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1. Introduction. In [2] and [4] the notion of a blocking pair of polyhedra 

arising fron combinatorial optimization problems of the maximum packing 

variety was introduced and studied. In this paper we characterize the 

appropriate polyhedra for such problems which arise in (or can be transformed 

into) a network flow context. !.'e begin in Section 2 by briefly reviewing 

the blocking notion and some general theorems concerning blocking pairs of 

polyhedra. In Section 3 we consider uncapacitated supply-demand networks 

and note a simple decomposition property that has some important ramifica- 

tions. In Section 4 we go on to the case of capacitated supply-demand 

networks. This section contains perhaps the most general and informative 

results of the paper (Theorem 4.1, Lemma 4.2, and Theorem 4,3). Finally, 

in Section 5 we discuss some particular combinatorial structures which 

fit into this context and initially motivated some of this work. 

2. Blocking pairs of polyhedra. Let A be an m by n non-negative 

matrix and consider the polyhedron 

(2.1) (x e R"JAx > 1}, 

where 1 is the m-vector all of whose components are 1 and Rn is the 

non-negative orthant of Rn. The rows of A will generally represent the 

combinatorial structure involved in a particular problem; for example, 

they might be incidence vectors of a family of subsets of an n-set. "e 

will often refer to the polyhedron (2.1) as 6(A) to indicate the matrix 

that generates it. lie note that B(A) is n-dimensional, convex, and 

unbounded (except in the degenerate case where A has a zero row and 

hence 8(A) is empty). 

- -j..«Mr-*..,i (imiuiwmi. lynwimMWwMM—Wlgj^J 
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The rows of A may not all represent facets of B(A); that •  -one 

of the constraints in Ax ^ 1 may be superfluous. Call a row vector a 

of A inessential if a  dominates (is greater than or equal to) some 

convex combination of other row vectors of A; otherwise, call a 

essential. Then by the Parkas lemma on systems of linear inequalities, 

a row of A is superfluous in defining B(A) if and only if it is ines- 

sential. I'.'e call a non-negative matrix A proper if all of its rows are 

essential.  (If A is a (O.n-matrix, then A is proper if and only if 

it is the incidence matrix of a family of m pairwise non-comparable sub- 

sets of an n-set.) 

Now let 

(2.2) B = {x e R"|x.3 > 1}; 

that is,    ß    consists of all non-negative    n-vectors such that    X'b >_ 1 

for all    b e B.    i'e call    B   defined by (2.2) the blocking polyhedron of 
A 

B. Theorem 2.1 below describes the relationship between B and B. 

Theorem 2.1. Let the m b^ n matrix A be proper with rows a ,...,a , 

Let B = (x £ R |Ax >^ 1} have extreme points b ,...,b , and let B be 

the r by n matrix with rows b ,... ,b . Let P = {x e P. |Bx ^ 1}. 

Then 

(i) B = P; 

(ii) B is proper; 

(iii) The extreme points of P are a ,...,a ; 

v) P = B, and hence B = B. 
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The matrix B of Theorem 2.1 is called the blocking matrix or blocker 

of A. Theorem 2.1 shows that 8 and B (A and B) play symmetric roles 

in the relationship; together they constitute a blocking pair of poiyhedra 

(a blocking pair of matrices). V.'e see that for any blocking pair of 

poiyhedra, the non-trivial facets of one and the extreme points of the 

other are represented by exactly the same n-vectors. In optimization 

contexts, one is often interested in explicitly characterizing by linear 

inequalities a convex polyhedron having prescribed vertices. If the 

matrix A with these vertices as its rows is prooer, then the blocking 

polyhedron of 8(A) yields one such characterization (not of the convex 

hull of the rows of A, but rather of the vector sum of this convex hull 

with the non-negative orthant). 

How let A be as in Theorem 2.1 and consider the following maximum 

packing problem: 

(2.3) yA <^ w 

y i 0 

max l-y. 

where w e R  and 0 and 1 are the m-vectors all of whose components 

are 0 and 1 respectively. Let B be an r by n non-negative matrix 

1    r 
having rows b ,...,b . Say that the max-min equality holds for the (ordered) 

pair A,B if and only if, for every w e R+, the packing problem (2.3) 

has an optimal solution vector y such that 

(2.4) I'y = min b^-w. 
j 

Wäm&mmim -~**intmkwm 
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Say that the min-min inequality holds for the (unordered) pair A,B if 

and only if, for every £ e R+ and w e R", we have 

(2.5) (min a •£)(min tr-w) £ £*w. 

i      3 

Theorem 2.2 below shows that the blocking relation is essentially equivalent 

to these notions. 

Theorem 2.2.  (i) Let A and B be a blocking pair of matrices. Then 

the max-min equality holds for both ordered pairs A,B and B,A, and the 

min-min inequality holds for the unordered pair A,B. 

(ii) Let A and B be proper matrices.  If the max-min equality 

holds for the pair A,B (in either order), then A and B are a blocking 

pair of matrices. 

(iii) Let A and B be proner matrices whose rows satisfy a -b^ ^ 1 

for all i and j.  If the min-min inequality holds for the pair A,B, 

then A and B are a blocking pair of matrices. 

Note that the max-min equality and the min-min inequality hold for 

any pair of matrices A,B that generate a blocking pair of polyhedra, 

i.e. adding inessential rows to either A or B affects neither the max- 

min equality nor the min-min inequality. The only reason for restricting 

the matrices in the theorem to be proper is so that we can in fact claim 

that A and B are a blocking pair of matrices (and hence be assured 

that each row of one occurs as an extreme point of the polyhedron 8 

generated by the other). 

Max-rain type results are common in combinatorial optimization problems, 

and, through Theorem 2.2, the blocking theory (and its parallel counterpart. 

,  .   ' '- -"   '   '  I"l"> 
1 "— ■WH 
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the anti-blocking theory [3,4], which is aimed at miniram covering problems) 

can be viewed as an attempt to identify and further understand the common 

ground on ivhich such results rest. 

There is one more theorem concerning blocking pairs that will be needed 

in what follows. Let A be a non-negative matrix. Contracting coordinate 

j (column j) in A means dropping the j  column from the matrix A. 

Deleting coordinate j  (column j) means dropping the j  column from 

A and dropping all rows erom A that had a positive entry in this column. 

Theorem 2.3 below shows that these operations are dual to each other in 

the blocking context. 

Theorem 2.3. Let A and B be non-negative matrico-s such that B(A) 

and B(B) are a blocking pair of polyhedra. If we contract the j 

coordinate of A, leaving A', and delete the j  coordinate of B, 

leaving B*, then B(AI) and 8(8') are a blocking pair of polyhedra. 

"e also note that in any sequence of contractions and deletions on 

A, say, the order in which these operations are performed is immaterial. 

3. Uncapacitated supply-demand networks. Let [N,A] be an arbitrary 

network with node-set N and arc-set A.  (All networks considered in 

this paper will be directed--elements of A are ordered pairs of elements 

of N.) Let some non-empty subset S of N be considered "source" nodes 

and some non-empty subset T of N be considered "sink" nodes, where 

S H T = jL With each node x e S we associate a non-negative number a(x), 

the "supply" at x, and with each node x e T we associate a non-negative 

number b(xj, the "demand" at x. l.'e assume, without any real loss of 

generality, that 

..^ ..■.  -      -   —..■.,■.■■. , — ..-,. 
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(3.1) I    a(x) = I   b(x), 
xeS      xeT 

A feasible flow for this system is a function f: A -> R+ such that 

(3.2) f(x,M) - f(N,x) = a(x) for all x e S, 

(3.3) f(N.x) - f(x.N) = b(x) for all x e T, 

(3.4) f(x,N) - f(N,x) =0 for all x t S U T. 

Here R+ denotes the non-negative reals and f(x,N), for example, denotes 

the sum 

,  , I  j f(x.y), 
{yeN|(x.y)eA} 

(Later on, when we add a capacity function c: A -*■ R  to the network, a 

feasible flow f will also have to satisfy f(x,y) ^ c(x,y) for all 

(x,y) e A.) Throughout, we will use the notation, for arbitrary X C N, 

Y CN, 

(3.5) (X,Y) = {(x.y) e A(x e X. y e Y). 

and if   g    is any real-valued function defined on the arcs. 

(3.6) g(X.Y) = I g(x.y). 
(x,y)e(X,Y) 

Similarly, if   h   is any real-valued function defined on the nodes, and if 

X c N,    we write 

.......        !. I 
 --■,.■--.  -,  -         ■...    ^^ ml-' ^  -   -   ■ -     —*" 
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I > 
(3.7) h(X) =    I   h(x) 

xeX 

Let us assume all data (i.e. supplies and demands) are integers and 

consider the finite list of all integral feasible flows. Let A be the 

matrix whose columns are indexed by the arcs of the network and whose 

rows are indexed by the integral feasible flows, with entry a., repre- 

senting the amount flowing in arc j in the i  flow. Kote that A 

may not be proper; also note that A nay have no rows. Our first goal 

is to determine the blocking polyhedron of B(A). 

I'e begin by establishing a simple but important decomposition lemma. 

To simplify the statement of this lemma, let W represent the supply- 

demand system given by the network [N,A] and supply and demand functions 

a and b, respectively. Then we let M  denote the supply-demand 

system given by the same network [N,A] but with supplies and demands 

multiplied throughout by p e R+. Let Z+ denote the non-negative integers, 

Lemma 3.1. Every integral feasible flow for W  k e Z , k ^ 1, can be 

decomposed into k integral flows, each feasible for W. 

Proof. I'/e proceed by induction on k. The lemma is trivial for k = 1. 

Now let f be an integral feasible flow for N     k > 1. U'e wish to extract 

an integral subflow from f which is feasible for W and leave behind 

a flow that is feasible for W..• Py the induction hypothesis this latter 

flow will decompose into k-1 integral flows, each feasible for A/, and 

we shall be done. But it is clear that the removal from f of any integral 

subflow feasible for W will leave an integral flow feasible for W. .. 

So we need only show that f contains an integral subflow feasible for 

W. 

rrrrrrssHSB 
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Consider   f    to be a capacity function imposed on the system   W. 

If this system is feasible  (i.e., if there exists a feasible flow for it), 

then there will exist an integral feasible flow by well-known integrality 

properties of netv'o^k flows  [1], and such a flow will clearly be an 

appropriate subflow of    f.    By the supply-demand theorem [6;  l.Th.  II.1.1], 

the system   W   with capacity function    f   is feasible if and only if 

n.S) b(T 0 X) - a(S n X) < f(X,X) 

for all   X c N,    where    X = II - X.    Mow since    f   is a feasible flow for 

W. ,    we have 

(3.9) k(b(T n x) - ars n 7)) = f(x,x) - ftfT.x) 

for all X c N, i.e., the net demand over a subset X of nodes is equal 

to the net flow intr those nodes. Thus (3.9), the non-negativity of f, 

and the assumption k > I, imply (3.8). Hence there does exist an appro- 

priate subflow of f, proving Lemma 3,1. 

'.'e now use Lemma 3.1 and Theorem 2.2 to establish the blocking poly- 

hedron of S(A), where A is the matrix of integral feasible flows. 

Theorem 3.2. Let A be the matrix of integral feasible flows in an 

uncapacitated supply-deir.and network [I^A] with integral-valued supply and 

demand functions, a and b, respectively. Then the blocking polyhedron 

of B(A) is described by the constraints 

(3.10) ^1° for all e e A, 

- - - ■ - ■ ...,.-*.— 
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(3.11) I     ^ > b(5f) - a(X), 
ec(X,X) e 

for all X c :; such that htf)  -  3(7) > 1. 

In other words, if we let B be the matrix whose columns represent 

the arcs of the network, having a row for each X c N such that 

b(X) - a(X) >^ 1, with entry l/(b(X) - a(X)) in each column representing 

an arc of (X,X) and zero entries elsewhere, then the essential rows of 

A. and B form a blocking pair of matrices. 

Proof. Let w e R  and consider the packing problem 

(3.12) yA < w 

y ^ 0 

max I'y, 

i.e.  find the maximum weight packing of rows of   A    into the arc-weight 

vector   w.    !.'e note that a packing of total weight    r,    r e R ,    exists 

if and only if the system   W     with capacity function   w    on the arcs is 

feasible.    Necessity is clear and we demonstrate sufficiency now.    If 

r = 0,    sufficiency is clear,  so assume    r > 0.    Let    f   be a feasible 

flow to   W     with arc capacities given by the components of   ur.    I7e must 

show that    f   can be written as a positive linear combination of integral 

feasibVe flows for    W.    Consider the flow   f     defined by    f (x,y) = f(x,y)/r 

for all    (x,y) e A.    The flow    f     is feasible for   W   and hence can be 

written as a convex combination of integral feasible flows for   W,    since, 

as is well known, the feasible flows in a network with integral data form 

a convex polyhedron with Integral extreme points.    Multiplying each of 
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the non-zero coefficients in this convex combination by    r   gives us a 

positive linear combination of integral feasible flows  (rows of   A) 

equalling   f,    and hence a feasible packing with total weight    r.    So 

sufficiency is established. 

Now, by the supply-demand theorem,    W     with capacities given by 

the components of   w   is feasible if and only if 

r(b(X n T) - a(X f) S)) = r(b(X) - a(X)) < w(X.X) 

for all   X c H.    Hence the maximum feasible   r,    say    r*,    is given by 

(3.13) r* = nun w(X,J0 

XOI b(X)  - a(X) 

where the minimum is taken over all   X c N   such that the denominator in 

(3.13) is positive.    Now consider the matrix   B   described above.    By 

Theorem 2.2(ii)) we have just established that the essential rows of   A 

and the essential rows of    C    form a blocking pair of matrices.    Hence 

the polyhedron given by (3.10) and (3.11) is the blocking polyhedron of 

8(A). 

Note that, as a by-product of the proof of Theorem 3.2, we get the 

following. 

Theorem 3.3.    Let   A   be the matrix of integral feasible flows for an 

uncapacitated supply-demand system   N   with integral data.    Given   w e Zn 

(a non-negative integral weight function on the arcs of the network), let 

r*    be the total weight of an optimal packing, i.e. 

? 
« 

MMfla •MfMMilMIMMMMHl 
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(3.14) yA < w 

y > 0 

max l*y = r*, 

and let z* be the total weight of an optimal integral packing, i.e. 

(3.15) yA ^ w 

y ^ 0. y integraJ 

max l-y = z*. 

Then z* = [r*], where brackets denotg the biggest integer function. 

Proof. That r* is optimal in (3.14) implies that hi  * with capacity 

function w is feasible. This implies that M, M with capacity funct 

w is feasible, and hence there is an integral feasible flow to A/r .., 

with capacity function w. The case [r*] = 0 pives no difficulty, so 

assume [r*] >^ 1. Then by Lemna 3.1, this flow can be decomposed into 

[r*] integral       flows for W, i.e. there is an integral non- 

negative packin       y    in (3.15) with component sum equal to [r*]. 

Hence [r*] is achievable in (3.15), and thus z* >^ [r*].     But clearly 

z* < r*, and consequently the integer z* = [r*]. 

ion 

While Theorems 3.2 and 3.3 are interesting in their own right, their 

main function is to lead us to more general theorems of this kind con- 

cerning capacitated supply-demand networks. !'/e proceed to this situation 

in the next section. 

K ' - —■    ■■■ ■ '■■"• 
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4.    Capacitated supply-demand networks.    Our network will now be assumed to 

have a capacity function   c: A -»■ R ,    and a feasible flow    f   will satisfy 

the additional property that    f (x,y)  <^ cCx^y)    for all    (x,y) e A.    Given 

such a supply-demand system (we still assume   a(S) = b(T)) with integral 

data (supplies, demands, and arc capacities),   we let    A   be the matrix of 

all integral feasible flows as before and ajjain ask for the blocking 

polyhedron of   8(A). 

We make use of a known technique  [9;  l,p.l29] to reduce our capaci- 

tated supply-demand problem to an uncapacitated one.    Given the network 

[II,A]    above, we construct a new  (uncapacitated) bipartite supply-demand 

network    [N'.A'I*    For every arc in the original network, we have a source 

node in the new one, labelled with the ordered pair    (x,y),    for    (x,y) e A. 

For every node in the original network, we have a sink node in the new one, 

labelled    x,    where   x e N.    Source    (x,y)    is joined by arcs from    (x,y) 

to sinks    x    and   y   in the new network, and these are the only arcs in 

A'.    Source    (x,y)    has supply    c(x,y)    and sink    x   has a demand of 

c(x,M) - a(x),    c(x,N)  + b(x),    or   c(x,N),    according as node    x    was a 

source, sink, or neither in    [N,A].    Note that the sum of the supplies 

in this new network still equals the sum of the demands.     (Figure 4.1 

below shows a capacitated supply-demand network and the uncapacitated 

one derived from it.) 

.„.,.. ^  n  i, i i .-  -    ■  ^j^^uMamäUtätä I 
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c(l,2)@- ^T) c(l,2) + c(l,3) - a(l) 

c(l,3) 
,©0(2,1) + 0(2,3) - a(2) 

©c(3,4) 

b(4) 

Figure 4.1 

The relation.hip between the two networks is as follows. For every 

feasible flow f« in the new network, the flow f in the original network 

defined by f(xi,y) = f,((x,y),y) is feasible, and conversely, for every 

feasible flow f in the original network, the flow f in the new network 

defined by f,((x,y),y) = f(x,y) and f,((x,y),x) = c(x,y) - f(x,y) is 

feasible. 

We shall use this transformation to determine the blocking polyhedron 

of B(A). 

Theoren 4.1. Let A be the m b^ n matrix of integral feasible flows 

in a capacitated supply-demand network [N,A] with integral^valued supply, 

demand, and capacity functions a, b, and c, respectively. Then the 

blocking polyhedron of 8(A) is given by the constraints 

  ■■  '  "-■'" "■ " ""' 
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(4.1) 5 > 0 for all e e A, 

(4.2) I E   ib()r) - a(X) - c((X,X) - E). 
eeECCX.lT) e 

for all X c N and all E c (X,X) such that the right-hand side of (4.2) 

is positive. 

In other words, if we let B be the matrix whose columns correspond 

to arcs of A, having a row for each X c N and each E c (X,X) such 

that the right-hand side of (4.2) is positive, with entry 

l/(b(X) - a(X) - c((X,X) - E)) in each column corresponding to an arc of 

E and zero entries elsewhere, then the essential rows of A and the 

essential rows of 3 are a blocking pair of matrices. 

Proof. Consider the uncapacitated network [N^A1] described above and 

let A' be the m by 2n matrix of integral feasible flows for it. By 

Theorem 3.2, the blocking polyhedron of B(A') is given by 

(4.3) 

(4.4) 

C > 0 for all e e A1, 

I C > demand (50 
ee(X,>r) 

ytf) 

for all X C N' such that the right-hand side of (4.4) is positive. 

Letting F and W be the source and sink nodes, respectively, contained 

in X, we can write (4.4), in terms of the original data, as 

(4.5) I _ ^ ic(W.N) ♦ b(W) - a(W) - c(F), 
ee(F.W) 

^ 



^ 
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Cnere 17 = N - W, F » A - F) for all F cA and W c N, where (F,f) 

is the collection of arcs of A' which are of the fora ((x,y),z) with 

(x,y) e F and z e W, and of course, the right-hand side of (4.5) is 

positive. 

Now the matrix A is gotten from the matrix Ar by contracting the 

columns corresponding to arcs of the form ((x,y),x). Hence, by Theorem 2.3, 

the blocking polyhedron of 8(A) will be gotten by dropping from (4.5) 

all constraints that involve such arcs, i.e. by deletin;? the appropriate 

columns from the blocking matrix of A'. Thus our desired polyhedron is 

given by (4.1) and by the constraints 

(4.6) I t*  > c(WtN) + b(W) - a(W) - c(F) 
ee(F,i?) e 

for all F c A and W C N such that F contains no arc (of A) whose 

tail is in W. Thus for given W C N, we only consider constraints 

where F c (W,N) c A. Now any constraint with F p (W,W) is clearly 

inessential because adding the missing edges of (W,W) to F increases 

the right-hand side of the constraint without changing the left-hand side. 

Hence for given IV c N, we nerd only consider constraints where F is 

of the form (W,W) U E with E c (IV,iv). Hence our desired polyhedron is 

given by (4.1) and 

(<       I 5 > c(W,N) + b(W) - a(W) - c(A - ((W,W) U E)) 
eEEC(l</,F/) e 

The right-hand side of (4.7) can be written as    c(W,N) ♦ b(W)  - a(W)  - c(W,N) 

- c(W,lV) + c(E),   whence replacing    W   by   X   gives the desired result. 

„I   ■ !     -  -   ■■- - - 

-       ■.J.,^„.,l.,.,.l„.   ■     - "   r-|1||llg| 
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Note that the transformation technique used above allows us to genera- 

lize Lemma 3.1 to the case of capacitated supply-demand networks. Let W , 

for p e R+, refer now to the supply-demand network where all supplies, 

demands, and capacities have been multiplied throughout by p. 

Lemma 4.2. Let W be a capacitated supply-demand system with integral 

data. Then every integral feasible flow for W. , where k is a positive 

integer, can be decomposed into k integral flows f each feasible for W. 

Proof. Use the transformation depicted in Figure 4.1 to reduce the problem 

to an uncapacitated one and apply Lemma 3.1. 

Theorem 3.3 also generaUres to the capacitated case: 

Theorem 4.3. Let A be the m b^ n matrix of integral feasible flows 

for a capacitated supply-demand network with integral data. Given w c Z+ 

(a non-negative integral weight function on the arcs of the network), let 

r* and z* be weights of optimal solutions to the packing problems (3.14) 

and (3.15), respectively. Then z* - [r*]. 

Proof. Consider the transformed network as above and apply Theorem 3.3 

to that network with weight function w(x,y) on arcs ((x,y),y) and 

» on arcs ((x,y),x). 

In the next section we shall apply these results to some part 

combinatorial problems, but first we conclude this section with an exainple 

illustrating Theorem 4.1, Theorem 4.3, and with some remarks. 

Example. Let the capacitated network be that shown in Figure 4.2 below: 

      -• ■ - -— 
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a(l) = 2 c(2,3)=^0b(4) = 2 

Figure 4.2 

The matrix of integral feasible flows is 

2 0 111 

110 11 

1110    2 

where the columns are indexed from left to right by arcs    (1,2),   (1,3),  (2,3), 

(2,4),   (3,4).    The blocking matrix    B    of   A    is 

1/2 1/2 0 0 0 

1 0 c 0 0 

0 1/2 1/2 1/2 0 
0 1 1 0 0 

0 1 0 1 0 
0 0 1 1 0 

1/2 0 0 0 1/2 
0 0 0 1/2 1/2 
0 0 0 0 1 

li 

Let    w =  (7,2,2,7,7).    To solve the integer packing problem for    A    and 

w,   we can proceed as follows.    Successively multiply the supplies and 

demands by   k = 0,1,2,...,    using as capacities in the network 

ck(x,y) = niin(kc(x,y), w(x,y))    for the   k     problem.   The largest    k    for 

----- - ■     i -- . -"■—"•" -■ ■-     — - — 
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which the problem is feasible is the answer   z*   of Theorem 4.3.    In the 

example,    z* « 4,   and a maximum packing vector for the rows of   A   is 

given by   y = (2,2,0).    (Note that   min b^-w « 4,    the minimum being 

achieved at the 4     row of   B.)   But it is not true, as one might think 

from a casual reading of the proof of Theorem 4.3 (which ultimately rests, 

through the transformation to an uncapacitated network, on the proof of 

Lemma 3.1) that the best integer packing vector   y   can be found by 

attempting to decompose the final flow by first extracting an arbitrary 

integral feasible subflow corresponding to   k = 1,    and so on.    For 

instance, in the example, there is no optimal integer packing for   A 

that assigns its last row a positive weight.    One way to find the best 

integral packing vector   y   is to pass to the transformed uncapacitated 

bipartite network, its corresponding final flow, and then use the proof 

of Lemma 3.1.    The interested reader may wish to do this in the example. 

The thrust of our remarks, as illustrated by the example, is two-fold. 

Firstly, Theorem 4.3 is more subtle than one might think.    (We feel that 

it is, indeed, a surprising result.)    Secondly, there is a reasonably 

efficient algorithm for solving the integer packing problem described in 

Theorem 4.3. 

We have said nothing about the max-min equality for the ordered pair 

B,A,   but it may be worth noting that finding a row of   A   that achieves 

min a «w   is equivalent to solving a minimum-cost network flow problem [1], 

where   w(x,y)    is now interpreted as the cost per unit of flow in arc    (x,y) 

5.    Some special cases.    In this section we discuss some particular classes 

of integral packing problems, each of which fits into the general context 

o£ the preceding section.    In each case we start with a non-negative 

-" ' i 'i'» iimnliiiiWd— 
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integral matrix A whose rows correspond to integral feasible flows in 

a capacitated supply-demand network with integral data, describe the 

blocking polyhedron of 6(A), and briefly discuss the integral packing 

problem for A and a non-negative integral weight vector w having a 

component for each column of A. 

E:<ample 5.1 (k - ways in directed graphs). Suppose we have a single source 

s and single sink t in our flow network with a(s) => b(t) = k, where 

k is a positive integer, and assume all arc capacities are 1. Then an 

integral feasible flow (if one exists) can be decomposed into a collection 

of k arc-disjoint directed paths from s t^ t, plus possibly some 

arc-disjoint directed circuits. We may throw away the circuits, if any, 

in such a decomposition, since retaining them would clearly yield inessen- 

tial rows in our (0,l)-matrix A. Each row of A may then be viewed as 

the incidence vector of a k - way from s to t. (Some of these may still 

be inessential.) The constraints (4.2) of Theorem 4.1 simplify to 

(5.1) 

I 

^  r. €e i k eeEC(X,y) e 
(X.X) - E|, 

where (X.JT) is a cut separating s e X from t e X", |Z| denotes the 

cardinality of set Z, and we have a constraint (5.1) for each subset E 

of every cut (X,X) separating s from t such that the right-hand side 

of (5.1) is positive.  (Notice that if k « 1, so that A is the incidence 

matrix of s to t simple directed paths, then we must take E ■ (X,^), 

and the blocking matrix B of A is a (0,1)-matrix, the incidence matrix 

of all set-wise minimal cuts separating s from t [2,4].) 

The integral packing problem for A and a non-negative integral weight 

vector w can be solved by the general procedure described in Section 4. 

-^■-.^ ^.|,it,|n I,,-.  -— liilMi  I -^t***-  - 
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The optimal integral packing vector   y   has component sum equal to 

(5.2) 
EC(X,X) 

JUII 
(X,X) E' 1^ 

where the minimum is taken over all subsets   E   of   s,t   cuts    (X,X)    such 

that the denominator in (5.2) is positive. 

Analogous results hold for undirected graphs. 

Example 5.2    (Zero-one matrices with prescribed row and column sums).    Let 

a.,...,a      and   b.,...^     be positive integers and consider the class 
/in x n 

0/(a,b)    of all   m   by   n   (0,1)-matrices having row sums   a.,...,a     and 

column sums    b.,...,b     respectively [1,6,8].    There is a simple criterion 

due independently to Ryser (see [8]) and Gale [6] in order that the class 

£Ka,b)   be non-empty; this criterion is in terms of the majorization con- 

cept for the vectors   a = (a.,...,» )    and   b = (b.,...,b ).    There is 

also a simple algorithm for constructing a matrix in the class, if one 

exists, or ascertaining that the class is empty (see [1,6,8] for a full 

discussion of these matters). 

Not; let   A   be the matrix having   mn    columns, corresponding to the 

cells of matrices in   ^/(a,b);    each row of   A   is a    (0,l)-vector corre- 

sponding to a member of  6Ka>b).    In other words,   A   is the incidence 

matrix of the class of all members of   <!><(a,b).    (The matrix   A   is proper; 

it may have no rows.) 

Since members of i3r(a,b)    correspond precisely to feasible integral 

flows in a complete bipartite graph with   m   source nodes, having supplies 

a. ,...,a ,    in one node-part, and   n   sink nodes, having demands   b.,..,^  , 

in the other node-part, where all arcs lead from sources to sinks and 

  nil , j^ttirtir-'"-^   -      '     ■"-'■■*■*■—■ 
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have capacity 1, the incidence matrix A describeu above fits into the 

context of Section 4.    Theorem 4.1 then implies: 

Theorem S.l. Let A be the (0,1)-matrix described above whose rows 

represent the members of the class Of(a,b). Then the blocking polyhedron 

of 8(A) is given by the constraints 

(5.3) 

(5.4) 

^ü ü 0 for i B  l,...,m and j = l,...,n. 

I    C^ ib(C) - a(R) - |R||C| * |E|. 
(i,j)cECRxC 1J 

: 

for all Rc{l,..,tm}, Cc{l,...,n}, and all ECRxC such that the 

right-hand side of (5.4) is positive. 

Here we have doubly subscripted the variables to correspond to the 

cells of our m by n matrices. R is a set of row indices (R is the 

complementary set), C is a set of column indices, and E is a subset 

of the cells in rows R and columns C. 

Theorem 4.3 then implies: 

Theorem 5.2. Let w e z"n be a weight function on the cells of an m by 

n matrix (i.e. w is a non-negative integral m b^ n matrix), and 

let A be the incidence n atrix of Theorem 5.1. Then the maximum value 

z* in the integral packing problem (3.15) is given by 

(5.5) z* ■ mxn 
ECRxC 

w(E) 

J)(C) - a(ir) - |R||C| ♦ |E|J 

where the minuium in (5.5) is taken over all choices of R, C, and E c R x c 

such that the denominator is positive. 

 .. r .... ■ 
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In other words, Theorem 5.2 describes the maximum number of members 

of Ö7(a,b)    that can be packed into an   m   by   n   non-negative integral 

matrix.    We also note that to determine    z*,    we need not compute the 

right-hand side of (5.5), but can simply solve the sequence of network- 

flow problems pictured in Figure 5.1 below for   k= 0,1,2,...  . 

(arc capacities min(k,w. .)) 

Figure 5.1 

Tha largest feasible   k   will be    z*. 

Theorem 5.2 allows us to treat certain feasibility problems for 

3-dimensional    (0,1)-arrays in a 2-dimensional  context.    Such problems 

are in general notoriously difficult.    Perhaps the most comprehensive 

work on multi-dimensional arrays that is related to the material of this 

pajÄT is due to Jurkat and Ryser [7], who remark that a genetaY existence 

theorem for 3-dimensional    (0,1)-arrays with prescribed line sums is 

unknown.    The results of this section do not of course furnish such a 

theorem, but they do give information on the followin-» special case.    Let 

a..,...,a     and   h^,...,b     be row and column sums at each level of an 

m   by   n   by   p    (0,1)-array.    Then Theorem 5.2 implies the following: 

*=»»T*.TM.i|ntiinH.iyMMninitfg 
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(5.6) 
n 
T    x. ..   = a.      for    1 < i < m,    l<k< P, 

(5.7) 
m 
2.    x. .k = b.      for   l<Jin,    1 1 k _< P. 

(5.8) I   xiiV * "n   121   1 < i < "».    1 < j < P, k-1    1JK       1J -    - -    - 

(5.9) xiik a 0 or 1    for all    i, j, k. 

are feasible if and only if   p ^ z*    defined by (5.5) 

In connection with Theorem 5.3, it should be remarked that we do not 

need to include the Gale-Ryser criterion that  ÖJ(a»b)    be non-empty in 

the feasibility condition of Theorem 5.3.    For if  Or(a,b) = 9,    then   z* 

defined by (S.5) can be shown to be zero by appropriately selecting   R, 

C, and    E = 0. 

To illustrate the integer packing problem for    (0,1)-matrices having 

prescribed row and column sums, the reader may wish to try his hana on 

the following numerical example.    Let    a = b =  (2,2,2,2)    and let 

0 9 8 7 

9 3 2 9 
W  a 

7 3 3 3 

7 3 3 3 

Choosing R = {2,3,4}, C = {2,3,4},  and (R x C) - E = {(2,4)} shows 

that z* _< [^|] = 7. Does z*  = 77 

»Minimi mm 
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Example 5.3    (Flow arborescences).    Given a directed graph   G   and a 

particular node    s   of the graph, a spanning arborescence rooted at   s 

is a set of arcs of   G   that forms a spanning tree of the underlying 

undirected graph such that (i) each node of   G   other than   s   has just 

one arc of the arborescence directed into it, and  (ii) no arc of the 

arborescence is directed into   s.    The blocking polyhedron of   B(A),   where 

A   is the incidence matrix of all spanning arborescences rooted at   s, 

has been explicitly determined in [5].    Here we modify the notion of spanning 

arborescence in the following way:    a flow arborescence rooted at   s   is 

a spanning arborescence rooted at   s    with each arc carrying a "flow" 

equal to the number of nodes that follow it in the arborescence, that is, 

if we think of   a(s) » p - 1,    where    G   has    p   nodes, and    b(x) = 1    for 

x ^ s,    then a flow arborescence rooted at   s    is an integral feasible 

supply-demand flow which has a spanning arborescence rooted at    s    as its 

support.    It can be shown (we omit the proof) that, in this situation, 

if we let    A'    denote the matrix of all integral feasible supply-demand 

flows, then a row of   A'    that is not a flow arborescence rroted at    s 

is inessential. 

Theorem 5.4.    Let    A   denote the    m   by   n   integral matrix of all flow 

arborescences rooted at    s    in a directed graph    G    having   n    arcs.    Then 

the blocking polyhedron of   B(A)    is given by 

(5.10) £    > 0.    for all arcs    e. 

(5.11) \ C   i l^l,    for all subsets    X    of 
ec(X,X)    e ^_™ 

nodes such that   s e X. 
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Proof.    This follows from Theorem 4.1 by taking   c = «   on all arcs, 

a(s) = p - 1,   b(x) « 1    for   x j< s    (where   G   has    p   nodes),    since 

b(X) B  |x|    or    |x|  - 1    and   a(X) =0   or   p - 1,    according as    s e X 

or   s e X. 

We conclude with a word of caution on the packing problem for the 

matrix   A   of Theorem 5.4.    We might be tempted to infer that the maximum 

integral packing of flow arborescences into a vector   w r. Zn   is given by 

(5.12) min 
{XCK|seX> - |x| J 

(It is true that the maximum real (or rational) packing is given by (5.12) 

without the brackets.) But (5.12) is incorrect for the best integer packing; 

we need all the integral feasible flows (i.e. the matrix A'), not just 

the essential ones, for (5.12) to be valid. For instance, consider the 

directed graph G with weights on the arcs shown in Figure 5.2 below. 

Figure 5.2 

There are two flow arborescences rooted at   s; 

A = 3   0    2    1 

12    0    1 

where   w =  (3,3,1,2).    Taking   y =  (1/2, 3/2) gives a packing of weight 2, 

 in       II • I IIII   I ■ 
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but the best integer packing vector   y   has component sum    1 ^ [2].    To 

get an integral packing of weight 2, we need to consider 

A'  = 

3 0 2 1 

12 0 1 

2    111 

whose last row is inessential, and take y = (0,1,1) 

   amäm   ■■' '        -■  ■ -- ni^aü 
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