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PRE FACE "

The practical implications of linear sequential filtering (or.

Kalman-Bucy filtering) theory were quickly recognized 
by the engineering R

community as an important contribution to -nal-time data processing. Some

of its numerous successful applications have been made to aerospace an-

gineering system. The typical examples are orbit determination and trajec-

tory estimation problems. Since these problems generally 3re concerned with

continfous nonlinear dynamic systems and discrete observations, nonlinear

filtering has been a theme of interest in the field of orbit determination.

It has been demonstrated that the optimal nonlinear fitI requires

the computation of an infinite number of moment_ and generally its implementa-

tion is not practical. This leads one to seek an approximate solutIon to the

6pt~i,,ai nonlinear filtering problem. Several approximate rionlinear filters

have been proposed previously and, for the most part i these can be classified

as one of two basic types of second order filters. The first is the truncated

second order filter which -utilizes a Taylor series expansion of the dynamic -

system and the state-observation relationships, followed by a truncation of

the third and higher order moments. The other is the Gaussi .n second order

i -filter which employs a Tayor seis expansion and approx.[,,tions of the

fourth order moments in terms of the second order moments, under the assump-

tion that the conditional density functicn is Gaussian. The unique feature

of both filters is found in the fact that a random forcing term occurs in the

covariance equation. The random forcing term which anters into the covariance

equation in a linear manner is considered to have potential for causing the

conditional covariance matrix to be negative definite over some non-zero

time interval. This term is often neglected in the modified Gaussian or

oA
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trunc'ated second order filters.A

Tistudy is concerned with the development of an approximate non-I

linear filter using -the Martingale theory and approoriate smoothing proper-

ties. Both the first order a:.,a the second order moments are estimated. TheI
filter, which is developed, can be classified as a modified Gaussian second

order filter. Its performance is evaluated in a simulated study of the prob-

lem of est malt-ing -cne :sLaLcj .Zani lntcrplncta-v s-ace -'ehicle during both a

simulated Jupiter fly-by and a simulated Jupiter orbiter ission. In addi-

t. on to the inodti Led Gaussian second or-- filter, the modified truncated

second order filter is evaluated a-so in the simnulated study. Reults ob-

4 tamned with each of these -filters are compared with numerical results obtained

with the extcnded Kalman fitrand tLhe performance of each filter is deter-

mined by comnparison with the actual estimation errors. The simulations are

designed to determine the effects of the second or'der terms in the dynamic

state relations, the observation-bt~te relations and in the Kalman gain com-

pensation term. The result of an extensive simulation si~ows that the Kalman

gain compensated filter which includes only tho -Kalmnan gain compensation term

Ls uuperior to all of the other filters.
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LIST OF DEFINITIONS

A
The following definitions are used consistantly throughout thisIA

study.

E[yt /Y I predicted observation on the basis ofY
t+s/t t+s t

E~ I I posterior estimate of x. on the basis of Yt
which is the optimal estimate of x. at time tI

E~ / ] apriori estimate of x on the basis of Y-At7sl j[tSYt -
which is Also the optimal estimate at t+s ,-pro-

vided that no other observation is made after t LI
't 't/ posterior estimation error

A ~ 5 apriori estimnation error, if s 0 apriori es-[

timation error becomes posterior-estimation error

I 1+ nx :matrix of posterior estimation error square

eahelement in this matrix is a random variable

stts/t nxn matrix of apriori estimation error squares, each

element of this matrix is a random variable -

VE(V/Y] posterior conditional covariance matrix
W/t t t

E[V~ /Y apriori estimate of posterior estimation error

squares Vtson the basis of Y.t , nxn matrix~
AA

P S~t E(P I Y Ij apriori conditional co-'ariance matrix, P~ /

t~s/t t/s tA~/

V ifsA
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CHAPTER I

INTRODUCTION

1.1 Preliminary Remarks

In the field of space tracking and guidance, one basic requirement

for spacecraft guidance is the capability to obtain and to rapidly process

observations to determine an estimate of the spacecraft trajectory. This re-

quirement initiates the search for mathematical techniques which are compu-

tationally efficient, but which possess a high degree of accuracy. Follow-

ing the precise formulations of the linear sequential estimation theory by

Kalman and Bucy (6,7), the practical implication- of the theory were recog-

nized and numerous successful applications have been made in the field of

orbit determinatlon and trajectory estimatio.i problems. Iowever, these ap-

plicaLions generally are concerned with nonl.ineav continuous dynamic systems

lmd nonlinear state-observation relationships and, hence, the linear esti-

mation theory cannot be applied directly. As a matter of fact, it is not a

simple task to apply the linear estimation theory to orbit determination

problems. Usually nonlinear dynamic systems and state-observation relation-

ships are linearized about a nominal (or reference) trajectory under the as-

sumption that the true trajectory is sufficiently close to the reference tra- J
jectory, and then the linear estimation theory is applied to the linearized

systems. Conceptually, there are two ways to carry out the linearizations

and the resulting filters are somewhat different from each other. The dis-

tinetion is how the nominal trajectory is chosen. If a prescribed trajectory

is chosen as a nominal trajectory, a.he origina- Kalman-Bucy linear filter

can be directly applied to the linearized system which governs the state and

the observation deviations from the prescribed r,omin al values of the staee

:1
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2

and observation. Although this approach appears to be conceptually simple,

it suffers from several points. First, if the nominal trajectory is not

close enough to the true trajectory, the basic assumpt-on used in the lin-
earization procedure is violated and the estimate of the deviation from the

nominal trajectory filter can lead to inaccurate results and often diverges.

Furthermore, it is intuitively more appealing to take the current estimate,
rather than a prescribed t1ajectory, as a nominal trajectory and conduct

the linearization about the current estimate instead of a prescribed trajec-

tory. In this case, the linearized system will involve deviation in the

state and the observation from the current estinates of the state and obser-

• ,ation instead of values related to a prescribed nominal. The or Inal

Kalman-Bucy linear filter can be applied to the above linearized system. The

advantages of using the current estimate as a nominal trajectory are t hat a 

ominal which is closer to the true trajectory can be used and that the fil-

tering procedures can be simplified due to the fact that all the propagated

state deviations will become identically zero. This concept will be clearly

discussed in SectiQn 1.3. In order to represent this situation "the extend-

ed Kalman (EK) filter" proposed by Jazwinski (2) and distinguished from the I
prescrib~d nominal trajectory filter will be used.

T.t is well known that all of the information about the state pro-

vided by the measurements is contained ii, the probability density function

of the state conditioned upon the entire past history of measurel.ents. From

this conditional probability density function, one can, in principle, deter-

mine -the optimal filter. In general, the optimal filter is expressed in

terms of the moments of the conditional probability density function. Hence,

W'
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3

this conditional density function becomes a prime ingredient for studies of

! optimal filtering.

Several authors have considered the problem of deriving a dynami-
A

cal equation for the conditional density function when the dynamic state

noise and observation noise are both jointly Gaussian and white. The most

recent pattern of research in this field appears to have been initiated by

£tratononich (12) and Kushner (8,9). The formal characte. of this initial

work stimulated numerous studies of nonlinear filtering which have attempted

to extend, and to obtain a more rigorous verification of these initial re-

sults.. The method used by Stratononich and Kushner is base-d an a discrete

time model, and an iterative application of Bayes' rule is used to obtain a I
representation of the conditional density function. The solution of the

continuous time problem is obtained by a limiting process.

Although the central ideas and methods were all supplied by

Stratonovich and Kushner, and most other papers in this area are just con-

cerned with extentiorn of these basic ideas, Bucy's (4,5) approach to the op-

titmal nonlinear fi] tering problem is rather unique and more mathematical than

Stratonovich and Kushner's. However, the results which he obtained for the

Gaussian state and observation noise case were identical to those of Kushner.

An important intermediate result of Bucy's work is that of a representation

theorem which demonstrates how the posterior conditional dc.nsity function at

some instant of time can be represented as a function of the apriori density,

P(X(to)) and the conditional expectation of an exponential function of the

observational data over the time interval (to) 4.

In dddition to the above research, Mortenson (14), Cox (25) and

fl tchmendy et al. (21) approach the itonlinear filtering problem from the

-A3
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control theoretical point of view. They formed a likely hood function and

maximized the function in various ways, e.g., dynamic programming or

Pontryagin's maximum principle.

Fisher (23) presented a unified and compact development of the non.-

linear filterihg problem for a broad class of Markov signal processes, by

making use of the characteristic function technique. The idea of approaching

the continuous time nonlinear estimation problem from the :nnovation process

approach was suggested by Frost (33). -

There have been a number of associated approximation methods de-

veloped. Noteable among those are those of Bucy (4,5), Kushner (10),!

Jazwinski (1,2,3), Bass et al. (18,20), Schwartz (19" and Athans et al. (27).

Most of the references cited above utilize techniques that are closely re-

lated to the methods introduced by Kushner (10) and Buoy (4), namely, Taylor

series expansion and the assumption of a Gaussian density function or Taylor

series expansion and truncation. Utilizing the Taylor series expansion tech-

nique, there are two basic types of second ordr filtern which have been de-

veloped. First, it is assumed that the third and hi'gher order moments are

negligible. The resulting filter, referred to as the truncated second order

filter, was developed by Jazwinski (1,2,3) and independently by Bass, Norum

and Schwartz (20) who extended the idea of Bucy (4) to the arbitrary n-dimen-

sional case. Schwartz (19), Jazwinski (3) and Fisher (21) independently de-

veloped tht Gaussian second order filter. In this approximation, the fourth

order momenti are approximated in terms of the secon7d order moments under the

assumption that the conditional density function is Gaussian.

A significant feature of both the truncated and the Caussian second

order filters is the pr-esence of a random forcing term in the covariance

Ra
-. r-~~ ~~~~~ tp -- ~ ~ - - --
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equation. The presence of the random forcing term is, in principle, justi-

fiable. However, there has been considerable controv, ,sy associated with

the presence of this term.

The term enters with a plus sign in one filter and with a minus

sign in the other. Furthermore, the term enters in linear manner and there

is a possibility that a negative variance maj result due to the sign of the

observation residual. These consjdorations sugge!s-t rcn.iiderlng a compromise

between the truncated and the Gauusian second order filters. Jazwinski (3)

dropped the forcing term in the covariance equation for the compromise and

defined the modified truncated second order (MTSO) filter and the modified

Gaussian second order (MGSO) filter, respectively.

Athans, et al. (27) developed the modified Gaussian second order

filter using an assumption based on an intuition argument and applied the

filter to a simple one-dimensional free-fall reentry problem with range type

of measurement. The result of the simulations jndicates considerable promise

for the MGSO filter.

In this report, -the modified Gaussian second order filter was

developed rigorously on the basis of the Martingale theory and smoothing pro-

perties of Loeve (31). The resulting algorithm was applied to a study of

the Jupiter fly-by and the Jupiter oriter miszicns uing range, range-rate,

star-planet "nd sun-planet angle measurements.

1.2 Kalman-Bucy Filter

Consider the linear dynamics system descriLed by the linear vector

stochastic differential equation

d = P(t)xdt + G(t)d~ , t (1.1) A

t 
S



Eq. (1.1) car be expressed formally as (see ief. lt)

dxt
dt - (t)x+ + G(t)u t  , t "to (1.2)

whOe-P, i:i the nxl state vector, r(-) and G(-) a-e, respectively,

nxn and n~xi non-random, continuous matrix functin.-: of tim., and (P > t I

is an r-vector Brownian motion process with the :-tatistics

E[d dO Q(t)dt
t t

The r-vector u. is a white Gaussian vector process which can be regardod

as the time divitives of B

It is assumed that linear observations are taken at discreate time

instants, k

Yk H(k)xk + v, ; k 0,,..3

where yk is an in-vector of observations, 1i(.) is -n mn non-randor,Ik
i bounded matrix function, and {vkk = ,2 ... is an ni-vector, indepen-

A dent Gaussian sequence, i.e., v, - N(ORk),Rk > 0 for all k . The dis-

tribution of x is Gaussian, i.e., x 0I N(° ,? ) and x 0 ' and

{vk } are assumed to be independenit.j
The fact that the ininim-n varimnce estim.te is given by the condi-

tional expectaticn (see Appendix r), leads to the re_airement that the con-

ditional expectation A E~x tY] for t.ie .ibove system be found. Theditlona expecation t/'t :Ex!

solution to this problem yields difforential equation of ,volutlon for the

-conditonal expectation A and the covariance matrx +/ . Between

observations, these relations sattsfy the differential equations given in

-qs. (1.4) and (1.5), respectively.
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= I(+.~~ * ~t)(1.4)
(15 L+s/t :~) A/

ds/ tT/ T~l /
t+s/t F(t+s). + Pt+s/t F T ( t +s ) + G(t+s)Q(t s)GT (t+s) , f(t) = (1.5)

where the superscript T indicates th transpose of matrix, t represents

the time at which the last observation was made, and s represents any time

segment after t and before a new observation is made. At the instant tts ,

namely, immediately after a new observation is incorporated at t+s , the

following difference equations are satisfied.

+ K ((y6)-
t+s/t+s t - 9+s/t

PtXslt H(t + S)s+t (1. 7)

t+s Pt+s/tH(t + s)[H(t +s) t+s/tH (t + s-) Rt+s ]- (.9)

whore 9 t+s/t is the predicted observation on the basis of Y and KtI

is the Kalman gain.

The solution of Eqs. (1.4) and (1.5) are referred to as the apriori

estimate and the apriori covariance matrix, respectively. Meanwhile, the

solutions of the exfference Eqs. (1.6) and (1.7) are said to be tle posterior

estimate and the posterior covariance matrix respectively. Once the pos-

terior estimate 9t~s/t and the pos-cerior covariance matrix Vt+s/t s

are obtained, they can be used as initial conditions for the differential

Ctis. (1.4) and (1.5), respectiveiy. By integrating these relations forward

uatil a new observation is obtained, the apriori estimate which is the op-

timal estimate- between otset vati-.,nL is obtained. In order to init2ate this

1t



IPr~)(x(Jurn, 1t: is :iecessary to specify 9 r.nd V 1  .From the statistics
(A ridr vierlel. x~ P0/ and 00are given as 9 and P, res-

1.3 Linearization and the Extended Kalman Filter.

As pointed out previously, the linearization of the dynamic system

and the state-obseration relationships cannot be avoided, if the original

-Kdaia-Bucy- filter is applied .1o the orbit determination problem. The de- 4
tails pr6§srnted in the-subsequent discussion diie used to obtain the extended

Kalman (filter.

Suppose-that the equation of-motion is described by the following

nonlinear stocha-stic diff~rential1 equation A

dX f(x~ ,r)dT + G('r)dO T > T(1.10)

(1)can be expressed ral as

TT

dT T T

cn bie eapeds to s

Y (

k Xk) v
In -teaoesses u adx ae sue ohv hpoete



dX* + dx f(X* + x,,T)clT + G(T)d3

f(X*,.r)dT + f (X*,')x dT + G(;)do3
T X T T T

wher-a terms involving powers of x1 higher than the first )ne ar~e neglected.

For the nominal, the following equation must be satisfied

dX* f(X* T)dT
T T

or

dx*

T f(X*,t)

Hence-, the state deviation x can be described by the linear time varying

-stochastic differen-ial equation.

dx = f (X*,t)k dt + G(t)d$

The same procedure can be applied to the stat3-observation relationships

(1.12), and the final result wouRk be t~xpressed as follows

Y h(X*)(11)i-

for the nominal and

hk (X*)xk + vk (.7

for the observation deviat'Lon. Here h is the first partial derivative

of h() .r.t.X

Combiniing Eqs. (1.15) and (1.1.7) leads to the same model which was

di scussed in the previous Section. Therefore, the Kaiman-Bucy linear fil.?:er-

.Lng theory can be appl-ed to the system of Eqs. (1, 15) aind (1. 17). Henc,,

-the optimal est-imate of state deviation between observations ~sgiven by the

3C



solution of the following linear differential equation U
§ d:R

a t+s/t - "l

t/t = fx (X* t+s)Rt (1.18)

At the observation time t + s

t+s/tts t+s/t t+s(Yt+s - t+s/t )

where

9 t+s/t h (X*,+ ):R+/t (1.20)

Let Tr t + s ; then dT ds and substituting these in Eq. (1.14) will
yield t

dx*-d = f(x +s ,t -i s) (.21)
ds

Combining Eqs. (1.18) and (1.21), the following result is obtained

d+ t+s/ = f(X* ,t + s) + f (X* ,t + s (1.22)
d;t+s x t+s )t+s/t

Denoting X X* + A , which is an apriori estinateof X s.t+s/t t+S t+/t-

based on Zt , Eq. (1.22) can be approximated as

t+s/t (
ds + s ( (1.23)t s/t'

From Eqs. (1.21) an( (1.23), it follows that the same di2fferential equationgovem h oinltaetr X*+ as well as the apriori estimate X~/

Therefore, se, Lecting the same initial conditions for V s. (1.21) and (1I.23) I"

will lead to the conclusion that the no-nal trajectory and the apriori es-
timate are identical. This situation is satisfied if the current optimal t ~
estimate is chosen as a nominal trajectory. In other words, if the nominal
trajectory is updated with a current optimal estimate, the apriori estimate

A



A olf state- x -s governed by Eq. (1.18) becomes identically zero,

the nital ondiionforEq.(1.18) would be zero and, consequently, the

solution bcmsietcli eo

rrn the induction abvit follows that itwould besimpler to

C:linearize the system-about the current optimal estimate instead of a certain

prescribed nominal trajectory. This situation usually occurs in nature.

For example, when one deals iwitb-,the, motion of a rigi'd body, it is always

batter to stick with the mass: center, which is the analogy of the optimal

estimate of -position, that is, the mass center it nothing but a conditional

*~xp~taton o equval _t pint fnass. Furthei'mor.o, it has been demonstrated,

in the numerical simulations -(30,43), that taking tne current optimal estimate-r

ais the.-nominal trajectory leads to better convergence characteristics than

using a-certain prescribed nominal.

- At observation time t + s ,the optimal estimate x of

t~s/t~s ~t*+s /t+/

if the optimal estimate is chosen as a nominal trajectory, then

X~ t ./ Therefore, Eq. (1.24) becomes

x -st+ -st+K (y - ~ )(1.25)Ixt+s/t+s tist t+s t-S 9t+s/t

Sine P t- itand gt,/ are both zro for the case where the otimial es-

timate-is chosen as a nominal, Eq. (1.25) again becomes

- - ti-s/ti-s ti-sit +- ~~ ~ ~ ~)(-6
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after adding and subtracting Y* It can be easily seen from Eq. (1.16)

h*1(X* h h(X )=Y (1.27)

an t+sts t+s t+s/t (.1.28

Therefore, Eq. (1.26) finally becomes

-The above expiression represents the extended Kalman filter (3) and can be

sumarized a- follows; between observrations, the apriori estimate Xtt

tt~s/t

from-the apriori. .covarlance, matrix for the linear system, must satisfy the

f long ordinary differential equations

dXt~i z t -s (.0
tds/ts/

and-

dflut+s/t T~
ds~~(t / t-~P f X ,t+s) + G(t+s)QL ~G (t+s) (1.31)

dsx t+s/ tt~pt+s/t Pt+s/t x t +s/t -

respectively. At the observation time t + s ,the posterior es Im at e

and the posterior conditional covariance matrix Vare .-

t+s/t+s ts/~

determined by the following set of difference equations.-

p --K ( . (1.33)

ti-s/t-s %tsit t1-s x t-e-/t ti-sit

-25
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MRt (1.34)

Kt+=/t t+s/t
T T

or

Kt = V h-(: R- (1.36)
ts t+s/t+s x t-ts/t t+s

Finally, Eqs. (1.30) through (1.35) feature the extended Kalman

filter and they can readily be reduced to the Kalman-Bucy filter when the

systems are linear. Unlike the linear system, the covariance matrices cannot

be pecomputed. And, as a matter of fact, they are coupled with the optimal

etimate through coefficients f and, hence, they are not -ord inar-c6var-

lance matrices, but rather they represent conditional, c~varia'nce-matrices.

1 The Problem to be Studied

The problem treated in the subsequent study is that of estimating .

the state of a continuous nonlinear dynamical system (1.10), influenced by

*Brownian motion, using discrete nonlinear observations (1.12.)-corruipted by- "

an independent Gaussian noise sequence. In the previous section, the nonlin-

ear system is linearized and the Kalman-Bucy linear filter theory is applie d

to the problem of estimating the state of the linearized system. This tech-

nique is based on the assumption that the state deviation is small so that

the second or higher order terms in the Taylor series expansions can be neg-

lected while retaining the first order terms. Suppose that the system is

highly nonlinear or that the initial uncertainty is re.atively large so that

the square of the state deviation as well as the deviation itself is not

negligible. in this situation, the Kalman-Bucy linear filtering theory must K
be abandoned and an effort must be made to develop a new tneory which hopefully

--- A

4
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,pplne' to both linear and nonlinear systems.

Up Lo the present time, no sign of an exact solution to the nonlin-

S. , . ,-c c,. ,5nel, TI; onZ c a I c an .... . t. . b cr of

nion114imt.'. lThureoro, some sort of an approximate solution i, 'nevitable. With

the possiblc exception of a scalar system, it is not practically feasible to

include terms of higher order than the second order and, hence, it is desir-

able that the nonlinear estimation technique be defined by using only the

first -two moments, namely, the conditional mean and the conditional covari-

~ Iance. In order to do so, the second order terms are included in Taylor series -

expansion and a minimum variance criteria is employed to find the conditional

expectation, By definition, the conditional covariance matrix is nothing more

than a conditional mean of the square of the actual estimation errors and,

furthermore, it is clearly understood that the square of the actual estimation

error:~ ~is a random vdriable. Therefore, it is meaningful to interpret the

conditional covariance matrix as the optimal estimate of the square of the

actual estimation error and to approximate it by the same technique as the

- conditional mean is approximated. It is necessary to define a meaningful

criteria for approximating the covariance matrix and this is accomplishled-by

the use of the property of the trace of the matrix. This property is discussed

in Appendix E.

The nonlinear estimation theory developed in this study is applied

to an orbit determination problem. The actual model employed involves the

- invoestigation of the states of an interplanetary space vehicle during the

planetary fly-by dnd planetary orbiter 3hases of the mission. In the simu-

lated study, Jupiter is chosen as the main body with the Sun as the perturb-

ing body.

A,
-S% ~7: 
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1.5 Outline of S'tudy Oari

In Chapter 2, the nonlinear mathematical model which will be studied -:

is discussed briefly. On the basis of a Martingale property wh'.ch is presented

in Appendix D, an approximate nonlinear estimation algorithm is developed.

In the process of developing the algorithm, basic smoothing properties des-

cribed in Appendix B ave extensively used to manipulate the lengthy algebraic

relations and to simplify the resulting expressions. First, a sequential non-

linear estimate is obtained and a formal limiting process is used to obtain a

continuous nonlinear estimation algorithm. In the limiting process, the con-

cept of white noise as a time derivative of B-rownian motion is essential. The

Brownian-motion is treated separately in Appendix C.

Chapter 3 is concerned with the physical problem to be studied using -72

the nonlinear estimation algorithm developed in Chapter 2. The problem is

that of estimating the state of an interplanetary space vehicle during the A
planetary fly-by and planetary orbiter phase of a Jupiter mission. The equa- M

tions of motion for the spacecraft are discussed briefly and expressed as a

set of nonlinear state dynamic equations. Four kinds of observations are con-

sidered. They are range, range-rate, and sun-planet and star-planet angles

as measured from the spacecraft. Finally, computer programs for the nonlin-

ear and the extended Kalman filter equations are described.

In Chapter 4, the results of the numerical simulations are discussed.

Several nonlinear estimation algorithms are obtained from the modified Gaus-

sian second order filter which is developed in Chapter 2, and the modified

truncated second ordeP' filter, by neglecting the second crder terms in var-

ious combinations. Each nonlinear filter in conjunction with the extended

Kalman filter is simulated with the problem discussed in Chapter 3 to

~~~,~ 
4
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determine the sffects of the second order terms, i.e., the dyn-amic second
order trerm, the observation second order term, and the Kalman gain compensa-

tion term. The Kalman gain compensated filter obtained from the modified

Gaussian second order filter by neglecting the dynamic and the observation

second order terms while retaining the Kalman gain compensation term is shown

to be the best filter on the basis of the simulations. The Kalman gain com-

pensated filter is further examined through numerous simulations.

A summary of results and a list of possible extensions to this work

are presented in Chapter 5.

IA

73
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CHAPTER 2

A NONLINEAR E~STIMATrION ALGORITHM

2.1 Introduction

The state of the dvnamic system is assumed to evolve as the solu-

tion of a ncnlinear stochastic differ'ential equation,

dx~ f(xt,t)cit + d~l t > t (2.1)
tt 0

which- is expressed formally as

dx~ =f(x ,)+u ,t t (2.2)
d- t t -

In the aoeexpression, f~tt is an-vector an utt > to s a -

abovea an is n ~o
vector, zero-mean, white Gaussian noise process with

E ('.1 U Q 6 (t -T (2.3)

where Qtis an nxn positive definite matrix for any t .Suppose -chat ob-

b servations on the state are taken at discrete instants of t.ime and s mea-
sures the-time interval between a certain point in time, say t + s ,dfld t

at which the last observation wa! made. Therefore, s will vary from zero

to the maximum time span between two consecutive observations. This approach A

is necessary when observations are not taken regularly.

Let the observations of the state be of the form

y. hWx.) v. i ,,..(2.4)

whe~ yi nd hare r-vctors, and where (v.,i :1,2,...l sa mvc

tor, zero-mean, Gaussian noise sequence with

V'7 I
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-AMMA

2 T

E[vkV = (2.5) I

The covariance matrix Rk is an mxm positive definite matrix for any ktni

It is assumed that Lt,t > to} and {vk} are statistically independent.

An extension to the continuous observation case can be made by simply replac-

ing v. with a white Gaussian noise v . In this case the function R

will have an infinite magnitude. Since white noise is formally modeled as
the time derivative of Brownian motion (see Appendix C), it is natural

to relate v. with a white noise v as follows

.i+s - Si (6
v. -

(2.6) , ;-

lira t+s ds
=t = (2.7)v = ~o s dsIs ;,

With these definitions, R would be of the form

R
t

k 5 (2.8)

which approaches R.6(s) as s goes zero. Denoting

" = (yii 1,2,...t} (2.9)

for the o-field generated by yi,i 1,2,...t , the problem of concern is, I

that of estimating the state xt  of the dynamical system 
(2.2) on the basis.,

t4

of Yt * In particular, the desired estimate is the minimum variance esti-

mete and the solution is well known to be the conditional expectation

Fr[xt/Yt] (5). The details are discussed in Appendix F.

When both the jynamical system and the observations are linear, the

exact solution yields the Kalman-Bucy linear 
filter. However, an exact solu- I

tLion does not seem to be realizable with a finitn set of moments when the

i
,.. " -
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models are nonlinear. Therefore, an approximate solution is inevitable. It

is common practice to linearize the system dynamics f(-) and the observa-'

tiori-state relationships h(-) , aoout a specified reference trajectory and J

then to apply the Kalman-Bucy filtering theory to the linearized system. in

~ this chapter, an approximate nonlirPear filter, which is a modified Gaussian

second order filter, is derived by utilizing MartinL due properties (Appendix

timal estimate, retaining the second order terms in each expansion.

Regarding the square of the a,;tuaJ. estim~ation. errors a~s a collec-
tio ofranomvariables, the conditional covariance is obtained by minimiz-I ing the following risk function (see Appendix E)

T

ROt+s/t+s t[Vt+s -Vtl-s/t+S)( t+S t+s/t+s

where V is an nxn matrix and the square of the actual estimation errors
t-Is

and V is the optimal estimate of V~ given Y which is the
t-ts/t+S st+

conditional expectaticn of V given Y_t+
2.2 Apriori Estimate 2

Integrating the state dynamic equation (2.2) from t to t t s,

the state at t + s can be formally expressed as follows

x , ~ ~ t s f x d t + t : ( . 1

x idt ( fXT Id- f UT)-
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I I
: The approximate exjirei<on (2.12) is obtained by utilizing a Taylor seriea

expansion of f(-) and truncating at the second order termc, In this expres-

sion : is merely a parameter and s ;-s a variable. For the convenience

of notation, T in f(-) , f C-) and f (.) is neglected unless other-

wise stated. Knowing that u ,T > t is independent of Y. , and (x - A/)
-t t/t

and (x, - / have zero conditional means, the conditional expectation I
Swhich is the desired apriori estimate of x.+s  , is obtaine1 after

taking the conditional expectation of both sides of Eq. (2.12).

t+s

t+S/t t/t +  rfTi-C 2 xx if t T/t

Note that f( ,t) , fx( /t) and f () are Y-ineasurable and the I
smoothing property 3 (Appendix B) can be applied. The differential equation

for t , as a function of s , is readily obtained by differentiating
l~q.(2.13) with, respect to z . Since the upper limit of integr'ation is a

function of s , Leibnitz's rule is applied and the result is

t+s/t 1 (
ds - (t+s/t 2 xx t+s/t tis/t

The above differential equation is different from that of the extended Kaln,'an

filter through the inclusion of the dynamic second order ter-, f () P/2
NX

and must be integrated in conjunction with ft./t , from t to the instant

of a new observation, using At as the initia] cond1ition.

2.3 Apriori Conditional Covariance Matrix /

Subtracting out Eq. (2.;3) from Eq. (2.!2), the apriori estimation

erron %+,/, at r + , is obtained as follows

4

4
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>1 t+s/t xtis ti-sIt

ti-s

ft ut t ~ XX T /t

Dikferentiati~pi, of- Xq. -(2.15) with respect to s_ iesth lowfdif-

fercritial 6 jution fx~ aprioretiaibio-
x tis.

-x,-t tt2- -x- - + -+u-,- (2. 16)

By -definitijo j-

-and different iating Eq.17) with- respe&t to s ng -r -aJwii -e~ion

is obtained :

+ is/t. T____

Substitution of Eq. (2- ---into -Eq. (2.18) yidlds-

A~~-~ AI

-t~ -P T. -r T'. ~ ''Z - J
d xt+s/t ti-s 2x .t+s/t (t s tisit -ti-sit t-i-s t+s/t

-I'~ . tis/t 2 i-~txx Zt+s /t +ist-i t+s/tut+s

Since t is merely a f ixecL parameter, the conditional expectation given Y~

and time derivative can be interchanged. Therefore, thefollowing expression

is obtained after taking the conditional. expoctation of both sides of Eq.A

rull(C.19) and irncerchanging the conditional expectation-and the time derivacive.
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AS x t~/ ts/t + ti-S-Lt/

T T(2 .20)

+ s/t x t+s/t -ti+S'ut+S

In-the above, the symmetry of the probability density function is assumed and,

hence-, the third order moment is taken -co be zero. The remainhing terms

Efu- can be computed as foll1ows

ti-sS

t it

F 17-+ E [u {f(R )R_ +--c (A ):IY-r JY ]dT

E(t Y] 2 t+s (2.22)/ XX- / T-Tt

ItI
fyL -A

, hne Eq.R (220 (eco2es

~s xt-/ i-i istx ist t

-Thifch the desr mtx differn ftial equ tio fornthioario6i)coditiona

T Ii

whic isre d ed meratix difretileutofrte poicndina

cvfIa mti apFrn fro e Eq. ia condtio is' g iven obsvto at po tior

wou~td be- dondtionl coaria~e mtri
It/

2A Pediced Oservtio
-- t- s/t



h(x +)(.24
YtStis I-s (.4

Expanding h(-) in Taylor series about the apriori estimate R and
ti-sit

neglecting the third or higher order terms, the following approximate expres-

sion for vtis obtainedN

Yt+ MRt~st x(-t s/tt~/t k ts/t P +S t~ (225

After taking the conditional expectation of both sides of Eq. (2.25) given

Y , the predicted observation is obtained.

=h(At + )i~ h (A~t):~ (2.26) _ -

The above relation is different from that of the extended Kalmanfilter through

-~Ithe second order term in the observation-state relation, iLe., hx(.) :P/2

The expected errors between actual and predicted observations are

obtained by the difference in Eq. (2.25) and (2.26). Hence, the ..p, 'iori ob-

servation error (or residual) is given by i
): h Oz(P -P ) V (2.27)-

Y'tis '-Yt+s/t x-tsit ti-s/t 2 xx ti-s/t t+s t+s/t ti-s

2.5 Posterior Estimate and the Optimal Gain Kt+

According to the Theorem 2 of Appendix D, the following sequence

A A A(2.28)

t tisit t+sl /t-1 ' ~ st' t+s/t~*' tt**

cthen z's aMatifyate foln g conditionsind a

z ; A:I t~/1'2 t+s/2 +-/I' t~/3 t-q/"**
-(2.29)
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i~(I1] < -Et E ~/Zi -kz2,. Z 0 ,n >0 (.0

Wit pobbiit -. urther, the terms A n =1%2,... of the se-W ith r~ b ~ bili v 1.-t+ s fnjquence M228) are P'artial sums of the series I z .In other words, if

ztSis so determined that the conditions (2.30) are sati.Ffied, the term

A of the sequence (2.28), which is the posterior estimate, is uniquely
t+sdetermined as- a pgartiAl sum z Since, -msze ucin-fo~

se~v~tony the fOllowing li-near -approximat-ion 
'-

t+S-

tis asue.-e~ and, b tsare random variables which are measur- -

ble over the- a-field'generated by the -observations Y The bias term

b g i-*-,enas

fbrn the conditioiI (2o.33) wA' c-nmust ho6ld 'f ori the- z .s From the series,
n

(2.29) Yand Eq. (23)t~pse~o ~~aeis expressed, there-

-fore, as follows

+ % 5 y -
9t+s/t (2.32)

Tn Eq. (2.32), the nxm matrix _K_ can be chosen from a family of Y -~mea-
IA-s -sux'ablb functions so that the ininimilin -iaria'nce o equivalently -the -mininmmCT

of the trace of E(V 3is achieved. By definition,t~sF
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TtrE[Vti-s trE[(xt ~ :9 (X A~ J,
ts ti-s/ti-s ti-s ti-s/ti-s

trE({x t+S -~s K t Csyt 9t~s)1 (2.33)

(x Rts/ -Kt s y

5]and the- oDtimalitiy condition (Appendix F) for the minimum of-the above rela-

tioni requires that

EUKxt+ -y~ tist t+s/t)1 yt+s - ti-s/t} 7/t ~ 0 (2 K)
Stibsituing Eq.;--Q.21) into Eq. (2.34) and using the- smoothing property 3 of

Appendix -B-, the following relation is obtained.

TF

Efx " )h( +)( "A h +~i/ : (P -P )i- I2.5
t+S ~s/t x t+/t -~s ts/t "x t-s/ t-s tis+ts

)(xt -;. )+- ( )( )+v
t+ti-s/t ti- is/t 2'.X Rti-s/t) ptis-pt+s/t ti-s t

f-.the estimatio-n errors are assum~ed to- be. jointly. GaUssian, -and if it is'

assuamed'further that

(2.3 6)- 7
-3{h (9 )P 1h (P _xx ti-s/t ti-s/t xx ti-S/t ti-s/t

then, the optimal gain Kti- is given by *-

t+S ti-s/t x ti-s/t x ti-s/t ti-s/t xtist ts

+IhT T (2.37)
2 fix ( ti-S/t ti-s/t Mxx Nti-s/t Pti-s/t

tI



-x

The approximation given in (2.36) leads to the identical results obtained by !
Athans et al. (27) for the scalar case but yields a slightly different result

for the vector case. However, in contrast to the result obtained by Athans

et al. the Kalman gain compensation term

I T
j7hxx( t+s/t) :t+s/t}{hX ( t+s/t ) :t+s/t

is always. positive definiite, as are the t erms, h P_- h--T an-- of E.. i
x s/ ' -V S

(2;37). Hence, the matrix to be inverted in Eq. (2M37) wil always be posi-

tive definite, for non-zero Rt+ . In the extended Kalman filter, the op-

tmal gain t can be expressed in terms of either apriori or posterip9p

• ever, this situation is not possible in-Eq. (2.37), due to the Kalman gain !o

~~compensation term. i:

j 2.6 Apriori Estimate Vt+s/t of Vt+s

By virtue of random variable x , the posterior estimation error

t+sjt+s is an nxi vector random variable, and, hence, rt~s represents &n

nxn matrix of random variables and its apriori estimate which is the condi-

tional expectation of V.+s given Yt can be obtained from the definition

t+s t+s/t+s t+s/t+s

V [Xt+s "t+s/t K +s(yt+s -t+s/t )]  (2.38)
ti-s ts t- ti- is t-i

[xt~s -R t+s/t Kt+s(yt+s - s/t)]T

Substitution of 1~q. (2.27)- into Eq. (2.38) yields the following development. I:

AN
A

*14
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[[I K h $t -K hx: (Pt - Pt /) + vt~}

t+s x t+s/t t+s 2x ~ ~/ ~

T ~
- [I-K h}J [ f-h x-( P )+ .t t+s -x t+S/t2x s tst tsts

- {1 h (I (P - )v I- hT-(39
-2 x t~ ~/ t+s t+sf-t t+s x-+ PC

Kt+s. 2 xx t+s t+s/t) t+2 t+s t+s /t -t+s t'

TI T

-where the arumn of hx and hx is Atst
x- Ix t~

Knowing that v+. is independent of Y tand taking the condi-

tional: expectation of both side of Eqt23) ie yields the follow-

Ing approximat,6 expression foDV the apriori estimate of V.~

Y fl-( {IP lKt h}TtK/tt+sh x (9t+s/-t )t+s/t tFshx(t+s/t
(2'.40)

+ I(t~ [(1 {h (R ): })fh (A T T
ts2Xx t+s/t t+s/t xx t+s/t t+6/t1 + Pi+]lKt+

2.7 osteripp Conditional'Covariance MatrixV

tt~/ts
Aspointed out in the previous setoV i a collection of -i

t~sti'

reasoning e sttmat u e ind canrdt rie by.(.1 a e ple.Rg~d

iof in rms ofteo linea ofintin matix the pir estimate prbe
Vt_+ t~s/

an e osraio h abv a -n is bae onteMrigl
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can be stated as follows: determine n2xm marx t f h lna cr'

~,- Ibination
+B (y + B (2.41) 4

t~/ts t+s/t t+s yt+s t+s/t

such that the risk (see Appendix E)

R(B ) = trE((V -Q )V - I ) (2.42)tst+s t+s/t+s t+s t+s/t+s~

is- minimized. Subsft ittinh --Eq. (2.41)'-into Eq. (24)leads to th e_ following

~~RBt+= trE[V VQ- B( -y

~~ ~t -kBt+(y+-T (24)I

R.H.S.~ ~~ B hCl 5 tY( ~t~ tst t t+ 1 t+

t ts/ xx +S/t~

Kneowitaltycniinfrtemnmmo R isgvnb th flow go-

t+Ss/t/ Ltt+5  +S 't (.

th-3left e han s nd (Hsde (-.of Eq. (2.45) eom s - apoiae- sf-io

R.H.S.~~~~ B h 9 )P h R~t~s xt~s/ t~s/ x t,-i/ (2.46
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T -

L. H.S. E E[V %Y g /Y 3(2.48)
t+ ~ ti-sit t

IAfter substitution of Eqs. (2.27) and (2.39) into E.,. (2.48), it can be easily

seen that all of the terms in Eq. (2.48) are of the fourth or higher orderI moments, under the assumption tha4t the krobability density functions of es-

timation errors are jointly Gaussian. Therefore, the optimal gain. Bt~s is -J

given As the ratio of #he fu t oth second order-moments and is neglected. II -Hence,

B 0 (2.49)ti-s

:With th~is assumption, Eq. (2JI1), 1-ads- to

~~i ~tis/t- ti-s/t (.0

~ It is interesting to note that both the posterior and the apriori estimation--

errors are independent of observations available for the linear model and,

-. 0hence, the conditioning on the covariance matrices becomes -Anconditiona1.

Therefore, there are no tuistinctions between qSt+ and "2 Al-
Vti/t- ti-s/t

though Eq. (2.50) shows that Vt~s/tIsis5 cloel approximated by Vti-s/t

these are conceptually two different quantities. In the linear filtering

Sinc is elatd tothe apriori conditional covariance

tat i -s/thogEa(24) the-posterior conditional covariance mat rlb

7:stscnbeepesdintrso ti-s/t *From Eq. (2.50)

V V (I-Kt hx('ts/)}P1 st U-K shx(.ts))T

ti-s/ti-s ti-s/t tis4t-i isi isxt-/

+ ts2 xx ti-sit ti-sit xx ti-sit ti-sit tis i-

~AtI



30il

S I - , h(* )1. -I 1,+( t (. , ' , : I t+s
I / (.. [:/ (t+s/t);Xt+/t h. t+s/t t- t s  (2.52)

hIxfh t+s/t ) : Pt+s/t}{hx(t+s t) ts

2 xx tist t-i xts t tisit t+s

Substitution of Eq. (2.36) inte Eq. (2.52) yields the following relationships

V P -Kt1 h(. )P(2.53)
Vtis/ts t+s/t ts x t+s/t t+s/t

The above relation is used to update the apriori conditional covariance matrix

P t+s/t to the posterior conditional covariance matrix Vt+s/t+s  after a new

observation yt+s is processed. Once Vt+s/t+s is obtained, it can be used

as an initial condition for the integration of Eq. (2.23) from t t s to the
Iinstant of a new observation. Finally, the procedures required to compute

the posterior estimate 9 t+s/tis can be summarized as follows: 4
d~t~s/t s/t s

ti-s/t =f(R + I-f (O P (254
ds t+s/t)  2 xx t+s/t tis/t (2.54)

d~t+s/t Tds f x (At+s/t)P t+s/t + P ts fTx(:R t *)/ + Qt+, (2.55) '"

h(A +I h ( (2.6)tis/t t+s/t 2 xx t+s/t i-t+s/t

K P h( )[h (A ) h + R
ti+s t+s/t h(xt+s/t x ti-s/t t+s/th x t+s/t t+s

(2.57)
+ !-[h (t+s/t) {Pt+s/t}{hxx('+s/t) Pt+s )]

2 xx tist t-/ x t-i is/t

R. +9 iK [y y(.8
t+s/tis t+s/t tts [tis - Yt+s/t1  (2.58)

In order to start the computation, o/0 and 0/0  are required and they
, are given by - I!

'I i "
-A
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A E[Xo/Yo  E[x o ] (2.60)

0/0 0 0V v° 0 = 0 (2.61)

- where P is given as the covariance of the random vapiable x

00

Depending on the particular problem, it may be possible to neglect

either the dynamic or the observation second order term. This might be the

case when the state dynamics are relatively smooth while the state-observa-

tion relationships are highly nonlinear or vice versa.

2.8 Computational Algorithm

C-The algorithm for computing the estimate 9. of x by

processing each data point sequentially, can be summarized as follows:

1. Given :t/t and Itlt

2. Compute xt+s/t and Pt+s/t by integrating Eq. (2.54) and

(2.55) with the given initial conditions / and V
t/ttt

until a new observation v is made at t + s
t~/t t-s

3. Determine s and K using Eqs. (2,56) and (2.57),

respectively.

4. Compute At+s/t+ s and t+s/t+ s by updating Atsit and 3

Pt+s through Eq. (2.58) and (2.59), respectively.

5. Given At+slt+s and t+st+s the steps 2 through 4 can be
repeated. t/+

2.9 Continuous Second Order Filter

An approximate filter for the case of continuous observation may

be obtained by passing to a formal limit. In doing so, Q of the dynamic
t+s

state ioise and R tsof the observation noise have to be replaced by t s
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::dit:a repciel.Ti comes from the property of white noise re-

gardied as a time derivative of Brownian motion (see Appendix C). For an in- -

-4
It Mx t+' tt (2.62)

Rt+s/t / + sf( )/ 2~ xx )h

t~~~s/t/ tx t/ t / (.3

Kt+5  .t~.h, Nt 5  )I~ (2.64)

I~+ ~ / ~/

Util.izing Eqs. (2.56), (2.58), (2.59), (2.62), (2.63) and (2.64) and passing

to a formal limit, the following continuous second order filter is obtained,

as s goes to zerc.

-R lin It+s/t+s t/t

S+O 5

f KP + f W y MRh) -- h (:R) V] (2.659)A
t 2(~ 2xx 2 xx

Kh h(x)IR- (2.66) -

d! lim Vt+s/t+s Vtlt

dV f (A)V + Vf W) + Q Vh(A)R-h ckV (2.67)

Noth tte opt imal gain K for the continuous filter is not the limit of

-'Ai



CHAPTER 3

DESCRIPTION OF THE ORBIT DETERMINATION PROBLEM

3.1 Introduction

In order to compare the performance of the extended Kalman filter

and the various forms of the nonlincar second order filters developed in

Chapter 2, the methods are compared in a simulated study of a realistic or-

bit determination problem. The problem considered is that of estimating the

state of an interplanetary space vehicle during the orbiting and planetary

fly-by stages of a Jupiter exploration mission. The reason for choosing this

problem is that considerable attention has been given to the exploration of

deep space and the reconnaissance of Jupiter is regarded as an important

scientific objective. However, the past Jupiteir encounter missions are of

comparable significance and those missions are made practical by utilizing

the powerful trajectory shaping capabilities of Jupiter's gravitational field.

One such mission, the so-called "Grand Tour", involves successive flv-bys

of the planots, Jupiter, Saturn, Uranus, and Neptune. The Grand Tour is the

subject of considerable current interest, since a mission opportunity occurs

in the last half of the 1970's and will not reoccur for another 179 years.

A critical pioblem in ti.- A-sign of a space vehicle to perform a

deep space mission such as the Grand Tour is the accurate det-inination of

the expected trajectory which is the basic knowledge required for the guidance

correction. Because of numerous sources of ei'ror, "the true trajectory is

never known to us. A major contributicn to those errors, access during the

encounter trajectory, due to imperfect pre-encounter guidance corrections

which result from pre-encounter orbit determiiiation errors. In regard toI 33
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this situation, it is interesting to see how the nonlinear estimation proce-

dures perform when ccmpared with the extended Kalman filter.

3.2 Equations of Motion

The motion of a space probe relative ro a given planet is closely

dpproximated by the solution of the following vector stochastic differential

I equat ions

r - r11 (3.1)H p
I where P and Ps are the gravitational constants of the target planet and

the Sun, respectively, and a is a vector of Gaussian process noise and

where r is the position vector of the space probe relative to the target

planet, rt is the position of the target planet relative to the Sun, and

= r + r is the position of the probe relative to the Sun.
p t

Eq. (3.1) -an be reduced to a system of first order differential

equations by the following transfor'mation

r v
- (3.2) 3

I T

v -~*~ Sr r
iP

In a cartesian coordinate system centered at the target pianet, the equations

of motion can be expz.essed in component forms asUI
Y V

Z W 0.3)

.; ~ ~ --- U --;
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x + x
31 t , 1-(3.)

p_ t

y- +y y
-p

-Z -z + Z z
pt

Theheiocedntjric position-- dombpients of the target planet can be expressed as

- - t

t y

Z- t z

Jwee X* i ~~~ Z r he .c6rnpnoits of the heliocentric position ve&

~Er otained roheplanetaFiy epherieris and~ b b_- and b. are corn-

ponens o~Iasii th-oiinvector due to the err ors in the planetary

ephemertis. ~e components of th~e planetary -position bias -are assumed to be 4

r-o inerest. The p-osition vector of target -

planeigt chang4 isver -9- owly and this assumption appears to be reasonable.

",3-3- Augmdhted State- -Vector

Since the uncertainty in the position of the outer planets (Jupiter

ithis study) -is assumed-to be an influential error source, the pianet-.ry

-' -Vlas victo6rY~ b and b are assumed to be unknown parameters and are'X y
-estit~ To achieve this objective, the original state vector given by Eq.

'(~) p exad o: Include b- b and b and the-augmented state isy z

idi-fin-ed, as -
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T 1-_,Y,Z-tU,V,W~b b ,b Ix y

tion

f~ut (3.5u

where

U , 2  V 3  w

pX t

t t
5 _'~~s x-~-3]+ 36

4 + 6
-37Z

f 7 = Sf =

_p'
3.4' Stt-betto Relatinship

i4 Thter6 ei ate four Rltpsioseaoscpsdrd:sne

2range-rate, -6) , sun-planet angle (a) ,And staromplanet angle (0).

The first ti-o of these Are Earth-based while the other two are onboard obser-
vations. Anycbiain fth aov four observations can be processed

at anyr time interval. -Such a procedure is necessary if the characteristics 4

of each type of obserm~tion are to be d'itermined.

1. -The range measurement is given by

P (P /2 V (3.7)jPI
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Afhfi _v is the, randomf error in -the rane -mea surements and whei~e-

p S

In~catesian components e

( X )2 +. ( d + (Z- z )21±1/2_ *v (.p s p s

whereX , Y_ and Z are the heliocentric position codntso-h

trakag t'o,~n X ,Y and Z are the heliocentric-positioin coo'-
p p

diitso -the probe. w

2'. SRange _-rateobeato

Differentiation- of -Eq. (3-.7-) with vespect to tim6 yi&U1ds- the- r~nge-

-where v- is- the random observation error. In the heliocentic cartesian

coordinate, syst-em, the 'xpressIon- becomes

p [X Xr (X -- X,-)-+ (- -__Y Y )+ (z )(Z -z )]/p + V* .i)_P -- S p5p s p 8 jP s _P -

3. Sun-plianet angle

The onboard angle measu~rement a ,defined as the smaller angle'be- 7

-tween the prObe-planet line and the probe-sun line, is given by

a! a(:3" Z)

wher e y -is thet observation error.

Since r+ rq.(3.11) can be written as

x~a Co-( 3.12)pI
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where

_ =[X 2 + y2+Z]/

an-d

r EX+y2 Z2 1/2
p -p p p

4e. Star-planet angle

:ngle the- last stars-planet &hgle measurement 0 ,dnd ath'Smaller

4lebktwdeei- h pbobei-planet -line and the line from _the probe to a reference

-ver 'i-thd- random- observatione~o and- S is a--unit vector in thie

- - drctTn, of the reference stabi The stajr is assumed to- be at all intirdte

-djAltance so thAt S -is- a .constant vector. Sic th nlntino ath

and Jpte~r are nearlW zero, it follows that Earth-, Jupiter and the space

p robe -i in' vet'y nepawly -the same plane.- Hence, it is desirable to-bse a-

--star VOhIch-is- -not in this plarn.44 a reference dtar to obtain Informdtion-

-about th e--6ttrof-plane motion. -Sta . planat angle measurement can be ex--

pbressed- in cartesian components as

-60recion [-(XS x + YS~ + ZS~ )IrI +- V0 (.1)

where S ,S -and S - are the direction cosines of the reference star_Y z

dieto.II
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qp kg _nStation-

jea::g-4drzs::;12ae osvtinsaZ t z At a ki~ti4 Q4

on he- -Erh-an the helce tipsiin vco fte ia.kif s -a-tocen-

-whee- - 9 te-h~io Ltic-,p -sition of the Edirth- andR is_ th6 g~

ti position of the- tracking- stdtion. The- Vedtr i is _c6mpute_4a

fu-nctIonf of tim&i -from- the- relationship-

-cos co CO-(s -

s S

s -

R sin

where a Is the-right -ascension of the-tracking station,

-6 1 the -declination (latitude) of the-tracking stdtion,

A~ is- the magnitude-of -the vector and j theraidial distane,,Ofj the -

tracking, station- from the Earth'is- center,

0 0

T 0 Cot;e sineC

LO -sin e Cose

-is the rotAt3.onal matrix which transforms the coordinates from an equatorial

to an ecliptic coorainate system which is chosen to-be the-heliocentric sys-[

temn. The argument E is the obliquity of the ecliptic. -With thle assumption

that the Earth's rotation is uniform, the right ascension of the'tracking

station can bet expressed as

-- A
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Track4Wg -station

IA

Equatorial Plane Kn
Ecliptic Plane _1

Figtwe 1$. Tr acking -Station Geometry
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1-
a' t) CL (dto) + *(t- t

_s 0
Differentiation -of Eq. (3..16)- with respect to-tiie time yields the --heliocen-

tti ve'locity of the- tracking station.

-aRcos 6 snS

r+ [as Rdos-6 CO - (3.18)

--The zeniith angle * of the probe with respect to- the tracking station is

gvnby

The pr~.be is assumed to be visib)le from the tracking station if cos 4is~

sposit ive.-

3. timul ati&6 of Erors

.2Each component of the noise in the equations of motion (3.1) and

observation-state relations 'is modeled as- a normally distributed-scalar ran-

dom -variable with zero mean and-known variance. The noises are simulated

-bytamnlink at random from a Standard-normal distribution function (zero
--men ad uitvriace and then scaling the sam.pl.ed. nube by the given

--stardard deviation.

The nomal diiity function of the random variable is given by

exp -= I - (3.20)

where in and ar are the mean and the standard deviation, respectively. Eq. V
(3.20) can be written in terms of the standard normal diwtribution function r
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F(z) ex(Lj-d (3.21)

k"E -by the transformation

Cr (3.22)

For the random variable of zero mean

L (3.23)

The inverse of Eq, (3.21) can be approximated by the curve fit equation (40)

C + c r+ cr2

z -0 1 2

(3.24)
r [Zn(F-2)]2

where the coefficients c. and d. have the following values
1- 3.

C 2.515517 dl 1.432788
V 0

G 0. 802C53 d 0.1892691 2

qC 0.*010328 d 0.001308
33 3Z

Sampling of the standard normal distribution is accomplished by first samp-

ling at random from a unifor~m distribution to obtain a value for NO0 < F < 1)

and then computing the standard normal, random number~ z from Eq. (3.*24).

The simulated-noise is then computed as the product of the sampled value Z

of the standard normal random variable a nd the standard deviation 0 by

Eq. (3.23).

Observational data are simulated by adding random numbers Fwhich

are generated in the manner described above to the observation value computed
4ro the true state and state-observation relationships discussed in Section

3.4, 1-e



Y = Y + v (3.25)

true

Noise in the equation of motion is simulated in the same way as

above and then added to the equation of motion at discrete points of time

which correspond to the integration step.

3.7 Computer Program Description 4

The program NONSTEP (NONlinear STate, Estimation Program) is dev-

eloped for comparison of the extended Kalman filter and the nonlinear es-

timation algorithms by applying each to the study of an interplanetazy orbit

determination problen.. Special emphasis is given to the planetary fly-by

niode although the planetary orbiter is considered also.I The program was: written in FORTRAN IV for the CDC 6600 computer

-system at The University of Texas at Austin. Since this computer has a single

precision word length of sixty bits, single precision arithmetic was consid-

ered to be adequate for most calculations. The initial frame of the program

was founded on the existing program STEP (STate EStimation Program) developed

-by Jones (28) at The University of Texas at Austin. gw

The three basic functions of the program, i.e., simulation, estima-

tion, and evaluation, are conducted sequentially according to a schedule

specified in the input data. The program NONSTEP has a capability for carry-

ing out the nonlinear estimation algorithms as well as the extended Kalman

filter, depending on the input data IFILTER. If IFILTER = 1, the extended

Kalman filter is carried out. If IFILTER = 2, the nonlinear filter is A

implemented and, finally, if IFILTER = 3, the nonlinear estimation proce-

dure is first carried out and then, with the same inp'ut data and random

noises, the extended Kalman filter is carried out. With this latter option,

4'-



46

a diriect comparison of the linear and nonlinear algorithms can be made.

In order to reduce the storage space for compilation, the program

NONSTEP employs OVERLAY. The main OVERLAY(O,O) controls the overall program.

The OVERLAY(1,O) conducts all the plots of the output data for the case of

I IFILTER = I or 2. The OVERLAY(2,O) does the same thing for the case of -

IFILTER = 3. The OVERLAY(3,O) conducts all of the calculations involved in

simulations, estimations, and evaluations and transfers the output data to a

magnetic tape for the plot of OVERLAY(1,O) or OVERLAY(2,O).

In conjunction with the apriori conditional covariance matrix, the

true trajectory and apriori estimate are generated simultaneously through

parallel numerical integrations of the aprIori estimate and the apriori con-

ditional covariance matrix. A general purpose numerical integration subrou-

tine is used to simultaneously integrate the differential equations. The

routine consists of a Fourth Order Adams predictor-corrector scheme with a A

Runge-Kutta starter. Although the integration is carried out in single-pre-

cision, the dependent variables are carried in double-precision to minimize

round-off errors.

Observational data are simulated by generating ra. lom noise and

superimposing it on the true observation computed from the true state.

,A simplified block diagram of the computational logic is shown in

Fig. 5.

I -I

ILA=-
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CHAPTER 4

DISCUSSION OF NUMERICAL RESULTS

The purpose of this chapter is to determine the characteristics of

second order filters on the basis of a nunerically simulated study. There

are two basic classes of second order filters to be examined. The first is

the modified Gaussian second order (MGSO) filter and the other is the modi-

fied truncated second order (MTSO) filter. The basic difference between

these two filters is that the Kalman gain compensation (KGS) term enters with

a plus sign of one-half in the first filter and with a minus sign of one-

fourth in the later filter. Both filteis include a dynamic second order (DSO)

term, (f P)/2 in the dynamic equation (2.54) and an observation second

order (OSO) term, (h : P)/2 , in the P edicted observation equation (2.56).

4.1 Various Simplified Forms of Second Order N'onlinear Filters

Although the modi~fied Gauseian: second order filter and/ the modified $

truncated second order filter are developed using a model in which both state

and the observation equations are nonlinear, there is a possilility that -the

actual problem will consist of a highly nonlinear dynamic equation and a rela-

tively linear observation or vice versa. Ln this aituation, the second order

term in the relatively linear relation may be neglected, and, hence, several

possible simplified nonlinear estimation algorlthms can be obtained, depend-

Ing on the presence of the dynamic second order termr., observation second

order term, and the Kalman gain compensation term in various combinations.

The resulting filterc are tabulated in Table I. The Filters 1, 8 and 9 of

Table I comespond to the MOSO Filter, the MTSO Filter- and the extended

Kalman (EK) Filter, respectively. The Filter 4 is specifically r"ferrei to

48
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as the Kalmian Gain- Compensated XG<CC) Filter. The performanc& e aho the

Filt-ers , 1 through-8, ',s studied through numerical simulations and- Apyfiazed-

with the EK-Fle'hc ithe-most popular fIlter at present time. The-

nonlinear filter is fir~t executed with the input data given in Tables 5L

through 9, and then the EK Filter is executed under the same corditions. -

The same sequence of random numbers is used to simulate the state noises as

well as the observation noise in both filters. The conclusions reached in-

this investigation are based-6in the results of several hundred- simutlations.

The results obtined6 in eigfltedn of these- simulati-n r peetd hti

report. These-results-obtailned in- these- castes are rebresentat-ive -of the-

results obtained~in the zremdinin studies. - --
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4.2 Th&Nbminal Trajectory and Error Sources

iTe nominal traj e tories are generated by integrating the equations

6ff gt$ini(3.1) !th dynamic state noise set equal to zero. In other Words;,

the randbm -noise u is simply Set to zero. Considering the possibilities

-ofrapplylg the nonlinear algorithm to the problems of a near-Earth or lunar

satellite, Mariner and Viking missions, simulations are conducted not only

for a hWpobolic orbit, but -also for an elliptic orbit. The nominal trajec-

%tOrj of the elliptic orbit-I& shown in Fig. 6 and the hyperbolic orbit in

Fig. 7. The periapsis and apoapsis for the elliptic orbit occur at about

4. 6 aid 20 s respedtiYe ly. The periapsis encounter in-the hyperbolic

jAs seenori in Fis. .6 and 7, the dynamic nonlinearity in the ellipt49j

6rbit is Very-much concentrated -near periapsis and apoapsis, but it is-weil

-distributed over the entire trajectory when compared with the hypobolic or-
-bit. In- the hyobolic orbit, the dynamic nonlinearity is concentrated almost

ent-rely near the perigee, and the pre- and post-encounter trajectories ap-

:pear to be straight lines.

The initial conditions for the hypcbolic and elliptic orbits are

obtained from the nominal Grand Tour mission trajectory with Earth launch

-date and Jupiter encounter (28). For the elliptic orbit, the velocity com-

ponents are reduced so that it yields an elliptic orbit wizh a proper period

of 30 days. The nominal trajectory initial conditions are given in Table 2

and the orbital elements of Jupiter and Earth are listed in Table 3.

The true trajectory (or state) is generated by adding a vector

Gaussian random forcing term u described in Section 3.6, to the equations

of motion (3.1).



] The actual observations are simulated with the data given in Table

-4 --by using othe f6llowiing prbcedure: -

i. Compute the nominal observation through the state-observation

relationship with the true trajectory obtained as described above.

2. Gaussian random noise is generated as described in Section 3.6

and added to the fnominal observation.

The standard deviation a of the dynamic state noise u and

aR of observation noise v areogiven in Tables 5 through 9 according to

=th~ simulations. Since it is coInmon practice to employ an adequate 0 Q for the

dynamic noise u- , even though there is no dynamic noise assumed, two values

of a are used. OQT is designated for, the true trajectory and oQA is

-adopted for the estimate of the state.

FA_
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4.3 Characteristics of the Filters

The results of Simulationp' I through 8 are pp'esented primarily for

the purpose of describing the characteristics of the filter algorithms in

Table 1.

For each simulation, position and velocity estimation errors are -2
plotted and they are compared with results obtained with the extended Kalman

(EK) filter which is filter 9 in Table 1. In addition to the estimation er-

rors, the conditional variances and the observation residual wh'ch is defined

as the difference between the actual observation and the predicted observa-

tion are shown. Unless stated otherwise, all figures are obtained by con-Inecting every third data point with straight lines. There are thirty data

points between two adjacent symbols. The main reason for sampling every

third data point is due to the difficulty of tracing the original plot ob-

tained from the Calcomp computer ploter when every data point is plotted.

In this study, the planetary bias is approximated as a constant

parameter and its value is estimated. But, the estimation errors and the
conditional variances remain virtually constant with the onboard angle mea-

surements during the time period of interest. Furthermore, the difference

between results obtained with the nonlinear filters and the LK Filter are

negligible. Consequently, the estimation errors and conditional variances

corresponding to the planetary bias are not presented in this report. 4
Since the nonlinear filters are compared with the EK fiter, the

estimation errors and conditional variances for the EK filter in the Simula-

tions I through 8 should be identical. However, the actual figures are not

identical because of scale factors.

The EK filter performs adequately up to three days and thereafter

IA



II

becomes unstable. Actually, riglt after the three day period, the condition-I-
al variances decrease drastically and the estimatior errors take several sharp

I' oscillatory spikes during a short period of time while drifting away fromK{ zero. The sharp decrease in conditional variance is attributed to the fact

that h dominates R in Eq. (1.35) and, hence, the negative term inx x

Eq. (1.33) will be quite large. The position and velocity estimation errors

and the conditional variances for the EK Filter are shown in Figs. 8-a, 8-b,

10-c, and 1O-d.

Immediately after encounter (12.7 days), the velocity estimation

I errors remain at a relatively constant level and, hencc, the position esti-

mation errors grow linearly, in an unbounded manner, and divergences occur

eventually. The velocity estimation errors become extremely unstable shortly

after encounter and the magnitude oscillates several times with ..iarp spikes.

This phenomena is not seen in the figures shown here because of the fact

that every third data point, instead of every data point, is plotted. In

particular, the velocity components of the conditionil variances are very

small after encounter, and the filter becomes saturated. Therefore, the ob-

servations taken after encounter ,annot improve the estimate very much. The

characteristic of poor estimation after enccunter is an indication of the

importance of the pre-encounter navigation.

Figs. 8-a and 8-b show the position and velocity estimation errors

for the Simulation I which compares the Filter 1 (or MGSO Filter) and the EK

Filter. Both Filters perform adequately up to three days and there are no

significant differences between them. After three days, the EK Filter be-

comes unstable. However. the MGOO Filter performs properly up to encouter.

Both Filters diverge after encounter.
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I
It is interesting to notice that the MGSO Filter obtains a more

accurate estimate of the Y and Z components and less accurate estimate

of the X components after encouniter than the EK Filter does. ; AIA
Although the corresponding conditional variances are not specifi-

cally shown here, they are almost identical to the ones given in Figs. 11-d

and 11-e. It is interesting to note that the conditional variances for the

MGSO Filter are considerably larger than those of the EK Filter especially

in the region from three to thirteen days, during which the MGSO Filter es-

timates surprisingly better than the EK Filter.

Figs. 9-a and 9-b show the position and velocity estimation errors

for Simulation 2 which compares Filter 2 and the EK Filter. Filter 2 per-

forms considerably better than the EK Filter throughout the entire region.
For future discussion the oscillations around encounter are emphasized here. -

The conditional variances are identical to the one shown in 17igs. 11-d and

11-e, which also correspond to Simulations I and u.

From Table 1, it can be suen that the only difference between Fil-

ter I (or MGSO Filter) and Filter 2 is that the dynamic second order (DSO)

term is dropped in Filter 2. Therefore, the nOMparison of Filter I and Pil-

ter 2 shows the effect of DSO tem. A!; .ce;an in Figs. 8-a, 8-), 9-a, and 9-"

the effect of DSO term has c. significant effect after encounter. By dropping

the DSO term from the MGSO Filter (Filter 1), far better estimate is ob-

tained.

A number of simu.Lations ind[ite tI;ai the DSO term is very sensi-

tive to the initial covarianci matrix. For the lirger values of the initial

variances, less satisfactory es.Eimates are ol'ta-ned. The simulations .ndi-

cate that the MGSO Filter diverges while th.- LK Filter yields convergent
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estimate whenever large initial variances are used with relatively large

state noise O . For small initial variances and small state noise a

the differences between the two Filters MGSO and EK Filters are negligible.

This implies that none of the DSO, OSO and KGC terms are important. Appa-

rently, most of the orbit determination problems which are not influenced

by a state noise u fall in this category and the differences between the

EK Filter and the MGSO Filter are negligible. However, there appears to be p
a range in which the initial variances can be so chosen that the effect of

DSO term improves the filter performance. But, it may not be easy to select

suchi an initial covariance matrix in a complex multi-dimensional problem,

because the chosen set of initial covariance matrix may very well cause the

DSO term to affect the filter in such a way that the estimate of some Com-

ponents can be improved while the estimates of other components is degraded. -x;

An example of this situation is shown in Figs, 8-a and 8-b.

Usually, if the EK Filter converges, i.e., if the condItional va"-

iances remain small, the MGSO Filter acts like the EK Filter This is due

to the fact that the effect of the DSO term cin be overridden by the small

variances associated with the observations. In contrast, if the covariance "

reduction caused by the observations cannot override the effect of the DSO

term, which will occur when the initial variances and dynamic state noise

are large, then the MGSO Filter diverges because of the DSO tenr even though

the EK Filter converges. A large conditional variance allows the estimatL to

depart from the true trajectory because e'" zhe DSO term. and cause a bad pre-

dicted observation and, consequently, large observation residual which will

lead to filter instability and divergence.

Figs. 11-b and il-c show the estination er-rors for Simulat ion

Am
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4 which compares Filter 4 with the EX Filter. As seen in Table 1, Filter 4

includes only the KGC term and excludes the DSO and OSO terms. Filter 4 is

referred to as the Kalman Gain Compensated (KGC) Filter.

The comparison of the filter performance with Filter 2 will show

clearly the effect of the OSO term and the comparison with the EK Filter

reflects the effects of the KGC term. From Figs. l-b and i1-c, it is seen

that the Filter 4 (KGC Filter) estimates show excellent agreement with the

true trajectory throughout the entire region, Both the KGC Filter and the

EK Filter appear to be identical for the first three days. After three days,

the EK Filter diverges. Although the EK Filiter performs poorly over almost

the entire region except for the first three days, the poor performance after

encounter results from the behavior which occurs from three days to encounter.

The accumulated large estimation errors dt encounter influence the estimate

throughout the remainder of the period.I The phenomena above can be explained as follows: the conditional

variances become quite small after encounter, and the filters become insen-

sitive to observations. Therefore, a filter that can estimate accurately

around encounter cart -- tain an accurate esti,nate after encounter. Similarly,

any filter which performs in an unsatisfactory manner around encounter will

yield an inaccurate estimate after encounter.

Fig. 11-a shows the observation residuals for Simulatiun 4. The

observation residual pattern for the El( Filter starts to grow from three

days and is influenced by a large spike around encounter. After encounter

the residual pattens for the EK Filter and the KGC F'iter rentains identical

to each other.

The conditional variances are shown in Figs. UI-d and l-e. It is

. ( ' 
'

:''m- ,.u ,, - ~ --
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interestitng to note that the conditional variances for the EK Filter undeg

a sharp reduction at a time of about four days following which the estima-

tion errors begin to drift away. The conditional variances for the 'GC 'ilter

retain a largei- value for the period of time from four to twelve days during

which the poor perfrmance of the EK Filter has been accumulated.

From the simulations, it was noticed that the KGC term is negli-

gible at the beginning in comparison with the other terms h PhT and R inx x

Eq. (2.57). But, it grows rapidly and becomes the dominating term from three

to twelve days. As a matter of fact, the maximum value of the KGC term is j
about ten times larger than the other two terms. The KGC term becomes agai-

P #gligible after the encounter. The above fact implies that the observation

nonlinearity is very sever%- from three to twelve days. The observations

outside this region appear to be relatively linear. The severe observation

nonlinearity near encounter is seemed to be caused by th dynam|ic nonlinearity. jV-
The same investigation was made on the other type ol observations. The sun-

planet angle measurement has almost the same characteristics as the star-

planet angle measurement. However, the range and range-rate observations do

not appear to be influenced by the second order terms and the KGC terms for

both observations ire neg.Ligible. Hence, no ditference between the KGC Fii-

ter and the EIK Filter ib seen.

Frgm Eq. (2.57), it can be seen that a large KGC term yields a

smaller optimal gain K than that which results in the EK Filter. H nce,

a smaller .;onditional covariance reduction occurs and a larger posterior covar-

iance matrix results, as can be seen from Eq. (2.59). In Figs. 11-d and 11-e
exact.1 the same phenomnena described above, happens in the region from tour

days to encountei.

- -p
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Between observations, the conditional variances vary according to

.hne differential Eq. (2.55) and the direction of change depends on the signs .

of the Jacobian matrix f At the time of the observation, Eq. (2.59)

governs the conditional covariance matrix reduction. The conditional var-

iances increase only through the dynamics, namely, the signs of f and de-

. by either the dynamics or observations, namely h . For example,
X

the reduction for the EK Filter around four days is attributed to the ob-

servations and the one near twelve days appears to be due to the sign changes

of f.x
It appears that near encounter, the dynamic nonlinearity overrides

the information gained through the observations. Physically, this means that

$ a severe dynamic nonlinearity causes bad predicted observations and observa-

tion nonlinearity. Therefore, large observation residuals are inevitable.

In this situation one can follow one of two procedures:

1. Discard the observations during this period.

2. Try to uprtate the apriori estimates with larger gains, K

It appears that the EK Filter follows the second course while the KGC Filter

takes the first cours2. The KGC Filter yields a ±arge value for the condi-

iona! covariance matrix, and hence, leads to a small value for the gain K

because of the KGC term. This means that the KGC Filter places less weight

on each of the observations obtained during the period of t-'me in which

dynamic nonlinearity is very severe.

In addition to the large value for K , the observation residual

is so large during the brief period of time, as seen in Fig. li-a, that the V

correction to the apriori et'timate in the EK filter becomes e, -essively
II

large and a poor posterior estimate results. rhe cnndixional variances

- - -~- .--- ---- - ~ ~***'4V



for the KGC Filter depend more on the state dynamics in the region of a

severe dynamic nonlinearity. The sharp decrease of the conditional variances

near encounter is not due to the observations but due to the sign changes

of the Jacobian matrix f . h large integration step size often causes a A

negative variance near encounter. The sign change of the Jacobian matrix

f incorporated with the large conditional variances yields a negative

slope for the conditional variances which can result in negative variances.

The conditional variances for the EK Filter depend largely on the

observation, namely hx  in the region where dynamic nonlinearity is high.

The sharp decrease of the conditional variances for the EK Filter around four

days is an indication that the reduction by the observation overrides the

increase due to the state dynamics. Unusually large reductions of the con-

ditional variance which occur in EK Filter in the early stage of application,

is att.'ibuted to this phenomena. However, it ca;i be a nuisance if the pos- I
terior estimate Li still far away from the true state even after the condi-

tional variances reduced to a zero level. The most interesting observation

is that the EK Filter becomes unstable and the estimate starts to drift away

from the true trajectory whenever the conditior.al variances are reduced sharp-

ly. Another interesting observation is that '-ch of the Filters (1, 2 and 4)

which include the KGC term have alm,.. i'dentica. conditional variances snowo

in Figs. 11-d and 11-e, and have very similar observaticon residual 5atterns,

as shown in Figs. 11-a.

Figs. 12-a and 12-b show that the estimation el'Ors fo-.' the Si:mu-

iation 5 which refl, cs the characteistics of r-"tcw S. rilter .5 icJudds

onlV the OSO term. F'lter S perfor. s ber-ter than the EK Filter fvc-m thIege to

nine days. Apparently, the otservatlo~i .,eco:zd tirder improves the perfoanrcc
'1



-~9 --

66

of Filter 5 by using the proper sign. The poor performance of Filter 5 be- hz

tween nine and twelve days reflects the fact that the OSO term influences

the filter with the wrong sign. The poor estimates of Filter 5 after en- '

counter are due to -the propaga-ed effect of the poor estimate at encounter.

Figs. 10-a and 10-b show the estimation errors for Simulation 3

which compares Filter 3 with the UK Filter. Filter 3 contains both the DSO

and the OSO terms. By comparing Figs. 10-a and 10-b with Figs. 12-a and

12-b, the effect of the DSO term is shown significantly after encounter.

The estimation errors for Filter 3 are considerably larger than those of

Filter 5 after encounter. The difference would be the negative contribution

of the DSO term in the Filter 3, i.e., the DSO term affects the filter with

the wrong sign. The conditional variances are shown in Figs. 10-c and 10-d.

These figires also represent the conditional variances resulting in Simula-

tion 5. It is interesting to note that both Filters (3 and 5) do not con- -

tain the KGC term and the conditional variances are very similar to the one

given by the EK Filter and quite different from those of Filters 1, 2 and 4

which include the KGC term. Fig. 10-e represents the observation residuals

of Simulation 3. This observation residual pattern which contains P large

spike (even larger than that of the UK Filter) is seen also in Simulation 5.

The smooth residual pattern (Fig. Il-a) of the Filters 1, 2 and 1 is primar- -:

ily attributed to the presence of the KGC term and its side effects.

Simulations G, 7 and 8 are conducted mainly to describ the char-

acteristics of the modified truncated v-.-cond order (MTSO) filter which is

designated as Filter 8. r5 r Simulations 6, 7 and 8, only tie X components

of the position and velocity a: -'mation errors, observation residual and the

conditional variances V11 and V 44 are shown in the corresponding figures.
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The other components exhibit similar characteristics and are no, shown in

this report to eliminate unnecessary space. The only difference between the

MGSO Filter and the MTSO FilLer Is thdt the KGC term enters with a plus sign

of one-half in the first Filter and with a minus sign of one-fourth in the e

second. As previously pointed out, the KGC term is negligible at the begi.n-

ning but grows rapidlj up to ten times the value of the combination of the

othn.r terms, hx11h and R , as nhown in expression (2.57). Following en-

counter, the value of the XGC term reduces in value. From the 3bove charac-

teristics of KGC terms, it is easy to conclude that the MT O Filter contains

a potential signularity. The optimal gain K given by Eq. (2.57) with a

minus sign of one-fourth of KGC term Instead of plus sign approache.s plus'

and minus infinity as the KGC term approaches the sum of tne other two terms,

h Ph and R from below and above. , ad'tion, when the optizal gain isx x

very large with a positive sign, the postarior conditional Vd lance becomes

negative. The phenomena is cl.±_-lv -ilected in Filters 6, 7 -nd 8, and is

shown in Figs. 13-a, 13-b, 1.4-1, , 15-a, and.J 5-b.

In general, fie MGSO r2 t>_r kveps tht ,'ondit*oval variances larger

than those of the EK i I- i-. The MT . 7:Iter, in contrast. has a Lerdeacy

to keep the conditional vP "'ance, I; . t. ,n rh(,* of th,- £Y Piltr. How-

ever, the variance b-- meaningd -; Ie "" t*-= drive. the variance

to a negative quantity in i Tr ,S

" N ~~-~--~- --- ~--~-
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4.4 -pp-cain of the* KG Filte to__ th yo ri

4.4te whpicatincus o the KGC term o -thesgae ayobsi O ithebsf

amng--S toemstw hceied in conancio w1hte.C em ic

The KGC filter is further tested through niinerous simulations. -The

Simulations- 9- through 14 'are conducted on a hypobolic orbit with -the- sun-

planet angle measurements. The simulations ate ded-itiated to determine- the

reffect s;-of s-tate noise covariance matrix Q ,initdial state-errors

§ 0/

servation nosecovariance matxri R . Sirulation 10 is the reference- casb

t xwidh -al ohr simulations- are-Oh 2 t a C cMiared; The input data are given- in [
rb 1-s- land 8.

Simulation 9 ispecifically designed to illustrate the effect of _

74 uspin -g two -dif ferent Q's in Eq. (2.55). s -stetu sadr~e ioin,
QT

of the state noise u which is used to compute -fetaetry~ QA Is

-the apiiri standard deviation. The square of ' QA is used in Eq. (2.-55-)

~or-the estimation procedure. It is common practice-to include a Q in Eq:.M

(2.5),aJ~houh teremay be no state noise u asaumed. This procedure is

followed to keep -the value of the con.Mitional variances above a cer4".:"n level

so that the filter can maintain a reasonahle gain K and, hence, 'will beI

sensitive tvo the observations. Usually the EK Mitex reduces thZodtoa

covariance very rapidly after a few observations cre made, and, hence, the

filter becomes saturated and Insensitive to the observaticns.

Figs. 16-a and 16-b show the position and velocity estimation



errors, respcctive~y, for Simulation 9. The conditional variances and ob-

'30rv.at Ioil residuail are almost identic.il 6. the ones givren in Figs. 17-c,
~rA

I17-d aite 17-e which are obtained b~y urning the same oQ and o The

observation re~sidual pattern should not Ibe ass'ume d to be zero except during

thle brief time interval in which the spike occurs. The non-zero value of

the residuals do not show uo on the scale usdto plot the results.

Since the sun-planet angle measurement is restricted to the ecliD-

-tic plane, the measurement does not include very much- information:on the Z

-coponntsof position and velocity. This -fact isP reflected' -in, the fgrs

related to the I comvonent§ --from zero6 to-ten-days-; Both the EK- filter~

anxd the KGC filter -eif orm. reasonably- wel4611 t eight days. Asa-matter

-of fact, the# are Almost identical. -The Ekfi- 1er - tarts to dri-ft away from

-the trkie trajectoryi af te~ eight days. -Around- twelve days, the EX filter be-I
- comes extremel-unstable, oscillates several times with sharp spikes during

-tishrpriod of -time and then diverges eventually. The oscillatoryr

-spikes near encounter are not -sh~wti in the -figures simply because only every

third data point is shown-in the figures. As seen in -Fig. 1 7-e, the esti-

mate With the EK filter is influenced by a spike in the observation residual-

-pattern-arourid encounter. The actual observ'ations which depend mainly on

the true states and the small ob~ervation noise contain equally good infor-

mations at any time. But the predicted observation depending on the current

estimate can be quite erroneous. The erroneous observation residuals around

encounter are incorporated with a large optimal gain, K ,during the same

period and the update of the apriori estimates is, consequently, too large,

_U causing the EK filter to diverge.

The KGC filter keeps the conditional variances large in the critical

/A -



;tvj

I period of time from eight to twelve days. As a result, the KGC term dominates

the other two terms, h PhT and R , and the values of the optimal gain, K ,
X X

remain small. Inough this effect, the-KGC term makes -he filter insensitive

to the observations which could be erroneous, in the region where the dynamic

-Inonlinearity is very severe.

Simulation 10 shows the effect of using -h'. m values- or -

_ o-- and GQA - It is noticeable that Simulation 9 ,ioich use- two different val- t
ues for- 6QT and OQA yields slightly sma. A estimation errors for both

the EK and KGC filters than those of the Simulation 10 -whch uses the same

value. Since the sun-planet angle measurement is restricted to-the elipti- .

plane, the EK filter experiences severe -nonl-inearity effects on the Z corn-

Ponents. The effect can be seen in the Z components of the conditional _

- - variances shown in Figs..!7-c and 17-d.

Simulation 11 shows the effect of the initial state errors.- The

-- errors are chosen ten times larger than those of Simulation 10. The-conver-
gence characteristics, except the Z components, appear to be well behaved

for both filters immediately after taking the observations. However, the

EK filter displays instability and divergence characterl.st~cs around en-

counter, although the KGC filter continues with an accurate estimate through-

Out this extremely nonlinear region.

Overall, the estimation error patterns shown in Figs. 18-b and 18-c

are very much the same as those of Simulations 9 and 10, except during the

first few days. The observation residual pattern is shown in Fig. 18-a.and

the conditional variances are almost identical to the one given in Figs. 17-c

and 17-d. Again, the residuals outside the spike zone do not show up because

of the relatively small size compared with the spike.

=I



Since the nominal trajectory changes very rapidly around encoanter

in the hypobolic orbit and near periapsis in the elliptic orbit, the dynamic

r'i nonlinearity appears to be veiT severe in these regions and, consequently-,

so is the observationnonlinearity. In order to minimize the effects of theI

nonlinearities, a variable integration step size and observation rate are

--- adopted in the Simulation 12. Initially, the integration step- size and the

observation intervals are set to 1/10 day, and then the actual integration

-step- size, -AT-. ,and observation interval, AT ,are determined- as -f 0l11ws:
1 0 -

AT'. T (1110) Integer V&luOe of (r/r),r>r
1 -0 0 0

-or_-

AT. AT. (1/10) /Integer Value-of (r /x) i' r

where- ;~ ro is -the initial distance be'tween the spacecraft and the target

IcntJupiter, and r is the current distance. As seen in Fig. 7, AT-.

-day near encounter -in the hypobolic or-bit.

Figs. 19-a and 19-b show the estimation-Orrors for the position

anid velocity-components. An interesting-fact-about the error pattern of

Simulat-ion 12 -is xhat the signs ac~e reversed when compared with those of

-- Simulation 10. Figs. 19-c and 19-d show the conditional variances And a

slightlydifferent pattern is seen near encou.nter when compared with those K
-in Figsi 17-mc find 17"d.

Simulation 13 is conducted with a ten-times larger initial condi-

tional variances of the velocity components than those of Simulation 10. Due

to the larger initial conditional variances, the KGC term starts influencingj

the KGC filter earlier -than it does in Simulation 10., Figs. 20-c, 20-d and
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20-e represent the conditional variances and observation residuals, respect-

ively. Estimation errors are shown in Figs. 20-a and 20-b.

of Simulation 14 shows the effect of a large observation noise stand-

ard deviation o in the KGC filter. A value ten times laiger than the

value of a - which was used in Simulation 10 was adopted as an observation

noise standard deviation in Simulation Ill.

SIt is found in the EK filtdr which does not include the KGC term

that hx h  dominates R in Eq. (1.35) during the early stage of estnm a-j on. -Later the values of R dominate. From the above observation, it is

undersiood -that the KGC term which is hegligible when compared- with e

-other two terms, h Ph and R in Eq. (0 057), _ cannot affect the pefformance

of the KGC filter very much. But in the region wherie the KGC term dominates
^ T'the other two terms and R is larger than h-Ph the effect of a large

R shows up. For example, consider the period from nine to thirteen days

in Figs. 21-b and 21-c. After encounter, the value of the KGC terma diminishe

due to the combined effect of small conditional variances and observation

second partials hx and thereafter the KGC term has virtually no influence

On the KGC filter. Therefore, the KGC filter performs like the EK file

afte thirteen days. Fo a small o fte efcr the KGC terK becomes

very significant and the KGC filter is very desirable whenever - smaller 9R

or equivalently acue.rate observation, is available.PThe corresponding conditional variances and observation residuals
are shown in Figs. 21-d, 21-e and 21-a, respectively.

4I 1o -1 Al-
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The KGC Filter is applied to the proble -oF determining an el!Ip-

tic orbit around Jupiter with sun-planet, star-planet and range-rate plus

sun-planet & +._Ie -measurements. Since the variation of the- Z components in

the .nominal trajectory shown in Fig. -6 is very small c6mpared with the X

and Y components, the initial state errors for the Z components of posi-

tion- and- velocity are chosen- as -one-_-enth -of-thse -of .X andY - one-fits:,

i-e., X and Ycomponents of"position-and velocity -estiMationz erfrors are-

Sinitially chosen-as i03 km and- 10 km/sec-, respectively,- id--Zc

-ponents-as 02 - n -nd- 107 km/sec ,-respectively.

-Figs. 22-a and- 22-_b show the estimation errors 'for Siti-i tion 15.

U nike .the-'hypobo1ic -orbit,- the EK Filter gradually drifts away After fiftegr

--ys during which time the dynamic nonlinearity affects grow large. 'The don--

ditional variances are-shown in Figs. 22-c and 22-d. Fig. 22-e shows the-

observation residual pattern which consists of every tenth-data-point -con_- -

nected- with straight lines. -Simulation 18 is desig-ned to .see the- perf6rmance

N_ of the KGC Fi2ter for- a, long- period of time. The period of estimati6n is-

extended to 62 days-which is more than two revolutions of the. elliptic or-bit

The same input data as that used in Simulation 15 are used for Simulation 18.

The estimation errors for the position and velocity are shown in Figs. 25-a

and 25-b. For the first 30 days, the estimation error patterns of Figs. 25-a

and 25-b match identically with the ones shown in Figs. 22-a and 22-b. An

interesting fact Is that both the EK Filter and the KGC Filter exhibit a peri.

iodicity in-the estimation errors. However, the errors for the EK-Fiiter

grow larger during the second revolution and reach an unacceptable value.
However, the KGC Filter realizes a very accurate estimate throughout the en-

tire period and, as a matter of fact, the estimation errors are considerably
__veth GCFltrelze. vr acraeesiat hruhotth n
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smaller during the sedond revolution than those during the first revolution.LI -Around the second periapsis, the EK Filter estimation errors exhibit spikes

-in the velocity estimation error components and the numerical value of the

position chages sign. The conditional variances are shown in Figs. 25-c and

From- the examination of Figs. 25-a, 25-b, 2b-c and 25-d, it -canb-

-seen that the KGC Filter is,.superior to the EK Fiter in the region where

-thebconditinal- variandes -f the -KGC Filter Are largerthan those of theEK

Filer Te mpovmen ahive i te KGCFilter is- strictly -dub- to the

effectof theKG te--in- t e otial gain K. Fig. 25-,e ShQWs thiGosefva-

tionz residual. It -shows-a couple of :spikes- -around- the sdcond4 periapsis.-

For- the-blown up scale, the residual pattern of e vry tenth data point for

the firSt 30 -days mat-ches witht the oie - lhno -in ig-. 224e-

Sliuiation :i6 is conducted: with sun-planet angle measurements T *fhe
estimation. er rs -shown in Figs. 23-b and-23-c reflect the -dhrcter istics

:of -the sun-planet -angle: measurement. Since the sun, Jupiter and the-space-

ciaki are :all almost on- the ecliptic plane the -information about the Z_
-omponents is -poo and the EK Filter determines a poor estimate of the Z

-Components of position and velocity. Figs. 23-d, 23-e and 23-a show the

conditional variances and the observation residual pattern , respectively-.

The residual pattern is obtained, by connecting every tenth data poiht with a

sttaight line.
The Simulation 17 is conducted with two kinds of ob...rvations, i.e.,

rn rate-plus suna-planet angle mneasurements.'Fg.2-an?4bswth

-Iestimation errors and--theconditional variances are given in rigs. 24-d and
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two obseriatdioi residuals-, one for the range-rate and the- other for the sun-

-planet angle measurement.- With the data of Simulations 16 and 17-, the filters

Were examined for 62 days. Th same characteristics discussed in Simulation

18 can be found. The conditional variances vary periodically and large spikes

can be found in t ie observation residual and velocity estimation errors for

the EK Filter. The EK Filter estimation errors are incomparable at the see- ,

-hd'-r Leoution. Actually, they diverge after the second periapsis. However,

the KGC Filter performs exceptionally well through o.ut the entire period and

-e- better at the second revolution.

IIM
Simulations-i through 8 are re-examined by using the variable inte-

- Vtibn ste size and observation rate discussed in Section 4.4. The- char -

"--tetistics discussed- in-the --Section 4.3 area unchanged.

-It is f6und that variable integration step size and rapid observati6n -

- ate: do- ot chanb the cha&ateristics of Simulations 15, 16 , 17 and 18 ex-
cept that 6vei all estimation errors Are smaller, than those of the constant -_

it 4io :step size and observation rate. However, the improvement is not

i a " i an -chifeiering the computer time. Usuly for this_=qase, the- EK :

- F-il'er: reduces the estimation- errors -mote significantly than the TGC FilterlI _ -.

oes; but the EK Filter solution will diverge stili.,

VI
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E,- CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

In the investigation described in the previous discussion, a conpar-

ative study has been made of nonlinear estimation algorithms and their appli-

cation to the orbit determination problem for interplanetary spacecraft. By

using the properties of a Martingale series and Loeve's smoothing properties,

a second order nonlinear estimation algorithm is derived. The algorithm is

shown to be of the Gaussian second-order class as distinguished fromn the

truncated second-order class. Both classes of second order filters retain a

second order term in the state dynamics, the observation state relation and

in the optimal weighting matrix (Kalman gain), respectively. The merits of

each of the algorithms as well as the influence of each second order term is

evaluated by a numerical simulation of the orbit determination for a Jupiter

fly-by and Jupiter, orbiter missions.

5.2 Conclusions

Based on the results of extensive nrmerical simulations on the

Jupiter fly-by and Jupiter orbiter missions, the following conclusions can be

drawn for the class of problems considered here:

1. The system dynamic influences the performance of the EK Filter

through

i) initial conditions t

ii) conditiona. covariance matrices

iii) predicted observations

143
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concluded that the indirect effects of the system dynamics are m-ore severe

than the direct effects, especially when the system dynamics are highly non-

~linear.
2. The effect of the dynamic second order (DSO) term cannot be

isolated. If the conditional var;.ances are large, which means that the ex-

V' tended Kalman Filter doe3 not perform adequately, the effect of DSO term is J

ve y severe and causes the second order filters (MGSO and MTSO) to C-,rge,

in a situation when the EK Filter performs reasonably well, in contrast, the

small conditional variances, which imply that the EK Filter works very well,

do not reveal any differences between the second order filters (MGSO and MTSO)

and the EK Filter. Is a matter of fact, there is no reason for using a sec--

ond order filter if the conditiona .ariances are small and tne EK Filter

performs adequately. By includi.ng the dynamic second order (DSO) term, ap-

proximately 30% more computer time is required than that required by the EK

Filter. Ftwthermore, any filter including the DSO term is very sensitive to I
the initial covarian,:e matrix, if a dynamic nonlinearity is significant at

the beginning. It is interesting to note that Athans et al. (27), based on

a different example problem, concluded that the DSO term is the major fac-

tDr in improving the performance of the MGSO Filter. Hence, the Lonciisions

reached in this investigation regarding the DSO term should be regarded as

problem dependent.

3. The observation nonlinearity depends on the type of observe.- I A

tions and the dynamic nonlinearity. The range and range-rate observation in

the J-upiter fly-by problem are regarded as relatively linear observations.

~., *
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Like the DSO ter'm, the effect of the observation second order (OSO) term can-

not be de ermined for all problems. The same conclusions as those reached

for the DSO term can be stated for the OSO term. But the effect of the OSO

term is not as severe as the effect of the DSO term for the MGSO Filter.

4. The Kalman Gain Compensated (KGC) Filter appears to give a

quite acceptable behavior based on th, following observations:

i) In the region where dynamic nonlinearity is not significant,

the KGC Fil -&--ts lte .he extended Kalman filter.

ii) In the region where dynamic nonlinearity is very severe and,

consequently, the observation residuals are large, the KGC

Filter down weights the large observation residuals.

iii) The effect of the KGC Filter becomes more significant when the

observation noise R is small and the state noise Q is large.

This fact implies that the KGC Filter is more desirable when I
the observations are measured accurately and when the dynamic

noise is large 6r equivalently when the dynamic process is

poorly modeed.

iv) The KGC Fiiter is vevy stable and insensitive to the dynamic

nonlinearity as compared with the EK Filter.

v) The KGC Filter maintains an accurate estimate for the highly

nonlinear type of observations while acting like the extended

Kalman Filter for the relatively linear type of observations. i

vi) In contrast to any other second oider filter, implementation

of the KGC Filter is as feasible for complex problems as the

extended Kalman Filter is.

5. If no state noise is assumed, the EK Filter works adequately

Al



-146

and the differences between the two fiter:> (EK and KGC) are negligible. The •

absence of state noise implies that the conditional variances cannot be too A

large.

7. L'or the Jupiter fly-by, the extended Kalman Filter determines

an adequate estimate up to a period of encounter minus three days. However,

the estimate diverges around encounter, when the dynamic state noise is in-

cluded while the KGC Filter yields accurate estimates.-

8. For the Jupiter orbiter, the estimate of the extended Kalman

Filter drifts away gradually from the true trajectory and diverges at the

second revolution, when the dynamic state noise is included while the KGC

Filter yields an accurate estimate.

5.3 Recommendations for Future Study

I The research reported here is an indication of a successful appli-

cation of an approximate nonlinear filter dnd indicates the possibility that

the Kalman Gain Compensated Filter can be applied to other problems. The

following studies are recommended:

1. Application of the KGC Filter to the orbit determination prob-

lems associated with re-entry, near-Earth and lunar satellites, Mariner and

Viking missions, should be carried out. In particular, applicavion of the

KGC Filter to the re-entry and ascent phases of Lhe shuttle navigation prob-

lem is recommended.

2. The applicability of the square root covariance and-the consider

filter versions of the Kalman Gain Compensated l'ilter should be developed.

3. An extended study of nonlinear estimation algorithms and their

applicability to the orbit determination problems should be made. The com-

parative study should be made in the frame-work of the applicability of the
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methods to anticipated orbit determination problems. In the study, particu-

lar attention ,should be given to those data types which undergo significant

geometrical changes during a mission. The objective of such a study would

be to define particular missions and data types for which nonlinear orbit

determination algorithms will yield a significant improvement over the es-

timate obtained with the extended Kalman Filter.

4. Further study of the effects of the dynamic second order (DSO)

term and the obervation second order (OSO) term should be made.

5. An-,extensive study of -the Gaussian second order filter- and the

truncated second order filter should be made in the direction 
of determining

the characteristics of the random forcing term in-the covariance equation.

->Q



APPENDIX AA

THE PARTIAL DERIVATIVES

The first order partial derivatives f and h and the secondX x
order partial derivatives f and h which appear in the nonlinear es-

:X XX

timation algorithm are defined in this appendix.

From Eq. (3.5), the (9x9) matrix f can be partitioned as follows:
.. - -

x A 21 A2 3  - K

where € is the 3x3 null matrix and I is the 3x3 identity. The symmetric

submatrices A21 and A23 are defined as follows:

F4F F 8  9

41 F42  F0 f47 18F4
A21 F , F5 2 , F5 3  A2 3  F 57 , F5 8 , F59

261 62 F [ 67  68 ' 69 1

where

af4  Fq21 [x 2 1
F I

F4 2  ry 1 !

'4 [-XZ1i + s- J
43 az " s

F -I-= F4
51 ax 4

5S2 [Y +--5 r3-2 'i-T .1
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rr3YZ 1

FF

9161- a 43-IiiBY 53
63z

2f 3Z2

F4

L X - 2

y p.-1

.349 77-,
'f 5  -

F= FA 57  ab 48
x

3y~2 by2

58 Db r
y

a1 3YZ 3Yz1

__D tt

67 r- 49

af
F6 FF68 9b59y

69 6~ PFIF ____ t3 z 3

where Z, V+V, z VX2 y+z and r, t
p p p
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The first order partial derivative matrix h~ is defined as folom~s:

H11 H12 H19

IiH H **H
21 22 29

kv, h

H31 H32 3 9

H H * H
41 42 49

where

H -(X -X)/p11 ax p s

H12  ay p s

H1  (Z -Z)/p

14 au -

H /p
Aq15 a/

H a o 0
16 aw/

H h /h

17 Db11

H18  ab 12 -

yI
19 13 -13

21 axp s p S

X---~- 
-- ~-
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3

22 p - p s )6/0/p A

a - - [(Z. Zs) - (zp -z)(p)]Ifl/0

2 3 a p s p

j 25 V 12

H26 aW h13

i 27 -abx 21

H =- .._.- h

H28  Tb 2$1 y
H - h
29 abz 2

31 T (Xs+ i c
38os 

a +-kX pp s

a4

H2  a = os ot Y + =-
C v 4aY 2, p-

D~a F os c z + z - (z ~ z 1 _
H 33 : Z [co si a ,--

a. : 0 If5 - 0 1{6 -
I34 : U 35 3V aW

H38 : -- a : Os Cc in'--
37 ab P* rr in

p P-
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H . .a.. - ..i

r I

eX Cos~ a rc.1____H41 x [ r r sin0

as + Y cos 1 1
H 42 ay rr rsin 

H [ Z cos 1  1
S-43 z r sin -

, H - - O , = = --

a-}1u 0 H 0 H 0

44 45 ab v 46 DDaB
= __= 0 H - 0 H --

47 4b 48 9b 49 abx y z

The second order partial derivat'ives f are defined as a (gx9x9) three-

dimensional array and each layer is defihed as a symmetric (9x9) macrix. The

three-dimensional array can br; pictured as shown in Fig. 26.

Each layer is further partitioned into (3x3) matrices and they are as follows:

13

i
F =) 4 i 4,5,6

F1 3  F33)

.tY I
wh r s a ( x ) ma ri w-,.

where 4) is a (33) matrix with identically zero elements. 'ba sula.xTtyices

F , F13 .and F33 are redefined as follows-
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41

F Fill Fi12 FFi13 i

F1 , F i2 Fi FF F. 2
11 a i12 i22 i23 13 F27 F28

Fi3F F F F F
Fi13 i23 i33 i37 i38 i39IA

F ri7 7  Fi7 8  F79

Fi  r" r F 4 ,5,6
33 i8 i88 i89

F F F
F 79  i89 i99 J I

where x x 2Xwh::e =[-15--+ 3 , + :[15 + 3 + l[ + [3

F[ 4 15 r[1~: _t 2; r -

X 2 yX2y Y

F T- 3-1

y p

,44
X2Z fZ XZF 3 -Z p[ ""[ 1 + [3  -++

417 "9 s -  r

z p P p

'422 54l X ~ -a 3 r ?-11 +
p 1'p

-2f x2z z
4,19 s~b r, s 3

zP
4Y XYZ x-r22 -YY = [ 5 "-+ 3 -'] + v"s(-5. -

2f4 xgZ, y Y Z

F 2a  : : 1[-15 --J + p [-1 f :.

" -1 15

42 yz 7
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4 
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I F57j F48i
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55 -b~ 27 Rz 3ls t 3 -:j

s Yt 7L

F 15_ -27 F +
589 3b ab sj rt~j5~+~
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F -F.
61j 43i

Fj = 12,3,7,8,962j 53

:1 F -F
67j 49j

F =F
68j 59j

92f6Z 2Z 2Z
6 uS[15 -P'-+:3 + ;639 6Zab s 5 + p

- -8! 2f6  Z2Z 2Z 2Z -

:6 2t + 3-r--F t

S[ - - 1is[-i5 4t + ps [.~ +i3 Z~
a ="S15 -- /+ 3 -S 5r7- + -3 *P

rt-r

The second order partial derivative hxx is a (4x9x9) three-dimensional

array shown in Fig.'27 and each layer is a (9x9) symetric matrix.

Each layer is partitioned into (3x3) matrices and they are as follows:

A A B A B-

HI H A A 1

AA B A B

[C 01 Fj

All submatrices with the exception of D are (3x3) symmetric matrices and

they are defined as follows:

-~ %~~ §= -~-- -. -~
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Figure 26. Three-Dimensional Array f__
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APPENDIX B

CONDITIONAL EXPECTATION AND SMOOTHING PROPERTY

ablefuntios dfind u toan quialece.The conditiobal probability of

an ven A givn a evnt 11 orrspods tothat of the frequencies of the

occurene o A i th reeattrials weeBocr.FioeyeetA h

ArnBelepaatetiooonnd~:~~

PB 'P BA =PAB (B-1)

defne th cndiioalprobability P(A/B) of A given B as the ratio

PA/B provided Bis a nonnull event. Iamoemathematica. orn the 1

funcion B on th -field A of events, whose values are P , AeA

is aled heconditional probability of A given B 3ince P orn A is

normed, nonnegative and a-additive, so is P onA and P satisfies the

following condition

P Q P > 0 P EA )' PA.
BB- B 1i Bi

Thus, the conditioning expressed by "given B" means that the initial proba- Ai
bility space (n,A,P) is replaced by the probability space (SI,APB The

expectation of a random variable X on this new probability space is called

the conditional expectation given B and Is denoted by

4A

-h-.( is :h.L1!i the complement of Bd Knowing ta B 0 on (AB', 2)

ant. ~la o tAAA)from Eq. B-1, EB2becomes
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E(X/B] XdP (B-3)z. E[/B] =P-B f

which is the definition of the conditional expectition of X given B . The

conditional expectation acquires its full me.ing when intevp)eted as values

of functions as follows: the number E[X/B] is no longer assigned to B but

to every point of B , and similarly for E[X/B so that we have a two-

valued function on Q with values E[X/B] for weB and E[XB ] for wcB

More generally, let (B.) be a countable partition of S and let 8 be the

minimum a-field over this partit'on. Let E be the family o ' all random var-

tables X whose expectation, E[X) , exists so that their indefinite integrals,

hence conditional expectations given any nonnull event, exist. Then the condi-

tional expectation of X given 6 is defined as the following elementary

functions (see page 64 of Loeve for the definition) up to atn equivalence

[X/Bj XdP)I Xe (B-4)

The above is the constructive definition and is different from (B-3) in the

sense that conditioning is given as a a-field, 3, instead of an event B ,

BcB . It can be easily seen further that the conditioning can be either as a1random variable which is -measurable function or as an output of the random

variable. If the partition {Bj) is not countable, the above constructive

definition is not applicable and rather powerful tool, namely, the Radon-

Nikodym theorem is employed and the descriptive definition is followed. !it

Ps be the restriction of P to B , defined by

P B PS, Be , (B-5)

then the conditional expectation E[XI] of X given 3 is any 8-measur-

abel function whose indefinite integral. with resDect to P8 is the restriction

=>1
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means precisely that, for every Xc): E[X/18] is defined byI

f [X/B]dPs XdP ,BE:B (B-6)
BB

k up to an equivalence. Loosely speaking, the operation E[X/B] is a 5-smooth-

ing and some of its important properties are quoted from Loeve without proof.

1. On every nonnull atom* Bcl B ~ B is constant and its value E[X/B]

is the average of -the values of X on B wit!, respect to P.

2. For every 8 independent of the a-field B of events induced by X

E(X/j3] EX a.s.

3. Conditional expectation operator E[s/3] and 5-measurable factors com-

mute, that is, if X is B-:aeasurable, then

E[XY/B) XE[Y/B] a.s.

Z: 4. If 8C3' then

E[E[X/l']/B] E[X/Bj E[E[X/B]/B'] a.s.

Iis interesting to note that fox, the "least fine" or "smallest" of all pos-

4sible a-fields SCA ,that is~, for 8 0 { ,SQ} E'LX/S 0 E[X] almost

surely, which means that unconditional expectation is a special case of con- 1

ditional expectation whose conditioning is merely the least fine a-field.

It is noted also that any detei'ministic quantity is a random variable which

is measurable over the least fina d-field.

*B is a nonnui1i atom of 8, if PB > 0, and B contains ne other sets belong-

ing to B than itself and the empty set.



'I'lie o-fiold A is~ induced by the atom set A anf A2 and a I !nor o-le3.d

rB containing A is induced by the atom set B,1 , B 2  B 3 , B 4  and B5

in Figure 28. From the figure, it is apparent that the finer the a-field B

is, the closer to X(w) the conditional expectation E(X/B] is. If a

a-field B is identical to the a-field induced by XMw , then ,,X/B1 is

identical to X(w) almost eurely. The variance E({X - ECX/B)12] is pro-

portional to the area between two random variables X(w) and EfLX/B] and

FE the conditional variance. E[{X - E(X/8]}21B] is constant oo every nonnull

atom set B of B and is the average of {X - E(X/B)12 on B

P4 Since the conditional expectation is defined in an equivalence

sense, the area under the conditional expectation E[X/B] for various a-fird

B must be identical to the area under the random variable X(w) ,which i, the

unconditional expectation E(X] . The conditional expectation E[X/B] is

the clos3st approximation of X(w within the class of B-measurable func-

tions in the sense that the variance is minimized.

~~MA
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Figure 28. Conditional Expectation E[X/B]
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Figure 29. A Sample Function of Random Walk.
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APPE2NDIX C

RANDOM WALK, BROWNIAN MOTION AND WHITE NOISE

Historically random-walk models serve as a first approximation to

the theory of diffusion and brownian motion, where small particles are ex-

posed to a tremendous number of molecular shocks. Each shock has a negli-

gible effect, but the superposition of many small actions produces an obser-

vable motion. Accordingly we want to present a random walk where the indi-

vidual steps are extremely small and occur in very rapid succession. In the 4

Slimit, the process. will appear as a continucus motion, i.e., the so-called

Brownian motion. Once we have grasped the concept of Brownian motion, the

white noise, which is fictitious and nonexsiting but enables human beings to

han le many mathematical problems, can be formally defined as a time deriva-

tive of Brownian motion. Here a brief summary of Papoulis' (36) discussion

on the subject is presented. F

The underlying experiment is the tossin of a fair coin an infinite

number of times, and each tossing occurs every T seconds. At each tossing

we take a step, to the right if he Is show, to the left if tails show. Our

position at t will be denoted by X(t) . Clearly, X(t) depends on the

experimental outcome, i.e. on the particular sequence of heads and tails. I
We have thus created a stochastic process known as random walk. Each sample

function of this process is of stair ase form as in Fig. 29 with discontin-

uities at the points t nT the steps occur instantly and their lenyth

equals S

We denote by x. a random variable equal to .5, if our step

is to the right or left, i.e. heads or tails. Thus

* 168
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P{X. S} P

2 i. : S1=q

t?.x = S

Note that the random variable x. is independent and has zero mean. The

position at t nT is clearly a random variable given by

4 X(nT) = x 1 x2 + a.- + Xn (C-i)

Suppose that after the first n tossings, k heads show, then the value of

X(nT) would be given by

X(nT) kS- (n- k)S (2k- n)S rS (C-2)

where I
r z 2k -n (C-3)

Since {X(nT) rS} is the event {!c - f heads in n tossing) the
2

probability is given by

= +i nn

P{X(nT) rS P{ heads + n (C-4)

If n is large and npq >> , Demoivre-Laplace theorem (38) is applicable

fcr values of k in the ln neighborhood cf its most likely value np ,

ip - he ap/ < k < np4+A7 (C-5)

and the approximate form of Eq. (C-4i) Is given by
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1 (k - np) 2  (0-6)
P{k heads} e -2npq

/f2 npq

Substitution of P = q = and k n + rinto Eq. (C-G) yiclds the22

, : following approximate xpression

P{X(nt) rS} - (C-7)
/n-, 2 2n

provided that r is of the order of n d
Furt.,ermore, it can be shown that*

P{X(nT) < rS} + erf L (C-8)

Finally, the mean and variance of the random variable X(nT) are easily ob-

tained and they are as follows:

E[x(nT)] = 0 (C-9)

14 E(x2 (nT)] = nS2  (C-10)

In the following discussion, Brownian motion is developed as a limiting form

-of the random walk. For the time

t nT (C-ia)

the mean and variance of X(t) becomt:

E[X(t)] = o(0-2)

E(X2 (t)] (C-13)

*Athanasias Papoulis, Proba.Hlrty, Random Variables. and Stochastic !'rocsaes,
4 McGraw-Hill, p. 68.

-L -_-
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Suppose now that we keep t constant but we make . and T tend to zero.

The variance of X(t) will remain finite and different from zero only if S

tends to zero as F. Otherwise, X(t) would be meaningless. Therefore,

assuming

S2  aT (C-14)

we define the process W(t) as a lim;t

W(t lim X(t) (C-15)
T-O

A family of continuous functions results for almost all outcomes, which is

V known as a Brownian motion or Wiener-Levy process. From Eqs. (C-9) and

(C-10), the mean and variance of this process are obtained and they areC
E [W(t)] 0 (C-16)

E[W 2 (t)] =at (C-17)-

The value of random process W(t) can bt deermined from iLq. (C-2) an-I given

f by

W r3 (C-I8)

In connection with Eqs. (C-1.i), (C-14) and (C-18), we ,.ave the following ex-

U- pression:

- /'S W - W

r/'VU A7'/7T -t IAi

and hence the probabili-y distribution N(W,T) in obtined as n Lqas t f

(W.() : W(r) < W',- a- (C-20)

Thc probahil!ty den-ity f(W.t) is re adi3y d'-ternined from Cq, (C-20) ar, d
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is given by

1 2
-, exp -- ) (C-24)

Thus, the random process W(t) is normal, with zero mean and variance at

The fact to be pointed out here is that in passing to a limit, all

formulas for the process W(t) remain meaningful and agree with physically

significant formulas of diffusion theory which can be derived under much

more general conditions by more streamlined methods (Einstein-diener theory

and Uhlenbeck-Orstein theory). For example, the density funccion is obtained

as a solution of the diffusion equation by Einstein (37). The same thing can

be done by using the autocorrelation of the solution of the Langevine equa-

ti, (36).

From Eq. (C-1), it is seen that for t1 > t , W(t1 ) - W(t ) is
1 2 1~I ~-)i

independent of W(t ) - W(O) W(t ) . Hence,

2 22E[{W(t1) - W(t2)}w(t 2)] =E[W(t1) - W(t2)IE[W(t 2 )] =0 (C-22)

Thus,

E(W(t (t2 )] - E[W 2 (t2 )] 0 (C-23)

Since the left hand side of Eq. (C-22) is an autocorrelation R(t4,t2) and

the right hand side is at2  from Eq. (C-17), the following is developed.

at2  for t > t

R(t -t2  (C-24)

at1  for t1 < t 2

An infinitesimal increment dO of Brownian motion W(t) is defined as
t

d W(t + e) -- W(t) (C-25)

The covariance of dat is determined from Eq. (C-24) as follows:

.__,t -
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E[d t,da t r[{W(t + e) - W(t)}{W(t e) - W(t)}] j

t'~ I

- R(t + e,t + e) - R(t + e,t) R(t t + e) . R(t,t)

aft + e) -at- at + at

E[d tdat ]  ae. (C-26) -=

If we formally define white gaussian process u(t) as a time derivative of

Brownian motion as follows:

u(t) dW(t) lim d t (C-27)dt e-*Oe

Then the autocorrelation of white gaussian process u(t) is of the form

+EU(t)U(') lim a as(t - T) (C-29) M= ee0 ; e

Therefore, the variance of white Gaussian process u(t) is infinite, which

is in agreement with the axiomatic definition.

V



APPENDIX D

MARTINGALIES

A sequence of r'andomi variables x 1 ,x2 ,.. is called a martingale

if

nn

with Probability 1.

A stochastic process {xt,tcT} is called a martingale if

E[IxtI] <

for ll tand if, whenever n > 1 andt 1 <*

E~x /x $I., (D-2)

tn+1 tI n n

with Probability 1.

<Theorem 1>

If are defined as

yl x, y 2  x2 -x. y 3  x3  X2  .. (D-3)

tChen, if the x process is a martingale,
n

E rIynI < ,E~yn+ 1 /yl,.b..y~l] 0 ,n > 1I (D-4)

with Probability I. The x Is are thus partial sums of the series y ',

174
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where the yn'S satisfy the condition (D-4). Conversely, the partial sums I

of any such series constitute a martingale.

[<Proof>
x n s  and Yn'S are linearly related and, hence, the mapping ma-

trix is of full rank. Therefore, the inverse of the mapping matrix exists,

which implies that the conditioning (yl'-..'yn] of (D-4) can be replaced

I-4

by the conditioning {x,-,x n }  Thus
1 n

Eyy /Y ... y I E[(X - x)/x.x n  (D-5)
n+ V 1 'yn ni-1 n 1..x

E yE xn - x (D-6)
Since th x roes n n+ follows. Le

Since the x process is a martingale, the right hand side of fLq. (D-6) be-

comes identically zero and the condition (D-4) immediately follows. Let

Xn Y and the yn's satisfy the condition (D-4), then -v!

E[ x / Ely1 t *. + yni/x,,...,xn (D-7)

E[x y + ... + ynI /y,.,y (D-)
SE[x n+1/x 1'.''n ]  =Y1 + "'" + Yn + E[Yn+l/Yl'''Yn] (D-9) i

E[xi /x 1 ... ,x n + so. + y x (D-10)in+ I nl +  ' n - n

Therefore, the x's constitute a martingale and the inverse of the theoremn

is proved.,

<Theorem 2> I

Let fl,C1 E, be any random variables withI1 F2
-~ ~ -~ ~ - -~7~ ~ ~ ~ ;- -=VA!
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E[I<iI]

IThen, if x n is defined by

n I

SIthe x n process is a martingale.

<Proof>

I By definition

I ~f/~,**4ni (D-12)

Taking the conditional expectation of Eq. (D-12) given the conditioningI {y.'~i ~we have in fact

E~x ni/F %[En/ 1... snI WE1**'nl I/C 1...,En (D13

I ~Since the a-field generated by {~,* ~ Icontains the a-field generated
I n+1

by ,1 the smoothing property 4 of Appendix B can be applied to

the right hand oide of Eq. (D-13). Therefore, 'Eq. (D-13) becomes

with Probability 1. Since x $*~x n are random variables on the sample

space of

E[x /X , i'n ~ t,., (D-15)
n+I1' n'x11 nn

with Probability 1. Taking the conditional expectation of both sides of Eq.

(D-15) given tx 9**X) and using the smoothing Property 4 of Appendix B,

the martingale property is obtained.
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E(~x /x "XIt }xj**,x E[x /x1,.x] (D-16)

E~x l/x 1 ... xn] X n (D-17) -] Therefore, Theorem 2 is proved.



AP P"NUTX r

STOCHASTIC FUNDAMENTAL EMMAS AND OPT LMALITY CONDITION

<Lemma I>

If X is a random variable, and if

E[XY) 0 (F-I) 4

Ifor every deterministic Y (or every least fine a-field measurable random

variable) then,

E[X] 0 a.s. (F-2)_

<Proof>

EIXY] 0

E[X]Y 0 I~s
since Y 01

E[X] 0 a.s.

<Lemma 2>

if X is a random variable, and if

E[XY1 0(F-3)

for every w-function Y measurable with resepct to the a-field A of the

measurable w set ,then

E[X/AJ 0 as F4

j <Proof>

For the convenience of notation, denotes the conditional expec- f

tation E[X/A]17
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APPENDIX E

TRACE OF MATRIX

-1-7
Let A be an (nxn) square matrix and a i represent the element

th thOr I row and j column, then the trace of A denoted by tr(A) ,is Mj th su of he iagnal lemntsof A, aia smilril of , ~e.
TTth u ftre diago a met ofA 1 ** a ial aof A(ie

nn

<Theorem 3>

Let A be any (nixm) matrix and a.. represent the element of
.th .th T T.1 row anda j column, then AA and A A are (nxn) and (mxm) saiare4 matrices respectively, and their trace is uniquely determined by the sum of

square of elements, a?. ia.e.,

n m]tr(AA T trAA) (E2

If A is defined to be

A V V (E-3)I where V is an (nxm) nla-rix with elements v.. and V is an approxima-
1) vi

tion of V , with elements Q., iLhen A represents the a .proximation error

with elemeints (v.. - .)and, hence, tr (AA) is the sum of the square I:
errors, (v. - v )2 Therefore, tr(AA) would be a sensible criteria to

be minimized a~nd the solution V is the least square error solution. If V

then the so-lution V is the minimum variance estimate. Note that V is not

necessarily a vector.0

1 78
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E[XY1 E[(X t X )Y] (F-5)

~ I Applying the smoothing property 4, Eq. (F-5) becomes

E[XYI E[E{(X - X)YAI] + E[RY/A] a.s. (F-6:

IE[XY] EfiY] 0 a.s. (F-7)

Since both Xand Y are A measurable random variables and Y is arbi-

_4trary, it is possible to choose Y Xthen Eq. (F-7) becomes

EEXY] E(XY] E[X2] =0 a.s. 0F-8)

The above is true only for 02 o Therefore,

=E[X/A1 0 a.s.

<Lemma 3>

If X(w,t) is a stochastic process defined on the set [t 1 , 2

Itc[tt ,and if 
t

V 2 t-

I E[X(oi,t)Y(w,t)]dt 0 (F-9)
t

for every random process Y(w,t) measurable wiith respect to a a-field A(t)

tert 1 't21 then

Efx(w,t)/A(t)] 0 a.s. (-0

I for every t e~ V ~ 1 t2]

<Proof>

t E(XYldt 0
fti
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t

t 2 E( {-4t1] t0( 
- 1

ftE[E{X/A(t)1 Y~dt 0 (F-12)I

Suppose that E[(%Cw,t)/A(t)] 0 .Since Y is arbitrary A(t) measur-

able ft..- ion,~ we can choose Y such that

Y(w,t) E(wi,t)/A(t)] (F-1.3)

Therefore, Eq. (F-12) becomnes ~as Fil

The above is positive unless E(X(W,t)/A(t)] 0 o n tt V1 t23

J Therefore,

E[X(w,t)/A(t)] 0 a.s. te[t1, 2 Ir1

Let's consider the follcwing risk function

Rr(X )( gT E(RrE(g))( g) I E[X g) (X- g)) F-6

where X is an nxl vector. If we want to minimize the risk (F-16) with

any 8-measurable function g ,then the solution is the minimum variance

estimate. In order to minimize AR we introduce a variation 6g on -g ,i.e.

g g + 6g (F-17)

Then the risk (F-16) becomes

-Expanding Ea. (F-18) about gthe following first variation is obtained.

-N1
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I2
6R(g) = E[(X - gjT6g] + E[6gT(X - )] (F-19)

For the minimum of R , the first variation SR must be zero and, hence, the :

following must be satisfied

-T

E[(X - Sg1 0 (F-9O)

Since a variation Sg is an arbitrary B-measurable function, the stochastic

fundamental lemma 2 can be applied and the optimality condition therefore is

obtained as follows:

E[(X - ^)/B]- 0 a.s. (F-21)

The solution is the minimum variance estimate and is given as the conli-

tional expectation of X given 8 .

If we want to minimize the risk (F-16) with a linear function 6

Y which is an (mxl) random variable observed, i.i.

AA g =KY (F-23) -

instead of any S-measurable function, then the solution g is the linear

minimum variance estimate. This time we have to determine an (nxm) matrix

within a class of B-measurable functions such that the risk (F-16) is

minimized. Introducing a variation SK on K , the risk (F-16) becomes AM

R(K + 6K) = trbE[{X - (K + 6K)Y} TX (R + SKMYI] (F-24)

Expanding Eq. (F-24) about K , the first variation follows, i.e.

6R(K) trE(( - )Y6]+rrK(X-1) 0 (F-25)

-Since 6K is an arbitrary 8-measurable function, the stochastic fundamental

Lemma 2 is applied and the optimality condition is obtained.

a ' l ' ...- :
' - ' , - : ,, , . -
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TEI?(X R Y)Y /1 0 a. S. (r-26)T ]
C(XY 1/,I3YY/8 a.s. (F-27)

K E(XY /B1{E(YY /I} a.s. (F-28)

I Therefore, the linear minimum var'iance estimate is given by

T
g E(XY /B]{E[YYT/p])flY (F-29)

For the scalar random variables X and Y , the lin-a.r minimum, variance es-

timate is cbtained from Eq. (F-29) as follows:

I (F-30)

If we choose K with a deterministic number whichn is measurable over theI least fine ar-field, the conditioning becomes unconditional and the linear

minimum variance estimate (F-30) becomes

EjYI $Y
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