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FOREWORD

The work reported in this paper was done in the Applied Mathematics

section of the Science and Mathematics Research Group. The major part

of the work was done under Foundational Research funds.

The problems that are resolved in this paper were first brought

to the attention of the authors by Dr. Klaus Abt in connection with

his work on armor penetration.

The original IB4 7030 (STRETCH) code in FORTRAN IV was developedI by Mr. Travii Herring. Mr. Robert Belsky and Mr. Douglas C 'don

produced the machine code for plotting confidence ellipses as output.

Mr. Alfred Morris supplied the coefficients for two of the asymptotic

expansions used in the original code. Cody's algorithm for computing

the normal probability ittegral was analyzed and then developed as a

STRAP code forr :TRETCH by Mr. Gordon Barker. Subsequently he incorporated

this program into two versions of the main computing program.

Dr. Marlin Thomas supplied one of the more interesting examples thatI. are cited in the paper.
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ABSTRACT

Necessary and sufficient conditions are obtained for the existence

of the maximum likelihood estimates (MLE) of the parameters of a normal

distribution for quantal responses. It is shown that whenever the MLE

estimates exist they are unique. A modified Newton-Raphson procedure

is given which will converge globally to the MLE estimates. These

results are new and directly applicable to an armor plate penetration

problem or any other types of experiments based on quantal responses

which fall under a normal distribution.

A computer program is described which includes as output a set of

"plotted confidence ellipses centered about the MLE. Various examples

and the corresponding computer outputs are given.

Probit analysis and confidence regions for small samples are

discussed in separate appendices.
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I. INTRODUCTION

This report gives a mathematical analysis of maximum likelihood

theory as it is used to find the "best" estimates [7, Chap. 32],

p , or of the mean, go, and the standard deviation, qO, of a normal

distribution which governs the variations in measured sensitivity data.

By sensitivity data, we mean a collection of measurements or determina-

tions from experiments for which a stimulus is usually only applied

once to each item, and for which the response in every case is quantal,

i.e., can be described as a success or failure by some arbitrary

criterion, [9], [14]. Experiments for dosage mortality studies, [13],

and for armor plate evaluations are of this nature. Statisticians

categorize the treatment of such problems under the general term--

sensitivity analysis. The main results given in this paper are suffic-

iently general to include situations in which levels of stimulus cannot

be precisely assigned in advance. The basic paper dealing with this

particular phase was written in 1956 by Golub and Grubbsa [14].

The first objective, following [14], is to set up the sensitivity

problem in mathematical terms. The theory of maximizing a likelihood

function as popularized and extensively developed by Fisher, [12],

plays a fundamental role. Once the problem has been defined in

mathematical terms, we resolve the following mathematical questions •

which wrise, but which have been open heretofore:

AA.



(a) Under what conditions does a maximum likelihood solution

exist?

(b) When a solution exists, is it unique?

(c) Given that a solution exists, can a computational procedure

be found which is guaranteed to converge globally (independent

of starting values or initial estimates) to the "best" estimates,

/', o of the true parameters /io, and ao?

For typographical convenience we use the notation g, o for maximum
A A

likelihood estimates instead of tne more common Ml, a

In Section II, the hypothesis upon which maximum likelihood

estimates are based is discussed. A likelihood function is derived.

An armor plate penetration problem is described and is used to

facilitate the derivation. In Section Iliquestions (a), (b), (c),

given above, are answered. Question (a) is answered by obtaining a

set of necessary and sufficient conditions for the existence of a

lmaximum likelihood solution. Question (b) is answered in the affirma-

tive. Question (c) is also answered in the affirmative; a modified

Newton-Raphson procedure is proved to converge globally to the maximum

likelihood estimates. The main results are given by theorems 3,

4, and 5.

In Section IV, for completeness, a derivation is given of the I
expressions for the elements of an associated covariance matrix and

of the corresponding confidence ellipses. Section V describes the
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computer program as it is actually used. Several examples are given.

A discussion and a comparison of our results with those

obtained from Finney's Probit Analysis, [10], are given in Appendix C.

Appendix D is concerned with some remarks on small sample theory.

11. CONSTRUCTION OF THE LIKELI3)D FUNCTION

The idea of a likelihood function is founded on the premise that

if one can specify a mathematical function, F(cl, c2 , ... ,c which

depends on the parameters Ck, to represent the probability of occurrence

of a set of events {Ji} , then the "best" estimates, in a statistical

sense, for the ck, are those values *k for which F(1j, F ", . . -j) is

an absolute maximum. More precisely: Given the occurrence of a set of

events i ,i) , the likelihood function is the mathematical function,

F(Cl, ... , cj), which represents the probability of the occurrence of

the events {Ji} where the ck(k = 1,2, ... , j) are parameters whose

true values are unknown. The "best" estimates in a statistical sense

for the parameters are those values ck which make F an absolute maximum.

Heuristically, the reason for estimating the ck thusly, is that since

the {Ji} have occurred, we should estimate the rk, so that the proba-

bility of their occurrence is as large as possible. This result is

obtained by makiug F an absolute maximum. An elementary example is

discussed in detail in [17; page 152]0

An important problem in armor plate penetration, which gave rise

to the studies reported in this paper, will be used to derive the

likelihood function on which the analysis is based.
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In armor plate testing, the investigator wants to know the minimum i

speed required by a projectile of given type to penetrate a steel plate

of given size and composition. By minimum or critical penetration

speed with respect to a given plate, we mean that speed below which

no penetration of the plate would occur and above which penetration

for that particular plate would always take place; This critical

penetration speed of the projectile however will vary among a set of

presumably identical plates, primarily because of random variations

in steel composition, flaws, etc. from plate to plate. Hence, the

experimenter settles for an average critical speed of penetration,

0o,, where the word average is used in the usual statistical sense.

The real number po can be estimated from a knowledge of tha likelihood

function which is associated with the problem.

Hence, assume there exists an infinite population of steel plates

identical in form and manufactured from the same process. Each plate

is characterized by its critical speed of penetration so that a mean

or average critical speed, /do, can be associated with the population.

The assumption is made that the critical speed for each plate is normally

distributed about the mean p10 with a standard deviation, ao. The

techniques that are used to determine the validity of the normality

assumption, and the transformations of variables that %an often be

used to approximate normality, [8], are outside the scope of the

present study.

4
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Consider the following experiment. Five plates are drawn from the

infinite population, numbered one through five, and tested by firing an

identical projectile once at each plate. Due to variations in gun

powder, gun barrel eccentricities, etc., the desired impact speed for

each projectile is generally- not precisely realized, i.e., the stimuli

are not completely under control, [14]. Suppose the results of the

tests show that plate #1 was penetrated by the projectile traveling

at a speed a1 (from which we conclude the critical speed of plate #1

is not larger than al). This test is called a success. Similarly,

suppose "successes" were recorded for plates #2 and #5 at projectile

speeds a2 and a3, respectively. On the other hand, suppose "fhilures"

were noted for plates #3 and #4 at speeds b, and b2 , respectively

(these plates were not penetrated so that e.g., plate #3 must have a

critical speed larger than bl). Since the plates are assumed to be

normally distributed with respect to their critical speeds, it is

easy to express the probability, Pl, of drawing a plate with a critical

speed no larger than al, namely

(a, - /0

Pi p P a0"0)I o = exp(-t212)dt'

By similar reasoning, the probabilities P2 and P3 of drawing plates

#2 and #5, respectively are

:-. p2 - P [(a2  o) ] ' P3 P [(a 3  0

5



The probability q, of drawing plate #3, for which a failure was recorded

at a speed bI, is given by

q- q l 0)I exp(-t "2)dt.

(bI - (10

Thus ql denotes the probability of drawing a plate with a critical

speed no smaller than b1 . The probability of drawing plate #4 is

then q[(b2 - - q.,. Assuming all of the five cases are

independent of one another, it follows directly from elementary

concepts that the probability Fo of observing the events as they

oncurred is given by the product

Fo ' plP2P3qlq 2

In general, if one tests n + m plates and records n successes at

penetration speeds a1 , a2 , ... , an, and m failures at penetration

speeds b1, b2 , ... , b,, then the probability that this sequence of

events occurs, in the order observed, is given by
ca

i1l j-=

The likelihood function is simply obtained from (1) by replacing the

unknown quantities /I and a by free parameters, or variables, U

and a, respectively. In order to keep notation to a minimum and

since the expression given by (1) will not appear again, we use the

same notation to express the likelihood function, F, as

6
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n m
F 1 Pi J 7 qj (2)

i=l j=1

* where1 , hereafter,

Pi [(ai' (3)

q q[(bi (4)

According to maximum likelihood theory, "best" estimates, a ,

of the parameters /Jo and a are obtained by maximizing F, in (2),

as a function of the variables p/ and a. Thus, the statistical

problem has been reduced to the mathematical one of maximizing a

function, F, of two independent variables p/ and o, which has

differentials of all orders. The mathematical problem raises the

questions posed in the Introduction.

It is worth noting that the estimates P and 0, obtained for

and %will depend on the input sequences {ai} and fbj}.

Hence some measure of reliability in the estimates is needed. Such

measures can be obtained by considering so-called confidence regions

which turn out to be ellipses in the pa-plane. This phase of the

study will be covered in some detail Section IV.

III. ANALYSIS OF THE LIKELIHOOD FUNCTION

Let.1n M
L(P,a) = loge F(P,a) = Z log p + Z log qj. (5)

i=1 j31

7
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We treat L rather than F hereafter, since less notation is needed.

Clearly F is a maximum at a point if and only if L is a maximum at the

same point. The variables # and a a-.- -eplaced by new variables

t and , through the F-h transformations:

aI=c #/', (#= //f0), (6)

1/a > 0, (o (/)).

In addition, let

s = ai• - C9 (8)

"2 b - ,(9)

V so that in terms of the new variables, ct, , (3) and (4) become

i I

Pi= P(Si) = z(t)dt, (10)

00
qj =q(tj) = z(t)dt, (1i)

t.

where

Z(t) exp(-t2/2). (12)

We will also have need for the following partial derivatives of L:

8L n

mC y/ (Xi/Pi), (13)
L c j=l (Yj/qj)- i=l

8,
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L j (Xj/pj) -£ b1 (~q) (14)i Y
Li-• - i(*ll jZ=l

J-1 (Y (y/j[ /qj) -tj] ~ (xi/pj)[(,i/pi) + Si] (15)

5F bjb (iq//q, t4

i-i

+ iai(xiI/P) (xi/PL) + S, (16)

Lpp - - b 2 (yj /qj) [yj /qj - t]

where

The a, and bj are arbitrary real numbers. a and f by their nature

are positive.

The lemma which follows is stated for easy reference. The proof

is not given, it follows from a well-known theorem in analysis,

[2, p. 149), and elementary considerations.

9



LEMMA 1. Let f(aS) have continuous second partial derivatives in

an open region T of the aB-plane and let there exist a point

(aB)CT such that at qB)
2i;•f~ < 0, faf -~fal 0'

then f(o,8) has a maximum at (o ,B) if and only if

£a( ~fi) (f~C' "8) 0O

Moreover, if f has a maximum at (,B) , then the equalities must

hold regardless of the above inequalities.

The possibility that all the ai are equal (say to a), and that

all the bj are equal (say to b) is ruled out by Lemmas 2 and 3.

LEMMA 2. If L has a maximum and ai =a, bj = b for each i and j, then

a = b.

Proof: If L has a maximumi at (ct,), then by Lemma 1, LC = L8 = 0

at this point. By equating the right hand sides of (13) and (14) to

zero, for the arguments

one obtains n(xi/Pi) =m(yj/qj),

na (xi/Pi) = mb (yj/qj). Q.E .D.

EMOU 3. If for each i and j, ai = bj = c, then L assumes its maximum

at every point of the straight line

*a = cR - s*, (20)

where s is determined by

p(s*) = n/(m + n). (21)

10



Proof: Since c is a fixed constant,the function L can be considered

in this case as a function of the single variable s = - c-, so that

L(s) n log p(s) + m log q(s),

and

L'(s) •.(n/p) -(y/• = x [(n/p) (,./)].

Since L" < 0 when L'(s) = 0, it follows that L attains a maximum at

those values of s which satisfy

p(s) n/(m + n) <1.

But p(s) is a positive monotone continuously increasing function" of s

and less than one. Therefore there exists a unique value, s = s*, for

which (21) holds and L takes a maximum for all (a ,fi) which satisfy

* (20).

Lew=a 3 implies the obvious conclusion that best estimates cannot

be determined if the stimulus is maintained at the same level for all

experiments. It is also necessary that both the {ai} and {bj} sets

be non-empty. If say {bj} were empty, then from (13), Lc would always

be negative and L could not have a maximum. Hence, it is assumed

hereafter that neither of the sets {fa}, {bj} are empty and that at

least one of the sets must contain at least two elements which differ.

The next leam will be used to prove Theorem 1.

LEKKA 4. If t E(-ov,oo), then

[z(t)/q(t)] - t > 0, (22)

S[z(t)/p(t)] + t > 0. (23)

1 11
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Proof: Consider

, f(t) = z - tq o

Then, since

z(±oo) - 0, q(,o) -0, q(-co) 1,

we have that

.lim f(t) i.m (-t) = +0t -30 -C t * -00

__0,im jf(t1 lim 1-tq(t) J im uexp(-uu2/2)du
t-10. 2 t

" lira i exp(-t 2 /2) =0,

t -)oo Y2--r

In addition,

f'(t) =-tz - q + tz - q < 0.
Therefore, it follows that f(t) > 0, and since q(t) > 0

f (t) .z (t)
- t > O, V tE (-0,oo).

q(t) q(t)

The proof for (23) follows by replacing t by (-t) in (22) and using

the facts that z(t) = z(-t), q(-t) v p(t).

THEORY2 1. If (a i) is any point in the 066-pl-ane, then

L(0 .0, L (24)

12



Proof: The expressions for Laa and L8 are given by (15) and

(17). The quantities (yj/qj) and (xi/Pi) are positive and from

Lemm 4,

(yj/qj) - tj > 0,

(xi/pi) + si > 0. Q.E.D.

Where no ambiguity will occur, it will be understood that sums over i

run from one to n and sums over j run from one to m.

Another useful property of L is given by the following theorem:

THEOREM 2. The discriminant of L,

M -L clo Lj• L ./ (25)

is positive for all (r, B).

Proof: Let

Ui (xi/pi) [(xi/pi) + 8i J (> 0) (26)

Vj (yj/q 4)[(Yj/qj) - tj] (>0). (27)

Then A can be expressed in terms of the right hand sides of (15),

(16), (17) accordingly:

Ea - a 2 Uir Ui + Eb 2  23 V L~~V

+ Zb 2 V LU - (IaiUi) 2 - (,r bVVj) 2 L2 1 UiL bV

i J 'U 2ZaiuiZb ij j*

The Cauchy-Schwarz inequality requires that

S(LaiU) 2 < La&2U L T1 , (28)

"13 _ _ j
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a . (ZbjV )2 • b2Vj (29)

-- •

b V V

J J. *
Equality holds for (28) if and only if

a2 K

where K is any real positive number. Clearly, this relation implies

all ai are equal, since Ui > 0 by (23). Similarly, equality in (29)ii
requires that all bj be equal. But, by the requirement that at least

two of the ai or bj must differ, at least one of the inequalities (28),

(29) must be strict. Hence, using (28) and (29) twice,

> ZaiUizV + Zb.V ZUi - 2Za Uirb V (30)

S> (2aiUi)2 (rV./,ui) + (Cb V ) 2 (ZUi/zVj) -222aiUiXbjV

r(v/L )1/2 1/2 2
L vilzui) Z aiUi - (ZUi/zV ) L£b.V.] V 0.

We are now able to use a well known theorem of analysis to obtain

an answer to question (b) of the Introduction. The proof is given fur

completeness.

THEOREM 3. There exists at most one point (a.,B) at which L assumes

a maximum.

Proof: Assume L has a local maximum at two different points (t. 1 , •i)

and ((I 2 ',4 2). The Taylor formula for a function of two independent

variables gives

L(cc2',2)= L(oI 1 ,fll) + VL(,e 1 , ) A A? + A4 7 T D2 L L

(31)

14



where VL represents the gradient of L with components La and LP

D2 L is the matrix

D 2 L ~ ,(32)

Lim Lpp

and Aij is the column vector with first and second components

Ce (a2  c ci) and AR = (f 2 " •i) respectively. The

superscript T on 477 indicates the transpose. The elements of D2L

in (31) are evaluated at a point 4, where for some C (0 < E < 1),

7= 7 + C4A , 77 (C9

By Theorems 1 and 2,

Laa < 0, Lp 0,

hence DL is negative definite for all (at, f). But since L has a

maximum at (t 1 , 1) this implies by Lemma 1 that La L = 0 at

(,i•,l(, ). Therefore (31) reduces to

L(o 2 ,l 2 ) =L(a 1 , 61 ) + (A.)T D2L (A4 ) K L(clc l)"

Interchanging the roles of (a 2 , R2) and (ael, fi) and applying the

same arguments leads to

!:•" L(alIflI) < L(02192)"

This inconsistency can be removed only if 4A 1 0, which Lmplies

(a I,.i 1 ) and (a 2 ,fi 2 ) coincide. Q.E.D.

15
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It will be assumed hereafter that the ai and bj are separately

ordered in increasing magnitude, i.e.,

£ 1 K, a 2  a- ... • a,i• (34)

Question (a) as stated in the Introduction, is a natural one to

raise now, i.e., under what conditions on the ai and bj does L have a

maximum? The answer is supplied by Theorem 4. The necessity of (35)

is well-known, [14], [18].

THEOREM 4. The function L has a unique maximum for j > 0 if and only

if the quantities ai and bi satisfy the following inequalities:

a1 < b., (35)

I b. < -Lai. (36)

Proof: If L has a maximum at (C, f), then from (13), (14), and

Lemma 1, we have

Le (, = Z(xi/pi) - (yj/qj) = 0, (37)

L p (C,) , Za,(xi/pi) - Lbj(yj/qj) 0, (38)

where all quantities are evaluated at (d,,). From (38), and by

the orderings specified in (34), it follows

blZ(Yjiqj) < anj (Xi/Pi), (39)

aIlZ (xi/pi) < bmZ(yj/qj). (40)

16



Equality is not possible in either (39) or (40), because at least two

of the a, or two of the bj must differ. Hence, (35) follows directly

from (37), (39) and (40).

The proof for (36) is obtained by using a classical inequality

which is stated in the form of a lemma.

LEHMA 5. If two finite sequences of N real numbers, {uk• and {(nE,

are given with the properties that

then the following inequality holds

N N N
u uk £ vk N Z ukvk. (41)

1 1 1

Moreover, if the inequalities on the elements of one of the sequences

are reversed, then the inequality sign in (41) is reversed. Equality

for (41) holds if and only if all the elements of at least one of the

sequences are equal.

Proof: The proof follows immediately from the Identity

N N N N-i N

£ uk i vk N 1 ukvk + = £ (uk- ui)(vi- vk). Q.E.D. (42)
1 1k=1li k

"In order to apply this lemma, we observe that z(t)/q(t) and

z(t)/.p(t) are monotonically increasing and decreasing functions of t,

respectively. This statement is easily verified by differentiating

these above quantities, using Lemma 4 and the limiting properties of

the functions as t co

17
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We apply Len-a 5 twice. In one case, let

U- bj,

vj (yj/qj).

Then, for the point (cf), the argument of (yj/qj), tj -bj -Ci,

is an increasing function of bj so (yj/qj) is an increasing function

of b Hence by (34) and (41)

Zbj L(yj/qj I mlbj(yj/q.). (43)

In the other case, lot

Vi - xj/pi.

Then, for the fixed point the argument of (xi/Pi),s- a -

is an increasing function of ai, hence (xi/pi) is a decreasing function

of ai. Thus) by (34) and (41)

n~ai(xi/pi) EaiEL(xi/pi). (44)

We again use the fact that either some of the a. • ome of the b

must be different, so that by Leana 5 either (43) or (44) must be a

strict inequality. For definiteness, suppose (44) is strict, then

from (37), (43), (38), and (44)

IL 1
;jZbj X xi/pi) ;XbjXLyjlqj) E bj~yj/qj)

"- Lji(X 1 /p.) < &-- a,(x±/pi). (45)

Since (x!j/pi) > 0, the inequality (36) follows from (45).

18
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It remains to show that (35) and (36) are sufficient to insure

L has a maximum. For the proof we shall use Lemmas 6 and 7.

LFHMA 6. The function L(df, 0) has a unique maximum on (-0,00).

Moreover, this maximum occurs at Ct C *, where

p--, q(-C*) = p((*) m (46)
m+n m+n

Proof: Equation (5) is expressed in terms of of and 8 by using (6)

and (7). Then $ is set to zero to obtain the expression for L(C4, 0),

LCe, 0) n log [p(-0)] + m log[q(-d)]

Now, differentiating L(C, 0),

"LL (C, 0) -n[z(-ct)Ip(-cl)] +m[z(-C)lq.(-a)],
dct

and setting the result to zero implies there exist values of cy,

say a*, for which

[ mq(-*)]= fn/p(-c•*)]•

However

q(C-e) =i-p(-ct),
so that (46) follows, and siq~e p(a ) is a monotonically increasing

Sfunction of its argument,Ct* is unique. By Theorem I,LOCI is

always negative, hence L(G, 0) takes its maximum at (ct*, 0).

19
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LE•( 7. The uantit-y L.8 valuated at (dt*, 0) is positive, provided

(36) holds, where

L(oa*, 0) max L(O, 0).

Proo. letting 4 - 0 in (14) gives

Lp(a, 0) Eai[z(-a)/p(-a)] -Zbj.z(-C.a)/q(-a)].

Evaluating this quantity at t - a*, and using (46) and (36) I.

gives

L8 (a*, 0) = (m+n)z(m*) -ai " bj > O. Q.E.D. (47)

The basic idea that is used to complete the sufficiency proof can

-be briefly described as follows: A triangular domain T (see Figure 1)

is constructed in the CiP-plane, with the poiut (ca*, 0) in the base

of the triangle but not one of its vertices, such that

L(cs .8) < L(a*, 0) for-all fa,4,) CIT. (48)

Then, by Ltomas 6 and 7, there exists a point (a*, '), an interior

point of the domain T, with 0' > 0, for which

L e > L-(a* 0) .

It will rhen Ne easy to show that the global. maximum (o f,) of the

function L (not necessarily the am point as (1*, a')) must lie in

the interior of T with j6 > 0 as required.

The proof of the existence of the triangular domain T follows

(see Figure 1). Consider lines with equations of the form

a, - -ti, t 1 > 0 (49)
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Since, by (5), L(aj) - Llog Pi + Llog qi and, since all these

summands, logarithms of numbers on the interval (0, 1), are always

negative, we have, for every point (afi) on this line,

L(a, 1 ) < log p, log p(a 1i,- a) - log p(-t 1 ). (50)

But, by the properties of the probability integral

x
p(x) (1/ /2 Ir ) exp(-t 2 /2)dt, p(-tl) - 0

and hence log p(-t 1 ) -eo as t1 --0 00 Therefore we can certainly

give tI a sufficiently large positive value so that L(a,p) < L(a*, 0)

for every point of the line (49). Also, since the 01-intercept of this

line is a - tl, we can at the same time choose tj in such a way

(t, > a*) that the a-intercept of the line lies to the right of the

point (c*, 0). We suppose that a fixed t1 satisfying these conditions

is chosen, and this line is designated as line Q in Figure 1.

Similarly we can show the existence of a line , bmp-c =+t

Figure 1 1.

0 (p
T

Ca *, 0)o

21

Si - , -A



with t 2 > 0, with its a-intercept lying to tle left of the point

(a*, 0), and such that, for all points of line @, L(af) < L(a*, 0).

It is easily shown by analytic geomretry that these lines aj8 - a =-t

and bmfl- = +t 2 must intersect in the upper half-plane. The solution

of these equations is O = (tlbm + t 2 a,)/(bm-a) , 3= (t +t 2 /(bm-al).

Since we here have tI > 0, t 2 > 0, bm > al, we must have / > 0

at the point of intersection.

Thus we have a tri ingle (Figure 1) formed by segments of the

a -axis and lines 0 and .This compact domain (triangle plus its

interior) is denoted as T, and the interior lies in the upper half-plane,

/> 0.

At all points (a,8) of the triangle itself, the boundary of T, 3T,

we have

L(ae ) • L(a*, 0) (51)

since L(a*, 0) is the maximum value for the entire a-axis, and since

lines Q• and O were chosen in such a way that L( 3 ,3) < L(a*, 0)

at all points of these lines.

But, by Lemmas 6 and 7, there must exist a point (a*, /'), an

interior point of the domain T with /' > 0., such that

L(e*,P') > L(ct*, 0). (52)

Combining this with (51), it is seen that L(a*, P') is greater than

L(a ,3)P for all points (c,/3) of the boundary of T.
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However, the function L must assume a maximum for the compact set T

at some point of T, by elementary real analysis. This maximum cannot

be assumed on the boundary of T, by what '"as been shown. Hence it

must be asstuned at some interior point, (ci,), with 3 > 0, not

necessarily the same point as (c*, j').

But, by Theorem 3, there can exist at most one maximum point for L,

including local maxima, in the entire pJane. Hence this maximum point,

L (c• ,j3), for the compact domain T, with 3 > 0, must be the unique

global maximum. This completes the proof of Theorem 4.

Our objective now is to describe a practical computational procedure

by which (of ,) can be determined to any specified accuracy. Reference

will be made to the well-known Newton-Raphson procedure (abbreviated N-R)

for two indeFendent variables, [15, p. 451]. It will be shown that a

modified form of e N-R algorithm will always converge globally to

(d,•), i.e., regardless of what starting point, (ce*,*), is chosen.

We remark that d* here is a convenient notation and has no relation

to the same symbol in (47).

A point (a*,.*) is chosen initially (assume it is not (a

The N-R algorithm is applied, with the objective of reducing Le and L

to zero simultaneously, to yield increments Act and AP and a new I

point (O2 ,f2)" We call A4t and AP , N-R increments. They make up

the first and secoad components, respectively, of the column vector

A17 and are found by solving the linear system
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ACiL• + AdL,6 - - Le, (53)

A01L C, + Af8L. =8 - L',3 (54)

where all partial derivatives are evaluated at (ci*, f*). Hence

A (IiL• - L )IA ,
"(55)

A43 (La•Lc LLyac)/A,

where A > 0 as was shown in Theorem 2. In vector notation (See (31))

(u) = 77 + u A77 , 0 < u < 1, (56)

where VO) 77 (*(*,,3*), () = (a 2 ,1 3 2 ). We say the N-R

algorithm is "modified" if the continuous variable u is given any

value on (0, 1).

It will be shown there always exists a value of u, say u., such

that for all (u) for which 0 < u • u. • 1,

•;L [•u]•L(c , > L(ct*,,;•*) =L(77 L [(0)]. (57)

The quantities A C and Af8 that appear below are assumed to be N-R

increments and are to remain fixed throughout the argument. Then,

using the notation of (31) and evaluating derivatives at (t*,8*),

VL A7 = AdL• + APL3 > 0. (58)

The inequality follows from (55) by substituting on the right for

A C and A# so that

1 2 - 2 + L2LJ 3  (59)
VL" - U A =-- LIU-2O~~a3+L

! (gT D2 L - g) > 0,

where g M (L( ,-Le).
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The last inequality clearly holds, because, by Theorems 1 and 2, the

matrix D2L is negative definite and A :s always positive. Therefore,

using the mean value theorem and continuity arguments, there exists a

real number uo 4(0,1] such that (57) holds. By iterating this procedure,

and cLsoosing u appropriately at each step, ýhe L values will certainly

converge to some value not exceeding L(0,.8) since L is increased at

each step.

One difficulty in actually carrying out this procedure is that no

definite rule has been given for choosing u at each step. A second, and

much more serious, difficulty is the possibility that the iterates

could spiral while the corresponding values of L converged to a real

number bounded by L(Cl, f). It will be proved however that if u is

properly chosen as indicated below that convergence will always be to

A well-defined procedure is now given for choosing u. For any

given step take u =2-r where r =k or k + 1 (k 0, 1, 2, ... ) as

determined by
Sk if L [ •(2"k)] > L [(2"k']

r =(60) k+l if L t (2"k'i)] > L.[ (2-k)]

where k is the smallest nonnegative integer for which

,.• L [ •(2k)] L [ (0)] .(1

In other words, the full N-R step (u = 1) is repeatedly halved until

(61) is satisfied; by (58) there always exists such a k and it may be

zero. Then one more halving takes place so that r, and thus u, is found

25
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from (60). This procedure can obviously be carried out on a computer

simply and efficiently. The next theorem summarizes these remarks.

THEOREM 5. If L(a ,B) is a maximum and (35) and (36) are satisfied

then the modified N-R algorithm as described in the preceding paragraph

will always converge globally to (a, B).

The part of the theorem which remains to be proved is somewhat

lengthy and is given in Appendix A.

Actually in practice, as we describe in Section V, the regular

N-R algorithm (u = 1) has been used with complete success in spite of

inferences to the contrary in the literature [14], [21]. Many cases

of all types were tried and convergence always occurred independent
Sof the starting values of ot and fl. A case was given in [21] in which

divergence was reported; our program converged. (We have included

this case as one of our examples (No. 2A) in Section V). We are thus

led to the conjecture that the N-R algorithm always converges globally,

provided sufficient accuracy is retained in all computations, but a

proof has not been found.

We remark in closing this section that an implicit assumption has

been carried throughout. Namely, if L has a maximum at (a ,fi), then

it has a maximum for the variables (po'), where

S• - c;/•, •: i/• .(62)

This assumption is clearly valid, because the variables are related by

1-1 transformations (5), (6). A detailed proof has been carried out

but is not included in this report.
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IV. CONSTRUCTION OF THE COVARIANCE MATRIX AND CONFIDENCE ELLIPSE

We continue to use the notation: u uop for the true parameters,

and p, 0 for the estimates of the true parameters as determined ficm

maximum likelihood theory. The notation used below follows closely that

of Golub and Grubbs, [14] the analysis follows that given by Mood

[17, p. 212).

The estimates (p, or) carry no significance without some measure

of the possible deviation from (po0 , a ), the true parameters of the
0

distribution. A classical procedure for obtaining an estimate of the

error for large sample sizes is to determine a confidence ellipse

(similar to a confidence interval for one variable). It will have

meaning in the Zollowing sense: For a specified level of confidence,

say 95%, an ellipse is determined in the pc-plane with its center at

S•( 0) suchI that with probability .95, the true parameter point

(go, ao) is contained in the interior of the ellipse.

We first construct a so-called covariance matrix and then show

how the confidence ellipse is obtained from the elements of the inverse

of this matrix. We will resort again to the armor plate penetration

problem as an aid in elucidating the main ideas of this section.

Consider random variables (k ( = 1, 2, ... , N) where N - n + m

is the number of shells fired (or experiments conducted). Each *k

has only two possible vi.lues

• 1 if k h shot was a success (produced penetration)

k 1 if(63)
0 if kth shot was a failure (no penetration).
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The probability density function for the random variable 5k is

S= f( 6 k;,G) (Ck ) - p ] k (64)

i-!

Lr k q(,)(65)

where p is the normal probability integral, (see (3), (4)). The quantity

Ck is the stimulus (velocity of the projectile in our example) regardless

of whether the kth shot is a success or failure. The quantities p

(mean critical speed), o (standard deviation) are parameters. The

probability fk(l; /1, ) that the kth shot was a success is determined

by putting =k 1 in (64) and (65) to obtain p[(ck - O/)/a] ; similarly
for a failure Uk is set to zero in (66) to obtain fk(0,/•,a) =

q[(ck -0l/01]

Two new quantities are introduced

G(k; Gk -. log f(66)

H(k;I log f k; P I) (67)

Although ak is a discrete variable with only two possible values,

each fk is a differentiable function of the parameters p and Ci,

so these definitions are meaningful.

For the sake of a simpler notation, we drop the subscript k but

it should be understood, unless otherwise noted, that all relations
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that follow deal only with the kth experiment, so that a fixed k subscript

should be understood whenever necessary*

The expected value of G is given by

1r

E(G)- G G(6 ;Y )f(6;Pa) (68)
r-o

where I are the values which 6 (note subscript k has been dropped

on 6) can take, i.e., 6o = 0, a1 = 1. Equation (68) is the discrete

analog of the expression which would be used if we had a continuous

variable * instead of 6, namely

E(G(O';p0a)) fG(% O)f (0 ldo (69)

From (68) there follows:

E(G) M 7 1 r )

r-o 8P8'r-o

S ' +q(cc- (l) =o. (70)

Starting with the analog of (68) for H and Oiag , instead of G and

, /O , it is shown in the same way that

E(H) = 0 . (71)

The fact that every G and H (i.e., for each k = 1, 2, ... , N)

has a mean or expected value of zero simplifies the calculation of the
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standard deviations or variances of these functions. Let the variance

22of G, for any given k, be denoted by a . Similarly 02 will denote
G H

the variance of H, and OGH the covariance of G and H. (We will have no

need for the covariance of G and H for two different values of k).

The variance aG2 of G is, by definition, given asG

2 2

rwo

"- L ;f(6 r;* (72)
r-o f(5?;pG 18P

Now differentiate both sides of (68) with respect to g to obtain

ro [G(r-o -o/

rmO

2

£r fC6 ;/Lt.j) 82[log f ; A,u

1 Of(6?;MGo) 2

+ o( p (73)i ÷ o30

30



From (72), using (73), we have

lid" G?" EF02log f(a r
kol2 ;ay 2 (74)

Similarly

ii ~~o -l L• og f(ar-p,,
2 ( 75)

Next, we wish to obtain a useful expression for the covariance

of G and H. By definition

O G(6r;
rinG

1 af(a r;.L, of(5 rf r6

m-o f88r-MU) a . (76

If (68) is differentiated with respect to a, then

"f0 u"0 • G( r; ) f(6r; a)

& 1 0 4 f(r

ma)] r

+ •+ [G(6;
1 1 ,o) + fG(r;,u )

""0 f( 6r r(77)
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From (76), using (66) and (77),

1' los f(6r A,)
UGH -- a/" (78)

It is also obvious from the definition given in (76) that

O a " (79)
GB*

We introduce the vector random variable (GH) for a given k,

k = 1, 2, ... , N. By (70) and (71) this variable has mean (0,0).

J We denote its covariance matrix by M, which is defined by

12
M -Q- . (80)

Equations (74), (75), (78) give oxpressions for its elements which

will be used later. By the multivariate central limit theorem,

[7, p. 316]
N
Z (Gk, k)

k-l

is, for larSe N, appriximately multinormally distributed with mean

(0, ... , 0) and covarianc matrix, A-1

N

A- Mk.k=l

We denote this matrix specifically as an inverse, because this matrix,

as it will be shown later, is the inverse of the covariance matrix
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for the distribution of the maximum likelihood estimators f , 0.

Thus,

N

k-l k-i
A 1  (81)

L /N N 2
XZ OGkH r Hk

k-i k-1

In the usual terminology of statistical texts, [1, p. 19] we say

( N
k-lGk, -

is approximately distributed according to N(0, A-'), for large N,

•' ~where 0 is the zero vector. :

Recalling the likelihood function F for a given set of ai(successes),

b.(failures) as given by (1), we can also now write F (as given in

Golub and Grubbs' paper, [14]) as

N N Cr) (2

F I P 6k q1 = 6 k 6  ;/L,) (82)
k-i k=. k

where fk is defined in (64), (65). Thus the logarithm of F, which has

been previously denoted by L, is

Nr
L X log f (r(83) kIk-l k

* and by (66), (67)

S._L N
k,)i (84)

__ _ _I



Le N (85)
C1 k-I.

We conclude that the random variable

Z GkJHk (L /j La) ,(86)

\k-1. k-I.

where (Lp,4 L a) is approximately N(O, A-') for large N. Moreover,

by (74), (75), (78). the matrix A-1 can be written in the form

A-I (87)
E(-Lcyoa

and for efficiency in notation we introduce that of Golub and Grubbs

by writing

A- A 1 
-(88)

We paoceed by expanding Lp and La in Taylor series about the

true values p 0 and a0and evaluate the series at pcthe maximum

likelihood estimates. Thus,

LLp(iG /nI (. . o%) + Lyp (P 1 ,47 1)(-)

+ L/ 0' , 1)( ao-

L (JC T) a L a(pU 0 , a) + L~ 0 ~2 i)~

+ #o a((92,2 )(2) (P)go
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where (Pl, 01), (P 2 , 02) are on the open line segment of the straight

line connecting (#1,a') and (flo, ao) in the poa-plane.

Since (p, ) is the point for which L is a maximum

Lp(L0 L 0 (/0 =0,

so that

il L'(/Lo, Go) - (M-Mo)[-Lpp (#i, uj)] + (0'- cJo)[-L#0 (U1 , 0'i)]Z.,

LI, (po' ao) " (T'o)['L# (#I,' a2)] + (&- ao)[-Lpa ( ( , a,)].

(89)

Now (pU., al) and (#2, 0'2) converge with probability one to (flo, ao)

and the second derivatives on the right hand sides of (89) converge

with probability one to their expected values, [16](vol. 2, 2nd Edition,

page 55). Hence (89) may be regarded as a set of linear equations in

the quantities (p -0) and (0- ro). Using vector notation, and

superscript T for transpose (89) becomes

A':.- .Popa"- o)T 's A 0 (LILoL)T, (90)

where 6 = (g-p 0 , 0)')

and LU and La on the right-hand side are evaluated at ( , co)"

The matrix A1 always has an inverse provided (/,0) and (# , 0 O)

are not the same. This follows by Theorem 2, since

Determinant (A-') A > 0. (91) J
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Hence

A X 6.(92)

where X is approximately distributed as N(O,A'l),(see page 34). We also

have by another theorem frim multivariate analyses, [22; p.8]:

If X, a row vector, is distributed according to

N(v,V), b= v is a vector and V. as usual, is a covariance matrix.

then the vector Y, given by

Y CXT(for any nonsingular square

matrix C) (93)
is distributed according to N(CvT C cvc) (

No o T - b e v A- for, C
Now forXwe have that v Q0, V A and for Y C A.

So, we conclude from the above theorem (although details are omitted)

that 6 is approximately distributed

-1 T T__
N(O, AA'AT) = N(O,AT) - N(O,A), (94)

where we note that A AT since A-1 (A-I)T. Thus, for
6= / " -

dhe maximum likelihood estimators for large N are approximately

bivariately normally distributed about the true parameter point

(go, ') in the UO-plane with covariance matrix A, the inverse of

A-1 of (87) or (88). We identify the elements of A with superscripts

A A . (96)

Aju 0  A 0 0
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The elements ATMM and A" are called the asymptotic variances of

Sand 6 respectively and A'" the a3ymptotic covariance of •L and 0.

To determine the confidence ellipse for a given confidence level Y,

we consider the quadratic form occurring in the exponent of the joint

normal density function. If an M-dimensional vector variable X is

distributed according to N(vV), the joint density function f(X) is

f ( r)M/ 2 111/2 exp (X - v)V 1 .(X - v)T . (97)

The quadratic form

(X -v) •V 1 • (X v)T (98)

has a chi-square distribution with M degrees of freedom since X is

N(v, V), [22; p. 417]. In our case, the relevant quadratic form is

T _9 •A 1 •6. (99)

From (88) and (95)

OT A 1  #~ A~(- 0 ) 2 4- 2A#U (p.Uo)(W- I)

+ Ado %~) 2] (100)

"The confidence ellipse at the confidence level 7, say 1 = 0.95,

is obtained by equating the expression in brackets in (100) toX21- 7

where X2 is obtai.ned from a X2 table, [19], £20], with two
1 _- 14

degrees of freedom [22; p. 417]. In practice, the maximum likelihood
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estimates P, 0 are available, the true parameters are unknown.

So the confidence ellipse

Apt# ,A1 + 2AMO(I+Ace( q .X 1  (101)
is plotted where At and o are running coordinates on the ellipse

with center at (•, ). Th& positive real number I denotes the

probability that the true parameter point (Mo, ao) lies in the

interior of the ellipse in the #-a plane.

The coefficients Apg , A# , and Ag 9  are easily computed if

xi/pj and yj/qj (the notation of Section II) are available, say from

a computing procedure for the determination of (A, u) in which such

quantities as Lo, Lp, are needed. One computes, in addition, the

quantities (xi/qi) and (yj/pj) for each i and j. Then in the notation

of earlier sections we have for computation of the coefficients of

S •+ 2A:

2 2

0 A ; -i + Pq , (102)

i-l piqi j-l j) j q

--2 n sixi2 m t y 2
9Ape x + z .... (104)

i-l P j~j jl PJq

0' Age ":.• + J~ jJ *(104)

where all quantities are evaluated at (ap) or equivalently ($,e ).
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Our computer program for the determination of (/*,O) includes

the calculation for confidence'ellipses at Y = 0.50 and Y 0.95

with the computer output including the ellipses in plotted form. This

computer program is described in the next section.

V. COMPUTER PROGRAM

In this section we describe the actual computer program that is

used to obtain /1 * and the associated confidence ellipses as discussed

in the previous section. In addition, those computations where a loss

of significant digits may occur are noted and their special treatment

is discusaed.

Two programs exist for use on the IB4 7030 (STRETCH) computer.

One is written completely in FORTRAN IV and the other only partially

with the remainder in STRAP, the STRETCH machine language. The programs

are designed, as mentioned previously, only for the ordinary Newton-

Raphson (N-R) procedure, although it muld be easy to change the

programs to accomnmodate the modified N-R algorithm as described in

Section III. The programs as they are now set up with the ordinary N-R

procedure have always converged globally.

We proceed with some details of the programs,(Reference is made

to only one program hereafter since the programs mentioned above differ

0only in programming language.). It is assumed that the input is specified

as two sets of real numbers (ail, {bj } , where i = 1, .... n, j l..m

At the outset the program is called upon to insure that the necessary
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and sufficient conditions for the existence of a unique point at

which L attains a maxim-m are satisfied, i.e.,

an < bmax , (105)

M 1
m ZXb <;Lai (106)

where amin -mmn(ai) and bmax = max(bj). By Theorem (4) of Section III

if either (105) or (106) is not satisfied there do not exist maximum

likelihood estimates 4U * . If this is the case, an exit is made in

the program.

If (105) and (106) are both satisfied by the input, the program

proceeds to obtain initial approximations a*, P* to i, 6. We use

the following relations, although as mentioned above a* and 6* can

actually be chosen arbitrarily,

-r * # = (I L ai + • .Zbj)/[ L( ai + ,) - 21 / (107)

=112C6'* or* [( ai + bj /_L.E2+Z ) v2j (108)

where

v= lai( + bj). (109)

It is understood, as before, that the sur- on i run from 1 to n and

those on j from 1 to m. Certainly better initial approximations could
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have been obtained with more extensive analysis, however, since the

N-R algorithmn is a second order procedure which has always converged

globally for us, little need was felt for such refinements.

If a and Pk denote the kth approximations to 0 and ,

respectively, then the (k+l)st approximations by N-R are specified by

a a + 4a (110)k+l k k

•k+l k k + Ak k = 0, 1, . (111)

where Acgk and Aflk are given by (55) with all partial derivatives

evaluated at (61k, 8 0k). The final form for the computation of the

quantities that appear in (55) are given by (115) - (119). The

iterations are terminated when

< k 1  1 ' ai (112)

are both satisfied for some k >; 1. The parameters £1, £2 are

prescribed as part of the input. They are presently set in the

program at

4i 2.5 x 10-4 = I (113)
T 2

Upon convergence, the program is set to proceed with the

calculation of the matrix elements of A which are needed for the

confidence ellipses. The equation for a confidence ellipse is given

2by (101). The function X 1 is known as the chi-squared distribution

function with two dcsrees of freedom; it is tabulated for various
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values of VY, £17, p. 424), [19]. Values outside these tables can

be determined from the incomplete gamma function, e.g.[20]. A few

commonly used values of for two degrees of freedom, are listed:
2

V1-v lyx 21-

0.50 0.50 1.39

0.90 0.10 4.61

0.95 0.05 5.99

0.99 0.01 9.21

It was shown in the previous section that for sufficiently large

samples one can assert, with preassigned confidence 1, that the true

parameter point (o o) lies somewhere in the interior of the ellipse

given by (101), with X chosen appropriately, whose center is at

(/L, ). The program at present is set to compute two ellipses, one

for V 0.50 and another for 7 - 0.95. They appear in graphical

form as part of the output (Examples are given at the end of this

section). We remark that in order to display these ellipses to advantage

somewhat more than an elementary plotting code was required. For

completeness, the details of the plotting code are given in Appendix B.

The quantities AU., A#C , Aera that are needed for tihe ellipses

in (101) can be determined from (103) - (105). However, for efficiency

of calculation, as described in the next paragraph, the actual equa- •

tions used in place of (103) - (105) are (120) - (122).
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For efficiency, the program is designed to take advantage of the

situation when some of the ai are repeated, and likewise for the b.

The ai (and also b.) are sifted so that only those ai which are different

are listed and with each such ai an integer n(i) is also listed which

denotes the number of times ai appears as an input. For bj the corres-

* ponding integer is denoted by m(j). One can then take advantage of the

fact that the expressions for Le, Lp, LCgIj , L LaL8 are linear

sums in quantities such as (xi/pi) and (yj/qj) so that these quantities

need only be computed for the different ai or bj and multiplied by n(i)

or m(j), respectively. With this point of view, we introduce some

r;. additional notation and re-write all the pertinent equations as actually

used in the program.

Let the kth different ai be denoted by a(k) and the rth different

bj py b(r). Let K and R denote the total number of different ai and bj,

respectively, so that

K R
n Z (k), m= £ m(r), (114) I

k-l r=l

where n, m have the'ir usual meaning. The basic equations for the program

then can be written as follows:

R K
Le= m(r)(y, qr n(k)(xk/Pk) (115)

r=l kil

K R
:L'8" n(k)&(k)(xk/pk) - L m(r)b(r)(yr/qr) (116)

* k=i r-l
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R
GOm -L m)(Y-/qr) (Yr/qr tr) - L k/k(gk~k/k (117)r- 1 k-l

K RLap ~n (k) a(k)(xk/P.k) (k + xk/Pk) + X m(r)b(r) (yr/qr) (yr/qr-t )k-l 
r-1

(118)
R

Lpp . m(r)b (r) (yr/qr) (yr/q.tr)
va1

n , (k) a2 (k) (xk /pk)(s+ ./k(19

c~~lL~ k + xk/r&2 Pk;yI) (120)
k-i v.1

K

k-i r.1

K R2AU r- r a (k) sk(xk/p 1) (xk /q) + E m r r(r r y r (122)
k-l r.1

where

'b b(r)A

The total number of different a i and bP. K-fR, is limited by the storage

capacity of STRETCH to

K+R (10,000.

44



* -7

Care must be exercised in maintaining accuracy throughout the

calculations. For example, a straight-forward computation of the

quantity (x/p)[s + x/p] s for a given ai, will not yield an accurate

result for large negative values of s. The difficulty arises because

(x/p) approaches (-s) so that the quantity in square brackets is subject

to a loss of its leading digits. The result may be subsequently

multiplied by a large quantity x/p (or ai(x/p), a (x/p)) thus leading

to a large error. This difficulty is easy to remedy by simply replacing

(x/9) by an asymptotic expansion whose leading term is (-s) and replacing

the quantity in square brackets by this asymptotic expansion with the

first term (-s) removed.. Similar care must be taken with the quantity

(y/q) (y/q-t). Losses in accuracy of this nature are one possible

cause for the reported divergence of the N-R algorithm. Another may

be that most subroutines for computing probability #ntegrals retain

very little accuracy over some parts of the domain (-Oo,oo). For our

program,extensive efforts were made to compute probability integrals

tb high accuracy over the entire domain. Originally,,a table of

probability integrals was stored at equal increments in the argument

of .0025 for the interval [-8,8],and t;o asymptotic series in inverse

powers of the argument, each containing 27 terms, were used to evaluate

(x/p) and (s+x/p) for arguments larger in absolute value than 8. In

this vay, all individual terms were computed to an accuracy of nearly

13 significant digits on STRETCH which uses 14 digits. Recently, however,
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a method for computing p(s) (and q(s)) was published by Cody, 5]

which gives, on STRETCH, at least twelve significant digits for all

8 e (-00,00). Cody's method was used as a basis for subroutines, after

suitable modifications for the computation of s + x/p for large values

of s, which supplanted th•. table and two asymptotic series menLitioned

above. This resulted in a large reduction in storage requirements with

no significant loss in accuracy or computing speed.

The running time for the STRETCH Fortran IV program with the

tolerances chosen as in (113) averages about .007 seconds per every

different item of input, i.e., a(k) or b(r). Thus the average computing

time per case is about .007(K+R). The average computing time for the

other program which uses some STRAP language is about .0055(K+R). These

rough estimates do not include the time for plotting the confidence

ellipses which are done off-line.

The' output as generated off-line from a STRETCH tape is shown for

14 cases at the end of this section. Each output sheet lists, starting

in the upper left-hand corner, an identification number, e.g. No. 111B,

followed down the page by a listing of the different ai and bj and the

number of times each occurs,e.g.,in Case I-3-17-70,(p.61),a = -4 occurs

6 times as input and b(3) = -5.5 occurs 4 times. Toward the top center

the maximum likelihood estimates A , U are identified as mu and sigma,

respectively. Below these quantities, the elements of the covariance

matrix are recorded followed by the starting values a*, .8* and ^*, o*

which are identified by alpha*, beta*, mu*, sigma*, respectively. Then,
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a listing of the Newton-Raphson increments, for each successive iteration,

Am , * , written as delta alpha, delta beta, are given as well as 1
the associated value of F (The column is indicated incorrectly with

L instead of F where F is given by (2)). Finally the two confidence

ellipses are shown, at the 9j% and 50% confidence levels, in the,

U -plane. These ellipses are constrained to a circumscribed square.

The plotting was carried out so that the two axes of the ellipses lie

on the diagonals of the square. The details of this graphical construc-

tion are given in Appendix B.

The various cases which are used as examples are drawn from shell

penetration tests or biological experiments. In a number of the cases,

the confidence ellipses include regions where a is negative. This {
can prol-ably be interpreted to mean that the sample size is too small

for-approximating a "large" sample. It is recalled from the previous

section that the analysis for confidence ellipses was based on the

hypothesis that N, the sample size, approached infinity.

Some cases are duplicated to give emphasis to the fact that N-R

appears to converge globally. In particular, case No. 2A was reported

in [21] to diverge. The results of case 2A are shown for four different

sets of starting values. These results clearly show uoivergence.

Case No.3 was taken from [14). No. 111 and 117 are taken from

NWL shell penetration tests. No. 1 is taken from [18). Our results

agree very closely with theirs. Case Jan. 19, 1970, obtained from [4],
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was used to compare our results with those obtained from Finney's

probit analysis. (Appendix C is devoted to a di'scussion of probit

analysis as an alternative method for obtaining estimates of /jo and uo.)

Case No. 386 was supplied by Dr. Marlin Thomas. The confidence ellipses

for this case also suggest that there is insufficient data for the

asymptotic analysis of the previous section to apply. The remaining

cases are included to give further indications of the global convergence

properties of the N-R algorithm.

4 I
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APPENDIX A

COMPLETION OF PROOF FOR THEOREM 5.

It remains to prove that the sequence of points in E

Q •{ (a i } ' which is generated by the modified N-R procedure

(See pages 23-26) actually converges to Q = (Gf), the point for which

SL(Q) = L(Cll,) takes its maximum value, L. It will be helpful in the

analysis belcw to think of a point QIE 2 as a vector in E2 which has

the component form (a,fi).

In the discussion of Theorem 5, in the main text of this report,

a parameter u. was associated with each modified N-R iterate, Qi. The

.:parameters u. are positive real numbers defined by (60) and (61) such

S~that for any Qi

. < ui+1 • 1, (123)

"L(Q > L(Q for i = 1, 2, ... , (124)

where Qi+l is generated by the vector relation

+ U EA1  i] (125)£
qi+l =Qi + i+l[Ai (15i

with

[AQ1 ] (4A•' A8 . (126)

The quantities Act 1 and Afi are the ordinary N-R increments which are

obtained from (55) with all the derivatives which appear on the right

hand side of (55) evaluated at Qi = (Cc,, #,). A positive parameter,

hi, is associated with each consecutive pair of elements, {QJ QQ+1 }

of the sequence which is defined by the relation
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hi L(Qj+ 1) -L(Q) >0, j = , 2, .... (127)

The h are positive for every j. This is assured by (59) which implies

there always exists a uj, as determined by (60) and (61), so that (123)

and (124) hold for every j.

Clearly the procedure described can be applied to any point P EE 2

"(except (d,p )) with a new point generated by (125) and (126) with

an associated positive increase in L indicated by h as defined by (127).

For easy reference, a result which we need is stated in the form of

a lemma.
LEMMA (A-1)- The sequence { hi} generated by the modified N-R procedure

converges to zero,_i.e.

lim hi =0. (128)

Proof: We use the simpler notation L fir L(Q = L( ,

Then, for k I 1,

+ h L + h + h + + h
kl k k 1 1 2 . +kKL<

00

Rence, the infinite series E hi of positive terms is convergent,
i=1 *

which implies (128). Q.E.D.

LEMMA (A-2). Given an arbitrary positive real number K. there exists a

quadrilateral in the aS-plane, with the origin in its interior, such

that L(0a.p) < -K for every point (a ) which is extgrior to the

quadrilateral.
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Proof: Tx:e construction used here will be similar to that used

following Lemma 7 (See page 20). Indeed, we can always construct a

triangle here with the desired properties if it is possible to find

three subscripts r, s, t such that a. < bs < or such that

b < a < b . But this cannot always be done, for instance if we
r s.

have a . bI = b2 < a2 . b3. and if we have only these five stimuli,

But, in cases of interest, we always have a < m and b < a n, by[(35), and the four stimuli appearing in these inequalities form the

basis of the quadrilateral construction.

Let the positive constant K of the lemma be assigned. We determine

: a positive number s such that p(-s) = exp (-K-1). Such a number s

exists because of the monotonic incre&se of p(t) from 0 to 1 on the

interval (-,oo). Now consider the line al8- = -s in the

ii an-plane. This is denoted as line ( in Figure 2. At every

point of line Q we have p(alp -a) = p(-s) = exp(-K-1), or

log p(alp - ) = -K-1 < -K. But since, by (5), L can be expressed

as a sum of negative terms, we have, for every ((a, P) on line T ,

L(af.) < log p1 = log(al' -a) = log p(-s) = -K-I < -K. This is

similar to the corresponding analysis on pages 20-22. The

al-intercept of line D , a,,l - a1 -s, is a ; +s. "

Now suppose (t,p) is a point to the right of line ® . By this

we mean that, if ( is the point of line (D with the same

ordinate , then 01 > 090. The phrase "to the left of" will have
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an analogous meaning. A line of the form aip - = c or b $-' = c
cannot be horizontal, since every aj or b is finite. The point (a

to the right of line ( will lie on a line of the form a,# - a - -s-e

with a-intercept a = s+e, where e > 0, and for this point the log p, "

term will be log p (-s-e) < log p (-s) -K-1 < -K, and so, for this

point, we have, as above, L(0,.) < -K.

Thus, for every point in the an-plane which is on or to the

right of line ( , we have L(t ,f) < -K.

Similarly, designating the line bmP-01 +s with a-intercept

-s, as line • (see Fig. 2), we find that, for every point on line ,

qm= q(bmp-C) = q(+s) = p(-s) exp(-K-l), since the identity

q(t) = p(-t) holds for all real t. Hence we have, as above, L(f,fi)

< log qm = -K-1 < -K. Also, any point (a ,.8) which is to the left

of line C is on some line bfi-a = +s+e with a-intercept -s-e

where e > 0, and for such a point the log qm term will be

log q (s+e) < log q (+s) = -K-1 < -K, since the function q(t), or

l-p(t), decreases as t increases. Therefore, for such a point (aff),

to the left of line © , we have as above, L(at,g) < -K. Thus,

for every point in the 08 -plane which is on or to the left of line ,

we have L(acc ) < -K.

These lines (D and © , with equations alp -a = -s and

b m -0 - +s respectively, intersect, by analytic geometry, at the

point CI = (bm +ae) s/(bm - a1 ), • = 2 s/(bm-ai). Since s > 0, and

b - a1 > 0 (since a1 < ba), this point, designated as C in Figure 2,

is in the upper half-plane, with 8 > 0.
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We next make a very similar analysis using lines • and ,

Fig. 2, where line 3 by definition is the line an. - •f -s and

line ( is blf - t = +s. These lines intersect at the point marked D

in Fig. 2, with coordinates C = - (a + b)s/(a - b -2s/( - b).
nn

Since s > 0 and a - b > 0 (since bI < an by (35)), < 0, or

the point D is in the lower half-plane. It is true, as in the foregoing

analysis, that, for every point (ct,fl) on or to the right of line ,3

we have L(a,fi) < -K; and that, for every point (a, 1 8) on or to the

left of line ( , we also have L(a,fl) < -K. We omit the details

here as the proofs exactly parallel those for lines ( and .

Thus we obtain the quadrilateral ACBD of Fig. 2, where A and B

as shewma in the figure are the points (s,O) and (-s,O), and C and D,

in the upper and lower half-planes respectively, are the points whose

coordinates have been given. This quadrilateral reduces to a triangle

in some cases, for instance when bI K a1 < b2 with a1 > (b1 + b )/2

and there are no other stimuli, so that I an and lines 01 and G

coincide. But, even in such cases, A(s,0) and B(-s,0) are as shown in

Fig. 2, and C and D are in the upper and lower half-planes respectively.

We can in every case refer to the quadrilateral ACBD with the under-

standing that, in some cases, A (or B) may be collinear with C and D.

It is now not difficult to see, on the basis of the foregoing

analysis, that, for every point (C,f) in the plane which is exterior

to this quadrilateral, we have L(Ce,f) < -K, as stated in Lemma (A-2).
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The reader can easily convince himself, by making a copy of Fig. 2

and shading those parts of the plane where the relation L(t ,f) < -K

holds, that every such exterior point (ct,f) satisfies at least one

of the following conditions: it lies (1) to the right of line O,

or (2) to the left of line 2, or (3) to the right of line (,
or (4) to the left of line (. Any one of these geometrical conditions

is sufficient to ensure that the relation L(ci,fl) < -K holds. This

completes the proof of Lemma (A-2).

Now we define a point set M in the 08-plane by

M {QL(Q) >,, L1}

where L1 is determined by choosing a starting point (of 1 #1) =Q1

for the modified N-R procedure. The symbol Q here, however, refers

to any point in the plane satisfying the inequality L(Q) /> LI, whether

a member of any particular sequence of N-R iterates or not.

LEMMA (A-3). The point set M is closed and bounded in E2 .

Proof: M is bounded by Lemma (A-2), since one can take L1 as the

negative number -K of the lemma, and construct a quadrilateral such

that L(a, 9) < L1 for every point which is exterior to the quadri-

lateral. Hence the set M is contained in the quadrilateral plus its

interior, i.e. in a bounded subset of the plane.

The set M is closed, because if a sequence of points in M converges

to a point Q', we must have L(Q') > L,, since L is a continuous function

of its arguments o and /?. Hence Q'i M by the definition of M and it

has been shown that M is closed. Q.E.D.
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Now consider an infinite sequence {Qj} of distinct modifield N-R

iterates with a stazting poiut QI" The fact that all of the Q. are

distinct follows from the fact that L is increased at every step.

For all •, Q4 EM. Hence by the Bolzano-Weierstrass theoremjQj }

has at least one accumulation point, say Q. Since M is closed, Qe M.

But Q need not be a member of the sequence {Qj}. However, the modified

N-R procedure can be applied at Q (or any other point), from which

an associated h would be obtained. The quantity h > 0 unless Q

in which case h = h = 0. This is easy to see because if Q = Q, then

from (55), since Le(Q) = L/ (Q) = 0, At = A. = 0, so that

AQ = 0 in (125) and Q is not changed by the procedure. Hence n 0.

So we assume Q # Q, consequently h > 0. It is always possible

to choose a subsequence {Qw} of {Qj} such that Q.w* Q. Hereafter,
JW iw

for typographical convenience, we note the elements of the subsequence

by Q where it is understood w takes the integer values Jw. We will

show the assumption h > 0 leads to a contradiction of Lemma (A-1).

TTie conclusion will follow that Q = Q, and that the entire original

sequence {Qj} converges to Q.

A visual aid which we call an overlaid diagram will be used to

elucidate the remainder of the proof; it is briefly defined and

illustrated. Pass a vertical plane V through Q and the point Q + uAQ =

(+ +uAC, • + uA#) into which Q is transformed by the modified

N-R process. The intersection of V and the L(ct ,fi) surface is a

concave downward curve since the surface itself is concave downward
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e",erywhere. This curve is indicated as the solid curve in Figure 3

L

V plane

1* uQ 1/2= u u' 1/ N

Figure 3

with Q at the origin. Points on the horizontal axis are at a height

IL(Q)I below (because L < 0) the ap-plane. Points on the solid

curve can be specified by appropriate values of the parameter u. Now

consider a point of the subsequence, O, which for large w is very

near Q. Since L and all of its derivatives are continuous, the

corresponding curve determined by Qwand appropriate values of u'

(we use u' here instead of u to denotu a distinction from the parameter

u associated with Q), in general, lies in a slightly different vertical

plane from V, but will nevertheless be very near the Q curve by continuity.

- Now we think of the O curve as translated in its plane until the

projection of the point % on the V plane falls exactly on the point Q.

The translated curve is then projected on to the V plane and is
74
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shown as the dashed line in the figure. The distances in the af-plane
corresponding to u = 1 and u' 1 are not exactly equal in general, but

are nearly equal for large w by continuity. Aigure 3 will be referred

to as the overlaid diagram. The remaining arguments Ai11 assume the

curves are in the V plane since the actual curves and their

translated projections on the V plane can be made to differ by as

little as we desire by choosing w sufficiently large.

There are two situations to consider which are distinguished by

whether or not there exists a non-negative integer k for which the

quantity
K --- L(Q + u AQ) -L(Q) •

-k

is zero, where u f 2", and as usual AQ BE (A o, Aj) with AcP, 4f

the ordinary N-R increments at Q as obtained from (55).

if K 0 for any k ) 0, then no difficulty arises because it is

easy to argue from continuity that the subsequence Jhw} converges to h.

However by Lemma (A-1), h = 0, which obviously implies Q Q by the
arguments above.

If K = 0 for some k, say for definiteness k = l(u = ½) a more

subtle argument is required to show h = 0. There are two possibilities

to consider for the subsequence of iterates {Q}

(a) All but a finite number of the QW have the property that

L(%+7 + %) L (%) 0 (129)
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(b) An infinite number of the 0 have the property that

L(Q% + ½ 42 - L.(% < 0 .<(130)

(This does not exclude the possibility that an infinite number of the

% may also satisfy (129)).

The overlaid diagram is useful here to visualize these situationsI 1
keeping in mind that, for sufficiently large w, the points Qw +

I
are arbitrarily near Q + • AQ.

For case (a), the arguments are essentially the same as those

used above for K j 0. Briefly, since (129) holds for all w, when w

is sufficiently large,

0 < h 1n [L (%w+ zQw) L(Q )w) lira (hw), (131)
0 < h-- l 0 4.W4.0

where the factor ) occurs because K =0 f-r k iso that by

(60) and (61) we require r = k + I where u =r = 1 Again we

arrive at a contradiction by employing Lemma (A-1), since it requires

lim h i 0. We note the first equality in (131) must hold because

{%} converges to Q, L is continuous in Q and

1

h [L(Q + • AQ) - L(Q)] . (132)

The second equality must hold for (131), because, for sufficiently

large. w, the quantity

"L(%+ 40Q -L(%)

approaches zero (since K = 0), so that the factor ½ must eventually

be changed to • as w increases.
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For case (b), we assume that (130) holds for an infinite number

of elements 0. of {QW}" we identify this subsequence by {Qz} where

z takes the integer values w . By the modified N-R procedure, the hz z

for each element in {Qz} will be the larger of L(Qz + • AQz) - L(Qz)

and L(Qz + AQ 2 ) - L(Qz). If the latter is the larger of the two,
1

then {h.) will converge to L(Q + A Q) - L(Q). So that by (132)

and Lmin-a (A-I),

0 < h < lim hz =0,

which again leads to the desired contradiction. Certainly if

L(Q + g Q) -L(Q) > L(Q + • Q) -L(Q) , (133)

then for sufficiently large w the above situation will hold. On the

other hand, if this inequality is reversed or equality would hold,

then {hz} would converge to h for 'which a contradiction will again

follow.

The situations described by cases (a) and (b) exhaust the possi-

bilities of what may occur for the subsequence { Qw} . In every case

we have shown h = 0, which implies Q = Q. By elementary analysis it

will now follow that the entire original sequence {Qj} must converge

to the unique solution point, Q. Indeed, suppose this is not the case. A

Then there exists an open circular region R, with center at Q, such

that an infinite number of Q. lie outside R and hence in the closed
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set • 1 M (E 2 -R). The set I'I is not only closed but it is also

bounded because NM S M. Applying the Bolzano-Weierstrass theorem

again, the set of Q6 F M, must have an accumulation point QI. But

JJ
! it has just been sl.c•wn above th~at any convergent subsequence of fqj}

must converge to Q 4 MI. This is a contradiction. We conclude

f{Qj} cortver;es to Q.

!I

II
:1
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APPENDIX B

ANALYSIS FOR GRAPHS OF CONFIDENCE ELLIPSES

The equation of the confidence ellipse for a given confidence

level 1 - Y (for example, V .05 for 95% confidence) is

A -• (,_ ) 2 + 2A (-)(- ) + Aaa (a - ) 2  D= X , (134)

where (ac) is the computed maximum likelihood estimate for the

position of the true parameter point, ( aUo .r) in the /Ia-plane.

r The quantity D~r ) is the value obtained from a chi-square table
e aV

at the Y level, for two degrees of freedom and A ,Ag , A6. are

the elements of the inverse of the covariance matrix which is determined

by the main program. 'The equations for Ap/ , Ape , A0 o are given

as equations (102), (103), (104), or as actually used in the computer

program, they are given by (120), (121), (122). The values of D for

95% and 50% confidence, the values at which the NWL program is presently

set, are 5.99 and 1.39, respectively, (See p. 42).

We emphasize here the necessity of distinguishing tatween the

coefficients AppU , Apa , A.e of (134) and the elements APP~ , A/G1

Ace of the covariance matrix A. Let E denote the matrix associated

with the ellipse, so that

-E /" A/ip A (135) a
E\Ap AA

where
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A# A

A AT 0  A 0 2(Covariance matrix). (136)

A• A

The elements of E are computed in the main program and those of A by

I.

numerical inversion of E. Hence, it is not necessary to reinvert A

(the elements of which are printed out by the program) in order to

compute E.

We simplify the notation by writing (134) in the form

2 2 D

ax + 2bxy + cy D (137)

where

a A , b=Apo , c=AO0 , x= (P-T), y= (0-C). (138)

From (102) and (104), clearly a and c are positive, and it can be shown

by the methods used in Theorem 2 that

2

4•A aac -b > 0. (139)

Thus, (134) represents an ellipse for any positive value of D.

Our first objective is to establish the points of maximum and

minimum ordinates and maximum and minimum abscissas on the ellipse.

This is easily accomplished by equating successively to zero (dy/dx)

and (dx/dy) as determined from (137). Substituting the linear relation

y = -ax/b, (140)

which remains into (137), one obtains

~2 b2D

X2 = , (141)

a A



IN 17

and from (140)

2 AD (142)

In this way, Lwo points are determined (not four) from (140), (141),

(142) with the possibility b may be of either sign. If b - 0, (137)

represents an ellipse with vertical and horizontal axes and the points

of maximum and minimum ordinates are (0, ± • ).

From (142) we see that

S(y) Span in ordinates 2 (143)

where S(y) denotes difference between the extreme ordinates. By

setting b = 0 in (143), we see that (143) reduces to 2)fD-7c. Thus

(143) gives the correct result for all b.

The span in abscissas, S(x), is determined by differentiating

(137) with respect to y and seLting x'(= dx/dy) = 0. It will follow,

similar to the case of S(y), that

S(x) = 2 _ (144)
A

The ellipse represented by (137) for a given D may be very slender

and elongated as well a8 being too large or too small for convenient

plotting, if no courdinate scaling is done. Klence, it is desirable to

scale the coordinates in such a way as to avoid these undesirable

characteristics as much as possible in the machine plotting.
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Our next objective is to derive transformations which take the

ellipse of (137) into an ellipse inscribed in a square of fixed size.

The resulting ellipse may still be elongated, with eccentricity near

unity, but nothing is done about this. No rotation of axes is carried

out at any time.

We assume the square will have sides of M units (inches, centimeters

or some other convenient unit). •bus we will require in new coordinates

XandY

s(x) = & M. (145)

Since it is the D95(=5.99) elli ih.,e size we wish to control, we

hereafter let D D The scaling transformations, from cy to

X, Y are

SX S X, (146)

Y S (Y) y. (147)

M ff

If these formulas are substituted into (137), the result is

2i

(X - )2 + -_b (X - X)(Y - Y) + (Y - 7)2 _ (148)
'a 4ac

where X and Y correspond to f, as given by (146) and (47). If

the spans S(X) and S(Y) for this transformed ellipse are computed as

was done for (137), it is found that (145) holds.

Some plotters, such as those used at NWL, have a basic unit for the

horizontal axis which is not equal to the basic unit for the vertical
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axis. Thus, we now consider transformations to actual plotter coordi-

nates (,7)such that (145) is maintained. Let cI1 denote the number

of plotter units per inch on the horizontal scale and c2 the corres-

S~ponding number on the vertical scale.. On the NWL plotter, for example,

[ there are 1024 units in about 11 inches horizontally and 1024 units

L in about 9 inches vertically, so that, in this case, c I ZZ 93.1, c 2 =113.8.

i ~ The scaling transformations from X, Y (in inches) to ý, 77 (in

plotter units) are then

- - -C(X-X) (149) -

[ I LI

77• 77 C c2(Y -Y) •(150)

Here wTh we no w by cs the coordinates on the arbitrary plotter

scales, of the point which is selected to be the ceriter of the confi-

Sofdence ellipseo In other words, the are not computed from X, r, but

rather they are conveniently chosen to locate the ellipse as desired.

tHence, although cr and c0 are scale factcrs as indicated by (149)

iand (150) it would not be correct, in general, to write

S••=clX and 77 = c2Y ,(151)

since X and Y are fixed while and 77 are arbitrarily chosen.

Substituting from (1.49) and (150) into (148) gives

+ - _ + - 0 J- (149)

t u )2 tec

Letting 77 2 ( 77)' we have
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1,/C2+ 2b ( /C 2 M2 A

Eq. (153) holds for any positive D although we have been assuming here

D = D 5.99. If we require the 50% level ellipse so that D = .50 =

1.39, then the right hand side of (153) is simply replaced by

M2 A D5 O (154)
4 ac D

This follows easily by simply recasting the preceding analysis in

terms of D rather than D95 .

Solving (153) for '1/c 2 , the result is

Sb ,il) + V A A ( , 2  (155)2 ac ac '

or 'C,

77 .77' b 2 + A A 1 4 156.

The 95% ellipse can be plotted from (156) in plotter coordinates 7 ,?7

and the 50% ellipse by the modification indicated in (154).

It remains to discuss the problem of markings on the axes in the

plotted figure for the reader's convenience in interpreting the graph.

These markings must indicate measurements in the original coordinates,

J.4or

The span in abscissas and ordinates in terms of /I and o are

given by (144) and (143), respectively. Hence, the minimum (subscript 1)

84



and maximum (subscript 2) abscissas and ordinates are given by

A'2
(157)

aD.

I, 1A' 2 A'

where we continue to assume D = D9 5 . These four numbers determine

the boundary lines of the square in which the 95% ellipse is inscribed.

In our figures the square is not explicitly indicated, but the four

numbers are used to determine the scale markings in the figure.

Numbers d1, kl, d2 , k2 are determined such that

21" d1 x 10  (158)

2 d2 x 10 2  (159)

where ki, k 2 are integers and dl, d2 are numbers such that

0. 1 dI < 1, 0.I1 .<, d 2 < I.

The right hand side of (158), (159) are simply representation of

numbers in "normal form" for FORTRAN numbers. Thus

1226.4 = 0.12264 x 104 with dI .12264, kI = 4.

Next, we determine units z1 (horizontal) and z2 (vertical) for

marking the axes in the plotted figure. The following rule is used:

k.zj .01 X 10 if 0.1 <, d. < 0.2,

z .02 x k0 if 0.2 • di < 0.5, (i 1, 2) (160)

k.
z. .05 x 10 if 0.5 < d. K 1
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To illustrate, suppose 2 VE 642 .642 x 10 . Then d= .642,

kI 3, therefore z .05 x 10 = 50. Hence, the horizontal scale

will be marked every 50 units (in /I coordinates), or since the span

is 642, there will be about 13 divisions or perhaps 14 or 15 including

the relatively small extensions of the axes beyond the ellipse as

discussed below.

We next consider appropriate values to assign p and c on the

axes at the left and right and lower and upper limits of the figure

itself. We wish these values to be integral multiples of zI (horizontal)

and z 2 (vertical). The following rule is used in which [x] indicates

the algebraically greatest integer not exceeding x:

!L•-[Z 1  Zl'

92 if lp2/ 1  is an integer

= + I zI otherwise

(161)
a["iz2 z 2

/- if is an integer

p + I z 2  otherwise
L[z2

The subscript L refers to t1 . left and lower boundaries of the figure

and the subscript R to the right and upper boundaries. The quantities

MI' 2' CIl 2, Zl, z 2 are defined in (157) and (160).

86

9..i



..- ,n- - ,...,--,. . U

After 1 p2, aL' •R' l 2 0 L, 0R are determined, we

next compute the corresponding plotter coordinates 77 ?.0 From

(146), (147), (149), (150) we have

I - p -r1 (, - 4'), 0- 0 r 2 (7 - ') , (162)

where

r r(13
me' "2 2

Finally, from (162)

= - + (Ir)

(164)

77i! ) + (0 /r2)

From these equations we compute 4, 771 (i 0, 1, 2, 3) giving the

left and right and upper and lower boundaries of the 95% ellipse and

of the entire plotted figure in plotter coordinates.

Markings on the horizontal axis, "tick marks", are to be inserted

for the following values of / I L' PL+ Zl' + 2zl' TR e

4 coordinates of these points are given by the first of (164).

Similarly, we use the second equation of (164) to compute the 77

coordinates for the "tick marks" on the vertical axis corresponding

to oL' (L + z 0L + 2z2, "'r, GR"

Ever-, fifth "tick mark" on both axes is identified with numerals,

i.e., numerals are printed at multiples of 5zI (horizontal) and 5z 2

(vertical). For example if zI = 50, , = 1250, #3 = 2000, then
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numerals are. printed at marks indicating 1250, 1500, 1750, 2000 and

"tick marks" are printed at 1250, 1300, 1350, ... , 2000.

In general, we wish the numerals to be well chosen for easiest

interpretation of the figure. In order to insure this, we determine

numbers p 4 and (742 where Up4 is the p coordinate of the first

"tick mark" where a numeral is to be placed, by the rule given below,

and similarly a4 is the U-coordinate of the lowest "tick mark" on

the 0-axis where a numeral is to be placed. This rule is:

o p0  if (po/5z1 ) is an integer

+ (5zI) otherwise ,

if / is an integer

(74 {.I/re~LiL• + ) (5otherwise

The notation Ex] again denotes the greatest integer function.

Hence,numerals are placed at

4, /#4 + 5zl "', (p 4 + nlSzl), 4 + (nl+l)5z, > /3

(41 074 + 5z 2 ' ""' (a4 + n2 5z 2 )Y 04 + (? 2+l)5z2 > a3

where nI and n 2 are integers.
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APPENDIX C

PROBIT METHOD

The probit method is used in the statistical analysis of tests

of the effectiveness of insecticides and other poisons, and in other

problems of biological assay. Like the NWL statistical sensitivity

program, it is used in tests where responses to stimuli are quantal,

that is, every response to a stimulus can be characterized as a

success or a failure according to some arbitrary criterion. Like

the NWL program, it determines the maximum likelihood estimates of the

mean and standard deviation of a statistical distribution which is

assumed to be normal. The probit method is well adapted to, and was

designed for, hand calculations, the first edition of [10], Finney's

book on the method, having been published in 1947, before electronic

computers were in general use. It involves fitting a sequence of

increasingly accurate straight lines to the empirical data, the calcu-

lations being relatively simple, but the speed of convergence being

heavily dependent on the skillful choice of a line representing a

first approximation. Finney in [10] recommends that this be done by

eye, and states that a statistician experienced in the method will

ordinarily get results of sufficient accuracy for practical purposes

in two further iterations. See further discussion below, page 104.

If great accuracy is desired, the NWL statistical sensitivity program,

with the quadratic converg7nce of the Newton-Raphson method, would be
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superior. But the numerical work in the NWL programwith exact

calculation of all second derivatives (as compared with approximations

in the probit method) would be very laborious by hand. We mention

that a useful table for carrying out a probit analysis by hand is

given in [11].

In a typical insecticide test of the type discussed by Finney

in [10], 50 insects might be given a dose of the poison of which the

concentration is 10.2 milligrams per liter, 40 insects a dose of

7.7 mg./l., etc., and the nkmber of insects killed for each dose or

concentration is recorded. Fianey actually works with the logarithm

to base 10 of the concentration (or of 100 times the concentration

if necessary in order to make all logarithms positive), which he

calls the dosage, rather than with the concentration itself, which he

calls the dose. He assumes that the critical dosages (rather than

doses) of the individual insects, as commented on in more detail below,

are normally distributed about a mean u with standard deviation, a

This appears to be purely an assumption. Extensive experience with

tests of this type indicates that the critical dosages are in fact

approximately normally distributed.

Suppose that a given dosage, say xi, following Finney's notation

of x for dosage, kills 40 per cent of the insects subjected to it,

and another dosage, x2 , kills 70 per cent. To give intuitive content

to these results, we hypothesize the existence of a random variable
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called the critical dosage of an individual insect, defined as the

dosage just sufficient to kill him. If the critical dosage for a

particular insect is 1.2, he will be killed by a dosage of 1.2 or 1.5,

but not by a dosage of 1.1. We assume that those individual critical

dosages are normally distributed about a mean critical dosage, pd
with standard deviation a . The results cited above for dosages x1
and x are interpreted as meaning that, for a randomly selected

F individual insect, the probability that his critical dosage is less

than xl, or less than x 2 , is 0.4 or 0.7 respectively. Hence for a

large random sample, about 40 per cent will be killed by a dosage xI,

and 70 per cent by a dosage x2 . In the language of normal probability

integrals, we can write

1 e 1(x\2 dx

_00ep

- . exp - u du 0.4 , (165)

V_ 12T

x
2 "p

-U exp - u2  du - 0.7 . (166)
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If the normal deviates of the form (x- u)/o are replaced by Y-5,

tie quantity Y is called the probit. Thus,in these two cases we

would have

YI-5

exp u2du -0.4, (167)

y2.2

Y-5
Sexp -7u du =0.7, (168)

and from a probability integral table we easily determine thb dpproxi-

mate values

Y= 4.74665, Y2 = 5.52440. (169)

The term -5 has no theoretical significance, but has the effect of

making the probit Y always positive in practical cases, since virtually

all of a normal distribution is within ±_50 of the mean. Thus the

probit Y is related to the dosage x by the relation

Y - 5 (170)

The probit Y of Eqs. (167) and (168), where the probability,

0.4 o: 0.7 or some other value, is deduced from experimental data

(for example, the killing of 40% of the insects who receive a given
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dosage of poison), is called the empirical probit, to distinguish

it from the expected probit, also denoted by the letter Y, which is

introduced later. There exists still another probit, the working probit

Eq. (204), denoted by the symbol y. The empirical probit can have

the value ±oo. Suppose that 25 insects receive a certain dosage and

all are killed. Then the equation corresponding to (167) is

(I/V 7 exp(-u 2 /2)du = 1

00

of which the solution is Y - oo . Similarly, if no insects are killed

at a given dosage, the empirical probit is Y = -0o.

Later Finney introduces new parameters O and • to express the

relationship between the probit Y and the dosage or stimulus A by

the formula

Y = Ce + Ox . (171)

The variable Y here is called the expected probit and the expression

C + Px is similar to the expressions Pai-c and Cbt-a in the

NWL analysis (see Eqs. (5) through (8)), or Pck-a for any stimulus ck

whether a success or a failure. To clarify this similarity, we point

out that the symbols 8 play exactly analogous roles in the two

systems of notation, but Finney's of, which we temporarily denote as

Cf. differs from the NWL 0, fN, by an algebraic sign and the

additive term -5. For, equating the stimuli x and c, we have

Y-5~ Oj j- x., N
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from which it follows that

01" 5 0N. (172)

Considering now Finney's notation only, from (170) and (171) we

deduce

- -(173)

and

d(174)

The ezpected probit Y as in Eq. (171) is always finite for a

finite dosage x, since this equation merely expresses a linear

relationship between Y and x which is a line of best fit in some

sense when the optimum values of the parameters c and .i have been

determined. This is in con trast to the empirical probit, which can

have a value of + ao as pointed out above.

Now for the next few steps, following Finney's analysis on

pages 246-248 of [10], we suppose that wa have a general probability

distribution, not necessarily normal, of critical dosages. We will

suppose that L, the logarithm of the likelihood function, is a function

of two parameters 6 and • , and make certain coments on maximizing

L, and derive Finney's method for approximating the second derivatives

of L with respect to the parameters ( and • . Later we specialize

to the normal distribution and identify 6 and • with 1 and • as

discussed above (see Eqs. (171), (173), (174)).
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Suppose that a dosage A has a probability P of killing a
0

randomly selected insect and let Q = 1 - P probability of failure,

and suppose that it is observed in a test that r out of n insects

receiving the dosage k are killed. Thus r/n is what can be called0

the empirical probability p of success, while P is a function of the

parameters 0 and q as well as the dosage x and depends on the

assumed probability distribution (not necessarily normal). The object

is to determine the values of 6 and 4 which maximize the probability

of obtaining the observed or empirical probabilities, r/n at dosage

x and other empirical probabilities at other dosages in the experi-

ment. In short, we wish to determine the maximum likelihood estimates,

0and 6, for the parameters 0 and .

The probability that r out of n insects will be killed by dosage

Xis0

P(r) - r( n ' (175)

(n) being a binomial coefficient with value n!/[r!(n-r)!]. Suppose

that a series of K dosages is tested in an experiment with empirical

probabilities of the form r/n for each dosage. Then the logarithm, L,

t of the probability of obtaining all of the observed results, dropping

from L constant terms (not depending on 0 and • ) of the form

log (n) is

L- L r log P+ r(n-r) log Q , (176) I
L denoting summation over all dosages (Finney uses the notation S

for £)
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We remark here that n in this equation is only the number of

insects subjected to one given dosage. If the values for the K

different dosages are denoted by nl, n2 .. nK, the grand total N

is N = nI + n 2 + ... + nK. Similarly we would have rl, r 2, ... , rK;

pP, 2 " and Q1, Q2 9 ".0, QK. But ir Eq. (176) we follow

Finney's analysis (with Z substituted for hts S).

For the values of 0 and 4 n which maximi.e L we will have

=0 o. (177) .,

Now, from Eq. (176),

L= P n-r (178

Putting -L = . _P (since Q = 1-P), r = pn, and performing some

simple algebraic steps, we easily show that

"- n(P) ap 9(179)

and similarly

.L F n(p (180)

Suppose that, at an intermediate stage in the calculation, 0 and

have values 01, 4$ which make the derivatives OL/aO and 8L/80

numerically small but not exactly zero. The corrections 60 6•
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are given approximately, by Taylor's theorem, by

-61 a8 12 + 1191 0 01 0 (181)

T, a 2 L 0

66 0 + 6, (182)

where the subscript 1 indicates that the derivatives are to be

evaluated at 0 = 6"=

Finney now states ([10], page 248) that the second derivatives

"may be simplified by putting p = P after differentiation, in order to

give expected instead of empirical values", and derives approximations

for the second derivatives in terms of the first derivatives. These

appear to depend for their validity on the assumption that the f

j particular value P1 is near the empirical probability p (=r/n), tereas,

in fact, p may be a value which is not approximated closely when the

final maximum, likelihood estimates 0 , • are obtained. Yet the

method evidently has worked well in practice. Indeed, it is proved

later in this appendix, pages 108-112 , that, if Finney's method

converges at all, it must converge to the true maximum likelihood

estimates 0, q6, as determined by the NWL program, in spite of the

inexactness of the approximations which Finney makes at intermediate

stages. A convergence proof has not been worked out, nor does Finney

give such a proof in [10]. But a little computational experience with

the method soon convinces on'e that the method does converge, at any rate

for sufficiently good initial approximations.
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The following is an attempt to obtain the expressions at which

Finney arrives for the second derivatives. We suppose, following

Finney's notation, that ( 01, 9) is a point in ithe 04-plane,

at which we wish to approximate the second derivatives, which will

be denoted by ( 2 L/06 2 )i, (8 2 /8 4) 1 , (2LL/0 b 2)1 o We

will illustrate with (09L/ C8 2 ) 1 , but similar considerations will

apply in the cases of the other second derivatives.

We shall simply differentiate, with respect to 6 , the first

derivative as given by Eq. (179), and for convenience, in the next

few steps, we drop the subscript 1, since this differentiation will

apply to any point (6,4) including (81, 41). Primes will denote

partial derivatives with respect: to 0 ; thus P" represents

Eq. (179) states

OL = Z n(p-P) , (183)

a 0 PQ

or

L X (np-np)P' (184) 18 0 .P -P2

since Q = 1 - P.

Derivative of numerator of (184) -n(P') 2 + (np-nP)P". (185)

Derivative of denominator of (184) P P' - 2PP' = P'(l-2P) . (186)

Hence, "

PQ[-n(PI) + (np-nP)P"] - (np-nP)P'P' (1-2P)

,062 2 2

C n (P') 2 + (p-P) P" -tP') 2(1-2P) . (187)

98Q Q j
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From this it is seen that we get a simplified expression for

although not necessarily an extremely close approximation,

by assuming that p = P for every dosage x. Probably, in the majority

of practical cases, the positive errors in the suimmation approximately

balance the negative errors. Further comments on this are given

belowz. Making this assumption that p = P in all cases, we have

862 L [ 2 (p)] (188)

or, putting in the subscript 1, since, following Finney, we wish

this to apply at a point designated as ( 61, )

•2L Fn P.2
~~:~*) l ~L ae ~ j(189)

Similarly we have the approximations

82 L n 2( -- l n N (190)
CIO2 1P 1Q1  a4O

8L ' ~ - n __P / i *(11

1 '1

From this developmeat it appears that Finney simply accepts

the errors which undoubtedly occur in using (189) - (191), trusting

that in the long run the positive errors will approximately balance

99 1
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the negative errors. Experience indicates that the method doer converge

satisfactorily in practice in realistic cases, especially in the hands

of an investigator who is experienced in the method and who makes a

skilled first approximation. If it converges at all, it must converge

to the true maximum likelihood estimates 6, q, as shown in Theorem C-1

in this appendix. However, it is possible that artificial or unrealistic

cases exist in which the probit method fails to converge, since no

general convergence proof has been given so far as the present authors

are aware.

Using the approximations represented by (189) - (191), and for

convenience dropping the " signs although they are understood here,

Eqs. (181) and (182) for 66 and 5• take the form

j 1

n(p-P 1 ) O
P1Q1  (-) , (192)

1

(OPgg - + / , . -- _

n(p-P 1)(
-L 1 (193)

, QI I I
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For given values, 01, 4$ of the parameters (assuming they are near

the maximum likelihood estimates 69, ), resulting in values Pit Q1 i
and the first derivatives (OP/010) 1 , (0P/0•)l, at the various

stimulus levels, we solve Eqs. (192), (193) for corrections 60,9

to give improved values 01 + 60 , 01 + 56

So far this is very general, as remarked after Eq. (174), and

the probability distribution is arbitrary and not necessarily normal.

But now suppose we have a normal distribution, with

Y-5

- exp(-u2/2)du(

SY Cc+ •x ,(195) •

(195) being the same as (171). Then

|.1
-P Z ,(197)

1e =XZ . (198)

Hence, if c 1 and dI of

Y = c1 + d x (199)

(195), corrections 6c, 6d, to cl, dl are given by (192), (193) as
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specialized to the present normal case. Using the first derivatives

* as given by (197), (198), the equations become

n2  n 2 n 2 fj
6c xRE+ 6d -x zIX Z Z (- (200)

PQ TQ-*P

nZRZ 2  2 n 2

6cX~x+ 6dZ -P Q-xi (21c Q PQ PQ \Z,'

Z,, P and Q being determined from (194) and (196) by the value of

Y from (199), i.e. with Of cl, ~ dl.

Defining the weighting coefficient, w, by

72 (202)

Eqs. (200) and (201) are the equations for the estimation of the

weighted linear regression of the variable (p-P)/Z on x, the weight

nw being assigned to each value of (p-P)/Z.

This is briefly shown as follows. Suppose we have a set of K

points {(XV Y)} and a set of corresponding weights (v} (y

* will be identified with (p-P)/Z for the various stimuli in the

present situation, and v. with the corresponding weight nw). It isA

desired to find the line y =c + dx such that the weighted sum

S Lv (c + dx. -y.) is minimized. We put

vi(c + dxiY )xiO
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from which follow the normal equations,

c vi + d vixi - viyi o
dv + dXv 2 

=(203)c Zvixi + d=vx Z vixiYi.

Letting c, d, yi, vi heare correspond to 6c, 6d, (p-P)/Z,
<" nU Z 2 •

nw =p-,respectively, the similarity of (203) to (200) and (201)

is clear.

We now introduce the working probit, y, [10, p. 250), defined by

y=M Y + P(204)
Z

The working probit y depends on both the expected probit Y (which

determines P and Z) and the per cent kill p. Convenient tables for

dctermining y as a function of these arguments are given in [10].

Replacing (p - P)/Z in Eqs. (200) and (201) by y - Y, by (204),

transposing the terms containing Y to the left, and replacing

Z2/(PQ) by w, by (202), Eqs. (200) and (201) give

"ScLnw + 6 dj•nwx + EnwY= Znwy (205)

6cnwx + 6dZnwx2 + EnwxY= Znwxy . (206)

But the expected probits, Y, are determined in each cycle of the

calculation from the equation of the line det-_m=ined in the previous

cycle, Y = c x + d1x, Eq. (199), in the present situation. In the

first cycle of calculations, cI and d1 would depend on the line fitted

by eye (see further comments on this following Eq. (210)) to the
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experimental data, and the improved values resulting from the cycle

would be c2 (= c 1 + 6 c) and d2 (= d1 + 6d). Logically, we should

have c, and d at the start of our cycle, and improved values cI

and dn 1 , but we will stick with our notation c., d, for the initial

values as in (199). Thus each expected probit Y is determined from

the corresponding stimulus x by Eq. (1.99), and so we have

£nwY = cl nw + dl nwx (207)
2

LnwxY c lnwx + dlnnwx (208)

Putting these results in (205) and (206), and recalling that

c2= c1 + 6c, d2 = dI + b d, we have

c 2 Ynw + d 2 •nwx = nwy (209)

c 2 Znwx + d 2 Znwx2 = Znwxy (210)

-for the direct determination of the improved values c 2 and d2.

The skillful determination of a first approximation Y = cI + dlx

_y fitting a line "by eye" to the empirical data is a matter of

experience and defies exact analysis. Finney states, [10, page 248],

"1"care and experience in the choice of first approximations will usually

ensure that two cycles give a numerical accuracy sufficient for

practical purposes.' The dosages x are known and the empirical probits,

Y, which are determined from the empirical probabilities p(= r/n),

putting p in place of P in Eq. (1014), are plotted against x. The

subsequent fitting of a line to these p'iotted points is similar to
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"least squares by eye", which is well known in obtaining "quick and

dirty" solutions to practical rroblems. But the difficulties are

compounded here by the fact that some of the empirical probits may be

+co . If, for a certain dosage x, all of the subjects are killed,

or r = n, then the empirical probability p is 100% ox 1.0, and

consequently, by (194), the empirical probit Y is 00. Similarly if,

for a given x, p is 0 (i.e. none of the subjects is killed), then the

empirical probit Y is -oo. Presumably, users of the method learn

through experience how much to raise or lower the line Y = cI + d X,

corresponding to empirical probits of 00 and -oorespectively, so as

to get a reasonably good first approximation and thus justify the

quoted statement from [10] that two subsequent cycles of calculation

will usually give a numerical accuracy sufficient for practical

purposes.

In solving this linear system (209) and (210ý for c2 and d2,

we introduce, with Finney, [10, pp. 55 and 250], symbols x, y, Sxx,

Sxy, defined as follows:

- Znwx 9 (211)
rnw

i Sxx ~Znwyx-.y= (212)

S. = Zrnw (x V ) (213)

1) Sxy -" nw(x - x)(y -y) •(24

S[ 105
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We can then show by algebraic manipulations, of which we omit the

details, that

S n2 .(Znwx)
Z nwx2 " (nw (215)

xx Lnw

Sxy =Znwxy- • (216)

The determinant, 4, of the linear system (209), (210), is

2 24 = nwZnwx - (Lnwx) = S Enw, (217)

the last expression following by (215). Clearly, A > 0, by (213)

and the fact that the weights nw are positive. The solution of the

system (209), (210), for c2 and d2 by Cramer's rule from linear

algebra is then given by

4 c2 = Lnwy • -nwx2 
- wx Z Lnwxy (218)

A • d2 f Znw" Znwxy - Znwx • Znwy, (219)

and from (216), (217) and (219) we obtain

Ad =5 Znw
2 xy

or

S Znw S
d N = -Y (220)2 S LxZrnw S xSxxn Sxx

We can then show that

c2 = d -d 2x (221)
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by evaluating A * (y - d2e) by means of several of the equations

starting with (211), carrying out the necessary algebra, of which

again we omit the details, and showing that the resulting expression

is equivalent to A • c2 as given by (218).

Mhe improved values c2 and d2 are thus given by Eqs. (220), (221),

and the resulting equation at the end of the computing cycle is

Y = C2 + d2x, (222)

as an improvement on Eq. (199); that is, (222) in general leads to

a larger value of the likelihood function than (199).

This analysis leads to an efficient algorithm for use with a

desk calculator, and such calculations have been carried out by one

of the present authors. The experimentally determined values of the

logarithms of the stimuli, x, are entered, and the corresponding values

of n, r and p(= r/n). The values of Y are then calculated by Eq. (199),

Y = c + dlx,from the previous cycle or from the line fitted by eye.

The values of w and nw can then be computed from Eq. (202), from the

j 'values of P, Q and Z, all of which depend on Y, but [10] gives tables

for v which are accurate and extensive enough for most practical work.

The working probits, y (see Eq. (204)), are then found from tables
in [10]. We next compute Znvx, Xnwy, Znwx2 and Znwxy, all of

which are efficiently computed on a desk calculator. The values of

x, y, S and S are then found by Eqs. (211), (212), (215) and (216),
xx xy

* d2 by (220) and c2 by (221), and we then have the improved equation,

(222).
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After several such computing cycles, usually not more than four

or five cycles unless the [(c} and {di} are computed to high

precision, say to more than five significant digits, the values start

repeating themselves, with (for some n) cn = cn 1  to

the number of digits carried, and similarly for the {di} , indicating

that convergence has occurred. We show in the following theorem that

in such a case, denoting the final regression equation so obtained as

Y = 0 + jx (see Eq. (171)), then the corresponding values of A/ aud

a , computed by Eqs. (174), must be identical with the maximum likelihood

values A, F computed by the NWL program.

THEOREM C-1

Assume that the parameters cn, d in the Finney method converge

to values, c, with (1) cn )a , dn - 8 as n -0 oo , (2) if
c -and di= in the cd-plane, the incremenLs 5 c, 6d as given

by Eqs. (200) and (201) both vanish, and (3) by continuity, 6c and 6d

are arbitrarily close to zero if (cl, dI) is arbitrarily close to

(C.B) in the cd-plane. Assume further that the experiment is such

that (35), (36) in the NWL theory are satisfied, guaranteeing the

existence of a unique pair 1L, O of maximum likelihood estimates.

Then if a, a are computed from this pair ce,f by Eqs.(174),

these values p, a are identical with the values 0, a as computed

by the NWL method.

Proof. The proof consists simply of showing that, if we have

values a, • such as are described in the hypothesis, then for the

108



corresponding values in the NWL theory (corresponding to the same

values of p and a, but with a N in general different numerically

from C9. as indicated by Eq. (172)) we will have Log LP - 0,

which can be true only for the unique maximum point (a, 8) or

(M, �) in cases where the conditions (35), (36) are satisfied.

Hence the point (at .8 ) of the hypothesis must correspond to the

point (aN,O) or (pA, a) of the NWL theory. Naturally there are

many details, which we proceed to give.

From Eqs. (200) - (201), the corrections 6c and 6d both vanish,

indicating that convergence has occurred in the probit method, if and

only if the right-hand sides of these equations vanish. This linear

system hat a nonsingular matrix, since it has been shown following

Eq. (217) that A > 0. These right-hand sides are equivalent to

BL/8a and aL/8p in the probit system, as is easily shown. Hence

convergence occurs, and 6c - 6d = 0, if and only if a point is

reached at which eL/c = 8L/• = 0, and this result is to be

expected on general principles as well as on the specific analysis

given here. Hence our object is to show that, if a point is reached

where 8L/8a = OL/8fi = 0 in the probit system, then we also have

8L/: in8L/t)p 0 in the NWL system, so that we are at the

maximum likelihood parameter point (G, ) or

Ii comparing the probit and NWL systems, we have to deal with the

univariate probability integral p(x), q(x) = I - p(x) and z(x), with

Finney's P, Q, Z and Pk' Qk' Z corresponding to a specific dosage x,
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with his p - r/n = empirical probability for a given eosage, and with

the expressions pt and q in the NWL system. Hence we comment here

on these various notations.

The probability integrals p(z), and q(x) and z(x), are given by

Eqs. (10) - (12) with slightly different notation from that which is

used here, and also the functions P(x) and Q(x) are defined earlier,

page 95 . The NWL expressions p. and qj are defined in Eqs. (3), (4)

in terms of these p and q functions of certain arguments.

We now suppose that, in a sequence of iterations of the probit

method, a situation has been reached in Vnich / =•L/L = 0,

or, Eqs. (179) - (180) are satisfied, implying that a maximum of

Finney's likelihood function L has been reached. Supposing further

that the underlying distribution is normal, we use Eqs. (197) - (198)

and obtain

• - ~~Z =0 (223)
z PQ

aL n(V - P) xZ 0 (224)

These obviously imply that the right-hand sides vanish in Eqs. (200) -

(201), the equations which are actually used in the iterations, so

that further iterations would merely repeat the values already obtained.

Our object is to show that, in this situation, we must also have

8L/5a - OL/ap - 0 in the NWL method, so that we must have arrived

at the unique maximum likelihood point (G, ) or ( aG) in the NWL

system, using the (a , a) system as a common coordinate system for

purposes of comparison.
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By Eqs. (194) and (196),

pl (L ) Zk z (225)

since Y-5 ig equivalent to (x.k- /L)oand similarly

q Nk (226)

Now the derivative L a in the NWL system is, by Eqs. (10), (11),

(13), (18) and (19), given by

? " = mz(, ) il (a # )(227)
J-1 b Pai -/qI

and by Eqs. (225), (226), this is equivalent to

Lt =1- m _k = n Tk (228)

(referring only to subjects receiving the stimulus xk).

Here we have-the NWL derivative Ln e and the i and J sun10tions as

in Eq. (5), but Finney's k and Zk corresponling to the dosagee a

P k Nk

At a given xk, nk insects receive the stimulus and rk of them are

killed. Hence the contribution to the NWL La from these nk insects

is

).(nk - 1k)Zk rkZk
- pk - r--k (229)

and taking all of the K stimuli into account, the NWL Le is

t •
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____k Zk kZkLot (230)k-1 Qk Pk

which simplifies to

[nkrkz7k -rkZk1L (231)i:'- ".- ~ PkQk, 2l

Putting rk p Pk k and simplifying further,

Knk
L= X Q (232)

and this by Eq. (223) is -L in the probit system.

Hence L (NWL) = 0 if and only if La(probit method) = 0, and

a similar analysis shows that the Lp derivatives vanish together.

Hence Finney's maximum likelihood point (/I, u) must be identical

with the NWL maximum likelihood point (po), and 'this completes

the proof of Theorem C-l.

"In [4), [10) and other books and papers dealing with experiments

iin which the probit method is used, we often find expressions such as

LD50, LD99, etc., signifying the lethal dose (or dosage) for 50% of

the subjects, for 997., etc. Finney in [10] also uses expressions

such as ED50, the letters meaning "effective dose", in cases where

effects other than the deaths of the subjects are considered successes.

Once the maximum likelihood values 6,0 have been determined, values

such as LD50 and LD99 are very simply determined from a table of
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probability integrals. Since

p(O) 0.50, p( 2 . 3 26 3) 0.99, (233)

where p(x) is the probability integral,

E.• 1 fC ex .2/)u
p(x) - exp(-u /2)du, (234)Vf

then, if x and x9 9 represent LD50 and LD99 respectively, we have
x50 9 9 9

x-f x
50__ 99=0, = 2.3263 , (235)

(compare with Eqs. (165), (166)), from which we find

X 0 A, x 99  P + 2.3263 , (236)

and similarly for other expressions such as LD25, LD90, or ID95.

Reference [4] deals with an experiment in which poison (cobra

venom) was administered to dogs. The input values including calculated

values of x or log (100 • dose), are as follows:

Dose x
mg/kg = log(100 dose) n r

0.06 0.77815 4 0

0.09 0.95424 5 1

0.10 1.00000 9 3

0.11 1.04319 6 3

0.12 1.07918 8 7

0.25 1.39794 6 6

0.50 1.69897 6 6
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The dose is in milligrams of poison per kilogram of the dog's weight.

The maxhe m= likelihood values A , , using the dosages, x,

were calculated at NWL by two distinct methods, (1) by desk calculator,

using the probit method as discussed in this appendix, and (2) on an

IRM 7030 (STRETCH) computer, using the NWL method as described in

the nmin body of this report. The results of the STRETCH calculation

are shown on page 115 of this report on which it will be observed

that values of the dosage x to 5 decimal digits were used (with one

trivial discrepancy in the smallest value of 2, in that published

tables of logarithms give 0.77815 as the value of log 6, whereas

* the value printed by the computer was 0.77814). In the NWL hand

calculations, rounded values of the x's were used, 0.78, 0.95, etc.

The LD99 values were also computed by Eqs. (236) above. Then the

results were expressed in terms of the doses (in mg./kg. as discussed

above), by taking antilogarithms. The values of U so obtained are

of doubtful significan-•, since the doses are not normally distributed

if the dosages are so distributed. But the results were expressed

in terms of the doses for purposes of comparison with the results

in [4].

It is not known to the present authors how the authors of [4]

performed their calculations. But it is assumed that they used the

probit method, since they used such terminology as LD50 and LD99,

and gave a figure showing the line Y - 0 + Px and curves determining

95M. confidence limits, which are similar to the corresponding curves
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in [10]. It is stated in [4] that the LD50 and LD99 doses are 0.105

and 0.148 mg./kg. respectively. The remaining results on the line

"Edgewood, ref. [4J" in the table below were deduced by the present

authors by meand of Eqs. (236) and by taking logarithms to express

results in terms of dosages. In view of the uncertainty as to the

methods used in [4], close agreement between the Edgewood and NWL

results was not necessarily to be expected.

However, a comparison between the two lines of NWL results,

for dosages rather than doses, is meaningful. The input values of x

were slightly different, as has been explained. Additioral slight

differences may be attributable to roundoff error and similar causes

at intermediate stages, the NWL and probit methods being quite different.

But theoretically the final results should 5e identical (for identical

input), by Theorem C-1 of this appendix.

The results of these calculations were as shown in the following

table.

1*LD50 I D99 IL D19
LD50

x x x mg/kg mg/kg mg/kg

Edgewood, ref.[4] 1.02119 .064061 1.17026 .105 .11589 .148

NWL Hand Calc. 1.02.309 .064432 1.17214 .10525 .11599 .14864

1NWL STRETCH Calc. 1.02355 .064127 1.17273 .10557 .11591 .14884
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in this table* the first three collons refer to the output inK

dos"ge, and the last three to the output in doses, milligrams of

poison per 'kilogram of the dog's weight.

Also, 90% confidence limits for the NW!. hand calculations were

computed by Eq. (4.6), page 63 in (101s which is repeated here as

(237). For a given Y, for which the corresponding x is computed

from the equation Y =a + jPx, the limits are

t+ L X)g (xV) (237)K
l-g .8 (1-g) ~ wK

where

g t 02 (8 2SX) ,(238)

and t is the value such that the standard t-variate in the Student t

distribution, with KC-2 degrees of freedom, with probability 0.90

(in the case of 90% limits) lies in the interval (-t., t). In the

present case, in which Y = 7 and. hence there are 5 degrees of freedom,I;the value of t is 2.02. Thie positive and negative signs,, in the double

sign in (237), give the upper and lower confidence limits respeactively.

7hese- curves and the line Y 01a + fix, are shown in Figure 4.

If g > 1, expression (237) will clearly have a negative

radicand when x - x, and for this reason 95%. confidence limits cannot 4
be copputed for this examnple by this method. For probability 0.95,

the value of t as discussed above is 2.57, and for this example we

hav f -15.52013, S, .02732, and hence g =1.004 > 1. It is

not known to the present authors how the 95%. confidence limits of

[4J were computed.
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APPENDIX D

SMALL SAMPLE THEORY

For determining confidence regions, the method recommended by

Golub and Grubbs in [14] (see Section IV of the present report) and

used in the existing NWL program, is that based on the asymptotic

normality of the distribution of the maximum likelihood estimates
I • and W for large samples. Since the experimental cases received

at NWL usually contain 30 results or more (firings at armor plate),

this asymptoti- or large sample method is reliable.

* I Also, this asymptotic method is relatively simple and straight-

forward to program for a computer. It is not exact, :however, except

in the limit as the sample size becomes infinite.

In this appendix, a method is outlined by which confidence regions

I could be set up, which would be exact for finite samples of any size.

Unfortunately, it appears that it would take a great deal of computer

time. But we feel thAt it is worth giving this method for completeness.

If comp'itationally feasible, it would be of greatest interest and

usefulness for small samples of say 4 or 5 results, for which the

asymptotic large sample method would give results substantially in

error. For this reason, such a method or theory is often referred to

as a small sample theory. It could equally well be called an exact

theory, giving exact results for samples of any size, which the .!
asymptotic theory fails to do.
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The confidence regions generated by the exact method discussed

here would be connected sets in the plane, but not ellipses in general.

These point sets, each containing infinitely many points, could be

approximated by working with finite grids of small mesh size.

We begin with some definitions and generalities about confidence

regions for experiments of the type here considered, and many of

these remarks apply to the asymptotic large sample theory, or to any

method of setting up confidence regions for these experiments, as well

as to the exact theory to be presented in detail in this appendix.

We are given a set of stimulus levels (projectile speeds in the

case of the armor plate experiment), cl, c 2 , ... , cN in the notation

of this report, Section IV, where N = n + m. We could have, for

instance, cI = 1153 ft./sec., c2 = 1161, etc. These ci are constants

which serve to define experiment. They are not random variables.

In setting up confidence regions we conceive of a large number of

replications of the experiment, with exactly the same set of {ci}

each time, but with different outcomes, and analyze the distribution

of these outcomes by probabilistic methods. The fact that in many

experimental situations it is not possible to control the stimuli

exactly, in particular in the case of projectile speeds, is immaterial

from the theoretical point of view. Once we are given the constants

of the experiment, the set of {ci} , we can compute the functions

f ok ju ) of Eq. (65), each fk depending on the constant ck, the
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random variable 6k' and the variables pj and 0. If we changed any

of the {ci}, we would have a different experiment, with a different

"set of confidence regions corresponding to the various possible outcomes.

The random variables are the {6 k} of Section IV, •k being given

the value 1 if the k-th shot, of speed ck, produced penetration, and

a value of 0 if there was no penetration. Since there are N of these
Srandom variables, each having two possibie values, there are 2g possible

outcomes of the experiment, or 2N values in the joint distribution of

the random variables. When we conduct an actual firing experiment,

determining whether or not penetration occurs at 1153 ft./sec., at

1161 ft./sec., etc., in the armor plate experiment, we are taking a

sample from the joint distribution of the set {0k}. In practice we

could not without many trials repeat the experiment even once, because

of the impossibility of precisely controlling the stimuli, but we can

conceive of a large number of replications, always vith the same

constants {ci}.

Those members of the set {ci} for which penetration occurs form

the set {ai} in the notation of this report, and the "failures" form

the set fbj}. In some of the 2N possible outcomes, for a given set

tof constants {ci, Eqs. (35) and (36), the necessary and sufficient

conditions for the existence of a unique maximum of the likelihood

Sfunction with a -/T > 0, will be satisfied. These will be called

valid outcomes. The remaining outcomes, in which Eqs. (35) - (36)

are not satisfied, will be called degenerate outcomes. Thus the

N
number of valid outcomes, plus the number of degenerate outcomes, is 2
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It is a trivial matter to construct examples of both types of outcome

* Isay for N 3, the minim=m value of N for a possible valid outcome.

Inayexperiment, where the set (cil is specified, with N 3,

degenerate outcomes will necessarily exist, for instance by taking

every "success", ai, greater than every bi, so that (35) is not satis-

fied. Also, valid outcomes must exist, in every experiment of interest

at any rate. Hence if we denote the numbers of vali.- outcomes and

degenerate outcomes by Nv and N respectively, we have
v d

Nv+Nd 2 (239)

0 < Nv <2N

where N(= n + m), as before, is the number of members of the set {ci},

or, in the armor plate experiment, the number of projectiles fired.

For any one of the Nv valid outcomes of the experiment, say the

t -th one, there exists by Theorem 4 a unique point At( ( t0 a ) in the

/0 -plane, representing the maximum likelihood estimates of the

parameters # and a determined by the t-th outcome. The calculation

of these values / t and i t to a preassigned accuracy is of course

the principal object of the program described in this report. The

U0 -plane and three of these points are shown in Figure 5. In actual
experiments N may be very large, but is always lose than 2N and

therefore finite. If N 30, a realistic value in armor plate firings,

N 9
*2 > 10.

For any method which may be used for determining confIdence

regions, there is associated with each point At(ut,U t) a corresponding
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c~onfidence region Rt. For the asymptotic large sample method which

is used in the program (Section IV), each of these regions is an ellipse

with At at its center, and for convenience the confidence regions

are shown as ellipses in Figure 5. But for the exact or small sample

method to be described in this appendix, the regions are in general

not ellipses. However, with each point At(PAt, Ot) there is associated

a corresponding confidence region Rt.

A f 301 0 3) /.

a A_.0.., A (A'(1p OI)

, a

Maxfimum Likelihood Points At(J/ , 7)an

Associated Confidence Regions.
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So far we have merely stated that these confidence regions exist,

and are associated one-to-one with the maxim= likelihood pointa

A ( to Ct) in the P M-plane. We are now ready., however, to deal

with such quietions as the following. What is a confidence regic;_.?

What conditions must be satisfied by the system of confidence regions

generated by a given experiment, i.e. a given set of {ci), in order that

the system qualifies as a set of, say, 907. confidence regions for the

experiment?

First, the true but generally unknown parameters, go and u

are constants which we are trying to estimate from our experiment,

and it is meaningless to speak of probabilities that the true parameter

point Ao(0 , a 0 ) lies in a given region. The true values uo and ao

could be determined to any desired accuracy and confidence level by

a sufficiently large number of experiments. Being constants, they

are not subject to any statistical distribution. Alternatively, we

may if we wish think of the true parameters p o and vo as controlled

by an imaginary opponent who sets them at any values desired by him,

but does not inform us of the values. Again, they are not subject to

any statistical distribution. Once this opponent has set the values,

ow- sk ic to estimate them by experimental methods.

-.,e the experiment has been defined, by specifying the constants

: Ic, a set of maxim- likelihood points {(At( ýt t)) and

associated confidence regions {Rt } (by whatever confidence region

method is ita use at the tfme) are determined. There may be many

millions of them in realistic experiments.
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"But we can conceive of the computation of the entire finite system,

since the entire system is defined once the {ci} are given, and it is

defined before we take any sample of the joint distribution of the

random variables {ai}, as discu9sed above, by an actual firing of N

projectiles, in the case of the armor plate problem.

For any specified outcome of the experiment defined by the given

set {cl}, either a valid or a degenerate outcome in the terminology

used above, and for any assumed values (trial values, etc.) 11,G of the

parameters, whether equal to the true values or' o or not, there is

a probability of occurrence of the given outcome expressed in terms of

the variables p and 0 . We can begin with Eq. (65) giving the

I, probability density function for each

A f k ) p '[q(' (240)

and write the joint density function for the entire set {fi} in the

form

N( " n f (ak;'., ) (241)

-k-k

k• (242)

k-1

: ' " 1 2 4

SMO
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Now suppose a definite outcome is specified by as-igning particular

values {6t,} (each 0 or 1) to the set {51}, e.g. 01 0, 8 0 - 0,

63 - 1, ... T. he probability of occurrence of the specifieA outcome

is then

G(pa) inF(6 1*, ... ,N 6*;/,s)

N7 (C/) N7 ¶JI) (243)

If we replace each 6 k* by its value, 0 or 1, and replace each ck

which is a "success" by an ai and each €k which is a "failure" by a

bj, we get

n p ai.M\ m b
G(/,U ) -1 17 q , (244)

which is consistent with the expression in Eq. (2). Eq. (243) or (244),

then, gives the probability, in terms of the assumed values of the

variables a and 0, that the specified outcome, valid or degenerate,

will occur. The sum of all these G functions, for a given pair of

valuf.s of p and 0, over all of the 2 N possible outcomes of the

experiment, must be 1, since for any sample from the distribution of

the set {6k}9 i.e. for any firtng of N projectiles at the specified

Nspeeds {ck} in the armor plate test, one and only one of the 2

possible outcomes must occur.
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We can now explain the significance of the confidence regions

{Rt } of Fig. 5, one Rt for each valid outcome, and state the

condition which they must satisfy in order to be true confidence

regions at a specified confidence level. The discussion is still

perfectly general in that it applies to any method of setting up a

system of these regions. For definiteness, we will specialize to

90% confidence regions, but the numerical value of the confidence

level is immaterial.

The condition referred to is as follows. The system of 90%

confidence regions, {Rt} , must be such that,whatever values the

true but unknown parameters P10 an 4 may have, the conditional

probability is at least 0.90 that, given that the outcome of the

experiment is a valid one, the true parameter point Ao( o'o

is covered by at least one region of the system of confidence regions.

We give a simple numerical illustration in terms of the situation

represented in Fig. 5, where there are only three valid outcomes,

and then we phrase the condition more formally in terms of the

G(,0 ) notation.

In Fig. 5 we consider the situation with respect to the point

A'(j'j, i'), w".,ch is to be regarded as a possible position of the

true parameter point Ao( , ( o)' since the position of A is unknown.
0 0 0

Suppose we have the following probabilities: G ',o) = .08,.
""G , (A ) .56, 0G3 ', o') - .16. This means that, if the

2 3

t population parameters are U' and a', then the probability is .08

that the result is valid outcome No. 1 and similarly for subscripts
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2 and 3. Hence the probability that the outcome is a valid one is the

sum of these, or .80, and the probability of a degenerate outcome is

1 - .80 or .20. Therefore, given that the outcome is a valid one, the

conditional probability that it is outcome No. 1 is .08/.80 or .10,
and similarly for outcomes Nos. 2 and 3 the conditional probabilities

are .56/.80 or .70, and .16/.80, or .20, respectively, these cond' tional
probabilities sunning to 1 since we suppose that there are only these

three valid outcomes. But the point A'(# ',( ') is contained in both

R and R3 , and the conditional probability that the outcome is No. 2

or No. 3 is .70 + .20, or .90. Hence, if the true parameter point

A is at A', the conditional prQbability, given that the outcome is a

valid one, that the point A is covered by at least one of the regions
0

{Rt} , is .90. Thus the required condition is satisfied for the point
A' by the system {Rt}. Obviously, in order for the condition to be

satisfied for all admissible positions of the point A (/ I o), all
00 0

such positions would have to be covered at least once by the system

{Rt} , and this is not the case in the simplified Fig. 5.

This example can be looked at in another way in terms of a large

number of replications of the experiment defined by the constants {ck}.

Suppose the experiment is performed 1,000,000 times and that the

true parameter point Ao(po, o). as before, is the same as AI(L', (7).

Then, because of the assumed probabilities G1 (U'., o') - .08, etc.,

outcome 1 will occur about 80,000 times, outcome 2, 560,000 times,

outcome 3, 160,000 times, and one or another of the possible degenerate

outcomes will occur the remaining 200,000 times. Therefore, out of
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800,000 replications in which a valid outcome occurs, outcome 2 or 3

will occur 720,000 times, or in 90% of the 800,000 cases, But

At( 0T'), which we assume here to be the true parameter point,

is oovered by both of the confidence regions R2 and R3 , and thus is

covered in 720,000 out of every 800,000 replications which result in

a valid. outcome, or 90%. If every admissible position of the point

A Ao(p 0 , a ) satisfies a similar condition, the system of confidence

regions is shown to be a legitimate system at the 90% confidence

level.

The following analysis is a simple generalization of the foregoing

example. Wenow assume that the set {c,} has N members, so that there

N
are 2 possible outcomes, valid and degenerate. Let A(# , a) be anyI point in the #pa-plane which is a possible position of the true

parameter point Ac( I oC ),. and let G(ga) (see Eq. (244)) be

the probability that the k-th outcome will occur, if the true parameters

are p and . Let

Pv(#, 6) {• G(, a) k-th outcome is valid , (245)
k

pd(M,d) = -.pv(*,,)) {Gk(,UOr)1k-th outcome isj)(246)
k degenerate

pC(j, a 0 Gk(, point A(/, U) is in R, (247)
k

(v for "valid", d for "degenerate", c for "covers").
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Then the following condition must be satisfied.

( 0.90. (248)

If a similar condition is satisfied by every admissible position

of the true parameter point A (AlU q a)q then the system {Rt} is a

legitimate 9079 system of confidence regions. It is assumed here

that, given the set {CkJ, we have not only a set {Ak(Ik,Uk)} of

maximum likelihood points, one for each valid outcome, computable

by the principal program of this report, but also a system {Rt} of

907. confidence regions. Since the discussion still applies to any

method of determining confidence regions, we merely assume that the

system {Rt} exists, and have not commented, in the preceding discussion,

on the method of determining the system.

We now turn to the exact or so-called small sample method, the

description of Which is the principal object of this appendix, for

determining the system {Rt} of confidence regions.

First we comment on the phrase "admissible positions" which has

been used with regard to the true parameter point Ao(/ o, o). We

will have only a finite set {Rt} of confidence regions, each of finite

area,. and hence the set of possible parameter points Ao cannot possibly

be covered by the union of the sets {Rt if it is of infine area.

In an actual experiment it will ordinarily not be difficult to set

limits li•u and p... such that the true mean #o must be in the

interval (Umin,-max) In the armor plate experiment, for instance,
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the projectile speeds are always positive and we may know from the

characteristics of the gun, a-munition, etc., that the speed is always

less than 2500 ft./sec. In such a case we could say that MLo must

be in the interval (0, 2500). From a knowledge of the bounds on

and on the magnitudes of the individual stimuli, we could then compute

bounds a and Or on the true standard deviation %o, amin max0 mi
normally being 0 and 0 positive. Thus in an actual experiment we

Max
can ordinarily limit the admissible positions of the true parameter

point to those in the interior of a rectangle in the PO-plane,

determined by the inequalities min < #o < ' max

!Omi < a 0 < amax' and this rectangle can be covered by a finite

number of confidence regions, each of finite area.

We note in passing that the same problem of covering a possibly

infinite area in the PC-plane exists even in the asymptotic large

sample method, since in practice we always have a finite number of

stimuli and therefore a finite number of possible valid outcomes,

e~ch associated with its own confidence ellipse of finite area. We

do not dwell on this point here, the large sample method being discussed

in Section IV, although without explicit mention of this point.

In describing the determination of the confidence regions {Rt},

c'e confidence region Rt (as well as one maximum likelihood point
Ak (ykk. ak )) for each of the N valid outcomes of the experiment, we

will consider a numerical example which will bring out the essential

simplicity of the procedure, while if on the contrary we set up a
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perfectly general notation with multiple subscripts, etc., we might

create a false impression that the process is obscure and complicated.

We recall that the separation of the 2 possible outcomes of the

experiment into N valid outcomes and Nd degenerate outcomes, where

v dNv + Nd =2, is independent of the assumed values ju and C, but

depends only on whether or not the {a.} and {bj} , that is, the

successes and failures among the stimuli {ik}, satisfy Eqs. (35)

I,! .. (36). Consequently, whatever admissible parameter point A(/, o)

we consider, we will have exactly N valid outcomes to take into account.

Moreover, G( L, v), the probability that the k-th valid outcome

(in some enumeration of these outcomes) will result when the parameters

are At and a (arbitrary admissible values) will be a positive number

on the open interval (0, 1), though of course very close to 0 in

some cases, those in which a large number of factors in Eq. (244)

are small probabilities. The sum E Gk(/L, 0), summed over all
k

valid outcomes, will be p (A, 0), by definition of the latter, Eq. (245),

and therefore L {[l/Pv(#,U)]Gk(M )} , summed over all valid

outcomes, will be 1. Note, however, that all probabilities depend on

U and 0 . If A1 (/J 1 , 01) and A2 (9 2 , 2) are distinct parameter

points, , UI) • pv(p 2 , 02) in general, and G(p 1I 01) '

Gk(112' 02) in general for the same k.

Coming now to the numerical ersi'ple referred to above, let us .

suppose that, for some admissible position A,( 1 , 01) of the parameter
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point, an arbitrary and representative admissible position,

[1/pv( sA a1 )]G 19 a ) takes its largest value, .39, for k f 46,

its next largest value, .26, for k 22, and so on as listed in the

table below. Thus, given that a valid outcome occurs, the conditional

probabilities that outcomes numbers 46, 22, ... occur, for the assumed

values y 01 of the parameters, are .39, .26,....
Cumulative sums

[l/Pv (Ll, 01)] G4 6 (M1 , 01) - .39

[1v(A,, 1 i1] G2 Z(p 1 , 01) = .26 .65

[i/pv(•, 1 i)] G7 7 (is, U = .17 .82

[l/pv( , 01i)] G3 9 (PI' C1) = .07 .89

[ 1 /p(•l, •1)] G26 (/ 1 , 01 ) = .02 .91

[1/p (P a GO( ls, 01) = .02 .93

[/v( l, 11] G4 1 (/ALI 01) = .01 .94

[//pv(i 1] G6 6 (p 1 , 0 i) = .01 .95
v is

We list the conditional probabilities for all valid outcomes in non-

increasing ordr of the probabilities as shown in the table. In case

of ties, for example .02 for k = 26 and 51, we use the increasing

order of subscripts. We compute and list the cumulative sums as

shown and at the end of the table this sum would attain the value 1

as has been pointed out. In defining a set which will be denoted as

SAI, however, we are interested in the table only down to the point
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where the cumulative sum, including "tins for last place", first

reaches or exceeds the value .90 (in the case of 90% confidence

regions). In the case under consideration, we do not exclude k - 51

on the ground that the cumulative sum as listed attains the value

.91 with k = 26, as. there is no theoretical reason for preferring

k = 26 to k - 51 or vice versa. The value .90, or any other value

on the interval (0, 1) will necessarily be reached or surpassed,

since the cumulative sum eventually reaches the value 1.

We now define the set SA as the set consisting of outcomes

numbers 22, 26, 39, 46, 51, and 77, the order being immaterial once

the makeup of the set is established. This is a set of outcomes, not

of points or of probabilities. There exists a similar set SA for

every admissible position of the parameter point A(11, a), and the

method of determining SA is simple and clear in principle from the

example given, although naturally it would be an enormous computing

job in practice.

Also, we note that the number of admissible positions of A(U, CT),

ranging over the interior of a rectangle in the PLG-plane, is

uncountably infinite. Hence we could not, even in principle, determine

S for every admissible position of A( p, a). If we wished to program

the method for a computer, we would have to approximate the interior

of the rectangle by a finite grid of small mesh size, or something

similar.
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We can now define the point sets in the 1LO -plane constituting

the 90. confidence regions {Rt}, one for each of the Nv valid outcomes.

They are defined as follows.

R t U A(Id)SAcotausthe t-t valid outom (249)
A

Here tbe symbol U represents the set theoretic union, each Rt in

general being a closed domain in the plane.

To show that we have defined a legitimate system of 907. confidence

regions, we suppose that the true parameter point Ao(1o, 00) is the

point AI( 1 , Cl) of the current numerical example, and show that,

given that the outcome of the experiment is a valid outcome, the

probability is at least .90 that the true parameter point, A1 (pU, a1),

is covered by the confidence region Rt corresponding to the outcome

which occurred. We recall that A, is an arbitrary representative

admissible parameter point and so, if it passes the test, every

admissible parameter point A( p, 6) will have done so.

Suppose that A(li, 1 i) is the true porameter point, and that

the outcomia is a valid one. The table of probabilities for this

example (page 132) shows thar, with probability .93, the outcome of

the experiment will be one of the following: outcome 22, 26, 39, 46,

51 or 77. But R, or confidence region 22 contains A(, CIl1, ), by

Eq. (249), since SAl contains outcome 22 as has been stated. Similarly,

the point A1 is contained in R2 6 , R3 9 ' "'', R7 . Hence in 93% of all

cases in which A,( 1 , 01) is the true pa.:ameter point and in which

the outcome is valid, the parameter point A1 is covered by the
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pertinent confidence region Rt. To put it another way, for every

1,000,000 such cases (true parameter point A, and valid outcome),

there will be 390,000 cases in which outcome 46 is the result,

260,000 cases of outcome 22, ... , 20,000 cases of outcome 51, for a

total of 930,000 cases, and in each of these 930,000 cases the parameter

point A, is covered by the pertinent confidence region Rt.

Hence the required test is passed by the representative admissible

parameter point A1(M 1' G1), and therefore by all such admissible

points, and it has been shox-m that a legitimate system of 907. confidence

regions has been defined. The 90% confidence level was taken only

as an example, and similar reasoning would apply to 95% or 507 confidence

regions or those at any other confidence level.

We wish now to show that these confidence regions are arbitrarily

small for a sufficiently large number of stimuli, by showing that the

sets SA as defined on page 133, which determine the confidence regions

Rt by Eq. (249), consist of outcomes whose maximum likelihood points

A ( ak, k) are arbitrarily close to the assumed parameter point

A(#,o), for a given confidence level such as 907.

A heuristic proof has been worked out, indicating that these

confidence regions are arbitrarily small for a sufficiently large
number of stimuli, by showing that the sets SA as defined on page 133,

whiich determine the confidence regions Rt by Eq. (249), consist oftt

outcomes whose maximum likelihood points YA(k, Ok) are arbitrarily

close to the assumed parameter point A(1 ,6), for a given confidence

level such as 90%.
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We remark that this property of small confidence regions {Rt}

for large values of N is not a formal recairement of the system of

confidence regions. The formal requirement is embodied in Eq. (249),.

for 90% confidence regions. But it is a natural and desirable property,

and one which is possessed by the asymptotic large sample theory. An

experimenter conducting an armor plate test might well ask himself,

"Why should I fire a large number of projectiles, and use a large

number of specimens of the plate, unless I thereby increase the accuracy

of my knowledge of the characteristics of the plate?"

The proof referred to is not completely general or rigorous,

in that only a subset of the set of all valid outcomes is considered.

Moreover, the details are rather lengthy. Hence we merely state the

result here, after describing the subset of valid outcomes which is

used and the general nature of the proof.

In the proof, a population mean L is assumed,and the stimuli

{ c } are spaced at equal subintervals in the interval (•min• Uma).

The exact spacing is not specified in advance, and the principal object

of the proof is to determine how fine a spacing is uecessary in order

to achieve a condition which will be described shortly regarding the

probability content of subsets of the outcomes.

An arbitrarily small positive number , is to be specified (we

can think of the value of 6 as being under the control of an imaginary

opponent who is trying to break our proof down), and a key point of

the proof consists of showing that, however small C may be, it is

possible to take the uniform spacing of the stimuli so fine that 907.
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of the probability content of all valid outcomes considered in the

proof (for 90% confidence limits) will be concentrated in the subset

which has its maximum likelihood estimates /1 in the interval

The subset of the set of all possible outcomes which we consider

in this heuristic proof is the set of those of the form

FF ... FFSFSS ... SS, where the length of the string of consecutive

failures is not necessarily the same as the length of the string of

consecutive successes, since we may be much closer to one end than
to the other of the interval (/Imn' #max" Outcomes of this form

have the interlacing required by Eq. (35), so that they are valid

outcomes. But this minimal interlacing is of small significance if

N, the number of stimuli, is large, so that for practical purposes

we can say that, for any given outcome of this set, we have failures

below a certain stimulus level, say 1025 ft./sec. in the armor plate

experiment, and successes above the same level.

It is intuitively clear that, for an outcome of the form

FF .... FFSFSS .... SS, the maximum likelihood estimator /I of the

point A(, d ) will occur at approximately the stimulus level of the

interlaced S and F; for in that case the factors of the expression

G(pG) (see Eq. (244)) will consist almost entirely of factors of the

form p[(ai - I)/a] with ai > and q[(bj - 1)/Q with b < U

both types of factor rapidly approaching the value 1 as ai - 0 or

p- bj becomes large compared with W. If the isolated S of the

sequence occurs for ck = 1096 ft./sec. and the isolated F for

ck+= 1097, we can assume that p for this outcome is approximately

1096.5.
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The object is to show that N caim be taken sufficiently large so

that the interval ( C - E + 6) contains at least 90%~ of the

probability content of our subset of the set of all valid outcomues,

for 90% confidence limits. It will be convenient to divide the interval

ISa , + e) into an integral number, L, of equal subinterval1s, and to

place one of the {Ckl at the center of each subinterval. Thus we

have the situation shown in Fig. 6, in which several of the { k

neAr /I + 1E are shown, and the S's and F' s near p + E for three

of the outcomes are shown, the isolated S in the J-th outcome being at

Ck4.lP etc. By what was said above, the maximum likelihood estimates

AL for outcones j- and j are approximately Ai + C and # + 6 + (6 /L) '

respectively, E/L being the distance between successive stimuli.

,Ck-.2 #!kL- j'ktl .! ý2 !.k3 c.+4

Outcme -1----- - F F S F S S S

Outcome J - F F F S F S S

Outcome-J+l --- F 7 F F S F S

Figure 6
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The mathematical details are rather lengthy and we do not give

them here, but we state the result. If the integer L, the number of

subintervals into which Ai, P + E) is divided, is so large that

1- [ 9(E/o')/p(e/G)] ' (250)

where p(t) is the probability integral, Eqs. (10), (12),

q(t) 1 - p(t), and a is the value assumed for the population

standard deviation, then the sum of the probabilities of the outcomes

whose maximum likelihood estimates At are in the interval (/ - E , A + E)

is more than 90% of the sum of the probabilities of all the outcomes

in the set under consideration, as described on page 137. L is very

large, as expected,if f is small compared with 0, for in this case

q is slightly less and p slightly greater than 1/2, so that the

denominator on the right-hand side is positive but very small.

Heuristically, it appears very probable that the property, which

we'have demonstrated for a chosen subset of the set of all valid outcomes,

carries over to the entire set. This i. the following property.

Given a positive constant E , however small, it is possible to take

such a large number of stimuli that the maximum likelihood estimators

S{Ik} for the set SA, as in the table on page 132, are all within a

distance E of p, where A(M, u) is the assumed position of the true

parameter point. Since this has the effect of making the sets {SA}

small, page 133, it also makes the confidence regions {Rt} small,
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Eq. (249). It is true that, in addition to other respects in sihich

the foregoing proof fails to be perfectly general and rigorous, it

works with the inaximu likelihood estimates { kj but not with

The {Gk}are probably all very small for our

particular subset of outcomes of the form PF .... FPSFSS .. SSp and

do not vary over a known range as the estimators k o u

this proof,, it is felt, does make a significant couttibution to the

intuitive conviction which most statisticianas will already have in

this kind of situation, to the effect that large amounts of data, or

large nim~ber~s of s~timnuli in the experiments with which we are concerned

here, do have the effect of producing small confidence regions.
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