$									
aaa	1.0	0.9	0.7	0.5	0.3	0.1	normal			
1.0	-	6.1	18.3	31.6	44.4	55.2	45.8			
0.9	6.1	-	11.1	26.0	39.7	50.7	41.1			
0.7	18.3	11.1	-	14.2	29.0	41.6	30.8			
0.5	31.6	26.0	14.2	-	15.6	29.1	17.6			
0.3	44.4	39.7	29.0	15.6	-	15.2	3.0			
0.1	55.2	50.7	41.6	29.1	15.2	-	13.1			
normal	45.8	41.1	30.8	17.6	3.0	13.1	-			
EP	61.0	57.3	63.2	74.5	77.0	76.0	-			

Table V. Decision power DP of the shape operator VJ,

N = 10; r = 4; t	= 0; 0.250;	0.375	0.500	1.000
------------------	-------------	-------	-------	-------

a	1.0	0.9	0.7	0.5	0.3	0.1	normal
1.0	-	9.5	28.5	47.8	65.2	77.2	69.1
0.9	9.5	-	20.5	40.9	59.6	73.8	61.2
0.7	28.5	20.5	-	23.6	45.2	62.3	46.9
0.5	47.8	40.9	23.6	-	26.1	47.1	27.4
0.3	65.2	59.6	45.2	26.1	-	24.1	7.0
0.1	77.2	73.8	62.3	47.1	24.1	-	22.0
normal	69.1	61.2	46.9	27.4	7.0	22.0	-
EP	95.0	100.0	110.2	124.2	125.5	120.5	-

N	=	20	;	r	=	4	; t	-	= 0	;	0	.1:	25	-	0	.2	50	:	0	. 3'	75	:	1.	000)
				-		-	-	С		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-

α	1.0	0.9	0.7	0.5	0.3	0.1	normal
1.0 0.9 0.7 0.5 0.3 0.1	- 19.8 49.3 75.9 89.8 95.8	19.8 37.2 67.4 85.3 93.4	49.3 37.2 40.5 71.6 85.2	75.9 67.4 40.5 41.4 68.0	89.8 85.3 71.6 41.4 38.1	95.8 93.4 85.2 68.0 38.1	90.7 86.8 72.1 46.2 13.9 32.9
normal	90.7	86.8	72.1	46.2	13.9	32.9	-
EP	198.0	190.0	194.2	204.8	198.8	190.5	-
 EP(T)	173.7	175.9	188.3	202.2	198.7	188.7	

		varia	ables, N	= 6, t	c = 0,	0.250,	0.375	, 0.50	0, 1.000
Γ	Mass	points		Hypot	hetica	l dist	ributi	ons	
I	No.	VJ	$\alpha = 1.0$	0.9	0.7	0.5	0.3	0.1	normal
	1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 2 2 3 4 5 6 7 8 9 10 11 2 2 2 2 4 5 6 7 8 9 10 11 2 2 2 2 2 2 2 2 2 2 2 2 2	0004 0013 0022 0031 0040 0103 0112 0121 0130 0202 0211 0220 0301 0310 0400 1003 1012 1021 1030 1022 1011 1200 1300 2002 2011 2020 2101 2100 2001 3010 3000 3000 3000 3000 3000 3000 3000	$\begin{array}{c} 4.0\\ 9.4\\ 4.0\\ 0.9\\ 0.0\\ 8.2\\ 12.4\\ 2.6\\ 0.1\\ 4.9\\ 5.8\\ 0.5\\ 1.3\\ 0.0\\ 25.7\\ 35.1\\ 16.0\\ 0.7\\ 35.1\\ 16.0\\ 22.3\\ 10.8\\ 2.6\\ 73.0\\ 22.3\\ 10.8\\ 2.6\\ 73.0\\ 14.1\\ 90.3\\ 35.1\\ 19.1\\ 190.0\\ 51.0\\ 80.7\\ 65.4\end{array}$	5.8 9.8 3.0 1.1 0.0 1.3 16.2 3.9 0.2 7.0 5.8 0.8 1.5 0.6 0.1 29.1 42.8 18.3 0.4 60.6 53.9 25.0 12.8 2.1 81.8 67.3 14.4 100.0 37.8 21.6 100.0 37.8 21.6 100.0 37.8 21.6 100.0 33.2 74.0 48.2	$\begin{array}{c} 13.2\\ 25.4\\ 8.2\\ 1.2\\ 0.1\\ 22.7\\ 31.0\\ 8.2\\ 0.3\\ 15.0\\ 4.0\\ 1.6\\ 2.1\\ 0.5\\ 28.2\\ 0.8\\ 92.0\\ 57.0\\ 9.7\\ 37.4\\ 13.2\\ 2.8\\ 84.2\\ 76.7\\ 5.4\\ 100.0\\ 41.3\\ 20.0\\ 70.0\\ 33.8\\ 45.4\\ 17.5\end{array}$	34.2 42.3 19.4 3.2 0.1 46.9 51.6 15.2 0.4 21.8 9.8 1.0 2.5 0.7 0.2 83.8 91.8 27.4 1.4 100.0 63.3 8.2 30.7 6.8 1.8 76.4 5.5 69.5 24.5 11.6 37.9 13.3 17.2 4.2	74.3 82.0 27.1 3.3 0.2 59.4 52.3 13.5 0.6 23.5 11.6 1.2 2.6 0.3 0.1 100.0 90.7 20.8 1.6 7.4 3 40.6 8.4 18.1 7.4 0.9 46.4 35.4 5.7 31.2 10.0 4.9 15.6 6.6 4.1 2.0	$\begin{array}{c} 100.0\\ 84.9\\ 24.1\\ 4.3\\ 0.1\\ 62.2\\ 38.5\\ 9.4\\ 0.4\\ 15.3\\ 7.0\\ 1.0\\ 1.2\\ 0.2\\ 0.0\\ 73.2\\ 53.3\\ 13.0\\ 0.3\\ 45.4\\ 28.1\\ 3.8\\ 11.0\\ 2.8\\ 0.6\\ 32.9\\ 17.8\\ 2.0\\ 2.5\\ 5.2\\ 2.3\\ 6.5\\ 3.2\\ 2.0\\ 0.7\\ \end{array}$	81.8 90.5 30.1 5.2 0.1 58.2 51.0 13.0 0.6 22.8 11.0 1.2 2.3 0.0 100.0 73.6 19.9 1.5 65.4 39.4 6.1 17.3 8.0 1.2 45.0 34.3 3.0 26.3 9.4 4.4 15.0 7.0 3.7 1.9

Table VI. Test levels of the mass points VJ, pseudo-standard.

	vari	ables, N	= 10, t	= 0,	0.250,	0.375	5, 0.50	0, 1.000
Mass	points		Hypoth	neti c a	l dist	ributi	ons	
No.	VJ	$\alpha = 1.0$	0.9	0.7	0.5	0.3	0.1	normal
Mass No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	points VJ 0008 0017 0026 0035 0044 0053 0062 0071 0080 0107 0116 0125 0134 0143 0152 0161 0170 0206 0215 0224 0233 0242 0251 0260 0305 0314 0323 0322 0341 0350 0404 0413	$\alpha = 1.0$ 0.1 0.1 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.9 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.2 1.6 0.5 0.0 0.0 0.2 1.1 1.9 0.0 0.1 0.0	Hypoth 0.9 0.1 0.6 0.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	netica 0.7 0.5 1.2 3.1 2.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0	1 dist 0.5 3.6 10.8 7.6 5.5 1.6 0.8 0.3 0.0 0.0 9.8 28.8 26.3 15.7 2.8 0.6 0.1 0.0 9.1 28.8 26.3 10.8 0.5 0.6 0.1 0.0 9.1 28.8 26.3 10.8 0.5 0.6 0.1 0.0 9.1 28.8 26.3 10.8 0.5 0.6 0.1 0.0 9.1 28.8 26.3 10.8 0.0 0.0 9.2 28.8 26.3 15.7 2.8 0.6 0.1 0.0 9.1 28.8 26.3 10.8 0.0 0.0 9.1 28.8 26.3 10.8 0.0 0.0 9.1 28.8 26.3 10.8 0.5 0.0 0.0 9.1 28.8 26.3 10.8 0.5 0.0 0.0 9.1 28.8 26.3 10.8 0.5 0.0 0.0 9.1 28.8 26.3 10.8 0.0 0.0 9.1 28.8 26.3 10.8 0.5 0.0 0.0 9.1 28.8 26.3 10.8 0.5 0.0 0.0 9.1 28.8 26.3 10.8 0.5 0.0 0.0 9.1 28.8 26.3 10.8 0.5 0.6 10.8 0.5 0.0 0.0 9.1 28.8 26.3 10.8 0.5 0.0 0.0 9.1 28.8 26.3 10.8 0.5 0.0 0.0 2.4 1.2 0.0 2.1 2.4	ributi 0.3 19.9 57.9 47.8 19.0 6.6 1.1 0.0 0.0 38.9 78.1 59.9 32.6 7.5 0.4 0.1 0.0 30.4 56.1 33.8 11.2 2.7 0.2 0.0 16.0 21.6 12.2 5.7 1.6 0.0 4.7 1.6 0.0 1.1 1.1 0.0 1.1 0.0 1.1 0.0 1.1 0.0 0.0	0.1 94.0 100.0 57.9 28.1 7.3 1.4 0.0 0.0 6.3 0.0 39.9 25.4 8.9 1.6 0.1 0.0 0.0 0.0 19.4 6.3 0.0 1.4 0.0 0.0 1.4 0.0 1.5 2.7	normal 35.6 73.2 59.4 24.6 10.1 2.9 0.5 0.0 0.0 50.3 92.5 86.3 25.5 8.2 2.6 0.1 0.0 37.0 51.9 33.2 15.4 6.3 0.3 0.0 14.9 18.8 13.8 6.3 1.4 0.0 3.6 7.2
31 32 33 34 35 36 37 38	0404 0413 0422 0431 0440 0503 0512 0521	0.1 0.4 0.1 0.0 0.0 0.0 0.0 0.0	0.1 0.8 0.3 0.1 0.0 0.0 0.3 0.0	0.9 1.2 1.5 0.2 0.0 0.2 0.6 0.2	2.1 2.4 2.8 1.2 0.1 0.3 0.5 0.1	4.1 4.7 2.8 1.1 0.0 0.4 0.1 0.4	1.5 2.7 0.6 0.0 0.0 0.2 0.2 0.2	3.6 7.2 3.1 0.3 0.0 1.2 0.5 0.1
39 40 41 42	0530 0602 0611 0620	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.1 0.0	0.0 0.0 0.1 0.0	0.2 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.3 0.1 0.0

Table VIL Test levels of the mass points VJ, pseudo-standard.

TableVII (Continued)

Mass	points		Hypot	hetica	l dist	ributi	ons	
No.	VJ	$\alpha = 1.0$	0.9	0.7	0.5	0.3	0.1	normal
43	0701	0.0	0.0	0.0	0.0	0.0	0.0	0.0
44	0710	0.0	0.0	0.0	0.0	0.0	0.0	0.0
45	0800	0.0	0.0	0.0	0.0	0.0	0.0	0.0
46	1007	0.9	1.4	6.4	19.2	46.2	75.1	38.4
47	1016	1.9	2.7	9.2	44.2	86.3	84.4	83.5
48	1025	2.6	4.6	10.8	40.6	73.1	61.0	68.3
49	1034	1.6	2.7	8.5	19.8	37.6	26.7	30.8
50	1043	0.9	0.8	1.8	6.1	14.8	6.3	10.9
51	1052	0.0	0.1	0.3	1.5	1.8	1.2	1.8
52	1061	0.0	0.0	0.1	0.1	0.8	0.0	0.7
53	1070	0.0	0.0	0.0	0.0	0.0	0.0	0.0
54	1106	1.1	3.6	9.2	32.4	68.4	71.4	75.7
55	1115	7.2	10.4	40.1	84.3	100.0	89.2	100.0
56	1124	7.5	9.4	30.4	77.2	92.4	64.1	89.4
57	1133	3.2	6.6	15.9	44.2	40.3	17.4	48.7
58	1142	0.2	1.4	3.1	15.7	8.9	7.0	12.8
59	1151	0.0	0.0	0.6	0.5	0.8	0.4	0.8
60	1160	0.0	0.0	0.0	0.0	0.0	0.0	0.0
61	1205	3.8	5.1	12.9	37.4	54.3	34.2	47.1
62	1214	7.9	14.2	41.3	74.9	83.5	42.0	80.8
63	1223	6.1	7.4	28.5	65.0	64.1	22.8	55.3
64	1232	1.9	4.6	16.5	21.8	20.7	8.5	18.1
65	1241	0.9	0.5	1.8	3.6	3.8	2.7	4.3
66	1250	0.0	0.0	0.0	0.3	0.1	0.0	0.0
67	1304	3.2	4.2	15.4	23.3	23.3	13.8	21.2
68	1313	6.5	7.8	25.8	55.5	29.4	16.5	34.4
69	1322	3.4	4.2	13.4	33.3	16.6	5.4	16.6
70	1331	0.5	1.7	5.4	5.5	5.4	1.2	4.8
71	1340	0.0	0.0	0.2	0.2	0.2	0.0	0.5
72	1403	2.6	3.4	4.7	7.6	4.5	2.4	0.3
73	1412	1.4	3.8	8.5	15.7	7.5	3.9	6.8
74	1421	1.1	1.4	4.2	4.7	2.5	1.2	2.3
75	1430	0.4	0.5	0.5	0.5	0.1	0.2	0.5
76	1502	1.2	0.6	1.2	1.5	1.1	0.5	0.7
77	1511	0.4	1.4	2.6	1.9	0.8	0.2	0.7
78	1520	0.0	0.0	0.3	0.1	0.0	0.1	0.3
79	1601	0.1	0.3	0.2	0.2	1.1	0.0	0.3
80	1610	0.0	0.1	0.1	0.2	0.0	0.0	0.5
81	1700	0.0	0.0	0.0	0.0	0.0	0.0	0.0

TableVII (Continued)

Mass point		Hypo	thetica	al dist	ributi	ons	
No. VJ	$\alpha = 1.0$	0.9	0.7	0.5	0.3	0.1	normal
82 2006	3.2	3.4	7.4	24.0	44.7	44.1	45.6
83 2015	7.2	11.4	37.7	72.8	89.2	52.0	66.0
84 2024	9.6	13.1	33.5	63.4	62.0	37.9	57.3
85 2033	4.1	6.3	17.1	30.6	26.3	15.1	22.8
86 2042	0.9	2.1	6.4	12.8	5.2	3.4	5.5
87 2051	0.1	0.5	0.9	1.2	0.4	0.5	0.3
88 2060	0.0	0.0	0.0	0.0	0.1	0.0	0.0
89 2105	13.9	22.4	51.0	70.8	70.7	46.4	61.4
90 2114	20.6	36.7	87.3	100.0	95.9	54.9	96.1
91 2123	21.7	31.5	75.5	89.7	80.8	32.5	78.2
92 2132	13.2	15.5	33.5	55.5	24.4	12.6	24.6
93 2141	2.3	1.7	6.4	8.5	4.1	1.2	5.2
94 2150	0.0	0.5	0.3	0.1	0.1	0.0	1.2
95 2204	12.6	18.6	45.2	51.1	54.3	21.6	53.6
96 2213	25.0	47.1	89.8	92.8	68.4	29.5	70.7
97 2222	16.1	25.5	67.2	68.8	41.8	14.4	41.2
98 2231	4.6	9.9	14.3	16.8	12.7	4.7	8.9
99 2240	0.4	0.3	0.9	1.2	0.2	0.0	1.2
100 2303	10.5	17.0	29.5	34.3	17.4	6.6	20.4
101 2312	15.3	23.4	49.5	51.1	26.3	8.1	22.0
102 2321	10.0	12.0	21.1	19.2	8.5	1.8	9.3
103 2330	2.0	1.5	2.3	4.0	0.8	0.1	1.2
104 2402	5.5	8.6	11.6	15.7	3.6	1.2	3.6
105 2411	4.9	7.4	10.8	13.3	6.6	1.2	3.9
106 2420	1.6	1.4	2.3	1.2	1.4	0.1	1.2
107 2501	2.2	2.1	1.5	1.9	1.1	0.2	0.7
108 2510	0.5	0.6	1.5	0.5	0.0	0.0	0.3
109 2600	0.1	0.1	0.3	0.1	0.0	0.0	0.0
110 · 3005	12.1	14.8	23.4	36.3	29.4	18.3	29.6
111 3014	23.8	30.2	54.2	66.8	50.9	31.0	44.1
112 3023	18.7	27.8	49.5	63.4	35.0	13.8	32.0
113 3032	10.9	13.1	19.0	24.8	14.8	5.4	10.5
114 3041	1.4	2.1	6.4	4.0	2.5	0.2	1.8
115 3050	0.0	0.1	0.6	0.0	0.8	0.0	0.1
116 3104	31.8	45.5	61.3	63.4	49.4	20.4	42.7
117 3113	62.1	73.9	100.0	96.3	75.6	24.0	63.6
118 3122	46.7	68.8	82.4	86.8	43.2	15.1	39.8
119 3131	11.5	17.0	24.2	20.5	10.2	3.5	8.9
120 3140	0.4	2.3	1.8	1.9	0.4	0.5	1.2
121 3203	37.8	52.2	71.2	48.2	27.3	11.4	26.4
122 3212	69.8	82.8	96.6	81.9	36.3	10.3	28.5
123 3221	30.4	40.9	57.7	45.5	9.8	3.4	16.0
124 3230	3.2	4.8	12.9	8.5	3.6	0.8	2.0

Mass	points		Hypot	hetica	1 dist	ributio	ons	
No.	VJ	$\alpha = 1.0$	0.9	0.7	0.5	0.3	0.1	normal
125	3302	27.6	39.5	43.8	35.3	12.2	2.2	14.3
126	3311	26.2	34.1	59.5	39.5	8.5	2.4	7.5
127	3320	4.3	6.C	8.5	5.5	1.1	0.6	2.1
128	3401	8.3	10.9	10.0	8.5	3.6	0.6	1.8
129	3410	3.8	3.0	5.1	3.6	1.4	0.1	2.0
130	3500	0.9	1.0	2.0	0.3	0.2	0.1	0.0
131	4004	19.6	21.4	26.6	28.8	15.4	8.1	12.3
132	4013	41.1	56.0	63.2	58.5	18.2	9.8	17.4
133	4022	39.4	26.6	46.6	38.4	10.7	4.9	11.8
134	4031	8.7	8.6	14.3	9.8	3.6	0.4	1.8
135	4040	0.9	2.3	0.5	0.3	0.8	0.2	0.0
136	4103	59.6	71.2	69.2	57.0	22.5	9.3	19.6
137	4112	91.7	100.0	93.2	79.5	31.5	7.3	27.4
138	4121	48.6	62.1	73.3	41.8	9.3	4.7	13.8
139	4130	9.6	9.0	6.8	4.5	1.4	0.0	1.8
140	4202	75.4	79.7	77.7	46.8	13.2	3.9	11.8
141	4211	81.4	89.2	84.8	55.5	13.7	1.4	9.7
142	4220	17.8	17.8	19.0	12.8	2.5	0.5	3.2
143	4301	34.7	45.5	36.6	21.2	2.5	0.7	3.9
144	4310	14.6	19.6	25.8	6.6	1.8	0.2	1.2
145	4400	6.1	5.6	2.6	2.8	0.4	0.1	0.5
146	5003	33.2	38.1	31.4	18.0	6.8	2.2	5.2
147	5012	67.2	66.5	52.6	22.6	5.0	1.5	6.6
148	5021	36.3	29.0	21.8	11.6	4.5	1.2	2.7
149	5030	5.2	5.4	4.7	1.5	0.8	0.2	0.8
150	5102	87.9	92.4	67.2	30.6	6.6	1.8	4.5
151	5111	100.0	96.1	80.0	31.4	8.5	1.4	8.2
152	5120	30.4	34.1	22.6	9.1	2.8	0.0	1.3
153	5201	84.5	76.7	55.9	17.4	3.6	0.5	4.3
154	5210	50.7	54.0	38.9	15.1	1.0	0.1	2.3
155	5300	22.7	20.5	14.8	3.0	0.8	0.0	0.3
156	6002	52.8	50.5	21.5	1.0	1.9	0.0	2.1
157	6011	64.6	58.0	34.5	6.1	1.5	0.1	2.9
158	6020	16.9	13.6	12.0	3.0	0.1	0.0	0.1
159	6101	95.8	86.0	42.6	12.0	1.4	0.7	1.4
160	6110	12.6	64.3	35.0	10.1	1.4	0.2	0.1
161	6200	57.3	48.8	21.1	4.2	0.8	0.1	0.1
162	7001	55.0	42.4	19.0	2.1	0.4	0.1	0.5
163	7010	44.8	36.7	11.6	0.8	0.1	0.1	0.0
164	7100	78.3	60.0	19.6	1.5	0.2	0.0	0.3
165	8000	43.0	24,4	1.4	0.8	0.0	0.0	0.1

Table VII (Continued)

				Contraction of the local diversion						.,
v1 v2	0	1	2	3	4	5	6	7	8	9
0 4	-	-	-	-	-	2.8	-	-	-	-
0 5	-	-	-	-	2.8	-	-	-	-	-
0 6	-	-	2.8	-	-	-	-	-	-	-
1 2	-	-	-	2.8	2.8	2.8	-	-	-	-
1 3	-	-	2.8	6.2	6.2	4.2	4.2	-	-	-
1 4	-	-	4.2	2.8	2.8	-	-	-	-	-
1 5	-	-	6.2	2.8	2.8	6.2	-	-	-	-
16	-	-	-	6.2	2.8	4.2	2.8	-	-	-
1 7	-	-	-	-	4.2	-	-	-	-	-
1 8	-	-	-	2.8	-	-	-	-	-	-
2 1	-	-	-	-	-	4.2	2.8	-	-	-
2 2	-	-	4.2	9.9	12.4	6.2	2.8	-	-	-
2 3	-	8.1	12.4	23.2	18.8	21.5	8.1	2.8	-	-
2 4	-	-	9.9	17.1	23.2	13.7	2.8	2.8	-	-
2 5	-	9.9	2.8	28.7	12.4	9.9	2.8	2.8	-	-
2 6	2.8	9.9	9.9	8.1	13.7	2.8	6.2	-	-	-
2 7	-	-	12.4	11.2	12.4	8.1	2.8	-	-	-
2 8	-	-	6.2	8.1	-	4.2	-	-	-	-
2 11	-	-	2.8	-		-	-	-	-	-
3 0	-	-	-	-	2.8	-	-	-	-	-
3 1	-	-	-	-	6.2	2.8	6.2	4.2	-	-
3 2	-	4.2	11.2	9.9	21.5	17.1	9.9	4.2	-	-
3 3	2.0	12.4	23.2	36.7	21.4	37.7	21.5	8.1	-	-
3 4	2.0	1(.1	31.1	49.8	49.8	32.3	17.1	4.2	-	-
3 7	-	21.5	41.5	15.2	33.2	28.7	8.1	8.1	-	-
5 0	2.0	11.2	20.1	30.1	33.2	13.7	12.4	-	-	-
	4.2	11.2	10.0	10 0	13.1	0.2	-	-	-	-
3 0	12	11.2	6.2	10.0	11.2	-	-	-	-	-
5 9 1 1	4.2	4.2	6.2	21 5	4.2	10 1	6.0	20	-	-
4 1	-	6.2	21 0	21.7	21.0	21 5	0.2	2.0	- 0	-
4 2	11 2	147	28 8	65 0	52.6	21.)	28 7	4.2	2.0	4.2
4 5	0 0	27 1	55 2	62 2	65 0	41.7	20.1	2.9	2.0	-
4 4	6.2	21.4	72 5	60 4	60 5	45.0	27.0	2.0	-	-
4 5	1 2	11 5	13.7	53 6	30 6	18 8	6.2	2.0	-	-
4 0	4.2	18 8	55 2	27 1	23 2	10.0	0.2	-	-	-
4 8	6 2	12 1	21 0	117	137	-	-	-	-	-
1 9	2.8	6 2	0 0	81	2.8	-	_	_	-	-
4 10		-	1.2	-	2.0	_	-	_	-	-
4 10			4.2					_	-	-

Table IIX. Test levels of the mass points VJ, pseudo-standardized

Weibull samples, $\alpha = 1.0$, N = 20, t_c = 0, .125, .250, .375, 1.0 Mass points not appearing in this table have a TL $\leq 1.4\%$

Table IIX (Continued)

Table IIX (Continued)

v ₁ v ₃	0	1	2	3	4	5	6
9 3	18.8	66.0	81.6	81.0	34.6	17.1	-
9 4	27.4	69.4	87.8	79.1	25.6	6.2	-
9 5	23.2	55.2	82.9	55.2	11.2	-	-
96	17.1	43.0	48.4	9.9	-	-	-
97	18.8	25.6	13.7	-	-	-	-
98	4.2	6.2	-	-	-	-	-
10 0	-	-	4.2	2.8	-	-	-
10 1	4.2	8.1	21.5	17.1	14.7	11.2	-
10 2	9.9	27.4	36.7	38.8	13.7	6.2	-
10 3	8.1	47.7	65.0	45.7	21.5	6.2	-
10 4	17.1	58.4	69.4	38.8	8.1	-	-
10 5	29.6	63.2	57.2	8.1	-	-	-
10 6	14.7	25.6	8.1	-	-	-	-
10 7	11.2	8.1	-	-	-	-	-
11 0	-	-	-	4.2	-	-	-
11 1	-	8.1	12.4	11.2	8.1	2.8	-
11 2	6.2	25.6	41.5	31.0	9.9	-	-
11 3	6.2	38.8	48.4	29.6	13.7	-	-
11 4	21.5	57.2	43.0	14.7	-	-	-
11 5	13.7	36.7	18.8	-	-	-	-
11 6	21.5	18.8	-	-	-	-	-
11 7	6.2	-	-	-	-	-	-
12 0	-	-	-	6.2	-	-	-
12 1	2.8	6.2	9.9	9.9	6.2	2.8	-
12 2	2.8	27.4	24.0	17.1	2.8	-	-
12 3	9.9	18.8	44.5	11.2	-	-	-
12 4	23.2	32.3	23.2	-	-	-	-
12 5	8.1	9.5	-	-	-	-	-
12 6	2.8	-	-	-	-	-	-
13 0	-	-	-	2.8	-	-	-
13 1	2.8	4.2	6.2	6.2	2.8	-	-
13 2	8.1	9.9	6.2	8.1	-	-	-
13 3	12.4	14.7	11.2	-	-	-	-
13 4	8.1	28.7	-	-	-	-	-
13 5	4.2	-	-	-	-	-	-
14 0	-	-	-	4.2	-	-	-
14 1	-	-	9.9	-	-	-	-
14 2	9.9	4.2	-	-	-	-	-
14 3	9.9	-	-	-	-	-	-
14 4	6.2	-	-	-	-	-	-
15 1	-	2.8	4.2	-	-	-	-
15 2	2.8	8.1	-	-	-	-	-
15 3	4.2	-		-	-	-	-
16 1	-	2.8	-	-	-	-	_
16 2	2.8		-	-	-	-	-

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	Mas	s poir	nts not	appea	ring i	s this	table	have	a TL<	1%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v ₁ v ₂	v23	0	1	2	3	4	5	6	7	8	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 0 0 0 1 0 2 0 3 0 4 0 5 0 7 0 0 1 2 1 3 1 5 1 7 1 9 0 2 2 2 2 4 1 2 2 3 4	2 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 9 1 2 3 4 5 7 9 1 2 3 4 5 6 7 9 0 1 2 3 4 5 6 7 9 0 1 2 3 4 5 5 7 9 0 1 2 3 4 5 5 7 9 0 1 2 3 4 5 5 7 9 0 1 2 3 4 5 5 7 9 1 2 3 4 5 5 7 9 1 2 3 4 5 5 6 7 9 0 1 2 3 4 5 5 6 7 9 0 1 2 3 4 5 5 7 9 0 1 2 3 4 5 5 7 9 0 1 2 3 4 5 5 7 9 0 1 2 3 4 5 5 7 9 1 2 3 4 5 5 7 9 0 1 2 3 4 5 5 7 9 0 1 2 3 1 2 3 1 2 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 2 3 1 2 2 3 1 2 3 1 2 2 3 1 2 3 2 3	52.9 56.1 41.7 15.6 7.8 4.0 2.4 - - 28.4 27.5 35.7 21.0 9.9 4.0 1.6 - - 7.8 14.4 20.1 14.9 6.3	94.6 97.0 68.3 46.3 33.4 13.8 5.7 2.4 49.0 71.2 63.0 47.2 32.8 13.8 5.7 2.4 24.6 46.3 39.6 29.3 21.0	90.0 100.0 85.6 55.0 32.8 13.8 6.3 3.2 64.3 83.6 81.5 69.8 37.0 22.8 13.2 4.0 - 36.3 50.9 51.9 42.4 30.7	76.0 92.2 87.7 60.6 30.7 13.2 1.6 54.0 77.8 79.6 59.5 35.7 16.8 8.1 4.0 26.2 61.8 57.2 48.0 28.8	58.3 74.3 65.6 41.7 25.0 10.6 3.2 	35.7 49.9 41.7 31.7 13.2 8.1 - - 28.4 43.9 37.6 23.5 13.2 6.3 3.2 - 10.3 20.1 22.8 14.4 9.9	20.1 21.7 15.6 17.8 4.6 3.2 1.6 - 13.2 22.0 21.0 14.9 7.8 4.0 - - 11.0 16.1 16.1 9.0 8.1	5.7 9.0 9.9 4.0 1.6 - 5.7 7.8 7.8 9.9 3.2 - 2.4 7.8 7.8 9.9 3.2 - - 2.4 7.8 7.8 9.9 1.6	1.6 4.6 4.6 2.4 - - - - - - - -	- - - - - - - - - - - - - - - - - - -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 5 2 6 2 7 2 8	2 6 7 8	2.4 2.4 -	7.8 3.2 -	10.3 9.9 3.2	13.2 7.8 -	11.3 4.0	5.7 1.6 -	3.2		1.6	- - -

Table IX. Test levels of the mass points VJ, pseudo-standardized

normal samples, N = 20, $t_c = 0,.125,.250,.375,1.0$ Mass points not appearing is this table have a m

vı	¥3 ¥2	0	1	2	3	4	5	6	7	8
▼1 33333333444444555555666677	№2 012345678012345601234512312	3.2 5.0 10.3 9.0 1.6 5.0 - - - 2.4 1.6 - - - 2.4 - - - - - - - - - - - - - - - - - - -	$ \begin{array}{c} 11.3\\16.8\\21.7\\16.8\\5.7\\7.8\\1.6\\-\\1.6\\4.0\\5.0\\11.0\\4.6\\9.0\\3.2\\-\\2.4\\-\\2.4\\-\\2.4\\-\\1.6\\1.6\\-\\-\\1.6\\-\\-\end{array} $	13.2 25.8 29.8 24.6 17.8 2.4 1.6 - - - - - - - - - - - - - - - - - - -	$ \begin{array}{c} 18.7 \\ 27.5 \\ 33.9 \\ 23.5 \\ 13.2 \\ 4.0 \\ 4.0 \\ 1.6 \\ 2.4 \\ 9.0 \\ 14.4 \\ 7.8 \\ 9.0 \\ 3.2 \\ 2.4 \\ 5.7 \\ 4.6 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ 2.4 \\ - \\ - \\ 2.4 \\ - \\ - \\ 2.4 \\ - \\ $	9.9 20.1 27.5 18.9 13.2 3.2 1.6 - 3.2 1.6 - 4.0 4.6 -	4.0 13.2 17.8 7.8 7.8 1.6 1.6 - 5.0 6.3 7.8 6.3 - - - - - - - - - - - - -	4.0 7.8 4.6 5.0 4.0 - - - - - - - - - - - - - - - - - - -	- 3.2 1.6 - - - - - - - - - - - - - - - - - - -	1.6

Table IX (Continued)

	mass	points	110 0	appearr	ng m	UIIS	Lante .	nave a	TL 17
v ₁ v ₂ 3	0	1	2	3	4	5	6	7	8
0 0 0 1 0 0 0 0	93.3 72.9 41.2 18.1 7.8 2.0 45.9 38.4 22.5 10.4 5.6 2.0 17.8 17.6 11.8 6.3 2.3 - 4.4 6.3 4.4 2.3 1.0 1.6 1.6 2.0 - - - - - - - - - - - - - - - - - - -	$ \begin{array}{c} 100.0\\ 87.2\\ 63.9\\ 34.8\\ 12.7\\ 4.4\\ 1.0\\ 69.6\\ 66.7\\ 47.5\\ 25.6\\ 12.7\\ 4.4\\ 1.0\\ 29.8\\ 33.7\\ 27.2\\ 15.0\\ 7.4\\ 10.4\\ 9.0\\ 4.8\\ 2.8\\ 1.0\\ 1.6\\ 2.8\\ 5.1\\ 2.0\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	81.9 77.1 55.9 31.7 14.4 4.8 51.52 49.3 28.9 12.7 4.4 24.8 32.6 24.8 32.6 7.3 1.2 14.4 8.8 4.4 2.33 1.2 14.4 8.8 4.4 2.33 1.2 14.4 8.8 4.4 2.36 7.3 11.2 14.4 8.8 4.6 1.6	53.7 58.5 44.3 21.8 8.5 3.4 -39.8 42.7 35.9 20.4 7.3 2.3 18.6 24.8 19.2 10.4 5.6 2.3 1.0 7.3 11.2 8.8 5.8 1.6 -1.0 3.7 2.3 -1.0	30.7 37.1 21.0 11.8 6.3 1.0 23.2 28.0 19.8 11.2 3.4 13.4 16.7 13.4 16.7 13.4 10.4 4.4 - 2.0 2.0 2.8 - - - - - - - -	14.7 16.3 14.4 5.1 3.4 1.0 8.8 15.4 10.4 5.6 1.0 1.0 5.1 8.0 3.4 2.0 - 1.6 1.6 1.6 1.6 1.6 - - - - -	4.4 4.8 3.7 2.0 1.6 - - 2.8 3.4 2.8 2.8 2.8 - - - - - - - - - - - - - - - - - - -	- 2.0 1.6 - 2.0 1.0 - - - - - - - - - - - - - - - - - - -	1.0

Table X. Test levels of the mass points VJ, pseudo-standardized Weibull samples, $\alpha = 0.1$, N = 20, $t_c = 0;.125;.250;.375;1.0$ Mass points not appearing in this table have a TL 1%

Table XI. Tests of the hypothesis that the distributions of

VJR	and	VJS	are	identical	for	equal	class
A O TF	COLLOC						

probabilities

a) R = pseudo-standardized exponential population S = -"- -"- normal -"-N = 10, r = 4, $p_i = 1/r = 25\%$

	-	S	ign	test	Nr-of-r	uns test	R	ank-sur	n test
of VJ	Nr. of pairs	Nr +	.of	Reject.	Nr.of runs	Reject.	T ₁	Т2	Reject.
0008	4	1	1	-	2	-	18.0	18.0	55.7
0017	12	4	6	> 25	7	88.1	136.0	164.0	21.8
0026	12	1	11	= 1	3	-	129.5	170.5	12.3
0035	12	4	5	> 25	5	50.0	144.5	155.5	38.7
0044	6	0	6	= 10	0	-	31.0	47.0	12.0
0116	12	2	10	= 5	3	18.2	139.0	161.0	27.3
0125	24	13	11	> 25	9	7.5	604.5	571.5	37.1
0134	24	10	14	> 25	8	3.7	582.0	594.0	45.9
0224	12	6	6	> 25	5	17.5	149.0	151.0	48.8
0233	12	3	8	= 25	5	53.3	140.0	160.0	29.2
1115	4	2	2	> 25	4	> 90.0	15.5	20.5	29.3
1124	12	7	5	> 25	6	42.4	148.5	151.5	47.6
1133	6	4	2	> 25	3	40.0	34.0	34.0	24.2
1223	12	9	3	= 25	4	20.0	184.5	115.5	2.5

b) $\mathbf{H} = \mathbf{pseudo-standardized}$ Weibull, $\alpha = 1.0$, population S = -"- -"- Weibull, $\alpha = 0.1$, -"-N = 10, r = 4, $p_i = 1/r = 25\%$

		Si	en .	test	Nr-of-m	ins test	R	ank-sur	test
Types	Nr.of	Nr.	of	Reject.	Nr.of	Reject.	Τ.	To	Reject.
01 10	paris	+	-	%	runs	%	1	2	70
0008	4	0	3	= 25	0	-	15.5	20.5	29.3
0017	12	1	8	= 5	3	-	127.5	172.5	10.0
0026	12	3	6	> 25	3	10.7	144.0	156.0	37.5
0035	12	4	8	>25	7	78.8	143.0	157.0	35.5
0011	6	4	2	>25	4	80.0	40.5	37.5	43.9
0116	12	5	7	>25	6	42.4	133.0	167.0	17.0
0125	21	12	12	> 25	9	7.2	583.5	582.5	46.0
012)	24	12	12	> 25	13	50.0	582.0	594.0	45.9
0134	12	7	5	225	4	7.6	152.5	147.5	45.4
0224	12	1 7	5	> 25	7	65.2	154.0	146.0	42.1
0233	12	15	1	> 25	2	-	20.5	15.5	29.3
1115	4	12	17	- 25	à	85.4	147.0	153.0	44.3
1124	12	2	1	225	2	40.0	12 0	36.0	35.0
1133	6	4	2	- 25	3	40.0	170 0	120.0	121
1 1223	12	10	2	= 5	2	3.0	10.0	130.0	113.1

Mass m	. 1	Mass	mт	Mass	ωт	Mass	mT
points 1	p	oints	TL	points	TL	points	TL
No VJ %	No	o VJ	%	No VJ	%	No VJ	%
1 0008 0.	2 43	3 0701	0.0	84 2024	29.0	125 3302	35.3
2 0017 2.	1 44	4 0710	0.1	85 2033	36.1	126 3311	71.8
3 0026 7.	4 45	5 0800	0.0	86 2042	25.5	127 3320	54.9
4 0035 11.	3 46	5 1007	0.3	87 2051	6.3	128 3401	15.8
5 0044 9.	3 47	1016	4.4	88 2060	0.0	129 3410	34.5
6 0053 3.	3 48	3 1025	14.3	89 2105	10.4	130 3500	6.1
7 0062 0.	4 49	1034	23.8	90 2114	51.3	131 4004	0.7
8 0071 0.	2 50	1043	20.7	91 2123	79.5	132 4013	7.4
9 0080 0.) 51	. 1052	6.6	92 2132	85.6	133 4022	19.6
10 0107 0.	3 52	2 1061	1.8	93 2141	47.8	134 4031	13.3
11 0116 9.	5 53	1070	0.0	94 2150	3.7	135 4040	2.1
12 0125 33.) 54	1106	4.0	95 2204	20.7	136 4103	11.4
13 0134 40.	. 55	1115	2.1	96 2213	73.7	137 4112	53.7
14 0143 31.0	56	1124	65.4	97 2222	100.0	138 4121	57.3
15 0152 13.	57	1133	70.0	98 2231	87.8	139 4130	24.9
16 0161 2.	5 58	1142	57.3	99 2240	22.7	140 4202	23.2
17 0170 0.0	59	1151	18.6	100 2303	27.8	141 4211	68.3
18 0206 2.	60	1160	2.3	101 2312	83.5	142 4220	41.3
19 0215 26.0	61	1205	8.0	102 2321	90.0	143 4301	28.4
20 0224 44.	62	1214	61.2	103 2330	43.6	144 4310	46.7
21 0233 58.0	63	1223	97.0	104 2402	19.6	145 4400	6.8
22 0242 37.0	64	1232	94.5	105 2411	52.5	146 5003	1.3
23 0251 11.	65	1241	49.0	106 2420	38.8	147 5012	5.8
24 0260 0.4	66	1250	5.1	107 2501	8.5	148 5021	5.3
25 0305 1.	67	1304	14.1	108 2510	16.2	149 5030	3.2
26 0314 21.1	68	1313	62.6	109 2600	2.1	150 5102	4.2
27 0323 42.0	69	1322	83.5	110 3005	1.4	151 5111	34.5
28 0332 37.9	70	1331	68.3	111 3014	9.5	152 5120	16.7
29 0341 14.0	171	1340	17.6	112 3023	27.8	153 5201	14.9
30 0350 3.0	172	1403	10.8	113 3032	30.3	154 5210	33.0
31 0404 2.8	73	1412	39.7	114 3041	12.9	155 5300	12.2
32 0413 14.5	74	1421	64.0	115 3050	1.0	156 6002	1.3
33 0422 29.6	75	1430	24.9	116 3104	10.4	157 6011	1.7
34 0431 22.1	76	1502	1.1	117 3113	50.2	158 6020	2.5
35 0440 2.9	177	1511	21.6	118 3122	75.6	159 6101	3.8
30 0503 0.7	78	1520	8.2	119 3131	59.9	160 6110	8.8
31 0512 4.7	79	1601	1.7	120 3140	15.3	161 6200	5.1
30 0521 5.6	80	1610	3.5	121 3203	26.6	162 7001	0.5
39 0530 1.0	81	1700	0.1	122 3212	77.6	163 7010	0.3
40 0602 0.2	82	2006	0.6	123 3221	92.2	164 7100	1.7
41 0011 2.3	03	2015	12.9	124 3230	45.7	165 8000	0.1
42 0020 1.0	-	-	-		-		-

Table XII. Test levels of the mass points VJ, pseudo-standardized variables, N = 10, r = 4, $p_{.} = 1/r = 25\%$

Table XIII. Percentiles of pseudo-standardized variables

for	N = 10,	N =	20,	and	various	distribution
			func	tion	3	

$$N = 10$$

P	1.0	0.9	0.7	0.5	0.3	0.1	Normal dbn
0.0	.0000	.0000	.0000	.0000	.0000	.0000	.0000
12.5	.0435	.0542	.0824	.1220	.1725	.2323	.1810
25.0	.0938	.1123	.1585	.2189	.2933	. 3780	.3035
37.5	.1542	.1786	.2373	.3104	.3957	.4904	.4055
50.0	.2280	.2570	.3233	.4025	.4913	•5853	.5000
62.5	.3197	.3511	.4212	. 4998	.5857	.6732	•5945
75.0	.4461	.4772	.5443	.6160	.6900	.7635	.6965
87.5	.6377	.6625	.7126	.7640	.8151	.8635	.8190
100.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

 $\mathbb{N} = 20$

P	1.0	0.9	0.7	0.5	0.3	0.1	Normal dbn
0.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5	.000 .030 .075 .130 .194 .268 .382 .560	.000 .040 .095 .155 .220 .304 .418 .590	.000 .079 .145 .215 .294 .382 .492 .660	.000 .130 .217 .300 .384 .475 .580 .722	.000 .192 .310 .405 .492 .577 .671 .790	.000 .278 .416 .518 .605 .680 .762 .857 1.000	.000 .205 .322 .416 .502 .585 .678 .795 1.000

Table XI The effect of pooling on the decision power of VJ

Stage	Nr.of	Decisi	on power	in %
of pooling	points	1 vs 0.1	1 vs 0	0.1 vs 0
VJ, ungrouped	165	77.2	69.1	22.0
Types of VJ	15	18.4	6.6	21.6
x ²	14	18.4	6.6	21.6
NE	4	13.0	5.6	13.6

Security Classification			
DOCUMENT CONT	ROL DATA - R 8	D	
(Security classification of title, body of abstract and indexing 1. ORIGINATING ACTIVITY (Corporate author)	annotation must be en	tered when the c	Overall report is classified)
Professor Waloddi Weibull		UNC	LASSIFIED
Ch. Fontanettaz 15		2b. GROUP	
1012 Lausanne, Switzerland			
3. REPORT TITLE			
A NEW TEST OPERATOR, VJ, BASED ON CLA	ASS FREQUENCI	ES	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
5. AUTHOR(S) (First name, middle initial, last name)			
Waloddi Weibull			
6. REPORT DATE May 1973	78. TOTAL NO. OF	PAGES	76. NO. OF REFS
BE. CONTRACT OR GRANT NO.	94. ORIGINATOR'S	REPORT NUMB)ER(\$)
F 44620-72-C-0028			
b. PROJECT NO.	AFML-TR-7	3-97	
7351			
c. Task	9b. OTHER REPOR	T NO(S) (Any of	her numbers that may be assigned
735106			
d.			
Approved for Public Re	elease; Distr	ibution Un	limited
11. SUPPLEMENTARY NOTES	12. SPONSORING M	ILITARY ACTIV	
	Air Force Wright-Pat	Materials terson AFB	Laboratory (LL) , Ohio 45433
The test statistic X ² of the Chi-squa be used for selecting distribution functi purpose its decision power was found to b inherent property of its definition. In c statistic, denoted by VJ, was introduced. elements which fall within each of r prop of the variable x has been divided. In fa obtained from VJ by a pooling procedure. much larger decision power than X ² as was power for a specified case being 6.6% for The properties of VJ have been thoroug limits yielding the largest decision power in some cases, the decision power was fou attained. The statistic VJ can also be used for is acceptable or not and also for selecti such distributions. Necessary tables for	are test may, lons. When ex- pevery small order to elim a It is defined act X ² may be For this reas a verified by X ² was raise thy exmanine and to be some stating wheth the practical	if applie amining it due to a inate this ed by the classes i regarded son VJ was the examp ed to 69.1 d. In part determined ewhat larg her a hypo propable of l use have	d to a proper sample, s use for this kind of pooling, an pooling, a new test number v, of sample nto which the space as a statistic expected to have a le that the decision % for VJ. icular the class with the result that er than anyone sofar thetical distribution ne within a set of been prepared.
DD FORM 1473			
		UNCLA	SSIFIED
		Security	Classification

14.	LINKA		LINK B		LINKC	
KEY WORDS	ROLE	WT	ROLE	wт	ROLE	wт
Statistics						
Chi-square Test						
New Test Statistic						
Decision Power						
Decision rower						

★U.S.Government Printing Office: 1973 - 759-494/581