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ABSTRACT 

An analytical investigation and a numerical procedure are presented 
for calculating the fully viscous shock-layer flow near the sharp leading 
edge of both two-dimensional and axisymmetric slender bodies under 
hypersonic low-density flow conditions.   The calculation method is based 
on numerical integration of the governing continuum fluid mechanical 
equations of motion using an implicit finite-difference technique in con- 
junction with wall slip boundary conditions; the shock structure is deter- 
mined as part of the resulting solution.   The mathematical model used 
in the present investigation represents a considerable improvement over 
previously published continuum studies in that a more complete and 
accurate set of governing equations and boundary conditions is employed. 
The results of the numerical calculations have been compared with pre- 
vious flat-plate test results taken in the von Kärmän Facility Low Density 
Hypersonic Wind Tunnel (L) by Becker and Boylanj in general, good to 
excellent agreement between the present theory and experiment is 
revealed. 

in 
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NOMENCLATURE 

An, BJJ, Cn, Dn Coefficients in finite-difference equations,  Eq. (39) 

a Local speed of sound 

C Chapman-Rubesen constant, (juw Tj/Gu^ T   ) 

Cf Skin-friction coefficient, TW/{1/2 p^U,,, 

CH Stanton Number, q/pJJ» cp (T0 - TJ 

En, Fn Coefficients in inversion formulas, Eq.  (44) 

h Static enthalpy 

k" Thermal conductivity 

L Characteristic length,  1 in. in all calculations 

& Molecular mean free path 

M,,, Mach number,  Vj^/yET^ 

N Total number of grid points 

Pr Prandfl. number,  cpju/k 

p Static pressure 

p0 Pitot pressure 

q Heat flux 

R Gas constant 

Re Reynolds number PgJJJ-iiu-a, 

Rex Reynolds number P^U^X/M,» 

r Radius in cylindrical coordinates 

rQ Local radius of cone 

T Static temperature 

TQ Stagnation temperature 

U,,, Free-stream velocity 

u x-component of velocity 

Vll 



AEDC-TR-73-102 

Vx „, Hypersonic interaction parameter, M,,, >/C/ VRe^ 

v y-component of velocity 

w General dependent variable 

x Coordinate along the body 

y Coordinate normal to the body 

a Thermal accommodation coefficient 

ai,(X2,0!%,c(/± Coefficients in "standard" parabolic differential 
equation 

7 Ratio of specific heats 

n Transformed normal coordinate, Eq.  (18) 

6 Angle of attack 

0C Cone half angle 

ju Dynamic viscosity 

A«£3 Bulk viscosity 

? Transformed independent variable 

7T Pi, 3.14159 

p Density 

a Accommodation coefficient for momentum 

X Hypersonic parameter, M,,, \Zc/>/Rex 

(—) Denotes dimensional quantities 

(   >_, Denotes free-stream conditions 

vui 
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SECTION 1 
INTRODUCTION 

1.1   BACKGROUND 

Rarefied hypersonic flow over slender bodies having sharp leading 
edges has been a problem of considerable interest for a number of 
years.    A great deal of both experimental and theoretical work has been 
done on flows of this typej in particular, the hypersonic flow over a flat 
plate has received much attention.   From these studies a fairly definite 
qualitative description of the flow field has emerged.    A schematic 
showing the essential features of hypersonic flow over a flat plate is 
presented in Fig.   1.    It is well known that the viscous retardation of the 
flow near the plate surface deflects the outer streamlines and generates 
a shock wave.    The so-called merged layer begins where the molecular 
mean free path is small enough compared to the thickness of the disturbed 
layer that the equations of continuum fluid mechanics are applicable. 
Upstream of the merged layer, near the leading edge, a noncontinuum 
approach is required.   In the merged layer, the shocklike structure is 
still diffuse and cannot be treated separately from the viscous region. 
At the surface of the plate there is relative slip motion between the plate 
and the fluid and a temperature jump across this interface.   As the flow 
proceeds downstream, the compression region merges into a Rankine- 
Hugoniot shock, and a distinct inviscid region develops between the shock 
wave and the viscous boundary layer.    This region is known as the strong 
interaction regime, where the classical boundary-layer equations are 
applicable,  but the development of the viscous flow region and the invis- 
cid flow are still strongly interdependent.    Further downstream the self- 
induced shock wave weakens and the inviscid flow is essentially a per- 
turbation of the undisturbed flow conditions.   In this weak interaction 
region classical Prandti boundary-layer theory,  coupled to the inviscid 
flow by the displacement effect,  can be applied. 

The present study is concerned with hypersonic flow in the merged 
layer regime, where a continuum analysis is applicable but the Prandti 
boundary-layer equations are inadequate to properly describe the flow. 
In this report a calculation procedure for two-dimensional hypersonic 
flow over flat plates and wedges and axisymmetric flow past circular 
cones is presented. 
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Moo » 1 

Noncontinuum 
-*■    Regime 

Merged Layer Regime 

Shock Wave 

Invlscld  Flc 

Strong  Interaction 
Reg ine 

Fig. 1   Viscous Hypersonic Flow Field for Flat Plate 

1.2   PREVIOUS ANALYTICAL STUDIES 

One of the first efforts to analyze the merged layer over a flat 
plate was carried out by Pan and Probstein (Ref.  1).    The mathe- 
matical model employed the usual compressible boundary-layer equa- 
tions augmented by the inviscid y-momentum equation to describe the 
transverse pressure variations.    These equations were reduced to 
ordinary differential equations by a local similarity approximation. 
Velocity slip and temperature jump boundary conditions were applied 
at the plate surface.   Taking into account shock thickness and curvature, 
modified Rankine-Hugoniot conditions were derived for the tangential 
component of velocity and temperature behind the shock.    These condi- 
tions were used as the outer boundary conditions for the merged layer. 

Shorenstein and Probstein (Ref.  2), following the work of Oguchi 
(Ref.  3), extended the analysis of Pan and Probstein to take into 
account the departure of normal velocity component and density from the 
Rankine-Hugoniot values.   Shorenstein and Probstein used the same set 
of simplified equations as Pan and Probstein to describe the flow in the 
merged layer.    The results of both of these studies showed good quali- 
tative agreement between the data compared.    The quantitative agree- 
ment generally improved as the effects of shock curvature and wall slip 
were included in the calculations. 

Chow (Ref. 4) divided the merged layer into two subregions, a 
shock wavelike region and a boundary-layerlike region, requiring that 
the velocity and the velocity gradient be continuous along their common 
boundary.   An integral analysis was applied to the merged layer, assum- 
ing a cubic velocity profile with slip in the boundary-layer region.    The 
Crocco relationship was used to express temperature in terms of 
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velocity and thereby eliminate the energy equation.   Comparison of the 
results of the calculations with experimental data showed reasonably 
good agreement. 

In a series of reports and publications (Refs.  5,  6, and 7) Rubin 
and his colleages have documented a calculation method that is very 
similar to that of the present study and indeed have provided the incentive 
for this work.   In the initial publication in the open literature, Rudman 
and Rubin (Ref.  6) reduced the governing conservation equations to a 
form applicable to the entire disturbed flow region for a two-dimensional 
flat plate.   The equations used were essentially two-dimensional 
boundary-layer equations ignoring the longitudinal pressure gradient 
9p/8x but augmented by the lateral momentum equation to account for the 
transverse pressure gradient.   These equations were integrated step by 
step, using an explicit finite-difference technique through the entire dis- 
turbed layer including the shocklike structure.   The results of these 
calculations agree fairly well with experimental pressure and heat- 
transfer data although the profiles exhibited an unusual behavior in the 
shock wave region as the strong interaction region was approached. 
This was initially thought by Rudman and Rubin to be a weak compres- 
sion wave behind the shock but was later found to be a result of an in- 
adequate description of the shock structure.   In a succeeding publication, 
the theory was extended to axisymmetric cones and simple three- 
dimensional flows (Ref. 7). 

Cheng et al.  (Ref.  8) developed a calculation procedure very simi- 
lar to that of Rudman and Rubin for application to the merged layer for a 
flat plate.   The equation set used was somewhat different from that of 
Ref. 5, however; in particular, the longitudinal pressure gradient term 
was included in the x-momentum equation.   Inclusion of this term can 
produce a singularity in the equations at the sonic point u = a.    This 
singularity is discussed in some detail by Cheng et al. and by Token 
(Ref.  9), who used a similar equation set to calculate viscous hyper- 
sonic flow in slender axisymmetric nozzles.    The profiles obtained by 
Cheng et al., like those of Rudman and Rubin, exhibited a kink in the 
outer portion as the shock structure became thin.   It was reported that 
this kink disappeared as the grid and step sizes of the calculation pro- 
cedure were reduced. 

Recently Kot and Turcotte (Ref.   10) presented an interesting study 
on flow over a flat plate in which the hypersonic free stream is modeled 
by a zero-temperature molecular beam.    By collision with continuum 
molecules, these beam molecules are themselves converted to continuum 
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molecules.   The beam molecules are assumed to have a delta-function 
velocity distribution and the continuum molecules a near-Maxwellian 
distribution.   Kot and Turcotte developed partial differential equations 
describing the interaction of the beam molecules and the continuum 
fluid and integrated these equations using a finite-difference scheme. 
The results of their calculations, however, appear to be very similar 
to pure continuum approaches such as those used in this study. 

SECTION II 
MATHEMATICAL MODEL 

2.1   GOVERNING EQUATIONS 

The mathematical formulation will first be presented for two- 
dimensional hypersonic flow over flat plates.    The geometry and 
coordinate system under consideration for this case are shown in 
Fig.  2. 

U 

v 

a.  Zero Angle of Attack 

U 

b. Nonzero Angle of Attack 
Fig. 2  Geometry and Coordinates for Two-Dimensional Flow 
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The equations describing such a flow field are the steady, two-dimensional 
compressible conservation equations for mass, momentum,  and energy as 
given in Ref.  11.    Since a forward-marching method of solution,  such as 
is used for laminar boundary layers, was planned, the equations were 
parabolicized by deleting second-derivative terms in the streamwise (x) 
direction.    From previous analyses (Refs.   5 and 8),  it is well known that 

for thin, viscous shock layers, terms of the form —=- (k ^r-) are negligible, 

compared to other terms of the equations.   It should be pointed out that 
under the thin shock-layer assumption there are in the conservation equa- 
tions additional terms which are of the same order as these terms and 
which could be justifiably dropped on an order-of-magnitude basis (Ref. 5). 
However,  since the additional terms could be handled by the technique 
used to solve the equations, it was considered worth the slight extra pro- 
gramming effort and machine time required to retain them.    With the terms 

■jpr (jü TT— J and— (k ä~=~)   deleted, the governing equations are as follows: 

Continuity Equation: 

SI dy      ~ (1) 

x-Momentum Equation: 

— da       —du dp       ä  [-/du      (?r\l        d [?_      2_\<^1 

(2) 

y-Momentum Equation: 

__   d V _. 
Pa -zz +   P 

Ox 

. (JT dp       d    U _ d~       1-di\       d I- dü\       d L (da      M"] 
dl = "dl*dl Ydl~^d~i)' d!\*dl)+ dJ£»\^ + dl)\ (3) 



AEDC-TR-73-102 

Energy Equation: 

 5h       dh      _dP      _<9p       d (rdT\ 
y    dx       r    By dx dy       dy \ h) 

4ii)\2|f+(g 

The fluid under consideration is assumed to be a perfect gas with 
the following constant specific heats: 

P = pffT 
(5) 

dh = cp dT (6) 

The dynamic viscosity, ju, and the bulk viscosity, jug, are both 
assumed to be functions only of the static temperature, T. The mathe- 
matical model is completed by specifying boundary and initial conditions 
for the dependent variables. At the wall, standard slip and temperature 
jump conditions (Ref. 12) applicable to low-density hypersonic flows are 
employed along with a condition of zero normal velocity at the plate sur- 
face. 

nay» . iz£(r£)   +U^~) <7) 

y=0 r y=0 

™-^MS +T»w (8) 
y=0 

v(x,0)  = 0 (9) 

In the above equations, a and a are the accommodations coefficients for 
momentum and energy, respectively, and SL is the molecular mean free 
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path.    The accommodation coefficients are assumed to be unity corre- 
sponding to diffusely reflected molecules with perfect thermal accommo- 
dation.   The thermal creep term of Eq. (7) is frequently neglected in 
low-density hypersonic flow studies. 

Outside the shock layer, the flow variables assume their free- 
stream values 

ü-lL    ,   v-0,   T-.!^   ,   p^px (10) 

For the case of a plate at angle of attack, the velocity components out- 
side the shock layer become 

u-»U    cos 6       and       "v-^-U^sinö 

where 0 is the angle between the plate surface and the free stream as 
shown in Fig.  2. 

The equations are now put in dimensionless form by the introduction 
of the following dimensionless variables: 

u v _, T p 
u   = ^    ,     v =   =-      ,       1==-     ,p=-i- 

U U T Poo SO 00 oo w 

x 7 ü fin 
L L ft» ft« (ID 

The dimensionless equations and boundary conditions that result are as 
follows: 

Continuity Equation: 

dpu dp\ - 
ST  + ar  = ° (12) 

x-Momentum Equation: 

du du 1      /  dl rr. dp\ 1    r  d2u       a d2v du dT du 

dfidröv 2 ^ dT <3v       j>/      3v\| 
dT dy <?x 3 dT dx dy  +  dx  rB dy/\ 

(13) 
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y-Momentum Equation: 

du du 1     / dT       „dpN 1   fa    d2v      u d2u 4 du.  dT <9v 

2d^ÖT5n ty inch d_ (     du\ d_(    dv\| 
3 dT(3y dx  +   dT dx dy +  dy V0**/   +  <?y rB(9y/J 

(14) 

Eneigy Equation: 

pud7 + 

y(y- oo 

R e 

y{y- »«£ 

r*/öa\a 4/avV      /M2       /W        Jvi»        4 du dvl 
"[jW     +   3"W     +W    +W    +2^57-I?I5yj 

Re ^P+2^^+(^)j (15) 

In these equations, the pressure has been eliminated in terms of density 
and temperature by using the equation of state. 

The dimensionless boundary conditions are 
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where 

 fn    ft 
L Re      V 2   „ ,qT PVT (17) 

Outside the shock layer the dependent variables u, T, and p all go to 
unity and v vanishes for zero angle of attack. If the plate is inclined 
to the free stream at angle 6, then outside the shock layer 

P ■» 1 ,    T - l 

u  -»   cos 6     ,     v -» —sin 6 

It should be noted that the explicit Reynolds number dependence 
can be removed from the equations by defining new dimensionless in- 
dependent variables 

x*   =   xRe 

v*   =   yRe 

The equations and boundary conditions in x* and y# variables are the 
same as those in Eqs.  (12) through (17) with Re set equal to one.   Thus 
the effect of varying Reynolds number on the solution is simply to 
change the length scale. 

2.2  TRANSFORMATION OF EQUATIONS 

In order to approximate the governing partial differential equations 
accurately with finite-difference equations, it is necessary that the 
grid point spacing be very small in the compressive shocklike region 
where abrupt changes occur.   It is desirable, therefore, to transform 
to a new set of independent variables which will expand the compres- 
sive region and make the equations more amenable to a finite-difference 
solution.   Since the density is at a maximum in the shocklike region, the 
Howarth transformation 

f " X       ' = fpiy (18) 
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produces the desired deformation.   Under this transformation the 
governing equations- take the following forms: 

Continuity Equation: 

dpu       dri don dp\       rt 
d? + äitf + ptf = ° (19) 

du 9   du ] •• v 3— =  — H   dx dr, vM2 

x-Momentum Equation: 

/  dT       Tdo\       if / 2<52U dp dA 

('dT^Tdf) +  R^ V + P^*7 

(\       PB\  d2v 2^£l5TdiJ d£  dT   dv 
^V +   /Jdxdy   +  P    dTdri  dr?  +   P dT di?   dx 

/^B       A    d£ dv dTJ 
\tl    ~ 3/P dT <?JI dxj 

(20) 

y-Momentum Equation: 

dx drl ym2 

/2<?T        _   dT\        1   r /4       ^B\/2d2v <?pdv\ 

/l     ^B\_dfu_       A       P&K    2ty§J 
*\3~  pjdxdy  + ^3 +   p )P    dTdr, 

/PB     A    djt_ dTdu d£ dT dul 
\ \L ~ yP dT d?i dx   + pdT dx djjl 

Tdv 
*> (21) 

Energy. Equation: 

y(y - DM 

(^^'-^♦^--Ks 
(22) 

10 



AEDC-TR-73-102 

where 

d 9 + in. A 
d£      dx d-q 

d2 

dxdy 
d2             dr,  d2 

" eafa, + pdxdrj2 
d2r,    B 
dxdy  drj 

(23) 

(24) 

Equations (19) through (22) are the equations that were programmed for 
solution.   It is evident that the Howarth transformation substantially 
complicates the equations algebraically.   In particular, the derivative 

—  does not cancel out as in the boundary-layer case; hence this term 

must be evaluated in the course of the solution. 

2.3  CONICAL FLOW 

The governing equations for axially symmetric flow about a sharp 
conical body have also been formulated for solution on a digital com- 
puter.    The geometry and nomenclature for flow about a sharp cone are 
shown in Fig.  3. 

U   cos 0 

r - x Bin 9    + y cos 9 c c 

Fig. 3  Geometry and Coordinate System for Axisymmetric Flow 

The continuity equation for axially symmetric flow in the notation shown 
above is 

-r-(pur)   +  ■r-(pvr)   =  0 
ox oy 

(25) 

11 
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After transforming to (S,rj) variables the continuity equation is 

dpu      dr, dp« dp* (si* 0C 
cosgc \       n 

This equation differs from the continuity equation for two-dimensional 
flow, Eq. (19), only by the final term.   In like manner the x-momentum 
equation, (20), the y-momentum equation, (21),  and the energy equa- 
tion, (22), for two-dimensional flow can be adapted to the flow about a 
cone by the addition of the following terms to the right-hand side of 
those equations:   To the x-momentum equation, Eq. (20), add 

/(lB       2\      sin(9ccosÖc 2^cos^c"| /fiB       j\ 

-t~?>—; ;—Jv + (T + Vcosöc/i 

To the y-momentum equation, Eq. (21), add 

1   iftB    A  •  *     du     ftB    A       a     dv 

To the Energy equation, Eq.  (22), add 

/sinöc   dT       cos(9c      3T\ /.lnöe cos 0c   \ 

. y<y-»«i r/2fB_i\/!^u    cosöc Yau    _<A   (29) 

5v, 
dxl 

Re r\\   p        3/\    r r /\dx        r u., 

/MB        4\/sinöc coaöc   fl 
+ ly+ 3Ä-7-u + -T-Vj 

12 
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g 
In the above expressions, 7— represents the differential operation, 

Eq.  (23). 

Equations (19) through (22) and corresponding equations (including 
the conical flow terms) were programmed for numerical solution on a 
digital computer.   The solution technique used is discussed in detail in 
the following section. 

SECTION III 
SOLUTION PROCEDURE 

3.1   FINITE-DIFFERENCE EQUATIONS 

Following ELottner (Ref.   13) and Davis (Ref.   14), one can write 
Eqs.  (20) through (22), the momentum equations and the energy equa- 
tion, in standard form, which is convenient for the numerical solution 
technique. 

J7+ aify * a2w + «3 + aid£= ° (30) 

The coefficients a\, «2» a3» anc* #4 are, in general, functions of the 
dependent variables of the problem and are therefore unknown.    These 
coefficients must be determined by an iterative procedure and will, 
for the moment, be assumed to be known functions of the independent 
variables,  n.    Put in this form, the x-momentum equation, Eq.  (20), 
becomes 

<92u du du      „ 
+  a.,1 -T- + a„oU  +  a..«   + a. -^x =  U —2   ^   -nia,   -"a2-   ^   «u3   -  «U4 d{ "   » ^ 

where 

I dp        I dg_  dT Re u djl        Re v 
ul       p 3TJ      p. dT dr) pp.   d* p. 

lu2 

au3 

0 

-   Re §£i    j_ (i  ü^\iii   J_ ^L ^1 ^1   _L /!üü   ^w ii $1 
p2uyM2 ^x p2   V3      ^ /^xdy      PP dT  ^  ^x  +  PP \p        3/dT Ö77 dx 

_ " Re 

PP (32) 

13 
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The y-momentum equation becomes 

ft>v 

ft,* 

ft- 
av3   +   avl »af (33) 

where 

vl      p ft?      p -IT ft,       ,tj8   V + p fti/ 

j_ 3<ftn
//x)" 2 «^  <rr ft     _3_ j_ <ty_ dr du 

Pfi        /3 ilT  i\r)  ft      ßu PI* '"' ft ft? 

u     3  He 
°v4  = "  P7    0U 

(34) 

^  =  4  +  %„>) 

The energy equation becomes 

ft?2 
ri ft, f  a-io'l i   Oi T   +   a- 

ftr 
'ft? 

- o 
(35) 

where 

2 ft)         l  <jjl_ dT v HePr         Li Hi- Pr ft/ 
' '        p drj       (i  il'l' d»7 yp               ppy     <K 

(y-  DK-Pr/du (h\ 

pfiy         \<9v '   Pft,/ T2 

'T3 

(y- DPrM; 

P' 

ßp(du\2      ßfi   */dA2      /ft\2 

H-V) ~ 4     ft.   ftl 
3 fJ <9x ft/J 

IM 
U f ■ P r 

(3G) 

14 
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Equation (30) can be approximated by a finite-difference equation at the 
general point of the flow field m + 1, n, using equally spaced central 
differences for the rj derivatives and a two-point backward difference 
for the | derivative.   This is illustrated schematically in Fig. 4. 

>          n - N 

I  n -  M -  1 

U-&?-: 
JATJ 

► 

I  n - 1 

>—— n - 1 

H   - -1     i i           m - 1-  1 
1  n - 0 

Fig. 4  Finite-Difference Grid 

Thus, let 

fdv\ Wm+l,n "m.n n( \t\ 

W-i.. = 5? + 0(^ 

(dv\ _    Wm+l.n+l   ~    Wm+l,n-I QMn2) 

<vm+i.„
c        *% 

(; V/B+i.„ 

—   2\v    , .        +   w. 

Ar,2 
-   0{Ar,2) 

(37) 

Substituting into Eq.  (30), a finite-difference equation is obtained, as 
follows: 
Wm+l,n+l    ~    2wm+l.n   +    Wm+l,n-l m+l.n Wm+l.n+l   ~    Wm+I,n-1 

,\r.2 Ar? 
2AT? 

+   „m+l-nw ,.   „m+l.n    .    n">+l.n    *m+1-n     __ *'n-n    =   Q +   a2 W
m+l,n   +   a3 +   a4 Ä? 
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The coefficients a.      '    are the values of a at m + 1, n and are assumed 
l 

to be known.   In addition, the values wm n at the proceeding station are 
assumed known.   This equation for the three unknowns wm+i n+1' 
wm+l n* an<^ wm+l n-1 can ^e wr^en in the form 

A„ w_ ! + B„w„ + C„w„,, = D„ n     n—1 n   n n   n+1 n (38) 

where 

A        (*L     *±*\ 
■  vv~ 2Av 

Bn =   [- Q£ + a"Af + an\ '     V A,»       2 v 
c - /M + 

a^i\ 
2  <, n  £ N - 1 ,     t 

o?Af\ (39) 

D„ = -a& + «JwBilI 

One such finite-difference equation is applicable at each interior point 
n at ? station m + 1.   Information about the value of w at n = 1 and at 
n = N is supplied by the boundary conditions.    At y = 0 the boundary 
conditions for u, v, or T can each be expressed in the general form 

Using the formula 

(40) 

4K»  —  3w,   —   w, 

this can be written in finite-difference form as 

A,w,   +   BjW2  +   L,w3   =   Uj (41) 

where 

(42) 

3kl 2ki 

kl r   - — ui " A7 
D, = k2 
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The outer boundary condition for all three variables, u, v, and T, is of 
the forni 

wN = DK 

where Djg- is a known constant.   Thus the w profile at ? station m + 1 is 
given by the system of linear algebraic equations 

Al Bl CjO .  • 0 

A2 B2 c2 o . . 0 

0  A3 B3 C30  • 0 

0 . A4 B4 C4 0 0 

0  • 0 

0 

0  • ■  •  ■  AN-1 BN-1 c 

0 . .  .  .  0 0 1 

N-l 

wl *>1 

w2 D2 

w3 D3 

X = 

WN-1 DN-1 

wN DN 

(43) 

Because of the special form of the coefficient matrix there is a very 
efficient algorithm given by Richtmyer and Morton (Ref. 15) that can 
be used to solve these equations. The recursion formulas for w are 
as follows: 

w„ = Ew„ , - F„ n n   n^l n 
2 < n  < N - 1 

/j     =      EjWg     +     FjWg     +     Gj 

(44) 

(45) 

where 

E„ 
C2   +    A2F1 

B2   +    A2E1 

E    = 

D2 -   G1A2 

B2+   A2E1 

-c n 

B    +   A   E     " 
n n    n—1 

D    - A   F'    , n n   n—1 

B     + A   E      . 
n n    n—1 

=  3, 4, N-l 

(46) 
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The equations for wn can be solved using a double-sweep technique; 
marching out from n = 1 calculating the coefficients En and Fn, and 
then marching back from n = N computing wn. 

With this procedure, the x- and y-momentum equations and the 
energy equation can be solved to obtain u, v, and T profiles.    These 
values can then be used in computing improved coefficients o-j, <*2, 03, 
and 0-4.    The density, however, must be computed from the continuity 
equation using a different procedure.    The method described below is 
one of many possible methods that could be employed.    Expanding the 

continuity equation and solving for -r=- gives 

dp_ p d\\        p drf Sn        dt] dp        p2 d\        p\.   dp 

di :i dc        u d\ STJ       d\ di\        u    drj u   drj W ') 

Assuming that trial u, v, and p profiles at m + 1 are known, the right 
side of this equation can be evaluated at each point n at station m + 1. 
Then an improved value of p is obtained from the equation 

'■■+ n^),„.n 
+ (IL1J m+l.n ■  in .n .'   writ I \ari I (Aa\ 

Note that the calculation breaks down if there is no slip between the 
wall and the fluid.    Slip boundary conditions were used in all calcula- 
tions.    From the density profile it is possible to compute values of 

— for use in the next iteration and at the same time perform the in- 
8x 
verse transformation 

>   -   /   - cty     .       X   =   f 
<»    r 

dn (d 
T> = -p m (49) 

n 

The whole calcvilation procedure can be repeated to obtain improved 
values of the flow variables u, v, T, and p.   This iteration is continued 
until the values for successive calculations are within prescribed limits. 
All other pertinent flow quantities can be obtained from these profiles. 
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3.2   COMPUTER PROGRAM 

A flow chart showing the steps of the calculation procedure and the 
basic subroutines of the computer program is shown in Fig.  5.    (Only 
the essential features of the computer program are shown in the dia- 
gram).   In this flow chart the symbol W(J) is used to represent all four 
flow variables, u, v,  T,  and p.    The symbol WO(J) refers to values at 
the previous station,  and WL(J) refers to values obtained from the 
last iteration.   The function of the major subroutines called in the pro- 
gram is described below: 

SUBROUTINE READIN - Reads the parameters for the calculations 
from data cards and defines the initial profiles for u, v, T, and p. 

SUBROUTINE WALL - Calculates coefficients E^  Fj, and Gi in 
Eq.  (45) from boundary conditions. 

SUBROUTINE COEF - Calculates a coefficients based on values from 
the last iteration.    Calculates the finite-difference coefficients An,  Bn, 
Cn,  and Dn. 

SUBROUTINE SOLVE - Solves the finite-difference equations, Eqs.  (43), 
by recursion formulas, Eqs. (44) and (45). 

SUBROUTINE RHO - Calculates density profile using Eq.   (48).    Iterates 
to convergence. 

SUBROUTINE ETA - Calculates y, the distance from the wall, and|^. J 9x 

SUBROUTINE RITE - Computes the pertinent parameters such as heat- 
transfer rate and skin friction and prints results. 

The calculations were generally begun using uniform initial profiles 
for the gas dynamic variables described by 25 points across the shock 
layer with a An of 0. 02.    Additional points were added as the calculation 
proceeded downstream and the shock-layer thickness increased.   The 
maximum number of points that could be used was 501, and this was 
usually sufficient to describe the shock layer in the region of interest 
without increasing An.    The small An was required to obtain sufficient 
resolution in the shock wave region and resulted in long computation 
times.   The time required to run a typical case was between one and 
two hours on the CDC 1604-B computer.   The longitudinal step size A? 
was usually set equal to An initially, but was multiplied by a growth 
factor of less than one percent after each step. 
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(      START     J 

ZJZ 
xxs=o 
x=o 

CALL 
READIN 

/^T\_       X=X+DX 
\ZS      NXS=NXS+1 

CALL 
WALL 

CALL 
RITE 

1 

WO(J)-W(J) 
WL(J)=W(J) 

+WXDX 

ADD POINTS 
IF 

REQUIRED 

Fig. 5  Flow Chart for Computer Program 
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An iteration procedure was required to determine the coefficients 
of the linearized governing equations.    The convergence of this iteration 
was determined by testing the change in the solution between successive 
iterations.    A convergence criterion of 0. 1 percent was found to yield 
acceptable accuracy without an excessive number of iterations. 

Failure of the calculation procedure occurred for several cases at 
large values of x.    The failure seemed to be associated with a decrease 
in the slip velocity at the wall and was preceded by oscillations in dv/dri 
near n = 0.   These oscillations increased in magnitude and finally de- 
stroyed the calculation.   As noted earlier, when the slip velocity be- 
comes small, the wall density as computed by Eq.  (47) becomes very 
questionable.   It is likely that this is at least partly responsible for 
the calculation difficulties at large values of x.   When calculation fail- 
ure occurred, the hypersonic interaction parameter, X, was always less 
than 0. 25, indicating that the flow was well beyond the merged regime. 

SECTION IV 
CALCULATION RESULTS 

4.1   TYPICAL PROFILES 

Some typical results of the calculation procedure described in the 
previous section are presented in Figs. 6 through 13.   The free-stream 
flow conditions used for this calculation correspond to flat-plate data 
collected by Becker and Boylan (Ref.   16) in the von Karmän Facility 
(VKF) Low Density Hypersonic Wind Tunnel (L) and are tabulated below: 

M     =  9.19 00 

P«,     =      55/*Hg 

T     =  96°K. 
OC 

Re-'L   =   1660/in. 

y   =   1.4 

Tw =  300° K 

Pr   =  0.71 

The values for viscosity used in the calculation were obtained from 
the Sutherland formula with the constants appropriate for nitrogen. 
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Figures 6 through 9 show the flow variable profiles and illustrate 
quite clearly the transition from a merged flow region where the shock 
is buried in the viscous region to the strong interaction regime where 
a rather well-defined shock exists.   The velocity profiles in Fig.  6, 
for example, exhibit a relatively large slip velocity near the leading 
edge but otherwise appear well behaved.   Further downstream a point 
of inflection develops that is associated with the formation of the com- 
pressive shocklike region.   This point in the velocity profile becomes 
more pronounced as the flow proceeds downstream.   The later profiles 
show an inviscid region beginning to form between the shock and the 

0.32   - 

0.28   - 

0.24    - 

0.20   - 

y       0.16   - 

0.12   - 

0.08   - 

0.04   - 

,0229 

0.7982 

0.6066 

0.4063 

0.2133 

0.1080 

Fig. 6 Typical Velocity Profiles 
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viscous boundary layer.   The other flow variables show a correspond- 
ing evolution from the merged region to the strong interaction region. 
The pressure profiles are particularly revealing with regard to the de- 
velopment of the shock.   Near the leading edge there is a pronounced 
pressure variation in the y-direction throughout the viscous shock 
layer.    Farther downstream the pressure variation is largely confined 
to the outer part of the shock layer, and there is a substantial portion 
of the flow field where the boundary-layer approximation 9p/8y = 0 is 
valid. 

0.32 t- 

0.28   - 

0.24   - 

0.20  -^ 

H     -  9.19 
0C 

Re/t -  1660/ln. 

Temperature Ratio across 
Ranklne-Hugoniot Oblique Shock 

y      0.16   - 

0.12  - 

0.08  - 

0.04   - 

Fig. 7  Typical Temperature Profiles 
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The center of the shock structure can be fairly well defined by the 
peak in the density profiles (see Fig.  9).    The locus of these density 
peaks is plotted in Fig.   11 to show the location of the shock wave rela- 
tive to the plate.   The shock is slightly curved near the leading edge, 
becoming straight and oriented at 13.4 deg to the plate surface further 
downstream.   The temperature and pressure behind a Rankine-Hugoniot 
oblique shock oriented at the angle with Ma = 9. 19 are shown for refer- 
ence in Figs.  7 and 8. 

0.32 |- 

0.28 - 

0.24 - 

0.20 - 

y  0.16 - 

0.12 - 

0.08 - 

0.04 

Pressure Ratio across 
Rankine-Hugoniot 
Oblique Shock 

M^ - 9.19 

Re/L -  1660/in. 

Fig. 8  Typical Pressure Profiles 
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The variations of gas velocity, temperature, and pressure at the 
plate surface are shown in Fig.  12.   The solutions were started with 
uniform profiles at x = 0 (i.e., perfect slip); as expected, the slip 
velocity decreases as distance along the plate increases.    The pressure 
increases rapidly from the initial free-stream value to a maximum of 
about 6 Pa, and then slowly decreases.   The surface gas temperature 
exhibits a similar behavior.   Figure 13 shows that the skin friction 
coefficient and the Stanton number display the expected trends. 

0.32 r- 

0.28 

0.24   - 

0.20   - 

7      0.16   - 

H^ - 9.19 

Re/C - 1660/ln. 

0.12   _ 

0.08 

0.04 

Fig. 9 Typical Density Profiles 
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0.32 

• 0.28   - 

0.24   - 

0.20 

y       0.16 

0.12   - 

0.08   - 

0.04 

M„  =   919 

Re/E -  1660/in. 

X 

* ^ 1.0229 

0.7982 

0.3 

y       0.2 

0.1   - 

Fig. 10 Typical Transverse Velocity Profiles 

M     = 9.19 

Re/r =  1660/in 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

x 

Fig. 11   Locus of Density Peaks 
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x 

Fig. 12 Surface Pressure, Temperature, and Velocity Variation 
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Fig. 13 Variation of Skin-Friction and Heat-Transfer Coefficients 
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Figures 14 through 17 show velocity, temperature,  pressure, and 
density profiles on a flat plate, a 10-deg wedge, and a 10-deg cone under 
identical free-stream conditions.    The gas in these calculations is again 
nitrogen, and the free-stream conditions are tabulated below: 

\l     = 10.15 
00 

Px = 2<VUg 

T^ = 144°K 

Re/E = 388'in. 

Y   =  1.1 

Tw = 3no°K 

Pr   =  0.71 

0.28   - 

0.24   - 

0.20  - 

0.16   - 

0.12   - 

0.08   - 

0.04   - 

- 

M„, - 10.15 

Re/E - 388/ln. 

1 

x - 0.4840 

- 

y 

- 
00 ;—TIP deg 

- Wedge-^yy M— 

- f 10 

!2r 
— 

1     '   ^r           i  L 1 

Flat 
Plate 

Cone 

0.2 0.4 0.6 0.8 1.0 
u 

Fig. 14  Comparison of Velocity Profiles for 
Flat Plate, Wedge, and Cone 
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It is of interest first to compare the flat-plate profiles for this case 
with the higher-density conditions M,,, = 9. 19 and Re/L = 1660/in.   shown 
in Figs.  6 through 9.    Comparing the density profiles at x » 0. 8 shows 
that the center of the shock as indicated by the density peak is approxi- 
mately the same for both cases but that the shock structure is not 
nearly so sharply defined for the lower-density case.    For this low 
Reynolds number flow the shock is still very diffuse and buried within 
the viscous boundary-layer region. 

0.32 

0.28 ■_ - 10.15 

Re/L - 388/in. 

X - 0.7924 

0.24 — 

0.20 - 

y 0.18 

0.12 

m                  A*" 

0.08 - 
Wedge     ajfl 

•-Flat      / 
Plate  / 

0.04 - 

0 //x 

Cone 

0 0.2 0.4 0.6 0.8 1.0 
u 

Fig. 14 Concluded 
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Fig. 15  Comparison of Temperature Profiles for Flat Plate, Wedge, and Cone 
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These figures also show that shock structure on the 10-deg wedge 
is much stronger and develops much more rapidly than on the flat plate. 
The pressure level is also much higher on the wedge, resulting in a 
higher density and a lower slip velocity.    While the thickness of the 
shock layer is approximately the same for the wedge flow and the flat 
plate, the thickness for the cone is considerably reduced.   This is typi- 
cal of conical flows and is a result of the three-dimensional character 
of the flow field. 

4.2   COMPARISON WITH DATA 

A comparison of the results of the theoretical calculation method 
presented in this report with experimental data from several sources 
was carried out.    These comparisons are shown in Figs.   18 through 27. 

Figures 18 and 19 are comparisons of computed surface pressure 
with pressure data collected by Becker and Boylan (Ref.   16) in Tunnel L. 
Two calculated curves are shown in each of these figures, one labeled 
"pressure slip" and the other labeled "no pressure slip. "   The curve 
labeled "no pressure slip" gives simply the gas pressure evaluated at 
y = 0.    The "pressure slip" curves on these two figures have been ad- 
justed according to the correction given by Patterson (Ref.   17),  as 
follows: 

pjQj = , 

Pw 

where 

- 6|_cv>7 ■ ■^;jv=0 
+16 \j <?>7y=c (50) 

p(0)   =   gas pressure at y   =   0 

p     =   wall pressure 

c  =  - RT. average molecular speed 

?   =   molecular mean free path 

The above correction was obtained by assuming the diffuse reflection of 
gas molecules impinging on the wall.    The reflected molecules are 
assumed to be in equilibrium at the temperature of the wall.    By con- 
sidering the transfer of tangential momentum and translational energy 
at the gas/solid interface, Patterson derived the velocity slip and tem- 
perature jump boundary conditions corresponding to Eqs.  (7) and (8) 
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with the coefficients a and a both equal to 1.   A similar treatment of the 
normal component of momentum across the interface yields the relation 
between p(0) and pw given in Eq.  (50).   This correction is therefore con- 
sistent with the slip boundary conditions applied to this study.    The pres- 
sure correction is applied after the solution is obtained and does not 
affect the calculation of quantities in the flow field. 

Written in dimensionless form in terms of (§,n) variables, Eq.  (50) 
becomes 

p(0) 

Pw 
= l Im vi l~! (2*    1 i^i       llß. -L £ft 

V 8    lV,~|_L  to " P <V],7=0 +   16VL PT dr,)^ 

As can be seen from Figs.  18 and 19, the pressure slip correction is a 
sizable fraction of the calculated surface pressure values.   These fig- 
ures also show that the corrected values agree much better with the 
pressure data obtained by Becker and Boylan than do the uncorrected 
values.   To the author's knowledge this is the first time that the signifi- 
cance of the pressure slip correction for low-density hypersonic flow 
has been demonstrated. 

6.0 - 
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x 
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Fig. 18 Comparison of Calculated Surface Pressure with 
Experimental Data: High Reynolds Number 
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No Pressure Slip 
.0   - 

5.0   - 

4.0 

3.0   - 

2.0 

1.0 

1.6 

Fig. 19 Comparison of Calculated Surface Pressure with 
Experimental Data: Low Reynolds Number 

Figures 20 and 21 show a comparison of calculated heat-transfer 
rate with experimental data obtained in Tunnel L by Boylan (Ref. 18). 
The heat-transfer rate was computed from the formula 

/r<?T     —dt\ 

including the sliding friction term given by Maslen (Ref.  19).    Note that 
Fig. 20 is for a flat plate at zero angle of attack and Fig. 21 is for a 
plate inclined at -10 deg to the flow stream.    In all cases the agreement 
between calculated values and the experimental data is satisfactory. 
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Fig. 20  Comparison of Calculated Heat-Transfer Rate with Experimental Data: 
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Low Reynolds Number 
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Figure 22 shows the location of the center of shock structure as de- 
termined by the maximum pitot pressure in the shock layer.    The 
agreement between the prediction of the present theory and the experi- 
mental data of Becker and Boylan (Ref.  16) is seen to be excellent. 

0.6 r 

0.4 

0.2 - 

Flat Plate, Locus of PI tot Peaks 

*„ - 10.15 

Re/E - 388/in. 

O Becker and Boylan, Ref. 16 

1.6 

Fig. 22  Comparison of Calculated Shock Location with 
Experimental Data 

Figure 23 shows a comparison of computed total pressure profiles 
at three stations with data of Ref.   16.    The level of the pitot pressure 
peak as well as its height is predicted very well.    These profiles show, 
however, that the computed thickness of the shock structure is con- 
siderably smaller than that which actually occurs.    The computed total 
pressure profiles for argon shown in Fig.  24 likewise exhibit a thinner 
shock structure than the experimental profiles measured by Becker 
(Ref.  20).    The location and level of the total pressure peaks do not 
agree as well with the data for this case.    This calculation was made 
for the monatomic gas to determine whether rotational nonequilibrium 
effects could be responsible for the thickened shock structure.    The 
results of the comparison would appear to deny this explanation.    This 
underprediction of the shock structure thickness was also obtained by 
Cheng et al. (Ref.  8) and appears to be characteristic of shock models 
based on the Navier-Stokes equations. 
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Fig. 23 Comparison of Calculated Total Pressure Profiles with 
Experimental Data for Nitrogen 
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Fig. 24 Comparison of Calculated Total Pressure Profiles with 
Experimental Data for Argon 
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Figure 25 shows a comparison of computed density profiles with 
some experimental profiles obtained by McCrosky (Ref. 21) in nitrogen 
flow at very high Mach number.   The location and level of the density 
peak are well predicted by the present calculation procedure.    Also 
shown in Fig. 25 as solid symbols are some points taken from density 
profiles computed by Cheng et al. (Ref. 8) under identical conditions. 
Their results are very close to the profiles obtained in the present 
study, except near the center of the shock structure.   In this region, 
Cheng et al.  obtained a density level somewhat higher than that calcu- 
lated in this investigation or shown in the data of McCrosky.   At x = 2 in. 
Cheng's profiles exhibit the spurious kink in the shock region; there- 
fore, this peak is not plotted in Fig.  25.    The better agreement obtained 
in the present study is attributed to the more accurate set of equations 
used and the better finite-difference description in the shock region due 
to the stretching transformation (Eq.   18). 

McCrosky Data Cheng Calculation 
x      (Ref. 21)       (Ref. 8) 

0.5 

O.A 

7       0.3 

0.2 

0.1 

0.3       a ■ 

1.0          0 • 
2.0          A A. 

U„ - 24.5 

Re/E - 10,000/ln. 

Flat-Plate nodel 

2.01 

Fig. 25  Comparison of Calculated Density Profiles with 
Experimental Data for Nitrogen 
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Figures 26 and 27 show a correlation of surface pressure and heat- 
transfer data for flat plates from several sources.   A replot of some of 
the data from the VKF tunnels is included in these figures.   The surface 
pressure and heat-transfer coefficients are plotted in terms of the hyper- 

sonic interaction parameter Vx „, =     "^   ■   Note that V^ ^ « x-1' 2 so 
_ '      VRex 

that large values of Vx „ occur near the leading edge of the plate.   The 
hypersonic parameter x is defined as 

-     M~v'c     -_ 
x = 

VR« - Vx.-M- 

where C is the Chapman-Hubesin constant. 

0 a   Becker (Kef. 20), Ar 
H„ - 11.18, Re/E - 244/in. 

(5)  O Becker and Boylan (Ref. 16), »2 
M., - 10.15, Re/E - 388/in. 

(D  A BcCrosky (Ref. 21), H2 
H„ - 24.5,   Re/E - 10,000/ln. 

0      O   Vidtil  and Barts   (Ref.   22),   N2 

11    - 19.2,   Re/E - 670/in. 

0.2 r 

P«X       0.04 

0.02 

0.01 

Fig. 26 Comparison of Calculated Surface Pressure Parameter with 
Experimental Data from Several Sources 
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Fig. 27  Comparison of Calculated Heat-Transfer Coefficient with 
Experimental Data from Several Sources 
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The conditions used to calculate the solid curves in these two fig- 
ures are designated by the numbered label and are given by the like- 
numbered experimental conditions in the figure legends. 

The agreement between the computed surface pressure and the 
experimental data shown in Fig. 26 is considered to be reasonably 
good.   The computed values, however, tend to be somewhat low near 
the leading edge of the plate.   The surface pressure distributions shown 
in Figs.  18 and 19 suggest that this difficulty may have been caused by 
the uniform initial profiles that were used to start all calculation.   How- 
ever, the calculations for M,,, = 10. 15, Re/L = 388/in. were repeated 
using different initial velocity and temperature profiles,  and the surface 
pressure distribution was not significantly altered. 

The comparison with heat-transfer data for flat plates shown in 
Fig. 27 is less satisfactory.    In particular, the data of Vidal and Bartz 
(Ref. 22) is far below the corresponding calculations.   In view of the 
good agreement with the heat-transfer data taken in Tunnel L as shown in 
Figs.  20 and 21, the author considers this to be an indication that the 
data reported in Ref.  22 may be somewhat low. 

SECTION V 
SUMMARY AND CONCLUSIONS 

An analytical investigation has been carried out and a numerical 
procedure developed for calculating fully viscous shock-layer flow near 
the leading edge of two-dimensional and axisymmetric slender bodies 
under low-density hypersonic conditions.    The particular geometries 
considered were two-dimensional flat plates at zero and negative angles 
of attack and axisymmetric cones at zero angle of attack.   The calcu- 
lation method is based on numerical integration of the continuum fluid 
mechanical equations of motion using an implicit finite-difference 
marching technique.   The mathematical model used in this investiga- 
tion represents an improvement over previously published continuum 
studies in that a more complete and accurate set of governing equa- 
tions is employed.   Standard slip and temperature jump boundary con- 
ditions are employed at the wall, and the shock structure is deter- 
mined as part of the resulting solution.    In order to obtain adequate 
resolution in the shock wave region, the normal coordinate is stretched 
by using a Howarth transformation. 
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The results of the calculations show quite clearly (1)   the develop- 
ment of a merged flow regime where the shock is buried in the viscous 
region and (2)   the transition to the strong interaction regime where a 
well-defined shock structure exists.   Near the leading edge there is a 
pronounced pressure variation throughout the shock layer, whereas 
further downstream there is a substantial portion of the flow field 

where -^ = 0. 

The results of the numerical calculations have been compared with 
experimental data from a number of sources, and qualitative agree- 
ment with surface-pressure and heat-transfer data as well as with pro- 
file data was obtained for all cases tested.   The quantitative agreement 
of the surface-pressure data was markedly improved by the application 
of a pressure slip correction derived by Patterson (Ref.  17).   A com- 
parison of the results of the present theory with experimental data ob- 
tained on flat plate and wedges in Tunnel L reveals very good agree- 
ment. 
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