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PREFACL

The practical implications of linear sequential filteving (or
Kalman-Bucy filtering) theory were quickly recognized by the engineering
community as an important contribution to —eal-time data processing. Some
of its numerous successful applications have been made to aerospace en-
gineering system. The typical examples are orbit deterg@natipnrandrtréjec-
tory estimation problems. Since these problems generally are concerned with
contindous ronlinear dynamic systems and discrete observations, nonlinear
filitering has been a theme of interest in the field eof orbit determination.

It has been demonstrated that the optimal nonlinear filter, requires
the computation of an infinite'number of moments and generally its implementa-
‘tion is not practical. Tais leads one to seek‘an approximate solution to the
optiral noniinegr filtering problem. Several approximate nonlinedr Filters
have been proposed previously and, for the most part; these can be classified
as one of two basic types of second order filters. The first is the truncated
Segqnd order fiifgr which -utilizes a Taylor ceries expansion of the dynamic
system and the state-obsérvationrrelationéhips, followed by a truncation of
the third and higher order moments. The other is the Gaussiin second order
filter which employs a Taylor series expansion and approximations of the
{ourtﬂ order momeats in terms of the second order mements, under the assump-
tion that the conditiocnal density functicn is Gaussian., The unique feature
of both filters is found in the fact that é random foreing term occurs in the

covariance equation. The random forcing term which anters into the covariance

equation in & linear manner is considered to have potential for causing the

conditional covariance matrix to be negative definite over some non-zero

time interval. This term is often neglected in the modified Gaussian or
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truncated second order filters.

This study is concerned with the develiopment of an approximate non-

lin2ar filter using the Martingale theory and approoriate smoothing proper-

ties. Both the first order asu the second order moments are estimated. The

filter, which is developed, can be classified

as a medified Gaussian second

order filter. Its performance is evaluated in a4 simulated study of the prob-

dem of estimating tne state ol an interplanctary srace ‘ehicle during both a

simulated Jupiter fly-by and a simulated Jupiter orbiter mission. In addi-
tion to the modiliad Gaussian second oriss filter, the modified truncated

second order filter is evaluated also in the simulated study. Results ob-

_tained with each of these filters are compared w.th numerical results ohtained

with the extended Kalman fiiter and the performance of each filter is deter-
mined by comparison with the actual estimation errcrs. The simulations are
designed to determine the effects »f the second order terms in the dynamic

state relations, the observation-state relaticns and in the Kalman gain com~-

pensation term. The result of an extensive simulaiion si.ows that the Kalman

gain compensated filter which includes only the Kalman gain compensation term
is superior to all of the other filters.

Special gratitude is expressed to D.'. B. D. Tapley for serving as
supervising professor during this research. His encouragement and guidance
during the author's course of study at The University of Texas at Austin are
greatly appreciated. The author would also like teo thank Dr. W. 7. Fowler,
Dr. J. R. Dickerson and Dr. D. G. Lainiotis for serving on che supervising
committee. Alsc, special appreciation is extended to Mprs. Hope lnce for her
skillFul typing of -the manuscript.

The nuthor wishes to acknowledge the [inuncial support given the

.t

W S

\“M
,

RS
ENG

L,




author by the Hational Aeronautics and Spice Administration under Grant
NGL 44~012-008 and the Air Force O0ffice of Scientific Research under Grant
AFOSR 72-2233 Cduring the course of his graduate studies. The author thanks
Dr. D. W. Jones and Dr. B. E. Schutz for their assistance with the develop-
ment of the computer program. The encouragement of Mr. and Mrs. John L.
Engv L was especially appreciated.

Finally, the author would like tc express his deep ippreciation

to his wife, Dong-Ck, and his daughters, Caroline «nd Rache’, and his parents,

Mr. and Mrs. Joon-Ill Choe, for their underutanding, encouragement and

patience during the course of his graduate studies.

Chul Young Choe

Decemper, 1971
Austin, Texas

e R O 0 o A by

e e P

o

AR T un

P P T

g S

oy Ak

Vikok

b et AL R kB S

v
4

o,

3

SR

4
4

s b

3

4
i

¥atiy
¥

s

il

h.

e
kv

m‘x T

|
e
%

5
ity

r

3

S

i

2]

t

I
N

‘ Iy \v T T
ol R RS AR

i

i




PRETACE . . . . . .
LIST OF SYMBOLS

LIGT OF DEFINITIONS

LIST OF FIGURES . .

CHAPTER 1.
1.1.
i.2.
1.3,
1.4,

1'5'

CHAPTER 2.
2.1.
2.2.

i
1
2

fo-
e

=,
3
N
s

& 2,4,
P

E 2.5.
2. 2.6.

|
SR

CHAFTER 3.
3.1,
3.2.
3.3.
3.1,

1) RANGE

LIST OF TABLES . . .

.

APRIORI EGTIMATE

LY

INTRODUCTION . .
PRELIMINARY REMARKS
KALMAN-BUCY FILTER .
LINEARIZATION AND THE EXTENDED
THE PROBLEM TO BE STUDIED
OUTLINE OF STUDY .

a

TABLL

OF CONTENTS

ooooo

* .

.

.

»

e & ¢ e @

X

2.3. APRIORI CONDITIONAL

j

t+s/t

COVARIANCE MATRIX

t+s/t
POSTERIOR CONDITIONAL COVARIANCE MATRIX

LI

e o

PREDICTED OBSERVATION

COMPUTATIONAL ALGORITEM
2.9. CONTINUOUS SECOND OROER FILTER .

yt+s/t Ll » * < .
POSTCRIOR ESTINMATE AND THE OPTIMAL GAIN

.

.

.

of

.

.

.

)

* o

.

.

e e e o

NONLINEAR' ESTIMATION ALGORITHM . .
INTRODUCTION . , .
APRIORI ESTIMATE

.

* .

»

¢ s

¢+ .

.

e

Pt+$/t e
Kt+s *t

......

DESCRIPTION OF THE ORBIT DETERMINATION PROBLEH .
iNTRODUCTION . .
EQUATIONS OF MOTION
AUGMENTED STATE VECTOR .
STATL-OBSLRVATION RELATIONSEIPS

xii

3 O U = =

20
22
23

26

R L

A

s

N e Gl A R R W R e (b W

et

s

LT

R e AR L T TRy

i
i
}
4

b e wt A L R A R P N A BB i s

PRT ORI,




T I P L et s S
s e = e e el SR AR B e e s
=S R D D D o s ALl ey B e B R A T e I TR e
e A e ) TR eI e e S e e T Rl 5 - B
I AR T - A I -
A i g R Rk 15 e e

e . B T S i e e — — =

Page

2) RANGE-RATE . . . » « + « &

3) SUN-PLANET ANGLE . . . . .

4) STAR-PLANET ANGLE . . . .

3,5, MOTION OF THE TRACKING STATICN .
3,6, SIMULATION OF ERRORS . & . . .
3.7. COMPUTER PROGRAM DESCRIFTION .

. . - - » 39

* - L4 k] L4 L] L4 Ll A4 . L - L L 4 ui

® e e+ 3 s ¢ e & s ¢ 2 0

+5
® s 2 & e s e & & * + 3 B *t » l'

T LRI R ST

CHAPTER 4. DISCUSSION OF KUMERICAL RESULTS

A 1

4 4.1. VARIOUS SIMPLIFIED FORMS OF SECOND ORDER NONLINEAR FILTERS . 48 .
4 4.2. THE NOMINAL TRAJECTORY AND ERROR SOURCES . « « o + « « . . . 53 A
- 4,3, CHARACTERISTICS OF THE FILTERS « « = = o o o o o o o o o o . S8 ?%g
a3 4.4, APPLICATIONS OF THE KGC FILTER TO THE HYPERBOLIC ORBIT . . . 91 B

4.5, APPLICATIONS OF THE KGC FILTER TO THE ELLIPTIC ORBIT . . . . 120

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS
5.1, SUMMARY .
5.2. CONCLUSIONS '« ¢ v ¢ o o o o s o o o o » s o o
5.3. PECOMMENDATICNS FOR FUTURE STUDY

P L
O %
I L &
- L

* & 8 6 8 e ¢ 3 9 s o P & = & & ¥ »

APPENDICES « v « o o o « o o o o o o «
APPENDIX A. PARTIAL DERIVATIVES .

* & ¥ e e + & 3 ¥ » & = ¥ s ¢ 1!*8

* L4 * L] * L4 L] - > » L) - . . * . ‘1“9 -

APPENDIX B. SMOOTHING PROPERTIES .

- -
vto.oc&o--'.'-viaa

Gi¥ ORI, 000 YW R0 R e AL B B
ATV DRSO SR

E APPENDIX C. BROWNIAN MOTIOH + o « o v o o o v v v o+ o o s v oo 168
3 APPENDIX D, MARTINGALE . . o 4 v v o v o v o v v o s o v o v oo 178 55
R APPENDIX E. TRACE OF MATRICES . . « s &+ « + « v v o o » o o oo o 178 :153
E APPENDIX F. STOCHASTIC FUNDAMENTAL LEMMAS AND THE OPTIMALITY N
v ;: CO“DITION . * L4 L] L] - > & * » . - . 2 L » L - - - 179 ; - /ifzg
45 i 7
‘ A BIBLIOGRAP}{Y ¢« ® P & F e e % e s & B2 2 ¥ & * 3 S+ & e & & * e & s & v 18“ § ;5
:
ko o VITA .
R ;?i 2 Z
> o r
- =% S
g ;=
vii 1z

AT
ak

JE

L VYR sl

.



LIST OF SUMBOLS

.

The feollowing list tabulates il of the sigrdficant symbbls used ir

thi~ study aud each symbol is accompanic ! by a v».. ‘laseription.

the number of state variables

the number of aifferent tyr  of observations

SR i i o A S 3 0 | AN S G A (A

neiccetes a pevt wllar instaste . f time at which a discrete cbser-
vation is mad.

state variarie ™ “ime ¢t

state rapiedie

observation at ti i

available observations at time t , that is, Yt {yi
or the o-field gensrated by the observatiens

state dyaanic equation, nxi vector

partias. devivatives of £{*) w.r.t.x , nxn matrix
stavre- .L sepvation relaticnship, mx1l vector

partial devivatives of h(*)w.r.t.x , mxn matrix

izh component of f£(+)

iEh-component of h(+)

£, 035
‘5-;(-— " 1%n vactor
%1 T2
dh, oh,

1 1

Sx1 8x2

1xn vector

R
B *WM
R

Bedg
s

ol
&%




RIS

ads Syt
el P A
R BRI

¥

(n’lj “)fi
uki Dx10x2
S ) . nxn matrix
226, 82,

1 _ L

419xX_9x
n

e

9%X_9%
n

1 2

[32n,  32n,
1 R 1

v
axi 8x18x2

. ‘ nXn matrix
32h.  9%h,
N S !

13% 3%, ox %
n 4 n

booer

2

[trace (f1

‘Itrace (r2xip)

e

nxl vector

{trace £ Py
E?ace ( XK i

tracs (thXPJ

trace {hOxxP)'
1 . < mx1 veetor
1 2
.

trace (hmxxpl

=3

P is an nxn matrix.




N
A RTE R e
T

S b
1

ts/t. © s

. .7
t - KR/

% %7
T+s t+s/t7t

<
"

¥/t E[Vt/Yt]

v1;+s/t i E[vt+s/Y

>

tts/t

The following definitions are used consistantly throughout this

X, . =R

» e e s s i tado
2 % o * B R
‘?&@ﬁtiﬁﬁﬁgkﬁ%ngﬁy ¥

LIST OF DEFINITIONS

study.
= ictei i is of Y, .

9t+s/t E[yt+s/Yt] predicted observation on the basis o "

ﬁt/t = E[xt/Y%] posterior estimate of X, on the basxf of Yt .
which is the optimal estimate of X, at time t

3t+s[r = E[xt+s/\t] apriori estimate of Xpag O the basis of Y{ s
which is also the optimal estimate at t+s , pro-
vided tha* no other observation is made after t .

K‘/t = X - gt/t posterior estimation error

apriori estimation error, if s = 0 apriori és-

t+s/t

timation error beccmes posterior estimation error

e/t

nxn matrix of posterior estimation error square,
each element in this matrix is a random variable

4/t XD matrix of apriori estimation error squares, each

element of this matrix is a random variable

posterior conditional covariance matrix

1:] apriori estimate of posterior estimation error

squares V on the basis of Y

£4s L o BN matrix
- -

= E[Pt+s/Yt] apriori conditional co—ariance matrix, P =

t+s/1t
Versse = Ve Hos =00

...,._,
sad s b 1
ZECTIIA IR

e
sy

) .,

.

&
)

b

.
i

S5 AN

LAty

RS

55

2l

a0

fiks



LIST OF TABLES

Simplified Nonlinear Filters .
Julian Date and True States at
Planet Orbit Elements
Observational Data . .
Simulation Data (1~-4)
Simulation Data (5-8)

Simqlétipn Data (3-11)

Simﬁlati@n Data (12-14)

Simulation Data (15-18)




Figure

10-4d

10-e
1i-a
11-b
11-c

11-d

1l-e

Yelocity Estimation

“Velocity Estimation Exrors for the

LIST GF FIGURES

P'I‘Oblem Géometry ¢ & 8 & & & & s & ¢ & s s 0+ »

Earth-Based Observation Geometry
Onboard Observation Beematy o« o o o o o ¢ W
Tracking Station Ge~ixatyry . - T
Block Diagram of Cc¢ .ortational Logic . . . . .
Nominal Trajectory (Elliptic Orbit) . . . . .
Nominal Trajectory (Hypobolic Orbit) . . . . .
~Eqsit£on Estimation Errors for the Simulation 1
Simulation 1

Errors for the

Position Estimation Errors for the Simulation 2

Velocity Estimation Errors for the Simulation 2

Position Estimation Errors for the Simulation 3

Simulation 3

Conditional Variances of Position Estimation Errors for the Simu-

lation 3 (and 5) . ¢ v ¢ 4 . v v e e e e e e

Conditional Variances of Velocity Estimation Errors for the Sim-

ulation 3 (and 5) . . « v ¢ 4 0 e 0 v e 0 e
Observation Residual for the Simulation 3 . .
Observation Residual for the Simulation 4 . .
Position Estimation Errors for the Simulation 4

Velocity Estimatien Errors for the Simulation U

.

.

.

.

.

.

.

.

Page
3%

40

71
72
73
74

75

76

77

78

78

Conditional Variances of Position Estimation Errors for the Simula-

tion 4 (also 1 and 2) . . . . .

o ¢ o & s v 9

Conditional Variances of Yelocity Lstimation Errors for the Simu-

lation 4 (alse 1 a=d 2) . + ¢« v ¢ v ¢ v v . W

.

.

»

81

82

G

SRR A
B ””:‘ By

,.
4y

:
i

¢7

e
Ay },;,I?

o ’q%

o2

l;{;%r RN

T

1,

il
k3

ARt

ukp.lt



.h

:;§%§%§g%x”aif9

<

B
At ke

obrls #15

bt ke i W e

12-a Position Estimation Errors for the Simulation 54 v v v v v v . 83 E%
12-b Velocity Estimation Errors for the Simulation 5.+ . . + . . . ., 84 ,g
13-a Estimation Errors (X1 ,Xu) and Observation Residual for the Sim- “3

Ulation'® o v v v b Lo e e e . e 85 i%
13-b Conditional Variances (V¥ 11° 4u) for the Simulation6 , . . . . 86 '§
il-a Estimation Errors (xl,xu) and Ybservation Residual for the Simu- 4

:g’.{{»,\

lation 7 . . L] L] . L] . * L]

LA T S Y LI S ) 87

4ok

-

14-b Conditional Variances (Vii,vuu) for the Simulation 7 . . . . . 88

15-a Estimation Errors (xj,x ) and Observation Residual for the Simu-

latlon 8 L O S T S S L L L Y Y

. e 2 e ¢ 89

15-b Conditional Variances (v11 ’Vuu) “for the Simulation 8 . . . .. g

16-a Position Estimation Errors for the Simulation 9+ « . 4 - . . . . 9§

16-b Velocity Estimation Errors for the Simulation 9. + « v v . . . . 99
17-a Position Estimation Errors for the Simulation 10 . . . [}
17;b Velocity Estimation Errors for the Similation10 . . . .. .. . 101
17-c Conditional Variances of Position Estimation Errovs for the Simula-

tion 10 A S L B T T A . I Y L A ) 102

17-d Conditional Variances of Velocity Estimation Errors for the Simula-
tionj_()..........................e..103

17-¢ Observation Residual for the Simulation 10 . . .. . ... ... 1ou ,}f:?

18-a Observation Residual for the Simulation 11 . . . I o]

18-b Position Estimation Errors for the Simulation 11 . . . . . . . . 105

18-¢ Velocity Estimation Errors for the $imulation 11 . . . . . » « 106

19-a Position Estimation Exrors for the Simulation 12 . . . . . ... 107 .

19-b Velocity Estimation Evrors for the Simulation 12 . . . . . . . . 108 g

18-c | Conditional Variances of Position Estimation Errors for the Simu- E

lation 12 . L] . L] . ¢ Ll

L e e S * 2 ¢ e » 109

o
u

e A A ST R WA

o
2

TR




Page

Conditional Variances of Velocity Estimation Errors for the Simu-

|
!

LA b st b

E?;;i lation 12 e 8 & 6 s & 6 e e & ® & 3 e & s 8 8 & s & & & s & s @ 110

i
o

7

E% 20-a Position Estimation Errors for the Simulation 13. . . . . . . . 111 fo
» M.
20-b Velocity Estimation Errors for the Simulation 13 . + « + + « « 112 ;ﬁ

3

20-c Conditional Variances of Position Estimation Errors for the Simula- @

Tl u
RN

tion 13 ¢ 8 2 e+ * & s e ¢ ® & A & 6 & + + 3 4 s e 0+ e+ s & c » 113

Lt
5
Bi

20-4d Conditional Variances of Velocity Estimation Errors for the Simula-

tion 1 3 ¢ o o & 2 + & e @ 4 6 & 6 ¢ s o b+ 6 & e o b 0 s 3 v s s 114

SRRy

20-e Observation Residual for the Simulation 43, ., . . . ¢ o « o o & 115 ;ii
21~-a Observation Residual for the Simulation 24 « « + « ¢« ¢« &« & « « o 1158
21-b Position Estimation Errors for the Simulation 14 . . . « « « . . 116
21-¢ Velocity Estimation Errors for the Simulation 1% . . « + « « o » 117
S - 2144 Conditional Variances of Position Estimation Errors for the Simu-

latiOn 1"& e 6 2 & ¢ e & 8+ 8 & & e s 8+ " 2 & " 2 T & & v * o s 118

21-e Conditional Variances of Velocity Estimation Ervcrs for the Simu-

W

g ———— o

lation 14 3 6 6 8 & ¢ & ¢ ° & S+ e 2 4 & & & o s & ¥ * & o+ & 2 » 119

22-a Position Estimation Errors for the Simulation 15 . . « + « « + & 124

22-b Velocity Estimation Errors for the Simulation 15. + « « + « o . 125

22-¢ Conditional Variances of Pogition Estimation Errors for the Simu- _f%i
L LS
o

lation 15 * & & & & o & o s ¢ b+ e 4 ¢ & 3+ b B+ & & o s s+ & & 126 iﬁj’

e

i

g
¢}
e
12}
L]
o]
]
ot
=g
®
w
gc
[
'

!
i

22-d Conditional Variances of Velocity Estimation
e
lation 15 .. E] . L] L] . L] . . * L] * . . - L] . L] . . [ L] . . » L] . 127

]

i,

22-¢  Observation Residual for the Simulation 15. « « « « o o o o o & 128 -

&

'

ERCY

23-a Observation Residual for the Simulation 16 « « « » « « o « « « » 128

5
23

DAl
Yo 3
it

23-b Position Estimation Errors for the Simulation 16 + « + + « o« o« ¢ 129

I 53
i

P

LS GRS

14 f&”

23=-¢c Velocity Estimatica Errors for the Simulation 16+ . ¢« « « « &+ 130

A

®iv

.

g




23-d

23-e

24-a

24-b

24-c

24-d

2Y4-e
25-a
25-b

25-¢c

25-d

o
o 3¢ bl de 5 G

27

=

28

29

Rkt

1 TR T

k]

. s gy W
e it vy et

)

3.
4

7
4
3
o
2
B 44
iu,
-2
B
fos!
s

Conditional Variances of Position Estimation Errors for the Simu-
lation 16 o v ¢ v v e v 4 et e e e e e e e e e e e e e e
Conditional Vzeriances of Velocity Estimation Errors for the Simu-
1at10on 168 4 v v 4 4 b b e e e e e e e e e e e e e e w e e e
Position Estiﬁation Errors for the Simulation 17 . . . . « . . &
Velocity Estimation Errors for the Simulation 17 « . . . + « + &
Conditional Variances of Position Estimation Errcrs for the Simu-
1ation 27 ¢ ¢ o v e e b v e e e v e e b e e e e e e e e e
Conditional Variances of Velociiy Estimaticn Errors for the Simu-
latiop A7 ¢ o o ¢ 6 e e 4 s s e e e e s e e s et e & s e
Obzervation Residual for the Simulation 17 + « « « o + + ¢ & o &
Position Estimation Errors for the Simulation 18 . . . . . . . .
Velocity Estimation Errors for the Simulation 48 . . . . . . . .
Conditional Variances of Position Estimation Errors for the Simu-
lation 18 . 4 4 4 0w v e e e e e s e e e e s e e e e e e e
Conditional Variances of Velocity Estimation Frrors for the Simu-
1ation 48 o v 4 v 4 e e s e e e e e e s e e e e e e e e e s
Observation Residual for the Simulation 48 . . . . « « « « « ¢« &
Three Dimensional Array fﬁx Gt e e e e e e e e e e e e e
Three Dimensional Array I R IR
Conditional Expectation E[X/B] .+ « ¢ ¢« v v v ¢ v ¢ v ¢ v v o

A Sample Function of Random Walk o « ¢ o o « o« ¢ s o ¢ o+ o o 5

Page

131

134

135

136

138

139

140

141

142

157

157

W AL A LTSN s vt

Serbrokb e

R L S 1 S e A AR T
1 3
’ |

4

&

o
s

"ok

5
W



AT

! N gt
EATE Sy

1.3

T LT T ST N R T T
S S N

CHAPTER 1

INTRODUCTION

1.1 Preliminary Remarks

In ihe field of space tracking and guldance, one basic requirement
for spacecraft guidance is the capability to obtain and to rapidly process
observations to determine an estimate of the spacccraft trajectory. This re-
quirement initiates the search for mathematical techniques which are compu-
tationally efficient, but which possess a high degrse of accuracy. Follow-
ing the precise formulations of the linear sequential estimation theory by
Kalman and Bucy (6,7), the practical implications of the theory were recog-
nized and numerous successful applications hav: been made in the field of
orbit determination and trajectory estimatio. problems, lowever, these ap-
plications generally are concernad with nonlinedar continuous dynamic systems
and nonlinear state-observation relationships and, hence, the linear esti-
mation theory cannot be applied directly. As a matter of fact, it is not a
simple task to apply the linear ustimation theory to orbit determination
problems. Usually nonlinear dynamic systems and state-cbservation relation-
ships are linearized about 4 nominal (or reference) trajectory under the as-
sumption that the true trajectory is sufficiently close to the reference tra-
jectory, and then the linear estimation theory is applied to the linearized
systems. Conceptually, there are two ways to carry out the linearizations
and the resulting filters are somewhat different from each other, The dis-

tinction is how the neminal trajectory is chosen. If a prescribed traiectory

1.

is chosen as a nominal trajectory, .he originair Kalman-Bucy linear filter

can be directly applied to the linearized system which governs the state and

.
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the obsgervation deviations from the prescribed nomiual values of the state
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and observation.

Although this approach appears tc be conceptually simple,

it suffers from several points. First, if the nominal trajectory is not

close enough to the true trajectory, the basic assumption used in the lin-

earization procedure is violated and the estimate of the deviation from the

nominal trajectory filter can lead to inaccurate results and often diverges.

i Furthermore, it is intuitively more appealing to take the current estimate,

: rather than a prescribed trajectory, as a nominal trajectory and conduct

the linearization about the current estimate instead of a prescribad trajec-

tory. In this case, the linearizaed system will involve deviation in the

state and the observation from the current estimates of the state and. obser-

vation instead of values related to & prescribed nominal. The original

Kalman-Bucy linear filter can be applied to the above linearized system. The
advantages of using the current estimate as a nominal trajectory are that a
hominal which is closer to the true trajectory can be used and that the fil-
tering procedures can be simplified due to the fact that all the propagated

state deviations will becom: identically zero. This concept will be clearly

+ Sy

discussed in Section 1.3. In order to represent this situation, "the extend-
-ed Kalman (EK) filter" proposed by Jazwinski (2) and distinguished from the

prescribéd nominal trajectory filter will be used.

Tt is well known that all of the information about the state pro-

¥ .-

= vided by the measurements is contained ii: the probability density function
% of the state conditioned upon the entire past history of measurements. From
3

this conditional probability density function, one can, in principle, deter-

mine the optimal filter. In general, the optimal filter is expressed in

terms of the moments of the conditional probability density function. llence,

TG T e

..;‘ o
T

"<
. B
R
s

i AP LA kDL RN B

. v
s o R 0 Bl
w "

8

;




A 5P SO AGATOC M e AT b S Y o SR T £

-l s

IRETTET R TV ARED Y SOGTA T SOF Sy
L G P R PR NSRRI

R

R

this conditional density function becomes a prime ingredient for studies of
optimal filtering.

Several authors have considered the problem of deriving a dynami-
cal equation for the conditional density function when the dynamic state
noise and observation noise are both jointly Gaussian and white, The most
recent pattern of research in this field appears to have been initiated by
Stratononich (12) and Kushner (8,9). The formal characte. of this initial
work stimulated numerous studies of nonlinear filtering which have attempted
to extend, and to obtain a more rigorous verification of these initjal re-
sults. The method used by Stratoronich and Kushner is basad on a discrete
time model, and an iterative application of Bayes' rule is used to obtain a
representation of the conditional density fuaction. The solution of the
continuous time problem is obtained by a limiting process.

Although the central ideas and methods were all supplied by
Stratonovich and Kushner, and most other papers in this area are just con-
cerned with extention of these basic ideas, Bucy's (4,5) approach to the op-
timal nonlinear filtering problem is rather uniaque and more mathematical than
Stratonovich and Kushner's. However, the results which le obtained for the
Gaussian state and observation noise case were identical tc those of Kushner.
Ar important intermediate result of Bucy's work is that of a representation
theorem which demenstrates how the posterior counditional density function at
some instant of time can be represented as a function of the apriori density,
P(X(to)) and the conditional expectation of an exponential function of the
observational data over the tiime interval (to,t) .

In addition to the above research, Mortenson (iu), Cox {(25) and

Netehmendy et al. (21) approach the nonlinear filtering problem from the
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control theoretical point of view. They formed a likely hcod function and

maximized the function in various ways, e.g., dynamic programming or
Pontryagin's maximum principle.

Fisher (23) presented a unified and compact development of the non-
linear filterihg problem for a broad class of Markov signal processes, by
making use of the characteristic function technique. The idea of approaching
the continuous time nonlinear estimation problem from the innovation process
approach was suggested by Frost (33).

There have been a number of associated approximation mathods de-
veloped. Noteable among those are those of Bucy (#,5), Kushner (10),
Jazwinski (1,2,3), Bass et al. (18,20), Schwartz (19’ and Athans et al. (27).
Most of the references cited above utilize techniquas that are closely re-
lated to the methods introduced by Kushner {10) and Bucy (4), namely, Taylor
series expansion and the assumption of a Gaussizn density function or Taylor
series expansion and truncation. Utilizing the Tavlor series expansion tech-
nique, therc are two basic types of second order {ilters which haverbeen de-
veloped, Tirst, it is assumed that the third and higher order moments are
negligible. The resulting filter, referred to as the truncated second order
filter, was developed by Jazwinski (1,2,3) and independently by Bass, Norum
and Schwartz (20) who extended the idea of Bucy (4) to the arbitrary n-dimen-
sional case. Schwartz (19), Jazwinski (3) and Fisher (24) independently de-
veloped the Gaussian second order filter., In this appreximation, the fourth
order moments are approximated in terms of the second order moments under the

assumption that the conditional density function is Gaussian.

A significant feature of both the truncated and the Caussian second

order filters is the presence of a random forcing term in the cevariance
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equation. The presence of the random forcing term is, in principle, justi-
fiable. ilowever, there has been considerable controve 'sy associated with
the presence of this term.

The term enters with a plus sign in one filter and with a minus

S S B e B A

sign in the other. Furthermore, the term enters in linear manner and there
is a possibility that a negative variance may result due to the sign of the

f; observation residual. These considerations suggest considering a compromise

betwecn the truncated and the Gaussian second order filters. Jazwinski (3)
dropped the forcing term in the covariance equation for the compromise and
defined the medified truncated second order (MTSO) filter and the modified

Gaussian second order (MGSO) filter, respectively.

.

i}

Athans, et al. (27) developed the modified Gaussian second order

£l

e

filter using an assumprion based on an intuition srgument and applied the

%

filter to a simple one-dimensional free-fall reentry problem with range type

of measurement. The result of the simulations indicates considerable promise

N

AT ‘1‘\4,-‘“4‘
AR

for the MGSC filter.
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In this report, the modified Gaussizn second order filter was

developed rigorously on the basis of the Martingale theory and smoothing pro-
perties of Loeve (34). The resulting algorithm was applied to a study of
the Jupiter fiy-by and the Jupiter orbiter missions ucing range, range-rate,

star-planet °nd sun-planet angle measurements.

1.2 Kalman-Bucy Filter

Consider the linear dynemics syctem descrited by the linear vector

Slssssidhie bt

VAN RSN L0
R R

; stochastic differential equation i %

% . i %

2 dz, = F(u)x dt + G(tyds, , t ~ 1t (1.1) : 4
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Eq. (1.1) cai be expressed formally as (seo Ref. 15)
1
dxt

: T 5 Fox, +G(th, , t ot (1.2)
i
: . “ .
% where %, s the nx1 gtate vector, I(+) and G6{-) are, respectively,
3
) nxn and nsr non-random, continucus matrix functiong of time, and B ,t > tol

is an r-vector Brownian motion process with the ntatistics
- T, _
L[datdﬁtj = Qt)dt

The r-vector u_ is a white Gaussian vector process which can be regarded

as the time de.divitives of Bt .

EER————— T A L R

It is assumed that linear observations are taken at discrete time

)
A

X
=3

instants, k :

.

¥ = H(k)xk tV s ko= 1,2,... (3.3}

where Yy is an m-vector of observations, }i(*) is an m*n non-random,

: bounded matrix function, and {vk,k = 1,2,...} is an m~-vector, indepen-~ o
; " g~
dent Gaussian sequence, i.e., v, ~ N(O,Rk),Rk » 6 for all k . The dis~- -z
tribution of X is Gaussian, i.e., X, N(QO,PO) , and xogfﬁt} and ;;

{vk} are assumed to be independent.

pall N
2 The fact that the minimum variance estimate i3 given by the condi- K-
X ticnal expectaticn (see Appendix F), leads to the rejuirement that the con- =

= p 1% 3 1

ditional expectation Qt/f = E[xt/‘{t} for tae cbove system be found., The E
= 3 . - - L3 . * g * Z =4
e solution to this problem yields differential equations of vvelution for the gt |
73 5
ZE conditional expectation 2% and the covariance matrix P . Between T B
.f t+s/t t+s/t - <
g~ . . . . . . . R
2 observations, these relations satisfy the differentiol cquations given in e
Z2 Tgs. (1.4) and (1.5), respectively. 3
<5 3 -4
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(hllﬁ/t

ds

= 1"({+5)% &(t) = &

tts/t ? t/t

5
4® ss/t

= = F(t+s)P + b Fl(t4s) + G(t+s)Q(t+s)G (t4s) , B(t) = ¥, (1.5

t+s/t t+s/t

where the superscript T indicates th transpose of matrix, t répresents

the time at which the last observation was made, and s represents any time
segment af'ter t  and before a new ohsgﬁvation is made. At the instant tts ,
namely, immediately after a new observation is incorporated at t+s , %hg
following difference equations are saéisfied, 7

2 = G

t4s/tts v/t T KersOris ™ Tras/t) ‘ (1.6

\2 = B

tHs/tts t¥s/t (1.7)

‘Kt+gH(t * S)Pt+s%t

H(t + s)R (1.8)

Yits/t t+s/t

K, . = P

T o
b t+s/tH (t + s)[H(t + s)t

T . -1
t+s/tH (t +s) + Rt+s] (1.9)

where 9t+s/t is the predicted observation on the basis of Yt and ths

is the Kalman gain.

FEE

The solution of Egs. (1.4) and (1.5) are referred to as the apriori

)
2t

O

estimate and the apriori covariance matrix, respectively. Meanwhile, the

oo
SRS

solutions of the aifference Eqs. (1.6) and (1.7) are said to be the posterior

o At
R

L ci_"g,;f‘

estimate and the posterior covariance matrix, respectively. Once the pos-

terior estimate R and the posverior covariance matrix

tt+s/tis vt+s/t+s

are obtained, they can be used as initial conditions for the differential
Cas. (1.4) and (1.5), respectively. By integrating these relations forward
uatil a new observation is obtained, the apriori estimate which is the op-

timal estimate between obsesvatiune is obtained. In order to initiate this




procedure, it is necessary to specify Ro/o -md vo/o . From the statistics

ol «+ random variable x_ , R and V are given as R and P_, res-
o] o/o o/o o o

poecizively.

1.3 Lipearization and the Extended Kalman Filter.
As pointed out previously, the linearization of the dynamic system
and the state-observation relatiénships:cannot be avoided, if the original

‘Kél@an—chy’filtér is applied o the orbit determination problem. The de-

tails présented ih the subsequent discussion dFe used to cbtain the ektended

"Kalman filfé?.

- Suppose ‘that the equation of motion is described by the following

nonlinear stochastic différential equation

_de = f(XT,T)dT + G(T)dBT s T2 (1.10)
Eq. (1.10) can be expressed formally as
dXT
I c f(XT,I) +G('r)uT (1.11)

The discrete nonlinear observations, which are taken at time instants k ’

can be expressed as
Yk = hS)(i()+vk s k = 1,2,3,.., (1.12)

In the above systems, BT,uT,vk and X, dare assumed to have the properties

described in Section 1.2. The ¢~field generated by the observatiors Yk is

x

i = H i i = X&
denoted by ?t s that is Zt {¥k,o <k <t} . Substituting XT XT t X
and expanding f(XT,T) in Eq. (1.10) about the nominal X? at each point

in time leads to -
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% % %
d)(‘7 + de f(X; + xT,T)dT + G('r)dBT

(1.13)

Iee

f(X?,T)dT + fx(X¥,T)deT + G(:)dBT

wher: terms involving powers of X higher than the First :ne are neglected.

For tne nominal, the following equation must be satisfied

% = %
de f(XT,T)dT

or
dx¥
a—— = f(xfr:"t) (1.1”’)

Hence, the state deviation x, ©an be described by the linear time varying

‘Stochastic differer.ial equation.

’ dx, = fx(xg,t)xtdt + 6(t)dB, (1.15)

1%

The same procedure can be applied to the statz-observation relationships

(1.12), and the final result would be wxpressed as follows

Yﬁ = h(xﬁ) (1.18)

for the nominal and
= £ -
Ve hx(xk)xk + v (1.17)

for the observation deviatwion., Here hx is the first partial derivative
of h(*) w.r.t.X .

Combining Eqs. (1.15) and (1.17) leads to rhe same model which was
discussed in the previous Section., fTherefore, the Kalman-Bucy linear fil'ier-
ing theory can be appllied to +he system of Eqs. (1.15) @nd (1.17). Hence,

the optimal estimate of state deviation between obsevvations is given by the ~
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solution of the following linear differential equation
dg
t'f‘S/t - % a "
ds - fx(x;:+s’t+°)ﬁt+s/t (1.18)
At the observation time t + g
2t+s/t+s ) 2t+s/t * Kt+s(yt+s " Jeagst) (1.19)
whare
yt+s/t = hx(x¥+s)%t+s/1 (1.20)
Let 7 = t+s ; then dt = ds and substituting these in Eq. (1{14) will
yield
dx-
t+s .
= % oD
i f(xt+s’t + s) _ {£.21)

Combining Eqs. (1.18) and (1.21), the following result is obtained

d(X'i;c-sf gt+s/t)

- ‘:‘ s ) . "
ds f(xt§+3’t ts) 4 fx(x;:+s’t * S)ﬂt+s/t (1.22)
I3 ! : 9 - - ” l' -' : ~
Denoting xt+s/t X{+s + 2t+s/t » which is an apriori estimate Qf\-xt+s
based on Zt s Eq. (1.22) can be approximated as ‘ i
ax_
t+s/t  _ 3
45— ° f(xti's/t’t + 8) (1.23)

From Eqs. (1.21) anc (1.23), it follows that the same differential equation

v . . 3’: K . . ‘A + g .
go)erng.the nominal trajectory xt+s as well as the apriori estimate Xt+s/t

Therefore, sexecting the same initial conditions for Lgs. (1.21) and (1.23)

_will lead to the conclusion that the nor‘nal trajectory and the apriori es-

timate are identicai. This situation is satisfied if the current optimal
estimate is chosen as a nominal trajectory. In other words, if the nomipal

trajectory is updated with a current optimal estimate, the apriori estimate

g st e g
ek il

R A RIS BN
o



CARL W e b T

R

. £ . \ i i v
Rt+s/t of state Xigg ? governed by Eq. (1.18) becomes identically zero,

¥
Rk

§

and hence, Eqs. (1.1R) and (1.20) are not necessary. For this situation,

P
oyt

1z ik

4o

ol

rah’ﬂ A

the initial condition for Eq. (1.18) would be zero and, consequently, the

[ —

solution becomes identically zero. i;
}t

From the induction above, it foliows that it would be simpler to @%

linearize the system about the current optimal estimate instead of a certain &

prescribed nominal trajectory. This situation usually occurs in nature.

For example, when one deals with -the motion of a rigid body, it is always

batter to stick with the mass center, which is the analogy of the optimal

estimate of position, that is, the mass center is nothing but a conditional

.ixpectation of equivalent pbdint mass. Furthermor., it has been demonstratéd,

in the numerical simglafiqpsrféo,ks), that taking tne current optimal estimate;

as the nominal trajectory leads to better convergsnce characteristics than
using a certain prescribed nominal.
At observation time t + s , the optimal estimate ¥, - of

tis/t+s
Xf%s would be expressed as follows

tes/tes X."t:+s * Rivs/tes (1.24)
If the optimal estimate is chosen as a nominal trajectory, then
R 2t+s/t . Therefore, Eq. (1.24) becomes
| d ﬁt+s/t+s - 2t+s/t ¥ 2t+s/t * Kt+s(yt+s - 9t+s/t) (1.25)

Since xt#s/t and 9t+s/t are both zero for the case where the optimal es-

timate is chosen as a nominal, Eq. (1.23) again becomes

A

x = P V% - v:
res/trs = Feas/t T RersWiss T Vias ~ Yiie) (1.26)
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after adding and subtracting Y¥+s . It cen be easily seen from Eq. (1.16)

that .

?

- ] = % = 2 = E
Yt+s h(xt+s) h(x't-l~s/'t) Yt+s/"c (1.27)
and
= % 1.28]
Yers Yees t Vens (1.28)

Therefore, Lq. (1.26) finally becomes

~ -~ ~

xt+s/t+s = X Kpps (Y -

1o ]
tts/t T KresWUets t+s/f) (1.29)

kahe above expression represents the extended Kalman Ffilter (3) and can be

summarized a§ follows; between observations, the apriori estimaie Xt+s/t

and the apriori conditional covariance matrix P which is distinguisned

P't+s/'t

from the apriori covariance matrix for the linear system, must satisfy the

=fgliowihg ordinary differential equations

~

dxt}s/t

ds

it

£(X

t+s/t’t + s) (1.48)

and
7dPt+S/t £ (% )
ds % Ttts/

t,t+s)f’ + P fl(ﬁ

t+s/t s/t r s/t st+s) + G(t+s)Q( t-fs)GT(~c+s) (1.31)

u"

respectively., At the observation time t + s , the posterior estimate

~

2t+s/t+s ~and the posterior conditional covariance matrix Vt+s/t+s re
determined by the following set of difference equations.’
Kevsstes = Fras/e b KersTets - Tersst? (1.32)
-~ = A - & ﬂ'\’ ’
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K = P hT(i Y{h (R )P hT(ﬁ Yy + R )=t (2.35) }é
t+s trs/t xCts/tT VR CtEs/t tis/t x Trrs/t t+s -
or ;A
i
G T g 1 ) £
Kers = Vers/ersxPees/tRets (1.36) £

) *
[
s s e T

i

Finally, Eqs. (1.30) through (1.35) feature the extended Kalman -

"

‘IM !
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filter and they can readily be reduced to the Kalman-Bucy filter when the

e
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aystems ave linear. Unlike the linear system, the covariance matrices cannot
] y ) 1 al

be precomputed. And, as a matter of fact, they are coupled with the oQtiﬁql

estimate through coefficients fx and, hence, they are nbt:orgigapy:QGVér~
iance matrices, but rather they represent conditional.covariance matrices.

[

174 The Problem to be Studied
The problem treated in the subsequent study is thét of estimatinQA

the state of a continuous nonlinear dynamical system- (1.10), inf;ﬁenced by
‘Brownian motion, using discrete nonlinear observations (1.12:) -corrupted by
an Independent Baussian noise sequence. In the previous se&tion, the nonlin-~
ear system is linearizeéd and the Kélman-Bucy linear filter theory:is appliéé
to the problem of éstim;ting thé state of the linearized system. Thié tech-
nique is based on the assumption that the state deviation is small so that
the second or higher order terms in the4faylor sgries expansions gan be neg-
lected while retaining the first order terms. Suppose that the system ié
highly nonlinear or that the initial uncertainty is resatively large so that

the square of the state deviation as well as the deviation itself is not ;Z

LTRSS
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negligible. In this situvation, the Kalman-Bucy linear filtering theory must
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be abandoned and an effort must be made to develop a new tneory which hopefully
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applies to both linear and nonlinear systems.
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Up Lo the present time, no sign of an exact solution to the nonlin-

1
vE
s

A

>
q»:;
L
v, s By
iy

L.

s e ..
- . e entinat fon probium oo seen, unless ene calceulates an

4 3
|
¥

£l
nfinite number of P
et
E

bl

21

R
et

moments,  Therefore, some sort of an approximate solution is ‘nevitable. With - )

the possible exception of a scalar svystem, it is not practically feasible to

¥

include terms of higher order than the second order and, hence, it is desir- 5

A

-
s v o
(5 AL B iy, A

- able that the nonlinear estimation technique be defined by using only the
first two moments, namely, the conditional mean and the conditional covari-
ance. In order to do so, the second order terms are included in Taylor series

expansion and a minimum variance criteria is employed to finrd the conditional

B cxpectation., By definition, the conditional covariance matrix is nothing more

'
'

than a conditional mean of the square of the actual estimation errors and,
furthermore, it is clearly understood that the square of the actual estimation
.- error; is a random Variable, Therefore, it is meaningful to interpret the

conditional covariance matrix as the optimal estimate of the square of the

actual estimation error and to approximate it by the same technique as the

e <t o

conditional mean is approximated. It is necessary to define a meaningful

J—

n
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criteria for approximating the covariance matrix and this is accomplished by
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the use of the property of the trace of the matrix. This property is discussed
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in Appendix E.
The nonlinear estimation theory developed in this study is applied

to an orbit determination problem. The actual model employed involvéé the

investigation of the states of an interplanetary space vehicle during the

planetary fly-by and planetary orbiter >hases of the mission. In the simu-

lated study, Jupiter is chosen as the main body with the Sun as the perturb-
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ing body.
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1.5 Outline of Study

i

In Chapter 2, the nonlinear mathematical model which will be studied 3 é%
is discussed‘briefly. On the basis of a Martingale property which is presented : 'gg
in Appendix b, an approximate noﬁlinéar estimation aigorithm is developed. ; {ég
In the process of developing the algorithm, basic smoothing properties des- i §§
cribed in Appendix B are extensively used to manipulate the lengthy algebraic ; ég

ol

R

relations and to simplify the resulting expressions. First, a sequential non-
linear estimate is obtained and a formal limiting process ic used to obtain a
continuous nonlinear estimation algorithm. In the limiting process, the con- f
cept of white noise as a time derivative of Erownian motién is essential. The

Brownian-motion is treated separately in Appendix C.

Chapter 3 is concerned with the physibal problem to‘bg studied using
the nonlinear estimation algorithm developed in Chapter 2. The problem is
that of estimating the state of an interplanetary space vehicle during the
planetary fly-by and planetary orbiter phase of a Jupiter mission. The equa-
tions of motion for the spacecraft are discussed briefly and expressed as a

set of nonlinear state dynamic equations. Four kinds of observations are con-

P
sidered. They are range, range-rate, and sun-planet and star-planet angles : ?%
‘as measured from the spacecraft. Finally, computer programs for the nonlin- f*-gg

i

ear and the extended Kalman filter equations are described.

In Chapter 4, the results of the numerical simulations are discussed.

s

ZE,

Several nonlinear estimation algorithms are obtained from the modified Gaus- ;ég
. : -t

sian second order filter which is developed in Chapter 2, and the modified %>

T LT R LW J s
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truncated second oxder filter, by neglecting the second crder terms in var- ‘

Y

ious combinations. Each nonlinear filter in conjunction with the extended
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Kalman filter is simulated with the problem discussed in Chapter 3 to
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determine the zffects of the second order terms, i.e., the dynamic second
order term, the observation second order term, and the Kalman gain compensa-
tion term. The Kalman gain compensated filter obtained. from the modified
Gau;éianréécond order filter by neglecting the dynamic and the obsgrvation
second order terms while vetaining the Kalman gain compensation term is shown
to be the best filter on the basis of the simuiations. The Kalman gain com-

pensated filter is further examined through numerous simulations.

A summary of results ard a list of possible extensions to this work

are presented in Chapter 5.
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CHAPTER 2

GRS

P

A NONLINEAR LSTIMATION ALGORITHM

2.1 TIntroduction

Y,
4

il

e s 4t dtd e {1 210 Uk e Bt

&

The state of the dynamic system is assumed to evolve as the solu-

tion of a ncnlinear stochastic differential equation,

dx,c = f(xt,t)d‘.: + dst » T2t (2.1)

which- is expressed formally as

rrli f(xt,t; tu,o, Tt (2.2)

In the above expression, f(xt,t) is a n-vector and {ut,t > to} is an n-

vector, zero-mean, white Gaussian noise process with

.

BT Ry L T A e o e

-~}
e

E[utugl = Q.8(t - (2.3)

where Qt is an nxn positive definite matrix for any t . Suppose that ob-
servations on the state are taken at discrete instants of time ard s mea-
sures the-time Interval between & certain point in time, say t +s , and t
at which the last observation wac made. Therefore, s will vary from zero
to the maximum time span hetween two consecutive observations. This approach

is necessary when observations are not taken regularly.

Let the observations of the state be of the form

y; * h(xi) tve i = 1,2,... {2.4)

where yi and h are m-vactors, and where {v.,,i = 1,2,...}

3 is an m-vec-~

tor, zero-mean, Gaussian noise sequence with
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E[vkvil = RS, (2.5)

The covariance matris Rk is an mxm positive definite matrix for any k .
It is assumed that st > to} and {vk} are statistically independent.
An extension to the continuous observation case can be made by simply replac-
ing Vs with a white Gaussian noise v, o In this case the function Rk

will have an infinite magnitude. Since white noise is formally modeled as

the time derivative of Brownian motion Bt (see Appendix C), it is natural

to relate v:.L with a white noise vt as follows

lim Btes ~

8-+0 S

With these definitions, Rk would be of the form

t

R = 5
wnich approaches R &(s) as s goes zero. Denoting

{y.5d = 1,2,...t} (2.9)

i

for the o-field generated by yi,i = 1,2,...t , the problem of concern is

ive

&

%
‘ st
AL T S
RTINS
m;

that of estimating the state X, of the dyramical system (2.2} on the basis_

of Yt . In particular, the desired estimate is the minimum variance esti-

mate and the solution is well known to be the conditional expectation

Y

SR

R[xt/Yt] (5). The details are discussed in Appendix T.

de g™,

When both the Jynamical system and the obsayrvations are linear, the

exact solution yields the Kalman~Bucy linear filte:. However, an exact solu-

;Muu‘ .
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tion does not seem to be realizable with a finite set of mcments when the
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models are nonlinear. Therefore, an approximate solution is inevitable. It

e o O KPR 8 o

is common practice to linearize the system dynamics f£(+) and the observa-

tion-state relationships h(+) , avout a specified reference trajectory and

then to apply the Kalman-Bucy filtering theory to the linearized system. In
this chapter, an approximate nonlirear filter, which is a modified Gaussian

second order filter, is derived by utilizing Marting :.le properties (Appendix
D)’and a Taylor series expansion of f(¢) and h(+) about ths current op-

timal estimate, retaining the second order terms in each expansion.

Regarding the square of the actual estimation errors as a collec~

o3 tion of random variables, the conditional covariance is obtained by minimiz-

ing the following risk function (see Appendix E)

; - g g T
R(vt+s/t+s) = trl(v, vt+s/t+s)(vt+s Vt+s/t+s) ] (2.10)

i

where Vt+s is an nxn matrix and the square of the actual estimation errors

and

z&? i '."‘;’«“

vtfs/t+s is the optimal estimate of Vt+s given Yt+s , which is the

e
i

o
¥

conditional expectaticn of V iven Y .
n expectaticn t+s & tts

2.2 Apriori Estimate 2t+s/t

Integrating the state dynamic equation (2.2) from t to t + s ,

.
Ay

«

the state at t + s can be formally expressed as follows

»‘ \Q‘WE}A ’:4“, HV»L:

t+s t+s
Kegs ° ¥t J: £(x _,t)dr + It u_dt (2.11)
rt+s .
= Ryt (R - ﬁt/t) * Jt U E

t+s

. 1 . 6“4
+ [t (r(ﬁr/t’T) + fx(RT/t’T)(xT . ﬂf/t) + E'fxx(ﬁr/t’f) : PT}dT {(2.12)
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The approximate exprecsion (2.12) is obtained by utilizing a Taylor series

cxpansion of f(+) and truncating at the cecond order termc. In this expres-

sion t is merely 2 parameter and s is a variable. For the convenience

of notation, * in f£f(-) , fx(-) and I {(-) is neglected unless other-

o

wise stated. Knowing that u_,7 > t is independent of Y,

-~

, and (xt -2.,)

t/t
and - (x, - ﬂr/t)

; whi is i iori ima f x%
2“3/t hich is the desired apriori estimate o

have zero conditional means, the conditional expecration

chg O is cobtainetl after
v

taking the conditional expectation of both sides of Eq. (2.12).

t+s
1 -~
= F — H
ﬂt+s/t gt/t * Jt {’(ﬁtit) * 2 fxx(g;/t) : ?r/t}dr (2.13)
Note that f(ﬁTlt) s fx(*r/t) and Ixx(*r/t) are Yt-measurable and the

smocthing property 3 (Appendix B) can be applied. The differential equation

for 2t+”/t , as a function of s , is readily obtained by differentiating
=2

Lq. (2.13) with respect to s . Since the upper limit of integratien i5 a

function of s , Leibnitz's rule is appiied and the result is
éR

t+s/t
ds

1>

~

- ; y .
(R xt+s/t' : Pt+s/f (2.14)

)+

£ (
t+s/t 2 Txx

The above differential equation is different from that of the extiznded Kaliran

filter through the inclusion of the dynamic second order terw fxx(') : P/2

and must be integrated in conjunction with ?t+'/t

, from t to the instant
of a new observation, using gf/t as the initial cenditicen.

2.3 Apriori Conditional Covariance Matrix §“+ﬁ/~
Subtracting out Eq. (2.i3) from Eq. (2.12), the apriori estimation

error: ﬁt+<;t at t + s , is obtained zs follows
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= ¥

Freszt T Fews

“t+s
= (ko R0 Jt Sl
! tis , S ;
; L (£, (R, )k, = 2 ;tf)_*‘%"fxsz.“"“,{m)

Differentiation “of Fq.

fercntlal equatlon for

dx -
t+s/* = g
) ds S T f (gt+s

By definitich

- ] -

“t+s/t

(2. 15) with respect to s

:‘(:PT

(2.15)"

-'PT%t)}ﬁr

=yiétdé/rgthe foliowing dif-

- e

aprlorl eutlmatlon error

X

/t )xf+s/t

’§%f§/€‘~t+éif

‘f' /'t A ; e ?“‘ :

-and dlfferentlatlng Eq. (2. 17) with respect to s, the follow1ng relatlon

is obtained

Pis - R ysrt 2T + 5
-ds - ids s/t Ttds/t

Substitution of Eq. (2.

16) :into Eq. {2.18) y;i}gf—'_:lds

s L v
ds f (ﬁt+s/t)Pt+s ¥ E{fXX(2t+s/t) (Pt s t+s/t)}xt+s/t }§¢32§+s/t
T (2.19)
+ 1+s x(ht+s/t §*t+s/t ( t+s/t) (Pt+s t+s/t)} R t+s/£ut+s

Since t

and time derivative can be interchanged.
is obtained after taking the conditional expec

(7.19) and incerchanging the conditional

is merely a fixed parameter, the conditional expectation given Yt
Therefore, the following expression
tation of both sides of Eq.

expectation -and the time derivacive.
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~tHS/t ] . 21
i - Fe(® t+s/t)lt+°/t L CNRLONRpA MY
o ~ T T
- ¥ Pt+s/tfx( T4 s/t) ¥ E[xt+s/tut+s/yt]

In the above , the symmétry of the probability density function is assumed and,

22

(2.20)

heﬁ&é; the third order moment is taken ¢6 be zero. The remaining terms

E[ t+s t+s/t/Y ] can be computed as foliows

t+s

- T

E[*t+s t+s/t/X 1 = El tts t/t/Y 1+ [t Eluy gu /Y, Jdt
t+s
1 _ ~

+ ff Efu t+s{fx(ﬁ %yt 5, (ﬂT/t)“(PTTPT/
. _ ;17
Elug, t+s/t/Y 12 5 Qs

‘ The factor %- comes from the property of the delta function (6).

-same- token-

T

- N L
ElR s/t ers’ T = 7 Qs

.and, ‘hence, Eq. (2,20) becomes

A

df
s/t P T
& 7 B Persst * Pras e Pras) * G

,ghich is the desired matrix differential equation for the apriori conditional

v ance
co arlcnce matrix Ptrs/t

éoﬂditignél covariance matrix Vt/t

2:4 Predicted Observation §,. /.

It is apparent from Eq. (2., *“»- ‘he actual observation at t + s

would be

(2 > 21232

T 1
t)}féitjdr

(2.22)

By the

(2.23)

. The injtial condition is given as a posterior
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Vees = D)+ Vi (2.24)

Expanding_ h(+) in Taylor series about the apriori estimate Rf+s/t

neglecting the third or’higher order terms, the following approximate expres-

and

R ity

Gz

sion for Visg is obtained

il

h(R

i

‘W,WJM
A L
ol ashiy

. 1
Yits ers/t) -t DR/ ¥ us /e T M Repsst) F Pors T Vess (2.25)

Sl

B,

e

After taking the conditional expectation of both sides of Eq. (2.25) given

Y. s the predicted observation @

t4s/t is obtained.

~

1
h(® ) +5h R Pets/t

t+s/t 2 %X }

9t+s/t t+s/t (2.26)

The above relation is different from that of thé extended Kalman.filter through

the second order term in the observation-state relation, i.e., hxx(') : B/2 .

The expected errors between actual aud predicted observations are

dx g upatd

d
N

'
§
'

R
Al et
i

S

obtained by the difference in Eq. (2.25) and (2.26). Hence, the apriori ob-
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Tt md sl
S

servation error (or rvesidual) is given by

gy

i

.
"
s

) : (P ) 4

tes ~ Presst? t Viss

- - = (¢ % 1. .
Yits 9t+s/t ,hi‘gt+s/t)xt+s/t 3 hxx(gt-rs/t

2.5 Posterior Estimate and the Optimal Gain Kt+s

According to the Theorem 2 of Appendix D, the following sequence

ﬁt+5/1’ t+s/2,-ao)2t+s/t,ﬁt+s/t+s,.o- (2.28)

constitute a Martingale and if IECITLITIER are defined as

Zy F £t+s/i’22 = 2t+s/2 - ﬁt+s/1’z3 K Rt+s/3 b *t+s/2""’
- (2.29)
Ze % Regse T Rpesse-100 0 %tae Rirs/evs ~ Pressee g
then zn's gatisfy the following conditions vg%
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b[|z l} e ‘E[zn+1/zi,zz,...,zn] =0 , n20 (2.30)--
with probability 1. Furthér; the terms gtrs/n n = 1,2,,.. of the se-
quence (2:28) are partial sums of the series Z zp . In other words, if

. e - n 13

Zipe is so determined that the conditions (2.30) are satisfied, the term

Rt*s/t+’ _of the sequence (2.28), which is the posterior estimate, is uniquely

t+s

detérmined &5 a partial sum ) z . Sinee z
- - n=1 .

t+s

“servdtion y.

» the following linear approximatisn. . o

(2.38)

N = Y a5
t+5Yths bt+$
is assumed. Wheve Kipg and bt+s are random variables which are measur- -

‘éblerver thé~offield‘geﬂ§§afed by the observations Y. . The bias term

bt+§ 1% g-ven as -

>

'Etis t+syt,w

~ -

S

fiust be a function of ob= _

—fore, as follows

.

of the trace of B[Vt

from the COndlthH (2 32) whlchvmust hold for the. oz 's .

(2 29) and Eq. (2 31)y the postenxor eqtnmate R

3t+s/t+s

Tn Eq. (2.32), the nxm matrix K, .

+S]

From the series.

+s/t+s is expressed, there-

O

= ﬁ Kt‘+s(y't‘+s - )-' (2032)

s, t 9
tis/t Tt+s/t

can be chosen from a family of Yt-mea;

surable functions so that tﬁélminimum‘?ariahcé or equivalently the: minimum

is achieved. By definition,
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T
trE[Vt+s )

] trE[(x Mx

t+s Rt+s/t+s t+s !

h *t+s/t+s

= trE[{x - &

*tes T Ptas/t T KesWeas - 9t+s/t)} (2.33)

T
{xt+s - gt+s/t - Kt+s(yt+s - 9t+s/t)} ]

#

and the optimality condition (Appendix F) for the minimum of the above rela-

tion requires that

s, ) T. _
E[J(xi¥$ - ﬁif;/t) -=Ktts(yf+s - 9t+s/t)l{yf+s - 9t+s/t}’/yt] = 0 (2.34)

Sﬁﬁgﬁifufiﬁg Eq. (2,27) into Eq. (2.34) and using the smoothing propertyr3 of
Appendix B, the fgiiéwing—reiafion is obtained.

1 T.
E[(xt+s t+s/t){h (2 )(x ) + -h ( }

ths” t+s/t ):(P

)+v

t+5/+ tts/t t+s t+s/t

E[{h (R

t+</t)(x

1 e
ths” t+S/t Eh?x( t+s/t) (Pt+s t+s/t)+vt+s} (2.35)

)x, . ~R.. ) +ah 1 R

(h (2 t+s “t+s/t

t+s/t )(P

, .
ts/t) 4T Piss /t)+v s

T

If the estimation errors are assumed tb=bq’jéiﬁtly‘égissian,:and if it is- -

—assumedifurther that ) . : e

2 T -
El{h 4 (R ) 2 Py Hhy (“t+s/t) P Pyl /Yl

tts/t

= 3{h (2 )¢ }{h e

esst) b Dras/t

s/t t+s/t

then, the optimal gain Kt+ is given by

Bk

= P bR )[h, (2 tts/t"x

Kt+s t+s/t % t+s/t )+ R

t+s/t t+s/t

\ , 3T 7.1
+ {h (R ) CHMCHPI IR AR B

T+s/t t+s/t

— e IV S, S’ . SBmy Ty = N A e | e i .
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The approximation given in (2.36) leads to the identical results obtained by ;§
Athans et al, (27) for the scalar case but yields a slightly different result f’g

A
for the vector case. However, in contrast to the result obtained by Athans %?

et al. the Kalman gain compensation term

T

{h Hhy (R ) : P }

) t+s/t

t+s/t t+s/t t+s/t

WT oad R e
X t+s/t x a?d ‘gt+$ Of;ggf S

(2:37). Hence, the matrix to be inverted in Eq. (2.37) will always be posi=

is élﬁays‘posif;ve'&éfiﬁité, as are the terms, h

tive definite, for non-zero Rt+s . In the extended Kalman filter, fﬁe op~
timal gain Kt+s ¢an be expressed in terms of eithef apriori or postenfgv
conditional covariance matrix, which is given in Eqs. (1.35) and (1.36). How-
ever, this sifgationiis not possible in Eq. (2.37), due to the Kalman gain

‘compensation term.

2.6 Apriori Estimate '

I
o tes/t OF Ves

R
Fan el s e (

By virtue of random variable X4 the posterior estimation error ;%%

- ¥' :l A

¥t+s/1+s is an nxi vgcfor random variable, and, hence, vt+sr represents an gé»
nxn matrix of random variables and its apriori estimate which is the condi- ;:
] : %
tional expectation of Vf+s given Y can be obtained from the definition . ?
- T '

vt+s gt+s/t+sit+s/t+s o

’ 7
! = - - - . y

Tets Kere = Rersst ™ FersWers ~ Trasst?! (2.38) £

T 5

- - - ]

(Revs = Rersre ™ KersWeas ~ Trasse?] P

';;—v;‘l

SSEE

3

Substitution of Eq. (2.27) into Eq. (2.38) yields the following developmert.
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vuh'?aw{fv

) 1
- E - X - = : - + v
- vt+s Lz Kt+shx}xt+s/t K1:+s"2 hxx (Pt+s t+s/t) s}]
[(I - K . h )& -k . An s B ) +v. T
t+s X Tt+s/t ~ t+s'2 XX t+s t+s/t t+s
or
V.. = [I-K. h.JP [I-X _ h]T
_ t+s . 't+s;x t+s t+s X
ol J ’ - T.T
- . - _ _‘{.-» I Nz o —
: [T = Ky ghyk t+s/t{2 sk " es T Pt+s/t) ¥ Verst Keig
- K {3-h GA(P - P ) + v, } | {I h IT -
t+s°2 "xx * ‘T t4s t+s/t t+s” t+s/t t+s X -
1_’7 . B ‘ 2'; . :T'i»»T
Kt+s'{§hnxx'(Pt+s-Pt+s/t)+vt+s}{2 hxx"(Pt+s 't+s/t)+ } K

where the argument of hx and hxx is £t+s/t

- Knowing that Viss is independent of Y, and taking the condi-

tional expectation of both sides of Eq. (2.39) given Y. yields the fcllow-

= 1ng approximate expression for the apriori estimate of V +s °
- 5 2 T
tI Kt+shx(ﬂt+s/t)} 1:1-3/1:{I t+shx(*t+s/t)}
(2.40)
A T
_+ Kt+s[ {hxx(“ rs/t) t+s/t}{h (ﬁt+s/t) ' Pt+$/t} * t+s]Kt+s
g i N WPNT . . s 1]

2.7 Agogtgplgr Conditional Covariance Matrix \t+s/t+s
) ~ As pointed out in the previous section, Vt+g is a collection of

random variables. The conditional expectation vt+s/t* given Yt+s is a

T posterior estimate of V., and can be determined by estimating each element

¥
SR

ibstlntanay i s

)

B i mn ’_. f . y . » . K '. o]
OE, ths n terms of the linear combination of the apriori estimate vt+s/t

and a new observation Vigs * The above argument is based on the Martingale '

properties of the sequence ot+s/1’qt+s/2”"’Ot+s/t""’ and, hence, the

same reasoning as that used in regard to Fq. (2.31) can be applied. Regaxrd-

St

ﬂwiﬁ o

w

ing vt+s as an n’xj vector instead of nxn matrix, the estimation problem
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-can be stated as follows: determine n2xm matrix B of the linear com~

bination

A A

v’C+S'/t+s = V'c+s/*c ¥ Bt+s(yt+s - 9t+s/t) (2.41)
such that the risk (see Appendix E)
- - U ’ - T
RBrys) = tBLOL = Vo reeed Vs Uersiees) ] (2.42)

15“m;p;m1zed Subsgltqriﬁé;ﬁq.y(z.ul)”iptg Eq: (2:42) leads to thé,f@lidqing

,I“R‘§f4;2f""¢”3[{vt+s - i -

BesWiss * ¥ vesye)
. {2.43)
v, =¥

. .
‘t4s  t+s/t Bt+s(yt+s " Fiiej)t ]

The -optimality condition for the minimum of R is given by the following or-

thogonality condition (see Appendix F)

W
L ‘-N“u o
i, J&\fhr

) ) ; T - )
'E[{Vt+s’gt+s/1:°8tfs(yt+s RR LTI AL Teagped /Y] = 0 (2.44)

T A o T _ . ’ - )
E[‘vf+§'vffs/t)‘yt+s-yt+s/t) /Yt] B Bt+sg[(yt+s'yf+ézt)(yt+s‘yt+s/t)L¥tl“ (2.45)

) By the same argument as that used with regard to Eqs. (2 34), (2 35). and

» (2 36) the rxght hand side (R.H.S.) of Eq. (2.45) 1s~§pproxlmaredias follows.

R.H.S,

= Biislhy (*t+s/t)pt+s/th (Ripsre) * Rey
1 . . (2.46)
* 2 {h (gt-l-s/t) : 1:-|-s/'c}{h "'+s/t) : Pt+s/t} ]
Knoéing that
A~ T -
E[vﬂs/t[yﬁs - 9t+s/t) /1) = 0 (2.47)

the left hand side (L.H.S5.) of Eq. (2.45) becomes
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- Therefore, there are no uistinctions between V

ey S ok 7 %ﬂ»?"-ﬂwm
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L.H.S. = E[V )T/Yt] (2.48)

t+s Vs yt+s/t

After substitution of Eqs. (2.27) and (2.39) into E,. (2.48), it can pe easily
seen that all of the terms in Eq. (2.4@5 are of the fourth or higher order
moments, under the assumption that* the .robability density functions of es-
timation errors are jointly Gausgian. Therefore, the optimal gain Bt+s is

given as the ratio of the fourth to the second order moments and is neglected.

-Hence,

y

B = 0 (2.49)

_ ‘With thlis agsumption, Eq. (2.r1) l-~ads to

Ev;+s/t+s' = vt+s/t (2.50)

It is interesting to note that both the posterior and the apriori estimation
errors are independent of observations available for the linear model and,

hence, the conditioning on the covariance matrices becomes vneonditional.

~

t+s/t+s

though Eq. (2.50) shows that Viys/teg 18 closely approximated BY Viisst

these arve conceptually two different quantities. In the linear filtering
thecry, thess become identical and there.is no distinction between them.

Since Ct+s/t is related to the apriori conditional covariance

matrix Pt+s/t through Eg. (2.40), the postericr conditional covariance matrix

vt+s/t+s can be expressed in terms of pt+s/t . From Eq. (2.50)
G . G - - 5 - T
vt+s/t+s vt+s/t = I Kt+shx(ﬂt+s/t)}Pt+s/t{I Kt+shx(£t+s/t)}
(2,51)
1 "‘ { .“ ’;. T
toKeys [ Riiare) t Pras/e B PRiiere?) f Praszed t RevslXiss
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) T T
Yyt Lin ® L4 /L) - h, (R X

ta/t vhu/t 2 s/t s

[hx(? w ) + R (2.52)

ti+a/t t+o/t x t+n/t s

1 , T, T
* 5'{hxx(2t+s/t ) }IK

) - ‘ t+s/t t4+s

Hh (2

t+s/t X% tts/t

Substituticn of Eq. (2.36) intc Eq. (2.52) yields the following relationships

~ A

K . h(

Vt+s/t+s - Pt+s/t T Ners x 1:-i-s/t)P

t+s/t (2.58)

The above relation is used to update the apriori conditional covariance matrix

P

vts/t ° the posterior conditionai covariance matrix V

ths/tts afte» a new

observarion Yiss is processed. Once V is obtained, it can be used

t+s/tts
as an initial condition for the integratioh of Eq. (2.23) from t + s to the

instant of a new observation. Finally, the procedures required to compute

the posterior estimate R can be summarized as follows:

t+s/t+s

ag

t+5/t \ _1_ . B
ds f(*‘c+s/'t:' * 2 fxx(ﬂt+s/t) P

t+s/t

ap

ds % tts/t Pt+s/t * Pt+s/tfx(ﬁt+s/t

1
h(ﬁ’trrs/*!:) * E'hxx(2t+s/t)

9t+s/t Pt+s/t

a hT(

Trg
Pt+s/t X

)[h it X t+s/+

)P h'¢ )+ R

t+s/t t+s/t’ t+s/t

(2.57)

) Hh (R ) -t

1
5'{h (2

t+s/t +"/t t+s/t t+s/t

R b3

t+s/tts t+s/t + Kt-fs [y-c-fs - yt+é/t] (2.58)

~ A A

Vt+3/t+$ = P't'-?s/t - Kt-}-shx(ﬂ-t.,.s/t )Pt’,'S/t (2:59)

In order to start the comﬁutation, 20/0 and Go/o are vequired and they

are given by
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/o (2.60)

w3k
§ o .

~

o/o = Po (2.61)

where Po is given as the ccvariance cf the random vaciable X,

Depending on the particular problem, it may be possible to neglect
either the dynamic or the observation second order term. This might be the
case when the state dynamics are relatively smooth while the state-observa-

tion relationships are highly nonlinear or vice versa.

2.8 Computational Algorithm | A

+s/t+ts of Riss by

processing each data point seguentially, can be summarized as follows:

The algorithm for computing the estimate ﬂt

1. Given *t/t and Vt/t 3
2. Compute xt+s/t and Pt+s/t by integrating Eq. (2.54) and R
(2.55) with the given initial conditions gt/t and vt/t

until a new observaticn Vits is made at t + s .

~ - 3. Determine ¢ and K.,  Uvsing Egs. (2.56) and (2.57),

t+s/t
respectively.

4, Compute ﬁt+s/t+s and Vt+s/t+s by updating *t+s/t and
§t+s/t through Eq. (2.58) and (2.59), respectively.
3 ey \]
5. Given Revs/tss and 0t+s/t+s ,» the steps 2 through 4 can be

repeated.

2.9 Continuous Second Opder Filter

An approximate filter for the case of continuous observation may

T m———— sy

be obtained by passing to a formal limit. In doing so, Qt+s of the dynamic

state noise and Rt+s of the observation noise have to be replaced by Qs
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m%’iﬂ.é

and Rt/s , respectivelv. This comes from the property of white noise re-

garded as a time derivative of Brownian motion (see Appendix C). For an in-

finitesimal observation interval s , it follows that

= i e LG
frasst T Rt Sf(R‘c/*c) * 7 5 B P Ve (2.62)
Persst = Vee tSE (*t/twt/t * t/,c'f (R ) + s (2.63)
Kiyg  F P'c+s/'cn (xt+s/‘c)R~ (2.54)

Utilizing Eqs. (2.56), (2.58), (2.59), (2.62), (2.63) and (2.6%) and passing

to a formal limit, the following continuous second order filter is obtained,

as s goes to zerc.

dg _ lim Rersrees ~ s

dt s+0 s

d ~

= FR)+ ~ £..8) + ¥ +Kly - h(R) - --h LR 2 V] (2.65)
K = \‘/hx(;c)k-l (2.66)
af _  1im Virssees ~ e/t

dt S0 s

AL f )T+ FE5R) + Q ~ ThE(RR M, (R (2.67)
dt X X X X

Note that the optimal gain K for the continuous filter is not the limit of

the cptimal gain Kt+s given in Eq. (2.64).
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CHAPTER 3

DLSCRIPTION OF THE ORBIT DETERMINATION PROBLEM

3.1 Introduction

In order to compare the performance of the extended Kaiman filter
and the various forms of the nonlincar second order filters developed in
Chapter 2, the methods are compared in a simulated study of a realistic or-
bit determination problem. The problem considered is that of estimating the

state of an interplanetary space vehicle during the orbiting and planetary

fly-by stages of a Jupiter exploration mission. The reason for choosing this

problem is that considerable attention has been given to the exploration of
deep space and the reconnaissance of Jupiter is regarded as sn impertant
scientific objective. However, the past Jupiter encounter missions are of
comparable significance and those missions are made practical by utilizing
the powerful trajectory shaping capabilities of Jupiter's gravitatjonal field.
One such mission, the so-called "Grand Tour", involves successive flyv-bys
of the plancts, Jupiter, Saturn, Uranus, and Neptune. The Grand Tour is the
subject of considerable current interest, since a mission opportunity occurs
in the last half of the 1970's and will not recccur for enothexr 179 years.

A critical problem in ti.~ Aesign of a space vehicle to perform a
deep space mission such as the Grand Tour is the accurate det~vmination of
the expected trajectory which is the basic knowledge required fer the guidance
correction. Because of numerous scurces of error, the true trajectory is
never known to us. A major contributien to those errors, access during the
epcounter trajectory, due to imperfect pre-encounter guidance corrections

which result from pre-encounter orbit determination errors. In regard to
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this situation, it is interesting to see how the nonlinear estimation proce-~

dures perform when ccmpared with the extended Kalman filter.

3.2 Equations cf Motion

The motion of a space probe relative vo a given planet is closely

approximated by the solution of the {ollowing vector stochastic differential

equations

R LRI TR A T Ll e

r t -
= - - - 1 1
r ¥ =z "s 1-1} -—-_;—t, +u (3.1)

where p and ug, ave the gravitational constants of the target planet and

the Sun, respectively, and u is z vector of Gaussian process noise and

where r is the position vector of the space probe relative to the target

planet, »_ is the position of the target planet relative to the Sun, and
(S

- r+ Bt is the position of the probe relative to the Sun.

(4]

Eq. (3.1) =an be reduced to a system of first order differential

equations by the following transformaticn

r = v
i s : (3.2)
t o pIpo gy [F--5]¢a
v r s ') vl
.

In a cartesian coordinate system centered at the terget pilanet, the equations

of motion can be exprassed in component forms as
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b. and b. are com-
=y Z.

the ti@,;periéa—ofﬂinterest. The position vector of target

- §§ the uncertainty ir. the position of the outer planets (Jupiter

thls study} i§ assumed to be an influential error source, the planetury

" bias ?ectép ?Sx R 5y and b, are assumed to be unknown paramsters and are

To achieve this objective, the original state vector given by Eq.

"q expanded to include b ’ by and bz and the augmented state is




= [{,Y323UJV,W;bx,by,bZ]

- The augmented state véctor is gpverhedﬁby the (9x1) vector differential equa-

--tion

x = f(x,t) +u (3.5)

~i33§)

;53;4‘ Sféfé?@ﬁse?ﬁétipn Relationships

B - There aré four types of -observations considered: range (p) ,

iange-rafg‘:cﬁi , sun=planet angle (o) , and star=-planet angle (B) .

- The first two of thesé are Earth-based while the other two are onboard obser-

o - - L= - 0y Y % (3 !
__vations, .Any combination of the above four observations can be processed

at any time interval. Such a procedure is necessary if the characteristics

< of ‘each type of observation are to be ditermined.
1. -The range measurement is given by

p = (a . 6 1/2 - vp (3.7)
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o
:3 .’:;b’ﬁﬂ‘ A ‘j\‘{ Msﬁfﬁ TR

Qhé%é’ﬂﬁhr 13 the. random :¢xyror in- the range- measurements and where

) = 5 - 5 .
p P s
In cartesian components T )

e et — %V ey Y (n -2y
0 [(Xp X )%+ (Yp Y5 + (Zp 24)<] tv

» Y, and 2 are the heliocentric position coordinates of -the

track:ng st§ h,<and Xp R Yp and Zp -are the heliocentrig;pqsitioiiqufi

sof the probe.

—2; fi%,a}nzg-’:ra‘cé"bbé;éii'.!a‘cib‘nv

-whére v is the Pandom observation error. In the heliocentbic cartesian

co@rdinateréyﬁﬁéﬁj thé'égﬁrgssipn;hécomes ‘ ] : o
o= V' sV MY <V ? .7 - - . oY
P . (Yp Ys)(Yp ’s) + (Zp Zs)(Zp Zs)l/p + Yp (?,gg#

3.15§§hibianet angle

The onboard angle measurement o ., defined as the smaller angle be-

-

- tween the probe-planet line and the probe-sun line, is given by

. - ~1 P
: a = cos [ = 1+ v, (3.11)

where v, 1s the cbservation error.

Since ip 2 St + 7, Bq. (3.11) can be written as X
e Y +rpl R
a = cos~! | Lt ~] + v {3.12)
A o )




P = X2+ Y2+ 721/2
2 gl 1/2 : S
= (X2 + Y2 + 22 :
v, = B r ) R
4: Star-planet angle ‘ - - : -

The-iﬁst Stafiplaﬁét angle measurement -8 , defined éé-thé:smggggﬁ = E

between the probe—plane 1 ne and the lihe from.the: probe to a reference -

. S - < ) . =

(3.14)

] +v

8= eos” g B

~~

1s the random observation ertor and § is awunif vector in_rhé; ~

-A‘dlrection of the referénce star: The star is assumed to be at an 1nf é

fstance so that S i; a .coristant vector. Since the inplination of Egrth .

.én@?dﬁﬁitg? are nearly zero, it follows that Earth, Jupiter and the space
. jprobe. lie in very néarly the same plane. Hence, it is desirable to-Use a
“star Qbi@h‘ﬁs5ﬁ§t in this plare a& a réference Star to obtain information -

—,aSpﬁt Eﬁezéﬁf:ofoplane motion. Star»planet angle measurement ¢an be ex-~

7pressed in cartesxan components as

(3.15)-

8 = cosg~! [-
8 cos _ { (sz + YSy + zsz)/r] t Vg

where Sx ) Sy .and Sz‘ are the direction cosines of the reference star

direction.
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on_the: Eavth and the helidcentric position vector of the thacking station

is thefhellocentrlcfp031txon of the Earth and R 1s th‘

where r~

Thq~viﬁi§;ééRi is- fx‘(

5 A §
(K cos & cosGGéStl

. z ) I} = ['IL :x( ‘COS 55 8N Cté(t)
o ‘EB sin 6S ) 4 S
where « is the right -ascension of the tracking station,
5s_i§'%he»declinétibﬂ (latitude) of the tracking stdtion, -
- . . -R 1is the magnlthde of the vector <R« *g§g¢xhe radial dlstance of the
= o *‘}E — R % _p— e TN - n
tracking. station. from the‘Earth'SAQther,
and "
f . . ) 0 0
. T = cos ¢ sine
- ~-gsin e cos ¢ - -
is the rotat:onal matrlx which transformg the coordinates from an eqaatorxal

to an ecliptic coorulngtg system which is chosén to be the~hel;oqentric sys-

tem. The argument € is the obliquity of the ecliptic,
that the Earth's rotation is uniform, the right ascension of the tracking

station can ba expressed as

With the assumption
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Differcntiation of Eq. (3.16) with respect tO’tﬁe time yields thé heliocen~
tric vélocity of the tracking station.

™ o _ o . —
Jrey R cog Gs sin as(t)

- 0 c0s- ' )
r. v, + {T]) a R cos & cos a_(t) (3.18)

)

. i?hé zénith argle ¢ of the probe with respect to- the tracking station is

§ iVen by

Ceis o Riup
’ cos'¢ = Ro ™ (3.19)
T "gihé:prpbe is assumed to be visible from the tracking station if cos ¢ is

“positive.

.

3.6 Simulatien of Errors

Eacb»cp@pohent of the noise in the equations of motion (3.1) and

,/éiéervétion—stafe rélations is modeled as a normally distributed scalar ran-

“dom vaniable with zérérmeqn and known variance. The noises dre simulated
»ﬁﬁi sampling at random from a standard normal distribution function (zero
mean and unit variance; and thén scaling the sampled number by the given

’estandard deviation.

The notmal density function of the random variable £ 1is given by

. - 2
£6) = A ap (- 5P (3.20)
B Y2ro

where m and ¢ arve the mean and the standard deviation, respectively. Eq.

{3.20) can be written in terms of the standard normal diz*ribution function

o
o

e oo -
S L

e AP r s L

3
4

Y

L0 ek

yre
¢l

o

e,

—
i

o
Y

!

S

e
PN

o
¥,

RS
SAME

A

TR T
BT e ALV

SRS

Bl

iy

X

3

S

T T T e
\4‘“‘\' T M

i
B

‘&L.

L
s

s

o
Sa

A

§.

221
™

N

e

el S TR

i ot

A



g

Zeiite
i

E<d B IR SR VLT 'm;‘&ﬂ yic,

T T e

e

1 z 1;2 : ?‘

F(z) = = j exp(- E—JdL (3.21) Lo

V271 /- s

by the transformdtion )
i B : 3

- - m 3

r = S (3.22) K

For the random variable of zero mean :%
3

£ = o (3.23) 3

The inverse of Eq. (3.21) can be approximated by the curve fit equation (40)

C +CT +cr? B
z % T - <9 1 &2 - ,
14 d,T +d T2+ dr
(3.24)
T = [#n(F~2))2

where the coefficients e and di have the following values

Go = 2.515517 d; = 1.432788 )
Ci = 0.802653 d2 = 0.189269
QB = 0.010328 d3 = 0.001308

Sampling of the standard normal distribution is accompiished by first samp-
lipg at random from a uniform distribution to obtain a value for F(0 <F<1)
and then ébmputing the standard normal random number 2 from Eq. (3.24).

The simulated noise iz then computed as the product of the sampléd value 2

of the standard normal random variable ; and the standard deviation O by

Eq. (3.23).

£ which F:£

Observaticnal data are simulated by adding random numbers :i

are generated in the manner described above to the cbservation value computed ”§
5

from the true state and state-observation relationships discussed in Section ] :é%
3.4, i.e, 2
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Yopge TV (3.25) .
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Noise in the equation of motion is simulated in the same way as

I

W et
st

Ak

above and then added to the equation of motion at discrete points of time

x
¥,

which correspond to the integration step.

Bt

ol ity

3.7 Computer Program Description

The program NONSTEP (NONlinear STate, Estimation Program) is dev-

eloped for comparison of the extended Kalman filter and the nonlinear es-

timation algorithms by applying each to the study of an interplanetary orbit

determination problem. Special emphasis is given to the planetary fly-by

“fode although the planetary orbiter is considered also.

ha . —— ——— - ) o 0
' N
N

The program was: written in FORTRAN IV for the CDC 6600 computer

'system at The University of Texas at Austin. Since this computer has a single

cap— . vy o
3

precision word length of sixty bits, single precision arithmetic was consid-

i

ered to be adequate for most calculations. The initial frame of the program

was founded on the existing program STEP (STate Eg;imation:Epogvam)_devéloped

by Jones (28) at The University of Texas at Austin.

The three basic functions of the program, i.e., simulation, estima-

F A e e ma— ot W g
' v g \ |

tion, and evaluation, are conducted sequentially according to a schedule

specified in the input data. The program NONSTEP has a capability for carry-

ing out the nonlinear estimation algorithms as well as the extended Kalman =
- E “?g‘

filter, depending on the input data IFILTER, If IFILTER = 1, the extended E =
. T

Kalman filter is carried out. If IFILTER = 2, the nonlinear filter is g
implemented and, finally, if IFILTER = 3, the nonlinear estimation proce- Pz
dure is first carried out and then, with the same input data and random ?%

,

noises, the extended Kalman filter is carried out. With this latter option,
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a direct comparison of the linear and nonlinear algorithms can be made.
In order to reduce the storage space for compilation, the program
NONSTEP employs OVERLAY. The main OVERLAY(0,0) controls the overall program.

The OVERLAY(1,0) conducts all the plots of the output data for the case of

IFILTER

1 or 2. The OVERLAY(2,0) does the same thing for the case of
IFILTER

3. The OVERLAY(3,0) conducts all of the calculations involved in

simulations, estimations, and evaluations and transfers the output data to a

v
S5

magnetic tape for the plot of OVERLAY(1,0) or OVERLAY(2,0). |

In conjunction with the apriori conditional covariance matrix, the : %_

&

true trajectory and apriori estimate are generated simultaneously through et =
i Ee

. . s . s . . =

parallel numerical integrations of the apriori estimate and the apriori con- A
$ti s : . . . i =8
ditional covariance matrix. A general purpose numerical integration subrou- . %ﬁ
- [

tine is used to simultaneously integrate the differential equations. The

&

[
aad,
by .

routine consists of a Fourth Order Adams predictor-corrector scheme with a

Runge=Kutta starter. Although the integration is carried out in single-pre-

cision, the dependent variables are carried in double-precision to minimize

round-off srrors.

L
Y

Observational data are simulated by generating re. lom noise and

S0

superimposing it on the true observation computed from the true state.

Ly
iy

A simplified block diagram of the computational logic is shown in
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3 CHAPTER 4 E:
& DISCUSSION OF NUMERICAL RESULTS 3
'E, The purpose of this chapter is to determine the charasteristics of %
28 second order filters on the basis of a numerically simulated study. There 5
£ £
3;' are two basic classes of second order filters to bs examined. The fircst is 3

@'T,.

K]
1
'

the modified Gaussian second order (MGSO) filter and the other is ¢he modi-

3

b

i

=1
5
]
=
=

i

M
158
/

"3
pe

fied truncated second order (¥MTSO) filter. The basic diflference between

S K3

ke Roin
IR

these two filters is that the Kalman gain compensation (KGS) term enters with §
a plus sign of one-half in the first filter and with a minus sign of one-

fourth in the latervfilter. Botit filters include a dynamic second order (DSO)
term, (fxx : )/2 , in the dynamic aquation (2.54) and an observation second

order (OS)) term, (hxx : $)/2 , in the gredicted observation equation (2.56).

4,1 Various Simplified Forms of Second Order MNonlinear Filters

Although the modified Gauscian second order filter and the modified
truncated second order filter are developed using 4 model in which both state
and the observation equations are nonlinear, thers is & possitility that the
actual problem will consist of a highly nonlinear dynamic equation and a rala-
tively linear observation or vice versa. .n this gituation, the second order

term in the relatively linear relation may be neglected, and, hence, several

possible simplified nonlinear estimation algor.ithms can be obtained, depend-

v}

E

ing on the presence of the dynamic second order term, observation second

Larkay

AL

order term, and the Kalman gain compensation term in various combiinations.

s
'

T

The resulting filterc are tabulated in Table 1. The Filters 1, 8 and 9 of
Table 1 correspond to the M3S80 Filter, the NMTSO Filter and the extanded

Kalman (EK) Filter, respectively. The Filter 4 is specifically roferrei to
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.»,

58

¢ kUL KMok &
1




as the Kalman Gain Compensated {KGC) Filter. The performance.of each of the

Filters, 1 through 8, ‘s studied through numerical simulations éqdqegmgéfeg«

with the EK Filter which is the most popular filter at present time.. The
nonlinear filter is Sirst executed with the input data given in Tables 5
through 9, and then the EK Filter is executed under the same corditionms..

The same sequence of random numbers is used to simulate thé state noises as

well as the observetion noise in béth filters.

The cenclusions reached in

this investigation are based 6n the results of several hundred 31mu1atlons.

- in elgateen of these slmulatlons are presented 1n thls

The results obtain

report: These results obtalned in. these _cases are renresenkat;ye of the o
results obtalned=1n the vemaifiing stgdié )
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4,2 The Nomlnal Trajectory and Error Sources

T Vf The: nominal trajectorlos are genera*ed by 1ntegrat1ng the. equatlons

Tz

A of‘motﬁ,n (3~ 1) ‘with dynamlc state noise set equal to zero. In other wWords:,.

the randbm:néiée u is simply set to zero. Con31der1ng the p0551b111t1es

of applylng “the nonlinear algorlthm to the problems of a péar-Earth or iunari

- satelllte, Marlner and Viking missions, simulations are conducted not only

- for a hypobollc orbit, but -dlso for an elllpflc orbit. The nominalltrajec-

y of the elllptlc orblt is shown in Flg. 6 and the hyperbollc orblt in - -

Flg; 7.

The periapsis and apoapsis for the elliptic orbit occur at about

n'w:o days, respectlvely. The periapsis encounter iﬁ»the hyperbbli& ] ij ,_F

As ééenfin Eigs.=6 and 7, the dynamic nonlinedrity in the elliptic -

o¥bit is very much concentrated mear periapsis and apoapsiéd_but it is well

"distributed over the entiré trajectory when compared with the hypobolic or-

" bit; Iﬁ;thg»h&pobélié orbit, the dynamic nonlinearity is concentrated almost .

‘énfiiély'héaf'thé.périgee, and the pre- and post-encounter trajectovies ap-

“pear t6 be straight lines

The initial conditions for the hypcbolic and elliptic orbits are

obtained from the nominal Grand Tour mission trajectory with Earth launch

-date and Jupiter encounter (28). For tie elliptic orbit, the velocity com-

bf{‘:‘
ponents are reduced so that it yields an elliptic orbit with a proper period E
of 30 days. The nominal trajectory initial conditions ave given in Table 2
and the orbital elements of Jupiter and Earth are listed in Table 3.

The true trajectory (or state) is generated by adding a vector

Gaussian random forcing term u described in Section 3.6, to thc equations

of motion (3.1).
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. ) ‘The actual observations are simulated with the data given in Table

-4 by using the following procedure:

1. Compute ihe nominal observation through the ;tate-observation

relatioﬁsﬁip with the true trajectory obtained as described above.
2. Gaussian random noise is generated as described in Section 3.6
and added fb the ﬁominal okservation.

The standard deviation oy of the dynamic state noise u and

9% of observation noise v are given in Tables 5 through 9 éécordingfto

the simulations. Since it is common practice to employ an adequate 9 for the

dynamic noise u-;, even though there is no -dynamic noise assumed, two values

of o, are used, o is designated For the true trajectory and %0 is

: . Q QT
-adopted for the estimate of the state.
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4.3 Characteristics of the Filters

The resulis of Simulations 1 through 8 ars presented primarily for
the purpose of describing the characteristics of the filter algorithms in
Table 1.

For each simulation, position and velocity estimation errors are
plotted and they are compared with results obtained with the extended Kalman
(EK) fiiter which is filter 9 in Table 1. In addition to the estimation er-
rors, the cenditional variances and the observation residual which is defined
as the difference between the actual observation and the predicted observa-
tion are shown. Unless étated otherwise, all figures are obtained by con-
necting every third data point with straight lines. There are thirty data
points between two adjacent symbols. The main reason for sampling every
third data point is due to the difficulty of tracing the original plot ob-
tained from the Calcomp computer ploter when every data point is plotted.

In this study, the planetary bias is approximated as a constant
parameter and its value is estimated. But, the est’mation errors and the
conditional variances remain virtually constant with the onboard angle mea-
surements during the time period of interest. Furthermore, the difference

betwzen results obtained with the nonlinear filters and the LK Filter are

V.
)
S

negligible. Consequently, the estimation errors and conditional variances

i
A

corresponding to the planetary bias are not presented in this report. %
o

Since the nonlinear filters are compared with the EK filter, the ; ;%

o3

estimation errors and conditional variances for the EK filter in the Simula- | :é
tions 1 through 8 should be identical. However, the actual figures are not ' F§§
identical because of scale factors. _%
The EK filter performs adequately up to three days and thereafter 2
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becomes unstable. Actually, riguyt after the three day period, the condition-

al variances decrease drastically an% the estimatior. errors take several sharp
oscillatory spikes during a short period of time while drifting away from
zero. The sharp decrease in conditiopal variance is atteibuted to the fact
that hx?hz dominates R in Eq. (1.35) and, hence, the negative term in

Eq. (1.33) will be quite large. The position end veloci%y estimation errors

and the conditional variances for the EX Filter are shown in Figs. 8-a, 8-b,

ormar e e Bty el s

10-c, and 10-4.

Immediately after encounter (12.7 days), the velocity estimation

N e . —y— o
I .

errors remain at a relatively constant level and, hencc, the position esti-

mation errors grow linearly, in an unbounded manner, and divergences occur

1 \
R T LT o T e TR R

eventually. The velocity estimation errors become extremely unstable shortly

after encounter and the magnitude oscillates several times with ..arp spikes.

This phenomena is not sgeen in the figures shown here hecause of the fact

that every third data point, instead of every data point, is plotted. In
particular, the velocity components of the conditionil variances are very

small after encounter, and the filter becomes saturated. Therefore, the ob-

l
TR SO S (RS,
N

servations taken after encounter :annot improve the estimate very much. The
characteristic of poor estimation after enccunter is an indication of the
importance of the pre-encounter navigation. L
Figs. 8-a and 8-b show the position and velocity estimation errors f
for the Simulation 1 which compares the Filter 1 (or MGSO Filter) and the EK %

Filter. Both Filters perform adequately up to three days and there are no

significant differences betwezen them, After three days, the EK Filter be-

comes unstable. However. the MGSO Filter performs properly up to encounter,

Both Filters diverge after encounter,
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ft is interesting to notice that the MGSO Filter obtains a more ‘g
accurate estimate of the Y and 2 components and less accurate estimate f%
of the X ccmponents after encounter than the EK Filter does. f%%
T Z
L Although the corresponding conditional variances are not specifi- :§
13 cally shown here, they are almost identical to the ones given in Figs. 11-d f%
and 11-e. Tt is interesting to note that the conditional variances for the %;
MGSO Filter are considerably larger than those of the EK Pilter especially : §§
in the region from three tc thirteen days, during which the MGSO Filter es- ég
timates surprisingly better than the EK Filter. - %%
p -
Figs. 3-a and 9-b show the position and velocity estimation errors g ’;
for Simulation 2 which compares Filter 2 and the EK Filter. Filter 2 per- % ié
forms considerably better than the EK Filter throughout the entire region. 5 %
P
I'or future discussion the oscillations around encounter are emphasized herve. : f%
=
The conditional variances are identical to the one shown in ’igs. 11-~d and ég
11-e, which also correspond to Simulations 1 and u. E;
=

A

From Table 1, it can be secen that the only difference between Fil-

ter 1 (or MGSO Filter) and Filter 2 is that the dyramic second order (DSO)

ki

term is dropped in Filter 2., Therefore, the comparison of Filter 1 and Fil-
ter 2 shows the effect of DSO termi. As seen in Tigs, 8-a, 8-b, 9-a, and 9-b, i

the effect of DSO term has « significant effect after encounter. By dropping

the DSO term from the MGSO Filter (Filter 1), : far better estimate is ob-

tained. .

A number of simulaticns indivwite that the DSC term is very sensi-

3
tive to the initial covariance matrix. For the iarger values of the initial Z
variances, less satisfactory estimates are obtained. The simulations indi- 4
=
care that the MG50 Filter diverges whlle the Lk Filter yields « convergent %
?%
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estimate whenever large initial variances are used with relatively large
state noise oq

the differences between the two Filters

For small initial variances and small state noise 9
MGSO and EK Filters are negligible.
This implies that none of the DSO, 0SG and KGC terms are important. Appa-
rently, most of the orbit determination problems which are not influenced

by a state noise u fall in this category cnd the differences betweaen the

EK Filter and the MGSO Filter are negligible. However, there appears to be

a range in which the initial variances can be so chosen that the effect of

DSO term improves the filter performance. But, it may not be easy to select

such an initial covariance matrix in a complex multi-dimensional problem,
because the chosen set of initial covariance matrix may very well cause the
DSO term to affect the filter in such a way that the estimate of some com-
ponents can be improved while the estimates of other components is degraded.
An example of this situation is shown in Figsg, 8-a and 8-b.

Usually, if the EK Filter converges, i.e., if the conditional var-
iances remaip small, the MGSO Filter acts like the EK Filter This is due
to the fact that the effect of the DSO term cun be overridden by the small

variances associated with the observations. In contrast, if the covariance

reduction caused by the observatious cannot override the effect of the D50
term, which will occur when the initial variances and dynamic state noise
are large, then the MGSO Filter diverges because of the DSC term even though
the LK Filter converges. A large conditional variance allows the estimate to
depart from the true trajectory because ¢ the DSO term and cause a bad pre-
dicted observation and, consequently, large cbservation residual which wiil
lead to filter

instability and divergence.

Figs. 1i-b and 11-c show the estimation ervrors for Simulation
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4 which compares Filter 4 with the EK Filter. As seen in Table 1, Filtver u
includes only the KGC term and excludes the DSC and 0S0O terms. Filter 4 is
referred to as the Kalman Galn Compensated (KGC) Filter.

The comparison of the filter performance with Filter 2 will show
clearly the effect of the 0SO term and the comparison with the EK Filter
reflects the effects of the KGC term. From Figs. 11-b and 11-c¢, it is seen
that the Filter 4 (KCC Filter) estimates show excellent agreement with the
true trajectory throughout the entire region., Both the KGC Filter and the
EK Filter appear to be identical for thé first three days. After three days,
the ¥K Filter diverges. Although the EK Filter persforms poorly over almost

the entire region except for the first three days, the poor performance after

encounter results from the behavior which occurs from three days to encounter.

The accumulated large estimation errors «t suncounter influence the estimate
throughout the remainder of the period.

The phenomena above can be explained as follows: the conditional
variances become quite small after encounter, and the filters bocome insen-
sitive to observations. Therefore, a {ilter that can estimate accurately
around encounter can ratain an accurate estisate after encounter. Similarly,
any filter which performs in an unsatisfactory manner around encounter will
yield an inaccurate estimate after encounter.

Fig., 11-a shows the ohsaervation residuals for Simulatiovn 4., The
observation residual pattern for the EK filter starts to grow from three
days and is influenced by & large spiks around encounter. After ercounter
the residual patterns for the EK Filter and the KGC Fiiter reméins jdentical

to each other.

The ceonditional variances are shown in Figs. 11-¢d and 1i1-e. It is
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interesting to note that the conditional varianqes for the EK Tilter undgigo'
: a sharp reduction at a time of about four days following which the es@iﬁa—r ?;g
;;_ tion ervors begin to drift away. The conditional variances for the 'GC Filter $ i
'i; ; retain a larger value for the period of time from four to twelve days during ?%%
%} ! which the poor performance of the EK Filter has been accumulated. ‘}5
From the simulations, it was noticed tpat the KGC term is negli- “Eg
gible at the beginning in comparison with the other tevms hx?hz and R in. Ei
Eq. (2,57). But, it grows rapidly and becomes the dominating term from three '%§
to twelve days. As a matter of fact, the maximum value of the KGC term is i%
about ten times larger than the other two terms. The KGC term becomes agair E?
r:gligible after the encounter. The above fzct implies that the cbservation : é;
nonlinearity is very severe from three to twelve days. The observations 7%%
% outside this region appear to be relatively linear. The severe observation ?ﬁ
-ié nonlinearity near encounter is seemed to be caused by th< dynamic nonlinearity. 'E;

AR STt

S
A

The same investiigation was made on the other type ot observations. The sun-

by

|
B

planet angle measurement has almost the same characteristics as the star-

planet angle measurement. However, the range and range-rate observations do

ey
Meuinds
e A

not. appear to be influenced by the second order terms and the KGC terms for

both observaticns dare negeipible. Hence, no ditference between the KGC Fil-

ter and the UK Filter s seen.

'
iy

From Eq. (2.57), it can be seen that a large KGC term yields a

3

smaller optimal gain K than that which results in the EK Filter. Hrnce,

.
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a gmaller conditional covaviance reduction occurs and @ larger posterior covar-

L J

b "

uﬁ%
ETY

ki
A

Ak

iance matrix results, as can be seen from Eq. (2.53). In Figs. 11-d and 1i1-e

] . . . . i =
“ggg exactl, the same phencamena described above, happens in the region from four 7
5 55%”; ’ =
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a;rggé days to encountei. _ éﬁ
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Between observations, the conditional variances vary according to
‘.ne differential Eq. (Z2.55) and the direction of chAnge depends on the signs
of’the Jacobian matrix fx . At the time of the observation, Eq. (2.59)
governs the conditional covariance matrix reduction. The conditional var-
iances increase only through the dynamics, namely, the signs of fx and de-
~w.ue by either the dynamics or observations, namely hx . For example,
the reduction for the EX Filter around four days is attributed to the ob-
servations and the one near twelve days appears to be due to the sign changes
of fx .

It appears that near enccunter, the dynamic nonlinearity overrides
the information gained through the observations. Physically, this means that
a severe dynamic nonlinesrity causes bad predicted observations and obserwva-
tion nonlinearity. Therefore, large observation residuals are inevitable.
In this situation one can follow one of two procedures:

1. Discard the observations during this period.

2. Try to upcate the apriori esfimates with larger gains, K .

It appears that the EK Filter follows the second course while the KGC Filter
takes the first courss. The XKGC Filter yields a large value for the condi;
.ional covariance matrix, and hence, leads to a small value for the gain K
because of the KGC term. This means that the KGC Filter places less weight
on each of the observations obtained during the period of time in which
dynamic nonlinearity is very severe.

In addition to the large value for X , the observation residual
is so large during the brief period of time, as seen in Fig. 1i-a, that the

correction to the apriori estimate in the EK filter becomes e. jessively

large and a poor posterior estimate results. The condivional varisnces
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for the KGC Filter depend more on the state dynamics in the region of a
severe dynamic nonlinearity. The sharp decrease of the conditional variances
neay encounter is not due to the cobservations but due to the sign changes

of the Jacobian matrix fx . h large integration step size often causes a

negative variance near encounter. The sign change of the Jacobian matrix

fx incorporated with the large conditional variances yields a negative
slope for the conditional variances which can result in negative variances.

The conditional variances for the EK Filter depend largely on the

- drsi———— y——

observation, namely hx in the region where dynamic nonlinearity is high.

The sharp decrease of the conditional variances for the EK Filter around four
days is an indication that the reduct.on by the observation overrides the

increase due tc the state dynamics. Unusually large reductions of the con-

ditional variance which occur in EK Filter in the early stage of application,
is attributed to this phenomena. However, it ca:u be a nuisaace if the pos-

terior estimate is still far away from the true state even after the condi-

tional variances reduced to a zero level. The most interesting observaticn
is that the EK Filter becomes unstable and the estimate starts to drift away

from the true trajectory whenever the conditioral variances are reduced gsharp-

ly. Another interesting observation is that ~ach of the Filters (1, 2 and 4)
which include the KZC term have almost identical conditional variances snown
in Figs. 11-d and 11-e, and have very similar observation residual naiterns,

as shown in Figs. 11-a.

2

Ay

SR

Figs. 12~a apd 12-b show that the estimation eryors for the Simu-
jation 5 which reflects the charactsristics of IMilter §. Filter 5 insludes

only the 080 term. Filter & performs bevier than the EK Filter ficm three to

5y
o
)

nine days. Apparently, the observatlion .econd urder improves the performance
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of Filter 5 by using the proper sign.

The poor performance of Filter 5 be-
tween nine and twelve days reflects the fact that the 0SO term influences

the filter with the wrong sign. The poor estimates of Filter 5 after en~

counter are due to the propaga*ed effect of the poor estimate at encounter.

Figs. 10-a and 10-b show the estimation errors for Simulation 3

which compares Filter 3 with the EK Filter. Filter 3 contains both the DSO

and the 0S0 terms. By comparing Figs. 10-a and 10-b with Figs. 12-a and

12-b, the effect of the DSO term is shown significantly after encounter.

‘The .estimation errors for Filter 3 are considerably larger than those of

Filter 5 after encounter. The difference would be the negative contribution

of the DSO term in the Filter 3, i.e., the DSO term éffects the filter with

the wrong sign. The conditional variances are shcwn in Figs. 10-c¢ and 10-4d.

These figures also represent the conditional variances resulting in Simula-

tion 5. 1t is interesting to note that both Filters (3 and 5) do not con-

tain the KGC term and the conditional variances are very similar to the one
given by the EK Filter and quite different from those of Filters 1, 2 and 4

which include the KGC term. Fig, 10-e represents the observation residuals

of Simulation 3. This observation residual pattern which contains & large

spike (even larger than that of the EK Filter) is seen also in Simulation §

.

The smocth residual pattern (Fig. 1i-a) of the Filters 1, 2 and U is primar-

ily attributed to the presence of the KGC term aund its side effects.

Simulations (, 7 and 8 are conducted mainly to describ= the char-

acteristics of the medified truncated wsu:cond order (MTSO) filter which is

designated as Filter 8. Tor Simulations €, 7 and 8, only tie X components

of the position and velocity 2: ~imation errors, obhservation residual and the

conditional variances V11 and Vuu are shown in the corresponding figures.
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The other components exhibit similar characteristics and are no* shown in

e,

this report to eliminate unnecessary space. The only difference between the

~end,

L

. N
3
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2 GO 2 A

MGSO Filter and the MTSO Filter is that the KGC term enters with a plus sign

\

¢

217

of one-half in the first Filter and with a minus sign of one-fourth in the e

.
)
MZEE)

m;ﬁi*

second. As previously pointed out, the KGC term is negligible at the begin- -

;
v

ning but grows rapidly up to ten times the value of the combination of the
other terms, hxﬁh: and R , as shown in expression (2.57). Following en~
counter, the value of the KGC term reduces in value. TIrom the ibove charac-
teristics of KGC terms, it is easy to conclude that the MT30 Filter contains
a potential signularity. The optimal gain K given by Eq. (2.57) with a
minus sign of one-fourth of k3C term instead of plus sign approaches plus’
and minus infinity &s the KGC term approaches the sum of tne cther two terms,
hxﬁhx and R from below and above. In addition, when the coptiral gain is

very large with 2 positive sign, the postarior conditiocnal variance becomes

negative. The phenomena is clsalv - Flected in Filters &, 7 ind 8, and is

shown in Figs. 13-a, 13-b, 14-4, i&-+, 15~2, and 15~bh.

s

~x

In general, tne MGSC " 'ter keeps the ronditioral variances larger

than those of the EK Filrap, The MT. . Illter, in contrast. has a Llendeacy
to keep the conditional v=-‘ances i.itl. - t.n there of the BK Pilter.  How-
ever, the variance b- om~c meaningi. s¢ tae Y tows drive. the variance

to a negative quantity in iiivers
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-effects;-of state noise covariance matrix Q

4.4 Applications of the KGC Filter to the Hypobelie Orbit

In the pxev*ous section, several filters were discussed @nd rhe DSO

and 0S0 terms wére characterized in conjunction with the KGC term. Since

the KGC term is the only term which improves the filte. performance, the KGC

" filter which includes only the KGC térm is;desigpated as the best filter

among: those listed in Table 1. o -

The KGC filter is further tested through numerous simulations. The

simplationg;gathngh 1k %@e»q@ndgptedzqn & Hipobglfﬁ oybit»wgth—the~sgn—‘

planet angle measurements. The simulations aﬁe @eéi@ﬁéted to determineftbg

tlal state errors .
s Lnx o/o.

and- ob-

w:

tééfé;iéﬁ §t§p~sizea observation rate, ini

lal ‘covariance V /0

gnvatlon n01se covarlance matria R . Simulation 10 is the referérnce  case

tﬁiﬂﬁiéh»all other simulationgzggg comparved: The input data are given in

b mulatlon 9 is specxflﬂally designed to leusirate the effect of

ng two dlfferent Q s

ﬂ;-—r -

in Eg. (2.55). 6QT is the true standard. deviation

e
e

of the state noisée u which is used to compute thie tiue trajectory. qQA is
the apriori standard deviation. The squaré of GQA is used in Eq. (2.5%5)
“5p. the estimation procedure. It is common practice to includé a Q in Eq.

0.55),:although there may be no state noise u asaumed. This procedure is

followed to keep the value of the conlitional variances above a cer!pfin level
so that the filter can maintain a recasonable gain K and, hence, will be
sensitive tc the observations. Usually the EK filter reduces the conditional

covariance very rapidly afier a few observations cre made, and, hence, the

filter becomes saturated and insensitive to the observaticns,

Figs. 16-a and 16-~b show the position and velocity estimation

3

- =
2

5

e

et

i




P

o
K. ickig e

12

- g,

errors, respectively, for Simulation 9. The conditional variances and ob-

servation residual are almost identicsl o the ones given in Figs. 17-¢,

17-d and 17-¢ which are obtained by uzing the same o, and o « The

QT QA

observation residual pattern should not be assumed to be zero except during
the brief time intérval in which the spike occurs. The non-zero value of
the residuals do not show up on the scale used to plot the results.

Since the sun-planet anglé measurement is restricted to the eclip-
tic plane; the measurement does not include very much- information: on the 2

;qgmpénéﬁtsibf position and velocity. 'This fact is reflected: in the figures

-

related fto the 2 égmpgqgnté{fbém zero tq—tén‘dayé£T Bqthrthe EX filter
¢ ‘ LEh i ) A )

by

" afid the KGC filter perform. reasonably well up 1o -eight days. As: & -matter
of fact, they are almost identical. The'ﬁgfffiﬁer;gfaﬁﬁé to drift away from
the true trajectory after eight days. " Avound twelve days, the EK filter be-

-comes sxtreiely unstable, oscillates severdl times with shabg spikes during

7 *@5§§ shobt périég of time and thén diverges eventually. The oscillatory
spikes near encountér are not shown in the figures simply because only every
third data point is shown in the figures. As seen in Fig. 17-e, the eéti—
mat; with the EK filter is influenced by a spike in the observation residual
‘pattern around encounter. The actual observations which depend mainly on
the triie states and the small observation noise contain equally good infor-
mations at any time. But the predicted observation depending on the current
‘estimate can be quite erroneous. The errcneous observation residuals around
encounter are incorporated with a large optimal gain, K , during the same-
period and the update of the apriori estimates is, cénsequently, too large,
causing the EK filter to diverge.

The KGC fiiter keeps the conditional variances large in the critical
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period of time from eight to twelve days. #As a pesult, the KGC term dominates

the other two terms, hxﬁhz and R , and the values of the optimal gain, K ,
rémain small. Through this effect, the KGC term makes the filter insensitive
to the observations which could be erroneous, in the region where the dynamic

nonlinearity is very sevede.

Sifiulation 10 shows the efféat” of using the=same Va;ués;foff?véi
-~ and oy . "It is noticeablé that Simulaticn 9 aaich use: two different val-

ues for- dQT and ields slightly sma: .1 estimation errovs. for both.

OQA,y
the EK and K&C filters than those of the Simulation 10 which uses the sare

value. Since the sun-planet angle measurémeént is restrictéd to -the égliPigg;,,

plane; the EK filter experiences severe nonlinearity effects on the Z com-

ponients. Thé éffect can be séen in the Z components of the conditional

. A=}9aﬁianCes shown in Figé;’iiéc and 17-4.

imulation 11 shows the effect .of the initial»stéte~error§.r The

%2

~:errgrs aré chosen ten times larger than those of Simulation 10. Thé . conver-
gence characteristics, except the Z components, appgg;)to be well behaved
for both filters immediately after taking the observations. However, the
EK filter dis@iays instability and divergence characteristics around en-
counter, aIfhough the KGC filter continues with an accurate estimate fhpdughé
out this extremely nonlinear region.

Overall, the estimation error patterns shown in Figs. 18-b and 13«b

are very much the same as those of Simulations 9 and 10, except during the

first few days. The observation residual pattern is shown in Fig. 18-a. and

 the conditional variances are almos® identical to the one given in Figs, 17-¢
and 17-d. Again, the residuals outside the spike zone do not show up because

of the relatively small size compared with the spike.
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Since the nominai trajectory changes very rapidly around encounter
in the hypobolic orbit and near periapsis in the elliptic orbit, the dynamic
nonlinearity appears to be very severe in these regions and, cohsequent;y;
so is the observation nonlinearity. In order to minimize the effects of the
iESnlﬁneafitggs, a ;ariéble integration step size and observation rate are
. agopted in the $imulatioén 12. Initially, the integration step size and the

7o§servation intervals are set to 1/10 day, and then the actual iﬂfégﬁaﬁion

- . Step size, AT; , and observation interval, AT, are determined as follows:

— T

AT, = (1710)  Integer Valué-of (#/r)) , rzr,

(1/20) / Integer Value of (ié/?)' s io >r

:Véﬁd‘EATO , for example, become mnearly 1/20 of the initidl step size, 1[1&
- i:j:@ay ﬁéar encounter .in theé hypobolic orbit. . N :‘:
Vlfjr i - Pigs..19~a and 19-b show the estimation errors for the positién
gﬁéivélgcifyicomponents. An interestihg,fact~§bouxAthe error pattern of
Similation 12 is that the signs ace reversed when compared with those éf
:S%mulation 10. Figs. 19-c and 19-d show the conditioﬁalivarianées and a
7lrréiiéhtly<diffeﬁent pattern is seen near encounter when compared with those
in Figs. 17-c and 17-d.
Simulation 18 is conducted with a ten-times larger initial condi-
éiqna; variances of the velocity components than those of Simulation 10, Due

to the larger initial conditional variances, the XGC term starts influencing

the’KGC filter garlief than it does in Simulation 10, Figs. 20-c, 20-d and




95

20-e represent the conditional variances and observation residuals, respect-
ively., Estimation errors are shown in Figs. 20-a and 20-b.

Simulation 1B shows the effect of a large obée?vation noise stand-
ard deviation op in the KGC filter. A value ten timeériaiger than the
value ofr Op which was used in Simulation 10 was adopted as an observation
noisé standard deviation in Simulation 14. ‘

. Tt is found in the EK filtdr which does not inelude the KGC term
that hgﬁhz doniinates R in Eq. (1;35) during the early stage of esgima*
:Qtién; Later thé values of R dominate. From the aboﬁe'0bservation, it is

- i understood that the KGC term which is Tiegligible when compared with thé-

other two terms, hxﬁhi and R in Eq. (2:57), cannot affect the perfornance

of the KGC filter very much. But in the region where the KGC term dominates
the other twdo terms and R is larger than h*ﬁhza, the éffeét of a large

R Shows up. For example, consider the period from nine toc thirteen days

in Figs. 21-b and 21-c. After encounter, the value of the KGC term diminishes

: due to the combined effect of small conditional;variances and observation

V second partials h*x and thereafter the KGC term has virtually no influgnéér

on the KGC filter, Therefore, the KGC filter perferms like the EK filtér

" after thirteen days. For a small Op » the effect of the KEC term bé;omes
very significant and the KGC filter is very desirable whenever = smaller Op 3

or equivalently acc.rate observation, is available. ,

The corresponding conditional. variances and observation residuals

- - are shown in Figs. 21-d, 21-e and 21-a, respectively.
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hibh  Applleatlon ol the KGC Filter-to the Blliptic Orbit
The KGC Filter is applied to the problem of’determlnlng an ellip-
tic orhit around Jupiter with sun-planet, star-planet and range-rate plus

sun—plane,haﬁvle;measuréﬁents. Sincée the variation of the 2 components in

ha nominal trajectory shown in Fig. 6 is very small compared with the X

T
e

and Y components, the initial state errors for the 2 components of pos;—:

P -

tion- and velocity .are choqen as ope—tenth of»tbosc of X and’“Y‘ componenté,

§pqggg§shaé*i157‘km éﬁd‘ 10*5 kﬁ?séé ,~respectively. S

Plgs. 22-a and. 22-b show the estlmatlan errdrs for Slmulatlon 15.

Unlike the hypobolic orbit, the EK Filter gradually dfifté away after flﬁtegg

days during which time the dynamic nonlinearity affects grow large. “The ¢on=

ditional variances are ‘shown in FTigs. 22-c and 22-d. Fig. 22-e skiows the:

cbservation residual pattern which consists of every tenth data point con-

nected with straight lines. Simulation 18 is désig@ed to :seé vché;p,e’i%fﬁz;méncg

of the KQQ“?iiféf'fpf’a:iOng-périod of time. The period of estimgtiéﬁiié

extended to 62 days which is more than two revolutions of the. elliptic obiiﬁ;

The same input data as that used in Simulation 15 are used for Simulaiioﬁ 18,

The estimation errors for the position and velocity are shown in Figs. 25-a
and 25-b. For the first 30 days, the estimation error‘patferps of Figs, 25-a
and 25-b match identically with the ones shown in Figs. 22-a andréé-b. An
interesting fact is that both the EK Filter and the KGC Filter exhibit a per-
iodicity in the estimation errors. However, the errors for the EK Filter
grow larger during fhersecond revolution and reach an unacceptable value.

However, the KGC Filter realizes a very accurate estimate throuéhout the en-

tire period and, as a matter of fact, the estimation errors are considefaply

t




smallér diring the second revolution than those during the first revolution.

Around the second periapsis, the EK Filter estimation errors exhibit spikes

in the velocity estimation error components and the numerical value of the

position changes sign. The conditional variances are shown in Figs: 25-c and

From- thée examination of Figs. 25-a, 25-b, 25=c and 25-d, it canbe

:Seéh that,tﬁeAKéC ?ilfer"sa'upe ior to the EK Filteér in the- reglon where

7ithe ondltlonal varlances of the. KGC Flltar are larger than those of the EK

ltei; The 1mprovemeni:j§:;*ved in: the KGC Filter 1s strlctly due to the

. effect of the':GC term n'the optlmal galn K. Elg;;zsie&éhgwé the%pbsgryae

IlBﬁ ré31dualw Itsshows a couple of splkes around the sec nd perlapei

=Si_i|uiat ion 16 :i‘s :_cgqngﬂ@ted? wijth :_;simsﬁiéneit; ’aing‘i‘é:mé‘asnr"erhents i The

’imét ion. efrors shown in Flgs. 332b and.23-

:o0f. the sun—planet angle measurement. Sane the sun, Juplter and the space-

craft are all almost on*the ecllptic plane, the. 1nformat10n about the Z

‘"4§oﬁpbgéht$:j§_peer‘and,tbe EK Filter determlnes a poor estimate of ‘the z

ipempenents of pesitien and velocity. Figs. 23-d, 23-e aﬁé 23-a show the

conditional variances -and the observation residual pattern; respectively.

. The residual pattern is obtained by connecting every tenth data point with a

straight life.

7The Simulation 17 is conducted with two kinds of cb.ervations, i.e.,

.-

ﬁrahgeératg-glpg aunipianeteapgle measuremients., Figs. 24-a andﬂgﬁab show the

‘estimation errors and: the- conditional variances are given in Pigs. 24-d and

fﬁ&ee.’ The % components are estimated poorly again. Fig. 24~e shows the
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two ébséfiéiféﬁ residuals, one for the range-rate and the other for the sun-
planet argle measurement. With the data of Simulations 16 and 17, the filters
—wereJéxaﬁined for 62 days. Th same characteristics discussed in Simulation
18 éan be found. The conditional variances vary periodically and large spikes
¢an be found in tie observation fesidual and velocity estimation errors for
‘the EK Filter. The EK Filter estimation errovs are incomparable at the sec-
‘§ﬁd“rgvéiutibn. Actually, they diverge after the second periapsis. However,

ibe'gGCf?iltéf pérforms excggtignaily well through out the entire period and
. _ i

e féiénibeﬁtérAQ% the second reVolution.

Simulations 1 through 8 ave re-examined by using the variable ivite~

= ,;::, e e el % Ce - . a E e - . L o B
’gpat;qnsstgp size and observation rate discussed in Section 4.4. The: char-

@cteristics discussed in the Section 4.3 are unchanged.
- It is found that variable integration step size and rapid observatiom:

Tate do riot change the characteristics of Simulations 45, 16, 17 and 18. ex-

f%b@»iﬁé@_@?é? all estimation errors are smaller than- those éf,thercqnétépgi;}
oh Step size and observation rate. However; the improvement is not
"§§ﬁ§iﬁ§?iﬁg the computer time. U§U€ll¥5-f@?\tbiSfééséiffﬁéfﬁK’

] 4r€a§6é§<ﬁﬁé»estimétiohferfdrsf@ore'siggiﬁiq;nfiy than the ‘KGC Filter

A‘} iﬂ§e§§=buﬁrthe'EK;Piiter solution will diverge still.
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CHAP'TER &

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary
In the investigation described in the previous discussion, a compar-
ative study has been made of nonlinear es.imation algerithms and their appli-

cation to the orbit determination problem for interplanetary spacecraft. By

using the properties of a Martingale series and Loeve's smocthing properties,

a second order nonlinear estimation algorithm is derived. The algorithm is
shown to be of the Gaussian second-order class as distinguished from the
truncated second-order class. Both classes of second order filters retain a
second order term in the state dynamics, the observation state relation and
in the optimal veighting matrix (Kalman gain), respectively. 'The merits of
each of the algorithms as well as the influence of each second order term is
evaluated by a numerical simulation of the orbit determination for a Jupiter

fly-by and Jupiter orbiter missions.

5.2 Conclusions

Based on the results of extensive numerical simulations on the
Jupiter fly-by and Jupiter orbiter missioms, the Following conclusions can be
drawn for the class of problems considered here:

1. The system‘dynamic influences the performance of the EK Filter

through
initial conditiens
conditional covariance matrices

predicted observations
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The effect of the initial conditions is considered to effect the system dy-

namics directly, in contrast to the effects of the other two factors, which
are regarded as an indirect effect on the performance of the filter. It is
concluded that the indirect effects of the system dynamics are more severe
than the direct effects, especially when the system dynamics are highly non-
linear.

2. The effect of the dynamic second 9rder (DS0) term cannot be
isolated. 1If the conditional variances are large, which means that the ex~
tended Kalman Filter does not perform adequately, the 2ffect of DSO term is
very severe and causes the second order filters (MGSO and MTSO) to ¢ v.rge,
in & situation when the EK Filter performs reasonably well. In contrast, the
small conditional variances, which imply that the EK Filter works very well,
do not reveal any differences between the second order filters (MGSO and MTSO)
and the EK Filter. 1\s a matter of fact, there is no reason for using a sec-
ond order filter if the conditiona .ariances are small and the EK Filter
performs adequately. By including the dynamic second order (DSO) term, ap-
proximately 30% more computer time is required than that reguired by the EK
Filter. Furthermore, any filter including the D50 term is very sensitive to
the initial covariance matrix, if a dynamic nonlinearity is significant at
the beginning. It is interesting to note that Athans et al., (27), based on
a different example problem, concluded that the DSO term is the major fac-
1or in improving the performance of the MGSO Filter. Hence, the concliusions
reached in this investigation regarding the D30 term should be regarded as
problem dependent.

3. The observation nonlinearity depends on the type of observa-
tions and the dyramic nonlinearity. The range and range-rate cbservation in

the Jupiter fly-by problem are regarded as relatively linear observations.
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Like the DSO term, the effect of the observation second order (050) term can-
not be deiermined for all problems. The same conclusions as those reached
for the DSO term can be stated for the 0SO term. But the effect of the 080
term is not as severe as the effect of the DSO term for the MGSO Filter.
4, The Kalman Gain Compensated (KGC) Filter appears to give a
quite accertable behavior based on the folliowing observations:
i) 1In the region where dynamic nonlinearity is not significant,
the KGC Filtdr acts 1i¥e the extended Kalman filter.
ii) 1In the region where dynamic nonlinearity is very severe and,
consequently, the observation residvals are large, the KGC
Filter down weights the large observation residuals.

The effect of the KGC Filter becomes more significant when the

e
[
[N
S

observation noise R is small and the state noise Q is large.

This fact implies that the KGC Filter is more desirable when
the observations are measured accurately and when the dynamic

noise is large or equivalently when the dynamic process is

poorly modeixd. -

iv) The KdC Fiiter is very stable and insensitive to the dynamic
nonlinearity as compared with the EK Filter.

v) The KGC Filter maintains an accurate estimate for the highly
nonlinear type of observations while acting like the extended
Kalman Filter for the relatively linear type of observations.

vi) 1In contrast to any other second order filter, implementation
of the KGC Filter is as feasible for complex problems as the
extended Kalman Filter is.

5. If no state noise is assumed, the EK Filter works adequately
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and the differences between the two filter, (EK and KGC) are negligible. The
absence of state noise implies that the conditional variances cannot be tco
large.

7. Tor the Jupiter fly-by, the extended Kalman Filter determines
an adequate_estimate up to a period of encounter minus three days. However,
the estimate diverges around encounter, when the dynamic state noise is in-
cluded while the KGC Filter yields accurate estimates.:

8. For the Jupiter orbiter, the estimate of the extended Kalman
Filter drifts away gradually from the true trajectory and diverges at the
second revolution, when the dynamic state noise is included while the KGC

Filter yields an accurate estimate.

5.3 Recommendations for Future Study

The research reported here is an indicat;on of a successful appli-
cation of an approximate nonlinear filter and indicates the possibility that
the Kalman Gain Compensated Filter can be applied to other problems. The
following studies are recommended:

1. Application of the KGC Filter to the orbit determination prob-
lems associated with re-entry, near-Earth and lunar satellitez, Mariner and
Viking missions, should be carried out. In particular, applicavion of the
KGC Filter to the re-entry and ascent phases of .he shuttle navigation prob-
lem is recommended.

2. The applicability of the sqhare root covariance and-the consider
filter versions of the Kalman Gain Compensated I'iiter should be developed.

3. An extended study of nenlinear estimation algorithms and their
applicability to the orbit determination problems should be made. The com-

parative study should be made in the frame-work of the applicability of the

"pﬁg"
.
£l

wi

-
'

'

~.-.~......~....
o,

i
i
\

[ A

R i 2 oo

N )

RS

2

e

PO S N X W o B BN e VA
Lt g g

PR
ERAN T

4 b A W

AT A

hV;@m

hu

- .mﬁmﬁ




s b

'y
;

w7

ik

T
4 b,

ofthid

methods to anticipated orbit determination problems. In the study, particu-
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geometrical changes during a mission. The objective of such a study would 1
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- - be to define particular missions and data types for which nonlinear orbit %
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determination algorithms will yield a significant improvement over the es-

g
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timate obtained with the extended Kalman Filter.

4. Further study of the effects of the dynamic second order (DSO)

s e m—

term and the ob3ervation second order (0SO) term shoul& be mads.
5. An-extensive study of the éauSsian,seqoﬁd—order—filtgr;agd the

truncated second order filter should be made in the direction of determining

the characteristics of the random forcing term @nxtﬁe covariance eQuation;
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APPENDIX A

THE PARTIAL DERIVATIVES

The first order partial derivatives fx and hx and the second
order partial derivatives f"x and hxx which appear in the nonlinear es-
timation algorithm .are defined in this appendix. -

From Eq. (3.5), the (9x9) matrix fx can be partitioned as follows:

-~

¢ I ¢ ‘ o
i £, = Aoy ¢ A | L
i ¢ $ ¢ i

where ¢ is the 3x3 null matrix and I is the 3x3 identity. The symmetric

- submatrices A21 and A23 are defined as follows:

(B Fyp Fus Fup » Tug » Fug
E A1 = | Fs1 » Fsp s Fgg As = | Fs9 » Fsg o Fog
3 § i Fe1 > Foo » Fga i | Ys7 » Teg » Tgg
‘ g where
K % w2
2 F = -a-f—u- - u sz - -j-'- + 3l{ - l-l
E 41 3% 5 T3 TV T p |
P P
of (3% v 1
I T 4’ ,
: Puo = W % W ] g ppg J 4
of r 3X 2 R
. Ty o_ o [axz P 3
g Fyg = 37 ° “LFF'] TS| } A
4 - 3
g af, 2
‘ Fsa © 3% © Tuo 3
/ 2 %
B G NG 3Yr>‘1‘| 5
52 3y ro rs Ms ;gh ;g}

RN
1
A B A A o R 400 5 S i B

!

I it
‘m\ At 1 At 405 :f PN 'R

1

5
e
il



T R T TR, R R

YT R
! ﬁf
! hor

R I P P T DT LA TR RN ST A 1SS iy
AR R SR B A A A
| I o 3 a

' “

b .
|

v aals

———— X Ao T Ante A I | t ki
k1

.
AR ot o s S i 3 B A ol os ' N
. - y (RRPIFEpR
. . . A N L R L L g
P

et

Sedit:

’1.5—(« M 0 iR v !
& ke Dt PR
~ -
4
t
w g it ¥

t

149
£+ Y2 + 2

Dt
4

Y X
t

L

D OREG
A
[™

FHEHNLD

p

p

vf)(lz)-t~Y‘+ZZ and r

r
Y
P
Y
r

S
‘ug

S

s
Fug
Fsq
uS
"

]




L i T gy S BT My e
BT PR T R

R

R SE %gf;

g K
v
<40 ¥
»w %&.__i,‘:&;;ai!s?ta - aa . e ' o b - [P TRy ———— e e P P TR L S R L A T "
HS i
F i L
3 ) i
i ;
j
¢ B
5! :
,.r_a“ P
3 o ]
w0 ;
)
y 3
£ Q .:/.fli it
%u. - .;s;} [
ey ~ v bt
u«.n [s] ~., '
s ¥ /:
& , ~. ;
A4 7] Q
o.% —
m:w o j —
E ¢
b 2! s <
51 o ; ‘e
£ [t b -~
,.mm -oﬂv ¥ j ' \IS
o [o2] [o1] o i >
) ) N © =g f
ord o o] o] x = t
P4 . . . . xp
L . - L L[] '
. L] * L]
t
® Q a Q
ot o~ o~ N o~ ~ ~ ~ ~
S — ™~ [ = ~ — —~ "
+2 = oo = = ) w ) X
m > D [S~) .
-t ! [ <t ' 1 t
(] ot o~ m = ot o~ () [a¥
> oot o} o o} e o) (=N [a X 29 ] bl - o
oef . 3 > > =3 et = = ~-
."w. ~r L ~r o (=] o St
> ] 1] .
ot t " it n 1] ] ] " b
g X ) x k
] X O_X iv. O_Z Q_U iV of= Q al.a Q e afx 5
- = fco | o] co © o} wlco ol <o} <13 ol
i+
ot t n 1 f ] ] 1] It n 1]
%L v
: @ . «l o m = w %o} [ @ o —
3 [o¥) ! <« i ! -t 4 -t o -t ~N
‘0 e o} b o] s o] =4 n o} e =] je o b ] o]
4y [
B M .
,“rUA o]
Y @ |
By =~ 3
e s @ :
!
2 2
2 =
j
[}
* 0y
i

- e BN ;. Lo 2,
h .4...&. .,,, a. rxﬁ .?«".L.,qf

%




AL

sin o

-

) - (Zp - ZS)(p/p)]/of

) - (Yp - YS)(p/p)]/p

(X + X))

Wy '
PR R TR L L S

i

B R A R T R R PR oy ey
o . Vo LR i
m

(o]
1]
a_w
S|
1]
QO
(a2}
joss
(3 )
= -t
© 1.5 5
1 @ e
NN
a_a [ 4
" ' t [}
DTP DTD.
- > | & > |
o e b}
- 2 2
t o 4 t o |

TR .,,
LESE A Wk b e el
S PR SN LRE R IR LAY .'..P o



g WM F XS

L AT g

D B R L o SN AT o A AR

X ¥
1 2
i =2
=
s =
K 7 e
o3 =
. F
B =y

raf ook, i;gma’r!% e Hf - qeanl Aot 1 e
5 P = DI

e — K S e e s Y O e M AT et W . e e e

(%Y
w
r

N

T R R

H42 - %%’ = [Sy * . Cgs 8) ™ sin 8

Hyg = %%‘ =[5, + BSE 8 o Sin 3

Hy, * %%- =0, H = %% =0, H = %%_ = 0
H47=%%;=0’H48=%§;=0’H49=§£:=0

The second order partial derivatives fxx are defined as a (8x9x9) three-
dimensional array and each layer is defined as a symmetric (9x8) matrix. The

three-dimensional array can be: pictured as shown in Fig. 26.

Fach layer is further partitioned into (3x3) wmatrices and they are as follows:
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The second order partial derivative hxx is a (4x9x9) three-dimensional

array shown in Fig. 27 and each layer is a (9x9) symmetric matrix.

Each layer isipartitioned into (3x3) matrices and they are as follows:
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All submatrices with the exception of D are (3x3) symmetric matrices and

they are defined as follows:
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APPENDIX B

CONDITIONAL EXPECTATION AND SMOOTHING PROPERTY

Loeve (34) introduced the concept of "conditioning'" ir terms of sub
o-fields of events, and further conditional prohabilities of events and con-
ditional expectations of random variables “given a o-field B" as B-measur-
able functions defined up to an equivalence. The conditional probability of
an cvent A "given an event B" corresponds to that of the frequencies of the
occurrence of A in the repeat trials where R occurs. For ¢very event A, the

relation

PB - PBA = PAB (B-1)

defines the conditional probability P(A/B) of A given B as the ratio
PAB/PB , provided B is a nonnull event. In a more mathematicar r2Ym, the
function Py on the o-field A of events, whose values are Pg? AcA ,

is called the conditional probability of A given B . 3ince P on A is

normed, nonnegative and co-additive, so is PB on A ; and PB satisfies the

following condition

Thus, the conditioning expressed by "given B" means that the initial proba-
bility space (R,A,P) is replaced by the probability space (Q,A,PB) . The
expectation of a random variable X on this new probability space is called

the conditional expectation given B and is denoted by

: = = D ( -2
E(X/B) f XdPg I Xdpy + j0 XdPy (B-2)
B B
¢ c
where B is the complement of B . Knowing that PB = 0 on (AR ,AcA}
and that Vg S %— " eon {AB,AcA} from Eq. B-1, Lq. B-? hecomes
‘ B
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E{x/B] = J XdP (B-3)
B

which is the definition of the conditional expectation of ¥ given B . The
conditional expectation acquires its full meaning when interpeeted as values

of functions as follows: +the number L[X/B] is no longer assigned to B but
to every point of B , and similarly for E[X/BC] , so that we have a two-
valued function on f  with values E[X/B] for weB and E[X/BC] for weBC
More generally, let {Bi} be a countable partition of  and let R be the
minimum c-field over this partition. Let I be the family of all random var-
iables X whose expectation, E[X] , exists so that their indefinite integrals,
hence conditional expectations given any nonnull event, exist. Then the condi-
tional expectation of X given B is defined as the following elementary

s

functions (see page 64 of Loeve for the definition) up to an equivalence

3 J

E[X/B] = E"p%.’j XdP)1, 5 Xef (B-1)
7 ’B
The above is the constructive definition and is differvent from (B-3) in the
sense that conditioning is given as a o-field, 3, instead of an event B ,
BeB . It can be easily seén further that the conditioning can be either as a
random variable which is B-measurable function or as an output of the random
variable. If the partition {Ej} is nnt countable, the above constructive
definition is nct applicable and rather powerful tool, namely, the Radoa-

Nikodym theorem is employed and the descriptive definition is followed. !-ot

Py be the restriction of P te B , defined by
PBB = PE , Beb , (B-5)

then the conditional expectaticn E[X/B] of X given B is any B-measur-

abel function whosz indefinite integral with respect to PB is the restriction
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to B ol the indefinite integral of X with respect to PP, This definition
means precisely that, for every Xec) , E[X/8] is defined by

I E[X/B]dl"B = I XdP , BeB (B-6)
B B

up to an equivalence. Loosely speaking, the operation E[X/B] is a B-smooth-

ing and some of its important properties are quoted from Loeve without proof.

1. On every nonnull atom® BeB , 7[li/B] is constant and its value E[X/B]
is the average of the values of X on B with respect to P .

2. For every B independent of the g-field Bx of events induced by X
E[X/B] = EX a.s.

3. Conditional expectation operator E[*/B] and B-measurable factors com-

mute, that is, if X is B-measurable, then
E[XY/B) = XE[Y/B] a.s.
4, If BCB' , then
E(E[X/B'1/B] = E[X/B] = E[E[X/B]/B'] a4a.s.

It is interesting to note that for the "least fine" or "smallest" of all pos-
sible g-fields BCA , that is, for Bo = {¢,92} , E[X/Bo] = E[X] almost

surely, which means that unconditional expectation is a special case of con-
ditional expectation whose conditioning is merely the least fine o-field.

It is noted also that any deterministic quantity is a random variable which

is measurable over the least finz ¢-field.

*B is a nonnull atom of B, if PE > C, and B contains nc other sets belong-

ing to B than itself and the empty set.
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The o-field A

is induced by the atom set A  and A2 and a liner n-field

B containing A is induced by the atom set 81 , B., B,, B and B

2 3 4 5
in Figure 28. From the figure, it is apparent that the finer the o-field B
is, the closer to X(w) the conditional expectation E[X/B} is. If a
o-field B is identical to the o-field induced by X(w) , then .. X/B] is
jdentical to X(w) almost surely. The variance E[{X - E(X/B)}2] is pro-
portional to the area between two random variables X(w) and E{X/B} and
the conditional variance E[{X - E[X/B}}2/B] is constant on every nonnull
atom set B of B and is the average of {X - E(X/B)}2 on B .

Eince the conditional expectation is defined in an equivalence
sense, the area under the conditional expectation E[X/B] for various o~firld
B must be identical to the area under the random variable X(w) , which i . the
unconditional expectation E[X] . The conditional expectation E[X/B] is
the closzst approximation of X({(w, within the class of B-measurable func-

tions in the sense that the variance is minimized.
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APPLNDIX C

RANDOM WALK, BROWNIAN MCTION AND WHITE NOISE

Historically random-walk models serve as a first approximation to
, the theory of diffusion and brownian motion, where small particles are ex-
posed to a tremendous number of molecular shocks. Each shock has a negli-
gible effect, but the superposition of many small actions produces an obser-
4 vable motion. Accordingly we want to present a random walk where the indi-

vidual steps are extremely small and occur in very rapid succession. In the

2

g - . limit, the process will appear as a continucus motion, i.e., the so-called
raa ]

%% . Brownian motion. Once we have grasped the concept of Brownian motion, the
[ ,

> ‘ . . . s Etates .y .

< : white noise, which is fictitious and nonexsiting but enables human beings to

l‘[
o

) han iLe many mathematical problems, can be formally defined as a time deriva-

oy ‘5“,? S

tive of Brecwnian motion. Here a brief summary of Papoulis' (36) discussion

on the subiect is presented.

W
k1
P P

The underlying experiment is the tossing of a fair coin an infinite

o e %

number of times, and each tossing occurs every T seconds. At each tossing

o R o Pae

we take a step, to the right if he 1Is show, to the left if tails show. Our
position at t will be denoted by X(t) . Clearly, X{(t) depends on the
experimental outcome, i.e. on the particular sequence of heads and tails.

We have thus created a stochastic process known as random walk, Each sample

function of this process is of stair ase form as in Fig. 29 with discontin-

ARV R e T ASEY 5 I S S R 2 PO T

uities at the points t

n

nT the steps occur instantly and their lenygth

i

equals § .

A

Lons s

. . .th
We denate by x; a random variable equal to #3, if our i~ step

is to the right or lefr, i.e. heads or tails. Thus

g o g
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et
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P{x. = 8} = P =
1

P{x, = -8}
1

i
Rel

n
R

1}
(o]

E{Xi}

)
w
N

fv2} =
B\Xi}

Note that the random variable X, is independent and has zerc mean. The

position at t = nT is clearly a random variable given by

A(nT) = Ky F Ky boten b X (C-1)

Suppose that after the first n tossings, k heads show, then the value of

X¥(nT) would be given by

X(nT) k8§ -~ (n-k)S = (2k-n)S = rS (Cc-2)

2k - n (c~3)

e
]

f;' Since {X(nT) = rS} is the event {Ik = EL%—B- heads in n tossing} the
éi : probability is given by

;; r+n n 1

- P{X(nT) = rS} = P{ heads} = |n+» =~ (C-4)
2 | 2

AT

= If n is large and npq >> 1 , Demoivre-Laplace theorem (38) is applicable

U
Ay

é for values of k in the vnpg neighborhood o<f its most likely value np ,
= i.e. . %g
. np - /apq < k < np + vapq (c-5) i

bl

-

s kst bl B

FRRTS

and the approximate form of Eq. (C-u) is given by
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- 2
P{k heads} = -——2«~'e - 15-35322— (C-6)
. /2 npq pa

r

Substitution of P = q = % and k = ——%—— into Eq. (C-6) yislds the

following approximate =xpression

1 n
P{X(nt) = 1S} & ———e - — (c-7)
/n 72 n

provided that r is of the order of vn .

Furt.ermore, it can be shown that®

P{X(nT) < vS} = % + erf (c-8)
B n

Finally, the mean and variance of the random variable X(nT) are easily ob-

tained and thiey are as tollows:

O (C-9)

E{x(nT)]

E{x2(nT)] ns? (C-10)

In the following discussion, Brownian motion is developed as a limiting form

-of the random walk. For the time

t = nf (C-12)

+he mean and variance of X(t) become

E[¥(t)] = 0 (C-12)
S(X2(t)] = 1%; 7 {c-13)

fAthanasias Papoulis, Probalility, Random Variabies., and Stochastic Frocasses,
McGraw-Hili, p. 6R,
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Supposc now that we keep t constant but we make 7 &and T tend to zero.
The variance of X(t) will remain finite and different from zero only if S
tends to zero as ff . Otherwise, X(t) would be meaningless. Therefore,

assuming
§2 = aT (C-11)

we define the process W(t) as a limit

W(t) = %ig X(t) (c-15)

A family of continuous functicns results for almost all outcomes, which is
known as a Brownian motion or Wienew-Levy process. From Eqs. (C-8) and

{C-10), the mean and variance of this process are obtained and they are

- E[#(t)]

#
o

(c-186)

E[Wi(t)]

The valuc of random process W(t) can be devermined from £g. (C-2) anua given
by
W = r5 {C~18)

In connectiop with Eqs. (C-1i), (C-14) and (C-18), we have the following ex-

pression:
v WS W_o_ W : (C-19)
/r 7T vtSZJT Jat -

“« s

and nence tne probability distribution F{w,r) is obtained as a iimjt of

EG. (C-8) ’ :
: F(W.e) = P{N(r) <83 = %+ enf —— {c-20)
i vat

at {C~17).
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is given by

2
— oxp (- 2—) {C-21)

1
flw,t) = —
EEE 2ut

Thus, the random process W(t) 1is normal, with zero mean and variance at
The fact to be pointed out here is that in passing to a limit, all

formulas for the process W(t) remain meaningful and agree with physically

significant formulas of diffusion theory which can be derived under much

more general conditions by more streamlined methods (Einstein-Wiener theory

and Uhlenbeck-Orstein theory). For example, the density funccion is obtained

as a solution of the diffusion equation by Einstein (37). The same thing can

be done by using the autocorrelation of the solution of the Langevine equa-

tir  (36).
From Eq. (C-1), it is seen that for ty >t W(ti) - W(tz) is
independent of W(tz) - W(0) = W(t)) . Hence,
E[{W(ty) - Wt IMW(E )] = E[W(t,) - W )IEM(t)] = 0 (c-22)
Thus,
2 -
E(W(t W(t,)] - E[W4(t,)] = o0 (C-23)

Since the left hand side of Eq. (C-22) is an autocorrelation R(t4,t2) and
the right hand side is at, from Eq. (C-17), the following is developed.

at2 for ti > t2

R(ti,t2) = (C-24)

at1 for t1 < t2

An infinitesimal increment dBt of Brownian motion W(t) is defined as

dBt = W(t + e) - W(t) (C-25)

The covariance of dBt is determined from Eq. (C-24) as follows:
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Brownian moticn as follous:

alt) = dW(t) - lim EEE
dt e*x) e

Then the autocorrelation of white gaussian process u(t)

lim a

0 T ° ad(t - 1)

Efu(tlu(t)] =

Therefore, the variance of white Gaussian process u(t)

is in agreement with the axiomatic definition.

E[dg .48 ] = L[{W(t + e) - W(L)HW(r + o) - W(t)}]
= R(t + e,t +e) - Rt 4+ e,t) = R(L,t + e) + R(t,t)
= aft +e) - at - at + at
E[dg dB.] = ae . (C-26)

If we formally define white gaussian process u(t) as a time derivative of

(c-27)
is of the form
(C~29)

is infinite, which

- ——————
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APPENDIX D !

MARTINGALES

S

A sequence of random variables XyoKpseoe is called a martingale

WM e

E[lxnll <o n>1

and (D-1)

E(

"
X

X4/ %g 200 %]

with Probability 1.

A stochastic process {xt,teT} is called a martingale if ;

S Ellx, ] <= —
§ for all t and if, whenever n > 1 and t1 < . < tn+1 \7
g Elx, /% ,o*+x 1 = x (D-2)
§ tn+1 ti tn tn !
s -
g with Probability 1.
'§ <Theorem 1> ;
% If yi,yz,ya,--- are defined as
Vg S Xy s Yy T Xy =Xy Yu T Ry =Xy o, 00 (D-3)

then, if the X process is a martingale,

n
(=]
-

n > 1 . (D-u)

-

Effy 11 <= s Ely ,4/yqs°"sy,]

with Probability 1. The xn's are thus partial sums of the series Y Yo s
n

174
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where the yn's satisfy the conditioen (D-4). Conversely, the partial sums

of any such series constitute a martingale.

<Proof>

xn's and yn‘s are linearly related and, hence, the mapping ma-
trix is of full rank. Therefore, the inverse of the mapping watrix exists,
which implies that the conditioning (yl,--',yn} of (D-4) can be replaced

by tiie conditioning {xl,---,xn} . Thus

(D-5)

E[yn+1/y1,.o‘,yn] E[(Xn+1 - xn)/xl,boo’xp]

E[yn+1/y1,"',yn] E[xn+1/x1,°‘-,xn] T %5 (D-6)

i

Since the X process is a martingale, the right hand side of £q. (D-6) be-

comes identically zero and the condition (D-4) immediately follows. Let

n
X = Z Yq and the yq's satisfy the condition (D-4), then

i=1
E[xn+1/x1, ’xn] = E[y1 oot yn+1/x1,"',xn] (0-7)
;f; Blxpyg/®gamteoxg] = Elyy + oo vy /yg 0oty (0-8)
?%7 E[x ,q/%ps000s% 1 = y, + soe ty 4 E[yn+1/y1,'°°,yn] (D~9)
(D-10)

E[x /x ooo’xn] = yi G+ ees 4 yn = xn

Therefore, the xn's constitute a martingale and the inverse of the theorem

is proved.

<Theorem 2%

Let n,£1,€?,-°~ be any random variables with

‘)“"f"‘:""}k“’r&“‘:‘ ‘.‘\.‘Y'- 1 g
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E[In]] <
Then, if X is defined by :
xn = E{n/gls°"9€n] (D-11)
the X, Pprocess is a martingale.
<Proof>
By definition ;
xn+1 = E[ﬂ/ﬁi,"’,€n+1] (D'12) §
i
. [
Taking the conditional expectation of Eq. (D-12) given the conditioning i
{51,--’,£n} , we have in fact ?
!
E[xn+1/€1’.."€n] = b[B{nlgli'..’£n+1}/E1Q...,€n] (D“ia)
Since the o-field generated by {61,~'-,£n+1} contains the o-field generated b
by {51,"°,3n} » the smoothing property 4 of Appendix B can be applied to
the right hand cide of Eq. (D-13)., Therefore, Eq. (D-13) becomes

Bl ,4/8q0°°s8] = Elnfg s8] = = (D-14)

with Probability 1. Since x,,**¢,x  are random variables on the sample

space of 51,00-,5n ,

] = X (D-15)

B[xn_’.i/xig'o',xnrgig'ob,gn} = E[xn‘f‘l/si’...'gn .

with Probability 1. Taking the conditional expectation of both sides of Eq.
(D-15) given {xi,'°°,xn} and using the smoothing Property 4 of Appendix B,

the martingale property is obtained.
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BIE(R /%y st st o%0Bat e nf Moo ] = Elx /x,000x ] (D-16)

E[xn+1/x1,°°°,xn] = % (D-17)

Therefore, Theorem 2 is proved.
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APPENDIX T

STOCHASTIC FUNDAMENTAL LEMMAS AND OPTIMALITY CONDITION

If X 1is a random variable, and if

E[XY] = (F-1)

for every deterministic Y (or every least fine o-field measurable random

variable) then,

(F-2)

<Proof>

since Y £ 0

<Lemma 2>

is a random variable, and if
E[XY] = (F-3)

for every w-function Y measurable with resepct to the o-field A of the

measurable w set , then

E[X/A]

<Proof>

For the convenience of notation, X denotes the conditional expec-

tation E([X/A] .
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APPENDIX E

TRACE OF MATRIX

Let A be an {(nxn) square matrix and aij represent the element

}
of 181 row and jth column, then the trace of A , denoted by tr(A) , is

the sum of the diagonal elements of A , ana similarily of Al , L.e.,

n
tr(A) = tr(AT) = a,, t+ s+ a = ) a (E-1)

11 | nmn - .

<Theorem 3>

Let A be any (nxm) matrix and aij represent the element of

th _ R
i h row and wth column, then AAT and ATA are (nxn) and (mxm) sqgiare

-

matrices respectively, and their trace is uniquely determined by the sum of

square of eclements, afj y 1.84,
n o m
tr(AAT) = to(atA) = § V&l (E-2)
Lose T
i=1 j=1
If A 1is defined to be
A = V-V (E-3)

where V 1is an (n#m) wmatrix with elements vij and V i3 an approxima-
tion of V , with elements oij » then A represents the anproximation errcr
with elements (v,. -~ ¥
errors, (vij - v..)2 . Therefore, tr(AAT) would be a sensible criteria tc
be minimized and the soluticn V is the least square error solutiopn., If V
is a matrix of random varizbles ij and the risk, trE[AAT] is munimized,
then the sclution v is the minimum variance estimate. No%ze that V is not

necessarily a vector,
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E[XY] = E[(X - X + X)Y] (F-5)

IRy

Applying the smoothing property 4, Eq. (F-5) becomes

E[XY) E{E{(X - X)Y/A}] + E[XY/A]  a.s. (F-6

E[XY] E[XY] = 0 a.s. (F-7)

Since both X and Y are A measurable random variables and Y is arbi-

trary, it is possible to choose Y = % , then Eq. (F-7) beccmes

7

I
»{.

;i— E[XY] = E[iY] = E[iz] = 0 a.S. (f—B)
i
Z8 The above is true only for %2 = 0 . Therefore,

e
v i
R

i

R = E[X/A]l = o0 a.cs.

N,

o,
f

<Lemma 3>

If X(w,t) is a stochastic process defined on the set [ti,t2]

f:& te[t1,t2] , and if

to

3 J E[X(w,t)Y(w,t)]dt = 0 (F-9)
: t

1

for every random process Y(w,t) measurable with respect to a o-field A(t) ,

teft

B 1,t2] , then

H
H
H
He
H
i
I
3
i
i
3

2 E{X(w,t)/A(t)] = © a. (F-10)

/63

for every t , ts(ti,tzl .

<Proof>

[ ——— -

R
j Elxtlat = o
ti

AL W o

R




»f

i

t

2
J E[E{XY/A(t)}]ét
Y

Y
] E[E{X/A(t)} ¢+ Y]du
T4

Suppose that E[X(w,t)/A{t)] # 0 . Since Y is arbitrary measur-

able fi. . ion, we can choose Y such that
Y(w,t) = E{X(w,t)/A(t)]

Therefore, Eq. (F-12) becomes
ts
[ E[{E[X(w,t)/A(t)}2]dt
't1~

The above is positive unless E[X(w,t)/A(t)] 0 forany t , tﬁ[ti,le .

' Therefore .

E[X(w,t)/A(t)] = te[ti.tzl

Let's consider the follicwing risk function
- T, . T
R(g} = +rE[(X - g} (X - g)'] = E[(X - g)" (X - g)]) (F-16)

where X is an nx1 vector. If we want to minimize the risk (F-16) with

any B-measurable function g , then the soclution g is the minimum variance

estimate. In order to minimize R , we introduce a variation &g on g s 1.0,

g = g+ 6g (F-17)
Then the prisk (F-16) becomes
R(E + 68) = E[(X - § + 88)7{X - § + 6g)] (F-18)

Expanding Eq. (F-18) about g , the following first variation is obtained.
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-Since 6K is an arbitrary R-measurable function, the stochastic fundamental
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SR(E) = E[(X - £)76g] + E[6g (X - £)] (F-19)

For the minimum of R , the first veriation &R must be zerc and, hence, the

4

X
el

A
i

following must be satisfied

3

E[(X -~ &) og]

0 (F-20)

A

%

i

Since a variation &g is an arbitrary B-measurable function, the stochastic

e

13

fundamental lemma 2 can be applied and the optimality condition therefore is

S

obtained as follows:

E[(X -§)/BY = 0 a.s. (F-21)

g g J& il

g = E[X/8] a.s. (F-22)

i

g

The solution g is the minimum variance estimate and is given as the conli-

tional expectation of X given B .

=
X

If we want to minimize the risk (F-16) with a linear function ©°

: b
i wwi.m-

Y which is an (mx1) random variable observed, i.=.

'

g = KY (F-23)

instead of any B-measurable function, then the soiution g is the linear

o

minimum variance estimate. This time we have to determine an (nxm) matrix
K within a class of B-measurable functions such that the risk (F-18) is

minimized. Introducing a variation 6K on K , the risk (F-i16) becomes

A

s
e

=
Qa8
o

s

RK + 6K) = trE[{X - (R + SK)YHX - (R + 6K)Y}] (F-24)
Expanding Eq. (F-24) about K » the first variation follows, i.s.

SR(K) = trE[(X - R¥)YT6xT] + trE[6KY(X - RV)TT = o (F-25)

i
8

Lemma 2 is applied and the optimality condition is obtained.

P
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E[(X - RY)Y'/B] = o
EIXY'/B] = RE{YY'/B)
= E[xY /BHE[YYT/8]} "}

Therefore, the linear minimum variance estimate is given by

~

g = E[xYV/8H{E[¥YI/RN Yy (F-29)

For the scalar random variables ¥ and Y , the lin.ar minimum variance es-

timate X is cbtained from Eq. (F~29) as follows:

E[xY/B] _
F{VY/8] 1 (F~30)

If we choose K with a deterministic number which is measurable ovep <he
least fine o-field, the conditioning becomes unconditional and the linear

minimum variance estimate (F-30) becomes
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