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1. Introduction. In [2] and [4] the notion of a blocking pair of polyhedra

arising from combinatorial optimization problems of the maximum packing
variety was introduced and studied. In this paper we characterize the
appropriate polyhedra for such problems which arise in (or can be transformed
into) a network flow context. !!e begin in Section 2 by briefly reviewing
the blocking notion and some general theorems concerning blocking pairs of
polyhedra. In Sectior 3 we consider uncapacitated supply-demand networks
and note a simple decomposition nroperty that has some important ramifica-
tions. In Section 4 we go on to the case of capacitated supply-demand
networks. This section contains perhaps the most general and informative
results of the paper (Theorem 4.1, Lemma 4.2, and Theorem 4.3). Finally,
in Section 5 we discuss some particular combinatorial structures which

fit into this context and initially motivated some of this work.

2. Blocking pairs of nolyhedra. Let A be an m by n non-negative

matrix and consider the polyhedron
(2.1) R = {x e Rl|Ax > 1},

wvhere 1 is the m-vector all of whose components are 1 and R? is the
non-negative orthant of R". The rows of A will generally represent the
conbinatorial structure involved in a particular problem; for example,
they might be incidence vectors of a family of subsets of an n-set. '‘e
will often refer to the polyhedron (2.1) as B(A) to indicate the matrix
that generates it. !le note that B(A) is n-dimensional, convex, and
unbounded (except in the degenerate case where A has a zero row and

hence B(A) is empty).

R B e




or wrdianyril

The rows of A may not all represent facets of B(A); that * ome
of the constraints in Ax > 1 may be superfluous. Call a row vector ai
of A inessential if ai dominates (is oreater than or equal to) some
convex combination of other row vectors of A; otherwise, call ai
essential. Then by the Farkas lemma on systems of linear inequalities,

a row of A is superfluous in defining B(A) if and only if it is ines-
sential. l!%e call a non-negative matrix A proper if all of its rows are
essential. (If A is a (0,1)-matrix, then A is proper if and only if
it is the incidence matrix of a family of m pairwise non-comparable sub-

sets of an n-set.)

Now let

(2.2) B={xeRx-B>1};

a

that is, B consists of all non-negative n-vectors such that x'b > 1

for all b e B. Ve call B defined by (2.2) the blocking polyhedron of

B. Theorem 2.1 below describes the relationship between B and B,

Theorem 2.1. Let the m by n matrix A be proper with rows al .

gve ey

EEE B=({xe R?le > 1} have extreme points bl,...,br, and let B be

EEE. r by n matrix with rows bl,...,br. Let P={xc¢e R?IBX 3_1}.
Then
(i) B = P;

(ii) B is proper:

(iii) The extreme points of P are a",...,a ;

v) P =B, and hqug é = B.
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‘) The matrix B of Theorem 2.1 is called the blocking matrix or blocker

of A. Theorem 2.1 shows that B and é (A and B) play symmetric roles

[

in the relationship; together they constitute a blocking pair of poiyhedra

(a blocking pair of matrices). 'le see that for any blocking pair of

polyhedra, the non-trivial facecs of one and the extreme points of the 3
) other are represented by exactly the same n-vectors. In optimization

contexts, one is often interested in explicitly characterizing by linear

inequalities a convex polyhedron having prescribed vertices. If the

matrix A with these vertices as its rows is proper, then the blocking

S it n e e e
g R

polyhedron of B(A) yields one such characterization (not of the convex

TN
PRI Lo ReR

hull of the rows of A, but rather of the vector sum of this convex hull

with the non-negative orthant).

llow let A be as in Theorem 2.1 and consider the following maximum

packing problem:

(2.3) YA < w ‘

y >0

max 1l-y,

where w e R? and 0 and 1 are the mn-vectors all of whose component.

are 0 and 1 respectively. Let B be an r by n non-negative matrix

having rows bl,...,br. Say that the max-min equality holds for the (ordered) {
pair A,B if and only if, for every w ¢ R?, the packing problem (2.3) i
has an optimal solution vector y such that ”

(2.4) 1y = min bJ.w.
3
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Say that the min-min inequality holds for the (unordered) pair A,B if

and only if, for every 2 ¢ R? and w e R?, we have

2.5) (min a'-2) (min bJw) < 2ew.
i j

Theorem 2,2 below shows that the blocking relation is essentially equivalent

to these notions.

Theorem 2.2. (i) Let A and B be a blocking pair of matrices. Then

the max-min equality holds for both ordered pairs A,B and B,A, and the

min-min inequality holds for the unordered pair A,B.

(ii) Let A and B be proper matrices. If the max-min equality

holds for the pair A,B (in either order), then A and B are a blocking

pair of matrices.

(iii) Let A and B be proner matrices whose rows satisfy a*.p’ > 1

for all i and j. If the min-min inequality holds for the pair A,B,

then A and B are a blocking pair of matrices.

Note that the max-min equality and the min-min inequality hold for
any pair of matrices A,B that generate a blocking pair of polyhedra,
i.e. adding inessential rows to either A or B affects neither the max-
min equality nor the min-min inequality. The only reason for restricting
the matrices in the theorem to be proper is so that we can in fact claim
that A and B are a blocking pair of matrices (and hence be assured
that each row of one occurs as an extreme point of the polyhedron B
generated by the other).

Max-min type results are common in combinatorial optimization problems,

and, through Theorem 2,2, the blocking theory (and its parallel counterpart,

Licaigarad r Nadid e b g
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the anti-blocking theory ([3,4], which is aimed at minirum covering problems)
can be viewed as an attempt to identify and further understand the common
ground on which such results rest.

There is one more theorem concerning blocking pairs that will be needed
in what follows. Let A be a non-negative matrix. Contracting coordinate

j (column j) in A means dropping the jth column from the matrix A.

h

Peleting coordinate j (column j) means dropping the jt column from

A and dropping all ruws ‘rom A that had a positive entry in this column.
Theorem 2,3 below shows that these operations are dual to each other in

the blocking context.

Theorem 2,.3. Let A and B be non-negative matrices such that B(A)
th

and B(B) are a blocking pair of polyhedra. If we contract the j

coordinate of A, leaving A', and delete the jth coordinate of B,

leaving B', then B(A') and B(B') are a blocking pair of polyhedra.

le also note that in any sequence of contractions and deletions on

A, say, the order in which these operations are performed is immaterial.

3. Uncapacitated supply-demand networks. Let [N,A] be an arbitrary

network with node-set N and arc-set A. (All networks considered in

this paper will be directed--elements of A are ordered pairs of elements
of N.) Let some non-empty subset S of N be considered "'source' nodes
and some non-empty subset T of N be considered “'sink'' nodes, where
SNT=¢g. With each node x € S we associate a non-negative number a(x),
the 'supply' at x, and with each node x € T we asscciate a non-negative
number b(x), the 'demand" at x. lle assume, without any real loss of

generality, that

™ - hagitid 4
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(3.1) ) a(x) = J b).

XeS xeT

A feasible flow for this system is a function f: A + R, such that

(3.2) f(x,N) - f(N,x) = a(x) for all x¢€ S,
(3.3) f(N,x) - £(x,N) =b(x) for all xe T,
(3.4) f(x,N) - f(N,x) =0 for all x ¢ SUT,.

Here R+ ¢ :notes the non-negative reals and f(x,N), for example, denotes
the sum

f(x,y).
{yeN| (x,y)eA}

(Later on, when we add a capacity function c: A + R+ to the network, a
feasible flow f will also have to satisfy f£(x,y) < c(x,y) for all
(x,y) € A.) Throughout, we will use the notation, for arbitrary X CN,

YCN,

(3.5) X,Y) = {(x,y) e Alx e X, y € Y},

and if g 1is any real-valued function defined on the arcs,

(3.6) g(Xx,Y) = ) g(x,y). ]
(x,y)e(X,Y) ;

Similarly, if h is any real-valued function defined on the nodes, and if

XCN, wewrite




(3.7) h(X) = ] h(x).
xeX

Let us assume all data (i.e. supplies and demands) are integers and
consider the finite list of all integral feasible flows. Let A be the
matrix whose columns are indexed by the arcs of the network and whose
TOWS are indexed by the integral feasible flows, with entry aij Tepre-
senting the amount flowing in arc j 1in the ith flow. Iote that A
may not be proper; also note that A may have no rows. Our first goal
is to determine the blocking polyhedron of B(A).

Me begin by establishing a simple but important deccmposition lemma.
To simplify the statement of this lemma, let N represent the supply-
demand system given by the network ([N,A] and supply and demand functions
a and b, respectively. Then we let Np denote the supply-demand
system given by the same network [N,A] but with supplies and demands

multiplied throughout by p € R,. Let Z_ denote the non-negative integers.

Lemma 3.1. Every integral feasible flow for N , ke Z , k > 1, can be

+’

decomposed into k integral flows, each feasible for N,

Proof. "e proceed by induction on k. The lemma is trivial for k = 1.
Now let f be an integral feasible flow for Nk’ k > 1, e wish to extract
an integral subflow from f which is feasible for N and leave behind

a flow that is feasible for N Py the induction hypothesis this latter

k-1°
flow will decomnose into % -1 integral flows, each feasible for N, and

we shall be done. But it is clear that the removal from f of any integral
subflow feasible for N will leave an integral flow feasible for Nk-l'

So we need only show that f contains an integral subflow feasible for

N.
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Consider f to be a capacity function imposed on the system N.
1f this system is feasible (i.e., if there exists a feasible flow for it),
then there will exist an jutegral feasible flow by well-known integrality
properties of netviock flows [1], and such a flow will clearly be an
appropriate subflow of f. By the supply-demand theorem [6; 1,Th. II.1.1],

the system N with capacity function £ is feasible if and only if

(3.8) (T NX) - a(s N X) < £(X,X)

for all X C N, where X =1!-X. Ywsince f is a feasible flow for

Hk , Wwe have

(3.9) k(T NX) - ats NT) = £X,X) - £(X,X)

for all XC N, i.e., the net demand over a subset X of nodes is equal
to the net flow intc those nodes. Thus (3.9), the non-negativity of f,
and the assumption k > 1, imnly (3.8). llence there does exist an appro-
priate subflow of f, proving Lerma 3.1.

e now use Lemma 3.1 and Theorem 2.2 to establish the blocking poly-

hedron of B(A), where A is the matrix of integral feasible flows.

Theorem 3.2, Let A be the matrix of inteoral feasible flows in an

uncapacitated sunply-denand network [i,A] with integral-valued supply and

demand functions, a and b, respectively. Then the blocking polyhedron

of B(A) is described by the constraints

(3.10) Ee >0 forall ec€ A,

i R
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(3.11) I _ g, 2b® - a®,
ee (X,X)

for all X c such that b(X) - a(X) > 1.

In other words, if we let B be the matrix whose cclumns represent

the arcs of the network, having a row for each X C N such that

b(X) - a(X) > 1, with entry 1/(b(X) - a(X)) in each column representing

an arc of (X,X) and zero entries elsewhere, then the essential rows of

T

A and B form a blocking pair of matrices.

Proof. let we RT and consider the packing problen

(3.12) YA < w
y20

max 1y,

i.e. find the maximum weight packing of rows of A into the arc-weight

b ot i

vector w. !e note that a packing of total weight r, r ¢ R,, exists

if and only if the system Nr with capacity sunction w on the arcs is j

feasible. ilecessity is clear and we demonstrate sufficiency now. If ;

r = 0, sufficiency is clear, so assume r > 0. Let f be a feasible

flow to Nr with arc capacities given hy the components of w. lle must
show that f can be written as a positive linear combination of integral
;, feasible flows for N. Consider the flow fr defined by fr(x,y) = f(x,y)/r

3 for all (x,y) ¢ A. The flow fr is feasible for N and hence can be
]

written as a convex combination of integral feasible flows for N, since,

as i5 well known, the feasible flows in a network with integral data form d

a convex polyhedron with integral extreme noints. lultiplying each of

\
o
. . s mhmu~:En.--l.lllﬂ..‘i
= 3 P . ik " ' M Y
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3 1 the non-zero coefficients in this convex combination by r gives us a

10

positive linear combination of integral feasible flows (rows of A)
equalling f, and hence a feasible packing with total weight r. So
sufficiency is established.

Now, by the supply-demand theoren, Nr with capacities given by

the components of w is teasible if and only if
rX NT) - aX N 8)) = rd@ - aX) < w(x,X)

E for all X C N. Hence the maximum feasible r, say r*, is given by

(3.13) r* = min 20K

XN (D) - a(K)

ey T

where the minimum is taken over all X C N such that the denominator in

T

(3.13) is positive. Now consider the matrix B described above. By
i Theorem 2.2(ii), we have just established that the essential rows of A
and the essential rows of B form a blocking pair of matrices. Hence
the polyhedron given by (3.10) and (3.11) is the blocking polyhedron of
B(A).

Note that, as a by-product of the proof of Theorem 3.2, we get the

following.

o o

Theorem 3.3. Let A be the matrix of integral feasible flows for an

i uncapacitated supply-demand system N with integral data. Given w e 22

(a non-negative integral weight function on the arcs of the network), let

r* be the total weight of an optimal packing, i.e.
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(3.14) YA < w

max l-y = r*,

and let z* be the total weight of an optimal integral packing, i.e.

(3.15) YA < w

y >0, vy integral

max l-y = 2*,

Then z* = [r*], where brackets denote the biggest integer function.

Proof. That r* is optimal in (3.14) implies that Nr* with capacity

function w 1is feasible. This implies that M[ with capacity function

r*}]
v is feasible, and hence there is an integral feasible flow to N[r”]
with capuacity function w, The case (r*] =0 gives no difficulty, so
assume {r*] > 1. Then by Lemna 3.1, this flow can be decomposed into
[r*] integral flows for N, 1i.e. there is an integral non-
negative packin y in (3.15) with component sum equal to [r*].

Hence [r*] is achicvable in (3.15), and thus 2* > [r*]. But clearly

z* < r*, and consequently the integer z* = [r*].

While Theorems 3.2 and 3.3 are interesting in their own right, their
main function is to lead us to more general theorems of this kind con-

cerning capacitated supply-demand networks. !e proceed to this situation

ar

in the next section,

LA LA it g st
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4. Capacitated supply-demand networks. Our network will now be assumed to

have a capacity function c: A » R*, and a feasible fiow f will satisfy
the additional property that f£(x,y) < c(x,y) for all (x,y) ¢ A. Given
such a supply-demand system (we still assume a(S) = b(T)) with integral
data (supplies, demands, and arc capacities), we let A be the matrix of
all integral feasible flows as before and again ask for the blocking
polyhedron of B(A).

¢ make use of a known technique (9; 1,p.129] to reduce our capaci-
tated supply-demand problem to an uncapacitated one. Given the network

[l1,A] above, we construct a new (uncapacitated) bipartite supply-demand

network [N',A']. For every arc in the original network, we have a source
node in the new one, labelled with the ordered pair (x,y), for (x,y) ¢ A.
For every node in the original network, we have a sink node in the new cne,

labelled x, where x € N, Source (x,y) is joined by arcs from (x,y)

i el S i

to sinks x and y in the new network, and these are the only arcs in
A', Source (x,y) has supply c(x,y) and sink x has a demand of
c(x,M) - a(x), c(x,N) + b(x), or c(x,N), according as node x was a
source, sink, or neither in [N,A]. WHote that the sum of the supplies

in this new network still equals the sum of the demands. (Figure 4.1

below shows a capacitated supply-demand network and the uncapacitated

one derived from it.)
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b(4)
(3 4}/’%®

Figure 4.1

The relation:hip between the two networks is as follows. For every
feasible flow €' in the new network, the flow f 1in the original network
defined by f(x,y) = £'((x,y),y) 1is feasible, and conversely, for every
feasible flow f in the original network, the flow f' in the new network
; defined by f'((x,y),y) = f£(x,y) and f£'((x,y),x) = c(x,y) - f(x,y) is
feasible.

We shall use this transformation to determine the blocking polyhedron

é of B(A).

Theorem 4.1, Let A be the m by n matrix of intesral feasible flows

o s g

in a capacitated supply-demand network [N,A] with integral-valued supply,

demand, and capacity functions a, b, and ¢, respectively. Then the

blocking polyhedron of B(A) is given by the constraints
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\ (4.1) £, 20 for all ec A,

: (4.2) ) £, 2b(®) - aX) - «((x,X) - B),

ecEC(X,X)

5 P _ &
” ) for all XCN and all EC (X,X) such that the right-hand side of (4.2) 1
i 5 is positive.

In other words, if we let B be the matrix whose columns correspond

to arcs of A, having a row for each X €N and each E € (X,X) such
' ' that the right-hand side of (4.2) is positive, with entry

1/((X) - a(X) - c((X,X) - E)) in each column corresponding to an arc of

E and zero entries elsewhere, then the essential rows of A and the

essential rows of B are a blocking pair of matrices.

Proof. Consider the uncapacitated network [N',A'] described above and

let A' be the m by 2n matrix of integral feasible flows for it. By

Theorem 3.2, the blocking polyhedron of B(A') is given by

(4.3) (3 >0 for ali e e A',

(4.4) ) £, > demand(X) (%)
ee (X,X)

for all X € N' such that the right-hand side of (4.4) is positive,
Letting F and W be the source and sink nodes, respectively, contained

in X, we can write (4.4), in terms of the original data, as

(4.5) L _ Eg2c(,N) +b@ - a( - c(P),
ec(F,W)
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(nere W=N-W, F=A-F) forall FCA and WCN, where (F,W)
is the collection of arcs of A' which are of the form ((x,y),z) with
(x,y) e F and z ¢ W, and of course, the right-hand side of (4.5) is
positive,

Mow the matrix A is gotten from the matrix A’ by contracting the
columns corresponding to arcs of the form ((x,y),x). Hence, by Theorem 2.3,
the blocking polyhedron of B(A) will be gotten by dropping from (4.5)
all coanstraints that involve such arcs, i.e. by deletiny the appropriate
columns from the blocking matrix of A'., Thus our desired polyhedron is

given by (4.1) and by the constraints

(4.6) 1 _ £ >c(@N) + b - a(@ - c(F)
ee(F,) €

for all FCA and WCN such that F contains no arc (of A) whose
tail is in W, Thus for given U C N, we only consider constraints ;
where F C (W,N) € A. Now any constraint with F 2 (W,W) is clearly
inessential because adding the missing edges of (W,W) to F increases
the right-hand side of the constraint without changing the left-hand side.
Hence for given W C N, we need only consider constraints where F is

of the form (W,¥) UE with E € (W,W). Hence our desired polyhedron is

given by (4.1) and

(d I g 2c@N + b - a - c(A - ((4,1) UE)) :
ecEC(, ) °© 5

The right-hand side of (4.7) can be written as c(W,N) + b(W) - a(¥) - c(¥,N)

- c(W,W) + c(E), whence replacing W by X gives the desired result.

i
|
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Note that the transformation technique used above allows us to genera-
lize Lemma .1 to the case of capacitated supply-demand aetworks. Let Np’
for pe R+, refer now to the supply-demand network where all supplies,

demands, and capacities have heen multiplied turoughout by p.

Lemma 4.2. Let N be a capacitated supply-demand system with integral

data. Then every integral feasible flow for N, , where k is a positive

integer, can be decomposed into k integral flows, each feasible for N.

Proof. Use the transformation depicted in Figure 4.1 to reduce the problem

to an uncapacitated one and apply Lemma 3.1.
Theorem 3.3 also generclizes to the capacitated case:

Theorem 4.3. Let A be the m Ez_ n matrix of integral feasible flows

for a capacitated supply-demand network with integra. data. Given w e 22

(a2 non-negative integral weight function on the arcs of the network), let

T* gﬂg z* be weights of optimal solutions to the packing problems (3.14)

and (3.15), respectively. Then 2* = [r*].

Proof. Consider the transformed network as above and apply Theorem 3.3
to that network with weight function w(x,y) on arcs ((x,y),y) and

= on arcs ((x,y),x).

In the next section we shall apply these results to some part
combinatorial problems, but first we conclude this section with an example

illustrating Theorem 4.1, Theorem 4.3, and with some remarks.

Example. Let the capacitated network be that shown in Figure 4.2 below:
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Figure 4.2

ke bk S

The matrix of integral feasible flows is

et 8o ki el
-

'

3

J

where the columns are indexed from left to right by arcs (1,2), (1,3), (2,3),

(2,4), (3,4). The blocking matrix B of A is J

(172 1/2 0o o o)
1 0 o6 o0 o0
0 1/2 1/2 12 o0
: 0 1 1 0 o i
B=|] 0 1 o 1 o
’ o 0 1 1
2 0 o o 172
1 0 0 o0 1/2 1/2 ;‘
! Lo o o o 1 |

Let w = (7,2,2,7,7). To solve the integer packing problem for A and

W, We can proceed as follows. Successively multiply the supplies and

demands by k = 0,1,2,..., using as capacities in the network

ck(x,y) = min(kc(x,y), w(x,y)) for the kth problem. The largest k for 1
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which the problem is feasible is the answer z* of Theorem 4.3. In the
example, 2* = 4, and a maximum packing vector for the rows of A is
given by y = (2,2,0). (Note that m%n blow = 4, the minimum being

h

achieved at the 4t row of B.) But it is not true, as one might think

from a casual reading of the proof of Theorem 4.3 (which ultimately rests,
through the transformation to an uncapacitated network, on the proof of
Lemma 3.1) that the best integer packing vector y can be found by
attempting to decompose the final flow by first extracting an arbitrary
integral feasible subflow correspond:ng to k =1, and so on. For
instance, in the exauple, there is no optimal integer packing for A
that assigns its last row a positive weight. One way to find the best
integral packing vector y is to pass to the transformed uncapacitated
bipartite network, its corresponding final flow, and then use the proof
of Lemma 3.1. The interested reader may wish to do this in the example.
The thrust of our remarks, as illustrated by the example, is two-fold.
Firstly, Theorem 4.3 is more subtle than one might think. (We feel that
it is, indeed, a surprising result.) Secondly, there is a reasonably
efficient algorithm for solving the integer packing problem described in
Theorem 4.3.
We have said nothing about the max-min equality for the ordered pair
B,A, but it may be worth noting that finding a row of A that achieves

m%n at.w is equivalent to solving a minimum-cost network flow problem {1],

where w(x,y) 1is now interpreted as the cost per unit of flow in arc (x,y).

5. Some special cases. In this section we discuss some particular classes

of integral packing problems, each of which fits into the general context

of the preceding section., In each case we start with a non-negative

s
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integral matrix A whose rows correspond to integral feasible flows in
a capacitated supply-demand network with integral data, describe the

blocking polyhedron of B(A), and briefly discuss the integral packing
problem for A and a non-negative integral weight vector w having a

component for each column of A.

Example 5.1 (k-ways in directed graphs). Suppose we have a single source

s and single sink t 1in our flow network with a(s) = b(t) = k, where

k 1is a positive integer, and assume all arc capacities are 1. Then an
integral feasible flow (if one exists) can be decomposed into a collection
of k arc-disjoint directed paths from s t» t, plus possibly some
arc-disjoint directed circuits. We may throw away the circuits, if any,

in such a decomposition, since retaining them would clearly yield inessen-
tial rows in our (0,1)-matrix A. Each row of A may then be viewed as
the incidence vector of a k-way from s to t. (Some of these may still

be inessential.) The constraints (4.2) of Theorem 4.1 simplify to

(5.1) ee%:(x’n £, 2k - | (X,X) - El,

where (X,X) is a cut separating s ¢ X from te X, |Z| denotes the
cardinality of set 2, and we have a constraint (5.1) for each subset E

of every cut (X,X) separating s from t such that the right-hand side
of (5.1) is positive, (Notice that if k = 1, so that A is the incidence
matrix of s to t simple directed paths, then we must take E = (X,X),
and the blockirg matrix B of A is a (0,1)-matrix, the incidence matrix
of all set-wise minimal cuts separating s from t [2,4].)

The integral packing problem for A and a non-negative integral weight

vector w can be solved by the general procedure described in Section 4.
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The optimal integral packing vector y has component sum equal to

(5.2) L w(E) .I.
Be(X,X) (_k - [(X,X) - E}

where the minimum is taken over all subsets

E of s,t cuts (X,X) such
that the denominator in (5.2) is positive.

o o ta

Anzlogous results hold for undirected graphs.

ki

Example 5.2

(2ero-one matrices with prescribed row and column sums). Let

! 3),00058 and bl""’bn be positivc integers and consider the class i

t&(a,b) of all m by n (0,1)-matrices having row sums 3),...,8 and

column sums bl""’bn respectively [1,6.8]. There is a simple criterion

due independently to Ryser (see [8]) and Gale [6] in order that the class
Of(a,b) be non-empty; this criterion is in terms of the majorization con-

cept for the vectors a = (a;,...,a ) and b= (b,,...,b. ). There is
1 m 1 n

also a simple algorithm for constructing a matrix in the class, if one

exists, or ascertaining that the class is empty (see [1,6,8] for a full

discussion cf these matters).

Nov; let A be the matrix having mn columns, corresponding to the

cells of matrices in fa,b); each row of A is a (0,1)-vector corre-

sponding to a member of &f{a,b). In other words, A is the incidence

e A T e T T i T e

matrix of the class of all members of ¢(¥(a,b). (The matrix A 1is proper;

it may have no rows.)

Since members of (7(a,b) correspond precisely to feasible integral

R

3 e T o

flows in a complete bipartite graph with m source nodes, having supplies

31500058, in one node-part, and n sink nodes, having demands bl,... b,

in the other node-part, where all arcs lead from sources to sinks and i

SROPS

. o T " o " —
e i
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have capacity 1, the incidence matrix A describeu above fits into the

context of Section 4. Theorem 4.1 then implies:

Theorem 5.1. Let A be the (0,1)-matrix described above whose rows

represent the members of the class (%(a,b). Then the blocking polyhedron

of B(A) is given by the constraints

(5.3) Eij >0 for i=1,...,m and j =1,...,n,

(5.4) ) &5 20 - a(® - [R][c] + [E],
(i,j)eBRec

for all Rc({1,...,m}, Cc{l,...,n}, and all ECR x C such that the

right-hand side of (5.4) is positive.

Here we have doubly subscripted the variables to correspond to the
cells of our m by n matrices. R is a set of row indices (R 1is the

complementary set), C is a set of column indices, and E is a subset

of the cells in rows R and columns C.

Theorem 4.3 then implies:

Theorem 5.2. Let w ¢ zr:m be a weight function on the cells of an m _b_y_

n matrix (i.e. w 1is a non-negative integral m by n matrix), and

let A be the incidence ritrix of Theorem 5.1. Then the maximum value

z* in the integral packing problem (3.15) is given by

(5.5) z¢ = min [ % (E) J
ERxC| b(C) - a(R) - |R}|C| + |E|

where the mimaqum in (5.5) is taken over all choices of R, C, and ECR x C

such that the denominator is positive.

T T

ik B e
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In other words, Theorem 5.2 describes the maximum number of members

of O1(a,b) that can be packed into an m by n non-negative integral

3 . matrix. We also note that to determine z*, we need not compute the

‘ right-hand side of (5.5), but can simply solve the sequence of network-

flow problems pictured in Figure 5.1 below for k = 0,1,2,...

kb

(arc capacities min(k,wij))

kbz

kb ;
n

Figure 5.1 ?

The largest feasible k will be z*.

. . e SRS

F Theorem 5.2 allows us to treat certain feasibility problems for
3-dimensional (0,1)-arrays in a 2-dimensional context. Such problems
are in general notoriously difficult. Perhaps the most comprehensive ;

work on multi-dimensional arrays that is related to the material of this

paper is due to Jurkat and Ryser [7], who remark that a general existence ]
! theorem for 3-dimensional (0,1)-arrays with prescribed line sums is

unknown. The results of this section do not of course furnish such a s
theorem, but they do give information on the followin~ special case. Let

3yseee,8 and bl""’bn be row and column sums at each level of an

g m by n by p (0,1)-array. Then Theorem 5.2 implies the following:
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Theorem 5.3, The constraints

n
{(5.6) .21 Xk = 8 for Y<i<m, 1<k <p,
J=
m
(5.7 .{1 Xjj =P; for 1<j<m, l<kczp,
i=
(5.8) k'lxijk:wijggg_liif_m, 1<j<p,
(5.9) xijk =0or1 forall i, j, k,

are feasible if and only if p < z* defined by (5.5).

In connection with Theorem 5.3, it should be remarked that we do not
need to include the Gale-Ryser critexrion that @xa,b) be non-empty in
the feasibility condition of Theorem 5.3. For if ox(a,b) = @#, then :z*
defined by (5.5) can be shown to be zero by appropriately selecting R,
C,and E = ¢,

To illustrate the integer packing problem for (0,1)-matrices having
prescribed row and column sums, the reader may wish to try his hana on

the following numerical example. Let a=b = (2,2,2,2) and let

=
r-‘0 9 8 7
9 3 2 9

W=
7 3 3 3
7 3 3 3
— -4

Choosing R = {2,3,4}, C = {2,3,4}, and (R xC) - E = {(2,4)} shows

that 2z* < [z—g-] = 7. Does z* =77

o i

LS
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Example 5.3 (Flow arborescences). Given a directed graph G and a

particular node s of the graph, a spanning arborescence rooted at s

is a set of arcs of G that forms a spanning tree of the underlying
undirected graph such that (i) each node of G other than s has just
one arc of the arborescence directed into it, and (ii) no arc of the
arborescence is directed into s. The blocking polyhedron of B(A), where
A is the incidence matrix of all spanning arborescences rooted at s,

1 has been explicitly determined in [5]. Here we modify the notion of spanning

E arborescence in the following way: a flow arborescence rooted at s is

a spanning arborescence rooted at s with each arc carrying a “flow"

equal to the number of nodes that follow it in the arborescence, that is,
if we think of a(s) =p -1, where G has p nodes, and b(x) =1 for
x # s, then a flow arborescence rooted at s is an integral feasible
supply-demand flow which has a spanning arborescence rooted at s as its
support. It can be shown (we omit the proof) that, in this situation,

if we let A' denote the matrix of all integral feasible supply-demand

h flows, then a row of A' that is not a flow arborescence rcoted at s

is inessential.

Theorem 5,4, Let A denote the m Ez_ n intgg:al matrix of all flow

arborescences rooted at s in a directed graph G having n arcs. Then

the blocking polyhedron of B(A) is given by

3 e

(5.10) £ >0, for all arcs e, 3

(5.11) ! _ & 2 IX|, for all subsets X of
ee (X,X)

i nodes such that s e X.
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Proof. This follows from Theorem 4.1 by taking ¢ = » on all arcs,
a(s) =p -1, b(x) =1 for x#s (where G has p nodes), since
b(X) = |X] or |X| -1 and a(X) =0 or p -1, according as s e X

or s ¢ X.

We conclude with a word of caution on the packing problem for the
matrix A of Theorem 5.4. We might be tempted to infer that the maximum

integral packing of flow arborescences into a vector w r Zf is given by

(5.12) z* = min [M
{xeN{sexy |X]

(It is true that the maximum real (or rational) packing is given by (5.12)

without the brackets.) But (5.12) is incorrect for the best integer packing;

we need all the integral feasible flows (i.e. the matrix A'), not just

the essential ones, for (5.12) to be valid. For instance, consider the

directed graph G with weights on the arcs shown in Figure 5.2 below.

Figure 5.2

There are two flow arborescences rooted at s:

A = 3 0 21
1 2 01

where w = (3,3,1,2). Taking y = (1/2, 3/2) gives a packing of weight 2,

e

¥

b {0 o i
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but the best integer packing vector y has component sum 1 # [2]. To

get an integral packing of weight 2, we need to consider

3 0 21
A'=11 2 0 1
2 10 L

et

whose last row is inessential, and take y = (0,1,1).
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