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FOREWORD

The work reported in this paper was done in the Applied Mathematics
section of the Science and Mathematics Research Group. The major part
of the work was done under Foundational Research funds.

The problems that are resolved in this paper were first brought
to the attention of the authors by Dr. Klaus Abt in connection with
his work on armor penetration.

The original IKM 7030 (STRETCH) code in FORTRAN IV was developed
by Mr, Travis Herring. Mr, Robert Belsky and Mr. Douglas ¢ 'don
produced the machine code for plotting confidence ellipses as output.
Mr. Alfred Morris supplied the coefficients for two of the asymptotic
expansions used in the original code. Cody's algorithm for computing
the normal probability integral was analyzed and then developed as a
STRAP code fur STRETCH by Mr, Gordon Barker. Subsequently he incorporated
this program into two versions of the main computing program.

Dr. Marlin Thomas supplied one of the more interesting examples that

are cited in the paper.

Released by: .
a. y’ T

Ralph A. Niemann, Head
Warfare Analysis Department
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ABSTRACT

Necessary and sufficient conditions are obtained for the existence
of the maximum likelihood estimates (MLE) of the parameters of a normal
distribution for quantal responses. It is shown that whenever the MLE
estimates exist they are unique. A modified Newton-Raphson procedure
is given which will converge globally to the MLE estimates. These
results are new and directly applicable te an armor plate penetration
problem or any other types of experiments based on quantal responses
which fall under a normal distribution.

A computer program is described which includes as output a set of
plotted confidence ellipsés centered about the MLE. Various examples
and the corresponding computer outputs are glven.

Probit analysis and confidence regions for small samples are

discussed in separate appendices.
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I. INTRODUCTION

This report gives a mathematical analysis of maximum likelihood
theory as it is used to find the "best" estimates [7, Chap. 32],
il_, 0 of the mean, U, and the standard deviation, Gy of a normal
distribution which governs the variations in measured sensitivity data,
By sengitivity data, we mean a collection of measurements or determina~
tions from experiments for which a stimulus is usually only applied
once to each item, and for which the response in every case is quantal,
i.e., can be described as a success or failure by some arbitrary
criterion, [9], [i4]. Experiments for dosage mortality studies, [13],
and for armor plate evaluations are of this nature. Statisticiauns
categerize the treatment of such problems under the general term--
gensitivity analysis. The main results given in this paper are suffic~-
iently general to include situations in which levels of stimulus cannot
be preciselyiassigned in advance. The basic paper dealing with this
particular phase was written in 1956 by Golub and Grubbs, [14].

The first objective,; following [14], is to set up the sensitivity

problem in mathematical terms. The theory of maximizing a likelihood

function as popularized and extensively developed by Fisher, [12],
plays a fundamental role. Once the problem has been defined in
mathematical terms, we resolve the following mathematical questions

which arise, but which have been open heretofore:
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(a) Under what conditions does a maximum likelihood solution

exist?

{b) When a solution exists, is it unique?
(c) Given that a solution exists, can a computational procedure
be found which is guaranteed to converge globally (independent

of starting values or initial estimates) to the "best" estimates,

j;, o of the true parameters “,» and 06?
i For typographical convenience we use ﬁhe notation E'. 0 for maximum
likelihood estimates instead of tine more common !/l\ , {7\ .
In Section II, the hypothesis upon which maximum likelihood

i estimates are based is discussed. A likelihood function is derived.

An armor plate penetration problem is described and is used to

T T

facilitate the derivation. In Section III questions (a), (b), (c),

AT T

given above, are answered., Question (a) is answered by obtaining a

set of necessary and sufficient conditions for the existence of a

waximum likelihood solution. Question (b) is answered in the affirma-

tive. Question (c) is also answered in the affirmative; a modified

Newton-Raphson procedure is proved to converge globally io the maximum
likelihood estimates. The main results are given by theorems 3,
4, and 5.

In Section IV, for completeness, s derivation is given of the

expressions for the elements of an associated covariance matrix and

of the corresponding confidence ellipses. Section V describes the
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computer program as it is actually used. Several examples are given.
A discussion and a comparison of our results with those

obtained from Finney's Probit Analysis, [10], are given in Appendix C.
Appendix D is concerned with some remarks on small sample theory.
I1. CONSTRUCTION OF THE LIKELIHOOD FUNCTION

The idea of a likelihood function is founded on the premise that
if one can specify a mathemat;ical function, F(cl, €y ...,cj) , which
depends on the parameters cy» to represent the probability of occurrence
of a set of events {J;} , then the "best" estimates, in a statistical
sense, for the ¢y, are those values ¢, for which F(cy, Co, eess ?:'J.) is
an absolute maximum. More precisely: Given the occurrence of a set of
events { Ji} , the likelihood function is the mathematical function,
Flcy, ooy cj) , which represents the probgbility of the occurrence of
the events {J3} where the cyik = 1,2, ..., j) are parameters whose
true values are unknown. The "best" estimates in a statistical sense
for the parsmeters are those values ¢, which make F an absolute maximum.
Heﬁristichlly, the reason for estimating the ¢, thusly, is that since
the {J;} have occurred, we should estimate the Ty, so that the proba-
bility of their occurrence is as large as possible. This result is
obtained by makiug F an absolute maximum, An elementary example is

discussed in detail in [17; page 152].

An important problem in armor piate penetration, which gave rise

to the studies reported in this paper, will be used to derive the

likelihood function on which the analysis is based.
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In armor plate testing, the investigator wants to know the minimum
speed required by a projectile of given type to penetrate a steel plate
of given size and composition. By minimum or critical penetration
speed with respect to a given plate, we mean that speed below which
no penetration of the plate would cccur and above which penetration
for that particular plate would always take place: This critical
penetration speed of the projectile however will vary among a set of
‘presumably identical plates, primarily because of random variatioms
in steel composition; flaws, etc. from plate to plate. Hence, the
experimenter settles for an average critical speed of penetration,

Uy where the word average is used in the usual statistical sense.
The real number Fio can be estimated from a knowledge of the likelihood
function which is associated with the problem.

Hence, assume there exists an infinite population of steel plates
identical in form and manufactured from the same process. Each plate
is characterized by its critical speed of penetration so that a mean
or average critical speed, 110, can be associated with the population.
The assumption is made that the critical speed for each plate is normally’
distributed about the mean 4, with a standard deviation, Oye The
techniques that are used to determine the validity of the normality
assumption, and the transformations of variables that can often be

used to approximate normality, [8], are outside the scope of the

present study.
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Consider the following experiment. Five plates are drawn from the
infinite population, numbered one through five, and tested by firing an
identical projectile once at each plate. Due to variations in gun
powder, gun barrel eccentricities, etc., the desired impact speed for
each projectile is generally not precisely realized, i.e,, the stimuli
are not completely under control, [14]. Suppose the results of the
tests show that plate #1 was penetrated by the projectile traveling
at a speed a; (from which-we conclude the critical speed of plate #1
is not larger than a;). This test is czlled a success. Similarly,
suppose '‘successes' were recorded for plates #2 and #5 at projectile
speeds 8; and aj, respectively. On the other hand, suppose '"failures"
were noted for plates #3 and #4 at speeds by and b,, respectively
(these plates were not penetrated so that e.g., plate #3 must have a -
critical speed larger than blf. Since the plates are assumed to be
normally distributed with respect to their critical speeds, it is
easy to express the probability, pj, of drawing a plate with a critical
speed no larger than a,, namely |
. (a) - u)la,

PL =P [(81 - uo)IO’o] \f_;:ﬁ f exp(-t2/2)dt.
- 00
By similar reasoning, the probabilities p, and P3 of drawing plates

#2 and #5, respectively are

Pp= P [(‘z - ”o)/"o] » P =P [(a3 - uo)/ao] .

5
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The probability 9 of drawing plate #3, for which a failure was recorded

at a speed by, is given by.

1 a0

2
q, = q[(bl - U)o ] - — f exp(-t“/2)dt.
1 ool yvam

!

. (bl ”o)llfo
Thus 9 denotes the probability of drawing a plate with a critical
speed no smaller than b,. The probability of drawing plate #4 1is
then q[(bz - }lo) /aoJ = g.. Assuming all of the five cases are
independent of one another, it follows directly from elementary
concepts that the probability F, of observing the events as they
sccurred is given by the product
Fo = P1PpP3919 -

In general, if one tests n + m plates and records n successes at
penetration speeds 415 895 «ee; 8p and m failures at penetration
speeds by, by, ..., b,, then the probability that this sequence of

events occurs, in the order observed, is given by

o m
F,= I p q;. v
© jmpl a4

The likelihood function is simply obtsined from (1) by replacing the
unknown quant;itiee H, and ao by free parameters, or variables, U
and ¢, respectively. In order to keep notation to a minimum and
since the expression given by (1) will not appear again, we use the

same notation to expreas the likelihood functiom, F, as
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F= I ps IT q;, )
=1 * =1 9
where, hereafter,
p, = p[(a; - uyle], )
q, = al®; - w/o]. %)

According to maximum likelihood theory, ''best" estimates, /7 » O

of the parameters U o and o, are obtained by maximizing F, in (2),
as a function of the variables U4 and 0. Thus, the statistical
problem has been reduced to the mathematical one of maximizing a
function, F, of two independent variables { and o, which has
differentials of all orders. The mathe.matical problem raises the
questions posed in the Introduction. |

It is worth noting that the estimates ﬁ and E, obtained for
#, and 0, will depend on the imput sequences {ay} and {bj}.

Hence some measure of reliability in the estimates is needed. Such

measures can be obtained by considering so-called confidence regions

which turn out to be ellipses in the M o-plane. This phase of the

etudy will be covered in some detail . Section IV.

IIX. ANALYSIS OF THE LIKELIHOOD FUNCTION

Let
n m
L(u,oc) = loge F(u,o) = }:1 log Py + 21 log q4- (5)
i=1 j.
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We treat L rather than F hereafter, since less notation is needed.

Clearly F is a maximum at a point if and only if L is a maximum at the ¢

same point. The variables u and ¢ a'c replaced by new variables

o and S, through the l1-1 transformations:

P i
TR TR TN T I T AT T

= ujo, (4 = a/B), (6)
=1/0 > 0, (¢ = 1B). )
In addition, let
s =B -a, (®
E i Ty = bJ ﬁ -a, (9)
g : so that in terms of the new variables, a, 8, (3) and (4) become
5§
b = p(sp) = [ z(vat, (10)
=00
(= <]
q = atep = [ (o, ()
J 3 ¢
h|
where
1 2
z(t) = —— exp(~t</2). (12)
27

We will also have need for the following partial derivatives of L:

e A st A, o, R o wats o)

aL m n
Lag =7-.= 2 (i/a) - £ (x¢/py) (13) :
a 1/P4)>
L ol R s e
8




n m
Lg = L | F o lxylpg - E by 4/ s (14)
aﬁ i{=]1 j=1

m n
Lyg = - <y/q>[<y/q>-c]-z<x/p></p>+s .15
aa j§1 3719321 9579y 1] & TR [ i]

m -
Lag = _1{1 bj(yjlqj) [\yj/qj) - tj]

n
+ s 16
+ jf]_ ‘i(xi/pi)[(xilpi) 31] (16)

m
- - 2 -
Lpp J{l bj (yj/qj)[(yj/qj) tj]

O

n
2
- 1§1 ‘i (xi/pi) [(xi/Pi) + 81] ’ (17)

? &", ¥ 'Lv' o W

where

x; = z(sy), (18)

= ) 9
Yy = Z(CJ) (19)
The a; and by are arbitrary real numbers. 0 and B by their nature
are positive.

The lemma which follows is stated for easy reference. The proof

is not given, it follows from a well-known theorem in analysis,

L T PRI T TR PR T A e

[2, P. 149], and elementary consliderations.
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LEMMA 1. Let f(a,R) have continuous second partial derivatives in -

an_open region T of the «af-plane and let there exist a point

(a,B) €T such that at (&,EL

2
faa < Oa faa fBﬁ - faﬁ > oa
then f(o,R) has a maximum at (& ,8) if and only if

| £q (3,B) = £5(&,5) = 0.

Moreover, if £ has a maximum at (EJE), then the equalities must

hold regardless of the above inequalities.

e et L A U daRici e Haa
et o - : -

The possibility that all the aj are equal (say to a), and that

all the bj are equal (say to b) is ruled out by Lemmas 2 and 3.

LEMMA 2. If L has a maximum and aj = a, bj = b for each i and j, then |

a =b.

Proof: If L has a maximum at (E ,E), then by Lemma 1, Ly = Lﬂ =0
at this point. By equating the right hand sides of (13) and (14) to

zero, for the arguments

Si = aﬂ -a 3 tj = bﬂ - o 3
one obtains n(x;/p;) = m(yj/qj) ,
na(xi/pi) = mb(yj/qj) . Q.E.D.

LEMMA 3. 1If for each i and j, aj = bj = ¢, then L assumes its maximum 5

i at every point of the straight lime b

‘ i : a=cf - s, (20) . j

; where s* is determined by . !
p(s*) = n/(@m + n). (21)

10
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Proof: Since ¢ is a fixed constant,the function L can be considered
in this case as a function of the single variable s = ¢g - &, so that
L(s} = n log p(s) + m log q(s),
and
L'(s) = (nx/p) - (my/q = x[(n/p) - (@/].
Since L" < O when L'(s) = 0, it follows that L attains a maximum at
those values of s which satisfy
p(s) = n/(m+n) < 1,
But p(s) is a positive monotone cantinuously increasing function of s
and less than one. Therefore there exists a unique value, s = s*, for
wvhich (21) holds and L takes a maximum for all (a,8) which satisfy
(20).

Lemma 3 implies the obvious conclusion that best estimates cannot
be determined if the stimulus is maintained at the same level for all
experiments. It is also necessary that both the {8y} and {b} sets
be non-empty. If say {bj} were empty, then from (13), L, would always
be negative and L could not have a maximum, Hence, it is assumed
hereafter that neither of the sets {a;}, {bj} are empty and that at
least one of the sets must contsin at least two elements which differ.

The next lemma will be used to prove Theorem 1.

LEMMA 4. 1If te€ (-00,00), then

[z(t)/q(®)] -t > O, 22y
[z(t) /p(t)] + t > O, (23)
11
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Proof: Counsider

f£(t) = z - tq.
Then, since

z(iw) = 0: q(°°) = Os q<'°°) = 1:

we have that

lim £f(t) = lim (-t) = +e

4
t P -0 t 9> -0

aQ
Un £C)] = lim  [tqe)] S lm Lo [ uexp(-u/2)au
tdx0 t» a0 A t»oo Y27 J;

= lim L exp(-t:2/2) =0,
t»oo V?.Tr

In addition,
£'(t) = -tz - q+ tz= - q < 0.

Therefore, it follows that f(t) > 0, and since q(t) > 0

£(t) o z(t)

a® 2o -t >0, W t € (-00,00),

The proof for (23) follows by replacing t by (-t) in (22) and using
the facts that z(t) = z(~t), q(-t) = p(t).

THEOREM 1. If (at,8) is any point in the o f8-plane, then

Laa <o, Lﬂﬂ < 0. 24)

12
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Proof: The expressions for Lye and Lﬂﬂ are given by (15) and
(17) . The quantities (yj/qj) and (xilpi) are positive and from
Lemma &,

(3/ay) - £ > O,

("ilpi) + 8y > 0. Q.E.D.
Where no ambiguity will occur, it will be understood that sums over i
run from one to n and sums over j run from one to m.

Another useful property of L is given by the following theorem:

THEOREM 2. The discriminant of 1,

A ELaa LBB hand Lzaﬂ 3 (25)

is positive for all ga,d}.

Proof: Let

Uy = (xq/p) [(xe/py) +85] (>0) (26)
vy = G3/a) [Gy/ap - ] O, )

Then A can be expressed in terms of the right hand sides of (15),

(16), (17) accordingly:
2 2 2
The Cauchy-Schwarz inequality requires that

(Zau)? § ZaluLvy, (28)

13
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(z:ijj)2 RS Z)ijVjEVj . (29)

Equality holds for (28) if and only if

a2 Vg =x Wy,

vhere K is any real positive number. Clearly, this relation implies

all a; are equal, since us > 0 by (23). Similarly, equality in (29)

requires that all bj be equal. But, by the requirement that at least

two of the a; or bj must differ, at least one of the inequalities (28),

(29) must be strict. Hence, using (28) and (29) twice,

B R ok

A 2
4 > ZauZvy+ Zb v Zuy - 228Uy Ibyvy (30)

> (Zagup(EV,/ZU) + (Ebyvp  (EU/ZV) - 2830, Eb,v,

_ 1/2 1/2 2
= [(Zvy/Zu) ™ Fagyy - (Zuy/Zv )T T 2 o,

We are now able to use a well known theorem of analysis to obtain

an answer to question (b) of the Introduction. The proof is given four

completeness.

THEOREM 3. There exists at most one point (o—bﬁl at which L assumes

a maximum,

Proof: Assume L has a local maximum at two different points (al, ﬂl)

and (az, /32). The Taylor formula for a function of two independent

variables gives

T, 2
L(0ty, By) = L(a |, 8,) + VL(ay,B)) - 4n + An~ - pL - An,

(31) ;
14




_— PR T S ETRRTR TR T e T T s
i Shais s SO daotth et il S AT WA TS d R =

. where VL represents the gradient of L with components L, and LB ;

D2L is the matrix
Laa Llag

Lag 1Lgp

D2 =

and An 1is the column vector with first and second components

D N T A TS TS L T T RS L T R T R
3 Eeoge dleyt

da = (a, - al) and AB = (B, - ﬁl), respectively. The
superscript T on 47 indicates the transpose. The elements of p%L

in (31) are evaluated at a point &, where for some €(0 < € < 1),

€=77+€A77, Tl=(°ll.ﬂl)-

By Theorems 1 and 2,

Laa < 0, Lﬁﬂ < 0,
4 > 0,

(33)

hence D%L is negative definite for all (a,8). But since L has a
maximum at (al,ﬂl) this implies by Lemma 1 that L, = Lﬁ =0 at

(al,Bl). Therefore (31) reduces to
L(a,y, By) =L(ay, 87 + can)T - o’ - (4n) < L(ay, B1).

Interchanging the roles of (a 25 52) end (al, ﬂl) and applying the

same arguments leads to

L(aq, 51) < L(a,, B9).
This inconsistency can be removed only if 41 = 0, which iwmplies

(a1, B1) and (a3, B2) coincide. Q.E.D.

15
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It will be assumed hereafter that the a; and bj are separately

ordered in increasing magnitude, i.e.,

8; £ a, £ -+¢ § 2y
(34)
<

by £ by £ .o by
Question (a) as stated in the Introduction, is a natural one to
raise now, i.e., under what conditions on the aj and bj does L have a
maximum? The answer is supplied by Theorem 4. The necessity of (35)

is well-known, [14], [18].

THEOREM 4. The function L has a unique maximum for & > 0 if and only

if the quantities aj and b; satisfy the following inequalities:

a; < by, | (35)
1 1
=Zb; < -~ Fay. (36)

Proof: If L has a maximum at (&- ,ﬁ) , then from (13), (14), and

Lemma 1, we have

Ly (@ ,B)

Zxi/py) - ZGyley) =0, (37)

Za (xy/py) - Ebj(}’jIQj) =0, (38)

where all quantities are evaluated at (&,E). From (38), and by

the orderings specified in (34), it follows

b1 Z(j/ap < a, T (x;3/py), (39)
a) Z(x;/p;) < by Z(yj/ay). (40)

16
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Equality is not possible in either (39) or (40), because at least two
of the a; or two of the bj must differ. Hence, (35) follows directly
from (37), (39) and (40).

The proof for (36) is obtained by using a classical inequality
which is stated in the form of a lemma.

LEMMA 5., If two finite sequences of N real numbers, {“k} and {vll,

are given with the properties that

Ul g uz s see s uN’ v1

N

Vz < oo QVN,

then the following inequality holds

N N N
Zuy Z v, SN Z ywv. (41
1 1 1

Moreover, if the inequalities on the elements of one of the sequences

are reversed, then the inequality sign in (41) is reversed. Equality

for (41) holds if and only if all the elements of at least one of the

sequences are equal,

Proof: The proof follows immediately from the identity

N % Ei: N-1 N
Z u v, =N uv, + X 2 (u-u)(vy - v). Q.E.D. (42)
1 k 1 k 1 k'K k=1 i>k "k i i k

In order to apply this lemma, we observe that z(t)/q(t) and
z(t)/p(t) are monotonically increasing and decreasing functions of t,
respectively., This statement is easily verified by differentiating
these above quantities, using Lemma 4 and the limiting properties of

the functions as t > oo ,

17




h We apply Lemma 5 twice. In one case, let
uy = by,
i vy = (}'j/Qj)-

Then, for the point (5,3), the argument of (yj/qj), tj = bjB -,

is an increasing function of by, so (yj/qj) is an increasing function

of bj. Hence by (34) and (41)

! In the other case, let
. uy = ay,
vy = x4/pg.
Then, for the fixed point (6,3), the argument of (xilpi),si = ‘iﬁ -a ’
is an increasing functiom of a4, hence (xi_/pi) is a decreasing function

of aj. Thus, by (34) and (41)
nla;(xs/py) & Zag T(xi/pyg). (44)

We again use the fact that either some of the a. - =some of the bj
must be different, so that by Lemma 5 either (43) or (44) must be a

strict inequaiity. For definiteness, suppose (44) is strict, then

from (37), (43), (38), and (44)

L ouyEexy/e) =2 Eb5T0y/a) € Ivylyslay

.
AP T WYY Wy

R

= 2‘1(81/1'1) <

Since Z(x4/py) > 0, the inequality (36) follows from (45).
18
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It remains to show that (35) and (36) are sufficient to insure
L has a maximum. For the proof we shall use Lemmas 6 and 7.

LEMMA 6. The function L(ot, 0) has a unique maximum on (-00,00).

Moreover, this maximum occurs at O = (%, where

p (%) = ;—;- » q(-a¥*) =p(a¥x) = % . (46)

Proof: Equation (5) is expressed in terms of O and 8 by using (6)

and (7). Then B is set to zero to obtain the expression for L(a, 0),

L(a, 0) = n log [p(-a)] + m log[q(-&t)].

Now, differentiating L{caz, 0),

%’é (a0, 0) = - n[z(-a)/p(-a)] +m[z(-a)/q(-a)],

and setting the result to zerov implies there exist values of o,

say a*, for which

[w/aC-a*)] = [n/p(-a™®)] .
However
q(-a) =1 - p(-at)
so that (46) follows, and since p(®t) is a monotonically increasing
function of its argument,* is unique. By Theorem 1,L ao is

always negative, hence L(a, 0) takes its maximum at (ae*, 0).

19
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Lo LEMMA 7. The quentity Lg gvalusted at (at*, 0) is positive, provided :
P (36)_holds, where "
L(ot*, 0) = max L(a¢, 0).

Prooi: Jstting 8 = 0 in (14) gives

o Lg(x, 0) =~ Zay[z(-a)/p{-a)] -Zbj[z(-a)/q(-ar)].
| Evalusting this quantity at & = o*, and using (46) and (36)

gives

Lg(a*, 0) = (wn)z{a*) [% Za - % zbj] > 0. Q.E.D. (47)

The basic idea that is used to complete the sufficiency proof can
Le briefly described as follows: A triangdlar Gomain T (see Figure 1)
is constructed in the af-plane, with the point (aa*, 0) in the base -
of the triangle but not one of its vertices, such that
L(a,B8) < L(a*, 0) for-all ‘a,B) € OT. (48)
Then, by Lemmss 6 and 7, there exists a point (a*, ﬂ'), an interior
point of the domain T, with B' > 0, for which

L(a*, B') > L(a*, 0).

It will then he easy to show that the global maximum (5 ,F) of the
function L (not necessarily. the same point as (a*, B')) must lie in
the iaterior of T with B > 0 as required.

The proof of the existence of the triangular domain T follows -

4 (see Fi.éure 1) . Consider lines with equations of the form

a B -a =-t;, t; >0 (49)

20
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Since, by (5), L(a ,8) = T log py + X log q; and, since all these
summands, logarithms of numbers on the interval (0, 1), are always

negative, we have, for every point (a,f8) on this line,

L(a,B8) < log py = log p(a; .- @) = log p(-t;). (50)

But, by the properties of the probability integral
* 2
p(x) = (1/V2rm )f exp(-t“/2)dt, p(-ty) > 0
-00

and hence log p(-t;) & -0 as t1-> o© . Therefore we can certainly

give t; a sufficiently large positive value so that L(a,B) < L(a¥*, 0)

for every point of the line (49). Also, since the O -intercept of this

line is o = t;, we aan at the same time choose t; in such & way
(t; > a*) that the o -intercept of the line lies to the right of the
point (a*, 0). We suppose that a fixed t; satisfying these conditions

is chosen, and this line is designated as line @ in Figure 1.

, . i e b S e 2ot i
. . - . e " SRR i 4 el B SR k i -
TN ERR . - L5 R c

Similarly we can show the existence of a line @ » by f-a = +t,

o o AT A N sk 2L
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with t; > 0, with its o -intercept lying to the laft of the point
(a*, 0), and such that, for all points of line @ R L(a,ﬁ) < L(a*, 0).

It is easily shown by analytic geometry that these lines alﬁ -a = -t

Rl ULy A

and b B -0 = +ty must intersect in the upper half-plane. The solution

R

of these equations is O = (t{by + tzal)/(bm-al) , B = (t]_"'tz/(hm'a]_) .

Since we here have t; > 0, t, > 0, by > a;, we must have f > 0

; FE

at the point of intersection.

Thus we have a triingle (Figure 1) formed by segments of the
O -axis and lines () and @ . This compact domain (triangle plus its
interior) is denoted as T, and the interior lies in the upper half-plane,

B > o.

At all points (&, ) of the triangle itself, the boundary of T, orT,

we have

L(a, 3) € L(a*, 0) (51)
since L(a¢*, 0) is the maximum value for the entire o -axis, end since
lines @ and @ were chosen in such a way that L(at,f) < L(a*, 0)
at all points of these lines.

- But, by Lemmas 6 and 7, there must exist a point (a*, 8'), an

interior point of the domain T with B' > 0, such that

L(a*,8"') > L(a*, 0). (52)
Combining this with (51), it is seen that L{a*, 8') is greater than

L(a,B) for all points (¢, 8) of the boundary of T.

22
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However, the function L must assume a maximum for the compact set 7
at some point of T, by elementary real analysis. This maximum cannc:
be assumed on the boundary of T, by what has been shown. Hence it
rust be assumed at some interior point, (a-,-ﬁ-), with B- > 0, not
necessarily the same point as (a¥*, 8').

But, by Theorem 3, there can exist at most one maximum point for L,
including local maxima, in the entire plane. Hence this maximum point,
(&,B}, for the co&xpact domain T, with B- > 0, must be the unique
global maximum. This completes the proof of Theorem 4.

Qur objective now is to describe a practical computational procedurc
by which (& ,B) can be determined to any specified accuracy. Reference
will be made to the well-known Newton~Raphson procedure (abbreviated N-R)
for two inderendent variables, [15, P. 451]. It will be shown that a
modified form of e N-R algorithm will always converge globally to
(&,B), i.e., regardless of what starting point, (a*,B8%), is chosen.
We remark that a* here is a convenient notation and has no relation
to the same symbol in (47).

A point (a*, 8%) is chosen initielly (assume it is not (J,E)).
The N-R alg-orithm is applied, with the objective of reducing L, and Lﬁ
to zero simultaneously, to yield increments Aa and Af and a new
point (o5, B5). We call Ao and AB , N-R increments. They make up
the first and secoud components, respectively, of the column vector

AN and are found by solving the linear system

23
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Aalyy + ABLGB = -Ly> (53)
= e« T
AaLaﬁ + A,BLBB L3> (54)
where all partial derivatives are evaluated at (a*, #%*). Hence
Aa = , - )
(IﬁLaﬂ LaLBBJ/Aa /55)
AB:U-‘(!Laﬁ -LBLCIQ)/A’ 3
where A > 0 as was shown in Theorem 2. In vector notation (See (31)) j
(@ =M +udn, 0< u <1, (56) ﬁ
where [f0) = M = (a*,B%), (L) = (&9, B,). We say the N-R 4;
algorithm is "modified" if the continuous variable u is given any g
value on (0, 1). {
]
It will be shown there always exists a value of u, say ugy, such g
%
that for all [ (u) for which 0 < u Ly, £ 1, %

L [ZW] =La,B) > Lla*, 8% =L(n) =L [LO]. (57)

The quantities Ao and A8 that appear below are assumed to be N-R

increments and are to remain fixed throughout the argument. Then,

using the notation of (31) and evaluating derivatives at (a*,8%),
VL - An = AaLy + AﬁLB > 0, (58)

The inequality follows from (55) by substituting on the right for

Aa and 4B so that
2
VL - 4n = —i [LBLaa - 2LaL3Ldﬁ +L3,Lﬂﬂ:l (59

. D*L - g) > O,

where g = (Lﬁ »-Ligy) .
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The last inequality clearly holds, because, by Theorems 1 and 2, the
matrix D2L is negative definite and 4 1s always positive. Therefore,
using the mean value theorem and continuity arguments, there exists a
real number u, € (0,1] such that (57) holds. By iterating this procedure,
and clLoosing u appropriately at each step, <he L values will certainly
converge to some value not exceeding L( a ,B ) since L is increased at
each step.

One difficulty in actually carrying out this procedure is that no
definite rule has been given for choosing u at each step. A second, and
much more serious, difficulty is the possibility that the iterates
could spifal while the corresponding values of L converged to a real
number bounded by L(ol , ;§) . It will be proved however that if u is
properly chosen as indicated below that convergence will always be to
(a,B).

A well-defined procedure is now given for choosing u. For any
given step take u = 2 ¥ wherer =k or k+1 (k=0,1, 2, ...) as
determined by

Kk 1FL[L@W] o1 [Le*Y]
r= (60)
{k+1 if L [4‘(2""1)] > L[¢ (2"‘)] ,

where k is the smallest nonnegative integer for which

Ls@®] 2 L[] . (61)
In other words, the full N-R step (u = 1) is repeatedly halved uantil
(61) is satisfied; by (58) there always exists such a k and it may be

zero. Then one more halving takes place so that r, and thus u, is found

25
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from (60). This procedure can obviously be carried out on a computer
simply and efficiently. The next theorem summarizes these remarks.

THEOREM 5. If L‘E,E) is a maximum and (35) and (36) are satisfied

then the modified N-R algorithm as described in the preceding paragraph

,N _ will always converge globally to 4& 2 Q-z.
The part of the theorem which remains to be proved is somewhat

lengthy and is given in Appcndix A.

f Actually in practice, as we describe in Section V, the regular

N-R algorithm (u = 1) has been used with complete success in spite of

{ inferences to the contrary in the literature [14] s [21]. Many cases

¢ ‘ of ali types were tried and convergence always occurred independent

of the starting values of @ and 8. A case was given in [21] in which
divergence was reported; our program converged. (We have included

this case as one of our examples (No. 2A) in Section V). We are thus
led to the conjecture that the N-R algorithm always converges globally,
provided sufficient accuracy is retained in all computations, but a
px.:oof has not been found.

We remark in closing this section that an implicit assumption has

been carried throughout. Namely, if L has a maximum at (; , B—) , then

it has a maximum for the variables (H,0), where
U =-=a/f, © =1/8 . (62)

This assumption is clearly valid, because the variables are related by

1-1 transformations (5), (6). A detaliled proof has been carried out

but is not included in this report.

T
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IV. CONSTRUCTION QF THE COVARIANCE MATRIX AND CONFIDENCE ELLIPSE

We continue to use the notation: My O, for the true parameters,
and H, 0 for the estimates of the true parameters as determined from
maximum likelihood theory. The notation used below follows closely that
of Golub and Grubbs, [14] the analysis follows that given by Mood
[17, p. 212].

The estimateas (;-1- . o) carry no significance without some measure
of the possible deviation from (po, ao) , the true parameters of the

distribution. A classical procedure for obtaining an estimate of tke

error for large sample sizes is to determine a confidence ellipse
(similar to a confidence interval for one variable), It will have

meaning in the following sense: For a specified level of confidence.

say 95%, an ellipse is determined in the Mo -plane with its ceater at
(E , 3) such that with probability ,95, the true parameter point
(Ugys 00) is contained in the interior of the ellipse.

We first construct a so-called covariance matrix and then show
hov'v the confidence ellipse is obtained from the elements of the inverse
of this matrix., We will resort again to the armor plate penetration
problem as asn aid in elucidating the main ideas of this section.

Consider random variables ‘k k =1, 2, ..., N) where N=n+n
is the number of shells fired (or experiments conducted). Each ‘k

huas only two possible velues

(63)

{1 1f k P ghot was & success (produced penetration)
é, = ‘
k 0 if kP shot was a failure (no pemetration). :
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The probability density function for the random variable

al)
| k
£k=f(6k;#,0)= (k ) [1-p } (64)

el (]
P (65)
L —

where p is the normal probability integral, (see (3), (4)). The quantity

¢ is the stimulus (velocity of the projectile in our example).regardless
of whether the k*® shot is a success or failure. The quantities U

(mean critical speed), o (standard deviation) are parameters. The
probability £, (1; 4,0) that the kP shot was a success is determined

by putting 6k = 1 in (64) and (65) to obtain p[(ck -#)/d] ; similarly
for a failure bk is set to zero in (66) to obtain £, (0; 4,0) =

qlCc, ~m)/o].

Two new quantities are introduced

G844, 0) = G = 2o 108 €085 1, 0) 66)
H(by s H,0) = By = 680 log £(6y s pu,0) . (67)

Although dk is a discrete variable with only two possible values,
each £, is a differentiable function of the parameters y and 0,
so these definitions are meaningful.

For the sake uf a simpler notation, we drop the subscript k but

it should be understood, unless otherwise noted, that all relations

28
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that follow deal only with the kth experiment, so that a fixed k subsaript
should be understood whenever necessary.

The expected value of G is given by

1 r r
E@G = ¥ G(d ;s u,0)E(D 3”:0) ’ (68)

r=0
vhere 8" asre the values which 8 (note subscript k has been dropped
on §) can take, i.e., $° = 0, 61 = 1, Equation (68) is the discrete
analog of the expression which would be used if we had a continuous

varisble ¢ instead of §, namely

o0
BG(s s 0)) [ O(F:1,0)E(h 5 4, 0)ad. (69
- 00

From (68) there follows:

B@ = 5 -2 68T 4,0) =2 5 £05%: 4, 0)
r=90 a” a” =0

-2 °-f~l) (c-ﬂ)sa -
ay["(a +q (S ].a” W = 0. (70)

Starting with the analog of (68) for H and &/&¢c , instead of G and
O0/8M , it 1s shown in the same way that
E(H) =0 . (71)

The fact that every G and H (i.e., for each k = 1, 2, ..., N)

has a mean or expected value of zero simplifies the calculation of the

29
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standard deviations or variances of these functions. Let the variance

of G, for any given k, be denoted by GGZ. Similarly O’H2 will denote

the variance of H, and dGH the covariance of G and H, (We will have no

,

need for the covariance of G and H for two different values of k).

The variance JGZ of G is, by definition, given as

ZSAMLINED SOk

1

02 = y [G(br;ﬂ,a)]zf(br;#,d)
r=9

ol e

2

21: - [a £(8° ) (72)
r=o £(8%;u,0) LOH ,u,a] )

N e

Now differentiate both sides of (68) with respect to U to obtain

1

0= Y —Q—[G(or;y,o)] £(8 5 1,0)
r=0 OHU

1
+ 5 685 s, 0) 2= [£C8%; 1, 0)]
r=0 ou

1 r 62 T
= X £(8%u,0) - [1og £¢8 ;s 1, 0)]
=0 Ou?
l‘.' 2
1 1 af(6 ;[1,0')
r=o £(§ , M, 0) Ou
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From (72), using (73), we have

, .
2 0 r
0, =-E log £(8 ;u,0) |. o (74)
¢ [auz # ]
Similarly
2 o’ N .
Jg = - log £(8 su,0).| . (75)
aa.z .
Next,

we wish to obtain & useful expression for the covariance

of G and H., By definition
1 . o

Tem ®= X G su,0)H(BT 1,008, 1,0)
r=0 o

1 O£(6 s1,0) OE(6%,u,0)

1
= . (76)
r§o £(8%: u,0) ou 0o

1f (68) is differentiated with respect to ¢, then

1 —
0= -59;—[2 c(&‘;u,a)f(b";u,o)J
reo

“ou g *Q—[G(br'u'a)]fcb"-u )+ B a(sTiu, gy 228 iH.0)
rm=Q 80’ 8 32 ren s M do

1 8e¢(8%;u,0)
P

ro
2z o f(a 9”’0)
1 1 OE(8 s u,0) BE(HT; u,0)
+ N ¢4
=0 f(ér;;l,a) ou 9o

31

= —— e -0

- e R R R TN TR
Lo can i St Aol B A g L e o Bl 3

A AR e e L



From (76), using (66) and (77),

8% log £(8 ;u,0)
aGH = -« E 6#60 o (78)

It is also obvious from the definition given in (76) that

Tt T SE 17 S R T Ty
.

UGH = Ouae (79

We introduce the vector random variable (G,H) for a given k,

k=1, 2, ..., N. By (70) and (71) this veriable has mean (0,0).

& : "° "We denote its covariance matrix by M, which is defined by
& 2
g g
= | © CH . (80)
qg, q. 2

thqtioné (74), - (75), (78) give cxpressions for its elements which
will be used lat_er. By the multivariate cent;ral limit theorem,

[7, p. 316] -

N
Z Gy, H)
Z G H

is, for larze N, approximately multinormally distributed with mean

(O, ..., 0) and covariance matrix, A'l,

We denote this matrix specifically as an inverse, because this matrix, i

as it will be shown later, is the inverse of the covariance matrix
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for the distribution of the maximum likelihood ¢stimators ﬁ', o.

T o Taca T L

Thus,
E C 2 g
- 4 | % =l kK
3 A = . (81)
E N N 2
£ r 9 r 9
: kmy K =k

In the usual terminology of statistical texts, [1, P- 19] we say

(2% 2%)

is approximately distributed according to N(O, A'l), for large N,

where 0 is the zero vector.

Recalling the likelihood function F for a given set of ai(auccesses),

3
3
bj(failures) as given by (1), we can also now write F (as given in i
Golub and Grubbs' paper, [14]) as %
N 8 N r
F= g p 0k = e (b, sns0) (82) !
k=1 k=1 3
3
where f, is defined in (64), (65). Thus the logarithm of F, which has i
b
been previously denoted by L, is b
N T
L= 2 1°8f(6k sU,0), (83)
k=1
and by (66), (67)
oL N
—— =L, = (84)
ou H géi G >

33




We conclude that the random variable

N N
6, L H | =@y Ly, (86)
(1<-1Gk k=i k) oo

where (L i Lg) is approximately N(O, A']') for large N. Moreover,

by (74), (75), (78), the matrix A"l can be written in the form

1 (E(-pr) E(-'Lua)> -

A =
E(-Lyo ) E(-Lgg)

and for efficiency in notation we introduce that of Golub and Grubbs

A A
Ayg Agg

by writing

We proceed by expanding L u and Ly in Taylor series about the
true values 738 and g, and evaluate the series at ﬁ , E, the maximum

likelihood estimates. Thus,

Lu (H,0) = Ly (Hy, 0y) + Lup (Hy, "1)(E'Ilo)

+ L#a (”1:01)(3" 00) ’

La(ﬁ,-&) - LU(”O’ 0‘0) +L[la (”2: 02)(;1-‘[10)
+Log (K2, 09)(0-0) ,
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where (Hy, 01), (Hy, 09) are on the open line segment of the straight
line connecting (H,E) and (U, a’o) in the uo-plane.

Since (E,a') is the point for which L is a maximum
Ly(H,0) =Lg(p,0) =0,
so that
Ly(Hos o) = (M-t )[Lyp By, 0D] + (0-0)[Lyg (Uy, 0]

Lo (Hys 00) = (H-p)[Lyg (#y, 0] + (T= 0g){-Lgg (Hps09)] .

(89)
Now (u , 01) and (Uy, 03) converge with probability ome to (4,, )
and the second derivatives on the right hand sides of (89) converge
with probability one to their expected values, [16](vol. 2, 2nd Editionm,
page 55). Hence (89) may be regarded as a set of linear equations in
the quantities (H - [lo) and (0- 0,). Using vector notation, and

superscript T for transpose (89) becomes

q L= - - T
NL(E-ny,T-0)T =AM = A= @yl (90)
- - T
where @ = (I-‘,'llo,a' 00) ’

and Ly and Ly on the right-hand side are evaluated at (#o, ao).
The matrix A"l always has an inverse provided (ﬁ,g) and (uo, ao)

are not the same. This follows by Theorem 2, since
Determinant (A”1) = 4 > 0. (91)
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Hence
A-A=286. (92)
where A 1s approximately distributed as N(O,A'l),(see page 34). We also
have by another theorem from multivariate analyses, [22; p.B]:

If X, a row vector, is distributed according to

N(v,V), vhere v is a vector and V, 2s usual, is a covariance matrix,

then the vector Y, given by

Y = CXT(for any nonsingular square

matrix C) (93)

is distributed according to N(CVT,CVCT) .

Now for X = A,we have that v = C, V = A™L, and for Y = 6 , C =A.
Seo, we conclude from the'above theorem (although details are omitted)
that § 1s approximately distributed

-lAT

N(O, AATTAT) = N(0,AT) = N(0,A), (94)

where we note that A = AT since A™! = (A-I)T. Thus, for )
6= (i - n,s -q)°, (95)

_1:h‘e maximum ljkelihood estimators for large N are approximately

bivariately normally distributed about the true parameter point

(U, 0'0) in the MO0 -plane with covariance matrix A, the inverse of

A~ of (87) or (88). We identify the elements of A with superscripts

Aﬂ” Aua

A= NT. RZ. . (96)
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The elements AMI  yng 90 are called the asymptotic variances of

U and @ respectively and AT the azymptotic covariance of X and 0.

To determine the confidence ellipse for a given confidence level 7', !

we congider the quadratic form occurring in the exponent of the joint

;i ‘1 normal density function. If an M-dimensional vector variable X is
LB ,

? % distributed according to N(v,V), the joint density function £(X) is

.

‘ '““ - 1 1 -1 T

b £X) = M/2_1/2 e |- 3 X -v)Vte(X - V) ] . 97)
X 2m) v -

3 b The quadratic form

' -v)-vli.@-wT (98)

has a chi-square distribution with M degrees of freedom since X is

N(v, V), [22; Pe 417]. In our case, Vthe relevant quadratic form is

T

6> - Al .¢. (99)

From (88) and (95)

0T - &g = [Auy (H-u? + 2pg (B ) (F- 9

+Agg (- af] : (100)

The confidence ellipse at the confidence level 7, say 7 = 0,95,

is obteined by equating the expression in brackets in (100) to Xi_y

where X%_, 1s obtained from a X2 table, [19], [20], with two

degrees of freedom [22; p. 417]. 1In ppactice, the maximum likelihood
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estimates M, 0 are available, the true parameters are unknown.

So the confidence ellipse

Ay G2 + 2y (W) (F-0) +hgg (s-0)aXi , (O

T TR S T 2

is plotted where M aad 0 are running coordinates on the ellipse

with center at (ﬁ s d-) . The positive real number Y denotes the

T T A I YT

probability that the true paramcter point (M., 0 o) lies in the

. interior of the ellipse in the M-¢ plane.

The coefficients A”“ , Aud » and A gg are easily computed if

xi/py and yj/qj (the notation of Section II) are available, say from

Rkt oL et L

a computing procedure for the determination of (il- ,;) in which such

> paTE

quantities as Ly, Lp , are needed. One computes, in additiom, the
quantities (xi_/qi) and (yj/pj) for each i and j. Then in the notation

of earlier sections we have for computation of the coefficients of

;,ZA:
2 2
-2 nox m
r = 5 — + £ —— , (102)
I a1 P93 gey Py

2 noty,?
14 p 4 (103)
1=1 P19 =1 P39

-2 ' n li li m tj y
G Agy = Z + £ 33, (104)
1=1 Pi94  j=1 Py

where all quantities are evaluated at (5,5) or equivalently (F,?).
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Our computer program for the determination of (27,3) includes
the calculation for confidence ellipsges at ¥ =0.50 and ¥ =0.95
with the computer output including the ellipses in plotted form. This

computer program is described in the next section.

V. COMPUTER PROGRAM

In this section we describe the actual computer program that is
used to bbtain ﬂ',g and the associated confidence ellipses as discussed
in the previous section. 1In addition, those computations where a loss
of significant digits may occur are noted and their special treatment
is discusased.

Two programs exist for use on the IRM 7030 (STRETCH) computer.
One is written completely in FORTRAN IV and the other only partially
with the remainder in STRAP, the STRETCH machine language. The programs
are designed, as mentioned previously, only for the ordinary Newton~-
Raphson (N-R) procedure, although it would be easy to change the

programs to accommodate the modified N-R algorithm as described in

Section III. The programs as they are now set up with the ordinary N-R

procedure have always converged globally.

We proceed with some details of the programs, (Reference is made

to only one program hereafter since the programs mentioned above differ

only in programming language.). It is assumed that the input is specified

as two sets of real numbers {ai}, {bj}" where i = 1, ..., n, j = 1,...,m.

e sl S e o om0 R AR o R e SO

At the outset the program is called upon to insure that the necessary %
E3
X
%
5
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and sufficient conditions for the existence of a unique point at

which L attains a maximum are satisfied, i.e.,

&nin < bpgy » (105)
1 =» 1
= X b, <= a, (106)
B4 et

where & " min(a;) and bnax = max(bj) . By Theorem (4) of Section III
if either (105) or (l06) is not satisfied there do not exist maximum
likelihood estimates ﬁ R 0 . If this is the case,an exit is made in
the program.

If (105) and (106) are both satisfied by the input, the program
proceeds to obtain initial approximations a¥*, 8% to &, ﬁ We usge
the following relations, although as mentioned above a* snd B* can

actually be chosen arbitrarily,

1/2
- =1(1 1 1 2 2\ _ .2
'a* n*/o* 3 (n }:ai + = zbj)/[—(zai + ij) v ] , (107)

-1/2
B* =1/ 0% = [;}; (z;§+}:b§) -vz] ’ (108)

where

v = ;1; (2.1 + ij) . (109)

It is understood, as before, that the sur- on i run from 1 to n and

those on j from 1 to m. Certainly better initial approximations could

ks
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have been obtained with more extensive analysis, however, since the

N-R algorithm is a second order procedure which has always converged
globally for us, little need was felt for such refinements.
If o, and Bk denote the kth approximations to & and E s

respectively, then the (k+1)3t approximations by N-R are specified by

Ol

L}

a + Aak (110)

Bisr = B+ ABs k=0, 1, ..., (111)

where Auk and AR, are given by (55) with all partial derivatives
evaluated at (®y, ;). The final form for the computation of the
quantitics that appear in (55) are givea by (115) - (119). The

iterations are terminated when

IAakl < €0, ldﬂkl < €,8, (112)

are both satisfied for some k 2 1. The parameters €;, €, are
prescribed as part of the imput., They are presently set in the
program at

4

€ =2,5x 10

1 (113)

=1
3 €2

Upon convergance, the program is set to proceed with the
calculation of the matrix elements of A which are needed for the
confidence ellipses. The equation for a confidence ellipse is given

by (101). The function X %_7 is known as the chi-squared distribution

function with two dcsrees of freedom; it is tabulated for various

4l
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values of ¥, [17, P. 424], [19]. Values outside these tables can
be determined from the incomplete gamma function, e.g.[ZO]. A few

commonly used values of Xf_y, for two degrees of freedom, are listed:

X2
r 1y Xi1-7
0.50 0.50 1.39
0.90 0.10 4,61
0.95 0.05 5.99
0.99 0.01 9.21

It was shown in the previous section that for sufficiently large
samples one can assert, with preassigned confidence 7, that the true
parameter point (M o? ao) lies somewhere ir the interior of the ellipse
given by (101), with X %-7 chosen appropriately, whose center is at
(ﬁ,?) . The progrum at present is set to compute two ellipses, ome
fc;r ?Y = 0.50 and another for ? = 0.95. They appear in graphical
form as part of the output (Examples are given at the end of this
section) . We remark that in order to display these ellipses to advantage
somewhat more than an elementary plotting code was required. For
completeness, the details of the plotting code are given in Appendix B.

The quantities Allll -, Aﬂd » Agg that are needed for the ellipses
in (101) can be determined from (103) - (105). However, for efficiency
of calculation, as described in the next paragraph, the actual equa-

tions used in place of (103) - (105) are (120) - (122).
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For efficiency, the program is designed to take advantage of the
situation when some of the a; are repeated, and likewise for the bj.
The a; (and also bj) sre sifted so that only those a; which are different
are listed and with each such a; an integer n(i) is also listed which
denotes the number of times a; appears as an input. For bj the corres-
ponding integer is denoted by m(j). One can then take advantage of the
fact that the expressions for L., Lﬁ s Lag » Ldﬂ . Lﬁﬂ are linear
sums in quantities such as (x4/py) and (Yj/qj) so that these quantities
need only be computed for the different aj or bj and multiplied by n(i)
or m(j), respectively. With this point of view, we introduce some
additional notation and re-write all the pertinent equations as actually
used in the program.

Let the kth different aj be denoted by a(k) and the rth different

bj by b(r). Let K and R denote the total number of different a; and bj,

respectively, sc that

K R
a= 2 a(k), m= Y m), (114)
k=1 r=1

where n, m have their usual meaning. The basic equations for the program

then can be written as follpws:

R K :
Lag = £ m()(y./q.) - Z nk)(x/p) (115)
“ r-=1mr Vel ksln P
K R
Lg = kE‘ n(k) s (k) (x./p ) - z m(eXb(c) (yp/qp) (116)
I:‘ rB
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n L8
4
i R 3 3
- Laa "-21 n@) (vp/qp) (v /q, - ty) - kzl a(k) (x/p) (st /) (117) -0
b = =
X R 3
¢ Lag = kzl n(k)a(k) (x, /py) (8 + x/p) + 21 m(x)b(r) (y,./q.) Ge/ap-t) i3
- o 3
g | (118)
E Lgg = - r§1 n(r) b () (v, /q,.) (re/ap-t)) : A
K
- Z n® a2 (k) Goye/py) 5y + x, /p)) (119)

CAyy = k21 n(k) (xx/py) (ke /qp) + 21 u(r) (yp/py) (vp /) (120) f:

- r= i

) K R

oAyg = kzl n(k) sy (c/py) (xe/ ) + z 2O 0/e) O0p/e) (L2 ;

, = r= 5

2 K ) R 9 '

OAgg = kzl n(k) sj (xe/py ) (/g ) + 21 w(e) te (e /o) 0 /q) . {122) o

. = r=

where .:’.

8, =ak)f -«

ty =b(¥)B - a ,

The total number of different 8, and bj, K+R, is limited by the storage E;

capacity of STRETCH to é

2

K+R < 10,000, ;

1

i
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Care must be exercised in maintaining accuracy throughout the

calculations. For example, a straight-forward computation of the
quantity (2/p)[s + x/p], for a given aj, will not yield an accurate
result for large negative values of s. The difficulty arises because
(x/p) approaches (-s) so that the quantity in équare brackets is subject
to a loss of its leading digits. The result may be subsequently
multiplied by a large quantity x/p (or a; (x/p), ai(x/p)) thus leading

to a large error. This difficulty is easy to remedy by simply replacing
(x/») by an asymptoti: expansion whose leading term is (-s) and replacing
the quantity in square brackets by this asymptotic expansion with the
first term (-s) removed. Similar care must be taken with the quantity
(y/q) (y/q-t). Losses in accuracy of this nature are one possible

cause for the reported divergence of the N-R algorithm. Another may

be that most subroutines for computing probability integrals retain

very little accuracy over some parts of the domain (-¢0,00). For our
program, extensive efforts were made to compute probability integrals

to high accuracy over the entire domain. Originally,a table of
probability integrals was stored at equal increments in the argument

of .0025 for the interval [-8,8],and two asymptotic series in inverse
pcweré of the argument, each containing 27 terms, were used to evaluate
(x/p) and (s+x/p) for arguments larger in absolute value than 8. In
this way, all individual terms were computed to an accuracy of nearly

13 significant digits on STRETCH which uses 14 digits. Recently, however,

45

SR VR W SR




A KTy TR AP £ =T

o ek ot e o ot e o

Y

DT PRI MR TR R ST TESOR SRS TR RS IEE S

a method for computing p(s) (and q(s)) was published by Cody, [5]

which gives, on STRETCH, at least twelve significant digits for all

8 € (~00,00). Cody's method was used as a basis for subroutines, after
suitable modifications for the computation of s + x/p for large values
of s, which supplanted th: table and two asymptotic series meutioned
above. This resulted in a large reduction in storage requirements with
no significant loss in accuracy or computing speed.

The running time for the STRETCH Fortran IV program with the
tolerances chosen as in (113) averages about .007 seconds per every
different item of input, i.e., a(k) or b(xr). Thus the average computing
time per case is about .007(K+R). The average computing time for the
other program which uses some STRAP language is about .0055(K+R); These
rough estimates do not include the time for plotting the confidence
ellipses which are done off-line.

The output as generated off-line from a STRETCH tape is shown for
14 cases at the end of this section. Each output sheet lists, starting
iﬁ the upper left-hand corner, an identification number, e.g. No. 111B,
followed down the page by a listing of the different a; and bj and the
number of times each occurs,e.g.,in Case I-3-17-70,(p.61),a1 = -4 occurs
6 times as input and b(3) = -5.5 occurs 4 times. Toward the top center
the maximum likelihood estimates ; s 0 are identified as mu and sigma,
respeétively. Below these quantities, the elements of the covariance
matrix are recorded followed by the starting values a*, 8% and u*, g%

which are identified by alpha*, beta*, mu*, sigma*, respectively. Then,
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a ligting of the Newton=Raphson increments, for each successive iteratiom,
da , ApB > vritten as delta alpha, delta beta, are given as well as

the associated value of F (The column is indicated incorrectly with

L instead of F where F is given by (2)). Finally the two confidence
ellipses are shown, at the 9,7 and 50% confidence levels, in the.

U O-plane. These ellipses are constrained to a circumscribed square.
The plotting was carried out so that the two axes of the ellipses lie
on the diagonals of the square. The details of this graphical construc-
tion are given in Appendix B.

The various cases which are used as examples are drawn from shell
penetration tests or biological experiments. In a number of the c#ées,
the confidence ellipses include regions where ¢ is negative. This
can prohably be interpreted to mean that the sample size is too smal:
for .approximating a ''large" sample. It is recalled from the previous
section that the analysis for confidence ellipses was based on the
hypothesis that N, the sample size, approached infinity.

' Some cases are duplicated to give emphasis to the fact that N-R
appears to converge globally. In particular, case No., 2A was reported
ia [21] to diverge. The results of case 2A are shown for four different
sets of starting values. These results clearly show comvergence.

Case No. 3 was taken from [14]. No. 11l and 117 are taken from
NWL sheil penetration tests, No. 1 is taken from [18]. Our results

agree very closely with theirs. Case Jan. 19, 1970, obtained from [4],

47




was used to compare our results with those obtained from Finney's

probit analysis, (Appendix C is devoted to a Aiscussion of probit

analysis as an alternative method for obtaining estimates of H, and co.)

Case No. 386 was supplied by Dr. Marlin Thomas. The confidence ellipses

for this case also suggest that there is insufficient data for the

asymptotic analysis of the previous section to apply. The remaining

cases are included to give further indications of the global convergence

properties of the N-R algorithm.
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APPENDIX A
COMPLETION OF PROOF FOR THEOREM 5.
It remains to prove that the sequence of points in EZ’
Qi E:’{(ai,. ﬂi)} , which 1s generated by the modified N-R procedure

(See pages 23-26) actually converges to 6 = (t—! ,ﬁ), the point for which
L(Q) = L(a,ﬁ) takes its maximum value, L. It will be helpful in the

analysis belcw to think of a point Q €E2 as a vector in E2 which has

the component form (o, 8).

In the discussion of Theorem 5, in the main text of this report,
a parameter u, was associated with each modified N-R iterate, Q The
parameters u, are positive real numbers defined by (60) and (61) such

that for any Q, #Q

.0 < Ui s 1, (123)
L(Qi+1) > L(Qi), for i=1, 2, «.., (124)

where Qi+1 is generated by the vector relation

Qep = 4 + vy (49T, (125)
with

[4e,] = (day, 4B8). (126)

The quantities Aai and Aﬁi are the ordinary N-R increments which are

obtained from (55) with all the derivatives which appear on the right

hand side of (55) evaluated at Qi = (ai, ﬁi). A positive parameter,
hj’ is associated with each consecutive pair of elements, {Qj’ Qj+1}

of the sequence {Qi} which is defined by the relation

66

BT A U T Y L L r T TSP R (RPPRT-SREN T & T (XL PPt LIS a2 e ikl

N

B T RRT Y SITR
e T AR v e ¥

e e T x5 e R e s
R RT3 e 2 ATRACRR

TTREw - - T

R




v By = L(Qyp) - L) >0, j=1,2 ... . (120

The h.’l are positive for every j. This is assured by (59) which implies

there always exists a uj, as determined by (60) and (61), so that (123)

and (124) hold for every j.

Clearly the procedure described can be applied to any point P6E2

‘(except (&,E)) with a new point generated by (125) and (126) with
an associated positive increase in L indicated by h as defined by (127).

For easy reference, a result which we need is gtated in the form of

a lemma.

LEMMA (A-1) - The sequence {hi} generated by the modified N-R procedure

SRRl s 0 ~

converges to zero, i.e.

lim hi = 0. (128)
i 00

Proof: We use the simpier motation L; for L(Q;) = L(@, ﬂi)'

Then, for k 2 1,

L.k+1=Lk+h.k=L1+h1+h2+...+hk<L.

)
Hence, the infinite series X hi of positive terms is convergent,

i=1
which implies (128). ' Q.E.D.

LEMMA (A-2). Given an arbitrary positive real number K, there exists a

quadrilateral in the @f@-plane, with the origin in its interior, such

that L(a, 8) < -K for every point (g, f) which is exterior to the
quadrilateral,
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Proof: Tue construction used here will be similar to that used

folleving Lemma 7 (See page 20). Indeed, we can always eonstruct a

triangle here with the desired properties Lf it is possible to find
three subscripts r, s, t such that a, < bs < a, or such that

br < ag < bt' But this cannot always be done, for instance if we

have a = b1 = b2 < a, = b3, and if we have only these five stimuli,

But, in cases of iInterest, we always have ay < *_ and bl < a_, by

(35), and the four stimuli appearing in these inequalities form the

basis of the quadrilateral construction.

Let the positive constant K of the lemma be assigned.

a positive number s such that p(-s) = exp (-K-1). Such a number s

exists because of the monotonic increase of p(t) from O to 1 on the

interval (-o0,00). Now consider the line alﬂ- o

a B -plane,

= -s in the

This is denoted as line () in Figure 2. At every

point of 1ine () we have p(alﬂ -a) = p(-8) = exp(-K-1), or

log p(alﬂ -a) = -K-1 < =K. But since, by (5), L can be expressed
as a sum of negative terms, we have, for every (aa,B8) on line @,

L(a,B8) < log Py = log(alﬁ -a) = log p(-s) = -K-1 < =K., This is

similar to the corresponding analysis on pages 20-22. The

a -intercept of line (@, a,8-0= -s,is a = +s.

Now suppose (o, ) 1is a point to the right of line (@ . By this

we mean that, if (ao,ﬂ) is the point of line () with the same

ordinate 8, then a > o . The phrase '"to the left of" will have
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an analogous meaning. A line of the form aiﬂ -0 =c¢ or bjﬂ-a =c
cannot be horizontal, since every a; or b.’l is finite. The point (o, f8)
to the right of line () will lie on a line of the form a,8-a=-s-e
with Q@-intercept O = ste, where e > 0, and forv this point the log P,
term will be log p (=s-e) < log p (-s) = -K-1 < =K, aﬁd so, for this
point, we have, as above, L(a,8) < =K.

Thus, for every point in the «fB-plane which is on or to the
right of line @ , we have L(a,8) < -K.

Similarly, designating the line bmﬂ’-d = +s with d-intercept
-s, as line ( (see Fig. 2), we find that, for every point on line @,
q, = q(bmﬂ-a) = q(+s) = p(-s) = exp(~K~1), since the identity
q(t) = p(-t) holds for all real t. Hence we have, as above, L(&,S)
< log q, = k-1 < -K. Also, any point (& ,8) which is to the left
of line @ 1is on some line bmﬁ-a = +ste with O -intercept -s-e
wvhere e > 0, and for such a point the log q, term will be
log q (ste) < log q (+s) = -K-1 < -K, since the function q(t), or
1-p(t), decreases as t increases. Therefore, for such a point (a,f8),
to the left of line (@ , we have as above, L(aa,8) < -K. Thus,
for every point in the &f -plane which is on or to the left of line @,
we have L(a,8) < -K.

These lines () and (@, with equations alﬂ -0 = -5 and
bmﬂ-a = +s respectively, intersect, by analytic geometry, at the
point a = (b + a;) s/(b_ - a;), B = 2s/(b_-a;). Since s > 0, and
bm - a8 > 0 (since a; < bm)’ this point, designated as C in Figure 2,

is in the upper half-plane, with 8 > 0.
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We next make a very similar analysis using lines @ and @ ,
Fig. 2, where line (3 by definition is the line a 8 - @ = -5 and

line @ 1is blﬁ - 0 =+s., These lines intersect at the point marked D

in Fig. 2, with coordinates & = - (an + b1)s/(an - bl), B= -Zs/(an - bl).
2 Since s > 0 and a - bl > 0 (since b, < a, by (35)), B < 0, or
the point D is in the lower half-plane. It is true, as in the foregoing

analysis, that, for every point (&, ) on or to the right of line @ ’

[ we have L(a, 8) < -K; and that, for every point (&, ) on or to the
left of line (&) , we also have L(a, 8) < -K. We omit the details
here as the proofs exactly parallel those for lines @ and @ .
. Thus we obtain the quadrilateral ACBD of Fig. 2, where A and B

3 as shewa in the figure are the points (s,0) and (-s,0), and C and D,

. in the upper and lower half-planes respectively, are the points whose

coordinates have been given. This quadrilateral reduces to a triangle
in some cases, for instance when b1 < a; < b2 with a; > (bl + b2)/2

and there are no other stimuli, so that a; = ay and lines @ and @

coincide. But, even in such cases, A(s,0) and B{-s,0) are as shown in
Fig. 2, and C and D are in the upper and lower half-planes respectively.
We can in every case refer to the quadrilateral ACBD with the under-
standing that, in some cases, A (or B) may be collinear with C and D.

It is now not difficult to see, on the basis of the foregoing

analyéis, that, for every point (&, 8) in the plane which is exterior

to this quadrilateral, we have L(a,B) < -K, as stated in Lemma (A-2).
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The reader can easily convince himself, by making a copy of Fig. 2
and éhading those parts of the plane where the relation L(a,B8) < -K
- ; holds, that every such exterior point (&, 8) satisfies at least one
o of the following conditions: it lies (1) to the right of line @ R

or (2) to the left of line (2, or (3) to the right of line (3),

or (4) to the left of line @ . Any one of these geometrical conditions
3 is sufficient to ensure that the relation L(a,f8) < -K holds. This
completes the proof of Lemma (A-2).
Now we define a point set M in the O f -plane by
M= {e|L@ 2> L},
: vhere L1 is determined by choosing a starting point (al, Bl) = Q

T T e P

e Srodac et

1
for the modified N-R procedure, The symbol Q here, however, refers

to any point in the plane satisfying the inequality L(Q) 2 Ll’ whether
a member of any particular sequence of N-R iterates or not.

LEMMA (A-3). The point set M is closed and bounded in E,.

Proof: M is bounded by Lemma (A-2), since one can take L, as the
negative number -K of the lemma, and construct a quadrilateral such
that L{a,8) < L for every point which is exterior to the quadri-
lateral. Hence the set M is contained in the quadrilateral plus its
; interior, i.e. in a bounded subset of the plane.

The set M is closed, because if a sequence of points in M converges

to a point Q', we must have L(Q') P Ll’ since L is a continuous function

- cf its arguments o and S . Hence Q'€ M by the definition of M and it
has been shown that M is closed. Q.E.D.
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Now consider an infinite sequence {Qj} of distinct modified N-R

{
E"
‘.
¢
A
:
£
:

iterates with a starting poiut Ql' The fact that gll of the Q, are
N o4

distinct follows from the fact that L is increased at every step.

S

For all j3, Qj €M, Hence by the Bolzano-Weierstrass theoran.{Qj}

has at least one accumulation point, say Q. Since M is closed, Q€ M.

o AR TATTRSL ST

But Q need not be a member of the sequence {Qj}' However, the modified

3 N-R procedure can be applied at Q (or any other point), from which
an associated h would be obtained. The quantity h > 0 unless Q = 6,

in which case h = h = 0, This is easy to see because if Q = 6, then

from (55), since Ly (Q) =Ly @) =0, da= AB =0, so that

w AT RS IR

i A4Q = 0 in (125) and Q is not changed by the procedure. Hence n = 0.

So we assume Q # Q, consequently h > 0. It is always possible
to.choose a subsequence {ij} of {Qj} such that ij-)- Q. Hereafter,
for typographical convenience, we note the elements of the subsequence
by Qw where it is understood w takes the integer values j. We will
show the assumption h > 0 leads to a contradiction of Lemma (A-1).
The conclusion will follow that Q = 6, and that the entire original
sequence {Qj} converges to Q.

A visual aid which we call an overlaid diagram will be used to

elucidate the remainder of the proof; it is briefly defined and
illustrated. Pass a vertical plane V through Q and the point Q + udQ =

(a¢ +uda, B+ udpB) into which Q is transformed by the modified

N-R process. The intersection of V and the L(a ,,3) surface is a

concave downward curve since the surface itself is concave downward
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ererywhere, This curve is indicated as the solid curve in Figure 3

L

V plane

e P A T
~

55}
Hs
|
2]
[
(¥

with Q at the origin. Points on the horizontal axis are at a height

II_.(Q)[ below (because L < 0) the apf-plane. Points on the solid

curve can be specified by appropriate values of the parameter u., Now
consider a point of the subsequence, Qw’ which for large w is very

near Q. Since L and all of its derivatives are continuous, the
éorresponding curve determined by Qw and appropriate values of u'

§ (we use u' here instead of u to denotu¢ a distinction from the parameter

1 u associated with Q), in general, lies in a slightly different vertical
plane from V, but will nevertheless be very near the Q curve by continuity.

Now we think of the Qw curve as translated in its plane until the

projeétion of the point Qw on the V plane falls exactly on the point Q.

The translated Qw curve is then projected on to the V plane and is
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shown as the dashed line in the figure.

The distances ir the af8-plane

corresponding to u = 1 and u' = 1 are not exactly equal in general, but

are nearly equal for large w by continuity. ifigure 3 will be referred

to as the overlaid diagram. The remaining argumentz will assume the
Qw curves are in the V plane since the actual Qw curves aﬁd their
translated projections on the V plane can be made to differ by as
little as we desire by choosing w sufficiently large.

There are two situations to consider which are distinguished by
whether or not there exists a non-negative integef k for which the
quantity

K=LQ+ udQ - L(Q
is zero, where u = 2-k, and as usual 4Q = (4a, 48) vwith 4da, 48
the ordinary N-R increments at Q as obtained from (55).
| If K # 0 for any k > 0, then no difficulty arises because it is
easy to argue from continuity that the subsequence {hw} converges to h.
However by Lemma (A-1), h = 0, which obviously implies Q = 6 by the
arguments above.

I1f K = 0 for some k, say for definiteness k = 1(u = %) a more

subtle argument is required to show h = 0. There are two possibilities

to consider for the subsequence of iterates {Qw}
(a) All but a finite number of the Qw have the property that
1
LQ, +75 4Q) - L) 2 0. (129)
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(b) An infinite number of the Qw have the property that

L(Qw-l-% A%) -L(Qw) <0,

(130)

(This does not exclude the possibility that an infinite number of the
Qw may also satisfy (129)).
The overlaid diagram is useful here to visualize these situatioﬁs
keeping in mind tharj, for sufficiently large w, the points Qw +% AQw
are arbitrarily near Q + ']2* aq.

For case (a), the arguments are essentially the same as those

used above for K # 0. Briefly, since (129) holds for all w, when w

is sufficiently large,
1
0 < h=1lim [L(Q + 7+ 4Q) - L(Q)] = lim (h), (131)
W0 Qw 4 Qw Qw o ¥
where the factor ( % ) occurs because K = 0 f~r k = 1 so that by

(60) and (61) we require r = k + 1 where u = 2~ = Again we

P

arrive at a contradiction by employing Lemma (A-1), since it requires

limh = 0. We note the first equality in (131) must hold because
W0

{Qw} converges to Q, L is continuous in Q and

h= [LQ+7 40 - L©)]. (132)

The second equality must hold for (131), because, for sufficiently

large.w, the quantity

1
L@, + 7 49) - LQ)
approaches zero (since K = 0), so that the factor % must eventually

be changed to % as w increases.
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For case (b), we assume that (130) holds for an infinite number
of elements Q_ of {Qw} . We identify this subsequence by {Qz} where
z
z takes the integer values W, By the modified N-R procedure, the hz
1
for each element in {Qz} will be the larger of L(Q, + i AQz) - L(_Qz)

and L(Qz + % AQz) - L(Qz). If the latter is the larger of the two,

then {hz} will converge to L(Q + -é- 4Q) - L(Q). So that by (132)
and Lemma (A-1),

0 <h < lim hz=0
Z =P 00

which again leads to the desired contradiction. Certainly if

LQ+ £ 4Q) - LQ > LQ+F 4Q) - L@, (133)

then for sufficiently large w the above situation will hold. On the
other hand, if this inequality is reversed or equality would hold,

then {hz} would converge to h for which a contradiction will again

follow.

The situations described by cases (a) and (b) exhaust the possi-
bilities of what may occur for the subsequence {Qw} . In every case
we have shown h = 0, which implies Q = 5 By elementary analysis it
will now follow that the entire original sequence {Qj} must converge

to the unique solution point, a. Indeed, suppose this is not the case.

Then there exists an open circular region R, with center at 6, such

that an infinite number of Qj lie outside R and hence in the closed
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set M1 = Mn(Ez-R). The set Ml is not only closed but it is also
bounded because M1 < M. Applying the Bolzano-Weierstrass theorem
again, the set of Qjé M1 must have an accumulation point 61. But

it has just been shLown above that any convergent subsequence of {Qj}
must converge to Q ¢ M . This is a contradiction. We conclude

{Qj} couver jes to Q.
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APPENDIX B

ANALYSIS FOR GRAPHS OF CONFIDENCE ELLIPSES

The equation of the confidence ellipse for a given confidence

level 1 - 7Y (for example, ¥ = .05 for 95% confidence) is

‘ App (B-B) 4+ 286 (U-H)(0-F) + b4y (0-0)2 =D = Xi"_.),,(134)

where (ﬁ ,E) is the computed maximum likelihood estimate for the

position of the true parameter point, (ﬂo, Uo) in the U o-plane,

The quantity D(or X%_y) is the value obtained from a chi-square table

at the ? level, for two degrees of freedom and Ayu s> Piic » Bgg are
the elements of the inverse of the covariance matrix which is determined
by the main program. The equations for Auy » Auo » Agg are given
as equations (102), (103), (104), or as actually used in the computer
program, they are given by (120), (121), (122). The values of D for
95% and 50% confidence, the values at which the NWL program is presently
set, are 5,99 and 1.39, respectively, (See p. 42).

' We emphasize here the necessity of distinguishing Latween the

coefficients AIU‘ s A‘“, s Agg ©f (134) and the elements AHH . AHO s

AOO of the eovariance matrix A, Let E denote the matrix associated g
with the ellipse, so that ;
/A A )
- g :
. E = A 1_ KU H . (135)
Auo Ago

where
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A”” AMO
A

A”a 00 ) (Covariance matrix). (136)

The elements of E are computed in the main program and those of A by
numerical inversion of E. Hence, it is not necessary to reinvert A

(the elements of which are printed out by the program) in order to

compute E,

We simplify the notation by writing (134) in the form

ax2 + 2bxy + cy2 =D, (137)

where

a""'A‘lysb":A[lO'sc:Aao:x:(”"'ﬁ)s y=(a'3)0 (138)

FromA(lOZ) and (104), clearly a and ¢ are positive, and it can be shown

by the methods used in Theorem 2 that

A= ac - b2 > 0. (139)
Thué, (134) represents an ellipse for any positive value of D,

Our first objective is to establish the points of maximum and
minimm ordinates and maximum and minimum abscissas on the ellipse.
This is easily accomplished by equating successively to zero (dy/dx)
and (dx/dy) as determined from (137). Substituting the linear relation

y = -ax/b, (140)

which remains into (137), one obtains

X

2 b
= aA ’ (141)
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and from (140)

- a
y = A . (142)

In this way, two points are determined (not four) from (140), (141),

(142) with the possibility b may be of either sign. If b = 0, (137)

TReh (A KEERUP

SRl
o s

represents an ellipse with vertical and horizontal axes and the points

of maximum and minimum ordinates are (0, + Vb/e ).

From (142) we see that

- =
S(y) = Span in ordinates = 2‘/ jf > (143)

where S(y) denotes difference between the extreme ordinates. By

setting b = 0 in (143), we see that (143) reduces to 2y D/e. Thus

(143) gives the correct result for all b.

The span in abscissas, S(x), 1is determined by differentiating

(137) with respect to y and selting x'(= dx/dy) = 0. It will follow,

similar to the case of S(y), that

s e s e s S T

5 S(x) = 2 VAE . (144)

The ellipse represented by (137) for a given D may be very slender
and elongated as well as being too large or too small for convenient

plotting, if no courdinate scaling is done. llence, it is desirable to

. e . LI
At i b it et 0 ARSI AT AT A i it

scale the coordinates in such a way as to avoid these undesirable

1. S

characteristics as much as possible in the machine plotting.




Our next objective is to derive transformations which take the
ellipse of (137) into an ellipse inscribed in a square of fixed size.

The resulting ellipse may still be elongated, with eccentricity near
unity, but nothing is done about this. No rotation of axes 1is carried
out at any time.

We assume the square will have sides of M units (inches, centimeters
or some other convenient unit). ‘Ihus we will require in new coordinates
X and Y

S(X) = ¢ - M. (145)

Since it is the D 5.99) elliy.. .w:ne size we wish to control, we

95(=

hereafter let D =D The scaling transformations, from U ,0 to

95°
X, Y are
_2 ‘/ €D . _ 5
=2y & y_ 8
1] ¥ ) Y M Y. (147)

If these formulas are substituted into (137), the result is

2
X-D%+ 2 x-DHE-9 + (Y-?)2=Z‘a‘1 , (148)
ac

where X and Y correspond to [-1-,27- as given by (146) and (247). If
the spans S(X) and S(Y) for this transformed ellipse are computed as
was done for (137), it is found that (145) holds.

Some plotters, such as those used at NWl., have a basic unit for the

horizontal axis which is not equal to the basic unit for the vertical
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axis. Thus, we now consider transformations to actual plotter coordi~

e e

:
3
]

- nates (&€ ,7) such that (145) is maintained. Let ° denote the number
of plotter units per inch on the horizontal scale and c, the corres-
ponding number on the vertical scale. On the NWL plotter, for example,

there are 1024 units in about 11 inches horizontally and 1024 units

e T I AR S A T

in about 9 inches vertically, so that, in this case, ¢y = 93.1, c, = 113.8.

The scaling transformations from X, Y (in inches) to E,n (in

plotter units) are then

[}

- =c,(X-X (149)

M=M= cy(¥ - 1) (150)

Here we denote by E.,;i the coordinates on the arbitrary plotter

i

scales, of the point which is selected to be the center of the confi-
dence ellipse. In other words, E',ﬁ are not computed from f, ?, but
rather they are conveniently chosen to locate the ellipse as desired.

Hence, although ¢y and c, are scale factecrs as indicated by (149)

and (150) it would not be correct, in general, to write

E = c1X and 7 = c2Y . (151)

since X and Y are fixed while E_ and ;i are arbitrarily chosen.

L ¢ i WIS e e

Substituting from (149) and (150) into (148) gives

o
(o Nl""

(¢-D)F+ 2 B -+ m-m =
[o4
2

12 V ac

Letting 5“E = &', n -1 = 7N, we have
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2
(&/ep?+ VZ_:E CE'/e)(n'fey) + (nticpy? = B4 (153)

Eq. (153) holds for any positive D although we have been assuming here

D = Dy = 5.99. If we require the 50% level ellipse so that D = R, =

1.39, then the right hand side of (153) is simply replaced by

: 2 D
- e B (1s)
? : 95

| This follows easily by simply recasting the preceding analysis in

E ! terms of D50 rather than D95.

Solving (153) for n'/c,, the result is

2
1 _ . b 1 M A A 2
n /CZ—-Vac (8 /cl)i‘/4 ac-ac(etlcl) ’ (135)
or
{ n_ 1] -__b_ (i&) ( - ') + VMZA 'A_l_( - |)2 (156)
% =" Vac \ 1 §-8" T eg¥ 4ac ™ ac o2 §-60%

1
The 95% ellipse can be plotted from (156) in plotter coordinates §,7
and the 507 ellipse by the modification indicated in (154).
Tt remains to discuss the problem of markings on the axes in the
plotted figure for the readér's convenience in interpreting the graph.
These markings must indicate measurements in the original coordinates,

s, 0o

The span in abscissas and ordinates in terms of y and ¢ are

given by (144) and (143), respectively., Hence, the minimum (subscript 1)
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and maximum (subscript 2) abscissas znd ordinates are given by

M= B - VS uz_u+V—-A ,
(157)

.' . 01=E_‘/§’ 0-_-:8'-.*.1/-%,

where we continue to assume D = D95. These four numbers determine

the boundary lines of the square in which the 95% ellipse is inscribed.
In our figures the square is not explicitly indicated, but the four
numbers are used to determine the scale markings in the figure.

Numbers dl’ kl, d kz are determined such that

2’
X
21/51]2 =4, x 10 1 (158)
Y22 k,
2 1 d2 x 10 7, (159)

where kl, k2 are integers and dl’ d2 are numbers such that
o.1<d1<1, 0.1 £ d, < 1.

The right hand side of (158), (159) are simply representation of

numbers in “normal form" for FORTRAN numbers. Thus

1226.4 = 0.12264 x 10% with d; = .12264, k; = 4.

Next, we determine units 24 (horizontal) and z, (vertical) for

marking the axes in the plotted figure. The following rule is used:
k

: zi=.013101 ifo.1<di< 0.2,
k,
. 2z, = .02 x 10 ' oiro0.2 &K d; < 0.5, ({=1,2) (160) . :
. ki i
z, = .05 x 10 i£ 0.5 £ 4, < 1. :

AP L TR
el RATAL Sl ot
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To illustrate, suppose 2l’§? = 642 = ,642 x 103. Then d1 = ,642,

k1 = 3, therefore z; = .05 x 103 = 50. Hence, the horizontal scale

will be marked every 50 units (in u coordinates), or since the span

is 642, there will be about 13 divisions or perhaps 14 or 15 including

the relatively small extensions of the axes beyond the ellipse as

. discussed below.

We next consider appropriate values to assign gy and ¢ on the
axes at the left and right and lower and upper limits of the figure
itself. We wish these values to be integral multiples of zq (horizontal)
and z, (vertical). The following rule is used in which [x] indicates

the algebraically greatest integer not exceeding x:

- )
L™ | z 21 »
u2 if ,uz/z1 ig an integer
—:l + 1>z otherwise ,
z 1

[
. - [._ﬁ]zz , } (1eh)

0, if Oé/zq is an integer

0‘ = 0'
R [;—2- + 1]z otherwise «
L %2 2

The subscript L refers to t'.c .eft and lower boundaries of the figure

o

and the subscript R to the right and upper boundaries. The quantities

”1’ HZ’ dl, 02, s 2, are defined in (157) and (160).
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After Hys Hys Hys Hgs Oys 0Oy Oy, Op aTe determined, we
next compute the corresponding plotter coordinates éi, ”1’ From
(146), (147), (149), (150) we have

M=p=x,(¢- £, O-0=1,(1-7", (162)

where

- 2 \/Q . \/EQ
T, = Mcl 1’ T, = Mcz A - (163)

Finally, from (162)

e=(e'-£1—>+(u/rl) |
(164)
g

(n' -

B §
/]

From these equations we compute ﬁi, ﬂi (i=0,1, 2, 3) giving the
left and right and upper and lower boundaries of the 95% ellipse and
of the entire plotted figure in plotter coordinates.

Markings on the horizontal axis, '"tick marks') are to be inserted

for the following values of M My itz #o+ 2z1, cees Up- The

1’
§ coordinates of these points are given by the first of (164).
Similarly, we use the second equation of (164) to compute the 7
coordinates for the '"'tick marks' on the vertical axis corresponding
L 9Lt % 0 R’

Everv fifth "tick mark" on both axes is identified with numerals,

to O a + 222, soey 1]

i.e., numerals are printed at multiples of Szl (horizontal) and 5z,

(vertical), For example if 2, = 50, u, = 1250, Hy = 2000, then
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nunerals are printed at marks indicating 1250, 1500, 1750, 2000 and
"tick marks" are printed at 1250, 1300, 1350, ..., 2000.
In general, we wish the numerals to be well chosen for easiest

interpretation of the figure. In order to insure this, we determine

numbers Hy and 04, where K, is the U coordinate of the first

"tick mark' where a numeral is %o be placed, by the rule given below,

; and similarly 04 1s the O -coordinate of the lowest "tick mark" on

e the ¢ -axis where a numeral is to be placed. This rule is:

U, if (uO/SZI) is an integer
£ #4 =
Ho
: I({STI] + 1) (521) otherwise ,
( a, if (0'0/57.2) is an integer
. 0, = o
] (I:S-ﬁ] + 1> (5z,) otherwise .
z2 2

: The notation [x] again denotes the greatest integer function.

Hence,numerals are placed at
Hps My % 5205 oo, (,u4+ nlszl), u, + (n1+1)521 > Hq

Gy 0'44- 5z2, cees (04+ n2522), 0‘4+ (n2+1)52 > 0

2 3¢

where ny and n_, are integers.

2
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APPENDIX C

PROBIT METHOD

The probit method is used in the statistical analysis of tests
of the effectiveness of insecticides and other polsomns, and in other
problems of biological assay. Like the NWL statistical sensitivity
program, it is used in tests where responses to stimuli are quantal,
that is, every response to a stimulus can be characterized as a
success or a failure according to some arbitrary criterion. Like
the NWL program, it determines the maximum likelihood estimates of the
mean and standard deviation of a statistical distribution which is
assumed to be normal. The probit method is well adapted to, and was
designed for, hand calculations, the first edition of [10], Finney's
book on the method, having been published in 1947, before electronic
computers were in general use., It involves fitting a sequence of
increasingly accurate straight lines to the empirical data, the calcu-
lations being relatively simple, but the speed of convergence being
héavily dependent on the skillful choice of a line representing a
first approximation. Finney in [10] recommends that this be done by
eye, and states that a statistician experienced in the method will
ordinarily get results of suifficient accuracy for practical purposes
in two further iterations. See further discussion below, page 104.
If greét accuracy is desired, the NWL statistical sensitivity program,

with the quadratic convergance of the Newton-Raphson method, would be
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superior., But the numerical work in the NWL program,with exact
calculation of all second derivatives (as compared with approximations
in the probit method) would be very laborious by hand. We mention
that a useful table for carrying out a probit analysis by hand is
given in [11].

In a typical insecticide test of the type discussed by Finney
in [10], 50 insects might be given a dose of the poison of which the
concentration is 10.2 milligrams per liter, 40 insects a dose of
7.7 mg./1l., etc., and the number of insects killed for each dose or
concentration is recorded. Fianey actually works with the logarithm
to base 10 of the concentration (or of 100 times the concentration
if necessary in order to make all logarithms positive), which he
calls the dosage, rather than with the concentration itself, which he
calls the dose. He assumes that the critical dosages (rather than
doses) of the individual insects, as commented on in more detail below,
are normally distributed about a mean y with standard deviation, o .
This appears to be purely an assumption. Extensive experience with
tests of this type indicates that the critical dosages are in fact
approximately normally distributed,

Suppose that a given dosage, say X1 following Finney's notation
of x for dosage, kills 40 per cent of the insects subjected to it,
and aﬁother dosage, Xys kills 70 per cent. To give intuitive content

to these results, we hypothesize the existence of a random variable
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called the critical dosage of an individuasl insect, defined as the
dosage just sufficient to kill him. If the critical dosage for a
particular insect is 1.2, he will be killed by a dosage of 1.2 or 1.5,
but not by a dcsage of 1.1. We assume that those individual critical
dosages are normally distributed about a mean critical dosage, u ,
with standard deviation ¢ . The results cited above for dosages x,
and x, are interpreted as meaning that, for a randomly selected
individual insect, the probability that his critical dosage is less
than Xy, Or less than Xps is 0.4 or 0.7 respectively. Hence for a
large random sample, about 40 per cent will be killed by a dosage Xy
and 70 per cent by a dosage Xye In the language of normal probability

integrals, we can write

x -/
(12
ol f exp [-§u2] du = 0.4 , (165)
o Y
X 2
-1 Zexp[-‘l‘(xuﬂ) ]dx
oyim J_ ot M
X =M
o .
- exp [-f;_— o ldu= 0.7 , (166)
Vom J
-0
91
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If the normal deviates of the form (x-u )/ 0 are replaced by Y-5, i 3

tie quantity Y is called the probit. Thus,in these two cases we . f é

would have ! 3

: :
3 L 1 2 §
1 —_— exp [- 7Y ] du = 0.4 , (167) E
yom |
-o0 ;
s A 1 2 1
3 —_— exp [-Eu ]du= 0.7, (168) 1
! V2w q

o L

and from a probability integral table we easily determine the approxi-

mate values

im0 it b (G

Y, = 4.74665, Y, = 5.52440. (169)

The term -5 has no theoretical significance, but has the effect of
making the probit Y always positive in practical cases, since virtually
all of a normal distribution is within i'SG of the mean. Thus the

probit Y is related to the dosage x by the relation

Y-5=x—-‘ai. (170)

The probit Y of Eqe. (167) and (168), where the probability,

0.4 or 0.7 or some other value, is deduced from experimental data

(for example, the killing of 40% of the insects who receive a given
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dosage of poison), is called the empirical probit, to distinguish

it from the expected probit, also denoted by the letter ¥, which is

g introduced later. There exists still another probit, the working probit

Eq. (204), denoted by the symbol y. The empirical probit can have

the value i°°. Suppose that 25 insects receive a certain dosage and

all are killed. Then the equation corresponding to (167) is

AN R L F g

R .- ik 4 AR

Y-5 .
a/yam )f exp(-u“/2)du =1 ,
-0

of which the solution is Y = o0 ., Similarly, if no insects are killed
E at a given dosage, the empirical probit is Y = -o0,

Later Finney introduces new parameters ¢ and B to express the
relationship between the probit Y and the dosage or stimulus x by
the formula

Y=0a+ Bx, (171)

The variable Y here is called the expected probit and the expression

a + Bx is similar to the expressions ﬂai-a and Bbj-d in the

NWL analysis (see Eqs. (5) through (8)), or ﬁck-d for any stimulus Sy
whether a success or a failure. To clarify this similarity, we point

out that the symbols B play exactly analogous roles in the two

systems of notation, but Finney's &, which we temporarily denote as

aF’ differs from the NWL o, GN, by an algebraic sign and the

additive term -5. For, equating the stimuli x and c, we have

Y-5 % @+ Bx-5 = EpE - 28 L g . o
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from which it follows that
aF - 5= -aN. (172)

Considering now Finney's notation only, from (170) and (171) we

deduce
u
a=5-—
g (173)
B = '?ly- ’
and
u=(5-a)p
(174)
g = 1/30

The expected probit Y as in Eq. (171) is always finite for a
finite dosage x, since this equation merely expresses a linear
relationship between Y and x which is a line of best fit in some
sense when the optimum values of the parameters @@ and S have been
determined. This is in contrast to the empirical probit, which can
have a value of ,‘_t oo as pointed out above.

Now for the next few steps, following Finney's analysis on
pages 246-248 of [10], we suppose that we have a general probability
distribution, not necessarily normal, of critical dosages. We will
suppose that 1L, the Iogarithm of the likelihood function, is a function
of two parameters 6 and ¢ , and make certain comments on maximizing
L, and derive Finney's method for approximating the second derivatives
of L with respect to the parameters # and @ . Later we specialize
to the normal distribution and identify @ and ¢ with o and B as
discussed~above (see Eqs. (171), (173), (174)).
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Suppose that a dosage Ao has a probability P of killing a
randomly selected insect and let Q = 1 - P = probability of failure,
and suppose that it is observed in a test that r out of n insects
receiving the dosage Ao are killed. Thus r/n is what can be called
the empirical probability p of success, while P is a function of the
parameters § and @ as well as the dosage x and depends on the
assumed probability distribution (not necessarily normal). The object
is to determine the values of # and ¢ which maximize the probability
of obtaining the observed or empirical probabilities, r/n at dosage
A o and other empirical probabilities at other dosages in the experi-
ment, In short, we wish to determine the maximum likelihood estimates,
9 and J, for the parameters § and @ .

The probability that r out of n insects will be killed by dosage
}‘o is

P(r) = ()PTQ"T, (175)
(:) being a binomial coefficient with value n!/[r!(n-r)!]. Suppose
that a series of K dosages is tested in an experiment with empirical
probabilities of the form r/n for each dosage. Then the logarithm, L,
of the probability of obtaining all of the observed results, dropping
from L constant terms (not depending on §# and @ ) of the form
log (:) , 1s

L=XrlogP+ X(n-r) logQ, (176)
Y denoting summation over all dosages (Finney uses the notation S
for T).
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We remark here that n in this equation is only the number of
inseqots subjected to one given dosage. If the values for the K
different dosages are denoted by Ny, Myy ceey By the grand total N

is N = n, + n, + see + Oge Similarly we would have Tis Tos cees Tyj

Pl’ P2, censy PK; and Q1, Q2, esry QK' But ir Eq. (176) we follow

Finney's analysis (with X substituted for his S).

For the values of @ and ¢ which maximive L we will have

oL _ 9L _
56~ 28~ 0" (177)

DRI RTINS T

Now, from Eq. (176),

[°)

[

y pox 2

oL r Op n-r
T X ] T @6 ° (178)
] Putting -aiéo' = - -56% (since Q = 1-P), r = pn, and perforning some

simple algebraic steps, we easily show that

oL _ n(p-P 61?]

56 " 2{ R 90’ (179
and similarly

OL _ 5| n(-P) _Qz]

3 z [ i a (180)

Suppose that, at an intermediate stage in the calculation, ¢ and @

have values 0, ¢1 which make the derivatives OL/36 and OL/0@

numerically small but not exactly zero. The corrections &6 , 8¢
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are given approximately, by Taylor's theorem, by

9L o4 PR e A
T 86 36,7 * ¢ 56,09, 0 (181)

8T a? a4
a4,1+ 66 ——_——391“1 + b¢ —-—a¢12 = 0, (182)

where the subscript 1 indicates that the derivatives are to be
evalusted at 6 = 6, b= ¢1.

Finney now states ([10], page 248) that the second derivatives
“may be simplified by putting p = P after differentiation, in order to
give expected Instead of empirical values", and derives approximations
for the second derivatives in terms of the first derivatives. These
appear to depend for their validity on the assumption that the /4
particuler value 1’1 is near the empirical probability p (=r/n), whereas,
in fact, p may be a value which is not approximated closely when the
final maximum likelihood estimates 6, 5 are obtained. Yet the
method evidently has worked well in practice. Indeed, it is proved
later in this appendix, pages 108-112 , that, if Finney's method
converges at all, it must converge to the true waximum likelihood
estimates 6 s $, as determined by the NWL program, in spite of the
inexactness of the approximations which Finney makes at intermediate
stages. A convergence proof has not been worked out, nor does Finney
give such a proof in [10]. But a little computational experience with
the method soon convinces one that the method does converge, at any rate
for sufficiently good initial approximationms.
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The following is an attempt to obtain the expressions at which

Finney arrives for the second derivatives. We suppose, following
Finney's notation, that (6., ¢1) is a point in the 6¢-plane,
at which we wish to approximate the second derivatives, which will
be denoted by (9°1/06%) , (8°L/960¢),, (07L/08%),. we
will illustrate with (62L/ 06 2)1, but similar considerations will
apply in the cases of the other second derivatives.

We shall simply differentiate, with respect to g , the first
derivative as given by Eq. (179), and for convenience, in the next
few steps, we drop the subscript 1, since this differeﬁtiation will
apply to any point (6, @) including (91, ¢1). Primes will denote
partial derivatives with respect to ¢ ; thus P'" represents aZP/ 06 2.

Eq. (179) states

OL _ (P .,
Y z 7 L (183)
or

9L _ . (op-nP)P!
Y] z > . p2 s (184)

since Q=1 - P.

Derivative of numerator of (184) = ~n(P')2 + (np-nP)P". (185)
Derivative of denominator of (184) = P' - 2PP' = P'(1-2P). (186)
Hence ,

8% _ P> 2o[-n(e")? + (np-nP)P"] - (np-nP)R'P'(1-2P)

602 P2Q2
ke n 12 W (ENY2%(1-2p)
=1L 3 - @)ir e[ - B . (187)
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From this it is seen that we get a simplified expression for

8?'1../ o6 2, although not necessarily an extremely close approximation,

by assuming that p = P for every dosage x. Probably, in the majority

of practical cases, the positive errors in the summation approximately

balance the negative errors, Further comments on this are given

below. Making this assumption that p = P in all cases, we have

F: _QEL_‘: nor o 142
692_21’Q[ @"°] (188)

or, putting in the subscript 1, since, following Finney, we wish

this to apply at a point designated as ( 6,, ¢1),

= - . 8
(602 1 z [ P, \06 /4 (189)

Similarly we have the approximations

(§%>1§ 2:[-1,—1%; (%)12] . (190)
(5%?)1 = 2[- P1r:21 (%)1 (-gf )1] . (191)

From this developmeat it appears that Finney simply accepts
the errors which undoubtedly occur in using (189) - (191), trusting

that in the long run the positive errors will approximately balance
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the negative errors. Experience indicates that the method does converge

satisfactorily in practice in realistic cases, especially in the hands

of an investigator who is experienced in thé method and who makes a

skilled first approximation. If it converges at all, it must converge

to the true maximum likelihood estimates 5, $ ,» as shown in Theorem C-1

in this appendix.

However, i: is possible that artificial or unrealistic

cases exist in which the probit method fails to converge, since no

general convergence proof has been given so far as the present authors

are aware.

Using the approximations represented by (189) - (191), and for

convenience dropping the '='" signs although they are understood here,

Eqs. (181) and (182) for 86 and 8¢ take the form

602-1,—1“Q—1-(—g%>12+ G?Eﬁ<%)1(‘§i>1
2o (&)
0253 (32) ()« ver (%)
1 1 1
- (&)

100




- For given values, 01, ¢1 of the parameters (assuming they are near
the maximum likelihood estimates 3 ’ ; ), resulting In values Pl’ Ql’

. and the first derivatives (8P/06);, (OP/§@);, at the various 7:

A - gtimulus leveis, we solve Eqs. (192), (193) for corrections LY s 00
to give improved values 6, + 66 , ¢1 + 6¢ . '
So far this is very general, as remarked after Eq. (174), and
the probability distribution is arbitrary and not necessarily normal.
; » But now suppose we have a normal distribution, with
.
2 Y-5 . :
; P = —t— f exp(-u’/2)du , ©(194) i
t y 2m -0 . ) -.";z
Y=o+ Bx , ~(195) :
(195) being the same as (171). Then é
oP _ _1_ 2,1 — {
- exp [- (Y-5)°/2] =z , (196) E
V2m : H
or a

—_— = Z (197 5
Oa i ) %
ae : %
—= = xZ, (198) 4
a8 1
Hence, if 21 and d1 of :
- Y = y + dlx (199) 33
are first approximations to the maximum likelihood estimates of i
‘ (195), corrections 8c, 8d, to cys d1 are given by (192), (193) as 4
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specialized to the present normal case. Using the first derivatives

.as given by (197), (198), the equations become

2 2 2 '
6c£§§—+ 6dzl‘f,%-x=2%% (P—gz) ' (200)
. 2 2 2 t
bePBxy par i o? sy (o), 20

Z, P and Q being determined from (194) and (196) by the value of
Y from (199), i.e. with & = c;, B =4d,.
Defining the weighting coefficient, w, by

22 .
W= B ° | | (202)
Eqs. (200) and (201) are the equations for the esiimation of the
weighted linear regression of the variable (p-P)/Z on x, the weight
nw belng assigned to each value of (p-P)/Z.

This is briefly shown as follows. Suppose we have a set of K
points {(xi, yi)} and a set of corresponding weights {Vi} (yi
will be identified with (p-P)/Z for the various stimuli in the
present situation, and vy with the corresponding weight nw)., It is
desired to find the line y = ¢ + dx such that the weighted sum

S = Evi(c + dx, - yi)2 is minimized., We put

%-%—i-=2vi(c+ dx; - y) =0

N

%Si- = Evi(c + dxi - yi)xi =0,
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from which follow the normal equatioms,

cIv, +dXv.x, = v,y
i i™1 ) i1 (203)
cEv:lxi + d):,‘vi::i = Zvixiyi.

Letting ¢, 4, ¥;i» V4 here correspond to 8¢, 8d, (p-P)/Z,
2
nz
nw = _PQ srespectively, the similarity of (203) to (209) and (201)

is clear.

We now introduce the working probit, v, [10, p. 250], defined by

The working probit y depends on both the expected probit Y (which
determines P and Z) and the per cent kill p. Convenient tables for
deteérmining y as a function of these arguments are given in [10].
Replacing (p - P)/Z in Eqs. (200) and (201) by y - Y, by (204),
transposing the terms containing Y to the left, and replacing

22/(PQ) by w, by (202), Eqs. (200) and (201) give

dclow+ §dlnwx + InwY = Znwy (205)
dcPowx + 6dEnwx2 + ZowxY = Dnowxy , | (206)
But the expected probits, Y, are determined in each cycle of the

calculation from the equation of the line det. mined in the previous

cycle, ¥ = c, + dlx, Eq. (199), in the present situation. In the
first cycla of calculations, ¢, and d1 would depend on the line fitted

by eye (see further comments on this following Eq. (210)) to the
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experimental data, and the improved values resulting from the cycle

would be c, (= cy + 6c) and d (= d, + 8d). Logically, we should

have <, and dn at the start of our cycle, and improved values € r1

a1’ but we will stick with our notation c¢., d, for the initial

values as in (199). Thus each expected probit Y is determined from

and d

i 3 the corresponding stimulus x by Eq. (2.99), and so we have

E ' Tawy = clznw + dl)','nwx (207)

E ZnwxyY = clz:nwx + dl“",,nW'x2 . (208)

Putting these results in (2053) and (206), and recalling that

+ bc, &, =d, + dd, we have

, €27 % 2- %
czznw + dzznwx = Xowy (209)
c22nw-x + dzznmc2 = Y awxy (210)

for the direct determination of the improved values ¢y and d2.

The skillful determination of a first approximation ¥ = ¢y + dlx
Ly fitting a line "by eye" to the empiricasl data is a matter of
experience and defies exact analysis. Finney states, [10, page 248],

"care and experience in the choice of first approximations will usually

ensure that two cycles give a numerical accuracy sufficient for

practical purposes?! The dosages x are known and the empirical probits,
Y, which are determined from the empirical probabilities p(= r/n),

putting p in place of P in Eq. (124), are rlotted against x. The

el e s RS e £

subsequent fitting of a line to these piotted points is similar to
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“"least squares by eye", which is well known in obtaining "'quick and
dirty" solutions to practical rroblems. But the difficultles are
compounded here by the fact that some of the empirical probits may be
ieo . If, for a certain dosage x, all of the subjects are killed,
or r = n, then the empirical probability p is 100% ox 1.0, and
consequently, by (194), the empirical probit Y is oo. Similarly if,
for a given x, p 1s U0 (i.e. none of the subjects is killed), then the
empirical probit Y is -oo, Presun;ably, users of the method learn
through experience how much to raise or lower the line Y = cy + dlx,
corresponding to empirical probits of oo and -oo,respectively, so as
to get a reasonably good first approximation and thus justify the

quoted statement from [10] that two subsequent cycles of calculation

will usually give a numerical accuracy sufficient for practical

purposes.

In solving this linear system (209) and (210), for <, and dz,
we introduce, with Finney, [10, pp. 55 and 250], symbols x, y, 8 ex?
s , defined as follows:

xy
3 = Zowx (211)
20w
T . &nwy
y Tow ° (212)
S. = ZXaw(x - ;)2\ (213)
XX ?
S, = -xXy -y - 214
Xy Towlx - x)(y - y) (214)
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We can then show by algebraic manipulations, of which we omit

details, that

The determinant, 4, of the linear system (209), (210), is

4 = Enw):nwxz - (Enwx)2 = Sxe)nw,

St

the last expression following by (215)., Clearly, A4 > 0, by

and the fact that the weights nw are positive.

W P T

system (209), (210), for ¢y

algebra is then given bv

(=S
2]
n

2 I OWYy Zinwxz - Xnwx * Xnwxy

D
o
]

2 2w * Inwxy - Ynwx ¢+ Znwy,

and from (216), (217) and (219) we obtain

A . dz = Sxyznw ]

or
XX XX
We can then show that
¢, = ; - dz;
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(215)

(216)

(217)

(213)

The solution of the

and d2 by Cramer's rule from linear

(218)

(219)

(220)

(221)
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by evaluating 4 ° (; - d2;) by means of several of the equations
starting with (211), carrying out the necess;ry algebra, of which
again we omit the details, and showing that the resulting expression
is equivalent to 4 ° c, as given by (218).
The improved values ey and d2 are thus given by Eqs. (220), (221),
and the resulting equation at the end of the computing cycle is
Y =c, + dx, (222)
as an improvement on Eq. (199); that is, (222) in general leads to
a larger value of the likelihood function than (199).
This analysis leads to an efficient algorithm for use with a
desk calculator, and such calculations have been carried out by one
of the present authors. The experimentally determined values of the
logarithms of the stimuli, x, are entered, and the corresponding values
of n, r and p(= r/n). The values of Y are then calculated by Eq. (199),
Y = ¢y + dlx,from the previous cycle or from the line fitted by eye.
The values of w and nw can then be computed from Eq. (202), from the
values of P, Q and Z, all of which depend on Y, but [10] gives tables
for w which are accurate and extensive enough for most practical work.
The working probits, y (see Eq. (204)), are them found from tables
in [10]. We next compute Xnwx, Znwy, Envxz, and Fuwxy, all of
which are efficiently computed on a desk calculator. The values of
X, ¥, 5 and S,y 8re then found by Eqs. (211), (212), (215) and (216),
d2 by (220) and <, by (221), and we then have the improved equation,

(222),
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After several such computing cycles, usually not more than four
or five cycles unless the {ci} and {di} are computed to high
precision, say to more than five significant digits, the values start

repeating themselves, with (for some n) ¢_ = ¢ =c = ... to

n ntl nt+2
the number of digits carried, and similarly for the {di} » Indicating
that convergence has occurred. We show in the following theorem that

in such a case, denoting the final regression equation so obtained as

Y=0 + Bx (see Eq. (171)), then the corresponding values of u aud
0 , computed by Eqs. (174), must be identical with the maximum likelihood

values E , 0 computed by the NWL program.

W PR E S v U7 T R T R

THEOREM C-1

Assume that the parameters s dn in the Finney method converge

SRR Y TR

to values, aa, B8, with (1) c,>a, dn-> B asmn » o0, (2) 1f

¢, = a and d1 = B in the cd-plane, the increments 8c, dd as given

by Eqs. (200) and (201) both vanish, and (3) by continuity, &c and 64d

are arbitrarily close to zero if (cl’ dl) is arbitrarily close to

(o, Q) in the cd-plane. Assume further that the experiment is such

that (35), (36) in the NWL theory are satisfied, guaranteeing the

existence of a unique pair 1_1' . 0 of maximum likelihood estimates.

Then 1f U, ¢ are computed from this pair a, 8 by Eqs.(174),

these values u, g are identical with the values ;.l— ’ 0 as computed

i by the NWL method.

Proof. The proof consists simply of showing that, if we have

values @, 8 such as are described in the hypothesis, then for the i l

. ,

1G8

it aeta i




R, Y X

B s e e R a3 sa T

corresponding values in the NWL theory (corresponding to the same

values of 4 and ¢, but with oy in general different numerically

from o, as indicated by Eq. (172)) we will have Ly = LB = 0,

F
wh:l.-ch can be true only for the unique maximum point (E . E ) or

(47, E) in cases where the conditions (35), (36) are satisfied.

Hence the point (aF. B) of the hypothesis must correspond to the
point (EN,E) or (E R E) of the NWL theory. Naturally there are
many details, which we proceed to give.

From Eqs. (200) - (201), the corrections 8c and 84 both vanish,
indicating that convergence has occurred in the probit method, if and
only 1f the right~hand sides of these equations vanish. This linear
system has a nonsingular matrix, since it has been shown following
Eq. (217) that A > 0. These right-hand sides are equivalent to
OL/0a and QL/GB in the probit system, as is easily shown. Hence
convergence occurs, and 6c = 8d = 0, if and only if a point is
reached at which OL/0a = OL/Of = 0, and this result is to be
exf:ected on general principles as well as on the specific analysis
given here. Hence our object is to show that, if a point is reached
where OL/Oa = OL/QB = 0 in the probit system, then we also have
OL/8a = OL/®B = 0 in the NWL system, so that we are at the
maximum likelihood parameter point (a ,E) or (U,0).

In comparing the probit and NWL systems, we have to deal with the
unjvariate probability integral p(x), q(x) = 1 - p(x) and z(x), with

Finney's P! Q, Z and Pk’ Qk’ Z.k corresponding to a specific dosage X
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with his p = r/n = empirical probability for a given dosage, and with
1 ' the expressions Py and q 5 in the NWL gystem. Hence we comment here
on these various notatioms.

The probability integrals p(x), and q(x} and z(x), are given by
Eqs. (10) = (12) with slightly different notation from that which is
uged here, and also the functions P(x) and Q(x) are defined earlier,
page 95 . The NWL expressions Py and q_,l are defined in Eqs. (3), (4)

in terms of these p and q functions of certain arguments.

We now suppose that, in a sequence of iterations of the probit

method, a situation has been reached in which 8L/ = OL/9¢ = 0, !

or, Eqs. (179) - (180) are satisfied, implying that a maximum of
Finney's likelihood function L has been reached. Supposing further

! that the underlying distribution is normal, we use Eqs. (197) - (198)

T e e

These obviously imply that the right-hand sides vanish in Eqs. (200) -

; and obtain

g %.zﬂpﬁ'—az=o (223)
-

E _g%,;ﬂ%’ixz=o. (224)

(201), the equations which are actually used in the iterations, so
that further iterations would merely repeat the values already obtained.

Our object is to show that, in this situation, we must also have

OL/8a = OL/3B = 0 in the NWL method, so that we must have arrived .

at the unique maximum 1ikelihood point (o ,E) or (17 ’ 0) in the MWL

e LT SR

system, using the (4 ,0) system as a common coordinate system for
purposes of comparison.
110




!'g_p;':‘:yv T

R PENE PR R TR

By Eqs. (194) and (196),
wer(BE). nee(3E). e

since Y-5 ie equivalent to (x, - #)/6 , and similarly

f&:LE_) ,

Qk=1-pk=q( 5 (226)

Now the derivative L, in the NWL system is, by Egs. (10), (11),

(13), (18) and (19), given by

b,-H a, - U
() (~5)

m o n ¢

Ly= &2 —/—mm— - }y — (227)
¢ el bj'”) 1=1 (ai'” ’
= P\ "5
and by Egqs. (225), (226), this is equivalent to
2y
L, =mps— =105 (228)
a Q P’

(referring only to subjects receiving the stimulus xk).

Here we have the NWL derivative L, and the 1 and j summations as
in Eq. (5), but Finney's Pk’ Qk and Zk corresponding to the dosage X .
At a given X Iy insects receive the stimulus and Ty of them are

killed. Hence the contribution to the NWL Lo from these n insects
is
oy - 3% 1%

Qk pk ’ (229)

and taking all of the K stimuli into account, the NWL L4 is
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L I T
L - 2 - ’ (230)
el [ % Py
which simplifies to
B T T
P> [T . (231)
Putting T = Py and simplifying further,
X oz
Ly, = 2 (®_ -1p), (232)
a k=1 Pka k k -

and this by Eq. (223) is Ly in the probit system.

Hence L, (NWL) = 0 if and only if L, (probit method) = 0, and
a similar analysis shows that the L B derivatives vanish together.
Hence Finney's maximum likelihood point (U, 0) must be identical
with the NWL maximum 1ikelihood point (M, 0), and this completes
the proof of Theorem C-1.

In [4], [10] and other books and papers dealing with experiments
in which the probit method is used, wes often f:_tnd expressions such as
1D50, LD99, etc., signifying the lethal dose (or dosage) for 50% of
the subjects, for 99%, etc. Finney in [10] alsé uses expressions

such as ED50, the letters meaning "effective dose', in cases where

effects other than the deaths of the subjects are considered successes.

Once the maximum likelihood values ;7 ,3 have been determined, values

such as LD50 and LD99 are very simply determined from a table of »
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. probability integrals. Since
p(0) = 0.50, p(2.3263) = 0.99, (233)

P where p(x) is the probability integral,

TR T e

X
P = —i= [ exp(-u¥/an, (234)
e Y2mw Y-00
? then, if Xsq and X459 represent ID50 and LD99 respectively, we have
o X - B Xgg = H
A 50 _ 99 _ ~ .
F» . - E = 0’ E = 20326.’ 'y (235)

. : ~ (compare with Eqs. (165), (166)), from which we find

X5 = u, Xgg = H + 2,3263 0, (236)

and similarly for other expressions such as 1D25, 1D90, or LD95.
Reference [4] deals with an experiment in which poison (cobra
venom) was administered to dogs. The input values including calculated

values of x or log (100 ° dose), are as follows:

Dose x
mg/kg = log(l00 dose) n r
| 0.06 0.77815 4 0
E i 0.09 0.95424 5 1
f 0.10 1.00000 9 | 3
; : _ 0.11 1.04319 6 3
E 0.12 1.07918 8 7
) 0.25 1.39794 6 6
5 0.50 1.69897 6 | 6
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,1f the dosages are so distributed. But the results were expressed

The dose is in milligrams of poison per kilogram of the dog's weight.
The maximum likelihood values E,? s using the dosages, x, ’

were calculated at NWL by two distinct methods, (1) by desk calculator,

using the probit method as discussed in this appendix, and (2) on an

IBM 7030 (STRETCH) computer, using the NWL method as described in

the main body -of this report. The results of the STRETCH calculation

are shown on page 115 of this report on which it will be observed

that values of the dosage x to 5 decimal digits were used (with one

trivial discrepancy in ti;e smallest value of », in that published

tables of logarithms give 0.77815 as the value of log G, whereas

the value printed by the computer was 0.77814), In the NWL hand

calculations, rounded values of the x's were used, 0.78, 0,95, etc,

The LD99 values were also computed by Eqs. (236) above, Then the

results were expressed in terms of the doses (in mg./kg. as discussed

above), by taking antilogarithms. The values of 0 so obtained are

of doubtful significan-2, since the doses are not normally distributed

in terms of the doses for purposes of comparison witk the results
in [4].

" It is not known to the present authors how the authors of [4]
performed their 'callculat:lons. But it is assumed that they used the
probit metho&, since they used such terminology as LD50 and LD99,
and gave u figure showing the line Y = & + fx and curves determining

95% confidence limits, which are similar to the corresponding curves
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It is stated in [4] that the LD50 and ID99 doses are 0.105

and 0.148 mg./kg. respectively. 1he remaining results oﬁ the line

t
"Edgewood, ref. [4]" in the table below were deduced by the present

.

authors by means of Eqs. (236) and by taking logarithms to express

results in terms of dosages.

In view of the uncertainty as to the

methods used in [4], close agreement between the Edgewood and NWL

results was not necessarily to be expected.

However, a comparison between the two lines of NWL results,

for dosages rather than doses, is meaningful.

were slightly different, as has been explained.

The input values of x

Additional slight

differences may be attributable to roundoff error and similar causes

at intermediate stages, the NWL and probit methods being quite different.

But theoretically the final results should bYe identical (for identical

input), by Theorem C-1 of this appendix,

The results of these calculations were as shown in the following

table.
H=1p50 O w99 | 4=
1D50
X X x me/k
Edgewood, ref.[4]} 1.02119 | .064051 |1.17026] .105
NWL Hand Calc. 1.02306 | .064432 |1.17214| .10525
NWL STRETCH Calc,| 1.02353 | .064127 | 1.17273| .10557

g
ng/kg
.11589
.11599
.11591

1D99
mg/kg |
.148
.14864
.14884

i15

I

o r el M




In this table, *he first three colums refer to the output in

) L 42
dosages, and the iast three to the output in doses, milligrams of -
poison per xilogram of the dog's weight.

Also, 90% confidence limits for thie NWL hand calculations were

computed by Eq. (4.6), page 63 in [10], which is repeated here as
(237). For a given Y, for which the corresponding x is computed

from the equation Y = o + S8x, the limits are

t,” -2
£ Lo+ t f 1-8 X=X
o *+ig 0 O ‘[Enw+ S (237
| where | . ’
!"7?513; : ' | g = tzl(ﬁzsn) , (238) ) -;

! and t is the value such that the standard t-variate in the Student t
distribution, with K-2 degrees of freedom, with probability 0.90
(in the c#se of 90% 1imits) lies in the interval (-t, t). In the
present case, in which ¥ = 7 and hence there are 5 degrees of freedom,
the value of t is 2.02. The positive and negative signs, in the doubie
sign in (237), give the upper and lower confidence limits :especti"vely.
These_éurves and the line Y= & + Bx, are shown in Figure 4.
Ifg > 1, expres_sioﬁ (237) will clearly have a negative
radicand when x = ;, and for this reason 957 confidence limits cannot
- be computed for this exaﬁple by this method. For probability 0.95,
the value of t as discussed above is 2.57, and for this example we

have {} = 15,52013, Sxx = ,02732, and hence g = 1.004 > 1, It is

not known to the present authors how the 95% confidence limits of

[4] were computed.
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APPENDIX D _

SMALL SAMPLE THEORY

For determining confidence regions, the method recommended by

Golub and Grubbs in [14] (see Section IV of the present report) and
used in the existing NWL program, is that based on the asymptotic

normality of the distribution of the maximum likelihood estimates

P, WY 05 % T L R

4 and 0 for large samples. Since the experimental cases received
at NWL usually contain 30 vwesults or more (firings at armor plate),
this asymptotic or large sample method is reliable.

f Also, this asymptotic method is relatively simple and straight-

forward to program for a computer. It is not exact, however, except

in the 1limit as the sample size becomes infinite.
In this appendix, a method is outlined by which confidence regions

could be set up, which would be exact for finite samples of any size.

TR : T ORI UL TR £

Unfortunately, it appears that it would take a great deal of computer
time, But we feel that it is worth giving this method for completeness.
Eé computationally feasible, it would be of greatest interest and
usefulness for small samples of say 4 or 5 results, for which the

i asymptotic large sample method would give results substantially in

error., For this reason, such a method or theory is often referred to

POP R USRI S OU £, L

% as @ small sample theory. It could equally well be called an exact d
theory, giving exact results for samples of any size, which the l
asymptotic theory fails to do. ;3
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The confidence regions generated by the exact method discussed
here would be connected sets in the plane, but not ellipses in gemeral.
These point sets, each containing infinitely many points, could be
approximated by working with finite grids of small mesh size.

We begin with some definitions and generalities about confidence
regions for experiments of the type here considered, and many of
these remarks apply to the asymptotic large sample theory, or to any
method of setting up confidence reglons for these experiments, as well
as to the exact theory to be presented in detail in this appendix,

We are given a set of stimulus levels (projectile speeds in the
case of the armor plate experiment), C1s Cps +ev3 Oy in the notation
of this report, Section IV, where N = n + m. We could have, for
instance, ¢ = 1153 ft./sec., ey = 1161, etc. These c; are constants
which serve to define i - experiment. They are not random variables.
In setting up confidence regions we conceive of a large number of

replications of the experiment, with exactly the same set of {ci}

each time, but with different outcomes, and analyze the distribution
of these outcomes by probabilistic methods., The fact that in many
experimental situations it is not possible to control the stimuli
exactly, in particular in the case of projectile speeds, is immaterial
from the theoretical point of view. Once we are given the constants
of the experiment, the set of {ci} , we can compute the functions

f (6k; Hs0) of Eq. (65), each £ depending on the constant c,, the
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random variable dk’ and the variables y and 0. If we changed any
of the {ci}, we would have a different experiment, with a different
set of confidence regions corresponding to the various possible outcomes.

The random variables are the {6k} of Sectlion IV, ék being given
the value 1 if the k-th shot, of speed Cps produced penetration, and
a value of 0 if there was no penetration. Since there are N of these
random variables, each having two possible values, there are ZN possible
outcomes of the experiment, or ZN values in the joint disgtribution of
the random variabies. When we conduct an actual firing experiment,
determining whether or not penetration occurs at 1153 ft./sec., at
1161 ft./sec., etc., in the armor plate experiment, we are taking a
sample from the joint distribution of the set {bk}. In practice we
could not without many trials repeat the experiment ever once, because
of the impossibility of precisely controiling the stimuli, but we can
conceive of a large number of replications, always with the same
constants {ci}.

Those members of the set {ci} for which penetration occurs form
the set {ai} in the notation of this report, and the "failures" form
the set {bj}’ In some of the ZN possible outcomes, for a given set
of constants {ci}, Egqs. (35) and (36), the necessary and sufficient
conditions for the existence of a unique maximum of the likelihood

function, with 6 = 1/8 > 0, will be satisfied. These will be called

valid outcomes. The remaining outcomes, in which Eqs. (35) - (36)
are not satisfied, will be called degenerate outcomes. Thus the

number of valid outcomes, plus the number of degenerate outcomes, is ZN.
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It is a trivial matter to construct examples of both types of outcome
say for N = 3, the minimum value of N for a possible valid outcome.

In any experiment, where the set {ci} 18 specified, with N 2> 3,
degenerate outcomes will necessarily exist, for instance by taking
every "'success", a;, greater than every bj’ so that (35) is not satis-
fied. Also, valid outcomes must exist, in every experiment of interest
at any rate. Hence if we denote the numbers of vali. outcomes and
degenerate outcomes by Nv and N 4 respectively, we have

| N+ Ny = 2

d (239)

0o <N <2V,

where N(= n + m), as before, is the number of members of the set {ci}’
or, in the armor plate experiment, the number of projectiles fired.

For any one of the Nv valid outcomes of the experiment, say the
t-th one, there exists by Theorem 4 a unique point Xt(-ﬁ - Et) in the
B0 -plane, representing the maximum likelihood estimates of the
parameters y and O determined by the t-th outcome. The calculation
of these values [_i t and 0 g toa preassigned accuracy is of course
the principal object of the program described in this report. The
U0 -plane and three of these points are shown in Figure 5. In actual
expe::i.ment:s-Nv may be very large, but is always less than 2N and
therefore finite. If N = 30, a realistic value in armor plate firings,
N > 10,

For any method which may be used for determining confidence

regions, there 18 associated with each point Xt(il- - Et) a corresponding
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confidence region Rt' For the asymptotic large samble method which

is used in the program (Section IV), each of these regions is an ellipse
with Kt at its center, and for convenience the confidence regions

are shown as ellipses in Figure 5. But for the exact or small sample
method to be described in this appendix, the regions are in general

not ellipses. However, with each point Kt(ﬁ t’at) there is associated

a corresponding confidence region Rt’

A'(u',0o")

Figure 5

Maximum Likelihood Points Zt(ﬁt . ;t) and
Assoclated Confidence Regions.
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So far we have merely stated that these confidence regions exist,
and are associated one-to-one with the maxirmm likelihood pointi
At([—i t’;t) in the MO -plane. We are now ready, however, to deal
with such questions as the following. What is a confidence regic.?
What conditions must be satisfied by the system of confidence regions
generated by a given experiment, i.e. a given set of {ci}, in order that
the system qualifies as a set of, say, 90% confidence regions for the
experiment?

First, the true but generally unknown parameters, TR and do,
are constants which we are trying to estimate from our experiment,
and it is meaningless to speak of probabilities that the true parameter
point AO( ”o’ o'o) lies in a given region. The true values M, and do
could be determined to any desired accuracy and confidence level by
a sufficiently large number of experiments. Being comnstants, they
are not subject to any statistical distribution., Alternatively, we
may 1if we wish think of the true parameters T8 and o, as controlled
by an imaginary opponent who sets them at any values desired by him,
but does not inform us of the values. Again, they are not subject to
any statistical distribution. Once this opponent has set the values,
ov' sk ig to estimate them by experimental methods.

.«e the experiment has been defined, by specifying the constants
{cyts @ set of N, maximum likelfhood points {(Kt([-lt,;t)} and
assoclated confidence regions {Rt} (by whatever confidence region
method is 11 use at the tfme) are determined. There may be many

millions of them in realistic experiments.
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But we can conceive of the computation of the entire finite system,
since the entire gystem is defined once the { ci} are given, and it is
defined before we take any sample of the joint distribution of the
random variables {§ 1}’ as discussed above, by an actual firing of N

projectiles, in the case of the armor plate problem,

REMEARRC ALY Al E N D

For any specified outcome of the experiment defined by the given
set {ci}, either a valid or a degenerate outcome in the terminology
used above, and for any assumed values (trial values, etc.) 4,0 of the
paraneters, whether equal to the true values yo, g, or not, there is
a probability of occurrence of the given outcome expressed in terms of

the variables y and ¢. Ve can begin with Eq. (65) giving the

probability density function for each

1- 6

L=EC0,3H,0) = [p(ck;” )Tk[q(ck;”)] k., (240)

and write the joint demsity function for the entire set {§ i} in the g

form :e

: F(61’ eeey GN; u’ a) = n f(ék;y’ a) » (241) A
k=1 i

F(61¢ vesy 6N; u,0) =11
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Now suppose a definite outcome is specified by as~igning particular
values {61*} (each 0 or 1) to the set {51}, eg. 8, =0, b, =0,
63 = 1, «eso « The probability of occurrence of the specified outcome ’

is then

G(M,0) = F(ol*: “':'ON*;HQU)

_ kII:II[p (ck;# )]‘k* 1571 [q(ck;u )] 1- ﬁk* . s

If we replace each bk* by its value, 0 or 1, and replace each %

b L [N 4' N . .
Do . . ol [ PO R
X Y

vhich 1s a "success" by an a, and each e which is a "failure" by a

bj’ we get e

n a,~u m bj'll
G(u,0) = IT p( 5 ) n q( r ). (244)
i=]1 =1

which 1s consistent with the expression in Eq. (2). Eq. (243) or (244),
then, gives the probability, in terms of the assumed values of the
variables y and 0, that the specified outcome, valid or degenerate,
will occur, The sum of all these G functions, for a given pair of
valurs of 4 and 0, over all of the 2N possible outcomes of the i
experiment, must be 1, since for any sample from the distribution of !

the set {bk}, i.e. for any firing of N projectiles at the specified

speeds {ck} in the armor plate test, one and only one of the N

R o
PRSI TR 5 3.V X

possible outcomes must occur.
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We can now explain the significance of the confidence regions
{Rt} of Fig. 5, one Rt for each valid outcome, and state the
condition which they must satisfy in order to be true confidence
regions at a specified coafidence level., The discussion is still
perfectly general in that it applies to any method of secting up a
system of these regions. For definiteness, we will specialize to
90% confidence regions, but the numerical value of the confidence

level is immaterial.

The condition referred to is as follows. The system of 90%
confidence regions, {Rt}-, must be such that,whatever values the
true but unknown parameters I‘o and ao may have, the conditional
probability 1s at least 0.90 that, given that the outcome of the
experiment is a valid one, the true parameter point Ao(“o’ 00)
is covered by at least one region of the system of confidence regions,

We give a simple numerical illustration in terms of the situation
represented in Fig. 5, where there are only three valid outcomes,
and then we phrase the condition more formally in terms of the
G(u4, 0) notation.

In Fig. 5 we consider the situation with respect to the peint
A'(#',B')\, whé.ch is to be\

true parameter point Ao(llo, ab}, since the position of Ab is unknown.

regarded as a possible position of the

Suppose we have the following probabilities: Gl(ﬂ', o') = .08,.
G2(M 'yo') = .56, G3(ll', 0') = .16. This means that, if the
population paremeters are u' and 0', then the probability is .08

that the result is vaiid outcome No. 1 and similarly for subscripts
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2 and 3. Hence the probability that the outcome is a valid one is the

sum of these, or .80, and the probability of a degenerate outcome isg
1 - .80 or .20. Therefore, given that the outcome is a valid one, the
conditional probability that it is outcome No. 1 is .08/.80 or .10,

and similariy for outcomes Nos. 2 and 3 the conditional probabilities

are .56/.80 or .70, and .16/.80, or .20, respectively, these cond tional

probabilities summing to 1 since we suppose that there are only these .
three valid outcomes. But the point A'( U 'yo') is contained in both
R2 and RS’ and the conditional probability that the outcome is No. 2 |
or No, 3 is .70 + ,20, or .90. Hence, if the true parameter point
Ao is at A'A, the conditional.prgb_a,bility, given that the outeome is &
valid one, that the poir;.t Ao is covered by at least one 'ef the regions
{Rt} » 18 .90. Thus the required condition is satisfie’d-for the point
A' by the system {R.}. Obviously, in order for the condition to be
satisfied for all admissible positions of the point Ao(uo, o'o), all
such positions would have to be covered at least once by the system
{Rt'} » and this is not the case in the simplified Fig. 5.

This example can be looked at in another way in terms of a largn
number of replications of the experiment defined by the constants {ck}
Suppose the experiment is performed 1,000,000 times and that the
true pavameter point Ao([lo. ao),. as before, is the same as A'(u', ¢').
Then, because of the assumed probabilities Gl(n', c') = .08, etc.,
outcome 1 will occur about 80,000 times, outcome 2, 560,000 times,
outcome 3, 160,000 times, and one or another of the possible degenerate
outcomes will occur the remaining 200,000 times. Therefore, out of
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800,000 replications in which a valid outcome occurs, outcome 2 or 3
will occur 720,000 times, or in 90% of the 800,000 cases., But

Ar{ut, 0'), which we assume here to be the true parameter point,

is covered by both of the ronfidence regions R, and R3, and thus is

2
covered in 720,000 out of every 800,000 replications which result in
a valid outcome, or 90%. If every admissible position of the point
Ao'(uo,"_oo) satisfles a similar con;iition, the system of confidence
regions is shqv}nmto be a legitimate system at the 907 confidence
Ieyel.

The folldwing analysis is a simple generalization of the foregoing

. examplé. We now assume that the set {ck} has N members, so that there
are ZN possiblé,putcomes, valid and degenerate. Let A(U,0) be any
point in the [la-élz;nq which is a possible position of the true
parameter point‘Ao‘( Hos bo) , and let Gk([.l, 0) (see Eq. (244)) be

the probability that the k-th outcome will occur, if the true parameters

.are u and 0. Let
F Pv(ﬂ,d) = f {Gk(‘“ s o)" k-th outcome 1is valid} . (245)
¥ Pd(ﬂ;0)=1'p(ﬂ,d).l—: E{Gk(ll,o‘)lk-th outcume is},(2-’+6)
i v k degenerate
_ z t
‘ )

(v for "valid", d for "degenerate", c¢ for "covers').
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Ther the following condition must be satisfied.

[e (4, 0)1i"p (u, 0)] 2 0.90. (248)

If & similar condition is satisfied by every aduissible position

of the true parameter point A (¥ , 0,), then the system {Kt} is a
legitimate 907 system of confidence regions. It is assumed here _
that, given the set {c,}, we have not only a set {Xk(ﬁ'k,'&k)} of
maximum likelihood points, ‘one for each valid outcome, computéble

by the principal program of this report, but also a system {Rt} of

907 confidence regions. Since the discussion still applies to any
method of determiniqg confidence regions, we merely assume that the
system {Rt} exists, and have not commented, in the preceding discussion,
on the method of determining the system.

We now turn to the exact or so-called small sample method, the
description of wihich is the principal object of this appendix, for
determining the system {Rt} of confidence regions.

First we comment on the phrase "admissible positions' which has
been used with regard to the true parameter point Ao( ”o’ do). We
will have only a finite set {Rt} of confidence regions, each of finite
area, and hence the set of‘possible parsmeter points A0 cannot possibly
be covered by the union of the sets {Rt} 1f it 1s of infinite area.

In an actual experiment it will ordinarily not be difficult to set
limits »4 . a&nd g such that the true mean 4 must be in the

interval (M min’ pm). In the armor plate experiment, for instance,
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the projectile speeds are always positive and we may know from the
characteristics of tﬁe gun, ammunition, ete,, that the speed 18 always
less than 2500 ft./sec. In such a case we could say that M must

be in the interval (0, 2500). From a knowledge of the bommds on M,
and on the magnitudes of the individual stimuli, we could then compute
bounds ¢ min and amax on the true standard deviation g,s o adn
normally being O and "max positive., Thus in an actual experiment we
can ordinarily limit the admissible positions of the true parameter
point to those in the interior of a rectangle in the MO -plane,
determined by the inegualities u min < u, < I

0 nin < 0, < O .n? and this rectangle can be covered by a finite
number of confidence regions, each of finite area.

We note in passing that the same problem of covering a possibly
infinite area in the MO0 -plane exists even in the asymptotic large
sample method, since in practice we always have a finite number of
stimuli and therefore a finite number of possible valid outcomes,
each associated with its own confidence ellipse of finite area. We
do not dwell on this point here, the large sample method being discussed
in Section IV, although without explicit mention of this point.

In describing the determination of the confidence regions {Rt}’
rue confidence region Rt (as well gas one maximum likelihood point
Kk(ﬁk,ﬁk)) for each of the N, valid outcomes of the experiment, we
will consider a numerical example which will bring out the essential

simplicity of the procedure, while if on the contrary we set up a
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perfectly general notation with multiple subscripts, etc., we might
create ﬁ false impression that the pro?ess is obscure and complicated. - *
We recail that the separation of the 2N possible outcomes of the
experiment into Nv valid outcomes and N d degenerate outcomes, where
Nv + Nd = 2N, is independent of the assumed values g and O, but
depends only or whether or n;)t the {ai} and {bj} , that is, the
successes and failures among the stimuli {c.k} . satisfy Eqs. (35) -
(36). Consequently, whatever admissible parameter point A(U,0)
we consider, we will have exactly Nv valid outcomes to take into account.
Moreover, Gk( MU, 0), the probability that the k-th valid outcome
(in some enumeration of these outcomes) will result when the parameters
are g4 and O (arbitrary admissible values) will be a positive number
on the open interval (0, 1), though of éourse very close to 0 in
some cases, those in which a large number of factors in Eq. (244)
are small probabilities. The sum X Gk([l s 0), sumned over all
valid outcomes, will be pv(ll, 0), bl; definition of the latter, Eq. (245),
and therefore X {[I/pv(ﬂ, o‘)]Gk(Il, 6)} , summed over all valid
outcomes, will be 1, Note, however, that all probabilities depend on
M and 0, If Al(‘ul’ 01) and Az(uz, 02) are distinct parameter
points, p (M, 01) # pv(ll.z. 02) in general, and G (H,, 01) #
Gk(uz, 02) in genural for the same k.
Coming now to the numerical exsmple referred to aﬁove, let us

suppose that, for some admissible position A.l([ll, 01) of the parameter
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point, an arbitrary and representative admissible position,

[llpv( Mys 61)]Gk(u1, 0,) takes its largest value, .39, for k = 46,
its next largest value, .26, for k = 22, and so on as listed in the
table below. Thus, given the*t a valid outcome occurs, the conditional
probabilities that outcomes numbers 46, 22, ... occur, for the assumed

values His 04 of the parameters, are .39, .26, ... .

Cumulative sums

[1/p,(HM s 00] G o(Hly, 0,) = .39 .29
[1/p, (M5 9,51 Gy (Mg, 0)) = .26 .65
[1/pv(u1, al)] G, p (M, 0) = .17 .82
[llpv(ﬂl, 01)] Gag(M 4, 04) = .07 .89
[1/pv(#1, ol)] Gog(H s 01) = .02 .91
[1/pv(#1, 01)] G5y (Hys 0)) = .02 .93

D P " S D D D R D D D D S W A ST D T D R T D D R WD D e G W G e G D s D e B W

We list the conditional probabilities for all valid outcomes in non-
increasing‘ord-x of the probabilities as shown in the table. In case
of ties, for example .02 for k = 26 and 51, we use the increasing
order of subscripts. We compute and list the cumulative sums as

shown and at the end of the table this sum would attain the value 1

" as has been pointed out. In defining a set which will be denoted as

SA » however, we are interested in the table only down to the point
1
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where the cumulative sum, including "tins for last place'", first
reaches or exceeds the value .90 (in the case of 90% confidence
regions). In the case under consideration, we do not exclude k = 51
on the ground that the cumulative sum as listed attains the value
.91 with k = 26, as. there is no theoretical reason for preferring

k = 26 to k = 51 or vice versa. The value .90, or any other value
on the interval (0, 1) will necessarily be reached or surpassed,
gince the cumulative sum eventually reaches the value 1.

We now dafine the set SA1 as the set consisting of outcomes
numbers 22, 26, 39, 46, 51, and 77, the order being immaterial once
the makeup of the set is established. This is a set of outcomes, not
of points or of probabilities. There exists a similar set SA for
every admissible position of the parameter point A(HU, ¢), and the
method of determining SA is simple and clear in principle from the
example given, although naturally it would be an enormous cumputing
job in practice.

Also, we note that the number of admissible positions of A(H, ¢),
ranging over the interior of a rectangle in the HMoO-plane, is
uncountably infinite. Hence we could not, even in principle, determine
SA for every admissible position of A(M,0). If we wished to program
the method fof a4 computer, we would have to approximate the interior
of the rectangle by a finite grid of small mesh size, or something

similar.
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We can now define the point sets in the HO -plane constituting
the 90% confidence regions {Rt}’ one for each of the N_valid outcomes.

They are defined as follows.

R, = ({ {A(u, o) , S, contains the t-th valid outcome} . (249)
Here tie symbol U represents the set theoretic union, each Rt in
general being a closed domain in the plane.

To show that we have defined a legitimate system of 90% confidence
regions, we suppose that the true parameter point Ao( ”o’ oo) is the
point Al(ﬁll, 61) of the current numerical example, and show that,
given that the outcome of the experiment is a valid outcome, the
probability 1s at least .90 that the true parameter point, Al( ”1’ 01),
is covered by the confidence region Rt corresponding to the outcome
which occurred. We recall that A1 is an arbitrary representative
admissible parameter point and so, if it passes the test, every
admissible parameter point A( M, 0) will have done so.

Suppose that Al(ul, 61) is the true porameter point, and that
the outcome 1s a valid one. The table of probabilities for this
example (page 132) shows thac, with probability .93, the outcome of
the experiment will be one of the following: outcome 22, 26, 39, 46,

51 or 77. But R,, or confidence region 22 contalns ACH,, 01), by

Eq. (249), since S, contains outcome 22 as has been stated. Similarly,

A

1
the point Al is contained in R26’ R39, vasy R.”. Hence in 93% of all
cases in which A.l(lll . 01) is the true psc;ameter point and in which
the outcome is valid, the parameter point A1 is covered by the
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pertinent confidence region Rt' To put it another way, for every -
1,000,000 such cases (true parameter point A1 and valid outcome),

there will be 390,000 cases in which outcome 46 is the result,

260,000 cases of outcome 22, ..., 20,000 cases of outcome 51, for a
total of 930,000 cases, and in each of these 930,000 cases the parameter
point A1 is covered by the pertinent confidence region Rt‘

Hence the required test is pussed by the representative admissible
parameter point Al(lll, 0’1), and therefore by all such admissible
points, and it has been shovm that a legitimate system of 907% confidence
regions has been defined. The 90% confidence level was taken only
as an example, and similar reasoning would apply to 95% or 507 confidence
regions or those at any other confidence level.

We wish now to show that these confidence regions are arbitrarily
small for a sufficiently large number of stimuli, by showing that the
sets S A 88 defined on page 133, which determine the confidenrce regions
Rt by Eq. (249), consist of outcomes whose maximum likelihood points
Kk(ﬁ k,Ek) are arbitrarily close to the assumed parameter point
A(U ,0), for a given confidence level such as 90%.

A heuristic proof has been worked out, indicating that these
confidence regions are arbitrarily small for a sufficiently large
number of stimuli, by showing that the sets S, as defined on page 133,
which d_et-erm'l.ne the confidence regions R, by Eq. (249), consist of
outcomes whose maximum likelihood points Xk(ﬂk’ak) are arbitrarily

close to the assumed parameter point A(M ,0), for a given confidence

level such as 90%.
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We remark that this property of small confidence regions {Rt}
for large values of N is not a formal recairement of the system of
confidence regions. The formal requirement is embodied in Eq. (249),
for 90% confidence regions. But it is a natural and desirable property,
and one which is possessed by the asymptotic large sample theory. An
experimenter conducting an armor plate test might well ask himself,
“"Why should I fire a large number of projectiles, and use 'a large
number of specimens of the plate, unless I thereby increase the accuracy
of my knowledge of the characteristics of the plate?"

The proof referred to is not completely general or rigorous,
in that only a subset of the set of all valid outcomes is considered.
Moreover, the details are rather lengthy. Hence we merely state the
result here, after describing the subset of valid outcomes which is
used and the general nature of the proof,

In the proof, a population mean u 1is assumed,and the stimuli
{ck} are spaced at equal subintervals in the interval (X min® uw).
The exact spacing is not specified in advance, and the principal object
of the proof is to determine how fine a spacing is necessary in order
to achieve a condition which will be described shortly regarding the
probability content of subs-ets of the outcomes.

An arb:l.ﬁrarily small positive number € 1is to be specified (we
can think of the value of .6 as being under the control of an imaginary
opponent who is trying to break our proof down), and a key point of
the proof consists of showing that, however small € mav be, it is

possible to take the uniform spacing of the stimuli so fine that 907%
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S of the probability content of all valid outcomes considered in the

proof (for 90% confidence limits) will be concentrated in the subset

which has its maximum likelihood estimates M in the interval
(H -€,u+6€).

The subset of the set of all possible outcomes which we consider
in this heuristic proof is the set of those of the form
FF ... FFSFSS ... 5SS, where the length of the string of consecutive
failures 1s not necessarily the same as the length of the string of
consecutive successes, since we may be much closer to one end than

to the other of the interval (”min’ ”max)' Outcomes of this form

have the interlacing required by Eq. (35), so that they are valid
outcomes. But this minimal interlacing is of small significance if
N, the number of stimuli, is large, so that for practical purposes
we can say that, for any given outcome of this set, we have failures
below a certain stimulus level, say 1025 ft./sec. in the armor plate
experiment, and successes above the same level.
It 1s intuitively clear that, for an outcome of the form

FF .... FFSFSS .... SS, the maximum likelihood estimator ﬁ of the
point K(ﬁ,d—) will occur at approximately the stimulus level of the
interlaced S and F; for in that case the factors of the expression

G(ﬁ ,3) (see Eq. (244)) will consist almost entirely of factors of the

form p[(a, - 1)/0] with a, > M and q[(bj -u)/06] withb < U ,

both types of factor rapidly approaching the value 1 as a, = M or

TR bj becomes large compared with 0. If the isolated S of the
sequence occurs for ¢ = 1096 ft./sec. and the isolated F for
Cpt1 = 1097, we can assume that ﬁ for this outcome is approximately

1096.5.

137

St ol Un stk




3,
B
b

i A AT
AP

B

The object is to shew that N can be taken suff:l.cient].y large so

that the interval (4 - € , 4 + € ) contains at least 90% of the -
probablility content of our subset of the set of all valid outcomes,

for 90% confidence limits. It will be convenieni: to divide the interval
(it , 4 + €) into an integral number, L, of equal subintervals, and to
place one of the {ck} at the center of each subinterval. Thus we

have the situation shown in Fig. 6, in which several of the {ck}

near U + € are shown, and the S's and F's near U + € for three

of the outcomes are shown, the isolated S in the j~-th outcome being at
Crt1? etc. By what was sald above, the maximum likelihéod estimates

[-l' for outcomes j-1 and j are approximately M + € and U+ € + (€/L)

respectively, € /L being the distance between successive stimuli,

r—" — om—— —— o— — e

U+ €

I
l
] 1 ko2 kel % Skl ;k+z kt3 ks

N e et

Outcome j=1 —— —— — ——

Outcome j — e =e— o= F F F 5 F S S
Outcome. j+1 ~—— — — F ¥ F F ] F s
Figure 6
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The mathematical details are rather lengthy and we do not give
them here, but we state the result. If the integer L, the number of
subintervals into which (4, # + € ) is divided, is so large that

9 .
' L2 TTqteTa)sCero)] * (250)

where p(t) is the probability integral, Eqs. (10), (12),

q(t) = 1 - p(t), and 0 is the value assumed for the population

E ! standard deviation, then the sum of the probabilities of the outcomes

whose maximum likelihood estimates E are in the interval (U -€,iU+ €)

is more than 907% of the sum of the probabilities of agll the outcomes

in the set under consideration, as described on page 137. L is very

large, as expected,if € is small compared with 0, for in this case

q is slightly less and p slightly greater than 1/2, so that the

denominator on the right-hand side is positive but very small.
Heuristically, it appears very probable that the property, which

we have demonstrated for a chosen subset of the set of all valid outcomes,

carries over to the entire set. This i3 the followlng property.

Given a positive constant € , however small, it is possible to take

such a large number of stimuli that the maximum likelihood estimators
{Iik} for the set SA’ as in the table on page 132, are all within a
distance € of y, where A(U4, 0) is the assumed position of the true

parameter point. Since this has the effect of making the sets {SA}

small, page 133, it also makes the confidence regions {Rt} small,
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Eq. (249). It is true that, in addition to other respects in which

the foregoing proof fails to be perfectly general and rigorous, it
works with the maximum likelihood estimates {4, } but not with

{Fk} . The {Ek} are probably all very small for our
particular subset of outcomes of the form FF ..., FFSFSS .... SS, and
do not vary over a known range as the estimators {i.l' k} do. | But

this proof, it is felt, does make a significant contribution to the
intuitive conviction which most statisticians will already have in

this kind of situation, to the effect that large amounts of data, or
large numbers of stimuli in the experiments with which we are concerned

here, do have the effect of producing small confidence regions.
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