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Applied gas dynamlc¢s, Abramovich G. N., third
revised edition. Maln editorial staff for physical
and mathematical literature of the '"Nauka" publish-
ing house, Moscow, 1969, 824 pages.

The bases of gas dynamics are set forth in
application to the theory of jet engines and other
gas machines and apparatuses. A detalled analysis
is made of the theory of one-dimensional gas flows
on which rest largely the c¢contemporary methods of
calculation of Jjet englnes, vane machlnes, ejectors,
wind tunnels, and test stands. Separate chapters
are dedicated to the boundary-layer theory and theory
of Jets lying at the basis of the determination of
the friction drag, veloclty flelds, and temperatures
in nozzles, diffusers, combustion chambers, electors,
etc. _In connection with the rapld development of
engines of new types - engines for high-altltude
and extraterrestrial flight vehlcles ~ the new edition
of the book includes chapters on hypersonic flcws,
about the elements of hydrodynamics, and about the
flows of rarefied gases.

Illust. 333, tables 12, references 157.
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Preface

In the book the bases of gas dynamics are set forth in applica-
tion to the theory of Jet engines and other machines and vehicles.

The third edition of the book 1is substantially revised and
supplemented.

The contemporary methods of calculation of jet engines, vane
machines, ejectors, wind tunnels, and test stands are based chiefly
on the one-dimensional representations of gas hydrodynamics,there-

fore a considerable place in the book is assigned to one-dimensional
flows.,

At the same time many questions, for example the determining

of the friction drag and veloclity and temperature flelds, the
construction of the picture of flow in a combustion chamber, ejector
and supersonic diffuser, t. ~larification of the power and thermal
effect of the exhaust Jet of a jet engine on the controls and other
parts of a flight vehicle, and alsoc on the walls of a test stand,
etc., cannot be solved without the help of the differential egua-
tions of gas hydrodynamics or the equations of the boundary layer.
In connection with this in the book considerable attention is

allotted to the bases of hydrodynamics, the boundary--layer theory,
and the theory of jets.

FTD-MT~24-0035-73 1x
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Inothe 15 yvar: wihnleh passed since the publication or the
[[revicous edition greal signiflicance has been acquired by flight
venleies with Jlel engines of new types, providing flight at high
supersonlce (hypersonlic) speed, entry into space, and re-entry.

Tnls lea te the rapld aevelopmeat of the sections of gas dynamics

i:i wnich the flows ¢f rareiied gas, hypersonic flows, and motions

a¢f 1iguld and gas in clectronagnetic flelds are studled; in this
tnira editicn of the bock the bases of these sections of contemporary
gas dynamics are also presented.

A number of important guestlons (th2ory of supersonic nozzles,
diffusers, ejectors and grids of wings, the use of gas-dynamic
funziicns, et2.) is sct forth i more detall than betore in the
rew publication. ‘“'he appearance of special texts and monographs
on the theory of vane machines and the theory of jet engines made

it possible to eliminate these sections from the bock.

The book 1is complled as a manual for the engine departments
of aviation institutes according to the program confirmed by the
iiinistry of Higher and Secondary Special Educatlion of the USSR
and can be considered as a textbook also for machine construction
and power institutes.

The author attempted to achleve thr.: greatest possible clarity
and the accessibility of presentation and in the iilumination of
every questicn sought the simplest means. Thus some tasks are
examined twice: firct in a simplified setting, and then more
deeply in the speclal sections c¢f the book. 1In order to make the
bock intelligible to the engineers and students who did ncot study
the kinetlc theory ct gases and electrodynanics, brief information
from these branches of physics 1s presented.

Several sections of this bock were written by: N. M. Belyanin
(Chapter V1), A. Ya. Cherkez (§§ 6-8, Chapter V, § 6 Chapter VII,
and Chapter IX), 8. I. Cinsturg (Chapter X).
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CHAPTER [

THE EQUATIONS OF GAS DYNAMICS FOR
A UNIT STREAM

§ 1. The Equation of Continuity

The fundamental equations of gas dynamics we will derive for
an elementary stream of gas, the transverse dimensions of which
are so low that in each of its cross sections it 1Is possible to
consider constant all the basic flow parameters: veloclty, prescure,
temperature, and gas density. Precisely in such a form the equatlons
of gas dynamics are appllied usually in the theory of jet engines.
In those cases when within the limits of the cross section cf a
working jet the flow parameters are changed (for example the values
of velocity or temperatures are dissimilar), the representation of
the average cross-section values of these quantities is introduced,
and then with the help of the appropriate, in the majority of cases
insignificant, corrections 1t is possible to u%ilize ail the equa-
tions obtained for an elementary stream. The method of an elementary
stream 1is the basls of hydraulics, therefore the gas dynamics of
an elementary (unit) stream are occasionally referred to as "g=zs
hydraulics."

In order to obtain the equation of continuity, let us examine
the stationary (steady-state) motion of the elementary stream of
gas (Fig. 1.1). During stationary motion at any point of sgace
the velocity of motlion and the state of a liquld (density, prescsure,

FTD=-}T=24-0035=73 1
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tenperature; are retalned constant in time. The particle trajectories
during such motion are called the flow lines.! The lateral surface

of the stream, which is called the flow surface, 1is impenetrable for

a liquid (gas) (velocity vectors of flow are tangential to it); the
flow surfazes formlng are the {low lines.

Let us examine a certain section ol the
‘¢ stream between two, normal to the flow surface,

crcss sections 1 and 2; let us note that in
accordance with the direction of motion indi-
cated in Fig. 1.1. 1n space 1-2 the inflow
of gas is achlieved only through cross section
l1, and the gas discharge 1is achieved only
through cross sections 2.

: 1
ja:t“ Elementeary Beyond an intfinitely small time interval

dt the chosen part of the stream will be
shifted into a new position 1'-2'. The displacement amounts to the
1act that during the time dt the shaded space 1'«2 will contaln the
gas which 2s dlsplaced from area 1-1', and a certain quantity of gas
durirg the same time will flow out from this space and willl fill the
area 2-2'. ‘rhe Inflow of gas into space 1'=-2 comprises

IS 2N

[& B 3}

dO. = ";Fﬂl[. [“'8‘ ] (1)

where Yy - the specific gravity of gas 1in cross section 1, equal

to the product of density Py by the acceleration of gravity g, Fl -
the cross-sectional area 1, The distance between cross sections

1 and 1*' is equal to the product of the velocity of motion by the
elementary time interval

'During unsteady moticn the flow lines are determined differently
and do not coinclde with the particle trajectoriles.

o
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dly == wydx,

vihere Wy is the velccity in cross section 1, from which

d 0‘ =2 ];W.Fg de.

‘The discharge of gas from space 1l'-2 1is equal, obviously, tc

d0y == y @ Fode.

During steady-state conditions and in the absence of breaks

of continuity in a moving medium the inflow of gas should be equal
to the discharge:

40, = d0, = dQ.

Hence after the appropriate substitution we obtain the equation
of continuity - the law of conservation of mass - for the unit
{ stream of a compressible liquid (gas) during steady-state flow

TRy = TroyFe (2)

In the case of a ncncompressible liquid, i.2., with y = const,
equation (2) takes a simpler form:

o, F, = Fy (3)

which is used for gas flows when changes in the specific gravity
of the gas can be dlsregarded.

On the basis of the equation of continuity (3) based on the
arrangement of the flow lines in the incompressible medium it 1is
possible vo Jjudge the velocity of motion. 1In places of thickening
of the flow lines the veloclty increases; if the flow lines are
separating then the veloclty drops. During the motion of gas 1t

FTD~MNT-24-0035-73 3




13 nct always possibie to determine directly by the arrangement of

the flow lires the veloclty change, since changes of density
(specific gravity) of the gas can be considerable.

Iin a gas, as iv 1s not difficult to see from the equation of
centinuity (2), tne plcture of the flow lines uniquely determines
he change 1n tie density of the flow:

«t

representing the product of the specific gravity of the gas by
the velcclty, 1.e., the mass flow rate c¢f gas through a unit of
area ¢f c¢ross section} In places of thickening of the flow lines
the density of rlow increases, while in places of divergence of
flow lines 1t decreases.

The equatlon of constancy of gas discharge G = ywl' = const
also can be presented differentially

d0 = yudl - wldy 4 Fdw.
After dividing this relationship term by term by ywF we willl obtain
— dp 4 4F \
”0‘—‘;"‘"7"“'{. \’4)
Here p = y/g - mass density of gas.

§ 2. The Equation of Energy

Followling the first principle of thermodynamics (law of
conservation of energy), let us put together the energy balance
in the fixed coordinate system {(Fig. 1.1), 1.e., let us examine




s

the energy conversion in one and the same mass  of gas, \vhizh at |

first filled the space 1-2 hut in an infinitely small time interval
dt 1s shifted into position 1'-2'.

An increase 1n any form of energy 1s equal to the difference
in the quantities of this form of energy in positions 1'.2' and 1l-2,
In view of the fact that the shaded space 1'=2 1s general for these
two positions, the energy of the mass of the gas which fills space
1'-2 during subtraction is decreased,' and an increase in energy
1s measured by the difference in the energy content in infinitely
small spaces 2-2' and 1-1'. Hence it follows that an increase in
kinetic energy is equal to

dE,==€%?!ﬂ%E£ﬂﬁ

here dG/g is the mass gas discharge thrcugh the cross section of
the stream during the time dt. An lncrease in the potential energy
(energy of position)

dE. ==d0(2. — Zg)

where Z, and z, are the heights of the arrangement (leveling levels)
of cross sections 2 and 1. An increase in rhe internal (thermal)
energy

dB, = "7:-7(::. —u) -

thermal energy of a unit of welight of gas (product of heat capacity
at a constant volume by the absolute temperature). If the heat

where A = 1/427 - the heat equivalent of mechanical work, u = cvm -

PR T
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'The motion of the gas is assumed to be as in the foregoing
paragreph, steady-state.
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capaclty of the gas in c¢ross sections 1 and 2 1ls ldentical, then .

tre increase ¢of internal energy 1s equal to
dE,:aﬂ‘%-a(T,—- Ty},

Cr the vases of the chosen part of the stream of gas the _ g
external forces cf pressure p which are directed inside and along
the normal to them act. With the dlsplacement of the gas the
external forces of pressure produce work. For example, the transfer
¢f gas from cross section 1 into cross section 1' occurred as if
under the actlion of a plston wilth an area Fl with pressure py. The
work ol the pilston during time dt is equal to

pFuds =%‘- dQ.
‘

-,

In exactly the same manner it is possible to visualize that
pressure p, on cross section 2 is achieved by a piston with an
area F2. buring time dr the gas will move the piston into position
¢, after carryling cut the negative cperation:

=0
—pFaede= T da.

The fcrces of pressure which act on the lateral surface of the
stream (flow surface) do not produce any work since they are normal
to the trajectories of the particle motion of the gas. Thus the
energy introduced by the forces of pressure 13 equal to the differ-
ence between the operations of piston 1 and piston 2:

dE,==da (2 &

To the gas stream in section 1-2 during time dt heat can be
conducted in the amcunt of dW, in mechanical units egqual to

S L e W LA



dW. Further the gas stream during time dt can perform the technlical
w%rk dl, ror example, rotating a turbine wheel mounted between cross
sections 1 and 2. Finally, one ought to consider the work being
expended by the gas during the time dt for overcoming the forces of
friction dZTp.

According to the first principle of thermodynamics thermal
energy and work of the forces of pressure conducted to the gas are
expended on the completion of technical work, work of the forces
of friction, and also oan an increase in the reserves of the potential
internal, and kinetic energy

‘.‘_}r—l-'lp_!_p.'. = .f- g — Q.- w! —
A T\n 'h) da dl-f-dl g - (24 — 2,)dQ | _—A_”! da -} ._x.zi-_ J0.

After dividing all the terms of the resulting expression by value
dG, we come to the equation of energy for a unit of weight (1 kgf)
of the gas

ATh- Bt by aem g L (5)

Here are introduced the designations: Q = dW/dG - the heat suppiled
to 1 kgf of gas on section 1-2, L = d1/dG - technical work belng

w ® dZTp/dG -
work of the forces of friction which 1s necessary for 1 kgf of gas.

accomplished by 1 kgf of gas on the same section, L

The inflow of heat in general is achieved by two methods: from
without (Qnap) because of heat exchange through the lateral surface
of the stream, and from within (QBH) because of conversion ints the
heat of work of friction. Thus,

Q=Q-|’+Qu~ (6)

The second part of the heat flux, obviously, is exactly equal tc

the thermal equivalent of the work of rriction:
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A=,"P' (7)

)

Frono thermodyn the equation of state 1s known for a

W
=
b -
¥
wn

rerfect gas

P‘U=RT0 (&\

/

where X - gas c¢onstent, and the specliflc volume of gas v 1s the
value rever i1¢ gravity v = 1/y. Hence

0y
a w
P
o]
w
kel
@
(¢}
-
.

=R1T. (9)

-in

Furtherrncre a relaticnship 1s kncocwn whlich connects heat cagacity at
a constant vclume (Cv) and heat capaclity at a constant pressure
(c_):
p)
¢p=c,+ AR. (10)
LLet us introduce intc the examination the heat gontent {(or

enthalpy) of the gas, i.e., the product of heat capacity at a
constant precssure by the absolute temperature

l=c’T. (11)
Then relationship (10) will take a somewhat different form:
{=un+4- ART (12)

or on the basis of (9)

l=n+A%_ (13)

Utilizing expressions (6), (7), and (13), it 1is possible to
give the equation of energy the following form:

A e B
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Tre equation of energy (1l4) occaslonally 1s also referred t¢ as the
eguatlicon of enthalpy. The fact that the equatlion of enthalpy dce
not contain the work due to friction 1s significant. In fact, since
‘ne werk belng expended for overcoming of friction or any other ¢

f resistances 1s converted completely into heat, and the latter
remains in the gas Jet, the presence of the forces of frictizn cannct
! disturb the general energy balance, btut only leads tc the ccnversicn

of c¢ne ferm of energy lnto another.

O

Usually in technclogy 1t 1s necessary to deal with the particuizr
' forms of the equation of enthalpy. Thus In the majority of :ases <ne
zhange of potential energy 1s negligibly small in comparison with
Sther parts of the equation of energy, and term (za~zl) 18 disregardcd.
Then the eguation of enthalpy takes the following form:

[ Q. wl—w] , ly—! \
) .Azz_Lz_L[‘_J.;,.:.A_l, (15}

4 In the absence of technical work and heat exchange with the
surrcunding medium, i.e., in the case of the energy 1isclated prccess
in the gas, we have

Specifically equation (16) determines the flow of gas along = tut=2
if there is no heat transfer through the walls., According tc i
aforesald thls equation 1s correct withcut depending on whether

cr not the forces of friction act. In other words, the charge ¢f

enthalpy (temperature) in the isolated prccess 15 connected oniy
with a velocity change. If the gas velocity 1s nct changed, tro:
the temperature remains constant.
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e sbserce Of the influence of tne forces of fricticn can be

Ceoey iy she {oliswing.

oo wiew Lube drops, l.e.,

Under the action of friction the pressure

tne gas is

expanded,

and therefore the

shiould decrease.  iow

2Lnverted into heat;

ever, the work of the

and since

the work of

forces of
the forces of

rlcvl oo bl emAactly equal to the mechanical equivalent of the heat
ireiarled vecause of this work, then preheating compensates for

e e ety m

atung a Lube of constant cross-section under the influence of

ot rel L f friction the zgas temp=srature Iin a subsonic fiow even
guurvases.  This occurs vecause the pressure drop is acccempanied by
;e otease inothe specific gravity of the gas, and the current density
covialns osonotant: § o= G/F = yw = const.  Thus the gas velocity -
! srenses, and the temperature in accordance with equation (16) 1is
At a low speed cof motlon the temperature changes only
Lecaisz GF neat exchatige elther in Lthose places where the gas passes

the turtbine {(expends the energy, L > 0) or through the

comtresgour (derlves energy LK < 0).

i1 the change of velocity aind heat exchange can be disregarded

ther the equatlion of entha?! y takes \he {c:lowlng form:

Iy -y == = AL. (17)
i, cther worus, a change 1n the enthalpy of the gas in this case
{5 equivaient to mechanical work. In the turbine wheel the gas
temperature decreases

heshy = ALy (Ly>>0) (13)

v lhe compressor impeller wheel the temperature increases

ly=1,-~ AL,

(Le <0} .

10
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Let us recall that here we have in mind work L referred to 1 kgf

of gas. Thus, following the equation of enthalpy, we obtain simple
relationships for calculating temperature drops on the turbine and
compressor during small changes 1in kinetic energy:

sl .
SR R

AT.—_-’-!-_-'—'-:—A—L. ' (19)

-
-
>

‘

doa

Here cp is the mean value of heat capacity at a constant pressure in
a glven temperature range.

LaLw e

If the speed changes substantially, then the calculatlion will
only be a little complicated. Precisely:

l.-!.+A"’"‘ —=—AL (20)

Finally, during an isothermal process (12 = 1l = const) the
mechanical work is expended wholly for a change 1n kinetic energy

A=l AL (21)

A system close to Isothermal can be obtained in a multistage
compressor with the intermediate (between every palr of stages)
cooling of gas.

Q..,=l.—l.+A'i;fl- (22)

t

in such a form 1t 1s applied to heat exchange processes.

Let us return now to the energy i1solated gas flows, when the

conditicus

Qup=0, AL=0, (23)




ey

&4

are satlsfled and the equatlon of enthalpy acquires the form (1€}.

in this case 1t zan be wriltten Iin the following form:
vy __ wi o' _ .
l]+Azg—l|+A2g-—-l+A 2E—COIISL (21.)

lience it 1s not difficult to see that 1f the gas jet 1s inhibited
completely, then enthalpy of the gas reaches the maximum possible
value:

l,,=l+.4';;. (25)

The value of enthalpy i0 obtained in this case we will call full
enthalpy, and the corresponding absolute temperature

[4

- the stagnation temperature.

With the help of (25) from the equation of enthalpy (15) it is
possible to eliminate velocity: we obtain the eguation

Qup—Al=ly—1y. - (27)

Thus the gas temperature is obtalned equal to the stagnation
temperature when the rate of flow talls off to nothing ituelf in the
absence of energy exchange with the surrounding medium. Using the
mean value of heat capaclty 1t is possible to calculate the stagna-
tion temperature according toc the following formula:

]
To=T+A~24:—¢;. (28)

For alr (cp ~ 0.24) we have approximately

12
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Toms T+ o (29)

For example, 1n an air flow of normal temperature (T ~ 300°K) at a
rate cf motlon w = .00; 350; 1000 m/s the stagnation temperature
Ty + 305, 360, 800°K is obtained respectively.

One ought to emphasize that according to the equation of energy
(24) in the energy isolated flow of an ideal gas there is a unique =
dependence between the gas temperature T (enthalpy i) and the rate
of flow w. An Increase in the velocity in such a flow is always E
accompanied by a reduction in temperature regardless of the chanrge -
in other parameters of the gas. If in two creoss sectlions of the i
energy 1solated flow the rate of flow is 1identical, then in them -
the gas temperature will also be ldentical, whatever processes
occurred in the flow between the cross sections in question. With
a decrease in the velocity of flow down to 2eroc the gas acquires the
identical temperature To regardless of the features of the slowing
down process and the irreversible losses appearing in tnis rase.

At the end of the inlet diffuser (Fig. 1.2) of the Jet engine,
usually without depending on the flying speed, a comparatively low
flow velocity 1s established. Because cf this the temperature of
the air in the diffuser of the engine 1s close to the stagnatlicn
temperature. Assume the alr speed at the end of diffuser W, =
= 100 m/s. Thenr the temperature here at the different flight speeds i
is «btained from the condition k

T. ~z T' -— rg‘i" 2] T. 'l‘ E’z;q-‘”l'—x'. ,3

In our case {w2 = 10C m/s, Tl = 300°K)

7}252954-25%, ' (30)

The results of calculating the temperature T? according to forrmula
(30) are tabulated in the following table:

13




Table.

w, |1C0}1350] 109 ¥'s
T, |2n5]3cy] s00°K
7, |300]ass] 795K

ne We see, the heating of air obtained only because of braking at a
high flow (flight) velocity 1s very considerable.

The equation of enthalpy explalins
the following, very interesting fact.
During the flow of gas near a rigid
surface wlthout heat exchange the
temperature of the latter is equal to
the stagnation temperature in the gas.
The fact 1s that in connection with

the viscosity of the gas near a solid

wall a fine boundary layer is always
formed 1in which the gas velocity
reiative to the wall is changed from the value equal to the ambient
velocity of flow to zero (on the wall). But once the particles of
gas directly near the wall are slowed down, then Iln the absence of
heat exchange the temperature on the wall should be equal to the
stagnatlon temperature. Thus, for instance, in the test section of

a wind tunnel for supersonic speeds (Flg. 1.3), where the gas velocity
is very great, its temperature Tp.q should be considerably lower than
in the precombustion chzmber from which the quiescent gas (TO) enters
the tunnel, For example at a veloclty in test section of wp.q =

= 600 m/s and the stagnation temperature in the precombustion chamber

T, = 200°K we obtalr a temperature i1n the flow

]
P2 == 120K,
-~

w
T,.Aei;——ﬁu”

In spite of this, as experiments show, the wall temperature over
the entire extent ol the wind tunrel, 1ncluding the test section,

14
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remains constant and 1s approximately equal to the stagnation
temperature: TCT = TO = const,

I 1 i
NS .
. ~|— + - f
' L/k B |
: est section

0

J Fig. 1.3. The laycut of a wind tunnel
for supersonic speeds.

The temperature of a thermometer placed in the test section 1s
also approximately equal to the stagnation temperature. This is
explained by the formation at the walls of the tube and the thermo-
meter of a boundary layer 1n which the circumfluent gas flow is
] completely retarded. Thus a fixed thermometer cannot measure the
{ temperature in the flow of a gas. For “hese same reasons the surface

of a body which is moving at a high spzed in air is heated strongly.
f For example, the surface of a projectile which is leaving a2 gun at
a velocity of w = 1500 m/s because of the formation of the air ) ‘
boundary layer in which the relative velocity 1s completely extine - 4
guished should have a temperature (T ), exceeding by TO - T = |
= W /2000 = 1125°C the temperature of the surrounding air. In
actuality the temperature of projectile is less than that obtailned
here because of heat radiation in space. At a very high flying
speed the 1cing of the surface of an aircraft is made impossible.
For example, at a speed of w = 900 km/h (250 m/s) the stagnation
temperature is higher by the value AT = 2502/2000 = 31°C than in the
surrounding atmosphere. The surface temperature of the alrcraf: is
close to the stagnation temperature, therefore in this example even
with a frost of 20-25°C 1icing will not resuilt.

e

b il g il

wth

The actual temperature cof a surface blown around by a gas :
usually differs from the stagnation temperature. For determinirg
’ the surface temperetur.: the followirg formula 1s used:

15
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Tl:unnr'l"?i);“‘.‘;. (31;
Iy fur ozl
wt
Tno."‘\*" [ ‘}"1" TN (32)

I
[}

r is the ccrrection factor which is determined for the most
rt esper!mentally and sometimes theoretically. With ¢ = I

-3
w
a
©

T

xpressions (21) and (32; are ccnverted inte the already known

[l

iias for stagnaticon temperature. For a subsonic high-speed

e}

™

1
H

=

-

craft the approxinate value of correction factor is equal to

1
ps

. b

(S
.

a supersonic high-altitude rocket the correction factor

zor
oon decreasd: to the value ¢ = 0.5,

et us dwell on one more example from practice. Durlng flow
aro«ni a ccnvex surfaze in a certaln area outside the boundary
layer tne veloclty 1s higher than in the incident flow, and there-
fore the temperature in such places 1s lower than in the incident
flzw, This explains cne phencmencn which 1s sometimes cbserved by
pllots during a dive. It amounts to the fact that at the moment of
dive at a high spe-d part of the upper side of the wing is hidden
from the pllot's eyes under a film of milky color, As soon as the
rilot pulls out, i.e., speed is sharply lowered, the film disappears.
Apparently, in this case in the alr layers which have the increased
velocity and low temperature nolsture condensation occurs, which

ceases on golng to a lower spzed, l.e., at a higher temperature.

The Maximum Speed cf Mction of
as. Mach Number.

§
Qe

in examining the cutflow ~f gas 1n the absence of energy ex-
change, it is not difficult t¢ be ccnvinced of the fact that the
discharge velocity under nc conditions cannot be higher than a
certain maximum value. In fact, frum the relaticnship

16
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h=t+Ay

it fcllows that the maximum speed is reached when enthalpy in the

fiow i3 equal to zero, i.e., when the full enthalpy of the gas 1is
wholly converted into kinetic energy

PUPEN S

w'll‘lll
AT =y,

Hence we will obtain the formula for the maximum value of velocity
in a gas

eme Y.

(33)

The corresponding approximation formula for air, derived under the
assumption of the constancy of heat capacity (cp ~ 0.24), takes
the following form:

. Wmar A 44,8 VT;

If the stagnation temperature of the air (temperature in the vessel
from which the air escapes) is close to normal (TO

x 300°K), then
the maximum possible discharge velocity w ax = 776 m/s.

enthalpy).

An increase 1n the maximum value of velocity can be achieved
only by way of an increase in the stagnation temperature (full

In order to transfer gas from the state of rest into moticn
with a speed w 1t is necessary to consume part of its enthalgpy,
equal to




After Jdividing toth parts of thls equality by full enthalpy we will

foot  Aw

TR

with a constant heat capacity this dimensionless expression takes
tke fcllowing form:

iiow 1f we multiply and divide the right side by the gas constant
, conslder the relationship AR = cp - <, and designate the relation
f heat capacitlies by k = cp/cv, then we obtain

L—-T__ @ k—|
I'. _'kgl\’f. 2

But, as 1s known from physics, the speed of sound in gas 1s eqgual
e ol

P i ap
a=] kgRr=]/~'L’= P (34)

Thus the degree of utilization of gas enthalpy for obtalning the
assigned value of the flow velocity is determined by the relation
cf the flow veloclty to the speed of sound 1n a fixed gas:

To—T __w'hk—)

Te a2 °

From here ls derived the new expression for tlhe maximum speed of
outflcw (T = 0):

‘This formula will be derived in § 1 Chapter III.




==y Y 5t (35)
For air (k = 1.4) we obtain

W == 2,24 (/9

i.e,, the maximum speed of outflow of air cannot exceed the speed
of sound in stagnant air by more than 2.24 times; with k = 1.2
maximum gas velocity 1s higher:

L' mar == 3.‘6 a'

Thermal drop cannot be broken down into full enthalpy, but
into enthalpy in a flow, then we obtaln

In this case the flow velocity turns out to be referred to the
speed of sound in a flow, and not in a fixed gas:

Al (36)

B

The relation of the flow velocity to the speed of sound in a
flow 1s accepted as the Mach number and designated by the letter
M:

M==%. . (37)

The Mach number characterizes the degree of the conversion of
enthalpy into the klnetic energy of flow

==\
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The sach number ls the bagte gimilarity zriterion (see § 7, Chapter
IL) for hizh-speed gas flowa.

£
1

L]

M < 1, then gas flow !s called subsontc, with M > 1 -
supersonic,

¥rom the last expression it is possible to obtain a calculatlon
fcrmula for the relation of the stagnation temperature to the
temperature in the flow as a function of the Mach number:

To __, 4 R—1
LONNEIIVY (38)

It 1s not Jdifficult to see that the maximum value of Mach number (with
Y = 0) is equal t¢ infinity., This fact 1s explained by the fact that
upon reaching of maximum speed together with absoclute temperature the

speed of sound aliso becomes zero.

Since the flow velcoclity can be both higher and lower than the
speed of sound, there is such a system when the flow velocity is
equal to the speed of sourd, i.e,, M = 1. This system 1s called
eritical; to it corresponds the value of temperature in the flow:

2
T-,T—‘Tom. (39)
In air (k = 1.4) the critical temperature obtained 1s 20% lower than
the stagnation temperature. The value itself of the speed of sound

for a critical system differs from the same for stagnant gas, but is
also completely specific:

‘l;zzlff—u

(] r.' (uo)

from which
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a"=dg i—_*-_—‘al/-;:_:—l-gRT.. (ul)
For alr R = 29.27, therefore we have

o= Vi, a,=183VT,

It is possible to characterize the degree of the conversion
of enthalpy into kinetic energy in still one more way, after divid-
ing the thermal drop into enthalpy in the case of a critlical system:

Hence with the help of equality (40) we obtaln a new formula for
the relation of the temperatures in the energy isolated gas flow:

T _ k=1
{ A L (42)
Here we accept the deslignation

x==£av (43)

PRy

The value A, which measures the relation of the flow velocity to

critical speed, we will name the velocity coefficlent. In a critical

system (w = ¥ip a aHp) the velocity coefficient AHp = an = 1. To .
the maximum flow velocity with T = Q0 corresponds the specific =

maximum value of the veloclty coefficlent:

xl'nu=‘/'z"'_-'_-—l'- (L)
For air (k = 1.4) we have Xmax = 2,45, For the case kK = 1.2
correspondingly xmax = 3.31.
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ine vejccelty coefficlient, as also the Mach number, can be
consldered the similarity criterion for gas flows which characterizes
tre degree cf the ccnversion of enthalpy into kinetic energy.

Tc this value of Mach number corresponds the completely specific
vaiue of the veloclty ccefficlent. Let us find a transfer equation
from ifacn number to the veloclty coefficlenv:

l_"‘_”’ a‘x C'
M=G=aaa

frcm which on the basis of (39), (40), and (42) we cbtain

2
M A1

—1 . (45)
A=

or

LRI
W 2 (46)
l+-T M

In gas dynamics and the theory of jet engines both pure aumbers
(A: M) are applled. 1In some cases simpler relationships are obtained
when using a velocity coefficient, while in others ~ the Mach number.
Figure 1.4 depicts the curves A = f(M) for the cases k = 1.4 and
k =1.2.

sometimes the maxlmum gas velocity wmax serves as the scale of

speeds. In these cases the dimensionless equation of enthalpy can
be presented on the basls of (35) in the following form:

L.—T

T

w'
= <A
ol




SR,

The value
_—__
A"'wm" (479

1s called the dimensionless gas velocity.

Yoy gy e g e The dependence of the relation

4 1 Eﬁd——";’ of the temperature in the flow to the
stagnation temperature on the dimension-
less velocity appears thus:

L
F Ay R M R ¥ A T,
Fig. 1.4. The dependence

of the veloclty coeffi-
clent A on Mach number.

=1— A\’.

Let us show 1in conclusion that the
equation of enthalpy for the energy
isolated stream can be given a purely Kinematic form., For this let
us write equation (24) in the form

w‘ »
&)T - Ape = A

and then multiply all its terms by the value gR/c

¢ AR ARWha
W ERT T e =07 -

Utilizing expressions cp = kcv, AR = cp - ¢y, and the formula for

the speed of sound (34), we will obtain the relatlorshipr which relates
the current value of the rate of flow and speed of sound wlth the
maximum gas velocit):

'k'é‘]a"‘i‘w.:wr'nu- ° (48)

-
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5 4. The liechanical Form of the Equation
>f Erergy (Bernoulll Equation).

hbove we examined in detall the equation of enthalpy. It
related the gas temperature with the rate of motion taking into
account energy effects (heat supply, technical work, and change of
rctential energy). Such factors as the pressure and the specific '
gravity of gas dld not enter 1nto the equation of enthalpy.

It is possible to obtain another (mechanical) form of the
equation of energy, where, on the contrary, the gas temperature : |

does not enter, but the rate of motlon 1s connected with pressure

and specific gravity. Differentially the equation of energy (5) 7
can be written in the form

d o'
W o) ~dL —dlyy = - d T |- d. (49)

According to the first law of thermodynamics the heat applied to
a gas can be expended only on an increase in internal energy and the
work of expansion (deformation), 1i.e.

R =% -l (50,
Subtracting from equation (49) the equality (50), we will obtain

-dL—-dL,,:xd%—l-d:—}—de)—pdn (51)

Substituting in (51) the expression of specific velume (v = 1/y),
ve obtain

—dL .-=d§}"+dz +?~+dl.,,. (52)
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Tnis 1s the mechanlical form of the equation of energy, or, whichn is

the same, the equation of kinetie energtes for a unlt stream

LAfter Integration we will have

2
_— d,
L=t g (Pt

The derived =quation 1s called the generalised equation of
Bernouili., It exbresses the rate of motion as a function of pressure

and specific gravity of the gas taking into account the technical

work (L) produced by the gas, change in potential energy (z2

-Z'\)
and work of the [urces of friction (LTp) In gas dynamics frequently

they use the simplified form of the Bernoulll equation which corre-

sponds to a system when technical work is absent (L = 0), there are
no hydraulle losses (dL

—_— 0), and the reserve of potential energy
does not change (z, = z,).

For this system the Bernoullil equation
will be written in the following form:

1

w} —w! g__= -
el +$' 0. (54)

The Bernoculll equation 1s sometimes utilized in a somewhat different
form. For this the integral is divided into two parts:
H

iy € Cap_Cdn (4
dp . _\ 9 P _\P_\2
R St kit R AN

Then from (54) follows

w  {dp dp _ ©* d,
7% | 5 -,"“;-" ‘l‘s ."==-.,i+s :——econsl. (56)

7]
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L% 2
In this case the calculation of integrals is done each time from

ar. zbsclute vacuum up to a pressure which corresponds to the assigned
flcw velocity.

The constant of this equation can be obtained on the
stirength ¢ the fact that during the expansion of a gas to an absolute
vacuum the maximum flcw velocity is reached.

Thus the Bernoulli equation can be glven the following fourm:

g ) T
“+S’—%' (57)

When the specific gravity of gas in section 1-2 of the elementary
stream remains virtually constant, the integral in the Bernoulli
ejuatlion is equal to

’ .
48 =P1—Pu .
1 1

and the Bernoulll equation appears especlally simply:

Ps—p | Wy—w] _
-’~‘,—'+—‘=17ﬂ—’°'

or

-

e
+R=2435 (58)

In such a form 1t is applied in the hydraulics of an ideal non-
compressible liquid. Sometimes the Bernoulll equatiorn for an ideal
noncompressible liquid 1s written thus:

h+12=h+'1¢'-}- (59) (
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In the first case it is formed for 1 kgf, and in the second - for
1 m3 of liquid. The kinetic energy cf 1 kgf ol liquid (wi/Zg) is 5 :
calied veloeity head, while the kinetic energy of 1 m3 of liquic

(yw2/25) - dynamic head.

ol sk

If it is not possible to disregard technical work, hvdraulic
losses, and change in potential energy, thenthe Bernoullil equation
for ! kgf of a noncompressible liquid takes this form:

—L=(i=“;‘—ﬁ+2.—2|'l—&——f;'ﬂ"}‘l-vr (60)

By means of this equality it is possible to calculate, for example,
the work which a ligquid gives up to the turbine wheel (L > 0) which
i1s standing between cross section: 1 and 2, i1f all the other terms

of this equation are known.

In order to use the Bernoulll equation for a compressible gas
it 1is necessary to know in advance the thermudynamlic process of a
change 1in the state of the gas, since wilthout thls the dependence

of the specific gravity of gas on pressure 1s unknown and it is not
2

possible to take integral Sf?, which expresses the work of extrusion.

Let us compute this integral for the basic thermodynamic processes.
During an isochoric process (a constant volume, 1.e., constant.

specific gravity), typlcal for the hydraulics of true liquids, as
has 2lready been indicated, this integral was equal to

b
S‘.”f—-’.’.!.:.’l!. (61)
-~

1n an ioobaric process {ccnstant pressure) the integral is

equal to zero

N
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2 ~
S‘-’:-=a : (62)

If an isothermal process (constant temperature) is achleved,
vhen acccrding to the equation of state of a gas (8) p/y = RT =

iAo i

= const., i1.e., pressure is directly proportional to the specific

gravity of the gas y = ylp/pl, from which 1s obtained the following
expression for the integral:

P B TR (63)

Let us assume now that the state of the gas changes on the
i{decal adiabatie curve

f‘; = const,

<
then

» -

-T==7|0%)

and therefore the integral is equal to

]
3 - 2
dp _ri (¢
1 T

2=t
: =rmp| )T -1 (64)
A

COES,

Finally, in a polytropic process with constant polytropic

. exponent (n = const ) p/y" = const we will obtain the following

expression for the integral:
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Jo=pfa -1

It should be noted that the heat applied to the gas 1is not
reflected directly in the Beriioulll equation. However, it is
considered during the calculation of the integral, since 1t influences .
the form of the functlon y = t(p), i.e., the nature of the process ;
according to which the state of the gas changes.

The greatest value in gas dynamlcs belongs to an ideal adiatatie
process whlich assumes the absence of a thermal effect and work of
the fcrces c¢f friction. Because of this, with an ideal adiabatic
curve the encropy' of the gas remains constant, i.e., such a prccess
is an ldeal thermodynamic - igentropie - process. Let us recall
that by no means 1is any adiabatic prccess ldeal. For example, during
the derivatlon of the equation of enthalpy we showed that the pres-
ence c¢f friction does not dlsturb the adiabaticity of the process,
but a process with friction no longer can be ideal, since it flows
with ar increase in entropy. In other words, the adiabaticity of
the process required only zero heat transfer with the environment,
and not a constancy of entropy. Thus adlabaticity is combined with
the constancy of entropy only in an i1deal process. If a change in
the potential energy can be disregarded (z,l . 22) and there 1is no
technical work (L = 0), and the process is ideally adiabatic, then
the Bernoulll equation on the basis of (b4) and (64) takes the :
following form: ’ 7

g {(&)._;_'— l]+'f’—‘.‘—"" —o. (66)

Let us examine Tthe case of the 1deal decelieraticn of a gas

a
ot
-

<

l1.e., let us determine pressure P, = Pg» which will be cbtalned

[
o]

lSee below, § 7.

no
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the ratc or flow Jdecreases by the Llsentropic route from Wy =W (with
this S T S y) to W, = 0. The Bernoulll equation in this case

SHER

r'rom which

B (1 g A e T
2 ( 2 .‘%)

vitilizing expression (34) which relates the speed of sound with the
parameters of state of the gas,

=V,

we will obtaln for the calculation of pressure in an ideally decel=
erated gas flow, in the function of pressure (p) and Mach number
before the deceleration:

[
Rl 0 =1.
S=(r+t7 w7 (68)
Value Py is called the total pressure. Just as the stagnation

temperature, the total pressure is a convenlent characteristic of
gas flcw, since 1t immedlately connects two factors: the rate and
tne pressure in the flow; the latter 1is usually cailed statie
pressure. Thus the ratio of the total pressure to gtatic i8 a
funection of Mach number.
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Formula (68) can be obtained directly from expression {u40) fcr
the stagnation temperature

.73=..|+£:.'.Mc,

T

using the relationships four the ideal adiabatic curve

(69)

u{®
I
=
].

-[>
M
-
“E*

(70)

Also cbtained here 1s the formula fer the calculation of density
in an 1deally decelerated gas Jet

!; (1 +k—_~lM’) (71)

With the help of function (42), which relates the stagnation tempera-
ture with the velocity coefficient, we find from relationshiy, (63)
the dependence of the total pressure on the velocity coefficlent

P -
a=( - (72)

Fer the density of an ideally decelerated gas we will obtaln corre-
spondingly

w=( - 73)

It 1s necessary to note that the true pressure wnich is cbtained
during the slowing dcwn ¢f{ a gas Jetv cun differ sigrnificantl;y from
the total pressure determined by foriwu.a {{2). This 1s explalne:

3%

o | i
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Ly the ract that in actuality the slowing down c¢f the Jjet frequently

L4res place noct according to an ideal adiabatic curve, but with more
Zr less esvential hydraulic losses. For example, in a diffuser in
the case ol subsonic gas flow a decrease in v2locity 1s usually
zecempanied by vortex formations which contribute considerable
resistances into the gas flow. During the slowing down of supersonic
filcw shock waves which glve the specific "wave" resistance are always
formed. Thus real pressure in a decelerated gas jet is usually lower
than the total pressure of the ilncoming Jet.

deneraily 1f losses are observed in the section of the jet 1-2,
then thls without fall leads to the fact that the total pressure in
crozs secticn 2 will be lower than the total pressure in cross section
1:

Pur <P.|-

It we Iintroduce the dimensionless quantity which is called the

pressure coefficient:

o="u (74)

!
then the greater the losses the lower the value of the pressure

ccefficient and less the total pressure at the end of the section
of the jet in question:

P =3Py . (75)

It {s possible to estimate losses also according to the difference
ir the total nressures:

8p, =Py — pu=(1 —9)p,:. (76)

&



F—-—————————————ﬁ

Pl

The application of the Bernoulli equation is the basls of the
pneunatic method of determining the flow velocity, which consists
of the fact that into the flow an adapter (Fig. 1.5) which consists
of two tubes {s introduced. The open orifice of one of these tubes
(1) 1s placed in the nose of the adapter (towards the flow), and the
openings of the second tube (2} are arranged in the lateral surface
of the adapter (along the flow); at subsonic speed the deceleration
of the gas Jet from rendevous with the adapter passes wilthout any
losses, since friction and vortex formation appear already on the
lateral surface of the adapter, i.e., after the jet passzes the area
of 1ts total stagnatlion, which is located before the spout of the
adapter., Because of this in the first tube a pressure is created
which is almost exactly egual toc the total pressure of lncoming flow;
in the second tube, 1f its inlet 1s sufficiently moved away from
spout, a pressure close to the static pressure of flow is established,.
Tubes 1 and 2 are connected with a manometer which measures pressure.
The relation of the measured pressures

Pu__Pe
Ps 4

makes 1t possible according to formula (68) or (72) to calculate the
values of the Mach number or the coefficlent of flow veloclity.

The calculations according to these formulas are sufficiently
precise only fcr a subsconie flow. This 1s explained by the fact
that during the stagnation of a supersonic flow a shock wave appears
before the adapter; when these are intersected by the gas jets they
undergc considerable hydraullic losses. Thus the pressure in tube 1
of the pneumatlc adapter during supersonic flow differs significantly
from the total pressure of incoming flow, which makes formulas (66)
and (72) inapplicable in this case.

It is necessary to note that it is possible to use a pnewratic
adapter also for the measurement of curersconlc speea, but in thils
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case one ought to apply specilal calculation
equations which consider wave resistance.
vWie wiil derive such formulas subsequently.

Thus the extreme value of veloclty,
HIL above which 1t 1s not possible to apply

formulas (6€) and (72) in the stagnation
of a gas flow, 1s equal to the sound M =
7 = ) o= 1),

Pilg. i.%. [DClagram
uf pneumatic
agapter.

=

IFor the gas flow being accelerated
these formulas can also be used at super-
sonic speeds, since an increase iIn velocity occurs usually without
roticeable losses (lsentroplcally) not only in area M < 1, but also
i the area M > 1, i.e., the total pressure in the gas Jjet being
accelerated barely changes. Specifically, from formulas (68) or
{72) the exhauat gas velocity %s calculated. In this case in the
vessel where the gas rests the pressure is equal to the total prese
sure of the discharging jet Pg> and in the outlet of the nozzle -
to the static pressure p. From formula (68) we will obtain

A
e\ ¥ — 1] 2
M""l('j;) JATI- (77)
and trrom formula (72)

=)~

A4
=1 (78)

From here we determine the discharge velocity w:

w=2aM,
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whisre

R O

NN VA NN ANE (79)
e
or
w=a,,),
where
a,,===a, V-:——f:‘ (80>

As 1t 1s not difficult to see, the calculation of the discharge
velocity 1is done more conveniently according to the velecclity co-
efficients than according to Mach numbers. The true values of the
discharge velocity are somewhat lower than those determined accord-
ing to formulas (77-80), since some losses of friction cannct be
avolded, tut the error for these formulas 1s usually no more than
1-5%.

Curves )\ = f(po/p) for cases k = 1.4 and k = 1.2 are shown in s
Fig. 1.6,

With the help of the Bernoulll equatlion we wlll investigate
the technlcal work of a compressor and turbine. In the compressor
the total pressure of gas lncreases: Pgo > Poys while in the gas é
turbine it drops: Pgo < Pgye The pressure ratio p02/p01 in the
compressor 1is respectively more than a unit, and in the turbine -
less than a unit. For greater clarity let us assume that the wcrk
duz to friction and change 1n the potential energy are absent and

the pressure change in the machine occurs over an lsentropic law.
In this case the Bernoulll eguation will bte written thus:
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1.6, The dependence of the
ity coefficlent of outflow
e ratioc of total pressure tc
¢ pressure in the nozzle exit
gl

“mn v o
T
[#IY)

CTTTH T s g s

2
7

A corpressor or turcine, working under such conditions, is called

an tdeal compressor or ideal turkine, Utllizing equality (57), let
us Intrcduce in expression (81) the total préssures before and after
the machine, after eliminating frcom it the velocities:

()

Sl ]l ™ - Je ey - e

“rom which

N Ly o Al pr AL, g At
;'Ti%' (Pn) * "‘Z:"’L.‘(Pﬂ) ’ +'.if+ﬁ"}’t) , "".‘L: = L;

but In an adiasbatic process we have the e ualis
Q y
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with the help of which after simple conversions we obtain

=1
=l -] (82)

Thus 1in the l1deal case technical work can be determined by a '
change In the total pressures without allowing for the specific
values of gas veloclty before and after the machine. Work being
transferred to the gas turblne is positive (p02 < pOI)’ and supplied
by the compressor - negative (p02 > p01)~

Devliation from an ideal 1sentroplic process in the machine 1is
usually considered with the help of a cofactor which 1s the efficiency
of the machine. 1In the case of the compressor we will obtain.

. (83)

L=

2l

( In the case of the turbilne

Ly=1,L. (84)

The relation c¢f the values of the tctal pressure after and
before the machine

P’y

65)

we will call subsequently the degree of pressure increase (for a

cempressor) or the degree of pressure decrease (for a turbine).

The equatlion of 1ideal technical work can also be written in the
' following form:

RS AR

=

L=-;‘éier[:‘_‘-"‘l]lmg-“/x‘d' (é6)
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Jne essential feature of tecnnical work s the fact that its

'ni

G4e, o can be seen from expressicn (86), 3s dirvectly propor-

Licnat vs tie Andtial temperature of the gas., Thls prouperty of
techrizal ~ork 13 the basts of the cpe2rating conditinns of any
thermal gas rechine.  Yor exampie, 110 the internal combustion engine
the working medlun is always compréssed first, then is heated, and
expands. i oascordance with what was sald, the work spert during
the compression o: a cold gas 1s less than work which it will pro-
duce after preheating during expansion up to initial pressure.

From & difference in these works, strictly speakling, the effective
work being sccomplished by thie intzenal combustion engline 1s

CCLzlrivo
5 H. The Lguation of Momentum

According to Hewvon's second law the elementary change in
momentum is equal to the elementary power pulse:

d(mw)=rd-. (87)

Here P 13 thne sum of projections on any axis ¢f all rorces applied
to the body of mass m, w §s th- prcjectlon of velocity on the same
axlis, dt is the actior time of ferce P. In such a form Newton's
law 1s utiiized in the mechanice of solld states.

In connection with the flow of flulds and gases 1t 1s more
convenlent tc¢ have a somewhat different (hydrodynamic) form of
equatlon for momentum, It was wobtualned for the first time by Euler.
L6t us derlve the eguatlon of mereniwn in a hydrodynamic form, For
this let ug isovlate Lhe elementary strewn (Fig, 1.7) and draw two

cross seetions 1 and 7 normal to 1vs axls., Let us break the entire

mass of liquid included In volume 1«2 into a large number of parts
go that within the 1ipmits of each of them, having the masg m, the

velocity of motlion could be coensldered constant, and ley us

establish a bond belween the projecti  ns of forces and momentum
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on the x-axis. According to equation (87) the sum of the projections
of the pulses of all forces applied tc the mass of liguid 1-2 is equal
to the change in the projection of the total momentum:

Pz _—.dg ma, (88)

. Let us examine a change in the total
4 ‘ momentum dE mw, during time dt, during
which the chosen mass of 1liquid will move
from position 1-2 into positicen 1'-2"',

Let us suppose, as we did in the foregoing
paragraphs, that the liquid is found in
steady motion, then the momentum of mass

/ 1*-2, which enters both into the initial

gt%éa#.7. Elementary and the final value of total momentum,

remains constant and in the case of
subtraction 1s decreased. In other wordc the increase of the total
momentum should be equal to the difference in the momentum taken
respectively for masses 2-2' and 1l-1' which In steady motlion are

identical:
U 1m0 == (0 — w,,) dM.

Here dM 1s the mass of the liquid of element 1-1' (or 2-2'), Woos
W,y are projections of x-axis of the flow veloclty 1n cross sectlons
2 and 1. Elementary mass dM is equal to the product oi the per=-
second mass flow of liquid for the interval of time dr divided

into the G force:
dM = g d-.

Heace

dz mw, = (w,q — w"')g‘h'
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Vaiue 5w/g is called the per-second momentum. el B

Cabstituting tne resulting expression into the initial equallty
‘2L, we come 1o the equatior of momentum in hydrodynamic ferm (to i
the first equation of Euler), anccording to which the sum of the :
wrelections of all forces applied to the liquid Jet in any section
~f 1t 1s equzl to an increase 1n the projection of the per-second
somentuln in this sectlon, or, what is the same, to the product of
the mass flow per second by the increase in the projection of the

Q

Pr=dw00—wa) (89)

Similar equaticns can be composed also for the other two axes.

Let us apply the equatlion of momentumn to a rectilinear stream
of constant sec¢lion F. Let us draw the end parts of the control
surface at right angles to the fiow direction, whereupon let the

) generati-lx of the late-al surface of the stream be parallel to the

| x-axis. The flow velocity w is directed tc the side of the positive
%-axls. Let us compose the equation cof momenitum in the flow
direction., On the contrecl surface the forces of pressure normal

tc 1t are acting. Thus projections on the x-axis of the forces of
pressure applled to the lateral surface are equal to zero. Pressure
change in the section between the end cross sections of the stream
is preoportional to the force which acts on the selected fluid ele~
ment. This force, paraliel to the x-axis, is equal to (pl—p2)F' q
To the lateral ~urface ls applied the force of friction directed

parallel to the flow, against 1t: -PTp. Furthermore, between the
end cross sections of the stream any machine which receives technical
work from a gac can be found. Let the projection on the directlon

of mcetion of the force, with which the machine acts on the zas,
1

. e

be equal t¢ =-P. Thus the sum of the projections of all forces

o the x-axls is equal to

'The prcjection of the force applied by gas flow to the machine
is consldered positive.

e
—~—
o~
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PRETTIEN

p,=(P|—~['g)F-—P,'—P.

According to the equation of momentum this force should be equal
to a change in the momentum:

ol I BT, s 1 1

=P F =Py —P =T {0y — w0 (90)

(IR R ST

If the distance between cross sections 1 and 2 1s infinitely
small, then the equation of momentum must be wrltten differentially:

-gdw-iﬁrdp=—dp,,-'-dp.

After multiplying all the terms of this equation by the velocity
of motion and after dividing by the mass flow rate of the gas, we
will obtain the equation of work of all forces for a cylindrical
stream referred to 1 kgf of gas:

wdw , dp P, __u’dP.
' + 1 _——_(T’ ag -

Here the equation of expenditure in a cylindrical stream 1s ugsed:

PR

{w== g-.: const,

It is not difficult to see that the terms standing in the riglt
side are the work of the forces of friction:

b e el

g .
-adP‘,=dL"
and technical work:

adp:(ll..
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‘nus the equaticn of momentum for a cylindri-al stream of gas 1is —
.‘~-‘—S -

easily converted into a Bernoullli equation:

) o? d,
"“"-‘—‘:d(jé)‘l‘,“p‘i‘d’-tr (91)

Subsequently the equation of momentum for a cylindrical gas Jjet
will be used in the following form:

____dP“*!P -
dp +pwdw = — =gt w. o, (92)
In the absence of the friction and power effect of gas on any

machlne the differential equation of momentum acquires a very
simple form:

dp = -—purdw. (93)

Equation (93) expresses an 1lmportant property of gas flow.
In the absence of applied forces and fecrces of friction an increase
in the flow velcclty can be caused only by a decrease in static
pressure, and vice versa, the stagnation of flow in this case 1is
always connected with an increase in pressure in 1t regardless of
the nature of other processes which proceed in the flow and the
change 1n the remaining parameters of the gas. In integral form
the equation of momentum for a cylindrical stream will be written
thus:

1]
Pe—p - Priy (@~ wy)== —- I;-' - :.'-.

or under condition PTp = 0 and P = 0.
Pa= =gy (@ - g (94)
or
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p -l awt==const.

Thus in a cylindrical stream pressure can be changed even when there
is no friction and technical work. For this it i1s sufficient that
the rate of flow would change, which can be achieved with the supply
or removal of heat., For example, with the preheating of gas, 1in
connectlon wlth a decrease in its density the velocity increases
(plw1 = 92"2)’ and pressure drops.

An important feature of the equation of momentum is that with
its help the calculation of acting forces 1s conducted only on the
state of flow on the control surface without penetration into the
essence c¢f processes which proceed inside this control surface.
Thus the equation of momentum makes 1t possible in many instances
to calculate sufficiently a hydrodynamic process without investi-
gating the parts in it.

It should be rioted that the effectiveness ol the use of the
equation of momentum depends basically on how successfully the
control surface in the flow 1s selected.

Let us examine several examples of the application of equatlions
of momentum and energy.

Example 1, Let us determine hydraulic losses in the flow of
a noncompressible liquid during a sudden expansion of channel
(Fi1g. 1.8). Experiment shows that in this case the jet coming ocut
from the narrow section of the channel does not fill at first the
entire cross section of the wide chanrnel, but 1t spreads out
gradually. 1In the corners between the surface of the jet and the
walls the closed currents of liquid are formed, whereupon pressure
on the end wall 1 according to experiments turns out to be nearly
equal to static pressure at the outlet from the narrow section of
the channel (pl). During a sudden expansion of the channel
considerable hydraulic resistance is observed, 1.e., a decrease
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cecurs in the total pressure in the flow. If we place cross sectlon
¢ irn ¢wi¢n oa place where Che flow 1s already completely equaliczed,
i¢ pressure P> and flow veloclty W, on the cross sectlon

are constant, then losses will te equal to the difference irn the
tctal pressures:

3P = Poy = Par

PSR osenns Fig. 1.8. The arrangement of
Lfg,:}/,;»wmﬂ flow during the sudden expan=-
E:;—EEE;;LL:,—‘fﬂr_J; sion of a channel.
- e ———— e t
S el 1
e g - ___.:-—‘_—“\.-,
[ et T —
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The total pressure Pg in the case of motion of a noncompressible
iigquic is determined in ccmplete analogy with that as this was done
for an ldeal adlatatic process in § 4, i,e., as the pressure in a
completely decelerated jet without losses and in the absence of
technical work; wilth z = const according to the Bernoulll eqguation
for a noncompressible liquid we have

wi
Pe=py +E2".

Thus for a noncompressible liquid

/ B N LA
bra =+ i, 423

The veloclities Wy and W, can be connect2d with the equation of
coentinulity

wF, =wF,

Ly

——
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the change in the statlic pressure (pl-pz) is unknown in advance,
i.e., one equation with two unknowns is obtained. Additionally

1t 1s possible to utilize the equation of momentum. Taking into
account that the section of spreading of the jet 1-2 has too great
a length, the force of friction is usually disregarded. Then the
equation of momentum can be used in the simplest form (94):

PL— Py =W, (9, —w,)

Here the pressure constancy in cross section 1 1is utilized.
It 1s not self-evident, but as indicated above it is confirmed by
experiments. Unlike the Bernoulll equation the equation of momcntum
makes it possible to determine immediately the difference in the
values of static pressure which are obtained in a flow during a
sudden expansion of the channel. If this result is substituted
into the Bernoulli equation, then the total losses of pressure will
be found during the sudden expansion of the channel:

dp, = _Q_‘-. o) .

One ought to focus attention on the fact that the use of the
equation of momentum brought success in this case because of the
successful selection of control surface 1-2, on which the basic
acting forces turned out to be known.

Example 2. Let us make the calculation of the simplest ¢jector
which consists of nozzle A and & cylindrical mixing tube B, arranged
in the space filied by a fixed liquid (Fig. 1.9). From the nozzle
a jet is supplied which sucks the liquid from the surrounding space.
Assume at the output from the mixing tube the velocity and specific
gravity of the mixture are approximately constant. Let us construct
the control surface from cross sections 1 and 2, which pass at right
angles to flow on the nozzle section and the section of the mixing
tube, and lateral surfaces directed parallel to flow. On the
entire control surface one and the same pressure of the quiescent

b5
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Pijuly prevalis, l.2., the maln fcrce veztor of pressure 1s equal -

ri the force of fricticn on the walls of the

rr 1t will turn out that the sum of the projections ; !
whothie X=axls of all the forces wlthin the limits c¢f the control

surfate 1-¢ 1z equal tc zero, and, consequently, there should

be a change In momentum,

g"" (w0, —w,),

a2n2 fer the liquid sucked in from the surrounding space, where

1t was found in rest (w = 0):

(_)._-;_0_, (w, —0),

freom Wwhich the total change in momentum

Gue, _ G g
£

here Gl GZ are the per-second welght rates of the liquid respec-
tively in the nozzle and at the exit from the mixing tube, W,y and

. are the values of the discharge velocity from the nozzle and
the mixing tube.

The result is that the fluld flow rates in the nozzle and at
the outlet from the mixing tube are inversely proportional to the
values of the corresponding velocitlies

g, 1w,
u. %9,

L6



On the other hand 1t 1is obvicus that

G, _ 1:9,F,
s N

where y 1s specific gravity, F - the cross-sectional area. Compar-
ing the last two expressions, we arrive at the following calculation

formula:

a, EN:Y
EEVT:?:'

If the specific gravity of liquid in the active jet and in the
surrounding space is 1dentical, then the relation of the mass flows
c¢f the 1liquid is equal to the relation of the diameters of the
mixing tube and nozzle:

G, F,_ D,
a=V £=b

Example 3. Let us compute
the force which acts on the walls
of a diffuser (Fig. 1.10) 1in the
absence of hydraulic flow losses
of a noncompressible liquid. Let
the pressure and the velocity in

Flg. 1.9. The simplest cross section 1 before the diffuser
ejector.

be constant and equal to Py» Wy,

and in cross section 2 after the
diffuser are also constant and equal to Pos Wy The Bernoullil
equation, if there are no losses, gives

oyt
P.+£;Zl'-=p, +p_:71.
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srimotne eguation of contlnulty we obtain

Five,Pe: G

=t us draw the ccnirel surface from the cross sections of 1 and 2
and iateral surfaces located parallel to the flow and covering the
diffuser. As a result of the slope of the walls of the diffuser
the sum of projecticns on the x-axls of the forces of pressure
applied from the walls to the liguid 1s not equal to zero (P'ﬂ ¥ 0),

The sum of the projections

-
’
1]
1]
L}
)
1
[}
]
]
]
’
[}
-

of all forces on the x-axls, which

i

) ?——- is obtained by means of the com-
"“"'P‘"f"z— "ﬁ“—"‘— bination of forces P with the

0\‘\. —om | m—

1 -, forces of pressure on the end

g------, _____ ; cross sections, 1s equal to the

Fig. 1.10. For the calcula- change of momentum

ticn of the force of pressure

diffuser.
in a ffus P1+P1PA—PaFo=‘g(Wn—Uu).

Carrying ocut the replacement of values Wy and P, with the help of
the equations of continuity and Bernoulli, we come to the following

expression for a projection on the direction of flow of the force
which acts on the flow from the walls of the diffuser:

Poa P (Fy— &) +(Z%(£'—7‘-:,ﬁ).'

Let the external pressure - P, then the projection on the x-axis
of the force of external pressure on the diffuser

P«up‘=Pu (Fa—P,).

In summation we obtain the following value of projection on
the x-axls of the net force which acts on the walls of the diffuser;:

ug
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.—PGIP."PMP‘”(PI-'FI) (F’—F‘) + g’%(". —]t 2 )..

Ir. the particular case, when external pressure 1s equal with the
pressure in the narrow cross section of the diffuser, this force 1s
equal to

) |

The last expression i1s sometimes applied during the calculation of
the force which acts on the inlet diffuser of a jet englne.

Example 4. Let us establish the interconnection between the
flying speed and the discharge velocity from a ramjet englne, the
layout of which is depicted in Fig. 1.11. In the intake of the
engine the conversion of the dynamic head of incident flow into
pressure occurs, i.e., dynamic air ccmpression. In the combustion
chamber heat will be supplied and the mixture of compressed air
and the products of combustion which is formed is heated. 1In the
exit nozzle the heated gases are expanded; here pressure 1s converted

into dynamic head.

The bases of the theory of a ramjet engine were gliven for the
first time by B. S. Stechkin in 1929.!}

The most ldeal working cycle for a ramjet engine woild be
obtalned in such a case when the alr ccmpression in section n - X
(Fig. 1.11) 1s achieved on an ideal adiabatic curve and the flow
velocity would be reduced to zero, the heat supply in the combustion
chamber x - g would occur at constant pressure, whereupon the
exhaust mixture would be expanded in the nozzle g ~ a up to
atmospher'c pressure also on an ideal adiabatic curve, A ramjet
engine which works on the indicated ideal cycle 1is called 1deal. I

'Stechkin, B. S., the Theory of the Jet Engine, Tekhnika
Youzdushnogc Flota, No. 2, 1929.

4g




:s-—----l-—--

Fig. 1.11. The layout of a ramjet engine: e =~
entrarnice, X - the initial cross section of the
combustion chamber, g - final cross section

of combustion chamber, a - nozzle entry section.

'he total pressure in the combustion chamber can be found from
the Bernoulll equation which 1s integrated in this case with the
help of the ideal adiabatlc curve:

A—1

e

The discharge velocity will be found from a similar expression with
p, P

H [=]

21
L eu.[&T_] va
k*ll’o (P') l =T'
From here we obtain the basic retrationship
o

s
’. —2 = 'ﬂ _2.0

Thus in an ideal ramjet engine the dynamic head of flow in the
outlet 18 equal to the dynamic head of flight.

Utilizing this same equality, we will obtair for an ideal engine

(Pgy = Pp s Py = p_,) one additional important result:

Ao =1y,
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l.e., the veloeity coefficients in the cutlet of an ideal engine
and in the incoming undisturbed flow are equal. Hence ensues
also the equality of the Mach numbers of flight and outflow:

M, = M,

These relationships are valid for ar ideal engine both at
subsonic and at supersonic fiying speed.

In an actual engine in connection with the losses of pressure
in the inlet and outlet sections and in the combustion chamber the
dynamlic head on the exhaust 1s lower than the dynamic head of flight:

w) f~ M
fa ‘2" < 9a ; .

For thils reason the Mach number and the veloclty coefficlent
in the outlet have smaller values than in the incldent flow:

M, <M, <)y

Thus an increase in the discharge velocity as compared with the
flying speed 1s obtained not as a result of an increase In the
dynamic head in the engine, but because of a decrease 1In the gas
density followling preheating.

The relationships obtained lead to & simple calculaticn
formula for the discharge velocity in an ideal engine:

. n,
g,_. = xp.r

e

W, == Wy
fa " o’

where a, - tne uritical gas veloclity respectively after

pr’aupx
and tefore preheuting. IFrom this formula it follows that the

ratio of the discharge veloclty to the flying speed for an ideal
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<ngine 1s proportional to the square rcot from the relatiocn of the
stagration temperatures taken at the end and the beginning of the
L n chamber:

o ©C

% _ 1/ Ty
W-=l/ T"' 7

One cught to emphasize in this case that the stagnation tem-
perature in the beginning of the combustlion chamber can be calculated
according to formula (42) as the function of temperature in the
atmosgi.2re and the velcclty coefficient of flight

T h—1

—_—-

T~ TRFTE

and the stagnatlion temperature at the end of the combustion chamber
is determined by the fuel consumption in the engine and the rate
[ of air flow. 1

' § 6. The Equatlon of Angular Momentum
y [isoment of Momentum)

As 1s known from mechanics, a change in the total moment of
) momentum relative to any axils, for example the y-axis, 1s equal
to the sum of the moments of pulses of all forces applied to the
body relative to the same axis (Fig. 1.12):

d X m(w,z — w.x)= M-, (95)

Here mW, , MW, = the projections ¢f the i..cmentui. .f a certain
elementary mass m on thv axls 2z and x; x, z - the corregponding {
cooridinates, m(wxz - wzx) - the moment of momentum of elementary
mass m relative to the y-axlis.

If the motlon of the liguid is steady~state, then change in
the tot=i: moment of mementum of the liguid which i moved during
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Py the time dt from cpace 1-2 into
%fgr space 1'-2' is equal to a dif-
ro t ! £
, P ference « the moment of momentum
—_ ] : in volume elements ¢-2' and 1-1"':
wy ¢
i . 4 s
—‘ \J
_______ p“'“-"."" * dZm(w,x-w,x).—:i[(u,,z.-—-w..;r.)-
4 .
Fig. 1.12. For the derivation —(an—wax)ldn (96)
of the equation of angular

momentum.
where G 1s the per-second fluid

fliow rate. This 1s explained by
the fact that the moment of momentum of the shaded mass 1'-2 is
decreased during subtraction, since the motion of liquid is assumed
to ke steady-state.

Subst tuting (96) into the left side of equality (95), we will
obtain the .econd equation of Euler, i.,e., the equation of angular
momentum in a hydrodynamic form:

M,y =g[(10.4~'| — Wty — (W2 ~— Wp5)}. (97)

Similar equaticns c¢an be formed fcr axes z and x. A:ccording
to the second equation of Euler the sum of moments with respect to
any axis of all forces applied to a liquid volume is equal to the
difference in the moments with respect tc the same axis of the
per-second moments of the outgoing and incoming liquid.

The equation of angular momentum acquires a simpler form, If
we introduce polar coordinates;! in this case the velocities are
expanded tu radial and circular components, whereupon the moments
of radial components of moments are equal to zero. Equation (97)
in this case takes the form

'In this case motion 1s assumed to be plane-parallel, 1.e.,
the particle trajectories are plane curves.
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‘"=g(¢’.t"f— at71) (98}

whepre M 15 the sum cf the moments of all forces applled to any
liquid volume relative to the origin of coordinates.

Fer the case of inertial motion (M = 0) we will obtain the
kricwn law of areas

w,r ==const. (99)

Let us dwell on one example of the application of the equation of
angular momentum,

Example. Let us explailn the temperature effect of the gas
before a compresscr on the degree of increase in the pressure in
1t. Based on the equation of angular momentum (98) it 1s possible
to find the moment of forces which appear on the compressor wheel.
For thls 1t is necessary to know the circular velocity component
of the gas after (wzu) and before (wlu) the wheel, and also the
distance from the axis of the outgoing (r2) and incoming (rl) mass
of gas. FPer-second shaft work of the wheel, as 1s known, is equal
tc the precduct of the moment of forces hy angular velocity (w), from
which we obtain for 1 kgf of gas

'—L; (wey Fg— 7).

Thus the work of 1 kgf of gas on the wheel 1s determined
by the kinematics of flow and the angular velocity of the wheel,
but does not depend on the temperature and pressure of the gas
(liquid) before the wheel. It was shown above that the work of
the wheel 1s proportional to the difference in the full enthalpy
after and before the wheel:

-1,.=.(ui.!u'.
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Thus at constant values of the number of revolutions and volumetric
gas flow rate, which determine the kinematics of flow, the drop
In the enthalpy on the wheel does not change:

’.. ‘-"‘.. = const.

Consequently, with heat capaclty constant (cp = const) the
drop in the stagnation temperatures on the wheel also does nct

change:

ATy= Tyg -~ Ty == const,

Hence, using the equation of work of a compressor in the form (86),
we ncte that the degree of pressure increase depends on the gas
temperature before the wheel:

»

-1
A\T|=“Z.;;!(”o: —_— I):.—.h;;'L.::consL

Assume, for example, the degree of pressure increase in the compressor
at the start (TH =Ty, = 288° abs, 1s equal to Ty w.crs Wita an
increase in the velocity of flight, entailing an increase in the
stagnation temperature before the wheel TO Lt the degree of pressure
increase in the compressor with a constant volume flow rate and
number of revolutions can be calculated from the condition of

constancy of work:

T e
"1: ”"‘=;-'-!'(t0:.t"—|) S

.
(73 "x. et

If in the first approximation we disregard the dependence of the
efficlency of compressor on inlet temperature, then ve obtain

Lhol ) T Aot
t.: wl::-’__f.;('.'..;"-—l).
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frcm which taking into

we have

Thus in the last analys

it follows that the degree of pressure increase in the compressor
of a turbojet engine drops with an increase in the velocity of
flight., The results cf the calculation according to this formula

with a starting degree
= 1.4 are presented in

ar

account the equality

=1, 1
. l+*_;;:l.“:

is from the equation of angular momentum

of pressure increase ™ w.cr = 4 and k =
the following table:

The calculation ca
since it 1s based on th
work capacity on temper

The basic purpose
engine 1s to create 1in

greater total pressure

rried out for value T« is conditional,
e assumption of the independence of the
ature even with a considerable change in 1it.

of & turbo-compressor device of a turbojet

the exit nczzle (affter the turbine) a
than in the diffuser (before the compressor):

lee >Ftl:
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on tne basls of this the following inequality should be fulfilled:

Tox Pay tue > 1.

here O,.c - pressure coefficient which characterizes the total
pressure losses in the combustion chamber (during the supply of
heat).

In view of the fact that with an increase of flying speed the
value LY decreases, and valves LA and . .c remain virtually
constant, at a certaln value of flylng speed the engline ceases to
satlisfy the last inequality.

L) when =

In the case selected above (no Woor = 0 = 0.5 and

O c= 0.9 this inequallity 1s not fulfilled already at the values

M, =23 (=2, %on Toy 7. = 0,93)
and higher.

The increase of total pressure 1in the turbo-compressor device
4 a whole (pO ¢ > Py A) depends also on the selected temperature
before the turbine, with an increase in which the drop in pressure
in the turbine decreases,

In other words, at a certaln magnitude of flying speed the
turbc-compressor device as a whole ceases tc increase the pressure
in the englne, 1.e., becomes unsuitable, At these velocities of
flight the work of a Jet engine 1s ensured by air compression only
because of the veloclty of pressurization in conseguence of which
the turbojet engine loses 1its advantage over the ramjet.

At the subsonic, transonic and nct very high surersonlc flying
speeds, when the compression of the gus in the compressor substan-
t1ally predcminates over expansion : . the turblne, the turbojet
englne retailns all its advantages over the ramjet.
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§ 7. Entrcpy
ficcording to the second law of thermodynamlics during real
irreversible processes which flow in a final 1solated system the

entropy increases, and with reversible - remalns constant. N |

Mlathematically the increase of entropy dS is determlned as:

L0

dy 0

here dg ls the full quantity of heat applied both from without and
from within (for example, because of the work of the forces of
fricticn), 7 is absolute temperature.
According to the first law of thermodynamics (50)
dig  du | Apde,
In the case of an 1deal gas we have
diu- e

hence with the help of the equation of state (pv = RT) we obtain

() ar

| ly
A IV et

from which Zfter the replacement
AR ey - v =z:(k - )e,
and integration we flnd

2
SN \ ‘o ~r In ”": '.
1 r * 'I',tl‘. e
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cr Ln Tre basis o tne equation cf state
b
. nuy
A Ny-retu . (- --
] ] L] ".}" [QREEV N )

ne enange c¢J evtropy in an ideai adiabatic rrocess which is
e

qual to zero, slnce in this case

[ ] &
Pty =ty =2 po = const,

Any rezi rpcecess fer an isclared rival systen flows itn sucn a

dirzetion tnat the ertropy increases:

Si =8>
In order to be convinced cf thils in the example of an 1ldeal gas,
let us pass in equaiity (100) from the flow parameters to the
t

zgnaticn c¢onditions, atilizing tne cbvious relationship

] [ ]
pu = Pl

Lfter expressing the specific vclume by pressure and temperature

t'.=—R7"
P
we will cbtain
_AT
& -
S.—S,:—-rv(,’{-—l)ln""’(r"'.) . (121)
P \Tos
Ir; an lsclizted system neat exlninge witnh tne surrcunding mediur 1z
avsent (dq___. = 0) ari the stagnaticn t-mperature doec not :hange:!
HZy
Ta=Tn
2y
. - A A R RN RS
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For such a gystem according to (101) the change in entropy
’d .
s.—s.=§-%m=/1mn’i&.' (102)

Sirnce the total pressure in a gas flow as a result of losses drops

Por <pPu

and correspoendingly the hed. of friction always has a positive

sign

‘{Qu > 0'

ther entropy 1in an isolated system durling an irreversible process
always increases.

Intrecducing the pressure coefficient, which considers hydraulic

losses

—Pa
e ~ pPu’

we will obtaln for an energy-isolated gas flow (without heat exchange
and mechanical work) the direct connection between hydraulic losses
and the increase of entropy:

SQ—S|=—-AR|I19. (103)

In a heat-insulated gas flow (dQij = 0) withcut losses (dQBH =
= 0) the entropy will remain constant also with the completion
of mechanical work, in splte of the Tact that the full enthalpy
xas in thils case changes:

—A’.'-:l“"'!"#ZO.
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Thkis means that in an ideal compressor and in an ideal turbine

1
=1

2=

In real machines the entropy of the working medium always changes.

Assume the difference in a real process from ideal is considered
by a certain factor m

1

.

s o (Tag ¥
P " (r..)

Then according to (101) a change in entropy

Si—Si=—c,(k— Vinm (104)

Both in the compressor and in the turbine during a heat-insulated
process (dQHap = () hydraulic losses are expressed in heat supply
v> tne gas (dQ > 0), 1.e., in both cases M « 1.' Thus in real
turbomachines entropy increases (S2 -5 0).

§ 8, The Calculation of Reaction
Force (Thrust)

The flight of a jet vehicle 1s achieved under the action cof
a reaction force, or, as 1t is fregquently called, the reactive thrust
which the jet of outgolng gases imparts to it. Fecr the determina-
ticn of the value cf reaction force P there is no need to examine
in detall pressure distribution on the internal and external walls
of the jet vehicle. 'ne reacticn Teorce can be determlned in firal
form with the help cf tne equation of mementum,

!Both in the compressor ard in =ne turblne with an a
drop In the temperatures and the initiul pressure the fin
pressure 1s lower, the greater the huiraullc losses.

4 oA
1gnN2a

2w
= tn
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In accomplishing flight a body produces disturbances in the
surrcunaing medlum. It is always possible to separate a certain,
sufflciently large, for example cylindrical, area whose boundaries
g§c beyond the 1imits of the dlsturbed part of the flow (Fig. 1.13).
Cn the lateral toundaries of this area the pressure and flow velocity
‘{we consider the engine fined, and the air - moving at the flying
speed) are equal to thelr values on infinity before the englne.

Assume the x-axls co-

----- ] incides with the direction
H 0 of flight and 1s the axls of
P o L : cymmetry of the engine; let
W~Z?IZ‘:Z—":_E'-_'_;_: r us project on the x-axis the
! = = i forces which act on the engine
: :»‘ and on the surface of the
L ===, selected outline. Since the
Fig. 1.13. Outlire for deter- forces of pressure in a

mining reaction force. 11quid are normal to the

surface, the prcjectlions on the x-axls of the forces which act on
th

e lateral surfaces of the outliine beccme zero, Thus the equation
cf Euler [see (90)) will be written thus:

« @ 2 -
§ putt = putf -+ = (0 = wdma + § 0y,
[] ] (4

Here the area on whlch the integrals are propagated and the
range of integration of the first term of the right side are
infinite. Force P is taken with sign + because during the soiution
cf formula (90) it was assumed that the machine obtalns work from
the gas, and here the Jet engine imparts work to the gas: mg, =
= Gs/g - the mass flow per second of air which flows into the

outline through the cross section F; m

r = Gr/g - the supplementary
mass flow per second of fuel which 1s supplled to the engine.

R

o o W e
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If we take the left face surface far in front of the engilne,
then pressure on it is constant and equal to atriospheric (pH), and
the flow velocity 1s equal to the flying speed (wH). Furthermcre,
it 1s possible tc assume that in a transverse direction already at
a certaln final distance from the surface of the engine the flow
is not disturbed and area F, on which the integrals of tiie left
slde are propagated, is considered finite; in exactly the same '
manner the range of integration in the first term of the right side
will be finite. Then one ought to write:

’ 3 ,
Puf ~SpdF - P= | (0 —w,) dury+ | widim,
v 9 [ ’

In a large number of cases the disturbance which is caused by a
flying body is so insignificant that in the nozzle-exit plane
(outside the exhaust gas stream) the pressure of the circumfluent
flow differs little from pressure on infinity (pH). Then the forces
of pressure on the front and rear faces of the outline are balanced

wi‘

everywhere, besldes the section which corresponds to the cross

section of the exhaust Jet (Fa)‘ The velocities of flow in all the
elementary streams, except those passing through the englne, are

identical (here we disregard the influence of friction and vortex

and wave losses on the external surface ¢f the engine}. Conse-

quently a change in momentum 1s obtailned only in a jet which flows

tkrough the engine. Then the equatlion of Euler takes the following

form: :

. . 0
C e P =T, —w) 4
from which the basic formula for reaction force is obtained

P00, — 04 U 0y 1, —p . (105}
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ir these expressior Je/g ~ the mass flow per second of the alr

ns
teing sucked intu the engine Wy o= the average speed of cutflow.

Une ought to emphasize that the relationship obtained 1s correct
or:ly In such a case when the velocity and the pressure 1n plane a
{with the exception of the section of the working jet) are equal in
accuracy to thelr values on infinity before the engine. Furthermore,
here we disregard the external frontal engine drag which can always
be taken intc account separately.

Under the calculated conditions of work of a jet engine the
pressure in the exhaust jet is equal to the pressure of surrounding
air (p. = pH); in this case the reactive thrust is equal to the
charnge in the monientum of the gas passed through the englne:

(s g, :
=~&-(w,—w.)+—‘€w.. {106)

In jet englnes the second term of the right side is small and it 1s
frejuently disregarded,® i.e., *or jet engines in the calculated
case they accept?

p=2w,~w,) (107)

The thrust of a liquid Jet engine in which atmospheric air 1s
not used is determined for the calculated conditions from the
formula

p=2tlyp, (108)

.

'Part by welght of fuel in the air passing through the engine
does not exceed one-five percent: G_ ~ (0.01-0.05) G,

{Cne ought to emphasize that value w, 1s the flying speed,
and in no way the velocity in the inlet of the engine.
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cr in non-caiculated conditions

GG

p=““‘g~wa+(Pa—Pnn)Fa- (109)

Here G0 1s the per-second mass flow ¢f oxidizer.

Let us examine now the effect on the reaction force of the
inconstancy of pressures in the plane of the output section of the
engine. Let us construct the pressure and velocity curve for the
nozzle edge (Fig. 1.14). For simpliclty let us dwell on the case
of subsonic outflow. It 1s possible, for example, to visuallze
such a flow about the engine at which the pressure near the output
section 1s lowered, because of which the local velocity in the
external flow increases. The pressure within the subsonic exhaust
Jet 1s approximately the same as on 1ts bcundary.

wy ’ S,
Fig. 1.1L. The distrivbuticn of the pressure
and flow velceity 1in the nozzle exlt section.

e e

For the calculation of rzaction force let us make use of
the basic property cf nonuniform (in the values of total press.:-

flows, which amcunts to the {act that ncnuniformity in tre e, ..._
ity distribution disappears very slowly, and pressure ic eg.s.!
rapidly.

[
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ihus, tor dnstance, nonunifourmity In the pressure field that
soezr: dur £ the retatlion of a flow 1s egqualized at 3 distance
20 1.0-2 dilameters of a stralght tube after the place of rotation;
“he velccelty 15 equallzed at a distance of 20-30 diameters. Thiz
property can be used during the calculation of thrust. It is known
from testc ithat Lf plane b is located away from the nozzle edge at
a diztance ab, greater than one diameter of a section (Fig. 1.15),
then the presaure fleld already is uniform. Thus after moving away
somewhat from the nozzle ec we enter a plane of constant pressure
(p = pH), in cornection with which it 1s possible to determine
reg:tive ti:rus® by the formula

a,
p= "" (w, — @)

“nere cemains only to find the velocity W which the working
Jet in plere bhas(Fig. 1.15). For this during subsonic ocutflow 1t
is possitle to make use of the Bernoulll equation without allowing
for hydrauiic and heat losses, since, as was noted, the section
of the jJet included between planes a and b is small.

2
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¥ig, 4i.iv, Ine plcrure of the distributlion of
pregsure and veloclity bey nd the cugine.

el we o examiige atoan erzample the cag2 of toc great a subsonic

Sprwd S0 <o G, . Thon according v tne Bernoulil equation
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' wl w,
Pt ra “2"=Pu+9¢’—.:'.

At such speed the pressure difference (pa - pH) is small, in
consequence of which we accepted the gas density as constant.

Thus,

w) — w?
Pa—Pu=Pa ‘2 un

from which

w.=w¢l/£".'_—é'ﬂ+|.
'a’z-' .

In the majority of cases at subsonic speed on the nozzle edge
a pressure 1s established which is very close to atmospheric, and
then Wy ® W, is assumed. During the supersonic outflow between
planes a and b shock waves can be formed, In this case tha cale ,

culation of correction becomes somewhat complicated, but also 1s
completely accessible.

One feature of a ramjet englne 1s interesting: 1if we retain
the combustion-chamber temperature constant, then the value of
reactive thrust (see § 6, Example 4)

) Tee

syl

at first increases with an increase in the veloclty of flight,

and then, in passing through a maximum, begins to decrease and with
a certain value of velocity drops to zero. This 1s explalned 7
ty the fact that an increase¢ in the velocity of flight causes an

6

St

—_— e h e et a0




of stagrnaticn temperature in the bteginning of the chamber
(P, 0, vuwbt it tnle caze for the preservatiou of the stagnation
temperzl o a2l ine end ¢f the chamber invariable 1t is necessary

. decrease the heat supply. When the stagnaticn temperature in
vhe lrcident Jlow bencaes egual to the maximum permlissiole vempera-
ture ir the englne (ti = ?O r)’ the supply of heat has to be dis-
centinued. In thls cvase the thrust level drops to zero. From
formulz (47 the followlng condition i1 obtained for the disappear-

thrust both for a subsconic and for a supersonic ideal

ifroim vnleh the veloclty coefficient of flignt at which an 1deal
engine ceases to develop thrust 1s equal to

, ____»/"ﬁ.’n/ Iy
' l k—'l\l 7‘/'

A precsure increase in a ramjet engine 1g achieved because of
the dynamic compression of air befeore the engine inlet and in its
diffuser, Juch an englne, as vwe saw, 1ls eftective only at a very
high flying speed and is not able to develop thrust completely on
tie 3pot.  For obtalrning sufflcient thrust in a jet engine on take-
of " and at moderarne {lylng speed Lt 1s necessary to apply mechanical
afr compression. A Jet ecagline with mecnanical compression has
already found wlde application in contempcrary aviation. The most
common type of Jet engline with mechianical comprescsion 1s the turoo-
Jet engine (Fig. 1.:%s. In this engine! the air 1s sucked 1n by
tre compressor. After comprecslon in tne compressor the alr enters
tiree combusticn chamber, from where the mixture of heated alr and

cumbustion products is direcied to the turblrne biades. Usually in

'E a detalied presertation of the theary of a turbojet

or
englne see the bouk: Inciembtsow, o V., Aviaticr Gas-turbine
Lniglires. woronglz, 1300,

3
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a turbine only part cof the energy of gases 1s utilized (for obttaln-
ing the mechanical work required for rotation of the compressor).

The remaining (free) part of the energy of gases 1s converted i{into
the kiretic energy of the dlscharging jet. 3

Fig. 1.16. Dlagram of a turbtojet engine: D -
diffuser, K - compressor, T - gas turbine, A
combustion chamber, B - exit nozzle.

If the entire pressure e¢xcest whicrn is found in the combustion
chamber is utilized on the turbine wheel, the engline ceases t¢
develop a reaction fcrce, but in this case the power of the turbine
exceeds the power being consumed by the compressor; the excess of
power can be utilized, for example, for the rotation of a propeller

or a dynamo.

The work teing 3pent for compression of 1 kg of gas in the
ccmpressor, as is shown in § 4, is equal to

't
Lyt fles ,’f':.-,) Y
R I A lf'-l :

fdere Pyxs Pg A are the total pressures respectively zafter and
before the compressor: N, 1s the efficiency of tne compressor;
TO A is the stagnation temperature before the c¢comprescsor.
If we disregard the heat removal in the diffuser, then it i:
possible to consider that T, P Tg .+ el us agree, as before, -
that the degree of pressure increase 1n the compresscr 1s under-
stood as the ratio ot the values cof t~iul pressure of the rac

after and tefore the coumpressor:
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disregard

inaez, Lne

which

e degree ol decrease in pressure in the turblne we will,

adierstana the ravlo of the values of total pressure

toefore the turbine:

fec
r = e
T Pee
STV characterizes the pressure excess in tae

being prodaced with 1 kg of gas in the turblne 1s equal

LA
_ ._. . "I'-t A
sty 71

- the stagnation temperature after the turblne, n, - the
u

a
rblne.

turbolet englne the work of the turbine 1s utilized

virtuslly entirely for dr:ving the compressocr: L., = L . If we

T H
emall changes i1, the gas constant and the adiabatic

n we wi.l have

01w

)
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Usually the temperature of the stagnation gas in the exit
nozzle 1s significantly higher than the temperature of the stagna-
tion gas in the diffuser (T0 c > TO ﬁ). Then from the equality
of work of the compressor and the turbine it follows that the
degree of an increase in air pressure in the compressor 1s higher
than tne degree of decrease 1n the pressure in the turbilne (no w >
> 1/1r0 T), i.e., there 1s excess pressure 1in the Jjet engline nozzle.
This 1s necessary in order that the discharge velocity froir the
nozzle Wy and correspondingly the reactive thrust would be suffi-
clently great (both on the take-off and in flight). A turbojet
engine usually develops considerable boost for take-off.

An essential feature of this engine model is also its in-
sensitivity to a change of air denslty. Tihe density of the alr
which enters the engine 1is noticeably Iincreased with an increase
in the vel.ucity of flight, thanks to which the mass flow of air
in the compressor increases.! The power belng consumed by the
compressor varies in proportion to the mass flow; however, the
latter increases simultaneously also in the turbine. Consequently
the power of the turbine increases proportionally to the power
of the compressor, 1.e., the balance of power is preserved.

Total work of gas 1n the engline 135 made up of the work of
expansion in the turbine and in the nozzle:?

'The compressor is a "volumetric" machine in which with a
density change of gas the mass flcw chauges and vclume flow rate
remalins constant.

ZpAs shown above 1In a turbojet crngline the equaliity L = |

ls always fulfilled. H

e w0 B
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Xi= Litia or Y= Led-Leg
y -3 w33 zlresady mentioned, after the uslng of a certain fractlon

n
_T er=rgy in o tne turtine wheel 1ts remaining part (free) can be used
e z

- . X rL .
.ke fraciicn of work of the compresscr % is usually ccnzid-
fer the formaticn of free power

ely smail share c¢f the avallable

T2 thrust of a turbojet englrne 1ls determined by the discharge
Veigcilvy Trom the nczzle:

w, =1, 9ip. e

whnere
\
Y=/ (I_':_c,' alp-¢=f'(r0¢)'
1f the pressure aftrer the turbine 1s nigner than befcre the com-
cressor, then the veloclty coerficlent ¢f outflow under identical
filght conditicns for a turvolet ernglire 1lc higher than for a ranmjet
a8

possiblie in the latter. There-
fcre the ramjet engine can develop larger specific thrusts even at
-23s pressiares in the Jet nozrzic. nowever, for a thrust auzmenta-

tlorn 40 a turbelet engine 1t is pescible to place behind the turbine

[us

u rooond combustion chamber {(the so-2alled "afterburner") in which
Lne gas can pbe heated additlonally to the same temperature as 1in
a ramlel englrne. In this case iLhe thrust of the turbcojet engirne

of pregsure In the secend combustion
hamber, then tne velcclty ceelflcient of outflow (ka) W
serve the same value 2 witnout an 2ftercurner, ard the velao

o
Wwiil increase i1 proportion tzothe square root from the temporat .re.

7&
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ihe riace of hpplication of
Reaction Force

- ur
w o

et us explain the questiocn concerning in which pcint of the
erwine the reaction force 1s applied.

Let us examine first the simplest case - an ideal ramjet engine
(Fig. 1.17). Let the velocity in the inlet be equal to the flying
sgpeed (we = wH); then pressure in the inlet 1s equal to atmospheric
(pe = pH); furthermore, let us suppose that the englne works under
calculated conditions, i.e., the pressure in the outlet is aiso
equal to atmospheric (pa = pH). At a low speed of movement of the
da: in the ccmbustlion chamber the pressure 1In the latter can te
considered constant (pA = pr).

0. P Fig. 1.17. Dilagram of a ramjet
| ~—L > . engine (for determining the forces
- —_— 1 _ which act on an engine).
:| -----
n x gl a

In the described ideal englne the drops In the pressures in
the diffuser and noczzle are Zdentical:

Pe—Pe="Ft—Pos

However, in view of the fact that in the nozzle the air has a higher
temperature than in the diffuser, the area of the outlet of engine
should be greater than the area of the inlet. 1In fact, in an lde:zl
engine the dynamic head Iin the outlat is equal to the dynami: hezd
of incident flow, i1.e., in the case in guestion to the dynzmic nead

in the inlet:

Bl ==¢, G

AAAL—-“L




Tnen from the equation of contlnuity (taking this equality 1Into

-

= “r 'eoToialin
P p¥y _h % wn_?a.:]/ﬁ
Fe ™ kaiy T foWd Wy wy Fu
Ccnsequently, durirz the supply of heat in the combustion chamber

(g = g_) we nave
'F:>l
[4

nus the Lean pressure which acts on the walls of the diffuser
ars ncezle Lg ore and the same, but the projection of the wall of

-]

trhe aiffuser on the plane perpendlcular to the axls of the engine

i greater than the corresponding projection of the nozzl wall. As
€1t uf what was expounded the force of pressure from within on
aiffuser (Pﬂ) is greater than on the nozzle (PC); the directions
ese forces, &5 1t appears from Fig. 1.17, are opposlite.

I the external contours of the engine are very smocth, then air
pressure on the external surface of the engine 1s very close to
atmospheric, i.e., the force of pressure on the external surface
can be disregaraed. In the i1desl case in question the reaction force
which acts on the engine 1s reduceu to the difference in the forces

applied respectively to the diffuser and the nozzle:

P=p,—-Dr.

Sor the Interpretation of this eguality let us make use of
the resu.t cbtained in § 5 (Example 3), according to which the
magnitudes of forces which act cn the diffuser ancd nozzle are

respectively egual to

7



According to the conditions accepted above

Pe=Fi  pel=1ah.
Then
L, y
reren= (= - h )]
or
I Fed-Fa Yyp:
_~-'~f.,-i~ [2 - =L _'_.'_]“.‘_ A

Let us examine an engine with low velocitles in the combustion
chamber, i.e., with the area of the chamber substantially larger
than the area of the intake and outlets:

F, ~ Fa
,_3; "y ‘v "_.;< l. )

In thls case we come to the following simple formula for the reaction
force determined as a result of the subtraction of the force appiied
to the nozzle from the force applied to the diffuser:

“qu’n (Fa - Fu)-

P =
[4

The same result can be obtalned directly from the formula for re-

active thrust
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Zr, takirng intc acccunt the condition §b==£}_ derived above
Wy »

Thus reactlve thrust 1s obtained because the force of pressure
on the Jdiffuser 1s greater than on the nozzle. This 1s a conseguence
of the greheating of the gas, in connection with which the discharge
arei has to be made larger than the area of the cross section of the
incening let.

In an actual engine, as was noted above, the values of velce-
ity una pressure in tne inlet usually differ from the same in an
urdiziurbed incident flow, which impedes the determlnation cf re-
acticn rorce based directly on the difference in the forces applied
to the diffuser and the nozzle; furthermore, 1in actuality the force
wnich acts cn the external surface of the englne 1s not usually
equal tc¢ zero. However, 1n any event it 1s possible to demonstrate
that in a ramjet engine the reaction force is the resultant of the
focreces ¢f pressure applled to tne walls of the internal and external
bypasses of the engine.

Let us pause novw on how extent of the inlet area of the engine
influences reactive thrust. From the solution of the formula for
reactive turust given in § 8 1t follows that the air speed upon
entry into the engine does not influence the magnitude of reacticn
force; only the discharge veloclty from the engine and the speed
cf the undisturbed incident flow play a role.

This fact has the fcllowing explaration. If the rate of
entry of alr into the englne 1s less than the apprcach stream

velac

(‘f

v (we < wH), then befcre the diffuser the slowlrg down of
incldent flow occurs (Fig. 1.18), whereupon the streams flow to

the leadling edge of the diffuser under a large angle of attack.
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This leads tc the fact that near the intake on the internal wali

¥ the diffuser an area of increased static pressure appears (close
ir. value to the total pressure of incoming flow), and on the external
surface of diffuser - rarefaction; the larger the inlet of the
diffuser, the higher the pressure on its internal surface and the
greater the rarefaction on its external surface (angles of attack

of the alr streams increase). In other words, with a considerable
slowing down of ailr before the diffuser the front wall of the latter
behaves as wing at high angles of attack.!®

The indicated secondary force caused in this case (we < wH)
by the pressure difference on the front wall of the diffuser
compensates exactly for the decrease in thrust which should be
obtained because ol contraction of the surface of the diffuser as
compared with the case Wy = W,. Let us note that 1n such systens
a ccnsiderable share of the thrust falls on the fraction of rar-
efaction which appears on the external surface of the diffuser.

If we completely open up the diffuser, i.e., make the intake area
equal to the area of the combustion chamber (Fig. 1.19), then
thrust will be produced only by rarefaction on tie external! surface
of the diffugser (projection on the axis of thes engine of the forces
of pressure applied to the internal chamber walls and the diffuser
in this case 1s equal to zero).

Fig. 1.18. Ramjet engine (VRD) [BPA:
without an inlet diffuser.

'The considerations given here are completely valld cnly with
HH < 1. The flcw abcut the wing 1s examlned in mere detall In

Chapter X.
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If the rate of en%<ry of alr

F;’//’,,_w-_._-““;.;__, inte the ergine 1is greater than

oSS e v seeed 0 ), o

flcw tefore the diffuser 1s ac-

celerated; in this case the

J—— e b T T T T

=z -}\;:;:;-::t:-4——— streams flow to the leading edge
— 5t—) of the diffuser at negatlive
_°_’j::§::£::::::j;:-—_ angles; in this case near the
e T inet on the external surface of

the diffuser an Xncreased pres-—

‘p,_.f;-"._..__~_y~

g. 1.19, The arrungement of
e Ulow around a rimjet englne surface - rarefaction. Such a
lch haz the formu ¢f a thin-
walled tube.

Ssure appears, and on internal

pressure difference gives a
secondary force which 1s di-
recied to the slde oppesite to the action of reacticon force; this
sectondary force compensates for that lncrease in the reaction force
wrich in the case Wy 7 W, would be possible to expect because of ar
intrease in the surface of the diffuser (as compared with the case
vi, = W ). 7hus the rate of entry of air into the engine should

nét be'considered directly in the formula for the reaction force;
ncwever, 1t influences the thrust level indirectly, since it affects
the resistance of the diffuser, with an increase of wnlch the dis-
charge velocity f{rom the engine drops. So, with W, < W, supplementary
external drag appears, and with We > W, - supplementary hydraullec

icsses within the diffuser.

“he ramjet engine, which has the form of a thin-walled tube
(Fig. 1.19), does nct develop thrust at all; tne cylindrical form
¢l an englne leads to the fact that the component of the force of
pressure con the walls, parallel to the axes of the ergine, is equal

m

tec zero, The essence of the matter lies in the fact that because

¢f the Jdisruption cof the flow flowing around the tube from its

rrent edge ar external vortex drag appears which completely talances
the rezctive thrust; the velocity diagram in the wake after the
tute i1 the area cf external flow has depressions caused by vortex

[as

-
H

3

o3
a4

g whlch compensate for the acceleraticn witnin the engine; 1irn
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shal,

3

stner words the total momentum obtalned An the [low z.ww:

I, conclilusion let us note that in a turbclet e i
(% <o

Lrrust consists et only of the result of the forcess
3

hicn act

applled to the turbo-compressor unit; this seconldaiy oo
to the rotor 1s abscrbed by the step bearlng and is - rans

thrcugh supports to the engine housing.

Formulas (105-109) derived above make 1t g 334+ ic

the reaction force of an englne without allcwlrg 7o

drag which it creates when installed on a flig:,: «. .3

The useful part of reaction force, equa: tc i
tween the reaction force and the total exter.c. L ags o°

plant, 15 called the ¢ffective thrust:

J LAREELY LI (e
€ - - - #
In certain cases the maximum value of effr:ctliv. il
under such conditions when reaction force s Twos 1harn
possible, i1.e., it can prove to be favoratlic o u.lv.
decrease of reaction force, 1f in tnis case the gain I-
laps the loss 1n reaction force.

Luring a detalled study ¢f the external fronce. cnglne oo

latter 1is usually divided into zeveral component gparts

components):

N Xusp==Xa-]- Xe |- Yo

directly orn the walls of the englne, bu: z:6.:

s .- - - -
MR

(111)

vnere Xﬂ 1s the drag of the intake -~ diffuser; X_ 15 tne drag cf

the engine nacelle, into whlch the engine 1s bulilt {the

|
0

crinci;

a:

e _ A
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part of thils term 1s usually made up of the force of frictisocn cn the

ext¢rnzs surface of the engine); XC is the drag of the outlet (Jjet)

The terms of the external frontal engine drag (Xn, Xc)

are ezznined 1r Chapter VIII, which deals with the gas dynamics

nLtlie.

ot the engine components.

The rezcetion force of an englne, determined Ly formula (105),

can be 2onsidered as the difference between the output pulse of
the jer of gases which leave the nozzle:

l‘=—(i!:g—(_’t Wy |- (Pa -= Pu e (112)

ana the input pulse of the jet of the incoming undisturbed airflow
belng sucked into the engine:

l..=%w. (113)

In the case of a ligquid-propellant rocket engine (ZhRD) [WPA] or

a solid-propellant rocket englne the rate of air flow G_ in (112)
1s replaced by the oxidizer consumption (GO), as this 1s done in
formula (109). The total pulse of nozzle cbtained during the full
expansion of gas 1n the nozzle (pa = pH):

l,=g'-na,. (114)

Here and subsequently G - thils is the total gas flow rate in the -
outlet of the nozzle (G = Gg + G or G =Gy + Gr). The outlet

device of the engine, which inciudes the nozzle, possesses external

drag, in connection with which a new concept 1s introduced -

the effeetive pulse of the nozale:

he=lc— Xe (115)




m - — .

.

The ratic of the effective nozzle pulse to its pulse during ldeal
cutflow {without losses) 1s called the relative pulse of the noazle

Tai’»‘-. (116)
na
Then the relative effective pulse

T l.. X

The expression for the thrust of the engine iIn the absence of losses
within the nozzle

Pu=la—Iu (118)
can be used with the help of (112), (113), and (117) for the re=-

presentation of effective thrust depending on the relative effective
pulse

p,,=7,,p,,.-—fl—'l'..)—‘;! @ — (X2 + X (119)

The last term of the right side in the sum of the external drag of
the diffuser and englne nacelle:

'1+Xr=’-2xu.p—‘xu »

i.e. the full external drag of the engine plant with the deduction
of the external drag of 1ts nozzle part.

In a rocket engine the second term of the rightside of (119)
is equal to zero since alr is not sucked into it (GB = Q).

The evaluation of the internal thrust of an englne (not allowing
for external drag) is done with the help of relative pulse (116)

81




or

p=( —AT)PM—-ATQ;w.. (120)
The value

Al=1—T7 (1l21)

is called the [ = relative pulse of the nozsle. The influcnce
of losses in the engine components on the magnitude of thrust
being developed by 1t is examined in detail in Chapter VIII.

4
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CHAPTER 11
ELEMENTS OF HYDRODYNAMICS
§ 1. The Motion of a Liquld Particle

Let us examlne the motion of an infinitesimal liquid particle
which has the initial form of a parallelepiped (Fig. 2.1). Unlike

a solid, a 1liquid particle can be strongly transfcrmed during its
motion.

The faces of an infinitesimal particle of 1liquid which has
the form of a right parallelepiped in the beginning of moticn

with ribs dx, dy, dz, can be beveled ana extended in the course
of time (Figa., 2.2 and 2.3).

‘1
g #'
. e
dez ‘ y =TT 7
j--l‘.‘, ) e f/
. s L4
L’d' Vod Sz o” a
&
. T r
Fig. 2.1. Elementary parallel- Fig. 2.2. Angular
epiped in a fluld flow.

strain of faces.
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A ¢ Fig, 2
o T . g. 2.3. Linear strain
[’ A A of faces.
: i

-ad” -

n d H

| 3

et the veloclty component of particle motion at polint a
(Fig. 2.1) be u, v, Ww; then the veloclity components at point b
are equal to

ou

do
u —[— »ay‘dy. v —{—‘-,;dy.

i w-{—g;-dy.

u—}-g:;‘dx. v-{—g'{_dx,

w—}-g;:dx

and at point e

)
5t dz, v-}—g:-d:. :

w-j—%:r’d:.

The beveling of edge at of a particle during an infinitesimal
time dt, which is caused by a difference 1in the velocity component
at points a and bt (Fig. 2.2), 1s characterized by the displacement
of polint b, equal to

on

The relative displacement or the angular strain ‘

by __ Ou
Es_dyd" J
i
1
o
’ [
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Tne beveling of the edge ad leads t¢o angular strailn

dt v
wld == dx

dt.

In view ¢f the fact that the angular strains during time dt are
insignificant, the angle of slope of the face can be considered

equal to the tangent of this angle. The full beveling of an K
initially right angle at point a in thils case equals

du , don
{6y T o/ 9"

and the rate of the corresponding angular straln

N U (la)
Wy U axt
Index z indicates that the deformation of a particle is er-
amined in plane xy perpendicular to the z-axis; in the remalning
two planes, the rates of beveling of the quadrants obvicusly

equal
1x=¢1§_—|_3;3' (1b)
a3 , Ou W\
T."SOI‘TE:" (1(/

Utilizing the same angular displacements of the faces of the
particle, it 1s possivble to determine the angular velocities cf
its rotation., Since the directions of rotation of the edge:s ab é
and ad are opposite, the mean angular velocity of rotation of
the particle as a whole about the z-axis comprises

| 00 du {2a)

For the remaining two axes of rotation we have respectively

. 1 /ow_ dv\ 1 /du d':) (2v)

The vector of the angular velocity of rotation w whose com-
ponents are w, Wy s and w,, is called vortioity and its value
is determined, obviously, by the following equality:
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w= ) w 4w} - Wi,

ey us dwell ncw on the linear deformations of the particle.
tes ol motlon of polnts a and d (Fig. 2.3) in the direction
x-

i't.e T

ar

ol the axls differ by the value
) ' (3)
(u I- :)':dv) -t == ':’: dx.

in connection with this, the particle 1s lengiaened during
time dt to the value

]
dd” = Ge ix dt..

The relative elcngation ¢f the partlcle

dd*  On
aa = g dh

aild a the rate of the relative elongation of the particle in the
direction of the x~axis 1s equal to

—

' =" (4a)
o .
’ By analogy, the rates of relative elongation along other axes
Jv dw (4v)
Y=oy T wt

H The elongation of the sides of a parallelepiped which depicts }
E a liquid particle (Fig. 2.1) in general leads to a change 1in its ‘

volume; multiplying the difference in the rates of the forward ‘

motion of the opposite faces of parallelepiped determined according
4 to formula (3), for the area of each of these faces we will obtailn

the rate of change in its volume because of linear strain in the !
direction of the horizontal axls; composing similar expresslons

for the rates of change in volume along the remaining two coordinate

axes and totaling all three values, we find the full rate of

change in the volume of the liquld particle:

aV do
fl‘l == 3‘: dx dy de -’- dy dydld-"[‘
+'{;:d: dxdy=(t.-}s,-}s)dxedyde
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Af..r the division of this expression into the initial vclume of
the 1Lquid particle V = dx dy dz, we ¢ome to the value of the ratge
cf & relative volume change in & liquid particle important in gas
Jdynamics:

| dv {
on the basis of (4) we have finally

6)
6x+b}+m (

§ 2. The tquation of Continuity

The expression which stands in the right side of equality
{(6) ls called in field theory the divergence (or disagregment)
of the veloclity vector and 1s designated thus:

Yy \
dle—‘"—l-‘,,-{ e, (7

where W 1s the velocity vector.
In a continuous incompressible medium the volume of the
particle does not change; consequently the cequality

o

div W= +;’+w...6 (8

is the equation of the continulity of a liquid.

Conditions of constancy of the mass of a liquid particle can
be written in the follewing form:

M ==pV = const, (99

Here by liguid density p 1s understood the limit of the
ratio of the mass of the particle to its volume

=1lim AM __dM (107
¢ a‘vTuV=dV' !
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cuuot 2 ls aocuned vte Le vhat, striving tc zero, the volume

1e neuricted toward 4 certaln internal point.
irferentiating totr parts of eguallity (9) for time and
dividing  tne res:hlt by tie value M, we will cobtain
Ly Vav o (11a)
p At UVl

ience on toe btaslis of (5 we come to the equation of continuity

.

& continuuus compressitle medlunm

. \ 4
div w.-:-;-;;. (11b)

et onoing the full density derivative of the liquid in terms of
time Ly parsial derivatives and utilizing (7), we cbtain

du , 909, ()w\__dp_T._“Op

Kov'o,wo:/ dat dx'va +"°

in accsrdance with the rule of differentiation of products,
i

s equaticn of continulty for a compressible medium (gas) leads
t> the fornm

Op . Jpu (l2a)
TS 'f dy 4

The sum of the last Lhree terms 1s the divergence of the vector of

the current density ¢W; therefore the equation of continuity for

3 gas can &isc ve written in the form

% | divwy=0. (120)

In the derivation of the differential equation cf continulty the
mction of a separate liquid partlicle was examined; Lagrange intro-
duced such a method of study into hydrodynamics. Another method

of study, developed for the flirst time Ly Euler, examines not the
behavier of separate particles but the change in the parameters

of a liquid in rixed polnts of space wlth time; Euler's method in
many lirstances 1s more convenlent than Lagrange's method - both In
hydrcdynamics and in gas dynamiés it 1s used more freguently.
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§ 0=, ALSut the Forces whilch Act

inoa Jlculd

Let us issiate @ certain volume of liguld (Flg., 2.4; angd

tev us examine Lt in isciation from the surrounding lizuld medlun,

[po)

P 4 Je
Urp * T‘ud:
r dt — N A
r—dr—-q Uyt 5 Fig. 2.4, Diagram of th-
— forces which act on $wo
LA a : :i o faces of an elementary
- e Grgptds rarailelepiped.
T -] > .
Xy
T -0y
]
I

“he forces which act ¢ a giver. volume of 1lquid can te of
two winds: volume and surface, Velume forees are applied wo all
raterial particies ccnstituting the veolume. Pertaining to volume
forces are: gravity, centrifugal force, magnetic forces and
e.ecrrical. Surifacse forces are distributed cver the surfaz: of
tne isclated voiume. They aprear as a result cf the effect of

-

.

w

ertircnmant on the given volure.

(&1

Surface forces, depending cn how they are directed with
respect to a glven surface element, are subdivided Into ncrmal

and tangential.

In order t¢¢ c¢ch

o)

racterize the change of a volume force 4LF ov

surface force AR from pcint to geint the concept of stress,ls
introduced, imglying bty it the limit of the ratlo of force ¢
tne volume AV (or resgectively to the surface .S8) whieh is reached

with the contraztlon <f tne volume (or sairface; to some internal

volint.

Thus, the stress of a vclume fercc at a given pceint of the

medium 18
AF_ dF

=] —
Ak&“"’”dV’
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coimel Poreos oacl Loents dnoa o aulcscent and in a moving liquld;
Cangenttal farces appaar onty during the motion of a liquld, and

criy when the iiguld rarvleles are stralned,

matority of lizwdlds, as cxperlence shows, Newton's

hyrotnesta is wvalld

accoralns Yo wikiich the stresses are proportional

LCovne rates ol gwrala. The proporiionality facter, which depends
Creopdnd oV Liagula oand luo ctate, 15 called of the coefficient

e Gawanle vlecrsity or slmply the viscositvy.

&+ 2

L ows rormalate eqgusztions of motion of a viscous cocmpressitle

N .

-

£
S
[
s}
e
]
y-

a4 cionmentary parallelepiped with sides dx, dy, dz.

! Let us deslgnate the comporents »f vcoclume stress f by X, Y,

; 2, the compenents of normal stress ¢ aipplied to the faces cof the

b rarallelepiped and parallel vv the approgprlate cocrdinate axes -
Oys Oyy O, and the comperients of tangential stresses lying in

1

A

tne pliane of each face - Ly lettcr 1 with two indices (the tirstc

3 indicates tne axis perpendicular to this face and the second -
tne axls parallel to the direction of the stress, for example

1 ). et us note, withcut the proof, that the equality

LN » 1
Xy Xz yz'o
~f tne morerts of fmrce re.ative to an arbltrary axis and the
equality cf tangenuv. al stresses with ldentical indices but arranged
'n reverse crder rollows from ejquiilbrium conditions of a parallel-

2riped:

Ty = Tyo =% =%y, (13a}

According to iwewion's law the product of the mass of a
raralilislerired times i1ts acceleraticn is equal to the resultant

all feroese applled Lo the parallelepiped.




r—

{ -2t us set up tne appropriate equation for the praltectlone - ¢
acceleration and resultant force on the x-axls. The normal stlesses
3;.plied tc the end fuces give the force component:

d’qd 0'4
°‘+Fi X |— 0, ‘0‘d2= -~ dxdyd&
The force compenents from the tangetial stresses which act on the
lateral and upper fraces:
[(".\'x 4 o!“'-"dy)-ﬂ Jd:dxag'-’-‘!dxdy ds
K e S dxe
and
[(1 _F§€!d¢)_t dyd. _df,
1" 5y ax | QY J—dexdydx.

If we designate the components of the veloclty vector along
the axes x, ¥, 2 by u, v, w and conslder that the mass of the
particle di = pdxdydz, then the eguatlon of mction along the X-axis
for a unit of volume of liquid takes the form

( du Lo L 0% . Ul (13t

Pae =X T {38+ T s,

Tre full veloclity derivative in equation (1l3b; can te ci-
pressec by partial derivatives:

o~
—
La)
4
-

i dw o du | du . du

g Fa g oy - TR

Then the equation of motion along the x-axis can be presented

in tne form

[

i ] on dit L dsy, 0., ORED)
e b ety e 2 Ve Y e L - N Bt
K ol ikt oy e "’L ) A Thov v Ty n 0z ;"

Thus, 1t is possible tc derlive the equiations of notlon in the

direction of the y and z axes:

-~ i oml '
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rithmezic mean of three normal stresses

o==~l7(1‘-7—=J——:,) (15a,
dces not change witn the transformation of coordinates and {or

an inviscld 1iquid it 1s equal to the pressure taken with the
se sign.

For future reference it 1is convenlent to separate from the
normal stresses the sc-called "supplementary stresses" determined

o

rom the conditions

-_—

U‘Y—vy-—G,

(15b)

Oe=3,—8, ]

9= g, — €.

Gtilizing these relationships, the system of dlfferential
tgaations of motion can be presented in the form

di O3 &5, e P
= et __x Tox agh
F 4 Y B ¢ T X ey oe ’ !
""‘f:v_l_‘l'-'_"_":-,u-__-_"?’..'_;_{*_’.-,‘ (16
e ' 0y Ua T gy s
B ¢ oy «
== 7 - | Lo 3 e
Fae =20 oy ' ox Uy u: )

Iv goes without saying that in each of these equations 1t 1is
rossible, in accordance with (13¢), to replace the total derivative
of the velocity ccmponent on the left side with its partial
derivatives, and the tangentlal stresses with identical ones, but
to consider transposed indices according to (13a) equal.

§ 4. 7The Connesticn between Stresses
and Strains

The conncction between the stresses which act on a parallel-
v ieed (Fig., .45 arg he rates of strain of the latter, as has

PP ) 3

seosudy teon fndalcatei, i3 estaclished by the Newton's law of




prrm———

Tangential stresses cause shearing strains (angular strains) !
wiiose definitlon was given in § 1 of thls chapter. Since, in H
accordance with Hewton's hypothesis, in a liquid the stresses are :
groportional to the rates of strain, in accordance with (1) we
nave

- da , dv 0!
| = (g +37) =wle e i
where, as has already been indicated, the proportionality factor

k 1s the coeffliclient of dynamic viscosity dependiig on the kind of
liquid and 1its state (temperature, pressure).

The tangentlal stresses 1In the other two coordinate planes
are respectively

!,,=P(?,—§+g})=m- (170)
1‘,‘=‘L(%z+%%)=p'[’. (17¢)

It 1s a more complex matter with normal stresses.

Extending Newton's hypothesis about the proportionality of
stresses to the rates of strain to normal stresses and tensiie
stains (compression), it is necessary ts keep in mind that the

P T

stretching of a liquid particle 1s accompanied by its lateral é
contraction, 1.e., volume strain; in other words, strain in the 3
direction of any axis 1s caused by stresses both parallel to thia 4

axls and perpendicular to 1it.

The detaliled analysis of the flelds of stresses and strzins :
made by two different methods in hydrodynamics and in the Xinetic “ !
Tneory of Gases,! made 1t possible to establisn the tle between |

'Patterson G. M., The Molecular Flow of Gases. Fizmatglz,
M., 1960; Loytsyanskiy L. G., Fluld and Gas Mechanics. Fizmatglz,

M., 1957. : d




normal and tangentlal stresses from which it follows that the
additional normal stress is equal to

c;—_-..a‘—a:.-?p(l‘—.;-e), (18)

where €y € are the relative linear and volume stralns determined
respectively froa (4) and (6).

Surthermore, in the hydrodynamics of a viscous compressible
liquid the second generalization of Newton's hypothesis 1s accepted
according to which the mean normal stress is equal to the sum of
two terms: the first term is the pressure taken with a negative
sign which does not depend on the rate of volume strain, and the
second term 1s proportional to the latter:

o=z -—-’+7"' (19)

here n 1s the coefflclent of the so-called second viscosity intro-
duced into hydrodynamics for the first tim¢ by L. D. Landau. The
minus sign with pressure considers that it is always directed in-
slde the selected volume of 1liquid; value o 1s customarily considered
positive 1f 1t 1s directed outside.

Thus, according to (18) a.  ’19) the components of normal
stress are expressed In the followlng manrer:

o, = —P-}—?w,-l-(n—'%»)f-

2 (20)
o= —p+2,+(3— Fu) e,
2 R
o= —p+2e,+(s—Fu)e]
In a noncompressible liquid e = 0, whence
(21)

9= —p+iy o= —p+2us, o,z —~pt 2,

L. D. Landau showed that in monatomic gases the second
viscosity was equal to zero (n = Q), and with the majority of
other homogeneous gases 1s very clo.e to zero.
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( However, for some two-phase mixtures (for example, the mixture
of a liquid and the gas) and thermodynamically nonequilibrium gas
mixtures (for example, with the course of slow chemlical reactions)
the second viscosity becomes considerable.

&b, radel

ot e s

Subsequently, we will assume n = 0, i.e., we will consider a
gas without second viscosity; then the normal stresses are deter-
mined by the following expressions:

At

Lol 1l

°l=—P+2!“:_‘§"P&

Sk ity b

(22)
==+ 20ty e

IRNTH T

‘:=“'P+2l“c—%l*¢-

b vt e

From (18) 1t follows that the additional normal stresses appear
only in viscous fluids, when u #¥ 0.

Substituting in (18) the values €, and e from (4) and (6),
we obtain

ot B B, e

A\
e

c o O 2 (du L0,
[ G gt —da(fe 204 0 (23a)

and respectively for y and z-axes

0,00 2 (0u , 30,0
r o_..-?}13;—39(;;}+@+£). ] (23b)
o 8 2 [da , dv, d
} .%—Wa‘§4&+@+£)

For a svncompressible 1ligquid

(24)




In a noncompressible liquid the additional normal stresses are ~-

connected with the rates of linear strain by exactly such relation-
shivs as tangential stresses with rates of angular strain.

It 1s not difficult to be convinced of this comparing equalities
(24) and (17)

§ 5. Navier-Stokes Equations

Using formulas (17) and (23), in differential equations (1l4)
it 1s possible to replace the stresses with rates of strain. In

this case, we will obtain the so-called Navier-~Stokes differential
equations of motion of a viscous liquid.
For example, for motion parallel to the x-ax!s

bt g4 w;—+w;—=

xR —-3-:*(%%—:%: + ]+
d ; Ou - d» . du:
"‘oy[ T T]"‘oz[*‘ T

After simple converslons in the case of an invariable viscosity
value in an entire zone of flow (u = const) we have

p%?+w%f?+r-v%";+w%:‘=x"¥ i+ T (25)
+_5_ 0 'du +_6_+0;v\

Utilizing designations for the Laplace operator
o' L
S=gt T

and the divergences of the velocity vector

div wgg;.+§';+%‘=,




————

0 [ ©ou " du
R b e L

let us write equations (25) in a more concise form:

26
v 2 L se L da (zee)

and by analogy for motion in one direction of the y- and 2-axes

(A d d
Pur tHEE vy 4 g0 2 ==

o

O ow
P;r-+ﬁ"3;-¥P";;-FMW;;==

2
= ¥ 3t udv gk v W) (260)
b
% L0

Equations (26) are called the Navier-Stokes equations. In
vector form the Navier-Stokes equatlons are reduced to cone equation

of the form

daw
pgr- =R —gradp -+ p3W L Ly grad div W)

wh2re R is the vector of

in a viscous liquic?
to Lhe walls which limit
tion of the differential
to utilize as a boundary

(27)

the stress of volume force.

“ne adheslon of particles of the liquid

flow vccurc; therefore, with the integra-
equations of Navier-Stokes it 1s necessary
condition the equality to zero of the rate

P vt 4 A ] 1

LAl e

el A Yoo

il &

PRI

Gl 8w

of flow at the wall (ww = Q).

In the case of a noncompressitle liquid (p = const) the last
terms in the Navier-Stokes equations (26) and (27) are absent
(div W = 0), 1n conseguence of which these equation take a simpler
form:

f
4

i

T

RN P e

du dp . , (28)

(29)
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The solutiosn of the Navier-Stokées equations, even for a
nencompressitle liquld, 1s a very complex problem.

Up to now it was possible to solve these equatiocas accurately :
cnly in some very simple cases, for example, for the flow of a E !
viscous fluiﬁ along a stralght tube - Poiseuille's problem; for the .
ficw bztween two parallel flat walls of which one is fixed and the
other moves, i.e., Couette's problem; for a flow close to the

eritical point - the problem of Xhiments [as transiiterated]
Howarth, €7 al.

The problems of the hydrodynamlcs of & viscous liquid are
3clved usually approximately by means of the rejection of some
terms in the Navier-Stokes equations which, under various specific
conditions, can be small in comparison with other terms.

§ 6, The Equation of Energy

Let us set upa differential equation of energy conservation
for a moving particle of a compressible medium. According to the
first law of thermodynamlcs the heat supplied to a body goes to

increase its internal energy and to the accomplishment of the
strain energy

dQ=d(c.n+Apd£/. (30) ‘

Here dQ = aqQ, + dQTp - the total quantity of heat conducted to 1
kgf of substance because of the heat exchange of the particle

with the environment (dQH) and the work of the friction forces :
(dQTp), pd V - the compression work (strain).

For a particle with a volume of V = dxdydz and with weight
G = pgV the condition for energy conservation will be written in
the following form: J

dg==dq, -+ dg,, = 0d (c,T)+ ApdV. (31)

e amm W e
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Here qu 1s the heat obtained by a particle from without, dg

T
the heat of friction which is released on its faces.

WL et s o et s o

S

Then the per-second heat flow per unit volume of the particle
is equal to

[ R AN

(32)

vl._

Ag D)
dt 8 Tgr T

Ap av.
Y Vat

If the supplv of heat from the environment is wchieved only
by way of thermal conductivity, then in a unit of time the heat
flow prasses across a unit of surface in accordance with the .
Fourier hypothesis:

Yr __. 9T (32)
Tt =" 3 :

Here A 1s the coefficlent of thermal conductivity depending on

the properties of the liquid (temperature, pressure),-%g - the
f
temperature gradient along the normal to the surface, %? - the

r per-second heat flow, F - the surface of the particle.

At 1 e

Returning to the elementary parallelepiped dx, dy, dz (Fig.
} : 2.4), let us write the per-second heat consumption across a face
f with area dy dz in the direction of the x-axis

- 'A%I dydz.

Ad

o Al £33 ALY 7 BT P

The per-second inflow of heat across the opposite face comprises

{
'd__r 9 (. er;
tox T a('-a;;dx]dy dz. % 1
= {
)
Thus, an increase in the reserve of heat in volume dx dy dz as a %%
result of the inflow of heat through the indicated pair cf faces % ‘
during the time interval dt comprises g

ANCIA :
or (g, dvdvd:a. ; '

36 s | {
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Cinllarly, the Iinflow of heat in the direction of the y-and
Z-axes comprises respectively

9 /9Ty 9 (, 8T
3;\ -a-—d,\d.d.\df. ‘(A-a-)d:dxdytﬂ.

The total amount of heat conducted to a particle by means
of the heat exchange with the environment during time dt, i
d {, er . d 4 or a1 9T i
fe=[3z o+ o D (08D axay drar (34)

Let us now rind the quantity of heat which enters volume dx dy dz
as & result of the work of the friction forces.,

The viscosity forces applied to the opposite faces of the
parallelepiped have opposite direction. The per-second work is
equal to the product of the force and the projection of the rate
on the force direction. For example, the supplementary normal
stresses Oy which act on faces with an area of dy dz,accomplish
in one second the work (with consideration only of terms of the
1st crder of smallness)

[—:.l-u-:-( '-—%-d.)/l %— ]d_;-dza
31

=(=

dx
a(2u)
+ dxdyd’—-—a——dxd dz,

In the same manner the work is determined which 1s performed
by tangentlal stresses Txy and Tyz applied to the same faces in
the direction of the two other velocity components (v and w):

VetV dpds, Lou= e dy dz.

The work of the normal and tangential stresses which act on
the remaining two palrs of faces 1s calculated analogously. In
summation, the following expression 1s obtalned for the total
per-second work of the friction forces which act on the surface
of the parallelepiped:

100




dly
- mll. (sutt - 30 -los, ) A b ot =+ 0,0 2y 0) e
-,—-:7(.“"-;- v o) |dadyda. (35)

Eowever not all work of viscous forces is converted into heat,

Part of this work, which corresponds to the resultant of
viscous forces, which causes particle acceleration, 1s excluded
on an increase in the mechanical energy of the particle.

The components of the resultant or the viscous forces in the
direction of the x-y-and z-axes were determined in § 4 in the
derivatiocn ol the eguations of motions; the work teing accomplished
by these components of the resultant force in a unit of time,
nbviously, equals

dlL,, [ i O d: /o &, ot
- = _-_;_r.:__-;_‘_;_..T!.'—-"-a-ﬁ
dt "', I dj* ! dzx/' : z\ : B oy T % )+
) , o, o, | 03
_ru\T:-+?j:LT -‘E‘-)]d,\'dyd!. (36)

After deducting from the full work (35) the work of the
displacement of the particle (36), we will obtain the unknown
part of the per-second work of the viscous forces which 1s trans-
formed into the heat:

dl
bl _-_'E_ : 6y . o . ou . -Bu .
“ —["‘ dx ‘“T atgd + \.r-é; T3 oy +.H’ UyT'
' ou dv
ST teame o3 T Ly a. + 2 0¢ ]dtd)ndva_’i"n (37)

If now in equation (32) we replace the value of the total
per~second inflow of heat dq = dg, + dqu with the aid of (34)
and (37), then we will obtain the equation of energy

die ) av'a/ar,o'or.o'or.
=g +4prdt=3_ 'vy\km 'l’l\)dJ ]T-

. . 99 . d.../ du . . op fw’ .
+A[ ‘g 04- e ‘ly‘dj.“f"uax"T" vx:,?'”",r‘a?"f' ve dy VT
' f, o 9 o) Y= R
T\ll 9 \T fo. |
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After the replacement, in (37) of the viscous stresses by their b
values according to (17) and (z4) we will obtain the heat of fricticn i
which {s liberated in one second in elementary parallelepiped:

i o Ap0V, (39)

where the multiplier

vee | [/, On !
q“?[\"ﬁ+*"3!+"'g£’+<J'T+°'3;+‘.n )

, Tt e ]-e[,,)'v'ﬁ:. + ]+
Hay+ B+ +8)+ 2(%':--t-%'%)— o)
—3(FTE+E

is called the dissipative function.

Utilizing the definition of the function ¢ (39) and (40), we
| obtaln the equation of energy conservation in the form

R, 1% o
_"—‘*""v"a OA\T\'+T( )+3‘;l*"\+ﬁﬂ° (41a

We convert the second term of the left side of this equation with
the aid of the conditicn for the conservation of mass (lla):

2
I rr—--f%-—L+-"£“

Then the equation of energy can also be presented in the
following form:

g [eoT+aL]=ade + 2304

+§,’k%\+o, tE AR (41b)

For the 1ideal gas which 1s subordinated to the equation of state
p/pg = RT, the eguation of energy is simplified, since ¢

T+ A -’P‘--((,-i- AR)Temc,Ta=l
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o, dp ] ar\ ar: . a1, or
PEg; = A gr +3.; = +3.. WL o T A.a‘ RN 3 (4la)
If the coefficients of thermal conductivity and Leat capaclty

do not change in the entire zone of flow, then we have the equatlion
of energy in the followling form:

o8 G =re, e AL LT L 0, (42)

In a noncompressible liquid, the second term of the left side
of equation of energy (4la) is equal to zero and, furthermore,
cp =c, ™ ¢ therefore, the equation of energy is obtained in the
fcllowing form:

pge d—‘-._.-\ ---o-)AT—{-Ap‘!’. (43)
The dissipative function of ¢ in this case also takes a

simpler fcrm since the last term of the right side of (40) is equal
to zero.

For a stationary two~-dimensional (plane-parallel) flow the
equatlicn of energies (U42) tvakes the following form:

S fdT . OT N !oBp o opt L IET 0T
F&p n-(i——r(l-"—\.-v=r‘t.ll~(£ 'f‘t"(p a—- ' -\—\-',L
lhl Lot ® T dp ! 2 da [
\ l ¢I\ ] ) \(if‘ JI ¢ \U;V o UT, —7 \a:‘. -(E,' } (uu)

In certalin cases in gas dynamics it is more convenlent to use

other form of the equation of energy which can be obtalned with
the ald of the Navier-Stokes equations.

Let us multiply the firest of the Navier-Stokes eguations (16)
by the velocity component u, the second - by v, the

third = by w
end let us add all three equations term by term.

Then we will have
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o' dp AR f-lh"\- d.'; d."\ + A :

W= = dE TR TV e Yyt da )
d

nt ) e v e
e -

s | d.\' N

‘o - d OT“,)J_&_ 0', “:\ ! 0;.;).

~
Py
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Here for simplicity the worsz of the volume forces 1a rejected as i @
not playing a rele in gas dynamles and the mean ncrmal stress 1s i f
ieplaced by the pressure (o = -p), : :

Adding equation (45) which reflects a change In kinetic energy
witn eguation (42) which c¢ounziders o change 1n the enthalpy, and
utlifzing expression (40;, after scme ccnversions we obtaln

d i, . W L ITRIC L S e
Wy |17 -4'??'1. =g T *':[67"*" TEwl )
0 ' [ t *
e Gyt = 33 b 2 0) o g (Rl 4 Ty :,.u)]. (L6)

L5 ls kanown from § 2, Chapter I, the sum <of the enthalpy
and heat equivalent of kineti: energy 18 called total erthalpy
{£ull peat content)

I+ A=l (47)

Substituting (47) into the left side of equation (HE) and replacing
the stresses Dy the strain rates with tine aid of (8), (17) and
(24%), after nhe c¢onversions we obrain the equation of energies in
this form:

o= A g b and [ A WX div W, (&8
where
Fdiv Woem 2t W) -J}(di\' W) 5 (div vy
In g3s dynamlos great significance is tiad (see the following

paragraph; by the dimenslionless quantity

A B,

e =




called the Prandtl rumber. Let us Iintroduce thls number into the .
right side of equation (4B). For this let us add and subtract the :
term

%)

utilize (47), and conslder that with cp = const

[ TP Y R TR PR

M7t AL ,

i ’ H
Thus, we heve

t dy 00, 2

pgd;asA;}f‘—i-é;-\l.-'—p(l—Pf)A(%“E)-}-gp(WXV)(HV W. (49) »

For gases che Prandtl number 1s close to unity (for example, for
alr Pr = 0,72). Wlth Pr = 1, the third term of the right side is
equal) to zero and the equation of energy is simplified:

di, (50)

o, L o
g =A—£+;;Al.+gp(w><7)dww.

-

i 7. Hydrodynamic Similarity

in view of the impnossibility of obtalining the exact solution
of the Navier-Stokes =quations and equetion of energy for the
overwhelming majority of tasks of hydrodynamics and gas dynamics,
resort 1s had either to approximate solutlons or to experiments on

o i

models. I, the latter case, the question arises concerning
the conditions of similarity for the flow around of a fuil-scale
obJect and its model. 3

The flrst condition in such similarity 19 the geommetric

similaricy which 1s accomplished i1f the dimensions of all compatibls
elements of the modei and nature differ the very same numter of
~

times and, furthermers, i{ the compatible elements are arranged
ar, identical engles t« e veloclty vector of the incident flow.
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Hug iy

e

any
3

croaracterizilic dimensions of the model r ., differ from
zorres; onsing churacieristic dimension of nature r, by kz times.

Vonno Lhe vasuc
’ (51)
':azm

is the linwear seale of m:deling (Flg. 2.5).

oot . -
ST TasS DAl

The kinematic¢ similarity
the wodel and nature is achieved if at compatible
ceints whose couorglnates are proportional:

b/ [ /
=hmi=i=n 52

Doy ounants L8 b veloclty vectors satisfy the condition

| J [ ]
g P PN 1 P (53)
BT e, T T e
where o, o, u, o are the velrcities =f the undisturbed incident flow
. roupecetively of tre rodsl and in natuie At a great distance ("at
! inrinitye”,) Troeoine vady. The value Ku 18 called the kinematic
'l}‘. S 3 e
)
Fig. 2.5. Illustration of {
v geometric similarity.
} L—f" 1‘
[ #
oMo ‘
2 x

From torreltion (52 1t follows that compatible points of the

[

Pl.ws cul v dutermined in the following manner:

LW

D, Dmll; .t (54

fo fa' T gt Ty T
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i.e., as points with identical relative values of coordinates.

In exactly the same manner, from condition (53) we obtain that
at the compatible points of two kinematically similar flows, with-
out depending on the kinematic scale cf modeling, the dimensionless
values of the corresponding velocity components are identical:

e, % %, T L] (55)

s — et

e .“l uﬂ‘ uﬂl "WI

The condition of dynamic¢ similarity of two flows, obviously, is
satisfled when values of the corresponding forces applied t¢ the
model and nature dirfer the very same number of times:

0 duy do, dip,
"di _ '"dt thr T
’ duy ™ “do, du.=kk
" g D
Xe Yy _2._, (56)
X" Tz, % ]
P _P P
S sl e oy
Pre Pra™ Py kk'
R_:_R)" R.a
,u—-R"—'-RT.-_kR'

The first of the presented equallities contains the projections
of inertia force which stand on the left side of the HNavier-Stcokes
eguations, the second - volume forces, the third - the forces of
hydrodynamic pressure, and the fourth ~ the forces of friction

grouped in the right side of the Navier-Stokes equations.

The coefficient kR characterizes the dynamic scale of modeling.
From 2qualities (56) it 1is evident that without depending on the
value of the scale kR the dynamic similarity occurs if the dimension-
less values of the corresponding forces applied to the model ani
full-scale object are ldentical:
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Xo X, Yoo Ve
"‘.:.T_=".E' diug~ " du ete.
gt g P4 " gt

P\i — Pll )
y i i‘.f.! etc, .,
T Po ¢ .
R = Ry ete.
du duy
Ll RTe L

Sydrodynamicaliy similar are the rlows In which conditicns of
reomecric, Kinematic and dynamic similarity are satisfled simui-

2f wz Write the lavier-Ziokes eguations in a dimensionless
fcre, “hen for two hydrodynamically similar flows these equations

willi turn out to be completely identical.

et us reduce the iavier-Stokes eguaticn to the dimensicnless
Tform (28), for whicr first we express all values which enter the
uations in fractions ~. the corresponding values for an un-~

o]

e
disturced flow far from the body (u_, o,, Y¥_, P,) and also charac-

o ?

teristic values of time (tG) and dimension (1):

oty ot 2in ) o250 @ 00)
YT e PRy Ry
’_‘___ﬂt'b".’_’_%' protele ¥ O'T'u;_‘o';; o..'?; +
PR T S B L T B —G;Y ;(;T
0T8T o 9f

and then let us divide ty the value ui/l, proportional to the force

of irnertla for a unilt of mass:
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L T?;.;_."_ié.z. °_d_;_:‘:.:’ 311.&—'0
LN 6:. ".-no*’_' R P d';: u,,o:_
=.£’.__"L.'_ﬁ_._“.:'__’_=°_':_‘[ol7u; 6"_:,; a'«:l—,,
ui, Oaug,l,,oA_;_ C bl P By d'\xT} 0‘\‘;-)' 0'\;— +
u v »
+%i—/:+f,;-°:->] (58)
OF 9y 93 oF

Here it 1s accepted that mass force X i1s the force of the earth's
gravity, 1.e., X/p = g.

The dimensionless Navier-Stokes equation (58) contains the
following diuenslonless complexes:

N
leug' udh' P’ Palle”

It 1s obvious that for geometrically and kinematically similar
flows the dimensionless equations of motion (58) will be identical
in the case where each of these complexes has the very same value
for a fulle-scale object and models and i1f at the compatitle points
of these flows the relative values of the density and viscosity

are ldentlical (p/p, = idem, u/u_, = idem)
b W gl §l \
foiow  feabaoy Sh, Ve = . =
P r [N M 1 (59 )
EX o _ —Eu " = 1 =’R°
' Pna'vlon  Poululeon

- [
'm-".‘»h Vi wfxn

Dimensionless complexes (59) are thus the criteria of dynamic
similarity for geometrically and kinematically simllar systems.

Awarded to these simllarity criteria are the following
designations and names:
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ut - Strouhal number, i

nt - R
—=Fr - Frcude rnumber,

(630, H
Z,=Eu- Euler number, !

#u __R - Reynolds number.
M

In expressions (60) the indlces are omitted since in them on=
ought to substitute some characteristlc values of the parameters
which do not mandatorily correspond to thelr values at "infinity."

Let us recall that each of the criteria of dynamic similacity
wes rormed by the divisicn of the corresponding force into a
value proportional to the force of inertia; therefore the Froude
numger in essence determines the ratic of the gravitational force
(volume fcorce) to the force of inertia, the Reynolds number ~ the
ratio of the viscosity force to the force of inertia, the Strouhal
numter - the ratio of the supplementary (local) force caused oy
tne unsteady nature of the moticn to the force of inertia, and
the Euler number - the ratlo of the force of hydrodynamic pressure
to the forge of inertia.

In a noncompressible liquld Euler's criterion 1is not determinant
since 1t is possible to take the dynamic pressure pu2/2 as a
characteristic pressure p and then Eu is a constant number.

In a compressible medium Eu criterion can be presented with
the use of the known expression for the speed of sound a2 = kp/¢

in the form

EU=T'W?

this means that in the case of gas flows two supplementary similarity
«riteria appear:




Polsson's number

and the Mach number

the values of which with the similarity of flows near the model and
nature should be respectively identical

kl=kl’ M.=M.~

Let us now move on to an examination of the equation of energy.
To reduce the equation of energy (42) to dimensionless form let us
refer, as formerly, all values of velocities to the velocity of
the undisturbed incldent flow u_, all linear values =~ to the
characteristic linear dimension of the obJect 7, all pressures -
to the pressure in the incident flow p_, and all temperatures -
to a difference in the temperatures of the incident flow (far from
the body, and the wall of body ATO =T, - Tw' For simplicity let
us investigate the equation of energy for steady flow conditions
(1t 1s not difficult to show that consideration of unsteady terms
in the equatlon of energy leads to a Strouhal number, i1.e., to
the criterion obtalned earlier from the Navier--Stokes equations).

Then from (43) and (40) we have

o 2. o 3T LA
PROIT g L u 757, Tf.' » 93T
] W Tx u_ + =
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Fawel = (52 )+ =2, [H 5=+ =2 + i
1\ T oY o o oX
T/ : i/ 1 7
|
Ius 0, 0= 0=\ L fei- 9- o2\’ ‘
—_—24 =) PO T .. !
+\a! P34 T o£-+a£ 3 §‘+ay.+oi ! 4
\ %% i i ] i ! | :
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and further, zfter tne division ¢l all terms ty the commen facior
cf the 1eft siyge:
ar ar A s
PR AR R S S P ) R ™
Uy gt Uy oY Ug 52 Tl P g 3T, |y L x +
7 1 7 o7 '
o-L d_L g 37 61A . 37
A A S DT A Y A Y
T ta ' TN 0("'T0'¥‘a'+o z J+
[] ] t; {
wry, | ot o fouy' 1
-}-A 0 B > _*_: = +
heeply |7 5% ALY 1
9; 9. \Or {
fo%  aty\' L APSLAY LR AN
4_Iiff4_if“ iﬁf ? o /d"w di;‘ !
VTATY RS TR Y
Vo7 7 \% r/ o7 I
) fol o8 a=\*
2 a"m d“w d"m\ (81
RE R EUTRL T
Vi ! r/
Fere AT & T - Tw is the excess lccal tempneratudre (in comparison
with the wall temperature), whereugon dv = d(&T). The lelt sids

of the equation ol energy reflects the cvenvectlive heat “ransfer;

theprefore, the division of all terms by tne dimensional fictor of

the lel: sids means that all forms of heat fluxes are expressed
in Traction. of the cunvectlive,

rity of the twec processes 15 achleved whern

energy . This cendition is satlsfled with the olsgervance ©

1,

[
—
n
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i- i) hydrodynamic similarity; %
2) the similarity of the temperature fields, 1.e., the equality z
of dimensionless values of the excess temperature 1ln compatible j
points of two flows AT/AT_ = idem with x/1 = idem, y/l1 = idem, é
3
2/l = idem. H
‘ 3) equality, in both flows, of values of each ¢f the following §
E dimensionless complexes of equation (61): %
b P A, ) Aw, ]
1l ge,ATy Y egeju ]’ lnc'lf.‘ :
It is expedlent to transform these complexes somewhat. So, é

the first of them 1s the product of the already known Euler

| criterion times the so-called temperature criterion

b A% _MRT, o,
| =gc'.\f. ='3;' &T, igRT,*
( Since AR=c¢,— ¢y h==¢)/cu kgRTa =20k then H
) 3
Aul, Tor aae (623 3
*=gar, =* = Vg M

Consequently, the temperature criterion which considers the relatlion
of the compression work beling achleved by dynamic pressure to the
convective heat flux 1s proportional to the square of the Mach
number and to the ratic of the full temperature of the incident

flow to its excess temperature. The value

is a temperature increase with the adlabatic stagnation of flow;
therefore we also have

AT T, ~Ta
°—23T.=2 To—Ta' (63)
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Thus, the temperature Jriterion is egual to the doubled ratic
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re increase with the stagnation of
excess gas tenperature; hence, 1t 1s clear that this critericn
nas significance only with large flow rates.

We convert the lactcr with the second term of the right side of
ejuation (61}, which expresses the ratio of the heat being trans-
ferred by heat conductlvity, to the convective heat flux thus:

X 11 (63a}
X pu gl - PeR*

Jrie of Lts dimensicrnless cofactors is the recirrccal value cf
the %aynoids number known t¢ us; the second dimensionless facztor,
inversely proportional to the value called the Prandtl number

Pr:&;&,__,%. (E4)

depends only on the physical properties of the medium. The value

A
'==aﬁ;- which 1s callied the coefficient of temperature conductivity,
has a dimensionality of the kinematic viscosity coefflcient wv.

The product of the Prandtl and Reynolds numbters is called
Peclet's criterion or rnumber

P
(92

N

~

Pe = '-:1== PrR.

This criterion 1s widely utilized in modeling the processes of

heat exchange. The factor with the third term of the right slde
of equatlion (61), which is the ratio of the heat being scattered
to the convective heat flux, dces not lead to new criteria since

i1t egquals the ratio of the temperature criterion to the Reynclids
number:
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id To the aforesaid it should be added that for a medium of
variatle density we should include in the llavier-Stokes equations
the volume forces of Archimedes, since according to Archimedes' law
"grarticle surrounded by & liquid of different density loses in
1ts weight as much as the volume of liquid it displaces welghs."
Thus, the Archimedes force applied to a particle which has volume
V, 1s equal to '

i B e o L el

G—1<) V=20 —p2) V.

The projections of the Archimedes force referred to a unit of
volume which should be substituted into the Navier-Stokes equatlons
can be presented in the form

i e

S b e

N=gG—pb V=g0—rtd Z=8F—0=b

where By» sy. g, are the projections of the gravity acceleration
to the coordinate axes.

The ratio of Archimedes' force to inertial force, which should
( stand in this case in the right side of the Havier-Stokes equation
for the x-axis, will be written in the form

N g l—e?
T TN . 3

The relative change in volume, and conseguently also in the
density, is proportiocnal to the temperature change:

AV p—0»
v=—=TamD,
where B8 is the vcolume expansion coefficlent.

0 - -
In an ideal gas with constant pressure o= =® P,/T, L.e., b =
a0

= 1/T therefore

X Rl 3Ty AT __ATo 1 AT
T ul, Ty ATy~ T, Fr AT
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“ne dimensicnless factor

LY (67)
Ar=gtyy
is ¢alled Archimedes' number; 1t 1s important for hydrodynamic
similarity when the temperature drops in a gas flow are great and

the velcclties are low,

As we see, Archimedes' criterion is obtained from the dlvision
of the relative temperature drop by Froude's number,

In the general case (8 ¥ 1/T.)

Ar=§=‘;p.\r ﬂ&'y—“—:.z'—=h1, (68)

i'ne dimensionless quantity

ar=£40T (69)

which expresses the ratio of Archimedes' force to the viscosity

force, 1is called Grashof's number.

Thus, for the satlsfaction of the conditions of hydrodynamic
and thermal similarity it 1is necessary that in the model of the
value of the similarlity criteria:

Reynolds number: R='_‘:";.‘.,
Prandtl! : =2 18
an s number Pr .._.‘Srl., (70)
Grashof's number: Gr =837 ',
temperature g=_0%
criterion: TTgeAT,

be the same as in a full-scale object.

For gases, the equality cf the bMach number

ot}
.Q

M=




=
x

and tne relation of heat capacities
o~

fo

shouid also te observed.

b s, i ot besa A o

§ 8. Laminar Flows

We come to cne of the slmple speclal cases of the exact sciutlen
of the lavier=Stokes' equation in the case of the sc-called "laminar
fiows,” when only one velocity component is retained, and the otrer

At D Vgl U0\ 1ked g

two are equal tvo zerc everywhere:

n=2n(e, g 5 th  v=0,  w=0

il il g

If the mass forces sre negligible, then in this case the egquaticns
of motion take the following form:

%""‘d'="‘"‘§f+ (a"“*‘g""*":.':;"‘v "z (3%):
°=_70v+d F( ) 0=~ +'3 J-d.)

and the equation of continuity

9 d(pu)
a+55 =0

B bt R o e i e

If, furthermore, we are restricted to the case of the steady

flow cf a Mcompressible liquid C}.—O.p__\muq then from the

ejuation of continulty ensues the invariabllity of the velocity
in the direction of flow 3u/3x = 0, and from the latter twoe
equations of motion -« the pressure constancy in the transverse
directions: 2adp/9dy = 0, ap/dz = 0. Then from the first eguaticr

of motion we will obtain

Q-—P(r'*'a?)

et the laminar flow of a viscous noncompressible liqu:id te plane-~
parallel, whereupon the rates of flow in the direction of the z-ax’s
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do not change 3u/32 = 0. Then in the first equation of motion ovaly

tangential viscous stresses which act in plane (x, y} will te
presescved:

1y
3,=0 ¢,=0 ang ':y?.-ap;;. (71

Relationship (71) expresses Newton's law of viscous Irietion in
the simplest form; Jdifferentiating (71), we obtain

Then the first of the equations of motion takes the form

4@ 9"
3}=*‘df" (72a)

Let us examine the plane-parsllel laminar flow of a viscous

ncncompressible liquld in a channel formed by two infinite parallel
plates.

If the distance between the plates 1s equal to 2b and the
crigin of the coordinates lles on the axis of the channel (Fig. 2.6),
then as a poundary condition of the task 1t 1s possible to accept
the condition of the adhesion of the liquid to the wall:

t=0 with yssz:h (72b)
Integrating differential equation (72a), we have
d
2‘,)"}"‘:’93‘;' (72¢)

From the symmetry conditlon it follows that in the median plane

d
(y = 0) 5% = 0, and this means C; = 0.

l[ &
T o h Fig. 2.6. Plane-parallel flow
FJ : I in a channel.
O TR, 4
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ilow integrating equation (72¢), we obtain

T oI+ C=pa

whence on the basis of (72b) we have

1 dp .
and consequently,
d,
ne= gy 0 — 0D (724)

The rate of flow on the axis of the channel (with y = 0)

122 p

g==—15. dx (72e)

After dividing term by term equality (72d) by (72e), we obtain
¥ 11— a)
“._1 g (73

From (73a) it follows that the dimensionless velocity onrofile wizn
the lamlinar motion of a liguid irn 2 flat channel does not depend
elther on the value of the viscosity or on the value of the
longitudinal pressure gradient and 1s a quadratic parabola.

Using the condition of the constancy of the fluild flow rate

it is possible, on the strength of (73a), to determine the so-
called "mean rate of flow" in the channel

n¢,=—T---_-:n.§“f-.d(!.-).—_-u.s(l—{-;)d{-=%u.. (73€)

We compute the pressure gradient along the channel. For tnls,
we determine from (73a) the second derivative of the rate in the
transverse direction

o o - L e it -




'II'lllllll'IlllIlIllIlIllllll.IIl-!.-.F"""""""""" —

cwbLbtitane 4ts value in (72a)
dp ___ ply
=k

e, tie donzes 00 pressure with a laminar flow of a liquid in a

)
¥

et Thatannn o ar proportional to the rate and inversely propertional

‘ Lo ot za.are S0 the height of the channel. The pressure change on
| & seonian S8 iaflc length x = 1 equals

Lf P—7 o

) v 'n 3irsrvieasless form
Lp 168 I
'1?“ pued A

ere :o= 0 15 tiy f'uil helght of tne channel. Replacing maximum
srevd by the avercge with the aid of (73b), we obtain of known

]
Ap=...17".95§t, (75)
tn whick tpe loess factor for friction

;;,;% (76)

15 ¢apr:gsed 28 . Reynolds number determined for the average rate

and nelost of Lhae cnannel

R.=g§f. (77)

“ne miuas iiyn in formula (75) indicates that the pressure along the

Vst denr o858,

A3T.0r on.c-lating the value of the transverse gradient of
i rite o ac uhe wall (y = b), with the aid of (73a) we find from
fioovne Yroostorn strrss at the wall
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or in dimensionless form

‘I='_:_.=;=‘_':.‘ =—;z;. (79)
LA

The value cp is called the surface friction coeffioient., Values

Tw and cp can also be determined directly from (75) if one consilders

that the force of the difference in pressures which acts on a

column of liquid with a height h and length 7, should be balanced

by the force of friction applied to walls):'®

< 20=A4ph.
Hence
A 1 at
1.,=1‘)-Ap-i-==-—'§9%!- (80)
l.e.,
A
c,z‘i'o

Differential equation (72a) also describes ithe laminar flow
between two parallel walls of which one moves 1n 1ts plane at a
rate of U, and the other 1s fixed(Couette flow).

§ 9. The Equations of iotion of an
Ideal Fluid

The analysis of the Navier-Stokes equations of motlion conducted
by Prandtl back in 1904 showed that in the case of a liquid of

'The velocity profile in the transverse cross section 1s
stable and the 1liquid density is invariable and, consequently,
the total momentum along the slot 1s constant.
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low viscecsity (water, air, etc.) with sufficlently large values = H
of Reynolds number the influence of viscosity 1s felt only in a
thirn layer adjacent to the surface of the body being flowed arcund
- the boundary layer).! Outside this layer the role of the viscous
fo. .es turns out to be so small that the corresponding terms in

the iiavier-Stokes equations (26) or (27) can be disregarded.

[IREp

[T O PR R N

In that case we obtain the equations of motion of an ideal
compressible liquid

S b s

dn ] do Jj dw 9 (81)
V=X =i Va=Y—% 1G=1-3.
or
P'—“:-’=R—gndp. (82)

Since in many instances under these condltions heat-transfler
is also substantlally exhibited only in the boundary layer, in
the remaining part of the gas flow according to the equation of
energy (50)

di » 8
p PH‘—:==A£ (83)

and, in particular, with steady moticn

{ 1y =a const. (84)

But in the absence of friction and heat exchange in gas an ideal 1
adiabatic process 1s achleved, in connection with which instead of !
the equation of energles 1t is possible to utilize the equaticn

ﬁ of the 1deal adiabatic curve ‘

ﬁg,m,,_ (85) !

1FPor more detail about the boundary layer, see Chapter VI. ‘




In the case where the 1liquid 1is 1deal and incompressible
{p = const), the task of the integration of the equations of motion
{61) is greatly simplified. This was also indicated for the first
time by Euler, whose name the equations of motion bear (81). The
analytical methods for the solution of the equaticns of motion of
an ideal fluld received great development, and at present a great
number of cases of flow around bodies have been studied (wings,
wing trusses, bodies of axisymmetric form, all possible channels,
etc.). From the aggregate of the works In this direction an
important direction ¢f contemporary mechanics was formed - classical

hydrodynamics.

In conjunction with the boundary~layer theory, the hydrodynamics

of an ideal fluid became a powerful means for the solution cf
problems of the aerodynamics ¢f aircraft, hydrodynamics of a ship,
mechanics of the mction of a liquid along tubes, and many others.

For example in the case of the flow arcund a body of smocth
form with large values of Reynolds numter, the boundary layer is
50 thin that the pressure distributlon over the body surface 1is
determined in the first approximation from the equations of motion
of an ideal fluid. Further, as will be shown in Chapter VI, from
the known distribution of pressures 1t is possible to calculate

the boundary layer and to find the friction stresses at the surface.

If necessary it 1s possible, in the second approximation, tc calcu-
late the boundary layer effect on the external flow around the

body (beyond the 1limits of a layer) and then to determine the
friction stress more accurately. But freguently they do not

resort to the calculziion of the second approximation, since thne
first approximation gives satisfactory results.

The solution of the equations of motion {81) has an especlzlly
simple form in the case of the vortex~free motion of an ideal fluld
when vorticity 1is equal to zero (see expressions (2),, i.e.,

o B od iz

ottt 37
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.';,3‘.(“._?2-)=o, (86)

“rom conditions (86) it follows that some function 4 exlsts whose
rartial derivatives in terms of ~oordinates x, y, z are equal
t< the corresponding veloclty components, i.e.,

ﬂ=g}. . 0-1‘.3' w=3’

Actually, substituting these values in (86), we obtain the identities

L
dw Jdv d' =0

¥ T 0dy  dyos etc,

Function ¢ 1s customarily called the veloeity potential, and vortex-

free moticn - potential.

Let us replace cn the left side of the first of equations (81)
the full velocity derivative by the sum of 1its partial derivatives
and let us add to it the sum equal tc zero

do 0w
Then this equation 1s reduced to the form

1 oW (87a)

. 1

54

where W=V v+ o' 1is the full rate of flow of the liquid.

In a similar manner, it 1s pessible to transform the equations
of motion along the remalning two ccordinate axes:

P th e —uwwy=y—1%,

1 oW? 1 dp

0o — 2(uw, — vw,) =2 — - (87e)
o T T A 04 = ? 08’
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System of equations (87) is called the Lamb-Gromeko equations.
If the velocity potential ¢, the potential of volume forces 6

v A_y B
a;=x. b;—y' d.=a

aP _\dge oP__A0p
E?“’?'d;' 3

exist, then equations (8&7) are written as follows:

K\, 10w _ v 0P
P 1) \.») T Tde T os
T AW L A, . (88)
St T =5y
1 oW 00 P
V2% =50—u

Used here 18 the conditicn of the indepcndence of a mixed derivative
of the order of differentiation

S=a (N =a ) ere.

If we multiply the first of equations (88) by dx, the second = by

dy, the third - by dz and then add them term by term, then we will
ocbtain

|(, "”\da+£(;‘f\dy4 (w)d..]-}- [ "‘V'dy+-a—¢:].—_.
=[ e +Fay-1- 5 ds] —|3F dw - "”dy+""dz] (89)

Each of the brackets in this expression 1s a total differential;
therefore, instead of (89) we have

d(ggj-l-d( )+dp=da

~~
e

(]
~—
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This brings us to the so-called Lagrange integral:
we
P+ T+ 3=04-cln (90a)

where J{t) i1s the arbtitprary function of time.
Since Ly definition
p=sq'z' (90b)
the Lagrange integral can be presented in the following form:

L+ R=01cn (90c)

i, the case of steady motion (g;'=0. C(f)_—.:con.t) we have

d
S .’Z - ‘2“2——-‘-9-{- cust,

If the 1liguid is barctropic, i.e., the density is a one-valued
function of pressure, then integral (90o) can always be calculated;
with steady motlon of a noncompressible 1liquid (p = const),
Lagrange's integral appears thus;

%-{-5;-:0-!-(01"!.

An important feature of Lagrange's integral 1s the fact that it ia
valid in the entire space filled by the liquid.

If a veloelty potential does not exist, i{.e., the motion 1is
vortical, then the equations of motion of an ideal fluid (81) also
can be integrated, but only along the flow line and under the
condition of steady motlon.

With steady motion, the elementary displacement of a particle
along the flow line ds = Wdt or in projections to ccordinate axes

X=, ¥, 2

dx =undl, dy==wvdl, » =a wdl,
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Let us now multiply each of equations (81) by the corresponding
projection of elementary displacement along the flow line and let
us add these three equations:

¥

’ tdu - vdo 4 wdw = Xdx - Ydy 4 Zdz —
—(Fhar B+ G ).

SR i

[ The left side of this equation is the total differential from
(w2/2). If there is a potentlal of the force function (d$ = Xdx +
+ Ydy + Zdz) and the liquid is barotropic (!'l_—adp), then this
equation can te written in the form

T E RN R TN Y

d(F)=a—dn.

Integrating, we come to Bernoulli's known integral:

R
[

P+ =0 const

( or
dp ; W ot
S—' +—§——0_con._..

If the force field is caused only by the earth's gravity and the
z-axis 1s directed vertically upward, then the projections of the
force which acts on the unit of mass

. . q8
X=0 Y=0, £==—-g=;;.

In such a case Bernoulli's integral takes the form already known {
from Chapter 1 ’

d L]
S ,’"i- !Z'-l-s'tacomt (91)
or for a noncompressible liquild ‘

f—i-!g-.-}-g::.—comt. (3la’




Let us recall again that unlike the Lagrange integral, Bernoulll's
!ntegral is valld only along the flow line, i.e., the value of
tne ccnstant in right side of {(91) for different flow lines 1is
dlssirmilar. Only in the case of a steady potential flow does

Bernoulll's integral convert to a Lagrange integral and is made

sultatie for any point of space.

At
~

§ 10. Flane Steady Motions of an
Ideal Compressible Liquid

The plane (two-dimensional) steady motions of an ideal com-

rressible liguld are described by the followingsystem of differential
equations:

by the equations of motilon

- du on dop
W&+”a=—&1 (923

do Jo 9,
pu g H vy ==
(here volume forces are omitted).
By the equation of continulty

dlpu) 4 dle0) __ (93)

By the equation of the ideal adlabatic process (instead of the
equation of energy)

5=ton:t. (94)

In a noncompressible liquid (p = const; equation (94) drops out
and the equation of contlnulty 1s simplified:

5 ta=0 (9%)
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Il tTnere i{: a velocity potential ¢, then

,

0
(W]}
1

s B

Sutszicuting (9sa) in (95), we cbtain for the veicclty pctential

ine Larpiace equation:

d o \

ne sclution of which the task of the construsction of the plane-
arallel gzotential flow of an ideal noncompressible liquid s alsc
reaucsd. In this case, the boundary ccndition of impenetrabilicy
Is utilized for the liguld of the firm 1limit of the body teing
flcwed arcund W = 0, L.e., the equality to zero of the ccmreonent

nw
of the velocity vector normal to it near the wall.

With motion along the flow line, the particle of 1liquid
during time dt covers the path dS = Wdt or, in prolections to
coordinate axes, dx = u dt, dy = v dt, Excluding the time from
tiils, we obtain the eguation of the flow line

dx _ 4y
8 L 4
or
udy —vdx =0, (9¢€;

AS 13 kncown from mathematlcs, i1f the following equality is satisfiled

do du
oy = Tox

then the left side ¢ equation (96) is a =ctal differential :cf
scme funztion P{x, y). FOr the potential flocws of a noncompressiols
liguid, this cdonditicn, as follows from the eguation of continulty

'

(95), 1s always satisfied,
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Thus, the differential equation of the flow line can be
wrltten In the following manner:

dy=udy— vdx=0

$ (% y)=const. (96a)

functicn @ whose value along the flow line is kept constant 1is
called the stream function.

In accordance wlth (9b6u), the velocity component can be ex-
pressed as partlal derivatlves of the streamfunction

,,=g. ,,=..§§, (97)

I? we substitute (97) into the equation of continuity (95), then
it will become the ldentlty:

521 % _o
xdy dydx

The physical sense of the stream function 1s very simple. Let us
draw two close flow lines in the flow through arbitiary points
iand 2 (Fig. 2.7). It 1s not difficult to see that the volume
fluld flow rate in the plane flow between the adjacent flow lines
is equal to

dV=udx —vdy=d}

Thus ,
2
V= ’ (tdy — vdx)=¢ (xs y— ¢ (X0 31}

1.e., the per-second volume fluild flow rate which flows between
flew lines 1 and 2 1s equal to the dJifference in values of the
stream function on these 1lines.
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) ( ]
-n vievw of the imgenetrability of the flow lines for a lizuld, é

the vaiue of the stream function on each flow line ls constant. f

3

Comparing (97) and (95a), we see that the families cf the flow : :
iines {9 = const) and the lines of equal value of velocity pctential i
(¢ = const) form the orthogonal grid of the curves.

! ¥
i
f Flg. 2.7. For determining of
the fluid flow rate between

‘ adjacent flow lines. i
) .
| H
)

. F =

If any two plane-parallel steady flows of an ideal ncncom-
pressible liguid are known, i.e., for each of these flows the value
ana the direction of velocity at each point of the rlane are known, 3
( tiren 1t 1s possible to construct the new resulting Iflow which will ;
a~ise as a result of the guperposition of these two known flcws. i
) For this, at each point of the plane it 1s necessary to consirugc
the velocity vectors of each of the two known flows. The sun of

these vectors is the veloc¢lty vector of tne resulting flew.

Let us give a simple method for the graphic determination of
lines of the resulting flow from the flow lines ¢f the suger-
For this, let us draw on the drawing the f{low line A

The intersection of thess flow 2 ‘

T

The flow lines should te drawn so taat the

flow
lmposed flows.
any two plane flows (Flg. 2.8).
lires forms a grid.
sides 2f the celils cf this grid deplct in a specific scale the ‘

veloclty vectors of e superimposed flows &t a partlcular potns .t

P '7¢ 1s easy to show that for tne satisfaction of thls condition
1t suffices to draw the {low lines s0 that the flow rate ktetwseen
any two adjacent flcw lines for both flows would be ldentlical.




oy —

Ther {or obtalining the flow lines of the resulting flow it suffices
t< irnelt the consecutlve polnts of intersection of the flow

S,

iines of stne superimposed flows with each other, 1.e., to draw a

diagrnal tn each cell of the grid. These diagonals depict, in the :
same scale, the velocity vectors of the resulting flow at the ; !
2.8). ' :

correspcnding roints (Flg.

in the case of the compressible liquid (gas) it 1s convenlent
to convert eqiations (82)-(94), introducing in them the speed of
sound a = /dp/dp. For this let us present the equation of continuity

(93, in the form

o) J du | do (98)
n gy +oi o (3% +55) =0

and iel us express the density gradlents through the pressure
Zradlents and the speed of sound:

d __dp Op \ dp

ox " dp ox T al 35"

QP,_Q*H’ =|dp_ (99)
dy  dpdy a'ody’

Expressing the pressure gradients in (92b) with the aid of (92)
through the velocitles, we oObtain

o

o
dy

- (2)
e AT T AT

ox ?‘5-(“334'”??;')-
=-§ (ug% +vg;).

(39a)

Fig. 2.8. The graphic addition
of flows.

KEY: (1) Flow; (2) Resulting
flow,
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Suestitusing (9%a; and {(¢5a) into the eguaticn ¢f centinuzty (32,

a‘-—-—u')%}‘-—?nvwﬁ-(a‘—v')"; =0. (130

we derived the fundamental differential equation of gas dynanmic
ne t

Wbl e

<

-
Saw
- wa

otentlal steady flow. ‘

In sie rarticular case of low rates of flow cof gas (u << 3z,

v << 2 esuation (10Q) converts to the Laplace ecuation (95b° :
wnicon deternmlinegs tne mot.on of a noncompressitle 1iguid.

» “he construciion cf a velcelty fleld in a supersonic flou,
tire method of characteristics.

LN

ezuartlion (130 is usually sclvedry

In tne study of flcow around thin bodies at low angles of atzask
Ysth in 2 subsenic and supersonie flow, eguation (100) is solved ¢
e rmetnzcd of slight disturtancas {linearizaticrn 2ethed!.

§ 11. Velgdizy <irculatlon

-

in a steady plane of moticn tne pa

reicle spesed w is thes Curnznicon
of two cosrdinates
w=w(x. y)

This vector functicn determines the velceity [leld.

in the study of different cases of gas flows, in partizulas =9 N
tne flow arcund wings ard other todles, It is useful tc intrsducs s
some value ccrninezted with the velscity fleld of the flew in '

guestlicn and called the velseity eireulation

By the velgeity circu.aticn ©ocver

urderscand the intezgral

~~~
?w cos(w, dl.

[
LA
la)




o ooninoowajas of the velozsity vector, (w;«Z) - the angle
tweeno e vegooeitly veetor and the direction of the loop at a
tiwnt, al! =~ the element of length of the arc of the lcop. The

"o 4 vaowr that the integral is taken on a closed loop.

vl ¢.4. For the sum- Fig. 2.10., For the
maLLon ar circeculation. summation of circulation.

diou., Liee veloclty circulation 1s the limit of the sum of the
Prcdunvs o wnse veleelty projJection tangential to the outline
timper Ll corredponding element of lerngth of the loop. We will
conslacr the couniterclockwise direction of the circuit the positive
gir+ouion uf tne clrcuit on the loop.!

Sren ko wery definition of circulation it follows that the
wireuiation through any loop L can be expressed in the form of the
swn ! wre circulatlione through the separate cells of an arbitrary
Sriy wiiich covers the area limited by the loop L (Fig. 2.9). 1In
oty 1ot us <xamine some closed loop ADCBA.  Let arbltrary arc
rTJdiwrne the area limited by this loop into two cells: ACBA and
AUTA LG, 2.00). We express the clrculation for each cell. For

T acos== 5 @ cos (w, Dl
1ACBA

'Jirerdimes 1t 1s more convenient to conalder the opposite

G
1T

ior (uslitive,

(&)
—
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In this case the integral of loop ACBA c¢an be divided into twc

integrals: an integral of arc CBA and of arc AC.
cell

For the second

3
i

Taca= § weos(w, Hdt
tADCA)

BT

The integral of thils lcop is composed of the integrals of arc ADC

and of arc CA. The sum of c¢lrculations for loops ACBA and ALCA

is equal to the sum of four integrals, whereupon the integral of
arc AC which enters the first circulation and the integral of

arc CA which enters the second circulation cancel each other out
since thecy represent the integral of the very same arc passable in

opposite directions the (integrand in both integrals is one and

the same). Thus the sum of circulations for loops ACBA and ADCA E

equals the sum of the integrals of arcs CBA and ADC, 1.e., the
integral of loop ADCBA. Thus,

I Tacaa+Taoca = Tapcon
Thus, the sum of the circulations for the
cells 18 equal to the eirculation for the
of the cells ABCA and ACDA 1s divlded into

each of them it 1s possible to completely
’ consideration.

lLoopa of two adjacent
entire loop L. If each

wlad '8 Ll

two more cells, then for

reneat the above given
Continuing the process of division further and

[ repeating the same considerations each time, we come to the above-

expressed position about the summation of circulations (see Fig. 2.9)

(o B bl a0 a A

S B L

Flg. 2.11. For determining
the connection between vortex
and circulation.




How w2 express the expression under ine intcgral sign in
formula (101) with the use of polar coordinates (r, ¢). For this
le:z, us examine Fig. 2.11 . Let M(r, ¢) be a point of an
artitrary loop L, dl = MN - an element of the arc of this loop, w -
the velocity vector at point M with projections L and LY Let
us designate angle (W{™1) = LNMP=3 £ PMK==} L NMK=1 From the
figure one can see that

i=1—-p

Therefcre

€os (w?l):: €0 2 == C0s (] — 3) == ¢cos Y co8 3 - sinysind.

But from the small curvilinear right triangle MNK we obtain

MK __dr
cos Y= Ry =i

sny=hK =91,
Further, it 1s obvious, that

",
cosde="lt,  sinBasple,

Substituting these values in th=2 expression for cos (w,’\l), we
find

~~
cos (w, I)==:L,'.'T'.'. +'T‘l‘.:'

Then the expression under the integral sign in formula (101) assures
the form

-~ I/ d
weos (0, Ndl=wdl T LI nrg dr |, dy.
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Thus, in polar coordinates we obtaln the following fornula
for the velocity circulation

I‘.—:(Fu,dr-{—w,rdv. (102)

The elementary displacement of a particle of liquid or gas in
general, as noted, consists of three parts: forward displacement,
rotation, and deformation of the particle. The motlons in which
the rotation of particles is absent are called vortex-free and
motion with rotation - vortical.

Fig. 2.12. For the determina-
tion of vorticity in polar
coordinates.

With the motlon of a liquid particle MKNR (Flg. 2.12) with
rotation, its form changes in general. Suppose that after a small
time interval dt faces MR and MK occupy position MR' and MK'.

The displacement of the particle as a wnhole, determined by the
forward velocity, is not important in thls cuestion. We determine
the angular velocities of the rotation of pcints R and K relatlve
to point M. If the veloclty component at point M 1s designated

by W and LA then velocity components at point X are equal to

o ow,
w, - '67' Ar and w, —{-7,1 ar,

and the components of relative velocity of pouint K (relative to

awr awn

point M) —— Ar and T Ar. It is obvious that the rctaticen of point

ar

K relative to polnt M creates only the second of these components
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since the [flrst is perpendicular to the direction of rotation
({s directed along MK). Thus, the circular velocity of rotation
of point K relative to M due to which path KK' is made equals %?An

and the relative angular veloclity of rotation of point K near
the center M is equal to

ol R 0 1 e £ =

ot 8 Dl bk o s it 7k SR

s e B

Fig. 2.13. For
the determination
of 1lncreases in
velocity in polar
coordinates.

D ke el

The velocity components at point R equal (Fig. 2.13)

w,-{-o-;—'dp and n.-l—o-%' Ap

The rotation of point R relative to M occcurs in a direction
perpendicular to chord MR. By virtue of the smallness of angle

4¢ it 1s possible to consider chord MR perpendicualr to radius CM,
and the chord length MR ~ equal to the arc length MR. Then the
direction of rotation of point R relative to M is parallel to
radius CM. We find the projections of both veloclity components of
point R for the direction of rotation. Figure 2.13 shows that
these projections are respectively equal to

—(:.- L/ A;) cos 8 and (w,-i- g‘g’ 5?)""5?-
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“ne minus sign at the first projection is accepted because this

projection creates clockwise rotation, and counterclockwise rotation -

is consldered posltive. Considering approximately &¢ = 1 ard sin
¢ ~ Ly and rejecting the term of the second order of smallness
which has (A¢}2, as a factor we obtain the following values of

the projections in question:

-

-—(w,+"-d:"'4.s?) and  wAy

In order to obtain the circular rotational velocity of point R
relative to I, from the obtained expressions, obviously, it is
necessary to subtract the projections of the velocity components at
the very pcint M to the saine direction CM. But projection of L
to Cll equals the value W, ltself and the projection of w, to CM is

equal to zero. Thus, the clrcular velocity of point R relative to M,
which causes displacement RR' (Fig. 2.12), 1s expressed thus:

( whp— (m-l-%%’h ~w,).

Then the relative angular velocity of rotation of roint R near
center M equals

a
a4 ""'Q;' 8 wy 10w,
METTFR T TR
since
MRa=r Ay

As the mean angular velocity of a particle relative to npoint
M we take the aritnmetlc mean of the angular veloclitles of the
extremg points R and 1
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Zt is convenient to convert this expression to the form

1/ 0w, L ;)(w,,r) Jw,
l“‘V_Zr_(' or + w, .WI—ZI[_“-W —w]. (103)
Formula (103) determines the value of the vorticity (see § 1) in

peler ccordinates.

In hydrodynamics it 1s proved that the motions of an ideal
fluid, having been vortex-free at some point in time, always remailn
vortex-free. But if motion was vortical at some moment, i1t will
vbe always vortical. 'Wne arising of vortices should be caused by
spvecial reasons, for example, by the viscosity of a gas or 1liquid.

,

A4 condition for the absence of vortices 1s

R (104)

or in polar coordinates

d(:"!—-%;'t=o. {105)

In order to explain the connectlion between the concepts of
vortex and circulation, we transform the integrand in formula (102).
Let us examine surface element MKNR bounded by coordinate lines
MK, MR and RN, KN (Fig. 2.14).

Fig. 2.14., For the
determination of
circulation in polar
coordinates.
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Let us the compcse the expressicn under the integral sign for
¢irculation over the loop MKIIR. It is obvious that we will ottain

dl‘:ﬂw,df-l-
(w,-}- tdr)(r-i-dr) dy—
i —(w, #d,)dr—w,rd,.
Here W i~ the tangentlal projection of the velocity on seg-
ment MK== dr, v, + ";g dr = the tangential projection of the velocity

RN N RN NN ) it e

on are  KN==(r-}-dr)dep w,-*—-o-:-'l dp - the tangential projection of the
veloecity on segment KR = dr and W, - the tangentlal projecticn of
the veloecity on arc R = r d¢.

I o g g bl e b 7

Al kb !

With the last two terms, the minus sign 1s taken because the
positive direction of the velocity on segment lR and o arc BM is )
cpposite to the direction of the clircult over loop MKIR. Performing
calculations and rejecting the term of the third crder cf smallness
‘%':J(dr)'d?. we obtain

( Jr.—_-(r""'-{-w,—-—)drd =2 - ]rd,dr.

ot il 3l " e

Comparing this expression with expression (103) for vorticity o
and noting tanat the product r d¢ dr is the elementary area 4F
encompassed by loop NKiiR, let us write the last expressicn In this
form:

3
%

dl'== 2w df,

if we now divide the area included by arbitrary locg L into
small elementary areas formed by the grid of coordinate line-x

(Fig. 2.1%) and utilize the rule for the summatlon of circulations,
then we obtain

I',,..—.. 2dl‘,=22w, de

or, if we pass from sums to integrals:
1‘=iw dr - wrd =2£wm. \
'’ uf 07 & (196
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Fig. 2.15. For the summation ;
of circulation and vorticity.

T“he ctralned result expresses the unknown connection between
vorticity and circulation.! If the value of the vortex 1s identical
in all polnts: w = wy = ¢onst, then

Pa?w‘;dFa 2uyF,

i1.e., In this case the value of the oiroulation over some loop tis
equal to double the product of the value of the vortex times the
area being included by the loop.

Let us examine the steady mction of a liquid. Circulation I
with steady motion retains constant value over any fixed closed
loop.?

Let us assume further that the motion is steady and vortex-
free (w = 0). In this case, the circulation over any fixed loop
is equal to zero. The latter conclusion, however, is correct only
in the case when within a fixed loop only particles of 1liquid
which accomplish vortex-free motion are found. Circulation over
a fixed closed loop is different from zero 1f the loop encompasses
a area within which is found, for example, a single vortex® or the
streamlined body."

'Formula (106) expresses the Stokes theorem for plane motion
(5233 for example, N. Ya. Fabrikant, Aerodynamics. "Science," M.,
19 .

2In hydrodynamics it 1s proved for a very broad class of
practically important motlons that, as in the case of unsteady
motion, the circulatlon along a closed loop is constant; however,
in this case the so-called liquid loop is examined, i.e., the locp
which consists of the same particles. The latter statement 1is
called Thompeon'es theorem. From this theorem it follows that if
a cervain mass of liquld at zeroc time had vortex-free moticn or
rested, then also henceforth in this part of the liquid vortices
will not arise, which was already mentioned above {(see also the
textbook by N. Ya. Fabrikant cited above in the first footnote).

YAbout a single vortex, see below - Example 2.

“*As will be shown below, with the flow of a viscous 1liquid
around a body vortlces are formed in the flow. -

i,
T
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Thus, we see that the arising of clrculaticn 1s always ccraiscted

with the formation of vortices in the flow of a liquld or gas.

Let us now examine some very simple examples of the motion of
2 iiguid which maxke it possitle to explain the physical sense cf
the concepts of veortex and circulation.

Exampie 1. The rotation of the liquid as a solid. Let the liquid
ctate as a solid around the crigin of coordinates with constant
angular velocity e. Then the value of the velocity at each point
w = er, where r is the distance of the pecint from the coordinate
origin. We find the radisl and clrcular veloclty components. It

is clear that in this case

w,=20, wy,mw=w,

Let us compose the expression for vorticity. According to formula
(1C3)

we L[ dwp) 1 9 :
The value cf the vorticity in all points is identical and equal :o
the constant angular velocity of the rotaticn of the particiss crl

1iquid. This result was evident earlier since it fcllicwe
directly from the very definition of a vertex.

Let us now find the valu= of circulation over a locp which
encircies the origin cf thc ccordl..:tes. Let us take as such &
loop a circle of radius r. From formula {(102) we obtaln

h
.P=§mﬂ+w;@=§wﬁ=h@.

The value of the c¢irculation is proporticnal to the suuare oi

the radius. Dividing it by the area c¢f a circle F, we find

;:%’::20=2¢
143
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This cquallty 1llustratey the Stokes theorem (106); In this case,
the value of circulatlon along the c¢ircumference is equal to twice
e product of the constant value of the vortex w times the area
¢f the circie.

\

txample 2. Vortex-tree circulating motion. As the second
example, let us exam?! - * rlane motion of a liqulid where the
rarticies of llquid move along concentric circumferences around
the c¢oordinate origin at velocitles inversely proportional to the
distarnces of the particles from the coordinate origin so that the
velocisy at every point w = ¢/r, where ¢ 1s constant. Here the
radial and circular velocity components equal W, =wW= c/r. We
find the value of the vortex:

oo B o0~ )

Thus, the value of the vortex at all polnts except the coordlnate
origin is equal to zerc., In the coordinate origin (r = 0) the
velocity 1s equal to iafinity, l.e., the coordinate origin is
mathematically & singular point. Physically, such motion is
possible only cutside some nucleus of finite radius re. The nucleus
¢an consist of a solid or of a lijguld of the same or enother
density., QOutside the nucleus the flow is vortex~free. On the
surface of the nucleus the velocity has some finite guanticy

Wy = c/ro.

Let us find the va'ue of circulation over a 2ircumference with
the center at the coordinate origin:

-

"
R 4
s \ - ra,:alar s=const;

1uh
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{ in this case circulation over any circumference 1s a constant vaiue.
Since w = ¢/r, it 1s possible to write

T e

L e Jdacms lnrw e qursle2 L,

where r, is the radlus of the nucleus and W, ls the velocity on i
. ' its surface.' Thus, the velocity at any point

) u-:.fii‘:.‘- r

roor “-

E e B e

The examined motion o’ & liquid is called vortex-fres circulaning'
motton, and the velocity field corresponding to 1t is called the
veloeity field of a plane igolated vortexr. If we consider the
fluid incompressible, then pressure

cmeeiid

ol
-
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decreases with a decrease in the distance from the cocrdinates
origin,i.e., from the center of the vortex.

P

( With ry 0 the nucleus converts to a point. This point is
called point tsolated vortex. Therefore, vortex-free circulating
motion can be connected with a pnint vortex; the latter Iinduc=ss %
at each point of a plane a velocity perpendicular to the se/nent }
which connect: this point with the vortex and equal in magnitude
to [/2nr, where r is the length of the indicated segment, i.c¢
induces vortex-free circulating moticn with clrculation [.

.
Y iv

Fig. 2.16. Diagram of the o ‘
flow around rounded and :
acute edges. ;

'As it 1is not difficult to show, circulaticn over any closed
Yhop which does not embrace the nucleus is equal to zero, i.e., : ‘
the nucleus plays the role of a vortex.
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Let us now note one important phenomenon which pertains to
the flow around bodles by the flow of an l1deal fluld. If the
cutline of the body; belng flcwed around has a section which 1is
an arc witn a small radius of curvature (Fig. 2.16a), then part
o1 the flow near this arc resembles circulating motion: the
velocity increases in proportion to the approach to the outline
of the arc and with sufficlently small radii of curvature can
become very large. VWith some (sufficlently small) radius of
curvature the velocity should be so great that the pressure (com-
ruted according to the Bernoulli equation for a noncompressible
liquid) should become negative, which is impossible. When the
radius of curvature is equal to zero, i.e., when liquid flows
arcuni an acute edge (the point of inflection of the outllne, Fig.
2.1€u}, the velocity becomes infinite exactly as in the center of
the vertex, which induces circulating motion. But an infinite
velocity requires unreal infinite negative pressure. Therefore,
‘nfinite velocity is impossible, consequently, the nonseparated
flow around acute edges 1s impossible and the separation of the

jets cccurs.!

The only possible case of the nonseparated flow
around a tody with an acute edge (winged shape) by a flow of an
ideal noncompressible 1liquid is the case deplicted on Fig. 2.16¢:
here the acute edge lies con the dividing line of the flows which
flow around the upper and lower sides of the shape, and the liquid

Jets smoothly converge from the outline of the body.

in & real liquid which possesses viscosity, with the seg=ration
of the jets from the eddying particles of the boundary layer a
vortex 1s formed whicih seemingly "rounds" the acute edge, and the
liquid jets no¢ longer flow around the acute edge, but around this
vortex,

'Subsequently it will be shown that in the supersonic ficw
of a gas the nonseparated flow around an acute edge 1s possible;
in this case, velocity does not become infinite.
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CHAPTER II1

P

SHOCK WAVES
§ 1. Normal Shock Waves

In the case of the flight of a body at supersonic speed
(wH > aH) a shock wave (compression shock) which produces con-
siderable resistance develeps in front of it.

( If the body 1in question is a fllght vehicle equipped with a
Jet engline, then 1n the supersonic alr let which is sicwed down
when 1t flows into the engine a shock wave also occurs. It 1s
possible to visualize fundamentally the smooth transition of
supersonic flow into subsonlc, keing achieved by means of a specizl
inverse nozzle mounted at the engine inlet. 1In this case total
pressure losses would not take place. However, the deceleration
of a supersonic flow in such a manner cannot be carried out “
entirely, by virtue of which it 1s necessary to reconcile with -

the existence of shock waves and the presence of the corresponding
wave resistance.

gt

Numerous tests show that any pressure Increase which arises
in any place ¢of a gaseous medium is propagated in 1t a2t a high
speed in different directions in the form of pressure waves. The
weak pressure waves travel at the speed of sound; their study is

covered in acoustics. The strong pressure waves, as can be scen
from the testis, are propagated at velccitles considerably greatsr
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syeed of sound. The baslc feature of the strong pressure
wrie D=3 ‘v the fact that the wave front 1s very narrow, 1in

i with which the state of the gas (pressure, density,
tohgesut.te, changes with a Jump.'

1085ible to glve the following qualitative explanation
i%le fact. Assume in a certain area (Flg. 3.1) a pressure
change occurred and the first wave obtained a smooth form 1AB2.

Orn separate Infinltely narrow sectlons of the wave the magnitude
¢? pressure 1increases insignificantly, therefore the propagation
cf such a wave cccurs at the speed of sound. In the area of high
compressicns (A) naturally higher temperatures are observed than
in the area of low compressions (B), by virture of which the

"tep" of the pressure wave moves faster than its "foot." To the
slde cof less pressures (to the right) the wave 1s propagated as

a compression wave, to the side of high pressures (to the left) -
as a rarefaction wave. Thus, even if at first the compressiocon
wave 1s flat, then in the course of time it 1s made steeper and
steeper; this process will stop and the wave will acquire a stable
ferm only from the moment when the wave front becomes entirely
plane (1'-2'). Thus t!} >mpressiorn waves are propagated as

pressure Jumps (explosions), in connection with which they are
called shock waves,

For those sar.c reasons, i1.e., as a result of the fact that
at point A the rarefaction wave moves faster than at point B,
the wave front of the rarefaction wave is spread with time. 1In
other words, the development of a rarefaction wave should not
lead to expansion shocks.

*The approximate theory says that the thickness of Lhe area in

which a strong pressure wave diminish should be of the order
of the free-path length of molecules.




Fig. 3.1. Dilagram of the
development of compression
and rarefaction waves.

It will be shown below that in adiabatic (without heat supply)
compr -ssion shocks an increase 1n the entropy of the gas occurs
and in adiabatlic expansion shocks, 1if they existed, entropy should
decrease, By this 1s proved the legitimacy of the existerice of
adiabatic pressure jumps and simultaneously the impossibility
of the emergence of adiabatic expansion shocks (as 1s known from
thermodynamics, in a finite closed system entropy cannot decrease).
In tfull conformity with this is found that known fact, that the
expansion shocks (condensation shock, flame front) observed some-
times in actuality are obtained only during the supply of heat
irnto the area of shock, i.e., under such conditions, when with an
expansion shock the entropy of the gas increases. It 1s necessary
to note that the emergence of expansion shocks during the supply
of heat to a gas does not contradict in any way the process
depicted in Fig. 3.1. 1In fact, if in the area of reduced pressures
B because of the supply of heat a temperature 1s obtained which
1s higher than in the high-pressure area A, then the speed of
sound at the foot of the wave 1s higher than at the top; in
connection with this in the course cf time the steepness of the
rarefaction wave front should be intensified, which gives rise tc
the formation of a thermal expansion shock.

f.et us pause now on the theory of shock waves. Let us
visuallze, for example, that under the 1influence of the sharp
displacement of the plston (Flg. 3.2) 1in the tube a strong
compressive wave developed and is propagated from left to right.
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v Fig. 3.2. Diagram of shock wave ; :
propagatlon. : !

e

Assume during an infinitesimal time interval the wave front moved
the distance dx. This means that in the area 1-H during time drt
there was a pressure lncrease from value P, {pressure of the
undisturbed gas) to value Py (pressure behind the front of the
compression wave), in accordance with which in area 1-H an
increase should be observed in the gas density by the value

[

R=iH—p

However this can occur only in the case when a certain
quantity of gas, equal to

d3=(5~p,) gFdx,

will overflow from volume 1-2 into volume H-1 (here F - the
cross-sectional area). Thus during the propagation of a strong -
4 compression wave the gas behind the wave front should be 1in motion, i
following in the same direction as the wave. From the equation of
continuity it i1s possible to determine the speed of the gas flow

(wn):

d0=¢gFw, d=

from which

BT n dx
# g = B in O, (1)

But the derivative of the vath in time 1s nothing else but the
veloclty of motlion of the wave:

Co =i (2)
Hence we obtain the equality which relates the velocity of

propagation of the wave with the veloctity of the gae which is
moving behind the wave front in the same direction:

oL,
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Applying the equation of momentum to the area H-1 it 1is

possible to obtain another relationship between the same values. § :
In fact, during the time dt the mass of the gas which fllled the E i
volume H-l, &M = p F dx will pass from the state of rest into é :
motion at a rate of W The corresponding change in momentum E b
should be equal to the power pulse caused Ly the difference of é
pressures which act in cross sections 1 and H: ;
P\ — PO Fde =, Fle, — Odx,
from which the wave velocity 1s equal to ; :
d; = 3 5
“'l—d: —pgu!.‘:!. (u)

After substituting the expression for gas velocity (3) into
equation (4), we will obtain the velocity of propagation of the
compression wave as the function of the increase of pressure and

L%

( increase of density

'Pl—Pu (1% 3
n"" Vo—bn fu b (5)

In the case of a weak wave, when the increase of pressure (and
density) obtained 1is insignificant: Py T P> Py = P, we have

i 8, Rl bl b

w=a=]%. (6)

A wveak wave 18 none other than an acoustie wave, therefore
expression (6) is the determining of the speed of sound.

From a comparison of equalities (5) and (6) 1t 1s evident
that the vaelocity of propagation of a strong compression wave 18
alvays greater than the speed of sound. Usually sound propagation
18 accompanied by such an insignificant change in the state of
the gas that entropy can be considered virtually constant, 1.e.,
it 1s assumed that in this case an 1ideal adiabatic process p/ok =
s const takes place. But in this case

b=
v
—
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or on the basis of the equation of state for an ideal gas i

d’ = 1 RT.

From here we obtain the formula already applied above [(34) in
Chapter I] for the speed of sound in an 1deal gas

Substituting expression (5) into equality (3), we find the
formula for the speed of gas flow behind the front of the
compresegion wave

e= V/ = i)
©a == '/ tifa * (7)

It is not difficult to see that with the weakening of the
compression wave the speed of the gas flow drops. In the case of
a weak sound wave the gas behind its front 1s fixed, since
according to equality (7) with p; = p, and Py = b, we obtain
w3 0. In actuality, as is known, a sound wave consists of the
correctly alternating areas of compression and rarefaction,
whereupon the gas beyond its front 18 found in a very weak
osclllatory motion; the average forward velocity of gas particles
1s equal to 2ero.

Let us note now that as a result of the outflow of gas from
area 1-2 (Fig. 3.2), which 1s disposed behind the front of a
strong compression wave, the pressure in this area decreases in
the course of time. For thils reason the shock wave which developed
in the fixed gas under the effect of unit compression (for example,
an explosion or displacement of the piston) always attenuates
more or less rapidly. And only when the disturbing source does
not cease its acticon 1t 1s possible to obtain an undamped shock
wave. The property, discovered above, of shock waves to be
propagated at a veloclty greater than the speed of sound leads
te the fact that undamped shock waves are formed before the body
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{ only when motion occurs at supersonic speed. For example, during
motion in a gas with & constant supersonic speed of the solid
before the latter a shock wave of constant intensity is formed
which moves at the same speed as the body.

We will investigate in more detail the change in the state of
the gas which 1s obtained during the passage of a stationary
shock wave in 1t. We will turn first to the simplest arrangement,
when the wave front makes a right angle with the direction of
propagation. Such a wave 1s called & normal shock wave.

0 0t bt 00 1 b a2 LA s o e i 2 et B g

For the convenience cf calculation it 1s advantageous to
turn the metion, i.e., to stop the wave front, after directing s
flow towards the wave at a velocity equal to the velocity of
propagation of the wave (Fig. 3.3):

T E T PR RS SO

Wy == —~— We

then the relative gas velocity behind the wave front

( =Wy — Wy (8)

After stopping the shock wave by the counterflow of gas, we
obtained a certain fixed surface, intersecting which all the
elementary streams of gas simultaneously undergo abrupt changes
in the velocity of motion, density, pressure, and temperature,
Because of this a shock wave 1s also called a compreseion shock.
Shock waves are conveniently observed in supersonic wind tunnels
during the flow of air about fixed solids.

————atl ] . Fig. 3.3. Diagram of a
: normal shock wave.

Let us accept the cross-sectional area of a jet equal to a
unit (F = 1 m2) and, using the known equations of gas dynamics,
find the connection between the values of gas velocityv before and
after the shock wave (Fig. 3.3). The equation of continulty gives

[
wn
Cad




[ = P, W,
Disregarding the force of friction in view of the thinness of the
shock wave, from the equation of momentum we wlll obtain
Py P == pPu"y (U. — w.).
Comparing these equations we find
P — Pu == 18 — g1l == w0 (0) — Pa) (9)

from which

Pc —Pa

t —fn

== W)Wy (10)

If heat 18 not glven from wlthout, then the full enthalpy of
the gas remalns constant. Thermal outputs can be disregarded
since the lateral surfaces of the jet in the area of shock are
negligibly small. Thus from the equation of enthalpy follows

!
ly=cTy=¢c,is+4 A 2‘"=¢“T| —}—A;" = cnnst;
here TO - the stagnation temperature. Prom this equation we have
A
Ta== 70—2—3-—:, we
According to the equatlon of state of the gas

P P __
Pcro Ps Tu R

consequently,

To= P Lo :
& ?Pu 4 gRoen Pon’

'

here Po1» Pou ~ the total pressure respectively after and before
the shock wave, Po1* Pom - the gas density which corresponds to
total stagnation in the same cross sections. Consequently,

’POI ARH,'. )

Pe==pu \'-o: - 2¢,
From thermodynamics we have the known relationship
M=e, 2L,
therefore
Pa==Pu (’.‘. '—"li""'n) (11)
By analogy we obtain
k~-)
n=n (0= ek (12)
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After subtracting equality (1l1) from equality (12) we have

Py ==y = pud oot l-— ! outet — i
from which on the basis of (9) is derived

el b B

pER=a (a3

Utilizing expression [(41) Chapter I] for the critical speed

P —————— — —

F z
"uP"‘._’F’]CRTO ~+|'“ 2
we find

~:=-.-_-*—_-|-5RTQ——alp (lu)

Finally, comparing equalities (10) and (14), we come to the

following simple relationship between the velocitles of gas before
and after a normal shock:

i = kp (15)

This kinematic relationshlp can be reduced to a dimensionless
( form by introducing the velocity coefficients (A = w/a ):

W W 1
Gup dug
or

Ny=1 (16)

i G i .

from which it 1s clear that im a normal shock wave the supersontic
gaa veloeity alwayes converts to subsonie, since if w > a _, then
Wy < aHp. Simultanecusly it 1is possible to note that the greater
the value of the velocity coefficlents before the shock, the less
its value after the shock, 1.e., the higher the initial velocity

W, the stronger the shock wave obtalned. With a decrease 1n the

initial velocity the shoeck declines and disappears entirely with

E o,
W, Wy o

s it

Let us establish now the connection between pressure and gas

density in a shock wave. For this let us add equalities (11) and 5 ‘
(12):

A k" -
oy - pa==(ps-) 9»"; N - ik (rawh |- i)




From the equation of continuity it follows that DA E
Patdlh |- pyt] == e,y (g |- pud ; :
Substituting this result into the foregoing expression, we have i i

) 1

Prtpa__ Pon__ M=) : k

P P S e \

from which on the basis of (10) and (13) we obtaln the baslec 1 |
dynamic relationship ‘

P =Py Lrtla '
F:‘:gf kp:-H:' (7.

according to which the ratio of the increase of pressure to the
increase of density in the shock wave 1s proportional to the ratlo
of the mean pressure to the average density. Hence, by the way,
follows the result, already known to us, that with an infinitesimal
shock wave (p1 S p,, Py ¥ pH) the result is

o __p 2
@ "y

This confirms the assumption made above that an ideal adiabatic

process answers to a 8hock wave.

Let us examlne 1n more detail the thermodynamic process of -
a2 change in the state of the gas in a shock wave. For this let
us present the dynamic relationship (17) in a somewhat different
form:

fton 2t Pa
P1—Pu Pi—Pa’

Let us divide the numerator and denominator in the left side of
this equallity by the value P and in the right by Pyl

L2} 1452

Py +! —k +J’l R

4] P

Pa ' 14
Hence after the simple conversions the dependence 1is obtained of
relation pl/pH on the relation pl/pH in the shock wave, which is
called the shoock adiabatic curve:
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The essential feature of a shock adiabatic curve is the fact
that during an unlimited pressure rise in a shock wave (pl + w)
the increase in density has a definite limit which, as thls is
evident from equation (18), 1is equal to

mn=:_}}' (19)

For example for air (k = 1.4) an increase in density in the shock
wave cannot be more than six-fold:

|u =6

[PRLT

A
Pu

During a shock wave in a gas with a smaller value of index k a
stronger, but also more limited increase ln density can be
observed; for example, with k = 1.2

e
[

One ought to emphasize that unlike the shock adiabatic curve, in
the case of an 1deal adlabatic process 1in which takes place the

dependence
b )
te '

the increase in density with an increase of pressure 1s not
limited (p1 + o with P, * @),

The comparison of shock and ideal adlabatic curves 1s made
in Fig. 3.4.

4 1/
l% : Fig. 3.4. Comparison of shock

,
S0 2) an laduafi2? and ideal adiabatic curves.
9 i
-;o&/‘f;j“"q KEY: (1) Ideal adiabatic curve;
e (2) Shock adiabatic curve.
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A change in the pressure and gas density ln a direct shock i
wave can be presented In the function of Mach number before the
Jump. From the equation of momentum taking into account the
Jormula for the speed of sound [(34) Chapter I] and the equation
of continulty we find i

P YT ..'_-)
L r=aMii D).

If with the help of the shock adiabatic curve we replace
the relation pH/p1 with 1its expression through relation pl/pH, then
after several converslons we wlll obtain
L M.’.—k—‘.
e ko m (20)
Specifically for air (k = 1.4)

. '
Mi—3.

poda
ef~

It 1is posslble to express the pressure ratio in a direct
shock wave and in the function of the velocity coefficlent before
the shock A ; for this one ought to replace in equality (20) the
variables according to formula (45) from Chapter I:

e =1
= (21)
Pu 1— Y
! AT 1

With a decrease 1in the veloclty of inclident flow down to a
critical value (MH = 1) th2 shock wave degenerates (p1 a pH). In
a subsonic flow, as has already been indicated above, shock waves

are impossible. In a normal shock wave the pressure increase
depends only on the value of Mach number in the incident flow,
whereupon with an increase of M the pressure increases unlimitedly
(pl + ® with MH + ©), After substituting the results of (20)

into egquation (18) 1t is not di1fficult to derive the dependence

of density after the normal shock wave directly from the Mach p
nuriber or with the help of (45) of Chapter I on the velocity

coefficient AH in the incident flow:
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H
d
3
{ A1 3
I, D) S (22) .
' I=|+ ‘ A 3 :
M= :
From equality (22) again we coaclude that even at an infinite : _
f value of Mach number the gas density increases in the shock by E }
& not more than k + 1/k - 1 times. :
) j
[ Let us determine the losses of total pressure in a normal !
shock wave. :
.
The total pressure in the jet after the shock obviously 1is :
] ) equal to
Po= b = b (23)
\ k—1 N\ |_l-l[_7ﬂ
("""~+l ) ( k+i‘»-:.)
u The total pressure before the shock 1s equal to
P = ‘&'—.—'.
Re—e1.\4-T
("'FQTIIQ
therefore the pressure coefficient which considers wave resistance :
(losses in normal shock) can be presented, if we utilize expressicn :
(21), in the following manner: !
‘ ; A
1 .."l)' =1 ki I
a P Y _,_.k_l_'.'. “ i {
" LTI B (24) 3 <
TR

At a flying speed equal to or less than the speed of sound
(XH < 1), wave resistance disappears

9, =1

"
4

formula (24) 1s valid only with A, 2 1. At an infinitely higwy
flying speed(k: = t t 1) ¢ = 0 1s obtained, however, in thls case
losses will not absorb the entire initial reserve of the totail

pressure, since the other factor (pOH) approaches infinity. The

Al

o

e
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dep . ience curve o = f(AH) for air (k = 1.U4) is given in Fig.
3.5,

T T Fig. 3.5. The dependence of
v pressure coefficient after a
normal shock wave on the
velocity coeffilcient.

OXp

From equalitles (71) of Chapter I and (22) i1t 1s possible to
obtain a formula for determining the density of the decelerated
gas after a normal shock wave

n

Pov _ _

fu ( h X—1 ).___.i‘ ' (25)
l-—;i}Tl:

In conclusion let us note that equality (10) derived above
and the equation of continuity make it possible to present the
flow veloclty before the shock as the following function of g1
increase 1in pressure and density:

e 3/ PL—Pats

wyg ==

PL—fn Pu

But there is an expression (5) already known for the velocity of
propagation of a direct shock wave 1n stagnant air. Such a result
1s completely natural, since 1n order to stop a shock wave 1t 1s
necessary to direct the gas flow towards the wave and to impart

to 1t a velocity equal to the wave velocity.

Substituting expression (22) into relationship (15), we
obtain a new formula for the relative gas velocity behind the front
of the shork
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Hence with the help of (19) it is revealed that the coefficient
of relative gas veloclty after the shock cannot be less than a
certain specific value:
. A =T
|)'lmhl. = ‘*‘_'F'[- ( 26 )

If we pass from a fixed shock wave to a shock which is
propagated in a fixed gas at a rate of W= =W, then with the
help of the equalitles obtained it is possible to determine the
absolute velocity which the gas acquires in the wake of the shock:

R u,,( ‘/:E - 'l/:—':) (27)

or on the basis of (22)
wae= w1 - ) (28)
and 1n a dimensionless form

M=k — g, (29)

According to law (16) behind a shock wave the gas velczivy
relative to the wave frent is obtained always less than sonic
(Al < 1); on the basls of this it becomes clear why any pressure
change which proceeds behind the wave and is propagated at the
speed of sound can overtake the wave front. Precisely because of
this the pressure drop described above (Fig. 3.2) in the wake
behind a shock wave which originated In a fixed gas leads to a
weakening of the drop in pressure cn the wave front and causcs
its attenuation.

§ 2. OCblique Shock Waves
The characteristic feature of a normal shock wave, as it wa:

possible to notz, 1s the fac. that, intersecting 1ts frcnt, tee
Zas flow does not change 1ts directicn, whereupon the front o

—
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-



nermal shock 1s arranged at right angles to the flow directilon.
Sesides normal shock waves, the so-called oblique shock waves are
alsc encountered. The front of an oblique shock 1s situated
inclired toward tihe flow w.rection (Fig. 3.6). An oblique

S shock 1is cobtalned when, intersecting
iiz””/,» the front of the shock, the gas flow
//ﬂ . should change 1ts direction. For
w, ‘“nVJif:if;”"" example during the supersonic flow
of gas about a tapered bady (Fig.
T 3.7a), which deflects the flow from
Fig. G Diagram of an the initial direction by angle w,

i 3
14 - -
oblique shock wave. before the body oblique shock waves

are formed which converge on 1its
spcut (Fig. 3.8). An oblique shock wave 1s formed during flow
around a cone (Fig. 3.7b). The discontinuity surface 1in this case
will be a cone with a vertex in the spout of the streamlined body.
Thus, If up to the enccunter of the jet with the front of an
otlique shaock the velocity vector W, formed with it an angle a
(Fig. 3.6), then after the intersection of the front the Jjet 1is
deflected by angle w, and the angle between the vector of velocity
and the shock front becomes equal to

=L -—w, (30)

Let us separate the veloclty vector into two components, of
which one 1s normal (wn), and the other 1s parallel (wt) to the
front cf the shock (Fig. 3.9). It is not difficult to show that
during the intersection between the jet of the front and the
otlique shock the normal component of the veloclty decreases:

'wl.\‘ :'“n- (31)

and the tangential component remains constant:

w = const. (32)
We will turn fcr this to Fig. 3.10, in which 1s deplicted a
rec*angular cutline Hiil whilch covers part of the front nf the

b 4que snerk.  The lateral sections of the outline (H-1) are
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Fig. 3.7. Shadow photographs 2 obligue
shock waves during supersonic flow around
a wedge a) and a cone b).

Fig. 3.8. The formatlion of an
oblique shock wave during flow
around z wedge.
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Fig. 3.9, Fig. 3.10.
Fig. 3.9. The kinematics of flow with an oblique
shock wave.

Fig. 3.10, Calculation diagram of an oblique
shock wave,

conducted at right angles to the front, and the end (H-H and 1-1) -
are parallel to 1t. Let us compile the balance of the momentum
for this outllne first in projection on the direction of the front.
in view of the fact that the forces of pressure on both lateral
surfaces (H-1) are identical, the corresponding projection of the
momentum remains constant, from which ensues conditlon (32), which
indicates the constancy of the tangential component of velocity.
If now we make up the equation of momentum in the direction H-1
perpendicular to the front, then in view of the fact that on
surfaces H-H and 1-1 substantilally different pressures act, the
result will be'

Pt — Py == PytOun (Wun ~— W1a}
The pressure ir. the shock wave increases (pl > pH), from which

follows c¢ondition (31) according to which the normal component of
velocity in the shock decreases,

The glven considerations show that an oblique ghock wave &8
reduced to a normal shock, which ia cuarried togethar with the
Flow of gas gideways at a veloeity Wy o Unlike the normal shock In

'During the compilation of this equation we tock into
¢cnsideration the continulty condition

Puan =W 18

164

a -

- ot b v

R

i it




’ll'.l..lll"""'"'"r ———— ~— —

Pty

an oblique shock not the full speed of gas flow undergoes dis~
ruption (abrupt decrease), but only its component normal to the
front of the shock. 1In fact, according to the equation of
continuity

P11y == (Wne
The equation of enthalpy in an adiabatic case (there 1s no heat
exchange) gives

A A
To=Tu+ 5z, Wi=T + g~
Further we have wi=wh + v} wi=wl,4-w) from which
A A A
cpTe— —§Ew3=c,1‘. + 572 wia=c,Ty -} -zi-w:..

Let us introduce into the examination the temperature of partial
stagnation, understanding by thls the follcwing value:

7}==T}4‘3§;~Wh==Tr+

e

1.e., L..2 temperature which will be obtalned not during the total
stagnation of flow, but only with damping of components of velocity
which are normal to the shock front. As this equality shows, the
temperature of partial stagnation has cne and the same value

before and behind the shock front, which ensues from the condition
w, = const. If we add to these egquations also the equation of

14

state »
P _Pe_
pily . tals’

then it will turn out, ags one would expect, that an oblique shock
wave 13 described precisely by the same relationships as the
direct shock wave (see page 154), with the only difference that
in the first case instead of the full speed 1ts components normal
to the shock front are figured, and instead of the total stagnation
temperature To they flgure the temperature of rartlal stagnation
Tn.
Because of this, without repeating all the computations wnich
were given in detail 1n the theory of normal shock, we can write
immediately a number of prepared expressions. For example instead
of equality (10) we have
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e = ia Var (33)

Correspendingly instead of equality (14) we will obtalin

Bmle e B ERT =l (34)
Here a - the conditional critical speed, which corresponds to

Kp N
the temperature cf partial stagnation Tn. The basic kinematic

relationship for an oblique shock takes the following form:
w,..w.,.'-'-'—'a{,.. (35)

Equality (34) makes it possible to connect total critical speed
with the conditional critical speed:

2k h—1 ,
alp= h+1gRTO=a:PR+m“’" (36)
Using this expression it 1s possible to obtain the second frequently
encountered form of the basic kinematlc relationship for an oblique
shock wave:

©n + ] T =l (37)

In the particular case, when an oblique shock converts into normal
(a = 90°, Wy n S W W= wl), from relationships (35)

and (37) we obtain the already known relationship (15). Converting
to the velocity coefficlents Ma == Wa/8 pm ia = Weaf0pm We Will obtain

in the case of an oblique shock the dimensionless kinematic
relationshilp

= 0, W

x’.)\“=" (38)

which corresponds to equality (16) for a normal shock. It 1is
natural that dynamic relationship (17) is useful for an oblique
shock wave without any changes, and tlie shock adiatatic curve
1s applicable to the oblique shock wave precisely in the same
form (18 as to a normal shock.
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Changes 1n the static and total pressures in an oblique
shock are found respectively from dependences (21) and (24), if
we insert jnto these formulas instead of AH the value AH n

k—1
) §
ot EET (39)

=\
Pu '—Aff-—ll"“‘

(A=, 9T
[ *ti_f_] , (450)

whereupon the velocity coefficlent AH n is calculated here on the
normal component of velocity and the conditlonal critical velocity:

= B
L5 Zepn

It is possible, it goes without saylng, to obtain such formulas
which relate the pressure change in an oblique shock directly
with the absolute velocity of incident flow.

According to the momentum equation the increase of statlc
pressure in an oblique shock 1is equal to

Pt —— Pu == pxWn (Dun — W1a)

Substituting equation (37) into this momentum equation and con-
verting to coefficlents A, we will obtain

Py — Pu==puaz, (11 sintx— +:—_T_—!—X,'.cos‘a).

However, from (42) and (41) of Chapter I it follows that
24

] 1
Eak

Hence the relation of values of static pressure after and before

by

oblique shock waves 1is equal to

)'[I-——"c.——-cos'c —-k—l

rn__" kL) R

Pa (T : (41)
PR
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Expression (41) with an increase in the angle of obllque
shoci up tc 2 value o = 90° converts to the known expression (e1l),
sbtalned above for a normal shock. Let us compute the value pl/pH
for alr (k = 1.4):

r 22 (1 — 0,972 cos* 2) — 0,167

P F=0,1517% .

The relaticr. of values cof tctal pressure after and before an
obligue shock is a function of the velocity coefficients and can
be determined in the following manner:

—.Pn Pu Pr_ _Pu_
C._Pu= P1 Pu P’ (42)

where

1
Pn k-1 P
Lo =(1 u-l’) ©h

and the relation of values of static pressure pl/pH is taken
according to formula (U41).

Thus for determining the total pressure o in an oblique

b shock wave it 1s necessary to know the veloclty coefficient xl.
From the velocity triangles after and before the oblique shock
(Fig. 3.9) it follows that

=0Vt UL U=, sine w==1,c082 (43)

Utilizing these relaticnships, and also (37), let us derive
calculation equations for the velocity coefficient after an
cblique shock wave:

! L
a_' 0" [ R '
—_ -' e A- 'u 1cos® s {
Il “» "l
Wu— » B
ue w s s
inserting values LA™ and W, In the expreaalzn for ll, we will
]
cbtatn d
/s n~l .
\ et f‘cm 2
. | P !
=)l cosV1=~ ,.”—:——c-“,’l (uly, ‘




An increase in the angle of shcck to normal (o = 90°) leads to
the known relationship (16) for a normal shock.

An increase in the pressure in an cblique shock wave can also
be presented in the function of Mach number of incident flow and
angle a, which forms the velocity vector W, with the shock front.
Let us substitute into the momentum equation

P1— Ps == Wnapu (Wya — @1a)

the value w_ from (43) and divide both parts of the latter by
the value P,- Then, utilizing the equation of continulity and the

formula for the speed of sound [(34) Chapter I}, we will obtain
__' 1 1 ( .
=14 kMsin 3! ),

After expressing with the help of the equation of shock adiabatic
curve (18) the density ratio oH/ol by the pressure ratio, and
after substituting 1t in the last eguation, we come to the unknown
dependence:

EL—--_— L4 ] sh'l--}iﬁ. (45)

With the game veloeity of i{nceilent Flow an :hlique shoek, as

thia Foiloas from (U5, i¢ alwiyxe Lwicwr (higs 2 wormal shoek.
Tee intensity of an obligque ghotir wave chansgze with a change

fn tre slorpe angle of lte rront v Yre walinczrior of incident flow,

In the oxtreme Cz&e, wnern 2o <Clighr sunoir converis Inte normal
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cd¥e eguaility (LAY converts o owguality (P07, Folwn Urem the

ticlry o7 & normal shock wnoe

In anciher marxinanm Cz3u
. . . e ., . e, .
Jump Lo the dircaticon o Flow beSore S ote actéreined By ote

&
v 4

2On3llion




the oblique shock degenerates into an infinitely weak wave

\

(p1  p_J. Let us explaln thils fact in scmewhat more detail.
Assume at & certailr point 0 of a supersconic gas flow an Infinites-
imal disturbance (Fig. 2.11) of pressure developed. The weak com-
pression wave (or rarefaction) will break into a run from the
center of the dlsturbance in all directions at the speed of sound
a. In a unit of time {1t = 1 s) the wave front wlll be a sphere of
radius r = a. However, the entire mass of the gas in which the
wave arose 1s carried along the flow at supersonic speed w, > a.
gecause of thls the weak pressure waves will never exceed the
limits of vhe cone, the surface of which is the envelope for
srherical waves. The generatrix of such a cone 1s called the

Ma-rn wave or characterigtics. Angle ay between the generatrix

and the axls 1s called the Mach angle or the angle of precpagation
of weak disturbances. Thls angle, as can be seen from Fig. 3.11,
is determiried by the equality

a |
sin 7‘=!_5: =fﬁ_:'

Thus the front of a very weak oblique shock wave is disposed with
respect to incident flcw at an angle ay which 1s determined by
equality (46). Strong disturbances, as it was shown above, are
propagated at supersonic speed, in connection with which the front
of a strong shock forms with the incident flow a larger angle

than the characteristic: a > ag.

Jo

ig. 3.11. The development of a wave of
weak disturbances.
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Thus the range of change 1n angle o for an obllque shock wave

is determined by the following limits
90° =a =12
After substituting expression (45) into the equation of shock
adiabatic curve (18), we will obtain the equality which relates
relation Dl/o In the case of an oblique shock wave with the Mach
number of Incident flow and the angle of inclination of the shock
R-1
=)l (471

A=
2

b
'I + l
'sln'a =1

1/sin a glves Py T P, and in the case

This equallty with M
From the equation

a = 90° converts to corresponding equality (22) for a normal shock
Knowing <t*%s density ratio of the gas after and hefore the
it 1s possible to calculate the angle w, by which

wave.
oblique shock
_ the flow in the shock (Fig. 3.6) 1s deflected.
l of continulty we have
3__ Pa
Wun [
At the same time from the velocity triangles (Figees3.9) it follows
that
wea _ R3
wan e (48)
tgﬂ:%‘- tga (49)
)
(5C)

Hence we obtaln

or on the basis of equalities (A7) and (38)
(l +k—1 M' un' ) g2

tgd=M,tga=
[} -} ———! M sin®a
’“'“"'k+|
then the angle of flc

o k+ l M' sin's
But 1f the angle B bntween the velccity vector behind the shock

ard the front of the latter is known,
ed by relationship (30)

deflection 1s determined b

v hadier

IE




We indlcated the method of determining the angle by which the
flow in a shock 1s deflected when the position of the front is
xnowri. If, on the contrary, the specific deviation in the super-
sonic flow is assigned, then when as a result of deviatlon the
velcelty should decrease (for example during supersonic flow
arocund the wedge deplcted in Fig. 3.7a), an oblique shock wave
develsps; 1n this case according to formulas (30) and (50) the
angle a at which the shock front will be arranged with respect
to the flow can be calculated.

In Fig. 3.12 are represented the curves a = f{(w), corresponding
to different values of Mach number of incldent flow and constructed
for zir {(k = 1.4). As we see, for every value of Mach number
there 1s a certalin maximum deviation in the fliow (w = “max)' So
with M = 2 flow can be deflected by no more than an angle Wnax =
= 23°, with M = 3 - Woax = 34°, with M = 4 - Woax = 39°. Even
at the infinite speed (M = ») flow can be deflected a maximum
by the angle Wrayx © 46°. The presence of such a limitation in the
deviation of flow after a shock wave is a completely natural fact,
since as with an infinitely weak shock, i.e., when angle a 1s
equal to the angle of propagatiori of weak disturbances, and the

’ ggﬁg;;trixhz?vfhe Mach cone 1s characterigtic, so also with the
strongest - a normal shock, the angle of flow deflection becomes

equal to zero, therefore the curves w= f(a) have maximums.

On the curves 1in Fig. 3.12 it 1s also evident that for the
same deviatlon in the flow there are two positlions of the shock
frort. Experiments show that of the two possible positions of
Jump the stabler is that 1n which the angle between the flow
direction and the shock front 1s less. Thus in Fig. 3.12 more
important are the lower branches of the curves lying under the
points of the maxima. The lower intersection or each of the curves
o = f(w) with the vertical axis corresponds to the regeneration of
the lump Into a weak wave, and the angle %9 cbtalned in this case
represents the angle of weak disturbances,
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Fig. 3.12. The dependence c¢f
the direction of an oblique
shock on the angle of deflec-
tion of flow.
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During supersonic flow around a wedge, in which the angle
with the vertex 1s greater than is assumed in Fig. 2.12 the
formatlon of a flat oblique shock wave 1s impossible. Experlence
shows that in this case a shock wave wilth a curvilinear front
is formed (Fig. 3.13), whereupon the surface of the shock is
placed in front, without being *n contact with the spout ¢f the
wedge. In 1ts central part the shock obtained 1is normal,
but with remcval from the axis of symmetry converts into zan
obllgue shock which at great distances degenerates intc a weak
vizv2, The same shock configurztion 1s observed during supersonic
flow aizund 2 body which has a rounded nose (Fig. 3.14).
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It is sometimes necessary to calculate the flow velnclty

after an cbilgue shock wave., It 1s sinmplest tc do this usins
velccity triangles (Flg. 3.9), from which it follows that

PR <4 -
u,__:“b, w, == w, COS 2.
Hence we obuzin

- wcm‘a e
N == —— HATE
] "C(ﬁﬂ -

or in dirmensionless designatlions

« LR 7. .
). =, —. ! <
] " s s e

-

Utilizing formula

(45} in Thapter I 1t 1s possible te iray sthe
zppreerizte value of the liach number behind the obligue wriwkn:

- e

In Tig. 3.:% are givenr the deperdenc of M] number
C

es
after the shock wave cn the pesition T nt ¥y = f{a) for
three values of ilach number in an incident flow (M = 2, 3, 4).
AS ve se¢, In all three cases at the sice

the fleow velccity after the cbligue shack wave ¢ s Cuv to te

9
.
3
t
C
Lav

supersonic. The extrene lelt p eve
the conditions of the =~ransfer of the cbli
veax wave, the extreme right polnt - into & noriai shoeir wave.

Flg. 32.1% The dependerice of
M] number after a shock

vave on the slcpe angle ol
the jump,
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The case where a normal shock is formed is the slmplest,
since in this case subsonic flow 1s obtalned 1mmediately. After
an olliigque shock the filow aslows down, but, as we saw, it can
rematin gupersonie. In that case the subsequent slowing down
should be accompanied by a second shock, which can be both normal
and oblique. In the latter case one additional shock can be
required. Thus the total stagnatlon of supersonic flow requires
elther one normal shock ur a system of several oblique shocks,
usually completed by weak normal shock., It is possible to visualilze
such a system of shocks in which the losses are less than 1n one
normal shock.

Let us pause now on the supersonic flow around a cone. During
the symmetric supersonlc flow around a cone (Fig. 3.16) before
the latter a conical shock wave 1s established (Fig. 3.7b),
whereupon the apexes of the cone and shock wave (surface of shock)
virtually coincide. In view of the fact that the thickness of
the shock 1s always very low, the formulas given above for calcu-
lating a plane-~parallel obllique shock are also applicable to an
axisymmetric shock. Specifically if the angle between the front
and the flcw direction a and the speed before the shock are
xnown (Fig. 3.16), then according to formulas (50) and (30) it is
possible to find the flow direction W, n according to formula
(51) - the velocity, and according to formula (U45) - static
pressure directly after the shock. However, unlike the plane in
an axisymmetric flow the direction of the gas Jet directly behind
the shock (wun) is not parallel to the body surface (w“n #A wHOH).
In connection with this the angle of deflection of jets behind
the shock 1s tapered, approaching asymptotically a half angle at
the vertex of the cone. Directly after the shock the angle of
deflection has the smallest value Wop SO 0, and, as 1t was
mentioned, is obtained the same as for a plane flow, 1.e.,, it
can be determined with the help of Fig. 3.12.
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Tre dependence of angle a between the front of the shock and
the flcw directicn from the halt angle in the apex of the cone
(wHOH) for the case » = atM = 3,16} is given in Fig. 3.17
(solid line).! Here is olotted the curve a = f(w_ _), which gives
the angles of deflection cf flow Glrectly after tne shock (dotted
line), i.e., cocrresponding to plane flow {flow around a wedge).

As we see, atr the tdentical angles of a cone and wedge on the cone

tne choek ckraived is weaker (more inclined).

It was shown above that the changes of the directlon of flcwu,
velusclty, and stalte of the gas in the shock 1tself &o not depend
cn the surface form of the shock; 2t the assigned flow velocity
(XH) and angle of shick o these changes are cbtained identically
in plane-parallel and axisymmetric flows. The distinction in
these Lvo cases censists only of the fact that the same angle of
shcek is nct obtained at the identizal cone and wedge apex anzles,
In cther words, during a comgarison of axisymmetric and plane
oblizue shocks it 1s advantageous to express all the factors in

the functicn ¢f the zngle of shoeck, but rot the apex

'Petrov G. I. and Ukhov Ye. P., The calculation =f the
on ion vrom supersonlc Tlow o sube

£ waves, ¥M,, 1917,

cvery of pressure u H
soni" in different crstewns of 1
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a ! ‘/ Fig. 3.17. Comparison of the
- At angles of oblique shock on a
/ //, cone and on a wedge (dotted
[y — __,{__ line) with the velocity coef-
whle;‘ ficient A = 2(MH = 3.16).
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angle of an aerodynamic btody. In this case the results obtained
in the calculation ¢f an axisymmetric and plane shocks will be

identica

The gas flow after a shock 1n the axisymmetric case 2'ffers
from plane; the flow velocity, stati: pressure, and gas density
have close, but dissimilar values, and the angles of rctation cf
flow 1n a shock (wedge angle) and on infinity (angle of cone)
are substantilally different. Figure 3.18B glves the curves
Weou = f(an) for different values of Mach numbers. In Fig. 3.19
are deplicted the curves of values of M] numbers after the shock
(dotted line) and M2 on the surface of a cone {(solid line) in the
function of the angle of shock at the different values of velocity.
As we see, the decrease obtained in the velocity between the area
lying directly after the shock (it cerresponds to plane flow) and
the surface of the cone 1s insignificant; since the Mach numbers
after the shock and on the surface of the cone are close, then
the corresponding } numbers are close, For practical calculations
the velocity after a conlcal shock can be accepted equal to the
arithmetic mean value

IPNQILTL S (53)
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Fig. 3.19. Values of H
numbers after a shock
(detted line) and on the
gurface of a ccne degending
or. the angle c¢f shccek.
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3. The Application of a Pneumatic
Adarter in a Supersonic Flow

Fur veloclty measurement of a supersonic gas flow 1t 1is
rossitle %o use an ordinary pneumatic adapter (Fig. 3.20). It
is cnly necessary to consider that during supersonic flow around
the adagter the shock wave azppears befcre it. If the axls of
symmetry of the adapter 1s parallel to the flow direction, then
the ¢entral gas sitream which undergoes total stagnation at first
passes through the dlrect part of the shock wave, where 1its
velocity becomes subsonic, then with approach to opening 1 the
velocity decreases smoothly to zero.

Fig. 3.20. Pneumatic adapter
in a supersonic flow.

The pressure in tube 1 (p01) can be calculated by the
following method. From expression (68) of Chapter I we have

»
Bi={r -+

where Py and M] - static pressure and Mach number directly behind
the shock wave. Utilizing formulas (45), (46) of Chapter I and
formula (16) in this chapter, we pass to the Mach number in the
Incident flow:

2 2 A1
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Fonce on “he basis of equalluy (20) we cobtain the well-known
G

Oy
- Jz L

muasa which expreuses the rati

cf pressure Po1 in tube 1 to

the stati: pressure in the incident flow (pH) as the functicn c¢?

Lach number

in the ircident flow:

| B (55)

TN} ] . kel
. h $ P}
ALE ‘(k 2 l)‘“ My
2 a—
~25,5,._.)*:‘
(72

For zir (g = 1.4 vhis fecrmula 1s reduced to the following form:

fLrmula can

Pu _ 1OTMY

h = RIS (56
2l cpenings 2 are round at a distance egual to not less
5 of thic adapter from its leading edge, then,
e shows, the creszsure 1n tube 2 1s egual te the statie
incident flow (pH). Thus valu=s £o1
manometers connected respectlveiy te tubes 1 and 2 ¢f

and p, are ~easurad

czizulatison ¢f the flow velocluvy according to formulszs
it 18 necessary to also know the speed of scund, or,
3ame, the tempzprature of the incident flow:

-w,. — M.2. au=VkgRT,.

2526 U s more convenlent to use the formula which
in the tubes of the adapter 1in tho
the velincivy ceesfizcioant of incident flow (XH). This
be ctialned from expressiers (21) and (23 of this
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Py 1 i (58)

The calculation of the velocity of incident flow accordling to
formula (97) can be falfilled, 1if the value of the critical
velcelty is known:

::-,,::l,a.,.
whnare
2R
Aopp= Vk 1 ERTyw
whereupon
T,
T.._-.——-—k_"_ "
oy R

Let us note, for example, that In wind tunnels namely the stagnation
temperature 1s always known, Jl.e., the temperature of the air
being sucked into the tube.
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CHAPTER 1V B
THE ACCELERATION OF GAS FLOW

§ 1. JIugpersonic lczzole

In z superscnlc nozzle, called the Laval nczzle, gas {low is

converted In such a way that the discharge velccity becomes greater
thar the speed 2f scund:

M>L1, w,>a

w2t us examline the case c¢f a one=dimensicnal flow of gas oo

a superscnic nozzle. The equation of continulty glves
13

Q == pwl* == const.
g

The gzs moves alcng the nozzle with acceleratieon, therzlore ad
lcw speed, when gas density can be consldered constant, 1t is

sary to decrezse the cross sectlions. This 1s caused by the
contracticn cf the inltial part of the nczz:ie. During the further

1w

expanrsicr ¢f gas an in2rease In veloscity Is accomrpaniled by

¢ in the pressure, and therefcre gas density, %
wnich partlally compensates for the lncrease of velocity, and

i $ n¢ lenzer necessary to narrcw the cross seculicn of

chanrel s> rapldly. ¥Finzlly, the process passes through 2.t a K
stage, wWhen the denclty of the expanding gas decreases inversely
proporticnal to the vel Ag 1s kniwn, In thls cross saz-icn
of the channel the [low v 1ty 1s eguzl to the speedé of sound,

c
A further increase irn velocity Lls azcomparnlied by ar even wmire




dipul)=0,
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Letows dalvtde the seeond egaatlon by ew oand rwlitinly and divide .
s Tirst term by do. Then we will cbtaln

Vdpde L 40 ox

wdp ¢ w
oo Lhe Plrst o equsticn w2 have
I:ﬂ'll,’) . i' F,’-i{h”!*pt."dl":'—.-o
oy after divislion Ly pwh
p dF e
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Sabstlituting this result in rthe secdt
a2aoount that according v egualivy
lorivative ot terns <o density in
C1.41 ©0 the sguare of Lie swcea ol

w? ) ds __AdF N

ot w  F° )
Anatyzing thls equality, 1t 315 possible to note that durlng the
CXyanision laveelerationd o0 pas, whern dw/w > 0, Lhe cress seotlon
Cr ncesle should ¢hange In the marner that was indlicatcd atove,
nnnety:
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1y w<a then
We=d, then

w>a then

uF

Tnus three cenaitions are cbserved: subgonie w < a
D=z Juy ovnde WD .
v c“‘:, Juperec W a‘{o
It should be noted that near the critical
flcw is very sensitive

chiannel. Thus, rer instance,

6.9 ¢ M=

for &

oy
2onditicns on & sui’i»ie.'lj extended sect

(boundary layer, formed due to slowing

change 1In Mach number by

down of gas at

<O (contracticnj,
;=20 (eritical regicen),
%£:>0 {expansion).

wp? aritteal

eross sectlor the

tce a change 1in the cross section of the

10%

it is sufficient to change the cross-
angfer fronm

M= 0.95 to M =1

ks

is not rossible to maintain cricical

ien of a straipgiht tube

the walls,

as 1t narrows the cross seatlion of the teo],

Density, as was 2lready mentioned, wlth an increase cf veloe
decreases. In the nozzie throat dF/F = 0, this means that Lhe
el -seclicnal area passes through the extremum (minimum;. rrom
the relationship (1) 1t fellows that preclisely in the

rcss section of the Laval noczle is 3 flow veleclity
s equal to the local speed of scund.

Let u3 examine the dependence cf th elcelvy on the crcss-
sezticnzl area of the nczzle. For thils, using the equation ¢f
continuity, lel us connest the arbitrary cross sectlon or the
supersonie nozzle with 1us minimuwm cross seetlicon:
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¥ Plz., 4,2. The degpendernce
. s the dimensionliess ares
M cf a Laval ncczlie ¢n Mach

number {ic = 1.4).
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this means ejuaticn &), has two solutiong; to one and the same

F/F _ answer twc values of Mach number: one at subsonic steed

c
and another 2% sunerscnic speed. For The nozzle inlet whic
precedes the critical cress seztion all the subsonic soluticns are

-

S <1
suttarle whlle for the output part all supersonie are suitsble,
A unigue solutlcon Is obtzined cnly in the crilcical 2rcss secticn

F/F = 1),
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The pressure and gas density duri:zg an 1deal urocess depend
urambiguously on Mach number and are determined by forrulas {6£)
ani (71) ¢f tirg an

Cherter I. Hence 1t follows thatl after se.ect
s5s section we will obraln in this cross section the
sreciflc vaiue of Mech number to which cerrespond the spo2!l’l

vaiu2s of temperature, pressure, and gas density (with an acoovacz:

up tc the boundary layer effect)
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with an excess pressure,  Scoewhere after the nozzle
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nrease Lo the tyansverse Jet cross~

) cosuisnaly ares, then the fel secemlngly forms in space an expanding
supereenis noczle, But if the presseare in the chamber for any

) r:.eoon s lovwered, then {n the section lowerlag of pressure. will
T, wWhersuyon the pressure ottained in certain cases can be
mosphieric; the discharge velccity in this case will
1.on be changed, sinee it s the function only of the area ratio

T8 vn2 exit seztisn z2nd the nozzle throat., A preasure change in
Thee ztniclnhiere dove niot chow urn I sutflow (rom the nozzle, since
tihe pressure wave, whicl, ls prepagated at the speed of sound, 1s
carpled by the c.re :

'3

sonte wae Ticow,  Based on the exlt of the gas
Jet from the nczzle the wroztniv:s in it finally should be equal
¢ atmocgpher:

Fl
ric, 1.
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t¢ te ralsed because of the stagnation of
zapersonis Tiowy thiz= oroecess 13 avcomyanied by the emergence of
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A cusqier gnd the nossle configuration.

Cnly dnotne fseco o Gf the so~celled calculated conditions the
{ressare dn the nezule sertion 18 equal to atmospheric pressure:
b= 1 . Undev non-cngocoia»d csndttions, when pressure in the
cection 1s grezier or o Jleasd than atmospheric, a pressure change

Shiuaa Cozur dn o the ot Luralde Lthe nozzle, ‘
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it has alreaay been noted that the process of the conversicn
of pressure into velocity in supersonic and subsonic flcws proceeds
without essential lcsses, i.e., aprproximately wlth a constant
entrcry. and therefore is very close tce an 1deal adiabatic curve.
rreclisely therefore the calculation fornmulas given above for an

ideal supersonic nozzle give good results for real nozzles,

In many 1instances the calculation equatlions are simplifled
if the variables of the gas state are determined in a function
not of Mach number, but of the veloclty coefficient. The conve-
nience of operation with the veloclty coefficient 1s connected with
the fact that 1its denomlnator (critical velocity) depends only
ori the stzgnation temperature, which 1s constant for any section
of flow with an isclated process. The laws of change of tempera-
ture, pressure, and gas cdenslity in the functilcen of coefficlent A
are expressed by formulas (42), (72), and (73) of Chapter I.

Let us derive the expressicn whilch relates the cross-sectional

( area of a supersonic nezzl: with the velccity coefficlent. We
will turn to the equation of coentinulty
F_ PapTep
Fxp = e T
Substituting here
1
Prp (I‘l’)‘ =
w.:).d_p, b 7 ’
we willl obtalin
N
2
14 I k-i- A
Coat'~anb s bk 112w B (49
Kph
Tn cenclusion ws wiil derlve the formula for calculating t.e
L]
gas flow rate per second in a supersonic nezzle, It 1s conveniont
]

to find the gas fiow rate through tLhe nozzle throat:

Q== yp, p“upl:-p' (

wn
~

p—
[ al
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since from expressions (U2}, (72), (73) of Chapter I it is simplest
to determine the state of the gas 1n the critical cross section
(A= 1):

Botil o T
T.,— 2 p.—,_ 2 !
-ljv L} ; (6)
o (At~ S0 [T\ [+
I'up- ( 2 ) g (rxp) —\2 ) '
Specifically for air (k = 1.4) we have
Te=12T,p p=158p,p Pe==189p,, ay=1lla,, (7

Replacing with the help of relationships (6) the critical values
of density and speed of scund in expression (5) by the values
which correspond to the state of stagnation, i.e., to the state
in the chamber before the nozzle, we will obtain

[ ZA)

Ozgp'a.’:"('—}_——i)‘“. - b

or, utllizing the equation of state and formula (34) in Chapter I:

P F b )'J l.—lh(. \;'
* up( '
} ¢

0=\t

(8)

Thus the gas flow rate through the supersonic nozzle depends only
on the state of the gas 1in the chamber before the nozzle. For

air (k = 1.4, R = 29.27) we have the following simplified
consumption formula:

Q=04 ‘.;"’;"'-'. [kgf/s]. (8a)

L 3

A.. .rding to formulas (8) they determine the dimensions of the
supersonic nozzle throat for the assigned consumption and the
known state of the gas before the nozzle,

When the discharge velocity 1s less than critical, a simple

convergent adapter - a convergent channel -~ 1s used as the nozzle.

The state of the gas and the rate of flow in different cross
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szctions of the convergent channel can be determined by those same
forrmulas as Iin the case of a supersonic nczzle. However, flow

in cenvergent channel has a number of features which must be

cons ldered,

It 1s most Important that with a subsonic system of outflow
the pressure in the Jjet on the nozzle section Pa Is virtually
equal to the pressure in the surrounding medium P, since under
these conditions any pressure change in the atmosphers in the form
of a pressure wave penetrates inslde the nozzle, producing a change
in the pressure befcre the nozzle and the corresponding change in
the discharge velcoccity; the rearrangement of flow is continued
until the pressure in *he jet cn the nozzle sectlon 1s egual to
atmospheric. Thus unlike the surersonic nozzle, in a simrle
convergent channel the discharge veloclty 1s determined nct by its
form, but only by the pressure in the chamber before the convergent
channei. Thus if the pressure in the chamber Pg is known, then
at the asslgned pressure in the nlane of the output section P, the
veleosity coefficlent of ourflow 1s found directly through formula
{78) in Chapter .:

b=
. B 7 AN R (9
[ L (Pn ;
tac: -k~~l[| ‘I‘-‘,’ -]

'3

ne veloclity of outfiow 1s equal te w, = anﬁp,
ing to (41) of Chapter I, only on temperature

n the chamber tefore the nozzle (stagnation temperature):

where the criticzl

[¢7]

peed depends, avcord

[N

The gas flcw rate in 3 cenvergent channe: we will find from
the eguaticn cf continuiiy, alter applylnm 1t tc the exit sectlan:

Go= g wFa

If we utiliczce the Ziveady known der - ndences

i
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Formula (10) can also be used for determining the gas flow rate

in a supersonic nozzle under calculated conditions of outflow,
when the nozzle exlt pressure Fa is equal to the pressure in the
surrocunding medium Py = Py It is necessary, however, to have in
mind that with F, = const and py ™ const from formula (10Q) it
follows that with a lowerlng of pressure Py ® P, i.e., with an
increase of the discharge velocity Aa in the range of values

Aa > 1, the gas flow rate through the nozzle decreases G - O,

This 1s explained by the fact that simultaneocusly with an increase
of Aa there should be an increase in the ratio of area Fa to the
throat area FKp, the value of which does not depend on Pg = P,

H

In Fig, 4.3 1s represented the plotted function

k__l,:'u-:l 'b_'..r.»_'l‘: _

r=1' VT

AT =
RN RSN P SN F AL
\TT) p ‘F:j'L s ]’%’
which describes the change of the ratio of the gas flow rate
through the cross section of the calculated nozzle to the gas flow
rate through the critical cross section of the same area depending
on a jump in pressures po/pH. As we see, with po/pH + ® the gas
flow rate in the exit section 5; + 0. This means that to cbtain
the assigned final gas flow rate G in this case is possible only
by means of increasing the discharge area up to Fa + o (with

FHp = const).
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Fig. 4.3. Dependence of gas
consumption on the ratic of
pressures in the chamber and
the zurrounding medium.

§ 2. The Non-Calculated Conditions of
Qutflow frem a Laval Nozzle

Let us examine supersonic non-calculated outflow from a Laval
nozzle when Py > P, At a considerable distance from the nozzle
the pressure in the jet and in the atmosphere should be egualized.
In connection with this the pressure in the Jjet 1n proportion to

Istance from the outlet decreases gradually, the gas velcclity
increases, and the cross section of supersonic Jet 1increases

(Fig. 4.4). Experience shcws that in this case the overexpansion
of the Jjet occurs, 1.e., in a certaln wldest jet cross-sectional
area (al) a subatmospheric pressure o, <Ip. 1s establlished.
After this the jJet begins to narrow, since pressure should approach
atmospheric, and the veleccity correspondingly decreases, The
stagnation of supersonic fleow naturally leads to the emergences ¢l

fet

shock waves. As a result of this In a certain part of the

=

o

cross-sectional area bl the velocity becomes subsonic, and t
pressure higher than atmospheric. Then the pressure again
decreases, drawing clcse to atmospheric; the corresponding increace
of subsonic velocity leads to jet contraction. With a sufficiently
large pressure excess the velocity agaln reaches critical, and

then even a superscnic value, i.e., a second supersonic section
appears, on which the jet 1is expanded. As a result of the seccnd

overexgansion (pa < pH} and the subsequent Iincrease in pressure
2
a :=2cond group cf shock waves b2 appears. It 1s natural that as

a result of losses in tne first shick the second overexpansicn
of the Jet and the second group of shock waves are weaker than
the first. Thus gradually the jet scatters its enerzy (for more
detail about thils see § €, Chapter VII). With a small pressure
excess in the nozzie se2tion the fluctuations of veloclity and

)
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Fig. 4.4, Supersonic outflow
with an excess of pressure.

pressure gre also obtalned along the axils of the jet, but without
shock waves,

Supersonic outflow from a nozzle when in the section a
pressure less than the surrounding predominates is achieved by
means of a complex system of jumps. Let us examine, for example,
a plane-parallel gas jet,' flcwing out into a medium of greater
pressure (Fig. 4.5), From the edge of the nozzle the oblique
shock waves which are encountered on the axis of the jet at point
0 will move away. The elementary streams of gas, intersecting
the front of an oblique shock (a-0), convert to the area of
atmospheric pressi~e p A > Py The deviation of streams from the
initial direction, which takes place during a shock, should lead
to their collision on the axis of svmmetry. In actuality a
second rotation of streams occurs which returns them to the initial
direction, but this leads to the emergence of the second group of
shocks (Oh). It 1s natural that if in the areas a0b atmospheric
pressure predominates, then more to the right of lines O-b (Fig.
4.5) a pressure greater than atmospheric will be obtained. Thus
after the second group of shocks the same conditions are established
as during outfliow with a pressure excess (pa > pN). The less the
pressure p, in the nozzle section, the greater the angle obtained
between the front of oblique shock and the flow direction; in this
case the angle by which the flow should turn in the second group
of shocks Ob increases. Simultaneously the flow velocity after

!The discussion concerns a nozzle, the cross section of which
has the form of an elongated rectangle. Supersonic outflow from
an axisymmetric nozzle has been studied less, and we will not
examine it here.
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Fig. 4.5. The diagram of
outflow from a plane-parallel
Laval nozzle under the con-
ditions of overexpansion.

[T I I T

} the first group of shocks (in the area aOb) decreases therefore
P finally such a system begins during which the necessary angle of
; rotation (w) of flow cannot be realized in shocks Ob, i.e.,
'

J

t

Mt b W g s

w > W From this point on, in the center section of the Jet

a shock wave 1s formed and the entire arrangement of shocks takes
on the bridge-type form (Filg. 4.6). With an increasc in the
counterpressure the section of shock wave ¢-¢ 1lncreases., In the

case of gureat counterpressure the supersonic outflow turns out to

bt

be impossible, and the pressure Jumps are shifted inside the

nozzle, i.e., they are achieved in a smaller cross section, the

} lower the speed for this supersonic flow. In that case the nozzle
exit behind the front of the shock works as a usual subsonic

( diffuser. If within the nozzle the separation of flow from the

{ ' walls develops, vhlch is accompanied by a usua2lly ccriplex system

of shocks (§ 6, Chapter VI), then outflow into the atmosphere occurs

b at a supersonlc velocity less than under calculated conditions. 1

Lo e bt e

Fig. 4.6. Bridge-type shock
during non-calculated outflow
fron. a Laval nozzle.

B e

With a pressure drop 1n the chamber the shock will approach
all the closer to the critical cross section, simultaneously
becoming weaker. After approaching close to the critical ¢rcss
section, the shock will disappear, the supersonic nczzle in thls
case will be converted into a venturi tube (Fig., 4.7).
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Fig. U.7. Pressure curves with
a shock wave within a Laval
nozzle,

The location of the plane of the shock is determined by the
ratio of pressure in the chamber (before the nozzle) to the
pressure in that medium into which the gas escapes. It should be
noted that systems durlng which shocks are obtained within a
supersonic nozzle are encountered in engines rarely. Usually the
gas 1s expanded before the nozzle exit section and escapes &t
supersonic speed.

A more detailed examination of the supersonic Jet which
escapes from the nozzle under non-calculated conditions 1is gilven
in Chapter VII, and the question ccncerning outflow with the
formation of shocks within & nozzle 1s given in Chapter VIII.

Let us pause on engine operation under ncon-calculated
conditions of the outflow of gas from the nozzle.

In engine operation under calculated conditions the pressure
in the plane of the nozzle exit section both in the working jet
and in the external flow is equal to atmospheric. However, such
a condition ls satisfled only at one value of pressure ratio pa/pc.

With a change in the flying speed the pressure in the nozzle
section in a jet engine changes. Because of this the invariable
exit crcss section becomes non=-corresponding to calculated con-
ditions: the first - with 1insufficient, the second - tooc great
a discharge opening area of the nozzle.

196




e—— -~

ey

In the first case in the Laval sectlon nozzle a constent
pressure is maintained whese value is higher than atmospheric,
since the exit section 1s less than calculated, as a result cf

which the gas in the nozzle 1s not completely expandeda. The value
of pressure in the section is equal to
»

1h=m('~f;ﬁﬂ'“.

The less the dimensionless area of the discharge opening (fa),

the lower the veloclty coefficient (Aa). and therefore the higher
the pressure in the section (pa). Emerging from the nozzle, the
Jet continues to be expanded in the atmosphere and the flow
velocity increases. Figure 4.8 shows the boundaries of the region
in the jet within which the mean pressure remains excess.

"

Fig. 4.8. Discharge from a nozzle
with a pressure excess.

If we construct the nozzle to the calculated dimensions, then
because within the supplementery part of the nozzle increased
pressure predominatas a thrust lncrease AP will be obtained.
Consequently, tn the case of an insufftcient disrharce area the
thruat of the engine ie lese than under caloulated sonditions.

Another area of work of the Laval nozzle answers to that case
where the discharge cpening area exceeds cslculated, i.e., when
the value of the cotal pressure 1s not sufficlent for obtaining
atmospheric pressure at the cutput. Under these condltions the
Laval nozzie 18 filled by supersonic flow up to the section itself,
but the pressure obtained 1in the section 1s lower than atmcspheric,
i.e., the nozzle works with overexpansion. When the Jet leaves
into the atmosphere in 1t a complex system cof shock waves 1s
established which maintains the rarefaction in the nozzle seztion,
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work under the cendlitions of overexpansion 1s possible only
t a min’ In another case, as was noted, the
ncck wave will move inside the Laval nozzle, pressure in the
section will be equaled with atmospheric, and the discharge velccity
will become subsonic. These operating conditions, as it was
already mentloned, are almost never encountered in engines and

[

Lo pressures p, 2 p

w

¢< not have a practlical value.

In other words, with tco wide a nozzle the outlet veloclty
usually i1s the same as under calculuated conditions, but pressure
here according to the given formula 1s lower than atmospheric;
in this case in the exit sectlon of a Laval nozzle a sectlon of
overcoxpansion 1s obtained in which to the walls the force AP,
directed along the flow, is applied (Fig. 4.9). Thus, tn the system
of overexpansion reactive thrugt t8 lower than oaloulated. For
a thrust gugmentation 1t is profitable to disocard the section of
overexpansion after shortening the nozzle to the calculated
dimensicns.

Fig. 4.9. Discharge from a
nozzle with overexpansion.

Thus, in all cases of deviation from calculated conditions
of outflow with py = const the reaction force is less than under
calculated conditions. Actually, as it follows from formula
(105) in Chapter I, the reactive thrust

Gy R
P= P (10, -~ wa) -] %wd A py — puWFe

Under the conditions of overexpansion the third term in the right
side of this equality is negative (pa < pH), but the first two
terms are greater than under calculated conditicns (due to increase
in wa); under the conditions of pressure excess (pa > pH) the third
term 1 positive, and the first two terms as a result of decrease
in w, are less than unde~ calculated conditions.
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Calculations siicw that a certailn departure from calculated
conditions will not entall a considerable decrease 1n the reactive
thrust. This is obtained because the change of the third term
in the thrust formula is compensated fcr largely by the change of
the first two terms. Because of this when the nozgzle exit section
is greater than the cross section of the combustion chamber, for
purposes of reducing head resistance it is possible without
special damage for thrust to shorten the nozzle, after accepting
Fa - Fr’ i.e., working under non-calculated conditions. It is
possible to demonstrate theoretically, on which we are not dwelling
here, that 1in a jet engine value P/Fa reaches a maximum when the

discharge velocity 1s precisely equel to the flying speed (wa = wHL

and the pressure 1in the output sectlon is significantly higher than
calculated (pa > pH). In such a system the thrust is formed only
as a result of the pressure excess in the nozzle section:

P={(ps —Pu)Pe

It was established above that at ccnstant values of total
pressure and stagnation temperature 1in an engine the greatest
thrust is obtaine. *‘n the calculated system of outflow.

It is natural that in the case of an unccntrolled exhaust
nozzle, 1.e., a nozzle with constant sections, thrust increases
with an increase in the total pressure, since in this case
pressure in the nozzle section increases, but the velocity coef-
flcient of cutflow does not change.

§ 3. Supersonlc Gas Flow with a
Continuous Inc¢rease in Velocity
(Prandtl=-Mayer) Flow

Let us examine first the simplest form of supersonic gas
flow = a forward steady flow. During such a flow all the gas -
particles move along parallel trajectories at a constant veloclity.
The particle trajectorles are simultaneously the flow lines

which are impenetrable for a gas.
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If the flow encounters no cbstructions in the form of sollds
toundaries (walls), “hen the gas experiences no disturbances.
The simplest boundary which !s capable of changing the nature of
the unifcrm forward gas flow is a rectilinear solid wall. Let us :
examine first the case where such a wall 1s arranged parallel to é
the directicn cf flow, L.e., 1t coincldes with one of the flow 7
lires. If the moving gas occuples the entire infinite area above
the wall and the wall itself is also Infinite in length, then 1t
1s clear that in this case the wall will have no effect on the ;
ges flow,' TLet us note that this position is correct in general 3
also for curved lines cf flow: 3If the wall coincides with the S
flcw Line, then it does not exert an influence on the moving gas.

~
-

If at certain point A of the wall (Fig. 4.10) there was some
cistruction, then it would cause a weak disturbance of the steady
fiow, Such a disturbance would be extended in a uniform supersonic
flow on a straight lins - a characteristic constituting with the
direction of velocity the angle On» determined from the condition

sin 1.=.;-.
This angle, as 1t 1s already known to us, 1s called the angle of
proparation of weak disturbances,

Fig. 4.10. The parallel
uniform flow above a plane i
wall.

Now we can glve the flow pattern of an external obtuse angle.
Assume at a certain point C the wall turns, forming with the
initia.i direction the angle é (Fig. 4.11). During the supersonic
flcw around the external obtuse angle ACB the gas 1s expanded,

e W et A

o

!The viscosity effect of gas here can be disregarded.

"
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Filg. 4.11. The rotation of the

//Q supersonlic flow of gas during
flow around the angle ACB.

since the area occupled by the gas lncreases; during expansion

the gas 1s accelerated. Along the sectlion of wall AC the gas

veloclty is constant. The corner point C during the flow of

gas around it is an obstruction which serves as the source of

the emergence of weak disturtances in the gas flow. These

disturbances, as it was shown, are propagated in a steady flow oun

straight line - characteristic CK, which separates the undisturbed

gas flow from disturbed. Along the secticn of wall CB the gas

velocity agaln takes a constant value, greater than in the initial
( flow along AC. This means that the disturbance which arcse &s a

result of the flow around the corner polnt C terminated on another
characteristic CL, which 1s also vrectilinear. Thus the rctation
of flow to the new direction 1s acaleved within angle KCL between
two rectilinear characteristics. For greater clarity let us
break down the sectlon of the contlnuous expansion of gas within
the angle KCL into a large number of sections with insignificant,
but discontlnuous changes in parameters.

The first lcw jump in veloclty and pressure will occur on
the plane, the trace of which is the straight line CK; since
pressure 1in this case drops, then according to the tneory of
Jumps the velocity component normal tc plane CK increases; in
view of the invarlatbility of the tangentilal ccmpcnent cof velcoity
the flow changes 1its direction little, differing from the plane
of the expansion shock to the side oprocsite to that into

which it
would be deflected In a compression shock.

Thus, after plane CK
of the weak expansion shuck the flow cbtalned a scmewhat greater
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oL _auoa o tivtie In the appropriate directicen,

jenslty z2nd temperature ¢f the gas are slightly

- 1. The zisiurbance which 1s propagated from the area of
crsLware s =lrendy new should be limited by the new charac-
oy wh'in as a result of deviation Iin the flew and
iisi:oxze In M=¢h number 1s located more to the rilght of the
v Lo siairacteristic CK. Left of characteristic CK' no
{an- e+ w-nctrave, Lher2fore along the line CK', Jjust as
g;cng the line CK, the parameters of the gas and the

PRI .2

~jeea uY et lon are lnvariable.,

vi-- vlow veloclty, which increased somewhat 1n the first
S, Y5 deslgned on dlirections which are normal and tangentilal
“ae m2zend characteristic CK', then i1t will turn out that the
oot onent of velocity here is less (w& < wu), and radial -
e -“; > oW than on iine CK.
T3¢ cecond weak expansion shock, which we combine with plane
, -2usos a new deviation in tlow to the side CB arnd the further

capanni o o gas which 1s accompanled by an increase 1in veloelty.

The rotation ¢f flow obviously will be completed if the stream
241 1,7 to the wall becomes parallel to direction CB (Fig. 4.11).

Constganvly aw the wall 1tself the velocity vector i1s parallel
wH,

sut on the strength of the fact that all characteristics
~weding from polint C are rectllinear, i.e., the velocit; “and
‘i remaining paranmeters of gas) along then does not change, then

~along the last characteristic CL the velocity vector retains
cirstant (in value and direction) value w,.' Thus after the

YTotnt C 1s a s7xgulur peint, since at thils polnt converge the
raye, 01 each of which the values of velocity and pressure are
*onetvant . These constant values of velocity and pressure are
Jdirterent for different rays.
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lasr characteristic CL the flow agaln becomes forward. But after
point C the flow does not experience more disturbances. Con-
sequently, after rotation about the angle the flow above wall CB
willl be the same as was the flow above wall AC, 1.e., a uniform
and parallel flow at constant velocity W, W The last charace
teristic CL, on which is completed the rotation of the gas flow
about point C, 1s located at an angle o to the wall CB, which
corresponds to the egquality

. i
SiN3p ==~ ,
] M,

whereas the first characteristic is located at an angle a, to the
wall AC in accordance with the equality

. i
sinzg==,-;
L ]

here MH, Mk are values of M numbers before and after the rotation
of flow.

As 1s known, finite adlabatic expansion shocks are impossible.
However 1f we break down angle KCL into an infinite number of
infinitesimal ang .es, then we pass from the conditional diagram
with small expansion shocks examined above to the continuous
expansion of gas; Instead of a finite number of weak shocks we
obtain a infinite number of characteristics - a beam ¢f character-

is8tics.

Thus the rotation of a flow around an obtuse angle and the
expansion of gas (decrease in the pressure) connected with this
~an be consldered as a sequence of weak disturbances, the source
of which is the vertex of the angle; these disturbances are
prcpagated in the flcw ac.>rding to rectilinear characteristics
outgoing from the vertex.

The considerations given show that during the rotaticr cof a
supersonlc gas flow about an externai Chtuse angle the values cf
velocity, pressure, aznd denslty remair. constant along the rays

outgoing from the polint ¢ Inflecticr znd are characteristics.
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Thus during Lhe znaiyvidcat study of the Clow about an obtuse angie '
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cocrdina

Inflectic

roint of Inflectlon. Cocrdinates ¢f the colnts on a plane are

the radius-vecicr r ¢f this poin® and the angle ¢, made up by the

radius-vester with the ray which has thie fixed direction, which

we will determine later. 11 the parameters cf gas we will con-
ider as furcilicns ¢l 1 oand ¢: w = w(r, 2), p = plr, ¢), » = plr, ¢\

On the strengor of the fazt that the parameters of gas along the

ays In cur protlem are reo:rzined constant, the partlal derivatives

e
of w, o and ¢ irn terms of » are egual to zero (during movement

aionz the ray changes do ¢t oceur ir the parameters of the gas).
ihus,
- A 5
9 =), 2 e 9, v -=0. (11)
ur or dr

Velocity ccmponent on the radius-vector and in the direction
perpendlicular tc it we designste respectively by w_ and W, Then

the velociry w=zyw} [-&f On “he strength of the fact that 0w, dr == 0,
wWwe alsc have
ow,_'_ '_)'-’:! =0,
“)’——-0 arnd Jr . (12)
The basic property of the characteristic, as 1t is already 7
krniown, conslsts of the faczt that Lthe vel ty component normal -
to 1t 1s equzl ¢ the spesd of s:und a, but the characteristic ;
coincldes with tne radius-vertcs, therefore in the polar coordinate % 1
system celected by us the normal corponent of the velzcity can be z
fcund from the :2:uditlcon {
i
w,=a (13) l
{ The gas flcw arcund the extornsl sbtuse angle 1s smooth and J
} accelerated, therefore 1t '3 possible to consider 1t vortex-free.

But then clircula%ticn on any ilosed loosp 1ec equal to zero. Les

L]
us compose the expreczslion for clrculntlion cn the lcop MRHK, ‘
i




( limited by the segments of two radlus-vectors carried out from : 1
the vertex of the angle and two arcs, golng around this loop
clockwise (Fig. 4.12):

AV :==uw,r A3 |- (m, -}- % Ap) Ar—
—-(w.-l—o—,;'?"-\r)(r 4387 —w,Ar=0

e

taking into account the constuncy of the velocity on the radius-
vector which is a characteristic, we have

(%-;"—'wl’—"o'_ (lu)

This 1s a condition of the sbsence of eddying in a supersonic
gas flow which flows around an external obtuse angle. It could
also be obtailned directly from cxpression (103) of Chapter II.
Every stream of the flow in question can be considered energy
Isolated, whereupon the equation of energy it 1s advantageous to
utilize in a kinematic form (48) from Chapter I:

2 A ‘I
a4t = O, (15)

( In a smoothly accelerated gas flow, which we are examining in this
case, the losses of total pressure are usually insignificant,
therefore the thermodynamlc process of fiow about the angle we will
consider isentroplec, 1i.e., being subordinated to the equation for
an ldeal adiabatic curve:

"; == const. (16) “

four equations (13)-(16) compose the system, to the sclution of
which the problem of the flow of a supersonic flow of gas about b
an external obtuse angle is reduced.

Fig. 4.12. To the derivation
of the ccnditlion of absence
of eddying.
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From equations (13) and (15) it follows that

w, w4 oy Wi
1 T
or
'u'; -l-;%—: ul, ::..':-;—': w,\“p (17 ) 7

How utilizing equation (14), we come to the following differentiall
equation:

1 l~r\' A—1 A—1
U/ F kT @ =T Phee (18)

Dividing in this equation the varilables W and ¢ we will obtain
dw,

Ve, —

k + ' lllll

-_-dQ

VR

By integration we obtailn

]/——arcsln 2 =o4cy

ma

where ¢y - the integration constant. Solving this expresslion
relative to the unknown value Wny We find

P V7 = PN |

Then from equation (14) 1t immediately follows that

Wy <= Omas y[:;ﬂaus[vfgég(?l-ﬁq.

Let us determine now the integration constant - Let us examine
the case where the veloclty of undisturbed flow (before rotation)

'Since the parameters of the gas along lines ¢ = const during
the flow about an external angle dc nct change, they are the
functions only of one variable -~ polar angle ¢. Thus in equation
(18) and further the partial derivatives in terms of $ are re-
placed by full.
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s,

is equal to the speed of sound (MH = 1). This means that the
initial characteristic KC (Fig. 4.11) is perpendicular to wall AC,
since

z
sin 3=y =1\,
"

il.e,, polar angles ¢ must be counted off from the perpendicular
to the direction of the velocity of undisturbed flow. Then with
¢ = 0, we have w, = 0, W
converted into the equation for determining ¢yt

0== 10,0, SN [ V l-l(o {'fn)]

Hence it 1s clear that ¢, = 0. Thus we obtain the following ex.-

= w, and the expression for W, is

pressioas for the veloclty components L and L

&, = Wmas SIN ('/ ;‘i:j ?)-
]/k—l -0
Uiy == Wmar »‘-+—i €os ( ‘/._——F—‘ f).
Using expressions (35) and (k1) of Chapter I, it is possible to

rass from the maximum gas velocity to critical

Winas == Qp 2—:?‘[

and to write the expressions for W, and w, in the following rorm:

w=a, ) EE (/11 5), (19)
X1
w,:a_,cos( k+|,) (20)
With ¢ = 0 we wiil cbtain W, = o, W, T W= aHp, 1.e., the sperd

of undisturbed flow 1s equal to the critical speed of sound.

How let us f£ird the v2ziue of full velocity for each of the

rays: w=:} wi-tal From equaticns (19) and (20) we will obtain

1. L
wt == al, L:_‘:-!l sm*-‘. R ) - cns? k' 3 ]-——
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From hert we determine the velocity coefficient -

. e A — o

. ' 2 =1
'-"—’-:;-—-"!‘i?l ""'(‘/i‘;'[?)- (21)
All the remaining gas parameters are expressed as the veloclity :
ccefflcient according to the formulas obtained in Chapter I: : i
' » X
Py k-1 “h
\ =\ T (22)
! 1
by k=1 ¥
{ L=( -4 2
t T __q__ k=1,
. Eraia = (24)
; T3k
- 5T

Thus after determining by formula (21) the value AE for the
corresponding values of ¢, we will be able from formulas (22)=-(25)
to calculate completely the state of the gas for each of the rays
passing through the vertex of the angle. With ¢ = 0 A = 1 1s
cbtained, with ¢ > 0 we have A > 1, 1In proporticn to the increase

in the polar angle the gas velocity increases, and the pressure, {
density, and temperature decrease.

As can be seen from expression (21), with a certain value

of the polar angle the velocity coefficient can achieve the maximum ;
value

[
k41
)‘:'"‘:-.i—-—. .

wihien the pressure, temperature, and gas density are equal to zero.
It 1s otvious that a further increase in veloclty 1s impossible, |
and, consequently, the rctation of flow will be discontinued. ‘

In other words, there 1s an extreme value of polar angle *2rmlned
from the condition




T T T ey T e

e M

=1 3
sm*“" %‘-T-“l ‘hnu)=| 3
Hence it f'ollows that
__r oy k2]
?rm—‘.:)‘ l '.:']- (26) P

Let us note that the solution obtained 1s useful for all
values cof velocity of & supersonic undisturbed flcw, and not only
in the case A = 1. If the velocity of undisturbed flow is greater
than the speed of sound, then computation according to formula
(21) should be begun not from the zero polar angle (¢ = 0), but
from that value of angle (¢ ) which corresponds to the given

velocity of the undisturbed flow (A ). From formula (21) 1t
follows that

e = "" :_-T_-{ arc sin '/.:‘:-r(:.'._;—l—) (27)

The suitability of the solution cobtained for any value of veloclity
is based on the fact that in thils problem along any characteristic
( the velccity and the remaining parameters cf the gas do not change,
l.e., on any char cteristic the flow 1s uniform and parallel. And
therefore for the rotation of the flow, whlch proceeds to the right
of this characteristic, the prehistory of the flow cannot be
important, 1.e., this value of AH is achleved as a result cf the
acceleration of gas durlng preliminary rotation from X = 1 and
¢ = 0 tc A = XH and ¢ = ¢H or rotation begins immediately at the
value ¢of the veloclity coefficlient X = AL Thus, in the case
AH > 1 with ¢ =2 ¢, flow remalns undisturbed, i.e., all the param-
eters of the gas retain their value. With ¢ > ¢, the parameters
of the gas are calculated from the formulas (22)-(25) obtained
above. It 1s necessary only to remember that at a velocity of

Sl bl

undisturbed i low greater than the speed cof sound angles ¢ must be
countel off not from the perpendicular to the direction of un-
iscurbed flow, but from the straight line making up angle $, t a

with the direction of undisturbed flow, where a, = arc sin é—

H




(Fig. 4.13) 1s the angle of weak
tetween the c¢haracterlistic and t
undisturted flow.

w,a.
fA»1)

Pl
Vevrie e st

In order to obtaln a demons
let us f1
For this let us compose the diff
lines in pclar coordinates., Let
the tangent tc the flow line at

the direction of the velocity ve
two infinitely close radius vect
angle d¢, and let us draw at pol
segment of the flow line AC, the
tangentlally to the flow line at
AB cof radius r (Fig. bL.14). Let
rectangular curvilinear trlangle
of this trianglie 1s equal to the

Ic

exterrial obtuse angle,

Y b

But the angle between curves AB

disturbance, i.e., the angle
he direction of the assigned

Fig. L.13. Diagram of the
computation of angles ¢ with

> ¥
W, anp

trative plcture of flow around an
nd the form of the flow lires.
erential equation or the flow

us recall that the direction of
every point of 1t colncides with
ctor at this point. Let us tvake
ors, making with each other the
nt A of the first radius the
veloclity vector w = AE, directed
point A, and the circular arc

us examine the infinitesimal
ABC. The tangent of angle A

relation

ar
rdy’

and AC 1s equal to the angle

between their tangents AF and AE, i.e., tg (ZEAN) = dr/rd¢. The
velocity vector wis decomposed into zomponents L and L From
triangle ADE it is evident that tg (L DEY)=uw,/w, But from the
construction it is clear that £ DEA=s £ FAF. Thus,

dr _»,

Equation (28) 1s the differentia
coordinates.

1l equation of flow lines in polar




—von - ww

Fig. 4.14. For determining
the flow line during flow
around an external obtuse
angle.

KEY: (1) Flow line.

In the case of flow around the angle w, and w, are determined

by formula (19) and (20), therefore differential equation (28)
takes the form

dr T (V ')
VR

It can also be rewritten iIn this form:

v Vil )

r ::—{ cm(]/m

Integrating this ‘ifferential equation, we fin<

r=-— ;%-} In cos (V% tp)—}-ln re

where through 1n ry 1s designated the arbiltrary integration
constant, After involution we will obtain

[

r:r“[«os(]/:? 9)]_.— . (29)

Equation (29) 1s the eguation of flow lines in polar cozrdinates.,
Here ry i1s the length of the radius vector of the flow linc of
the flow line with ¢ = 0, 1.e., In an undisturted flow. From
equation (29) 1t 1s evident that all the flow lines are similar
curves with the center of similltude in the vertex of the angle.

Distance along the normal between two adjacent flow lines increases
in the direction of flow,
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Now let us find angle &8, between the tangent to the flow
line and the dilrection of undisturbed flow which moves at the speed
of sound, 1l.,e., the angle to which the flow 1s turned after
reaching the appropriate ray, constituting the angle ¢ with a
perpendicular to the direction of the velocity of undisturbed
flow (with A, = 1). For this let us examine Fig. L.15. Here w
1s the veloncity vector at polnt B directed tangentially to the
flow llne. Angle a is the local angle of the propagation of
weak disturbances, Thils angle 1s equal, as 18 known, to the angle
between the direction of velocity w and characteristic BE at the
particular point. Angle § is the unknown angle of rotation of flow.
From the flgure it is clear that £ A8D=3% and angle ABC = a., Then
from triangles ABC and ABD we have

LA=r—p—a and £ A=-_;-—&

a £ Fig. 4.15. The connection between
(1) purznlmong 4 angles a, ¢, and & during flow

. 2 - around an obtuse angle.

o -y, |-~ KEY: (1) Flow line.

K L7

o X
7 - 7 ‘L .,
B thiiiiler el 510N (.3
<
K’

Thus

t——g—aﬁ%—&,
or

8:::;-* ?_;‘ (30)
The angle of propagation of weak disturbances

a==grcsin -:3 (31)

Thue for the calculaticn of the angle of rotation of flow 6, which
corresponds to the assigned value of angle ¢, it 1s necessary to
perform the following operations:
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1) determine by formula (21) the velocity coefficient A for
the assigned value of ¢,

2) by formula (25) determine the Mach number,

3) by formula (31) deternine the angle o, and, finally,

4) calculate angle & according to formula (30) for the assigned
value of ¢. Thus we will obtain the angle of rotation o flow §
as a functlon of the polar angle ¢.

Up to now the independent variable was the polar angle ¢
and all the gas parameters were calculated as a function of this
angle, In actuality the value of the circumfluous obtuse angle,
l.e., the value of the angle of rotation of flow 60, and the
value of the veloclty of incident flow are usually known.
According to these data it 1s necessary to determine all parameters
of the gas (velocity, pressure, temperature, etc.) after the
rotation of flow arocund the assigned obtuse angle. Thus for
practical calculations it 1is convenlent to complile a table, where
as the basic parameter the angle of rotation of flow &§ 1s accep=ed,
and all the remaining parameters of the gas are calculated in tlre
functlon of this angle. Such a table, calculated from formulas
(21)-(25), (30) and (31), is given in the appendlx to the beck
on pages 1007-1009. It 1s necessary to use thils table 1n the
folliowing manner: from the given speed of undisturbed flow W,
the velocity coefficlent AH is determlined. Further the fictitious
angle of rotatlon of flow 6H whilch correspcnds to value xH is
sought (angle to which the flow which flows at the speed of sound
should turn in order to achleve the assigned velocity wH). Then
angle 6H = GH + 60 1s found, vhere 60 is the assigned angle of
rotation of flow (Fig. 4.16). For a value GK from the table values

~“1T.?n 2~and MH are extracted; they determine respectively the

(] £

veloclty coefficient, pressure, density, temperature, and Mach
number after the rotation of flow zround the asslgned obtuse angle.

curves ¢(8), M(8), and a(8) and %0 = £{§) are depicted in Fig. 4.17.
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Fig., 4.16. The flow line of
® a supersonic flow which flows
: around an external obtuse angle.

W,

7
Lo

Vo ars rsrie ittt billioriore o]
.

Id
T E »
0%
150" ‘ d
4= .4
| § 4. ;
0.8
M o S
107100 a3
\ vd
\ /r oy
A 't 2
§ 55,'.55.:{. T
iEEe ' "
r . \'?L‘;:C a1
ol ey l\ ‘El""'n‘ ~” )
é L 1 oot 1= M e
07 W0 W4T 38wt g7 e a0 W S nd il it Rod

Filg., 4.17. Auxiliary curves for the calcue-
lation of supersonic¢ flow around an ex-
ternal obtuse angle (k = 1.4),

If desired it 1s possible to determine the form of the flow
1ine according to formula (29), after assigning value ry and a
series of values ¢ from ¢ = ¢ to ¢ = ¢ (Fig. 4.16).

For determining the angle of rotation of flow 60 depending
or the initial and final velocity 1t 1s possible to use the simple
formula proposed by A. Ya. Cherkez which approximates well the
precise relationships and the tabulated data with k = 1.4:
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Here XH anad AA respectively are the veloclty coefficlents of fliow
before and after rotatisn. wWith » < 2.3 (5 > 0.0005) the error

for the determination of angie 60 romn tnils fcrmula dces not
usually exceed 1°,

Trhe gilven thecvy of flow ¢f a supersonic flow of gas around
an external obtuse ang

~

le !s applled for the solution ¢f a large
number ¢f sgeciil: problems of gas dyramics; some of them we will
examline btelow,

§ 4, Flcew Arcund s FPlane wall

Assunme the supersonic lecw of gas flows at an assigned
veloclity over a plane fixed wall., At point C (Fig. 4.18) the
wall 1is brokan, but the gressure in space after point C 1s less
than the pressure in the undisturbed "iow zlcng the wall., Then
exactly as in the czse of <he flow abour an externzl obtuse angle,
olnt € will te the dlscurbznce scurce. Fiow, flowing around
volint C, will turn itselr on a4 certaln angle §, ts velocity
wiil insrease, ans the pressure In the rflow wilil drce to the value
oi' the pressure which exists in space beyond pcint C. The ricoure
c¢f flow 1in this case 1s completely simils» to the flow arcund the
external obtuse angle. The only difference 1s that 1n the case of
the flcw around the obtuse angle the angle of reotatlieon of flow &
is assigned and it i1s required to find al) paremeters of the gas
after rotation, and ir the case c¢f the flow around a half-infinite
plane wall being examined Lty us the pressure in the flow after

[y

rotaticn is assigred ind it regulred tc find the angle of

rotaticn of flow and all the remaining paramcters of the gas.

The angle & defineg the boundaries which secarste the deviated
flow of gz3 frem the [ixed gas urder tne wall (dotted line in
we 1] lQ

OIS . T ~ .

is pcssitlie tc use Tatlic L n prages 1

For caiculating the flzw arcund & pliane haltv-inlinite wall it
[

27-1009. Through the assigned




Fig. U.18. Diagram of the super-
sonic flow around a wall.

magnitude of pressure the angle of rotatlon of fiow and all the
remaining parameters of the gas are found.

It 1s easy to calculate the maximum angle Gmax to which the
gas flow which decende from a plane wall can twurn. This angle 1is
the angle of rotation of flow, the initial velocity of which is
equal to the speed of sound during outflow Iinto a vacuum.

Let us assume in formula (22) p = 0. Then

l':_::—i——; =l
Substituting A = Apax into formula (27), we find
_= A1
Pmag = 7 =1
Since with A = Amax from (25) we have M = @, then a = arc sin % = 0,
Then from formula (30) we obtain

8,,,“=( :—j__;l— l)-;-.
With k = 1.4 values ¢max and Gmax will be ¢max = 220°27!', 6max =
= 130°27'. Hence 1t follows that the flow which flows from a
plane wall into a vacuum does not fill the entire free space
under the wall. Ray ¢ = ¢max separates thils flow from the void
under the wall. t 1s clear that this position is correct not
only for the case AH = 1, but alsoc with AH > 1. The angle of
rotation of such a flow during outflow intco a vacuum is equal to
Gmax - éﬂ, where 6H is the fictitious angle of rotation of flow
which corresponds to the assigned value AH. This critical angle,
by which the superscnic flow of assigned velocity cen turn, let us

designuate an' Thus,
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il

anp = 8mml - al-

The dependence of an on Mach number of undisturbed flow (with
k = 1.4) 1is presented in the chart of Fig. 4.19. With M =

= 1 we
have GH = 0 and an = 6max' With M = =

h=123,,.3and 3_-—0,

Fig. 4.19. The critical angles
of rotation of flow in a shock
wave and during the flow around
an external obtuse angle.

1009

P4

50

25

If the supersonic flow should flow around an obtuse angle
fer which § > éno’ then after he rotatlon of flow around the
vertex of the angle the rlow blows away and follows not on wall,
but on the ray which corresponds to § = §

np; between the ray and
the wall a vacuum is formed.

This phenomenon can be called the
separaticn of supereonic flow.

§ 5. Flcw Around a Convex Curvilinear
Well

In order to compose a representatton of the plcture which
apcears during flow around a convex curvilinear wall let us
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examine first one of the flow lines obtained during flow around
an cbtuse angle and accept it for the projJecticn of a solid wall
(Fig. 4.20). Above this wall the flow parameters are known,

since they will remain the same as they were above the corresponding

(now solidified) flow line durlng flow around an angle. %

Flg. 4.20. Diagram of supersonic
flow around a convex curve.

Past every polint of the streamlined curved line passes a
rectilinear characteristic, along which all the gas parameters
remain constant. The state of the gas on every characteristlc is
determined from the angle of rotation of flow §, which corresponds
to this characteristic and is equal to the angle between the
characteristic which is tangentlal to the wall at the initial
peint and the direction of undisturbed flow. During the calcu-
lation of the gas parameters it 1s necessary to make use of the

previously derived formulas or the table of Appendix I to the book
on pages 1007-1009.

Let us note that the same accurately qualitative picture takes
place during the flow around a convex curvilinear wall of any form,
It is necessary only that the convexity of the wall be directed
always to the side of the gas. In order to show thils, let us
replace the arbitrary curved wall by an inscribed broken line
which consists of a successlon of rectilinear segments (Fig. 4.21a).
Flow around such a broken line is reduced to flow around a
successlon of external obtuse angles, and therefore can be calcu-
lated completely. The flow pattern is shown in Fig. 4.21b. 1If
now we increase infinitely the number of vertexes of the broken
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a) b)

Fig. 4.21. Transfer from flow around a
broken wall to tne flow around a convex
curve.,

line inscribed into this curve, then in the end we will obtain
flow around a curve, whereupon it 1s clear that through every
point of curve passes the rectilinear characteristic, along which
the gas parameters are rot changed (Flg. 4.21c).

In order to calculate the flow around an arbitrary curve of
a convex wall 1t is necessary to know only the angle of rotation,
i.e., the direction of the tangent for every point of the wall.
If, for example, the form of the wall 1s assigned by an equation
in the form y = (x) (x-axis 1s directed along the velocity vector
of undisturbed flow), then, differentiating this equation, we
will find the tangent angle wilith the x-axils for every value of
abscissa X, equal to the angle of rotation of flow §.

Thus
3==arctg Iy (X}

Knowing &, 1t Lis easy tc determine all the gas parameters, acting
exactiy the same as in the case of flow around an obtuse angle.
Specifically it is possible to find the distribution of velocity
and pressures along the wall. During flow around a curved convex
wall, just as during flow around an angle, the gas 1s accelerated.
The gas veloclty increases contlnuously and the pressure drops.

If it turns out that at any point of the wall
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then flow separation will occur.

The determination of the form of the flow lines during flow
arcund a convex wall of arbitrary form 1s a more difficult task,
and we will not examine it here. The strict theory of flow around
a curved wail was developed by I. A. Kibel and S. A. Khristlanovlich.

§ 6. Cutflow from a Unit Two-Dimensional
Nozzle with Oblique Section into Space
with Reduced Pressure

Let us examine the outflow of a supersonic flow of gas from
a two-dimensional nozzle. Let the nozzle provide a constant
velocity in its section and the pressure 1n the free space into
whizh the gas escapes s less than the pressure in the nozzle-
sectlon plane., The theory of flow around a plane wall given
above makes 1t possible to determine the direction of the Jet
boundaries directly after the nozzle section.

The behavior cf the gas near the edges of the nozzle A and B
(Fig. 4.22) 1s precisely the same as during flow around one plane
wall. Near each of the edges the flow will turn by such an angle
§ that the pressure in the flow will become equal to the assigned
pressure in free space, Consequently the jet as a whole 1is
expanded during outflow. The angle of rotation of flow § around
each of the edges can be found from the assigned magnitudes of
velocity and pressure 1n the nozzle section and the pregsure 1in
free space Jjust as during the flow around one plane wall. This
angle & determines the direction of the jet boundarles behind the
nozzle section. Along the entire free boundary of the Jet there
1s a constant value of veloclty wnich corresponds to external
pressure and can be calculated easily according to the formulas
and table given above.

The beams of the rectilinear characteristics cutgoing from
points A and B intersect as is shown in the figure. After the
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intersection of characteristics

the flow veloclty changes, ang,

as this follows from § 2 ¢f Chapter
III, the characteristics cease

to be rectilinear. This fact
considerably complicates the calcu=-
lation of further sections of the
Jet.

If the nozzle-section plane
1s not perpendicular to the axis
of flow, then such a nozzle 1s

called q nossle with an oblique
gection. The presence of ¢n oblique
section disturbs the symmetiy of
flow and considerzbly complic:tes
the calculation of the flow avspear-

3 _ . ing in this case. The study cf out-
.A_vqﬂ flow from channels with an colique
/¢532¢<\ _ section has important practical

-_—T‘iéi‘_**‘—~—-—-_ e) value, since such an outflow takes

place during the operation of

steam and gas turbines, where
z;gée;ézgf osgglgirggg;ng : usually the nozzle vehicles are
nozzle with an cblique channels with an obligue section.
secticn.

Let us examine the supersonic

outflow of gas from a two~
dimensional nozzle with an oblique section into space in which
the pressure is less than the pressure in the flow within tre
nczzle., The oblique edge 1is formed during the displacement of
edge B of the nozzle relative tc edge A backwards, against the
flow. 1In the case of minor displacement of edge B, 1.e., with
a small slant of the section plane AB (Filg. U4.22b), obviously
an unsymmetric free jet will be cbtalned. 1In this case the area
of intersection of the beams of the characteristics outgzoing from
odges A and B 1s moved tc point A,
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Censequently the rectilinear characteristics outgoling from

eduse A begln to be bent earlier than in the case of a direct
section,  Behind the section plane AB the jet 1is expanded. The
anglies ¢f rotation of flow near each of the edges A and B
cbvicusly are the same as In the case of a direct section.

The extreme posliticn of edge B for a flow of such a form 1is
that pesition ¢f 1t in which the "first" characteristic, carried
cut from edge B, passes accurately past edge A. Such a case is
depictad in Fig. 4.,22¢. The plcture of flow near edge B 1is
similar as befcre vo the flow around one plane wall. Thus the
direction of the Jet bcoundary behind edge B 1s retalned as
previcus and it can be determined easlily. The characteristics
suteoing from edge A willl beglin to be bent Immedliately after point
A, This ccrmplicates the determination of the second Jjet boundary
behind polint A.

if after edge A we makg a directing deflector, realized on
the {low line which corresponds to the rotation of flow around
edige B (Flg. 4.22d), then flow can be calculated completely.
The fiow around edge B at the assigned external pressure 1is
analogous to the flow around an external obtuse angle. Thus tae
form of the flow line can be determined by formula (29).

Thus we obtaln the shapz of directing deflector AC., Pressure
crn ray BC 1s equal to the assigned external pressure, as a result
o' whicn behind ray BC the Jjet again becomes parallel and uniform.
The velocity 1in this jet 1s greater than the velocity within the
nczzle in cross section BD. The Jet 1s deflected from the nozzle
zxls by the angle &, determined by the ratio of external pressure
t> the pressure within the nozzle in cross section BD.

Displacing edge B still further back, we will obtaln the case

¢l outflow from an oblique section as depicted in Fig. 4.22e,.
Here the "first" characteristic outgoling from edge B comes to the
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oprosite wall within the nozzle at a certain point left of A.
Precise calculation of flow near the section of the wall between
the indicated point and point A and the determination of the Jet
becundary behind edge A 1s & sufficiently complex problem. If

as in the preceding case we make a directing deflector, having
placed its beginning in the polnt of encounter of the first
characteristic with the wall A, then we will reduce the case in
question tothe preceding one.

The effectively applicable cases of cutflow from an oblique
section are the cases b, d, and e. In cases c¢c and d the approxi-
mate computatlion, defining the discharge velocity and the angle
of rotation of the jet as a whole Just as in the case 4, is used,
i.e., the small change in the flow parameters connected with the
disturbance of the picture of flow near edge A accepted during
the calculation 1s disregarded.

Let us emphasize again that in all practically applicable
cases of cutflow from a plane channel with an oblique section into
space wilth reduce.. pressure the flow In the oblique section under-
goes expansion, and the Jet obtalns an additional deviation; in
this case the discharge velocity increases as compared with the
velcelty wnich can be provided by the same nozzle with a direct
section.
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CHAPTER V
ONE-DIMENSIONAL GAS FLOWS

§ 1. Adiabatic Gas Flcw with Frictlon.
Criticzal lFeglon of the Flow

t us examine tlhe cteady flow of gas 1n a tube of constant
cross section in the presence of friction but without heat exchange

with envircnment,

The equation c¢f continuity 1in this case (G = const, F = const)

tawes thie follewing form:
pw ==const,
cr in differential form
1 (1)
“re differential equaticn of state
dp=gR(pdT + T dp) (2)

From o equations (1) and {2) we obtaln

dp __ d




Using the Bernoulll equation in differential form
?“f‘w'?-i-gdl,,ao
and the known expresslion for the speed of sound
a'=kgRT,

we convert expression (3) to the new form

‘a?
@?dT+(w'—%)%'-+gdL,,=0. ()

In view of the fact that the process in question 1s energy
Isolated, the stagnation temperature along the tube does not change
TO = const. This i1s equlivalent to the condition

r
dT,==dT + -g‘-: S

or, taxing into ac‘'ount the known equalities AR = cp = Cyo» cp = kcv,
. A— | _ odw
ERAT =—— w'_—u—. (5)

Substituting (5) intc (4), we arrive at the relation which connects
the veloclty change along the tube of constant cross section with
the work of forces of friction:

M- =_28a, (6)

I+t 1z important that the frictlion is a one-sided action: the
work of the forces of friction is always positive (dLTp > 0).
Therefore, according to the relaticn (6) under the effect of
friction the subsonie flow (M < 1) ig accelerated (dw > 0), and
the supergonic flow (I > 1) Zg8 slowed <own (dw < 0). The continuous
tranzition through tie c¢peed of sound under the action only by

friction 1is 1mpessitle.
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ve th formulas which determine the change in the

sarctore of A aione the Insulated tube In the presence of

TM = Tu == coust (7)

The thorredunaric temperature, 1f we use equations (42) of Chapter
s 3

I and (7}, 's determinea frcm the relation

A—1
T (8)
L= _k= "'

=

e 2 result of the constancy of stagnation temperature, the critical
velacity along thie tube also does not change; hence the ratio cf

the coefficients of velocity 1s equal to the ratio of the velocities
on the tasls of tlle egquation of the continulty - the lnver:ce

density ratic

W e (9)

After substituting egualities {8) and (9) into the equation of
state, vwe obtaln tne dependence of the pressure on the veloclty
coefficient:

k—l)

V=3 M
LI TR L.
A N

rd— (10)
=agi

o>

stagnation temperature, the total

=1

in view cof L2 constancy ¢
to the density of "‘he stagnated gas

pressure 15 proeertional

o

'This results from the ejuation of state and formula (72) in
Craoter 1.
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Henle on thie tasle of {(10) we obtain

A=)

Nor __ 2ot L) /l--q'_k_'_
Pvl.-'N—r;\‘_._:' )
TH

tle and parameters T., p,, Pss Pgo

d -
a
(£), that ¢

surerscanliec flow,

Let us give A, any constant value, and we
[N

ariatle >,. It wa: establlsited above, on the

TT

(11)

willl conslider Aa as

» Pgp @8 functions of the

with sut:zonic and decreasing with supersonic flow,

accorairp to dependences (3),

tion decrease in

basis of relation

he friction accelerates the subsonic and slows down thne
Then it 1= necessary to consider xz as increasing
Therefore,

9) and (10}, the therirodynanic

ture, jensitp and static rressure along the insulated tube

subsenie and increase in

“rom equalizy (11) it follows that in the critical

cross sectlon when 32, = 1 the total pressure Pgyo has a miniminm

2

value, ' tut then from expression {(13z2; of
o

» the ¢ritical cressc secticn the entropy

1
Th2 total pressure and tne density of the

aclerésance with equality

alcong tihe tube decreace, and only one parameter -

temcerature - 1s not changed.

rossitlie ro e convinced cf ¢
(11) with pecrpect o )2 By

rizdicon of the erlustive lnst=zad

4 pyy

d}, (I’ul).nl =0

The secend derdivative 10 veoltlive when XE

Chapter I

reaches a
stagnated
(11}, beth irn subsconic and

nisz by
cubse
ct )

':)

it follcws that
maxirum value,
gas, in
supersonic flcw

the stagnation

v differentiating
tituting ~ne in<o

we obtainr
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'
ALy =037 B (12)

here f 1s the coefflcient of friction in the tube, D - diameter of
the tube, dx = length of the infinitesimal section of tne tube.
Then we obtain

st

dw Mide
(Mt— |)-5-==-—Ck-2-v—b-.
By using expression (45) of Chapter I and the constancy eof critical
velocity in the tube, from which follows the equality

let us turn 1in relation () from the M number to the conefficient
of ecritical velocity i:

(=1 =m5 (13)

Let us allow in the first approximation that the ccefficient
¢f friction in the tube, both in subsonic and supersonic flows,
does not depend on the M number and, consequent'.y, on the veloclty
coefficlent X.

In rough tubes the value g for incompressible fluid does not
depend on the Reynolds number R and is determined from formulal

-
—(\,14-;-2).; .:-? (24)

where € = 2h/D = h/r is the relative roughness of the tube (h -
the heilght of the projlectiors of the roughness),

'See "Problems of turbulence," page 29, ONTI, 1936.
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Let us examine, further, the friction 1In the svu-called
schinlically smceotlh tutes. The technlically smcoth tube 1s charac-
terized ty the fact that the projections cf roughness 1n 1t are

3
covered with a laminar sublayer.! The tn'zkness of the sublayer
eases with an increase in the R number; thcrefore, the same
tube with lcw E 15 smooth but with .arge F is rough (Fig. 5.2).

T T T
1l !
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Fig. 5.2. Dependence of the coefficient of
friction ¢ on R in tubes with dirferent rough-
ness according to experiments of Nikuradze.

In technically smooth tubes, for the turbulent flow of
Incompressible fluld the coefficlent of friction depends on the R
number and can be determined by the formula

¢=0,0032 4 222 (15)

RosiT

where R = pwDl/u.

'#ar more detall about the “aminar subtlayer see Chapter VI,
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Since In the tute of constant cross section, according to the
equatlon of continuity ow = const, then the R number along the
length of the tube changes insignificantly (only because of a
viscosity change).

Thus, we approximately assume the coefficlent of friction in
the tube to be a constant value:

{ = const.

In this case equation (13) is easily integrated:

1 1 ) 2x o x,, (16)

here A, 1s the value of the veloclty coefflcient at the beginning

of theltube x = 0, and x2 is the value of the veloecity coefficient
in an arbitrary cross section of the tube at a distance of x = Xy
from the beginning. With the ald of expression (16) it 1s possitle
t¢ determine the value of the velocity coefficient in the artltrary
cross section of the tube if the veloclity coefficlent at the
beginning of the tubes Al’ the diameter cf the tube D, the coeffl-
clent of friction Z, and the index of 1deal adlabatic curve k are

known.

Let us introduce the function ¢{()) = 1/)\2 + 2 1In A and call
tre dimensionless quantity which is on the right side of equaticn
(16)

the normalized length of the tube. Then equation (16) can be
presented in the form

PR —o )=y (17)
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a change In the [{'low velocity between the two cross

-

seetions of the tube 1s suen that 3 difference of the functions
sth of this sectlon
cf the tuce. By using the graph of function ¢(X) (Fig. 5.3), ¢

$0X) i1 iizem I3 equal te the normalizeld lon

15 poscitle to determlne the change in the coefficient of the flow
velacity along the lergth of the rube depending on values X and §.
Functicn ¢()) when X = 1 has a mlnimum equal to ¢()) = 1. Therefore,
at thiie rated value )}, the value c¢f the difference on the left side
of equation (17) and: consequently, alsc the normalized length of

the tuzes X caniiot be more than a certain critical value determined
from ccndition k2 = 1:

Tap=7()— L (18)

aAztually, let us eguate to 2ero the derivative of the normallzed
length x with respect to A2 when Al = const:

@ == 0a=— =0
Hence we find
by=1
Since when ), = 1
e

Then condlition A, = 1 determines the maximum c¢f the value of the
nermalized length of the tube fer the ascigned value of the
velocity coefficlent at the inlet 1into the tutbe Al' Since equaticn
{17) 1s ccrrect not only for the entire tubte, btut also for any
secticn of 1t, 1t follows from it that the velocity equal to the
spead of scund can te achleved only in the outlet secticn of the

tube. Actuazlly, i1f we ascume that the velocity coefficlent ) is

o

— e W L‘_‘A‘
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Fig. 5.3. Graph of
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$0) =i +210

1

equal to unity in any intermediate cross section of the cylindrical

tube, then from equation (17), recorded for the subsequent section
of the tube, we obtain

Since, by definition, function ¢(A) > 1 (Fig. 5.3), then this case
1s not real.

It was shown above that with flow in the cylindrical tube with
friction, the subsonic flow 1s accelerated and the supersonic -
braked, and the maximally possible state in both cases with a
continuous change 1in the parameters is the critical regime, i.e.,

the achievement by the flow of the speed of sound in the outlet

section of the tube. Equation (17) makes 1t possible to establish

the quantitative connectlon between the change in velocity and the

normalized length of the tube x. If at the inlet into the tube

the flow 1s subsonic and the veloclity coefficient of 1t

1s equal
to A

1° and if the normalized length of the tube 1s less than the
critical value determined by formula (18), then at outlet freom the
tube the flow will be alsu subsonic, whereupon from equation (17)
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1+ follows that the velocity coefficlent A? > Rl. If flow at the - ; R
inict 1o subrsonice and tho nermalized lenpgth of the tube 12 egual
Lo the critical (maximum) value for the glven Xl’ then at the
outiet frcm the tute the flow veloclty is equal to the speed of
sound and R2 = 1.

If finally the normalized length of the tube 1s greater than
maximum determined from formula (18), then equation (17) doues not
have a solution for A2(¢(x2) < 1). This means that the taken
initial value of the velocity coefflcient Al cannot be realized.

) At the beginning of the tube with assigned normallized length x, the
flcw veloclty cannot exceed the value obtained from formula

e)=yz+1 (19)

since in thls case the velocity at the outlet from the tube is
equal to the critical velocity, and through the tube the maximally
} pos:cible gas flcw rate per second cccurs.

’ Figure 5.4 depicts the dependence of the maximum value of the
velocity ccefficient at the inlet into the tube An on the dimen-
sionless length of the tube x/D for the subsenic flow when & = 0.015
and k = 1.4, At these values of & and k

5’=‘_2i—l' -:—1%571.
It should be noted thkat the obtained change In the veliocity
coefficient (formula (16)), both when xl < 1 and Xl > 1, corresponds
tc the completely definite change in the tctal and static pressure
of the gas (see formulas (10) and (11) & 1). Everywhere above we
azcumed that such a pressure change can always be realized:
thls was the condition in the retention of the constant value

1
P with a1 change 1n the normalized length of the tube up to the

ottaining of AQ = 1, If for some reason or other the inalcated
change in pressure is impossible, for example, at the assigned

.
|
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Fig. 5.4. Deperdence c¢f the maximum
value of the velocity coefficlent at z
the beginning of the tube on 1ts H
length.

marnitude of a drop in cressures at the inlet and ocutlet, then the
flow In guestion with the assigned initial velocity ccefficient
can prcve to be unreal, Thls question is examined in more detail
below in § 7.

“With supersonlic flow, fer which forrmula (16) 1s also suitable,

the following systems are possible. If with the assigned initilal
veloclty Xl the r.ormalized length 1s less the maximum (x < xup),
then at the end of the tube supersonic flow (XZ > 1) 1is obtained.

f the normalized length is equal to the maximum (yx = pr), then
the velocity at the end of the tute 135 equal to the critical :
veloceity (12 = 1). 1If the normalized length calculated according '
to formula (17) is more than the maximum, determined according tc
formula (18) at the assigned value of the velocity coefficient at #
the beginning of the tuce Xl, then the smcoth braking ¢f supersonic :
flow for the extent of the entire tute is impossible; in a certain
cross section of the tute a shock wave occurs, after which the
accelerated subsonic flow 1s established.

Cetermining the ponsition of this sheock wave can be carried
out in the following manner. Let the cupersonic velocity at the

tegliining of the tute Al, the length of tube x, diamater of the
tute D, coefficient of friction ¢ and the Index cf 1deal adlabatlc
curve k bte assigned. We compute accerding to formula (17) the
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rermulized length of the tube y. Accerding to formula (18) we

doeterninine the maximum normalized length pr and are convinced of
Lhe facy that the true normalized length 1s greater than the
maximum {y > pr). In tnls case, as wac shown, in a certain cress
cection at a distance of X u from the teglinning of the tukbe a shock
wave appears. For simplliclty we aszsume that the shock wave is
ncrmal, and then the veloclity coefficlents before the shock (2')
and after the shock (A"} are connected by relation (16) of Chapter
I1I

Mo =1,

fne veloclty coefficlent before the shock (A') can be found from

formala {(16):

1 Voo
= I = e $20)

L

X

Tne velocity coefficient after the shock, where the accelerated
subsoenic flow (A" < 1} 1s esiablished, is connected with the length
of the subsonlc section of the tube at the end of a stall (x, = 1)
wihlch takes by formula (18): }

| ! 2% —
Y”'_l_'"i":"mcx—d“”’:‘l—xw

whence
Ml — =y — e (21)

By solving together the two equations (20) and (21) with two
unknowns (XCH’ X'), we arrive at the equation with one unkncwn,
according which the velocity before the shock is calculated:

KPR R U IS
L TR =e (22)
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tar vnich acccrding o fermula (21) the lcecaticn

a

.

ts dJererrmined.,

Tormuias (20), (21, and {(22) rfor determining
1] ?

of the zov

the locastinn - °¢

the sncex wave are inconvenient, since according to them it is
receszary to conduct the calculations by the methed cf successlve
approximations. It 15 possible to recommend auxiliary granrn:
(Flg. ©.5), which substantially simpl!fy the calculations. Curve
(1) ccrresponds to the auxiliary dependence
PN == 1, (2

curve {2) regresernts functicn (21):

y.-—y.“-_-l"—l-—lnl'..
Curve (3) correspends tc function (18):

1’ !

Xip=ﬁ"'—l-’lnﬁ.

Let us explain the method of the use of these curves in 2
concrste example. Let a tute with the normalized length x = 0.7 te
glven. According to curve (3) it is evident that in this :tule
there will te the critical regime (12 = 1) at the value cf the

us check first

velocity ccefficient at the 1Inlet kl = 1.95. Let

the flow pattern in the tute In the case of xl > 1.35, for

for %, = 2.2. Accecrding tc formula (1%) it 1s possible tc

1
the velccity a¢ the end cf the ture

1 1 .
N 4- == i g~y
or, in accordance with notation (23)

=%

example,

calculace

Ty

£
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Fig. 5.5. Auxiliary curves for cal-
culating supersonlc flow in a tube
of constant cross sectlon.

KEY: (1) without a shock.

On curve (1) when Al = 2.2 we find point ¢1 = 1,78, whence

pa== 1,78 — 0,60 = 1.18,

which on curve (1) corresponds to the value of the velocity coeffi-
clent at the end of the tube A2 = 1,4, Thus, in the tuu~ which
has the ncrmalized length y = 0.6, at the initial value of the
velccity coefficient Xl = 2.2 there occurs smooth braking of the
supersonlc flow up to the value of the velocity coefficient
A2 = 1,4,

Let us now assume that the tube has a normalized length

greater than maximum (x > pr), i.e., in this example X, < 1.95.

1
Let us assume that A, = 1.8, Then according to curve (3)

Zep =048 1.6, (<K
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In this case in the tube a shock wave appears, as a result of whlch
in the sectlion of the tube with a length of y = Xex subsonic flecw
is established, whereupon, as can be seen from the comparison of g
curves (2) and (3}, the critical length of the tube is substantially
increased. To search for the location of the shock wave, we
transforn formula (20) with the ald of notations (23). Then the
distance from the beginning of the tube to the cross section in
which there occurs the shock wave is equal to -

BRI )

Tea =% — " (25)
But, on the other hangd,
L=l = Ye) A Yew

Ey replacing thie last term on the right side of this formula
according to (25), we obtain

P—=L=9 =] — e} (26)

Now, using the curves of Fig., 5.5, let us determine the locatlicn
of the shcck wave in the tube when Xl = 1.8, According toc curve
(1), we find

= 1L4R,
vhence
1 — ¢ == 1,48 — 0,60 =10,38.

It rerains tc find thiec value 2' at which the distance between

curves (1) and (2) is eqgual according to (26)

¢ — ¢ —7:)==038.

According to Fig. 5.5 we cttailn




Ye=14 =118,

Yen =@ — ?'ﬁ 003.

Calculated and plotted on Fig. 5.6 by the described method
according to curves of Fig., 5.5 are curves of the change in the
veloelty coefficient A = f(x) in a tube with normalized length
y = (.£, which are ottained at 2ifferert values cf the velocity
ccefficlent X, at the beginning of the tube (when x = 0). As we
see, the shock wave 1s located neaver to the beginning of the tube,
the less the iInitial cupersonic gas velcelty., Values of subsonic
valeeity after the shoek weve lie in all cases on the universal

curve which corresginds to fermula

2.2

0

L8

LA N/
ey,

L5

~

LWy

12

10}

a1t ;

e AN

o .

Fig. 5.6. <Curves of distribution of

values c¢f the velocity rcoefficlent in

a tube witnh normalized length y = 0.6
at different initial velocities and

A, 2 1.
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Wnen Ay = 1.6 the shcek is located at the beginning of the tube
<xl = 2'), 1.e., the section of the supersonic flow 1s completely
eliminated. The gas flow in the tube with the assigned drop Iin the

pressures is examined in § 7.

§ 3. Motion of Preheated Gas
Along a Tube of Constant Cross
Seetion!

The process of the heat feed introduces a special form of
resistance: with the preheating of the moving gas the tctal
pressure drops.

wWe willl examine the motion of gas in the tube depicted on
Fig. 5.7. Let us designate Ax and A_ as the velocity coeffliclents
in the corresponding cross sections. Let the velccity in the tube
be low:

AL and )\, L.

Let us resort to the following ldeallized dlagram. Ga:z enters
into the tute X~ frone the channel with a large c¢ross secticn I
(Fig. 5.7). On section I-X the flow without losses and heat
exchange 1s realized. The heat feed 1s achleved only in the
cylindrical tube X-T. After this the gas, wlithout losses and
heat exchange, escapes into the wide channel II. Despite the fact
that in channels I and II the velocity 1s low, and hydraullc
losses can be disregarded, values of the tot:zl pressure in cross
secticns I and Il are dissimilar; as we will now show, as a result
of preheating the total pressure in the second channel 1s less,

!See Abramovich, C. N., on a thermal critical region in gas
flow, Rep rts of the Academy cf Sciences of the USSR, No. 7,
Vol. 54, 1546,
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Filg. 5.7. On the determining
of thermal resistance,

According te the Bernoulll equation
wi !
Pr==Pa o0 2 Pe=Pn—p; "}'
Hence a chanpe In the total pressure

9 ]
Pou—-pu=(p ~-p) I-(p'.,; -—p‘:'). (27)
From the equation of ccerntinuity wax PV it follows that if as
a result of prehea’inpg the gas density decreases, then its velocity
increases, and, therefore, the statlc pressure drops.
From the momentum equation it 1s possible to determine the

drop 1n static pressute with preheating in the section X-I {disre-
garding the friction):

Pa — Py == s, (0, — ®,)
or
P.—Pf-—'-‘?(o.;?-—p.::).
After substituting thic difference into equation (27), we have

[} )

Pu=-Pa=p g =Py (28)

Hence it 1o apparent that with: the preheating of the slowly moving
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gas, the magnitude of the losses is low., At a considerable velccity
they cannot be disregarded.

It is not difficult to explain the discovered "thermal"
reslstance from the viewpoint of thermodynamics. 1In the example
examined the expansion of gas in the converging nozzle section,
then its preheating at reduced pressure, and finally compression
in the diffuser occur. But such a c¢yele is contrary to the usual
cvele of the thermal machine in which the heat feed proceeds at
increased pressure. Because of this the proce:s iIn question 1s
connected with the absorption and not the release of energy.

It is possible to propose another method of the thermodynamic
interpretation of "thermal resistance." As is known, an increase
in entropy in the gas depends both on the quantity of the supplied
heat and on the temperature level:

( AS|.|=$d—rQ—.

With the same quantity of heat the lncrease in entropy, consequently,
the more the losses, the lower the mean temperature of the process,
1.e., the higher the flow velocity.

: Let us estimate the effect of the heat feed on the gas flow ;
rate in the tube. Let us assume that the outflow of gas occurs - k
thrcugh the tube of constant cross section (Fig. 5.8) in which the
£38s temperature increases from the value of Tx to Tr. Eeing

1imited by the case of low speeds (Ar << 1) at which the atsolute )
value of pressure 1s changed Insignificantly, we will ottain ' 4

Frem the momentum equation, disregarding the friction resistarnce, #-
we have

P —Pr'——'Ft“':[;:-— ‘]
4

2u3

z y—




J
Fig. 5.8. Taking the effect of pre-
heating; on the gas flow rate in a
tube into consideration.

and by definiticn
LI
Pos — P = 7P %r
Then
‘ 9 T’
Poe—Pe=(p: =P+ os —pd = pwif2 T —1]. (29)
. [
fere Pax = Pg is the total pressure 1n the vessel of which the gas

escapes, and P- = P, is the statlic pressure In the ocutlet section
of the tube,

The macss flow rate cf the pgas with the assigned drop in

pressures H = (p, - pH) is equal to

()

O=p,vgF,

where F 1s the cross section of the tube. Since from (29) it
follows that

_'"27!
2 u—l

then the ratis of th ‘s flow rates in the absence and the presence
of precheating in the tube

Q,
a = ]/'zfril -1, (30)
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A5 we see, the heat feed with the assigned drop in pressures leads
tc a 3ecrease in the mass flow rate of gas with a simultaneous
Increase in the discharge velocity.

Let us investigate now the pressure drop across section X-T
of the tube at .igh subsonic spevd of the gas flow.

At the considerable rates of flow the gas density with

preheating decreases not only due to an increase 1n the temperature,

but also as a result of a decrease in the static pressure. In
connection with this the gas velocity increases along the tube more
rapidly than the temperature does. The speed of sound, which is
propcrticnal to the square root of the absolute temperature,
increases along the tube considerably more slowly than does the
flow velocity. Because of this M = w/a along the length of the
tube Increases.

The flow, which has any initial velocity, 1s posslible because
of the corresponding preheating up to the critical velocity
(Mr = 1). At the high initial value of the M number insignificant
preheating is required. The lower the speed, the greater the
eritical preheating is necessary. But 1t 1s not possible to
transfer the flow in the ecylindrical tube into the supersonic
region by any preheating. This phenomenon 1s called thermal

eritical region.!

It 1s natural that after the critical region 1s achleved at
the end of the tubes, the flow veloclity at the beglnning of the
tube cannot be increased by any methods. If upon achleving the
critical region the preheating of the gas is continued, then the
value of the critical cpeed at the end of the tube increases, and
the velocity at the beginning of the tube decreases. 1In other

'The tasis cof the phenomenon of thermal critical regiocn is
given in more detail in the foilowing paragraph.
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vords, the asslgned quantity of heat corresponds to a completely

defined limiting value of the M number at the beginning of the
tube,

The enthalpy of the stagnated gas 1is comprised of the enthalpy
in tnhe flow and heat equivalent of the kinetic energy:

w? P
b=l Ayl te=i A"
Az a result of the heat feed, the enthalpy at the end of the tube

is more than that at the beginning by the value of the supplied
quant ity of heat

Q=ly—1oe
lHence we obtain
Q=c,(r.,-r.,)=c,(r,—r.)+2i‘(u;—c:) (31)
Equation (31), together with the equations of continuity,

momentum and state, forms a system sufficient for determining four

unknown parameters of gas - Prs Pps T., W o= at the end of the
t ube.

From the momentum egquation we have

Pe (5;‘ —_ l) = W, (®, — D)

Inserting in this equation values P, and P from the equation of
state

Py Ty |4 (]
(<L W /2 '( ._.r_)
T p‘_'ﬂ’r ! Ps

and taking into account that according to formula (34) of Chapter I
kp./o_ = as, we will obtain




'Ir —
Bli= kM'(l—tt\

(32)

The ratioc of temperatures Tx and Tr can be presented in the form

r Aw} 1,, Aw}
Ts -‘p-l___ Tor ‘;‘ru .
T. r Aw! . Aw}
"-‘0—2; —‘pilru

)

Introducing the critical velocity a we obtain

Kp.r?
' .—‘
T, _Te ()”
T l_h-—l
nq:i l

Inserting into {32) this expression for Tx/Tr and
according to formula (U45) of Chapter I, we arrive
equation

and solving which, we find!

te n+xl lﬁ_ Y f]
- T,

or

" I+1 [
THY R, T

replacing ME
at the quadratic

(34)

!0ne of the roots of the equation, which corresponds to the

subsonlc flow velocity, 1s obtained with the - sig

second root (with the + sign) gives the solution for the supersonic

flow velocity.

n, and the
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guaticen (35) is used wher. the state of the gas at the
cioinning of the tute is knowr. If the gas velocity at the end
or tio: tube 15 reduced to the critical, then it is convenlent to
use equation (34).

in tne sbsence of preheating (TOX = TOr) L

If at the end of the tube the tnermal critical region (A_ = 1)
Geeurs, tren equation (34) takes the following form:

~—ﬂ—==l+‘/| (36)

w, == 8gpe = Vlmzi gRr“ o

The limiting value of the velocity at the beginning of the tube in
this case is equal to

lw, !o,=a.,.(li V l—-k:). (37)

Having divided both parts of equality (37) by a
to the veloclity coefficient:

Kp X’ we can turn

o bl
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Data on the change of the maximum subsonic velocity at the inlet
into the tube with the variation of preheating are given in the
follovilng table:

ToclTox 1 2 |4 (] -

Palm | 1[040 jo2r 022 |our

A decrease in the velocity at the beginning of the tube (when
Xx < 1) with the intensification of preheating in conditions of
the thermal critical region is explained by a decrease 1in the gas
flow rate. 1In fact, with the thermal critical region the gas
velocity increases in proportion to the square roct of the tempera-
ture:

we=0,~VT,

and the gas density decreases more raplidly than does the value 1/T
(in view of a decrease in the pressure):

Pr~%.
and therefore the gas flow rate

0=p,w,F~ﬁ.—:.
Since density at the teginning of the tube does not depend on the
preheating, then the drop in the gas flow rate leads to a decrease
in the velocity at the beginning of the tube. Small values of the
velocity coefficient at the inlet of the ncombustion chamber, which
are obtained with great preheating, lead to tne large overall
dimensions of the engine, With an increase in the velocity of
flight the initial tempeprature TO
velocity at the Iinlet into the combustion chamter are increased.

X and limiting value of the
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bLecording to the momentum equation, a drop in pressure in

the tube 1¢ equal to

(%)
Pe Pe w /"

fin ti:e basis of formulas {34) and (45) of Chapter I, we have

L_L:+lg
kf‘ma}-———-——.;‘ alp. s
(4
| T ]
and therefore
_2£rp
Pu__ g RV " _w
;'-_l—{'-kmll(l o) (39)
Y

A maximum pressure change is obtained upon reachirg the thermal
critical region (A = 1}. In this case on the hasis of (36)

il = '/ g
l’r|"' 1Lk ! Toe* (40)

Here the - =ign corresponds to Ax > 1, and the + sign corresponds
te Ax < 1. By achieving when Ax < 1! a very great preheating
(TOx/TOr + 0), it 1s possible to reduce the pressure to the
following value:

&l -
Il’r“’g-‘k-“-l
or winen k s 1.4
b1 =24,
Pe Inp

'The case XX > 1 will bte discussed bzlow,
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Let us recall that the pressure drop necessary for obtalning
the criticael velocity in the nozzle is

A=CH
i.e., when k = 1.4

P 9
= 1.89.

Let us determine now the drop in total pressure in the
cvlindrical tube. At the beginning and end of the tube we have,
respectively,

(S

Having divided the first equation by the second, we will obtaln

»
/I_k—-l _ =i

)
Py Per k15

h—1| *
Pes Pr l-k l1=

Hence the coefficient of total pressure in the tube 1is equal to

L
1_8..—'1- .
o, ="t 2 __LE'._' . (41)
Pes P\ =T
=l

The greatest drop in total pressure is obtained with the thermal
eritical reglcen. By substituting expressions (38) and (40) intc
eauality (41), we obtain for these flow conditions

[u—u—-!) I e ‘/l r..)r_, '—" ()

Gup= —*
1 r-kV'——.—'




Here the

¢ upper sipns correspond to the regime Ax > 1, The

dependencze ¢f the cihange in total pressure with the thermal critical

regloen in the tube on the ratioc of stagnation temperatures,

caizulated for A, < 1 according to formula (42), is represented in ;
the following table (k = 1.4): 3

TeedToo | VI0s| 24 |8 ulm

%p 1 1089] 086} 082108

0,30 | 79

we se2e, when xx < 1 the losses in total pressure with real
Tor/To. © 4-8) are obtalned of the same order as thcse
ely great preheating.

Thus, when A < 1 and k = 1.4 the total pressure at the end

of the preheating 18 not less than 80% of the total presgure at
the teginning of the preheating.

For greater clarity of the results, let us transform expression
(L2) scomewhat. TFor this from {38) we will obtain the connection
between the critical preheating of the gas (Ar = 1) and the
corresponding value of' the initial velocity up to the preheating:

LOTAR (R o
(To x)c'— ITH (42a)

Hence 1t follows that at the maximally possible gas veloelty up to
preheating (Ai = k + 1/k - 1), the critical preheating does not
cxceed values

(Iu) —
Toa/upmwa™ (R—=1)(a+1)"*

) = 2.04,

i bowhen ko= R L 153 T
wriic! hen X 1 glve (‘Or/Tox Hp.Mmax

Ey substituting (42a) inte (H2) and selecting the sign:

azcerding to the physical sense of the probtlem, we have
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G = —5— ('-f') (‘.'—F.FI )‘:) . (k2v)
K
Hence 1t follows that when Ay =0, Lie, ?f==oa m,==%(£%ﬂ)‘—%
L]

- 2
when 2 = 1, 1.e., ‘Or/TOX =1, 0 = 1, and when Ax =k + 1/k - 1,

Hp
o 202 .
Lee., T /Ty, = K°/k 1, o, = 0.

"~ 3 z T =
Curves o (Ax) an (TOF/'Ox)Hp r(xx), obtained with the aid

of formulas (42a) and (42b), are plotted on Fig. 5.9.

as

a

Flg. 5.9. Dependence of the degree
of prcheating and coefficient of
total pressure on the flow veloclity
at critical reglon (A = 1).

It was shown above that at the low rates of the gas flow
along the tube with the heat feed in the case of a constant drop
in pressures, the intensification ot preheating leads to a

reduction *n the gas flow rate.

In § 6 1t will te cshown that with a constant drop in pressures
the preheating causes a decrease in the gas flow rate at high

flcw rates.
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enegral fcnditions of the
torn fron Subsonle Flow to
niz Plew and 7ice Versa

in the previous paragraphs 1t was shown that with the heat
feed or the zsccomplishment of work due to fricticn in the gas
noving along the cylindrical tune at subscnic veloclty an increase
in tach numter occurs; the same phenomenon 1s observed in subsonle
flow during flow wlthout a heat exchange and friction in the
converglng tube,

It will ke provaed helow that the change in M number in the
ias flow oceurs not only under the effect of friction and thermal
and goometric effects, but also with the change in the gas flow
rate in the channel and upon the completion of mechanical work.
The indicated effects produce a change in tne M number both in the
subsonlic and in supersonic flow of gas.

Let us 2xamine in general the effect of these effects on the
flow velocity of the gas. For simplicity we will consider the
zas to be 1deal. The mass flow rate of the gas 1s equal to
G = gpwr.,

Hence after differentiation and term-by-term division by G,
we have

a9 __4F 4 4 do (43)
(l_-ll"+' +w'

Differentiating the equation of state for an i1deal gas (p = gpRT),
we ottailn

dp = gR(dT {- Tdp)

dp 4 _ed
% = gR{dT 7'2). (ul)




i

i comparison of cxpressions (43) and (il) glves

d, \ 40 dF dw
-’fangT-rgRV(o-—’-——-'). (us)

Ch the othier hand, from the Bernoulll equation in differential form
(formula (91) 4w (tiapter T), we have

a)

P - wdee - gl — gdL,y ' (u6)

vhere L is the technical work, and LTp 1s the work due to friction.
Comparing {45) and (46), and eliminating terms which contain
density and pressure, we obtailn

a‘:\d’J‘ﬂL’J:‘A"fL.p“—':-'O. (“7)

a@1G_dF | ' 4
BRIT+ 3 (G — %, 7%~ F)a

Used here 1s expression for spered of sound (a2 = kgRT). [t

1

'3 pcsslble to get rid of the term wnlch contains temperature
(gRATY with the ald of the differential equation of energy

U | o A _
dQ,,,==di - Ad'\i’}_} - AL _-m-ngfT?nd.. - AdL, (L8)
where Q is the heat applied to the gas from without, and

Hap

dh=¢}dr==ARi§7idT - the increase in enthalpy. Substituting (48)
into {47) and producing the elementary conversions, we arrive at
the relation which connects speed change in the gas flow rate with
he external actions {gecmetric, flow rate, mechanical, thermal
and friction):

al o v — a
_— ~-(.} - d-‘dL—-—;‘—"‘:.‘!Qup - Ff‘”'w' (439)

gM'——l)'-’j =

2655
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Thiz relaticn was established by L. A. Vulls! and was calledi
the acndition of the inversion of effreot.

The feature of this
5 1 the fact that the sign of its left side

ot the transition of the value of velcocity through the
aritical, Therefore, the nature of the effect of separate phyeical
Firerts on the gae flow e the opposite with gubsontic and supergonto
rogimeg,  The effects which produce acceleration in the subsonic
(narrowing of the channel, the feed of the additional mass cf

ras, theo accomplivhment of work by gas, friction and heat feed,
it < v, 42 > 30, dL > 0, 4Q

A . . -~ Y
et bal ecanalict

A vaom o
Uraie ¢

Mo

Hap > 0, lead to a slowing down of the
supersonlc fleow; the effect of the opposite slign (expansion of the

srannel, the suction of the gas, imparting of mechanical energy to
the gas and heat removal, dF > 0, dG < 0, 4L < 0, dQHap < 0), lead
to a slowlne dewn of the subsonic and acceleration nf the

supersonic
Slows,

Hence there follows the important derivation that under the
s ffecr of one-~way action the velootity ¢ the gas flow can be
reduced to the eritical but cannot be traneferrad through it. For
axample, by means of the heat feed 1t 1s possible to accelerate
thie subsonic flow but only until M = 1 is cbtained. In order to
transfer the subsonlc flow into the supersonic, it 1s necessary )
to crange the effect sign, i.e., in zcone M = 1 beglin to remove the

heat. Such 1s the cubstantiation of the phenomenon
criticul reglion in the combustion chamber descrited
varagraph. The preheating of the gas in supersonic
further braking will become possible only i:n such a

teginning with M = 1, we switch over to the coolling

of the thermal
in the foregoing
flow and

case when,

of the gas.

Let uc examlne each of four effects separately.

in this case we will oltaln in addlition to the known Laval

vozzle (gecmetric effect) thiee additional methods indicated by :

*“ulis, L. A. Reports of the Academy of Sciences of the USSR,
No. 8, Vol. 54, 1yh6; Vulis, L. A. Thermodynamics of gas flows.
Erergolzdat, 1350,
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L. 4. Vulls of the transition through the speed of sound, {.e.,
Flow, meachantical and thermql nosszlee.

n

The geometric nosale, 1.e., the known Laval noaale, is the
cnannel 1n which only because of the imparting to 1t of the
corresponding shape it 1ls possible to carry out a transition from
subsonic velocelty to supersonic. In this speclal case of a
gtriotly geometrio effect on flow (dF ¥ 0) other effects are absent,
1.e., the gas flow rate (4G = 0) is not changed, there is no
exchange of heat and work with the environment (dQHap = 0, dL = 0),
and there 15 no friction (dLTp = Q).

But then the relation (49) turns into the previously obtailned
equality (1) of Chapter IV:

M — 1)‘-’5:%’.

Without discussing for a second time the study of the flow 1in
the Laval nozzle, let us recall only that the acceleration of
flow in the subsonic part of the Laval nozzle (¥ < 1) 1s obtained
by means c¢f the narrowing of the channel (dF < 0), but, beginning
from the critical cross section (M = 1), for obtaining the supersonic
ficw and lts further acceleration, it 1s necessary to change the
effect sign, i.e., expand the channel (4F > 0).

The flow of an 1deal gas in a geometric nozzle (Fig. L.1) in
tre absence of friction is 1sentropic. In the critical cross
section (M = 1) of the nozzle the effect passes through the minimum
(dF = 0).

The flow no;ale makes it possitle to obtaln a transition
through the speea of sound because of a change in the gas 16w’
rate in the tube of constant cross section (dF = 0) in the ahsence
of an exchange with the environment of work (dL = 0) and heat
(dQHap = () and without friction (dLTp = 0). In this case relation
(49) takes the following form:




(P.‘l'-—l)d-.!-':—-'%!,

The acceleraticn of oticn (dw > 0) 1s reached here because
of the feed of the additicnal mass of gas in the subsonic part of
the chanrel and suction of the gas 1n 1ts supersonic part. In the
critical cross sectlion (M = 1) the gas flow rate and, therefore,
the current density pass through the maximum.

The flow nc2zle in principle 1s similar to the geometric
nozzie. If we divide the flow in the flow nozzle into separate
tresms of constant flow rate, then each of them 15 a geometric
nozz. with tre narrowest cross section in the area of the critical
region (M = 1}; however, the narrowing of the elementary streams
in it is zchieved by means of the narrowing of the overall channel
ard GLecause ¢f the feed and removal of additicnal quantitles of
gas (Fig. 5.10).

Fig. 5.10. Diagram of
flow in a flow nozzle.

It 1s natural that the change of state of an 1deal gas 1in the

flow nnzzle (without friction) occurs according to the isentropic
law.,

The mechanical nozzle glves one additional principally posslible
means of the transition thrcugh the speed of sound: because of the
technical work in the absence of other effects (dF = 0, dG = 0,
dn =0, dLTp = 0).

Hap
I1. this case the fundamental relation (49) appears thus:

d
A — 1)) =—LaL,
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from which it follows that I1f the gas flow accomplishes work

(d~ > 0), for example, on the turbine wheel, then in the subsonic
regime (M < 1) 1t 1is accelerated (dw > 0) and in the supersonic
(> 1) dec=lerated (dw < 0). With the supply of work to the gas
(dL < 0), 1.e., on the compressor blades, in the subsonic flow
deceleration is observed, and in supersonic flow acceleration 1is

observed.

The continuous transition through the speed of sound in the
mechanical nozzle 1s obtained with a change in the effect sign
in the critical cross section. In principle, by passing the
subsonic flow of the gas through the turbine, 1t is possible to
accelerate 1t up to the critical velocity; after this it 1is
necessary to release it through the compressor, and then the
accelerating supersoniec flow w'11l be obtained (Fig. 5.11).

( :HQDQ_‘ | —

~
Lv
~

Ly

Fig. 5.11. Diagram of a
mechanical nozzle.
KEY: (1) Critical region.

Thus, supersonic mechanical nozzle should consist of a series-
cenneeted turbine (in the reglon M < 1) and compressor (in the
region M > 1), tetween which the critical cross section (If = 1)
is located.

A feature of the mechanical nozzle is the fact that the
stagnation parameters pass in tts eritical cerose section through
the minimum, [n fact, the enthalpy equation for the mechan!cal
nozzle can be written in the fellowing way:

,On=l"}' AL.




dere 1. and io are values of total enthalpy cof the gas 1ir the
and arbitrary cross sectlons of the nozzle, respectively,
the technical work by the ideal gas between the initlal

,
.

]

[0
[

and 1.

s

and arbltrary cross sectlons of the nozzle., Therefore, in the
sutscnie part of the mechanical nozzle, where the gas accomplishes
wery (en tne turbine), i.e., L > 0, the total enthalpy (the
stapnation temperature) decreases 1, < io "
In thec supersonic area, where mechanical energy is fed to the
gas (L < 0), there cccurs an Increase in the total enthalpy in
cemparison with i1ts value in the c¢ritical cross section:

l.>l.., or T.> T..’-

it 1s possible to ve convinced by a different method in the fact
that the total pressure and density of the stagnation gas pass
together with the stagnation temperature in the critlcal cross
section of the mechanical nozzle past the minimums. For two
artitrary cross sections of the l1deal mechanlecal nozzle, which 1s,
y definition, the channel c¢{ constant cross sectlon, we have

In view of the absence of friction and thermal conductivity, the
rarameters of gas In such a nozzle are changed as with the 1ideal
adlabatle process:

Taking intc account that the ratio of values of the speed of sound

5 (L)

dy Ty

we obtaln the folliowlng simple dependences between the value of the

’

¥ number ard rarameters of the gas in the 1ldeal mechanical nozzle:
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Thus, a monotonie increase in the value of the M nurber in
the mechanical nozzle 18 accompanied by a monotonic drop in

temperature, pressure and denaity.

Curves of the change 1n the parameters of flow and braking
in the supersonic mechanical nozzle when Ml = 0.1 are represented
on Figs. 5.12 and 5.13.
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Flg. 5.12 Fig. 5.13.
Fig. 5.12. Dependence of gas parameters on M2 number in the
mechanical nozzle when K, = 0.1; k = 1.4,
Fie. 5.13. Dependence of the stagnatlon conditions on the M2

number in the mechanical nozzle when Ml = 0,1; k = 1.4,

From expression (50) it follows that the maximum vel~city
of outflow from the mechanical nozzle is not at all limited

since when M2 + « we have Wy =+ @, This result should not te of
a surprise, since 1n the superscnic sectlilon of the mechanical
nezzle energy will be fed to the gas (dL < 0),




|
|

The thermal nozazle, stil) not realized, gives the possibility
irn grinciple of the transiti - of thie gas flow through the speed

_—

of szund because of one adsllional - purely thermal - effect In the

atsence of other effects, i.e., in a cylindrical tube (dF = 0), with

thie constant gas flow rate (dG = 0), without the accomplishmen: of
mechanical werk (dL = 0) and without friction (dLT = 0). The
fundamental relation (49) in connection with the thermal nozzle
takes the followlng form:

M-t —_ 28N 4q,,
The acceleration of gas {(dw > 0) in subsonic flow (M < 1) ic¢ here
curnected with the heat feed (dQHap > 0) and in supersonic flow -
with 1ts removal (dQHap < 0). The heat feed with the supersonic
regime and the heat removal with the subsonic regime produce the
slowing down of the flow (dw < 0). Thus in order to convert
csubsonic flow 1n supersonic by means of a thermal nozzle, in the
subsonlc section of the latter 1t 1is necessary to increase the
enthalpy of the gas, and in supersonic - reduce it, 1.e., in the
critical cross secticn of the thermal nozzle, where the quantity
of heat fed to the gas passes through the maximum (dQHap.Hp = 0),
it follows tc change the effect sign.

The stagnation temperature in the critical cross section of
the thermal nozzle (in the opposite case of the mechanical nozzlie)
reaches a maximum value; this ensues from the equation of enthalpy,
which in connection with the thermal nozzle takes the following
form:

low =1y — Qur

From the foregolng paragraph, whichh contains the theory of
thermal resistunce, it follows that with the heat fesd to the gas
flow tne total pressure in Jt drops, and with the heat removal -

it Iincreases, Formulas of thermal resilstance were derived in



connection with the case of the flow of gas without friction aleng
a tubtie of constant cross section, 1.e., preclsely to the case of
tne thermal noz:ie.

From this theory it follows that the total pressure in the 7
critical cross section of the thermal nozzle, just as in the
ma2chanical nozzle, passes through the minimum. The density of
the stagnated gas, directly proportional to the total pressure and )
inversely proportlonal to the stagnation temperature, reaches a
minimum value 1n the critical cross section.

ln the ideal nozzles examined above, geometric, flow and
mechanical, a change in the state of the gas was 1sentropic, 1i.e.,
1t was described by the equation of the 1deal adiabatic curve
p/ok = const,

In the thermal nozzle in conneection with the feed and heat

removal the entropy changeas.

Let us investigate the thermodynamic process which takes 1in
the thermal nozzle.! The differential form of the equaticn of
momentum, in connection with the cylindrical tube 1in the atsence
of friction, takes the focollowing form:

dp = — pwdw.

The continuity equaticn in thls case (dF = 0, dG = 0) gives

a
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P, (51)

For the polytropic process with the constant polytropice
e xpoilent p/pn = const, after differentiaticn® we have

d, a'
ig:n%:n—.-, (52)

singce the speed of sound in the gas a2 = kp/p. Equating the rignt
sidez of expressions (51) and (52), we note that the polytropic
exponent in the thermal nozzle is a substantlally variable value

n=hkML (%3)
LR .. - * - e .- [ )
Formula (53) shows the presence of two characteristic cross
sectiens in the thermal nozzle,

In the cross section where M = 1//k, the local importance of
the polytropic exponent 1 equal to unity: n =1, i.e., the
elementary thermodynamic prncess in this cross section is 1sothermal

(4T = 0), and, therefore, “he vas *emperature here passes through
the maximum.

In the critlcal crors seztiorn o8 the therma! nczzle, e,
when M = 1, the polytrop.c exponent o the evasde of formula (57)
1s egqual to the 1ndex ¢! th= ‘depl aliavartic curve: n = yu, {.e
here there occurs the e emertar. loepntruplce prccecs derfor
as has already beer. indicat - u atove, the guuantity of Leat ry
to the gas and the =z.ainstlon tempreratare rass thiough th.e

maximum (dQHap =2, 47, = A

VWAt the cmocts oo Lf the b wodynat e nroees oy
section of trne rmall <cianere It parametsce: o ztate U i puoosid le
to assume tiat tie 1 ocmlovaloor o of vbo Tyoaew o D antant L aitr Lot
as a whole tre proes T jr-osoa vl onoonar e Lot SR A S
expoenent.
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“rcm the 1sothermal to the critlcal cross sections of the
thermal npz:le an interesting phenomencon 1s observed: a tempera-
ture decrease of the gas (4T < 0) with the heat feed (dQHap > 0).
In thls section of the nozzle the Increase in kinetic energy of
the gas 1s greater than the increase in total enthalpy.

To search for the dependence of the gas pressure on M number
in the thermal nozzle without friction we utilize the equation of
momentum in the following form:

Pt ey} == pe 4 pewts (54)
nence
Pl A =py (1 4 &MY
or
s RN (55)

In other words, the gas pressure in the thermal noazle with an

increase in M number monotonically decrceases despite the increase

in total pressure in the supersonic part.

T,e dependence of the gas density and rate of flow in the

tiermal nozzle ¢n ¥ nurber can be found by the followling method:

i 9L
M T wmial T,

Bt e equatlions of Stato oand coentlinuity wo have

LONNNETY R T ]
LY pin’ [ ] w,’

a1 thersfore
M2
L vy

- e . A




v brpenddence (55), we obtaln

o, M)k
B = TR (56)

PR .
P H

froiowhich it ls clenr that gas deneity along the thermal noaszle
menotontealiy deoreases with an inerease tn !l number.

The gas temperature in the thermal nozzle as a functlon of
“onumber 2an be chtained by the division of equality (55) into

<J

Ty

0

=

-t

[_':J;’i'i’_f. (575

T 7Mg )

‘43 n>t difficult to be counvlinced from expression (57), the
tomgerature curve has a maxlmum at point!

M=,

Tn &ny two cross sections of the thermal nozzle with an
identical temperature (TQ = Tl) values of the M numbers, as this

apgears from expresslion (57), are connected by the following
dependence:

MM, = L.,

Tt Lo Jderive tie formulas for the stagnation parameters in
the trerral » cole. 'These fermulas acqulire a simpler form 1f in
tror ot Worunter - replaced with the veloclty coefflcient A, for
: oo corfiie Lo use the known relation (46) of Chapter I.

L. .. i tye ztagnation temperature, using formula (42) of
oy teer L, Uoves e o quality

ot b g ity (RT) we wil) ecnsider Ml and 'I‘l as cone-
Shie . Fraat Loyt dertivative d'l‘e/d;'vi2 to zero, we find
3
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adny

l - | N
Ta =0, _ l— i‘$1 “

after sutcstituting (&57) here, after preliminarily replacing M by >
according tc formula (45) of Chapter I, we obtain

a=n ) (5%

The total pressure in the thermal nozzle can be obtained witn
the ald c¢f formula (72) of Chapter I from the expression

[
A—1, =T
Py __Py l‘-r":l M R
Pu pl 1— k—”l)' M
k1

hence, by using equality (55%5), we come to the following dependence:

1_5__|1 =
po 10| TrE M (59)
Pa l'i:)': l—k——!l * '
M

The density of the stagnated gas in the thermal nozzle can
be determined by means of the division of expression (59) inte

expression (58):

]
A=l T
Pw______)l.lif-_g .,__’f___[ '_ (60)
b TR T_R=T | 0
k41"
v

Curves of the change in flcw parameters in the thermal nozzle,
édepending on number M when Ml = 0.1, are given on Flgs. 5.14 and
5.15.

Let us determine the quantity of heat (Q) which must te feas

in the thermal nozzle in order to chan:-e the gas velocity frerm ar:y
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Pis, 6.1k, TLDererndence of the static and
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Fig., 5.1%. Degendence c¢f the flow tempera-
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It charply decreases wlth an increase in the 1nitial gas
(kl), whichi 1s 1ndicated orn the graph of ¥lg. 5.16. The
possible discharge velcclty from the thermal nozzle (when
according tc equality (56), depends on the initial value
El nurmter
W a 1

Specifically, 1f we take a reading from the critical c¢cro
1.e., assume that!

N‘i = l; wl =a:,.

.
.’lc‘r!,
lned ™ T,
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Flg. 5.16. Dependence <f critleal
preheating in a tube of counstant
cross section on the in'*lal value
¢f the velocelty coefficlonc.
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Beodies i Cour deseribed “pure' designs of supersonice
nezzles, ooantines confliourations are fundamentally posslivle. The
mort oreal comibined nozzie ls the so-called "semi-thermal nczzle,"
i owriian the suloonle sectlion 1s thermal and supersonic gecmetrlce
Fip. .17, In such a nozzle the gas is accelerated from a
coevtaln thirial oxbsenle value of velocity up to the critical
velcsity, in the avlindrical tube 1-Z2 because of the heat feed, and
i tranoliicn to surerscenic speed and further acceleratlon of
i wre aohleved witnout heat exchange In the expanding tube 2-3%.

cn of tie sutscnic section of the semi-thermal nozzle

aceording toe fermulas of the thermal nozzle, while
the superssnis section 1s conducted according to formulas

nothe pecaetric nozzle.,

3 Filg. 5.17. Dilagram of a

\( { semi~thermal nczzle.
—J el/” i XEY: (1) Critical rvegion.

P — -t —— e b —
P

Pe ,&{\

-
~— X

mind that in the semi-ihermal nezzle the preheating of the gas is
acvcomp lished in the cLilrdriczal tuve 1-2, and in the geometric
nezzle the same guantity of heat 1s fed to the gas up to its
inlet. Values of thie dlschiarge velccity frcm both nczzles
are ldentical, slnce in eritlcal cross sections the value of tre

agnatlon temperatur-- 1 the same. The tctal pressure at tre

L P BRS

ot

cutlet of the semi-thermal nozzle i3 lower in connection with the

Sredenoe LY tnermal rocistance In Jio subsconic sectilon, and
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fore tre statlc vrrezasure at the outlet Jrom the seri-thermal

Tet us examlne tihe example of the semi-thermal nozzle with t:.e
i~itial gas veloclty, which corresponds to the value cf the velccity
ccefficzlent kl = 0,2, In this case the dimenslonless quantity of
“re prerieating cf the gas in the subsonic section of the nozzle,

according to expression {(61), should be equal to

Trigy == (l—:,'-;‘.)i). =3,78.

es of total pressure in the semi-thermal rozzle (X, = 1)
can t= cazlculated according tc formula (59):

]
1 k=1 " =i
(l’q\. — "I’o!\ __ b LY .
Pawr Ypam 2 2 .
k41

wnen Xl = 0.2 and k = 1,4 we have

Spaal
Y === 0,52.
Loy

The tetal pressure in the geometric nczzle maintains a constant
value:

(Po_l\ —

Pu’r

10 2veeZsups At the cutlet from the semi-thermal
me ZireonRryro velucity differs Iar times from

essure a*t the outler “iom the ceometric nozzle:

Psai = 3P

I -
rurtner,

»
B B
-k--;—!-lj) .

i'p'-\. ==P Py 3 ,|
"I'.‘ it P;:P.,. T e \




A5 18 the velocity coefficlent of the cutflow from the
2
T, oand fa1 15 the total pressure in the lnitial cross secticn

af the nozzle, With equal drops 1n the pressure

(=

Live veleclty of discharpe from the semi-thermal nozzl -~ is less than
& tiar from the geometric nozzle (X3nr < A3r); this recults from
’ eguality
[ SRV 4.
e o
-—1.s - Re—{ 0 \b~
' %y l—k:;_—l l_‘.;u) —\‘ —E l)..s,) .
i which connects the ratic f the static pressure to the total
Fressure with the veleocelty coefficlent., For example, when
S, = 0.52 and A’r = 2 the velocity coefflcient of outflow frem the
aenl-thermal nozzle A3nr =1.97, 1.e., 1.5% less than the veloclty

coefficient of outflow from the geometric nozzle.

In examining the different types of the nozzles intended for
tranzition through the speed of sound, in all cases we had in mind
the transition from subsonic to supersonic velocity. The obtained
fermulas are suitable principally for the reverse case, i,e., the

smooth conversion of supersonic flow into subsonic; however, with
tr.e traking of supersonlc flow there can arise shock waves, which
cemplicate the phencomenon,

Let us discuss now briefly the Joint development of two or
several effects. As a Tirst example let us analyze the case of
thie geemetric nozzle with friction. The fundamental relation (49) ' {

iri thi:z case takes the form

s __ '_’U__d’ gk
M 1) G'—‘T_a"dl""
| d
The most interesting feature of this nozzle 1s the fact that the
critical velocity is obtalned in 1ts dlvergent part, since when ii = 1
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dF &
r=%d,,>0,

and in the narrow cross section (dF = 0 when dw > 0) the subsonic
velocity and M < 1 occur.

Let us now explalin the chief characterlstics of the geometric

nozzle with heat exchange. From the fundamental relation (49) in
thls case we have

do __dF g hk—1
M=) 5 =" —ar T 9Qur

i The location of the critical cross section (M = 1) is determined
by the equality

aF
F

w0,

=&
=2

With the heat feed (dQHap > 0) - for example, with the afterburning
of gases iIn the nozzle - the critical veloclty 1s reached in the
divergent part of the nozzle (dF > 0), and with the heat removal
(dQHap < 0), 1.e., the heat transfer through the nozzle walls, the
critical velocity 1s reached in the convergent section of the
nezzle (dF < Q), 1In the fiprst case in the narrow cross section of
the nozzle (dF = 0), there occurs subsonic velocity and in the
second case - supersonic velocity.

By the same means it 1s possible to investigate the joint :
effect in the gas flow of any other actlions. In this case
it 1s important to emphasize that in accordance with equation (49)
the transition from M < 1 to M > 1 requires in any event
change of the total action.

a sign

In ccnelusion let us note one fact which sometimes leads to
misunderstandings in the qualitative analysils of laws governing

scme flows. In connection with this let us again return to enuatlion
(49).




At:ove in tihe analysis of the equation of momentum (92) of
Chnpter T, we noted that independently of the processes occurring
'nothie flow, a change in the rate of flow 1s always caused by the
anrtion ¢f the furce of friction, applied forces, and also the
dlfrerence In forces of pressure on the chosen element of gas flow.
Ttie different forms of the external action in different ways
affect the statlc pressure in the flow. The meaning of the Jjoint
’ clution of eguations (43)~(U7), as a result of which relation (49)
was obtalned, was reduced so that the value of the pressure gradlent
in fiow is expressed by external actlons; the value dp in this
i case war excluded from the momentum equation or the Bernoulll

enuaticn {(46).

i the analysls of equation (49) it is revealed thal: a) a
coangs in the gas veloelty 1s caused by such factours which are not
cecrinected with direct force action on the flow (for example, the
leat feed), b) the total effect in a number of cases turns out to
be opposite to that which can be expected on the baslis of the
analysils of the action of applied forces. Actually, for example,

the force of frictlon which always acts opposite to the direction
af motion in subsonic flow leads not to brakling but acceleration
of the flow. The latter means that in flow with friction there
occcurs such a reduction in the static pressure that the force of
pressure acting in the flow exceeds the force of friction,

In exactly the same manner as with the feed of mechanical
energy to the subsonic gas flow, its pressure is lncreased so that
the force of pressure actlng counter to flow exceeds the applied
force which caused 1t. As a result the flow, to which the applied {
force is applied in the directlion of motion when M < 1, 1is not
accelerated but braked.

[

Tnus, above, in the analysis of external actions on the gas
flew, 1t was assumed everywhere that in the flow there appear ‘
appropriate pressure gradlents, which as a final result determine




the chiange 1n the rate of the flow. Thus, for instance, for the
acceleration of the subsonic gas flow in the thermal nozzle (i.e.,
wnen F = const) the pressure at the inlet into the nozzle should
exceed the outlet pressure by the value which 1s determined by the
{nitial and final M numbers (see formula (55)).

Having the same meaning are above obtalned relationships
tetween static pressures of the gas in flow with friction (50),
flow with the feed of mechanical energy, and so on. In many
instances, however, it 1s known in advance that in the flow 1in
question there is no longitudinal pressure gradient. The change
in the gas velocity in this case (dp = 0) is completely determined
by the equation of momentum in the form

pied = — - [P+ dPyy),

where dPTD is the force of frictipn, and dP 1s the applied force.
Hence 1t follows that in isobariec flow both at subsonic and super-
sonic velocities the friction leads to a decrease in the velocity;
tne applied forces which act on the flow or the applied external
mechanical energy (dP < 0) always accelerate the gas flow; the
heat feed when dp = 0 does not at gll change the velocity of the
directed motion of gas, since In this case there are no applled
forces.

An example of 1isobaric flow can be, in particular, supersonlc
flow in a solid wall. The boundary layer near such a wall is
formed as a result of the continuous braking of the flow by forces
of external action (fricticn). In summation, the velocity of the
flow in it decreases when p = const fro. the supersonlc to the
small subsonic value.

In exactly the same manner the 1sobaric supersonic jet, being
mixed with the fixed atmospheric alr, accelerates its particles
to the supersonic veloclty by means of a one-slided mechanical
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aot lo - thie feed of the nmomentum in the collislon of particles

ST s oand alr, , 1

with further fleow in any stream filament wlthin the 1lsobaric
surcresnic Jet there cceurs contlnuous braking - with the transition
throust the speed of sound - down to low speeds, and also because :
%f une-rided external action - the transfer of momentum into the ? !'
«nvircnment : ’

These examples do not contradict the laws established above
and the equation of the transformation of actions (49). The fact
! fx that in the presence of any external action the condition in
tsocnvicity (p = const) can be fulfilled only with a completely
' 12 fined change in the ceross-sectional area F.

“hus, Tfor instance, at subsonic flow in a cylindrical tube
i with friction the veloeity of the gas increases, and the static w
rressure drops. In order that the pressure in the flow !s
constant, the channel must be made divergent, 1.e., the geometric
effect dF > 0 must be added to the effect of friction., Sirce
independently of the shape of the channel with flow with fricticn
the total pressure 1s lowered, then in such an 1sobarilc flow the
gas veloclity 1s decreased.




§ 5. On the Propagation of
Detonation and Burning in Gases!

The creator of the theory of the propagation of detonation
in gases 1s the well-known Russian physicist V. A. Mikhel'son

who devoted in 1889 the work "On the normal ignition speed of
fulminating gas mixtures" to this problem.?

The ocutstanding thecretical and experimental studles in the
fleld of burning and detonation belong to N. N. Semenov, Ya. B
Zel'dovich, D. A. Frank-Kamenetsiy, K. I.

Shchelkin and other
Sovies sclentists.?

The propagation of the flame in a combustible gas mixture,
without depending on the mechanism of ignition (by thermal

conductivity with slow burning or by a shock wave with detonaticn),
is subordinated to the fundamental laws of gas dynamlcs ana,

therefore, can be described by equations of the conservation of
mass, momentum and energy.

The flame front 1s a thin layer of gas of virtually constant
cross section, on both sldes of which values of the velogclity of

moticn (relative to the wave front), temperature, rressure and

other parameters are different. 1In accordance with this, the

flame front can be treated as a surface of nonremovable
disccntinuity {(thermal shock).

'In this section an expanded presentation of the following
woerk is given: Abramovich. G. N. and Vulis, L. A., On the

mechanics of the propagat.icn of detonation and burning. Reports
of the Academy of Sclences of the USSR, Vol. 55, Issue 2, 1947.

Michel'son, V. A., Complete collected works, Vol. 1, M.,
1330.

'See, for example, Zel'dovich, Ya. B., Theory of the burning
and detonation of gases. Publishing Hcuse of the Academy of
Sciences of the USSR, 1944.
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in the contenpsrary concept the detonation wave, which is

the ccrnbusticle gaseous medlum, 1s two-layered. The
3 an adlavatic shocx wave, with the passage through
is gre2atly heated. In chemically active gas this
1v is sufriciently intensive; can cause lignition,

Ti. connectisn wirh the fact that the shock wave thickness is
nezilgloble l(order of the mean free path of the molecule), withnin
“imils 1ts process of burning, apparently, 1s developed not in
che state. Therefore, the area in which there occurs burnhing
ferms & second, rmore extended, but virtually also very thin layer
wnlen adjolns direcsly to the shock wave (Fig. 5.18).

FRWRT/ Fig. 5.18. Dilagram of the
‘A, jpi;q;ﬂ B. detonation wave: A - fresh
V27 mixture, B - products of

re J . combustion; I. shock wave,

II. combustion 2one.

The heating of the gas with its passage through the shock
wave in detonation burning in essence replaces the preheating
with its thermal conductivity in normal burning.

Let us examine the phenomenon of detonation in conditions of
a cne-dimensional problem. In the case for a plane shock wave
according to the known relation (15) of Chapter III, the product
of the gas velocity r