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ABSTRACT 

v„/hl<
C0,°CePt ^ a WaVe-heiBht P'-on'-ne.er baSt(d on phaSe-raPgi„g with a 

VHF-modulated carbon dioxide (CO,,) laaer „as examined.    Experimental 

measurements of the diflusely baekseattere-l CO, laser radiation from the 

surfaee of water were made.   Baaed on these measurements, the oonelusion is 

that a laser profllomeler ean be assembled mainly from commercially available 

components.   Two designs are recommended,  one for use at a range of 3 m 

or measurements In a wind-wave tank and the other for use at a range of 10 n 
from a tower in the ocean. 

The possibility of inferring surface-wave statistics from the propertie. of 

the speckle pattern resulting when the surface is illuminated with a laser was 

■nvestlgated.   The general theory of speckle patterns was strengthened and 

extended.   The concluaion was that the apparent dlscrepnnciee .mong several 

theones result from Improper Interpretation of the results rather than 

differences in the theories.   The ensemble average intensity distribution in the 

recmver is shown to be related by a Fourier transformation to the ensemble 

average spatial coherence of the field at the surface.   Further, this spatial 

coherence Is related to rms surface roughness and the surface height auto- 

correlation function when Gaussian statistics can be assumed for the wave- 

height distribution.   The spatial coherence in the receiver Is related to the 

intensity distribution at the surface and contains no information about the sur- 

face characteristics.   The physical significance of wave height, slope, and 
curvature power spectral densities and the effect of realistic perturbations are 
under continued investigation. 
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FOREWORD 

This technical report covers the activity during the period 21 May 1972 

through 31 December 1972.   The work is expected to be continued with 

additional funds.   The principal investigator, Dr. Kamala S. Krishnan, was 

responsible for the research activity under SRI Project ERU 8727-100/ISE 2422, 

The technical direction of the program was provided by Dr. Richard F. 

Hoglund,  Chief, Advanced Concepts Division, Strategic Technology Office, 

Defense Advanced Research Projects Agency, Arlington, Virginia. 

The research program discussed in this report was supported by the 

Defence Advanced Research Projects Agency of the Department of Defense and 

was monitored by the Office of Naval Research under Contract No. NOCO14-70- 
C-0413. 

The views and conclusions contained in this document are those of the 

authors and should not be interpreted as necessarily reflecting the official 

policies, either expressed or implied, of the Defense Advanced Research 

Projects Agency or the U, S. Government. 

Reproduction of this report in whole or in part is permitted for any purpose 
of the U. S. Government. 
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I      INTRODUCTION 

In the study of the surface of the oceans, the capillary wave-height spectrum 

plays an important role in the coupling of wind energy into the sea, in the 

turbulent flow and mixing in both the sea and the atmosphere (near the interface), 

and in the growth of gravity waves on the surface.   A possibility also exists for 

detecting subsurface processes by observing the changes in the natural wave- 

height spectrum produced as a res.'It of complex and poorly understood inter- 

actions between natural and artificial internal waves, the mixed upper layer of 

the ocean, ai J the air-sea interface.    Ideally, the measurement of ocean 

surface characteristics should be accomplished remotely without contacting the 

surface.   To be of value in an operational sense, the technique should be capable 

of dat^ rates consistent with adequate redundancy and effective coverage 01 the 

truly vast surface area of the oceans. 

The major objective of this program was the analysis of the feasibility of 

two active laser techniques that have potential for remote sensing.   In the laser 

profilometer technique, a VHF-modulated laser beam is used to irradiate a 

smi;ll area (for spatial resolution) on the surface, and the relative wave ampli- 

tude is obtained by phase comparison of the return against the modulating signal. 

In the speckle approach, a broad area on the surface is illuminated by a laser 

beam and the surface-wave statistics may be inferred from the properties of the 

scattered radiation.   With both techniques, the use of a C02 )aser is contemplated 

because of its small depth of penetration in water.   This is crucial to ensure that 

the radiation is received from the surface and not from the bulk of the water. 

This report deals with the two methods in the above order.    Laboratory 

measurements of the diffusely bact scattered "adiation from the surface of 

wa+er needed for the evaluation of the profilometer are first described.   An 

analysis and recommendation of a laboratory system for measuring the wave 

■ ■ ■    -' 
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heights on the surface of water follows.   The current status of the theory of 

speckle patterns pertinent to the measurement of surface characteristics is 

next described.   Application of the theory to scattering from the sea surface is 

made.   Our initial results are then present; d. 

The wjrk on this program is expected to be continued under another 

contract.   In that sense, this report is an interim status report on the work, 

although it is intended also to satisfy the requirement for a final report under 
the current contract. 

mini in ii i    HI Mti     --         .— ^^ ^ .      ..     .     .  ^     .     . _..  —^ . . 
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II   LASER PROFILOMETER 

A.   GENERAL CONSIDERATIONS 

The technique proposed by SRI uses a VHF-modulated CO,, laser beam to 

Irradiate an area on the ocean surface that is small compared with the capillary 

wave structure.   The radiation that is scattered back from the o-ean surface is 

collected by suitable optics and detected.   The output of the detector as well as 

a VHF signal representing the modulated output of the laser are now fed into a 

differential phase-measuring system.   A block diagram of the system is shown 
in Figure 1. 

Because the capillary wave structure has dimensions on the order of 

centimeters, the laser beam must illuminate an area substantially smaller than 

this in order to resolve details of the capillary wave heights.   If the beam 

illuminates an area large compared with the capillary wave structure, a high 

probability exists of a specular component being received from some facet of a 

capillary wave within the illuminated area.   This specular component would 

dominate other diffusely reflected components, and the system would be useful 

only for monitoring the gravity wave (or large-scale) structure.   Thus, to 

monitor the small-scale structure associated with capillary waves, the vertical 

and horizontal resolutions have to be on the order of one millimeter. 

If an optical beam with a diameter on the order of 1 millimeter is inciden. 

on the surface, two components are reflected — one specular and one diffuse. 

The specular component will not, in genenl, be directed back toward the 

transmitter because the slope of that facet on the surface will not, in general, 

be normal to th? direction of the incident beam.   On the assumption that the 

transmitted beam is focused on the surface, the specularly reflected beam will 

have a diffraction beamwidth larger than or. at best, equal to that of the 

interrogating beam; i.e., its beamwidth at the transmitter will be equal to or 

larger than the transmitting aperture (neglecting atmospheric turbulence). 

S 

■■---'   - ■    - -■-'-■   - -■   --'-- ■ -■■■'■■ 
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FIGURE  1      BLOCK DIAGRAM OF WAVE HEIGHT MEASUREMENT SYSTEM 

The second component of reflected energy will be diffusely scattered by the 

bulk of the water or surface imperfections--with an angular distribution in the 

back hemisphere that is quite broad and well-behaved (at least in the visible 

portion of the spectrum).   This is the component that will, in general, be 

available to the receiver, and only occasionally will a spike of specularly 

reflected energy be received.   This spike will have not only the proper phase 

but also a much greater amplitude than the diffusely reflected component. 
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If the wavelength is in the blue-green region of the spectrum, the beam 

transmitted through the surface will attenuate slowly with depth-approximately 

10 m to the 1/e or -4. 34 dB point (hereafter referred to as the skin depth) in 

average surface ocean waters.   As a consequence, the center-of-gravity or the 

phase center of the oackscattered light received from this beam could be as 

much as several m below the surrace and could thus lead to a very large e -ror 

in the apparent height of :he sea surtuce.   Even at 842. 8 nm (the He-Ne laser), 

the skin depth can be several m in typical surface ocean waters. 1,2* 

For this reason, a wavelength must hr. selected whose depth of penetration 

In the water is comparable to or less than the vertical resolution desired.   A 

plot of this depth of penetration for infrared wavelengths is shown in Figure 2 

(data are calculated from Zolatarev et al.).3 

For the system to have reasonable ranges in the atmosphere, It Is also 

essential to select a wavelength in which the atmosphere is reasonably trans- 

parent   Reference 4 shows a number of absorption spectra over 300-m 

atmospheric paths.   For narrow-band lasers, higher resolution studies should 

be consulted to determine whether any narrow atmospheric absorption bands 
exist at the laser wavelength. 

A third factor, the magnitude of the specularly reflected component, is 

also important.   To minimize the amplitude of the occasional specularly reflected 

spike that the receiver must handle, this reflection should be as small as possible 

Reference 2 (pp. 362-363) tabulates this reflection coefficient as a function of 
wavelength. 

Alter consideration of all factors, as well as the laser state of the art   it 

was decided that a C02 laser  (X =   10.6 Mm)  has the following desirable' 
features for this application: 

• Available In well-engineered, reliable packages with good power 
outputs at high efficiency. 

• High atmospheric transmission in the absence of water droplets or fog 

• Specular reflection coefficient of less than 1 percent. 

• Skin depth in water of about 10 ^m. 

♦References are listed at the end of this report. 
5 

_.______.       
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FIGURE  2      WAVELENGTH  DEPENDENCE OF  THE SKIN  DEPTH   IN WATER 

Source:   Zolatarev, V. M., et al., Optics and Spectroscopy, 27, 

B.    EXPERIMENTAL MEASUREMENTS 

Before SRI submitted the proposal to perform work on a ph.se-ranging 

radar based on a C02 loser, preliminary and limited experiments were per- 

formed to measure the relative magnitudes of the specularly and diffusely 
backscattered components. 

The experimental setup is shown in Figure 3.   A C02 laser with a power 

output on the order of 1 W is chopped at 900 c/s.   The chopped beam passes 

through a hole in a mirror.   Mj ,  and is reflected down onto the surface of a 

pan of water by another mirror.   M2 .   The mirrors act as collectors for the 

radiation from the surface of the water, which is focused onto a liquid-nitrogen- 

cooled photoconductive (gold-doped germanium) detector. 

— ■ ■ - - 
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FIGURE  3       EXPERIMENTAL SET UP FOR  DETERMINING   RELATIVE  MAGNITUDES OF  THE 
SPECULARLY AND DIFFUSELY  BACKSCATTERED COMPONENTS 
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During these experiments, the signal from the backscattere 1 component 

was found to be 3 to 4 orders of magnitude smaller than that from the specular 

component, but it was well within the dynamic range constraints of the proposed 

phase detector and well above the sensitivity of the proposed optical detector. 

It should be kept in mind that the signal received from the scattered component 

depends on the size of the receiving aperture, but the specular component does 

not.   Further, it was found tlmt focusing the laser beam onto the surface of the 

water created a dimple.   The effect of this dimple is to enhance the backscatter 

signal strength by creating, in effect, a specular component in the backscattered 
radiation. 

However, during these preliminary experiments, geometrical limitations 

restricted the range of angles over which the measurements could be performed. 

A larger range is to be encountered in the sea-slope spectrum.   Further, the 

detector used in these experiments was not the optimum detector for 10.6 jim 

radiation.   For these reasons, we felt that beforo a feasibility analysis and a 

firm recommendation concerning the construction of a demonstration profilometer 

could be made, more reliable and complete data were required.   Therefore, we 

designed and executed an experiment to obtain these data.   The following sub- 

sections describe the design of the experiment, the apparatus used, the calibra- 
tion procedure, and the results. 

Design 

In order not to constrain the profilometer design for lack of information 

on the angular distraction of the diffusely scattered radiation, it was decided 

that data should be taken over a range of incidence angles and over a range of 

azimuth and elevation angles of the receiver.   Although the number of data 

pomts to be taken would be deWmined by the extent to which structure was 

manifested in the results, provision was made in the design of the apparatus to 

permit data to be taken over a full hemisphere, thus taking advantage of the 

inherent symmetry of the geometry to cover a small range where the physical 

obstructions were unavoidable.   However, because of the finite acceptance angle 
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of the detector, a small zone of the hemisphere near the horizontal plane cannot 

oe treated in a manner equivalent to the rest of the sphere. 

Figure 4 shows the basic geometry of the experiment.   A Gaussian 

beam from a C02 laser is incident on the surface of the wttor. and the radiation 

that is scattered into a solid angle   no ,  not in the specular direction, is 

collected by an optical system that forms an image of the incident spot on the 

detector element.   The optical system is designed such that this image is always 
smaller Mian the detector element for all angles used. 

We define a scattering parameter   <j{ßt S, 9)  by 

(r{ß,e,<p) ^ APJfl. 0,<P)   ,.   R(0. 9.») 
"o 1     o 

(2.1) 

DETECTOR 
ELEMENT 

APERTURE 

LENS 

SURI-ACE OF WATER 

INCIDENT FOCUSSED 
GAUSSIAN  LASER BEAM 

SA-2422-1 

FIGURE  4      GEOMETRY OF  EXPERIMENTAL MEASUREMENTS 
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where AP  is the amount of power scattered into solid angle   n   ,  P    is the 

incident power, and  R (ß, 9, <p)  is defined by 

*{ß.e,f) A *Piß,o,<p) (2.2) 

Figure 5 defines the angles ß , 6 ,   <p.    Thus, experimentally, we measure 

AP ,   P. ,   and   Sl^  so that scattering phenomenon can be completely charac- 
terized by Eq. (2.1). 

2.   Apparatus 

A block diagram of the experimental apparatus is shown in Figure 6. 

The experimental arrangement is shown in Figure 7.   An He-Ne laser is used 

for alignment purposes; and a mirror that can be flipped in and out of position, 

is adjusted before the experiment such that the laser's visible beam is accurately 

coaxial with the C02 laser beam.   Another He-Ne laser, called the reference laser, 

is used to provide a reference signal for phase-sensitive detection.   During the 

experiment, the beam from this laser crosses the CO   laser beam at the point 

where it is chopped and is incident on detector D  that provides a reference signal 

to the phase-sensitive detector.   Thus, both the incident  CO« laser beam and 

the reference He-Ne laser beam are square-wave modulated at 150 Hz.   The 

AP  signal from the scattering apparatus is measured by the phase-sensitive 

detector and is then sent to the  Y channel of an X-Y recorde.-.   A signal from 

the scattering apparatus that is proportional to the angle  0   feeds the  X  channel 

of this recorder.   The phase-sensitive detector was used with an integration 

time of 3 s and a roll-off of 12 dB per octave.   A CR Model 201 power meter 

inserted in the beam before and after data were taken was used to monitor the 
CO- laser power. 

A photograph of the scattering apparatus is shown in Figure 8.   The 

C02 laser beam is reflected by mirror M, to mirror M2 that focuses it onto the 

surface of the water contained in plaitlo cup C located on the center of the rotating 

table T.   Detector D is a Laser Precision Corporation pyroelectric detector 

(Model number Kt-4110 with Kth-111 preami-lifier and with a load resistor 

R  =   lOMfi) located on a motor c'riven arm that can be moved on the circum- 

ference of a circle whose center ii the point of intersection of the CO   laser 

beam and the water surface adjusted to a prescribed level.   The collecting optics 
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0 < ß < 45° 
0 < ^ < 90° 

90 < 0 < 90° 

SA-2422-2 

FIGURE  5      DEFINITION OF  ANGLES  IN  EXPERIMENT 
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FIGURE  6       BLOCK  DIAGRAM OF  EXPERIMENTAL APPARATUS 
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for this detector consist of two diffraction-limited antireflection-coated 

IRTRAN II lenses.   The outer lens has a focal length of 6 in and is located 6 in 

from the water surface; the inner lens has a focal length of 1 in and is located 

1 in from the detector element.   The aperture of this optical system subtends 

a solid angle   no  of about 0. 022 sr at the water surface.   The spot size of the 

laser beam at the surface of the water is calculated to be 0.27 mm.   The size 

of a speckle at the lens aperture is given by (RA/D) = 0. 58 cm and on the 

average about 18 speckles will be in the one-inch aperture at a given instant. 

The signal-to-noise ratio resulting from deviations from this average value is 

about 4.   However, if the integration time is on the order of a few seconds as 

was the case during the experiments, the speckles change many times and the 

fluctuations in the number of speckles become very small.   The experimental 

signal-to-noise ratio during these measurements was estimated to be about 

20 when the diffusely scattered component was measured. 

3.   Calibration 

The calibration of the apparatus was achieved in steps because of the 

limited dynamic range of the detection system.   The CO,, laser beam was first 

attenuated by a calibrated salt crystal attenuator and was then incident on a good 

quality specular gold mirror that was positioned in the scattering apparatus in 

place of the water surface.   The optical collection system was placed in the 

specular direction so that it collected all of the specular radiation from the gold 

mirror.   Tie transfer function for the entire apparatus was then calculated from 

the signr.i mtasurod by the phase-sensitive detector, the measured CO   laser 

pov er. ana :he known attenuation of the calibrated salt crystal attenuator.   The 

transit," function, measured in this way. accounts for all optical, electrooptical. 
and electronic attenuation or gain in the system. 

The salt crystal attenuator consisted of two polished NaCl flats oriented 

such that the unpolarized incident C02 laser beam was reflected twice at 45°, 

'The component of the electric field that was Fresnel reflected in the perpendicular 

(1) sense on the first reflection was Fresnel reflected in the parallel (Jl ) sense 

15 
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on the second reflection and vice versa.   The power in he resulting unpolarized 

beam was then calculated froir the known index of refraction of NaCl at 10,6 pm. 

The attenuation was calculated to be 7, 3 x 10~4. 

4.   Results 

Before measurements on seawater were actually made, several short 

experiments were made to determine the dynamic range, accuracy, and sensitivity 

of the apparatus.   After the C02 laser beam was attenuated, the spe -ilar reflec- 

tance of distilled water was measured for   ß =  lö0  and   ß = 45° ,  and it was 

found to agree closely with the calculated values when the known index of 

refraction for water at 10.6 jum was used.   By measuring away from the 

specular direction, we found that we could easily distinguish between a good 

quality, clean, first surface mirror and a poorly polished or dusty mirror. 

This emphasized the importance of clean optics in the experiment and led us to 

carefully clean all the optics in the apparatus and to maintain them free from 

dust.   In spite of this, it was found that significant percentage errors could 

result from specific geometric configurations of the measuring apparatus which 

involved shiny metallic surfaces in the field of view of the collecting optics. 

After using a series of baffles, tubes, and absorbing diffuse scattering material 

on metallic surfaces, we were satisfied that the measured signal was coming 

only from the illuminated spot on the water surface. 

To demonstrate the dynamic range capability, we measured the diffuse 

scattering from a planar sheet of asbestos at several azimutfaal angles.   In 

Figure 9, one such measurement shows the scattering parameter R (15°, ö , 90°) 

as a function of elevation angle   Ö   in the plane of incidence.   It is worth noting 

that because the collecting optics subtended an angle of about 10°, part of the 

reason for the rapid falloff of signal beyond   0 =  80°   is the obscuration of this 

aperture as part of the aperture goes below the horizontal plane of the asbestos. 

For this reason, measurements beyond    0 ■ 80°   should be discounted. 

16 
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SA-2422-6 

FIGURE 9      ANGULAR  DEPENDENCE OF SCATTERING PARAMETER OF ASBESTOS 
(/J = 15 , </> = 90°) 
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Our results for water measurements are shown in Figure 10.   For a 

reference, we chose 20 MQ deionized water that was available from our clean 

room facility.   Scattering from this water is indicated by the dashed curve in 

Figure 10,   Also plotted in Figure 10 is a curve labeled seawater.   This water 

was taken from San Francisco Bay, and, although care was taken to collect 

clean water free from sediment, the water was not filtered or pre cessed in any 

other way after the sample was taken.   The large flat-topped signal indicated 

between 40° and 50° would be the result of scanning through the Fresnel 

reflection located in the plane of incidence at 45°.   However, because of the 

allowable power densities at the detector, it could not be scanned through the 

specular reflection without attenuating the laser beam.   Thus, the value depicted 

is that calculated for deionized water and it is in agreement with a different 

experiment as described eprlier.   The discontinuity of one order of magnitude 

indicated on the R axis should be noted.   The width of this pedestal is about 

10° corresponding to the angle subtended by the collecting optics.   It is clear from 

Figure 10 that a measurable difference exists between seawater and our reference 

deionized water, particularly at large angles. 

We also measured the scatterin ? parameter for  ß  =  456   for five 

other azimuthal angles distributed between   f =  90°   and   f =  260° .    The 

result for   f =  225°   is shown in Figure 11.   Other results are not shown 

because no structure in R  was observed, and the results are essentially identical 
to Figure 11. 

The scattering parameter was also measured for  0  =  18°.   During the 

course of this measurement, we observed an effect that was strongly nonlinear 

in power.   Changing the angle of incidence from 45° to 18° at the same power 

sufficiently increased the power density at the surface of the seawater such that a 

residue began to form when the laser beam was turned on. and the amount of 

scattered radiation increased markedly.   Figure 12 shows the result for ß  =  18°, 

9 = 110°  at two different incident powers.   These and similar results at other 

angles   f are somewhat less reliable than our results for higher values of ß 

for two reasons.   First, the residue that was formed at higher powers moved 

18 
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FIGUnE  10      ANGULAR  DEPENDENCE OF SCATTERING PARAMETER OF SEAWATER 
AND  DEIOMZED WATER 

«3 = 45°, 0 = 90°) 
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SA-2422-8 

FIGURE   11       ANGULAR  DEPENDENCE OF SCATTERING  PARAMETER OF SEAWATER 

«3 = 45°, 0 -  225°) 
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FIGURE  12      ANGULAR  DEPENDENCE OF SCATTERING  PARAMETER 
OF  SEAWATER  AT TWO POWER   LEVELS 

iß =  18°. 0 -  110°) 
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rather randomly on the surface because of the convection currents so that the 

measured signal fluctuated as a function of time.   Second, when the power was 

reduced to ensure that no residue would be formed, the signal-to-noise ratio 

for the experiment dropped. 

A brief investigation of the formation of the residue was made because a 

considerable enhancement of the ncattered signal occurs after its formation, 

and it was thus of interest to see whether it could be reliably produced.   Water 

from the San Francisco Bay and the Pacific Ocean, as well as tap water, dis- 

tilled water, and artificial seawater were used.   As the power density was 
-2 increased to about 100 W cm    , a dimple was formed in all cases at the water 

surface at the focus of the laser beam.   (For the experimental beam diam of 

about 0. 27 mm, the averaged pover density is about 1.7 X 10   P. W cm-2.) 

The fractional scattered power is essentially independent of incident power at 

these levels.   One could also observe the convection currents and at times a 

plume of steam generated by the local heating from the 1 eam.   The residue can 

be observed to form at about 1 kW cm     with an accompa  ying large increase in 

fractional scattered power.   There appears to be a rather sharp power density 

threshold for this effect after which the fractional scattered power again becomes 

rather independent of power.   This power dependence of R   (18°, 45°, 90°) 

exhibits a sharp increase at about 1 kW cm     as shown in Figure 13. 

The residue visibly formed only w**   San Francisco Bay water.   Its 

formation was accompanied by audible violent ebullition or spitting, and the 

residue moved along with the convection currents.   The scattering signal also 

fluctuated rather rapidly with time.   Based on the assumption that this fluctuation 

was caused by the formed residue moving off the beam and a new bit of residue 

forming at the beam focus, the time constant for the formation of the residue was 

found to be on the order 40 ms. 

No residae was observed to form on the other types of water ever though 

violent spitting was audible in these cases at various power levels,   Ano'the 

interesting observation was that the violent action seemed to be triggered bj 

surfactants.   For example, if care was taken and a fresh sample of the water was 

22 
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FIGURE 13      NON-LINEAR POWER DEPENDENCE OF SCATTERING 
PARAMETER OF SEAWATER 

(0 =  18°, 6 = 45°, <t> = 90°) 

23 

..^ ... .... J^l..-.-... .    , ■-..  
*-i-fcJ*1-"- - "   ■■   -  .^-^-.    ........ .^   —- ---        --  - -     - --"-       -- -- 



•mv^^w      ii    i in iw" i immmmmimmami mm^tm^f — "W* 

placed in the cup without actually touching the cup or water, only the dimple 

and convection currents would be observed at a fairly high power level.   How- 

ever, when the water was touched with a finger or with a paper towel twisted 

(by hand), into a point, the violent spitting would immediately start. 

The residue is surmised to be salt.   However, only in the case of the 

Bay water, the scum or residue formed in a large enough quantity to allow 

collection on a slide.   It is quite possible, of course, that small amounts of the 

residue formed with ocean water and artificial seawater; however, they did not 
agglomerate into a visible scum. 

A preliränary analysis with a laser microprobe was inconclusive as to 

elemental composition.   Thus, the nature or the mechanism of formation of the 

residue is not currently identified.   Its potential for surfactant detection and 

enhancement of the scattered signal should be noted. 

Thus, the scattering parameter R .  Eq. (2. 2), was found to have a 

value of 10     for the experimental geometry.   This value was found to be 

relatively independent of the various angles /?, ö ,  and v   in the ranges in which 

we were able to examine them.   No evidence was found to indicate any peculiar 

features.   Since the experimental system had a collection aperture of 0. 0218 sr, 
the above value of R ,  leads to a value 

diffuse S^ =   4. 58 x 10~6 sr"1 

For purposes of comparison, the expected molecular scattering from the 

molecules in a layer of water 10 /im deep at the focal region of 0. 27 mm diam 

was calculated using a similar geometry and assuming a molecular scattering 

cross section of IG"32 cm2 sr"1 molecule"1 at 10.6 Mm.   It was found that 

molecular =   4xl0"13sr"1 
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The detection system used would be inadequate to the task of seeing this signal 

The observed diffuse scattering appears to result from phenomena other than   ' 

molecular scattering; in all probability, paniculate scattering. 

C-    PgMQRMANCE EVAT.nATTnMn. ^E LASER PROFILOMFTPP 

1.   General 

The genera! concept of the profilometer to as follows:   The laser beam 

will be amputude-modulated (exteraal to the laser cawtv, at a chosen frequency 

and directed at the snrtace of the water by snitobto optics.   A receiver will collect 

and focus the backscatter radiation onto a detector after It passes through a cooled 

-rrowband fllter to reject unwanted background thermal radiation.   The output of 

the detector will be amplified with iow-noisc. „arrow-band amplifiers    The 

amplified output of the detector and a sample of the modulating voltage'wil! be 

fed mto a commercially available phase-measuring instrument that has a volt- 

age output proportional to the phase difference between the two input signals 

This voltage, which to related to the target range, can then be tape recorded 

and analyZed subsecuently.   In this scheme, the absolute distance to the target is 

not measurable; instead, only the changes In the distance to the target are 
measurable. 

The proposed system is to be assembled from commercially available 

components with a mlnimmn of development.   In the following subsections   the 
vanous components of V.e system arc examined to determine the requirements 

placed on them and to compare them with the state of the art    The factors 

lim,tlng the performance of the system are detailed.   The characteristics 

^pected from two different designs are presented, and recommendations for 
their application are made, 

2.   The Laser 

The choice of the CO,, laser was based on reasons outlined earlier in this 

sectmn.   Brieuy, the reasons were: (X, the small skin depth of to. , .m radial 
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in water, (2) the high transmittance of the atmospherf at 10.6 /im, (3) the high 

degree of development and reliability of commercially available C09 lasers, (4) 

the high power levels available in the C02 laser, and (5) the availability of fast 

and sensitive detectors and modulators at this wavelength.   However, as will be 

seen later, the relatively long wavelength limits the useful range of the system; 

but shorter wavelength lasers of acceptably small skin depths, (say   X  = 2-5 /jm), 

adequate power, and reliability are still under active development. 

To obtain the highest resolution feasible, the laser should operate 

single mode at TEMoo .   Polarized output is needed for the operation of the 

external modulator.   The amplitude stability of the laser will not be a factor in 

the system design as long as the frequency of these amplitude variations is well 

below the modulating frequency.   For example, a 10-KHz variation would not 

degrade performance at a modulating frequency of 100 MHz.   The wavelength 

stability is again not critical because over the emission range of a CO- laser, 

all the other components of the system and the atmosphere are expected to be 

nearly identical in behavior. 

3.   Modulator 

Amplitude modulation of laser beams is accomplished with crystals in 

which birefringence may be induced by the application of an electric field.   This 

birefringence changes the state of polarization of a polarized light beam on 

passing through the crystal.   The emerging beam will be passed or attenuated by 

a fixed polarizing element placed in the beam, depending on the relative orienta- 

tions of the original polarization of the beam and the polarizer.   Thus, a VHF 

voltage is applied to the crystal, the output of the polarizer will be an amplitude- 
modulated polarized beam. 

Electrooptic modulators based on these principles have been operated 

successfully at frequencies as high as 3 GHz at visible wavelengths, however, 

several practical difficulties arise in producing and efficiently coupling to the 

crystal the rather high voltages required, especially when a wide bandwidth is 

needed .   The modulation may be accomplished by positioning the crystal either 
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inside or outside the cavity. In the current case, external modulation is to be 

preferred because the reliability and performance of a commercial C00 laser 

package may be degraded by introducing other intracavity elements. 

For operation in the 1-15 ^im range and in particular at 10.6 jim, GaAs 

and CdTe are the available electrooptic materials with the necessary intrinsic 

frequency response '       It will be seen later that in the current application, the 

modulator needs to operate at a single frequency in the neighborhood of 100 MHz 

with almost no bandwidth at all.   A GaAs modulator that is capable of operation up 

to 3 MHz,    is available commercially and operation at higher frequencies is 

possible with modification.   A quotation of $5500 for the modulator and $3300 

for a modified power supply capable of driving the modulator at 100 MHz was 

obtained in September 1971; more recently (December 1972), the prices quoted 

vere $5500 and $7800 respectively.   Sue- a turn of events makes the development 

of CdTe modulators a possible alternative because good quality CdTe crystals 

have become commercially available ,   Considerable amount of work has already 

been done in the development of CdTe modulators. 8  Furthermore. CdTe is 

claimed to have more attractive properties for modulator application.   The half- 

wave voltage for CdTe is half that forGaAs and the absorption of CdTe is 2-10 

times smaller than that of the best values reported for GaAs. 9 The development 

of a power supply capable of producing the high voltages at the desired high 

frequencies is not a trivial problem, but it is manageable.    Modulator technology 

is rapidly cnanging and must be reevaluated at the time the assembly of the system 

is begun. 

The long-term stability of the modulating voltage (the amplitude and 

frequency are related to the modulation index and frequency of the modulated 

laser beam) is unimportant as long as it is within the bandwidth of the modulator 

package and if the modulating signal itself is used as the reference signal. The 

bandwidth of the modulator package must be smaller than the bandwidth of the 

receiver amplifiers.   The short-term stability of the modulating voltage (just as 

the short-term amplitude stability of the laser) is determined by the measure- 

ment time of the phase-measuring system since drift in amplitude and frequency 

will be interpreted as phase chnnges.   However, for short ranges or with suitable 

delays built into the reference signal, this effect will be unimportant.   The depth 
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of modulation or modulation index is a consideration in the determination of 

receiver noise, 

5.   Transmitter and Receiver Optics 

The function of the transmitting optics is to direct the laser beam onto 

the surface of the water.   The receiving optics serve to image the laser- 

illuminated area on the water surface onto a detector.   It is intuitively evident 

that the size of either the illuminated area or the image of the detector on the 

surface of the water, whichever is smaller, determines the horizontal resolution 

of the system.   It can also be related to v,he vertical resolution.   The size of the 

spot that can be illuminated by the transmitter is in the first instance limited by 

diffraction to a diameter on the order of a wavelength of the optical radiation. 

However, in practice, such tight focussing is not possible for realistic ranges and 

aperture sizes.   Further, it is also undesirable because the tighter the focussing, 

the larger the divergence (or the rapidity with which the beam area enlarges with 

distance away from the focus) and the result is a smaller depth of focus (or the 

distance over which the beam stays confined to a small area).   In the current 

application, with waves of changing height as the target, clerMy the optimum as 

well as the practicable system requires a compromise betw^-n small spot size 

and adequate depth of focus.   Similar considerations apply to receiver design 

also. 

The size of the illuminated area on the surface with respect to the 

size of the facets of the capillary waves on the surface determines the probabili- 

ties of receiving a specular return from the surface as well as reflections (glints) 

from the sun (in daytime outdoor operation).   These probabilities a/e also related 

to the depression angle of the illuminating beam, given the slope distributions to 

be found in the ocean. 

Monostatic or bistatic placement of the transmitter and receiver are a 

further consideration in the design of the optical system.   In a bistatic arrangement. 
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to ensure that the radiation from the Illuminated spot falls on the detector when 

the waves ar. shifting the surface, it will be necessary either to track the spot 

with the receiver or to use a detector with a large area.   Tracking adds to the 

complexity and the cost of the system.   Increasing the area of the detector 

increases its noise-equivalent power.   Further, such a design will allow back- 

ground radiation from a large area on the sea surface to fall on the detector and 

to increase the probability of receiving sun glints, both of which degrade per- 

formance.   In the bistatic case, there is also the possibility that the laser spot 

will be obscured from the receiver by passing waves.   These problems evidently 

become worse with increasing the angle between the optic axes of the transmitter 

and the receiver.   Thus, if a bistatic design is used, the separation between the 

transmitter and the receiver should be as small as possible. 

The difficulties from tracking do not arise in a monostatic system 

The small obscuration of the receiving aperture by the transmitting aperture is a 

minor drawback.   More importantly, the laser beam is visible to the receiver 

during its entire path, and the receiving aperture will receive backscatter by the 

atmosphere over the entire range.   Fortunately, this radiation will not be in 

focus at the detector plane on which the water surface is imaged and suitable 

aperturing can then eliminate a large part of this background.   In fact   the 

obscuration from the transmitting aperture and the physical dimension of the 

detector accomplish a major part of this selection.   The bistatic design has an 

advantage only in this respect.   A monostatic design or a bistatic design with 

closely spaced transmitter and receiver is indicated.   The following discussions 
assume such a design. 

a.   Gaussian Laser Beams 

Let the surface of the target be described by  w (u. v)  and let the 

laser of power P watts be directed at the target along the w-axis    Let the 

laser beam waist radius be   ^  and be situated in the plane  w - O    Thus   in 

any plane perpendicular to the w-axis. the amplitude of the Gaussian beam is 
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given by 

where 

a/2 .2,   2V E(u,vfw)  =   UZOT>/TTU']     eatpC-r*/«^ 

,2 _    2 ,    2 r    =  u   + v 

(2.3) 

(2.4) 

w(w)  =   u;o   1 +  [Xw/irw2) 
1/2 

The power density distribution is then given by 

(2.5) 

p(u,v,w)   =   (2PAu;2) exp(- 2r2/a)2) . (2.6) 

The power density at r = w  is  e-2  of the value on the axis.   It can be shown 

that 86. 5% of the incident power is within a diameter of 2tJ(w); this diametf 

will be hereafter referred to as the spot diameter. 

The power incident on a surface element dS  on the surface at 

(u,v,w)is  pdudv where  dudv  is the projection of dS  on the  (u,v)  plane. 

On the basis of the scattering parameter defined by Eq. (2.1). in Section IT. B. 1, 

the laser power scattered by the surface element dS  per unit solid angle will be 

p(u, v,w) a{ß, ß, --/2) dudv  for a monostatic arrangement as seen from 
Figure 14. 

Let the receiver be arranged to image the laser-illuminated spot 

at w onto the detector.   The solid angle over which the receiver at range R of 

aperture area Ar  collects the scattered laser power is  (A /R2).   The detector 

output corresponding to the laser power received from the surface element  dS 

will be  p(u,v,w) (r{ß, ß,-n/2) ^/R2) p dudv,   where  p  is the rasponsivity 
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at (u,v,o) 

SA-2422-19 

FIGURE  14      GEOMETRY OF THE  RANGING SYSTEM 
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of the detector and R    is the range from  dS  to the receiver.   The total 

detector output will be (when the detector area coincides with the image of the 

illuminated spot) 

i  =  A   p r dudv 
spot       R 

A   pa    ^ r * 
 9 /        P(r,w) 27rr dr 
-w) V (R-w) 

0.87 A    paP  r       

(R-w)2 (2.7) 

since 

R2   =   (R-w)2 +  r2 
(2.8) 

Here the assumptions are implicit that the dr^pth of f JCUS is sufficient to 

accommodate Aw ,  the surface height changes within the spot and that R  and 

Rs   » Aw and  w .   In the approximations indicated, the angular dependence 

of the scattering parameter is ignored (supported by experimental observations 

described earlier) and the beam spreading near the waist or the w-dependence 

of p(u,v,w)  is neglected.   Background and noise contributions have been 

omitted.   It should be noted that strictly the size of the detector should be 

changed as w  changes to oolloot the radiation from the spot.   In the 

subsequent discussion, the factor 0. 87 will be replaced by unity. 
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If the laser beam of power  P  is modulated at frequency u   with a modulation 

depth  M ,  the laser power at the transmitter is described by 

rood M + M sin 2Tnjt (2.9) 

The time varying part of the detector response to the scattered laser power 

from the surface element dS at(u,v,w)  will be 

di  = -   P(u,v,w)f P cr^/R^sinU^lt -  (zR^c)}] dudv (2.10) 

where  c  is the velocity of light.   A plane incident wavefront is assumed. 

Although this is strictly true only at the beam waist for a Gaussian beam, it is 

a very good approximation near the beam waist.   Further, if an imaging system 

is used with a small detector, the optical path from dS to the detector over 

the entire receiving aperture is the same; i.e., no phase difierences arise. 

The detector output due to the entire laser spot will be 

i « 
MA    pa r _ 

2(R-w)' 
-   /   r>(u,v,w) sin hnu it - (2Rs/cU   dudv 

spot 

(2.11) 

Assumptions similar to those leading to Eq. (2. 7) are implicit in arriving 

at this expression.   To evaluate the detector output, an explicit expression 

for w = w(u,v)  is needed.   We will consider several special cases to 

clarify some points and to understand the behavior of the total system. 
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and 

b.   Maximum Wave Heights 

If the surface were a plane  w = k,  then 

p  =  C exp (-2r2/cx;2) 

Rs   -  (R-k)    |l +   {r/(R-k)}  j 

1 
2i2 

(2. 12) 

(2.13) 

If 

R-k     »   «  , (2.14) 

then, 

Thus, 

i * 
MA  Pa r 

2 (R-k)2 

MA   PaP 

2 (R-k)2 

R     m  R-k s   - 

P (r , k) sinL^t-2^^)!"! 

(2.15) 

27rrdr 

sm2iruh-   2^-k) f-^} (2.16) 

If the phase of this signal is compared with the laser modulating 

signal, it is seen that the phase difference is ^   (R-k).   Bec.use phase dif- 

ferences larger than  27r  are redundant, the range itself cannot be unambiguously 

determined.   However, if the target plane moved to  w = k + A  , the accompany- 

ing change in the phase difference will be 
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<5 0 =   (4 7rI;/c)A   . (2. 17) 

If we can determine the phase unambiguously only over  27r   radians 
es), then the max: 

to the modulation frequency by 
(or 360 degrees), then the maximum excursion of the target   A 

2 A s   (c/v) . max        \w«/; . (2.18) 

However, this condition can be relaxed since the phase can be monitored con- 

tinuously, and the target does not move abruptly causing phase changes of ex- 

actly  27r   or multiples thereof. Thus, we may say 

2 A s nc/v max       "wf (2.19) 

where  n  is a small integer.   It should be noted that the linear relation between 
target excursion and change in phase of the return given in Eq.   (2.17) is based 
on the condition that 

27ri' u «   1 (2.20) 

in addition to the condition in Eq. (2.14).   Combined with the relation in Eq 
(2.19). 

nTTCO     « 
*ta ax (2.21) 

is obtained.   In the current application, the value of A^  is determined in the 

first instance by the height of the gravity waves.   If we assume that 3-m waves 

will be encountered and that n = 2 (i.e. . a total phase excursion of 720° is al- 
lowed), then the modulating frequency can be 100 MHz. 

The maximum allowable wave heights also are influenced by other 

considerations. The laser-illuminated spot on the surface of the water will move 
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up and down (in two dimensions for the general case of oblique incidence) with 

the waves.   If the transmitting and receiving optical systems are simple and do 

not track the movement of the surface, the divergence of the Gaussian beam 

away from the waist leads to a larger spot on the water and a larger image.   At 

the detector plane, the image will be out cl focus and will result in a blurred 

image much larger than a detector matched to the waist radius   u   .    Further 
o 

the peak (axial) intensity decreases as both  CJ and the area of the spot increase, 

as indicated by Eq. (2.ß). All these factors will decrease the detector output. 

The limitations imposed on the wave-heights by these considerations are exam- 

ined in the following subsections. 

1.    Depth of Field oi the Receiver 

Let the receiver of focal length   1   and aperture aiameter  D 
r 

be heated at a distance   R   from the position of the beam waist of radius   a; 
o ' 

The detector at the image plane is ot diameter   d   larger than the image of the 

beam waist.    Figure 15 shows that as the waves change in height, all the radia- 

tion collected by the receiver may still be intercepted by the detector; but each 

point on the source is spread into an ellipse of confusion.   As    |w|    increases, 

eventually some of the radiation is no longer intercepted by the detector.    Even 

in the geometrical optics regime (ignoring diffraction effects), no unique or 

totally satisfactory method exists for defining a maximum allowable value of  w 

(especially when a Gaussian spot is the source).    For our purposes, we shall 

limit the range of  w   such that at  wmM ,   the ellipse of confusion corresponding 

to the point   r ■ xw  just begins to fall outside the detector    In other words, at 
Wmax '  the detector intercepts all the radiation collected by the aperture from 

within a circular area of radius  x w (x   <   1), and   (1 - e-2^) of the laser power 

is incident on this area.   Thus, having the detector larger than the image of the 

beam waist and allowing  x  to take values less than unity implies that the signal 

amplitude will change as the wave height changes.   This range of w-values will 

then determine the receiver's depth of field or the maximum allowable wave 

heights. 
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FIGURE 15      RECEIVER OPTICS 

SA-2422-20 
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w      ■ 2OJ R 
o 

The maximum values of  w   can be shown to be given by 

N(D   -2ajN)   -x T2        2 
(Df/2)   (fT  - x^)    +   (D   -2u  N)' 

y r o  

(Dr -2a;oN)2  - x2 (D2/2) 

1 
2 

(2.22) 

from Figure 15(a) and 

w =     9 u: 
N(Dr + 2a)oN)   -x    |(Dt

2/2)    (N2 - x2)    +   (Dr + 2woN)2) 

from Figure 15(b), where 

(Dr + 2u.0N)2  - x2 (Dt
2/2) 

(2.23) 

N   =  d (R-f)/2W f (2.24) 

and 

Dt   = JT   (2RA/7rWo) (2.25) 

It will be seen that  Dt  is equal to the transmitting aperture or    •JT times the 

diameter of the Gaussian beam at the receiver.     The significance of  N  is seen 

when it is noted that  2«0f/(H-f)   is the diameter of the image ol the beam waist 

(of diameter  2uo)   at range   R ,   The diameter of the detector  d   is then  N 

times larger than this image.   Thus, when the circle of confusion related to the 

image of the laser illuminated spot  (x - 1)   just fills the detector, it is also N 

times larger than the image of the beam waist.   Then, (w    + w )   = W is the 

depth of field of the receiver or the maximum allowable changes in wave height. 

If  2ü;ON  can be neglected compared with the diameters of the receiving and 

transmitting apertures. 

W.    S   W      ä   w 
max (2.26) 
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and 

W   = (w+ + w_)   s  4w  R 
ND    - 

n 

(Dt
2/2)     (N2-x2)   ♦   D^l 

• *2 m 
I 
2 

*-* (2.27) 

It should be emphasized that Eq. (2.27) gives a value for the maximum wave 

height for the assumed criterion.   A less strict criterion may be sufficient, 
thus allowing larger wave heights. 

In Figures 16-ia, the depth of field at 10.6 ^m is plotted as a 

function of receiving aperture for  x = 1  and several values of the beam waist, 

the range, and  N.   The dependence of the depth of field on the several param- 

eters is seen from these curves.   It should be noted that increasing the size of 

the beam waist at constant  N  implies enlargement of the detector area.   A 

comparison of Figures 16 and 17 with Figure 19 - where the optical wavelength 

is 2 ixm - shows the effect of the wavelength of the radiation.   The increase in 

the depth of field on reducing the wavelength by a factor of five is seen to be 

approximately equivalent to that on increasing the beam waist by a factor of two. 

2-   Depth of Focus of the Transmitter and Horizontal Resolution 

For large  w   (w   »   c^) ,  Eq. (2.5) may be approximated by 

w(w)   ■   AW/TTOJ    , (2.28) 

and for  w  =  R, 

a)(R)   =   AR/TTW (2.29) 

In other words, theGaussian beam will have an  e"2  diameter of  2W(H)   at  R, 

Since 98 percent of the power in ä Gaussian beam is within a radius of s/Yo; . 
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SA-2422 21 

FIGURE   16      DEPENDENCE  OF  DEPTH  OF  FIELD  OF   RECEIVER  ON 
APERTURE  FOR SPOT SIZE OF  1  mm FOR  10 6 ym 
RADIATION 
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FIGURE  17      DEPENDENCE OF   DEPTH OF FIELD OF  RECEIVER ON 
APERTURE FOR SPOT SIZE OF 2 mm FOR  10 6 /im 
RADIATION M 
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FIGURE   18       DEPENDENCE  OF   DEPTH OF  FIELD OF   RECEIVER ON 
APERTURE  FOR  SPOT SIZE OF  5 mm  FOR   10 6 ^m 
RADIATION 
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FIGURE  19      DEPENDENCE OF DEPTH OF  FIELD OF  RECEIVER ON 
APERTURE FOR SPOT SIZE OF  1  mm FOR 2 jum 
RADIATION 

43 

   ^-   — - .--   .    . ■-     .I i   magMMMMi 



^^SUfHW" 
1 ' ——- ""■—■'■"  '" 

a transmitting aperture of diameter Dj -   ^w    will produce at range  R  a 
Gaussian beam waist of  e~2   rad ms   w Thus, 

Dt   =   2,y~2     AR/TT u (2.30) 

In Figure 20, the transmitting apertures needed for producing va.-ious sizes of 

beam waist at several ranges are plotted for 10.6 „m. The same curves also 

may be used for other wavelengths because A   and   R   have an inverse relation- 

ship in Eqs. (2.29) and (2.5).    Figure 20 is based on Eq. (2.5) which is more 
exact than Eq. (2.30). 

From the earlier discussion of the receiver, it is evident that 

for the monostatic design considered, the depth of focus oi the transmitter is 

identical with the depth ot field of the receiver.   That .s.  if we define the former 

as the2 distance over which all the radiation from the laser-illuminated spot 

(e-x   diam) collected by the receiving aperture   Dr    .s st. 11 incident on the 
detector (neglecting diffraction). 

The spot diameter varies with the wave height according to 

Eq. (2.28) and as shown ir Figure 21.   The figure shows that the divergence ot 

the beam increases as the waist size decreases.   Though Figure 21 is plotted 

for 10.6 „m radiation, the same curves may be used for other wavelengths by 

changing the x-axis scale.   Shorter wavelengths therefore result in less beam 

divergence, or large, depth of focus, or smaller transmitting aperture. 

The maximum spot diameter over the depth of focus deter- 

mines the worst-case horizontal resolution of the system.   Since  w+ >   w   . 
the largest spot size occurs at  V+  away from the waist.   Let us assume ttut 

2ma,o   is this maximum spot size.    From Eqs. (2.5) and (2.27), the factor   m 
shown to be related to   N  and the apertures by 

m 

r 

^(l-kx2)"1   [(l-kx2)2
+k   iN-xfl + k^-x2)] 

2i 

where k  ■  D.2/2D2. t       r 
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FIGURE 20      DEPENDENCE OF TRANSMITTING APERTURE ON SIZE OF 
BEAM WAIST FOR DIFFERENT RANGES OR OPTICAL 
WAVELENGTHS 
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FIGURE 21      DEPENDENCE OF GAUSSIAN BEAM (1/e2)  RADIUS ON DISTANCE 
FROM THE  BEAM WAIST 
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It will be seen later that the number of speckles the receiver In- 

tercepts is approximately (1/k) and that to avoid large fluctuations in signal, (1/k) 

should be larger than 10.   From Eq. (2.31) for x = 1 and k = 0.1.   m has values 

of 1. 15,  1.49 and 2.56 for N values of 3, 5, and 10 respectively; for k =0.03, 

m has values of 1. 06,  1. 20 and 1.74 respectively for the same N values.   It is 

thus seen that the horizontal resolution is not degraded if the; aperture ratios and 

the detector size (N) are in the above region. 

c-    Minimum Detectable Wave Heights or Height Resolution 

The smallest excursion of a target Amin that can be measured is 

determined by the smallest phase difference that can be reliably measured, i.e., 

by the phase resolution of the phase meter.   If this resolution is ip rad, then 
from Eq. (2.17) 

Amin  =     V4*"    ' (2.33) 

Combining Eqs. (2.33) and (2.19), we get 

min   ä (Am^/n)     r*/2») (2.34) 

The value of Amin is determined by the available phase resolution and the 

modulating frequency or equivalently by (A m 
max    ' 

of 100 MHz and a phase resolution of 0.1°, A 
min 

For a modulating frequency 

= 0.4 mm. 

However, the above result and Eq. (2. 17) assume that the target is 

a plane normal to the beam and that the returns originate at the surface. 

Further, in deriving Eq   '2.10), the assumption was made that the receiver 

system imaged the laser spot on the detector; thus, the optical path lengths are 

the same for rays proceeding along different paths.   In the application to wave 

surfaces, none of these assumptions is strictly true.   The target is neither 

planar nor normal to the beam in general.   In addition, the scattered radiation 

originates from a surface layer of finite thickness.   Finally, when realistic 

wave heights are accommodated, imaging of the laser spot on the detector is no 

longer possible without tracking the wave surface.   Each of these factors intro- 

duces a small systematic error in the phase of the signal.   We examine them in 
the following paragraphs. 
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The penetration of laser radiation into the water causes scattering 

in the bulk of the water.   If a signal A sin 2 rpt is incident on the surface, 

the return from a depth w will be (using Eq. (2. 16)] 

d i (w)   =  B sin 2*II |t  -  -2<R+WU e "2aw d w (2.35) 

where B is a constant and o;   is the attenuation of water for the laser radiati 

The output of the detector would be 
on. 

i   =   B 
/ 

-2aw 
sin 2 TTP |t -|(R + W)| dw 

■   ^O5 +(47ri./c)2    Bsin  hnv   /t-^l-öl (2. 36) 

where 

<5 =  arcsin     <4 nv ha2c2 + 16 TT
2

^
2
! 

■1/2 
(2.37) 

Thus, the phase error introduced is 6 which depends on the attenuation length 

a and the modulation frequency.   If this error is to be below the resolution of 

the phase measurement, then   4> > 6 or 

<* > 2Trv/ctp     . (2.38) 

For ^ = 0.1°, and ^ = 100 MHz,    a   >12 cm"1.   The attenuation length for 

10.6 Mm is on the order of loW1.   Thus, essentially no phase error results 
in this case. 

Simple analytical expressions cannot be obtained for the effects of 

the slope and the curvature of the surface in the general case.   We illustrate the 

essential point by examining the phase of the detector output when a square 

illuminating beam of uniform power density p and are (2a.)2 is incident along 
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the w-axis on a planar and a symmetrical triangular target of given slopes. 
Let the surface be described by 

w  = u tan 0 

for the planar target and 

(2.39) 

w   = 
u tan 0    u   >   O 

u tan 0   u <   O 
(2.40) 

for the triangular target.   With the use of Eq. (2.16), the detector output for the 
inclined planar target will be 

i   =  B     sine (^   tan0)   sin  2*u   (t - Hj (2.41) 

By taking the range of the target at the beam center as the correct range, we 

realize that no phase error results.   Interestingly, the amplitude depends on 

the slope of the target.   It may thus be useful to monitor the amplitude of the 

signal and the phase to determine the slope of the surface.   However, Eq. (2. 16) 

has to be evaluated for two-dimensional surfaces for realistic cases before the 

possibility of slope determination by amplitude measurement can be ascertained. 

For the target with a triangular depression at the center, Eqs. 
(2. 16) and (2.40) lead to the detector output 

i   =  B' sine (^tane)     sin27r.   |t-^+    ^1       (2. 42) 

If, once again, the range of the target at the beam center is taken as the correct 

value, the phase of the detector output leads to an error of {2iru u tan 0/c).   If 

.this error is to be smaller than the phase measurement error ip,  then 

v üj < c <l)/2ir tan 0 (2.43) 
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If we assume that t = 0.1° and that the maximum slopes encountered on the 

surface of the water are 30°, then 

7 _i 
j/u» < 1.4 x 10   cm s (2.44) 

If v = 10   Hz, then w = 1.4 mm, or the maximum spot diameter is about 3 mm. 

Thus, using 100 MHz modulation is compatible with the feasible spot sizes and 

probable slopes.   It should be noted that the Gaussian intensity distribution of 

the laser beam weights the phase distribution in favor of the beam center and 

the condition on w may be somewhat relaxed. 

In general, it is seen that the planar portions of '.he surface do not 

give rise to a phase error, but rather a curvature within the beam leads to a 

phase error that imposes limitations on the modulating frequency or the beam 

diameter.   It is also obvious that the system will be insensitive 'o large changes 

in the height of waves with wavelengths shorter than the beam diameter.   How- 

ever, such large changes imply very steep wave slopes that are improbable. 

The height resolution limits the spatial frequency of the waves to 

which the system responds if a maximum slope is assumed.   Consider sinusoidal 

waves described by A sin (27ru/L).   The peak-to-peak amplitude is 2 A, and the 

maximum slope is (27rA/L).   If tan 9 is the maximum siope, then the maximum 

wave height of waves of this frequency is (L tan 9 /n).   This corresponds to a 

phase difference of (41^ L tan 9 /c).   If this is less than the phase resolution, 

the waves are not detected.   In other words, the system detects waves of wave- 

length longer than 

L * (cip /4vta.n9)   . (2.45) 

v8 
For  i^ = 10 ,  ip =0.1°,  Ö = 30°, and L = 2.3 mm which is on the same order 

as the beam width. 
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The effect of the noncoincidence of the image plane and the 

detector plane caused by wave-height changes can be estimated with reference 

to Figure 15(c).   It is seen that when the target is a distance  w  from the 

beam waist, the image is formed at a distance  (R + w) f/(R + w - f) from 

the lens.   The detector is situated at a distance  Rf/(R-f).   Consider the rays 

originating from the (l/e ) point on the beam.   They become focused at the 

position of the image and continue on to the detector.   At the image plane   the 

path differences are zero.   Beyond the image plane, the maximum path 

difference exists between the ray that is normal to the detector and :he outer- 

most ray that barely falls on the detector.   The distance traveled by the ray 
normal to the detector is 

wf  /(R - f)   (R + w - f) (2.46) 

The distance traveled by the outermost ray is 

wf   |(Vd)2(R.f)2   *(,W)Y/8/.R,R.ft(R, W - f) 

(2.47) 

The path difference is 

[wf/fR f) (R 

- 

J   (2.48) 

51 

■ -  — 



p'"""11 "■"'•*w™il|™nii«|P"r""'w"""i""1 "i '    iiu ip. "in» wi ■ inn vannmppm " ■■  ■■'     ' '" www^mim^B^wm 

When   R » w and f and Dr  »  d, the path difference is approximately 

wf2/ |(R-f) (R + w-f)   S^2]   ^   (w/2 7r) n (2.49) 

where ^ is the f number and ti    is the receiving apertu re in sr. 

This pat:> difference will cause a phase change in the detector 

output. However, on integrating over not only the point but also the entire 

spot appropriately weighted by the Gaussian intensity distribution, the phase 

change of the output will be less than the phase difference corresponding to 

the maximum path difference calculated above. The latter will then represent 

an upper bound on the phase error from this source. From Eq. (2. 17) this 
upper bound is 

(47riVc) (w/27r) Q     =  (2vw Q /c) (2.50) 

If this error is less than   ^ - the resolution of the phase measurement - no 
error results, i.e., 

t < 2vwQ /c    . r (2.51) 

Q 

For  :        10   Hz,  w = 20 cm,   J^ = lo"3, the upper bound is 8 x  lO-30. 

while the phase resolution is 0. 1°.   Thus, this source of phase error need not 
cause concern. 
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d.    Speckle Considerations 

Since a coherent optical source is used to illuminate the dif- 

fuse scatterer, a speckle pattern will be expected to exist at the receiver.10 

Since the water surface will be moving, the speckle pattern will not be stationary 

in time and will lead to fluctuations In the total incident power and in the detector 

output.   The extent of the fluctuations may be estimated by calculating the number 

of speckles present in the receiving aperture.   When a target of 2 w   diam is 

illuminated with - coherent source, the size of a speckle in the aperture plane 

at range R is approximately (RA./2w ). 

When compared with Eq. (2. 30), this Is equal to the size of the 

transmitting aperture at range R.   The number of speckles intercepted by the 
receiver aperture is 

M
S 

= 4wo D?/HV-2D2/Dt
2 . (2.52) 

The fluctuations In the number of speckles will be STM   = ^/TD /D .   Since 

the water surface moves rather slowly, the effect of the speckle^vill be to intro- 

duce amplitude changes at this slow rate - perhaps 1 KHz.   When compared with 

the laser modulating frequency at about 100 MHz. the phase measurement will 

not be degraded because the speckles mainly influence the dynamic range of the 

detector output.   This dynamic range will be within ±3 dB if the number of 

speckles in the receiver aperture is on the order of ten.   This implies that at 

the same range the receiving aperture diameter is at least three times that of 

the transmitting aperture to avoid very large fluctuations in detector output. 

e.    Background Sources 

Along with the laser radiation scattered by the water surface, 

radiation from several other sources Is also Incident on the receiver.   These 
sources are the: 

•    Thermal radiation from the objects in the field of view of 
the detector 
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• General background solar radiance reflected by the water 

surface 

• Occasional "glints" or specular reflections of the sun or 

the laser by an appropriately oriented wave facet 

• Backscattering of the laser beam by the atmospheric 

constituents such as the air molecules, aerosols, salt 

crystals, and spray. 

The sources that are not modulated can be rejected by appropriate electrical 

filtering. However, they constitute the DC level of the detector current, in- 

creases in which increase the shot noise and degrade the detection capabilitv 

of the detector. Although the atmospheric scattering is modulated, it occurs 

over a long path length and also contributes to the DC level. These factors are 
considered in the following paragraphs. 

Thermal Radiation — The peak emission of a blackbody at 

room temperature occurs at a wavelength of approximatelv 10 urn at the rate 

of 3.13 x 10    W cm"   pm    .       The total emission over all wavelengths occurs 

at the rate of 4.6 x 10"2W cm-2.   For equilibrium, radiation from its surround- 

ings at 300oK must fall on the blackbody at the same rates.   The detector is 

surrounded by objects at 300° K and is thus receiving radiation at all times from 

all objects in its field of view.   A detector with a field of view of 30° will then 

receive b. 7x lO^Wcm"2 /.m-1 st 10 pm or a total of 9.8 x lO^W cm"2, since 

blackbodiej are Lambertian sources.   The detector response falls off at higher 

wavelengths, say 15 ^m, and 56 percent of the energy radiated by a blackbody 

at 300° K is below 15 Mm.   Hence, only 5. 5 x 10"4W cm-2 generates a background 

(DC) signal level (assuming flat response until 15 um).   If, however, a cooled 

filter of bandwidth 0. 5 Mm centered about 10.6 ^m were placed in the optical 

train, only 3. 35 x 10 " W cm     would contribute to the background.   Because 

the size of a typical detector is on the order of 0.25 mm2, the thermal radiation 

contributing to the DC level, incident through a 30° field of view, is 1. 34 x 10"6W 

or 8.4 x 10" W with a cooled filter.   The value of the detection parameter of the 

detector is based on use with a 30° field of view in a 300° K background.   The 
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above value of background power is thus useful for comparison of other sources 
of DC signal in the detector. 

Solar Irradiance and Sky Radiance-As seen from Figure 15 

the detector receives radiation from a region on the surface of the water which 

is approximately as large as the image of the detector.   Thus, the dimension 

of this region is N times the waist diameter for which the optical system is 

designed.   Since N is a small number ( Refer to Eq. (2.24)] and beam waists 

are on the order of mm, an area on the order of a square cm on the surface 
should be considered. 

The spectral irradiance of the sun at the surface of the sea at 

10. 6 Mm is 2. 5 x 10- W cm"2 ^nT1.12   A diffusely scattered component will 

always be incident on the receiver regardless of the position of the sun.    Using 

the scattering parameter measured experimentally, (a = 4. 6 x 10~6 sr"1) in 

Eq. (2.1), we^alculate that 1.15 x lO"12 W ^m1 will be incident on the de- 

tector per cm   of the surface for a receiving aperture of lO-2 sr    Thus, the 

solar background is seen to be completely negligible compared v ith the thermal 

background if a filter of 0.5 Mm bandwUth is used.   In fact, the combination of 

atmospheric attenuation and the reduction in the response of the detector at 

shorter wavelengths may be sufficient filtering from this consideration. 

The sky presents a background radiation from scattering and 

emission by atmospheric particles.   In the 10 Mm region, this radiation behaves 

very much like a 300°K blackbody and has a value of 2 x lO^W cm"2 ^m"1 

sr    .       The surface of the water will reflect about 1 percent of this radiation 

into the receiving aperture of lo"2 sr.    Thus, the sky radiance incident on the 

detector is 2 x 10"   W pnT1 per cm2 of the surface or lO-8 W per cm2 if a 

0.5 um bandwidth filter is used.   This level is again negligible compared with 
the thermal background. 

Sun Glints and Specular Laser Returns — Direct reflection of 

the sun by an appropriately oriented facet into the receiver will happen occa- 

sionally.    For a reflectivity of 1 percent at 10. 6 Mm, a facet of 1 cm2 in area 
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will reflect 1.25 x 10 W into the detector through a 0.5 pirn filter. This is 

not a high signal level and occurs only occasionally. The filter assumes far 

more importance in this 0300, 

Potentially more serious is that at times the surface will 

be in the proper orientation to specularly reflect the laser energy into the 

receiver.   With a reflectivity of 1 percent high power densities could result at 

the detector if the reflection were imaged on the detector. 

The probability of getting a specular return may be minimized 

by tilting the laser beam to an incidence angle greater than 30° since most of 

the wave slopes are below 30°.   Nevertheless, to h?^e a detector that can 

handle both the high-power densities for short periods and the dynamic range 

without performance deterioration is desirable.   It is reported that HgCdTe 

detectors can withstand a single shot energy density of about 0.5 KJ cm     with- 

out damaging the detector.       For short durations, very high-power   densities 

can thus b-1 tolerated.   If a laser o*" powei 10 W is reflected by water and ^s im- 

aged on a detector with a spot size of about 0. 2 mm, the power density will be 
_2 

25 KW cm    .   Short (ms) exposures it this level have a small energy density 

compared with the above value and should not cause problems. 

Atmospheric Backscatter — As mentioned earlier in this 

section, molecular scattering by molecules of water in the skin depth does not 

account for the measured diffuse scattering from the water because molecular 
-32       2 scattering  based on an assumed Rayleigh cross-section of 10       cm 

molecule    sr     at 10. 6 urn is seven decades below the measured scattering. 

Since the density of air is three decades smaller than that of water, 1 cm of air 

has the same number of molecules as 10 /jm of water (per unit cross-section). 

Thus, a long path in air is necessary to obtain an appreciable contribution to 

the receiver input from air scattering.   Most of this scatter will be very much 

out of focus at the detector.   Because of the phvsical size of the detector, the 

backscatter essentially from a fraction (near the surface) of the total path 

length will be incident on the detector.   In addition, when the laser beam is 

amplitude-modulated,   the low level return from a long path will have the phase 
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Information smeared, and the corresponding detector output will be an averaged 

small DC value.   For these reasons, therefore, air scattering is not expected 

to be a serious problem. 

The backscatter from aerosols can be appreciable.   How- 

ever, if the aerosol has a continuous distribution, its effect on the phase- 

ranging system will be to increase the DC level as before.   If the aerosol is 

localized, phase confusion could result.   However, no quantitative estimates 

can be made without knowledge of the scattering efficiency or density of 

scatterers. 

5.    Detector 

For operation in the 10. 6 /xm region, several detector materials 

have been developed.   For the projected application, the frequency response of 

the detector must extend to 100-200 MHz because modulation of the laser radi- 

ation at 100 MHz is contemplated.   Photoconductive doped-germanium detectors, 

pyroelectric detectors, and photovoltaic HgCdTe detectors all have desirable 

characteristics. Of these, HgCdTe has the highest responsivity, has been 

under active development for communication receivers,   ' and appears to be 

the best choice for the current application to phase-ranging. 

Operated in the photovoltaic mode at liquid nitrogen temperatures, 

HgCdTe has frequency response in the GHz range and high responsivity.   It is 

also now available commercially with detector areas on the order of 0.25 mm2 

and detectivities in the range 3x10  < D (10. 6 urn, 1800 Hz,  1Hz, < 1010 cm 
l/2    -1 

Hz       W    for a 30° field-of-view of the background at 300° K,  Quantum effi- 

ciencies claimed are on the order of 10 percent.   As already noted, the mate- 

rial reportedly has a high threshold for damage by high-power densities. 

The expected performance of the detector may be estimated as 

follows.   The signal-to-noise ratio (S/N) of an IR detector is related to the 

incident power AP and the noise-equivalent power (NFP) of the detector as 

given by 

(S/N) - AP/NEP (2. 53) 
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The noise-equivalent power of the detector is related to its detectivity param- 

eter D*, its area Ad and the (electronic) bandwidth Af centered at the modulat- 

ing frequency, used in subsequent processing, by 

NEP = (Ad Af)l/2/D* (2. 54) 

or 

(S/N)=  APD*/(AdAf)l/2. (2. 55) 

It should be emphasized that the quantities (S/N) and AP refer to the values at 

the modulating frequency. 

The general equation (2. 55) abo^e may be applied to the current 

case as follows.   Let the laser of power iJ be modulated witt  index M and the 

radiation scattered by the water be collected with a receiver if aperture A   at 
r 

a distance R from the water surface.   For a diffuse backscattering parameter 

a (defined earlier and measured experimentally), the average modulated power 

incident on the detector is, from Eq. (2.1R), 

AP ■ M [i-exp(-2x )] Pa A/2R2. (2.5fi) 

The assumption is implicit here that the transmission losses through optics and 

such are the same as those encountt^ed in the experiment.   The unmodulated 

power incident on the detector is 

PDC = (i-MHl-exp^x^lP* A   /R2. (2.57) 

This unmodulated radiation does not contribute to the signal but is equivalent to 

an additional source of background photons and contributes to the noise by de- 

grading D* since it can be shown that D* varies as O^      in background- 

limited operation, where 0B is the background photon flux.lfi 
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It will be recalled that the thermal background power at 300° K 
-6 W wxt^a 30   field-of-view is 5.5x 10-4Wcm-2without a filter and 3. 35 x 10 

cm     with a cooled filter of 0.5 ,m bandwidth.  Since an additional source of back- 

ground photons is present, the D* value should be modified bv a factor K given by 

K = 
5.5 x10"4 A 

5. 5 x 10"4 Ad + [(1-M) [l-exp(-2x2)] P a A^2'] 

1/2 

(2. 58a) 

for operation without a filter and 

Kr 
5,8 x 10     A 

3.35 x 10"5 Ad + [(i-M) [l-exp(-2x2)] P cr Ar/R2l 

1/2 

(2. 58b) 

for operation with a cooled filter of 0. 5 Mm bandwidth.   The advantage of using 

a cooled filter is evident.   The high-frequency response of HgCdTe detectors 

has been measured and remains essentially flat up to 300-400 MHz, especially 

when back-bias is used.  '   Thus, operation at about 100 MHz will not be im- 

paired.   In other words, D* will Mot be degraded from lack of frequency re- 

sponse.   Hence Eq. (2. 55) may now be written with FqS. (2. 56) and (2. 58) as 

(S/N) = M fl-exp(-2x2)l P a A    D* K/2R2 (A ,A f)l/2 

r d (2.59) 

In Figure 22, the S/N ratio is plotted as a function of the receiver's 

collection angle.   Two laser power levels are shown with a modulation index of 

0.4 and two detector sizes.   Operation with a cooled filter of 0. 5 Mm bandwidth 

at 10. 6 Mm is also shown.   Figure 22 shows that S/N ratios of 100 or more are 

possible with reasonable laser powers and collection apertures.   The advan- 

tage of using a cooled filter is once again seen from the figure. 

The foregoing analysis considered only direct detection of the laser 

energy.   The NEP in heterodyne detection is considerably lower than in the 

case of direct detection.15  Hence, large increases in the S/N ratio can be 

expected if heterodyne detection is used.   This advantage is much less signifi- 
cant at shorter optical wavelengths. 
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FIGURE  22      SIGNAL-TO-NOISE  PERFORMANCE OF  !R  RECEIVER  WITH 
DIFFERENT POWER   LEVELS AND DETECTOR  SIZES 

60 

UftM*4MMBto 



6.     Phase Measurement 

The phase difference between the amplified output of the detector 

and a reference signal corresponding to the modulating signal, which is re- 

lated to the target range, will be measured by a commercial phase meter 

(Hewlett-Packard Model 8405A Vector Voltmeter).   This instrument Is Ideally 

suited for the proposed phase-ranging technique.   The major performance 

specifications of the instrument are as follows:  (1) phase resolution of 0.1° in 

the phase measurement, (2) 90-100 dB dynamic range for the input signals, 

(3) frequency range of 1-1000 MHz, (4) automatic tuning to follow signals drift- 

ing by as much as 15 MHz/s, and (5) possibility of phase measurement per- 
formed at a 20 kHz rate. 

The movements of the waves are such that the surface is locallv 

stationary for at least a time on the order of 1 m s.   Then the 20 kHz measure- 

ment rate means that approximately twenty phase measurements are made at 

the identical range during this period.   The S/N of the detector output mav be 

interpreted in the context of phase measurement as equivalent to a vector of 

length S oriented along a given direction with a vector of length N, whose ori- 

entation is random for each measurement, a:tached to the end of S.   The 

resultant vector is the phasor whose phase difference with respect to a refer- 

ence phasor is determined by the phase measurement.   As  n, the number of 

measurements increases, the resultant of the noise vectors of random orien- 

tation will have a length N//n , until the error in phase given by N/O S) 

becomes comparable to the error in the phase measurement itself.   When this 
limit is reached 

(N/S^) s $ (2. B0) 

where $ is the phase resolution of the measurement in radians.   Hence, when 

n is 20, and ^ 0.1° of 1.75 x 10~3 radians. (S/N) * (/n ip )"1 ■ 12«.   Thus, 

for the performance of the phase meter to limit the resolution of the system, a 

S/N ratio higher than 128 in the detector output is needed.   As seen from 

Figure 22, such S/N ratios are attainable from practical optical systems. 
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After detailed examination of the instrument operation and consul- 

tation with the manufacturer of the voltmeter, the instrument output corre- 

sponding to the phase difference was found to have a slow response — on the 

order of 30 Hz because of a slow phase-comparison circuit.   In effect, the 

measurements made at a 20 KHz rate are averaged over 30 ms.   Thus, if the 

instrument is used without modification, the response of the total system would 

be such that wave surface movement faster than 30 ms cannot be faithfully 

followed by the profilometer.   Higher S/N performance would also be expected 
from the receiver. 

The sampling and the IF parts of the instrument do not limit the 

speed of measurement.   Thus, in principle, the possibility exists of modifving 

or replacing the phase measuring circuit alone so as to increase the frequencv 

response or decrease the measurement time.   Several techniques that use the 

20 KHz-IF outputs to perform the phase measurement at a faster rate were 

discussed with the manufacturer.   Although they appear promising, their effect 

oi the other desirable qualities of the instrument- such as the resolution and 

the dynamic range-have not been fully investigated and satisfactorily resolved 
at this time, but they merit further effort. 

7-     Design Logic for the Profilometer System 

From the foregoing discussions, the critical part of the system 

design is seen to lie in the choice of the optical components.   The laser source, 

the modulation, the detector, and the phase measurement are less demanding 

and allow considerable freedom of choice.   Thus, the optical design should be 
attempted first. 

The intended application of the profilometer provides expected or 

desirable values of the range, the horizontal (or lateral) resolution, and the 

maximum wave heights.   These determine to a large degree the other param- 

eters of the system.   The desired resolution  2ma;0 determines the beam waist 

radius u;0 for m * 1.   The transmitting aperture needed at the desired range 

may now be determined from Figure 20 or Fqs. (2. 5) and (2. 30).    From speckle 
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considerations   the receiving aperture area should be at least 10 times the 

area of the tranamitting aperture.   This determines the smallest collection 

angle.   It may have to he enlarged to obtain a S/N ratio adequate for the phase 

measurement (« 130).   Figure 22 and Eq. (2. 22) enable the choice of the aper- 

ture as well as the laser power P, the detector area Ad, and the need for a 

filter.   The smallest aperture compatible with the other factors is chosen be- 

cause the depth of field is inversely related to the aperture diameter.   The 

focal length f of the receiver system may now be determined by using an 

f-number of 1.5 - 2 compatible with a 30ofield-of-view.    From the range R, 

the focal length f, and the waist diameter 2 c^, the size of the image may now 

be calculated.   From the previously determined value of Ad, the value of N is 

now available.   On the assumption that x = 1.0. the depth of field  W may now 

be determined from Figures 17-19 or Eq. (2. 27).   A more exact value for m 

may also be obtained now from Eq. (2. 31) or Figure 21.   These values of W 

and m lead to the maximum tolerable wave height and the lateral resolution. 

Comparison of these values with the design goals evaluates the success of the 

design.   Iterative changes of various parameters are possible to obtain more 

optimum choice.   Relaxation of the design goals may also have to be made.   A 

choice of a value for x less than unity will lead to larger depth of field at the 

expense of S/N ratio.   Availability of detectors of larger size will also increase 

the depth of field.   In Table 1, the characteristics of two designs for different 

ranges, derived according to the above principles, are listed. 

D.    DISCUSSION AND RECOMMENDATIONS 

The laser profilometer system based on 10. 6 urn (C02) lasers has been 

evaluated following laboratory measurements of the diffusely hackscattered 

laser radiation.   The concept and the various components needed to assemble 

the system have been examined in detail.   It was found that a laser profilom- 

eter can be assembled mainly from commercially available components.   Two 

specific designs are recommended with the following specifications; (1) a height 

resolution of 1 mm and a latrral resolution of 2 mm at a range of 3 m and 

(2) a height resolution of 2 mm and a lateral resolution of 5 mm at a range of 

10 m.   The former will be applicable in a wind-wave tank and the latter can be 
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TABLE 1 

CHARACTERISTICS OF PROFILOMETER DESIGNS FOR TWO RANGES 

Characteristics Symbol Unit Values 

Desired range R m 3.0 10.0 

Desired lateral resolution 2mw o mm 2.0 5.0 

Beam waist radius 
^o mm 1.0 2.5 

Transmitting aperture Dt cm 2.9 3.9 

Minimum receiving aperture cm 9.0 12.0 

Minimum collection angle sr -4 
7x10 1. IxlO-4 

Chosen collection angle sr IxlO-3 
3.5xl0"4 

Chosen laser power p W 10 100 

Chosen detector size Ad 
2 

mm 0.25 0.25 

Chosen receiving aperture D r cm 10.7 21.0 
Expected S/N ratio (S/N) 180 170 
Filter needed yes no 
f-Number r 2 2 
Focal length f cm 21.4 42.0 
Size of image of beam waist i 

0 
mm 0. 15 0.215 

N N 3.3 2.3 
X X 1.0 1.0 
Depth of field W cm 24.6 62.4 
Modified lateral resolution 2ma; o mm 2.2 5.0 
Modulation frequency V MHz 100 100 
Height resolution mm ~1.0 ^2.0 
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used from a tower in the ocean for measurement of wave heights to great ac- 

curacy and at high data rates.   It is recommended that the technique be imple- 

mented at first in a wave tank, which is instrumented for comparison with 

wave-staff measurements, and subsequently from a tower. 

The method is both an active technique and a remote noncontacting tech- 

nique.   Thus, the availability of the sun or daylight does not limit as some 

other techniques do.   In addition, the presence of surfactants or capillarity 

will have no effect on the measurement.   Because of its remote nature, me- 

chanical isolation can be achieved in an environment when several other inter- 
fering measurements are being made concurrently. 

An interesting and intriguing use of the profilometer off a tower would be 

to sense small changes in mean height of the surface of the ocean accompany- 

ing the passage of internal waves.   However, this application will depend 

heavily on the long-term stability (absence of long-term drift) of the total 

system.   It is infeasible to evaluate the stability of the profilometer over a 

few hours (comparable to the period of internal waves) before the various sub- 
systems are assembled into an interacting unit. 

Extension of the technique to a scanning mode and to longer ranges is de- 

sirable.   Operation of the profilometer in a scanning mode, generating wave- 

height data long a line instead of a point, would greatly increase the potential 

of the instrument.   This would require much greater data rates than are at 

present contemplated.   The most important limitation is the time required to 

produce phase information of adequate S/N from a spot diameter.   With the 

current concept entailing direct detection of the scattered laser power and the 

use of a commercial phase-detecting instrument, the feasibility of scanning is 

marginal     With the higher S/N ratio available with heterodyne detection and 

faster techniques of phase detection, line-scanning becomes attractive. 

To extend the range of the profilometer, the central design problem is to 

achieve as small a waist size and as large a depth of field as possible.   At a 

given range, the waist size demands a large aperture and the depth of field 
requires a small aperture. 
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For a given wavelength, the smallest aperture is determined by S/N ratio 

or speckle size.   If heterodyne detection were used at 10. 6 ^m, the S/N would 

be improved by several decades, but the major advantage would be in the re- 

duction of laser power, the receiving aperture being limited by speckle size. 

Improvement in the resolution and transmitting and receiving apertures would 

result if shorter optical wavelengths were used.   I.  he 2-5 ^m range, the skin 

depths in water are acceptably small and the transi.rttance of the atmosphere 

is sufficiently large.   The required modulation of .he laser may be achieved 

with the same electrooptic materials with lower peak voltages.   Heterodyne 

detection become« less advantageous at shorter wavelengths.   With the direct 

detection, background level will increase for two reasons:  the Rayleigh scat- 

tering cross-section increases as A" , and the solar irradiance at 3 /im is 

approximatelv two decades higher than at 10 m.   These are somewhat compen- 

sated by the smaller thermal radiation.   More importantly, lasers in the 2-5 jim 

range of adequate powers (1-10 W) and reliability are still under active develop- 

ment at this time.   Detectors sensitive to 2-5 fxm with frequency response in 

the 100-400 MHz range are also under development.   The possibility of using 

shorter wavelengths becomes attractive when the latter two componer ts meet 
the requirements. 

These extensions of the capabilities of the profilometer are expected to be 
examined in our continuing work. 
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ni THEORY OF SPECKLE PATTERNS 

A. SUMMAKY OF RESULTS 

As mentioned in the Introduction, this study was motivated by an interest in 

remote optical methods for determining statistical characteristics of ocean 

waves.   At the outset, considerable disagreement was evident in the literature 

concerning the theoretical predictions of coherence effects caused when tempo- 

rally coherent light is scattered by a diffuse surface.   Notes on discussions be- 

tween principals early in the project period on the apparent conflicts in the the- 

ories appear as Appendix A.   A significant effort was thus expended on 

strengthening and extending the general theory and reconciling apparent dis- 

crepancies.   The specific application of this general theory to ocean surfaces 

has begun but has not yet been fully developed.   Work on this application is con- 

tinuing and the results are expected to be included in a subsequent report. 

17-19fter reviewing the maJor contributions relevant to our present work,10, 

.we conclude that, aside from the minor points, all of the theoretical pre- 

dictions are correct.   The apparent discrepancies have resulted from improper 

interpretation of results rather than from improper development of the theory 

as described^ m Appendix B.    Specifically,  we conclude that the work of  ' 

Goldfischer     , whose model of the scattering surface carries with it the im- 

plication that the spatial coherence of the field at the scattering surface behaves 

like a ö-function, is correct for the model used and is entirely consistent with 

the early work of Goodman  \     Goodman extended 16   his own theory to ac- 

count for finite spatial coherence of the fields at the scattering surface, which 

laid the groundwork for relating surface characteristics to measurements in the 

receiver plane.   Crane's claim that the power spectral density in the receiver 

Plane contains information about surface roughness is correct, but his specific 

result '     (Eq. 39) cannot be applied to truly rough surfaces where the rms 
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surface roughness o is greater than the wavelength \ . 8     Goodman's extension 

of Crane's general approach (see Appendix B) can be applied to truly rough sur- 

faces and is consistent with previous results. 

The general speckle theory is extended in this report to include effects re- 

lated to the practical matter of using finite apertures to make measurements. 

Specifically, the aperture required to extract information about surface charac- 

teristics from a measurement of power spectral density must be large enough 

to resolve the fine details of the surface.   Under certain conditions stated in the 

text, the ensemi xe average intensity distribution in one plane is related through 

a Fourier transform to the ensemble average spatial coherence in the other 

plane.   This means that a measurement of the spatial coherence in the receiver 

plane can yield information only about the distribution of average intensity in the 

target plane.   Moreover, a measurement of average intensity in the receiver 

plane, in principle, can yield information about surface characteristics.   How- 

ever, as a practical matter, it appears that a wide class of different surfaces 

whose surface height autocorrelation functions behave similarly near zero dis- 

placement may yield almost identical average intensity distributions in the re- 

ceiver plane.   This matter is the subject of continuing investigation.   Further- 

more, since the average intensity distribution is not sensitive to temporal 

coherence, in principle, a nontemporally coherent light source, such as filtered 

white light, could be used to reveal the same information as laser light. 

An expression is derived in the text which relates surface spatial coherence 

(and therefore receiver intensity distribution) to rms surface roughness a and 

surface height autocorrelal on function p for the case where the surface height 

distribution is Gaussian.   This condition is approximately satisfied for ocean 
20 

waves. These surface characteristics are in turn related to the power 

spectral density of the wave heights.   The effect of perturbations in a sample 

one-dimensional wave height power spectral density were superficially investi- 

gated, but no firm conclusions were reached.   The physical significance of wave 

height, slope, and curvature power spectral densities and the effect of perturba- 

tions in more realistic two-dimensional spectra are the subjects of continuing 
investigation. 
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Figure 23 is included here as a convenient summary of relationships which 

exist between physical quantities (indicated in boxes) in the mean target plane 

(subscript  T ) and those in the receiver plane (subscript   p ).   Deterministic 

quantities are found within the dashed rectangle; everything outside the dashed 

rectangle, with the exception of normalization constants, are ensemble average 

quantities.   Note that all quantities above the broken line belong to the mean 

target plane and all quantities below this line belong to the receiver plane. 

Circles are used to indicate operations. 

B.   GENERAL THEORY 

1.   Two Equivalent Forms of the Huygens-Fresnel Principle 

The Huygens-Fresnel principle can be cast in two different forms.   One 

form, used by Goodman      ,      relates the field in the speckle pattern to the field 

at a reference plane immediately in front of the scattering surface.   The other 

form, used by Crane      ,     relates the field in the speckle pattern to the field at 

the scattering surface itself.   These two forms are stated below, and the re- 

lationship between the field at the reference plane and the field at the scattering 
surface is developed. 

Figure 24 shows the geometry and coordinate systems that are used. 

The (u, v) plane (the v axis, not shown in the figure, is  directed into the page) 

is taken to be the median plane of the scattering surface while the (x, y) plane 

(the y axis, not shown in the figure, is directed into the page) is parallel to the 

(u, v) plane at a distance h .   The speckle pattern exists in this (x, y) plane. 

The speckle pattern field  E (x, y) can be related to the field  E (u, v) 

on the scattering surface by the Huygens-Fresnel principle: 

jkR 
1    r/Eo(u»v)e       coatees fz" , n (u,v)ldS 

E(x,y) = -fell r-Ls L (3.1) 

with 

R ■ I?   - rl 1 o        l (3.2) 
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PROFILE w(u,v) 

TARGET PLANE 

SA-2422-11 

FIGURE  24      GEOMETRY  AND  COORDINATE SYSTEMS USED  IN  THE  HUYGENS-FRESNEL 
PRINCIPLE 

Here,   f   is taken to be a unit vector in the  z  direction, and n (u, v) is taken 

to be a unit vector directed normal to the surface.   The symbol dS is usrd for 

the elemental area ir. the (u, v) plane, k has the value 27r/X, and \is the wave- 

length of the reflected radiation.   Refer to Figure 24 for the defiiation of 

? , f, w(u, v), and <f>. 
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Alternatively, the Huygens-Fresnel principle maybe used, as Grodman 10 

did, to cast the problem in a slightly different form.   In this form, the field in 

the receiver plane E (x, y) is not related to the field Ea (u, v) on the scattering 

surface but rather to the field Ep (u, v) in a reference ßlane near the scattering 

surface.   Here the surface median plane, i.e., the (u, v) plane is, chosen for 
the reference plane. 

1     ff E
n (u. v) eJ jkR' 

— oo 

with 

cos (f> dS 
(3.3) 

R'   =l?0-r'|. (3.4) 

and  r'   lies entirely in the (u, v) plane; that is, T'   is the value of r  for 
w(u, v)  ■  0. 

Since Eqs. (3.1) and (3.3) are alternative valid expressions for the field 
E (x, y), they may be combined to obtain a relationship between the fields 
Ep iu, v) and Es (u, v). 

Ep(„,v, = (f)ei^-«')Cos(;o.K(u.v))Es(u.v). (3.5) 

While the relationship expressed byEq. (3.5) is valid when used in the Huygens- 

Fresnel principle to calculate quantities of interest in the receiver plane, it 

clearly fails to describe accurately the propagation of the fields from the sur- 

face to the reference (u. v) plane.   Thus, the relationship should not be used 

when the ultimate quantity of interest is in the (u, v) plane.   On the other hand 

the relationship nny be used to calculate a quantity in the (u, v) plane as an 

intermediate step toward an expression for a physical quantity in the (x, y) or 
receiver plane. 
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Let us next obtain expressions for the lield on the surface and the 

average intensity in the (u. v) plane in terms of an incident wave E. .   For a 

plane uniform incident v/ave whose direction of propagation makes an angle /? 

with the z axis and is perpendicular to the v axis 

E. (u, z)  =   E   e"^ f z cos /? + u sin/?) (3.6) 

and the field Es (u, v) on the reflecting surface after reflection is given by 

E   (u, v)  -   TKU, v) E   e"jk [w(u' v) cos ^ + u sin ß] (3.7) 

where   E    is the amplitude of the incidei.t wave and 

Mu. v)   =   |TJ(U, v)|e"j7r   =   -|7,(u,  v)| (3.8) 

is the Fresnel amplitude reflectance of the reflecting surface.   By the use of 

Eqs. (3.5) and (3.7), the average intensity can be written as 

<IF (u. v)>   A  <Ep (Uf v) E* (Ut v)>   =   <(TJ(U> V)(2 E2 COS2 ^ . ^ v)]> 

(3.9) 

where the approximation  (R'/R)  -  1  is made.   For small incident ajigle /3 and 
small surface slopes, Eq. (3.9) becomes 

<VU' v)>-   l^|2E^   Io   . (3.10) 

Here,  T]ß  is taken to be the Fresnel amplitude reflectance for the angle ß 
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2.   Ensemble Definitions and Relationships 

The Huygens-Fresnel principle in its form in Eq. (3.3) will be used to 

write formal expressions for several quantities of interest.   In general, because 

of mathematical complexity, a computer is required to evaluate these expres- 

sions.   However, later approximations to these expressions will be made which, 

in some cases, will lead to integrals that can be performed analytically.   In the 

following, the subscript p will be used to denote quantities in the receiver (x, y) 

plane, and the subscript T will be used to denote quantities in the target (u, v) 

plane when the functional arguments are omitted. 

a.   Ensemble Average Vlutual Intensity 

<Jp>  »   <J (x1, yi;x2, y2)> 4   <E (x1, yj E* (x,,, y2)>   .        (3.11) 

From Eq. (3.3), we may write 

<Jp> ■ (\h)-2 / ////Ep(u1.v1)EJ(u2.v2)cos^1cos^2e
jk^ll-R22) 

du1dv1du2dv2 

(3.12) 

or 

00 

Mp>   -   (\h)"2    ////<Ep(u1,v1)E*(u2,v2)>  cos^1cosv,2e
jk(Rll-R22) 

du1dv1du2dv2 

(3.13) 
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where we have used the approximation  R' «  h  in the denominator of Eq. (3.3) 
and  R     is defined as 

1/2 
Rij   =   {CXi  - Uj]2   +   frl  - v{]2  +   Ch  -w  (Ujf v.)]2| .     (3.14) 

The quantity in ensemble brackets < >   in the integrand will be recognized as the 

mutual intensity   < JT>    in the target plane so that Eq. (3.13) may be restated as 

so 

<Jp>     .   (Xh)"2    ////<JT>   cos^cos.   eJMRll-R22)d     , i 

(3.15) 

b.   Ensemble Average Intensity 

<Ip>   ■   <I (x, y)>   ft   <E (x, y)   E* (x, y)>   . (3.16) 

If we proceed as a^ove, the result is 

SO 

<Ip> -  (Xh)"2      fJff<JT> cos f   cos f   Jk ^n - R12) du  d    d    d       . 

c   Ensemble Average Autocorrelation Function 

(3.17) 

<Rp>   =   <R (xr y^xg. y2)>   4   <I ^ yj j ^ y ^     _ ^ 18) 
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Ep (x. y)) 
We next make use of the relationship* (valid only for Gaussian fields 

<Rp>   -   <I (x1, jp   <I (Xj - Ax, y1 - Ay)>    [l +    |<rp(Ax, Ay)^] 

(3.19) 

where    <yp(Ax, Ay)>   is the normalized spatial coherence function given by 

<E (Xi. yi)E*(x   - Ax. y   - Ay)> 
<yp(Ax> Ay)> 4 S \ 1 1 'J± 

Yl^V ^1»   <I(xl -Ax' ?! " Ay)>] 
1/2 

(3.20) 

with 

x2  =  x1 - Ax  and ?2 ■ y   - Ay  . 

d-   Ensemble Average Space Average Autocorrelation Function over 
Finite Aperture 

00 

<Rp>   ^  A       ^f f (x1, yj) f (x1 - Ax, y1 - Ay) <Rp>   dx1 dy1     (3.2 1) 

with 

A  -    //MX!» y1)dx1dy1 (3.22) 

*See Appendix C for a proof of this relationship. 
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where  f (x, y)  is an aperture function defining the finite aperture in the (x   y) 

Plane over which the average intensity is known. This aperture function has " 

value unity within the aperture and is zero outside the aperture.   Using Eqs 
(3.19) and (3.21) yields 

<Rp>   = A"    [i +   |<yAx, Ay)>|2] 

oo 

*Jff{xV yl>f <xi "**' Vi - Ay)<I (x1, y1)> <i (xj - AX. yi Ay)>dx,dy . 

(3.23) 

e-   Ense"*le Average Power Spectral Densitv ov.r gtolf Apftort 

<Sp>  = <S(a,n)> ft <IG (a'n>l > 
A 

(3.24) 

with 

OCO,«    /7f,x,y,,(x,y)e-i2'(XQ + !'a) 
dx dy (3.25) 

where   (a.fi)  are spatial frequencies in the ^, y) plane.   Equation (3.24) can 
be expanded with the help of Eq. (3.25) 

<Sfl>   -  A -1 
00 

Jjjff (X1, y.) f (x    - Ax. y   - Ay)  • 
— oo A 

^T / , , i?7r(Axa + AvD) 
<I(x1. y^Mxj-Ax. y1-Ay)>e-J *> d: dXjdyjdAxdAy 

(3.26) 
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where the transformation  x    =  x    - Ax  nnH   „    - A      L     . "  x2       xl      Ax  a™  y2  =  y,   - Ay  has been used. 
Finally, with the help of Eqs. (3.18) and (3.21), 

sP>= /7<Ve^2IWxatiy!^, 
dAxdAy   . (3.27) 

From Eq. (3.27), it is clear that < Sp>   and  <^> are Fourier transform 

pairs and thus Eq. (3.27) is a statement of the Wiener-Khintchin theorem. 

In summary, it should be mentioned that even though the ensemble 

relationships in Eqs. (3.15). (3.17). (3.19). (3.23). and (3.27) can be evaluated 

very accurately by nunnrical techniques, their validity is ultimately restricted 

by the conditions of validity of the Huygens-Fresnel principle in its form in 
Eq. (3.3). 

C- FURTHER APPROXIMATIONS TO THE GENERAL THEOPV 

The approximations used in this section are commonly used in diffraction 

theory and do not necessarily imply great loss in accuracy,   m fact, the ex- 

pressions stated in this section are applicable to a large class of practical 

problems.   Nevertheless, there are some practical problems for which these 

approximations could lead to serious inaccuracies; thus, the conditions of valid- 

ity wül have to be examined carefully before the expressions developed here 

can be applied.   However, it will be convenient to defer the discussion of 

accuracy and conditions of validity until a later section where specific numerical 
calculations are presented. 

First, we restrict our eonsideratlons te small angles ,.   In this ease 
0«M m Eq. ,8. !, ^ ,3.3, may be replaced by ^ ^ ^ ^ of ^ 

If the surface slopes are small and the an3,e ß that the tneldent plane wave 

makes with the z-axis is small, eos l%. J (u. v,, ean he replaeed hy unity and 

the Fresnel amplitude refleetanee   „u, v, ean Le taken to be a constant „ 
independent of (u. v). ß 
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Next we expand  R  and   R' , defined respectively by Eq. (3.2) and (3.4), 
binomial series. 

in 

R  = h + hB (' - |)   - w (u. v,   [..B^.^l 

w  (u, v\ B     , 
2h   ~    1 

3B 
•      •      • 

(3.28) 

and 

* -»^(»-f)*. (3.29) 

where the notation 

2 2 
B  §   (x - u)     +   (y - y) 

(3.30) 

has been used.   To simplify calculations using the Huygens-Fresnel principle, 

we shall approximate the infinite series of Eqs. (3.28) and (3.29) with a finite 

number of terms.   The resulting loss of accuracy will be discussed in a later 

section.   For our current purpose, we choose to drop all terms in the series 

second order or higher in  B  or  w (u, v) and first order or higher in B w (u, v). 

1 oosely speaking, this imposes the following conditions: 

w %a«, surface roughness not too large 

u        v 
.    max   max ,     .,,      , 
•  2  << illuminated spot size not too large 

*      y 
m    max •'max 
• 2  <<'   1     ingle <p   not too large. 

h 
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With the.'e approximations made, the two forms of the Huygens-Fresnel 
principle become 

#jk fh - w (u. v)   +   (x-u)2   -f   (y-v)2] 
Es(u. v)e     L THB J (is 

(3.31) 

and 

oo 

E (x' y) ' JXh ffEP <"• v> 
ik[h  +  "-")2

2-   'V-v)2] 
ds 

(3.32) 

from which 

KD (u, v)   ■  e -jkw (u, v) 
Es (u. v) (3.33) 

results.   By the use of Eqs. (3.7) and (3.10) in Eq. (3.33). the field in the (u. v) 
plane ;s given by 

Ep (u. v)  =  jJT  e "j k [w ("• v) (1 + cos ^)   +   u sin ß] 
(3.34) 

Here it should be emphasized that even though Eq. (3.33) indicates that the 

mathematical field Ep (u, v) on the (u, v) plane is related to the actual field 

Es (u,v) on the scattering surface through the simple propagator exp [-jk w(u,v)J. 

the relationship obviously incorrectly describes field propagation between the 

two surfaces.   However. Eq. (3.33) can be used to calculate quantities in the 

(x,y) plane provided the conditions of validity for the Huygens-Fresnel principle 
are satisfied. 
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At this point, we wish to develop explicit expressions in the (x, y) plane 

for the following ensemble average quantities:   power spectral density 

< S(Q;,n)>, mutual intensity <Jp>    , and intensity < Ip >   .   To simplify the 

mathematics, we first develop expressions in one-dimension only and then gen- 

eralize to two-dimensions.   We define a deterministic aperture function g (u, v) 

belonging to the field in the (u, v) plane.   For example, if a rectangle   L  by  M 

of the surface is illuminated, the aperture function has the value rect (^-)   . 
/v\ \ L/ 

rect   {—j   ;   or if the intensity distribution incident on the scattering surface is 

Gaussian having radius  \w    and peak intensity  I    , the aperture function has 
»h        i                      (u2 + v20) 0 

the value   exp    - 1 I . 

)2%   1 
Thus, Eq. (3.34) now takes the form 

Ep(u. v)  ■  JvfT g (u, v) exp {-jk   [w (u, v) (1 + cos ^ )  +   u sin 0] } 

(3.35) 

1.   Ensemble Average Intensity and Mutual Intensity 

With the Huygens-Fresnel principle in its form in Eq. (3.32), the one- 

dimensional ensemble average mutual intensity in the (x, y) plane can be written 
as 

<Jo> 
/ft j 2i [>i-ui)2 + (yi-vi)2]     \ 
<" (Ah)"2 jj Ep (Uj) E* (u2) e Xh   L 2 Jdujdvj y 

(3.36) 

Let u,   =  u    + Au Au 
1  =  % + —     and     u2   =  % " ^y     so that  u1 - u?  =  Au 

00 

Jp>  -   ,.h,-2 _//*<Ep (uo + ^) E. (.o . M))    e i2'" dUodAu 

—oo 

(3.37) 
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with 

ß - Ah 

/ 2       2^ 
Xl-X2 

+   U
0(

K2 ~X1+ Au)    "   Au 
X2 + Xl 

(3.38) 

The quantity in ensemble brackets in Eq. (3.37) is the mutual intensity in the 

(u, v) plane and with the help of Eq. (3.35) can be expressed as 

<Jr> = W^irHuo-^NvA^ (3.39) 

with 

<y (Au)> "jk [{W (Uo + T1) " w (Uo " f1)} <1+cos^ ) + Au s™ß] 

(3.40) 

We now note that, for conditions of practical interest,    < y (Au) > 

in Eq. (3.39) becomes vanishingly small as    Au  increases from zero to a val 

very much smaller than the aperture size.   In this case, Eq. (3.39) may be 

approximated by 

ue 

<JT>    =   'o   I><Uo)]   '       < VAU)>        ' (3.41) 
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and Eq. (3.37) becomes 

< Jp> 
(Ah)' 

/ 2      2 
j 2. (Xl - x

2 
Jxh \   2   ; 

27r    x2+xl 

< rT(Au)> e Xh \     2 Au 

0 

/ 
2      ^TT (xo"xi +Au) u 

[g (uo)] 2  e   Ah l 2    ! /   0 du  dAu 

(3.42) 

Now let  x„   = Ax 
o + T~    and     xl   =  Xo " T    sothatE<l- (3.42) becomes 

<Jp> 
(Ah)' 

2WK Ax 
o 

\h 

27rx   Au 
 o 

<yT(Au)>e 

/ [• M 
27rAxu 

i - 2    J     Xh 
du 

L —«o 

. 27ru AU 
J o 

Xh 

(3.43) 

where the factor  e has been approximated by unity.   The condition 

of validity for this approximation is given by 

h > 

8uo        ic 
max 

(3.44) 

where   lc   .the coherence distance of the fields, is the smallest value of   Au 

for which      <yT(Au)> has negligible value. 
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Equation (3,42) now may be written as 

<Jp> 
I -j 

(Ah)' 

2irx Ax 
o 

Ah 

Au 

f <%.(Au)> 

o 
Ah 

Ax 
"Äh 

|[«<V] 

(3.45) 

where the symbol ^y       has been used to indicate a Fourier transform and 

a 

a and b explicitly indicate the spatial frequency and variable of integration 
respectively. 

The interpretation of Eq. (3.45) is best revealed by evaluating<Jp> 
for   Ax  =   0. 

<v -<Ip> 

Ax = o 

co Au 

— co 
X 
-a. 
Ah 

(3.46) 

The total power  P  illuminating the   (u, v) plane is given by 

du 
o   _• 

(3.47) 
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where   zo  =   120 TTO is the impedance of free space.   Thus, Eq. (3.46) may be 

written 

Au 

<Ip> 
2z P 

o 

m2 $*   |<vAu)>l (3.48) 

o 
\h 

and Eq. (3.45) may be written 

<JP>  "    ^ P 

Io<Ip>      -j 

27rx Ax 
o 

Ah       # 

u 
o 

S*   }[g(Uo)]2 

Ax ' 
'Ah 

(3.49) 

Finally, the normalized spatial coherence in the (x, y) plane is given 

by 

I -j 
<rp(Ax)>   = --^  e 

27rx Ax 
o 

Ah 

u 

y ![g(uo)] 
AX 

'Ah 

(3.50) 

We now express the important results of this section in two dimensional 

form. 

I(x. y)> 
2z P 

o 

(Xh)2 

Au, Av 

<yT(Au, Av)> 

Ah ' Ah 

(3.51) 
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<rp(Ax, Ay)> 
2z P o 

. 27r/xAx +vAv\ 

^     j [g (u. v)]: 

Ax     AY 
Ah ' \h 

(3.52) 

The importance of Eqs. (3.51) and (3.52) can be emphasized by ex- 

pressing the relationships in words.   Equation (3.51) states that the spatial 

distribution of the ensemble average intensity in the (x, y) plane is proportional 

to the Fourier transform of the ensemble average normalized spatial coherence 

of the field in the (u, v) plane.   In other words, if the character of the surface 

is such that the spatial coherence of the field is nearly destroyed, the radiation 

will be scattered over wide angles.   On the other hand, if the character of the 

surface is such that the field is correlated over significant  distances, the radia- 

tion will be scattered into a narrow distribution around the specular direction. 

In a later section, we shall show how the spatial coherence can be related to 

surface characteristics. 

Equation (3.52) expresses the fact that the ensemble average normalized 

spatial coherence in the (x, y) plane is proportional to the Fourier transform of 

the normalized average intensity distribution in the (u, v) plane. This can be 

considered as the ensemble equivalent to the Van Gittert-Zernike theorem for 

spatial coherence.   It is clear from Eq. (3.52) that a measurement of spatial 

coherence in the receiver plane would reveal nothing about the surface charac- 

teristics, but rather it would yield information about the distribution of average 

intensity in the target plane. 

Finally, it is worth mentioning the symmetry of the two relationships 

in Eqs. (3.51) and (3.52).   They both express the fact that the spatial coherence 

in one plane is related to the intensity distribution in the other plane through a 

Fourier transform. 
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2.   Ensemble Average Power Spectral Density for Finite Aperture 

The one-dimensional power spectral density is given by 

«0 

<S (a)> = J ^ (Ax)>  e 
. 27rQ!Ax 

dAx (3.53) 

Using Eq. (3.23) in Eq. (3.53) yields 

00 

<S (<*)>   =  A"1 ff   [l+   \ <rp(Ax)>|2] f(x)f(x-Ax) 

. 27rüfAx 
<I(x)> <I(x-Ax)>e "•' dxdAx      . 

(3.53) 

For convenience, we separate Eq. (3.54) into two terms defined by 

<S(Q!)>O A A'1 JJ f(x)<I(x)>f(x-Ax)<I(x-Ax)>e"j 
27raAx 

dxdAx 

(3.55) 

and 

00 

<S(a)>1 ^ A1 JJ   \ <rp(Ax)>|2f(x)<I(x)> f (x-Ax) 

. 2a7rAx 
<I(x-Ax)> e "•' dxdAx 

(3-56) 
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so that 

<S(Q;)>  = <S(a)>o + <S (a)>1     . (3.57) 

Equation (3.55) can be written 

A<S(7)>o  r    J   f(x)<I(x)> J  f(x-Ax)<I(x-Ax)>e":l dAx      dx 

(3.58) 

l_   —00 

or 

/. ^Trax 
f(x)<I(x)>e~J dx  =  iHfoOl2        (3.59) 

where   H(Q!)  is defined by 

/. OTCVX 

f(x)<I(x)>e ^ dx 

Alternatively,   Hfa)  may be expressed by 

H(Q')   =   F(a) *  r(Q;) 

(3.60) 

(3.61) 

where the symbol * indicates convolution and  F (a)  and   I»  are defined by 

oo 

F(a) =   J   i(x)e~i 
2iTax 

dx (3.62) 

89 

«l.............-^,...,—...J i..^.aM.^.:i,...--„.. .'-■.. ■---'"-•■"-»■^■'■■■-li|llin|lli|.||||il|l|l|rt|MlilMiiMi*^^  ,  iiiMliniMMir-'-'-"'----—-'-'^" ■—-■-■' ■""-^-"——-■ -».■—.»..-.-. 



J"1  .'J^W^^W' " ■    I '   ' IM   ,«M.-U*»»- liP.ij^iwpBf^ipmf'^i1."^-^-1^- ^ii-.Ht^ ■HW4l--Vl^ll,«   p.i i,■III1UIIIIM.INI. MI,i.mpi 

and 

. 2irax 
r(Q!)  =    /    <I(x)> e    J dx     . 

— 00 

oc 

We next rewrite Eq. (3.56) in the form 

(3.63) 

/oo r       oo 

f(x)<I(x)>       J     f(x-Ax) <I(x-Ax 
- oo L —oo 

)> 

_ . 27rQ!Ax 
|< V (Ax)>|   e ~ ^ dAx | dx ■] 

(3.64) 

which reduces to 

oo 

.■/[ 
. 27rQX 

A<S(a!)>1  =    /    | f(x)<I(x)>  H*(Q!)e 

— 00 

-] ] 
Ax 

^'|l<yp(Ax)>|2j 
L a 

dx 

(3.65) 

or finally, 

„    Ax 

A<S{a)>1=    [|H(a)|2]   *      ^^ j |<rp(Ax)>| 2 I 

.a 

(3.66) 
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Combining Eqs. (3.57), (3.59) and (3.66) yields 

A<S(a)>   =   [|H(a)|2]   +   [|H(o)|2] 

Ax 

jrj|<yp(Ax)>|2j 
'-a 

(3.67) 

We next use the result of the previous section, Eq. (3.48) to evaluate 

Ha)  explicitly from Eq. (3.63). 

r(a) = —^    /   <r(Au)> 

a 

I 
00 

/.2iT-j^[a\h + Au] 
dx dAu 

(3.68) 

but 

-i 27rÄtQ!Xh +   Au] -j      \h 
dx =   Xhö  (a\h +   ju)   . (3.69) 

The sifting property of this  ö-function can be used to obtain 

2z P 
r(Q!) =~Kt  <VaXh)> (3.70) 

We next use the results of the previous section, Eq.(3.50), to evaluate 
Ax 

^   \\<yp{Ax)>\2i    explicitly. 

Q! 
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Ax 
2        «o r i   "i 

^ il<VAx)>|2|   = [^p|    ff[gWf [g(ao)] 
a 

o     Ax     ,. . 27r -r-r- a\h + u - u - j Ah o 
dAx dudu    . o 

(3.71) 

But the integral in square brackets will be recognized as a Ö-function so that 

Ax 

l<VAx)>l = m (^h)   f   ls(%)']2[g{uo-a\h)-]2duo 
— 00 

(3.72) 

or 

Ax 

a 

o 

j|<VAx)>|2|    =    ^A.J      (Xh)[g(aAh)]2^   [g^Xh)] 

(3.73) 

where the symbol J£   indicates autocorrelation. 

We may now use these results to write an explicit expression for the 
one-dimensional power spectral density from Eq. (3.67). 

[2z P"]2 

-j^-J   |F (a)    *    <yT(aXh)>|2 

1   'o 
+   ÄXhlF^)*   <')'T(QfXh)>r* [g(aAh)]2^   [g(c*Ah)] 

(3.74) 
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The two-dimensional power spectral density may now bs written as 

<S(a;,J2)> fJf(K,y)dxdy 
-1 

[2zoP]  |F(a,n)* <yT(Q!\h,S2Ah)>| 

2 
+ [i0Ah] |F(Q!,.ß) *   <yT(Q*h,JUh)>| 2 *l[g&\h,axh)] 

it  [g{a\h, n\h)]2jf      . 

(3.75) 
Since Eq. (3.75) is one of the principal results of this section, we wish 

to discuss its meaning in some detail.   It should be emphasized that it is valid 

only for Gaussian fields, which is equivalent to requiring the scattering surface 

to be rough compared to the wavelength of the incident radiation. 

The function   F (a, 0 )  is defined as the Fourier transform of the 

aperture function  f (x. y)  over which the power spectral density is averaged. 

When the aperture is small, its Fourier transform   F(alß) is broad. This 

broad function convolved with   < y^aXh, nAh)>    has the effect of spreading 

the narrow maximum in   < S (a. fi ) >    near zero spatial frequency by its con- 

tribution to the first term in Eq. (3.75) and smoothing < S (a. fi ) > throughout 

the entire spatial frequency range by its contribution to the second term in Eq. 

(3.75).   On the other hand, when the aperture is very large, its Fourier trans- 

form is very narrow and approaches a 6-function. This ü-function when convoked 

with the spatial coherence function < y^aXh, n\h)> merely replicates this func- 

tion, and so the first term in Eq. (3.75) becomes a very narrow distribution at 

the origin whose shape is the s quared modulus of the spatial coherence function 

The second term is this same shape convolved with a factor that is proportional 

to the autocorrelation of the average intensity distribution in the (u. v) plane. 
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It is instructive to illustrate the functional dependence of Eq. (3.75) on 

physical parameters by using well  behaved functional forms.   For example, in- 

stend of choosing an infinite aperture  f (x, y; let us choose a finite aperture in 
the receiver plane of the form 

f (x, y) = exp -   (x   + y )/w 

where w   is the radius of the Gaussian aperture. With this choice of f (x, y), 
the function 

x. y 

F(a!,n) ^      JT  jf(x> y)j    =   ^w2exp 

and the normalizing area A becomes 

2     2        2 
TTW    (a   + Ü ) 

oc 

f (x, y) dxdy  =   TT W' 

Next, we choose     < y^ (Au, Av) >     to be a narrow Gaussian of the form 

<yT  (Au,  Av)>     =  exp [-   (Au2
+Av2)/R2j 

where  R  is the »boherence radius" of the spatial coherence function.   We can 
now evaluate the convolution integral 

F (a, 0) *    <y (axh, nAh)> 
T -m Y '   exp M 

'      2 ^   + fi2) 

94 

Inl      ii ■     - -   ■        -   ■    - -  ~-.-.  *dr^i-^i*m*mi*M^-~J~~ .-.. ■      ■   ■        -   ■ -  '■   —   ■--       - 



■ wjmpxmziBmiw^W'WMPimym'mi.i*'»**''**wf.■ "■^'WM»»MIMJIWM*Mi'pywiywii^ipiyiijiiimm\PJVWWIIW,'!»!jjujwiRwwiwT-pi'.ii»"WIJJ-J!^.UJUUPMII i^mm^■.^-■i■!.!» ,■ irJwniiM.P"!»1 I,.Ii^it-n.M^jH^AH'wsy*.jM^^iffiyii'j"«»1!*-1:r1 w*'^ '-1—"^TT^ 

which is itself a Gaussian distribution that is broadened by the effect of the finite 
aperture of radius   W  . 

When the receiver aperture becomes very large, that is, when 

(\h/WRf < < TT , 

(2z TTP) 
<S(a, n)>   =        0  .      .  exp 2 (Xh/R)2 (a2 + n

2) 

1 Ah o 
2z P o 

exp 2 (Ah/R)2 (a2 + n2) g(Ö!Ah,n\h) 

g(Q!Xh, ßXh) 

which, for emphasis, may be written as 

(22 TTP) 
<S(Q;, n)>   i ~2~ "j  | < y (aAh, nAh)>| 

o 
2z P 

o 
<y (a'\h,nxh)>| ^ */ g (Q;Ah,n\h) 

g (Q?\h, nXh) 
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An important practical conclusion can be extracted from the preceding 

example relative to the rr quirement on aperture size   W in order to faithfully 

determine    o^fc/Xh, JUh)>    from a measurement of <S (a, fi)>. In the next 

section where we relate it to characteristics of the scattering surface, we shall 

demonstrate the importance of knowing     < y (aXh, JUh)>     ,   The size of a 
T 

resolution element  ro  associated with  an aperture of size  W located at a 

distance  h from an object is given approximately by 

r    =  \h/W    . 

n 

Thus, the above condition   (\h/WR)    << TT is equivalent to requiring that r «R. 

In other words, to determine characteristics of the scattering surface 

through a measurement of power spectral density, the aperture that is used 

must be sufficiently large to resolve surface structure smaller than the coherence 
area on the surface. 

D.   SPATIAL COHERENCE AS A FUNCTION OF SURFACE CHARACTERISTICS 

The normalized spatial coherence in the (u, v) plane is defined in terms of 

the fields   Ep (uv v^  and  Ep (u2, v2) which we will relate to statistical 

characteristics of the scattering surface.   Using Eq. (3.34) and the definition of 

th«. normalized coherence function, we may write 

, -jk       w(u1,v1) - w(u2.v2)    (1 + cos/?)   v    -jk(u1-u2)sin3 . 
<y   (Au,Av)>   = 

T 

(3.76) 

To evaluate the ensemble average indicated in Eq. (3.76), we need to know the 

statistical distribution function P {w(u, v)}   for the surface height w (u, v). 

We shall take the surface height to be a stationary zero-mean Gaussian random 
variable with probability distribution 
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P jw(u, v)|    i 

_[w(u, V)] 

A    0 20? 

aV 27r 
(3.77) 

It follows directly that the joint probability distribution function is given by 

P !w1. w2! Tra2 yi^ exp 
w2-2pw1w2 + w2 

2o-2 (1 -p2) 

(3.78) 

where we have adopted, for convenience, the notation 

Wj s w (u1. v1) 

w2 ^ w (u2, v2) 

p =  p(Au, Av) 

(3.79a) 

(3.79b) 

(3.79c) 

and where p   , the normalized correlation function of the surface heights, is 
defined by 

p(Au, Av) ^   <w(u> v) w(u - Au, v - Av)> 
a2 (3.80) 

with 

v2 £    <[w(u, v)]2>     . (3.81) 
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We now recognize that the quantity in ensemble brackets in Eq. (3.76) can 

be interpreted as the characteristic function for the distribution p {w , w } , 

and thus Eq. (3.76) can be written 1      2 

- jkAu sin ß 
<y  (Au,  Av)>   =  e .   , 

kcr(l +cos ß ) 1 -pfAu,  Av)|( 

(3.82) 

We now have an expression for the normalized spatial coherence in the (u, v) 

plane in terms of surface characteristics  a  and   p 

The surface height autocorrelation function p (Au. Av) can be evaluated for 

a given surface if the surface height power spectral density ^(f , f ) is known 

since these quantities are known to form a Fourier transform pair. 

m°° ~y 
P(Au,  Av)  ■■     I fip({„, f )  e 

.2TT 

ff*K- V 
f Au   +   f Av 
u v 

dfudfv   .       (3.83) 

E.   COMPARISON OF RESULTS WITH PREVIOUS WORK 

1.   The Work of Crane 

In Appendix B, Goodman has reviewed Crane's theory8 and has shown 

that Crane's Eq. (39) is valid only when the rms surface roughness is much less 

than one wavelength.   On the other hand, the present theory assumes that the 

phases of the fields on the scattering surface are uniformly distributed on the 

interval [0,2*]   which assumption is valid only when the rms surface rough- 

ness is on the order of a wavelength or greater.   Thus, our present result and 

Crane's Eq. (39) are valid for different regimes of rms surface roughness and 

cannot be directly compared.   However, in Appendix B, Goodman also, has used 

Crane's more general expression Eq. (38) as a starting point to develop an ex- 

pression for the power spectral density of the speckle pattern in the (x. y) plane 
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that is valid for large surface roughness, and we shall compare our results 
with that expression. 

First, let us restate here the result of Goodman's extension of Crane's 

theory as developed in Appendix B.   Goodmar used an illuminated spot on the 

(u, v) plane of dimension   L by  L and assumed a symmetric Gaussian auto- 
correlation function of the form* 

P{Au, Av) - exp Au2  + Ay2 

(3.84) 

where  R  is the surface correlation length.   The result of his extension pre- 

dicts that the power spectral density should have the approximate form 

E S (o^, 0) ex   e V     max / 

for low spatial frequencies and the approximate form 

1 

S(a , 0) 

- (fr (ir 32 

(3.85) 

(3.86) 

for high spatial frequencies where   A 
«max. 

is a triangle function having value 
unity for zero argument and value zero forunity argument and 

a =  2ITL 

max        Ah (3.87) 

♦Although we have chosen a Gaussian autocorrelation function for simplicity in 
this illustration, Goodman has shown that almost any autocorrelation function 
that behaves parabolically near the origin will yield the same result as we ob- 
tain here.   For a discussion of this, see Appendix B. 
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We note that the spatial freqinncy as defined in Appendix B is   2 TT  times the 

spatial frequencies used in the text so that in order to distinguish the two, we 

place a prime on spatial frequencies from Appendix B. 

Now we turn to our expression in Eq. (3.75) and note that if the aper- 

ture  f (x, y)   over which the power spectral density is averaged is Inifinite in 

extent as Crane has taken it to be,   F (a, n )  becomes a   ö-function and Eq. 

(3.75) reduces to 

<#»)H<^0)) 
^^]2f(#.o))|2.fe.o)lVU#.o) 

But from Eq. (3.82) 
(3.88) 

y '(#• I 2(2ka) 
=   e 

1-  p 
(#•«) 

=*   e •■©■ r feu -   327^ 4- 

(3.89) 

where we have taken the normal incidence case for which  cos   ß   =   1, 

In the second term of Eq. (3.88), we make the approximation that 

2 

(#.oY behaves like a   ö-function as is done in Appendix B 
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so that the result is 

32 

oc   e 

'2(x)2 (i)2(ir)2 

(3.90) 

for low frequencies and 

ot 

a max 
ex   — 

32 ■ © (*)' 
(3.91) 

for high frequencies.   We note that Eqs. (3.90) and (3.91) are identical to Eqs. 

(3.85) and (3.86) respectively.   That is, we note here that our general Eq. (3.75) 

reduces to the specific result Goodman obtained in Appendix B when he extended 

Crane's theory for the case of rough surfaces and infinite aperture  f (x, y). 

2. The Early Work of Goodman and Goldfischer 

In 1963 Goodman     and in 1965 Goldfischer18 predicted that the power 

spectral density should have the form of the sum of a   Ö-function at the origin 

and a term that is proportional to the autocorrelation of the average brightness 

distribution at the target.5'7  In their analysis, the power spectral density was 

averaged over (x.y) space; the implicit assumption in their model of the sur- 

face was that the spatial coherence at the target was completely destroyed by 

the diffuse surface, i.e., the spatial coherence behaved similarly to a 

ö -function.   In our notation, these conditions correspond to 

< y {axh, juh) > = Na^xh, suh) 
T oo 

d(Q!Ah)d(JUh) 
//■ 

(3.92) 
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where  N  is a normalization factor 

and 

F  (a, 0) = ß (a,  Q) (3.93) 

Thus, Eq. (3.75) takes the form 

<S(a,n)>    -     ^(aXh.SUh) {M ö{cx\h, SUh) 

2 2 
rioAhj      Tg   («Ah, XUh)l      Q    fg   (a\h, n\h)l 

(3.94) 

We note that (3.94) has exactly the form predicted by Goodman and Goldfischer; 

namely, a 6-function behavior at the origin and a term proportional to the 

autocorrelation of the average brightness distribution at the scattering surface. 

102 

^fct^^.^.^..^...^,—-:'!..^ ^s.**: w.-:.^- .^^--^./..-.x^   ^. ...... ,> _...,. -^j-dirm,^ „^.^ ■■^^■^■.■^^■*r*J-C-«^U'-.^^-»..^.-.^.ul- -"■'-^|d|||n.fc^dtf.r^.-^.. .. ;U~.i^i.i. v^-i^-.w...        .    .„     ^^^ ■ .-■^t 



■■■ppiK^Ki'lHUi ^^mm. ■mv LUI mutmnim •mmmrnm^mmt '   ^^ Pl^^B»-^"»! I       III^IIIP"       »■■■ 

F.   JLMATTERING FROM THE SEA 

1.    General 

The Huygens-Fresnel principle has been applied with considerable suc- 

cess to the scattering of optical radiation from diffuse surfaces such as opal 

glass, paint, paper, sandblasted metals, ground and etched glass, and the like 

and the experimental evidence is such that the underlying theory appears to be 

sound.   However, the theoretical concept developed here which relates surface 

characteristics to average scattered intensity distribution through the spatial 

coherence function, to our Knowledge has not been experimentally verified for 

the scattering of optical radiation from the surface of the ocean.   Nevertheless, 

there is every reason to believe that this approach is sound within the constraints 

of scalar diffraction theory and small angle approximations. 

Normally, one might describe the rather smooth surface of the ocean 

as specular rather than diffuse in nature.   Hovjver, characterizing the ocean's 

surface with these rather loosely defined terms should either be avoided or the 

terms should be carefully defined because the surface can either be character- 

ized as diffuse or specular depending, among other things, on the size of the 

illuminating beam.    Moreover, no such distinction is required in applying the 

Huygens-Fresnel principle; but it does require the radius of curvature of the 

surface to be large compared to the wavelength of the radiation used. 

In the following sections, we apply the results of our theoretical work 

specifically to scattering from the ocean surface.   In doing this, we -ecognize 

several important considerations that are specific to this application.   In 

particular, finite apertures both in space and time must be used to obtain 

measurements; thus, the sampling requirements for meaningful measurements 

must be carefully analyzed.   These sampling requirements are intimately 

related to the conditions of validity of the theoretical work and, among other 

things, will dictate constraints on suc.i things as viewing angle, height of the 

observation plane, and the like.   Furthermore, in the evaluation of the feasibility 

103 

.•...■^lit...—.j..^^ i ■> —.-....^.^ „^.....  MB^i 



"'.m-iiumpmmm w mu'w M' '-'i " '-""»""-' Ulllli ...llipijllljll.u - mi ^mmmmmmmwi'i'iiiKmm i.JM     IJ,IIIJI.IWI41JIIIBI Jin  lill.JWIJtllllllllpilülxlllJIJi    »i 11,1),..u.p 

of the concept for measuring surface characteristics, it is important to know, 

through calculations, the sensitivity of the measured quantity to the assumed ' 

surface characteristics and expected perturbations in these characteristics.   In 

what follows, we have only superficially examined these considerations and 

expect to treat them in more depth as our work continues. 

2.     Conditions of Validity 

In this subsection, we examine conditions imposed on surface rough- 

ness, spot size, wavelength, range, and viewing angle in order to validate the 

approximations made in Section III-C.   We note that the conditions imposed here 

are sufficient, but they may be unnecessary for numerical accuracy.   In fact, 

we strongly suspect that in some cases the conditions are much more stringent 

thaa is necessary and that given further effort, less stringent conditions could 

be found that would still permit the use of the expressions developed in 
Section III-C. 

In Section III-C, the distance   R  from a point on the illuminated spot 

to the observation point in the (x,y) plane was expanded in a binomial series 

(Eq. 3.28); and subsequently, all terms in the series second order and higher in 

B and w(u.v) and first order and higher in the product Bw(u,w) were dropped. 

The resulting approximate expressions are valid when the terms that were 

dropped are negligible.    Thus, it is sufficient to impose conditions which will 

ensure that the next higher order terms in the series have a negligible effect on 
the result.   These terms are listed here as: 

T„   = 

hT 
8 

B w(u, v) 

(3.96a) 

(3.96b) 

Bw (u,v) 
2E  (3.96c) 
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Dropping these terms is equivalent to making the statement that 

. 2n_ T 
e]   A «   i 

(3.97) 

We arbitrarily choose the criterion 

2 7r T max 
X (3.98) 

as satisfying Eq.  (3.97), 

a.    On-axis 

We now examine the on-axis case, that is. the case for which the 

observation point is directly above the illuminated spot so that x = y = o    If the 

illuminated spot has dimensions   L by L, the following three conditions result 
from Eqs. (3.96) and (3.98): 

h3>& (3.99a) 

h2 >  sf 
(3.99b) 

q ^2   2 
h3  >   a^ 

(3.99c) 

where we have used a.  the rms value of w(u, v). instead of w(u. v)   in Eq. (3. 9„ 

For the purpose of Illustration, we choose a numerical example for which 

L = 30m)   \=10    m.and   a=0.5m.    Then Eqs.  (3.99a. b. c) become 

3j- \4 
h   >    L (30) 

'UxlO-1- 
=  2. 7 x lO' m (3.100a) 
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h > 
2/(0.5)   (30) 2 

=   6.7 x 10    m 
10 

(3. 100b) 

h > 
:J/(0.5) 2   (30) 2 

10 -r =   2. 82  y io2 m (3. AOOC) 

respectively. 

b.     Off-ax is 

The conditions become much more stringent when the observation 

point (Q.Q) is not on the z-axis.   If we define tan 0 =  Q/h   and take Q » L, 

the following conditions result: 

(3. 101a) tan  9   < 
16Q5 

tun2 6   < \ 
8a 

tan20   < h\ 

8 a 

(3. 101b) 

(3. 101c) 

3-     Numerical Calculations and Physical Interpretation 

In Section III-C, we showed that the ensemble average intensity in the 

observation plane is proportional to the Fourier transform of the normalized 

spatial coherence in the target plane.   Later, in Section III-D, we demonstrated 

how the ensemble characteristics of the surface,  a and p(Au,Av), determine 

the target spatial coherence.    Finally, we indicated that these ensemble 

characteristics of the surface can be calculated if the surface height power 

spectral density is known.   We shall make use of these relationships to calculate 
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the average intensity distributions in the observation plane from certain 

assumed surface height power spectral densities that are known to approxi- 

mately describe the ocean surface.   From these calculations, we hope to 

demonstrate the sensitivity of the scattered intensity to perturbations in the 

surface height p. /er spectral density, particularly at high spatial frequencies. 

To begin, we restate Eq. (3.51), (3.82). and (3. 83) in one-dimensional 

form. 
Au 

<I(x)> oc 
x 

<yT(Au)> (3. 102) 

<rT(Au)>   = e-(2k0,)    tl-p(Au)] (3. 103) 

p(Au) -   f m e 
s27rfAu 

df •3 (3. 104) 

Combining these equations yields an explicit expression for the average in- 

tensity in terms of ^.he known surface height power spectral density i/;(f). 

<I(x)>a: 
/•- 

,2 7rXAu       .91    .2 
a 

/ 

.27rfAu 
-J 

i/)(f)e        df d Au   .   (3.105) 

We choose to express the surface height power spectral density as 

the sum of an unperturbed and a perturbing function.   In normalized form, it 
is given by 

^(f)   =   ^(f)   +   ^(f) (3. 106) 
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where   ^(f)   is the unperturbed fimction and   $ (f)   is the perturbing function. 

Similarly, from Eq,  (3. 104) we define 

P0(Au) 

oo 

J   *o,f,e 
.2 7rfAu 

d f (3. 107) 

and 

\M A       /   ^(^e 
,2 TT fAu 

-J 
d f (3. 108) 

so that 

p(Au)   -   H0(AU)   +   p    (AU) (3. 109) 

Thus, we associate   Po(Au)  with the unperturbed power spectral density and 

P1 (Au)   with the perturbing power spectral density. 

Now Eq. (3. 105) may be rewritten as 

<I(x)>    oc 

a 

/ 
- e dAu   . (3. 110) 

This Fourier transformation is difficult to do analytically.   However,  if 
2 

p(Au) is expressed as a power series in  (Au)     and we retain only the first two 

terms, the approximate expression for the ensemble average intensity becomes 

<I(x)> a 
2k aK      exp 

TTX 
-.2 

2kaK \h 
o 

(3.111) 
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2 2 
where  Ko is the coefficient of (Au)     in the Maclaurin's expansion for p (Au) 

i.e., 

p(Au)   =   1  -   K^ Au2  +  K^Au4 
(3.112) 

To illustrate the concepts ( eveloped here, we choose a sample power 

spectral density in the form 

V*) =   < 

Kf"5f4 

m 

Kf3 r4 

m 

0<|f|< f m 

fm < |f |< f 

o 

(3. 113 a) 

(3.113b) 

(3.113c) 

and a perturbing function of the form 

^(f)   = 

7) it) Kd-r1-     r- 

(f - tj)' 

2b2 

+ e 

(f + fj)' 

2b2 

f  < f < f 
c c 

O 

(3.114a) 

elsewhere .       (3.114b) 

Normalized forms of ip^f)   and   ^(f)   s-e plotted in Figure 25.   We 

note that  fm  is the spatial frequency for which  ^o(f)   is maximum,   f    if the 

center spatial frequency for the Gaussian perturbation,   b  is the bandwidth 

of the Gaussian perturbation, and  g  is the ratio of the strength of the Gaussian 

perturbation at its center spatial frequency to the strength of the unperturbed 

function.   Thus, 

g A   ^(f^  (f^ 
(3.115) 
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FIGURE 25      ASSUMED FORM OF THE POWER SPECTRAL DENSITIES 
OF NATURAL WAVE   HEIGHT AND PERTURBATION 
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Further,   fc is a cutoff frequency beyond which the spectral densities are 

identically zero.   Using these sample functions and the relations developed 

above, we have obtained approximate analytical expressions for   p (Au), 

p^Au),   and  K . 

Po(Au)  w   K 16 
15 

2/V 
3 If. , 

P^Au) 

and 

«   Kp- &) ©^ 

- 2 (27rfm)2 

KAu2    S 
2.' 

16        o JS. 
7    "   2f 

c 

Fir 
2   r 

M-Au2i|?        (f^+b^M- 
l 

(3.116) 

2 b 

/27r 
(3. 117) 

(2 
2 

K, 

7r)2|f2 /l6     2im\ 

LML      fcJ + ^rgO A. 
fi/ Vit 

M (f^+b2) -|J   N 

i5 - 3 \r^ + ^ 
m a- 

(3.118) 

where 

M = erf |(fc-fl)/^2T|+ erf|(fc + fl)/^ (3. 119) 

N  = 

and K  = 

(fo-'l)^(-(*„+'i)2/2b2]   + (f^fjexp [-(Vf/Ab2] 

16        2/  m 
S.| US        +^g^ f     M 

(3.120) 

(3.121) 
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To obtain numerical results, we assume the following set of values 
that appear reasonable. 

-5       -1 -1 -1 fm   -  6.4  x   10      cm        f1  =   1cm"       f     =   100 crn        b   =   10 cm" 

An examination of the expressions for  p0 and    p    given by Eqs. (3. 116) -(3. 121) 

shows that the introduction of the cutoff has an extremely small effect on these 

expressions as long as the fol owing conditions are met. 

fm   «    fl   « ' fc ;     5b <    V (3. 122) 

These conditions seem appropriate for the assumed sample functions.   In the 

subsequent treatment, the cutoff frequency is considered essentially infinite 

since these conditions are satisfied. 

The ensemble average intensity was then calculated by using Eq. (3. Hi) 

for several combinations of the values of g,   the magnitude of the Gaussian 

perturbation and b,   its width, Keeping f^ and f    constant.    Plots of the 

ensemble average intensity versus (x/h), the angle from the vertical in the 

observation plane are shown in Figures 26 and 27.   In Figure 26, the curves 

show the changes in intensity that occur when increasing amounts of perturbation 

are introduced.   The curves have been normalized with respect to the value of 

the intensity when the perturbation is absent.    The intensity is seen to decrease 

appreciably when the perturbation increases in peak magnitude with the width of 

the Gaussian perturbation held constant.   Figure 27 shows the behavior of the 

average intensity as the width of the Gaussian perturbation is changed with the 

peak magnitude held constant.   These curves have been normalized with respect 
to the curve with b = 10. 

Both these sets of curves suggest that the changes in the intensity are 

related to the energy content of the perturbation (area under the Gaussian). 

However, examination of the expression for K   [Eq. (3. 118)] shows that while 
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SA-2422-13 

FIGURE 26      PLOTS OF AVERAGE  INTENSITY DISTRIBUTION SHOWING EFFECT 
OF DIFFERENT STRENGTHS OF GAUSSIAN PERTURBATION OF 
CONSTANT WIDTH 
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FIGURE 27      PLOTS OF AVERAGE INTENSITY DISTRIBUTION SHOWING EFFECT 
OF DIFFERENT WIDTHS OF GAUSSIAN PERTURBATION OF 
CONSTANT STRENGTH 
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the energy content (the product bg) is involved, an increase in the width is much 

more effective than an increase in the magnitude of the perturbation resulting 

from the presence of additional factors involving b. 

Consideration of the same equation also brings out the effect of changing 

f 1, the location of the perturbation.   Since g  is defined relative to the magnitude 

of the sample function ^(f^  [Eq. (3.113b)], keeping g constant while de- 

creasing f 1 increases the energy content of the perturbation.   However, if the 

product gfj    is kept constant, Eq. (S , 114a) shows that ^ (f) is unchanged in 

energy content; and Eq. (3.118) shows that K   is also constant to first order 

(f 1 «  b).   Thuü, the observed average intensity is unchanged.   Therefore, the 

conclusion is that identical perturbations have the same effect (to first order) on 

the average intensity regardless of their soectral position. 

We are uncertain about the physical implications of these numerical 

results.   Several assumptions had been made to complete this first order 

analysis.   It will be of interest to examine more realistic power spectral density 

functions and carry out these calculations in more detail.   For example, of 

fundamental importance to the ultimate objective of the program would be to 

observe the dissipation of a narrow band perturbation at high wave numbers as 

it moves to lower wave numbers, simultaneously increasing in bandwidth and 
losing energy content. 

The approximation made in Eq. (3. Ill) implies that only the effect of 

wave slopes has been retained in the analysis, since the coefficients of suc- 

cessive even powers of Au in the Maclaurin's expansion [Eq. (3.112)] can be 

related to the slope spectrum, curvature spectrum, and the like.   Successively 

higher approximations may be made by the use of numerical Fourier transform 

techniques.   The effects of the slopes, the curvatures, and so on can then 
conceivably be isolated. 
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APPENDIX A 

NOTES ON DISCUSSIONS ON SPECKLE THEORIES 

On August 7, 1971 Dr. Robert B. Crane of Willow Run Laboratories came 

to SRI for a discussion on Laser Speckle Theory with Professor Joseph W. 

Goodman from Stanford University and Dr. Kamala S. Krishnan and 

Mr. Norman A, Peppers from SRI.   Before this meeting the theory as 

developed by Crane19 and the theory as developed by Goodman10, 17 and 

Goldfischer     were generally assumed to be incompatible inasmuch as the 

different approaches led to apparently different predictions when the expres- 

sions for power spectral density were evaluated for a specific example.   The 

general purpose of the meeting was to examine in detail the published 

theoretical papers so that the nature of the discrepancies could be determined 

and a reconciliation of the different approaches could be effected.   The notes 
of this meeting are appended below. 

1.    Summary of Discussions 

The discussion began with Crane stating his criticism of Goldfischer's 
18 

paper    .   In essence: 

(1) For the case of coherent illumination, the contribution to the field 

from an infinitesimal area should be proportional to the area and not 

to the square root of the area as Goldfischer has stated.   Thus Eq. (1) 

is incorrect.   Crane provided a copy of a reply by Goldfischer to this 
criticism. 

(2) During the averaging process in Eq. (16) leading to Eq. (17), 

Goldfischer lost half his terms, which results in a factor of two error. 

(3) An extra AuAv    appears in Eq. (17). 
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It was agreed that statements (2) and (3) above were valid criticisms.   A 

discussion of statement (1) above followed.   Although it was agreed that the 

field contribution resulting from a coherent source is not proportional to the 

square root of the area of the source, Goodman suggested that provided the 

surface wasi very rough Goldfischer's averaging procedure would nevertheless 

yield the correct average result.   He gave the analogy of adding independent 

noise voltage at a point and then summing on a power basis to obtain the 

average power.   Crane stated that Goldfischer's procedure assumes the 

ensemble average and then calculates the average again. 

A discussion of Goldfischer's Eq. /20) and Crane's19 Eq. (13) took place 

S (w.ß)  = ah2 

32A2 

00 

// 
dudv  P(u,v) Pi 

(■ 27r 27r    ) G (20) 

s(w,n) = 
no 

//  P(u,v) p (u - ~ ' v-^r)dudv 
C (13) 

where  P (u, v )   is the power density incident on the diffuser at (u,v )  and 

p(u, v) is the field at  (u,v ).   Although |p(u, v) |2 is proportional to P(u, v), 

the two expressions are not identical.   Goodman argued that if Crane's Eq. (13) 

were averaged over the ensemble, it would yield the same result as G(20) 

provided the surface was very rough compared with A .   This argument, in 

one dimension, proceeds as follows:  Consider the diffuse surface as consisting 

of N correlation cells of length j?c so that the integrand of Eq. (13) would be 

equivalent to a sum of N -1^     terms of the form p(u)p (u - ^) , each 

one being an independent complex number because the cells are uncorrelated. 
When  N ~2n      is a larSe number, the sum of the random numbers is 

equivalent to tRe random walk problem.   If the surface is very rough compared 

with A ,  the phase of each complex component of the walk is uniformly 

distributed on (o, 2n), and a complex Gaussian random process results.   The 
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square of the sum then obeys negative exponential statistics with a mean 

proportional to the number of random complex numbers.   Thus,  SJÖT) is 

proportional to the area of overlap of p and p (shifted); that is, to the auto- 

correlation of the brightness distribution across the scattering spot.   This is 

equivalent to Goldfischer's result.   Therefore, it appears from the above 

argument that both G(20) and C(13) (averaged) would predict a triangle (A) 

power spectral density function and not (A2), for the special case of uniform 

coherent illumination of a rectangular aperture provided the surface roughness 
is much great than X. 

Remarks similar to the above were made about Crane's Eq. (15) that 

deals with the Fresnel region.   It was agreed that the presence of the 

additional deterministic phase factor would not affect the averaging procedure 

outlined by Goodman provided, of course, that the scattering surface was very 
rough compared to A. 

Crane showed a photograph of a speckle pattern obtained by illuminating a 

shirt fabric with laser light.   He also showed a photograph of the Fourier 

transform of the speckle pattern and pointed out structure that he suggested 

contained information about the periodic nature of the fabric.   It was agreed 

that the Fourier transform probably did contain this information but that more 

accurate information about the surface would be required in order to verify 

any particular theory. 

Attention was given to the function g(u,v) defined on page 1660 of Crane's 

paper.   Crane remarked that some statements made in his paper concerning 

g(u,v) were incorrect.   The function g(u,v)   is to be interpreted as a 

combination aperture function and a function describing amplitude and phase 

changes upon reflection that are not accounted for by the path difference phase 

changes contained with 
(Rl + R2) 

There was a discussion of the assumptions about the reflected field 

implicit in Crane's Eq. (17).   The implicit assumption is that the reflected 
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field can be described by a pure phase function.   It was agreed that this 

approximation carries with it restrictions on the surface roughness and slope 

distribution and that the exact nature of these restrictions should be 
investigated. * 

In the afternoon session, the apparent differences between the theories of 

Goodman     and Crane were considered.   To obtain the ensemble average auto- 

corrf lation function from Crane's treatment the expression Ku,, v ) I* (u , v ) 

must be evaluted, whereas, Goodi 

and makes use of the relationship 
must be evaluted, whereas, Goodman first calculates   E^, v) E*(u ,v  ) 

KV v^ r(u2. v2)  = I^ [l+     lY^.V^Ug.Vjj)!2] 

where   y is the normalized spatial coherence function.   This approach is valid 

only when   E  has complex Gaussian statistics and therefore applies only to the 

case for which the surface roughness is large compared with A .   Thus, 

Goodman's theory should be compared with Crane's theory for the case where 
the surface is very rough. 

We have since examined this problem and have made some progress toward 
defining the conditions for which the approximation is valid.   We have tenta- 
tively concluded that for normal incidence the approximation is valid when 

^ 
R^ 

8[(u-x)2 + (v-y)2] 
max 

where  a   is the rms surface roughness, and   R  is the range to the observa- 
tion point (Fresnel approximation).   Further conditions are that the surface 
slopes should be less than about ±30" to the normal to the mean reference 
plane and that the local radius of curvature must be large compared with A . 
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This led to a consideration of the approximations used by Crane in arriving 

atEq. (39), and. in particular, the conditions that these approximation imposed 

on surface roughness.   It was agreed that, subject to the conditions already 

mentioned. Crane's general Eq. (38) appeared to be correct.   The validity of 

Eq. (39), however, depends both on the surface correlation length and the 

surface roughness.   In the limiting case for which the surface correlation 

function is zero corresponding to a specular mirror, Eq. (39) predicts that the 

power spectral density has the form of a squared triangie function (A 2)   when 

the illuminated aperture is a rectangle.   This result agrees with both experience 

and diffraction theoiy applied to specular reflection.   However, this is exactly 

the case for which Goodman's theory is inapplicable because his theory is valid 

only for surfaces much rougher than \.   In the other limiting extreme for 

which the surface roughness a2 => «> ,   it was agreed that Eq. (39) was invalid. 

The discussion then centered on the magnitude of the contribution to the 

integral of Eq. (38) for intermediate values of cr2.   Goodman felt that the 

approximation used to obtain Eq. (39) from Eq. (38) -namely, that the 

integrand becomes negligibly small for small strips along u   = u - ^  - may 

not be valid for intermediate values of a2.   In particular, he suggested that 

when   or » \    ,   an entirely different approximation to Eq. (38) might be 

required and suggested that in this case Eq. (38) might reduce to the Goodman- 

Goldfischer result.   Goodman indicated that he would attempt to develop an 
approximation to Eq. (38) for this case. 

There was a discussioi of experiments that might be performed to clarify 

remaining theoretical difficulties.   An experiment cuuld be designed to measure 

the shape of the power spectral density function and to determine whether it was 

a triangle or a triangle squared function for a rectangular aperture.   Goodman 

suggested that as the surface roughixess went from very smooth to very rough a 

transition from a triangle squared to a triangle function might be observed.   It 

was agreed that determining the shape of the power spectral density ftmction 

near dc would be a more difficult experiment.   Peppers suggested that the 

speckle pattern at large angles from the normal would have to be sampled in 
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order to obtain information about the power spectral density near do.   Conse- 

quently, this raises basic questions about the validity of all of the theories for 

large angles.   It was agreed that the numerical aperture of the recording system 

should be great enough to resolve the surface irregularities. 

The discussion then turned to the application of speckle pattern theory to 

remote sensing of the wave amplitude statistics of the sea.   Peppers remarked 

that the angular distribution of the average intensity contains information about 

the surface statistics because the Fourier transform of the spatial coherence 

function at the surface relates it to the surface autocorrelation function. 

Furthermore, because the average intensity provides this information, he 

suggested that the temporal coherence of the laser is not being used for this 

measurement, and, in principle, an ordinary bright incoherent source would 

provide the same information.   Goodman agreed, but pointed out that the 

Fourier transform relationship scales with X ; and, therefore, the incoherent 

source should be quasi-monochromatic (filtered) to avoid an ambiguity in the 
Fourier transform. 

Some thought was given to possible experimental configurations for 

collecting data from real seawater.   For a diagnostic experiment from a 

floating platform, multiple detectors or a scanning boom could be used to 

measure the intensity distribution.   For an experiment with an airborne 

platform, one is constrained to essentially monostatic angles; further theoretical 

work would be required to predict the results of scanning the monostatic angle. 

2.    Important Conclusions 

The theories of Goodman and Goldfischer are inapplicable to relatively 

smooth surfaces.   Crane's Eq. (39) is inapplicable to relatively rough surfaces 

but yields the correct result for relatively smooth surfaces.   Crane's more 

general Eq. (38) is thought to be correct also for relatively rough surfaces ~ 

subject to certain conditions stated in these notes.   In the one case to which all 

theories were applied (see page A-2 of this Appendix) identical results were 
obtained. 
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APPENDIX B 

COMPARISON OF VARIOUS THEOPJES CONCERNING LASER SPECKLE 

J. W, Goodman 

1.   Historical Background 

After the operation of the first CW He-Ne laser, considerable interest 

arose in the speckled appearance of typical diffuse surfaces illuminated by 

coherent light.   It was soon recognized that the origin of these granular patterns 

lay in the optical roughness of the surfaces from which the light was 
scattered.21» 22 

The first detailed statistical treatment of this phenomenon, now known as 
laser speckle, was that of Goodman."  Treating the scattering or reflecting 

surface as a statistical ensemble of many point-scatterers with independent'and 

uniformly distributed phases on (0. 2.). Goodman showed, among other results 

that the power spectral density (or Wiener spectrum) of the intensity pattern of ' 

reflected light was. up to scaling factors, identical with the autocorrelation 

function of brightness (i.e.. intensity) distribution across the scattering spot. 

Goldfischer18 independently derived the same result using essentially the 
same model as Goodman." Again the scatterers were assumed ^.„.^.^ 

in size and independent and were taken to have phases uniformly distributed on 
(0, 2n). 

In an extension of his previous results. GoodmanlO later discussed the 

properties of speckle patterns as they affect the performance of optical radars 6 

In an appendix to this paper, he presented a generalized theory that allowed a 

finite correlation area to exist in the fields at the scattering surface.   Thus 

the assumption of infinitesimal scatterers was removed, but. significantly, 'the 
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phase of the scattered light at any point on the object was still assumed to be 

uniformly distributed on (0, 2n).   Hence, the theory applies only for surfaces 

that are quite rough on the scale of the wavelength of the illumination. 

Following this early work that dealt with the intensity patterns existing in 

the scattered light, other investigators ~ notably Lowenthal and Arsenault23-- 

have studies the properties of similar patterns observed in the images of 

coherently illuminated diffuse objects.   These treatments have assumed that the 

complex fields in the image plane obey circular Gaussian statistics, i.e., the 

real and imaginary parts of the field are zero mean, unccrrelated Gaussian 

random variables, with identical variances.   Such an assumption is valid if the 

correlation area of the diffusely transmitted or reflected wavefront is small 

compared with the area of the point-spread function of the imaging system and 

if the phase of the light at each point on the object is approximately uniformly 

distributed on (0, 2TT),   In the current discussion, we shall limit attention to 

speckle patterns observed by direct measurement of intensity in the scattered 

light, without any intervening optics.   We shall, therefore, not be addressing 

the problem studied by Lowenthal and Arsenault. 

The next important piece of work dealing with directly observed speckle 

patterns is that of Crane.19  He derives results that appear in various respects 

to conflict with earlier results of Goodman and Goldfischer.10 >17»18   Crane's 

comments are directed at the paper by Goldfischer, but his chief criticism 

applies equally well to the work of Goodman.   The chief criticism is as follows: 

Goldfischer assume, that the field produced by a small subsection of a diffuse 

surface is proportional to the square root of the area of that subsection; but for 

coherent light, the field must be directly proportional to the area because the 

field contributions add on an amplitude basis.   Thus, Crane concii'des that 

Goldfischer used a physically incorrect model and that this is the reason for the 

apparent differences between the results of the two theories.   We should also 

point out that Crane's theory has the merit of allowing for a finite correlation 

area of the diffuse surface.   Of the work preceding Crane's, only that of 

Goodman10 allowed for this possibility. 
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Crane's criticism of Goldfischer's work was answered in a letter by 

Arsenault.24  ArSenault asserts that the differences between Goldfischer's and 

Crane's results arise because the former theory derives statistical average 

results while the latter is entirely a deterministic theory.   Arsenault addresses 

his comments only to the early part of Crane's paper and in particular, to that 

portion through Eq. (16*   In a later portion of the paper leading to Eq. (38) and 

(39). Crane has derived expressions for the statistical average power spectral 

density, the same quantity derived by Goldfischer.   Important differences 

between the results of the two theories remained even in this case.   Thus 

Arsenault's comments do not fully explain the discrepancies between the tlo 

papers.   As we shall see in a later section of this appendix, the major dis- 

crepancies arise from the feet that Goldfischer implicitly assumes that the 

standard deviation of the phase of the reflected wave is comparable with or 

larger than 27r radians, whereas Crane's final result. Eq.(39). only holds when 

the standard deviation of the phase is considerably less than ^radians.   Thus 

Crane's final result   holds only for relatively smooth surfaces. 

2'   APProximations and Assumptions Inherent in the Various Theories of 
Laser Speckle 

All of the theories concerning laser speckle contain certain approximations 

Here we wish to outline the approximations common to all theories and those 
wluch are specific to the various individual theories. 

a-  approximations Common to all Theories 

Past analyses of the properties of laser speckle patterns are by no 

means exact.   All of the previous work mentioned is based on the scalar theoxy 

of d^fraction and scattering, a theory which is accurate only when reasonably 

small diffraction angles are involved.   Many diffuse reflectors scatter radiation 

into a wide cone of angles, so there will be cases in which the predictions of 
the scalar theory are not entirely accurate. 
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Most of the detailed analyses referred to have started with the Huygens- 
Fresnel principle stated here as Eq. (i). 

jk|r0-r| 

E (x,y)   =~L   // f,: iu'v^' cos <P 

ro-r 

dS (B.l) 

Here.  E (x.y)   is the field at  (x.y)   in the observation plane.   E (u.v)   is the 

field at (u.v)   in the reference plane. To  is the vector distance from the 

origin of (u.v)   to the observation point (x.y),   7 is the vector distance from 

the origin of (u.v)  to a point in the  (u.v)  planer is the angle between r 

and the normal to the  (u.v)  plane.   dS  is the elemental area in the  (u.v)0 

Plane, and k has the value  2n/x  where  X  is the wavelength of the radiation 
used. 

An approximation common to all past theories has been the so-called 

Fresnel approximation to the Huygens-Fresnel principle, in which the soherical 

secondary wavelets are approximated by quadratic-phase surfaces.   In addition 

the obliquity factor  cos <p is generally replaced by unity, and the factor JF^Ti 

in the denominator of Eq. (B. 1) is usually replaced by the normal distan^h 

between the mean scattering surface and the parallel observation plane.   Such 

approximations are valid only in a limited region of the observation space. 

Lastly, we note that all theories neglect the effects of shadowing of the 

surface profile.   Thus, all points on the surface must be viewable from the 
observation and illumination points. 

b-   Assumptions in the Work of Goodman and Goldfischer 

In addition to the general approximations mentioned above, two major 

assumptions are common to the early work of Goodman and Goldfischer.17.18 

These assumptions are:   (1) the correlation area of the diffusely reflecting 

surface is infinitesimal, and (2) the surface height fluctuations ars of the order 
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of  X or greater, leading to a uniformly distributed phase associated with each 

elementary scattering area.    Later work by Goodman10 showed that when the 

first assumption is removed,6 the correlation function of the scattered wave 

influences the mean distribution of intensity over the observation plane but does 

not influence the fine structure of the speckles themselves.   The second 

assumption however, is more vital to the theory and can not be removed without 
major modifications. 

We disagree with Crane's claim that the theories under discussion 

contain a fundamental flaw through the assumption that the power contributed by 

a scattering element is directly proportional to its area of that element rather 

than to the square of the area.   In a deterministic treatment such as that in the 

early part of Crane's paper, amplitudes must surely be added.   However, the 

results obtained (e.g. , Crane's Eqs. (13) and (15)) are not very useful in 

deterministic form because the detailed functions  p(u,v)   to be inserted cannot 

be specified.   They are in fact sample functions of a random process.   If the 

ensemble average power at a given point is to be calculated, then provided 

assumptions (1) and (2) above are satisfied, the average power contributed at a 

given point must indeed be directly proportional to the scattering area.   We 

shall demonstrate in subsection 3 that Crane's results reduce to Goldfischer's 

results when assumptions (1) and (2) are satisfied. 

c   Assumptions in the Work of Goodman 

The primary assumption inherent in Goodman's generalized treatment 

is that the scattering surface is rough on the scale of a wavelength.10   This 

assumption enters through the assignment of circular complex Gaussian 

statistics to the scattered field at the observation point.   Such statistics arise 

only when the scattered field components generate a complex random walk, with 

approximately uniform phase associated with the various field contributions. 

A phase distribution approximately uniform on (0, 2T) will be observed only when 

the surface roughness is comparable with or greater than a wavelength.   The 

Gaussian statistics of the fields are used in Goodman's Eq. (13), which specifies 
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the correlation function of the speckle intensity pattern in terms of the correla- 

tion function of the fields.   This specific relation does not hold for non-Gaussian 
fields. 

Goodman's Eq. (63) and (13) indicate that the autocorrelation function of 

the speckle intensity pattern  I(x,y) may be expressed as*t 

Rio (xi' yrK2'y2) = <1<xi'yi) I(x2,y2)> 

= <I(x1,y1)><I(x2.y2) 1 + 1 yo (Ax, Ay) 1 (B.2) 

where Ax = x1 - x2 , Ay = y1 - y2 .   Here <I(x,y)>   represents the distribution 

of mean intensity in the  (x,y)   observation plane and can be shown to be pro- 

portional to a scaled Fourier transform of the normalized autocorrelation func- 

tion ^(Au, Av)   of the fields in an  (u, v)  plane that exists just above the 

scattering surface.   The function   yo(Ax,Ay)   represents a normalized auto- 

correlation function of the field in the  (x,y)  plane and can be shown to be a 

scaled Fourier transform of the brightness distribution across the scattering 
surface. 

In applying these results, particularly when the surface structure 

information is of interest, we need to find some way to relate the surface height 

profile w(u,v)  to the autocorrelation function of the fields in the  (u,v)  plane 

just above the surface.   In general, this is a nontrivial problem and we will 

discuss it in more detail^hen considering Crane's assumptions in the following 
section. 

*We use i^re Crane's notation, with  (x,y)  variables in the observation plane 
and  (u,v)  variables in the target plane. 

tHere we use the symbol  I(x,y) = E (x,y) E*(x,y) for intensity.   To convert in 
intensity to power density one must divide by 2z   where   z   =l20 7rn   is the 
impedance of free space. 0 
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d-   ^-^"mPttons and Apnrov1ma»nnB j, the „„^ „f ^„^ 

Here we restriet attentien te the one eaee ta. which Crane cemputed the averse ^   spectl deamy , a speckle ^ ^^     a J- ^ 

bee        No asauraptlons eoneernmg tte roughness of the surface are expUcitlv 
s ated, bu. the surfaee height profUe w.u.v, is expfieftfy aSsumed to h T tt    n- 

ary Gauss.an randon, proeesa.   Presu.abiy, the sta„dard deviatlon of ^ ";. 

faee ean vary fro. .ero (a „irrer surfaee, to infinity (a„ infiniteiy rougTsIoe,. 

Crane uses the Fresnel approximation to the Huygens-Fresnel 

prmoiple in making his oalcuiations, using a field 

P(u,v)   =expj-j^[w(1.OO30)jj    g(UiV) 
(B.3) 

where  g(u, v)  is not oarefully defined in the paper but is generaUy implied to be 

a positive and real-valned ftmotion. the sq„are of which is proporCi     L 

-d.ance distribution incident on the surihce.   Crane e« ^ g „^ 

»thts way m the example preceding the random-surface ana.yl (See ^ 

Important approximations inherent in the „se of Eq. (B. 3) have been 

pomted out by N.   Peppers in the course of this study.   Firs    it L,^ I 

variation of the Fresnel-refleotion coefficient of the surface as' tie ft 

surface c^ges.   Second, it neglects phase terms that can be impoL     " 

some appUcations (including scattering from the ocean surface, when^   " 

patten, is not observed directly above the scattering spot.   To  llustrate   wT 

reference to Fig. B.f, the distance |T0-T| .rom a pit on th  ".Z 
to a pomt  (x,y)  on the observation plane is 

|VTI=   [<h +w)2 +(x-u)2 My-v)2] 
1/2 

(B.4) 
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RECEIVER PLANE 

TARGET PLAME 

PROFILE w(u,v) 

SA-2422-11 

FIGURE  B-1      GEOMETRY AND COORDINATE SYSTEMS USED  IN THE HUYGENS--FRESNEL 
PRINCIPLE 

For simplicity, we define 

A   ^ (x-u)2 + (y-y)2 

(B.5) 
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and expand |To-r | in a binominal series, keeping only those terms of second 
order or lower in A  and w . 

r  -r   ^ -w o 
+ Ü + h - ^    + wA /i     3A\       w2A /      3A\ 

are In Crane's approximation, all but the first two terms in this expansion 

dropped.   For a large class of practical problems, this results in sufficient 

accuracy, but when A/w  is large, as in the case for scattering from the sur- 

face of the sea, dropping the remaining terms could lead to appreciable errors 

in estimating the field in the observation plane. 

in Lastly, we wish to discuss a subtle but important approximation 

Crane's mathematics, which is responsible for the most dramatic conflict 

between Crane's results and those of Goodman and Goldfischer.   This approxi- 

mation arises in passage from Crane's Eq. (38)to his Eq. (39).   We repeat 

Crane's Eq.(38), in slightly simplified notation, as follows: 

E[S(a,S2)]   = exp \-2J\1 -p   (Ah«   AMAll 
^|       ß   I       Hw \ 27r '   27r /J j 

00 . 

•y^rexpL/Lw(u-Ui. V-Vi 
-00 ( L 

Pw\u   ui +-2F.  v-v1 +—j 

"pw(u-ui 

(B.7) 

Ah£    v_v   _Ahn 
27r  '   v   vi        27r g(u,v) g*(u1,v1) ■ 

du dv du   dv (B.8) 

where 2       r2ir T2      9 
^     = [—(1 +cos0)J      a^ 
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with   pw representing the normalized autocorrelation function of the surface 

height profile and pw
2  representing its variance.   Crane notes that the 

exponential factors differ from unity only in strips in the  (u.u^  and  (v.v,) 

planes that are narrow compared with the total area over which the  g functions 

are nonzero.   He assumes that the contribution from these narrow strips is 

negligible and replaces the exponential functions within the integrand by unity. 
The result is his Eq. (39), 

E M '°*P -2"/[1-'w(Alr.^r)j 

// 
g(u, v)g* 

The replacement of the exponential factors 

\U   ^F '  v * -2F7 du dv (B.9) 

-PI-^WK^.V-V^^I 

and 
by 

expj-^   PwK-^.v-v^^) 

unity is an excellent approximation because within the narrow strips where they 

differ from unity, they can at worst (large cr^) drop toward zero.   The change 

in the value of the integral resulting from these two strips will indeed be 
negligible. 

However, the replacement of the term  exp ^a^2 p   (u-u   , v-v )\ 

by unity involves a much more serious approximation, for when   a 2  is ^^ 

the value of this exponential becomes very large indeed.   Although this factor ' 

differs from unity only in narrow strips in the  (u,^)  and  (v.v^  planes, it 
can nonetheless change the value of the integral if o^2  is too large. 
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To analyze the exact restrictions on  a^2,   we find it convenient to 

consider a one-dimensional problem for which the quadruple integral of Eq. 

(B. 7) reduces to a double integral.   The results will then be generalized to the 

two-dimensional (quadruple integral) case.   Figure B-2 shows the region of 

integration in the   (u.u^   plane, with the strips in question indicated, and the 

one-dimensional scattering spot assumed uniformly bright over a length   L.   As 

argued previously, the exponentials that drop toward zero in strips centered on 

. Aha 
u-ui +-2F= 0 and AhS2 u-u,   - —— 

1        2TC 

STRIP ALONG 
Xhtt      , 

STRIP ALONG 
Aha     „ 

/      Xha\  . /       Xha\ 

9(ul g'lu. 

STRIP ALONG 

SA-2422-16 

FIGURE  B-2      REGION OF  INTEGRATION   IN THE  (u, u,)  PLANE SHOWING  STRIPS WHERE 
VALUE OF exp |2o| pw   (u - u,, v - v,) [DIFFERS FROM  UNITY 

Figure B-2.    Region of Integration in the (u, ui) Plane Showing Strips 

SmVnlty6 ^ ^ ^^    Pw (U " U1, v " Vl)l   Diffe rs 
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can be replaced by unity.   This leaves 

[sw]   = = exp 

00 

yy exp {2 a/ Pw(u-u1)J .  g(u) g*^) g*(u -A 
-UO 

(B.10) 

To estimate the effect of the exponential term on the integral, we replace it by 

a flat-topped ridge of height    exp ^2 or^2 }   ,   length  yß {L - ^L)  and width 

U.   Here  U  represents the width (in the u-direction) over which the exponential 
factor differs significantly from unity.   In general,   U  is somewhat larger than 

the correlation width of the random height variations.   The volume under the 

broad flat-topped plateau of height unity [i. e. , the plateau  g (u) g* (n ) g* (u - 

27r' g(ui " ITPj   1S   (L - -57-)     •   Thus, for the extra volume under the 
sharp ridge to be negligible, we require that 

exp J2 a/j VT(L - ^ ^/Tu   «    (L - ^) (B.in 

or 

0)3    «   1/2 In 
(L - Ä' v 27r ; 

2U (B,12) 

For the corresponding four-dimensional integral, the restriction becomes 

Vß     «   In 
(L - fg) 

2U 
(B.13) 

where an  L x L  scattering spot and a  U x U   correlation area have been 
assumed. 
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We now calculate an upper limit on the rms phase deviation  a/ for 

^^Xha*1' 3Lt0 ljÜ ft00Urate al a Ere<luenoy halfway across the spectrum 
(L -^ 2^)   =  2"  ■   Wc huvv 

IT, <   < V ln ^ (B.14) 

To calculate the largest allowable  cr^ .   we assume   L = 200m   and   U = 

0.5 x 10-öm,   which will lead to the largest bound that might be encountered in 

most practical cases.   Substituting the numbers, we find the requirement 

< <    4.3 radians (B.Jo) 

As a reasonable engineering approximation, Crane's result will be accurate if 

the rms surface deviation is no greater than about 0.2\.   Because of the 

logarithmic nature of the inequality in Eq. (B.14), the bound on a.   is not very 

sensitive to the exact values used for   L  and   U.   Thus. Crane's Eq. (39)is 

valid only for relatively smooth surfaces.   As we shall show later, for sur- 

face roughness greater than 0.2X, Crane's Eq. ^approaches Goldfischer's 
result except at very low frequencies, 

3-   An Extension of Crane's Results to Rough Surfaces 

a.   Analysis 

As shown in the preceding section. Crane's Eq.(39)is valid only when 

the surface roughness does not exceed about 0.2Xin the most generous case. 

Here we wish to extend Crane's results to the case of truly rough surfaces, 

i. e.. surfaces for which c^   may be comparable with or greater than  2TT ' 

radians.   As a starting place, we use Crane's Eq.(38), which we believe to be 

valid for a Gaussian surface of any roughness, subject to the approximations 
stated in sections 2a and 2d.   Thus. 
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[s(a,0)]   = = exp / - 2(Tr [■■ 
_    Aha;    Ahn 
pw l 27r   ♦   2 7r' I 

ffffahv^Lfr-^ , v-v^ - l/2pw(u-u1 +^ 

•  g(u.v)g*(u   vjg^u -Ä    v -^)„.(u    . ^ha 
1    J- 27r   ' 27r/ &v 1        27r ' 

V2 - -jjp du dv du   dv. (B.16) 

In approximating this equation, we find it necessary to concentrate separately 

on the cases of high frequency components [^ and ^    larger than the 

correlation width of pi and low frequency components ^ [^ and ^    less 

than the correlation width of pi   Our attention will be focused first on the 
high frequency case. J 

For large aß
2 , the second and third exponential factors in the inte- 

grand approach zero only in narrow strips in thS  (u.^)  and  (V.V-L) planes but 
are unity elsewhere.   They can be replaced by unity with little loss of accuracy. 

2 Furthermore, at high frequencies, we may replace the term 

27r    '    27r by unity.   Thus, 
exp2^    pw 

E [S(a,n,]    « ffff^-2^ -pw(u.Ui , v.Vi)Jj 

Aha        Ahn, •gCu.^g-Cui.v^gMu-^.v-^g^-^.v^^ 

du dv du. dv 
(B.17) 

Now we note that if aß is large, the exponential function in the integrand is 

very narrow indeed. This function will, in fact, drop to zero for very small 

arguments of pw .   Thus, to determine the behavior of E[S(a,n)]    for large 
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aß   , we can replace pw by its functional form near zero argument.    For a 
wide class of autocorrelation functions, we can write 

w U.TJ)  ^ 1 - a^    - bT)2 + C^TJ (B.18) 

for small values of   £ . , .   With a simple rotation of the (|.,, coordinate sys- 

tem, the cross term can be eliminated, and, therefore, we shall use the form 

Pw(S,t?) ^  1 - a^2 - br?2 

(B.19) 

Such behavior near the origin is common to correlation fimctions of all random 

processes that have finite variances associated with their first derivatives    A 

notable case that violates this condition is the negative-exponential correlation 

function, which in the Isotropie two-dimensional case may be written and 
approximated as follows: 

_ Ar 

P„, ^r)  = e      R   - 1 - Ar 
ix W (B.20) 

where Ar = V^2 +r,2  and R is a constant. 

We shall use the form of Eq. (B. 19) in our calculations and simply state the 
result when Eq. (B. 20) is used. 

Using Eq. (B.19), we find 

exp 

(B.21) 

Next we note that, for large a*2. 

exp )2(Xß Mu-Uj )    + hiv-yj I 27r 
——   2 • ö(u-u)6(v-v ) 
4 Väb aß i l 

(B.22) 

B-15 

1   n 1 1 „      1 mii'lii l"i iiil^rit' IfVlht'ViJ'M'rtlMWi fc'l'ttt'^<iMiiitrthtMrtW:Hif,ri>flirii)Wiil1^fctf rMfAlitilfi Hjl'i'HMlW ■l>iA><,ü1Millrl i^^l^aTi i hi    '■- •■' •"^"^UtiMiti^kfUilU   i \ ■ -    - .. „   .... ..- ....■.-      -- -^    -    ^—-■ ..---  -■-  -  1,    I...   1   ■-  —■^—-   --   —■   --.  ^^^ ^^__l-. ■ ^.-.^^.^■^.^...■-^^.^ 



" 'r''^',","»!^"^*r*!*:,p'*'ii«'!^"'1^^^ 

Substitution of Eqs. (B.21) and (B.22) in Eq. (B.17) yields the result 

E[S(G',n)]  - -JL- ff\g{u,vM2 I v)|   jg^-äF.v-^) du dv 

(B.23) 

where the sifting property of the ö -functions has been used to reduce the 4-D 

integral to a 2-D integral.   The particular value of the constants  a and  b  can 

be determined only when the form of the surface correlation function is 

specified.   For the case of a negative exponential autocorrelation function of 

Eq. (B.20), we obtain 

2 
E[S(Q,n)] -    I5_ //jg(u,v)| 

20fl JJ 
g(u - 2TT , v 

Xhfl. 
2w ' du dv    • 

(B.24) 

We shall shortly discuss the significance of the results of Eqs. (B. 23) 

and (B. 24) and compare them with the previous results of Crane and 

Goldfischer.   First, however, we wish to consider just how large (To     must be 

for these equations to accurately represent the power spectral density.    For 

simplicity, we consider only an Isotropie correlation function that behaves as 

Pw{Ar)  «1- d Ar2 + f Ar4 (B.25) 

near the origin.   We wish to find the requirement on crß     to justify neglecting 

the Ar4   term.   We have 

2r — 1 ) ( 2—2) (        2—4) 
exp j -2a-ß    1 -p   (Ar)   I    =*  exp J - 2 OJJ d Ar  I exp |2o-o  f Ar   [   * 

(B.26) 

The maximum value of Ar for which the first exponential factor has 

significant value is 

Ar max v^ (B.27) 
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For the second exponential factor to be negligible, we require 

2    _4 
2°^   fAr «i P max ^^ (B.28) 

or 

aß2 »      i_ 

2d' 
(B.29) 

Thus,    op »   QI is a sufficient condition for our approximation to be 

accurate.   For the particular case of a Gaussian correlation function 

p    (Ar)   = e 
w 

-A2 

(B.30) 

we have d = R"2 . f = 51   ^ and the requirement for accuracy becomes 

Vß   »   ijj = 2     radian. (B.31) 

Taking a factor of 4 to represent the condition much greater than, our results 
will be accurate if 

^ ^ 2  radians 

or if the surface height fluctuations are greater than about 0.3X. 

(B.32) 

We should also point out that a second approximation used in Eq. (B 22) 

exists in our analysis.   However, this approximation turns out to be accurate 

for  <rß  greater than a very small fraction of a radian, so the condition in Eq. 
(B. 28) is the more stringent requirement. 

Lastly, we turn to an approximation to Eq. (B. 16) valid at low fre- 

quencies, i. e., frequencies for which ^f and ^ are smaller than the width 
of  Pw .   In this case, we have 
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W 1 1'       2    WV"   ui      27r  ' 1        27r ; 

2pw<u-ui -^r'v-vi--27) ^ 0 

(B.33) 

and 

g*{u -~,v ~~)   «  g*(u,v) (B.34) 

and 

Xha   „       Ahn, . , 
S (U1      "2¥- ' vl - ^7)   " S (ui ' \) (B.35) 

It follows that 

00 

2   .2 
dudv ,v) 

But we further note that for low frequencies, using Eq. (B. 19) we have 

(B.36) 

(     2r exp ; - 20/j „   Ahq   Xhn" 
~   w^ 27r '   27r ' exp; - 2 „ 2r  Aha;.2 ^, Aha2!/ aß [a(-27)   +b^)J} 

(B.37) 

for any correlation function  pw that behaves quadratically near the origin. 

Thus, near zero frequency, the power spectral density behaves as 

EOM)]    -exp|-2ff/3
2[a(^)2

+b^)2]|   • 

rrl       12     r JJ . g(u. v)     dudvj (B.38) 
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Thus, for a wide class of truly rough surfaces, the low frequency hump in the 

power spectral density has a Gaussian shape, regardless of the particular shape 
of the surface correlation function. 

b.   Discussion and Conclusions 

We have shown that Crane's Eq.(39)is valid only for relatively smooth 

surfaces, with surface roughnesses on the order of 0.2\ or less.   On the other 

hand, we have found a new approximation to Crane's Eq. (38)valid only for rough 

surfaces, with roughnesses on the order of 0.3\or greater.   Figure B-3 

illustrates the predictions in the two cases for a square, L x L scattering 

spot of uniform unit brightness.   In the case of Crane's Eq. (39), er 2    must be 

so small that the low frequency hump has the shape 

exp < - 2 - 
2ri    n   Aha   \hnjj      r 2-j 

+ 2a2o   ^  ^M?\ 

(B.39) 

Thus, information about the correlation function of the surface height variations 

is indeed contained in the very low frequency components of the power spectral 

density.   However, this information is relatively weak in magnitude compared 

with the first term [l - 20^ 2 J in our Eq. (B. 39) above. 

If the surface roughness is large, again a hump exists in the low fre- 

quency portion of the power spectral density.   The hump is larger compared 

with the higher frequency components in this case, but its shape is Gaussian, 

and detailed information about the surface correlation function cannot be 

derived from it, other than possibly the constants  a, b, and er« 2 . 

As for the high frequency components. Crane's approximation predicts 

that the power spectral density has the shape of the square of a triangle function 
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APPROXIMATE SHAPE 

(a)   CRANE'S RESULT (Ofo < 1.1 RADIANS) 

a; 

/|g(,v,|
2|g(u-^,v-^)kudv GAUSSIAN SHAPE 

TTI/ 

/7fiaa 

(b)   OUR APPROXIMATION TO CRANES RESULT (ffij > 2 RADIANS) 

CO 
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FIGURE  B-3      CROSS SECTION OF POWER SPECTRAL DENSITY FOR   L x  L SQUARE 
SCATTERING SPOT 
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for a square scattering spot, whereas our approximation predicts a triangle 

function.   Our approximation is in accord with the previous predictions of 

Goodman and Goldfischer,17'18 namely, that the power spectral density has 

the shape of the autocorrelation function of the brightness distribution across 
the scattering surface. 

It is instructive to consider a numerical example to demonstrate how 

the shape of the expected value of the power spectral density changes as the 

surface roughness changes from very smooth to very rough.   We use a 

symmetric Gaussian correlation function given by 

Pw(a,n)  = e 

- Au2 + Av2 

R2  -m°* + n 
(B.40) 

and note that 

a 
max 

27rL . 2TL 
, u    and  s2„      =    ■ , Ah max        \h (B.41) 

for an illuminated square L x L.   Thus, 

-(L)2 

Pw = e L(%ax)   +(nmaJ)j 
(B.42) 

We now construct table B. 1 to show the limiting forms of E [S(Qi, o)]   for 

smooth and rough surfaces and use the reasonable numerical value lO3 for 

(L/R) in these forms to plot the result in Figure B-4.   Note that we have 

shaded regions of Figure B-4 for which our approximations are invalid and for 

which the exact shape of the power spectral density is unknown.   Note also that 

the ordinate and abscissa are scaled differently. 
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FIGURE  B-4      NORMALIZED POWER  SPECTRAL DENSITY FOR SMOOTH AND  ROUGH 
SURFACES FOR WHICH (L/R) = 103 
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The important conclusions to be drawn from the analysis of this 
appendix are summarized as follows: 

• Equation(39)of Crane's paper is valid only for relatively smooth 
surfaces ( CTW < 0.2A). 

• When the surface is smooth enough to satisfy this requirement, 

information about the surface correlation function is present in the 

power spectral density function near zero frequency, but it may be 
difficult to extract. 

• For surfaces smooth enough to satisfy this requirement, the high 

frequency portion of the power spectral density has a shape deter- 

mined by the squared modulus of the autocorrelation of the square 

root ex the brightness distribution across the scattering spot~ 

• For truly rough surfaces ( aw > 0.3X), our approximation to Crane's 

Eq. (38)is the proper result, and Crane's Eq.(39)is incorrect. 

• For a truly rough surface, the low frequency components in the 

power spectral density function have a shape that depends only on 

the shape of the surface correlation function near zero argument. 

Detailed information on the exact nature of the surface correlation 

function is thus not derivable from the power spectral density. 

• For a truly rough surface, the high frequency components of the 

power spectral density have a shape that is determined by the 

autocorrelation function of the brightness distribution across the 

scattering spot.   Thus, for a truly rough surface, the previous 

predictions of Goodman and Goldfischer are correct.17,18 

Thus, the apparent contradictions between Crane's theory and those 

theories that preceeded his have been reconciled by our analysis. 

B-24 

,r ,    ,  ..Miirr-riiiiiii^if —"——J-ninifiiiHiiimii--,"---'-: -   ^^^■ ..a, UJL^M^K^^;...^.^j|-ti(|ü1I| |rr , nj   , -.p -'- "-"""iwntiifiaiiiiiiii ii'niiritniitfiiiiiatirtriifitfilifli 



uijuiiiuuinipi ■IWff!^ «■!"1,1   i.!      1 , ««■•».»•(i.Awi.njiiiiiiiliijiijB  »..U^IUIIWKIIMI N ii '«■Miwi.wfUÄ'w'jui^MiiiBUH.ijii.u. ,    T! ■|u<iii<iiiHmMn«!^inipiqnirainiPMliJ|iuii«|»ui*W'i|!|iHWlii|iWimipw 

APPENDIX C 

THE VALIDITY OF I^g = ^(l +  | y| 2) FOR SPACE 
VARYING COMPLEX GAUSSIAN PROCESSES 

J. W. Goodman 

Let E(P1) - x1 + iylt E(P2) = x2 + jy2, where x1, yj^  are independent, 

identically distributed Gaussian random variables, and x2 , y2  have similar 

properties.   Consider L^ = |E (Pj)) 2 |E (P2)( 2 . 

Now 

.     2   2,     22 
+  X   V      +  V   X 

1y2      yl   2 (C.l) 

Now using the result 

Z1Z2Z3Z4   =   Z1Z2 Z3Z4   +  Z1Z3 Z2Z4   +   Z1Z4 V^ (C-2) 

valid for any four real, zero mean Gaussian random variables  z , z , z , z , 
we obtain 

2    2 ,2 2    2 
hh = xi x2 + 2(xix2) + yi ^2 + 2^iy/ + 44 + 2"<v3 

+  y? S   +  2(y1x0)5 
'1    2 12' (C.3) 

Assuming     x,   = v    = — I x2  = v2  = i T &       1       yl       2 1    '    x2       y2       2l2     ' 
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1 7- r- 
^^  "l1!^  + ^X*1'2)   +ill12   + 2RY  (1'2) 

1 T-T- l T- r- 

or 

h h = lll2 + 2Rx(1'2) + ^Y^1'2) 

+  2R^Y(1,2)   +  2R2
v(j32) YX 

Now we must compare this result with 

h h I1 +   l^1»2)! 

viiPiuiiiiiiiJUTM^mimpi 

■'T1!^   +  ^XY^1'2)   +iIlI2   + 2RYX(1'2) (C-4) 

(C.5) 

(C.6) 

where 

We find 

and therefore 

V 2) ^ (xi+ ^ij(^ - Jygj 

_ (xi x2 + yi y2) + j (yi x2 - v^) 

\^ 
i 

(C.7) 

(C.8) 

|r(1 2)|
2 = K^»2) -^d.2)!2 ^Kvd.2) - B-^q^l 

V1^ 
(C.9) 
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Thus, 

hhi1  + l^(1.2)|   I    =1^2 + 1^(1.2)  +RY(1.2)| 

"I      ' +\RYd1'2)''RXvV'2)]       .        (CIO) 

If we are to have 

hh = hhl1 +\ni,2)\ (Cll) 

we must have equality of the right hand sides of Eqs. (C. 5) and (C. 10).   This 
equality will hold if 

Rx(l,2)   =   RY(1,2) (C.12) 

and 

RY   (1,2)   =  ^^(1,2) 
XY (C.13) 

Thus, it remains only to prove that these above relations hold.   We can prove 

these relations if we assume that the surface is very rough, i.e., that the phase 

of each scatter is uniformly distributed on (0, 2n) and is independent of its 

strength.   A proof of the crucial relations follows. 

Let An (1) e J0n(1)   represent the amplitude and phase contributed at point 
Pj  by the nth scatter.   Thus, 

E<P1> =  1  An(l)e^n (1) 

n 

E (P2)   =   I   Am(2) 
J0m(2) 

(C.14) 

(C.15) 
m 
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where n and  m  range over all scatterers. 

We first prove Rx(l,2)  = 1^(1,2). 

Rx(l,2)   =   2: An(l)cos0n(l)   2: Am(2)cos0m(2) 
m 

E   ZAn(1)A
m<2)       cos0n(l)cos0m(2)    .    (C.16) 

n     m 

Now for n ^ m, 

cos0n(l)   cos0m(2)   =  cos0n(l)   •   cos0m(2)   = 0 (C.17) 

by the assumption of independent scatterers and uniformly distributed phase. 
Thus, 

RX(1'2)   =    ZAn^An^   cos^ni1)   cos0n(2)     . (C.18) 
n 

Now, 

cos0n(l) cos 0n(2)   = |-cos [0n(l) + 0n(2)]   + icos [0n(l) - 0n(2)]   . 

(C.19) 

Each  0n  consists of a random phase  ty* because of the random phase of a 

scatterer, and a deterministic phase     ip       from propagation delays. 
Thus, 

r d 
n      rn       ^n (C.20) 
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and 

cos [0n(l)   + 0n(2)]   =  o 

resulting from the addition of random phases, while 

(C.21) 

cos [0n(l) - ^(2)]   =  cos f,n
d
(I) - ,n

d
(2)]   =   cos  [yi.2)] .   (c.22) 

Thus, 

RX(1'2)   =jEAn^An^  cosfen(l,2)]    . (C.23) 

By identical arguments, using the identity 

sm0n(i) Sin0n(2)   = i cos [0n(i) - pjijj . I ^-[^ÖTT^ 
(2)], 

(C.24) 

we obtain 

RY(1,2)   =1 £An(l)An(2) cos [^(1,2)] 
(C.25) 

Thus, we have proved 

Rx(l,2)  = RY(1,2)  . 

To prove  R     (1>2)   =  _R      (1,2) .   ., 
,,. YX ^XY ' a smular approach is used.   We have 
(skipping obvious steps) 

RYX(1,2)   =  ^ An(l) An(2)   sin0. *n(l) cos0n(2) (c.26) 
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and 

RxY^'2)  =   ^ -V1) A
n(2) cos 0n(1)   sin0n(2)    • (C.27) 

Finally noting 

1 — 1 — sin 0n(l) cos 0n(2)   =  2 sin [0n(2) + 0^1)]   - -| sin [0n{2) - 0n(l)] 

(C.28) 

1 - cos0n(l) £b 0n(2)   = -sin[0n(2) + 0n(i)]   + isin[0n(2) - 0n(l)] , 

we see 

and 

Thus, 

and 

RYX(1.2)   =  - R„v(l,2) TX XYV 

hh = iJzi^ \y{i,2)\2] 

(C.29) 

11^(1,2)  = I    i;An(l)An(2)sin[en(l,2)] (C.30) 

n 

(C. 13) 

(C. 11) 
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