
w^mm*m\ i i wwmmmmmmmmm wwm^^^^mnmmumm n n i ■!<

AD-762 4^:4

A MICROPROGRAMMING LANGUAGE FOR THE
MLP-900

Donald R. Oestreicher

University of Southern Californi

Prepared for:

Advanced Research Projects Agency

June 1973

DISTRIBUTED BY: \m
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

MHMi ■ ■--■ ■ „ ..- ...^^■..-..--— - - ^.....»^ —

■ ■ '"■ immmßmr* « . ii^m^^gmm mn^w^mmam^^m^^mm^^j

A KPA ORDER SO. 222?//

fSI RK -"1 H

ftuul97i

\

Donald R. öestreicher

A MICROPROGRAMMING LANGUAGE FOR THE MLP-900

&

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Departmtnt of Commerf»
SpriiofieW VA 72'Sl

l/i ' i ATEMENT A

INFORMATION SCIENCES INSTITl TV

UNIVERSITY OF SOI I III RS < UJI ORSI.-l im 4676 Admiräitj V*yfM*rifu del ReyfCtlffornu ')()2'>i

(213)822 nn

wiiiiiim*i>Hiiii i i um* i'ium iiiwmniiini1 m J*.
 i

I ■• ■^■1^ '■ "• " ■ 11 «^^«^«w II II ^m**mi^mmimm— " ■mmmminHpppnpwmp^n^ivi

i

Serunty Classificaticn

iSeiunty elms
DOCUMENT CONTkOL DATA R&D

y ,/.>>■'...„on ,./ ,/,/,. bnc,y „, .h>,r.r, ,„d ,„d,„n< .„„„,.„„„ mus, hr en,Flej „ht.n lhr „„,„„ rrporl , cl,„lh,d

*C Tl vi T v (Corporal« author) " T^" ~ ,-,'-!'" -—-■—MW^I.^. P »ffnor; ^ REpORT SECuR,Ty C L A 551 f IC * T ION
I OR l GIN A Tl NC

USC Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90291

3 REPORT TITLE

UNCLASSIFIED
2b. GROUP

"A Microprogramming Language for the MLP-9001

4 DESCRIPTIVE NOTES (Typm ol rrporl and inclusive d«(cS)

Research Report
» Au TMOR(S) (First name, middlr mid«/, fair name,-

Donald R. Cestreicher

6 REPORT DATE

May 1973
• a. CON r,TACT OR GRANT K.O

DAhC15 72 C 0308:
b. PROJ EC T NO

ARPA Order ^2223/1

Program code No. 3D?0 & JP10

d.

10 DISTRIBUTION STATEMENT

7a. TOTAL NO OF PAGES

9
7b NO OF HEFS

6
»«. ORIGINATOR'S REPORT NUMBERI5I

ISI/RR-73-8

9b. OTHER REPORT NOIS» (Any other nunbers that may be aasianad
this report) ■

None

Approved for release; distribution unlimited

II 5UPPLEMENTARVNOTES
12 SPONSO RING Ml LI T AR V ACTIVITV

Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington. Virainia ^2209

13 ABSTRACT

This paper describes a languore for programming a microprocessor which combines the
features of assembly kaiuages wi h those of higher level languages. The goal of the
language design wa^ to p-ovide a -.onvenlent microprogramming language for the MLP-900
microprocessor project at USC/lnformation Sciences Institute.

The goal was accomplisi.^d by designing a language with careful consideration of the
hardware Instruction set. Tho language was also constrained not to Implicitly affect the
machine at runtime. The considerations provided freedom and low-level control for the
programmer. The flexibility n-eded by the compiler to allow for higher-levi.-l language
forms was also provided by allowing the language to produce several microinstructions for
each language statement.

14. KEYWORDS:

High-level language, ImplementaMon language, microprocessor, microprogramming,
microprogramming language, MLP-900.

DD ,Fr.,1473
//'

Secuntv (Ussificalion

■m« uguaaMaMMM-. -

"^■■1^^^^—"■'"- ■—■• ummttm "-"-'—_-^_ ■^mwwwwwww-^

/1RP/! OÄD£R NO. 2223/1

ISIRR-73—8
}urn- I'JJl

Donald R. Oestreicher

A MICROPROGRAMMING LANGUAGE FOR THE MLP-900

n O Q

\

y

Z**

INFORMATION SCIENCES INSTITUTE

UNIVERSITY or Si)i THI:RS CAUFORNI. LSI 4676 Admiraliy Wc^fMtmtMdtl Rty/Cdifontiä 90291
(21 l}B22-tin

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS ACENCY UMJER CONTRACT NO DAHC15 72 C 0303 A'^PA ORDER

NO 2223/1. PROGRAM CODE NO 3D30AND3PIO

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE

OFFICIAL OPINION OR POLICY OF THE UNIVERSITY OF ■OUTHtRN CALI.ORNIA OR ANY OTHER PERSON OR AGENCY CONNECTED WITH tT

THIS DOCUMENT APPROVED FOR PUBLIC REL FASE AND SALE DISTRIBUTION IS UNLIMITED

i i i I tmm MI i in i ■Hi inn ■

"■■•■^"«p^^
1 m 1' ■* UBI.-^F^«-«- •■•-^^^■pmwPNPrqiwimPMPMm^PMqiiH

This paper describes a language, for programming

a microprocessor, which combines the features of

assembly languages with those of fugher ievel lan-

guages The goal of the language design was to

provide a convenient microprogramming language

fo. the MLP-900 microprocessor project at the LSC/
Information Sciences Institute.

This goal was accomplished by designing a lan-

guage with careful consideration of »V hardware

instruction set. Additionally, the language was con-

strained not to implicitly affect tha machine state at

«, MICROPROGRAMMING LANGUAGE

runtime. These considerations provided freer ^m and

low-level control for the programmer. The compiler

needed some flexibility to allow for higher-level

language forms This flexibility was provided by

allowing the language to produce saveral microin-
structions for each language statement.

This project is sponsored by the Advanced Re-

search Projects Agency This work is directed toward

an AHPANET-based sharable resource as a means of

exp.oru g computer architecture, language develop-

ment and special purpose processor design, all of

which are of particular relevance to DOD selection
and use of computer equipment.

iii

■MMMMMMMMÜ ._ ^^ aaMM.__a

w •W^^^piWWPI^^W^miPWIWWPrW^»™»—•^PW^W^W^«P'^WW^WiPli«^^^»"W*^r^iW^"WWP|Pi " III 111^

A MICROPROGRAMMING LANGUAGE

A MICROPROGRAMMING LANGUAGE
FOR THE MLP-900

Donald R. Oestreirher

Introduction

Microprogrammed computers are typically

characterized by small control memories for

the storage of microprogrammed routines.

These routines are used to imptemert the

firmware instruction set for the target com-

puter. The storage requirements and target

computer instruction execution time consid-

erations bring pressure on the micropro-

grammer to make optimal use of the micro-

processor and associated control memory.

These conditions make microprogram-

ming language designers and/or program-

mers tend towards a one-to-one correspon-

dence between language statements and

actual hardware microinstructions. As a re-

sult microprogramming languages often

look like classical assembly languages \1,2\.

This paper reports an effort to provide the

convenience and readability of a higher-

level language, without preempting the

flexibility and machine state control availa-
ble in assembly code \3\.

General Purpose Microprogramming Lan-

guage (GPM) is the primary language for

the MLP-900 microprogramming project at

the USC/lnformation Scif nces Institute. The

project's goal is to provide time-shared user

access to a writable control memory micro-

P(Ocessor as a service in a multiprogram-

med environment. This service is intended

to be used in-house, as well as nationally

over the ARPANET.

The MLP-900 is connected to a POP-10

processor through the I/O buss (event chan-

nel) and the memory bjss (data channel).

The data bandwidth is 100MHz. Tho MLP-

900 is strictly a slave processor. The PDP-

10 TENEX time-sharing system does all tar-

get memory allocation and I/O for the MLP-

900. The intention is for the MLP-900 to

act as a user-specified time-shared execu-

tion engine for users on the POP-10.

The MLP-900

GPM has been destined around the ac-

tual MLP-900 hardware. This has been

done for efficiency and convenience. First,

language forms ill-suited for the MLP-900

hardware were not provided, for efficiency.

Second, special language forms were cre-

ated la deal with the novel aspects of the

MLP-900, for convenience. For this reason.

 . —^

■ y jiai^avwm ii i i i ^ ^ " milJWBp"^»*^WP ^P j

A MICROPROGRAMMING LANGUAGE

a brief description of ihe MLP-900 is neces-
sary for background to understand GPM.

The MLP-900 (4,5,61 is a vertical word

microprocessor which runs synchronously

with a 5MHz clock. It is characterized by

two parallel computing engines called the

Operating Engine (OE) and the Control

Engine (CE). The OE performs arithmetic

operations and the CE performs control op-

erations. The OE contains 32 36-bit gen-

eral-purpose registers (R0-R31) for oper-

ands and 16 36-bit mask registers (MO-

MI 5) to specify operand fields. The CE con

tains 256 statt flip/flops (F0-F255) orga-

nized in 1 6 8-bit registers (CE0-CE1 5). The

CE also contains a 16 word hardware stack

ai d 1 6 8-bit pointer registers (P0-P15).
Thc writable control memory contains 4K

words. Additionally, there is a 1K 36-bit
auxiliary memory.

The OE and CE will execute in parallel if,
and only if, a CE instruction followi an OE

instruction during the execution. Program-

mer consideration of this feature usually is

not requireo However, if a program is exe-

cuted entirely as OE-CE instruction pairs,

the effrctive machine speed is doubled.

The MLP-900 also has features to sup-
port a microvisor, which will swap users and

handle I/O requests to TENEX. These fea-

tures include microvisor mode, privileged

instructions, control memory protection, and

processor state protection. Additionally, the

MLP-900 has an address transformation
box to allow demand paging of the target

program and data in cooperation with the
TENEX time-sharing system.

GPM Goals

The primary goal of the GPM design was

to produce a higher-level language which

did not preclude any coding options. In

particular, as GPM was to bo the primary

language for the MLP-900, every control

memory code had to be possible as lan-

guage output. The language had to be ame-

nable to diagnositc programmers, applica-

tion programmers, and researchers. This

was accomplished by combining the appro-

priate features of assembly code with the

complimentary higher-level language fea-
tures.

Some GPM statements look very much

like assembly language. These statements

correspond to the I/O instruction. The

higher-level statements fall into four catego-
ries of interest:

1 syntactic block structure;

2. hardware generalization;

3 multi-instruction statements;

4. expressions.

Each of these will be discussed in detail
below.

Syntactic Block Structure

The low-level constraints in the GPM de-

sign precluded the implementation of any

dynamic storage allocation., or even of an

operand stack. As a result, the block struc-

turing in GPM may be considered to be a

compile-time artifact. None the less, by us-

ing the block structure syntax in a most

rudimentary way, the resulting language

has been rendered more tractable and com-
prehensiNe.

m ■ — ■ - ■ -----

^r —— ■IP I, •<ii>>I-i _• "^F

The block structure syntax is the standard

BEGIN declarations; body; END. This syntax

is used at compile-time to specify scope.

This is used both for data names (all labels

are global) and control statements. Blocks

may be named, and several blocks may be
closed with a single named END.

Names

Every memory cell in the MLP-900 is

explicitly named with a reserved word in

GPM (e.g. general register 3 is R3 and

pointer register 5 is P5). These names are

not necessarily mnemonic, so the user may

rename any memory cell at the top of a
block.

Any synonym defined at the start of a

block is undefined at the end of the block.

This allows procedures to give mnemonic

names to parameters and temporary regis-

ters. Additionally, the practice of "declar-

ing" registers at the top of a block renders
the blocks scope instantly apparent.

This block-structured synonym facility, if
exploited properly, can produce more read-

able programs. The user mry also rename

any reserved word in GPM using this same
facility.

Control Statements

The block structure syntax is used to de-

fine the scope of IF statements and DO

statements. The DO statement heads a block

which will be iterated upon i.idefinitely. The
method of exiting a DO block is the £ PEAK
statement.

The BREAK statement semantics are de-

fined in terms of the lexical block structure.

A MICROPROGRAMMING LANGUAGE

A BREAK statement transfers control out of

the lexical block named by the statement. If

no name is supplied, the current block is
assumed

The above examples of applications of
block structure syntax demonstrate how the

concept can be useful in a semantically

simple language. One could even restate

the GPM design goal: design a languane

which is syntactically rich and semantically
poor.

Hardware Generalization

One of the more classical functions of a

programming language is to provide a com-

plete set of functions, where the hardware

may not. For instance, on a computer with

only a jump on less than zero, the program-

ming language would provide all eight pos-
sible jumps relative to zero.

GPM attempts to do this in all cases

where it is possible, without violating the

design constraints. Two examples will illus-
trate this idea.

Example - GOTO destinations

The following are all hardware MLP-900
instructions

GOTO 100;

GOTO +10;

GOTO 5 (PO);

GOTO + 1 (PO);

absolute jump

relative jump

indexed absolut

indexed relative

However, the statement GOTO +3 <P0>

is not an MLP-900 instruction, as the hard-

ware only supports indexed relative jumps

with a + 1 relative offset. However, the

above statement is legal in GPM and tha

3

1 -■■ -- — ■■• ■ ■ i i rf^j .

'*•'?' ■! I " ■ ■ 1 ■■■ w*m*^mmtm*w*m" ■ i"»" mmi ■I ■ ■ -wmm-m " ^i^m^mj^im

A MICROPROGRAMMING LANGUAGE

compiler changes the relative offset to the
appropriate absolute address.

Example - Ct assignments

This example will require a further de-

scription of the vagaries of the MLP-900.

As mentioned above, the CE contains 256

state flip/flops (FO F255) organized into 16

8-bit registers (CE0-CE15) This example

discusses the instructions to transfer data

between these en.ities. The following are all
hardware MLP-90C instructions.

CEO - CE1 (77> ,

Transfer the contents of register 1 to regis-
ter 0 for all bits set in the octal mask (77 in
this case).

CEO - NOT CE1 (77) ,

This is the same as the previous instruction,
excep. register 1 is complemented first.

CEO - CE1 |77| ,

This is the same as the first instruction,
except all bits not set in the mask are
cleared in register 0.

The legal GPM statement

CEO - NOT CE1 [77] ;
will compile into*

CEO - NOT CE1 (77) ,

CEO - CEO |77| ,

This type of language feature allows the

programmer to ignore some of the intrica-
cies of the hardware. However, if a GPM

programmer wishes, he/she may stick to

the GPM subset which corresponds to the
hardware MLP-900 instructions.

• As GPM ,s the primär, MLP-900 language ,1 compHes Into IN
subset ol uselt which corresponds to actual hardware instructions

Multi-instruction Statements

Some GPM statements will always com-

pile int. several hardware MLP-900 in-

structions. These are common fuctions with

which the user should not have tc concern
himself/herself.

Example - Case statement

The GPM stateme.it

SWITCHON PO INTO

will produce an indexed jump into a transfer

table specified by CASEs specified in the

block which the SWITCHON heads. This

requires the automatic generation of the

transfer table somewhere in ccntrol memory.

Example - Inter-engme assignments

In order to transfer data from the operat-

ing engine to the control engine, the ex-

change buss (XBUS) is used. This requires

an OE-CE instruction pair to be executed in

parallel. Therefore, all inter-engine assign-

ments require the generation of two instruc-
tions.

The GPM Statement

CEO - RO ;

will compile into

XBUS * RO ;

CEO - XBUS ;

However, as both instructions are to be
executed in parallel, the GPM statement

RO - CEO ,

will compile into the non-intuitive

RO - XBUS ;

XBUS • PO ;

■ ■ - ~**Mia*ml* ■■

"—"'^■r,i,,mi1 M —■ ■■■■ mm i

These rrulti-inst;uction generating state-

ments make programs shorter and thus eas-

ier to read. The information not explicitly

stated is essentially irrelevant in the latter

example, and redundant in the former.

Thus, brevity is achieved without the intro-
duction of obscurity.

Expressions

Expressions are so common in higher-

level languages, it might seem out of place

to devote an entire section to them here.

However, the constraints on the GPM de-

sign complicates the compilation of expres-
sions. GPM is not allowed to make any

imp'icit changes to the machine state at

runtime. This precludes the introduction of

temporaries to evaluate expressions. Two

brief examples will demonstrate how ex-
pressions are to be handled.

Example - Arithmetic expressions

The GPM statement

RO - RO AND R1 + R2 ;

will compile into

RO - RO AND R1 ,

RO - RO + R2 ;

However the GPM statement

RO - RO AND (R1 + R2) ,

will not compile, for lack of a temporary for
(Rl f R2).

Example - Boolean expressions

The GPM statement

A MICROPROGRAMMING LANGUAGE

FO - (F1 and F2) or (F3 AND F4) ,

will compile into

IF F1 AND F2 THEN GOTO +3 ;

IF F3 AND F4 THEN GOTO +2 ,

IF NOT (FO - FALSE) THEN
GOTO +2 ;

FO - TRUE ;

Boolean expressions will always compile as

the program counter can be used as a tem-
porary boolean value.

The expression evaluation in GPM leaves

much to be desired, but it was felt that

when the expressions worked, they were so

superior to the assembly code alternative

that they would be included in spite of
themselves.

Conclusion

This paper has reported on some ideas to

make microprogramming more agreeable in
light of the previous experience of the com-

puter community wiih conventional com-

puters. The opinion stated here is that a

hybrid language is necessary for the task.

This paper described several of the problems

and solutions associated with this approach.

It appears that with careful consideration
to the actual processor in question, it is

possible to create a passive higher-level lan-

guage, which allows total user control,

while, at the same time, encouraging read-

able programs and allowing easy language
usage.

 1 in an ifcM t ■-"■--• -■ ■ - ■ -- ■■ ■ - -—■--- ■T' ■■ wmm --—'-""—;- -1"' ■ ■

I ■ 1.1 *• II' I'«" »" IIJIfMIMilMPVUiPIMHII

A MICROPROGRAMMING LANGUAGE

References

1. Dubbs, E. W , Parsons, R L. Peterson, J E.,

"A Microprogram Design System Translator,"

in Sixth Annual IEEE Computer Society Inter-

national Conference, Digest of Papers. San

Francisco, California, September 12-14,
1972, pp 95-98

2. Berndt, Helmet, Microprogramming with

Statements of Higher-Level Languages," in

Fifth Annual Workshop in Microprogramming,

Urbana, Illinois, September 25-26, 1972
pp 76-80

3 Eckhouse, R H.,"A High-Level Micropro-

gramming La-ijua. " m Proceedings of the

Spring Joint Computer Conference, 1971,
AFIPS Proc., Vol 38, Montvale, New Jersey
AFIPS Press, 1971

STANDARD Computer Corporation, MLP-900
Multi-Lingual Processor - Principles of Opera-
tion, Santa Ana, California STANDARD
Computer Corporation, Technical Publications,
1970

L.iwson Jr , H W , Smilh B. K ."Functional
Characteristics of a Multilingual Processor,"
ICCE Transactions on Computers, Vol. C-20,
No 7, July 1971, pp 732-742.

Guffm, Ronald M , "Microdiagnostics for the
STANDARD Computer MLP-900 Processor,"
fCCE Transactions on Computers, Vol. C-20,
No. 7, July 1971, pp 803-808

.. — _-^. —■■..- - - ■■ ■ -— - - --■

