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ABSTRACT

The test statistic X2 of the Chi-square test may, if
applied to a proper sample, be used for selecting distribu-
tion functions. When examining its use for this purpose its
decision power was found to be very small due to a kind of
pooling, an inherent property of its definition. In order to
eliminate this pooling a new test statistic, denoted by VJ,
was introduced. It is defined by the number vi of sample
elements which fall within each of r properly defined
classes into which t e space of the variable x has been
divided. In fact X may be regarded as a statistic ob-
tained from VJ by a pooling procedure. For this reason

was expected to have a much larger decision power than
X as was verified by the example that the decision power
for a specified case being 6.6% for X2 was raised to
69.1% for VJ.

The properties of VJ have been thoroughly examined.
In particular the class limits yielding the largest decision
power have been determined with the result that, in some cases,
the decision power was found to be somewhat larger than anyone
so far attained.

The statistic VJ can also be used for stating whether a
hypothetical distribution is acceptable or not and also for
seleoting the most probable one within a set of such distri-
butions. Necessary tables for the practical use have been pre-
pared.
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I

INTRODUCTION

Let the space of the variable x with the distributionfunction P(x) be divided into r parts (classes) withoutcommon points. The corresponding values of the given pro-bability function will be denoted by p ,p2, .. ,p (Epi 1)The test statistic X2 of the classicai Chi-sqare test
of goodness-of-fit is defined by

Z v?/.pi)-N (1)

where v. are the observed and N.p =v the expectedclass frequencies. For the partiulafi case, that all theexpected frequencies are equal to v 0 =N/r, equ.(1) takes the
form

x2= rv. v - N (2)
1 1 0

It is evident that X2 is, in this case, invariant underpermutations of the order of the observe frequencies v.. Forexample, if N=8, r=2, vo =4, then X =8.0 as well 1 for
vI 0, v2 =8 as for v I =8 , v2 m0

The test statistic X2, which is a variable of the dis-crete type, has, in this example, the total mass of its dis-tribution concentrated in the five mass points: 0,0.5,2.0,4.5and 8.0. If we, alternatively, introduce a new test statisticVJ, defined by the possible pairs of observed class frequen-cies, which may be regarded as the coordinates of the mass
points, that is

VJ = (V ,V2 ) (3)

then the total mass of its distribution is concentrated in thenine points: (0,8),(1,7),...,(8,0). Thus it can be said thatX is derived from VJ by a procedure which is equivalent tothe pooling of classes of a continuous test statistic. It iseasily proved that a pooling procedure can never increase thedecision power of a test operator (Cf.Reference [1]), but may,in some cases, catastrophically reduce it, as will be illustra-ted in the sequel. A more general definition of VJ, thanthat given by equ.(3), will now be presented.
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II

SIGNIFICATION OF THE SYMBOL VJ

The symbol VJ will be used to denote as well a test
operator as a test statistic. The test operator VJ is
defined by the procedure of dividing the space of the vari-
able x into an arbitrary number r of classes with the
upper limits O92Oefor which may be selected without
regard to any distribution function. Such an
operator may be denoted by VJA. Alternatively, the di-
vision of the space can be specified by the class probabi-
lities p, in which case it may be preferable to take all
the probabilities equal to

P= I/r (4)

The corresponding class limits for any hypothetical
distribution function F(x) are then given by

ci . yl(i/r)- #((i- l)/r) (5)

If F(x) is the distribution function of the popula-
tion R, the operator may be denoted by VJR. The result
of its acting upon random samples from the population S
may be denoted by VJRS.

From any given sample xl,X2,...,Xr the number of ele-
ments falling within the i:th class, that is, the obser-
ved frequency vig is determined. The value of the test
statistic VJ, thus obtained, will be denoted by

vJ = (Vl,v 2 ,...,vr) (v i . N) (6)

where the r values v. may be regarded as the coordinates
of the mass points of 1 the distribution of the statistic
VJ.

Ill

FUNDAMENTAL PROPERTIES OF THE STATISTIC VJ

The statistic VJ is a variable of the discrete type.
The total mass of its distribution is concentrated in a fi-
nite number K of mass points, where

K - (N+ r- l)!/N.(r- 1){ (7)

2



In the particular case of pseudo-standardized samples,
defined by the sample elements

ti - (Xi - Xl)/(x3N - X) (8)

the number of non-fixed elements of the sample is reduced to
(N-b2) since t 0 O 0 t 1. Thus the number of mass points
becomes

Kt - (N + r - 3) 9I(N - 2):f(r - 1) 9 (9)

Some values of Kt are presented in Table 1.

These many mass points may be brought together into
groups, called types of VJ. Each type consists of all pos-
sible permutations of a given set of values of v i. The num-
ber of different types are listed in Table 2 for some values
of N and r.

As an illustration, the types and the corresponding num-
bers of permutations are given for N-IO, r-4 and r-8,
pseudo-standardised samples, in Table 3.

The number of permutations NP is given by the formula

NP - (N- 2)'/n,- 1 " 2 "n3 " (10)
where nI -the number of frequendtes v1, n2 that of fre-

quencies v2, and so on. Hence

ninvi - N- 2 (11)

Also the values of X2, corresponding to each type of VJ
are included in Table 3.

The statistical properties of VJ are completely de-
scribed by its distribution, that is, the set of probability
masses p of each of the K or Kt mass points. This
distribution can be computed, for any given situation, by
means of Monte-Carlo studies, as will be described in the
following.

Even with modern computers the number K will be too
large for large enough samples, and some kindt of pooling may
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be required.

From Table 3 different stages of pooling may be dis-
tinguished. The total number of mass points Kt may be
grouped according to:

1. The types of VJ

2. The values of X2

3. The number NE of empty classes

with a reduction of the number of mass points as indicated
below for N= 0.

Stage of pooling mr.sofomass
r =4 r_-_8

VJ, ungrouped 165 6435

Types of VJ 15 22

x2  14 18

NE 4 8

The reduction of the decision power due to the poolings
will be illustrated below.

The test operators VJ may, just like other operators,
be made to act upon three different types of samples, trans-
formed by use of the following formulas:

1. u =x i - xI producing location invariance

2. s =xi/xN  producing scale invariance (12)

3. ti  (xi - x )/ (x, - x l ) producing both scale and
location invariance

If the distribution function, including its shape para-
meter, if any, is known, then the sample [u.] depends only
on the scale parameter P, and the sample 1 [s] only on
the parameter quotient u/0. In any case, the sample [t.]
depends only on the shape parameter a.
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These three types of operations may be used for two dif-

ferent purposes

1) to decide, with known decision power, between two different
values of P, p/p, or a, and

2) to test whether an assumed value of these parameters is
acceptable on the basis of a preassigned level of signifi-
cance,

The present report will deal only with the shape operators.

Iv
THE SHAPE PARAMETER AND ITS DECISION POWER

The most important property of an operator, its decision
power DP, is determined by comparing the distributions of
the actual test statistics. It is evident that these distri-
butions depend not only on N and r but also on the class
limits selected. Thus, the fundamental problem will be to
determine that set of class limits which will yield the highest
decision power.

To this purpose the computer programs 1/72, 2/72, and 3/72

have been written by Gbran W.Weibull. A large number of ran-
dom samples, usually 10,000, of a given size N and belonging
to a normal population or Weibull distribution with given shape
parameter a are generated and transformed into t -samples.
For an arbitrary set of class limits t , the freq ency func-
tions of the test statistic VJ = (vl, v ) (Program 1/72)
VJ - (v,,v 2 ,v 3 ) (Progam 2/72) and VJ- 2v3,v2 ,v4,v)t

(Program 3/72) are determined. 'From the
obtained frequency dbns, the decision powers have been computed
for various combinations of normal and Weibull distributions and
class divisions. The results for the dbns: 1.0, 0.1, 0 and
N- 6,10,20, r u 2,3,4 are listed in Table 4, and Nu 6,10,20;
r- 4 and a= l.0,0.9,0.7,0.5,. 3 ,0.l, and 0 (normal dbn) in
Table 5, where also the estimation powers EP (Cf.Ref[1]) are
given.

The EP of the most powerful shape operator, so far ob-
tained, denoted by T(i,j,k), is also presented for N-20 and
is found to be somewhat lower than that of VJ.
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V

THE USE OF VJ FOR TESTING THE ACCEPTABILITY

OF AN ASSUMED DISTRIBUTION FUNCTION

Suppose, for illustration purpose, that we will test
whether a given sample of size N = 10 is drawn from a
normal population or not by use of the shape operator
VJ specified by the class limits t = 0, 0.250, 0.375,
0.500, 1. c

After having transformed the sample into a t.-sample
by use of equ.(8), the number of elements vi I within
each of the four classes are determined. This procedure
yields a test point

Vw- (vl,v 2,v3,V4) (Evi= 8)

The question now arises whether this test value is ac-
ceptable or not. To this purpose the distribution of VJ
is computed by use of Program 3/72 which generates 10,000
random normal samples and counts the number v corre-
sponding to each of the 165 mass points. If v the num-
ber corresponding to the actual test point is zero or very
small, the hypothesis of normality will be rejected.

The critical value of v can be put in relation to a
preassigned level of significlce e by use of a statistic
called the test level and denoted by TL (Cf.Ref.[l]). It
is thus defined: Let ni be the number of mass points which
have a v i (i= 1,2, 3,.o), then

TL - E(i.ni)/Tv (13)

that is, TL is equal to that relative number of mass points
which have v &i. In this way there will be assigned a
definite value of TL to each mass point. The com-
putation of the TL-distribution is included as a part of
Program 3/72.

The criterion of rejection now becomes: The hypothesis
that the sample belongs to an assumed population is rejected
if

TL s e

Some values of TL are presented in Table 6,7 and 8,9,10
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for N - 6, 10 and 20, respectively, and for various hypo-

thetical distributions.

By use of these tables it is quite simple to decide
whether an assumed distribution function is acceptable or not

and also which of various dbn functions is the most probable
one. Suppose we have obtained a test value

VJtest = (0,1,2,5)

using the class limits indicated in Table 7, then four of
the hypothetical dbns are acceptable, but the normal one is
the most probable. Three of the dbns are rejected on the
basis of a 5% level of significance.

A test value VJ. (0,1,6,1) motivates the rejection of

all normal and Weibull distributions, which will be taken as

a strong indication that the examined sample is not a simple
but a composed one.

So far, the operator VJ has been specified by a set of
class limits t selected without regard to the corresponding
class probabilities P. This way of proceeding requires
individual TL-tables for each hypothetical function.

It is, however, possible to produce a TL-table of more
general applicability by selecting the class limits accor-
ding to a given set of class probabilities, preferably all
of them equal to p - 1/r. It seems plausible that we then
will have the corre;t individual TL-funotions by using the
(r+ 1) class limits

tc. f(c/r) (c-0,l,...,r) (15)

This statement seems self-evident when the operator is

acting upon a sample, where the non-ordered elements are inde-

pendent of each other, but not at all, when it is acting upon
a t-sample, where the elements within each sample form an indi-
vidual entirety.

The important hypothesis that an operator VJ, defined
by a given set of class probabilities (instead of a set of
class limits t ), yields a distribution which can be used
for any distribStion function, provided that the class limits
are selected according to equ.(15), has been proved by use of
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three different tests in the following way:

Program 3/72 was applied to 3xlO,O00 random t-samples
of size N- 2= 8, drawn from the normal, the Weibull, a =1.0,
and the Weibull, a= o.l, populations. The expected fre-
quencies v of the 3x165 mass points of VJ were deter-
mined for v the class limits t =0, 0.303, 0.500, 0.697, 1.0;

S-0, 0.090, 0.227, 0.445, 1.0; and to = 0, 0.380, 0.585,0 0.763, 1.0, respectively. These class limits yield class

probabilities with insignificant deviations from pi = 25%.

The hypothesis that these three sets of obtained fre-
quencies v belong to the same population was tested by use
of three tests fully described by Dixon & Massey [2]:
a) the sign test b) the number-of-runs test, and
c) the rank-sum test, applied to fourteen of the fifteen
types of VJ. The type VJ= (2,2,2,2) was excluded as
having only one pair of elements. The results are presented
in Table 11 with the following comments.

The sign test is based on the signs of the differences between
the corresponding values of v . If some of the differences
are zero, they will be excludel and the sample size reduced.
The number of positive and negative differences are listed in
the first column of the sign test. The sample size is equal
to their sum. If r denotes the number of times the less
frequent sign occurs, Table A-lOa of Ref.[2] gives the critical
value of r for 1, 5, 10, and 25 per cent levels of signifi-
cance. From this table the values listed in the second column
of the sign test have been taken. For example, for one plus
sign and eleven minus signs, the size. 12, r= 1. A value of
r less than or equal to I is rejected on the 1% level of
significance.

Of the 28 tested samples there are

1 where the sample size is too small for decision
1 where the hypothesis is rejected on the 1% level
3 It " t " t " " 5% it

1 of 11 it'' ' 10 %
22 " it "s"25%

There is no reason to reject the hypothesis on the whole.
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The number-of-runs test is used for testing the random ar-

rangement of the plus and the minus signs. The total numbers

of runs observed are listed in the first column of the nr-of-
runs test, and in the second column the chance of obtaining
a value less than or equal to these numbers, taken from
Table A -11 of Ref.[2]. On the whole, rejection of the hypo-

thesis seems unmotivated.

The rank-sum test provides another means of testing the hypo-
thesis. The two samples are arranged in order of size and
rank scores are assigned to the individual observations. The
sums of the ranks of each sample are denoted by T1 and T2*
Table A-20 of Ref.[2] has been used for obtaining the
rejection percentages, of which there is only one small value
(2.5 %). This test is strongly in favour of accepting the hy-
pothesis.

On this condition, the three sets of v y based on

30,000 random samples, can be pooled. The corresponding TL-
values have been computed and are presented in Table 12, which
is applicable to any hypothetical distribution, if the test
value VJ have been determined by use of the class limits
given by equ.(15). The limits for r= 4 and rw 8 are
identical with the percentiles listed in Table 13.

A graphical representation of these percentiles as func-
tions of the shape parameter a of the Weibull distribution
is shown in Fig.l. This graph is quite useful for a determi-
nation of the test value of VJ. Since the given sample has
been transformed into a t-sample, the order statistics ti
may be plotted on a separate paper using the scale of
t . By shifting this plotting horizontally, the number of
P sample elements within each of the classes are easily
counted for any wanted a.

It is of interest to note that the percentiles of the
normal distribution, which are plotted against a- O, coin-
cide very closely with those of a. 0.28. Hence, there will
be no possibility of deciding between these two distributions
by means of the operator VJ.

9



VI

THE EFFECT OF POOLING ON THE DECISION POWER OF VJ

In the table on page 4, three different stages of pooling
the probability masses of the statistic VJ and the correspon-
ding reduction of the number of its mass points have been in-
dicated. It is expected that these considerable reductions
will strongly affect the decision power.

For illustration purpose, the shape operator VJ, pseudo-
standardized variables, N -10, to= O 0.250, 0.375, 0.500, 1.0,
will be taken as an example,

From the tables of the expected frequencies v cor-
responding to the 165 mass points and computed by ule of Pro-
gram 3/72, the expected values of v , corresponding to each
of the mass points of the reduced seys, are obtained by sum-
ming the v -values within each group. In this way the re-
quired protability distributions are easily computed, and from
them the decision powers. The results are listed in Table 14,
which demonstrates the catastrophic effect of the poolings on
the decision powers, and, in p rticular, the weak decision
power of the test statistic X of the Chi-square test of
goodness-of-fit. This result implies that this test will,
except for very large samples, frequently fail to reject false
hypothetical distributions.

REFERENCES

1. Weibull,W., "Outline of a theory of powerful selection
of distribution functions",
AFML-TR-71-52, March 1971.

2. Dixon,W.J., "Introduction to Statistical Analysis".
Mc Graw-Hill Book Comp.,Inc., New York 1957

10



.6

.4'.

Ao OC. .2

N-2

.09

?o~ j

oAl-1-

I. 9erce7ti/s ofpse.dd~~-s~nc2roilc

va i /7s dl*r vc '*i5 d '. /~fG7

CA,.Ae7.70t>/



Table I. Number of mass points Kt for some N and r

N- 2 3 4 5 6 7 8

2 3 . .....
3 4 10 -....

4 5 15 35 - . .
5 6 21 56 126 - - -
6 7 28 84 210 462 - -

7 8 36 120 330 792 1716 -
8 9 45 165 495 1287 3003 6435
9 10 55 220 715 2002 5005

10 11 66 286 1001 3003 8008
11 12 78 364 1365 4368
12 13 91 455 1820 6188
13 14 105 560 2380
18 19 190 1330 7315
23 24 300 2600
28 29 435 4495
33 34 595
38 39 780
43 44 990
48 49 1225

Table II. Number of different types of VJ for some N and r,
pseudo-standardized samples

r 2 3 4 5 7 8 9 10

2 2 6
2 2 ........- -

3 2 3 . ......
4 3 4 5 ......5 3 5 6 7 . . . ..
6 4 7 9 10 11 . . ..
7 4 8 11 13 14 15 - - -
8 5 10 15 18 20 21 22 - -
9 5 12 18 23 26 28 29 30 -

10 6 14 22 29 34 37 39 40 41
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Table II: Different types of VJ for N- 10, r= 4 and 8,

pseudo-standardized samples

r-4 r -8
Type Nr.of Type Nr. of
of permu- X of permu- X2

VJ3 tations VJ tations

1 0008 4 4 24 1 0000.0008 8
2 0017 12 17 2 0000.0017 6342W
3 0026 12 12 3 0000.0026 56 32

4 0035 12 9 4 0000.0035 56 26

0044 6 42 8 0000.0044 28 196 24
6 0116 12 11 6 0000.0116 168 30
7 0125 24 7 7 0000.0125 336 22

8 0134 24 5 8 0000.0134 336 18
9 0224 12 4 9 0000.0224 168 16

10 0233 12 84 3 10 0000.0233 168 1176 12
11 1115 4 6 11 0000.1115 28 20
12 1124 12 3 12 0000.1124 840 14
13 1133 6 2 13 0000.1133 420 12

14 1223 12 1 14 0000.1223 840 10
15 2222 1 35 0 15 0000.2222 7 2450 8

Total 165 16 0001.1114 28 12

17 0001.1123 1120 8
18 0001.1222 560 1960 6
19 0011.1113 166 6
20 0011.1122 420 588 4
21 0111.1112 56 56 2
22 1111.1111 1 1 0

Total 6435
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Table IV. Decision power DP of the shape operator VJ,

pseudo-standardized variables

Class limits .125 .250 .375 .500 .625 .750 .875

Program 1/72: N = 6;r = 2
1.0 vs 0.1 46.0 50.1 51.8 50.5 41.9 35.3 22.0
1.0 vs 0 41.2 43.9 40.9 40.0 30.1 26.3 15.4
0.1 vs 0 4.9 9.1 10.8 13.0 11.8 9.0 6.9

Program 1/72: N 10; r= 2
1.0 vs 0.1 65.6 73.9 74.2 69.8 61.0 50.0 34.7
1.0 vs 0 60.8 64.0 60.9 55.1 46.3 32.6 31.7
0.1 vs 0 8.2 14.3 18.0 20.6 20.3 17.5 11.6

Program 1/72: N = 20; r= 2
1.0 vs 0.1 91.1 94.2 93.9 90.7 84.0 70.8 46.7
1.0 vs 0 85.2 88.4 85.0 77.8 65.0 49.3 31.5
0.1 vs 0 14.3 23.7 31.1 35.9 35.4 29.5 19.4

Class limits .125 .250 .375 .500 .625 .750
.250 .375 .500 .625 .750 .875

Program 2/72: N= 6 r=3
1.0 vs 0.1 50.1 53.6 51.8 50.5 41.9 35.3
1.0 vs 0 43.9 45.5 42.8 40.0 30.1 26.3
0.1 vs 0 9.1 10.8 13.1 13.1 11.8 9.3

Program--2ft2: N=I |--0 r = 3
1.0 vs 0.1 73.9 75.6 74.5 69.9 61.2 50.0
1.0 vs 0 59.8 65.4 61.2 53.1 46.3 34.0
0.1 vs 0 14.9 18.0 20.7 21.5 20.6 17.5

Proaram 2/72: N=- 20 ; r = 3
1.0 vs 0.1 94.6 95.1 93.6 90.7 84.3 71.1
1.0 vs 0 89.3 88.6 85.2 77.8 65.4 49.7
0.1 vs 0 23.7 31.3 37.0 37.1 36.0 30.6

.125 .250 .375 .500 .625
Class limits .250 .375 .500 .625 .750

S.375 .500 .625 .750 .875

Program 3/72: N = 6-t r = 4
1.0 vs 0.1 55.1 55.2 52.5 50.5 41.9
1.0 vs 0 47.0 45.8 42.4 40.0 30.2
0.1 vs 0 11.3 13.1 13.5 13.2 11.8

Program 3/72: N= 10 ; r 4
1.0 vs 0.1 77.2 77.2 74.7 70.5 61.6
1.0 vs 0 68.3 69.1 62.5 56.5 46.4
0.1 vs 0 19.6 22.0 23.0 22.7 20.9

Program 3/72: N= 20 r= 4
1.0 vs 0.1 95.8 95.6 94.2 91.4 84.6
1.0 vs 0 90.7 89.1 85.6 78.4 65.4
0.1 vs 0 32.9 37.4 38.9 39.0 37.3
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Table V. Decision power DP of the shape operator VJ,

pseudo-standardized variables

N = 6; rw4 o = 0 ; 0.250 ; 0.3751 0.500; 1.000

1.0 0.9 0.7 0.5 0.3 0.1 normal

1.0 - 6.1 18.3 31.6 44.4 55.2 45.8
0.9 6.1 - 11.1 26.0 39.7 50.7 41.1
0.7 18.3 11.1 - 14.2 29.0 41.6 30.8
0.5 31.6 26.0 14.2 - 15.6 29.1 17.6
0.3 44.4 39.7 29.0 15.6 - 15.2 3.0
0.1 55.2 50.7 41.6 29.1 15.2 - 13.1

normal 45.8 41.1 30.8 17.6 3.0 13.1 -

T !610 57.3 63.2 74.5 77.0 76.0 -

N = 10; r,, 4; t 0 ; 0.250 ; 0.375 1 0.500 ; 1.000
1.0 0.9 0.7 0.5 0.3 0.1 normal

1.0 - 9.5 28.5 47.8 65.2 77.2 69.1
0.9 9.5 - 20.5 40.9 59.6 73.8 61.2
0.7 28.5 20.5 - 23.6 45.2 62.3 46.9
0.5 47.8 40.9 23.6 - 26.1 47.1 27.4
0.3 65.2 59.6 45.2 26.1 - 24.1 7.0
0.1 77.2 73.8 62.3 47.1 24.1 - 22.0

normal 69.1 61.2 46.9 27.4 7.0 22.0 -

EP 95.0 100.0 110.2 124.2 125.5 120.5

N = 20 ; r = 4 ; t o 0 0.125; _0.250 ; 0.375 ; 1.000

1.0 0.9 0.7 0.5 0.3 0.1 normal

1.0 - 19.8 49.3 75.9 89.8 95.8 90.7
0.9 19.8 - 37.2 67.4 85.3 93.4 86.8
0.7 49.3 37.2 - 40.5 71.6 85.2 72.1
0.5 75.9 67.4 40.5 - 41.4 68.0 46.2
0.3 89.8 85.3 71.6 41.4 - 38.1 13.9
0.1 95.8 93.4 85.2 68.0 38.1 - 32.9

normal 90.7 86.8 72.1 46.2 13.9 32.9 -

EP 198.0 190.0 194.2 204.8 198.8 190.5
EP(T) 173.7 175.9 188.3 202.2 198.7 188.7
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Table VI. Test levels of the mass points VJ, pseudo-standard.

variables, N=6, t,=O, 0.250, 0.375, 0.500, 1.000

Mass points Hypothetical distributions

No. VJ a=I.0 0.9 0.7 0.5 0.3 0.1 normal

1 0004 4.0 5.8 13.2 34.2 74.3 100.0 81.8
2 0013 9.4 9.8 25.4 42.3 82.0 84.9 90.5
3 0022 4.0 3.0 8.2 19.4 27.1 24.1 30.1
4 0031 0.9 1.1 1.2 3.2 3.3 4.3 5.2
5 0040 0.0 0.0 0.1 0.1 0.2 0.1 0.1
6 0103 8.2 11.3 22.7 46.9 59.4 62.2 58.2
7 0112 12.4 16.2 31.0 51.6 52.3 38.5 51.0
8 0121 2.6 3.9 8.2 15.2 13.5 9.4 13.0
9 0130 0.1 0.2 0.3 0.4 0.6 0.4 0.6

10 0202 4.9 7.0 15.0 21.8 23.5 15.3 22.8

11 0211 5.8 5.8 4.0 9.8 11.6 7.0 11.0
12 0220 0.5 0.8 1.6 1.o 1.2 1.0 1.2
13 0301 1.3 1.5 2.1 2.5 2.6 1.2 2.3
14 0310 0.3 0.6 0.5 0.7 0.3 0.2 0.3
15 0400 0.0 0.1 0.1 0.2 0.1 0.0 0.0
16 1003 25.7 29.1 50.8 83.8 100.0 73.2 100.0

17 1012 35.1 42.8 63.5 91.8 90.7 53.3 73.6

18 1021 16.0 18.3 28.2 27.4 20.8 13.0 19.9
19 1030 0.7 0.4 0.8 1.4 1.6 0.3 1.5
20 1102 45.5 60.6 92.0 100.0 74.3 45.4 65.4
21 1111 40.2 53.9 57.0 63.3 40.6 28.1 39.4
22 1120 7.0 8.2 9.7 8.2 8.4 3.8 6.1
23 1201 22.3 25.0 37.4 30.7 18.1 11.0 17.3
24 1210 10.8 12.8 13.2 6.8 7.4 2.8 8.0
25 1300 2.6 2.1 2.8 1.8 0.9 0.6 1.2
26 2002 73.0 81.8 84.2 76.4 46.4 32.9 45.0
27 2011 58.1 67.3 76.7 57.1 35.4 17.8 34.3
28 2020 14.1 14.4 5.4 5.5 5.7 2.0 3.0
29 2101 90.3 100.0 1o.o 69.5 31.2 20.5 26.3

30 2110 35.1 37.8 41.3 24.5 10.0 5.2 9.4
31 2200 19.1 21.6 20.0 11.6 4.9 2.3 4.4
32 3001 100.0 100.0 70.0 37.9 15.6 6.5 15.0

33 3010 51.0 33.2 33.8 13.3 6.6 3.2 7.0
34 3100 80.7 74.0 45.4 17.2 4.1 2.0 3.7
35 4000 65.4 48.2 17.5 4.2 2.0 0.7 1.9
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TableVIL Test levels of the mass points VJ. pseudo-standard.
variables, N= 10t =0, 0.250, 0.375, 0.500, 1.000

Mass points Hypothetical distributions
No. VJ a-=1.0 0.9 0.7 0.5 0.3 0.1 normal

1 0008 0.1 .1 0.5 3.6 19.9 94.0 35.6
2 0017 0.1 0.6 1.2 10.8 57.9 100.0 73.2
3 0026 0.0 0.5 3.1 7.6 47.8 57.9 59.4
4 0035 0.2 0.3 2.0 5.5 19.0 28.1 24.6
5 0044 0.2 0.3 0.9 1.6 6.6 7.3 10.1
6 0053 0.0 0.0 0.0 0.8 1.1 1.4 2.9
7 0062 0.0 0.0 0.0 0.3 0.1 0.0 0.5
8 0071 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9 0080 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0107 0.1 0.3 1.2 9.8 38.9 67.8 50.3
11 0116 0.5 1.5 4.2 28.8 78.1 79.6 92.5
12 0125 0.9 0.8 3.4 26.3 59.9 49.0 86.3
13 0134 0.9 1.0 3.8 15.7 32.6 19.4 25.5
14 0143 0.1 0.6 0.5 2.8 7.5 6.3 8.2
15 0152 o.0 o.0 0.1 0.6 0.4 0.8 2.6
16 0161 0.0 0.0 0.0 0.1 0.1 0.0 0.1
17 0170 0.0 0.0 0.0 0.0 0.0 0.0 0.0
18 0206 0.4 0.3 3.1 9.1 30.4 37.9 37.0
19 0215 0.2 2.8 9.6 28.8 56.1 39.9 51.9
20 0224 1.6 1.0 5.1 26.3 33.8 25.4 33.2
21 0233 0.5 0.5 2.6 10.8 11.2 8.9 15.4
22 0242 0.0 0.3 0.3 0.8 2.7 1.6 6.3
23 0251 0.0 0.0 0.1 0.5 0.2 0.1 0.3
24 0260 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25 0305 0.2 0.3 1.8 6.6 16.0 11.4 14.9
26 0314 1.1 2.7 3.8 16.2 21.6 12.6 18.8
27 0323 1.9 1.0 3.2 11.6 12.2 6.3 13.8
28 0332 0.0 0.5 0.9 2.4 5.7 2.2 6.3
29 0341 0.1 0.0 0.1 1.2 1.6 0.0 1.4
30 0350 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31 0404 0.1 0.1 0.9 2.1 4.1 1.5 3.6
32 0413 0.4 0.8 1.2 2.4 4.7 2.7 7.2
33 0422 0.1 0.3 1.5 2.8 2.8 0.6 3.1
34 0431 0.0 0.1 0.2 1.2 1.1 0.0 0.3
35 0440 0.0 0.0 0.0 0.1 0.0 0.0 0.0
36 0503 0.0 0.0 0.2 0.3 0.4 0.2 1.2
37 0512 0.0 0.3 0.6 0.5 0.1 0.2 0.5
38 0521 0.0 0.0 0.2 0.1 0.4 0.2 0.1
39 0530 0.0 0.0 0.0 0.0 0.2 0.0 0.0
40 0602 0.0 0.0 0.0 0.0 0.0 0.0 0.3
41 0611 0.0 0.0 0.1 0.1 0.0 0.0 0.1
42 0620 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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TableVIl (Continued)

Mass points Hypothetical distributions
No. VJ a=1.O 0.9 0.7 0.5 0.3 0.1 normal
43 0701 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44 0710 0.0 0.0 0.0 0.0 0.0 0.0 0.0
45 0800 0.0 0.0 0.0 0.0 0.0 0.0 0.0
46 1007 0.9 1.4 6.4 19.2 46.2 75.1 38.4
47 1016 1.9 2.7 9.2 44.2 86.3 84.4 83.5
48 1025 2.6 4.6 10.8 40.6 73.1 61.0 68.3

49 1034 1.6 2.7 8.5 19.8 37.6 26.7 30.8
50 1043 0.9 0.8 1.8 6.1 14.8 6.3 10.9

51 1052 0.0 0.1 0.3 1.5 1.8 1.2 1.8

52 1061 0.0 0.0 0.1 0.1 0.8 0.0 0.7
53 1070 0.0 0.0 0.0 0.0 0.0 0.0 0.0
54 1106 1.1 3.6 9.2 32.4 68.4 71.4 75.7
55 1115 7.2 10.4 40.1 84.3 100.0 89.2 100.0

56 1124 7.5 9.4 30.4 77.2 92.4 64.1 89.4
57 1133 3.2 6.6 15.9 44.2 40.3 17.4 48.7
58 1142 0.2 1.4 3.1 15.7 8.9 7.0 12.8
59 1151 o.0 o.o 0.6 0.5 0.8 0.4 0.8
60 1160 0.0 0.0 0.0 0.0 0.0 0.0 0.0
61 1205 3.8 5.1 12.9 37.4 54.3 34.2 47.1
62 1214 7.9 14.2 41.3 74.9 83.5 42.0 80.8
63 1223 6.1 7.4 28.5 65.0 64.1 22.8 55.3
64 1232 1.9 4.6 16.5 21.8 20.7 8.5 18.1
65 1241 0.9 0.5 1.8 3.6 3.8 2.7 4.3
66 1250 0.0 0.0 0.0 0.3 0.1 0.0 0.0
67 1304 3.2 4.2 15.4 23.3 23,3 13.8 21.2
68 1313 6.5 7.8 25.8 55.5 29.4 16.5 34.4
69 1322 3.4 4.2 13.4 33.3 16.6 5.4 16.6
70 1331 0.5 1.7 5.4 5.5 5.4 1.2 4.8
71 1340 0.0 0.0 0.2 0.2 0.2 0.0 0.5
72 1403 2.6 3.4 4.7 7.6 4.5 2.4 0.3
73 1412 1.4 3.8 8.5 15.7 7.5 3.9 6.8
74 1421 1.1 1.4 4.2 4.7 2.5 1.2 2.3
75 1430 0.4 0.5 0.5 0.5 0.1 0.2 0.5
76 1502 1.2 0.6 1.2 1.5 1.1 0.5 0.7
77 1511 0.4 1.4 2.6 1.9 0.8 0.2 0.7
78 1520 0.0 0.0 0.3 0.1 0.0 0.1 0.3
79 1601 0.1 0.3 0.2 0.2 1.1 0.0 0.3
80 1610 0.0 0.1 0.1 0.2 0.0 0.0 0.5
81 1700 0.0 0.0 0.0 0.0 0.0 0.0 0.0

18



TableVIl (Continued)

Mass points Hypothetical distributions
No. VJ a-= 1.0 0.9 0.7 0.5 0.3 0.1 normal
82 2006 3.2 3.4 7.4 24.0 44.7 44.1 45.6
83 2015 7.2 11.4 37.7 72.8 89.2 52.0 66.0
84 2024 9.6 13.1 33.5 63.4 62.0 37.9 57.3
85 2033 4.1 6.3 17.1 30.6 26.3 15.1 22.8
86 2042 0.9 2.1 6.4 12.8 5.2 3.4 5.5
87 2051 0.1 0.5 0.9 1.2 0.4 0.5 0.3
88 206o 0.0 0.0 0.0 0.0 0.1 0.0 0.0
89 2105 13.9 22.4 51.0 70.8 70.7 46.4 61.4
90 2114 20.6 36.7 87.3 100.0 95.9 54.9 96.1
91 2123 21.7 31.5 75.5 89.7 80.8 32.5 78.2
92 2132 13.2 15.5 33.5 55.5 24.4 12.6 24.6
93 2141 2.3 1.7 6.4 8.5 4.1 1.2 5.2
94 2150 0.0 0.5 0.3 0.1 0.1 o.o 1.2
95 2204 12.6 18.6 45.2 51.1 54.3 21.6 53.6
96 2213 25.0 47.1 89.8 92.8 68.4 29.5 70.7
97 2222 16.1 25.5 67.2 68.8 41.8 14.4 41.2
98 2231 4.6 9.9 14.3 16.8 12.7 4.7 8.9
99 2240 0.4 0.3 0.9 1.2 0.2 0.0 1.2

100 2303 10.5 17.0 29.5 34.3 17.4 6.6 20.4
101 2312 15.3 23.4 49.5 51.1 26.3 8.1 22.0
102 2321 10.0 12.0 21.1 19.2 8.5 1.8 9.3
103 2330 2.0 1.5 2.3 4.0 0.8 0.1 1.2
104 2402 5.5 8.6 11.6 15.7 3.6 1.2 3.6
105 2411 4.9 7.4 10.8 13.3 6.6 1.2 3.9
106 2420 1.6 1.4 2.3 1.2 1.4 0.1 1.2
107 2501 2.2 2.1 1.5 1.9 1.1 0.2 0.7
108 2510 0.5 0.6 1.5 0.5 0.0 0.0 0.3
109 2600 0.1 0.1 0.3 0.1 0.0 0.0 0.0
110 3005 12.1 14.8 23.4 36.3 29.4 18.3 29.6
111 3014 23.8 30.2 54.2 66.8 50.9 31.0 44.1
112 3023 18.7 27.8 49.5 63.4 35.0 13.8 32.0
113 3032 10.9 13.1 19.0 24.8 14.8 5.4 10.5
114 3041 1.4 2.1 6.4 4.0 2.5 0.2 1.8
115 3050 0.0 0.1 0.6 0.0 0.8 0.0 0.1
116 3104 31.8 45.5 61.3 63.4 49.4 20.4 42.7
117 3113 62.1 73.9 100.0 96.3 75.6 24.0 63.6
118 3122 46.7 68.8 82.4 86.8 43.2 15.1 39.8
119 3131 11.5 17.0 24.2 20.5 10.2 3.5 8.9
120 3140 0.4 2.3 1.8 1.9 0.4 0.5 1.2
121 3203 37.8 52.2 71.2 48.2 27.3 11.4 26.4
122 3212 69.8 82.8 96.6 81.9 36.3 10.3 28.5
123 3221 30.4 40.9 57.7 45.5 9.8 3.4 16.0
124 3230 3.2 4.8 12.9 8.5 3.6 0.8 2.0
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Table VII (Continued)

Mass points Hypothetical distributions

No. VJ c=1.0 0.9 0.7 0.5 0.3 0.1 normal

125 3302 27.6 39.5 43.8 35.3 12.2 2.2 14.3
126 3311 26.2 34.1 59.5 39.5 8.5 2.4 7.5

127 3320 4.3 6.0 8.5 5.5 1.1 0.6 2.1

128 3401 8.3 10.9 10.0 8.5 3.6 0.6 1.8

129 3410 3.8 3.0 5.1 3.6 1.4 0.1 2.0

130 3500 0.9 1.0 2.0 0.3 0.2 0.1 0.0

131 4004 19.6 21.4 26.6 28.8 15.4 8.1 12.3

132 4013 41.1 56.0 63.2 58.5 18.2 9.8 17.4
133 4022 39.4 26.6 46.6 38.4 10.7 4.9 11.8
134 4031 8.7 8.6 14.3 9.8 3.6 0.4 1.8

135 4040 0.9 2.3 0.5 0.3 0.8 0.2 0.0

136 4103 59.6 71.2 69.2 57.0 22.5 9.3 19.6

137 4112 91.7 100.0 93.2 79.5 31.5 7.3 27.4
138 4121 48.6 62.1 73.3 41.8 9.3 4.7 13.8

139 4130 9.6 9.0 6.8 4.5 1.4 0.0 1.8
140 4202 75.4 79.7 77.7 46.8 13.2 3.9 11.8

141 4211 81.4 89.2 84.8 55.5 13.7 1.4 9.7
142 4220 17.8 17.8 19.0 12.8 2.5 0.5 3.2

143 4301 34.7 45.5 36.6 21.2 2.5 0.7 3.9
144 4310 14.6 19.6 25.8 6.6 1.8 0.2 1.2

145 4400 6.1 5.6 2.6 2.8 0.4 0.1 0.5
146 5003 33.2 38.1 31.4 18.0 6.8 2.2 5.2

147 5012 67.2 66.5 52.6 22.6 5.0 1.5 6.6

148 5021 36.3 29.0 21.8 11.6 4.5 1.2 2.7

149 5030 5.2 5.4 4.7 1.5 0.8 0.2 0.8

150 5102 87.9 92.4 67.2 30.6 6.6 1.8 4.5
151 5111 1oo.o 96.1 80.0 31.4 8.5 1.4 8.2

152 5120 30.4 34.1 22.6 9.1 2.8 0.0 1.3

153 5201 84.5 76.7 55.9 17.4 3.6 0.5 4.3
154 5210 50.7 54.0 38.9 15.7 1.6 0.1 2.3

155 5300 22.7 20.5 14.8 3.0 0.8 0.0 0.3

156 6002 52.8 50.5 27.5 7.6 1.9 0.8 2.7

157 6011 64.6 58.0 34.5 6.1 1.5 0.1 2.9

158 6020 16.9 13.6 12.0 ?.6 0.1 0.0 0.1

159 6101 95.8 86.0 42.6 12.0 1.4 0.7 1.4

160 6110 72.6 64.3 35.6 10.1 1.4 0.2 0.7

161 6200 57.3 48.8 21.1 4.2 0.8 0.1 0.1
162 7001 55.0 42.4 19.0 2.1 0.4 0.1 0.5

163 7010 44.8 36.7 11.6 0.8 0.1 0.1 0.0
164 7100 78.3 60.0 19.6 1.5 0.2 0.0 0.3

165 8000 43.0 24,4 7.4 0.8 0.0 0.0 0.1
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Table IIX. Test levels of the mass points VJ, pseudo-standardized

Weibull samples,a=1.0. N=20"t c , .125,.250,.375#,.0

Mass points not appearing in this table have a TLS 1.4%

v23 0 1 2 3 4 5 6 7 8 9

0 4 . . . . . 2.8 . . . .
0 5 - - - - 2.8 - . . .
0 6 - - 2.8 - - -

1 2 - - - 2.8 2.8 2.8 - . .
1 3 - - 2.8 6.2 6.2 4.2 4.2 - - -

1 4 - - 4.2 2.8 2.8 - -

1 5 - - 6.2 2.8 2.8 6.2 - . .
1 6 - - - 6.2 2.8 4.2 2.8 - - -
1 7 - - - - 4.2 - -

1 8 - - - 2.8 - - -

2 1 - - - - - 4.2 2.8 - - -
2 2 - - 4e2 9.9 12.4 6.2 2.8 - - -
2 3 - 8.1 12.4 23.2 18.8 21.5 8.1 2.8 - -

2 4 - - 9.9 17.1 23.2 13.7 2.8 2.8 - -

2 5 - 9.9 2.8 28.7 12.4 9.9 2.8 2.8 - -

2 6 2.8 9.9 9.9 8.1 13.7 2.8 6.2 - - -

2 7 - - 12.4 11.2 12.4 8.1 2.8 - - -

2 8 - - 6.2 8.1 - 4.2 - - -
211 - - 2.8 - -..... . .
3 0 - - - - 2.8 - - - -
3 1 - - - - 6.2 2.8 6.2 4.2 - -
3 2 - 4.2 11.2 9.9 21.5 17.1 9.9 4.2 - -
3 3 2.8 12.4 23.2 36.7 27.4 37.7 21.5 8.1 - -

3 4 2.8 17.1 37.7 49.8 49.8 32.3 17.1 4.2 - -
3 5 - 21.5 41.5 75.2 33.2 28.7 8.1 8.1 - -
3 6 2.8 11.2 28.7 36.7 33.2 13.7 12.4 - -
3 7 4.2 11.2 18.8 32.3 13.7 6.2 - - -
3 8 - 11.2 21.5 18.8 11.2 - ..
3 9 4.2 4.2 6.2 4.2 4.2 - - -

4 1 - - 6.2 21.5 8.1 12.4 6.2 2.8 - -

4 2 - 6.2 31.0 29.6 31.0 21.5 9.9 4.2 2.8 4.2
4 3 11.2 14.7 38.8 65.0 53.6 41.5 28.7 9.9 2.8 -
4 4 9.9 27.4 55.2 62.3 65.0 43.0 25.6 2.8 - -

4 5 6.2 34.6 73.5 69.4 60.5 25.6 21.5 2.8 - -
4 6 4.2 44.5 53.6 53.6 39.6 18.8 6.2 - - -
4 7 4.2 18.8 55.2 27.4 23.2 - -

4 8 6.2 12.4 24.0 14.7 13.7 - ..
4 9 2.8 6.2 9.9 8.1 2.8 - ..
4 10 - - 4.2 - - -
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Table IIX (Continued)

v2v'3 0 1 2 3 4 5 6 7 8

5 0 - - - 4.2 2.8 4.2 2.8 - -

5 1 - 4.2 9.9 27.4 18.8 17.1 8.1 6.2 -

5 2 - 18.8 41.5 45.7 44.5 41.5 14.7 2.8 -

5 3 6.2 31.0 65.0 80.3 77.9 57.2 17.1 6.2 -

5 4 17.1 46.4 84.9 91.7 84.9 47.7 24.0 6.2 -

5 5 27.4 63.2 76.8 93.3 71.5 32.3 17.1 - -

5 6 21.5 39.6 73.5 49.8 36.7 18.8 6.2 - -

5 7 4.2 34.6 47.7 44.5 21.5 6.2 - - -

5 8 9.9 23.2 21.5 13.7 6.2 - . .

5 9 4.2 4.2 8.1 6.2 - .. .

5 10 - 2.8 - - -

6 0 - - 4.2 2.8 - - - -

6 1 - 4.2 23.2 33.2 17.1 27.4 4.2 4.2 -

6 2 6.2 28.7 51.3 53.6 60.5 33.2 21.5 8.1 -

6 3 8.1 46.4 75.2 90.9 79.1 51.3 13.7 4.2 -

6 4 11.2 62.3 96.1 96.1 85.6 37.7 12.4 2.8 -

6 5 21.5 73.5 92.5 87.8 71.5 32.3 4.2 - -

6 6 12.4 71.5 87.8 76.8 43.0 8.1 - - -

6 7 21.5 39.6 62.3 43.0 21.5 - . .
6 8 8.1 11.2 34.6 11.2 9.9 - . .
6 9 - 11.2 9.9 - - -

6 10 - 2.8 - - - - - -

7 0 - - - 2.8 8.1 - 2.8 - -

7 1 6.2 8.1 12.4 31.0 25.6 25.6 9.9 - 2.8
7 2 6.2 17.1 58.4 66.9 49.8 41.5 17.1 2.8 -
7 3 13.7 53.6 89.4 90.9 58.4 46.7 14.7 - -
7 4 31.0 69.4 96.1 100.0 76.8 45.7 8.1 - -
7 5 27.4 67.4 99.0 99.0 60.5 8.1 2.8 - -
7 6 36.7 59.2 71.5 71.5 27.4 11.2 - - -

7 7 21.5 41.5 44.5 23.2 2.8 -. . .
7 8 9.9 18.8 13.7 8.1 - . . ..
7 9 6.2 6.2 4.2 - - .
8 0 - - - 6.2 2.8 - -

8 1 - 14.7 32.3 17.1 23.2 17.1 6.2 - -

8 2 8.1 29.6 51.3 53.6 37.7 25.6 8.1 - -

8 3 9.9 62.3 77.9 83.6 80.3 34.6 17.1 - -

8 4 21.5 66.0 97.0 89.4 51.3 24.0 - - -

8 5 17.1 73.5 82.9 74.1 36.7 2.8 - - -

8 6 17.1 57.2 66.9 36.7 6.2 - -

8 7 8.1 36.7 29.6 12.4 - . . .

8 8 6.2 14.7 - - . .
8 9 4.2 - - - -

9 0 - - 2.8 4.2 4.2 - . .
9 1 - 13.7 24.0 34.6 25.6 11.2 - - -

9 2 4.2 28.7 57.2 59.2 31.0 17.1 2.8 - -
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Table uIX (Continued)

V3  0 1 2 3 4 5 6

9 3 18.8 66.0 81.6 81.0 34.6 17.1 -

9 4 27.4 69.4 87.8 79.1 2.5,6 6.2 -

9 5 23.2 55.2 82.9 55.2 11.2 - -

9 6 17.1 43.0 48.4 9.9 - - -

9 7 18.8 25.6 13.7 - . .
9 8 4.2 6.2 - -

.O 0 - - 4.2 2.8 - - -

10 1 4.2 8.1 21.5 17.1 14.7 11.2 -

10 2 9.9 27.4 36.7 38.8 13.7 6.2 -

10 3 8.1 47.7 65.0 45.7 21.5 6.2 -

10 4 17.1 58.4 69.4 38.8 8.1 - -

10 5 29.6 63.2 57.2 8.1 - - -

10 6 14.7 25.6 8.1 - . .
10 7 11.2 8.1 - -

11 0 - - - 4.2 - - -

11 1 - 8.1 12.4 11.2 8.1 2.8 -

11 2 6.2 25.6 41.5 31.0 9.9 - -

11 3 6.2 38.8 48.4 29.6 13.7 - -

11 4 21.5 57.2 43.0 14.7 - - -

11 5 13.7 36.7 18.8 - . .
11 6 21.5 18.8 - . . .
11 7 6.2 - - -
12 0 - - - 6.2 - - -

12 1 2.8 6.2 9.9 9.9 6.2 2.8 -

12 2 2.8 27.4 24.0 17.1 2.8 - -

12 3 9.9 18.8 44.5 11.2 - - -

12 4 23.2 32.3 23.2 - . .
12 5 8.1 9.5 - . . .
12 6 2.8 - - -
13 0 - - - 2.8 - - -

13 1 2.8 4.2 6.2 6.2 2.8 - -

13 2 8.1 9.9 6.2 8.1 - - -

13 3 12.4 14.7 11.2 - . .
13 4 8.1 28.7 - . . .
13 5 4.2 - - -
14 0 - - - 4.2 - - -
14 1 - - 9.9 - . .
14 2 9.9 4.2 - . ..
14 3 9.9 - . ...
14 4 6.2 - - .
15 1 - 2.8 4.2 . . . .
15 2 2.8 8.1 - . . .
15 3 4.2 - - .
16 1 - 2.8 - . ..
16 2 2.8 - - .
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Table IX. Test levels of the mass points VJI pseudo-standardized

normal samples, N= 20, t = .125 .250,.375,1.0

Mass points not appearing is this table have a TL<l%

\,v3 0 1 2 3 4 5 6 7 8 9v\2

o o 52.9 94.6 90.0 76.0 58.3 35.7 20.1 5.7 1.6 -
0 1 56.1 97.0 100.0 92.2 74.3 49.9 21.7 9.0 4.6 -
0 2 41.7 68.3 85.6 87.7 65.6 41.7 15.6 9.9 4.6 -
0 3 15.6 46.3 55.0 60.6 41.7 31.7 17.8 4.0 4.6 1.6
0 4 7.8 33.4 32.8 30.7 25.0 13.2 4.6 1.6 2.4 -
0 5 4.0 13.8 13.8 13.2 lo.6 8.1 3.2 - - -
0 6 2.4 5.7 6.3 - 3.2 - 1.6 - - -
0 7 - 2.4 3.2 - - - -0 8 - - - 1.6 - - - - - -
1 0 28.4 49.0 64.3 54.0 38.3 28.4 13.2 5.7 3.2 2.4
1 1 27.5 71.2 83.6 77.8 66.9 43.9 22.0 7.8 4.6 -
1 2 35.7 63.0 81.5 79.6 72.7 37.6 21.0 7.8 6.3 1.6
1 3 21.0 47.2 69.8 59.5 44.7 23.5 14.9 9.9 1.6 -
1 4 9.9 32.8 37.0 35.7 25.8 13.2 7.8 3.2 - -
1 5 4.0 13.8 22.8 16.8 15.6 6.3 4.0 - - -
1 6 1.6 5.7 13.2 8.1 3.2 3.2 - ..
1 7 - 2.4 4.0 4.0 - -. .
1 9 - - - - 1.6 - - - - -
2 0 7.8 24.6 36.3 26.2 24.6 10.3 11.0 2.4 1.6 -
2 1 14.4 46.3 50.9 61.8 43.2 20.1 16.1 7.8 3.2 -
2 2 20.1 39.6 51.9 57.2 39.6 22.8 16.1 7.8 2.4 -
2 3 14.9 29.3 42.4 48.0 31.2 14.4 9.0 4.0 - -
2 4 6.3 21.0 30.7 28.8 17.8 9.9 8.1 1.6 - -
2 5 2.4 7.8 10.3 13.2 11.3 5.7 3.2 - 1.6 -
2 6 2.4 3.2 9.9 7.8 4.0 1.6 - - -
2 7 - - 3.2 -- -. ..
2 8 - - - 1.6 . .....
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Table IX (Continued)

v3 0 1 2 3 4 5 6 7 8

3 0 3.2 11.3 13.2 18.7 9.9 4.0 4.0 - -

3 1 5.0 16.8 25.8 27.5 20.1 13.2 7.8 3.2 -

3 2 10.3 21.7 29.8 33.9 27.5 17.8 4.6 1.6 -

3 3 9.0 16.8 24.6 23.5 18.9 7.8 5.0 - -

3 4 1.6 5.7 17.8 13.2 13.2 7.8 4.0 - -

3 5 5.0 7.8 2.4 4.0 3.2 1.6 - - -

3 6 - 1.6 1.6 4.0 1.6 1.6 - - -

3 7 - - - 1.6 - - - -

3 8 - 1.6 - - - - - -

4 0 - 4.0 3.2 2.4 3.2 5.0 2.4 - -

4 1 - 5.0 18.7 9.0 9.0 6.3 - - -

4 2 2.4 11.0 18.7 14.4 5.7 7.8 - 1.6 -

4 3 1.6 4.6 10.5 7.8 5.7 6.3 1.6 1.6 1.6
4 4 - 9.0 9.9 9.0 3.2 - - - -

4 5 1.6 3.2 2.4 3.2 -....

4 6 - - 1.6 2.4 - . . .
5 0 - - 3.2 - - -

5 1 - 2.4 2.4 5.7 4.0 1.6 - - -

5 2 2.4 - 4.6 4.6 4.6 - . .

5 3 - 2.4 6.3 2.4 - -

5 4 - - 4.0 2.4 1.6 - . .
5 5 - - - 2.4 - -

6 1 - - 2.4 - - -

6 2 - 1.6 1.6 2.4 - -

6 3 - 1.6 - - - -

7 1 - - - 2.4 - -

7 2 . . .. .....
7 3 - 1.6 . . .. ...
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Table X. Test levels of the mass points VJ. pseudo-standardized

Weibull samples,a=0.1,N=20,1t =0;.125;.250;.375; 1.0

Mass points not appearing in this table have a TL 1%

vlV 2V 0 1 2 3 4 5 6 7 8

0 0 93.3 100.0 81.9 53.7 30.7 14.7 4.4 - -
0 1 72.9 87.2 77.1 58.5 37.1 16.3 4.8 2.0 -
0 2 41.2 63.9 55.9 44.3 21.0 14.4 3.7 1.6 -
0 3 18.1 34.8 31.7 21.8 11.8 5.1 2.0 - -
0 4 7.8 12.7 14.4 8.5 6.3 3.4 1.6 1.0 -
0 5 2.0 4.4 4.8 3.4 - 1.0 - - -
o 6 - 1.0 1.6 - 1.0 - - - -
1 (0 45.9 69.6 51.5 39.8 23.2 8.8 3.4 2.0 1.0
1 1 38.4 66.7 61.2 42.7 28.0 15.4 7.3 1.0 -
1 2 22.5 47.5 49.3 35.9 19.8 10.4 2.0 - -
1 3 10.4 25.6 28.9 20.4 11.2 5.6 1.6 - -
1 4 5.6 12.7 12.7 7.3 3.4 1.0 - - -
1 5 2.0 4.4 4.4 2.3 - 1.0 - - -
1 6 - 1.0 1.0 - - - - - -
2 0 17.8 29.8 24.8 18.6 13.4 5.1 2.8 - -
2 1 17.6 33.7 32.6 24.8 16.7 8.0 3.4 2.0 -
2 2 11.8 27.2 26.3 19.2 13.4 3.4 2.8 1.6 -
2 3 6.3 15.0 15.8 10.4 10.4 3.4 2.8 - -
2 4 2.3 7.3 7.8 5.6 4.4 2.0 - - -
2 5 - 3.7 2.3 2.3 - -
2 6 - 1.0 1.6 1.0 - - - - -
3 0 4.4 7.4 7.3 7.3 3.7 1.6 - - -
3 1 6.3 10.4 11.2 11.2 6.3 1.0 - - -
3 2 4.4 9.0 14.4 8.8 7.3 1.6 - - -
3 3 2.3 4.8 8.8 5.8 3.4 1.6 1.6 - -
3 4 1.0 2.8 4.4 1.6 - - - - -
3 5 1.0 1.0 - - -
4 0 1.6 1.6 2.8 1.0 2.0 - -

4 1 1.6 2.8 5.6 3.7 2.0 1.6 - - -
4 2 2.0 5.1 4.8 2.3 2.8 1.6 - - -
4 3 - 2.0 1.6 2.8 - - -
4 4 - - 1.6 - . . . .
5 0 1.0 - - -.. .
5 1 - - 1.6 - . . . .
5 2 - - 1.6 - - - . .
6 0 - - - 1.0 . . . . .



Table XI. Tests of the hypothesis that the distributions of

VJR and VJS are identical for equal class

probabilities

a) R. pseudo-standardized exponential population
S = -"- -"- normal
W-10, r-4, Pi = I /r-25%

Types Nr. of Sign test Nr-of-runs test Rank-sum test
Tye ro r,of Reject. Nr.of Reject. T T Reject,

of VJ pairs + - %runs %1 2 %L

0008 4 1 1 - 2 - 18.0 18.0 55.7
0017 12 4 6 > 25 7 88.1 136.0 164.0 21.8
0026 12 1 11 - 1 3 - 129.5 170.5 12.3

0035 12 4 5 > 25 5 50.0 144.5 155.5 38.7
0044 6 0 6 - 10 0 - 31.0 47.0 12.0
0116 12 2 10 - 5 3 18.2 139.0 161.0 27.3
0125 24 13 11 > 25 9 7.5 604.5 571.5 37.1
0134 24 10 14 > 25 8 3.7 582.0 594.0 45.9
0224 12 6 6 > 25 5 17.5 149.0 151.0 48.8
0233 12 3 8 = 25 5 53.3 140.0 160.0 29.2
1115 4 2 2 '25 4 .o90.0 15.5 20.5 29.3
1124 12 7 5 >25 6 42.4 148.5 151.5 47.6
1133 6 4 2 -25 3 40.0 34.o 34.0 24.2
1223 12 9 3.. 25 4 20-O 184.5 115.5 2 . 5 J

b) R= pseudo-standardised Weibull, a= 1.0, population
s = -"- -"- Weibull, a = 0.1,
N=-10, r=4, Pi = 1/r=25%

Sign test J-r-of-runs test Rank-sum test
Typesof Nr.Ofpairs Nr. of Reject. Nr.of Reject. T T Reject.

+ - pis runs 1 2

0008 4 0 3 25 - 15.5 20.5 3
0017 12 1 8 5 3 - 127.5 172.5 10.0
0026 12 3 6 > 25 3 10.7 144.0 156.0 37.5
0035 12 4 8 >25 7 78.8 143.0 157.0 35.5
0044 6 4 2 >25 4 80.0 40.5 37.5 43.9
0116 12 5 7 >25 6 42.4 133.0 167.0 17.0
0125 24 12 12 >25 9 7.2 583.5 582.5 46.0
0134 24 12 12 ;125 13 50.0 582.0 594.0 45.9
0224 12 7 5 725 4 7.6 152.5 147.5 45.4
0233 12 7 5 >25 7 65.2 154.0 146.0 42.1

1115 4 3 1 '25 2 - 20.5 15.5 29.3
1124 12 5 7 :25 8 85.4 147.0 153.0 44.3
1133 6 4 2 >25 3 40.0 42.0 36.0 35.0
1223 12 10 2 - 5 2 3.0 170.0 130.0 13.1
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Table XII. Test levels of the mass points VJ, pseudo-standar-

dized variables, N=10, r=4, p= 1/r=25%

Mass TL Mass Mass Mass TL
points 0: points TL points TL points
No VJ % No VJ % No VJ % No VJ %
1 0008 0.2 43 0701 0.0 842024 290 125 3302 35.3
2 0017 2.1 44 0710 0.1 85 2033 36.1 126 3311 71.8
3 0026 7.4 45 0800 o.0 86 2042 25.5 127 3320 54.9
4 0035 11.8 46 1007 0.3 87 2051 6.3 128 3401 15.8
5 0044 9.8 47 1o16 4.4 88 2060 0.0 129 3410 34.5
6 0053 363 48 1025 14.3 89 2105 10.4 130 3500 6.1
7 0062 0.4 49 1034 23.8 90 2114 51.3 131 4004 0.7
8 oo71 0.2 50 1043 20.7 91 2123 79.5 132 4013 7.4
9 0080 0.0 51 1052 6.6 92 2132 85.6 133 4022 19.6

10 0107 0.8 52 1061 1.8 93 2141 47.8 134 4031 13.3
11 0116 9.5 53 1070 0.0 94 2150 3.7 135 4040 2.1
12 0125 33.0 54 1106 4.0 95 2204 20.7 136 4103 11.4
13 0134 40.1 55 1115 2.1 96 2213 73.7 137 4112 53.7
14 0143 31.0 56 1124 65.4 97 2222 100.0 138 4121 57.3
15 0152 13.7 57 1133 70.0 98 2231 87.8 139 4130 24.9
16 0161 2.5 58 1142 57.3 99 2240 22.7 140 4202 23.2
17 0170 0.0 59 1151 18.6 100 2303 27.8 141 4211 68.3
18 0206 2.6 60 1160 2.3 101 2312 83.5 142 4220 41.3
19 0215 26.6 61 1205 8.0 102 2321 90.0 143 4301 28.4
20 0224 44.7 62 1214 61.2 103 2330 43.6 144 4310 46.7
21 0233 58.6 63 1223 97.0 104 2402 19.6 145 4400 6.8
22 0242 37.0 64 1232 94.5 105 2411 52.5 146 5003 1.3
23 0251 11.1 65 1241 49.0 106 2420 38.8 147 5012 5.8
24 0260 0.4 66 1250 5.1 107 2501 8.5 148 5021 5.3
25 0305 1.3 67 1304 14.1 108 2510 16.2 149 5030 3.2
26 0314 21.1 68 1313 62.6 109 2600 2.1 150 5102 4.2
27 0323 42.6 69 1322 83.5 110 3005 1.4 151 5111 34.5
28 0332 37.9 70 1331 68.3 111 3014 9.5 152 5120 16.7
29 0341 14.8 71 1340 17.6 112 3023 27.8 153 5201 14.9
30 0350 3.0 72 1403 10.8 113 3032 30.3 154 5210 33.0
31 0404 2.8 73 1412 39.7 114 3041 12.9 155 5300 12.232 0413 14.5 74 1421 64.0 115 3050 1.0 156 6002 1.3
33 0422 29.6 75 1430 24.9 116 3104 10.4 157 6011 1.7
34 0431 22.1 76 1502 7.7 117 3113 50.2 158 6020 2.535 0440 2.9 77 1511 21.6 118 3122 75.6 159 6101 3.8
36 0503 0.7 78 1520 8.2 119 3131 59.9 160 6110 8.8
37 0512 4.7 79 1601 1.7 120 3140 15.3 161 6200 5.1
38 0521 5.6 80 1610 3.5 121 3203 26.6 162 7001 0.5
39 0530 1.0 81 1700 0.1 122 3212 77.6 163 7010 0.3
40 0602 0.2 82 2006 0.6 123 3221 92.2 164 7100 1.7
41 0611 2.3 83 2015 12.9 124 3230 45.7 165 8000 0.1
42 0620 1.0 - - - - - - - - -
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Table XIII. Percentiles of pseudo-standardized variables

for N= 10, N =20. and various distribution

functions

N - 10

p 1.0 0.9 0.7 0.5 0.3 0.1 Normal

0.0 .0000 .0000 .0000 .0000 .0000 .0000 .0000
12.5 .0435 .0542 .0824 .1220 .1725 .2323 .1810

25.0 .0938 .1123 .1585 .2189 .2933 .3780 .3035

37.5 .1542 .1786 .2373 .3104 .3957 .4904 .4055
50.0 .2280 .2570 .3233 .4025 .4913 .5853 .5000
62.5 .3197 .3511 .4212 .4998 .5857 .6732 .5945

75.0 .4461 .4772 .5443 .6160 .6900 .7635 .6965
87.5 .6377 .6625 .7126 .7640 .8151 .8635 .8190
100.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

N = 20

Normal

1.0 0.9 0.7 0.5 0.3 0.1 dbn

0.0 .000 .000 .000 .000 .000 .000 .000
12.5 .030 .040 .079 .130 .192 .278 .205
25.0 .075 .095 .145 .227 .310 .416 .322

37.5 .130 .155 .215 .300 .405 .518 .416

50.0 .194 .220 .294 .384 .492 .605 .502

62.5 .268 .304 .382 .475 .577 .680 .585

75.0 .382 .418 .492 .580 .671 .762 .678
87.5 .56o .590 .660 .722 .790 .857 .795
100.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table XI The effect of pooling on the decision power of VJ

Stage N.Of Decision power in
of pooling poInTs I vs 0.1 1 vs 0 0.1 vs 0

VJI ungrouped 165 77.2 69.1 22.0

Types of VJ 15 18.4 6.6 21.6

X2  14 18.4 6.6 21.6

NE 4 13.0 1 .6 13.6
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