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Applied gas dynamics, Abramovich G. N., third
revised edition. Main editorial staff for physical
and mathematical literature of the "Nauka" publish-
ing house, Moscow, 1969, 824 pages.

The bases of gas dynamics are set forth in
application to the theory of jet engines and other
gas machines and apparatuses. A detailed analysis
is made of the theory of one-dimensional gas flows
on which rest largely the contemporary methods of
calculation of jet engines, vane machines, ejectors,
wind tunnels, and test stands. Separate chapters
are dedicated to the boundary-layer theory and theory
of Jets lying at the basis of the determination of

1the friction drag, velocity fields, and temperatures
in nozzles, diffusers, combustion chambers, ejectors,
etc. In connection with the rapid development of
engines of new types - engines for high-altitude
and extraterrestrial flight vehicles - the new edition
of the book includes chapters on hypersoniz flcws,
about the elements of hydrodynamics, arid about the
flows of rarefied gases.

Illust. 333, tables 12, references 157.

FTD-MT-24-0035-7 3



TABLE OF CONTENTS

U. S. Board on Geographic Names Transliteration System .... vii

Designations of the Trigonometric Functions ............... viii

Preface ................................................... ix

Chapter I. The Equations of Gas Dynamics
for a Unit Stream ............................. 1

§ 1. The Equation of Continuity ...................... 1

§ 2. The Equation of Energy .......................... 4

§ 3. The Maximum Speed of Motion of a Gas.
Mach Number ..................................... i6

§ 4. The Mechanical Form of the Equation
of Energy (Bernaulli Equation) .................. 2 4

§ 5. The Equation of Momentum ........................ 38

§ 6. The Equation of Angular Momentum
[Moment of Momentum] ............................ 52

§ 7. Entropy ...................................... 58

§ 8. The Calculation of Reaction Force (Thrust) .....

§ 9. The Place of Application
of the Reaction Force .......................... .73

Chapter II. Elements of Hydrodynamics .................... 83

§ 1. The Motion of a Liquid Particle ................. . 3

FTD-MT-24-0035-73

Kr



§ . The Equation of Continuity ...................... 87

§ 3. About the Forces Which Act in a Liquid .......... 89

: 4 The Connection Between Stresses and Strains ..... 92

§ 5. Navier-Stokes Equations ... ......................... 96

§ 6. The Equation of Energy ... ......................... 98

§ 7. Hydrodynamic Similarity .. ......................... 105

§ 8. Laminar Flows ... ................................... 117

9 The Equations of Motion of an Ideal Fluid ....... 121

§ 10. Plane Steady Motions of an Ideal
Compressible Liquid .. ............................. 128

§ 11. Velocity Circulation ............................ 133

Chapter III. Shock Waves .................................... 147

§ 1. Normal Shock Waves ... .............................. 1147

§ 2. Oblique Shock Waves ... ............................. 161

§ 3. The Application of a Pneumatic Adapter
in a Supersonic Flow ...... ....................... 180

Chapter IV. The Acceleration of Gas Flow ................. 183

§ 1. Supersonic Nozzle ... ............................... 183

§ 2. The Non-Calculated Conditions of Outflow
from a Laval Nozzle ................................ 193

§ 3. Supersonic Gas Flow with a Continuous
Increase in Velocity (Prandtl-Mayer) Flow ....... 199

§ 4. Flow Around a Plane Wall .......................... 215

§ 5. Flow Around a Convex Curvilinear Wall ........... 227

§ 6. Outflow from a Unit Two-Dimensional Nozzle
with Oblique Section into Space
with Reduced Pressure .. ........................... 220

Chapter V. One-Dimensional Gas Flows .... .. ........... 224

§ 1. Adiabatic Gas Flow with Friction.

Critical Region of the Flow ...................... 224

FTD- MT- 24 -0 03 5 -7 3 i

4



§ 2. Flow in a Tube of Constant Cross Section ........ 228

§ 3. Motion of Preheated Gas Along a Tube
of Constant Cross Section ...................... 241

§ 4. General Conditions of the Transition
from Subsonic Flow to Supersonic
Flow and Vice Versa ............................ 254

§ 5. On the Propagation of Detonation
and Burning in Gases ........................... 277

§ 6. Calculation cf Gas Flows by Means
of Gas-Dynamlc Functions ....................... 297

§ 7. Gas Flow with Friction 'n the Cylindrical
Tube with the Assigned Magnitude of the
Ratio of Pressures at Inlet and Outlet ......... 337

§ 8. The Averaging of Parameters
of Nonuniform Flow ............................... 348

Chapter VI. Boundary Layer Theory ....................... 359

§ 1. Basic Concepts of a Boundary Layer .............. 359

§ 2. Laminar Boundary Layer ........................... 369

§ 3. Transfer from Laminar to Turbulent
Flow Conditions in a Boundary Layer ............ 400

§ 4. Turbulent Boundp.-," Layer ....................... 409

§ 5. Boundary-Layer Separation ........................ 429

§ 6. Interaction of a Boundary Layer
with Shock Waves ............................... 441

§ 7. Flow of Fluid in Tubes ......................... 451

Chapter VII. Turbulent Jets ............................. 464

§ 1. General Properties of Jets ..................... 46!;

§ 2. Change in the Parameters Along
the Length of a Jet ............................

§ 3. Subsonic Nonisotherma2 Jet of Simple Gas ....... 491

§ 4. Supersonic Isobaric Jet ........................ 501

§ 5. Discharge of Supersonic Gas Jet
from Nozzle in Off-Design Conditions ........... 507

FTD-MT-24-0035-73 i i



§ 6. The One-Dimensional Theory of the Initial
("Gas-Dynamic") Section of an Off-Design
Supersonic Jet .... ............................... 518

Chapter VIII. Gas Flows in Nozzles and Diffusers ........ 540

§ 1. The Resistance of a Nozzle ....................... 540

§ 2. The Forms of Nozzles ........................... 555

§ 3. The Resistance of a Subsonic Diffuser .......... 566

§ 4. Supersonic Diffusers ... ........................... 580

Chapter X. The Elements of Gas Dynamics of the Airfoil
and Rectilinear Airfoil Cascade .............. 613

§ 1. The Basic Geometric Parameters of the Airfoil
and Rectilinear Airfoil Cascade ................ 613

§ 2. Zhukovskiy's (Joukowski's) Theorem
on the Power Effect of a Potential
Flow on the Airfoil in the Cascade ............. 618

§ 3. Effect of Viscosity on the Power
Influence of Flow ... .............................. 624

§ 4. Aerodynamic Coefficients ......................... 637

§ 5. Profile in a Plane Flow of I
Incompressible Fluid .............................. 641

§ 6. Streamlining of a Profile by a Subsonic
Gas Flow .... ...................................... 657

§ 7. Supersonic Streamlining of Airfoil ............. 668

§ 8. Streamlining of Airfoil Cascade by the Flow
of an Incompressible Fluid ....................... 678

§ 9. Streamlining of Airfoil Cascade
by a Subsonic Flow of Gas ......................... 700

§ 10. Streamlining of a Supersonic Airfoil
Cascade by a Gas Flow with Supersonic
Axial Velocity Component ......................... 711

§ 11. Flow Around a Cascade of Supersonic Profiles
by an Inviscid Flow of Gas with Subsonic
Axial Velocity Component ......................... 732

§ 12. The Fffect of Viscosity on Flow Around
Supersonic Airfoil Cascades. A Solid
Cascade of Plates .... ............................. 747 2

FTD-MT-24-00 35-73 iv

I.



§ 13. Construction of Purely Supersonic Cascades ...... 759

§ 14. Construction of Supersonic Cascades
with Mixed Flow ................................. 769

§ 15. Certain Findings Regarding Spatial Flow
Around a Single Airfoil and a Cascade
of Airfoils ..................................... 788

Chapter XI. Hypersonic Gas Flows ......................... 801

§ 1. Change in the Parameters of a Gas
in an Isentropic Hypersonic Flow ................. 801

§ 2. Hypersonic Flow Around a Convex Obtuse Angle .... 803

§ 3. Plane Shock Wave in a Hypersonic Flow ........... 807

§ 4. Hypersonic Flow Around a Flat Plate
at a Small Angle of Incidence .................... 813

§ 5. Concerning the Hypersonic Flow Around Narrow
Ogival Bodies .. ................................... 814

§ 6. The Newton Law of Resistance ..................... 817

§ 7. The Influence of Minor Blunting of the Front
End of a Narrow Body on Flow Around It
at Hypersonic Speeds ............................ 826

§ 8. The Viscosity Eiiezc tn Hypersonic Flows ........ 830

Chapter XII. Flows of Rarefled Gas ......................... 836

§ 1. Different Types of the Flows of Rarefied Gases .. 836

§ 2. Jumps of Velocity and Temperature at the Wall
During Gas Flow with Slip ........................ 840

§ 3. Gas Flow with Slip in the Tube ................... 847

§ 4. External Drag of Bodies in the Flow
of Rarefied Gas in the Presence of Slip ......... 854

§ 5. Free Molecular Gas Flows and Elements
of the Kinetic Theory of Gases .................. 857

§ 6. Pressure and Stress of Friction
During the Free Molecular Flow
Around a Solid .. .................................. 866

FTD-MT-24-0035-73 V



9 7. Calculation of Aerodynamic Forces
with Free Molecular Flow Around Solids .......... 880

§ 8. The Free-Molecular Gas Flow in a Long Tube ...... 888

j 9. The Molecular Outflow of Gas Through
the Opening in the Wall and Through
the Short Tube .. .................................. 896

Chapter XIII. Elements of Magnetic Gas Dynamics .......... 899

§ 1. Introduction .. .................................... 899

b 2. Elements of Electrostatics
and Electrodynamics ............................. 901

5 3. Electromagnetic Fields .......................... 927

4. Equations of Magnetic Gas Dynamics .............. 933

§ 5. The Similarity Criteria in Hydromagnetics ....... 942

§ 6. Flow of Viscous Electroconductive Fluid

Along a Plane Channel in a Transverse
Magnetic Fielu . .................................. 947

§ 7. Magnetohydrodynamic Pumps, Accelerators,

Chokes and Generators ........................... 957

§ 8. Tne Entry of the Flow of an Electro-
Conductive Fluid into a Magnetic Field
and Discharge from It ............................ 961

§ 9. The Equations of Magnetic Gas Dynamics
for a Unit Stream . ............................... 970

§ 10. Magnetogisdynamic Shock Waves
and Wpak Disturbances ........................... 978

§ 11. The Condition of Inversion of Effect
During Gas Flow in an Electromagnetic Field ..... 990

§ 12. The Simplest Solutions of the Equations
of a One-Dimensional Gas Flow

in Lattice-Type Fields .......................... 996

Appendices I-V . ............................................ 1007

Bibliography .............................................. 1024

FTD-MT-24-00 3 5-7 3 vi



4

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTE4

Block Italic Transliteration Block Italic Transliteration
A a A a A, a P p Pp R, r
56 S B, b CC CC S, S
B • B V, v T T T M T, t
r r a & G,g Yy Y y U, U
A a 9 a D,Cs u * F, f
E B a Ye, ye; E, e X x Xx Kh, kh
)K W x Zh, zh L u L V Ts, ts
3 3 S Z' z 4 4 V Ch, ch
H H M I, i U iW iLiW Sh, sh
Au R Y, y Wa W aq Shch, shch
KM x t K, k 'b % L 1
11 R R .4 L,l 1hi m h/ v Y, y
M K M M, m b b h & I
H x Hv N, n 8 a .9 a E, e
O 0 0@ 0, o 0 0 10 V Yu, yu
nn 7 n P, p R a 1 Ya, ya

* y initially, after vowels, and after n,, b; e elsewhere.

When written as # in Russian, transliterate "Es y# or V.
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates.

Pv

PTD-Mr-2 4-o035- 73 vii



FOLLOWING ARE THE CORRESPONDING RUSSIAN AND ENGLISH

DESIGNATIONS OF THE TRIGONOMETRIC FUNCTIONIS

Russian English

sin sin
COs COs
tg tan
ctg cot
Boo see
COSOC CUC

sh sinh
ch coh
th tanh
cth coth
och sech
eoch oech

arc sin sin "1

arc cos 0081
arc tg tan-1
arc ctg cot "1

arc see I c '

arc cosoe c "I

arc sh sinh"1

arc ch cos" 1

aro th tanh "1

arc cth coth-1

arc ob oeoh "1

arc cach cach- 1

rot curl
lg log
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Preface

In the book the bases of gas dynamics are set forth in applica-

tion to the theory of jet engines and other machines and vehicles.

The third edition of the book is substantially revised and

supplemented.

The contemporary methods of calculation of jet engines, vane

(machines, ejectors, wind tunnels, and test stands are based chiefly

on the one-dimensional representations of gas hydrodynamics,there-

fore a considerable place in the book is assigned to one-dimensional

flows.

At the same time many questions, for example the determining

of the friction drag and velocity and temperature fields, the

construction of the picture of flow in a combustion chamber, ejector

and supersonic diffuser, t. -larification of the power and thermal

effect of the exhaust jet oi a jet engine on the controls and other

parts of a flight vehicle, and also on the walls of a test stand,

etc., cannot be solved without the help of the differential equa-

tions of gas hydrodynamics or the equations of the boundary layer.

In connection with this in the book considerable attention is

allotted to the bases of hydrodynamics, the boundary-.layer theory,

and the theory of jets.

FTD-MT-24-0035-73 x



"j, the 1D "t-.r: W ich p-sseu since the publication of the

pr.vus edition -eat signlficance has been acquired by flight

v~hicies with Jet trzglrns of new types, providing flight at high

supersonic (hypersonlc) speed, entry into space, and re-entry.

T'~is 1ez- to the raili ,v'!io~meIt of the sections of gas dynamics

i:i which the flows of rar'efied gas, hypersonic flows, and motions

cf ±Liquid and gas in cletromagnetlc fields are studied; in this

trilrd editionr of the Look the bases of these sections of contemporary

gas jynamj'cs are also presented.

A number of important iestiuns (theory of supersonic nozzles,

diffusers, ejectors and grids of wings, the use of gas-dynamic

fun,]tions, etc.) is sut forth li more detail than before in the

r,tw publication. 'he appearance of special texts and monographs

on the theory of vane machines and the theory of jet engines made

it possible to eliminate these sections from the book.

The book is compiled as a manual for the engine departments

of aviation institutes according to the program confirmed by the

M'iInistry of Higher tud Secondary Special Education of the USSR

and can be considered as a textbook also for machine construction

and power institutes.

The author attempted to achieve tk.o greatest possible clarity

and the accessibility of presentation and in the illumination of

every question sought the simplest means. Thus some tasks are

examined twice: first in a simplified setting, and then more

deeply in the special sections of the book. In order to make the

book intelligible to the engineers and students who did not study

the kinetic theory of gases and electrodynamics, brief information

from these branches of physics is presented.

Several sections of this book were written by: N. M. Belyanin

(Chapter VI), A. Ya. Cherkez (§§ 6-8, Chapter V, S 6 Chapter VII,

and Chapter IX), S. i. Ginsburg (Chapter X).
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I

CHAPTER I

THE EQUATIONS OF GAS DYNAMICS FOR
A UNIT STREAM

S 1. The Equation of Continuity

The fundamental equations of gas dynamics we will derive for

an elementary stream of gas, the transverse dimensions of which

are so low that in each of its cross sections It is possible to

consiaer constant all the basic flow parameters: velocity, pressure,

temperature, and gas density. Precisely in such a form the equations

of gas dynamics are applied usually in the theory of jet engines.

In those cases when within the limits of the cross section ¢f a

working jet the flow parameters are changed (for example the vaiues

of velocity or temperatures are dissimilar), the representation of

the average cross-section values of these quantities is introduced,

and then with the help of the appropriate, in the majority of cases

Insignificant, corrections it Is possible to utilize ail the eqaa-

tions obtained for an elementary stream. The method of an elementary.

stream is the basis of hydraulics, therefore the gas dynamics of

an elementary (unit) stream are occasionally referred to as "gas

hydraulics.

In order to obtain the equation of continuity, let us examine

the stationary (steady-state) motion of the elementary stream of

gas (Fig. 1.1). During stationary motion at any point of space

the velocity of motion and the state of a liquid (density, pres'-..,

S FTD-MT-24-O035-73 1



te ,perature; are retained constant in time. The particle trajectories

during __ch motion are called the f ow Zines. The lateral surface

fth( stream, which is called the fZow aurfaca, is impenetrable for

a liquid (gas) (velocity vectors of flow are tangential to it); the

flow surfaces foriaing are the flow lines.

Let us examine a certain section of the

stream between two, normal to the flow surface,

cross sections 1 and 2; let us note that in

accordance with the direction of motion indi-

cated in Fig. 1.1. in space 1-2 the inflow

of gas is achieved only through cross section

1, and the gas discharge is achieved only

j through cross sections 2.

-1jri. Elementary Beyond an infinitely small time Interval
c tre ai-

dT the chosen part of the stream will be

Jd!fled into a new position 1'-2'. The displacement amounts to the

iact that during the time dT the shaded space 1'-2 will contain the

gis which 's displaced from area 1-1', and a certain quantity of gas

duril.g the same time will flow out from this space and will fill the

drea 2-2'. The inflow of gas into space 1'-2 comprises

d0a b7Fd,1 ('g , (1)

whe re y1 - the specific gravity of gas in cross section 1, equal

to the produ(.t of density p1 by the acceleration of gravity g, F1 -

the cross-sectional area ], The distance between cross sections

1 and 1' is equal to the product of the velocity of motion by the

elementary time interval

'During unsteady motion the flow lines are determined differently
and do not coincide with the particle trajectories.

FTD-MT-24-0035-73 2



dt4 = widt.

where W is the velocity in cross section 1, from which

dO4 - yP 1 d-L

'he discharge of gas from space 1'-2 is equal, obviously, to

dOg - 0tFdt.

During steady-state conditions and in the absence of breaks

of continuity in a moving medium the inflow of gas should be equal
to the discharge:

dO, = dG-- dC.

Hence after the appropriate substitution we obtain the equation

of continuity - the law of conservation of mass - for the unit

stream of a compressible liquid (gas) during steady-state flow

1,Fl = lwFe. (2)

In the case of a noncompressible liquid, i.e., with y = const,

equation (2) takes a simpler form:

(3)

which is used for gas flows when changes in the specific gravity
of the gas can be disregarded.

On the basis of the equation of continuity (3) based on the

arrangement of the flow lines in the incompressible medium it is

possible to Judge the velocity of motion. In places of thickening

of the flow lines the velocity increases; if the flow lines are

separating then the velocity drops. During the motion of gas it

FTD-MT-24-0035-73 3
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is not always possible to determine directly by the arrangement of

the flow lines the velocity change, since changes of density

(specific gravity) of the gas can be considerable.

i n a gas, as It is not difficult to see from the equation of

continuity (2), the picture of the flow lines uniquely determines

the -hange in tlie density of the flow:

0

representing the product of the specific gravity of the gas by

the velocity, i.e., the mass flow rate of gas through a unit of

area of cross section. In places of thickening of the flow lines

the density of flow increases, while in places of divergence of

flow lines it decreases.

The equation of constancy of gas discharge G = ywl' = const

also can be presented differentially

dO "ludl + ivdT + "l'do.

After dividing this relationship term by term by ywF we will obtain

dO =div+ +dFk4

Here P u y/g - mass density of gas.

§ 2. The Eqiation of Energy

Following the first principle of thermodynamics (law of

conservation of energy), let us put together the energy balance

in the fixed coordinate system (Fig. 1.1), i.e., let us examine

4 i



the energy conversion in one and the same mass of gas, i.hith at

first filled the space 1-2 but in an infinitely small time interval

dT is shifted into position 1'-2'.

An increase in any form of energy is equal to the difference

in the quantities of this form of energy in positions 1'..2' and 1-2.

In view of the fact that the shaded space 1'-2 is general for these

two positions, the energy of the mass of the gas which fills space

1'-2 during subtraction is decreased,' ani an increase in energy
is measured by the difference in the energy content in infinitely

small spaces 2-2' and 1-1'. Hence it follows that an increase in
kinetic energy is equal to

dE6 =, !jt

here dO/g is the mass gas discharge through the cross section of

the stream during the time dr. An increase in the potential energy

((energy of position)

dE, = dO(z, - zjj

where z2 and z1 are the heights of the arrangement (leveling leveI7)
of cross sections 2 and 1. An increase in the internal (thermal)

energy

_dOdE, (it - r

where A - 1/427 - the heat equivalent of mechanical work, u c.T -

thermal energy of a unit of weight of gas (product of heat capacity

at a constant volume by the absolute temperature). If the heat

'The motion of the gas is assumed to be as in the foregoing
paragraph, steady-state.
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capacity of tie gas In; cross sections I ar 2 is identical, then

tne ir:reasc- ;f internal energy is equal to

dr, =€-Aor, - Tl ....

(.r, the oases of the chosen part of the stream of gas the

external forces of pressure p which are directed inside and along

the normal to them act. With the displacement of the gas the

external forces of pressure produce work. For example, the transfer

cf gas from cross section I into cross section 1' occurred as if

under the action of a piston with an area F1 with pressure pl. The

work Qf the piston during time di is equal to

paFid=- dO
Ii

:n exactly the same manner it is possible to visualize that

preosure P2 on cross section 2 is achieved by a piston with an

area F2 . During time dr the gas will move the piston into position

2, after cariying out the negative operation:

Tne forces of pressure which act on the lateral surface of the

stream (flow surface) do not produce any work since they are normal

to the trajectories of the particle motion of the gas. Thus the

energy introduced by the forces of pressure is equal to the differ-

ence between the operations of piston 1 and piston 2:

To the gas stream in section I-2 during time dT heat can be

conducted in the amount of dW, in mechanical units equal to

t
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(
dW. Further the gas stream during time dT can perform the technical

Ark dZ, ror example, rotating a turbine wheel mounted between cross

sections I and 2. Finally, one ought to consider the work being

expended by the gas during the time dr for overcoming the forces of

friction dI
TDp

According to the first principle of thermodynamics thermal

energy and work of the forces of pressure conducted to the gas are

expended on the completion of technical work, work of the forces

of friction, and also on an increase in the reserves of the potential

internal, and kinetic energy

I~ ~ 'P O~I] 4 I(zi - z)-j- -dO 1!LA' dO.

After dividing all the terms of the resulting expression by value

dG, we come to the equation of energy for a unit of weight (1 kgf)

of the gas

Ts - - , , . - - . (5 )

Here a-e introduced the designations: Q = dW/dG - the heat supplied

to 1 kgf of gas on section 1-2, L = dZ/dG - technical work being

accomplished by 1 kgf of gas on the same section, L - dl /dG -
Tp Tp

work of the forces of friction which is necessary for 1 kgf of gas.

The inflow of heat in general is achieved by two methods: from
without (Qp) because of heat exchange through the lateral surface

Hap
of the stream, and from within (Q eH) because of conversion into t!c

heat of work of friction. Thus,

Q +, Q6.(6)

The second part of the heat flux, obviously, is exactly equal tc

the thermal equivalent of the work of friction:

, i " I I I = I I = I I i I = 7



pp 
p

I T (7)

sr::. the r~odynarr.s the equation of state is known for a

perfect gas

v-=-- R T,(

wher- - gas constant, and the specific volume of gas v is the

value reverse to specific gravity v = l/y. Hence

P =R7. (9)7

Furtxiercre a relationship is known which connects heat capacity at

a constant volume (cv ) and heat capacity at a constant pressure

p

c, c. +AR. (10)

Let us introduce into the examination the heat ountent (or

enthalpy) of the gas, i.e., the product of heat capacity at a

constant pressure by the absolute temperature

I=eT. (1)

Then relationship (10) will take a somewhat different form:

I=t -- ART (12)

or on the basis of (9)

1 = +-AL. (13)

Utilizing expressions (6), (7), and (13), it is possible to

give the equation of energy the following form:

d | == i l = l I : i: l I I= I " I I I I I " " 8
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Tne equation of energy (14) occasionally is also referred to as -he

ec* ,tIion of enthalpy. The fact that the equation of enzhalpy doeo

not contain the work due to friction is significant. in fact, zin:e

:--e o..:-rk being expended for overcoming of friction or any other form

o reststances is converted completely into heat, and the latter

remains in the gas jet, the presence of the forces of friction cannot

disturb the general energy balance, but only leads to the conversion

of one form of energy into another.

Usually in technology it is necessary to deal with the particuli r

forms of tihe equation of enthalpy. Thus in the majority of a~es the

change of potential energy is negligibly small in comparison with

ether parts of the equation of energy, and term (z 2-z ) is dUsregardic-.

Then the equation of enthalpy takes the following form:

211M ~ ?!i~i (15)

in the absence of technical work and heat exchange with -i.e

surrounding medium, i.e., in the case of' the energy isolated prc¢z S

in the gas, we have

Ao- t(16)

Specifically equation (16) determines the flow of gas along a

if there is no heat transfer through the walls. According to:

aforesaid this equation is correct without depending on whether

cr not the forces of friction act. In other words, the charge cf

enthalpy (temperature) in the isolated process is connected on.:

with a velocity change. If the gas velocity is not changed, t.,:.

the temperature remains constant.

0-
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2,- W:..cr~ce zf thu Iniuence of the forces of friction can be

*... " ! ol, ir, g Under the action of friction the pressure

.z: ' te dr-ps, i.e., tLn gas is expanded, and therefore the

'.Lk1 . :" aibud del rease. .iowev-r, the work of the forces of

;:1 "' , 2! V nverted into heat; and since the work of the forces of

-1* . ':X. tly ,quai to the neuhatilcal equivalent of the heat

" t.u u-cauAe of this work, then preheating compensates for

,Iuug a tube of constant cross-section under the influence of

" ft o frictloi. the gas temperature in a subsonic flow even

.:.--.-. T~is occurs uecause the pressure drop is accompanied by

S I,'25 It, tne specific gravity of the gas, and the current density

.. -tar,t: j G/F = yw = conrst. Thus the gas velocity

S::-..,e:, and the temperature in accordance with equation (16) is

r.:I. At a low speed of motion the temperature changes only

... :a: o" heat exchange either in those places where the gas passes

-r ,r._f the turbine (expenTs the energy, L > 0) or through the

-' i"!:- 3(;' (derives encrgy L < 0).

II the change of velocity ut-,4 heat cschange can be disregarded

,er, the equation of unthal y takes te fo. towing form:

Is -- 1, - - AL. (17)

it, tt,er worcis, a change in the enthalpy of the gas in this case

!-; equi.valaet to mechanical work. In the turbine wheel the gas

temperature decreases

I ..g, - ., (L, > ON8

Stre compressor imprt.ier wheel the temperature increases

10
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Let us recall that here we have in mind work L referred to I kgf

of gas. Thus, following the equation of enthalpy, we obtain simple

relationships for calculating temperature drops on the turbine and

compressor during small changes in kinetic energy:

AL (19)

Here cp is the mean value of heat capacity at a constant pressure in
pi

a given temperature range.

If the speed changes substantially, then the calculation will

only be a little complicated. Precisely:

1. - + A-11 -- AL (20)

Finally, during an isothermal process (i2 = i 1 = const) the

mechanical work is expended wholly for a change In kinetic energy

A-E - 2- AL (2.)2C

A system close to isothermal can be obtained in a multistage

compressor with the intermediate (between every pair of stages)

cooling of gas.

Qu ---- 1 -a +,- A ; (22)

in such a form it is applied to heat exchange processes.

Let us return now to the energy isolated gas flows, when the
condiltion;s

Q,,,-O. AL O, (23)

11
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are satisfied and the equation of enthalpy acquires the form (ii).

in tijLs cae it 'an be written in the following form:

,t+ A t i ++ A w* =cousL (22i2g 2g 2-9

iience it is not difficult to see that, if the gas jet is inhibited

completely, then enthalpy of the gas reaches the maximum possible

value:

WI

2 ' (25)

The value of enthalpy i0 obtained in this case we will call fuZZ

enthaZpy, and the corresponding absolute temperature

T. (26)

- the 8tagnation temperatuzrc.

With the help of (25) from the equation of enthalpy (15) it is

possible to eliminate velocity: we obtain the equation

QMUP-AL = l. - 1#1. (27)

Thus the gas temperature is obtained equal to the stagnation

temperature when the rate of flow tails off to nothing itself in the

absence of energy exchange with the surrounding medium. Using the

nean value of heat capacity it is possible to calculate the stagna-

tion temperature according to the following formula:

T.=r+A _'0" (28)

For air (c ~ 0.2 4 ) we have approximately

12
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T. T T + . (29)

For example, in an air flow of normal temperature (T . 300"K) at a

rate of motion w = i00; 350; 1000 m/s the stagnation temperature

T 0  305, 360, 800 0 K is obtained respectively.0£

One ought to emphasize that according to the equation of energy

(24) in the energy isolated flow of an ideal gas there is a unique

dependence between the gas temperature T (enthalpy i) and the rate

of flow w. An increase in the velocity in such a flow is always

accompanied by a reduction in temperature regardless of the change

in other parameters of the gas. If in two cross sections of the

energy isolated flow the rate of flow is identical, then in them

the gas temperature will also be identical, whatever processes

occurred in the flow between the cross sections in question. With

a decrease in the velocity of flow down to zero the gas acquires the

identical temperature T0 regardless of the features of the slowing

down process and the irreversible losses appearing in tnP ase.

At the end of the inlet diffuser (Fig. 1.2) of the Jet eng.ne,

usually without depending on the flying speed, a comparatively Ico

flow velocity is established. Because cf this the temperature of

the air in the diffuser of the engine is close to the stagnaticr,

temperature. Assume the air speed at the end of diffuser w, =

= 100 M/s. Then the temperature here at the different flight speeds

is ,.btalned from the condition

r., , - r

In our case .w2  1 0C m/s, T1 - 300 0 K)

The results of calculating the temperature T2 according to formula

(30) are tabulated in the following table:

131
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Table.

T$* M') 3301 00~ 'KT, I~ acul eooi'K
T, 300 A5 793 K

.;eu, the heating of air obtained only because of braking at a

higi, flow (flight) velocity is very considerable.

The equation of enthalpy explains

----- ---- the following, very interesting fact.

.-. . .During the flow of gas near a rigid

- - -surface without heat exchange the

temperature of the latter is equal to

the stagnation temperature in the gas.

The fact is that in connection with

Fig. 1.2. The diffuser of' the viscosity of the gas near a solid

a jet engine, wall a fine boundary layer is always

formed in which the gas velocity

relative to the wall is changed from the value equal to the ambient

velocity of flow to zero (on the wall). But once the particles of

gas directly near the wall are slowed down, then in the absence of

heat exchange the ttmperature on the wall should be equal to the

stagnation temperature. Thus, for instance, in the test section of

a wind tunnel for supersonic speeds (Fig. 1.3), where the gas velocity

is very great, Its temperature T should be considerably lower than

in the precombustion chamber from which the quiescent gas (T0 ) enters

the tunnel. For example at a velocity in test section of wp. -

= 600 m/s and the stagnation temperature in the precombustion chamber

T o = 300 0 K we obtain a temperature in the flow

in sFite of this, as expieriments show, the wall temperature over

the entire extent of the wInd tunnel, including the test section,

14



remains constant and is approximately equal to the stagnaticon

temperature: ToT T T const.

1 test section

Fig. 1.3. The layout of a wind tunnel
for supersonic speeds.

The temperature of a thermometer placed in the test section is

also approximately equal to the stagnation temperature. This is

explained by the formation at the walls of the tube and the thermo-

meter of a boundary layer in which the circumfluent gas flow is

completely retarded. Thus a fixed thermometer cannot measure the

(temperature in the flow of a gas. For these same reasons the surface

of a body which is moving at a high spe-ed in air is heated strongly.

For example, the, surface of a projectile which is leaving a gun at

a velocity of w - 1500 m/s because of the formation of the air

boundary layer in which the relative velocity is completely extin-

guished should have a temperature (T 0 ), exceedithg by T0 - T

w2 /2000 = 1125 0 C the temperature of the surrounding air. In

actuality the temperature of projectile is less than that obtained

here because of heat radiation in space. At a very high flying

speed the icing of the surface of an aircraft is made impossible.

For example, at a speed of w = 900 km/h (250 m/s) the stagnation

temperature is higher by the value AT - 2502/2000 - 31-^C than in the

surrounding atmosphere. The surface temperature of the aircraft io

close to the stagnation temperature, therefore in this example even

with a frost of 20-25'C icing will not resuit.

The actual temperature of a surface blown around by a gaz

usually differs from the stagnation temperature. For determirlr.g

the surface temperatur:. the following formula is used:

15
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T (32)

nere is the ccrrection factor which is determined for the most

.art e:;jerlmentally and sometimes theoretically. With 0 - I

e.\pr(_ionz (31) and (32) are converted into the already known

!o~iias for stagnation temperature. For a subsonic high-speed

alrcr C the approxirate value of correction factor, is equal to

0.. -_,or a suptrzonic high-altitude rocket the correction factor

r.eas:: to the value 0.5.

-et as dwell on one more example from pr&ctice. During flow

ar-.na a convex surfaoe in a certain area outside the boundary

layer the velocity is higher than in the incident flow, and there-

fore the tEmperature in such places is lower than in the incident

fiow. This explains one phenomenon which is sometimes observed by

p~lots during a dive. It amounts to the fact that at the moment of

dive at a high spe.d part of the upper side! of the wing is hidden

from the pilot's eyes under a film of mi!xy color. As soon as the

pilot pulls out, i.e., speed is sharply lowered, the film disappears.

Apparently, In this case in the air layers which have the increased

velocity and low temperature noisture condensation occurs, which

ceases on going to a lower spe ed, i.e., at a higher temperature.

§ 3. The M.:aximum Speed of Motion of
Gas. Mach Number.

in examining the outflow :of gas in the absence of energy ex-

change, it is not difficult to be convinced of the fact that the

discharge velocity u:.der no conditions cannot be higher than a

:ertaI maximum value. i fact, frum the relationship

16



4=-1+ A '

it follows that the maximum speed is reached when enthalpy in the

flow is equal to zero, i.e., when the full enthalpy of the gas is
wholly converted into kinetic energy

A re

Hence we will obtain the formula for the maximum value of velocity

in a gas

= ___(33)

The corresponding approximation formula for air, derived under the

assumption of the constancy of heat capacity (c f 0.24 ), takesP
the following form:

Wm,~ 44,8 VT,

if the stagnation temperature of the air (temperature in the vessel

from which the air escapes) is close to normal (T0 z 300'K), then

the maximum possible discharge velocity wmax z 776 m/s.

An increase in the maximum value of velocity can be achieved

only by way of an increase in the stagnation temperature (full

enthalpy).

In order to transfer gas from the state of rest into motion

with a speed w it is necessary to onsume part of Its enthalpy,

equal to

j

17
29<
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.fter Jividit;g Lo*th partu of' this equality by full enthalpy we will

t~ a

4•-I Awl .- 5--r.,

ith a constant heat capacity this dimensionless expression takes

the following form:

n. -r Acwl

'ow if we multiply and divide the right side by the gas constant

B, consider the relationship AR = c - c and designate the relationp v
of heat capacities by k - c p/cv then we obtain

T.-T- w h-I

jut, as is Known from physics, the speed of sound in gs is equal

4='~ F d1 f. (3 4~)

Thus the degree of utilization of gas enthalpy for obtaining the

assigned value of the flow velocity is determined by the relation

of the flow velocity to the speed of' sound in a fixed gas:

r.-r w',-I

From here is derived the new expression for f'je maximum speed of

outflow (T 0) 4
This formula will be derived in § 1 Chapter III.

18



&,ma ae (35)

For air (k - 1.4) we obtain

2,21 a,

i.e., the maximum speed of outflow of air cannot exceed the speed

of sound in stagnant air by more than 2.24 tines; with k - 1.2

maximum gas velocity is higher:

Unma1 3 ,16 
@*.

Thermal drop cannot be broken down into full enthalpy, but

into enthalpy in a flow, then we obtain

r- r UA kTT

In this case the flow velocity turns out to be referred to the

speed of sound in a flow, and not in a fixed gas:

- .- k" -- " (36)

The relation of the flow velocity to the speed of sound in a

flow is accepted a3 the Mach number and designated by the letter
M:

_ . * (37)

The Mach number characterizes the degree of the conversion of i

enthalpy into the kinetic energy of flow

r,~ -- A-

S "19



7he -'iach number Is the basic aimilarity .riterion (see 5 7, Chapter

LL) f', high-speed ga8 ftows.

if M < 1, then gas flow !s called subsonic, with M > 1 -

eupersonc.

From the last expression it is possible to obtain a calculation

formula for the relation of the stagnation temperature to the

temperature in the flow as a function of the Mach number:

T. + -I m . (38)

t is not difficult to see that the maximum value of Mach number (with

= 0) is equal to infinity. This fact is explained by the fact that

upon reaching of maximum speed together with absolute temperature the

speed of sound also becomes zero.

Since the flow velocity can be both higher and lower than the

speed of sound, there is such a system when the flow velocity is

equal to the speed of sound, i.e., M - 1. This system is called

criticaZ; to it corresponds the value of temperature in the flow:

T.,= T +-. (39)

In air (k a 1.4) the critical temperature obtained is 20% lower than

the stagnation temperature. The value itself of the speed of sound

for a critical system differs from the same for stagnant gas, but is

also completely specific.

(40)

from i hich

20



aT. (41)

For air R , 29.27, therefore we have

a**= 20.1 VT =2 =I8.3 V V

It is possible to characterize the degree of the conversion

of enthalpy into kinetic energy in still one more way, after divid-

ing the thermal drop into enthalpy in the case of a critical system:

1 " o 1  4 p u~ p T '"-

Hence with the help of equality (40) we obtain a new formula for

the relation of the temperatures in the energy isolated gas flow:

T =--I _41o.-42

Here we accept the designation

•-. (43)

The value X, which measures the relation of the flow velocity to

critical speed, we will name the velocity coefficient. In a critical

system (w - w , aP) the velocity coefficient = M Kp 1. To

the maximum flow velocity with T - 0 corresponds the specific

maximum value of the velocity coefficient:

_ 7FI'MaI l = (14'4)

For air (1< 1.4 ) we have X m 2.45. For the case X = 1.2max .,

correspondingly X m 3.31.
max
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b-e veiccl'y coefficient, as also the Mach number, can be

c3nsiutfred the similarity criterion for gas flows which characterizes

tr.e degree of the conversion of enthalpy into kinetic energy.

Tc, this value of Mach number corresponds the completely specific

value of the velocity coefficient. Let us find a transfer equation

from i-1acn number to the velocity coefficient:

from which on the basis of (39), (40), and (42) we obtain

2 2
-- ' 1~ , (45)

or

+
I+2- !M' (46)

In gas dynamics and the theory of jet engines both pure numbers

(X: M) are applied. In some cases simpler relationships are obtained

when using a velocity coefficient, while in others - the Mach number.

Figure 1.4 depicts the curves X - f(M) for the cases k - 1.4 and

R= 1.2.

Sometimnes the maximum gas velocity wmax serves as the scale of

speeds. In these cases the dimensionless equation of enthalpy can

be presented on the basis of (35) in the following form:

=, - As

22
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The value

A

Oalt (47)

is called the dimensionless gas velocity.

The dependence of the relation

Aof the tamperature in the flow to the

z ....... stagnation temperature on the dimension-

less velocity appears thus:

Fig. 1.4. The dependence
of the velocity coeffi- Let us show in conclusion that the
cient ,k on Mach number.

equation of enthalpy for the energy

Isolated stream can be given a purely kinematic form. For this let

us write equation (24) in the form

ej +-t-! ==At

and then multiply all its terms by the value gR/c v

gRT ? = - -2.

Utilizing expressions cp = kcv, AR = cp - cv and the formula for

the speed of sound (34), we will obtain the relationship which relates

the current value of the rate of flow and speed of sound with the

maximum gas velocity:

2,
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4. The :,Iechanical Form of the Equation
if E .rgy (Bernoulli Equation).

Above we examined in detail the equation of enthalpy. It

related the gas temperature with the rate of motion taking into

account energy effects (heat supply, technical work, and change of

Fctential energy). Such factors as the pressure and the specific

gravity of gas did not enter into the equation of enthalpy.

It is possible to obtain another (mechanical) form of the

equation of energy, where, on the contrary, the gas temperature

does not enter, but the rate of motion is connected with pressure

and specific gravity. Differentially the equation of energy (5)

can be written in the form

dQ = +d dz. (J49)A d (pv) - dL - d"- A

According to the first law of thermodynamics the heat applied to

a gas can be expended only on an increase in internal energy and the

workc of expansion (deformation), i.e.

dQ=d I, (50)

Subtracting from equation (49) the equality (50), we will obtain

-dL -dL,, =',d d + (pv) t ( 51)

Substituting in (51) the expression of specific volume (v - 1/y),

ive obtain

~ +A +,L.,. (52)

24



Tn!s is the mechanical form of the equation of energy, or, ,hich I's

the same, the equation of kinetic energies for a unit stream.

After integration we will have

2

C '~-L, (53)

The derived equation is called the generaZized equation of

Bernou. li. It expresses the rate of motion as a function of pressure

and specific gravity of the gas taking into account the technical

work (L) produced by the gas, change in potential energy (z2 - z')

and work of the ".irces of friction (L p). In gas dynamics frequently

they use the simplified form of the Bernoulli equation which corre-

sponds to a system when technical work is absent (L r 0), there are

no hydraulic losses (dL = 0), and the reserve of potential energy

does not change (z2 - z.). For this system the Bernoulli equation

4will be written in the following form:

22
+ o!±~~. (514)

The Bernoulli equation is sometimes utilized in a somewhat different

form. For this the integral is divided into two parts:

P + p 1P dp

"- + ---- -(55)

Then from (54) follows

dl dp + d "

41 7
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:n this case the calculation of integrals is done each time from

ar. abs.iute vacuum up to a pressure which corresponds to the assigned

flcw velocity. The constant of this equation can be obtained on the

strength -f the fact that during the expansion of a gas to an absolute

vacuum the maximum flow velocity is reached.

Thus the Bernoulli equation can be given the following form:

7 (57)

When the specific gravity of gas in section 1-2 of the elementary

stream remains virtually constant, the integral in the Bernoulli

ecuation is equal to

S -P = P. -Pa

and the Bernoulli equation appears especially simply:

or

7 2i _7 - ij'(58)

In such a form it is applied in the hydraulics of an ideal non-

compressible liquid. Sometimes the Bernoulli equatiot, for an ideal

noncompressible liquid is written thus:

(59) -
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In the first case it is formed for . kgf, and in the second - for32

m of' liquid. The kinetic energy of 1 kgf of liquid (wl/2g) is

called veZooity head, while the kinetic energy of 1 m 3 of liquid

(yw 2/2g) - dynamic head.

If it is not possible to disregard technical work, hydraulic

losses, and change in potential energy, thenthe Bernoulli equation

for I kgf of a noncompressible liquid takes this form:

-=z I +,,. (60)

By means of this equality It is possible to calculate, for example,

the work which a liquid gives up to the turbine wheel (L > 0) which

is standing between cross sections 1 and 2, if all the other terms

of this equation are known.

In order to use the Bernoulli equation for a compressible gas

4 it is necessary to know in advance the thermu)dynamic process of a

change In the state of the gas, since without this the dependence

of the specific gravity of gas on pressure is unknown and it Is not

possible to take integral which expresses the work of extrusion.

Let us compute this integral for the basic thermodynamic processes.

During an ieochoric proceae (a constant volume, I.e., constant

specific gravity), typical for the hydraulics of true liquids, as

has ailread been indicated, this integral was equal to

dP Ps -I,i-2. (61)

In an isobaric procees (ccnstant pressure) the integral is

equal to zero

27



- 0, (62)

if an iaothermaZ procee (constant temperature) is achieved,

then acccrding to the equation of state of a gas (8) p/y = RT=

const., i.e., pressure is directly proportional to the specific
gravity of LThe gas y = j1p/pl, from which is obtained the following

expre3sion for the integral:

-- I ' -6.

-- T - . (6 3)

Let us assume now that the state of the gas changes on the

it,-al adiabatic curve

-F const.

then

and therefore the integral is equal to

; - . Is' ( ,

Finally, in a polytropic procees with constant polytropic

exponent (n = const ) p/yn = const we will obtain the following
expression for the integral:

28
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In

tp - . (65)

It should be noted that the heat applied to the gas is not

reflected directly in the Beriioulli equation. However, it is

considered during the calculation of the integral, since it influences

the form of the function y = f(p), i.e., the nature of the process

according to which the state of the gas changes.

qhe greatest value in gas dynamics belongs to an ideal adiakatia

process which assumes the absence of a thermal effect and work of

the forces of friction. Because of this, with an ideal adiabatic

curve the entropy' of the gas remains constant, i.e., such a process

is an ideal thermodynamic - icentropic - process. Let us recall

that by no means is any adiabatic prccess ideal. For example, during

the derivation of the equation of enthalpy we showed that the pres-

ence of friction does not disturb the adiabaticity of the process,

(but a process with friction no longer can be ideal, since it flows

with an increase in entropy. In other words, the adiabaticity of

the process required only zero heat transfer with the environment,

and not a constancy of entropy. Thus adiabaticity is combined with

the constancy of entropy only in an ideal process. If a change in

the potential energy can be disregarded (z1 . z2 ) and there is no

technical work (L = 0), and the process is ideally adiabatic, then

the Bernoulli equation on the basis of (54) and (64) takes the

following form:

k -I -I 1P
17 Pa 2ZP 0. (66)W'

Let us examine the case of the ideal deceleration of a gas jet,
i.e., let us determine pressure P2 = PO, which will be obtained if 

'See below, § 7.
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t!Ie -at't cf flow iecreases by the isentropic route from w w (with
p, y y) to w, 0. The Bernoulli equation in this case

gi :es

1 p"w
-I -- (67)

from whIch

+I

Utilizlng expression (34 ) which relates the speed of sound with the

parameters of state of the gas,

a- .

we will obtain for the calculation of pressure in an ideally decel-

erated gas flow, in the function of pressure (p) and Mach number

before the deceleration:

b

Value p. is called the totaZ pressure. Just as the stagnation

temperature, the total pressure is a convenient characteristic of

gas flow, since it immediately connects two factors: the rate and

tne pressure in the flow; the latter is usually called static

presaure. Thus the ratio of the total pressure to static is a

function of Mach number.

30
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Formula (68) can be obtained directly from expression (40) fcr

the stagnation temperature

using the relationships for the ideal adiabatic curve

p ((69)
T

- (70)

Also obtained here is the formula for the calculation of density

in an ideally decelerated gas jet

+ t (71

With the help of function (42), which relates the stagnation tempera-

ture with the velocity coetficlent, we find from relationshli (69)

the dependence of the total pressure on the velocity coefficient

P (72)

For the density of an ideally decelerated gas we will obtain corre-

spondingly

k2 - 1 -+ (73) _

It is necessary to note that the true pressure wiich is obtained

during the slowing down of a gas jtt ;an differ sigrificant'Y frcm.

the total pressure determined by fcr:: .- a (C,). This is explaire,

3 1



' tne !'fat that in actuality the slowing down cf the Jet frequently

r:. piac not according to an ideal adiabatic curve, but with more

l e.cntlal hydraulic losses. For example, in a diffuser in

tne case of subsonic gas flow a decrease in velocity is usually

c~.~: a;a11e, bI vortex formations which contribute considerable

reilstances l::to the gas flow. During the slowing down of supersonic

fiew jtock waves which give the specific "wave" resistance are always

formed. Th.,s real pressure in a decelerated gas jet is usually lower

than the total pressure of the incoming Jet.

Theneraily if losses are observed in the section of the jet 1-2,

then this without fail leads to the fact that the total pressure in

crczx sccti; 2 will be lower than the total pressure in cross section
1:

P., <Pl."

If we introduce the dimensionless quantity which is called the

pressure coefficient.

o - ' p ' (74)

then the greater the losses the lower the value of the pressure

coefficient and less the total pressure at the end of the section

of the Jet in question:

P, t0 oa. .(75)

it is possible to estimate losses also according to the difference

in the total pressures:

Ap =P-P,=(l -0 )p,,. (76)
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The application of the Bernoulli equation is the basis of the

pneumatic method of determining the flow velocity, which consists

of the fact that into the flow an adapter (Fig. 1.5) which consists

of two tubes is introduced. The open orifice of one of these tubes

(1) is placed in the nose of the adapter (towards the flow), and the

openings of the second tube (2) are arranged in the lateral surface

of the adapter (along the flow); at subsonic speed the deceleration

of the gas jet from rendevous with the adapter passes without any

losses, since friction and vortex formation appear already on the

lateral surface of the adapter, i.e., after the Jet passes the area

of its total stagnation, which is located before the spout of the

adapter. Because of this in the first tube a pressure is created

which is almost exactly equal to the total pressure of incoming flow;

in the second tube, if its inlet is sufficiently moved away from

spout, a pressure close to the static pressure of flow is established.

Tubes 1 and 2 are connected with a manometer which measures pressure.

The relation of the measured pressures

( Pe P

makes it possible according to formula (68) or (72) to calculate the

values of the Mach number or the coefficient of flow velocity.

The calculations according to these formulas are sufficiently

precise only for a subsonic flow. This is explained by the fact

that during the stagnation of a supersonic flow a shock wave appears

before the adapter; when these are intersected by the gas jets they

undergo considerable hydraulic losses. Thus the pressure in tube I

of the pneumatic adapter during supersonic flow differs significartly

from the total pressure of incoming flow, which makes formulas (6b)

and (72) inapplicable in this case. A

It is necessary to note that it is possible to use a pneumatic

adapter also for the measurement of nuversornic speecd, but in this
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case one ought to apply special calculation

--- ' equations which consider wave resistance.

kI.e will derive such formulas subsequently.

Thus the extreme value of velocity,

*. above which it is not possible to apply

formulas (68) and (72) in the stagnation

of a gas flow, Is equal to the sound M
/ A =1).

Fig. 1.5. Diagram
uf nmtlE.IiC 9or the gas flow being accelerated
acapter.

these formulas can also be used at super-

son!c- speeds, since a'. increase in velocity occurs usually without

noti!eable losses (isentropically) not only in area M < 1, but also

i, the area M > 1, i.e., the total pressure in the gas Jet being

accelerated barely change5. Specifically, from formulas (68) or

(72) the exhaust gas oelocity .s calculated. In this case in the

vessel where the gas rests the pressure is equal to the total pres-

sure of the discharging jet pO, and in the outlet of the nozzle -

to the static pressure p. From formula (68) we will obtain

t - 1( 7 7

and from formula (72)

-- (78)

From here we determine the discharge velocity w:
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wh,,re

a , . h-. (79)

where

As it is not difricult to see, the calculation of the discharge

velocity is done more conveniently according to the velocity co-

efficients than according to Mach numbers. The true values of the

discharge velocity are somewhat lower than those determined accord-

ing to formulas (77-80), since some losses of friction cannot be

avoided, but the error for these formulas is usually no more than

1-5%.

Curves X - f(p 0 /p) for cases k = 1.4 and k = 1.2 are shown in

Fig. 1.6.

With the help of the Bernoulli equation we will investigate

the technical work of a compressor and turbine. In the compressor

the total pressure of gas increases: P 0 2 > pol, while in the gas

turbine it drops: P0 2 , p0 1 . The pressure ratio P 0 2 /P0 ! in the

compressor is respectively more than a unit, and in the turbine -

less than a unit. For greater clarity let us assume that the work

du2 to fri-tion and change In the potential energy are absent and

the pressure change in the machine occurs over an isentroplc law.

In this case the Bernoulli equation will be written thus:
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i-.., .- . . The dependence of the
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4, ----- On the ratio of total pressure tc
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A coripressr )r turcine, working under such conditions, is called
an ideaZ compreasor or ideal turbine. Utilizing equality (67), let
us introduce in expression (81) the total pressures before and after
the machine, after eliminating frcm it the velocities:

+. Jo __- _

Prom which

P, a +P+ -p --

but in an- adiatatic process we have tk~e equality

pI"*_ p[Ih pill 'PI'

T, T9 I,3
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with the help of which after simple conversions we obtain

S](8L)

Thus in the ideal case technical work can be determined by a

change in the total pressures without allowing for the specific

values of gas velocity before and after the machine. Work being

transferred to the gas turbine is positive (P0 2 < P0 1 ), and supplied

by the compressor - negative (P0 2 > P01 ) '

Deviation from an ideal isentropic process in the machine is

usually considered with the help of a cofactor which is the efficiency

of the machine. In the case of the compressor we will obtain.

L, L (83)

In the case of the turbine

(84)

The relation of the values of the total pressure aftt r and

before the machine

___--_ (3:5)
Poi

we will call subsequently the degree of preeoure inoreaae (for a

compressor) or the degree of pressure decrease (for a turbine).

The equation of ideal technical work can also be written in the

following form:

(< - i RT., .7(86)
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, -Ou. t~flof teciil-i-L work I.s tne fact trat its

:r n , 2arj be seni. fron, ezpre.s: i-ri (86), s ireztly propor-

t-:;a t, tr. ltia t'.peratiwo of the gas. This property of

te,:hiia1 *vork I ; the basl[; 3f the operating conditions of any

thermal gas ,,chtre. lor uxampie, iii the interc;al combustion engine

the w.,rking r Jlum is aiwa" copressed first, then i.o heated, and

expand.- . -rtcor,.!n with what was said, the work spent during

the? comrprcsolon cz" a cold g .5 i less than work which it will pro-

du.e after preh-ating durlrg expansion up to initial pressure.

From a difference ir., these wo.'ks, strictly speaking, the effective

work bo-'ng -, 'omplished by the internaJ combustion engine is

5. r#.e Equat!ion of Monentum

Accrding to NJewtco:.'s secord law the elementary change in

mo.renturi Is equal to the elementary power pulse:

d (in w) = Pd-. ( 8 7)

,cru P l. the zum 3f pr...et.ic;ns on any axis of all rorces applied

to the body of mass i,, w is zh projection of velocity or the same

axis, di is the actiof, time of force P. In such a form Newton's

law is utilizud in the mechanics of solI states.

In connection with Lhe flow of flu!ds and gases it is more

convenient to have a somewhat dlfftrent (hydrodynamic) form of

equation for ii:elrertu, it was Obt.ALned for the first time by Euler.
Oct us dvrive the eq,4uatlor of i;'.'tL iin a hydrodynamic form, Por

this let us Isulate 1.h elementary stre"rm (Fig. 1.7) and draw two

cross sectlors .1 and :normal to its axis. Let us break the entire

mass of liquid Included in vo2.ume 1-2 itLo a large niunber of parts

sc th~at wl-hr- t h' il s u of 'ach of them, haiing the mass, m, the

velocity of motion could be cLhiidured ci:stant, arnd ile us

establi.sh a bond betwv,r, the projectl ,As 'f for,-eys and momentum
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on the x-axis. According to equation (87) the sum of the projections

of the Dulses of' all forces applied tc the mass of liquid 1-2 is equal

to the change in the projection of the total momentum:

Pdt d% n. (88)

Let us examine a change in the total

momentum djernw during time dT, during

which the chosen mass of liquid will move

from position 1-2 into position 1'-2'.

Let us suppose, as we did in the foregoing

paragraphs, that the liquid is found in

'Ile I - steady motion, then the momentum of mass
Z i'-2, which enters both into the initial

Fig. 1.7. Elementary and the final value of total momentum,
stream.

remains constant and in the case of

subtraction is decreased, In other worde the increase of the total

momentum should be equal to the difference in the momentum taken

respectively for masses 2-21 and 1-1' which in steady motion are

identical:

(rn , - WASdf.

Here dM is the mass of the liquid of element 1-1' (or 2-2'), wx2 ,

w xl are projections of x-axis of the flow velocity in cross sections

2 and 1. Elementary mass dM is equal to the product of the per-

second mass flow of liquid for the interval of time dT divided

into the G force:

dAf= d%

He, c e
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Val:ue .3w/g IS called the per-second momentum.

.stltutlng thi resulting expression into the initial equality

" we ccme to the equation of momentum in hydrodynamic form (to

the first equation of Euler), according to which the sum of thc

ro.Jectioro of all fcrces applied to the liquid jet in any sertion

f it is eq'.al to an increase in the projection of the per-second

.'omentum i.n this section, or, what is the same, to the product of

the mass flow per second by the increase in the projection of the

ve] loity:

P, -=9(wt °-- W,, (89)

Si;,ilar equations can be composed also for the other two axes.

Let us appl ' the equation of momentxn to a rectilinear stream

of constant sec';ion F. Let us draw the end parts of the control

surface at right angles to the flow direction, whereupon let the

generati'ix of the late-al surface of the stream be parallel to he

x-axis. The flow velocity w is directed to the side of the positive

x-axis. Let us compose the equation of momentum in the flow

direction. On the control surface the forces of pressure normal

to it are acting. Thus projections on the x-axis of the forces of

pressure applied to the lateral surface are equal to zero. Pressure

change in the section between the end cross sections of the stream

is proportional to the force which acts on the selected fluid ele-

ment. This force, parallel to the x-axis, is equal to (pl-P 2 )F.

To the lateral ";urface is applied the force of friction directed

parallel to the flow, against it; -P TP. Furthermore, between the

end cross sections of the stream any machine which receives technical

work from a ga- can be found. Let the projection on the direction

of 'otion of the force, with which the machine acts on the gas,

be equal to -P.1 Thus the sum of the projections of all forces

on. the x-axis is equal to

'The prsjection of the force applied by gas flow to the machine
is considered positive.
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(
(01 -- P F-, - P'e -/.

According to the equation of momentum this force should be equal

to a change in the momentum:

(P1-PJ)F-P,,,--P=1 (MA - W (90)

If the distance between cross sections 1 and 2 is infinitely

small, then the equation of momentum must be written differentially:

d + Fdp=-- dp--dP.

After multiplying all the terms of this equation by the velocity

of motion and after dividing by the mass flow rate of the gas, we

will obtain the equation of work of all forces for a cylindrical

stream referred .to 1 kgf of gas-

-r-d~ +--"L1 "

Here the equation of expenditure in a cylindrical stream Is u.-ed:

7W=a= pCoflst.

It is not difficult to see that the terms standing in the rig).t

side are the work of the forces of friction:

SdP,, dL, "_

and technical work: t

0 4P 

..

L.



'fius the equation of momentum for a cylindri,:al stream of gas is 41A

easily converted into a Lernoulli equation:

2gdQ) 7~di (91)

Subsequently the equation of momentum for a cylindrical gas Jet

will be used in the following form:

dP,, dP

p+ pw - --o F"(92-)

In the absence of the friction and power effect of gas on any

machine the differential equation of momentum acquires a very

simple form:

(93)

Equation (93) expresses an important property of gas flow.

in the absence of applied forces and forces of friction an increase

in the flow velccity can be caused only by a decrease in static

pressure, and vice versa, the stagnation of flow in this case is

always connected with an increase in pressure in it regardless of

the nature of other processes which proceed in the flow and the

change in the remaining parameters of the gas. In integral form

the equation of momentum for a cylindrical stream will be written

thus:

or under condition P * 0 and P a 0:Tp

(94~)

or
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Thus in a cylindrical stream pressure can be changed even when there

is no friction and technical work. For this it is sufficient that

the rate of flow would change, which can be achieved with the supply

or removal of heat. For example, with the preheating of gas, in

connection with a decrease in its density the velocity increases

(01wl ' P2w 2 ), and pressure drops.

An important feature of the equation of momentum is that with

its help the calculation of acting forces is conducted only on the

state of flow on the control surface without penetration into the

essence of processes which proceed inside this control surface.

Thus the equation of momentum makes it possible in many instances

to calculate sufficiently a hydrodynamic process without investi-

gating the parts in it.

It should be noted that the effectiveness of the use of the

( equation of momentum depends basically on how successfully the

control surface in the flow is selected.

Let us examine several examples of the application of equations

of momentum and energy.

Example 1. Let us determine hydraulic losses in the flow of

a noncompressible liquid during a sudden expansion of channel

(Fig. 1.8). Experiment shows that in this case the Jet coming out

from the narrow section of the channel does not fill at first the

entire cross section of the wide channel, but it spreads out

gradually. In the corners between the surface of the Jet and the

walls the closed currents of liquid are formed, whereupon pressure

on the end wall 1 according to experiments turns out to be nearly

equal to static pressure at the outlet from the narrow section of

the channel (p,). During a sudden expansion of the channel

considerable hydraulic resistance is observed, i.e., a decrease
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'.c;urs In the tota' pressure In tlhe flow. If we place cross section

.; ;a place where the flow is already completely equalized,

I.e., ;tatic pressure P2 and fluw velocity w2 on the cross section

are cor.stant, then losses will be equal to the difference in the

tctal pressures:

Fig. 1.8. The arrangement of
AF,; -flow during the sudden expan-

. sion of a channel.

-

2

The total pressure p 0 in the case of motion of a noncompressible

liquid is determined In complete analogy with that as this was done

for an. ideal adiaatic process; in S 4, i.e., as the pressure in a

completely decelerated Jet without losses and in the absence of

technical work; with z a const according to the Bernoulli equation

for a noncompressible liquid we have

Thus for a noncompressible liquid

Ap'P+ +

The velocities w1 and w 2 can be connected with the equation of

ccntin-iicy4

W~1  W '
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the change in the static pressure (pl-P 2 ) is unknown in advance,

i.e., one equation with two unknowns is obtained. Additionally

it is possible to utilize the equation of momentum. Taking into

account that the section of spreading of the Jet 1-2 has too great

a length, the force of friction is usually disregarded. Then the

equation of momentum can be used in the simplest form (9 4 ):

P1 -P1 pw, (W, - w,

Here the pressure constancy in cross section 1 is utilized.

It is not self-evident, but as indicated above it is confirmed by

experiments. Unlike the Bernoulli equation the equation of momcntum

makes it possible to determine immediately the difference in the

values of static pressure which are obtained in a flow during a

sudden expansion of the channel. If this result is substituted

into the Bernoulli equation, then the total losses of pressure will

be found during the sudden expansion of the channel:

(t, - W#),

One ought to focus attention on the fact that the use of the

equation of momentum brought success in this case because of the

successful selection of control surface 1-2, on which the basic

acting forces turned out to be known.

Example 2. Let us make the calculation of the simplest ejector

which consists of nozzle A and a cylindrical mixing tube B, arranged

in the space filled by a fixed liquid (Fig. 1.9). From the nozzle

a jet is supplied which sucks the liquid from the surrounding space.

Assume at the output from the mixing tube the velocity and specific

gravity of the mixture are approximately constant. Let us construct

the control surface from cross sections 1 and 2, which pass at right

angles to flow on the nozzle section and the section of the mixing

tube, and lateral surfaces directed parallel to flow. On the

entire control surface one and the same pressure of the quiescent
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:I uI l..vals, i e., tne main force vector of pressure is equal

we dlregard the force of friction on the walls of the

nix' . e, ther, it w.li turn out that the sum of the projections

t- x-axis of all the forces within the limits of the control

6urfac.e '-2 is equal to zero, and, consequently, there should
Le a .Tharnge in .. m.tr..

.he charge in momentun in an active jet in section 1-2.

fcr the liquid sucked in from the surrounding space, where

it was found in rest (w = 0):

o-ao 0w,-)

from which the total change in momentum

0:w, O~w, =O
U U

here G1, 02 are the per-second weight rates of the liquid respec-

tively in the nozzle and at the exit from the mixing tube, w1 and

are the values of the discharge velocity from the nozzle and

the mixing tube.

The result Is that the fluid flow rates in the nozzle and at

the outlet from the mixing tube are inversely proportional to the
values of the corresponding velocities
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On the other hand it is obvious that

where y is specific gravity, F - the cross-sectional area. Compar-

Ing the last two expressions, we arrive at the following calculation

formula:

If the specific gravity of liquid in the active jet and in the

surrounding space is identical, then the relation of the mass flows

of the liquid is equal to the relation of the diameters of the

mixing tube and nozzle:

-------------------- Example 3. Let us compute

... !_ the force which acts on the walls

of a diffuser (Fig. 1.10) in the
absence of hydraulic flow losses

2 of a noncompressible liquid. Let

..................-- the pressure and the velocity in
Fig. 1.9. The simplest cross section 1 before the diffuser
ejector.

be constant and equal to pI, wl,

and in cross section 2 after the

diffuser are also constant and equal to p2 ' w2 " The Bernoulli

equation, if there are no losses, gives

47 4
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rLm tne equatio, of continuity we obtain

17 L',P, ,'"

-=L us drai.w the control surface from the cross sections of 1 and 2

nd '.ateral surfaces located parallel to the flow and covering the

ai,'ffser. As a result of the slope of the walls of the diffuser

the sum of projeticns on the x-axis of the forces of pressure

appllej from the walls to the liquid is not equal to zero (P # 0).

The sum of the projections

S. .of all forces on the x-axis, which

S- , is obtained by means of the com-

bination of forces P with the

, ,. forces of pressure on the end

cross sections, is equal to the-- - - - - t

Fig. 1.10. For the calcula- change of momentum

tion of the force of pressure
in a diffuser. P 8±pP,-pP, = (Wa-a).

Cairying out the replacement of values w I and p2 with the help of

the equations of continuity and Bernoulli, we come to the following

expression for a projection on the direction of flow of the force

which acts on the flow from the walls of the diffuser:

Let the external pressure - pH1 then the projection on the x-axis

cf the force of external pressure on the diffuser

Pomp , pM (PA - P,).

In summation we obtain the following value of projection on

the x-axis of the net force which acts or, the walls of the diffuser:
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-P-'PA-pulp ('k -Pi) (PS - FJ

In the particular case, when external pressure is equal with the

pressure in the narrow cross section of the diffuser, this force is

equal to

The last expression is sometimes applied during the calculation of

the force which acts on the inlet diffuser of a jet engine.

Example 4. Let us establish the interconnection between the

flying speed and the discharge velocity from a ramjet engine, the

layout of which is depicted in Fig. 1.11. In the intake of the

engine the conversion of the dynamic head of incident flow into

pressure occurs, i.e., dynamic air compression. In the combustion

chamber heat will be supplied and the mixture of compressed air

{and the products of combustion which is formed is heated. In the

exit nozzle the heated gases are expanded; here pressure is converted

into dynamic head.

The bases of the theory of a ramjet engine were given for the

first time by B. S. Stechkin in 1929.1

The most ideal working cycle for a ramjet engine woLld be

obtained in such a case when the air compression in sect:.on n - x

(Fig. 1.11) is achieved on an ideal adiabatic curve and the flow

velocity would be reduced to zero, the heat supply in the combustion

chamber x - g would occur at constant pressure, whereupon the

exhaust mixture would be expanded in the nozzle g - a up to

atmospher.c pressure also on an ideal adiabatic curve. A ramjet

engine which works on the indicated ideal cycle is called ideal.

1Stechkin, B. S., the Theory of the Jet Engine, Tekhnika
Vozdushnogo Flota, No. 2, 1929.
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n e x g a

Fig. 1.11. The layout of a ramjet engine: e -

entrance, x - the initial cross section of the
combustion chamber, g - final cross section
of combustion chamber, a - nozzle entry section.

ihe total pressure in the combustion chamber can be found from

the Bernoulli equation which is integrated in this case with the

helr of the ideal adiabatic curve:

k I

The discharge velocity will be found from a similar expression with

PH = Pa

pL kPJ -- i = -

From here we obtain the basic relationship

"-2 == aP -2"

Thus in an ideal ramjet engine the dynamic head of flow in the

out-et is equal to the dynamic head of flight.

Utilizing this same equality, we will obtain for an ideal engine

(Pox = POr' Pa PM) one additional important result:
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i.e., the velocity coefficients in the outlet of an ideal engine

and in the incoming undisturbed flow are equal. Hence ensues

also the equaZity of the Mach numbers of flight and outfiowz

M .M,

These relationships are valid for an ideal engine both at

subsonic and at supersonic flying speed.

In an actual engine in connection with the lossp of pressure

in the inlet and outlet sections and in the combustion chamber the

dynamic head on the exhaust is lower than the dynamic head of flight:

2<p

For this reason the Mach number and the velocity coefficient

in the outlet have smaller values than in the incident flow:
i(.

,,< 
4M* d < .m

Thus an increase in the discharge velocity as compared with the

flying speed is obtained not as a result of an increase in the

dynamic head in the engine, out because of a decrease in the gas

density following preheating.

The relationships obtained lead to a 3imple calculation

formula for the discharge velocity in an ideal engine:

where a, a - tne ::ritical gas velocity respectively after

and before preheating. From this formula it follows that the

ratio of the discharge velocity to the flying speed for an ideal
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trgi:e is proportional to the square root from the relation of the

st-gnatiorn temperatures taken at the end and the beginning of the

co:.bu~tton chamber:

too ¥ Ton'

Onc ought to emphasize in this case that the stagnation tem-

perature in the beginning of the combustion chamber can be calculated

according to formula (42) as the function of temperature in the

atmosp..ere and the velocity coefficient of flight

TN =1 h -I.
T. -T

and the stagnation temperature at the end of the combustion chamber

is determined by the fuel. consumption in the engine and the rate

of air flow.

6. The Equation of Angular Momentum
[iroment of 1,1omerntum]

As is known from mechanics, a change in the total moment of

momentum relative to any axis, for exanp]e the y-axis, is equal

to the sum of the moments of pulses of all forces applied to the

body relative to the same axis (Fig. 1.12):

Sn (wz _ w.x) = MyAd (95)

Here rwz, mwx - the projections of the i.,mentuw. f a certain

elementary mass m on tlhi axis z and x; x, z - the corresponding

coordinates, rn(wx z - wZ x) - the moment of momentum of elementary

masz m relative to the y-axis.

If the motioi; of the liquid is steady-state, then change in

the totc- moment of mcmertur, of the liquid which i moved during
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' the time di from space 1-2 into

u space l'-2' is equal to a dif-

r .ference c the moment of momentum
_ - in volume elements 2-2' and 1-I':

- -''

d "t rn.Z WA~" - -- , - -

Fig. 1.12. For the derivation (rj,,zi -xi)IdT. (96)
of the equation of angular
momentum.

where G is the per-second fluid

flow rate. This is explained by

the fact that the moment of momentum of the shaded mass 1'-2 is

decreased during subtraction, since the motion of liquid is assumed

to be steady-state.

Subst tuting (96) into the left side of equality (95), we will

obtailn the .econd equation of Euler, i.e., the equation of angular

momentum in a hydrodynamic form:

M., [(W.Z, - WXz) - -- ,,lx,)J. ( 97)

Similar equations cqn be formed for axes z and x. Acording

to the second equation of Euler the sum of moments with respect to

any axis of all forces applied to a liquid volume is equal to the

difference in the moments with respect to the same axis of the

per-second moments of the outgoing and incoming liquid.

The equation of angular momentum acquires a simpler form, If

we introduce polar coordinates;' in this case the velocities are

expanded to radial and circular components, whereupon the momentZ

of radial components of' moments are equal to zero. Equation (97)

In this case takes the form

'in this case motion is assumed to be plane-parallel, i.e.,
the particle trajectories are plane curves.
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AI==-(wtr,-~~~rg)(98)

where i-i is the sum cf the moments of all forces applied to any

lquila volume relative to the origin of coordinates.

For the case of inertial motion (M = 0) we will obtain the

known law of areas

wr = onst. (99)

Let us dwell on one example of the application of the equation of

argular momentum.

Example. Let us explain the temperature effect of the gas

before a compressor on the degree of increase in the pressure in

it. Based on the equation of angular momentum (98) it is possible

to find the moment of forces which appear on the compressor wheel.

For this it is necessary to know the circular velocity component

of the gas after (w2u) and before (w lu) the wheel, and also the

distance from the axis of the outgoing (r2 ) and incoming (rI ) mass

of' gas. Per-second shaft work of the wheel, as is known, is equal

to the product of the moment of forces by angular velocity (w), from

which we obtain for 1 kgf of gas

-- L - (w .r,- , r}

Thus the work of 1 kgf of gas on the wheel is determined

by the kinematics of flow and the angular velocity of the wheel,

but does not depend on the temperature and pressure of the gas

(liquid) before the wheel. It was shown above that the work of

the wheel Is proportional to the difference in the full enthalpy

after and before the wheel:
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Thus at constant values of the number of revolutions and volumetric

gas flow rate, which determine the kinematics of flow, the drop

in the enthalpy on the wheel does not change:

o. - =I o ,,t.

Consequently, with heat capacity constant (cp const) the

drop in the stagnation temperatures on the wheel also does not

change:

Hence, using the equation of work of a compressor in the form (86),

we note that the degree of pressure increase depends on the gas

temperature before the wheel:

,, . --

Assume, for example, the degree of pressure increase in the compressor

at the start (T, TO = 2880 abs: is equal to nr0 K.CT; witn an

Increase in the velocity of flight, entailing an increase in the

stagnation temperature before the wheel T0 A, the degree of pressure

increase in the compressor with a constant volume flow rate and

number of revolutions can be calculated from the conaition of

constancy of work:

if in the first approximation we disregard the dependence of the

efficiency of compressor on inlet temperaoure, then we obtain

N-I JI Ct

5 '2 -I-

~**

5z



frcm whicn taking into account the equality

we have

C-I
I + M!

Thus in the last analysis from the equation of angular momentum

it follows that the degree of pressure increase in the compressor

of a turbojet engine drops with an increase in the velocity of

flight. The results cf the calculation according to this formula

with a starting degree of pressure increase n0  .CT= 4 and k

1.4 are presented in the following table:

Table.

I , u _ _i 1 1,5 2 3 _1

I 4 IS3 3,2JZ7 2 3 2 I.73

The calculation carried out for value 10 K is conditional,

since it is based on the assumption of the independence of the

work capacity on temperature even with a considerable change in it.

The basic purpose of a turbo-compressor device of a turbojet

engine Is to create In the exit nczzle 'after the turbine) a

greater total pressure than in the diffuser (before the compressor):

P€ >Pe:
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on the basis of this the following inequality ahould be fulfilled:

"o * T . I.

Here oa. c - pressure coefficient which characterizes the total

pressure losses in the combustion chamber (during the supply of

heat).

In view of the fact that with an increase of flying speed the

value r decreases, and values v0 T and a remain virtually

constant, at a certain value of flying speed the engine ceases to

satisfy the last inequality.

In the case selected above (n . = 4) when 7O T = 0.5 and

a ,c = 0.9 this inequality is not fulfilled already at the values

and higher.

The increase of total pressure in the turbo-compressor device

as a whole (po c > pO ) depends also on the selected temperature

before the turbine, with an increase in which the drop in pressure

in the turbine decreases.

in other words, at a certain magnitude of flying speed the

turbc-compressor device as a whole ceases to increase the pressure

in the engine, i.e., becomes unsuitable. At these velocities of

flight the work of a Jet engine is envured by air compression only

because of the velocitj of pressurization in consequence of which

the turbojet engine loses its advantage over the ramjet.

At the subsonic, transonic ana not very high surersonic flying

speeds, when the compression of the ga.5 in the compressor substan-

tially predominates over expansion ,. t-he turbine, the turbojet

engine retains all its advantages over The ramjet.

(:I



7. Ehtropy

According to the second law of thermodynamics during real

irreversible processes which flow in a final isolated system the

entropy increases, and with reversible - remains constant.

Mathematically the increase of entropy dS is determined as:

fIt)

here j. is the full quantity of heat applied both from without and

from within (for example, because of the wor'k of the forces of

frictlzn), T Is absolute temperature.

According to the first law of thermodynamics (50)

,I'd dl .A,11 0d,.

in the case of an ideal gas we have

Iti rol '..dP

hence with the help of the equation of state (pv = RT) we obtain

-.Q ,dr I".A1 IN

from which -.fter the replacement

'411? ". e,-- ', (k - 1 I) r.

and integration we find

, *,.v \ 114 *(- 5 r. P1  '" *

58



o . :n e Oasis f tne equation of state

,' ,, .. ,. Iii''"t" - . ( l 0")

The hangof e;rop in an idea- adiabatic proces8 whch i.

revero. e ia equaZ to zero, since in this case

,Any reo; =rocesa for an isclsared fina1 s sre-, flows in suoh. a

directio: tha-. the erzrop' increases:

in order to be convin ed of this In the example of an ideal gas,

let us pass in equality (100) from the flow parameters to the

stagnation conditions, 4itIlzing the obvio'us relationship

hptJ :.-p@,,.

After expressing the specific volume by -ressure and temperature

we wll obtain

S, "S,, (k.; •) In X.I i)

Ir. an is:latei syst e eat ex n Q:n_ e .u rhe s rrounding e ,

absent (dQ = 0) ar:J the stagnatlci t..mperature does not 2na.-ze:

To1 = TlHe>1



. r a system according to (101) the change in entropy

__ (102)
pot

IrIc-2 the total pressure in a gas flow as a result of losses drops

p. <p.1

anid correspondingly the hm.:- of friction always has a positive
sign

dQ..>O.

then entropy in an isolated system during an irreversible process

always increases.

Introducing the pressure coefficient, which considers hydraulic

losses

pe'

we will obtain for an energy-isolated gas flow (without heat exchange
and mechanical work) the direct connection between hydraulic losses

and the increase of entropy:

S,-S,--ARIn4. (103)

In a heat-insulated gas flow (dQp = 0) without losses (dQ -

0) the entropy will remain constant also with the completion

of mechanical work, in spite of the 'act that the full enthalpy

gas in this case changes:

--At. lo 4 - 41 0 .
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'his means that in an ideal compressor and in an ideal turbine i
p., I Trol. -

p~; -- \hT,;)

In real machines the entropy of the working medium always changes.

Assume the difference in a real process from ideal is considered

by a certain factor m

Then according to (101) a change in entropy

S, -S -0 k- l)In 'n- ( 104 )

Both in the compressor and in the turbine during a heat-insulated

process (dQHap = 0) hydraulic losses are expressed in heat supply

t, tne 6as (dQ > 0), I.e., in both cases Mi < 1.1 Thus in real

turbomachines entropy increases (S - S1 > 0).

§ 8. Tne Calculation of Reaction
Force (Thrust)

The flight of a jet vehicle is achieved under the action of

a reaction force, or, as It is frequently called, the reactive thrutt

which the jet of outgo!ng gases imparts to it. For the determina-

tion of the value cf reaction force P there 1s no need to examine

in detail pressure di! tribution on the internal and external walls

of the jet vehicle. The r.action Lorce can be determined in final 2

form with the help cf tne equatior o. mn.mentu I.

'Both in the compressor arJ 'r.r %., turbine with an assignei
drop In the temperatures and the init'., pressure the final
pressure is lower, the greater the h,.' raulic losses.
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In accomplishing flight a body produces disturbances in the

c'urrcr=ing :r edlium. It is always possible to separate a certain,

sufficlen t ly large, for example cylindrical, area whose boundaries

go beyond the limits of the disturbed part of the flow (Fig. 1.13).

Cn the lateral boundaries of this area the pressure and flow velocity

we consider the engine fied, and the air - moving at the flying

speed) are equal to their values on infinity before the engine.

Assume the x-axis co-
I - incides with the direction

I of flight and is the axis of

. I. symmetry of the engine; let

us project on the x-axis the

forces which act on the engine

and on the surface of the

--- --- --- --- selected outline. Since the

Fig. 1.13. Outline for deter- forces of pressure in a
mining reaction force. liquid are normal to the

surface, the projections on the x-axis of the forces which act on

the lateral surfaces of the outline become zero. Thus the equation

of Euler [see (90)J will be written thus:

p.,' - 5 pdF + P =(w, - w,)d,+ w di,.
0 ii 0

Here the area on which the integrals are propagated and the

range of integration of the first term of the right side are

infinite. Force P is taken with sign + because during the solution

cf formula (90) it was assumed that the machine obtains work from

the gas, and here the jet engine imparts work to the gas: m.

= GB /g - the mass flow per second of air which flows into the

outline through the cross section F; mr U Gr/g - the supplementary

mass flow per second of fuel which is supplied to the engine.
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If we take the left face surface far in front of the engine,

then pressure on it is constant and equal to atmospheric (pH), and

the flow velocity is equal to the flying speed (w ). Furthermore,

it is possible to assume that in a transverse directioi, already at

a certain final distance from the surface of the engine the flow

is not disturbed and area F, on which the integrals of t; left

side are propagated, is considered finite; in exactly the same

manner the range of integration in the first term of the right side

will be finite. Then one ought to write:

P me on
p.FSp, dF+P - + odin,

U 0 0

In a large number of cases the disturbance which is caused by a

flying body is so insignificant that in the nozzle-exIt plane

(outside the exhaust gas stream) the pressure of the circumfluent

flow differs little from pressure on infinity (p H). Then the forces

j+ of pressure on the front and rear faces of the outline are balanced

everywhere, besides the section which corresponds to the cross

section of the exhaust jet (F ). The velocities of flow in all the

elementary streams, except those passing through the engine, are

identical (here we disregard the influence of friction and vortex

and wave losses on the external surface of the engine). Conse-

quently a change in momentum is obtained only in a jet which flows

through the engine. Then the equation of Euler takes the following

form:

P Co

from which the basic formula for reaction force is obtained

, - to. (,.h-,, -P,.. (105)9 -9
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r. theie expressions a /g - the mass flow per second of the air

S" UCe1 ntu the engine w a - the average speed of outfaow.

Gne ought to emphasize that the relationship obtained is correct

on-ly in such a case when the velocity and the pressure in plane a

,,,th the ex.2etion of the section of the working jet) are equal in

accuracy to their values on infinity before the engine. Furthermore,

here we disregard the external frontal engine drag which can always

be taken into account separately.

Under thc calculated conditions of work of a jet engine the

pres~ure in the exhaust jet is equal to the pressure of surrounding

air (p = p-); in this case the reactive thrust is equal to the

cr;ange in the momentum of the gas passed through the engine:

p= .:.+(W, -u)± 9 ,,. (106)

In jet engines the second term of the right side is small and it is

frequently disregarded,' i.e., for jet engines in the calculated

case the, accept 2

(107)

Thu thrust of a liquid jet engine in which atmospheric air is

not used is determined for the calculated conditions from the

formula

p= J,_ ( (108)

'Part by weight of fuel in the air passing through the engine
does not exceed one-five percent: G F (0.01-0.05) G .

2 C , ought to emphasize that value w, Is the flying speed,
a'u in no way the velocity in the inlet of the engine.
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or in non-caiculated conditions

-(109)
g

Here G0 is the per-second mass flow of oxidizer.

Let us examine now the effect on the reaction force of the

inconstancy of pressures in the plane of the output section of the

engine. Let us construct the pressure and velocity curve for the

nozzle edge (Fig. 1.14). For simplicity let us dwell on the case

of subsonic outflow. It is possible, for example, to visualize

such a flow about the engine at which the pressure near the output

section is lowered, because of which the local velocity in the

external flow increases. The pressure within the subsonic exhaust

jet is approximately the same as on its boundary.

P-O

W4

Fig. 1.14. The distribution of the pressure
and flow velocity in the nozzle exit sectionr.

For the calculation of reaction force let us make use of

the basic property cf nonuniform (in the values of total presso .

flows, which amounts to the fact tLat ncnunlformity in tr:e ye.

ity distribution disappears very slow Ly, and pressure i -z-:,,'-

rapidly.
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.Ius, 'or iistanr:e, nonuniformity in the przssure field that

t the roation of a flow is equalized at a. distance

' .- 2 d1; -.eters of a straight tube after the place of rotation;

-e ,V/l c ,t' ia equalized at a distance of 20-30 diameters. This

property can be used during the -alculation of thrust. It is known

a'rorn testz :-hat if plane b is located away from the nozzle edge at

a distance ab, greater than one diameter of a section (Fig. 1.15),

tnen the prc;;:ure field already is uniform. Thus after moving away

3umewha-. from the nozzle ec we enter a plane of constant pressure

(p =p), in connection with which it is possible to determine
b

ea-tiv- tirust. by the formula

P - "9- (W#-W,

There emains only to find the velocity wb, which the working

Jet in plar.e b has(7rg. 1.15). For this during subsonic outflow it
is pooatble to make use of the Bernoulli equation without allowing

f:r -iydrauiic and heat losses, si.nce, as was noted, the section

of' the jet included between planes a and b is small.

0

. 1 i'., j ne pic' ur' , of' the distributlon ofipres.-ure and velocity bey id the j,jgine.

. ,, - - ar, va:iple lh case of too great a subsonic

. Thi. tord!; I. the Bernoulli equation
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Pa, + Pa PH- -- p a,

At such speed the pressure difference (Pa - PH ) is small, in

consequence of which we accepted the gas density as constant.

Thus,

Pa PH Pa .

Vrom which

In the majority of cases at subsonic speed on the nozzle edge

a pressure is established which is very close to atmospheric, and

then wb - wa is assumed. During the supersonic outflow between

planes a and b shock waves can be formed. In this case the cal.

culation of correction becomes somewhat complicated, but also is

completely accessible.

One feature of a ramjet engine is interesting: if we retain

the combustion-chamber temperature constant, then the value of

reactive thrust (see § 6, Example 4)

at first increases with an increase in the velocity of flight,

and then, in passing through a maximum, begins to decrease and with

a cei,'tain value of velocity drops to zero. This is explained

ty the fact that an increase it the velocity uf flight causes an

(7.



Ir ,cc* : z stagr'tz;3,, temperature in the beginning of the chamber

is: hise for the sreservationi of the stagnation

vtp t rt tre e:,no cf the cha.rer invariable it is necessary

Sderease the heat. s,.ipply. When the stagnation temperature in

' ii.cferot flow b:_e equal to the maximum permissible tempera-

t ,re ir. the enginc (: .- ) the supply of heat has to be dis-

ccnti:iued, :r, th'3 zase the thrust level drops to zero. From

fzrmula (42 the folowing condition is obtained for the disappear-

ance :f thrust both for a subsonic and for a supersonic ideal

J. r

fir-. whi(h the velocity coefficient of flight at which an ideal

engine ccasez to Jevelop thrust is equal to

A pressure increase in a rarmjet engine is achieved because of
the dynamic compression of air before the engine inlet and in its

diffuser. such an engine, as we saw, is effective only at a very

high flying speed and Is not able to develop thrust completely on

tne 3ps t. For obtaining 3-ufficient thrust in a Jet. engine on take-

off' ai., at mroderate flying speed it is necessary to apply mechanical

aIr compression. A jet ci.gi" w..it. mecanical compression has

aireidy fo.und wd1e application in contemporary aviation. The most
common type of Jet engine with mr-c )ianical compression is the turbo-

let(. i . . this thk air is sucked in by

t-, I , pres ur. After co.tipressior, ii. tne compressor the air enters

,c; anib-.,,, frowr the mixture of heated air and

c:mbutlor1 rouucts 'iir-Ad tu the, turbine biades. Usually in

Fo,.r a det-l led nrs:-,.tutiot of' the theory of a t.urboJet
engine see the buck: Jr:;t , 7 ,;J,,., Aviation Gas-turbine
Lrgines. .. oror.g z, I j .
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a turbine only part of the energy of gases is utilized (for obtain-

ing the mechanical work required for rotation of the compressor).

The remaining (free) part of the energy of gases is converted into

the kinetic energy of the discharging jet.

Fig. 1.16. Diagram of a turbojet engine: D -
diffuser, K - conpressor, T - gas turbine, A -
combustion chamber, B - exit nozzle.

If the entire pressure excess which is found in the combustion

chamber is utilized on the turbine wheel, the engine ceases to
develop a reaction force, but in this case the power of the turbine

exceeds the power being consumed by the compressor; the excess of

power can be utilized, for examp.e, for the rotation of a propeller

or a dynamo.

The work Leing spent for compression of 1 kg of gas in t he
compressor, as is shown in S 4, is equal to

Here pox, pO . are the total pressures respectively after and

before the compressor: n is the efficiency of the compressor;

T 01Is the stagnation temperature before the compressor.

If ae disregard the heat removal in the dl fuser, then it is

possible to consider that T = Let us agree, as before,

that the degree of pressure increase in the compressor is ,inder-

stood as the ratio o: the value- of t pa1 pressure of th ;-a,

after and Lefore the ccrrilresor:
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r It P.

-cv' tt;- rtee oF decrease in pressure in the turbine we will,

;I ,-.td:;d tic O'tI' of the values of total pressure

U -,: bt,ore the turbine:

S U H'" 1 characterizes the pressure excess in Ln,

,.ff"r beIng srJ wLeQ .l it4 1 kg of* gas in the turbine is equal

u r: the .tagnaton tempcrature after the turbine, T - the

flec: of the turblne.

1r. a t.urboJet engine the work of the turbine is utilized

vlrtu!y entirely fur dt: ving the compressor: LT  L . if, we

disregjrd small changes ir. ti-. gas constant and the adiabatic

1iLdx, tilel we Wi "I have

To 3 --

I''. 't':i c 7
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"°I g -I,
h-I 7+

Usually the temperature of the stagnation gas in the exit

nozzle is significantly higher than the temperature of the stagna-

tion gas in the diffuser (To c > T 0 n ). Then from the equality

of work of the compressor and the turbine it follows that the

degree of an Increase in air pressure in the compressor is higher

than tne degree of decrease in the pressure in the turbine (n H >
> 1/Tr0 T ), i.e., there is excess pressure In the jet engine nozzle.

This is necessary in order that the discharge velocity from the

nozzle w and correspondingly the reactive thrust would be suffi-

ciently great (both on the take-off and in flight). A turbojet

engine usually develops considerable boost for take-off.

An essential feature of this engine model is also its In-

sensitivity to a change of air density. The density of the air

which enters the engine is noticeably increased with an increase

In the vel-city of flight, thanks to which the mass flow of air

in the compressor increases.' The power being consumed by the

compressor varies in proportion to the mass flow; however, the

latter increases simultaneously also in the turbine. Consequently

the power of the turbine increases proportionally to the power

of the compressor, i.e., the balance of power is preserved.

Total work of gas In the engine is made up of the work of

expansion in the turbine and in the nozzle:
2

JThe compressor Is a "volumetric" machine in which with a
density change of gas the mass flow chaijges and voi.r:n flow rate
remains constant.

2As shown above in a turbojet ,JLgine mhe equality L.
is always fulfilled.

7
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L - L, + .1, or ', L = t, - L.,

.r mei.tior, , after tne using of a certain fraction

r..e turbIne heel it.; remaning part (free) can be used

t.-, exit no0zzie.

-re factIon o , work of the compressor IS usually cor.: id-

erably more tna!; half, therefore fcr the formatioi of free power

I:. a tur_-et engine a relatively small share of the available

erergy. 1s exper:ec.

7.e thrust of' a turbojet engine Is determined by the discharge

VelOCity from the nozzle:

wa )a ON"p. €

w =f (l,_iel-. =Ir,,

if the pressure after Lhe turE is higner than before the com-

presscor, then the velocity coe'ficient of' outflow under identical

!Ight conditions fcr a turbojet engine is hIgher than for a ramjet

engine. But hlgner terperaturec are possible in the latter. There-

fore the rarjet engine can develop larger speclific thrusts even at

_es6 press ares i r the Jet nozl . However, for a thrust augmenta-

ocp.,n. a turbojet ngine it Is possible to place behind the turbine

Sccor, combustion cihaber L(the io-called "afterburner") in whIch

the gas can be heated additioally to the same temperature as in

a ramjet eng!.re. In thi case the thrust of the turbojet engine

; cstart 1 ; &, Increaies.

I' "e dlsrerors the losses of presur-e in the second comb'ustion.

hamber, then tne velocity ccoeffcIent of outflow (A ) will pre-

ferl'/t te a.me value? a. with ut a: , -fter urner, ad th..

wIll Icrease i. prop ortion to. the square root from the terseratare.
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J. T1he Place of Application of
t Reaction Force

Let us explain the question concerning in which point of the

er.gine the reaction force is applied.

Let us examine first the simplest case - an ideal ramjet engine

(Fig. -.17). Let the velocity in the inlet be equal to the flying

speeo (we = w.); then pressure in the inlet is equal to atmospheric

(Pe = p.); furthermore, let us suppose that the engine works under

calculated conditions, i.e., the pressure in the outlet is also

equal to atmospheric (pa = p ). At a low speed of movement of the

gas in the combustion chamber the pressure in the latter c3n be

considered constant (p,, pr).

0. P Fig. 1.17. Diagram of a ramjet
engine (for determining the forces

_ which act on an engine).

In the described ideal engine the drops in the pressures in

the diffuser and nozzle are identical:

PzP&,Pr --Pa.

However, in view of the fact that in the nozzle the air has a higher

temperature than in the diffuser, the area of the outlet of engine

should be greater than the area of the inlet. In fact, in an ldea

engine the dynamic head in the out!et is equal to the dynariiiz head

of incident flow, i.e., in the case in q'estion to the dyn ' ':,;Ic .-ead

in the inlet:

&. w.
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T-r -rm the equation of continuity (taking this eqvality into

w" c taln

Conseqjently, durir._ the supply of heat in the combustion chamber

= ) we nave

F> '

..us the Lean pressure which acts on the walls of the diffuser

a .czzie is on~e and the sam.,e, but the projection of the wall of

the siffuser on the plane perpendicular to the axis of the engine

i0 greater than the corresponding projection of the nozzl wall. As

a result of what was expounded the force of pressure from within on

the diffuser (P ) is greater than on the nozzle (P-); the directions

of these forces, as It appears from Fig. 1.17, are opposite.

If the external contours of the engine are very smocth, then air

pressure orn the external surface of the engine is very close to

atmospheric, i.e., the force of pressure on the external surface

can be disregaraed. In the ideal case in question the reaction force

which acts on the engine is reduceu to the difference in the forces

applied respectively to the diffuser and the nozzle:

P =P - P'.

For the interpretation of this equality let us make use of

the result obtained in § 5 (Example 3), according to which the

magnitudes of forces which act on the diffuser and nozzle are

respet ively eoual to
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According to the conditions accepted above

Then

;"=P. -P, ' | ..

or

Let us examine an engine with low velocities in the combustion

chamber, i.e., with the area of the chamber substantially larger

than the area of the intake and outlets:

.<

In this case we come to the following simple formula for the reaction

force determined as a result of the subtraction of the force applied

to the nozzle from the force applied to the diffuser:

P = L" "~, (!'4 - FA,

The same result can be obtained directly from the formula for re-

active thrust

F.z

g 7'-5

I
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*r', taking into acccunt the condition - derived above

P F(Fa -/g

Thus reactive thrust is obtained bccause the force of pressure

on tne diffuser is greater than on the nozzle. This is a consequence

of t he preneatlng of the gas, in connection with which the discharge

area has to be made larger than the area of the cross section of the

:n .c ,i g !et.-

irl a,- actual engine, as was noted above, the values of veloc-

ity urmu pressure in tne inlet usually differ from the same in an

ur-ditL,rbed incident flow, which impedes the determination of re-

acticn force based directly on the difference in the forces applied

to the diffuser and the nozzle; furthermore, in actuality the force

which acts on the external surface of the engine is not usually

equal tc zero. However, in any event it is possible to demonstrate

that in a ramjet engine the reactloo force is the resultant of the

forces of pressure applied to tne walls of the internal and external

bypasses of the engine.

Let us pause now on how extent of the inlet area of the engine

influences reactive thrust. From the solution of the formula for

reactive thrust given in § 8 it follows that the air speed upon

entry into the engine does not influence the magnitude of reacticn

force; only the discharge velocity from the engine and the speed

of the undisturbed incident flow play a role.

This fact has the following explanation. If the rate of

entry of air into the engine is less than the approach stream

velocity .. e 'wH), then before the diffuser the slowing down of

incident flow occurs (Fig. 1.18), whereupor the streams flow to

the leading edge of the diffuser under a large angle of attack.
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This leads to the fact that near the intake on the internal wall

of the diffuser an area of increased static pressure appears (cl.ose

in value to the total pressure of incoming flow), and on the external

surface of diffuser - rarefaction; the larger the inlet of the

diffuser, the higher the pressure on its internal surface and the

greater the rarefaction on its external surface (angles of attack

of the air streams increase). In other words, with a considerable

slowing down of air before the diffuser the front wall of the latter

behaves as wing at high angles of attack.'

The indicated secondary force caused in this case (w e < w H )

by the pressure difference on the front wall of the diffuser

compensates exactJy for the decrease in thrust which should be

obtained because of contraction of the surface of the diffuser as

compared with the case we = w . Let us note that in such systems

a considerable share of the thrust falls on the fraction of rar-

efaction which appears on the external surface of the diffuser.

if we completely opon up the diffuser, i.e., make the intake area

equal to the area of the combustion chamber (Fig. 1.19), then

thrust will be produced only by rarefaction on tkhe external surface

of the diffuser (projection on the axis of the engine of the forces

of pressure applied to the internal chamber walls and the diffuser

in this case is equal to zero).

Fig. 1.18. Ramjet engine (V~RD) L8PAt-
without an inlet diffuser.

n' eA ga

'The considerations givcn here are completely valid c;,y withi
H H < 1. The flow about the wing is exami.ned in more detail In

Chapter X.
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If the rate of entry of air

j) into the engine is greate r tnarn
the flying speed We > W.), tnen

flow before the diffuser is ac-

- . celerated; in this case the
-- streams flow to the leading edge

-- ------------ of the diffuser at negative

angles; in this case near the

In'et on the external surface of

the diffuser an increased pres-

S9. The arrUngement of sure appears, and on internal

-he .low around a rz.mJet engine surface - rarefaction. Such a
'.:,.i ch ha the for: c f a thin-lea tube. pressure difference gives a

secondary force which is di-

reutLed o the side oppesi-te to the action of reaction force; this

secondary force compensates for that increase in the reaction force

wr.ch in the case e> would be possible to expect because of ar,

increase in the surface of the diffuser (as compared with the case

w= w ) Thus the rate of entry of air into the engine should

not be considered directly in the formula for the reaction force;

rh;wever, it influences the thrust level indirectly, since it affects

the resistance of the diffuser, with an increase of which the dis-

charge velocity from the engine drops. So, with w e  w supplementary

external drag appears, and with we > w - supplementary hydraulic

iosses within the diffuser.

he ra.,%Let engine, which has the form of a thin-walled tube

(i1g. " 19), does not develop thrust at all; the cylindrical form
of at, engine leads to the fact that the component of the force of
pressure on the walls, parallel to the axes of the engi'e, is equal

to zero. The essence of the matter lies in the fact that because

of the disruption of the flow flowing around the tube from its

front edge at, external vortex drag appears which completely baiances

the reactive thrust; the velocity diagram in the wake after the

tu;te In the area cf external flow has depressions caused by vortex

drag whic, compensate for the acceleration witnin the engine; in
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-'her words the total momentum obtained in the -, a.

t sne as befcre it.

_t, conclusion let us note that in a turbojet -

tnrui consists nct cnjy of the result of the fc.rc'

which acts directly on the walls of the engine, b: : -

applied to the turbo-compressor unit; this secon. ..

to the rotor is absorbed by the step bearing and Is "..,.. fr--

thrcugh supports to the engine housing.

lormulas ().05-109) derived above make It p_5; ,

the reaction force of an engine without allfwlxa- ' -

drag which it creates when installed on a f.It-K'

The useful part of reaction force, equal tc -.. -

tween the reaction force and the total exttr:.'a,

plant, is called the effective thrust:

In certain cases the maximum value of ef fut,_ z 1.

under such conditions when reaction force ..

possible, i.e., it can prove to be :'avorat~l c h.'.:

decrease of reaction force, if in tnl: cac.; tnc gaii.

laps the loss in reaction force.

During a detailed stuay of the external froncb. cnvlre :-.., t,.

latter is usually divided into several component pazc .

components):

I , ---- X,. - , +I X,.v 1,

wbere X is the drag of the intake - diffuser; X. is the drag of

the engine nacelle, into which the engine is built htre prlrf: aI
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uarl .f this term is usually niade up of the force of friction cn the

ex-v-rr.u surface of the engine); X is the drag of the outlet (jet)

nhf-e. he terms oi' the external frontal engine drag (X , C

arQ e:ar.!nied i:. Chapter VIII, which deals with the gas dynamics

of the engine componernts.

'.Lc reaction force of an engine, determined by formula (105),

car, be considered as the difference between the output pulse of

the jet of gases which leave the nozzle:

= W -+ - .) F", (112)

aru thm input pulse of the jet of the incoming undisturbed airflow

be ng sucked into the engine:

to, (113)

In the case of a liquid-propellant rocket engine (ZhRD) [PMI or

a solid-propellant rocket engine the rate of air flow GB in (112)

is replaced by the oxidizer consumption (G0 ), as this is done in

formula (109). The total pulse of nozzle obtained during the full

expansion of gas in the nozzle (pa = PH

& a. (1l4)

here and subsequently G - this is the total gas flow rate in the

outlet of =he nozzle (G G s + G or G - + G r ). The outlet

device of the engine, which includes the nozzle, possesses external

drag, in connection with which a new concept is introduced -

the effective pulsc of the nozzle:

.8OX. (115)
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The ratio of the effective nozzle pulse to its pulse during ideal

outflow (without losses) is called the relative pule of the nozzle

TR f.(116)

Then the relative effective pulse

i4.. = -. (117)

The expression for the thrust of the engine in the absence of losses

within the nozzle

P (118)

can be used with the help of (112), (113), and (117) for the re-

presentation of effective thrust depending on the relative effective

pulse

,(119)

The last term of the right side in the sum of the external drag of

the diffuser and engine nacelle:

X. + X, , X.., X.

i.e. the full external drag of the engine plant with the deduction

of the external drag of its nozzle part.

In a rocket engine the second term of the rightside of (119)

is equal to zero since air is not sucked into it (Ge a 0).

The evaluation of the internal thrust of an engine (not allowing

for external drag) is done with the help of relative pulse (l6)
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P I P1, - (I - 1) 2j w

or

P =(I -W a p.,, - A/e , (1l20)

The value

a= 1 -7 (121)

is called the Z i relative pulse of the nozzle. The infl.,:ice

of losses in th. engine components on the magnitude of thrust

being developed by it is examined in detail in Chapter VIII.
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CHAPTER II

ELEMENTS OF HYDRODYNAMICS

S 1. The Motion of a Liquid Particle

Let us examine the motion of an infinitesimal liquid particle

which has the initial form of a parallelepiped (Fig. 2.1). Unlike

a solid, a liquid particle can be strongy transfcrmed during its

motion.

(The faces of an infinitesimal particle of liquid which has

the form of a right parallelepiped in the beginning of moticn

with ribs dx, dy, dz, can be beveled and extended in the course

of time (Figa. 2.2 and 2.3).

1

Fg. 2.1. Elementary parallel- Fig. 2.2. Angular
epped In a fluid flow. 

strain of faces.
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Fig. 2.3. Linear strain-- iii" of faces.

Let the velocity component of particle motion at point a

(Fig. 2.1) be u, v, w; then the velocity components at point b

are equal to

dy,-d. ,, + j; dy.

y - dy.

at point d

u ,. -a.
U+ dx, v-+ dx.

oHdx

and at point e

Ou • od
tt+6 -d:' v+ 2 -dz'

Owto .- , dx,

Tne beveling of edge at of a particle during an infinitesimal

time dt which is caused by a difference in the velocity component

at points a and t (Fig. 2.2), is characterized by the displacement

of point b, equal to

bb -' dy dt.

The relative displacement or the angular strain

bb- =a d-

84
b!ad



Tne beveling of the edge ad leads to angular strain

di.,lit" f:' " "- ti t.

In view of the fact that the angular strains during time dt are

insignificant, the angle of slope of the face can be considered

equal to the tangent of this angle. The full beveling of an

initially right angle at point a in this case equals

di,

and the rate of the corresponding angular strain

odl 4. (1a)
-'Ox.

Index z indicates that the deformation of a particle is ey-

amined in plane xy perpendicular to the z-axis; in the remaining

two planes, the rates of beveling of the quadrants obviously

equal

( .- (Ib)

Utilizing the same angular displacements of the faces of the

particle, it is possible to determine the angular velocities of

its rotation. Since the directions of rotation of the edges ab

and ad are opposite, the mean angular velocity of rotation of

the particle as a whole about the z-axis comprises

I -too uj" (2a)

For the remaining two axes of rotation we have respectively

I I_ I!du (2b)
W~ 2 y 2, 1 1 di 'Ai)

The vector of the angular velocity of rotation w whose ctom-

ponents are w W y and wz, is called oortiity and its value

is determined, obviously, by the following equality:
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us dweli now on the linear deformations of the particle.

Y'r.e ratez :L motion of points a and d (Fig. 2.3) in the direction

of the x-axis differ by the value

(a d -it ( dx.,

'n connection with this, the particle is lengL.hened during

time dt to the value

dd" A..

The relative elongation of the particle

dt.

and a the rate of the relative elongation of the particle in the

dlre ,ton of the x-axis is equal to

4J* ('4a)

By analogy, the rates of relative elongation along other axes

(4b)

The elongation of the sides uf a parallelepiped which depicts

a liquid particle (Fig. 2.1) in general leads to a change in its

volume; multiplying the difference in the rates of the forward

motion of the opposite faces of parallelepiped determined according

to formula (3), for the area of each of these faces we will obtain

the rate of change in Its volume because of linear strain in the

direction of the horizontal axis; composing similar expressions

for the rates of change in volume along the remaining two coordinate

axes and totaling all three values, we find the full rate of

change in the volume of the liquid particle:

, dt' X dyd.. dydzdx +
do+ WS dz dx dy= (. -- t, "+-", dx dy dc.
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AfC..r the division of this expression into the initial volume of

the liquid particle V a dx dy dz, we come to the value of the rate
of a relative volume change in a liquid particle important in gas

iynamr cs:
e I V (5)

V if + .

on the basis of (4) we have finally

-+

§ 2. The Pquation of Continuity

The expression which stands in the right side of equality

(6) Is called in field theory tht diuergenoe (or diaagreement)

of the velocity vector and is designated thus:

dlv W== ON + OW (7

f where W is the velocity vector.

In a continuous incompressible medium the volume of the

particle does not change; consequently the equality

div W-- Ox d a -

is the equation of the continuity of a liquid.

Conditions of constancy of the mass of a liquid particle can

be written in the following form:

t V const ( 9 )

Here by liquid density p is understood the limit of the

ratio of the mass of the particle to its volume

p~llm lMmdM (1i0) --
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, ,, t- , , striving tc aero, the volume

', & .;r.- toard a certain internal point.

L' """ " t,- ... ,: htot,- parts of equality (9) for time and

d .Jt by Ue value N', we will obtain

1 dp ,I (lla)

.:Th e rn t:.7 basis of (5) we come to the equation of continuity

1,3r aCli.uuus cop:ressitle medium

div W- (11b"

r. the fl.ll density derivative of the liquid in terms of

i,. Iy. partIal derivatives and utilizing (7), we obtain

-- 'h - P+ uj p , +, O dg,
J.) O~dt ax a (T

i- accordance with the rule of differentiation of products,

, equatl.cn of continuity for a compressible medium (gas) leads

t, the form

O_. dp Jpu a . d_ (121)

The sum of the last three terms is the divergence of the vector of

the cuArrent density 1.1; therefore the equation of continuity for

a gas can also Ue written in the form

In the derivation of the differential equation of continuity the

motion of a separate liquid particle .as examined; Lagrange intro-

duced such a method of study into hydrodynamics. Another method

of study, developed for the first time ty Euler. examines not the

behavior of separate particles but the change in the parameters

o" a lquid in fixed points of space with time; Euler's method in

many instances is more convenient than Lagrange's method - both in

hydrodynamics and in gas dynamics it is used more frequently.
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(. , to.,t tie :zrcoa s h Ac
'a icuidi

Let us isolate a certain volur.e of liquid (Fig, 2.ui and
let us examine I in Isolation from tht surrounlngr li.uid r'oi u.,

Fig. 2.4. Diagramn of th-
I orces wn'Lch act rL tw~o
faces of an elementary
parallel.epiped.

2he forces which act cr. a gIver volume of ilquid car, be of
two kInds: volume and curface. Volume forces are applied to all

material particies ccnst t-.tng the volume. Pertaining to volume

for-es are: gravity, zentrlfugal force, magnetic forces an

electrical. Surface forces are distrituted over the surfac- of

the isolated volume. They aprear as a result of the effect of

te er.:'rcnment on the given volume.

.urface forces, depending on ho, thely are directed .ith
respect to a given surface elemen.t, are subdivided into normal

and tangential.

In order to characterIze the change of a volume force LF c'r .,.

surface force AR from -cint to pclnt the concept cf stress,is
introduced, implying by it the limit of t-;e ratlo of force to
the volume AV (or respectivuly to the surface LS, which is reach!-.] -
with the contractor of the volume (or surface' to some internal

Thus, the stress of a vclume fcrc, at a giver, point of the

medium 's

f=1m
AV-.W dVO
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S. -a dR,

: I ., I' ,:c L ~~J. - .c.c t and In a moving liquid

t -A .f, ' 1 f',:c, a,.:ar c. y during the motion of a liquid, and

:ZbooIJ ruv .i.',,., . e strained,

th' K-_ aj,rlty o1" li-O.'Is, as experience shows, llew on's

h.o ,t. s3 % 3.'al'j aceovilr. " wlhich the stresses are proportional

tro " :"t, , o' :rai... The prupo.-LIonality factor, which depends

..i'. u, u and, ctht' IS called of the coGe';'cient
or" ,3" .i*,Li the viscosity.

us :'ur;u.?L**.. ons of motion of a viscous compressitle

.id fr u io,7taI'' paraileepiped with sides dx, dy, dz.

Let us dL.ignate the com)outs of volume stress f by X, Y,

Z, the compcnects of nornal stres, c ipplied to the faces of the

r.arall&epipeu and parallic to the appropriate coordinate axes -

aX, O, Oz, and the components of tangential stresses lying in

the plane of each fae - Ly letr - with two indices (the first

Idicates the axis perpendicular to this face and the second -

the axIs parallel to the directIon of the stress, for example

I Xy I xz, TS7 ). Let us note, without the proof, that the equality

.zf the momer.ts of 'ro relatlve to an arbitrary axis and the

equality of tangk-nc..al stresses with Identical indices but arranged

reverse order follows from ejuili'brium conditions of a parallel-
eCL-: pc i

J'Y - "Y, Vic TO =2= Tly ( 13a )

AczcorJing to ,cwtor,' s law the product of the mass of a

r:iralieier.i;-ed tires its ac,.eleration is equal to the resultant

.'f a]" fcorz appllej to the parallelepiped.
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us set up tne appropriate equation for the pr!-ectlon- ,f

acceleratiorn and resultant force on the x-axis. The normal stresses

a;.jiiea to the end faces give the force component:

0(, + a' dx)-0 1. dq. = t "A(fy da.

The force comronents from the tangetial stresses which act on the

lateral and upper faces:

zy dy ~-dz X dx dy ds

and

If we designate the components of the velocity vector alonE

the axes x, y, z by u, v, w and consider that the mass of the

particle dM = pdxdydz.', then the equation of motion along the x-hxis

for a unit of volume of liquid takes the form

d1 ( 13L;

T~e full velocity derivative in equation (13b' can be ey-

pressec. by partial derivatives:

Then the equation of motion along the x-axis can be presented

in tne form

,I . d . OZ:: ' ( iy 02

Thus, it is poszibie tc derive the equ:tions of notion in the

direction of the y and z axes:

y cI V:Ujo

Vf UY V. L-73 91



The arithme-tic mean of three normal stresses

7 -- (15aj

-ces not change with the transformation of coordinates and for

an inviscid liquid it is equal to the pressure taken with the

reverse sign.

For future reference It is convenient to separate from the

normal stresses the so-called "supplementary stresses" determined

f o the conditions

(15b)

btilizlng these relationships, the system of differential

equations of motion can be presented in the form

V VL 0, _ (X6 - d I
.1 ' cy .U., 0). 2.

It goes without saying that in each of these equations it is

possible, in accordance with (13c), to replace the total derivative

of the velocity component on the left Bide with its partial

derivatives, and the tangential stresses with identical ones, but

to consider transposed indizes according to (13a) equal.

i. The Conneotion between Stresses
and Strains

The conrn cticr) Letween the stresses which act on a parallel-

1'- ij 4 . *r.u ,h'- ,&;ez of strain of the latter, as has

-"iy- E-, . tai shed by the Newton's law of
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Tangential stresses cause shearing strains (angular strairs)

,whose definition was given in § 1 of this chapter. Since, in

accordance with Newton's hypothesis, in a liquid the stresses are

proportional to the rates of strain, in accordance with (1) we

have

= ~ ~;* in.y1 ~(17a)

where, as has already been indicated, the proportionality factor

w is the coefficient of dynamic viscosity dependi!-g on the kind of

liquid and its state (temperature, pressure).

The tangential stresses in the other two coordinate planes

are respectively

- y (P + (17b)

It is a more complex matter with normal stresses.

Extending Newton's hypothesis about the proportionality of

stresses to the rates of strain to normal stresses and tensile

stains (compression), it is necessary to keep in mind that the

stretching of a liquid particle is accompanied by its lateral

contraction, i.e., volume strain; in other words, strain in the

direction of any axis is caused by stresses both parallel to this

axis and perpendicular to it.

The detailed analysis of the fields of stresses and strains

made by two different methods in hydrodynamics and in the Kinetic

Theory of Gases,' made it possible to establish the tie between

'Patterson G. H., The Molecular Flow of (rases. Fizmatgiz,
N., 1960; Lovtsyanskly L. G., Fluid and Gas Mechanics. Fizmatgiz,

. , 1957.
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normal and tangential stresses from which it follows that the

additional normal stress is equal to

where cP e are the relative linear and volume strains determined

respectively fron (4) and (6).

Furthermore, in the hydrodynamics of a viscous compressible

liquid the second generalization of Newton's hypothesis is accepted

according to which the mean normal stress is equal to the sum of

two terms: the first term is the pressure taken with a negative

sign which does not depend on the rate of volume strain, and the

second term is proportional to the latter:

-_ + . ,(19)

here n is the coefficient of the so-called second viscosity intro-

duced into hydrodynamics for the first time by L. D. Landau. The

minus sign with pressure considers that it is always directed in-

side the selected volume of liquid; value a is customarily considered

positive if it is directed outside.

Thus, according to (18) a. '19) the components of normal

stress are expressed in the following manner:

o-= -(+20)+(,- ',1(20

+ 42 -,'-+('-l~"

In a noncompressible liquid e = 0, whence

.=--p+ i., *=- --P+ F,. *- -p± 2 p .a. (21)

L. D. Landau showed that in monatomic gases the second
viscosity was equal to zero (n - 0), and with the majority of

other homogeneous gases is very cloe to zero.
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( However, for some two-phase mixtures (for example, the mixture

of a liquid and the gas) and thermodynamically nonequilibrium gas

mixtures (for example, with the course of slow chemical reactions)

the second viscosity becomes considerable.

Subsequently, we will assume n -0, i.e., we will consider a

gas without second viscosity; then the normal stresses are deter-

mined by the following expressions:

,-p42ig 2 ±2u,--' + 2p#.- j(22 (22

+ 2

From (18) it follows that the additional normal. stresses appear

only in viscous fluids, when w # 0.

Substituting in (18) the values cx and e from (4) and (6),

we obtain

o;=2,x(23a)
x Y

and respectively for y and z-axes W

6^op 2 [t)a do d _

2p aw 2 (u. _ + _a\

For a nvncompressible liquid

. (24)
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in a noncompressible liquid the additional normal stresses are

connected with the rates of linear strain by exactly such relation-

ships as tangential stresses with rates of angular strain.

It is not difficult to be convinced of this comparing equalities

(24) and (17)

S 5. iNavier-Stokes Equations

Using formulas (17) and (23), in differential equations (14)

it is possible to replace the stresses with rates of strain. In

this case, we will obtain the so-called Navier-Stokes differential

equations of motion of a viscous liquid.

For example, for motion parallel to the x-axis

a 'o dda d°

)fou 2 le~d 6o dw+
2,iA - iA , lUs "- W" W - 'nI

After simple conversions in the case of an invariable viscoelty

value in an entire zone of flow (w - const) we have

51 a of .do , O .a \ Z( 2 5 )

Utilizing designations for the Laplace operator

Amu 0 + j1+ 1

and the divergences of the velocity vector

div W=' am+am+
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let us write equations (25) in a more concise form:

OX +_ + T ' _ -

and by analogy for motion in one direction of the y-and z-axes

ifT_ T Xo dy,, O

Y - 60(26b)
+, + T I' a7 (div M/ ( 26c )

Equations (26) are called the Navier-Stokes equations. In

vector form the Navier-Stokes equations are reduced to one equation

of the form

=R.-gradp+ -W_+- p grad (dv W(27)

whore R is the vector of the stress of volume force.

in a viscous liquiC tne adhesion of particles of the liquid
to tbe walls which limit flow occur-; therefore, with the integra-

tion of the differential equations of Navier-Stokes It is necessary

to utilize as a boundary condition the equality to zero of the rate

of flow at the wall (Ww 0).

In the case of a noncompressitle liquid (p - const) the last

terms in the Navier-Stokes equations (26) and (27) are absent

(div W 0), in consequence of which these equation take a simpler

form:

o = o (28)

dW _

Pg - . (29)
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TIn zolution of the Navier-Stokes equations, even for a

noncorpressit.le liquid, is a very complex problem.

Up Lo now it was possible to solve these equatioas accurately

only in some very simple cases, for example, for the flow of a

vlscouL fluid along a straight tube - Poiseuille's problem; for the

fV.ow btween two parallel flat walls of which one is fixed and the

other moves, i.e. , Couette's problem; for a flow close to the

critical poirnt - the problem of Khiments [as transliterated]

Howarth, e- a!.

The prob!ems of the hydrodynamics of a viscous liquid are

.3clved usually approximately by means of the rejection of some

terms in tne Navier-Stokes equations which, under various specific

conditions, can be small in comparison with other terms.

§ 6. The Equation of Energy

Let us set up a differential equation of energy conservation

for a moving particle of a compressible medium. According to the

first law of thermodynamics the heat supplied to a body goes to

increase its internal energy and to the accomplishment of the

strain energy

dQ=d(c,7)+ApdV. (30)

Here dQ - dQH + dQ - the total quantity of heat conducted to 1

kgf of substance because of the heat exchange of the particle

with the environment (dQH) and the work of the friction forces

(dQ Tp), pd V - the compression work (strain).

For a particle with a volume of V - dxdydz and with weight

G a pgV the condition for energy conservation will be written in

the following form:

dq=dq. idq,pQOd(cjT) ApdV. (31)
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Here dq is the heat obtained by a particle from without, dq

the heat of friction which is released on its faces.

Then the per-second heat flow per unit volume of the particle

is equal to

9=qd~1 T , 0 V (32)
7 dA dt *.-

If the supply of heat from the environment is t..chieved only

by way of thermal conductivity, then in a unit of time the heat

flow passes across a unit of surface in accordance with the

Fourier hypothesis:

dqr or(3T

Here X is the coefficient of thermal conductivity depending on

the properties of the liquid (temperature, pressure), O r - the

temperature gradient along the normal to the surface, q- the

per-second heat flow, F - the surface of the particle.

Returning to the elementary parallelepiped dx, dy, dz (Fig.

2.4), let us write the per-second heat consumption across a face 2

with area dy dz in the direction of the x-axis

,Tdydz.

The per-second inflow of heat across the opposite face comprises

Thus, an increase in the reserve of heat in volume dx dy dz as a

result of the inflow of heat through the indicated pair of faces

during the time interval dL comprises A

9. ddy d:di
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-in .ariy, the inflow of heat in the direction of the y-anu

z-axes comprises respectively

' -7.Ixdydidx d e, ,' dxdy "

The total amount of heat conducted to a particle by means

of the heat exchange with the environment during time dt,

S\ W d z A (34)

Let us now find the quantity of heat which enters volume dx dy dz

as a result of the work of the friction forces.

The viscosity forces applied to the opposite faces of the

parallelepiped have opposite direction. The per-second work is
equal to the product of the force and the projection of the rate

on the force direction. For example, the supplementary normal

stresses ax , which act on faces with an area of dy dz,accomplish
in one second the work (with consideration only of terms of the

Ist order- of smallness)
[_x It,, + TI. + 0 ,

II- ~:u+(ai.t d d: .yd-dx]d, dz

In the same manner the work is determined which is performed

by tangential stresses i xy and T xz applied to the same faces in

the direction of the two other velocity components (v and w):

vdx dyd dL.,, --)x
-: , dx dy dz.

The work of the normal and tangential stresses which act on

the remaining two pairs of faces is calculated analogously. In

summation, the following expression is obtained for the total

per-second work of the friction forces which act on the surface

of the parallelepiped:
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(t .. u4 -+ ".,,y -L "., ) .4- (',., "+ < + ".,W) +
, 6

-r _('.,, : ,, '+ aw)j dx d~y ,,dz. (3 5 )

However not all work of viscous forces is converted into heat.

Part of this work, which corresponds to the resultant of

vi3cous forces, which causes particle acceleration, is excluded

on an increase in the mechanical energy of the particle.

The components of the resultant cr' the viscous forces in the

direction of the x-y-and z-axes were determined in § 4 in the

derivation of the equations of motions; the work being accomplished

by these components of the resultant force in a unit of time,

obviously, equals

[ L - . , , .Ch 0; r

(,
After deducting from the full work (35) the work of the

displacement of the particle (36), we will obtain the unknown
part of the per-second work of the viscous forces which is trans-

formed into the heat:

• U .0w . 1T,, (37)

If now in equation (32) w e replae the value of the total

per-second inflow of heat dq - dq + dq with the aid of (3)
and (37), then we will obtain the equation of energy

' I , V . d I .. 3.'. 6 O .~ 6T'

*. ,' O • . di' . o w .

dL o
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After the replacement, in (37) of the viscous stresses by their

values according to (17) and (24) we will obtain the heat of friction
which is liberated in one second in elementary parallelepiped:

l-t.A*V. (39)dt

where the multiplier

'+ + :a~i+('~+ + +
*, _ m  o.r _ tr ou 0*

T jy~ j~WX j~ *-ry + -47)

is called the dissipative function.

Utilizing the definition of the function * (39) and (40), we

obtain the equation of energy conservation in the formW d o QX j I
dV~ #u'S L0. T- .T (40a)

is callert the disiondtier funtion. sd fthseutinwt

U ilizin the deinition o the unvti.on of (3)and (40g),w

Then the equation of energy can also be presented in the

following form:

PC + Ap(41a)

For the ideal gas which is subordinated to the equation of state
p/pg u RT, the equation of energy is simplified, since t

92 .. +A ., AR) T -"cT ==
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Fence
, or ,+0 , f or (41o)

If the coefficients of thermal conductivity and Keat capacity

do not change in the entire zone of flow, then we have the equation

of energy in the following form:
dl d dn (42)

In a noncompressible liquid, the second term of the left side

of equation of energy (41a) is equal to zero and, furthermore,

cp cv - c; therefore, the equation of energy is obtained in the

following form:

dTC Tdp,,.( 3
dt dT (43)

The dissipative function of 0 in this case also takes a

simpler fcrm since the last term of the right side of (40) is equal

to zero.

For a stationary two-dimensional (plane-parallel) flow the

equation of energies (42) takes the following form:
/d 1 

T  . 6 ' -

pp ,17 ,o =A ,, __ it A - X.

"(" .J UX, ,S U
.  

.

In certain cases in gas dynamics it is more convenient to .ise

-,!iother form of the equation of energy which can be obtained with.

the aid of the Iavier-Stokes equations.

Let us multiply the first of the Navier-Stokes equations (16) k,

by the velocity component u, the second - by v, the third - y w

cind let us add all three equations term by 
term.

Then we will have
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Hezlc for simpl.icity the work of tho volume forces ici rejected as

not playing a role in gas dynamio- and the mean normantl stress is
i'lplaced by the pressure (o - -p),

Adding equation (4j) which reflects a change in Kinetic energy

witn equatinm (42) which cunzA'lers a change in the enthalpy, and

utllizing expression (!'40O, after some ronversions we obtain

r , I 4 .".,1 T. ,1

-- ) ( :: " + o . w . (46)

As I-, k iwn from § 2, Chapter 1, the sum cf the enthalpy

and heat equivalent of kiietir. energy is called total er.thalpy
ful, neat conte nt)

I -+-A (47)

SubsLituting (47) Into the left side of equation (46)1 ana replactrig

the .5treases ny the strai rates with tiie aid of (8), (17) and

(24), after the conversions -ve obrain the equation of energies in

this form:

A,- .)-.. + A --- W( XT) div W,8)

where

'liv W x -, d (dl, W ) ... (di (div vty,

In g;s dynamlics great s!gnificance is Nad (see the fo].lo -tng

paragraph)' by the dimensionless quantity

A

--~
,' --= ... -= ... .- i .. .. i... . -- = ---r ..... . .. . -- i ... .. -.. ." . .T .. .. .J''



called the Pr'andt7, rimber, Let us introduce this number into the

right side of equation (48). For this let us add and subtract the

te ln
A AA Zro

utilize (47), and consider tiiat with op const

'-4T&=- AL

Thus, we heve

dl. AW'
pgd=A 0  -. I,-~(t-(-Pr(- )-+,p(W X V)d1v W. (49)

For gases Ghe Prandtl number is close to unity (for example, for

air Fr a 0.72). With Pr w 1, the third term of the right side is

equal to zero and the equation of energy is simplified:

d19  + .1At. +4 1(W X) divW. (0

§ 7. Hydrodynamic Similarity

in view of the impossibility of obtaining the exact solution

of the Navyer-Stokes equations and equation of energy for the

overwhelming mjority of tasks of hydrodynamics and gas dynamics,

resort is had either to approximate solutions or to experiments on

models. Io the latter case, the question arises concerning

the conditions of similarity for the flow around of a f4.l-scale

object and its model.

Thc firsi; condition in such similarity I, the geometric

similarity which is accomplished if the dimensions of all compati b e

elements of the model and nature differ the very same numter of

times and, furthermore, if the co"patible elements are arranged

at identical angles t'. velocity vector of the incident flow.
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. c,.aic dimensions of the model r differ from

•.: -:'; ... ,g ;h'acerlstic dimension of nature r by k times.

_ (51)

ia5 the 11 inr 'aie of mtdellng (Fig. 2.5). The kinematic similarity

-"",. S rtr thte ,,,cei and nature is achieved if at compatible

i::,'nts whcse , -ates are proportional:

(52)
a, I , r, -

o - , ... *..:3 b'" ;. viDcIty vectors satisfy the condition

"m'-" k-. (53)

Whr:e .12 . , are tn l- 'elcities ,:.f the undisturbed incident flow

"-.f r , mo<' ! and in natuv-- ;wt a great distance ("at

' C1 11 t r.. . :..d The value i Is called the kinematic

tu

Fig. 2.5. Illustration of
geometric similarity.

: -:r.a',t.n i, it follows that compatible points of the

. o '. CAI , : d .tezrmined In the following manner:

re re' to re' re V.
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i.e., as points with identical relative values of coordinates.

in exactly the same manner, from condition (53) we obtain that

at the compatible points of two kinematically similar flows, with-

out depending on the kinematic scale of modeling, the dimensionless

values of the corresponding velocity components are identical:

U.S W W. (--- 5
5

)
Ui6 o ale 830 a O a UWu a awe

The condition of dynamic similarity of two flows, obviously, is

satisfied when values of the corresponding forces applied to the

model and nature differ the very same number of times:

du , d V,* d 1,*

8* dt Pe -U, d; dw. ( 56
-- P P._vWY. Zi= (56)

P. PU pie.R.R

The first of the presented equalities contains the proJections

of inertia force which stand on the left side of the avier-O)okes

equations, the second - volume forces, the third - the forces of

hydrodynamic pressure, and the fourth - the forces of friction

grouped in the right side of the Navier-Stokes equations.

The coefficient kR characterizes the dynamic scale of modeling.

From equalities (56) it is evident that without depending on the

value of the scale kR the dynamic similarity occurs if the dimension-

less values of the corresponding forces applied to the model and

full-scale object are identical: AN.
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X._ X, Yo Y,
P,,- *, j P"ii Pus-,j'

P,,i Pn- etc.~i di ld

-du. e_ e

lydrodynamrcally silmilar are the flows in which conditions of

c eome':ric, kinematic and dynamic similarity are satisfied simu,-
tarecus 3'. I

: viewrIte the ":avier-St'okes equations in a dimensionless

fc .,-.en for t-wo hydrodynamically similar flows these equations

•i torn out to be completely Identical.

Let us reduce the Lavier-Scokes equation to the dimensionless

form (25), for whicr. first we express all values which enter the

equations in fractions ., the corresponding values for an un-

diSturbed flow far from the body (u , p., ii, p.) and also charac-

teristic values of time (tO ) and dimension (Z):

U_ _ Ua --

(-U A. ,L

-
T -, - -

(57)

an-, then let us divide ty tho value u l/, proportional to the force

or Inertia for a unit of mass:
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U u X U .,a

P "' " P_ .P, 'F -"

Ad~ d

I 3-. [ . 4 , I(58)

; : Here it Is accepted that mass force X is the force of the earth's ;

gravity, i.e., X/p g.

The dimensionless Navier-Stokes equation (58) contains the

following d1Lcnsionless complexes:

7Uu. U7 U (58

It is obvious that for geometrically and kinematcally similar

flows the dimensionless equations of motion (58) will be identical

in the case where each of these complexes has the very same value
for a full-scale object and models and if at the compatible points

of these flows the relative values of the density and viscosity
are identical (p/p. = idem, w/v * idem)

t t 30M t.. us F r• t,... ,.....(59)

~ ~ ~,-Eu, Uw j7.

Dimensionless complexes (59) are thus the criteria of dynamic
similarity for geometrically and kinematically similar systems.

Awarded to these similarity criteria are the following

designations and names:
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w

-Sh -trouhal number,

"'-Fr - Frcude number,

=Eu - Euler number,

!1U R - Reyinolds number.

In expressions (60) the indices are omitted since in them on-

ought to substitute some characteristic values of the parameters

which ao not mandatorily correspond to their values at "infinity."

Let us recall that each of the criteria of dynamic similarity

wa,,i: "rmed by the divisicn of the corresponding force into a

value iproportional to the force of inertia; therefore the Froude

ilumter in essence determines the ratio of the gravitational force

(volume force) to the force of inertia, the Reynolds number - the

ratio of the viscosity force to the force of inertia, the Strouhal

number - the ratio of the supplementary (local) force caused bY

the unsteady nature of the motion to the force of inertia, and

the Euler number - the ratio of the force of hydrodynamic pressure

to the force of inertia.

In a noncompressible liquid Euler's criterion is not determinant

since it is possible to take the dynamic pressure pu 2/2 as a

characteristic pressure p and then Eu is a constant number.

In a compressible medium Eu criterion can be presented with

the use of the known expression for the speed of sound a - kp/C.

in the form

this means that in the case of gas flows two supplementary similarity

riteria appear:

110

, _ __ ___, __ i___-ii i i,_ i i :i F



Poisson's number

and the Mach number
MMS-

the values of which with the similarity of flows near the model and

nature should be respectively identical

k k. M. M.

Let us now move on to an examination of the equation of energy.

To reduce the equation of energy (42) to dimensionless form let us

refer, as formerly, all values of velocities to the velocity of

the undisturbed incident flow u., all linear values - to the
characteristic linear dimension of the object Z, all pressures -

to the pressure in the incident flow p, , and all temperatures -

(. to a difference in the temperatures of the incident flow (far from

the body; and the wall of body AT0  T - Tw . For simplicity let

us investigate the equation of energy for steady flow conditions

(it is not difficult to show that consideration of unsteady terms
in the equation of energy leads to a Strouhal number, i.e., to

the criterion obtained earlier from the Navier-.Stokes equations).

Then from (43) and (40) we have

r Ar .h r

L 4T -" Y

U6 OL- M= _ oy-NC -]

a-t b -) ,- J

Aar, K



2i +~ u +-

U " it Cf +i ±
0", .2 +r

b .+ v 7~. +o 3T.=__ %AI. ; u~ U .

r at

+±A ~ 2 +

fuJc D d ,t ---4- ++ ~ + u X

\r -Ii 0 -

Here i T aT - T is the excess local tempera-.iu'e (in conparison

wihthe wal 11,emrera*-ure) u-~ee or d, d C AT) The lef't side

of the equatlo,, of ezn,,%rgy reflects the cornvectve heat 'trarnsfer;

-tIerefore, the divlslor. of all _'mrrs by tne dimensional f; ct:r of

t'he l1eft. side rmeans that all fon~of' ;-eat, fluxes are expressed

in frc~n f rthc *.ecv.

The thermal simI'larIty of the tcprocesses I3 achieved~ whe.,:

tnev ar.o boDth- descrIted by tne very same dimensicr.ess equatio-n -:f 4

C Thn.z ccncitor. is Jat sf led 1;Ih te co2erv.ance -of

!1?



( hydrodynamic similarity;

2) the similarity of the temperature fields, i.e., the equality

of dimensionless values of the excess temperature in compatible

points of two flows AT/AT - Idem with x/t i idem, y/Z idem,

z/L idem.

3) equality, in both flows, of values of each of the following

dimensionless complexes of equation (61):

p,Awe, I Apo.

It is expedient to transform these complexes somewhat. So,

the first of them is the product of the already known Euler

criterion times the so-called temperature criterion

Aul. kAR T. '
ge.U' , i At. Ag RT,

Since AR=c,-; k=c,/cp. kgRT,--4 then

Au' ___ (62)

Consequently, the temperature criterion which considers the relation

of the compression work being achieved by dynamic pressure to the

convective heat flux Is proportional to the square of the Mach

number and to the ratio of the full temperature of the incident

flow to its excess temperature. The value

Au'T Tml=--- TO- T= A" i

is a temperature increase with the adiabatic stagnation of flow;

therefore we also have

AT*' T-T
Q=2 ~r=2 ~2~(6-3)
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Thus, the temperature zriterion is equal to the doubled ratio

temerature increase with thle stagnation oi' flcw to the

ex, ess gas terrcerature; hence, it is clear that this criter!,on

has significance only with large flow rates.

We convert the factcr with the second term of the right side of

ejaat. cn (61l', which expresses the ratio of the heat being trans-

ferred by heat conductivity, to the convective heat flux thus:

I (63a)

One of its dimensicnless cofactors is the recicrocal value cf

the lieynoids number known to us; the second dimensionless factor,

inversely proportional to the value called the Prandtl nu..mber

pr = _= &. (6L)

depends only on the physical properties of the medium. The value

which is called the coefficient of temperature conductivity,

has a dimensionality of the kinematic viscosity coefficient v.

The product of the Prandtl and Reynolds numbers is called

Peclet's criterion or number

Pe.=prR "  (6 )

This criterion is widely utilized in modeling the processes of

heat exchange. The factor with the third term of the right side

of equation (61). which is the ratio of the heat being scattered

to the convective heat flux, does not lead to new criteria since

it equals the ratio of the temperature criterion to the Reynolds

numbe r:

-q ( 66)

p.o
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To the aforesaid it should be added that for a medium of

variable density we should include in the iNavier-Stokes equations

the volume forces of Archimedes, since according to Archimedes' law

"aparticle surrounded by a liquid of different density loses in

its weight as much as the volume of liquid it displaces weighs." A

Thus, the Archimedes force applied to a particle which has volume

V, is equal to

(T -~ t'V g(-pl V.

The projections of the Archimedes force referred to a unit of

volume which should be substituted into the Navier-Stokes equations

can be presented in the form

X&=(p -p ). gy(P -F. Zg, (P- PA

where gx1 gy, gz are the projections of the gravity acceleration

to the coordinate axes.

The ratio of Archimedes' force to inertial force, which should

(stand in this case in the right side of the Navier-Stokes equation

for the x-axis, will be written in the form

The relative change in volume, and consequently also in the

density, is proportional to the temperature change:

where 8 is the volume expansion coefficient.

In an ideal gas with constant pressure = TJIT, i.e., o

* l/T. therefore

1 g 11
t-s U@7a--r-T-Fi1.



"' e ImE';s "1"eSS factor

A .rAtt (67)

is .alled Archimedes' number; it is important for hydrodynamic

sliilarity when the temperature drops in a gas flow are great and

the vel.ccitles are low.

As -w-e see, Archimedes' criterion is obtained from the divson

of the relative temperature drop by Froude's number.

in the general case (l l/T.)

A.. A'. 4 (68)

The dimensionless quantity

Gr APAr (69)

which expresses the ratio of Archimedes' force to the viscosity

force, is called Grashof's number.

Thus, for the satisfaction of the conditions of hydrodynamic

and thermal similarity it is necessary that in the model of the

value of the similarity criteria:

Reynolds number: R .

Prandtl's number: Pr = ( 1-0)

Grashof's number: Gr. j

temperature
criterion:

be the same as in a full-scale object.

For gases, the equality of the Mach number
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( a:.. the relation of h.eat capacities

shci.ld also be observed.

S 8. Zaminar Flows

We come to one of the simple special cases of the exact soluticn

of the Navier-Stokes' equation in the case of the so-called "laminar

flows," when only one velocity component is retained, and the otner
two are equal to zero everywhere:

if" the mass forces are negligible, then in this case the equaticns

of motion take the followinK form:

fi 414p to"ea ol s + d ; Au\ 1 ad' V a7i* + J;§ jOa'J -S '6 i

and the equation of continuity

if, furthermore, we are restricted to the case of the steady

flow of a Acompressible liquid ( -0. p--convt), then from the

equation of continuity ensues the invariability of the velocity

in the direction of flow Bu/ax - 0, and from the latter two

equations of motion - the pressure constancy in the transverse

directions: ap/ay - 0, 3p/ z -0. Then from the first equatizr.
of motion we will obtain

~- + )

L;et the laminar flo.w cf a viscous noncompressible liquid be !:!an~e-

parallel, whereupon the rates of flow in the direction of the z-axls
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do not change au/az 0. Then in the fi--st equation of motion only

tangential viscous stresses which act in plane (x, y) will. be

prese..ved:

3; k 0 a n (ay.)

Relationship (71) expresses Newton's law of viscous Zriction in

the simplest form; dlfferent!ating (71), we obtain

Then the firet of tho equations of motion takes the form

,rk, e(72a)

Let us examine the plane-parallel laminar flow of a viscous

ncncornpressible liquid in a channel formed by two infinite parallel

plates.

If the distance between the plates Is equal to 2b and the

origin of the coordinates lies on the axis of the channel (Fig. 2.6),

then as a ooundary condition of the task it is possible to accept

the condition of the adhesion of the liquid to the wall:

U-O with Y":- . (72b)

Integrating differential equation (72a), we have

dp dis
.y+c,-p . (72c)

From the symmetry condition it follows that in the median plane

du(y 0) dL 0, and this means C1  0.

Fig. 2.6. Plane-parallel flow
2 in a channel.
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(Now integrating equation (72c), we obtain

whence on the basis of (72b) we have

bitCt "T d '

an,! consequently,

'" bv (72d)

The rate of flow on the axis of the channel (with y = 0)

" -pdx"  (72e)

After dividing term by term equality (72d) by (72e), we obtain

u (73a)

From (73a) it follows that the dimensionless velocity prflle witn

the laminar motion of a liquid in a flat channel does not depend

either on tihk value of the viscosity or on the value of the

longitudinal pressure gradient and is a quadratic parabola.

Using the condition of the constancy of the fluid flow rate

it is possible, on the strength of (73a), to determine the so-

called "rrean rate of flow" in the channel

(73b)
b, b V biT,6

We compute the pressure gradient along the channel. For this,

we determine from (73a) the second derivative of the rate in the

transverse direction

ONa 2at
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. v1j value in (72a)

, r.ressure with a laminar flow of a liquid in a

:>,'. ,, :' ' c.s;.ortional to the rate and inversely propcrtional

1..av -.ie height of the channel. The pressure change on

:, ., length x - Z equals

=_ (74)

S:. ".:r.f,.P-s; form

' ; t:' i'ull height of tne channel. Replacing maximum
.. ,". . ,- .g with the aid of (73b), we obtain of known

f=-, Pi, (75)

In %0'2t: trit: .. factor for friction

X =(76)

I or:':z.': ; .. Reynolds number determined for the average rate

R._ =__, (77)

.1111i.':,..: .' 'formula (15) indicates that the pressure along tne

. ....,.latIng the value of the transverse gradient of

r r:, ... ,flr wall (y - b), with the aid of (73a) we find from

, ', . ' .:. :r. 5trcss at the wall
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! ''u' ',ANP (78)
b" - TT-"1

or in dimensionless form
,%, 2 127 -;P (79)

The value C is called the aurface friction coefficient. Values

w and cf can also be determined directly from (75) if one considers

that the force of the difference in pressures which acts on a

column of liquid with a height h and length Z, should be balanced

by the force of friction applied to walls):'

%,1 Apk

Hence

(80)T?

i.e.,

Differential equation (72a) also describes The laminar flow

between two parallel walls of which one moves in its plane at a

rate of U, and the other is fixed(Couette flow).

i 9. The Equations of Motion of an
Ideal Fluid

The analysis of the Navier-Stokes equations of motion conducted

by Prandtl back in 1 90 4 showed that in the case of a liquid of

'The velocity profile in the transverse cross section Is

stabte and the liquid density is invariable and, consequently,
the total momentum along the slot is constant.
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low viscosity (water, air, etc.) with sufficiently large values

of Reynolds number the influence of viscosity is felt only in a

thin layer adjacent to the surface of the body being flowed arcund

- the boundary layer).' Outside this layer the role of the viscous

fo_ es turns out to be so small that the corresponding terms in

the favier-Stokes equations (26) or (27) can be disregarded.

In that case we obtain the equations of motion of an ideal

compressible liquid

Pdi x - op Pdv - =- (81)

or

pW (82)p' F : -ft- rad P "

Since in many instances under these conditions heat-transfer

is also substantially exhibited only in the boundary layer, in

the remaining part of the gas flow according to the equation of

energy (50)

Ad. (83)

and, in particular, with steady motion

t coast. (84 )

But in the absence of friction and heat exchange in gas an ideal

adiabatic process is achieved, in connection with which instead of

the equation of energies it is possible to utilize the equation

of the ideal adiabatic curve

A M= €o"t (85)

'For more detail about the boundary layer, see Chapter VI.
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(A
in the case where the liquid Is ideal and incompressible

(p const), the task of the integration of the equations of motion

81) Is greatly simplified. This was also indicated for the first

time by Euler, whose name the equations of motion bear (81). The

analytical methods for the solution of the equations of motion of

an ideal fluid received great development, and at present a great

number of cases of flow around bodies have been studied (wings,

wing trusses, bodies of axisymmetric form, all pos ,ible channels,

etc.). From the aggregate of the works in this direction an

important direction of contemporary mechanics was formed - classical ci

hydrodynamics.

In conjunction with the boundary-layer theory, the hydrodynamics

of an ideal fluid became a powerful means for the solution of

problems of the aerodynamics of aircraft, hydrodynamics of a ship,

mechanics of the motion of a liquid along tubes, and many others.

For example in the case of the flow around a body of smooth

form with large values of Reynolds number, the boundary layer is

so thin that the pressure distribution over the body surface is

determined in the first approximation from the equations of Motfon

of an ideal fluid. Further, as will be shown in Chapter VI, from

the known distribution of pressures it is possible to calculate

the boundary layer and to find the friction stresses at the surface.

If necessary it is possible, in the second approximation, tc calcu-

late the boundary layer effect on the external flow around the

body (beyond the limits of a layer) and then to determine the tk

fr.ction stress more accurately. But frequently they do not

resort to the calculation of the second approximation, since tne

first approximation gives satisfactory results.

The solution of the equations of motion (81) has an especially 1

simple form in the case of the vortex-free motion of an ideal fluid
when vorticity is equal to zero (see expressions (2)), i.e.,
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Wjr -w-

II

-I d o . (86)

SIna(o o .,

.-rom conditions (86) it follows that some function @ exists whose

partial derivatives in terms of coordinates x, y, z are equal

t; the corresponding velocity components, i.e.,

Actually, substituting these values in (86), we obtain the identities

dodu =y Of _O_-di - -- aj- 0-F =MV etc.

Function q is customarily called the velocity potential, and vortex-

free motion - potentiaZ.

Let us replace on the left side of the first of equations (81)

the full velocity derivative by the sum of its partial derivatives

and let us add to It the sum equal to zero

Then this equation is reduced to the form

I-"W- V , #) "- X - OP (87a)

where W=V-tr'iFw is the full. rate of flow of the liquid.

in a similar manner, it is possible to transform the equations

of motion along the remaining two coordinate axes:

O tI awl ,
- Ws,) = (87b)

-- -If -awl 2(u - r,= .

W.L +
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4System of equations (87) is called the Lamb-Gromeko equations.

If the velocity potential €, the potential of volume forces 0

U, ,

and also some function P(x, y, z, t) that satisfies the conditions

exist, then equations (87) are written as follows:

0 19 IdWV as dP

d 2 low- as OP (88)

Used here is the condition of the independence of a mixed derivative

of the order of differentiation

(Z- -i etc.

If we multiply the first of equations (88) by dx, the second - by

dy, the third - by dz and then add them term by term, then we will

obtain

d "("qdx 4 a MY c ?)l![Vdx+ dy + d:J]

r !d+ Id.-- -j-- vd.a.p.-](+9) O(89

Each of the brackets in this expression is a total differential;

there~pore, instead of' (89) we have

N1d5+d +dP A 190)
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IW

This brings us to the so-called Lagrange integral:

P+ L +126+Cn(90a)

,,.re :(t) Is the arbitrary function of time.

Zince by definition

p= (90b)

the Lagrange integral can be presented in the following form:

+ (90c)

ir the case of steady motion ( 0. C(-)=cost) we have

If the liquid is barotropic, i.e., the density is a one-valued

function of pressure, then integral (90D) can always be calculated;

with steady motion of a noncompressible liquid (p - const),

Lagrange's integral appears thus;

+. "b4consL

An important feature of Lagrange's integral is the fact that it ii

valid in the entire space filled by the liquid.

If a velocity potential does riot exist, I.e., the motion is

vortical, then the equations of motion ofan ideal fluid (81) also

can be integrated, but only along the flow line and under the

condition of steady motion.

With steady motion, the elementary displacement of a particle

along the flow line ds Wdt or in projections to coordinate axes

X-, y, z

dx "=dl, dy =" vd. dz =a wdl.
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Let us now multiply each of equations (81) by the corresponding

projection of elementary displacement along the flow line and let

us add these three equations:

iidu Wv + Wdw=Xdx + Ydy+Zda-
,( dx dy+ d).

The left side of this equation is the total differential from

(W2 /2). If there is a potential of the force function (dl = Xdx +

+ Ydy + Zdz) and the liquid is barotropic ( ,). then this

equation can be written in the form

d A~)d - dP.

Integrating, we come to Bernoulli's known integral;

P+ - Const

( or

0 - oni-

If the force field is caused only by the earth's gravity and the
z-axis is directed vertically upward, then the projections of the

force which acts on the unit of mass

In such a case Bernoulli's integral takes the form already known 4

from Chapter I

d + Z c -- -co,,.t (91)

or' for a noncompressible liquid

-9,

+ 1 +T2



iet us recall again that unlike the Lagrange integral, Bernoulli's

In:tegral is valid only along the flow line, i.e., the value of

t:i, c unstant in right side of (91) for different flow lines is

d issir.ilar. Only in the case of a ateady potential flow does

bernoulli's integral convert to a Lagrange integral and is made

suitable for any point of space.

5 i0. Fla:ie Steady Motions of an
'deal Compressible Liquid

The plane (two-dimensional) steady motions of an ideal com-

Fressible liquid are described by the followingsystem of differential

equations:

by the equations of motion

Fit &. + P 3; 6 Z, ,. I 9 i
Pt + P -V

(here volume forces are omitted).

By the equation of continuity

__0a _ (v (93)

By the equation of the ideal adiabatic process (instead of the

equation of energy)

Sco ast ( 9 4 )

In a noncompressible liquid (p = const) equation (94) drops out

and the equation of continuity is simplified:

+ ±(95)
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:f -here ia a velocity potential ¢, then

&as!tuti. (95a) in (95), we obtain for the velocity potential

ihe Laplace equation:

+% 0'.=- ( 95b'

to the scl, ion of -,.hich the task of the construction of the plane-
parallel cotential flow of an ideal noncompressible liquid is also

reauced. in this case, the boundary condition of impenetrability
Is utilized for the liquid of the firm limit of the body being

flcwed arro-nd Wnw i.e., the equality to zero of the ccmponent
of the velocity vector normal to it near the wall.

With motion along the flow line, the particle of liquid

during time dt covers the path dS = Wdt or, in projections to
coordinate axes, dx - u dt, dy v dt. Excluding the time from
t-is, we ottain the equation of the flow line

8 9

or

udy-vdx=wO. (96'

As is known from mathematics, if the following equality is satisfied

dv == da
dj, -o;

then the left side of equation (96) is a total differential zf

some function I9(x, y',. For the potential flows of a noncompress'ole

liquid, this Condition, as follows from the equation of continuity

(9'), is always satisfied.
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Thius, the differential equation of the flow line can be

;,:Ktter in the following manner:

d=u dy - dx =0

cor
(, )=onsL (96a)

Y'nction (p whose value along the flow line is kept constant is

called the stream function.

In accordance with (9b), the velocity component can be ex-

pressed as partial derivatives of the streamfunction

If we substitute (97) into the equation of continuity (95), then

it will become the identity:

,V+ - !t+- --0.
ax- dy dx

The physical sense of the stream function is very simple. Let us

draw two close flow lines in the flow through arbit'ary points

1 and 2 (Fig. 2.7). It is not difficult to see that the volume

fluid flow rate in the plane flow between the adjacent flow lines

is equal to

d V= a dx - ,dy d .

Thus,

V= (ody- vdx)=(x. IQ -,(xi, y,).

i.e., the per-second volume fluid fl,?i rate which flows between

flow lines 1 and 2 is equal to the Ulfference in values of the

stream fianction on these lines.

130

_________-[~-tJJ.- .- - -- - .--



( in view of the impenetrability of the flow lines for a li.d,

the value of the stream function on each flow line is constant.

Comparing (97) and (95a), we see that the families of the flow

lines " - const) and the lines of equal value of velocity potential

((P const) form the orthogonal grid of the curves.

Fig. 2.7. For determining of
the fluid flow rate between
adjacent flow lines.

-d

If any two plane-parallel steady flows of an ideal iLoncom-

pressible liquid are known, i.e., for each of these flows t.he value

ana the direction of velocity at each point of the 1lane are knowj2,

tr:en it is possible to construct the new resulting flow which will

a-ise as a result of the auperposition of these two kt.., wn flows.
For this, at each point of the plane it is necessary to construct

the velocity vectors of each of tae two known flows. The sum of

these vectors is the velocity vector of tne resulting flow.

Let us give a simple method for the graphic determination of

flow lines of the resulting flow from the flow lines cf the super-

imposed flows. For this, let us draw on the drawing the flow line

any two plane flows (Fig. 2.8). The intersection of these flow

lines forms a grid. The flow lines should be drawn so tnat the

sides of the cells cf this grid depict in a specific scale the

velocity vectov's of ti.e superimposed flows at a particular Idcint. 1

'it is easy to show that for the satisfaction of this condition
it. suffices to draw the flow lines so that the flo'w; rate tet. een
any two adjacent flcw. lines for both flo.ws would be i i:itical.
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-hon 'or obtaining tiie flow lines of the resulting flow it suffices

to -nect the consecutive points of intersection of the flow

Ives of tne superimposed flows with each other, i.e., to draw a

ai z.val In each cell of the grid. These diagonals depict, in the

same scale, the velocity vectors of the resulting flow at the

corresponding points (Fig. 2.8).

In the case of the compressible liquid (gas) it is convenient

to ccnvert eqiatlons (92,1-(94), introducing in them the speed of

sound a = /dp/dp. For this let us present the equation of continuity

(93, in the form

"i,+ ,a+(+± )=o (98)

and let us express the density gradients through the pressure

gradlents and the speed of sound:

dt dp Op I dP

Expressing the pressure gradients in (92b) with the aid of (92)

through the velocities, we obtain

z (Ty"(99a)
W - ,C + V .

*1Fig. 2.8. The graphic addition
of flows.
KEY: (1) Flow; (2) Resulting
flow.

(2)
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SA.s';..uting ,99a, ard ( 9a) into the e-uaticn of ccnttinu:t;, ,:.

":e ha'e

(at~ Ut11) 2tv - + (4t-v --0.

,-e derived the fu namental differential equation of gas dynar. s

f-r a -lane cotential steady 'lo-;.

n -. ,e particular case of low rates of flow, of gas (u << a,
V << a, eouation (100) converts to the Laplace equation (95b)

-,.,.- determ-'nec te mot-on of a noncomzpressltle liquid.

.'r the construct'on of a velocity field in a supersonic fi..,

equa: r. J is usually solved 1v the method of characteristics.

in the study of flow around thin. bodies at low angles cf ats:au

toth in a subsonic and suoersonc f:, eq;attm (100) is solved t-2

.he metncd of slig disturtances (llnearizatcr 'ietd>;,"

11. Veloc.-, Circulation

in a steady plane of moticn te particle speed w is tni £

of t.,;3o coordinates

0=W(x. ),

This vector functicn determines the e fietd.

- he study of different cases of gas flows, in car-, i 1ua:.

tno fl ,. around wings and other bodies, it is usefuI to Intrzduce

some value ccrnnetei ;ih t-e velocity field of the fic-; in

*zesci:rn and called the eicL.-iy' ci2ruZa:t-or.

By the velocity circulation cver a closed loc- L.

undersoand the Intewra"

tv Cos (w, ) .dL

1 :



"- 1iJe of the velocity vector, (w, z) - the angle
2.1' ?.;- V.iCJ..cV vector and the direction of the loop at a

. -1; ( - the element of length of the arc of the loop. The
th t tne integral is taken on a closed loop.

-a.;. -,r the sum- Fig. 2.10. For the
circulation. summation of circulatJon.

v,_.lucity circulation is the limit of the sum of the
velocity projection tangential to the outline

.. .,orr'(ipornding element of length of the loop. We will
, c.,urterclockwise direction of the circuit the positive

(>::' . r! o' e circuit on the loop.'

-':':' Th-2 ".ery definition of circulation it follows that the
,- :.';r~~ tnrough any loop L can be expressed in the form of the

f 'r.. c:,-cculationE through the separate cells of an arbitrary
, J.. colcrs the area limited by the loop L (Fig. 2.9). In

•,. amine some closed loop ADCBA. Let arbitrary arc
.[2 ,'JV'i, the airea limited by this loop into two cells: ACBA and

D t:;k- ". 2.10). We express the circulation for each cell. For

rAA-1A1, o w

, .: m*s it is more convenient to considler the opposite
z...-.=,eA['., . w I t I ved
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In this case the integral of loop ACBA can be divided into two

integrals: an integral of arc CBA and of arc AC. For the second

ce'll

eeW. 1COS W.1)dA
eADCAi

The integral of this loop is composed of the integrals of arc ADC

and of arc CA. The sum of circulations for loops ACBA and ADCA

is equal to the sum of four integrals, whereupon the integral of

arc AC which enters the first circulation and the integral of

arc CA which enters the second circulation cancel each other out

since they represent the integral of the very same arc passable In

opposite directions the (integrand in both integrals is one and

the same). Thus the sum of circulations for loops ACBA and ADCA

equals the sum of the integrals of arcs CBA and ADC, i.e., the

integral of loop ADCBA. Thus,

I r/cA + rAJ-,A =ACA

Thus, the sum of the circulations for the loopa of two adjacent

celZa i8 equal to the circulation for the entire loop L. If each

of the cells ABCA and ACDA is divided into two more cells, then for

each of them it is possible to completely repeat the above given

consideration. Continuing the process of division further and

repeating the same considerations each time, we come to the above-

expressed position about the summation of circulations (see Fig. 2.9).

S%
-4

dlyFig. 2.11. For determriing
jthe connection between vortex

and circulation.
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Now we express the expression under Lhe intcgral sign in

formula (101) with the use of polar coordinates (r, 0). For this

le., us examine Fig. 2.11 Let M(r, 4) be a point of an
arbitrary loop L, dl = MN - an element of the arc of this loop, w -

the velocity vector at point M with projections w r and w Let
us designate angle (w,'Z) = /NA1P- ,L.PIKX A- 1,IK-T. From the

figure one can see that

There fore

cos (wO 1 cos 2 cos (7- ) = cos cos + sI sin.

but from the small curvilinear right triangle MNK we obtain

AIX dr

SIl : = r isin.

Further, it is obvious, that

Substituting these values in th-. expression for cos (w) Z), we

find

Then the expression under the integral sign in formula (101) assurnes

the form

wco (..)1r"
crcos~~~~~~w Odvsd- , dr+W.do
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Thus, in polar coordinates we obtain the following formula

for the velocity circulation

Sw, d,+..- rd,. (102)

The elementary displacement of a particle of liquid or gas in

general, as noted, consists of three parts: forward displacement,

rotation, and deformation of the particle. The motions in which

the rotation of particles is absent are called vortex-free and

motion with rotation - vortical.

- N Fig. 2.12. For the determina-
-tion of vorticity in polar

coordinates.

( C

With the motion of a liquid particle MKNR (Fig. 2.12) .ti,

rotation, its form changes in general. Suppose that after a small

time interval dT faces MR and MK occupy position MR' and MK'.

The displacement of the particle as a whole, determined by the

forward velocity, is not important in this question. We determine

the angular velocities of the rotation of points R and K relative

to point M. If the velocity component at point M is designated 7

by w and w, then velocity components at point K are equal to

Arand i-Or

and the components of relative velocity of point K (relative to

point M) -- r Ar and Ar. It is obvious that the rotation of peint

K relative to point M creates only the second of these components
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since the first is perpendicular to the direction of rotation

(is directed along MK). Thus, the circular velocity of rotation

of v1;Ant K relative to M due to which path KK' is made equals -Avr,

and the relative angular velocity of rotation of point K near

the center M is equal to

LWIAr

% ,

Fig. 2.13. For
the determination
of increases in
velocity in polar
coordinates.

The velocity components at point R equal (Fig. 2.13)

wr+W,%? and AP

The rotation of point R relative to M occurs in a direction

perpendicular to chord MR. By virtue of the smallness of angle
60 it is possible to consider chord MR perpendicualr to radius CM,

and the chord length MR - equal to the arc length MR. Then the

direction of rotation of point F relative to M is parallel to
radius CM. We find tite projections of both velocity components of

point R for the direction of rotation. Figure 2.13 shows that

these projections are respectively equal to

an A? a.n d (tw.j
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( The minus sign at the first projection is accepted because this

projection creates clockwise rotation, and counterclockwise rotation I
is considered positive. Considering approximately 1 ar.d sir

¢ L; and rejecting the term of the second order of smallness
,2wh Ich has (), as a factor we obtain the following values of

the projections in question:

amd+- dl a and o&'

In order to obtain the circular rotational velocity of point R

relative to 1, from the obtained expressions, obviously, it i*

necessary to subtract the projections of the velocity components at

the very point M to the same direction CM. But projection of w

to CNI equals the value wr itself and the projection of wu to CM Is

equal to zero. Thus, the circular velocity of point R relative to M,

which causes displacement RR' (Fig. 2.12), is expressed thus:

(. ,- (-,+ cA,-,).

Then the relative angular velocity of rotation of point R near

center 1- equals

WJ.. AIR rii tsince :

As the mean angular velocity of a particle relative to po'n":

M we take the arithmetic mean of the angular velocities of the

extreme points R and K:

Y dr r r
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:t is convenient Co convert this expression to the form

-I d.\t ~tv~) ~w(103)

Formula (103) determines the value of the vorticity (see 1) in

pc .rnr coordirates.

In hydrodynamics it Is proved that the motions of an ideal

fluid, having been vortex-free at some poi.nt in time, always remain

vortex-free. But if motion was vortical at some moment, it will

be always vortical. 'Tne arising of vortices should be caused by

special reasons, for example, by the viscosity of a gas or liquid.

A condition for the absence of vortices is

(104)

or In polar coordinates

.e OvWa (105)

In order to explain the connection between the concepts of

vortex and circulation, we transform the integrand in formula (.102).

Let us examine surface element MKNR bounded by coordinate lines

MK, MR and RN, KN (Fig. 2.14).

Fig. 2.14. For the
• g determination of

circulation in polar

Mcoordinates.
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Let us the compose the expression under the integral sign for

circulation over the loop MKOIR. It is obvious that we will ottain

w+ dr) d-

-(w, + dp) dr uiw~idp-

Here w r i the tangential projection of the velocity on seg-

ment MK= dr, w,+am - the tangential projection of the velocity

on arc KN=(r--dr)d w,+-' d? - the tangential projection of the

velocity on segment HR = dr and wu - the tangential projection of

the velocity on arc RM r dt.

With the last two terms, the minus sign is taken because the

positive direction of the velocity on segment HR and or. arc RM is

cpposite to the direction of the circuit over looi. MK ?R, Performing

calculations and rejecting the term of the third order cf smallness

(drJ 4yh we obtain

~dr .- W. d?==" rt -- O d ? d r .

Comparing this expression with expression (103) for vortlcity'

and noting that the product r de dr is the elementary area .F

encompassed by loop M!Ki. R, let us write the last expression in tIs
form :

dr = 2% Ap

if we low divide the area included by arbitrary loop L into
small elementary areas formed by the grid of coordinate lines

(Fig. 2.15) and utilize the rule for the summation of circulations, E

then we obtain

rL= dl'#g 2w, d 4

or, if we pass from sums to integrals:

1"- ,,dr - w.rd?- 2 dP. 06
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Fig. 2.15. For the summation
of circulation and vorticity.

The obtained result expresses the unknown connection between
vorticity and circulation.' If the value of the vortex is identical

in all points: w w const, then0!

r 2 dF= 2w.F.

i.e., in this case the value of the cirouzlation over some Loop is

equal to doibZe the product of the value of the vortex timee the

area being included by the loop.

Let us examine the steady motion of a liquid. Circulation F

with steady motion retains constant value over any fixed closed

loop.'

Let us assume further that the motion Is steady and vortex-

free (w = 0). In this case, the circulation over any fixed loop

is equal to zero. The latter conclusion, however, is correct only

in the case when within a fixed loop only particles of liquid

which accomplish vortex-free motion are found. Circulation over

a fixed closed loop is different from zero if the loop encompasses

a area within which is found, for example, a single vortex' or the

streamlined body."

'Formula (106) expresses the Stokes theorem for plane motion
(see, for example, N. Ya. Fabrikant,Aerodynamics. "Science," M.,
1964).

2In hydrodynamics it is proved for a very broad class of
practically important motions that, as in the case of unsteady
motion, the circulation along a closed loop is constant; however,
in this case the so-called liquid loop is examined, i.e., the loop
which consists of the same particles. The latter statement is
called 2hompson'e theorem. From this theorem it follows that if
a certain mass of liquid at zero time had vortex-free motion or
rested, then also henceforth in this part of the liquid vortices
will not arise, which was already mentioned above (see also the
textbook by N. Ya. Fabrikant cited above in the first footnote).

3About a single vortex, see below - Example 2.
"As will be shown below, with the flow of a viscous liquid

around a body vortices are formed in the flow.
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( Thus, we see that the arising of circulation is always .o....ced

with the formation of vortices in the flow of a liquid or gas.

Let us now examine some very simple examples of the motion of

a liquid which make it possible to explain the physical sense of

the concepts of vortex and circulation.

Example 1. The rotation of the liquid as a solid. Let the liquid

rotate as a solid around the origin of coordinates with constant

angular velocity c. Then the value of the velocity at each point

w - Er, where r is the distance of the point from the coordinate

origin. We find the radial and circular velocity components. It

is clear that in this case

Let us compose the expression for vorticity. Accord g to formula
(1 CI3)

-- W o r,1 = ".

The value of the vorticity in all points is identical and eq.aa :o

the constant angular velocity of the rotation of the rarti'iles Cf

liquid. This result was evident earlier since it fclo'o

directly from the very definition of a vortex.

Let us now find the vaiu: of circulation over a loop which

encircles the origin Gf the ccordi.. tes. Let us take as such a

loop a circle of radius r. From formula (102) we obtain

h

The value of the Qirculation is proporticnal to the sqiuare , ,i'

the radius. Dividing it by the area of a circle F, we find

r _27iur' 2

2 21
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hW

rt ,=2"P.

Th12 c:-uality Illustvate2 t Stokes tieorem (106,; An this case,

the value of cl rcuLat.ion alnog the circurferenoe 1 equal to twice
t pe .roduct rf th. constant value of the vortex w times the area

cf the circle.

Lxample 2. Vortex-free circulating motion. As the second

example, let us ex- I plane motion of a liquid where the

articlcos of liquid move along concentric circumferences around

the coordinate origin at velocities inversely proportional to the
distances of the particles from the coordinate origin so that the

velocity at every point w - c/r, where c is constant. Here the

radial and circular velocity components equal wu  w = c/r. We

f'nd the value of the vortex:

Fr~a IJ IF 7

Thus, the value of the vortex at all points except the coordinate
origin is equal to zero. In the coordinate origin (r = 0) the

velocity is equal to infinity, i.e., the coordinate origin Is

mathematically a singular point. Physically, such motion is

possible only outside some nucleus of finite radius rO. The nucleus

can ,onsist of a solid or of a li.uli of the same or e.nother

density. Outside the nucleus the flot, Is vortex-free. On the
surface of the nlCuCAS the velocity has some finite quantity

w = c/r O .

Let -s find the va '.e of clrculatlon o'er a zircumference with

the center at the coirrinate origin:

F A -r o st
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(In this case circulation over any circumference is a constant value.

Since w - c/r, it is possible to write

where r0 is the radius of the nucleus and w0 is the velocity on 4

its surface.' Thus, the velocity at any point

S r

The examined motion o.' a liqAid is called vorex-free cireulating

motion, and the velocity field corresponding to it is called the

velocity field of a plane isoZate" vortex. If we consider t;,e

fluid incompressible, then pressure

p; ' .:- - ."= .' - =,

decreases with a decrease in the distance from the coordinates

origin,i.e., from the center of the vortex.

With r0 - 0 the nucleus converts to a roint. This point is

called point isolated vortex. Therefore, vortex-free circulating

motion can be connected with a point vortex; the latter induce-s

at each point of a plane a velocity perpendicular to the scj,-Aent

which conn',ect. this point with the vortex and equal in magnitude

to F/2nr, where r is the length of the indicated segment, i.v., it

induces vortex-free circulating motion with circulation F.

7)J

Fig. 2.16. Diagram of the
flow around rounded and
acute edges.

) -

'As it is not difficult to show, circulation over any closed.
"iop which does not embrace the nucleus is equal to zero, i.e.,
the nucleus plays the role of a vortex. N'-
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Let us now note one important phenomenon which pertains to

the flow around bodies by thf, flow of an ideal fluid. If the

of the body being flowed around has a section which is

an arc witn a small radius of curvature (Fig. 2.16a), then part

of the flow near this arc resembles circulating motion: the

velocity increases in proportion to the approach to the outline

of the arc and with sufficiently small radii of curvature can

become very large. With some (sufficiently small) radius of

curvature the velocity should be so great that the pressure (com-

puted according to the Bernoulli equation for a noncompressible

liquid) should become negative, which is impossible. When the

radL s uzf curvature is equal to zero, i.e., when liquid flows

arcunj an acute edge (the point of inflection of the outline, Fig.

2.l6L', the velocity becomes infinite exactly as in the center of

Lnr vcsrtex, which induces circulating motion. But an infinite

velocity requires unreal infinite negative pressure. Therefore,

infinite velocity is impossible, consequently, the nonseparated

flow around acute edges is impossible and the separation of the

jets cccurs. The only possible case of the nonseparated flow

around a body with an acute edge (winged shape) by a flow of an

ideal noncompressible liquid is the case depicted on Fig. 2.16c:

here the acute edge lies on the dividing line of the flows which

flow around the upper and lower sides of the shape, and the liquid

Jets smoothly converge from the outline of the body.

in a real liquid which possesses viscosity, with the sej>-ration

of the Jets from the eddying particles of the boundary layer a

vortex is formed which seemingly "rounds" the acute edge, and the

liquid Jets no longer flow around the acute edge, but around this

vortex.

'Subsequently it will be shown that in the supersonic flcw
of a gas the noriseparated flow around an acute edge is possible;
in this case, velocity does not become infinite.
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CHAPTER III

SHOCK WAVES

1 1. Normal Shock Waves

In the case of the flight of a body at supersonic speed

(w H > a H ) a shock wave (compression shock) which produces con-

siderable resistance develops in front of it.

If the body in question is a flight vehicle equipped with a

'et engine, then in the supersonic air Jet which is slowed down

when it flows into the engine a shock wave also occurs. It is

possible to visualize fundamentally the smooth transition of
supersonic flow into subsonic, being achieved by means of a special

inverse nozzle mounted at the engine inlet. In this case total

pressure losses would not take place. However, the deceleration

of a supersonic flow in such a manner cannot be carried out

entirely, by virtue of which it is necessary to reconcile with
the existence of shock waves and the presence of the corresponding

wave resistance.

Numerous tests show that any pressure increase which arises
in any place of a gaseous medium is propagated in it at a high

speed in different directions in the form of pressure waves. The

weak pressure waves travel at the speed of sound; their study is
covered in acoustics. The strong pressure waves, as can be seen

from the tests, are propagated at velocities considerably greater
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- 3.ed of so-and. The basic feature of the strong pressure

. th._ fact that the wave front is very narrow, in

w'Ith whlih the state of the gas (pressure, density,

,.= e; changes with a jump.

t.osslbie to give the following qualitative explanation

"act. Assume in a certain area (Fig. 3.1) a pressure

_.hpnre occurred and the first wave obtained a smooth form lAB2.

On separate Infinitely narrow sections of the wave the magnitude

cf pressure increases insignificantly, therefore the propagation

of such a wave occurs at the speed of sound. In the area of high
compressicns (A) naturally higher temperatures are observed than

in the area of low compressions (B), by virture of which the

"top" of the pressure wave moves faster than its "foot." To the

side of less pressures (to the right) the wave is propagated as

a compression wave, to the side of high pressures (to the left) -

as a rarefaction wave. Thus, even if at first the compression

wave is flat, then in the course of time it is made steeper and

steeper; this process w.,ill stop and the wave will acquire a stable

fcrm on!Y from the moment when the wave front becomes entirely

plane (1'-2'). Thus ti )mpression waves are propagated as

pressure jumps (explosiois), in conection with which they are

called shock waves.

For those save reasons, i.e., as a result of the fact that

at point A the rarefaction wave moves faster than at point B,

the wave front of the rarefaction wave is spread with time. In

other words, the development of a rarefaction wave should not

lead to expansion shocks.

The approximate theory says that the thickness of the area in
which a strong pressure wave diminish should be of the order
of the free-path length of molecules.
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(__Fig. 3.1. Diagram of the
* development of compression

-,I and rarefaction waves.

%2

It will be shown below that in adiabatic (without heat supply)

compr ssion shocks an increase in the entropy of the gas occurs

and in adiabatic expansion shocks, if they existed, entropy should

decrease. By this is proved the legitimacy of the existence of

adiabatic pressure jumps and simultaneously the impossibility

of the emergence of adiabatic expansion shocks (as is known from

thermodynamics, in a finite closed system entropy cannot decrease).

In full conformity with this is found that known fact, that the

expansion shocks (condensation shock, flame front) observed some-

times in actuality are obtained only during the supply of heat

into the area of shock, i.e., under such conditions, when with an

expansion shock the entropy of the gas increases. it is necessary

to note that the emergence of expansion shocks during the supply

of heat to a gas does not contradict in any way the process

depicted in Fig. 3.1. In fact, if in the area of reduced pressures

B because of the supply of heat a temperature is obtained which

is higher than in the high-pressure area A, then the speed of

sound at the foot of the wave is higher than at the top; in

connection with this in the course cf time the steepness of the

rarefaction wave front should be intensified, which gives rise tc.

the formation of a thermal expansion shock.

Let us pause now on the theory of shock waves. Let us

visualize, for example, that under the influence of the sharp

displacement of the piston (Fig. 3.2) In the tube a strong

compressive wave developed and is propagated from left to right.
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Fig. 3.2. Diagram of shock wave
I I' propagation.

Assume during an infinitesimal time interval the wave front moved

the distance dx. This means that in the area I-H during time dT

there was a pressure increase from value pM (pressure of the

undisturbed gas) to value p1 (pressure behind the front of the

compression wave), in accordance with which in area 1-H an
increase should be observed in the gas density by the value

However this can occur only in the case when a certain
quantity of gas, equal to

dQ=(p,--p.)F dx.

will overflow from volume 1-2 into volume H-1 (here F - the
cross-sectional area). Thus during the propagation of a strong

compression wave the gas behind the wave front should be in motion,

following in the same direction as the wave. From the equation of
continuity it Is possible to determine the speed of the gas flow
(wn)

dO= pgFw, dt,

from which

, -- - Ndv""-- T,- ,"(1)

But the derivative of the path in time is nothing else but the

velocity of motion of the wave:
dx (2)

Hence we obtain the equality which relates the velooity of

propagation of the wave with the velocity of the gae whioh ie

moving behind the wave front in the same direction:
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Applying the equation of momentum to the area H-i it is

possible to obtain another relationship between the same values.

In fact, during the time dT the maas of the gas which filled the

volume H-1, AM p F dx will pass from the state of rest into

motion at a rate of wn . The corresponding change in momentum

should be equal to the power pulse caused by the difference of

pressures which act in cross sections I and H:

(pi - p.) Fd = F(.-0) dx,

from which the wave velocity is equal to

U' d- (4)

After substituting the expression for gas velocity (3) into

equation (4), we will obtain the velocity of propagation of the

compression wave as the function of the increase of pressure and

(increase of density

p1-PH PS

In the case of a weak wave, when the increase of pressure (and

density) obtained is insignificant: P1  P1  p., we have

-- '= = •(6)

A weak wave is none other than an acoustic wave, therefore

expression (6) is the determining of the speed of sound.

From a comparison of equalities (5) and (6) it is evident

that the vetooity of propagation of a atrong compression wave is

atwaye greater than the speed of sound. Usually sound propagation

is accompanied by such an insignificant change in the state of
the gas that entropy can be considered virtually constant, I.e.,

kit is assumed that in this case an ideal adiabatic process p/c=
= const takes place. But in this case
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Chapter I] for the speed of sound In an ideal gas

Substituting expression (5) into equality (3), we find the

formula for the speed of gas flow behind the front of the

com~pression wdave

~*~= /iP.;)(P~ss ~(7)

It is not difficult to see that with the weakening of the
compression wave the speed of the gas flow drops. In the case of

a weak sound wave the gas behind its front is fixed, since

according to equality (7) with p1 z p. and pt p we obtain

wnz0. In actuality, as is known, a sound wave consists of the

correctly alternating areas of compression and rarefaction,
whereupon the gas beyond its front is found in a very weak

oscillatory motion; the average forward velocity of gas particles

Is equal to zero.

Let us note now that as a result of the outflow of gas from

area 1-2 (Fig. 3.2), which Is disposed behind the front of a
strong compression wave, the pressure In this area decreases in

the course of time. For this reason the shock wave which developed

In the fixed gas under the effect of unit compresion (for example,

an explosion or displacement of the piston) always attenuates

more or less rapidly. And only when the distu! ing source does
not cease Its action it is possible to obtain an undamped shock

wave. The property, discovered above, of shock waves to be

propagated at a velocity greater than the speed of sound leads

to the fact that undamped shock waves are formed before the body
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only when motion occurs at supersonic speed. For example, during

motion in a gas with a constant supersonic speed of the solid

before the latter a shock wave of constant intensity is formed

which moves at the same speed as the body.

We will investigate in more detail the change in the state of

the gas which is obtained during the passage of a stationary

shock wave in it. We will turn first to the simplest arrangement,

when the wave front makes a right angle with the direction of
propagation. Such a wave is called a normaZ shook wave.

Iq

For the convenience of calculation it is advantageous to
turn the motion, i.e., to stop the wave front, after directing a
flow towards the wave at a velocity equal to the velocity of

propagation of the wave (Fig. 3.3):

we;

then the relative gas velocity behind the wave front

.01 =W - (8)

After stopping the shock wave by the counterflow of gas, we

obtained a certain fixed surface, intersecting which all the

elementary streams of gas simultaneously undergo abrupt changes

in the velocity of motion, density, pressure, and temperature.

Because of this a shock wave is also called a compression shock.
Shock waves are conveniently observed in supersonic wind tunnels
during the flow of air about fixed solids.

f -WFig. 3.3. Diagram of a

normal shock wave.

Let us accept the cross-sectional area of a Jet equal Lo a
2unit (F 1 m ) and, using the known equations of gas dynamics,

find the connection between the values of gas velocity before and

after the shock wave (Fig. 3.3). The equation of continuity gives

6153 ::
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Disregarding the force of friction in view of the thinness of the

shock wave, from the equation of momentum we will obtain

P1 - PM - P1'6',, (Wt - W4

Comparing these equations we find

Pa -p", TIN - p, W W10. -P (9)

from which

W-w. (10)

If heat is not given from without, then the full enthalpy of

the gas remains constant. Thermal outputs can be disregarded

since the lateral surfaces of the jet In the area of shock are
negligibly small. Thus from the equation of enthalpy follows

1. = c, r, =:7.+ A 2C =- ., + A 2j = cn.st

here T - the stagnation temperature. From this equation we have

,= T, A

According to the equation of state of the gas

F. T i-f

consequently,
T, PON - Pe'.

here pOI, p0N - the total pressure respectively after and before

the shock wave, p01, P0H - the gas density which corresponds to

total stagnation in the same cross sections. Consequently,
rp.. AI .)

P S. = -- P e Po -w -, -.
From thermodynamics we have the known relationship

therefore

By analogy we obtain

Pl ( P h "2 -"{  ( 12 )
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After subtracting equality (11) from equality (12) we have

from which on the basis of (9) is derived

'1..3)

Utilizing expression [(41) Chapter I] for the critical speed

we find

- '-s al. (14)

Finally, comparing equalities (10) and (14), we come to the

following simple relationship between the velocities of gas before

and after a normal shock:

(15)

This kinematic relationship can be reduced to a dimensionless

form by introducing the velocity coefficients (X w/a KP):
~;

a., a %1p
or

(!6)

from which it is clear that in a normal shock wave the supersonic

gas velocity always convert8 to subsonic, since if w > , then
H 

R

w < a p. Simultaneously it is possible to note that the greater

the value of the velocity coefficients before the shock, the less

its value after the shock, i.e., the higher the initial velocity

w the stronger the shock wave obtained. With a decrease in the

initial velocity the shock declines and disappears entirely with
W " .w H w ..

Let us establish now the connection between pressure and gas

density in a shock wave. For this let us add equalities (11) and -

(12):

.3 I
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From the equation of continuity it follows that

Substituting this result into the foregoing expression, we have

PI + pie pO h II

from which on the basis of (10) and (13) we obtain the basic

dynamic relationship

according to which the ratio of the increase of pressure to the

increase of density in the shock wave is'proportional to the ratio

of the mean pressure to the average density. Hence, by the way,

follows the result, already known to us, that with an infinitesimal

shock wave (Pl : PH' PI Z PH ) the result is

d h p*

This confirms the assumption made above that an ideaZ adiabatic

process answers to a shock wave.

Let us examine in more detail the thermodynamic process of

a change in the state of the gas in a shock wave. For this let

us present the dynamic relationship (17) in a somewhat different

form: P, +P, .. kp' +P__.,
PI- P-P4

Let us divide the numerator and denominator in the left side of

this equality by the value pHe and in the right by pl:

!L,. P.

p. Pi

Hence after the simple converslons the dependence is obtained of

relation on the relation pl/p. in the shock wave, which is

called the shock adiabatic curve:

it +' -=i A

I (--I 8)
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The essential feature of a shock adiabatic curve is the fact
that during an unlimited pressure rise In a shock wave (p1 -

)

the increase in density has a definite limit which, as this is

evident from equation (18), is equal to

S mat-- k- (19)

For example for air (k - 1.4) an increase in density in the shock

wave cannot be more than six-fold:

During a shock wave in a gas with a smaller value of index k a

stronger, but also more limited increase in density can be

observed; for example, with k - 1.2

IL =It.

P l ,na "

One ought to emphasize that unlike the shock adiabatic curve, in

the case of an ideal adiabatic process in which takes place the

dependence

tile increase in density with an increase of pressure is not

limited (p1 , ® with p1 -
)

The comparison of shock and ideal adiabatic curves is made

in Fig. 3.4.

-- Fig. 3.4. Comparison of shock
and ideal adiabatic curves.
KEY: (1) Ideal adiabatic curve;
(2) Shock adiabatic curve.

'A.5'
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A change in the pressure and gas density in a direct shock

wave can be presented in the function of Mach number before the

J ump. From the equation of momentum taking into account the

orinula for the speed of sound [(34) Chapter I] and the equation

of continuity we find

If with the help of the shock adiabatic curve we replace

the relation pH/P with its expression through relation pl/PHS then

after several conversions we will obtain

pit (20)

Specifically for air (k = 1.4)
Pa 7 M4I

P.T 0

It is possible to express the pressure ratio in a direct

shock wave and in the function of the velocity coefficient before

the shock H ; for this one ought to replace in equality (20) the

variables according to formula (45) from Chapter I:

k-1 (21)

With a decrease in the velocity of incident flow down to a

critical value (M. = 1) th-i shock wave degenerates (Pl a -H ) . In

a subsonic flow, as has already been indicated above, shock waves

are impossible. In a normal shock wave the pressure increase

depends only on the value of Mach number in the incident flow,

whereupon with an increase of M the pressure increases unlimitedly

(p1 - - with MH - -). After substituting the results of (20)

into equation (18) it is not difficult to derive the dependence

of density after the normal shock wave directly from the Mach

number or with the help of (45) of Chapter I on the velocity

eoefficient A in the Incident flow:
H

158



( +

, . , (22)

From equality (22) again we conclude that even at an infinite

value of Mach number the gas density increases in the shock by

not more than k + 1/k - 1 times.

Let us determine the losses of total pressure in a normal

shock wave.

The total pressure in the jet after the shock obviously is

equal to

Pei- (23)- -- -+

The total pressure before the shock is equal to

k-I -

therefore the pressure coefficient which considers wave resistance

(losses in normal shock) can be presented, if we utilize expression

(21), tn the following manner:

h".-tI " 1 -'T

iZVTI (214)
k71-1 k"

At a flying speed equal to or less than the speed of sound

(X s 1), wave resistance disappears

It 1 Ata-niitl ih

formula (24) is valid only with X 1. At an Infinitely higt-
2 k + 1

flying speed H - = 0 is obtained, however, in this case

los.ses will not absorb the entire initial reserve of the total

pressure, since the other factor (po.) approaches infinity. The
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de ;.ence curve G = f(X ) for air (k - 1.4) is given in Fig.
3.5,

Fig. 3.5. The dependence of
pressure coefficient after a
normal shock wave on the
velocity coefficient.

J i Z1 .__A

From equalities (71) of Chapter I and (22) it is possible to

obtain a formula for determining the density of the decelerated

gas after a normal shock wave

_,,__ I"

(25)

In conclusion let us note that equality (10) derived above

and the equation of continuity make it possible to present the

flow velocity before the shock as the following function of e a

increase in pressure and density:

But there is an expression (5) already known for the velocity of

propagation of a direct shock wave in stagnant air. Such a result

Is completely natural, since in order to stop a shock wave it is

necessary to direct the gas flow towards the wave and to impart

to it a velocity equal to the wave velocity.

Substituting expression (22) into relationship (15), we

obtain a new formula for the relative gas velocity behind the front

of the shock
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Hence with the help of (19) it is revealed that the coefficient

of relative gas velocity after the shock cannot be less than a

ce'tain specific value:

,, / (26)

If we pass from a fixed shock wave to a shock which is

propagated in a fixed gas at a rate of w. = -w", then with the

help of the equalities obtained it is possible to determine the

absolute velocity which the gas acquires in the wake of the shock:

or on the basis of (22)

-UW (28)

and in a dimensionless form

-. (29)

According to law (16) behind a shock wave the gas veockity

relative to the wave front is obtained always less than sonic

(X1 < 1); on the basis of this it becomes clear why any pressure

change which proceeds behind the wave and is propagated at the

speed of sound can overtake the wave front. Precisely because of

this the pressure drop described above (Fig. 3.2) in the wake

behind a shock wave which originated in a fixed gas leads to a

weakening of the drop in pressure cn the wave front and causc.

its attenuation.

§ 2. Oblique Shock Waves

The characteristic feature of a normal shock wave, as it wa-

possible to note, is the facu that, intersecting its front, tr.r

gas flow does not change its directicn, whereupon the frort.
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ncrmai snock is arranged at right angles to the. flow direction.

Besides norral shock waves, the so-called oblique 8hock wav.s are

alsr. erncountered. The frnqnt of an oblique shock is situated

inclird toward the flow rection (Fig. 3.6). An oblique

shock is obtained when, intersecting
0 the front of the shock, the gas flow

should change its direction. For

,- example during the supersonic flow

of gas about a tapered body (Fig.

3.7a), which deflects the flow from

Fig. .". Diagram of an the initial direction by angle w,

oblique shock wave, before the body oblique shock waves

are formed which converge on its

spout (Fig. 3.8). An oblique shock wave is formed during flow

around a cone (Fig. 3.7b). The discontinuity surface in this case

will be a cone with a vertex in the spout of the streamlined body.

Thus, if up to the encounter of the jet with the front of an

oblique shock the velocity vector. w formed with it an angle a

(Fig. 3.6), then after the intersection of the front the jet is

deflected by angle w, and the angle between the vector of velocity

and the shock front becomes equal to

(30)

Let us separate the velocity vector into two components, of
which one is normal (w ), and the other is parallel (wt ) to the

front of the shock (Fig. 3.9). It is not difficult to show that

during the intersection between the Jet of the front and the

oblique shock the normal component of the velocity decreases:

,. ":' .(31)

-,, 6 the tangential componen remains constant:

U, = con (32)

',Ie wii tu:rr , c. this to Fig. 3.10, in which is depicted a

vee a-i, :q±ar -.utline HI tH which covers part of the front of the

.:b' I qie sh,'k. "he lateral sections of the outline (H-1) are
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Fig. 3.7. Shadow photographs f oblique
shockC waves during supers3onic fliow around
a wedge a) and a cone b).

Fig. 3.8. Thte formation or an
oblique shock wave during fluw

-- _ around a wedge.
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Fig. 3.9. Fig. 3.10.

Fig. 3.9. The kinematics of flow with an oblique
shock wave.

Fig. 3.10. Calculation diagram of an oblique
shock wave.

conducted at right angles to the front, and the end (H-H and 1-i) -

are parallel to it. Let us compile the balance of the momentum

for this outline first in projection on tPhe direction of the front.

in view of the fact that the forces of pressure on both lateral

surfaces (H-I) are identical, the corresponding projection of the

momentum remains constant, from which ensues condition (32), which

indicates the constancy of the tangential component of velocity.

If now we make up the equation of momentum in the direction H-1

perpendicular to the front, then in view of the fact that on

surfaces H-H and 1-1 substantially different pressures act, the

result will be'

P, - P. = P.W.A (W.-

The pressure in the shock wave increases (pl > PH ) ' from which

follows condition (31) according to which the normal component of

velocity in the shock decreases.

The given considerations show that an obZique abock wave i8

reduced to a normal shock, which is carried together with the

fow of gas aideways at a velocity wt. Unlike the normal shock in

'During the compilation of this equation we took into
consideration the continuity condition
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an oblique shock not the full speed of gas flow undergoes dis-

ruption (abrupt decrease), but only its component normal to the

front of the shock. In fact, according to the equation of

continuity

The equation of enthalpy in an adiabatic case (there is no heat

exchange) gives

T.= T. + , -IV + 2 eU

Further we have w:= +w , wi= - , from which

AT A .:= T. + A~ w.cT,+~-u

Let us introduce into the examination the temperature of partiaZ

8tagnation, understanding by this the following value:

T' .+ w T, + m .. T
-Egip 2g,, 14 6 - gbt,

i.e., t.! temperature which will be obtained not during the total

stagnation of flow, but only with damping of components of velocity

which are normal to the shock front. As this equality shows, the

temperature of partial stagnation has one and the same value

before and behind the shock front, which ensues from the condition

wt - const. If we add to these equations also the equation of

state
Pt Ps

then it will turn out, as one would expect, that an oblique shock

wave is described precisely by the same relationships as the

direct shock wave (see page 154), with the only difference that

in the first case instead of the full speed its components normal

to the shock front are figured, and instead of the total stagnation

temperature T O they figure the temperature of partial stagnation

T.
n

Because of this, without repeating all the computations wnich -

were given in detail in the theory of normal shock, we can write

immediately a number of prepared expressions. For example instead

of equality (10) we have
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(33)

Correspondingly instead of equality (14) we will obtain

p, - pm 2AI

,- gRT -4. (34)

Here a n - the conditional critical speed, which corresponds to

the temperature of partial stagnation Tn . The basic kinematic

relationship for an oblique shock takes the following form:

wl,,w. afp(35)

Equality (34) makes it possible to connect total critical speed

with the conditional critical speed:

a,,= -- -(36)

Using this expression it is possible to obtain the second frequently
encountered form of the basic kinematic relationship for an oblique
shock wave:

WI~l -- + W --) =04(37)

In the particular case, when an oblique shock converts into normal
(a = 900, wt = 0, wH n = w, w = w ), from relationships (35)

and (37) we obtain the already known relationship (15). Converting
to the velocity coefficients )n.----,M/a4p.,.=wk./aK,. we will obtain
in the case of an oblique shock the dimensionless kinematic

relationship

(38)

which corresponds to equality (16) for a normal shock. It is
natural that dynamic relationship (17) is useful for an oblique
shock wave without any ohanges, and the shock adiabatic curve
is applicable to the oblique shock wave precisely in the same
form (18) as to a normal shock.
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Changes in the static and total pressures in an oblique

shock are found respectively from dependences (21) and (24), if

we insert into these formulas instead of X the value X :
HH n

k-I

with the- --I flow.

I _-:-j

1 -' " ('10)

P1- Peeq 2J 0g~ WI

whereupon the velocity coefficient A is calculated here on the

normal component of velocity and the conditional critical velocity:

It is possible, it goes without saying, to obtain such formulas
which relate the pressure change in an oblique shock directly

with the absolute velocity of incident flow.

According to the momentum equation the increase of static

pressure in an oblique shock is equal to

l-P, = pNu,, (w, - l

Substituting equation (37) into this momentum equation and con-

verting to coefficients C, we will obtain

p,-p.p.<, : i.' z- I + 2--4 cos'z).
However, from ('12) and (411) of Chapter I it follows that

2k

i:I
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Expression (41) with an increase in the angle of oblique

shoc4 up to a value a = 900 converts to the known expression (21),

9btained above for a normal shock. Let us compute the value pl/p.

.or adr (k = 1.4):
P, .I (I - 0.972 cost* ) 0 0167

The relation of values of total pressure after and before an

oblique shock is a function of the velocity coefficients and can

be determined in the following manner:

as,.=P,':=P" PI- P.-4 (42)
P. P P. P#§

where
hI h

and the relation of values of static pressure pl/ph is taken

according to formula (41).

Thus for determining the total pressure ak in an oblique

shock wave it is necessary to know the velocity coefficient X1 ,

From the velocity triangles after and before the oblique shock

(Fig. 3.9) it follows that

U." W .+v1.W., = . .,=, sln r , ,'= . Cos ,. (43)

Utilizing these relaticnships, and also (37), let us derive

calculation equations for the velocity coefficient after an

oblique shock wave:

=.n= - r -$I- + '

k-I W , e -- i IA u, .re,
NP I 9P k+1 d

insetfng values wln and wtn the .. for w' w I

6btaln 

4
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An increase in the angle of shcck to normal (a = 90 ° ) leads to

the known relationship (16) for a normal shock.

An increase in the pressure in an oblique shock wave can also

be presented in the function of Mach number of incident flow and

angle a, which forms the velocity vector w with the shock front.

Let us substitute into the momentum equation

P1 - P. -- W"Pw (WWA - WR

the value w from (43) and divide both parts of the latter by

the value p,. Then, utilizing the equation of continuity and the

formula for the speed of sound [(34) Chapter I], we will obtain

Pe

After expressing with the help of the equation of shock adiabatic

curve (18) the density ratio oHiop by the pressure ratio, and

after substituting it in the last equationi, we core to the unknown

dependence:

With thr- vame veiocit, of -:-- Sho-ck, as
t . ... , f rom (45 , i e 

si,,.s 
. L 'z';. ; ii; : , 2 .. h ck."

,-h. nter. ty cf ar. oi. 1 h-: - , with a change

r t. %lore angLe oI It :trnt 1"- ...- t-r. inc~dent flow,

1r, ti;. extreme case, wner, cL!:- ui,' Int,. normal

. "i = 9.:
°  t he n ,.,e r:' :, su e -" , . ...... 

. >.c. -.ner'- .- -. , ,rc the-

r. c~ '5 C & ''I .I] 
Shock 

:."

7 n:. a r , ' to

' I

_ 
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the obZique shock degenerates into an infiniteZy weak wave

(p, z c,). Let. us explain this fact in scmiewhat more detail.

Assrme at a certain point 0 of a supersonic gas flow an infinites-

imal disturbance (Fig. 3.11) of pressure developed. The weak com-

pression wave (or rarefaction) will break into a run from the

center of the disturbance in all directions at the speed of sound

a. In a unit of time (T = 1 s) the wave front will be a sphere of

radius r = a. However, the entire mass of the gas in which the

wave arose is carried along the flow at supersonic speed w > a.
H

because of this the weak pressure waves will never exceed the

limits of Lhe cone, the surface of which is the envelope for

spherical waves. The generatrix of such a cone is called the

M.a. wo ve or characteristics. Angle a0 between the generatrix

and the axis is called the Mach angZe or the angle oPf propagation

of weak disturbances. This angle, as can be seen from Fig. 3.11,

is determined by the equality
a !

sin 7# --

Thus the front of a very weak oblique shock wave is disposed with

respect to incident flow at an angle a0 which is determined by

equality (46). Strong disturbances, as it was shown above, are

propagated at supersonic speed, in connection with which the front

of a strong shock forms with the incident flow a larger angle

than the characteristic: a > a 0 .

S.
* 2a

12,~I s Z s s

Fig. 3.11. The development of a wave of
weak disturbances.
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Thus the range of change in angle a for an oblique shock wave

is determined by the following limits:

After substituting expression (45) into the equation of shock

adiabatic curve (18), we will obtain the equality which relates

relation l/P H in the case of an oblique shock wave with the Mach

number of inciaent flow and the angle of inclination of the shock:

I 2Pu 1-- (n'G71-1 +

This equality with M 1/sin a gives p1 z p., and in the case

a 90 converts to corresponding equality (22) for a normal shock

wave.

Knowing th- density ratio of the gas after and before the

oblique shock, it is possible to calcultte the angle w, by which

the flow in the shock (Fig. 3.6) is deflected. From the equation

of continuity we have

Wein Pa.

At the same time from the velocity triangles (Figo3.9) it follows

that

Wai t 'g_ (48)

Hence we obtain

tgp P tg= (49) J

or on the basis of equalities (147) and (38)
k-IIt._l X1 t

I 2-- M t9 2-= Z _ 2 i _ ) kgi12-t

But if the angle between the velucity vector behind the shock

and the front of the latter is known, then the angle of flo.:

deflection is determined by reationship (30).
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We indicated the method of determining the angle by which the

flo: in a shock is deflected when the position of the front is

known. if, on the contrary, the specific deviation in the super-

sonic flow is assigned, then when as a result of deviation the

velocity should decrease (for example during supersonic flow

around the wedge depicted in Fig. 3.7a), an oblique shock wave

develops; in this case according to formulas (30) and (50) the

angle a at which the shock front will be arranged with respect

to the flow can be calculated.

Tn Fig. 3.12 are represented the curves a = f(w), corresponding

to different values of Mach number of incident flow and constructed

for air (k = 1.4). As we see, for every value of Mach number

there is a certain maximum deviation in the flow (w = wa). So
max)

with M = 2 flow can be deflected by no more than an angle wmax

23', with M = 3 - w 340, with M = 4 - wmax = 39 ° . Even

at the infinite speed (M = -) flow can be deflected a maximum

by the angle wmax = 460. The presence of such a limitation in the

deviation of flow after a shock wave is a completely natural fact,

since as with an infinitely weak shock, i.e., when angle a is

equal to the angle of propagation of weak disturbances, and the

generatrix of the Mach cone is characteri tic, so also with the

strongest - a normal shock, the angle of flow deflection becomes

equal to zero, therefore the curves w = f(a) have maximums.

On the curves in Fig. 3.12 it is also evident that for the

same deviation in the flow there are two positions of the shock

front. Experiments show that of the two possible positions of

Jump the stabler is that In which the angle between the flow

direction and the shock front is less. Thus in Fig. 3.12 more

important are the lower branches of the curves lying under the

points of the maxima. The lower intersection of each of the curves

a = f(,)) with the vertical axis corresponds to the regeneration of4

the lump into a weak wave, and the angle a0 obtained in this case

represents tho angle of weak disturbances.
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( 4Fig. 3.12. The dependence of

-j -KU Ithe direction of an oblique
oil shock on the angle of deflec-

tion of flow.

toJ .(

YX- -
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I -

V. P. 1/0. a* 4!?

During supersonic flow around a wedge, in which the angle

with the vertex is greater than Is assumed In Fig. 3.12 the

format'-on of a flat oblique shock w-jave is impossible. Experience

shows that in this case a shock wave with a curvilinear front

Is formed (Fig. 3.13), whereupon the surface of the shonk is

placed in front, without being 4n contact with the spout cf the

wedge. In its central part the shock obtained is normal,

but with removal from the axis of symmetry converts into an

oblique shock which a-, great distances degenerates into a ...eak-

w j -e. Thc same shock confisuration is observed during supersonic

f 2w a. -:und -i body which has a rounded nose (Fir. 3.114)
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it is sometimes necessary to calculate the flow ve. :lr'

after an oblique shck wave. it is simplest to do this us:,-,;

velocity triangles (Fig. 3.9), from which it follows that

Hence we obtain

Cos

or in dimensionless designations

Utilizing for-mula ( 5 in Chapter 1 it is pozsib! tc .

appropriate value of the Mach number behind the oblia.' -.
'2

C4 I

Tn "Fig. 3. are given the deperdence curves .f number

after the shock wave on the position of the front - f(a ) for

three values of >-ach number in an incident flow (M = 2, 3, 4).

As we see, In all three cases at the slope angles cf front a < 600

the flow velocity after the ctliq e shock wave t -t toe

sucersonlo. The extreme le,°ft .roint f every cur" aswers to

the conditions of the transfer of the cblique shock wave Into a

weak ..ave, the extrcme right point - into . sho wave.

I II .. - The dependence Of
M I nunber after a shock

Swave on the slcpe angle of
.he j- ump.
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The case where a normal shock is formed is the simplest,

since in this case subsonic flow is obtained immediately. After

an vL ique shock the flow slowe down, but, as we saw, it can

remain supersonic. In that case the subsequent slowing down

should be accompanied by a second shock, which can be both normal

and oblioue. In the latter case one additional shock can be

required. Thus the total stagnation of supersonic flow requires

either one normal shock Qr a system of several oblique shocks,

usually completed by weak normal shock. It is possible to visualize

such a system of shocks in 4bich the losses are less than in one

normal shock.

Let us pause n~w on the supersonic flow around a cone. During

the symmetric supersonic flow around a cone (Fig. 3.16) before

the latter a conical shock wave is established (Fig. 3.7b),

whereupon the apexes of the cone and shock wave (surface of shock)

virtually coincide. In view of the fact that the thickness of

the shock is always very low, the formulas given above for calcu-

lating a plane-parallel oblique shock are also applicable to an

axisymmetric shock. Specifically if the angle between the front

and the flow direction a and the speed before the shock are

known (Fig. 3.16), then according to formulas (50) and (30) it is

possible to find the flow direction w , according to formula

(51) - the velocity, and according to formula (45) - static

pressure directly after the shock. However, unlike the plane in

an axisymmetric flow the direction of the gas Jet directly behind

the shock (w ) is not parallel to the body surface (w 1 # WKOH)

In connection with this the angle of deflection of jets behind

the shock is tapered, approaching asymptotically a half angle at

the vertex of the cone. Directly after the shock the angle of

deflection has the smallest value w < W and, as it was

mentioned, is obtained the same as for a plane flow, i.e., it

can be determined with the help of Fig. 3.12.
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F'ig. 3.16. The layout of super-
sonic flo. around a cone.

'Th-e eendenre of angle a betw en the front of the shock and

the flow direction frorn the hall' angle in the apex of the cone

(W OH) for the case )H = L-MH = 3.16) is given in Fig. 3.17

(solid line). Here is olotted the curve a = f(w ), which gives

the angles of deflection of flow d_re-tl1,y, after the shock (dotted

line), i.e., corresponding to plane flow, (flow around a wedge).

As we see, at the identicaZ anglea of a cone and wedge on the cone

tre shock obtained is weaker (more inclined).

It was shown above that the changes of the direction of fl..,

velocity, and staLe of the 1as in t.e shock iuself do not depend

on th surface form of the shock; at the assigned flow velocity

(X) and angle of shock a these changes are obtained identically

in plane-parallel and axisymmetric flow,.:s. The distinction in

tnese t.o cases consists only of the fact that the same angle of

shock Is not obtained at the identical cone and wedge apex angles.

In other words, durin. a comparison of axisymmetric and plane

otlicue shocks it is advantageous to express all the factors in

the function of the cn:- o' shock, but not the apex

'Petrov G. i. and Ukhov Ye. P., The calculation of the
recovery of pressure coon transtonl- :'rom supersonic flow to sub-
sonic in different 3'. steo.z.: of fla, Tho... waves, .,, !9 7.
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a rFig. 3.17. Comparison of the
-- -- angles of oblique shock on a

*I, cone and on a wedge (dotted
-* -line) with the velocity coef-

ficient X = 2(M = 3.16).

H 1

o= ' o'Ti * d 'u

angle of an aerodynamic body. In this case the results obtained

in the calculation of an axisymmetric and plane shocks will be

identical.

The gas flow after a shock in the axisymmetric case c'ffers

from plane; the flow velocity, static pressure, and gas density

have close, but dissimilar values, and the angles of rotation of

flow in a shock (wedge angle) and on infinity (angle of cone)

are substantially different. Figure 3.18 gives the curves

o f(U&) for different values of Mach numbers. In Fig. 3.19

are depicted the curves of values of M, numbers after the shock

(dotted line) and M2 on the surface of a cone (solid line) in the

function of the angle of shock at the different values of velocity.

As we see, the decrease obtained in the velocity between the area
lying directly after the shock (it corresponds to plane flow) and

the surface of the cone is insignificant; since the Mach numbers

after the shock and on the surface of the cone are close, then
the corresponding A numbers are close. For practical calculations

the velocity after a conical shock can be accepted equal to the

arithmetic mean value
)1 
)
l + 1-602

2 (53)
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17,11 3.18.* ~ ~ eI~ The depenalence
,.cone on the angle of

H i /,r 1 LLrotation of flow in a
vie L1 L shock for different flow

A- .,elocities.

fi-I ;

Fi_- 3.9-auso

tK ruxbers Pfter a shockI (dotted line) and on the
- s-urface of a cone deijending

- orn the angle of shccc.

2 ' 4.i ~

I

cor e.cn e h r. f 1, he ulane ~

III this oase for' ' 'mti flow the formulas 3b..ained Fbcve

for a rlane-r-arallel.o. turn cu cbe suitable, with the Only
j ifferenc e tr.a~ - dI c-Ent. a .pex an.-I z~ of the body correspo,-.d tO

the a,-,, anr.gle s c z 31)



§ 3. The Application of a Pneumatic
Adapter In a Supersonic Flow

F;r velocity measurement of a supersonic gas flow it is

possitle to use an ordinary pneumatic adapter (Fig. 3.20). It

is only necessary to consider that during supersonic flow around

the adacter the shock wave appears before 'it. If the axis of

symmetry of the adapter is parallel to the flow direction, then

the central gas stream which undergoes total stagnation at first

passes through the direct part of the shock wave, where its

velocity be2omes subsonic, then with approach to opening 1 the

•.eioc ty decreases smoothly to zero.

4 Fig. 3.20. Pneumatic adapter
In a supersonic flow.

The pressure in tube 1 (pol) can be calculated by the

following method. From expression (68) of Chapter I we have

+&

where p, and M, - static pressure and Mach number directly behind

the shock wave. Utilizing formulas (45), (46) of Chapter I and

formula (16) in this chapter, we pass to the Mach number in the

incident flow:

2 2 1+ k-1

To-,-I s = ---
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M.'- i)

cence on he basIs f q a1it (20) we obtain tle well-known

formula .hich e:precces the rati( of pressure p 0 1 in tube I to

te stat '. reszci,-'e in the incldent flow (p) as the function of

:,ach nume: r A. the ir:cIdent flow:

p , , -l-~_-_ 2 \ (55)

( 2h M.__ Ii'

For a.'r (k = 1.t; tisA fCrma Is reduceJ to the following form:

ICA(7M (56)

& the later! copenlngs 2 are found at a ji,,tance equal to not less

than d-6 diameters .f adapter from its leading edge, then,

s exPe:ilence shows, the cressure In tube 2 is equal to the static

fressure of incident flow (p,). Thus values p 01 and p are teasured

direct-y on manometers connected respectivel.y to tubes 1 and 2 -f

the ca,;u lt ion of the flow velocity according to formulas

(55) cr (56) it Is necessary to also know the speed of sound, or,

hLch 1s t 3 t1:c et.,eature of the incident flow:

IMmIau. a,,= VkcR T,.

In certan crs.a' . ror convenient to use the formula whl h
. e t.. . -: , .; I n the tubes of the adapter in the

flCtil Or, L" the vC Po cf'fc ir.t of incident flow () . This

frmula can be c0!t-a':d fro expressions (21) and (23) of t..s

Thapter: 4

• 1 ti - 1 "



P" (57)

For air (k =1.4)

P:,__ _ _ _ _ _(58)

The calculation of the velocity of incident flow according to

for= uia (57) can be fuzlfilled, iV the value of the critical

velocity -'s known:

a-' -='gRT70,,

whereupon

Let us note, for example, that in wind tunnels namely the stagnation

temperature Is always known, i.e., the temperature of the air

being sucked into the tube.
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CHAPTER IV

THE ACCELERATION OF GAS FLOW

I. S>2C-_r'sonlc .h]zzi

a supersonic nozzle, called the Laval rzale, vas flow :s

converted in such a way that the discharge velocity becomes greater

than the speed of sound:

M>i, w.>a.

,et s examine tho case of a one-di-mensIonal fl, ef fa; on

a superscnic nozzle. The equation of contlinuity gives
a_ . p: UCoiist.

g
The -,s moves along the nozzle with acceleration, therc.forc a,-

]ow speed, when gas density can be considered constant, It is

necessary to decrease the cross sections. This is caused by the

contraction cf the initIal part of tle nozzle. During the further

expansin -f gas an increase in velocity 4s accompanied by a

noticeable decrease in the pressure, and therefor(. gas dersft.',

which .rtially compensates for the increase of' velocIty, and

ther:!'crc it is no icn.er necessary to narrow the cross secto,1:"

•hann-oe s- ra.-dly. 1..', the process pa. ses throug:h a

stage, when the dernsty cf the expanding gas decreases In';ersev

proportional to the velocity. As is known, In this cross setootor-

;.-f the channel the flo: velocity Is eo-al to the speed of oou. 4
further increase In ".K.oclt. is acoo~a-ed by ar. even .ore

S=
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if v,<, then 1<0 (contraction),
if u,=,then , = 0 (critical region),

if then P--
if w,., then (expansion).

Thus three conaltions are observed: eubdonic w < a artitcat

w - a .  ,perScac w > aqQ,

It should be noted that near the critical cross sectior the

flcw is very sensit!ve to a change in the cross section of the

channel. Thu;, for instance, for a change In Mach number by 10%

('ro M = 0.9 to M = 1) it is sufficient to change the cross-

necto.i.: area by I, and for transfer from M - 0.95 to M 1 -

cy 0.25. Because of this ft is not possible to maintain critical.

conditions on a sufficiently extended section of a straiCOt tube

(boundary layer, formed due to slowing down of gas at the walls,

as it narrows the cross section of -h.± 1-n).

Density, as was already mentioned, with an increase of velocity

decreases. In the nozzle throat dF/F = 0, this means that the

cress-secti.nal area passes through the extnemum (minimum. from

the relationship (1) it follows that yrecisely in the na:..:

cross section of the Laval, nozzle is a flow velocity obvaina vhIch

is equal to the local speed of sound.

Let us examine the dependence of the .elocizy on the crcss-

sectional area of the nozzle. For this, using the equation of

continuity, let us connect the arbitrary cross section of the

supersonic nozzle with its .lnlim; . cross sucticn:

ptfi: = 'p p

hence

However w = aM and M 1 -, therefore

I

" ,4=
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~ ... ~Fi~ ~.2. The dependence
%f he dlmens ioK..ess area

of a Za*.al i-,-.-zle o n 'ach
-- b n ~~' k 1.

this nmeans eq .a tlon '2), has two solutions; to one and the same

F/F ar.;er two values of jMach nurnber: one at subsonic stceed
arid ncera s, ners-n ic soc-ed. For The nozzle inlet ".hich

preceles the critical cr,.ss stection all the su.bsonic soluticns are

Cs4 Eta&!b c;hile for the outrut part al-' superson-"c are suilta-Lle.

A unique so)utlon is obta ,iied crily, in. the crittcal c r-ss sect~cr.

The pressure an~i gas density ~UIgan Ideal -process depend

unar.-'bIguously or, Mach number and are det.ermined by formulas (\68)
1n~ 71) of Chan-,or i. 1:e-ce it follows that after s letlr.', at,

arbitrary cross section we will obtai. in this cross secticon the

sr~elficva-,e .)f' Mech number to vwnlch oc'rresr-ond the Sc~I

va-!-,os of temperature, pressure, and Fas density ('-,.lth an ac~*

up to the boundary layer effect).

The velocity in this ,ross section of the supersonic nczzle
depeni.s only on the stag)natio'..n temperature T A chanre in ou

0*
press-u.re- p, Joes not Influence ve~ysince local pressure r,

chanp~es propor-t tonally -t ccit and thlel.r relation rcomiaine ostrc

also. reaIn conYstant is terelaitlon of' the 'ernperatires

F'or vba a sicll u le ocf :jaoh nur.Ler on a so'c

of the supersenic LZ C i s ner-cessary in thte apprcnra'.e

tc zlec t the crss-r-es. ccr' a-:;a-' frthrnrI

necessary to have a Si'C~t osv ofcresso-re in thoc



(n ., i ", zz )-he- ;i'rds, * - aoiievernent ,f the required
.....tber nczz. ~2ectl th, p:';t-tre in the chamber shoulj

-. 1 ... .7,U. .:'7. re t-:/ a .i,'t . n, r r ' t imes.

e -lir,-e "t *it the pre ' in the chamber p. increased,
. h. (7 t z e ';; th:1e L .:ure a;., Increiises and the gas

-la.,, an exeass:;re.;'e. $c:ewhece after the nozzle

.'.,r; t. e r.wr'" w !i Le maiie evei- with atmospheric, the

• t"sure- .e w',li L- onnrted n the jot fur tin Increase in

f,, '.[y, aind since "or a zjp.ps(,n.c flow ail increase in the

','eP'tv ,r.~i re~ m: in'ensea- =r the 1. ....verse jet cross-

. .-_ are-., th,-n tLe je s,:emlrgi" frmg!' is r.ace in expanding

-.ni :ozzle, B:st If thts presz,.re in the chamber for any

s l cwel ed, he,- . the sectlon lowerl.ig of pressure..will

wr.e,'u-, t.h., Iresour,2 oP.talred in certain cases can be

e.,- t an tr:,spht:']ic the dischal'ge velcJt r in this case will

r.-t , rh-n;red, .[r,.,- it !s the fn;riction only of the area ratio

-- tre exit a. tI. and the nozzle throat. A preasure change in

, :.,..,. d- rt hwur zr, U iutr. rw from the nozzle, since

t-e pres$suire wave, which is p;cmated at the speed of sound, is

.arrled t' ,h" ... ._o.-..' " . . . '. Bazld on the exit of the gas

'ot fron the rc.zle the u,, in It finally should be equal

to atmopher!,, i.e., th ' ,vilsed because of the stagnation of

:zer.onJ.; - o; h '_ a-_comyanled by the emergence of

s5hccAs waver and 'K11 tc , ,.he mcre detailed it is analyzed.

Th'., , e,: ,;r, f ta aii Buperson¢ia nozzZe .8 not

-,,- a " U , , ,' : .,'" tJe ;:.tmoapher'e, but dependa onZ

,,ily in trie :' . ...f t,.sc-crlled calculated conditions the

in th, ? ,zz;':e . lc s i.; equal to atmospheric pressure:

J r~ d r ~:-,'.. j ,',ndtions, when pressu-e in the

t -ri u r.;' or ).e.r ttir! atmospheric, a pressure change

., . .'.. " ." , ,., the nozzle.

Th
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It has aireacy been noted that the process of the conversion

of pressure into velocity in supersonic and subsonic flows proceeds

without essential losses, i.e., approximately with a constant

entrozy:. and therefore is very close to an ideal adiabatic curve.

Prec!sely therefore the calculation formulas given above for an

ideal supersonic nozzle give good results for real nozzles.

in many instances the calculation equations are simplified

if the variables of the gas state are determined in a function

not of Mach number, but of the velocity coefficient. The conve-

nience of operation with the velocity coefficient Is connected with

the fact that its deno-inator (critical velocity) depends only

on the stagnation temperature, which is constant for any section

of flow wit.h an Isolated process. The laws of change of tempera-

ture, pressure, and gas density in the function of coefficient X

are expressed by formulas (42), (72), arid (73) of Chapter I.

Let us derive the expression which relates the cross-sectional

(area of a supersonic nozzl, with the velocity coefficient. We

will turn to the equation of continuity

F P.p MP
p.7

Substitut-rng here

Pp

we will obtain

I- __

,- _ 1 4--H--Y--:-7.,K1('4)

in ccnc luslon ;e will derivo the formula for calculating t.,c

gas flow rate per se.--or;d in a supevrsonl'_ noz,-2e. It is cor'.ent

to find the gas flo; r through the n.zle thr.at: 4

0 -- P. pl"r,



since from expressions (42), (72), (73) of Chapter I it Is simplest -.

to determine the state of the gas in the critical cross section

( - ):

Ti =-p -' * ,= -T J I (6)
p,. _a. \--- T_. )2' (k+ 1

Alp T-')

Specifically for air (k = 1.4) we have

'I= 1,2Tp, p - 1.58 pv p,- 1.89P~r  as= 1,1 ap (7)

Replacing with the help of relationships (6) the critical values

of density and speed of sound in expression (5) by the values

which correspond to the state of stagnation, i.e., to the state

in the chamber before the nozzle, we will obtain

(1= gp+aJ, ( 1 )J .

or, utilizing the equation of state and formula (34) in Chapter I:

k+I I

-- f' k +" l \ - (8)

Thus the gas flow rate through the supersonic nozzle depends only

on the state of the gas in the chamber before the nozzle. For

air (k - 1.14, R - 29.27) we have the following simplified

consumption formula:

o-= U.4 4 [kgfIs], (8a)

A.. rding to formulas (8) they determine the dimensions of the

supersonic nozzle throat for the assigned consumption and the

known state of the gas before the nozzle.

When the discharge velocity is less than critical, a simple
convergent adapter - a convergent channel - is used as the nozzle.

The state of the gas and the rate of flow in different cross
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sections of the convergent channel can be determined by those same

formulas as in the case of a supersonic nozzle. However, flow

in convergent channel has a number of features which must be

considered.

it is rmost important that with a subsonic system of outflow

the pressure in the jet on the nozzle section pa Is virtually
equal to the pressure in the surrounding medium pH, since under

these conditions any pressure change in the atmosphera in the form

of a pressure wave penetrates inside the nozzle, producing a change

in the presocre before the nozzle and the corresponding change in

the discharge veloci'y; the rearrangement of flow Is continued

until the pressure in the let en the nozzle section is equal to

atmospheric. Thas unlike the cupersonic nozzle, in a simple

convergent channel the d.schar!;e velocity is determr;ined not by its

form, but only by the pressure in the chamber before the convergent

channel. Thus if the nressure in the chamber pO is known, then

at the assigned pressure in the plane of The output section p the

velocity coefficient of' outflow is found uireetly through formula

(78) In Chapter

I,
" = ' a where the criti cal

The velocity of outflow,.- is equal to wa a w h

speed depends, according to (41) of Chapter I, only on temperature

in the chamber before the nozzle (stagnation temperature):

The ias flow rate in a ccnvergent channel we ,ill find fr-tr

thw equatlcin cf contln.ht , ufter applylno- it to the exit sect l,

if we utJlize th- -.' ready known Jo: -nd&.ices

.k _--

-- I,

.t<. j,



then the result is
I I .

or

Formula (10) can also be used for determining the gas flow rate

in a supersonic nozzle under calculated conditions of outflcw,
when the nozzle exit pressure F is equal to the pressure in thea
surrounding medium pa a PW' It is necessary, however, to have in

mind that with Fa = const and pO a const from formula (10) it

follows that with a lowering of pressure pa 0 P., i.e., with an

increase of the discharge velocity Xa In the range of values

a > 1, the gas flow rate through the nozzle decreases G * 0.
This is explained by the fact that simultaneously with an increase

of Xa there should be an Increase in the ratio of area Fa to the

throat area F Kp the value of which does not depend on Pa = Pm'

In Fig. 4.3 is represented the plotted function

-- ~ 1- ---- -f i.,- T- '' ',. ,b.-

N+ r - 7 'k -4 -11J

which describes the change of the ratio of the gas flow rate

through the cross section of the calculated nozzle to the gas flow

rate through the critical cross section of the same area depending

on a jump in pressures pO/pH. As we spe, with pO/PH - - the gas

flow rate in the exit section 5a - 0. This means that to obtain

the assigned final gas flow rate 0 in this case is possible only

by means of increasing the discharge area up to F * a (with

F " const).
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-',I . i .Fig. L.3. Dependence of gas
I -.. consumption on the ratio of

pressures in the chamber and
.. .the surrounding medium.

§ 2. The Non-Calculated Conditions of
Outflow from a Laval Nozzle

Let us examine supersonic non-calculated outflow from a Laval

nozzle when pa > PH. At a considerable distance from the nozzle

the pressure in the jet and in the atmosphere should be equalized.

In connection with this the pressure in the jet in proportion to

distance from the outlet decreases gradually, the gas velocity

increases, and the cross section of supersonic jet increases

(Fig. 4. 4 ). Experience shows that in this case the overexpansion

of the jet occurs, i.e., in a certain widest jet cross-sectional

area (a1 ) a subatmospheric pressure 5 is established.

After this the jet begins to narrow, since pressure should approach

atmospheric, and the velocity correspondingly decreases. The

stagnation of supersonic flow naturally leads to the emergence cf

shock waves. As a result of this in a certain part of the jet

cross-sectional area b the velocity becomes subsonic, and th-

pressure higher than atmospheric. Then the pressure again

decreases, drawing close to atmospheric; the corresponding increace

of subsonic velocity leads to jet contraction. With a sufficiently

large pressure excess the velocity again reaches critical, and

then even a supersonic value, i.e., a second supersonic section

appears, on which the jet is expanded. As a result of the second

overexpansion (pa < p ) and the subsequent increase in pressure

a econd group cf shock waves b2 appears. It is natural that as

a result of losses in the first shock the second overexpansic,

of the jet and the second group of shock waves are weaker than

the first. Thus gradually the jet scatters its energy (for more

detail about this see § 6, Chapter V7:'. With a small cressure 4

excess in the nozzle section the fluctuations of velocity and

ST
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Fig. 4 .4. Supersonic outflow
.. .. with an excess of pressure.

pressure are also obtained along the axis of the jet, but without
shock waves.

Supersonic outflow from a nozzle when in the section a
pressure less than the surrounding predominates is achieved by

means of a complex system of jumps. Let us examine, for example,

a plane-parallel gas jet,' flowing out into a medium of greater
pressure (Fig. 4.5). From the edge of the nozzle the oblique

shock waves which are encountered on the axis of the jet at point

0 will mo~e away. The elementary streams of gas, intersecting

the front oX an oblique shock (a-0), convert to the area of
atmospheric presz' i-e pH > Pa" The deviation of streams from the

initial direction, which takes place during a shock, should lead

to their collision on the axis of symmetry. In actuality a

second rotation of streams occurs which returns them to the initial

direction, but this leads to the emergence of the second group of

shocks (Ob). It is natural that if in the areas aOb atmospheric

pressure predominates, then more to the right of lines O-b (Fig.

4.5) a pressure greater than atmospheric will be obtained. Thus

after the second group of shocks the same conditions are established

as during outflow with a pressure excess (pa > P ). The less the

pressure pa in the nozzle section, the greater the angle obtained

between the front of oblique shock and the flow direction; in this

case the angle by which the flow should turn in the second group

of shocks Ob increases. Simultaneously the flow velocity after

'The discussion concerns a nozzle, the cross section of which
has the form of an elongated rectangle. Supersonic outflow from
an axisymmetric nozzle has been studied less, and we will not
examine it here.
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Fig. 4.5. The diagram of
outflow from a plane-parallel

. ". Laval nozzle under the con-
ditions of overexpansion.

the first group of shocks (in the area aOb) decreases therefore

finally such a system begins during which the necessary angle of

rotation (M) of flow cannot be realized in shocks Ob, i.e.,

W > (A x . From this point on, in the center section of the Jet
ma x

a shock wave is formed and the entire arrangement of shocks takes

on the bridge-type form (Fig. 4 .6). With an increasQ in the

counterpressure the section of shock wave c-c increases. In the 2

case of gzeat counterpressure the supersonic outflow turns out to

be impossible, and the pressure Jumps are shifted inside the

nozzle, i.e., they are achieved in a smaller cross section, the

lower the speed for this supersonic flow. In that case the nozzle

exit behind the front of the shock works as a usual subsonic

diffuser. If within the nozzle the separation of flow from the

walls develops, .'Ach is accompanied by a usually cemplex system

of shocks (§ 6, Chapter VI), then outflow into the atmosphere occurs

at a supersonic velocity less than under calculated conditions.

Fig. 4.6. Bridge-type shock
during non-calculated outflow
fron. a Laval nozzle.

a<

With a pressure drop In the chamber the shock will approach

all the closer to the critical cross section, simultaneously

becoming weaker. After approaching close to the critical crcss

section, the shock will disappear, the supersonic nozzle in this

case will be converted into a venturi tube (Fig. 4.7).
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Fig. 4.7. Pressure curves with
....---- 'a shock wave within a Laval

nozzle.
] I g B U

. I ,I |

The location of the plane of the shock is determined by the

ratio of pressure in the chamber (before the nozzle) to the

pressure in that medium into which the gas escapes. It should be

noted that systems during which shocks are obtained within a

supersonic nozzle are encountered in engines rarely. Usually the

gas is expanded before the nozzle exit section and escapes at

supersonic speed.

A more detailed examination of the supersonic jet which

escapes from the nozzle under non-calculated conditions is given

in Chapter VII, and the question concerning outflow with the

formation of shocks within a nozzle is given in Chapter VIII.

Let us pause on engine operation under non-calculated

conditions of the outflow of gas from the nozzle.

In engine operation under calculated conditions the pressure

in the plane of the nozzle exit section both in the working jet

and in the external flow is equal to atmospheric. However, such

a condition is satisfied only at one value of pressure ratio pa/Pe.

With a change in the flying speed the pressure in the nozzle

section in a jet engine changes. Because of this the invariable

exit cross section becomes non-corresponding to calculated con- 4
ditions: the first - with insufficient, the second - too great

a discharge opening area of the nozzle.
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in the first case in the Laval section nozzle a constant

pressure is maintained whose value is higher than atmospheric,

since the exit section is less than calculated, as a result of

which the gas in the nozzle is not completely expanded. The value

of pressure in the section is equal to

( - . ,F

The less the dimensionless area of the discharge opening (f

the lower the velocity coefficient (A a), and therefore the higher

the pressure in the section (pa). Emerging from the nozzle, the
a

jet continues to be expanded in the atmosphere and the flow

velocity increases. Figure 4.8 shos the boundaries of the region

in the jet within which the mean pressure remains excess.

_--_ "Fig. 4.8. Discharge from a nozzle
with a pressure excess.

if we construct the nozzle to the calculated dimensions, then

because within the &upplementary part of the nozzle increased

pressure predominates a thrust increase AP will be obtained.

Consequently, in the case of an insufficient dia.har;e area the

thrust of the engine is Zeas than under calculated oonditione.

Another area of work of the Laval nozzle answers to that case

where the discharge opening area exceeds calculatea, i.e., when

the value of the cotal pressure is not sufficient for obtaining

atmospheric preisure at the output. Under these conditions the

Laval nozzle !s filled by supersonic flow up to the section itself,

but the pressure obtained in the section is lower than atmospheric,

i.e., the nozzle works with overexpansion. When the jet leaves

into the atmosphere in it a complex system of shock waves is

established which maintains the rarefaction in the nozzle section.
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.,ork under the conditions of overexpansion is possible only

up to pressures p Pa min* In another case, as was noted, the

shock wave will move inside the Laval nozzle, pressure in the

section will be equaled with atmospheric, and the discharge velocity

will become subsonic. These operating conditions, as it was

already mentioned, are almost never encountered in engioes and

co not have a practical value.

In other words, with too wide a nozzle the outlet velocity

usually is the same as under calculated conditions, but pressure

here according to the given formula is lower than atmospheric;

in this case in the exit section of a Laval nozzle a section of

overexpansion is obtained in which to the walls the force AP,

directed along the flow, is applied (Fig. 4.9). Thus, in the e 8tem

of overexpaneion reactive thrust is lower than caloulated. For

a thrust augmentation it is profitable to disoard the section of

overexpansion after shortening the nozzle to the calculated

dimensions.

Fig. 4.9. Discharge from a
nozzle with overexpansion.

r- a

Thus, in all cases of deviation from calculated conditions

of outflow with p0 a const the reaction force is less than under

calculated conditions. Actually, as it follows from formula

(105) in Chapter I, the reactive thrust

P= (w. -- W.) [ w, -!- (. -P-.

Under the conditions of overexpansion the third term in the right

side of this equality is negative (pa < PH), but the first two

terms are greater than under ,calculated conditicns (due to increase

in w a); under the conditio.ns or pressure excess (pa > p ) the third

term is positive, and thf! first two terms as a result of decrease

in wa are less than under calculated conditions.
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Calculations show that a certain departure from calculated

conditions will not entail a considerable decrease In the reactive

thrust. This is obtained because the change of the third term

in the thrust formula is compensated fcr largely by the change of

the first two terms. Because of this when the nozzle exit section

is greater than the cross section of the combustion chamber, for

purposes of reducing head resistance it is possible without

special damage for thrust to shorten the nozzle, after accepting

Fa m Fr, i.e., working under non-calculated conditions. It is

possible to demonstrate theoretically, on which we are not dwelling

here, that in a jet engine value P/F a reaches a maximum when the

discharge velocity Is precisely equvl to the flying speed (w a w

and the pressure in the output section is significantly higher than

calculated (pa > pH). In such a system the thrust is formed only

as a result of the pressure excess in the nozzle section:

P =(P. -p. .

It was established above that at constant values of total

pressure and stagnation temperature in an engine the greatest

thrust is obtainf. tn the calculated system of outflow.

It is natural that in the case of an uncontrolled exhaust

nozzle, i.e., a nozzle with constant sections, thrust increases

with an increase in the total pressure, since in this case

pressure in the nozzle section increases, but the velocity coef-

ficient of outflow does riot change.

§ 3. Supersonic Gas Flow with a
Continuous Increase in Velocity
(Prandtl-Mayer) Flow

Let us examine first the simplest form of supersonic gas

flow - a forward steady flow. During such a flow all the gas

particles move along parallel trajectories at a constant velocity.

The particle trajectories are simultaneously the flow lines

which are impenetrable for a gas.
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tc floo encounters no obstructions in the form of solids

• , t undaries (walls), then the gas experiences no disturbances.

The simplest boundary which '.s capable of changing the nature of

the uniform forward gas flow is a rectilinear solid wall. Let us

examine first the case where such a wall is arranged parallel to

the directlcn of flow, i.e., it coincides with one of the flow

lines. If the moving gas occupies the entire infinite area above

the wall and the wall itself is also infinite in length, then it

is clear that in this case the wall will have no effect on the

gas flow.' Let us note that this position is correct in general

also for curved lines of flow: !,f the wall coincide! with the

flow line, then it does not exert an influence on the moving gas.

if at certain point A of the wall (Fig. 4.10) there was some

oblutruction, then it would cause a weak disturbance of the steady

flow. Such a disturbance would be extended in a uniform supersonic

flow on a straight line - a characteristic constituting with the

direction of velocity the angle a0, determined from the condition

sin 2$=

This angle, as it is already known to us, is called the angle of

proparation of weak disturbances.

/Fig. 4.1. The parallel
uniform fl,,.r above a plane
wall.

Now we can give the flow pattern of an external obtuse angle.

Assume at a certain point C the wall turns, forming with the

Inltiai direction the angle 6 (Fig. 4.11). During the supersonic

flow around the external obtuse angle ACB the gas is expanded,

'The viscosity effect of gas here can be disregarded.
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A

Fig. 4.11. The rotation of the
supersonic flow of gas during
flow around the angle ACB.

6, - "

since the area occupied by the gas increases; during expansion

the gas is accelerated. Along the section of wall AC the gas

velocity is constant. The corner point C during the flow of

gas around it is an obstruction which serves as the source of

the emergence of weak disturbances in the gas flow. These

disturbances, as it was shown, are propagated in a steady flow (n

straight line - characteristic CK, which separates the undisturbed

gas flow from disturbed. Along the section of wall CB the gas

velocity again takes a constant value, greater than in the initial

( flow along AC. This means that the disturbance which arose as a

result of the flow around the corner point C terminated on another

characteristic CL, which is also rectilinear. Thus the rotation

of flow to the new direction is acaleved within angle KCL between

two rectilinear characteristics. For greater clarity let us

break down the section of the continuous expansion of gas within

the angle KCL into a large number of sections with insignificant,

but discontinuous changes in parameters.

The first low jump in velocity and pressure will occur on

the plane, the trace of which is the straight l"ne CK; since

pressure in this case drops, then according to the theory of

jumps the velocity component normal tc plane CK increases; in

view of the invariability of the tangential component of velocity

the flow changes its direction little, differing from the plane

of the expansion shock to the side opposite to that into which it

would be deflected in a compression shock. Thus, after plane CK

of the weak expansion nL;ck the flow cbtalned a somewhat greater
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'-. _._ I Irn zhe appropriate drecticn,

.. -,,rd tcraerature of the gas are slightly

-. '.r.,r-,5b: ce which is propagated from the area of

-. eaiy .ncw should t.e limited by the new charac-

ac a -esult of deviation in the flow and

f. " h number is located more to the right of the

, .i.'er tjc CK. Left of characteristic "K' no

.!.:tra, ther fore along the line CK', Just as

,ng the line CK, the parameters of the gas and the

, are Invariable.

Clow velocity, which Increased somewhat in the first

. .grd or, directions which are normal and tangential

. , ,-' characteristic CK', then it will turn out that the

Y.ei;t of velocity here is less (w' < W ), and radial -

S"w ' than or, line CK.

h'Ve seond weak expansion shock, which we combine with plane

" .:js .ss a new deviation In flow to the side CB and the further

.: gas which is accompanied by an increase in velocity.

The rotation of flow obviously will be completed if the stream

- 7 ,l"to the wall becomes parallel to direction CB (Fig. 4.11).

C.rt ',: rly a, the wall itself the velocity vector is parallel

But on the strength of the fact that all characteristics

' .ng from point C are rectilinear, i.e., the velocit, nrid
.. :c~n;.zining parameters of gas) along the. does not change, then

along the 'ast characteristic CL the velocity vector retains

•.', nt (In value and direction) value wk. Thus after the

lionrit C is a s;girlcz, rc' .t, since at this point converge the
':,'c, ', ' each of which the values of velocity and pressure are

an These constant values of velocity and pressure are
dlJF"erent for different rays.
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Za* characteristic CL the flow again becomes forward. But after

point C the flow does not experience more disturbances. Con-

;equently, after rotation about the angle the flow above wall CB

will be the same as was the flow above wall AC, i.e., a uniform

and parallel flow at constant velocity w > w . The last charac-tt H

teristic CL, on which is completed the rotation of the gas flow

about point C, is located at an angle a k to the wall CB, which

corresponds to the equality

whereas the first characteristic is located at an angle a to the

wall AC in accordance with the equality

here M., M k are values of M numbers before and after the rotation

of flow.

As is known, finite adiabatic expansion shocks are impossible.

However if we break down angle KCL into an infinite number of

infinitesimal an .es, ther: we pass from the conditional diagram

with small expansion shocks examined above to the continuous

e pansion of gas; instead of a finite number of weak shocks we

obtain a infinite number of characteristics - a beam cf aharacter-

Thus the rotation of a flow around an obtuse angle and the

expansion of gas (decrease in the pressure) connected with this

can be considered as a sequence of weak disturbances, the source

of which is the vertex of the angle; these disturbances are

propagated in the flow a ording to rectilinear characteristics

outgoing from the vertex.

The considerations given show that during the rotaticn of a

supersonic gas flo,: ab'out an external obtuse angle the values of

velocity, pressure, and density remair. constant along the rays -

outgoing from the point of inflection and are characteristics.
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Thus Irng the anlayi , stuiy Df the flow about an obtuse angle
it I co enien c -ike u- fe of polar ccordinates, havinr. placed

the ori n of the c n-. 'dct s t th3 p oint of' Inflection. The

coordinate i, s are t :'1, -3 o-tgo - from the point of

infleoIon .nd con-...ri- ce,.es with a center in this

r uInrt of inflection. 'oocrinates cf the pojnts on a plane are

the radius-veotur r cf th' 6ci and the angle i, made up by the

radIus-vectcr w1ith the ray which has the fixed direction, which

we will determine later. the parameters of gas we wil con-

sider as f uncl ions c" r and 0: w = v.(r, p), p = p(r, ), o = p(r,).

On the stren. r of the f a,,t that the parameters of gas along the

a, our problem are ' "ia~ ....I constant, the partial derivatives

of '..., p a.p in terms of :'e eoua! to zero (during movement

:'the ruy changes do nc. occ,4r i the parameters of the gas).

r r dr (1

Velocity ccriponent on thE radius-vector and in the direction

perpendicular to it we deslgnote respectively by w, and wu . Then

the %,elociy w -:1/w• .1.., On the strength of the fact that dw,'r=:O,
we also have

=0 ad. -dr- ' (.12)

The basic property of the charactevist1c, as it is already

known, consists of the fast that the velocity component normal

to it is equal to the spee.d of scund a, but the characteristic

coincides with the radlus-ve-tc,', therefore in the polar coordinate

system, : e.ettd ,y us the rrta cor ,:cnent of the velocity can be

found from the c:Ndit.ricn

=0. (13)
_i

The gas flow around the external obtuse angle Is smooth and 1
accelerated, therefore I:. possible to consider it vortex-free.

But then Crculiatcn or: any osed lco . is equal to zero. Let

us compose the ex.pt eton fe u i .u.. 'o r c:n the Icron r MFINY ,
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(limited by the segments of two radius-vectors carried out from

the vertex of the angle and two arcs, going around this loop

clockwise (Fig. 4.12):

taking into account the constancy of the velocity on the radius-

vector which is a characteristic, we have
,ow, =O

- . (114)

This Is a condition of the absence of eddying in a supersonic

gas flow which flows around an external obtuse angle. It could

also be obtained directly from expression (103) of Chapter II.

Every stream of the flow in question can be considered energy

isolated, hhereupon the equation of energy it is advantageous to

utilize in a kinematic form (48) from Chapter I:

ija, w'-W' (15)

In a smoothly accelerated gas flow, which we are examining In this

case, the losses tf total pressure are usually insignificant,

therefore the thermodynamic process of flow about the angle we will

consider isentropic, i.e., being subordinated to the equation for

an ideal adiabatic curve:

P & = , , , t ( 1 6 )

four equations (13)-(16) compose the system, to the solution of

which the problem of the flow of a supersonic flow of gas about

an external obtuse angle is reduced.

Fig. 4.12. To the derivation

of the ccndition of absence

of eddying.

W
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From equations (13) and (15) it follows that

or
.h-I A --| ,

A:l"--, =h '+wm*. (17)

11cw utilizing equation (14), we come to the following differential'

equation:

Dividing in this equation the variables wr and * we will obtain

W-Ti

or
d(w

1/k diq - -" d?.

By integration we obtain

arc sin =7 + C1,

where c- the integration constant. Solving this expression

relative to the unknown value w r, we find

W w ,,, sin(--c .

Then from equation (14) it immediately follows that

Let us determine now the integration constant c1. Let us examine

the case where the velocity of undisturbed flow (before rotation)

'Since the parameters of the gas along lines 0 - const during
the flow about an external angle dc not change, they are the
functions only of one variable - polar angle 0. Thus In equation
(18) and further the partial derivatives in terms of * are re-
placed by full.
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is equal to the speed of sound (M H ). This means that the

initial characteristic KC (Fig. 4.11) is perpendicular to wall AC,

since

II M.

i.e., polar angles 0 must be counted off from the perpendicular

to the direction of the velocity of undisturbed flow. Then with

0 O, we have wr d 0, wu 1 w, and the expression for w r is

converted into the equation for determining cl:

0 = Wns Sll (0 + C.)J

Hence it is clear that c = 0. Thus we obtain the following ex.-

pressio.is for the velocity components wr and wu

tW"I sin (/iE )
V' 8 Wr.~t ~ ( k I~)

Using expzissions (35) and (41) of Chapter I, it is possible to

pass from the maxirium gas velocity to critical

and to write the expressions for wr and wu in the following form:

W'="a I i'  I -1., (19)

b"",, = a, Cos ,(20)

With € = 0 we will obtain wr = 0 w w pa , e the

of undisturbed flow Is equal to the critical speed of sound.

Now let us find tit \'. lue of full velocity for each of the

rays: r'o. From equations (19) and (20) we will obtain

20,
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From herf we determine the velocity coefficient

sin' (21)

All the remaining gas parameters are expressed as the velocity

coefficient according to the formulas obtained in Chapter I:

I X4 (22)

., ,,. -- .'-- Jl.) - -. (23)

T I--T---I - t+- n(24)

- "(25)

Thus after determining by formula (21) the value X2 for the

corresponding values of 0, we will be able from formulas (22)-(25)

to calculate completely the state of the gas for each of the rays

passing through the vertex of the angle. With 0 - 0 X - 1 is

cbtained, with € > 0 we have X > 1. In proportion to the increase

in the polar angle the gas velocity increases, and the pressure,

density, and temperature le:rease.

As can be seen from expression (21), with a certain value

of the polar angle the velocity coefficient can achieve the maximum

value

when the pressure, temperature, and gas density are equal to zero.

It is obvious that a further increase in velocity is impossible,

and, consequently, the rctation of flow will be discontinued.

In other words, there is an extreme value of polar angle -!rmined

from the condition

208



Hence it follows that

S-'* 1" h-1- (26)

Let us note that the solution obtained is useful for all

values of velocity of a supersonic undisturbed flow, and not only

in the case X - 1. If the velocity of undisturbed flow is greater

than the speed of sound, then computation according to formula

(21) should be begun not from the zero polar angle (I - 0), but

from that value of angle (OH) which corresponds to the given

velocity of the undisturbed flow (XH). From formula (21) it

follows that

S arc $11 (27)

The suitability of the solution obtained for any value of velocity

is based on the fact that in this problem along any characteristic

the velccity and the remaining parameters of the gas do not change,

I.e., on any char cteristic the flow is uniform and parallel. And

therefore for the rotation of the flow, which proceeds to the right

of this characteristic, the prehistory of the flow cannot be

important, i.e., this value of X is achieved as a result of theH

acceleration of gas during preliminary rotation from X = 1 and

= 0 tc X - I and 0 * or rotation begins immediately at the

value of the velocity coefficient X = , . Thus, in the caseH

X > 1 with 0 1 0 flow remains undisturbed, i.e., all the param-
H H

eters of the gas retain their value. With 0 40 the parameters

of the gas are calculated from the formulas (22)-(25) obtained

above. It is necessary only to remember that at a velocity of

undisturbed : ow greater than the speed of sound angles 0 must be

counted off not from the p:erpendicular to the direction of un-

dis;:urbed flow, bit from the straight ljie making up angle 0 + o-

HHwith the direction cf undisturbed flow, where a.= arc sin -
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(FIt. L.13) is the angle of weak disturbance, i.e., the angle

between the characteristic and the direction of the assigned

undisturbed flow.

Fig. 4.13. Diagram of the
computation of angles € with

4 w >a .

In order to obtain a demonstrative picture of flow around an
external obtuse angle, let us find the form of the flow lines.

For this let us compose the differential equation o the flow

lines in polar coordinates. Let us recall that the direction of
the tangent to the flow line at every point of it coincides with

the direction of the velocity vector at this point. Let us take

two infinitely close radius vectors, making with each other the

angle dO, and let us draw at point A of the first radius the
segment of the flow line AC, the velocity vector w = AE, directed

tangentially to the flow line at point A, and the circular arc
AB of radius r (Fig. 4.14). Let us examine the infinitesimal

rectangular curvilinear triangle ABC. The tangent of angle A

of this triangle is equal to the relation

lic dr

But the angle between curves AB and AC is equal to the angle

between their tangents AF and AE, i.e., tg (4EAP) a dr/rdp. The

velocity vector Wis decomposed into components wr and wu . From

triangle ADE it is evident that tg (-DF,A)=,/w8 . But from the

construction it is clear that Ibh'A-LEA. Thus,

r '? O (28)
rdt  *."

Equation (28) is the differential equation of flow lines in polar

coordinates.
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Fig. 4.14. For determining
the flow line during flow
around an external obtuse

; angle.
, KEY: (1) Flow line.

i

In the case of flow around the Rngle wr and w u are determined

by formula (19) and (20), therefore differential equation (28)

takes the form

dr VRA

It can also be rewritten in this form:

-,. r--- "-;7--L

Integrating this 'Ifferential equation, we fincf

III r I=-Coi s+ c (-Inr.

where through ln r0 is designated the arbitrary integration

constant. After involution we will obtain

r r os " • (29 )

Equation (29) is the equation of flow lines in polar coordinates.

Here r0 is the length of the radius vector of the flow linc of

the flow line with $ 0, i.e., in an undisturbed flow. From

equation (29) it is evident that all the flow lines are similar

curves with the center of similitude in the vertex of the angle.

Distance along the normal between two adjacent flow lines increases

in the direction of flow.
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Now let us find angle 6, between the tangent to the flow
line and the direction of undisturbed flow which moves at the speed
of sound, i.e., the angle to which the flow is turned after

reaching the appropriate ray, constituting the angle 0 with a

perpendicular to the direction of the velocity of undisturbed

flow (with ) * 1). For this let us examine Fig. 4.15. Here w

is the velocity vector at point B directed tangentially to the

flow line. Angle a is the local angle of the propagation of

weak disturbances. This angle is equal, as is known, to the angle
betwt.en the direction of velocity w and characteristic BE at the

particular point. Angle 6 is the unknown angle of rotation of flow.

From the figure it is clear that %_.ABD-8, and angle ABC - a. Then
from triangles ABC and ABD we have

.A~r----a and /A=,,-k

4 Fig. 4.15. The connection between
(1) angles a, 0, and 6 during flow

KEY: (1) Flow line.

Thus

or

(30)

The angle of propagation of weak disturbances

=arcsIn. 1 (31)

Thus for the calculaticnj of the angle of rotation of flow 6, which

corresponds to the assigned value of angle 0, it is necessary to

perform the following operations:
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i) determine by formula (21) the velocity coefficient X for

the assigned value of €,

2) by formula (25) determine the Mach number,

3) by formula (31) deterine the angle t, and, finally,

4) calculate angle 6 according to formula (30) for the assigned

value of t. Thus we will obtain the angle of rotation of flow 6

as a function of the polar angle €.

Up to now the independent variable was the polar angle 0

and all the gas parameters were calculated as a function of this

angle. in actuality the value of the circumfluous obtuse angle,

i.e., the value of the angle of rotation of flow 60, and the

value of the velocity of incident flow are usually known.

According to these data it is necessary to determine all parameters

of the gas (velocity, pressure, temperature, etc.) after the

rotation of flow around the assigned obtuse angle. Thus for

practical calculations it Is convenient to compile a table, where

as' the basic parameter the angle of rotation of flow 6 is accep-ed,

and all the remaining parameters of the gas are calculated in the

function of this angle. Such a table, calculated from formulaz

(2l)-(25), (30) and (31), is given in the appendix to the book

or, pages 1007-1009. It is necessary to use this table in the

following manner: from the given speed of undisturbed flow wH
the velocity coefficient X is determined. Further the fictitious

Hangle of -otation of flow 6 which corresponds to value X is

sought (angle to which the flow which flows at the speed of sound

should turn In order to achieve the assigned velocity w ). Then

angle 6 6 H + 60 is found, where 60 is the assigned angle of

rotation of flow (Fig. 4.16). For a value % fr'm the table values

" '' , : and M are extracted; they determine respectively the

velocity coefficient, pressure, density, temperature, and Mach

number after the rotation of flow around the assigned obtuse angle.

Curves 0(6), M(6), and a(6) and R f(6, are depicted in Fig. 4.17.

£O
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Fig. 4.16. The flow line of
a supersonic flow which flows
around an external obtuse angle.

I it

-tli
N.

Fig. 4.17. Auxiliary curves for the calcu-
lation of supersonic flow around an ex-
ternal obtuse angle (k a 1.4).

If desired it is possible to determine the form of the flow

line according to formula (29), after assigning value r0 and a

series of values 0 from 0 a O to 0 - 0 (Fig. 4.16).

For determining the angle of rotation of flow 60 depending

on the initial and final velocity it is possible to use the simple

formula proposed by A. Ya. Cherkez which approximates well the

precise relationships and the tabulated data with k - 1.4:

---- 7 . { -4 1 ( 3 2 )
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Here X a nd ,, respectively are the velocity coefficients of flow

before and after rotation. With < 2.3 (2 > 0.0005) the error
p0

for the determination of a":g]e 60 from this formula does not

usually exceed 1.

The given thec.ry of flow of a supersonic flow of gas around

an external obtuse anle is apilied for the solution of a large

number of spe if to problems of' gas dynamics; some of them we will

examine below.

§ 4. Flc,.-. Around L; Plane Wall

Assu?:e the supersonic Vlow of gas flows at an assigned

velocity wre: a plane fixed wall. At point C (Fig. 4.18) the

wall is broken, but the pressure in space after point C is less

than the pressure in the undisturbed flw long the wall. Then

exactly as in the oase of the flow about an external obtuse angle,

point C will be the dl turbance source. Flow, flowing around

point C, will turn itself on a certain angle 6. Its velocity

will Increase, ar- the prassure in the flow will .ircp to the value

of the pressure which exists in space b-cnd point C. The plcture

of flow in tnis case is completely similar to the flow around the

external obtuse angle. The only difference is that in the case of

the flow around the obtuse angle the angle of rotation of flow 6

is assigned and it is required to find all parameters of the gas

after rotation, and in the case of the flow around a half-infinite

plane wall being examined by us the pressure in the flow after

rotation is assijned_ m- I is requ. red tc find the angle of

rotaticn of flow and al the -reaining par, .!-rs of the gas.

The angle 6 defines tht- boundaries which secarate the deviated

Clow of gas from the fixed gas under tne wall (dotted line in

FIg. .

For calculating the flcw around a plane half-I n ite wall It

Js possible tc use Ttlc :on ragts IC'7-1009. Through the assigned

.17
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Fig. 4.18. Diagram of the super-
sonic flow around a wall.

magnitude of pressure the angle of rotation of flow and all the

remaining parameters of the gas are found.

It is easy to calculate the maximum angle 6ma x to which the

gas flow which decende from a plane waZl can turn. This angle is

the angle of rotation of flow, the initial velocity of which is

equal to the speed of sound during outflow into a vacuum.

Let us assume in formula (22) p = 0. Then

X, k+ 1 I, .'.

Substituting X A into formula (27), ,-.e find

max
?m,= V¥,__I

Since with X = Ama frcm (25) we have M = -, then a = arc sin 0.

Then from formula (30) we obtain

With k = 1I4 values *max and 6,a will be *.a x = 220027 ' , 6ma =

= 130'271 Hence it follows that the flow which flows from a

plane wall into a vacuum does not fill the entire free space

under the wall. Ray € = 4 max separates this flow from the void

under the wall. It is clear that this position is correct not

only for the case H = 1, but also with X > 1. Thp angle ofH H

rotation of such a flow during outflow into a vacuum is equal to

6 rax - 6', where 6 is the fictitious angle of rotation of flow

which corresponds to the assigned value X . This critical angle,
by which the supersonic flow of assigned velocity cb.n turn, let us

designate 6 Thus,
np 
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The dependence of 6 npon Mach number of undisturbed flow (with
k a 1.4) is presented in the chart of Fig. 4.2.9. With M4 1 we
have 6 0Oand 6 6 .With M=H rip max

Sand a. 0=

J1

-Fig. 4.19. The critical angles
waeand during the flow around~~1 an external obtuse angle.

Ar .

', 5 Y d J '0 'itf

If the supersonic flow should flow around an obtuse angle
for which 6 > 6 n , then after ,he rotation of flow around the
vertex of the angle the flow blows away and follows not on wall,
but on the ray which corresponds to 6 = 6; between the ray and
the wall -4 vacuum is formed. This phenomenon can be called the
eeparaticn of 6zupereornic fliow.

§ 5. Flcw Around a Convex Curvilinear
WE 1

In order to compose a representation of the picture which
appears during "low around a convex curvilinear wall let us
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examine first one of the flow lines obtained during flow around
an obtuse angle and accept it for the projectucn of a solid wall

(Fig. 4 .2 0 ). Above this wall the flow parameters are known,

since they will remain the same as they were above the corresponding

(now solidif-ied) flow line during flow around an angle.

Fig. 4.20. Diagram of supersonic
-flow around a convex curve.

Past every point of the streamlined curved line passes a

rectilinear characteristic, along which all the gas parameters

remain constant. The state of the gas on every characteristic is

determined from the angle of rotation of flow 6, which corresponds

to this characteristic and Is equal to the angle between the

characteristic which is tangential to the wall at the initial

point and the direction of undisturbed flow. During the calcu-

lation of the gas parameters it is necessary to make use of the

previously derived formulas or the table of Appendix I to the book

on pages 1007-1009.

Let us note that the same accurately qualitative picture takes

place during the flow around a convex ourvilinear wall of any form.

It is necessary only that the convexity of the wall be directed

always to the side of the gas. In order to show this, let us

replace the arbitrary curved wall by an inscribed broken line

which consists of a succession of rectilinear segments (Fig. 4.21a).

Flow around such a broken line is reduced to flow around a

succession of external obtuse angles, ;nd therefore can be calcu-

lated completely. The flow pattern is shown in Fig. 4.21b. If

now we increase infinitely the number of vertexes of the broken
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a) b C)

Fig. 4.21. Transfer from flow around a
broken wall to tne flow around a convex
curve.

line inscribed into this curve, then in the end we will obtain

flow around a curve, whereupon it is clear that through every

point of curve passes the rectilinear characteristic, along which

the gas parameters are not changed (Fig. 4.21c).

In order to calculate the flow around an arbitrary curve of

a convex wall it is necessary to know only the angle of rotation,

i.e., the direction of the tangent for every point of the wail.

if, for example, the form of the wall is assigned by an equation

in the form y = "(x) (x-axis is directed along the velocity vector

of undisturbed flow), then, differentiating this equation, we

will find the tangent angle with the x-axis for every value of

abscissa x, equal to the angle of rotation of flow 6.

Thus

.arctg (x)t

Knowing 6, it is easy tc determine all the gas parameters, acting

exactly the same as in the case of flow around an obtuse angle.

Specifically it is possible to find the distribution of velocity

and pressures along the wall. During flow around a curved convex

wall, just as during flow around an angle, the gas is accelerated.

The gas velocity increases continuously and the pressure drops.

If it turns out that at any point of 'he wall

a> 8-P
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then flow separation will occur.

The determination of the form of the flow lines during flow

around a convex wall of arbitrary form is a more difficult task,

and we will not examine it here. The strict theory of flow around
a curved wall was developed by I. A. Kibel and S. A. Khristianovich.

5 6. Outflow from a Unit Two-Dimensional
Nozzle with Oblique Section into Space
with Reduced Pressure

Let us examine the outflow of a supersonic flow uf gas from

a two-dimensional nozzle. Let the nozzle provide a constant

veloclty in its section and the pressure in the free space into

which the gas escapes Is less than the pressure in the nozzle-
section plane. The theory of flow around a plane wall given

above makes it possible to determine the direction of the Jet
boundaries directly after the nozzle section.

The behavior of the gas near the edges of the nozzle A and B

(Fig. 4.22) is precisely the same as during flow around one plane
wall. Near each of the edges the flow will turn by such an angle

6 that the pressure in the flow will become equal to the assigned
pressure In free space. Consequently the Jet as a whole is

expanded during outflow. The angle of rotation of flow 6 around
each of the edges can be found from the assigned magnitudes of

velocity and pressure In the nozzle section and the pressure in

free space Just as during the flow around one plane wall. This

angle 6 determines the direction of the Jet boundaries behind the

nozzle section. Along the entire free boundary of the .let there

is a constant value of velocity wnich corresponds to external

pressure and can be calculated easily according to the formulas

and table given above.

The beams of the rectilinear characteristics outgoing from
points A and B intersect as is shown in the figure. After the
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intersection of characteristics

the flow velocity changes, and,
4i a) as this follows from § 2 of Chapter
g ILl, the characteristics cease

to be rectilinear. This fact

considerably complicates the calcu-
-lation of further sections of the

- Jet.

If the nozzle-sectlon plane

is not perpendi.cular to the axis
-of flow, then such a nozzle is

c -c called a nossZe with an obZique

aection. The presence of vn oblique
- -_section disti.rbs the symmetry of

- . -- flow and considerably complicates
Lr )the calculation of the flow appear-

1 Ing in this case. The study of out-

( f flow from channels with an oclioue

section has important practical
"_ __ _ e) value, since such an outflov: takes

place during the operation of
steam and gas turbines, where

Fig.em of2 oute difret ausually the nozzle vehicles are
systems of outflow from a
nozzle with an oblique channels with an oblique section.
section.

Let us examine the supersonic

outflow of gas from a two-

dimensional nozzle with an oblique section into space in which
the pressure is less than the pressure in the flow within the

nzzzle. The oblique edge Is formed during the displacement of
edge b of the nozzle relative to edge A backwards, against the
flow. In the case of minor displacement of edge B, i.e., with
a small sl&nt of the section plane AB (Fig. 4.22b), obviously
an unsymmetric free Jet will be obtained. In this case the area
of intersection of the beams of the characteristics outgoing from

. edges A and B is moved to point A.

2
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Ccnsequently the rectilinear characteristics outgoing fromr.

edge A bein to be bent earlier than in the case of a direct

oeotlon. tehind the section plane AB the jet is expanded. The

angles cf* rotation (f flow near each of the edges A and B

cbviously are the same as in the case of a direct section.

The extreme position of edge B for a flow of such a form is

that. csltion cf it In which the "first" characteristic, carried

out from edge B, passes accurately past edge A. Such a case is

depicted in Fig. 4.22c. The picture of flow near edge B is

2milar as bt.fore to the flow around one plane wall. Thus the

dlrectlon of the jet boundary behind edge B is retained as

p'-vicus and it can be determined easily. The characteristics

ou'-Ing from edge A will begin to be bent immediately after point

A. This complicates the determination of the second Jet boundary

behind point A.

if after edge A we make a directing deflector, realized on

the flow line which corresponds to the rotation of flow around

eige B (Fig. 4.22d), then flow can be calculated completely.

The flow around edge B at the assigned external pressure is

analogous to the flow around an external obtuse angle. Thus the

form of the flow line can be determined by formula (29).

Thus we obtain the shapi of directing deflector AC. Pressure

on ray BC is equal to the assigned external pressure, as a result

of which behind ray BC the jet again becomes parallel and uniform.

The velocity in this jet is greater than the velocity within the

nozzle in cross section BD. The Jet is deflected from the nozzle

axis by the angle 6, determined by the ratio of external pressure

to the pressure within the nozzle in cross section BD.

Displacing edge B still further back, we will obtain the case

of outflow from an oblique section as depicted in Fig. 4.22e.

Here the "first" characteristic outgoing from edge B comes to the
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opposite wall within the nozzle at a certain point left of A.

Precise calculation of flow near the section of the wall between

the indicated point and point A and the determination of the jet

boundary behind edge A is a sufficiently complex problem. If

as In the preceding case we make a directing deflector, having

placed its beginning in the point of encounter of the first

characteristic with the wall A, then we will reduce the case in

question tothe preceding one.

The effectively applicable oases of outflow from an oblique

section are the cases b, d, and e. In cases c and d the approxi-

mate computation, defining the discharge velocity and the angle

of rotation of the jet as a whole Just at, in the case d, is used,

i.e., the small change in the flow parameters connected with the

disturbance of the picture of flow near edge A accepted during

the calculation is disregarded.

Let us emohasize again that in all practically applicable

cases of outflow from a plane channel with an oblique section into

space with reduce, pressure the flow in the oblique section under-

goes expansion, and the Jet obtains an additional deviation; in

this case the discharge velocity increases as compared with the

velzcity which can be provided by the same nozzle with a direct

section.
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CHAPTER V

ONE-DIMENSIONAL GAS FLOWS

5 1. Adiahatic Ga,3 Flow~ with Friction.

Cr'iti.:a1 l l~ of the Flow

Lot :A; oxamine 11tLe -teady flow of gas in a tube of cons tant

crri _ 6 ection it. the presence of friction but without heat exchange

vvlt! envircriment

T-le equatijn cf continuity In this case (G =const, F =const)

takeS tle fuolwil form:

pzv==conut,

-r in differential *form

do d

"he differenti1al equaticn of state

dp=ga(pdTj-Tdp. (2)

~r,,7;-. .. at '(_n; (1 arid_ (2) we obtLain

dp _R d du R !0 (3)
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Using the Bernoulli equation in differential form

-- + wj + gdL,o--- 0

and the known expression for the speed of sound

a'kgR T,

we convert expression (3) to the new form

C'Zdr+ W --. 1 + g dL,, 0. (4)

In view of the fact that the process in question is energy

isolated, the stagnation temperature along the tube does not change

T0 = const. This is equivalent to the condition

AW' dw 0

or, taxing into ac ount the known equalities AR = cp - cv Cp key,

gRdT= (5)

Substituting (5) into (4), we arrive at the relation which connects

the velocity change along the tube of constant cross section with

the work of forces of friction:

04' - 1) _ k9 A (6)

It iL. importarnt thiat the friction is a one-sided action: the

work of the forces of friction is always positive (dL > 0).

Therefore, according to the relation (6) under the effect of

friction the subsonic flow (M < 1) is accelerated (dw > 0), and

the supersonic fZow (r > 1) is s"ooed _ own (dw < 0). The continuous

transition througn the of sounri under the action only by [,

friction is impssliule.
"2
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lei: uz -:ive thc ormulas wkich determine the change in the

•'rn.r : . ran :. r the insulated tube in the presence of

7K v,-. of n fact t:at the prccess in the gas Is energy

. L(:jI t *:
. stainat. n temperature is not changed:

TU == coMIL (7)

0he t,;Turxrdu: am c temperature, if we use equations (42) of Chapter

Sand (7), is determnea from the relation

T, .... 2±.L..~(8)
k--

A a result of the constancy of stagnation temperature, the critical

vel.cit. alon7 th e tube also does not change; hence the ratio of

the coefficients of velocity is equal to the ratio of the velocities

on the Lasis of the equation of the continuity - the Inver.e

density ratlo

. --e -- - (9)

After 3ubstituting equalities C8) and (9) into the equation of
state, we obtain tne dependence of the pressure on the velocity

coefficient:

- 1 (10)
ii

in .'iew of tihe onstancy cf stagnation temperature, the total

preauro K propcrtl .nal to the density of ',he stagnated gas'

'This result; from the equattn of state and formula (72, i..

Chapter 1.
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Al . pot P1

Hen.e cn the Lasis of (L0) we obtain

Let us rive Xl any constant value, and we will consider X 2 as

a variatle ani paratcr: Tn, P2 ) P 2 ) P 0 2 ) %02 as functions of the

vart'le " It was estabim.ihed above, on the basis ot relation

('), that the friction accelerates the subsonic and slows down the

surersonic flcw. Then it Is necessary to consider X2 as increasing

.:ith sutzonic and decreasing with supersonic flow. Therefore,

accorair.g to dependences (8), (9) and (10), the thermodynaNmc

temperature, dens _t', and static pressure along the insulated tube

(u:;der the effect of frIction decrease in subsonic and increase in

:.r-.;cnlc flew. "rom evualty (11) it follows that in the critical

cross section when >2 = 1 the total pressure P0 2 has a minimum

vaxe,' .ut then fron expre~s'un (102; of Chapter I it foll: ! hat

in the crlical cross sect ion the entropy reaches a maximum value.

The total pressure and the density of the stagnated gas, in

ac~crdonce with equality (11) both in subsonic and supersonic flow

alon.; t:e tube decrease, and only one parameter - the stagnation

temperature - is not changed.

it is possille tc Ue convinced of th" by differentiating
the ecu ality; (11) wlt roect tc X By cutstitutlnR one into

the. exsr js , c'f Q i vo'ive Instsad ef X., we obtain A

Tim second derivative I: rc:Itiv w;hcn A = 1.
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-L'~ t a miaximnum i~n the cr! t Ical

"~CtC'I oa V c* the oritiLcal region cf the

i &iovJ' the smiooth trans ftlin

t-r"i~e tt~*~c i *'~efLfect of fricti on impossible;

. -" I' t!. ,nt"rrv :,.i-uld decrease , and this

r~tt.a: c. t 'A '* c1' I r !np mi, r ~ia 'LC C

U' i-r. 1,A jrt cuv of1 temperatlure, aens ity , pressure,

3stai 'ntion tcprtmand total p~r-isLre in the insulated tube
a Cuct.A, the Voo'(c~ty coefficient X when X1 0.1 for

)lu .j ?3'~~'oi flow,, and k 1.4. Th c

V1 C":~n~c irt the J'rection of the course of the

I * l. Depe .ndence of gas
~ ~-~r~or the velocIty

coeff.1cicn in a tube of
- o n zt cr'c t -72ection.

§ . Fio;,; in a Tubecr' -. f ar

L~t us i1,ve.st'.o-te tih- effect cf frict~on on the Chiange in

Pararnetcex- of the ;>ujn asn flcw. in tubes of constant diameter.

For :- let -,s rrwe;c f the forrce of friction in relation

()with the exoref7 ',n ocnivent Icrl i hydraulics
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dL~p W dX(12)

here C is the coefficient of friction in the tube, D - diameter of

the tube, dx - length of the infinitesimal section of tne tube.

Then we obtain

(M-- . ,=, - , D.

By using expression (45) of Chapter I and the constancy cf critical

velocity in the tube, from which follows the equality

dia A
V= -,

let us turn in relation (6) from the M number to the coefficient

of critical velocity X:

I )d --- . (13)

Let us allow in the first approximation that the coefficient

of friction in the tube, both in subsonic and supersonic flows,

does not depend on the M number and, consequent'-;, on the velocity

coefficient X.

In rough tubes the value C for IncompressIble fluid does not

depend on the Reynolds number F and is determined from formula'

1,74 +- 2g )

where E = 2h/D = h/r is the relative roughness of the tube (h -

the height of the projections of the roughness).

'See "Problems of turbulence," page 29, ONTI, 1936.
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Let us examine, furthtr, the frictlon n the su-calle: ar

sr~oti tues.ThetecnicllYsincoth tube is chavac-

ccierd wtha lmiar6ubayr.1'."he!-- kness of the sublaver

decreases %.Ith an Increase in the R number; tV.ci~fore, the same
tube ...- th F.~ is smooth butl ,,i-h -arge F is rough (Fig. 5.2).

4'J

Fig. 5.2. Dependence of the coefficient of
friction 4 on R in tubes withi different rough-
ness according to experiments of Nikuradze.

In tec~hnically smooth tubes, for the turbulent flow of

incompressible fluid the coefficient of fr4.otion depends on the R~

number and can be determined by the formula

where R w/P

'Pr n're detail about the -.aminar sublayer see Chapter VI.
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Since in the tube of constant cross section, according to tne

equation of continuity Pw z const, then the R number along the

length of the tube changes insignificantly (only because of a

viscosity change).

Thus, we approximately assume the coefficient of friction in

the tube to be a constant value:

Pw conit.

In this case equation (13) is easily integrated:

I I -i 9 2h x (16)

here XI is the value of the velocity coefficient at the beginning

of the tube x - 0, and X 2 is the value of the velocity coefficient

in an arbitrary cross section of the tube at a distance of x = x2

from the beginning. With the aid of expression (16) it is possible

to determine the .alue of the velocity coefficient in the arbitrary

cross section of the tube if the velocity coefficient at the

beginning of the tubes XI' the diameter of the tube D, the coeffi-

clent of friction , and the index of ideal adiabatic curve k are

known.

2

Let us introduce the function () l/X + 2 In X and call

the dimensionless quantity which is on the right side of equation
(16)

2k .r

tne normalized Zength of the tube. Then equation (16) can be -A

presented in the form

2'31
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u., a change -n the 'low velocity tet.;een the two cross

' e tube is such that .a difference of the functions

,t) : them Is eaual to the normalize] lcngth of this section

cf the uce.L By using, the graph of function $(M) (Fig. 5.3), 1t

s oos2itle .t determine the change in the coefficient of the flo',w

velocity alonr the length of the r. be depending on ,,alues X and .

-unct Ion ¢(,) when X = I has a minimum equal to 0( ) = 1. Therefore,

at ti.e rated value ti the value of the difference on the left side

of equation (1v) and, consequently, also the normalized length of

the turves X cani-,ot be miore than a certain critical value determined

from cond iton X2 = I:

z~p ---- -- .( 18 )

ALt ally, let us eauate to zero the der!-vative of the normalized

length X with. respect to X2 when = const:

I_. d 2 2 o
dk1  dA, -

Hence we find

Since when X = 1

d' + = 8 2 ,

Then condition X2 = 1 determines the maximum of the value of the

normalIzed length of the tube for the atulgned value of the

velocity coefficient at the inlet into the tube X 1  Since equation

(17) Is correct not only for the entire tube, but also for any

section of it, it follows from it that the velocity equal to the

speed of souni can te achieved only in the outlet section of the

tube. Actually, if we assume that tie velocity coefficient is
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Fig. 5.-3- Graph of
function

I n.

equal to unity in any intermediate cross section of the cylindrical

tube, then from equation (17), recorded for the subsequent section

of the tube, we obtain

Since, by definition, function OM) > 1 (Fig. .3,then thia case

is not real.

Tt was shown above that with flow in the cylindrical tube with

friction, the subsonic flow is accelerated and the supersonic-
braked, and the maximally possible state in both cases with a

continuous change in the parameters is the critical regime, i.e.,
the achievement by the flow of the speed of sound in the outlet

section of the tube. Equatlon (17) makes It possible to establish
the quantitative connection between the change in velocity and the

normalized length of the tube X. If at the inlet into the tube
the flow is subsonic and the velocity coefficient of It is equal

to NJ~, and if the normalized length of the tube is less than the
critical value determined by formula (18), then at outlet from the
tube the flow will be al-.(. subsonic, whereupon from equation (17)Il
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,, :Y11low's that the velocity coefficient A2 > If flow at the2 1,
r-i-t : : ! u- on c and the ncrma a!1zed length of the tube is equal

to tI-e cri tcal (ma ximum) value for the given A then at the

outlet from the tute the flow velocity is equal to the speed of

ound and ) . = I.

If finally the normalized length of the tube Is greater than

maximum determined from formula (18), then equation (17) does not

have a solution for X2 ( (X) < 1). This means that the taken

Initial value of the velocity coefficLent XI cannot be realized.

At the begitining of the tube with assigned normalized length X, the

flo.; velocity cannot exceed the value obtained from formula

?0()=Z +I. (19)

since in this case the velocity at the outlet from the tube is

equal to the critical velocity, and through the tube the maximally

poscZible Pas flow rate per second occurs.

Figure 5.4 depicts the dependence of the maximum value of the

velocity coefficient at the inlet Into the tube X on the dimen-np

sionless length of the tube x/D for the subsonic flow when C = 0.015

and k = 1.4. At these values of and k

X h=Att

It should be noted that the obtained change in the velocity

coefficient (formula (16)), both when Xi < 1 and X 1 > 1, corresponds

to the ccmpletely definite change in the total and static pressure

of the gas (see formulas (10) and (11) § 1). Everywhere above we

as.'.umed that such a pressure change can always be realized:

this was the condition in the retention of the constant value X1

with a change in the normalized length of the tube up to the

obtaining of X2 = 1. If for some reason or other the inoicated

change in pressure is impossible, for example, at the assigned
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Fig. 5.4. Depe?,dence of the maximum
value of the velocity coefficient at
the beginning of the tube on its
length.

marnltude of a drop in .ressures at the inlet and outlet, then the

flow In question with the assigned initial velocity coefficient

can prove to be unreal. This question is examined in more detail

below In § 7.

vI:th supersonic flow, for which formula (16) is also suitable,

the following systems are possible. If with the assigned Initial

velocity X. the r.rmallzed langth is less the maximum (X < )

then at the end of the tube supersonic flow (X2 > 1) is obtained.

If the normalized length is equal to the maximum (X = X ), then

the velocity at the end of the tube is equal to the critical

velocity (X2 = 1). If the normalized length calculated according

to formula (17) is more than the maximum, determined according to

formula (18) at the assigned value of the velocity coefficient at

the beginning of the tuue '' then the smooth braking of supersonic
flo; for the extent of the entire tube is impossible; in a certain

cross section of the tube a shock wave occurs, after which the

accelerated sutsonic flow is established.

Determining the pnsition of this shock wave can be carried

out in the following manner. Let the z, personic velocity at the

beginning of the tube Xi, the length of tube x, diameter of the 2

tube D, coefficient of friction C and the index of ideal adiabatic

curve k be assigned. 4e compute accrding to formula (17) the

2



g d g~h of the tube x. ccording to formula (18) we
itcrj thr.e t., maximum normalized len,th XHP and are convInced of
., fa" that the true normalized length is greater than the

na xI mur (x > ) In tris case, as was shown, in a certain cross
s ection at a i stance of x from the heginning of the tube a shock

:ave appears. [-or simplicity we assume that the shock wave is
normal, and then the velocity coefficients before the shock (1')

ard after the sIock (.") are connected by relation (16) of Chapter
iI

Ti e veloc ity coefficient before the shock (X') can be found from

f- rr:1la (16):

I I ' 2k 20)

Tne velocity coefficient after the shock, where the accelerated
subsonic flow (" < 1) is established, is connected with the lengtn

of the subsonic section of the tube at the end of a stall (X. = 1)
wnlch takes by formula (18):

I I 2k

wihence

-I -In V,--- X- X,. (21)

By solving together the two equations (20) and (21) with two
unknowns (X,, A'), we arrive at the equation with one unknown,

according which the velocity before the shock is calculated:

+(22)
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after :kc- acccri!ni- to formula (21) the location of the

rmiulas (22), 21), and (22) for determining the locaAt )-.f

tlie s-c.ck .:ave are inconvenient, since according to them it is

rnecesarv to conduct the calculations by the method of success',_-,

approx'rations. It is possible to recommend auxiliary graph.'-,

(Fig -.5), whIch substantially simplify the calculations. Curve

(1) corresponds to the auxiliary dependence

2=

Curve 2) represents function (21):

- -- -I - Inv

Curve 3) corresponds tc function (18):

(s In1~='-i-n 4.

Let us explain the method of the use of these curves ir. a

concrete example. Let a tube with the normalized length x = 0. e

given. According to curve (3) it is evident that in this :'.ae

there will be the critical regime 2 = 1) at the value of the
velocty etefflclent at the inlet ) 1 .95. Let us check first

the .i'. pattern in the tube in the case of XI > 1.95, for examrle,

for X = 2.2. According to formula (16) it is possible to calculate

the velocity at the end of the tute

+ XS

or, in accordance .,,- notation (23)
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Fig. 5.5. Auxiliary cuirves for cal-
culating supersonic flow in a tube
of constant cross section.
KEY: (1) without a shock.

On curve (1) when A 1 -- 2.2 we find point €1 U 1.78, whence

'* 1,78 - O,60 1.1&

which on curve (1) corresponds to thp value of the velocity coeffi-

cient at the end of the tube A 2 = 1.4. Thus, in the tub- which

has the normalized length x = 0.6, at the initial value of the
velocity coefficient 5 .5 2.2 there occurs smooth braking of the

supersonic flow up to the value of the velocity coefficient

Let us now assume that the tube has a normalized length

greater than maximum (x2. Kp), i.e., in this example A < 1.95.

Let us assume that 1.8. Then according to curve (3)

Z..P=(,t , I.e., z.l,<X.
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In this case in the tube a shock wave appears, as a result of v':'ch

in the section of the tube with a length of X - XCH subsonic flew

is established, whereupon, as can be seen from the comparison of
curves (2) and (3), the critical length of the tube is substantially

increased. To search for the location of the shock wave, we

transforI formula (20) with the aid of notations (23). Then the

distance from the beginning of the tube to the cross section in

which there occurs the shock wave is equal to

(25)

But, on the other hand,

Ey replacing the last term on the right side of this formula

according to (25), we obtain

?I - x ' (26)

Nol, using the curves of Fig. 5.5, let us determine the location

of the shock wave in the tube when X = 1.8. According to curve
(1), we find

whence

?, -x= 1,48 -0,60 M0,88

It rerains to find t-e value X' at which the distance between

curves (1) and (2) Is equal according to (26)

According to Fig. 5.5 we obtain
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~ch c ureords accord'~ npo formula (2,,) to the normalized

c.i.-tance frorn the beglnnii-; of tlhec tube to the shock wave:

Calculaten and plotted on F'lg. 5.6 by the described method

according to curves of Fig. 5 .5 are curves of the change in the

'.':)oc~t.' coefficient X - f()x) In a tube with normalized length

C.~ vhich are att!ained at if ferent values of the velocity

OCoef riclent XIat the bei7.Innin7- of the tube (when X = 0). As we

je , th',e sroch' wave is locatei1 nearer to the beginning of the tute,

tY , ezs the initial :-upersonic gas velcclty. Values of subsonic

lo21city after the ,shock wave lie In all case:3 on the universal

curve which correso~inds to formuAla

Fig. 5..Curves of distribution of
value.,- of the vcelocity coefficient in
a tube wltn normalized length X= 0.6
at different initial velocities and
2~ >1.
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;n 1 W 1.6 the shcc7k is located at the beginning of the tube

.'i X'), i.e., the section of the supersonic flow is completely

eliminated. The gas flow in the tube with the assigned drop in the

pressures is examined in § 7.

§ 3. liotion of Preheated Gas
Along a Tube of Constant Cross
Section '

The process of the heat feed introduces a special form of

resistance: with the preheating of the moving gas the total

pressure drops.

We will examine the motion of gas in the tube depicted on

Fig. 5.7. Let us designate Xx and Xr as the velocity coefficients

in the corresponding cross sections. Let the velocity in the tube

be low:

. ),.<1 and

Let us resort to the following Idealized diagram. Gas enters
into the tube X-F fron, the channel with a large cross section I

(Fig. 5.7). On section I-X the flow without losses and heat

exchange is realized. The heat feed is achieved only in the

cyl~ndrical tube X-r. After this the gas, without losses and

heat exchange, escapes into the wide channel II. Despite the fact

that in channels I and II the velocity Is low, and hydraulic

losses can be disregarded, values of the tothl pressure in cross

sections I and II are dissimilar; as we will now show, as a result

of preheating the total pressure In the second cha:,nel is less.

1 See Abramovich, C. N., on a thermal critical region in Ras 1.
flow, Rep rts of the Academy of Sciences of the USSR, No. 7,
Vol. 54, 1946.
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Fig, 5.7. On the determining
ur thermal resistance,

According to the Bernoulli equation

Hence a change in the total pressure

P~i-p~c~(p.-p,) ','(27)

From the equation of cu:ntinulty pxW x  prWr it follows that if as

a result of prehea',ing the gas density decreases, then its velocity

increases, and, therefore, the static pressure drops.

From the momentum equation it is possible to determine the

drop in static pressuie wlth preheating in the section X-F (disre-

garding the friction):

P- = P , (e -

or

After ;ubsttutng thl" difference into equation (27), we have

P4--PH ;- -- P,"2 (28)

fHence it i appa:'ent that w,.ith the preheating of' the slowly movinp,

2 4 ?



gas, the magnitude of the losses is low. At a considerable velocity

they cannot be disregarded.

It is not difficult to explain the discovered "thermal"

resistance from the viewpoint of thermodynamics. In the example

examined the expansion of gas in the converging nozzle section,

then its preheating at reduced pressure, and finally compression

in th'e diffuser occur. But such a cycle is contrary to the usual

cycle of the thermal machine in which the heat feed proceeds at

increased pressure. Because of this the proces s in question is

connected with the absorption and not the release of energy.

It is possible to propose another method of the thermodynamic

interpretation of "thermal resistance." As is known, an increase

in entropy in the gas depends both on the quantity of the supplied

heat and on the temperature level:

( = dQ

With the same quantity of heat the increase in entropy, consequently,
the more the losses, the lower the mean temperature of the process,

i.e., the higher the flow velocity.

Let us estimate the effect of the heat feed on the gas flow
rate in the tube. Let us assume that the outflow of gas occurs

through the tube of constant cross section (Fig. 5.8) in which the

gas temperature increases from the value of Tx to Tr- Being

lrlited by the case of low speeds (X, << 1) at which the absolute

value of pressure is changed insignificantly, we will obtain

W P r , r .," 

From the momentum equation, disregarding the friction resistance,

we have
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Fig. 5.8. Taking the effect of pre-
heating on the gas flow rate in a
tube into consideration.

and by definiticn

I *
A a Ps ;Psw'.

P = p*--f- p --- -pw 2 (29)

Here Px= p 0 is the total pressure in the vessel of which the gas

escapes, and p, = pH is the static pressure in the outlet section

of the tube.

The mass flow rate cf the gas with the assigned drop in

pressures H = (p0 - p,) is equal to

where F is the cross section of the tube. Since from (29) it

follows that

p, (2 r.- 1)

then the ratio of ti, s flow rates In the absence and the presence

ef preheating in the tuie

0* 1/2 --iT' (30)
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A we see, the heat feed with the assigned drop in pressures leads

to a jecrease in the mass flow rate of gas with a simultaneous

increase in the discharge velocity.

Let uc investigate now the pressure drop across section X-F

of t.Le tube at tgh subsonic spevd of the gas flow.

At the considerable rates of flow the gas density with

preheating decreases not only due to an increase in the temperature,

but also as a result of a decrease in the static pressure. In

connection with this the gas velocity increases along the tube more

rapidly than the temperature does. The speed of sound, which is

proportional to the square root of the absolute temperature,

increases along the tube considerably more slowly than does the

flow velocity. Because of this M = w/a along the length of the

tube increases.

The flow, which has any initial velocity, is possible because

of the corresponding preheating up to the critical velocity

(Mr a 1). At the high initial value of the M number insignificant

preheating is required. The lower the speed, the greater the

critical preheating is necessary. But it is not possible to

transfer the flow in the cylindrical tube into the supersonic

region by any preheating. This phenomenon is called thermal

critical region. 1

It is natural that after the critical region is achieved at

the end of the tubes, the flow velocity at the beginning of the

tube cannot be increased by any methods. If upon achieving the

critical region the preheating of the gas is continued, then the

value of the critical speed at the end of the tube increases, and

the velocity at the beginning of the tube decreases. In other

IThe basis of t+, phenomenon of thermal critical region Is
given in more detail in the fo]lowing paragraph.

I.
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vwords, the assigned quantity of heat corresponds to a completely

defined limiting value of the M number at the beginning of the

t u .

The enthalpy of the stagnated gas is comprised of the enthalpy

in the flow and heat equivalent of the kinetic energy:

to,=-- + A 2j , -l 4+ A 2 j.

A.- a rcsult of the heat feed, the enthalpy at the end of the tube

Is more than that at the beginning by the value of the supplied

quantity of heat

Q=*- te.

Hence we obtain

Q--=C"(Ter,- To.)- =e (T'- Tx) L -- (31)

Equation (31), together with the equations of continuity,

momentum and state, forms a system sufficient for determining four

unknown parameters of gas - Pr' Pr' T,, w. - at the end of the

tube,

From the momentum equation we have

FS - ~ o - We).

inserting in this equation values px and pr from the equation of

state

Sp 1 T, - -f !i_.(t,

and taking into account that according to formula (34) of Chapter I

kp /Pr- a 2, we will obtain
r24
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w - -,- w- -- -

-kM( 1-- (32)F T r P s /J

The ratio of temperatures T and T. can be presented in the form

Awl. To. Aw.1

T 1  Aw

Introducing the critical velocity apr , we obtain

T k-I (u, \'

Inserting into (32) this expression for Tx/T and replacing M 2

according to formula ( 5) of Chapter I, we arrive at the quadratic

equation

=, 0.(33)

and solving which, we find'

,-- - - (34)

or

2- - L" Vr - -r , l"(35)

'One of the roots of the equation, which corresponds to the
subsonic flow velocity, Is obtained with the - sign, and the
second root (with the + sign) gives the solution for the supersonic
flow velocity. -1

,S',



-quatlon (35) is used wher. the state of the gas at the

:.uKInnini of the tuLe 15 knowr. If the gas velocity at the end

!" t l:,- tube 1,; reducel to the critical, then it is convenient to

u.-c e2uat.or (34)

in tne absence cf preheating (T T) Pr P'
ox Or r x

Tf at the end of the tube the thermal critical region (, = 1)

coc-u:--, tren equation (34) takes the following form:

ls - . (36)

In t; i. case

TLhe limiting value of the velocity at the beginning of the tube in

this case is equal to

.(37)

Having divided both parts of equality (37) by a P Vwe can turn

to the velocity coefficient:

Since

X 1 / -> f (3F)
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Data on the change of the maximum subsonic velocity at the inlet

into the tube with the variation of preheating are given in the

following table:

T.r. a j 2 4 6 .

A decrease in the velocity at the beginning of the tube (when

Xtx < 1) with the in-ensification of preheating in conditions of

the thermal critical region is explained by a decrease in the gas

flow rate. In fact, with the thermal critical region the was

velocity increases in proportion to the square root of the tempera-

ture:

=.-- aT.

and the gas density decreases more rapidly than does the value l/T r

(in view of a decrease in the pressure):

Pt_

and therefore the gas flow rate

A-:0: p,W,F P ._

Since density at the beginning of the tube does not depend on the

preheating, then the drop in the gas flow rate leads to a decrease

in the velocity at the beginning of the tube. Small values of the

velocity coefficient, at the inlet of the combustion chamber, which

are obtained with great preheating, lead to the large overall

dimensions of the engine. With &n increase in the velocity of

flight the initial temperature Tox and limiting value of the

velocity at the inlet into the combustion chamber are increased.
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According to the momentum equation, a drop in pressure in

the tuhe i'.: equal to

Pt P Wi)

('n tie basis of formulas (34) and (45) of Chapter I, we have

2

FT

and t.herefore

21 *

"°' 1 -I ( ). (39)

A maximum pressure change is obtained upon reaching the thermal

critical region (X- = 1). In this case on the basis of (36)

1'3 " (40)

Here the - sign corresponds to x  1, and the + sign corresponds

to Ax 1. By achieving when Xx < 11 a very great preheating

(rOx/Tor - 0), it is possible to reduce the pressure to the

following value:

PC I

or wien k 1.4

'The case X > I wil. be discu.'sed below.
x
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Let us recall that the pressure drop necessary for obtaining

the critical velocity in the nozzle is

h

i.e., when k = 1.4

== .89.
Pup

Let us determine now the drop in total pressure In the

cyilindrical tube. At the beginning and end of the tube we have,

re spect ive ly,

h h

k+11  __ -+ 'i

Having divided the first equation by the second, we will obtain

6

P.S Pr .
'A-k- Iits

Hence the coefficient of total pressure in the tube is equal to

.=p,: -/'-(: - ) T (4j)

The greatest drop in total pressure is obtained with the thermal

critical region. By substituting expressions (38) and (40) intc

equailty (41), we obtain for these flow conditions

To5
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H -re thl, upper si:ns correspond to the regime X > 1. The
.,L:e of the c-ange in total pressure with the thermal critical

r-iov In th:e tue on the ratio of stagnation temperatures,

c,c'j.lated for X < I according to formula (42), is represented inx
the following table (k = 1.4):

Ie.d 2 A 1 4 _I

411(J1 018 0,88I O' 0.801 0,70

-hen X 1 the losses in total pressure with real

pr.neating (T ^ / 4-8) are obtained of the same order as those

ulI, infinitely great preheating.

'Tus, when x < 1 and k 1l the total pressure at the end

o' the preheating is not less than O% of the total pressure at

the begsiuning of the preheating.

Pr greater clarity of the results, let us transform expression

(42) somewhat. For this from (38) we will obtain the connection

between the critical preheating of the gas (r- 1) and the

corresponding value of the initial velocity up to the preheating;

(gu 0-( + Ai:? (4 2a)

Hence it follows that at the maximally possible gas velocity up to

preheating (X2 = k + i/k - 1), the critical preheating does notx
exceed values

\To a-I lgx + / - )il"-I

W:ic!. when k = 1.L gives (TOr/Tox) p.max- 2.04.

n--.: substitutlrg ( 4 2a) into (42) and selecting the sign,-

according to the physical sense of the problem, we have

252



I+
(I I

Hence it follows that when Xx  0, i.e., A-=mo, *.PlmV 2i-)-

.,:he = I.eT1, i 0e ,77= /, ft 1, and when X k + l/k - 1,'.,;hOn x ' " " u- Ox Kp x

i.e., T0 r/T O k2/k 2 1, o = 0.

Curves Op(Xx ) an (T 0 r/TOxHP = f(X x), obtained with the aid

of formulas (42a) and (42b), are plotted on Fig. 5.9.

I

4

Fig. 5.9. Dependence of the degree
of preheating and coefficient of
total pressure on the flow velocity
at critical region (Xr . 1).

It was shown above that at the low rates of the gas flow

along the tube with the heat feed in the case of a constant drop

in pressures, the intensification of preheating leads to a

reduction -n the gas flow rate.

In § 6 it will ee shown that with a constant drop In pressures
the preheating causes a decrease in the gas flow rate at high

flow rates.
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1., General Ccndltlons of the
ransitior frer. Subhunic Flow to
.- ,. son I: ~'~~. ;. and ' Vice Versa

Di the urevious paragraphs it was snown that with the heat

feed or tlh; accomplishment of work due to friction in the gas

rrovi-ng alcng the cylindrical tue at subsonic velocity an increase

jn ,,,-ch numer occurs; the same phenomenon is observed in subsonic

flow during flow without a heat exchange and friction in the

convfrgini- tube.

it,,i be orov'-d below that the change in M number in the

-as :flow occurs not onl:y under the effect of friction and thermal

autd -eoietric effects, but also with the change in the gas flow

rate in the channel and upon the completion of mechanical work.

The indicated effects produce a change in the M number both in the

subsonic and in supersonic flow of gas.

Let u3 examine in general the effect of these effects on the

flow velocity of the gas. For simplicity we will consider the

gas to be ideal. The mass flow rate of the gas is equal to

G gpw '.

hence after differentiation and term-by-term division by G,

we have

d1 d__F dt do (43)

Differentiating the equation of state for an ideal gas (p gpRT),

we obtain

dp = gf? T-j Tdp b

or

-R gidT+Trf) (144)
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A comparison of expressions (43) and ( ) gives

("'n the ot'er hand, frum the Bernoulli equation in differenrtlal fovm

(formula (9i) in O'hapter 1), we have

u-- w'- _L g -- r  ( 6)

where L is the technical work, and LTP is the work due to friction.

Comparing '43) P-nd (46), and eliminating terms which contain

density -nd pi-essure, we octain

1+ G _ dP* ' ... . (4
-P At*~) a gLdL,~. (1)

2
Used here is expression for speed of sound (a k kgRT). It

Is possible to get rid cf the term which contains temperature

i. (g~dT) with the aid of the differential equation of energy

dQ., -,-dL- 4" 'd ML . T wdz.'-AdL" (48)

where Q is the heat applied to the gas from without, and
Haph

d1-c~dTr=ARt-!dT - the increase in enthalpy. Substituting (48)

into (47) and producing the elementary conversions, we arrive at

the relation which connects speed change in the gas flow rate with

the external actions (geometric, flow rate, mechanical, thermal

and friction):

A
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Th '- relation ':ao established by L. A. Vulisl and was callei

th~e ,,dii'., of the fvereion of effect. The feature of this

S'" . "' z "trt I the fact that the sign of its left 6.'ds .

1'-Th '.on the transition of the valie of velocity through the

it caI, Therefore, the nature of the effect of separate phyeical

' o the yaB .7ov -,e the opposite with subsonic and super onico

,j Pi. (he effects which produce acceleration in the subsonic

f~c.'..' (narro;ng of the channel, the feed of the additional mass Cf

, tJ aucomp2luhment of work by gas, friction and heat feed,

i'F < o, d' > 0, dL > 0, dQHa p > 0, lead to a slowing down of the

t.aersonlc flow; the effect of the opposite sign (expansion of tne

.a,.1, te suction of the gas, imparting of mechanical energy to

ta. and heat removal, dF > 0, dO < 0, dL < 0, dQHa p < 0), lead

t,,, a iowln : down of the subsonic and acceleration nf the supersonic

Hence there follows the important derivation that under the

.zf.tc t of one-way action the veZocity of the gas flowL can be

red,.ed to the cr'iticaZ but cannot be transferred through it. For

*xample, by means of the heat feed it is possible to accelerate

th!e subsonic flow but only until M = 1 is obtained. In order to

t-ansfer thp subsonic flow into the supersonic, it is necessary

to c-,are the effect sign, i.e., In zone M = 1 begin to remove the
heat. Such is the substantiation of the phenomenon of the thermal

critical region in the combustion chamber described in the foregoing

paragraph. The preheating of the gas in supersonic flow and

further braking will become possible only in such a case when,

teginning with M = 1, we switch over to the cooling of the gas.

Let us examine each of four effects separately.

"n this case we will obtain in addition to the known LavaZ

,;o~zz~ (geometric effect) th'ee additional methods indicated by

.'ulis, L. A. Reports of the Academy of Sciences of the USSR,

No. 8, Vol. 54, 1946" Vulis, L. A. Thermodynamics of gas flows.
Hncer'-clzdat, 1950.
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L. A. Vulis of the transition through the speed of sound, i.e.,

flow, mechanicaZ and thermaZ nosZe8.

The geometrio nozzle, i.e., the known Laval noaze., is the

channel in which only because of the imparting to it of the

corresponding shape it is possible to carry out a transition from

subsonic velocity to supersonic. In this special case of a

strictZly geometric effect on flow (dF # 0) other effects are absent,
i.e., the gas flow rate (dG a 0) is not changed, there is no

exchange of heat and woi.K with the environment (dQa p = 0, dL - 0),

and there is no friction (dLTp a 0).

But then the relation (49) turns into the previously obtained

equality (1) of Chapter IV:

"d. dP

Without discussing for a second time the study of the flow in
the Laval nozzle, let us recall only that the acceleration of
flow in the subsonic part of the Laval nozzle (M < 1) is obtained

by means cf the narrowing of the channel (dF < 0), but, beginning

from the critical cross section (M a 1), for obtaining the supersonic

flow and its further acceleration, it Is necessary to change the
effect sign, i.e., expand the channel (dF > 0).

The flow of an ideal gas in a geometric nozzle (Fig. 4.1) In

the abse:nce of friction ts isentropic. In the critical cross

section (M = 1) of the nozzle the effect passes through the minimum

(dF = 0).

The fZow nozsZe makes it possible to obtain a transition

through the speed of sound because of a change in'the gas flaw
rate in the tube of constant cross section (dF 0) in the absence
of an exchange with the environment of work (di = 0) and heat

(dQa p  0) and without friction (dL 0). In this case relation
(49) takes the following form:
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The cceleraticn of otlcn (dw > 0) is reached here because

jf the feed of the additional mass of gas in the subsonic part of

the channel and suction of the gas in its supersonic part. In the

cr~tIcal cross section (M = 1) the gas flow rate and, therefore,

the currpnt density pass through the maximum.

The flow nozzle in principle is similar to the geometric

nozzle. If we divide the flow in the flow nozzle into separate

.tr-..s of constant flow rate, then each of them is a geometric

roz Z with the rarrowest cross section in the area of the critical

region (M = 1); however, tht narrowin.g of the elementary streams

In It Is achieved by means of the narrowing of the overall channel

a:d tecause cf the feed and removal of additional quantities of

gas (Fig. 5.10).

FI). 5.10. Diagram of
flow in a flow nozzle.

It is natural that the change of state of an ideal gas in the

,low nozzle (without friction) occurs according to the isentropic

law.

The mechanical nozzle gives one additional principally possible

neans of the transition through the speed of sound: because of the

technical work In the absence of other effects (d = 0, dG = 0,

= 0, dL = 0).

it, t;iis case the fundamental relation (49) appears thus:
.1

(4 1  2dL.
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from w hich it follows that If the gas flow accomplishes work

(dL > 0), for example, on the turbine wheel, then in the subsonic

regime (M < 1) It Is accelerated (dw 0) and in the supersonic

> 1) decelerated (dw < 0). With the supply of work to the gas

(dL < 0), i.e., on the compressor blades, in the subsonic flow

aeceleration is observed, and in supersonic flow acceleration is
observed.

The continuous transition through the speed of sound in the

mechanical nozzle is obtained with a change In the effect sign

in the critical cross section. In principle, by passing the

subsonic flow of the gas through the turbine, it is possible to

accelerate it up to the critical velocity; after this it is

necessry to release It through the compressor, and then the

accelerating supersonic flow will be obtained (Fig. 5.11).

Fig. 5.11. Diagram of a
mechanical nozzle.
KEY: (1) Critical region.

Thus, supersonic mechanical nozzle should consist of a series-

connected turbine (in the region M < 1) and compressor (in the

region r.1 > 1), tetween which the critical cross section (TI = 1)

is located.

A feature of the mechanical nozzle is the fact that the

stagnation parameters pass in its critical cross section through

the minimum. In fact, the enthalpy equat'ion for the mechanical

nozzle can be written in the fellcwinf way:
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:-i,-re H H arid 10 are values of total enthalpy of the gas in the

":t l and arbitrary cross sections of the nozzle, respectively,

and Iz the technica! work by the ideal gas between the initial

and rritrary cross Oections of the nozzle. Therefore, in the

:.utsonc part of the mechanical nozzle, where the gas accomplishes

,.rr (cn tue turbine), i.e., L > 0, the total enthalpy (the

't a2:na'ion temperature)decreases i 0 < i 0

In ture supersonic area, where mechanical energy is fed to the

g.3 (L < 0), there occurs an increase in the total enthalpy in

comparison with its value in the critical cross section:

4I,>., or T>Tmr

't I. pos!ble to be convinced by a different method in the fact

that the total pressure and density of the stagnation gas pass

together with the stagnation temperature in the critical cross

section of the mechanical nozzle past the minimums. For two

arbitrary cross sections of the ideal mechanical nozzle, which is,

by definition, the channel cf constant cross section, we have

M ___ W. as p'a,
M , a-1 as pla

In view of the absence of friction and thermal conductivity, the

parameters of gas in such a nozzle are changed as with the ideal

adiabatic process:

I I

Taking into account that the ratio of values of the speed of sound

we obtain the folLowing simple dependences between the value of the

number and parameters of the gas in the ideal mechanical nozzle:

260 '5

.V, l i i



A Ih-FI £44.

Thus, a monotonic increase in the value of the M nurber in

the mechanicaZ nozzle is accompanied by a monotonic drop in

temperature, pressure and density.

Curves of the change in the parameters of flow and braking

in the supersonic mechanical nozzle when M - 0.1 are represented

on Figs. 5.12 and 5.13.

Fig. 5.12 Fig. 5.13.

Fig. 5.12. Dependence of gas parameters on M2 number in the
mechanical nozzle when rI = 0.1; k = 1.4.

Fio. 5.13. Dependence of the stagnation conditions on the M2

number in the mechanical nozzle when V1 Z 0.1; k = 1.4.

From expression (50) it follows that the maximum vel-city

of outflo w from the mechanical nozzle is not at all limited

a

W2 PI (M:)bJ

I,_ P. (M

since when j'42 " we have w2  0 0. This result should not be of

a surprise, since in the supersonic sectIon of the mechanical

nozzle energy will be fed to the gas (dL < 0).
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The thermaZ nozzle, stil] _ot realized, gives the possibili.tY

]. Princlole of the transiti.:: of t).e gas flow through the speed

, -fecaie of one ad.Y lonal - purely thermal - effect in the

absonce of other effects, i.e., in a cylindrical tube (dF = 0), with

th.e constant gas flow rate (dG = 0), without the accomplishmen, of

inechanical work (dL = 0) and without friction (dL = 0). The

fundamental relation (49) in connection with the thermal nozzle

takes the following form:

(Nl ,)W __ gh T

Thte acceleration of gas (dw > 0) in subsonic flow (M < 1) i. here

connected with the heat feed (dQHap > 0) and in supersonic flow -

;iIts removal (dQHap < 0). The heat feed with the supersonic

regime and the heat removal with the subsonic regime produce the

slowing down of the flow (dw < 0). Thus in order to convert

subsonic flow in supersonic by means of a thermal nozzle, in the

subsonic section of the latter it is necessary to increase the

enthalpy of the gas, and in supersonic - reduce it, i.e., in the

critical cross section of the thermal nozzle, where the quantity

of heat fed to the gas passes through the maximum (dQ Hp 0),

it follows to change the effect sign.

The stagnation temperature in the critical cross section of

the thermal nozzle (in the opposite case of the mechanical nozzle)

reaches a maximum value; this ensues from the equation of enthalpy,

which in connection with the thermal nozzle takes the following
fo rm :

From the foregoing paragraph, whi.' contains the theory of

thermaZ resistance, it follows that with the heat feed to the gas

flow the total pressure in It drops, and with the heat removal -

It increases. Formulas of thermal resistance were derived in
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connection with the case of the flow of gas without friction alcng

a tuhe of constant cross section, i.e., precisely to the case of

tne thermal nozzle.

Prom this theory it follows that the total pressure in the

critical cross section of the thermal nozzle, just as in the

n ?chanical nozzle, passes through the minimum. The density of

the stagnated gas, directly proportional to the total pressure and

inversely proportional to the stagnation temperature, reaches a

minimum value in the critical cross section.

In the ideal nozzles examined above, geometric, flow and

mechanical, a change in the state of the gas was isentropic, i.e.,

it was described by the equation of the ideal adiabatic curve

p/P k = const.

In the thermal nozzle in connection with the feed and heat

removal the entropy changea.

Let us investigate the thermodynamic process which takes in

the thermal nozzle.' The differential form of the equation if

momentum, in connection with the cylindrical tube in the absence

of friction, takes the following form:

dp -pwdo.

The continuity equation in this case (d = 0, dO = 0) gives

dp __ de
p w

'See Vulis L. A. On the transition through the speed of sound
In gas flow.,. Reports of the Academy of Sciences of the USSR,
No. 8, Vol. 54, 1946.
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_ _ _ _ __ _ _ _- . ... -{-

II

'P w'(51)

For the polytropic process with the constant polytropie

exp ;;Ient p/pn , const, after differentiatcnI we have

---- osA (52)

2

since the speed of sound in the gas a 2 kp/p. Equating the right

.9idea cf expresc-.lons (51) and (52), we note that the polytropic
exr.-.!ent in the thermal nozzle is a substantially variable value

n-kM (53)

Formula (53) shows the presence of two characteristic cross
secti'.r-. in the thermal nozzle.

In the cross section where M = l//rk-, the local importance of

the polytropic exponent ir equal to unity: n = 1, i.e., the

elementary thermodynamic pr'-uesc in this cross section !s isothermal

(dT = 0), and, therefore, the vas "emperature here passes through

the maximum.

In the critical crs. . . -., th. Tter1 nczz ,. , ...

when M = 1, the pol'¢trcp' ,!pi t -n the ca!A2: ,f foruia i53)

is equal to the indez o t J-- t o .c cUrvC :. i.-.,

here there occurs th,- e e.c rtar-. 1. r .; p c "rrc. d ' < ;. . i,

a.3 has already teer. I, i t. at .,e, the qu:-tltv o:" f ;' : .

to the gas and the I s'- - tempea .re ras: t: ... t.

maximum (dQ - , Ha p

l'WI h th." C.'. fe : . -.';, L *.". t '.":' q;'r ': (" r:r',e.- " !; ..

section of tt;e .-mal" '.:,- - -a- :t ..: .v: .t-t' t. r.-. i..
to assume tihat tie : .-.. : f , .,:1tr~t : ,
as a ;hole tre , -. or.. c. - . . .
e xpc:;ent.
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From the isothermal to the critical cross sections of the

thermal nozzle an interesting phenomenon is observed: a tempera-

ture decreaze of the gas (dT < 0) with the heat feed (dQ > 0).Hap
In this sect.on of the nozzle the increase in kinetic energy of

the Eas is greater than the increase in total enthalpy.

To search for the dependence of the gas pressure on M number

in the thermal nozzle without friction we utilize the equation of

momentum in the following form:

P, + pir,, p, + pvW; (54j)

kience

P,( +hm1')=p,(I + kM)

or

Pa 1+ AML
A =IP1 (55)

In other words, the gas pressure in the thermal noazle with an

increase in M number monotonically decreases despite the &'crease

in totaZ pressure in the supersonic part.

't'he dependence of the gas density and rate of flow in the

ti ermal nozzle in M number can be found by the following method:

0 ,11 ar'i al;' r, WI1"

4 "  C..' ra
To Pspa, ?a We

~~ci~~cr~f'~r'h M __ _, _

-°h .

'I'

,I .

M UN PI1



... . . ; el-.le , e (5:! we -b a* n

o ==W, =M1 I +" PAIt W l + (56)

t;'..:Kc' it is c.e;:. that ga8 de ne i t aZong the thermaZ nozaZe

"cotovnioal ~' decreases with an increase in rN number.

The gas temperature in the thermal nozzle as a function of

7.,,u (,r -an be oltained by the division of equality (55) into
1'~a ". ty '6

T, ___ [ I -I- kul 1j (57)
-o, expression (+7), th

-A r-nt difficult to be convinced from expression (57), the
t. ' -:'a're ctiur'v( ha : a maximum at point

,t I

Tn any two cross sections of the thermal nozzle with an

identical temperature (T2 = I ) values of the M numbers, as this

appears from expression (57), are connected by the following

dependence

-. ,-rlv-- t:.c- formulas for the stagnation parameters In

,., t'.-r.'<:, _I. These formulas acquire a simpler form if in

-..,! erL'laced with the velocity coefficient A, for

..... t: -. un the known relation (46) of Chapter I.

. : ,. tagnation temperature, using formula (42) of

S-(7) w' will ccnsider and T, as con-

... , ... - er vative dT 2 /d;N2  to zero, we find
2 2
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- k-I"

after sucstatuting (57) here, after preliminarily reolacing M by >

according tc formula (45) of Chapter I, we obtain

T4C1 / __Z\

The total pressure in the thermal nozzle can be obtained witn

the aid of formula (72) of Chapter I from the expression

pot Ps i-~~

hence, by using equality (55), we come to the following dependenpe:

pea 1 4-)-| [i  .- I Af ' 'J -+.i (59)
P-1 TFq- --- i

The density of the stagnated gas in the thermal nozzle can

be determined by means of the division of expression (59) into

expression (58):

PI'S

Curves of the change in flow parameters in the thermal nozzle,

depending on number M, ..,hen r 1 = 0.1, are given on Figs. 5.lh and

5-15.

Let us determine the quantity of heat (Q) which must te f.-d

,. the thermal nozzle in order to chan,-e the gas velocity rfrr. a:,'

42
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It . har'ply jecreases with. an Increase in the initial gas velocity

.:~~is indicated cr. the graph of Fig. 5.16. The maximally

possible discharge velocity from the thermal nozzle (when V,2 w0)

accord.Ing to equality (56), depends on the initial value of the

IV n u m Ie r

Specifically, if we take a reading from the critical cross section,

i.e. , ac-surne that'

.-

Fig.~~~~, q ,-, eeneceo c-tia
prhatn in ueo' cntn

cros Fecionon the inX .'al value
of the velocity coeffic ,.,nc.4

'It houl beccnsid2ereri that In wt h etfe
the value of the crlti!al u.eflclty a-hr;C t'.e l~;hof the nozzle
Ischanged.



[ .~'de~v~ed"pure" designs of supersonic

,,c zz 7,min-o cor'!,'-_rat_1ons are fundamentally posszle. Th~e

- -- ol '~-"nr-,- zle is the so-called "semi-thermal nozzle,"

,ection is thermal and supersonic gecrnetric

i.- a nozzle the gas is accelerated from a

al n .ti ;!br: ni' vati( cf ve loc It y up t o t he c rIt IcalI

v c. nu thc Ina r.-lur cal1 t ube 1- 2 be cause o f t he heat fee d, and

Into superscnlc speed and further acceleration of

1hct eat eychange in the expanding tube2 .

.. . . .Io ti.- sursonic section of' the semni--thermal noz.zle

.i cccrd.'nF to formulas of the tnermal nozzle, while

c'ato t;)- supersonin s;ection is conducted according to formulas

t ~ OCW- plon-zrle.

3 Fig. 5.17. Diagram, of a
scmi-therrmal nozzle.
XEY: (1) Critical region.

Letuscomar o semi-thermal nozzle with t,-e gecmetrls3

at t,-e Identical flnite? value Of total enthalpy (i 33. having in
r:'i:Kd t',at in the I):ialnozzle the preheatrnc of the ioas 1s

ccbodI,,- tie c.Irical tube 1-2, ani in the geometric

nz I cw t tie .3anie qlantity of heat Is fed to the gas up to its
n I - I nIe t. .alutosc~f the discharge velocity from both no zzle

JwtCal, :Jince rtia cross sections the value of tie

at ,. emrerat!Ar- is the same. The tcta). pressure at h

~'t.(4 te seo-ti ersal nozzle lo lower In connection w,. t'h t.-

'~)1'L.thermal t ance in I j subsonic sect ion , an,'
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therefojre the ,tatlic pressure at the outlet from the senr±-thermal

nozzle is lower.

Let us examine t.e example of the semi-thermal nozzle with t:-e
i:nitial gas velocity;, which corresponds to the value of the velocity

ceff!eient 0 
= .2. In this case the dimensionless quantity of

t!he preheating of the gas in the subsonic section of the nozzle,

according to expression (61), should be equal to

- 5,75.

::e lo.sses of total pressure in the semi-thermal nozzle ()'2 = 1)
can te calculated according to formula (59)

Po!% Po

:.en ). -- 0.2 and k = 1.4 we have

7he total pressure in tlhe geometric ncz'le maintains a con-.*ant

,,alue

Therefore, the stat.c .%'ur' at the outlet from the semi-thermal

nozzle with the same d: "n .,,lcty differs times from

static pressure at ti;e outlet '.'m the rtnometric nozzle:

furtner,

"t -PJI ° s',,, 1 - .1

4"



',:,er is tvie vei<>Aty coefficient or the outflow from the

- I-, t,e total pressure in the Initial cross sectlcn

o: t nozzle. !'"th equal drops in the pressure

ti,e vile, city of discharre from the semi-thermal nozzi- is less than

tra" f.rom the geometric nozzle (X 3n < X3) ; this re..ults from
e~u9.!" t,

I~ ~ ~ ~ + )-~ 1I - ~~

.; . , conn,,cts the ratIu cf the static pressure to the total

pre iUi>o :! th the velocity coefficient. For example, when
F= (.2 and = 2 the velocity coefficient of outflow from the

-er'i-thermal nozzle 3nT = 1.97, i.e., 1.5% less than the velocity
coefficient of outflow from the geometric nozzle.

in examining the different types of the nozzles intended for
tran:sition through the speed of sound, in all cases we had in mind

the transition from subsonic to supersonic velocity. The obtained

formulas are suitable principally for the reverse case, i.e., the
smooth conversion of supersonic flow into subsonic; however, with

tre braking of supersonic flow there can arise shock waves, which

complicate the phenomenon.

Let us discuss now briefly the joint development of two or

several effects. As a first example let us analyze the case of
the geometric nozzle with friction. The fundamental relation (119)
in tn: case takes the form

(M -- )-- gh9k dLP.

The mozt interesting feature of this nozzle is the fact that the
critical velocity is obtained In its divergent part, since when 1
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d=,P dLpO0

and in the narrow cross section (dF a 0 when dw > 0) the subsonic

velocity and M < 1 occur.

Let us now explain the chief characteristics of the geometric

nozzle with heat exchange. From the fundamental relation (49) in

this cau we have

(Mt t) dF g -I

The location of the critical cross section (M = 1) is determined

by the equality

dF g k-I
F - - ---- d7 1

With the heat feed (dQHa p > 0) - for example, with the afterburning

of gases in the nozzle - the critical velocity is reached in the
divergent part of the nozzle (dF > 0), and with the heat removal

(dQ < 0), i.e., the heat transfer through the nozzle walls, the

critical velocity is reached in the convergent section of the

nozzle dF < 0). In the first case in the narrow cross section of

the nozzle (dF = 0), there occurs subsonic velocity and in the

second case - supersonic velocity.

By the same means it is possible to investigate the Joint

effect in the gas flow of any other actions. In this case

it is important to emphasize that in accordance with equation (49)

the transition from M < 1 to M > 1 requires in any event a sign

change of the total action.

In conclusion let us note one fact which sometimes leads to
misunderstandings in the qualitative analysis of laws governing

scme flows. In connection with this let us again return to equatlon

(49).
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I

Ai.-ove In the analysis of the equation of momentum (92) of

' ..., ,Je nroted that Independently of the proce.nses occurring

;e ,"iow, a chanv7e in the rate of flow is always caused by the

a-t lori of the f,:;rce of friction, applied forces, and also the
differencc- In force.-; of pressure on the chosen element of gas flow.

'! ,, d!,Ifferent forms of the external action in different ways
affect the static pressure in the flow. The meaning of the joint

solution of equations, (43)-(47), as a result of which relation (49)
was obtained, was reduced so that the value of the pressure gradient

in f*ow;; >1:. exprensed by external actions; the value dp in this

casE wa.. excluded from the momentum equation or the Bernoulli
Oelu at i ur, ( 4 6

ly' the analysis of equation (49 ) it is revealed that: a) a

c!,age !n the gas velocity is caused by such factz, which are not
ccrnnected with direct force action on the flow (for example, the

heat feed), b) the total effect in a number of cases turns out to

be opposite to that which can be expected on the basis of the

analysis of the action of applied forces. Actually, for example,

the force of friction which always acts opposite to the direction

of motion in subsonic flow leads not to braking but acceleration

of the flow. The latter means that in flow with friction there

occurs such a reduction in the static pressure that the force of

pressure acting in the flow exceeds the force of friction.

In exactly the same manner as with the feed of mechanical

energy to the subsonic gas flow, its pressure is increased so that

the force of pressure acting counter to flow exceeds the applied

force which caused it. As a result the flow, to which the applied

force is applied In the direction of motion when M < 1, is not

accelerated but braked.

Tnus, above, in the analysis of external actions on the gas

flow, it was assumed everywhere that in the flow there appear

appropriate pressure gradients, which as a final result determine
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the change in the rate of the flow. Thus, for instance, for the

acceleration of the subsonic gas flow in the thermal nozzle (i.e.,

wnen F - const) the pressure at the inlet into the nozzle should

exceed the outlet pressure by the value which is determined by the

initial and final M numbers (see formula (55)).

Having the same meaning are above obtained relationships

between static pressures of the gas in flow with friction (50),

flo w with the feed of mechanical energy, and so on. In many

instances, however, it is known in advance that in the flow in

question there is no longitudinal pressure gradient. The change

in the gas velocity In this case (dp 0 0) is completely determined

by the equation of momentum in the form

prdw= ~- (dP+ dP,,),

where dP is the force of friction, and dP is the applied force.

Hence it follows that in isobaric flow both at subsonic and super-

sonic velocities the friction leads to a decrease in the velocity;

the applied forces which act on the flow or the applied external

mechanical energy (dP < 0) always accelerate the gas flow; the

heat feed when dp = 0 does not at all change the velocity of the

directed motion of gas, since in this case there are no applied

forces.

An example of isobaric flow can be, in particular, supersonic

flow in a solid wall. The boundary layer near such a wall is

formeu as a result of the continuous braking of the flow by forces

of external action (fricticn). In summation, the velocity of the

flow in it decreases when p = const fro,. the supersonic to the

small subsonic value.

In exactly the same manner the isobaric supersonic Jet, being

mixed with the fixed atmospheric air, accelerates its particles

to the supersonic velocity by means of a one-sided mechanical
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,' ,:. - th-; feei i' the momenturn in the colliLsiun of particle i

•.i and air.

-'th further flew in any stream filament within the isobaric
Ur""r'- ,n Cet there cccurs continuous braking - with the transition

t-.r.u,- te peed of sound - down to low speeds, and also because

.f ,-ne-.,Ided external action - the transfer of momentum into the

virrnment

These examples do not contradict the laws established above

and the equation of the transformation of actions (49). The fact

i:, that in the presence of any external action the condition in

I.oz*:circlty (p con t) can be fulfilled only with a completely

:.lcf'.w.. i change in the cross-eectionat area P.

iuo, for instance, at subsonic flow in a cylindrical tube

with friction the velocity of the gas increases, and the static

pressure drops. In order that the pressure In the flow :s

constant, the channel must be made divergent, i.e., the geometric

effect dF > 0 must be added to the effect of friction. Since

independently o) the shape of' the channel with flow with friction

the total pressure is lowered, then in such an isobaric flow the

gas velocity is decreased.
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§ 5. On the Propagation of
Detonation and Burning in Gases'

The creator of the theory of the propagation of detonation

in gases is the well-known Russian physicist V. A. Mikhel'son

who devoted in 1889 the work "On the normal ignition speed of

fulminating gas mixtures" to this problem.
2

The outstanding theoretical and experimental studies in the

field of burning and detonation belong to N. N. Semenov, Ya. B.

Zel'dovich, D. A. Frank-Kamenetsiy, K. I. Shchelkin and other

Soviet scientists•

The propagation of the flame in a combustible gas mixture,

without depending on the mechanism of ignition (by thermal

conductivity with slow burning or by a shock wave with detonation),

is subordinated to the fundamental laws of gas dynamics ana,

therefore, can be described by equations of the conservation of

mass, momentum and energy.

The flame front is a thin layer of gas of virtually constant

cross section, on both sides of which values of the velocity of

motion (relative to the wave front), temperature, pressure and

other parameters are different. In accordance with this, the

flame front can be treated as a surface of nonremovable

discontinuity (thermal shock).

'In this section an expanded presentation of the following
wcrk is given: Abramovich. G. N. and Vulis, L. A., On the
mechanics of the propagat.cn of detonation and burning. Reports
of the Academy of Sciences of the USSR, Vol. 55, Issue 2, 1947.

2Michel'son, V. A., Complete collected works, Vol. 1, M.,
1930.

3See, for example, Zel'dovich, Ya. B., Theory of the burning
and detonation of gases. Publishing House of the Academy of
Sciences of the USSR, 1944.
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Tn th oontr.porary concept the detonation wave, which is

[:, :r1atd in the ;cmtustib'e gaseous medium, is two-layered. The

layer Is an adilabatic shock wave, with the passage through

w::2h the Cat is greatly heated. in. chemically active gas this

hceting, if, it su.flciently Intesive, can cause ignition.

IL .onnectItn with the fact that the shock wave thickness is

:,egIgl (order of the mean free rath of the molecule), within

:I--s its process of burning, apparently, is developed not in

the state. Therefore, the area in which there occurs burning

for:-s a second, more extended, but virtually also very thin layer

:o adjoins directly to the shock wave (Fig. 5.18).

Fig. 5.18. Diagram of the
, / B. detonation wave: A - fresh

mixture, B - products of
combustion; I. shock wave,

P ' * s II. combustion zone.
II I

I ** !

I ! I

The heating of the gas with its passage through the shock

wave in detonation burning in essence replaces the preheating

with its thermal conductivity in normal burning.

Let us examine the phenomenon of detonation in conditions of

a one-dimensional problem. In the case for a plane shock wave

according to the known relation (15) of Chapter III, the product

of the gas velocity relative to the wave front (taken,

respectively, in frcnt of and behind the front) is equal to the

square of the critical velocity:

0.0p.
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The value w is the velocity of the propagation of the shock

wave (in our case, the detonation wave in a fixed gas). For the

study of the process it is convenient to consider that the gas

flows at a rate of w to the region of detonation, and the wave

front is fixed. This inverted scheme of the phenomenon is

accepted by us in the subsequent presentation.

Shock wave (pressure shock), as is known, is propagated at

a hypercritical velocity (w1 > 8 D), and therefore the gas

velocity behind the wave front is always lower than the critical

velocity (w2 < a p). In other words, the process of burning

with detonation, as with slow burning, occurs in the subsonic

part of the gas flow.

At the end of the second layer of the detonation wave, as

a result of the heat feed with burning, the gas velocity is

higher than at first, and the pressure is respectively lower.

Thus, the first layer of the detonation wave is a compression

I shock, and the second layer, where burning occurs, is the

expansion shock. The approximate nature of the distribution of

the pressure and gas velocity in the detonation wave is shown

on Fig. 5.1-.

Let us turn to the calculation of the shock wave.

In the calcualtion of the change in the state of the gas

in the first layer of the plane detonation wave, we can use

relations for the normal shock wave.

For the case in question it is important that in the first

layer of the detonation wave (adiabatic shock wave) the stagnation
temperature remains constant TO1 = TO2. Consequently, the

critical velocity in the first layer does not change a lP - a2Kpw

whereas in the products of combustion its value is increased

T0 3 > T0 1 and, respectively, a3 p > al~p. This circumstance
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,ast b cnsidei'1d subsequuntly in the calculation of the velocity

",ef fi,, ent s:

aJ~ xJp *utIp

From the contilnuity equation pW 1  2 2 w2 and expression (16) of

Chapter i:, let us find for a change in density and velocity

the relation

" .(62)

The law of pressure change in the normal shock wave can be

obtained frcm the momentum equation in the form of the known

equality (21) of Chapter' III

p. (63)

'rom (r,2) and (63) it follows that the change in gas temperature

in the shock wave

-i
-M 17.(64)

For example, at the velocity of propagation of the shock wave
wI  2000 m/s, the initial temperature of the gas T, a 400-K,

R * 30 kgm/kg'deg and k - 1.4 we have T01 z 2400 0 K, alKP - 900 m/s,

X 1 2.2, X2 z 0.45, to which corresponds T2 : 2300
0 K.

There are no doubts that in this case the shock wave can

cause the ignition of the combustible gas mixture.

Let us now study the calculat~on of the combustion zone.

It is natural that all formulas derived in Of 3 and 4 for
the case of the preheating of gas in a cylindrical tube are also
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suitable for calculating the second (thermal) layer of the

detonation wave, since in the derivation of the indicated formulas

the length of the tube was not important (the friction and
thermal conductivity through the side surface were disregarded).

For calculating the state of the gas in the second (subsonic)

layer of the detonation wave - in the region of burning - it is

most simple to resort to the relation (58) between the stagnation

temperature and the velocity coefficient

, 1, + ., ), 4 0, 'I + )-D,

whence after the solution of biquadratic equation, we obtain the

following expression:

+ (66)" -AT-, ' -- -( 4i) T,

or
+N _ .I T. (67)

Rejected here are the roots which give the supersonic solutions,

since the combustion zone where the relative velocities are

lower than the speed of sound (X2 < 1) is examined; furthermore,

we assume that T 0 1 * T The velocity coefficient A2 - directly

after the shock wave - is usually considerably less than unity;

if in this case the relative temperature increment of braking

in the region of burning is umall (To3 /T01 z 1), then formula (67)

can be substantially simplified:

(sinc under th asumtin mad X 2<). -; b:s
2(since under the assumptions made « 1< ). Thus) .

1" "Am .( 68 )

where AT0  Q/cp, if Q is the quantity of heat which is liberated
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.th.' the mor, iusticn of a unit weight of mixture. From formula

(3 !t is ev'dent that with weak heating (AT/T 0 1 0) the
:Jit~uity ceoffltIen. For tht products of' combustion is close to

the velocity coctfficient after" the shook wave.

With the Intensifying of the shock wave, i.e., with an

increase in the velocity of propagation of the shock wave, the

stagnation temperature of the initial mixture T01 * T0 2 sharply
increases according to the known equality (42) of Chapter I

(69)

In t i ease the temperature in the flow in front of the region

uf uLwning T, sharply increases. In the limit when M1  and

we have T T and T2  ) . With an increase

in temperature r2 , in connection with the increasing role of
thermal dissociation, the absolute difference in '.'e stagnation
temperatures somewhat decreases:

A. == T."-''

Consequently, with the intentsiica2'.on f the shock wave both the
relative heating of the gas &T,/T0 1 ,P" the velocity coefficient

of the combustion products X3 decreases.

This is evident most distinctly if into formula (68), instead
of the variable stagnation temperature we introduce the constant

temperature of the cold gas:

(70)

'The thermal dissociation is the phenomenon of partial
decomposition of the products of burning observed at high
temperatures and also at low pressures; a reaction occurs in
tne opposite direction and is accompanied by an absorption of
heat.
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The burning which occurs behind the front of a very

powerful shock wave begins at such a high thermal level that it can

cause only a relatively small increase in stagnation temperature.

Therefore, in the limit

i.e., the detonation wave approaches with the usual shoc.k wave.

Let us study the steady-state condition of detonation.

The considerations given make it possible to imagine the

process of the formation of the stationary wave of detonation in

the following form. Usually the detonation wave appears as the

result of local explosion in the combustible mixture. In the

region of the explosion very high pressures are developed and

directed from it is a very powerful shock wave. In transit

through the cold combustible mixture, this wave, as was noted

above, causes considerable heating of the gas and can lead it

(up to ignition. Precisely in this case, behind the shock-wave

front there follows the region of burning which forms the wave

detonation in totality with the shock wave. Since near the

explosion center the propagation velocity of the wave and its

intensity are very great, the relative gas velocities at the

beginning of the region of burning and at the end of it are

clo.3e to each other and substantially lower than the critical

velccity:

X << 1.
2 3

However, with distance from the blast center the detonation wave

is attenuated, and the propagiti.on velocity of it X decreases.

In connection with this there cccurs a reduction in the

stagnation temperature at the beginning of the region of

burning (T02) and an increase in the velocity coefficient of

the gas (X2). In this case the relative heating of gas

(AT0/T0 1) and the velocity of motion (68) of the combustion

products (X3) increase. It is obvious that when the detonation

283



S.,;ave Az attenuated so much that A3 will be raised up to the

cr..a. value ( 1), a further deceleration of detonation

;:I: prove to be impossible').

Gonscqeqnt.ly, the dtonation process, which began from the

cx.r[lQ. ion, ectinuously weakens, until the progagation velocity is

lowered to a minilmum value which corresponds to the onset of the

:" ... . .... reLun the combustion zone. From this point

. ": the ,itonation wave acquires a stable

.. , , , , fur.her acceleration and transition to
'.. ,sible solely with a change in the

" ..& case upon the transition from the
S. ;,.r .:..;s.,bi. tion zone to its removal, beginning

'~i.ton (thermal nozzle). Thus, te

f I, : region in the zone of combustion

,ir.t o:' stationary values i X 2, and 3'

,. c.r ii-r'. :; t coefficient of the propagation velocity
~.& [,-. r - r . wave, after substituting value

'ii 'at, -r . • In this case

S r. (71)

+ + '.(72)

S" + T 'e also obtain

:". -(73)

.................. .. ..... ,.',e shock wave, formed as a result of
" : .. ,pr:pagated In the Inert medium, with

.... .. : '.. t rter completely degenerate., into an

. ' 4



The last two expressions, Just as equation (.65), retain

identical form with the substitution in them of velocity

coefficients A1 and X2. Thereby a change in the stagnation

temperature is connected here either with the propagation velocity

of detonation (XI) or with the maximum propagation velocity of the

combustion zone (X,). It is important that the maximum value X

is retained without depending on the mechanism of ignition, i.e.,

it is related both to the detonation and the steady-state flame

propagat i n.

Let us turn to the calculation of the propagation velocity

of the wave.

Let us designate for brevity the thermal characteristic of

the combustible mixture $:

re--., a r

From formulas (69) and (72) we have

whence the square of the velocity coefficient of the wave

propagation is equal to

--- - 10)4 t -7i , (74)

In equation (74) both signs before the radical correspond to

the real values of the velocity coefficient. The positive sign

'In meaning this value is equal to the ratio of the quantlity
of liberated heat to the initial gas enthalpy S Q/cpT I . ForT

example, for a cold (T] z 3000 abc) mixture of gasoline with air U
(when a z 1) 6.5.

225-
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correspcnds to detonation burning (A1 > 1), i.e., the propagation

velocity of the shock wave. The negative sign corresponds to

the propagation of the slow burning. It should be noted that

formula (74) also with a negative sign is suitable for detonation.

In this case it connects the velocity coefficient directly behind

the shock front A2 (instead of X1 ) with value 4' a AT0/T
(instead of 4 = AT /TI).

In practically interesting cases where $ > 1, instead of

expression (74), it is possible with an error of less than 2%

to accept approximately:

a) for the propagation velocity of the stationary wave of

detnat ion

2+4- (75)

t) for the maximum propagation velocity of the wave of

burning

I - -(76)

Using the known connection between the velocity coefficient

and the M number, it is possible to obtain also similar

dependences of the M number for .s of detonation and burning

on the thermal characteristic of t,.. gas mixture.

Figure 5.19a and 5.19b show graphs of the dependence

)-,==fib) and M-=F(O)

for the gas mixture (when k = 1.4). The upper branches of both 4
curves (in the sup,rsonic region of motion Xi > 1, M 1  1)
correspond to th steady minimum propagation velocity of I
detonation and tne lower branches (in the subsonic region

A. < 1, M1 < 1 - the maxirhum rate of combustion, i.e., the

maximally possible velocity of the normal propagation of the

flame.
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Fig. 5.19a. Fig. 5.19b.

Figure 5.19a. Dependence of the extreme value of the coefficient
of the propagation velocity of the wave of burning on the thermal
characteristic of the mixture: 1 - region of unsteady detonation;
2 - steady-state regime of detonation; 3 - maximum rate of
combustion; 4 - region of normal burning.

Figure 5.19b. Dependence of the extreme value of the M number for
the wave propagation of burning on the thermal characteristic of
the mixture: 1 - region of unsteady detonation; 2 - steady-state
regime of detonation; 3 - maximum rate of combustion; 4 - region
of normal burning.

We arrive at the single concept of the propagation velocity of

burning. In this case in the suptrsonic region (above the curve)

the values which correspond to the nonstationary state of detonation

lie, whereas in the subsonic region (below the curve) there is a
countless multitude of values which correspond to the stationary
normal propagation of burning at the low speeds of flow of the gas.

Finally, the conditions which correspond to the shaded area

(Figs. 5.19a and 5.19h) cannot be realized in connection with the

phenomenon of the thermal critical region (i.e., the impossibility

to transfer to the speed of sound during the heat feed).

By precisely this, apparently, one should explain the fact

that the transition from slow burning to detonation, as experiments .

in the tubes show, is always achieved intermittently.
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One should note one interesting feature of the curves obtained.

As can be seen from the graphs, the most insignificant thermal

eff"ct suffices in order that the maximum rate of combustion

becomes substantially lower and the detonation velocity

substantially higher than the sonic.

Let us give the calculation of pressures with detonation and

burning.

The calculation of the maximum expansion shock in the flame

front attained with the thermal critical region can be produced

by means of the momentum equation. In the case of 3 = 3 1

we have'

but in these conditions

whence, on the basis of dependence (71), we obtain

4 if t (77)

Thus, the maximum pressure drop in the gas flow in the region of

burning is equal to

:-I v rot, (78)

'In order to obtain this expression, let us write the momentum
equation (94) of Chapter I for our case:

or #PS- - I = t ±'l W1---

p, II, JI

but
-Me,
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or on the basis of expression (72)

I -- ; )T-I(79)

In this case the value of the velocity coefficient both in

detonation and in the extreme case of normal burning is taken from

the relation (74).

If we use equality (75), then the following approximation

formula of the pressure drop in the second region of the wave

of detonation (for I > 1) is found:

Aft I + (80)
P I+ 81+"

Correspondingly, equality (76) leads to the approximation

expression of a drop in pressures for the maximum rate of the

normal burning:

P. -I +k+ (81)
PS

The pressure change in transit through the entire region of

detonation, which consists of an adiabatic shock wave and

combustion zone, will be obtained in the division of equality

(63) into (79):

Pa PA Pa A+ i -- 2"I t " (82)

Very simple dependences are obtained for a density change of

the gas. At the maximum speed of normal burning, on the basis of

the equation of continuity and expressions (77) and (72), we

obtain

h 2 212_T (83)

1219



With the steady-state condition of detonation burning, using

ccua~ties (16) of Chapter III and (62), we have

_, _ r, ; (84)

Let us discuss in more detail some general properties of the

one-dimensional nonadiabatic waves, and let us give, in particular,

the calculating equations for determining the absolute velocity of

propagation of the wave. From the momentum and continuity equations

it follows that in any case of the shock wave (in disregarding

tcce. of friction) the following relation is correct:

Pm,
P -  (85)

On the other hand, the equation of enthalpy, taking into account

the equation of state of an Ideal gas, gives for the pressure Jump

with any feed (or removal) of heat'

"'s a- = +q- _2-- (a!. -_ . (86)

'Let us write the equation of enthalpy (25) of Chapter I for
gas before and after the shock wave

t. 2r,-T ,-- 1, , (T.- T.)--A

or, by replacing from the equation of state T a -gp

AR
P, "o p1 gR. - - P101. P,gRT8 P

By subtracting from the second equation the first, taking into
account the equalities

R h-- l 2k
2, T S, To

and the law of the momenta, we obtain (86).

290



From equations (85), (86) and continuity, it is not difficult to

derive the relation between velocities for the arbitrary pressure

jump:

0 1 W.W. .w~)=i.~'. -u~j.W..(87)

In the particular case when the heat feed is absent and
2 2

a lKp a a 3,. , we again obtain the relation (16) of Chapter III for

the adiabatic shock wave.

In the case of interest to us of the steady-s:ate detonation

(or the propagation of burning at the maximum rate), when the

thermal critical region begins, i.e., X - 1 and w 3 -a

equation (87) assumes the form

(1- 4kp aLk,-afp (88)

whereupon for the detonation

>' ,

for the slow burning

W, < 44~.r

Just as In the dimensionless equations given previously, we have

here two solutions:

W1 (3mp±t apGIp-- (89)

which correspond to the minimum rate of the propagation o.

detonation (with the + sign) and the maximum speed of slow

burning (with the - sign).

The obtained general relations are used for any nonadiabatic

pressure jumps without depending on the mechanism of heat

liberation. We saw that in the two cases examined above of the

propagation of the flame front immediately the thermal shock

291 4
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(i.e., the combustion zone) represented both with detonation and

with normal burning the expansion shock in the subsonic flow.
it is not difficult to indicate the case of the thermal compression

snock in the supersonic flow. We have in mind the well-known

ccndensation shocks, which are accompanied by the transition from

a higher supersonic velocity to a lower but still supersonic

veiccity. And in this case the equations and derivations given

above remain valid.

In conclusion let us investigate the flow of gases behind

the wave front.

Obtained above were the fundamental principles characterizing

tnc gas flow passing through the region of the shock of detonation

or flame with a fixed front, i.e., in a reversed scheme. Let us

examine now which form all relations will acquire, if we pass to

the normal scheme when the gas is fixed, and in it the wave of

detonation or burning at the rate w1 is propagated. In this case

behind the shock-wave front there follow the still not ignited

particles of gas with the velocity

and moving behind the region of burning are products of burning

with the velocity

Wr= tea - -0j

where we understand w and w as aosolute velocities. It is not

difficult to see that in the case of the detonation

W1I> U-'> W.

i.e., the flame front and products of burning move in the same
direction as does the shock-wave front, but only the particle
velocity in the flame front is higher than in the products of

burning:

W> ~

In the case of normal burning, when
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the value w is negative, i.e., the directions of motion of the

products of burning and flame front are opposite.

As it was established, with the steady-state condition of

detonation and with the maximum rate of normal burning, there

occurs

W3Oror

in consequence of which in these conditions the rate of the motion

of products of burning is equal to

where according to dependence (89) obtained above

Hence we arrive at the following expression for the propagation

velocity of products of burning in cases of stationary detonation

and the maximum state of the normal burning:

W, I/ i4: P. - a.,. (90 )

The plus sign corresponds to detonation, and the minus sign - to

normal burning.

Let us now find the values of velocity coefficients. For the

shock-wave front we obtain X- w/a For particles following

directly after the shock-wave front,

. _ _, (91)

since alRP - a2K P . Finally, for products of burning according to

(90) we have

Hence by means of (72) we find
.'-I (92 )

(92
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Positive values of X are obtained with detonation (X > .), andr Inegative values are obtained with normal burning (X < 1). In the

zase of X 1 we have X 0, i.e., with the motion of the wave

at the speed of sound the gas remains fixed, which completely
corresponds to the physical nature of the phenomenon1 .

The greatest value of the rate of products of normal burning

X * -1 is obtained, naturally, in the fixed mixture of infinite

caloricity [$ -, i.e., XI - 0, see (76)].

The maximum of the rate of products of detonation is reached
also with infinite caloricity [with (75) -- O . :o.2] M bu i

this case, as it is not difficult to see from (92), it is equal to

Thus, the absolute velocity of the motion of the burned

particles is always leas than the speed of sound. This result

is valid both during normal burning and detonation.

Meanwhile as it is not difficult to see from (91), the
velocity of unburned particles (at the beginning of the combustion
zone) in the case of detonation carn be more than sonic; this is

obtained in the state

l->l i.e., when )I-i->0.

Solving this inequality, we obtain

>- 1.6;2 and M,>2.

'Above [see (74)) it was shown that X 1 is obtained only
with zero caloricity of the mixture, when the detonation and
burning degenerate into the usual shock waves.
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The maximum value of this velocity, obviously, is obtained in the A

state M - and X -- l and it is equal to

if k * 1.4, then X Xmax * 2.04 and M xmax 3.4.

An interesting result will be obtained if we connect the

absolute gas velocity at the beginning and end of the zone of the

detonation burning:
10 _ )a O mp

,r = Oo ,

Hence, by usinK dependences (91), (92) and (72), we find the
following simple relation:

(93)

i.e., with detonation the particZe epeed before the fZame front

is always twice higher than thc velooity of the burned parti lee.

The pressures both behind the shock-wave from (p 2 ) and at
the end of the combustion zone (p3 ), obviously, are not changed

from the fact that we changed the motion, i.e., they can be

determined by formulas (63) and (79). It is possible, however,

by means of (92) to give to formula (79) the following very

simple form:

S0, , (94)

Here the minus sign is taken during normal burning and the plus

sign during detonation. In the limiting cases of normal burning

(Xra -1) and detonation (X, ) we obtain, respectively, for

the maximum rate of normal burning

P 1 (95) 4
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and for the minimum rate of detonation

.2 = ,(96)

With the encounter of products of burning with a poorly

streamlined body, there will occur a pressure increase up to

value P031 which for both these states is found from the same

expression, which corresponds to the isentropic process of

compression:

" , °i! "(97)

The more considerable increase in pressure occurs with a

cessation of the particles of the still unignited gas moving at

the rate of w . In the state of X < I the same isentropic× x

dependence acts:

A ,*(gl *"ik,\T (98)

For supersonic conditions (Ax > 1), when braking begins from the

normal shock wave, which converts the flow to subsonic velocity
1

A -and the pressure determined by formula (63)

' - __I-6' (99)

we have with the total stagnation

Pa (100)

or finally

=. -+ ) (- 4 .1
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2 •k+l .4(enk•1),w
In the extreme case X, i.e., )x 2.04 (when k 1.4), we
obtained the maximum pressure increase with braking

or in comparison with the pressure in products of burning

With the encounter of the gases following directly behind the

detonation, with a sharp-nosed obstruction an oblique shock wave

can arise instead of a normal wave. In the latter case a

pressure increase with the braking of the gases proves to be less.

§ 6. Calculation of Gas Flows by
Means of Gas-Dynamic Functions

Established above were the numerical relationships between

the pressure, density, temperature and velocity coefficient of

(the gas flow and also the stagnation parameters for some cases of
the gas flows. These equations contain the parameters of the gas,

in particular, the velocity coefficient X, in high and fractional

powers, and therefore their conversion, the obtaining of explicit

dependences between the parameters in general, and the solution

of the numerical problems frequently represent considerable

difficulties. At the same time, in examining the different

equations of gas flow, derived, for example, in § 4 of Chapter I

and § 4 of Chapter V, it is possible to note that the value of

the velocity coefficient X enters into them in the form of several

frequently encountered combinations or expressions which were

called gas-dynamie functiors. Given to these functions are

abbreviated notations, and their values, depending on value A and

the adiabatic index k, are calculated and reduced to tables.

The gas-flow calculation by means of tables of g~s-dynamio

functions received widecoread acceptance and is at present

conventional. Besides tie reduction in the calculating work, the

advantage of the calculation with the use of gas-dynamic functions
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".:,'. rr . simplification in the conversions in the

' . fundamental equations, which makes it possible
the solutions, of very complex problems.

,'* . . h basic qualitative laws governing the
lw: .,- t ,;- t etween parameters of the gas flow are more

-- is It will be possible to see below, the use of

, .... a ,,, ,kes it possible to conduct the calculation

,-,i u*:z- i. . . a:f. flows, taking into account the compressibility

*a ,- the calculation of flows of an

.iV _ > ,, -', f uli I. conducted.

=::Jr'-.'- ti,. basic gas-dynamic functions from those
, '.:.L .And in a number of examples illustrate their

.,f different problems.

lh '2. a.,- ;iuplest group of gas-dynamic functions is

i- .. e of simplicity in the recording of

..... ....... -t*' e' the p-:,,ameters in the flow, the stagnation

io.- "i ocity coefficient of the gas. In § 3 of
21qv. 1, L ;'-' i5 w; the transformation of the equation of

, .,. :, ':' r2 the velocity coefficient A. Let us denoteslignation temperature T0 with the temperature

S-- 1- (101)

I ,xpressions (72) and (73) were obtained for

•. -. ' 9'.' . ad density in the flow to the total pressure

ar,] ,.z ,., the izentroplcally stagnant gas. Let us introduce

29 8k,.F (102)
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, 103)

The connection between gas-dynamic functions T(X), n(A) and c(A)

results from the obvious relationship between values p, p and T:

'@1 0- " (104)

It should be noted that equations (101), (102) and (103) connect

the parameters of the gas in the same ooss seotion of the flow

and are valid independently of the flow pattern and processes

occurring in the gas: the transition from parameters in the flow

to parameters of the stagnated gas by definition occurs on the

ideal adiabatic curve. The nature of the change in the gas-

dynamic functions T(A), w(X) and E(X), depending on X, is shown

on Fig. 5.20; with an increase in X from zero to the maximum

value functions r(X), r(X) and E(A) monotonically

decrease from unity to zero. This completely corresponds to

their physical meaning: at very low velocities (X - 0) the

parameters in the flow virtually do not differ from the parameters

of the completely stagnant gas; with an increase in the velocity

up to the limiting value (M X , A -' ax), the temperature,max
pressure and density of the gas at the finite value of the

stagnation parameters tend to zero.

Having available graphs or tables in which for each value of

values of functions Ti(X), c(X), and T(A) are given, it is

possible to determine rapidly the stagnation parameters according

to parameters in the flow and vice versa. Such tables for values

k - 1.40 and 1.33 are given at the end of the book. Given there

are auxiliary graphs, which can be used, instead of the tables,

if high accuracy of the calculations is not required.

Example 1. In section i of the subsonic part of an ideal

Laval nozzle the following are known: pressure in the flow

P 16 kg/cm stagnation temperature T 4 O0K, and velocity
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coefficient 1 = 0.6. It is

required to determine the

- velocity coefficient 2 and

gas pressure in section 2,

where the temperature T2 is

equal to 273 0 K.

44f

Since the stagnation

temperature and total pressure

- - of the gas in the ideal
nozzle in question are not

Fig. 5.20. Graphs of gas-dynamic changed, T 2  T and
functions T(X), c(X), and r(X) " 01
whcn k = 1.4. P0 2 = P0 1. Using the first

equality and relation (101),

wt write

T" T*.

After substituting the assigned values T2 and T01 , we find

S( 2 ) = 0.6825 and from the tables determine (when k = 1.40)

X 2 = 1.38. Thus, the unknown section is located in the supersonic

part of the nozzle. We further use the condition of constancy of

the total nozzle pressure. By expressing the total pressure in

terms of the pressure in the flow and function v(X) according

to (102), we obtain
. _ p. ,)-P-a P--- or pr, p,,--,

- (K.) M.) O,'.

For X1 = 0.6 and X2 = 1.38 in the tables, we find the values of

functions i(M) and determine

p,,='tob, =5.23 kg/cm2.

Let us find now at the same initial data what the gas temperature

will be in the section 3 of the nozzle, where the gas pressure is
2equal to the atmospheric p 3 = 1.033 kg/cm . Let us write

o r rjr ,,a= 00 or ""p-
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(' Hence we find

and then from the tables we determine the value X - 1.85. This3
value of' the velocity coefficient in the table corresponds to

t(X3) 0.4296. Further, we easily find the gas temperature in

section 3 ri

7 T,- T. =,) 400,0,42" = 171,5 *K.

Thus other problems connected with the determination of the

dependence between the gas parameters in different cross sections

of the flow are solved.

Let us examine further the two gas-dynamic functions which

are used in the equation of the gas flow rate. Let us substitute

into the expression of the gas flow rate per second, in terms of

the cross section of the area F G = ywF, the relations which

express the specific weight of the gas y and flow velocity w in

terms of stagnation parameters p0 and T. and the velocity

coefficient X:

Then we will obtain

Q... (2 r.. (105)

After multiplying both sides of this equation by ag,== 2g J. lT&

after cancellations we have

a., .P). -,+ 6-.4) (106)

This equation expresses the gas flow rate in this cross section in

terms of the total pressure, the critical speed of sound and the
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cer'air function of the velocity coefficient

t.'here e(A) is the gas-dynamic function (103) introduced above.

The new gas-dynamic function q(X) is defined as the value

proportional to the product XE(X):

9(Aj -:- l 1)) 4 -o), (107)

The proportionality factor is selected so that when X - 1 we have

q(A) = 1. Because of this the gas-dynamic function q(X) acquires

the physical meaning of the dimensionless current density:

where (pw) is the maximum value of the current density (withKp

the assigned stagnation parameters), which corresponds to the

flow at the speed of sound. Actually,

P .Pt _g_ a ti_ - ,k+I t i (

The graph of function q(X) is given on Fig. 5.21. With an

increase in the velocity coefficient X from zero to unit, the
value q(X) increases from zero to its maximum value q(A) - I and

further is again lowered to zero at value A - Xma x * Thus, the

current density is maximum when q(X) = 1 and is decreasad both
with a decrease and an Increase in the velocity in comparison

with the critical value. The same value of function q(A)

corresponds to two possible values of the velocity coefficient,
one of which is more and the other less than unity.

Substituting function q(A) into expression (106), we have

I . 2. . )  ( 108 )
G 4.P 2
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By replacing in (108) quantity ap by its value, we obtain the

following formula for the calculation of the gas flow rate (see

also 1 1 of Chapter IV):

V . ', (109)

where

In the following table values

S-of N for different values of k are

4U --41given:

k 1.67 1,4 1,33 1.33 1.30 1.23 1.10

a-- L - - 0 N 0.725 0,685 0,076 0,673 0.667 0.638 0.628

-4 -- For air (k = 1.4, R - 29.27 kg-m/

I/"kg-deg) the numerical coefficient

S in equation (109) m - 0.3965
el[deg 0 "5 .s-1 ]. For exhaust gases

'44 aa (I if Va AP4 in turbojet engines (k a 1.33,

Fig. 5.21. Graphs of gas- R - 29.4 kg-m/kg-deg) m - 0.389.
dynamic functions q(X), y(1) For powder gases, on the average
when k - 1.4.

it is possible to consider that

m = 0.343. With flow at the speed

of sound q(l) 1 1, equation (109) is reduced to expression (8)

obtained in Chapter IV for the calculation of the gas flow rate

through the Laval nozzle according to the parameters of gas in the

nozzle throat area.

In the solution of a number of problems, it is required to

connect the gas flow rate not with the total but with the static

pressure in the flow. It is easy to obtain such a connection

from expressions (1lP) nr (109) if we replace in their right

sides the value of totai. .ressure

303 A-3
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I k .. I F .I

Then we obtain the relations

a!
2k t 2 'W 1 (110)

and

where the function
| %

.), 1A 0) = k+I -r T-  (112)

is the second gas-dynamic function with the aid of which it is

.ossible to calculate the gas flow rate (see Fig. 5.21). Its

values, Just as the values of function q(X), for different values

of k are given in tables and on auxiliary graphs at the end of

the book. With an increase in X function y(X) monotonically

increases, whereupon when X-Xmax' yO') - -. Both formula (109)

and formula (111) express the gas flow rate by means of parameters

of its state in the cross section of the flow in question, and

that is why they are valid independently of the nature of the

processes occurring in the flow of gas. Formulas (109) and (111)

are conveniently used in the compilation of equations of

continuity for the gas flow, whereupon for each cross section

there can be selected that formula which corresponds better to

the assigned or unknown values.

Expressions (109), (111) and the equations of continuity

compiled with their aid directly lead to a number of dependences

derived earlier by a more complex means and also make it possible

to solve various problems quite simply. Let us give several

examples of the calculation.
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Example 2. Determine the dependence between the area of

any cross section of an ideal Laval nozzle and the velocity

coefficient of the flow in this cross section, i.e., find the

law of a change in the area in the Laval nozzle. Since for any
cross section of an ideal nozzle, the flow rate, total pressure

and stagnation temperature are identical, then from (109) it
follows that Fq(X) a const. Since for critical cross sections

q(X) 1 , then Fq(X) - F or - i. the cross-=p F D - ,i.e., tecos

sectional area of the nozzle varies indirectly proportional to
the value of function q(X). In accordance with the graph of

function q(X), this means that with an increase in the velocity

the area decreases at subsonic velocities and increases at

supersonic velocities, having a minimum when X - 1.

Ex pLe 3. In the section of the cylindrical tube between

the two cross sections 1 and 2 as a result of hydraulic losses

(friction, local resistances) the total pressure of the moving

(gas is lowered. The losses of total pressure between cross
sections 1 and 2 are estimated by the value of the coefficient
of total pressure a - p02/Poi < 1. Determine the nature of the

change in the velocity and static pressure of the gas in the

tube in the absence of heat exchange with the environment. Let

us write, after making use of formula (109), the condition

of the equality of the gas flow rates in cross sections 1 and 2:

Since in this case F1  F2 and T T02 then

q (1' q O,) or q (,) q 0 d.

Hence according to the assigned values of X and a, it is

possible with the aid of tables of gas-dynamic functions to

determine X The obtained result is valid both for subsonic
2
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and supersonic flow velocities. Since c < 1, then q( 2) > q(Al).

From this inequality it follows (see the plotted function

q(X) on Fig. 5.21) that in the presence of flow friction (when

G a const, F f const, T O a const) the velocity of the subsonic

flow along the length of the tube increases, and the velocity

of the supersonic flow decreases.

In order to determine the change in static pressure, it is

possible to compare with each other values P1 , P0 1i(Xl) and

P 2 = P 0 2 '(A 2 ) " However, a more clearly unknown result can be

obtained from the condition of the equality of the gas flow

rates if we use in this case expression (111)

p 1 F)pF~v(?,)orr".. A., P. yI a).

Since function y(A) is increasing, then hence we conclude that

in the presence of resistance, in accordance with the change in

the velocity coefficient found above, the static pressure will

decrease if the flow velocity is subsonic and increase if the

velocity is supersonic.

Example 4. Determine the velocity coefficient X 2 and static

pressure of the air P 2 at outlet from the diffuser, if it is

known that at the inlet to the diffuser the total pressure
2P0 1 a 3 kg/cm , the velocity coefficient A, 0.85, the area

ratio of the outlet and inlet sections F2 /F1 - 2.5 and the

coefficient of total pressure o a P 02 /Pol - 0.94. To solve

the problem we write the equation of continuity, using formula

(109)

Disregarding the heat exchange through walls of the diffuser, weP1
have T0 2 = To,, and therefore, q(X 2) - 2 q(Al)" According to

2
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tables for X, 0.85 ve find q(Xl) - 0.9729. Then q(X2) 
* 0,425"0.9729 0 O.413, to which corresponds X2 m 0.27 and

7(X 2) = 0.9581. From the relation (102) we have P2  P0 2 '(' 2 )
22

* oP0 1'r(X 2 ) or P2" 0.94'3'0.9581 - 2.7 kg/cm

Example 5. With the compressor testing, in its outlet cross

22
section, the area of which F - 0.1 m 2 the static pressure p a 4.2

kg/cm 2 and the stagnation temperatur, of the air To a 480
0K are

measured. Determine the total pressure of the air if its flow

rate 0 a 50 kg/s.

From the equation of flow rate (m) we determine the function

y(M) in terms of the known value of the static pressure of the

air:

From the tables of gas-dynamic functions, we find chat the values

X = 0.406 and v(X) = 0.907 correspond to this value y(X). Hence
2the total air pressure p0 - p/r(X) a 4.2/0.907 - 4.63 kg/cm

If we do not use gas-dynamic functions, then the similar

calculations which are frequently made in the processing of

experimental data must be carried out by a more complex method,

by means of successive approximation.

Let us examine the gas-dynamic functions which are used in

the equation of the momentum of gae. The sum of the per-second

momentum and force of pressure of the gas in the cross section

of the flow in question can be called the total momentum of

flow I

O ~ 1 (w+= o (113) i
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if in (113) we substitute the relations

W=.aa, iyR7= gITo ) 4 "., I -VI)( " i)

then we obtain

4"p a-F L __..," (114) 1

After the opening of the brackets and simplifications, we reduce
expression (114 ) to the form

a + a
--w+ pF- -y. ,8(  (115)

where

(116)

The graph of the gas-dynamic function z(X) is given in Fig. 5.22.
The minimum value of functicn z(X) - 2 corresponds to the critical
rate of flow (A - 1). Both in subsonic and supersonic flows
z(A) > 2; any real flow conditions do not correspond to values
z(A) < 2. It is easy to see that with the replacement of value
A by the value opposite to it X' a I/ the value of function z(A)

does not change. Thus, one value of z(X) can correspond to two

mutualZy opposite vatuee of tha velocity coefficient X - one of

them determines the subsonic and the other the supersonic gas
flow. Let us note also that function z(X), unlike all remaining
gas-dynamic functions, does not depend on the value of the
adiabatic index k.

Expression (115) for the momentum of flow considerably
simplifies recording and transformation of the equation of the
momentum of gas. It proves to be extremely useful in the
solution of a wide range of problems of gas dynamics as, for
example, in the calculation of flows with shock waves, heat feed
9nd cooling, flows with friction and with a shock during sudden
expansion of the cbannel, in the calculation of the process of
the mixing of flows, in the determination of forces which act on
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(walls of the channel, in the calculation of reactive thrust, and

so on.

make The following two examples

make it possible to show visua.ly

- - - how the solving of problems is

simplified when using relation
(115). In the first of them the

previously solved problems

-: (Chapter III 5 1) of the normal

shock wave is examined, and in
the second - the problem of the

41 4# 4 U &S A 8 flow of the preheated gas in the

cylindrical tube.
Fig. 5.22. Graphs of gas-

dynamic functions z(X), f(X),
r(M) when k - 1.4. Example 6. Determine the

relationships between the gas

parameters before and after the normal shock wave.

The relationship between the gas parameters in the shock

wave was established above by us on the basis of the fact that

with tran3ition through the normal shock the total energy, flow

rate and momentum of flow are maintained constant. Let us write

the same equations with the use of gas-dynamic functions.

The equation of momentum or the momentum of the flow

6" + lfeSUI *P

taking into account expression (115), assumes the form

From equations of the conservation of flow rate and total energy,

we have

Eh -- (,: r., T., or o ,P , O'P' .

-3---



S- - 11m- 1W

Taking this into account and reducing the corresponding values of

flow rate and speed of sound in the momentum equation, we obtain

I) -z(X2)

This equation has two solutions: either X2 - i which

corresponds to the bhock-free flow with the constant gas parameters,

or

X

which corresponds to the normal shock. The same expression - the

basic kinematic relation of the theory of shock waves - was

obtained above, see formula (16) in Chapter III.

According to the known value of the velocity coefficient,

with the aid of the equation of continuity, a change in the

total and static pressures in the shock wave is easily determined.

Since F a F and T T then by using formulas (109) and (111),2 1 an 0 2  01'
it is possible to present the equation of continuity for the

flow of gas before and after the shock in the form

,,.qO,)=p,0qp 1 ,) or pryQ,).zp ,y4),

Hence, taking into account that A ' 1 it follows that
P1

P02/P01 - q(Xl)/q ;p,/P - y(Xl)/y( . These relations are

equivalent to equations (24) and (21) of Chapter III but are

obtained by a considerably simpler means.

Example 7. The gas which moves in the cylindrical tube is
heated by means of heat exchange through the walls of the tube.

As a result of the heat feed the stagnation temperature of the gas

Is increased from 4000 K at the inlet into the tube to 800 0 K at the

olatlet from it. The velocity coefficient of flow at the inlet

Into the tube X 0.4. It is required to determine, disregarding

friction, the coefficient of flow velocity after preheating and

also the change in the total and static pressures in the flow.
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The fundamental relation which determines the laws governing

the gas flow in the cylindrical tube with the heat feed will be

obtained from the equation of momentum. In this case it takes the

form of

Q

since the heat feed is not connected with the force effect on the

flow, and the forces of pressure in the initial and final cross

section are the only forces which produce a change in the

momentum of the gas. After replacing exp'essions for the momenta

of the flow of gas according to relation (115) and considering

that the heat capacity of the gas and the adiabatic index with

preheating do not change, we will obtain

or S-/)_-.

Since when XI - 0.4 we have z(X I ) 1 2.9, tnen

1W

With the aid of the tables !f function z'(X) or the direct

calculation from the quadratic equation X2 + l/x 2 = 2.05, we

determine the two possible values of the velocity coefficient at

the outlet: X = 0.8, X" - I/X = 1.25. The real solution will

be only the first solution, since by preheating it is not possible

to transfer the subsonic flow into supersonic (see § 4)

By knowing the coefficient of flow velocity X 2 = 0.8, it is

easy to determine the change in the total and static pressures in

the process of preheating. To do this, Just as in the foregoing

example, it is possible to use the equation of continuity from

which for the given case (G - const, F = const) it follows that

p, ' 1,) T7 ... .71i-

; 1 W r.; s V -.

1 6 Y(, 8) r., 7,'*~~
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t-otal and static pressures, as a result of the

tL- idecrease. The obtained value P2 /p, = .64~8
a 'Am~hcp o the static pressures of the gas in

i§r-lcross sections of the section of the tube

~r.~stbe created in order to maintain at this

Smagnitude of the velocity coefficient a t

o! 0 the conservation of momentum makces it

I .lh -3cme general laws governing the flow in a
I11 preheating or cooling. Thus, for Instance,

:a' with an Increase in the ratio T0 2/T0  the

z,,)(when z(X1  const) always decreases.

i'J hbe nature of the course of function z (X)

:.. -*uns that with ar, Increase In preheating in

I Use velocity coefficient Increases, while in

~~-~: ' I~z~ ecreases . In both cases the flow velocity

* . ~c:itica. value X - 1 at which function z(X) -

.. ;uuvalue z(A ) = 2. This causes the value

i v_;s.ble preheating fox- the assigned initial
TZ. (h /42 For the values of the parameters

temaximum value of the preheating

,. ,: 84400K. From the equations of flow rate it

o.; ---mine the pressure ratio P2 /p, neoessa-y for

* -,i ;~ .. f juch conditions while maintaining A a ccnst.

* i~ithe preheating above the In~dicated value,

:..)'2, wlbicri indicates the physical impossibility

.4 ~'~~'~ t~~gat the assigned rate of flow at the inlet.

~ p ~iL.~in r-elation (115) th-a product 2 , with

* ':ii to (108) or (110) , we obtain the expression

U' in c- the gas flow In the f'irst case in termo of

4Vard In the second case in terms of Oie static

w+pF3( 2)pqpz.
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and

2_- 2 yQzQ.)

Let us introduce the notations for the two new functions of the

velocity coefficient X which enter into the right sides of these

expressions:

0-) -- o + , (117)

r (I) k-4 -- 1 ii t~ 1 (118)
Y]

By substituti.ng these notations, we finally obtain

To ,,.PF =-IVY (0, (119)

PP (120)

Function r(X) is introduced as the value opposite to the product

y(X) z(X) in order to facilitate the use of the tables (product

y(X)z(X) rapidly increases with an increase in X, approachIng

infinity at X + Aa• value r(X) changes within the limits of

unity to zero). The graphs of functions f(X) and r(X) are given

on Fig. 5.22)

Equations (119) and (120) show the number of properties of

the momentum of gas flow. Let us focus attention on the fact

that on the right side of these equations there are no values of

gas flow rates and Lemperature or critical velocity. Hence it

follows that if at the assigned oroes-sectional area F and

velocity coefficient X the total or static pressure in the flow

is constant, then the momentum retains a conetant value

independently of the temperature and gas flow rate.
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The physical meaning of this consists in the fact that witn

a change In ternperature (or stagnation temperature) in the gas
v;hen = conrst the velocity of flow varies directly proportional
and th.e flow rate inversely proportional to the square of the

temperature so that the product Gw remains constant. Let us
note that function f(X) in the region of the subsonic and low
suter_:,ic velocities changes very little (approximately 10%
in the interval X = 0.55-1.35). Hence, according to (119), it
follows that the momentum of the gas flow at constant total
pressure and cross-sectional area weakly depends on value Xover

a wide range of its change and is determined basically by the
value of Product p0F

.

Excressions (119) and (120) for the momentum of gas are very

convenient in the solution of problems connected with the
determination of forces which act on the part of the gas on walls
of the channel, which is necessary, in particular, in the

calculation of the reactive thrust of different engine
Installations.

For the reactive thrust of rocket engine, above (§ 8 of

Chapter I) we obtain the expression

This formula determines the thrust of a Jet engine of any type
when operating at the place when the initial momentum of the air

which enters into the engine is equal to zero. We convert this
formula with the aid of the relations obtained above, for which
on its right side we replace the expression of the momentum of gr s
in the nozzle exit section according to formulas (119) and (120).
In the first case we obtain

(or (121)

where f0 = P a/PH is the available pressure ratio in the nozzle.
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In exactly the same manner it is possible to obtain the second

expression

P~p 1 , [I pm rO or P==pM,r-, I].r (122)

where n = p /p is the so-called off-design ratio of the nosle,a H I

i.e., the ratio of the static pressure of the gas in the nozzle

edge to the atmospheric pressure.

Formula (121) is very convenient for the calculation of

reactive thrust and is widely applied in the calculation of

engines. The velocity coefficient a is determined by the type
a

of the jet nozzle and by the available pressure ratio. If the

nozzle is made nonexpanding and the pressure ratio exceeds the

critical value, then A a 1; for a supersonic nozzle a = aa a pec
at all values of H0 greater than the computed value and in the

considerable part of the range R0 < Hp . Hence it follows that0 pac4'
over a wide range of conditions of contemporary engines Xa a const,

( and by formula (121) the linear dependence of the reactive thrust

on the value of the available pressure ratio R0 is defined, since

f(X ) = const. Let us recall that also when A # const thea a
value of function f(X) is very little affected in the considerable

region of the subsonic and supersonic velocities.

Formula (122) is convenient for the calculation of thrust in

conditions when the static pressure in the nozzle edge is equal

to the atmospheric pressure and n = 1. Such conditions exist, in

particular, at the subsonic speed of the outflow of gas from the

nozzle, and also in the operation of supersonic nozzles in

design conditions.

Let us note that for the calculation of reactive thrust,

according to (121) and (122) it is not required to know the gas

flow rate and its temperature. The temperature change, ae can be

seen from (121) and (12?), when p = con s t, pO = conet and
F = conat does not at alL affect the thrust leveZ, which is
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connected with the mutually inverse dependence of the discharge

vel ccity and gas flow rate on temperature.

Expressions (121) and (122) can be used also for the

calculation of the thrust of jet engines in flight; in this case

on the right side it is necessary to subtract the so-called tnput

momentum of the airflow G a w /g , where G is the rate of air flow

and w - the flight velocity (see § 8 of Chapter I).

Let us examine the examples of the use of given expressions

uf reactive thrust.

Example 8. Determine how the value of reactive thrust depends

on ie velocity coefficient of the gas at nozzle exit when

.0 = const.
U

From formula (121) it directly follows that if F = consta
and I = const, then the dependence of the thrust on the velocity

coefficient Xa is determined by a change in function f(X). Under
these conditions, however, with a change in A, the gas flow

rate changes.

There is great practical interest in another case of the

change in the velocity coefficient Xa, when the flow rate per

second and the initial parameters of the gas are maintained

constant. This condition can be realized if in the constant

throat area of the supersonic nozzle F p we c,,ange the discharge

area F . The nature of the dependence of thrust on value Xa in

this case will make it possible to determine the rational expansion

ratio of the nozzle for an engine with the assigned parameters

and gas flow rate. Equations (120) and (121) are not completely

convenient for such a calculation, since they include the two

variables a and F . Therefore, let us transform the equation Fa

by mneans of the equation of the flow rate

-P a.-q 08)-' q .T
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(!
Taking into account the relationship between functions f(o), q(X)

and z(X), we obtain

2

In the design conditions of the outflow of gas, i.e., with

expansion up to atmospheric pressure, the velocity coefficient is

determined from the relation

In terms of this value X the design expansion ratio of the nozzlea
F a/F p = ./q(X a ) and the value of reactive thrust in design

conditions are sought. In this calculation the losses in

total pressure between cross sections F and Fa are not considered.

Let us assume that k - 1.33 and no - 25; then in the design

operating mode of the nozzle

The discharge area of such a nozzle is equal to F /q(Xa )
Kp a

3.58F , and the thrust P = 1.417p F . The values of P

at other values of X., i.e., other values of Fa, are determined

with the aid of tables. Results of such calculations are given

on Fig. 5.23. Shown there are values F /F for each value of Xaa Kip a
From the graph it is evident that the greatest thrust value is

obtained with the total nozzle expansion, i.e., with the design

conditions of the outflow. However, the nature of the functional

dependence of thrust on the velocity coefficient is such that lm

even with a noticeable reduction in the value Xa and F a/F in

comparison with their values in design conditions, the magnitude

of the thrust decreases insignificantly. This makes it possible

in certain cases to use nozzles with an incomplete expansion of
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the gas and with the low super-
J Irv .. critical pressure rations pop. to

use even the simple nonexpanding

I nozzles in which a 1.0. If one
a

ZO .5considers that in a nozzle with

- incomplete expansion there will be

,less losses of friction, then the
g I reduction in thrust in comparison

with the design conditions will

i ,be even less.

At the same time, as can be
I'Ig. 5.23. Change in seen from Fig. 5.23, when X >
thrust with the assigned a paci'
initial parameters and the thrust sharply decreases, i.e.,
gas flow rate depending it is inexpedient to use the
on the velocity
coefficient at the nozzle nozzle with the overexpansions of
exit (Example 8). the gas, even if one does not

consider the increased losses of

friction in it and the possibility of the formation of shock waves.

With the outflow of gas into a vacuum (pH a 0) the thrust

value varies in proportion to the value of the function z(X), i.e.,

monotonically increases with an increase in a > 1. Actually,

in this case the design conditions are

Since the nozzle of the outlet area cannot be made infinite,

such design conditions cannot be realized. At any final value

F F the thrust of the engine, which operates in a vacuum, willa Hp
be less than a theoretically possible value. However, from graphs

of functions z(X) and q(X) it is evident that with a considerable

decrease In .a /F the reduction in the thrust is not very large.

Thus, if instead of FaIFmp - G we take (when k a 1.33) Fa F a 10,

q(Aa) = 0.1, Xa a 2.208, then the thrust value with respect to

the maximum theoreti,.al value (when Xa X max 2.657) will be
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when Fa/F p 20, i.e., when q(Xa) * 0.05 and Xa 2.313, P/P *a Kp a a max
a 2.745/3.033 = 0.905.

Examined in the following example is the problem of the flow

of compressible gas with the sudden expansion of the channel,
which is encountered in a number of practical problems. Above

(1 5 of Chapter I) we solved this problem for flow at low

velocities, when it was possible to disregard the density change

of the gas.

Example 9. For the measurement of the rate of air flow in

the pipeline, installed on its straight section is a metering

nozzle with the flow passage cross-sectional area F2 equal to

0.45 of the area of the pipeline F1 - F3 (Fig. 5.24). It is

required to determine the losses of total pressure which appear

in the flow behind the nozzle as a result of a sudden expansion

of the channel and also the velocity coefficient X3 after the

alignment of the velocity field, if according to results of

pressure measurements p1 and Ap the velocity coefficient of the

flow in the nozzle' A - 0.52 is known. Determine also the

reduction in staL.c pressure in pipeline caused by the installation

of nozzle.

Let us write the equation of

~4# the momentum for the section of

2 the flow between cross sections
and 3, disregarding the wall .

friction and taking into account
that at the subsonic velocities of

the air in the nozzle the static i
pressure is constant in the whole

Fig. 5.24. Diagram of the
installation of the nozzle cross section 2:
for the measurement of the 17 (O ,)1 ,, -pa
gas flow rate (Example 9). £
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Let us now replace the expressions of momenta according to

(215), and let us express the static pressure pz by means of the

equation of the flow rate (110). The equation of the momentum

takes the form

k+1 7kIPk+ I I-Tq. I

After cancellation we obtain

From this equation according to values X2 and F3/F 2 the velocity

coefficient X 3 after the expansion of the tube is determined.

Let us note that the result does not depend on values of the

pressure and gas temperature and is changed little depending on

the adiabatic index k. After substituting into the latter

equation the assigned values X2 a 0.52, z(A2) 2.44, y(X2 ) - 0.859,
F2 

1F3 0.45, we obtain z(X3 ) - 2.44 + 1.577 0.B9 1.22 - 4.68;

hence, according to tables we find A3 w 0.225, q(X3 ) - 0.3475,

y(X )  0.358.

The losses of total pressure of the air between cross sections

2 and 3 is determined from the equation of continuity

P.;sq , V

With the help of tables, hence we find

20, 0,4-O.4.
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(In order to determine the change in the static pressure, it is

necessary preliminarily to find the value of the velocity

coefficient of the flow in the tube in front of the nozzle. Let

us write the equation of the equality of the rate of air flow

in cross sections I and 2, whereupon, taking into account that

the length of section 1-2 is small, the contours of the nozzle

are smooth and the flow f? 4 with acceleration, we consider the

total pressure of the air in cross sections 1 and 2 to be

identical. In this case the equation of continuity takes the

form F q(X 1 ) F2q( 2 ). Hence we find q(Xl) a 0.45.0.7309 - 0.329,

X1 a 0.213, y(XI ) a 0.338. It is easy to see that similarly

there can be obtained the result if between cross sections 1 and

2 there are losses of total pressure, being evaluated by the

coefficient a a P0 2/P0 1, the value of which is known. In this

case we obtain

90,) q,).

A change in the static pressure on the entire section between

cross sections 1 and 3 can be determined from the equation of

continuity

Since T01  TO3 and FI * F3, we have p3/P1 * y(Xl)/y(X3) -

- 0.338/0.358 - 0.94 4.

Such a result can be obtained also from the relation

Since X3 > Xl, i.e., r( ) < 3 i(l), hence It is apparent that as

a result of an increase in :-he flow velocity in the tube a

reduction in the static pressure here, as in other local

resistances when X < 1 and F3 a FI, is somewhat larger than a ,

reduction in the total pressure. In this case, in view of the

smallness of the velocity coefficients in the tube Xi and X 3, this __

distinction is small.
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in the following example we will again return to the

examination of the flow of the gaa being preheated in the

cylindrical channel. Unlike the analysis carrid out in S 3 of

Chapter V and in Example 7 of this section, we will examine the

case where a drop in pressures in the flow ie aeigned. This

determines a number of features of the flows which could not be

revealed above, when it was assumed to be that a drop in the

pressures is always sufficient for the maintaining of the

assigned velocity coefficients at the beginning and end of the

tube.

Example 10. The afterburner of a turbojet engine

is a cylindrical tube installed after the turbine with a nozzle

of variable area at the outlet (5.25). In the chamber there

cz.ur. the burning of the additionally injected fuel, in

consequence of which the gas temperature is increased. Let the

flow parameters of the gas at the inlet into the chamber be

- 1.98 kg/cm2 , T01  880 K, and X, 0.4. These values

should be maintained constant independently of the value of

preheating of the gas, otherwise the operating mode of the

turbine and compressor will be changed.

Let us determine a maximally
1 J~, j- possible increase in gas

temperature and the magnitude of

losses of total pressure in the

chamber in these conditions.

Fig. 5.25. Diagram of an
afterburner of a turbojet The assigned Initial flow
engine: a- initial
position of the nozzle, parameters determine the gas flow
b - opened nozzle rate. As can be seen from the
(Example 10). expression of the flow rate (109),

the more the stagnation temperature at chamber outlet, the larger,
other conditions being equal, the cross-sectional area of the

nozzle should be. Therefore, maximally prssible preheating of

the gas corresponds to the total opening of the nozzle.

322



Let uc allow that the nozzle is made in such a way that with

full expansion the area of its outlet section is equal to the

area of the chamber, i.e., F, a F2 - FI (position b on Fig. 5.25).

The ratio of the total pressure at the inlet into the chamber to

atmospheric pressure at the earth Rl0 a P0/PH - 1.98/1.033 a 1.92.

This value somewhat exceeds the critical value (when k a 1.33),

k-l" 1.85. Therefore, if the total pressure of the flow

with preheating of the gas was maintained constant, then in the

outlet section the rate of flow was equal to the speed of sound

and X3 a 1. However, as we saw above (see Example 7), with the3
heat feed to the flow its total pressure is lowered, and there-

fore in this case it can be found that p0 3/pH 1.85, ad the

discharge velocity will be subsonic,

In order to explain this, let us write the equation of the

momentum of flow, expressing the momentum in cross section 1

in terms of the known total pressure p.1 according to formula

((119) and in cross section 3 - in terms of the static pressure

P3 (120), whereupon for the present we assume that the pressure

p3 is equal to the atmospheric pressure p , i.e., conditions of

the outflow are subsonic. The wall friction and change in the

adiabatic index are disregarded:

p,,I'J, ,) = p.,P . "

Hence (when k * 1.33) we find

and, further, according to the tables X3 - 0.91, i.e., r(X 2 ) =
32

= 0,6048, f(X 3 ) = 1.2525, z(XS) * 2.01

Conditions of the outflow of ga3 will actually be subsonic,

no matter how great the preheating in the chamber was: the

assigned total pressure of the gas which is being lowered in

the process of the heat feed is insufficient for the producing
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of sonic velocity of outflow into the atmosplere. If the totalkgc2

pressure p., was high, for example, pO1 - 2.4 kg/cm2 , then from

the latter formula it would follow that r( 3) * 0.398; this value
3

is less than the critical, since r(l) = 0.429. Consequently, at

such a pressure the outflow conditions would be critical and
2 2 1.0.

The value found of the velocity coefficient of flow at

nozzle outlet (A2 
< 1 or A3 a 1) makes it possible to find all

the flow parameters. For determining the gas temperature it is
convenient to use, for example, the momentum equation (115),

from which it follows that

This is the limiting value of the etagnation temperctare at the

nozzle outlet. If we increase the preheating of the gas above

this value, then the flow velocity at the inlet Into the chamber
will be lowered.

In order to determine the total pressure of the gas in the

outlet section, in this case, it is possible to use the relation

= PH /Tr(A) 1.033/0.6048 n 1.71 kg/cm2 , which is correctP03

when X2 < i, i.e., when P3 * p. By knowing P 3 we compute
the coefficient of total pressure a - P03/pol - 1.71/1,98 - 0.865.

To determine the changes in the total and static pressures

in the process of preheating, it is possible to obtain simple

relations, if we write the equality of the momenta of gas in the

initial anid final cross section in the form of

P,,FJD,) )= p C O, and pF., r =- 1

Hence we obtain

32X-
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These relations are valid in any flow conditions of the gas.

Specifically, for conditions in this example we determine

o -1.0822/1.2525 w 0,865.

The expressions obtained for a and P3P, are convenient for
the analysis of the nature of pressure change, determination of
the maximum losses of total pressure and for obtaining certain

other results found by a more complex means in § 3 of Chapter V.

Thus, for instance, from the equation for determining a it

follows that the preheating of the gas leads to a reduction in
the total pressure both in subsonic and supersonic flows.
Actually, since with preheating the value of the velocity
coefficient always approaches unity (it increases when X < 1 and
decreases when X > 1), then according to Fig. 5.22 the value
of function f(X) in the process of preheating a±ways increases,

f(X3 ) > f(xl) and a < 1. Since in the region of subsonic
velocities the limits of the change in value f() are small

("-25%), then the coefficient of total pressure a when X 1

cannot be lower than the certain limiting value

In supersonic flow, according to Fig. 5.22, any values of the

coefficient of total pressure (0 < a < 2) are possible.

On the other hand, with respect to a change in function
value r(>,), it is possible to establish the nature of a change in
the static pressure in the flow of the preheated gas. At the

subsonic velocity, when the velocity coefficient with the
preheating of the gas increases, we have (see Fig. 5.22) r(X3 ) 

P33<rCX I) or P3 < P i.e., the static pressure in the flow dec,'ea~v.--

A maximum change in the static pressure, obviously, is equal to

r (I) i
325-1.
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floIt*iC iw, when XA3 4 X 1 .ehv ( > rl)or

ueheating of the supersonic fio~v 1-e of

In totn', pressure, the static pressure Increases as

a :Ak ::reaze In the velocity coefficient of the flow.

1. ':!cur, if' while maintaining the assigned pressure

we Aicrcase the gas temperature above the value

r"<.*ar T 1 8350, i.e., increase the preheating?r I ted from the examiration of the acting drop in
L -- basis of the forinula derived in Example 7', it

~toi . arrive at tte conclusion that since A < 1
tvner. with an increase in the preheating the velocity

ir 1,i1 1increase , approaching X = 1. However, this

'tsince when using this formula always it is
1"i'p In mind that the results obtained from It are

~i.the condition of the ezufficiency of the preaaure

'i.ti ot: the flow; the more the preheating, the greater

r' J~'~! a';Io p /P~ should be. This was repeatedly indicated

~.~n~the problems.

A

;~i4 ;j~y n this case when po1 - const with an increase in

I -he losses of total pressure of gas increase and the

~ rr~-~:) f the gas in the outlet section of the tube is
.~.:,~, :'co-aequence of which there is a decrease in the

.L.~2. r flent X13, which depends only~ on the ratio of the

ZiC,.atic pressurt..1 in the flow:

C! 0 8) =P#a!tP.a 3P"~.

Icon.st, then with an increase in the preheatin~g,

1) 7owered, the value of the velocity coefficient ;.t

*,be) outlet does n,.t increase but decreases. The

-r~fclent of the flaw at the inlet into the tube

decreases.
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( In order to determine the actual values of the velocity

coefficients at the inlet and outlet with the assigned magnitudes

of preheating T0 3 /ToI and drop in press~ires between the inlet and

output section, it is necessary to find the joint solutions cf

the equation (see Example 7)

from one of the following equations which express the constancy of

the assigned drop in pressures, for example:

'"i L!.2± - cni * Or i, ' - ii 0 rii ' {@l
or~ If~ *,

if the ratio of total pressures is assigned;

-,1-4 or pl it)P V cT. "

If the ratio of sta..ic pressures is assigned;

pF~D.7 'j =Uf'""% or A, ,cti y .1,

if the ratio of the total pressure at the inlet t. the static

pressure at the outlet from the tube (available pressure ratio)

is assigned. The latter case is encountered most frequently. The

Joint solution of the equations is most conveniently conducted

by the graphic method with the aid of tables of gas-dynamic

functions.

Common In the examples examined above of the gas flow was the

fact that the flow velocity was directed along the axis of the

channel.

In a nun'cber of problems of applied gas dynamics it is

necessary to calculate such flows in which the vector of abeolute

gas velocity comprisea a certain angle with the axis of the fZow.

Besides the axial velocity wa, which determines the gas flow rate
a4
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and momentum along the axis of the flow, here there are velocity

components in the plane perpendicular to the axis - radial w orr
circular w velocity of the particles of gas. Serving as an

example can be the flow of twisted gas in the annular channel,

which is encountered in different vortex apparatuses (circular 2

component), or the expansion of the supersonic gas Jet escaping

into the atmosphere with a large excess pressure (radial component).

If the gas parameters in the flow cross section can be

assumed to be constant, then for calculating such flows methods

and formulas given in this section can be used.

At first glance it can be shown that for this it suffices in

all the derived relations to take only the axial component of

velocity into consideration. This, however, is not so, since

at the assigned stagnation conditions the value of the temperature,

static pressure, and gas density will also depend on the value

of the circular (radial) velocity component; changes in the latter

will affect the rate of discharge and momentum of flow. The

fact is that according to the equation of energy and the

relations (101), (102) and (103) obtained from it, the connection

between the parameters in the flow arnd stagnation parameters Is

determined by a change in the absolute velocity (or the velocity

coefficient calculated according to the absclute velocity and

total stagnation temperature), independently of the angle being

composed by the velocity vector with the axis.

Let us show how to generalize the relations obtained above

for the case of motion from the tangential (radial) velocity

component. Let us examine the one-dimensional flow of gas with

the stagnation parameters pO and T o and the absolute velocity w

making up the angle a with the axis of the flow. The gas flow

rate per second through the cross section of area F, perpendicular

to the axis, Is equal to

IFW. =IFW Cos
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where wa is the axial component of the gas velocity. In the same
way as in the derivation of formula (109), hence it is possible

to obtain

where

If2 RU

The latter relation can be rewritten in the form

(123)

where

9(k %= - ( ) COS 4 (124)

is the gas-dynamic function q(X), generalized for the case of the

flow of gas with the velocity component in the plane perpendicular

to the axis. In exactly the same manner it Is possible to obtain

the formula similar to (111)

O .F 'R (125)

where

yQ..1~yQ~oss.(126):,~~~~ y(k. 2) =Y W Cos, &.(12

Thus, If angle a is assigned, then for the calculation of the gas

flow rate and compilation of the equations of continuity, the

same formulas as when a - 0 are used, since the generalized

functions q(X, a) and y(X, a) are determined from angle a and

from values q(X) and y(X) for the velocity coefficient in the

absolute flow of the gas.

The momentum of the flow of gas in the direction of the axis
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By converting this expression similar to the way in which this

was done in the solution of formula (115), we have

O .ZTo Cos 2 . o --q I

or after the simplifications

*+10 a(127)
where

0. CSaX (128)

Expression (127) is similar to the expression obtained when a - 0
but contains instead of z(X) the generalized function z(X, a),
the graph of which is given on Fig. 5.26. When a - 0 function

z(x, a) is reduced to z(X) - A + i/X; the minimum value of it
z(A) = 2 corresponds X = 1. When a 7' 0 the minimum values of

function z(X, c) are less than two, whereupon with an increase

in angle a the minimums of the curves are displaced into the

regio0 a of supersonic velocity.

For the conducting of numerical calculations, it is possible

to compile tables of function z(A, a) or a grid of curves more

detailed than on Fig. 5.26, at different values of a (see the

graph in the appendix).

40

Fig. 5.26. Graph function
*' z(X, cX ).

44 4". 1

"0 u
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Forrmulas (123) and (127) make it possible to establish the

nature of a density change of the current, cross-sectional area,

specific impulse and other values which characterize the gas flow,

depending on the velocity coefficient X and angle a between the

velocity vector and the axis. However, here we will not discuss

this.

When using generalized functions q(X, c), y(X, a), z(X, a)

and their combinations, all the equations obtained in this section

can be used for calculating flows with a circular or radial

component of velocity.

Example 11. The twisted flow of gas moves in the annular

channel between two cylindrical surfaces (Fig. 5.27). The

velocity coefficient of the flow at the channel inlet XI 0.85,

and the direction of absolute velocity is assigned by angle

ai a 300 to the axis of the channel. With channel flow the

stagnation temperature of the gas is reduced from 9000 to 7000 K

( as a result of the thermal conductivity through the walls into

the environment. Disregarding the friction Pnd also a change in

the parameters on the radius of the channel, determine the

parameters of the gas at outlet from the channel. The adiabatic

index k 1.40.

As above, in the examination

S- of flow in the cylindrical channel
r" . . -- with the heat feed, we obtain the

fundamental equation from the
-- condition of the constancy of the

W momentum of gas in cross sections

Fig. 5.27. Twisted gas of the channel. In this case
flow in the annular this coneition takes the form
channel (Example 11).

or Q 1 du,
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By substituting the assigned values of the stagnation temperatures

and the value of function z(Xl, aI) * 2.055 (see Fig. 5.26), we

obtain

This value of the function can correspond, generally speaking,

to different combinations of values X2 and a2, and therefore for

determining these values we use the condition of the constancy

of the moment of momentum (see § 6 of Chapter 1). Since the

mean radius of the channel does not change and there are no

moments of applied forces, then In the flow, independently of the

occurring processes, the circular velocity component should be

constant. Therefore,

,, or ).agv, dn as -. I'pasil at.

Hence we determine

The joint solution of the two obtained equations is most conveniently

carried ouW graphically. Being given a number of values of angle

a2, we find the values of the velocity coefficient X2 ' 0.482/sin a2

corresponding to them; substituting these values a2 and i2 into

z(X, a), we plot the graph of this function. The point of curve

where z(A, a) - 2.33 corresponds to values of parameters In the

outlet section of the channel, and in this case we find A = 0.72,

C a2 n 420. In the calculations it is possible also to use an

auxiliary graph or tables of function z(A, a).

The condition of the retention of the gas flow rate in cross

sections 1 and 2, when using expression (123), makes It possible

to determine the ratio of total pressures of the gas - the

coefficient of total pressure:
,d Cos, it / 7 0 29. 0.865 0

P m q(Js) , T '..O, l 33 0,74 V 1,10
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(cooling of the flow is accompanied by an increase in the total

pressure).

A cnange in the static pressure is easy to determine from

the relation

or from thv equation of the equality of the flow rates recorded

in form (125).

In conclusion let us list the introduced gas-dynamic functions

and the relationships between them:

1. The simplest functions which express the relationship

between the gas parameters in the flow and stagnation parameters:

)=-k+" -k+* ;

in this case

2. The functions which make it possible to express the gas

flow rate by the total pressure

or by the static pressure

By means of these functions we obtain the two expressions for

the gas flow rate 
A
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3. The function
* ()--- ,~+±

with the aid of which the momentum of the gas flow can be

represented in the form of the product of the stagnation temperature

(critical speed of sound) by the gaz flow rate

4. Functions f( ), r(A), with the aid of which the momentum

of the gas flow is expressed in terms of the total or static

pressure:

QP) M zq Q( r Q C~

Correspondlingly we obtain two expressions for the momentum of

the gas flow:

I p.,Ff(.) i,(- .

The constant which enters into the expressions for functions q('),
y(X), f0), and r(A)

is equal to 1.577 for k - 1.4 and 1.588 for k a 1.33.

5. Functions q(X, a), y(X, a) and z(X, a), which make It

possible to propagate the methods examined above and design

formulas for the case of gas flow from the circular or radial

component velocity.

6. In the solution of some problems derivatives of different

gas-dynamic functions are also used. By means of differentiation

and simple transformations, it is possible to obtain their

expressions in terms of initial functions.
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For example,

d4 . ,,) 2
d"l -) 0. ) I --1)1 I and so on.

What is the meaning of simplifications being obtained in the

recording of fundamental equations with the aid of gas-dynamic

functions?

As can be seen from the examples given above, the major

advantage of the expressions obtained here is that they contain

suoh flow parameters the nature of change in which can be easily

astablished from conditions of the problem, for example, the

constancy of stagnation temperature T0 in adiabatic flows and

an increase in T with the heat feed, the retention of total

pre3sure PO i-. the isentropic flow and a drop pO in the presence

of losses, and so on. By the selection of the corresponding

expression for the flow rate or momentum, it is possible to

reduce to a minim.ium a number of unknown parameters in the funda-

mental equations. In this case it is frequently possible to find

the unknown values directly from the initial equations, avoiding

the bulky transformations.

Let us note some general rules which are useful in the

solution of equations in general form and calculations with the

aid of tables of gas-dynamic functions.

In all cases when the general or numerical expression of the

value of the' velocity coefficient X or any one of its functions

are obtained, it is possible to consider that all the gas-dynamic

functions and coefficient X (from the tables or graphs) are known.

This is the basic condition in the simplification of the

calculations, since it eliminates the need for obtaining in

explicit form the dependences between X and its functions. In the

numerical calculations one should consider that functions t(X),

335

-r4



'I_

IT() and E(A) in the region of low velocities and function q(A),

z(X) and f(M) at sonic speeds are changed very little with a change

in value A. Therefore, in the indicated regions an insignificant

error in the value of the functions, can lead to a great error in

the calculation of the velocity coefficient X. Such calculations

should be avoided, and as far as possible, in these cases, other

equations which include, for example, functions, y(l) and r(X)

should be used. If this for any reason is impossible, then it is

necessary to conduct all preliminary calculations with a high

degree of accuracy. It is understandable that in these regions

it is not recommended to determine A according to the indicated

functions by means of graphs. In particular, this is related to
function z(X),which over wide limits of the change in A (from

0.65 to 1.55) varies in value by a total of 10%. Therefore, for

the determination of A in terms of the value of function z(A) in

the region of sonic speeds, it is possible to calculate the
possible values of A directly from the equation

whence
,= ,t).) ± KQ.)- -4 2

2 £Q)-INrF)

In order to avoid the error connected with the subtraction of
close values, the supersonic solution J.3 located by the first and

the subsonic solution by the second of these expressions.

From the examples examined in this section, it is possible

to see the efficiency of the method of calculation with the use

of gas-dynamic functions in the solution of sufficiently complex
problems which are of practical use.
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§ 7. Gas Flow with Friction in
the Cylindrical Tube with the
Assigned Magnitude of the Ratio
of Pressures at Inlet and
Outlet

Using the relations derived in the foregoing section let

additionally explain some laws governing the one-dimensional gas

flow in a cylindrical tube with friction. In § § 1 and 2 it

was established that the friction leads to an increase in the

velocity of subsonic flow and a decrease in the velocity of

supersonic flow, whereupon in both cases the maximum conditions

corre3pond to the critical velocity in the outlet section of the

tube.

The results obtained in § 2 are valid, however, only when

the velocity coefficient at the inlet into the tube Xi is

maintained constant, which requires the creation of a quite

definite drop in the preaesree in the flow for each mode and

(each value of the normalized length of the tube. In actuality,

most frequently it i the opposite: the assigned value is the

drop in pressures between the inlet and outlet sections of the

tube, and values of the velocity, flow rate and other flow para-

meters are determined by the acting diop in pressures and by the

resistance in the section of the tube in question. For flow

in the inlet of te tube the most characteristic value,

which is usually known or can be easily determined, Is the total

pressure pOI; for the characteristic of flow at the outlet from

the tuoe, it is important to know the static pressure in the

environment or reservoir where the gas escapes from the tube pH"

If the flow velocity in the outlet section is less than the speed

of sound, then static pressure of the flow, as is known, is

equal to the external pressure, I.e., p2 = If A2  1 1, then

in the outlet section of the tube P2 ) PH" Finally, when 2 > 1

also conditions when P2 < p. are possible.

Let us call the value fl0  o/p the available pressure ratio.

The flow parameters in the cylindrical tube defined basically by
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the value of the available pressure ratio IO: the process is

actually as though it were an outflow of ga from the veaseeZ with
pressure pO1 into a medium with preaaure pH through the channeZ

with the assigned resistanoe. Therefore, in the examination of

the law governing flow with friction, it is necessary to consider

the value of the available pressure ratio in the flow; without

this the obtained results can prove to be unreal.

Let us assume, for example, that at subsonic velocity at the

inlet into the tube the available pressure ratio Rl0 is less than
the cr!±:Ical pressure ratio

for air II = 1.893. Due to friction the total pressure of the

flow along the length of the tube is decreased, and therefore in
the outlet section of the tube p02/pH < P01/PH < 1.893. This
means that the flow escapes from the tube under the action of the
subcritical pressure ratio, and, consequently, the velocity of

such a flow will always be subsonic. No matter how much it is

possible io increase the normalized length of the tube it is
impossible to obtain value A2 a 1: the drop in the pressures

acting in the flow is insufficient for producing the sonic speed

of outflow at the outlet from the tube.

Thus, the conclusion obtained previously that with an increase
in the normalized length of the tube up to the maximum (critical)

value, the flow velocity at outlet from the tube reaches the speed

of sound and is valid only in such a case when a sufficient
(depending on values X1 and X) pressure ratio Hl0 is provided.

Let us show how the calculation of flow parameters with flow

in the tube with friction is produced if A1 < I and the value of
the available pressure ratio is assigned.

338



(Let us write the equation of continuity for flow It, the i."wA,

whereupon flow rate in the inlet section is expressed with th-

aid of formula (109) in terms of the total pressure, aid tre '.w

rate in the exit section is expressed by the static press.: .

the aid of formula (111)

Since for the adiabatic flow in a cylindrical tube TO 0 Q1 .nd

F, a F1 , then hence it follows that

~ Paq (Xi)

If X 1, then, as was noted, P2 PH or

0- 1 ) = U# 9qQ4

Equation (129), which mutually connects ,aiu'-. -- he , c:v

coefficients it' the inlet and outlet secllon. of , t..t,: 2.

assigned value n10 and X < 1, -'s correct wlt'.->ou,. . .'
the flow pattern and length or the tube. 31 , . - ,

change in parameters of the gas in the tube 1c ,:x' -,.,

value of the coefficient of friction and b.' t-

tube. Earlier in § 2 the formula descrlb-ni tc:x, chi . .

flow parameters as a result of the fricti-,, was ,bt.rnU:

2k
where 7. -- -Z7 is the normalized length '. the . E'iu: lu:

(130) establishes the dependence betw#i t;,. v- - ty . U-'.

X and )2 of the assigned value X. Er, at*,..-, 9, anJ (I<,

can be considered as the system of two . w.,tb t. ,

the roots of which determine vales f, -.' ,, -

the assigned values Rl0 and b. By t,, ,et-w :,:-i

coefficients is determined the rea. "

through the tube with tht assig.r-, .

under the action of the availal. . ..£



Let us examine some of the following properties of the flow

: .,uusonic speed of the flow at the inlet into the tube. In

tne first place let us compare the one-dimensional subsonic gas

flow in the tube in the presence of friction with an ideal flow

with the identical availablj pressure ratio 11. A change in the

gas parameters along the length of the tube is connected with

friction, and therefore in an ideal flow, when p02  p the

gas parameters are constant in all the cross sections of the tube.

The velocity coefficient in the outlet section X =1 < 1, which
2 1 <1 hc

in an ideal case is determined by the value of the available

pressure ratio r(X2 ) 1/n0 is more than that during flow with

£riction, %Nhen p 0 2 < P01, and 'a(X2 ) = 1/00. The more the

normalized length of the tube, the larger will be the total losses

of pressure and the less will be the flow velocity at the outlet

2rom the bube as compared with the velocity in the ideal case of

t:-e Ilow. Thus, it is necessary to keep in mind that, although

with flow in the tube with friction the veZocity of he flow

along the length of the tube increases, its greatest value, the

outlet velocity, always remains less than that with the same

pressure ratio R1 in the case of the fiow without friction (for

example, a very short tube, when X z 0). The more the normalized

length of the tube, the less (at given 90 ) the flow velocity both

at the outlet and inlet.

It is interesting to note that if n 0 list, then when

X2 < 1 the change in the normalized length of the tubeX always

leads to a change in the inlet velocity of the tube, independently

of the larger or smaller value X of its critical value for the

given XI < 1. The retention of XI = const with a change in the

normalized length of the tube and X2 < 1 requires a corresponding

change in value in the available pressure ratio: the longer the

tube, the larger the value l10 necessary for maintaining the assigned

conditions at the inlet, i.e., the retention of the gas flow

rate.
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On the other hand, if at the assigned length of the tube

(X const) we increase the pressure ratio H0, then the velocities

at both the inlet and at outlet will increase until the value X2

reaches the critical value X = 1. A further increase in 10

changes neither X nor X2 ; however, in the outlet section of the

tube a surplus pressure in comparison with the environment

(reservoir) will be established. For these conditions equation

(129) is incorrect, since with its derivation it was assumed that

P2 = PH; the relation between the flow parameters is determined

only by equation (130). From the continuity condition it is

possible only to find the minimum required value n0 at which the

mode with X = 1 and assigned value 1 is established, since21
accor '.ng to equation (129)

y(I) I -hT01) 2 fOU5 )- 1 1

Since q(X 1 ) < 1, from the latter relation it is evident that with

flow in the tube with friction the critical outlet velocity is

established with the pressure ratio of H O > Rlp, where the H

is the pressure ratio necessary for obtaining X 1 during flow

without friction. The conditions X = 1 for this value X1 begins

with an increase in the normalized length X up to the value

Z Y Xp=? O,'d- i, (131)

and in this case condition R >' Om should be observed.

AIP

45 '1

if / Fig. 5.28. Relationship
between parameters of

S , subsonic flow at the inlet
ej... -and outlet sections of the

cylindrical tube in the
I, ,;ipresence of friction.

42- -- -

I 2 44Q as a' A,
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Figure 5.28 gives results of the calculations of subsonic

flow in the tube with friction. The graph illustrates the basic

regularities of the flow given above and, in particular, shows

that

a) when A = const with an increase in the normalized length

X value A 2 increases, whereupon always A1 < A2 < 1;

b) at a constant available pressure ratio RO, with an

increase in X, value A1 is always decreased; X 2 is decreased

also, if X2 < 1;

c) for each value of the normalized lengthx there is a

completely defined value of the pressure ratio pl 1/pH - H 0 " which

corresponds to the assigned flow velocity at the outlet and

inlet Into tube, respectively;

d) the limiting value A1, which corresponds to A2 = 1, for

each value X is established with the defined value, which is

increased with an increase in X of the value of the pressure

ratio and does not increase with a further increase in Rl0 .

Let us now examine the features of flow with friction with

supersonic velocity at the inlet into the tube. From formula

(130) it follows that if the normalized length of the tube is

less than the critical value, determined for the given value of

A > 1 by formula (131), then along the length of the tube the

flow velocity will decrease, remaining supersonic. At the outlet

from the tube with continuous braking of the flow, A2 > 1 will be

obtained. At a certain value of the normalized length of the

tube, called the critical from equation (130), it follows that

v(k 2 )  1 I, i.e., X2 - I. This length corresponds to the maximally

possible flow conditions with a continuous change in velocity from

the assigned value A1 > 1 to X2 = 1. If X > Xp, then the

continuous braking of flow in the tube is impossible. In this

case equation (130), which describes the flow with a continuous
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velocity change, does not have solutions for X2 , since from it

O(x 2 ) < 1 follows. In actuality, here in the initial section of

the tube the supersonic flow is braked to a certain value

X' 1, and then in the tube there appears a shock wave, behind

which subson.c flow is established with an increase in t ie

velocity along the length of the tube from value X" (after the

shock) to X2 1 1, as was noted above.

The location of the shock and relative length of the

supersonic and subsonic sections of the flow, depending on the

assigned parameters, can be determined In the following manner.

Let us designate the normalized length of the tube from its

beginning up to the shock wave (supersonic section of the flow)

Let us write equation (130) for sections with a continuous velocity

change, i.e., separately for the supersonic and subsonic sections:

01- P-- (132)

(133)

Let us make a term-by-term summation of equations (132) and (133),

assuming in this case that the shock wave is normal, and therefore 5
the relation A" = 1/X' is correct. As a result we obtain

Let us denote

Then the latter equation can be written in the form 1% 1
Figure 5.29 gives auxiliary graph for determining the function

(X) from value A. Relation (135) establishes the relationship
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between the parameters of flow, which moves with friction in the

-ute with normalized length X when in the tube a normal shock wave

appears.

iF Fig. 5.29. Auxiliary graphs of,
functions (A) and 0(0) in the
region of supersonic flow

I, velocities

;..'

4 In

Entering into formula (135), besides the known values of X

and Al, is also the thus far unknown value of the velocity

coefficient at the outlet fram the tube A2 . Since after the

shock the flow is subsonic, then for determining X2 let us use

the equation of continuity

Y P-j = IT, q 0)

which is correct both when A1 < 1 and when 1 > 1. If from this

equation it follows that y(A2 ) > y(l), then A2 - 1 at y(A2) < y(l)

and A2 < 1. Substituting value A2 < 1 thus found into equation

(135), let us determine O(A'). Further according to the graph

(Fig. 5.29) we find values X' and O(X'), and, after using

equation (132), we compute the value X, - the normalized length

of the tube necessary for the shock-free supersonic flow from A1
to A'. The value X, determines the location of the shock along

the length of the tube, since when = const we have xl/x - X1 /X.

With the critical flow conditions at the outlet from the tube,

when A2 1, the result of the calculation, as it is easy to see,
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does not depend on H0: a shook appears in the definite cross

section of the tube independently of the value of the available

tressure ratio. The calculation according to formulas (129),

(132) and (135) shows that when 2  1 1 the shock wave with a

decrease in R will be moved from its end position, which

corresponds to X2 1 , to the inlet section of the tube. The

minimum value of the available pressure ratio, at which the flow

;Ith the assigned initial velocity coefficient X > 1 is possible,I
is determined by the fact that the shock wave, in moving upstream,

.ill approach directly to the inlet section.

Let us give an example of the calculation of flow with a

shock wave within the tube. Let us assume that the velocity

coefficient at the inlet into the tube X = 1.8 and the total

normalized length of the tube X - 0.6 are assigned (at standard

values of the coefficient of friction this corresponds approximately

to 30 calibers of the tube). The available ratio of total pressure

of the flow at the inlet into the tube to the static pressure in

the reservoir, where the gas escapes from the tube, is fl Z 3.0.

The critical value of the normalized length of the tube for

the assigned value X Is determined:

0 j

(.e find value 0(X1) from the auxiliary graph of Fig. 5.29). Since

the assigned normalized length of the tube X - 0.6 is more than

the critical value, then, as was noted, the continuous braking of

the flow is impossible, and a shock wave appears in the tube.

Let us determine the velocity coefficient of the flow at

the outiet from the tube with the aid of equation (129):

y( 0 ,)-11 3. 1475 = IM or ,8Ct,7t.

Further we substitute the obtained values of X2 and the assigned

values of X, and X into equation (135),which determines the velcci:;
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ccefff..ent of the flow in front of the shock O(A') - 0.6 + 1.25 -

-. 4S5 = 0.365. From the graph on Fig. 5.29 we find that this

vajue (Z') corresponds to X' = 1.66 and (X') = 1.375. We

determine the normalized length of the supersonic section of flow

according to formula (132)

and find the distance from the inlet into the tube in front of

the cross section where the shock wave appears (when 4 = const):

u=T - = 0, 134.

Thus, at a length of approximatelyel4 0_ 18% of the total length of the

Lube, the supersonic flow under

4/ the action of friction is slowed

down from A1 = 1.8 to X' z 1.66,

and then in the shock the velocity

falls to X" = 0.6; in the remain-

.. ng part of the tube the subsonic

flow is accelerated to A2 = 0.71

and escapes from the tube, having

* a static pressure equal to the

, , 4J '# * x pressure in the reservoir p

Fig. 5.30. The possible
conditions of supersonic At other values of the
flow in a cylindrical
tube with friction with available pressure ratio, the
the length of the tube position of the shock will be
greater than the critical different. Figure 5.30 givesvn.lue. AI 1.8; × - .6  dfeet iue53 ie
(eale o t M1.8;Xresults of the calculation(example of the

calculation) according to the given method at

different values of n 0' The

maximally possible conditions are determined, on one hand, by the

achievement of critical velocity at the outlet from the tube

(during the calculation we assume that A2 = 1 and find the most

remote shock-wave position) from the inlet, and on the other hand,
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by the emergence of a shock wave directly behind the inlet section

of the tube. In this case (X4 n 1.8, X - 0.6) the critical flow

conditions at the outlet is obtained when f0 - Y(1)/q(Xl) =

= 1.893/0.4075 = 4.64.

According to formulas (135) and (132), by means of the
graph on Fig. 5.29, we find ¢(X') - 0.6 + 1 - 1.485 - 0.115,

X' = 1.41, and €(X') - 1.185. We further have X, - 1.485 -

- 1.185 = 0.3, and, therefore, xl/x = 0.3/0.6 = 0.5.

The minimum value of H0, at which supersonic flow at the

inlet into the tube is possible, corresponds to ?Pj,)-?J.)-

= 2-07-0.6- 1.47 or X2 = 0.66. Therefore,we have

. v(k,) I.I ..
q |I ' , Ufl.--- i ,

For determining the total and static pressure from the value of the

velocity coefficients at the inlet and outlet,it is sufficient to

write conditions of the equality of flow rates of gas in the

inlet and outlet sections, having used expressions (109) or (111).

It was indicated above that if the normalized length of the

tube is less than the critical for this value Xl, then the laws

governing the flow with fr'ction allow the existence of the flow

with a continuous change -Auvtion) in the supersonic velocity

on the entire length. It sible to show, however, that

together with the complete] ,,ersonic flow, here the shocked

flow within the tube and the subsonic speed at outlet is also

possible. Such flow conditions in the case X < X can exist
zipp

only in the defined interval of values p 01 /P = fl0 which is found

from the condition that in the exit section of the tube the

static pressure of subsonic flow should be equal to the pressure

of the environment.
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. The Averaging of Parameters
oil' nuriform Flow

_n practice it is frequently necessary to calculate gas flows

vith parameters variable in cross section. In a number of cases,

however, these flows can be considered as one-dimensional, with

some mean values of the parameters in each cross section. In

this case the problem of the averaging of gas parameters in the

.rosb seccion of the nonuniform flow appears.

Sometimes as the mean values of the parameters we take the

mean vaiues in area, velocity, pressure, temperature, and so on.

I is possible to siiw however, that such simple averaging is,

generally speaking, incorrect and can lead to erroneous results:

tiie ratio of the mean values of total and static pressures will
not correspond to the mean value of the velocity coefficient,

and the gas flow rate calculated according to the mean parameters

will be more or less real and so on. If the initial nonuniformity

of flow is small, then quantitatively these errors are insignificant;

with great nonuniformity of the parameters the error can be

significant. Therefore, the solution of the stated mission in

general will be approached by other means.
4. .o

The assigned nonuniform flow is characterized by a number

of total (integral) values, that is, by the gas flow rate, energy,

momentum, enthalpy, entropy, and so on. Replacing this flow by

the one-dimensional flow - the averaged - one should try to

maintain the total characteristics (properties) of the flow

constant. Since the state of the on2-dimensional gas flow is

determined by three independent parameters (fo2 example, the

total pressure F., stagnation temlerature T_ and velocity

coefficient 7), then in averaging, it is simultaneously possible

to maintain only the three total physical characteristics of the

initial flow constant.
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rThe nost widespread is the method of the determination of

mean values of parameters pO, To and 7 while maintaining

i,: the i~iitial and averaged flowe vaZuee of the flow rate c.f t:e

gas ', -o:al energy E and momentum I iden-lioaZ. Conditions G =

const, E - const and I & const give the three equations with

three uaknowns necessary for the solution of the problem. Let

us assurae that in the cross section of the initial nonuniform

flow the temperature field and full and static pressure fields

are :known (assigned or measured). Then it is possible to consider

at each point of the cross section the values of total pressure

pO, stagnation temperature T. and velocity coefficient A are

known. According to value A, for each point of the cross section

gas-dynamic functions q(X), z(A), etc., can be found. For the

flow, as a whole, the values of flow rate, momentum and energy

are determined by means of integration of the corresponding

elementary expressions over the entire cross section. Thus, for

instance, the gas flow rate is equal to

aQ= \dQ.= , (136)

if the velocity field is assigned in the form of a graph or table,

the gas flow rate can be calculated according to methods of

graphic or numerical integration.

Tne total values of energy E and momentum I are determined

similarly.

Let us turn to the solution of the problem of the averaging

of parameters pO, TO and X. Let us equate the values of total

energy of the gas calculated in one case according to the true

and in another case according to the mean values of the gas

parameters:

47

)m



orw

We *o',siacr the heat capacity of' gas c to be constant over t ,ne
p

cfnt.rc ,oss se-tIon. Let us substitute into this equation the

extr-' ,sion for the elementary gas flow rate and the expression

,:rittm atove for the total guz flow rate in the flow. Hence we

ottair. the £irst unl:nown value - the mean stagnation temperature

of the gao:

1* . --

,, ,; PQ . . .. . . . ( 138 )

7ro;r, formula (138) it is evident that T0 is the averaged-mas.

value of the stagnation temperature. Let us use the obtained

average value of the stagnation temperature for calculation of

the rean value of the critical speed of sound

Vgj2g-- Rre,

Let us find the mean value of the velocity coefficient of flow -

from the condition of the equality of the effective momentum of

flow and the momentum calculated according to the mean values

of the parameters. For the sake of simplicity of the calculation,

let us express the total momentum by means of formula (115) in

terms of function z(X), and let us present the elementary momentum

according to formula (119) in terms of the total pressure and

function f(X). As a result we will obtain

+1 _.- -pJQ)dF.

whence

S) 2h M(139)

iri accordance with the assigned flow conditions of the gas from

two values of the velocity coefficient A determined by function

z(X), we select the real value X > I or X < 1. The reason for

the ambiguity of solving the problem in this case is quite obvious:
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the Lssigned condition of the retention of flow rate, momentum

and total energy will not be disturbed, if in the averaged flow

the shock wave arises; the velocity coefficient in this case

acquires a new value opposite in magnitude so that function z(X)

will be a constant value (see § 6, Example 6).

After determining the stagnation temperature and the velocity

coefficient in the averaged flow, we find the average value of

total pressure pO from the expression for the gas flow rate:

mF, l(X)"(140)

An interesting relation can be obtained if we use the momentum

equation for determining the average total pressure:

P4Pf 6) =pjQ)) dE.

Hence we have

4, (J1) dP

Value f(T) is the value of function f(\) for the value of the

velocity coefficient XA averaged over the cross section found above.

On the basis of the theorem of the mean known from integral

calculus, the latter relation can be presented in the form

I(.) ,"

Here f(X) is the value of function f(X) at a certain point of

the range of integration, i.e., at a certain point of the cross

section F. As has already been indicated, the value of function A

f(X) changes very little over wide limits of the change in X

(at subsonic and small supersonic velocities). Therefore, the

two values of function f(A) in the given cross section of the

flow f() and T(M) will be close in value. Hence, it follows that
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(141)

T'he oL'ained relation means that the value of total pressure F !O

differs little from the total presouru average in area Value.

Calc.ulat1ons show that If the velocity coefficient X on the cross

section changes within limits of 0.4-1.0 or 1-1.4, then the error

oi" the calculation p0 in the formula (141) usually does not

exceed 2-35.

~ron f -r-d values T., X and p0 all the remaining parameters of

the averag. z flow, speed ;, density p and so on, are unambiguously

determined. Let us note that the mean values of the parameters,

whii satisfy the conditions stated in the problem, are obtained

quite definite independently of the method and order of the

solution of the fundamental equations, although in this zase

expressions different in appearance can be obtained.

Let us discuss the physical meaning of the obtained averaged

flow parameters. It is easy to see that values of parameters T0

pO and X and others are equal to the appropriate parameters of

such a gas flow which can be formed during the alignment (for

example, because of turbulent mixing) of the initial nonuniform

flow in the heat-insulated tube of constant cross section with-

out friction against the walls; in this case the flow rate,

momentum and total energy of the gas will also maintain constant

values. In other words, the found equivalent (averaged) flow

can be actually obtained during the flow of the initial gas

without external actions. If we calculate and compare the

entropy of the gas in the nonuniform and averaged flow, then

it will appear that the averaged parameters correspond to

the larger value of entropy. This is explained by the fact that

with the mixing of the gas particles at different velocities

losses to shock appear, the total kinetic energy decreases, and

the thermal energy ircreases.
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4 ~in connection with t',1s, t t. giv(-n i !Lhod o" aera'Ib- Ii

certain cases can prove !-c bt. ui.hce'tatle, ?s, for ins' ,r, ,
If according to the r.~ear v ..,i , t ,r:

3ection of[ the comprvas,ri ., . t :; . . .. J :v. Oai. a-? ,

efficiency, then the vE.1u,: .- .:,. rea w. 11 e ta ,e(:, .

to the real losses (I :r' n ., pr cc .r-!,-

compression of gas wI I .., ?AL. 'rt Ia I , , .

appear as a result of t .w c'-e_ , ' .... rr '
f£o'v parame'uers by • i, , : ... " r- . , when accor< ig ?o
the meaning of the rr ob, t.. -3 oird t.o evluat Lhe work
capacity of the ,:, " -V: , ' L,- it s ad\,_,tageous, as
L. i, Sedov and j. ',,.' !,-::iy , o carry out averaging
in order to maln tc. ttzi q,.t,.tity of the entropy of gas
constant

For determining th:. three parameters of the averaged flow,
besides the condition of the retention of entropy, we aiso use

equations of the constancy of flow rate and total energy.

The mean values of the parameters we compute by the following

wvay. From equation (136) we find the total gas flow rate. Further,
as above, from the equation of energy (138) we determine the
stagnation temperature T0 " The condition of the constancy of
entropy (see § 7, Chapter 1) in the averaged and real flow is

written in the form

I &
OAR Wi =-=AR In d

This equation includes only one unknown parameter - the average
total pressure p0. For determining P0, for dG we substitute its

value obtained above and then convert the equation to the forrm

1Sedov, L. I., Chernyy, G. G., On the averaging of nonuniform
flows of gas in channels. Theoretical hydromechanics,
Collection of articles, No. 12, issue 4. Oborongiz, 1954.
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1Mp F I p. - - In d.; (142)

.q'-n y the ,tagnatio. temperature T can be considered

identical in all points c: the cross section, i.e., we assume

= >. In this case equation (142) takes the form

Inip da (143)

Conseq ., the average value of total pressure is found by the

avora1nr. f the logarithm of total pressure in the initial flow

. Lh respect to the flow rate. The irtegrals of the right side

of equations (142) and (14 3 ) are calculated usually by means of

grap.-i, or numerical integration. If the velocity in the initial

is variable over the cross section, then values of PO

calculated according to formulas (142) and (143) will always be

: .ore than values of p0 determined for the same conditions

according to formula (140) (when I = const).

We find the velocity coefficient of flow from the equation

uf the flow rate

* re " (144)

In connection with the indicated increase in total pressure P0.

this value of q(j) proves to be less in value than that found

earlier. This mca,;; that the average velocity in the subsonic

flow will be less and in supersonic larger than the corresponding

valuec obtained with the first method of' averaging. In both

2ases thi: mcanz that the momentum cf flow averaged over entropy,

pDportional tc the value of function z(A), Lwill be greater than

I tI, total momentum of the initliJ nonuniform flow.

C-ther riethods of the averaging of parameters of nonuniform

; art: possible. However, it is obvious that with any method

,, raging of par-ameters of' nonuniforn flow, only part of

-fis total ihavauterlt~cs is retained, and some propertiei of flow
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are unavoidably lost. We saw that in the first case with averaging

the entropy and in the second case the momentum of flow were changed.

it is possible to indicate other conditionalities connected with

the process of the averaging of parameters. So, let us assume

that in the initial flow the static pressure p is equal over -he

entire cross section. After the replacement of the real parameters

by average ones, the static pressure p calculated according to

p. and X will prove to be different than that in the initial flow.

The same is possible in the relation to the value of the velocity

coefficient, total pressure, etc., if they ar constant on the

cross section of the initial flow. Hence it follows that in each

real case it is necessary to select such a method of averaging

which would most fully reflect the features of the assigned

problem. Thus, for instance, in the calculation of losses of

efficiency it is rational to use the averaging of the flow

parameters with which the condition of the retention of entropy

is satisfied. With the averaging of the parameters of flow which

escape from the jet nozzle, such a method will be unacceptable,

since in this case the most significant is the retention of the

real value of the momentum of' flow, which characterizes the

reactive thrust.

Let us note further one feature of the determination of the

average parameters of gas in the supersonic flow.

Let us assume that at all points of the cross section of the

supersonic flow the value of the stagnation temperature T O is

constant. Let us determine the mean values of the parameteirs

in such a flow, using the second of the methods of the averaging

exarilned above with which in the averaged flow the actual values

of' total energy, entropy and flow rate of the gas are retained. From

the equation of energy wa obtain the obvioas result of T = T0 )

From equation (143) we find the value p0" The third pararnete -

the mean velocity coefficient ) - is found from the eouat'tm of

the flow rate

-" .. . . . , )IP I



hence when T= T we have-o 0

q)% d(145)

The total momentum of the initial nonuniform flow, according to

(119), is equal to

S pj( .) dF.
,FI

In order that the averaged flow at the value of total

pre ure p, found above would have the same momentum, the velocity

couft'icient in it should satisfy the relation X

f 6) -- j pj(f.) dF. (146)

In general the value X will differ from T. Actually, the

condition of the conservation of momentum is given by the fourth

equation for determining the three unknown values; such a system

of equations will be inconsistent. Howeve', in the given case of

averaging there are some features. Let us replace in expression

(146) the value of function f(A) in terms of (117) and, after

using the theorem of the mean, carry out beyond the integral

sign a certain mean value of function z(X). As a result we will

obtain

I'. F z ()q 0i) = peq (k) dF

or

WOPIP

By'--mparing this expression with equation (145), we note that

they differ only by the factor on the right side, and therefore

q q (2147)
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In the region of supersonic velocity function z(A) (Fig. 5.22)

changes very little: with an increase in the velocity from sonic

to the maximum (from A = 1 to X - Xa) the value z(X) increasesmax
a total by ),40% (k = 1.40), and in this case the value of the

pressure ratio p/p 0 drops from 0.528 to zero. If we examine the

degree of irregularity of flows really being encountered, then

value z(X) within the limits of the cross section usually changes

by not more than 15-20%. Therefore, the two mean values of the

function In this interval z(X) and z() will differ little from

each other.

The calculations carried out for supersonic flows of different

laws of the change in the velocity coefficient in the cross

section show that even with a very great nonuniformity of flow -

for example, during a change in the total pressure p0 of 5-10

times when p = const - the factor of the right side of equation

(147) differs from unity by a total of 0.5-1.5%. Therefore, it
is possil-e to consider that q(X) - q(T), i.e., the results of
the determination of the mean velocity coefficient from the

equation of the flow rate and momentum equation virtually coincide.

The accuracy of this approximate relationship is higher, thc more

values of X in the flow; however, also at moderate supersonic

velocities (A > 1.2-1.3) the distinction between values X an" X

consists of fractions of 4 piercent'.

Thus, w'th averaging by the indicated method of flow

parameters at h'gh *uj.erscnIc velocities and stagnation temperature

constant in cross section, simultaneouaLy with a high degree of

accxr'cJy four integral reiat%o,:hipe are satisfied, and these

express tine equality of total energy, flow rate, momentum and

entropy in the initiai and averaged flow. The condition T co)-zt
0

'Lee Chericez, A. Ya., On certain Peatures of the averaging
of paz ameters in supersoni c gas f]ow. Izvestlya of the Acad my
of Scienccs of the USR, OTN, No. 4, 1962.

IJ



is in this case very significant, since otherwise the value q(X),

ob;aai.ed from the equation of flow rate, will depend on the

dii.trlbution law of the stagnation temperature and can differ as

i;.uci. a. possible from value q(X), found from the momentum

equation, which does not include the value T O. The physical -

m.ieaning of the obtained result consists in the fact that at high

supersonic speed and T o = const, substantial changes in the

Tressures, densities and other flow parameters insignificantly

change the velocity magnitude. Changed even less, in proportion

to the value of function z(X), is the value of the momentum of

the gas with its assigned flow rate: an increase in the momentum

to a considerable de:gree is compensated by a reduction in the

static pressure so that

id-PF-= apzO)Aconst -.

The indicated property of supersonic flows means the possibility

cf a one-dimensional examination and the use of methods given

in this chapter for calculating flows with very great nonuniformity.

Thus, for instance, shown in Chapter VII is the high accuracy

of such a calculation in connection with the flow in cross

section of which the static pressure changes 10-20 times (initial

section of the supersonic jet).
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CHAPTER VI

BOUNDARY LAYER THEORY

§ 1. Basic Concepts of a Boundary
sayer

The widely developed theory of motion of an ideal fluid

usually gives a completely satisfactory picture of real flows,

with the exception of the areas in immediate proximity to the

surface of a streamlined body. In these areas, the forces of

internal friction or viscosity forces which are decisive in the

emergence of resistance of bodies during motion in liquid acquire

vital importance. Disregard of these forces leads to the fact

that the resistance of a body, uniformly moving in unlimited space

turns out to be equal to zero, which contradicts experimental

data.

The amount of friction force acting on a unit of area, i.e.,

the stress of friction is designated usually as T. The stress

of friction in the boundary layer according to Newton's hypothesis

is proportional to the velocity gradient in a direction normal

to the body surface (§ 4 Chapter II), i.e.,

the proportionality factor vi characterizes the viscous prorerties

of the liquid and is called the coef.iciey t of dynamic 'ia:,St.
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Theoretical interpretation of Newton's law (1) can be

obtained for gases on the basis of the kinetic theory. According

to the assumption lying as the basis of the kinetic theory,

mcleitles of gas are found in continuous but random movement, so

that gas as a whole remains stationary. The kinetic energy of

this random movement of molecules represents the thermal energy

of the gas. Let us assume now that along with the random move-

ment of molecules there is regulated movement of finite (very

large in comparison with the separate molecules) masses of the

gas parallel to a certain plane SO, whereby the speed of this

n otion u is proportional to distance y from the plane in question

(KI<. 6.1). At arbitrary distance yl let us conduct plane S1

parallel to S., and let us examine the transfer of momentum

bt-cause of the random movement of the molecules through this

plane. The molecules which pass through the plane from the

bottom upwards possess less momentum in the direction of velocity

u than the molecules which pass downward, and because of this the

velocity of a layer of gas lying higher than plane S 1 will

decrease, while the velocity of a layer of gas lying lower than

plane S1, - will increase. To obtain the quantitative char-

acteristic of this interaction, let us perform the following

simplified calculations. Let us assume that in a unit of volume

on the average there are found N molecules which have an average

velocity of random movement c. In the direction perpendicular

to plane S 1 it moves N/3 molecules, whereby, of them, N/6 move

from the top downward and Just as many move from the bottom upward.

During time dt through area dS on plane S1 in each direction

there pass l/6NcdSdt molecules. Let us introduce yet another

concept of the mean i'ree path. Under mean free path Z is implied

that average distance which the molecules cover between collisions

wIth each other. The molecule which was found at a distance

lower than plane S1 possessed momentum

its (-- _-_



(m - the mass of the molecules, ul - the velocity of the regulated

motion in plane SI). Since on the mean free path the momentum

is retained, then the molecules moving from the bottom upwards

transfer a momentum equal to

T Nm u -- dS Ar

'I U

Fig. 6.1. Interpre-
tation of Newton's law
on the basis of kinetic
theory.

Correspondingly, there is transferred downward the momentum

I I du \

This transfer of momentum gives rise to the appearance of tan-

gential stress r along plane SI . Since the change in momentum

is equal to the impulse of the acting force

-.dSd ANctln. fi ~-aINdSdt Mi fit .. 'S 4$I

then for the tangential stress we obtain the expression

(2)

n . [ mthir L,- _t ... on Is law, whereby, i = 1/3coI.
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The more precise calculations made by Enskog and Chapman,

-::sidering the effect of velocity u on the velocity distribution

. th,- nolecu.les give a somewhat different numerical factor
= .499pc -.

In accordance with kinetic theory, the coefficient of

dynamic viscosity of gases should not depend on pressure - its

value should vary in proportion to the square root from absolute

temperature (since p - p/T, c - /r, Z - T/p). The first conclu-

sion is approximately validated by experiment within sufficiently

r.:ide limits. As concerns the increase in values of p with an

ncrease in the temperature, It occurs more rapidly than follows

fro m the kinetic theory. A more precise calculation, taking

r :o account the molecular attracting and repulsion forces, leads

to formula which satisfactorily agrees with the experimental

data

(T12 7 JI + C
72= ) T-+-.(3)

,.here T is expressed in "K.

Values of w and C for various gases are given in Table 1.

Table 1.

6

Gas CO WOl0 Gas CO W0106

k~f s kgf's
2

m m

A, r 122 1.75 Hydrogen 83 1 0.85

i It rogen 107 1.70 Helium 80 1.88

,*xygen 138 1.96 Ammonia 626 0.96
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In practical calculations, however, it is more convenient

to use the exponential dependence of v on temperature

The results of calculating the coefficient of viscosity of

air in formulas (3) and (4) (where w - 0.75) in the range of

temperatures from 100 to 1000 0K are given in Fig. 6.2. The solid

curve corresponds to Sutherland's formula, while the broken

line corresponds to the exponential formula. In this figure,

the experimental values of p are shown by the dots.

J - - -,, -

0 Md 40Q SWd 800 r

Fig. 6.2. Dependence of the coefficient of
dynamic viscosity of air on temperature.

The coefficient cf dynamic viscosity for liquid bodies

depends very slightly on pressure and decreases rather rapidly

with an increase in temperature. Since in a liquid body the

mean free path of a molecule is commensurable with the molecular

dimension, the kinetic theory in this case is unsuitable. "he

cohesive forces of the molecules under these conditions acquire

great significance. In view of the complexity of the inter-

action of separate molecules in a liquid body at present there

is no complete liquid theory, and therefore, there is nc

viscosity theory.

I
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Ict us consider the laminar layer motion of a viscous

- .,d near a solid ;:all, Under the action of viscosity forces,

i,Yrs of liquid in proportion to their proximity to the wall are

gradually slo.ed down and, at the wall itself adhere to it.

Th!.- zone of flow of a viscous liquid located about a streamlined

t-dy is called the boundary layer. Outside the boundary layer

the effect of viscosity is usually exhibited weakly and the

piture of flow is close to that which the ideal fluid theory

ri rs. Thus for an analytical investigation of the flow of

voscl.s fluids, the whole field of flow can be broken into two

areas: into the area of the boundary layer near the wall, where

it is necessary to consider the forces of friction, and into the

zone uf flow outside the boundary layer in which it is possible

disregard the forces of friction and therefore to apply the

laws governing the theory of an ideal fluid. Consequently, the

boundary layer is that zone of flow of a viscous liquid in which

the values of the forces of friction and inertia have an identical

order. On the basis of this, it is posstble to estimate the

boundary layer thickness.

For simplicity, le' us examine the flow of a liquid along

a flat plate. The x-axil is directed along the plate, the

y-axis - at right angles to it. For the motion which proceeds

basically in the direction of the x-axis, the force of inertia

pertaining to the elementary volume dxdydz is equal to
du.
Sd--xdydz, where u is the velocity of motion of the liquid in

the direction of the x-axis. For steady motior:

J3 LIU -J-V o,
S J. -t J.

the force of inertia is equal to pu -d dydZ.
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The resultant force of friction parallel to the direction

of motion, as can easily be seen from Fig. 6.3, is equal to

u--dy d xdz- dxd. dxdydz.

Eqiuating the force of inertia to the force of friction, we obtain

the relationship

Ou d"

or, utilizing Newton's law (1),

'u O'

/ - Ad.l

r~

Fig. 6.3. Forces of
friction applied to
an elementary volume.

For a plate of length Z, the value of Ou/Ox is proportional to

U0/" , where u0 is the velocity of external flow. Consequently,

the force of inertia has a value on the order of Pu2/1. The

velocity gradient in the direction perpendicular to wall, i.e.,

the value of Ou/8y is on the order of u0 /6, where 6 is the

boundary layer thickness. Thus the force cf friction is rro-
2

portional to pu0/6 . Substituting these values of forces in

relationship (5, we obtain for the boundary layer thickness

the expression

! (
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7he d.mensionlcss quantity puo// R is the Reynolds number

calculated along the length of the plate.

Analogously, it is possible to estimate the amount of

friction stress at the wall --- ,y). Utilizing the values

. I,-,,, , obtained above, we find thie expression for

tne amount of fr iction stress:

Dividing the stress of friction T b UO, we 2 obtain the connec-

tion between the dimrensionless quantity TrIN /Pu 0 and the Reynolds

numter

9.I )'R" (7)

Relationships (6) and (7) show that Reynolds number is the funda-

mental characteristic of a laminar boundary layer. Both the

boundary layer thickness, i.e., the dimensions of the area where

the forces of friction have an essential effect and also the

valuc itself of these forces of friction are determined basically

by the value of the Reynolds number. A similar result can also

be obtained from the dimensional theory.

For gases, the coefficients of dynamic viscoslcy are low

(Fig. 6.2), therefore the Reynolds numbers will be rather large

even at relatively low values of the rate of flow. As f,,1lzws

from relationship (6), the thickness of the boundary layer

because of this is low in relation to the length of the plate,
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i.e., all the effect of viscosity is concentrated in a thin layer

close to the streamlined surface. This conclusion is in good

agreement with the results of experiments In the study of low-

,.,Iszous flows.

Let us explain these qualitative considerations by a

numerical example. Let us estimate the order of thickness of

the boundary-layer at the end of the plate as a length of

I = 0.1 m, the air flowing past at a temperature of T - 300 0 K

at a rate of u0 a 15 m/s. The air density at tnis temperature
2 4~

and atmospheric pressure equal p = 0.120 kgf's /m , while the

coefficient Of viscosit; 1 w 1.85"10- 6 kgf-s/m 2 (Fig. 6.2).

To these parameters there corresponds a Reynolds number

Rg 1) I0/P _ 105. kccording to formula (6), the relative

thickness of the boundary-layer is on the order of
-/' 1/300.

The Reynolds. number ib the determinin, parameter-nut -orly

for the quantitative characteristics of the boundary layer, but

also for the character of flow itself. With small '7Ynolis

numbers, the motion of the gas particles has a regulated laminar

nature, such a flow is cailed lwminar. With large Reynolds

numbers the motion of the gas particles becomes irregu.ar,

uneven velocity pulsations appear, such a flow i> altc

t_,rbuie,.t. The transition of laminar flow into turbilent occurs

at a specIfied value of the Reynolds number called the criticaL.

The nritical Reynolds number is not constant and doper4s to a

very great degree on the value of the initial diot'2rban's, i.e.,

on the intensity of turbulence of the Incfdent flow.

Experimental saudies of the transition of a laminar bourndary

layer to a turbulent on a flat plate showed that the critical

value of the Reynolds number

i °II I P" I



.. :er te velcity coefficient of the outflow from the
,,., i tie total pressure in the initial cross secticn

.: :c- nozzle. WIth equal drops in the pressure

tne velocity of dischar7e from the semi-thermal nozz"  is less than

trau from the geometric nozzle (X 3n < 3r); this results from

out(, "_I)!;", -- 3 "

;.5-: cn..nnocts the ratiQ c,! the static pressure to the total

;rr'sur. ., th the velocity coefficient. For example, when

o : 0.82 and X_ : 2 the velocity coefficient of outflow from then-1T 5f-

- mir-thermal nozzle T = 1.97, i.e., 1.5% less than the velocityi
3flT

ocefficient of outflow from the geometric nozzle.

In examining the different types of the nozzles intended for

tranz-tion through the speed of sound, in all cases we had in mind

the transition from subsonic to supersonic velocity. The obtained

formulas are suitable principally for the reverse case, i.e., the

smooth conversion of supersonic flow into subsonic; however, with

the braking of supersonic flow there can arise shock waves, which

complicate the phenomenon.

Let us discuss now briefly the joint development Qf two or

several effects. As a first example let us analyze the case of

the geemetric nozzle with friction. The fundamental relation (49)

n thi; case takes the form

(M' . -ig dFgk.

The most Interesting feature of this nozzle is the fact that the

critical velocity is obtained In its divergent part, since when :411
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and in the narrow cross section (dF = 0 when dw > 0) the subsonic

velocity and M < 1 occur.

Let us now explain the chief characteristics of the geometric

nozzle with heat exchange. From the fundamental relation (49) in

this ca e we have

The location of the critical cross section (M = 1) is determined

by the equality

dF = Kk - I
-' .- d8 X

With the heat feed (dQHa p > 0) - for example, with the afterburning

of gases in the nozzle - the critical velocity is reached in the

divergent part of the nozzle (dF > 0), and with the heat removal

(dQ ap < 0), i.e., the heat transfer through the nozzle walls, the

critical velocity is reached in the convergent section of the

nozzle (dF < 0). In the first case in the narrow cross section of

the nozzle (dF = 0), there occurs subsonic velocity and in the

second case - supersonic velocity.

By the same means it is possible to investigate the joint

effect in the gas flow of any other actions. In this case

it is important to emphasize that in accordance with equation (49)

the transition from M < 1 to M > 1 requires in any event a sign

change of the total action.

In conclusion let us note one fact which sometimes leads to

misunderstandings in the qualitative analysis of laws governing

some flows. In connection with this let us again return to equation

(49).
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A: cve 1t: the analysis of the equation of momentum (92) of

T) we noted that Independently of the procesises occurring

the flo., a change in the rate of flow is always caused by the

aticn c-f the force of frIction, applied forces, and also the

d ffrenc. 1r, forces of pressure on the chosen element of gas flow.

:.,-e dlfferent forms of the external action in different ways

affcct the static pressure in the flow. The meaning of the joint

solution of equations ( 3)-(47), as a result of which relation (09)

was octained, was reduced so that the value of the pressure gradient

in flow is expressed by external actions; the value dp in this

ca.- wa:- excluded from the momentum equation or the Bernoulli

e1uat I -, (4 6).

r, the analysis of equation (49) it is revealed thaU: a) a

,aiang !n the gas velocity is caused by such facturt which are not

connected with direct force action on the flow (for example, the

.. eat feed), b) the total effect in a number of cases turns out to

be opposite to that which can be expected on the basis of the

anal,',,-!; of the action of applied forces. Actually, for example,

the force of friction which always acts opposite to the direction

cf motion in subsonic flow leads not to braking but acceleration

of the flow. The latter means that in flow with friction there

occurs such a reduction in the static pressure that the force of

pressure acting in the flow exceeds the force of friction.

In exactly the same manner as with the feed of mechanical

energy to the subsonic gas flow, its pressure is increased so that

the force of pressure acting counter to flow exceeds the applied

force which caused it. As a result the flow, to which the applied

fcrce is applied In the direction of motion when M < 1, is not

accelerated but braked.

Tnus, above, in the analysis of external actions on the gas

flow, It was assumed everywhere that in the flow there appear

approprIate pressure gradients, which as a final result determine
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the change in the rate of the flow. Thus, for instance, for the

acceleration of the subsonic gas flow in the thermal nozzle (i.e.,

'when F a const) the pressure at the inlet into the nozzle should

exceed the outlet pressure by the value which is determined by the

initial and final M numbers (see formula (55)).

Having the same meaning are above obtained relationships

between static pressures of the gas in flow with friction (50),

flcw with the feed of mechanical energy, and so on. In many

in.tances, however, it is known in advance that in the flow in

question there is no longitudinal pressure gradient. The change

in the gas velocity in this case (dp 0 0) is completely determined

by the equation of momentum in the form

-ud y (dP+ dP,O),

where dP is the force of friction, and dP is the applied force.

Hence it follows that in isobaric flow both at subsonic and super-

sonic velocities the friction leads to a decrease in the velocity;

the applied forces which act on the flow or the applied external

mechanical energy (dP < 0) always accelerate the gas flow; the

heit feed when dp = 0 does not at all change the velocity of the

directed motion of gas, since in this case there are no applied

forces.

An example of isobaric flow can be, in particular, supersonic

flow in a solid wall. The boundary layer near such a wall is

formeu as a result of the continuous braking of the flow by forces

of external action (fricticn). In summation, the velocity of the

flow in it decreases when p = const fro,. the supersonic to the

small subsonic value.

In exactly the same manner the isobaric supersonic jet, being

mixed with the fixed atmospheric air, accelerates its particles

to the supersonic velocity by means of a one-sided mechanical
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I
-- t, 'eed u:' the mmornentum in the collls in of particles

j;-d ir.

",:-Ith. further flow in any stream filament within the isobaric

1:ur ,ri:n'.a; Jet there occurs continuous braking - with the transition

,.u,. the speed of sound - down to low speeds, and also because

; ore-:-ided external action - the transfer of momentum into the

C,,v ironmenl

These examples do not contradict the laws established above

and the equation of the transformation of actions (49). The fact

_i that in the presence of* any external action the condition in

1 c.:..aiCity (p = con:.t) can be fulfilled only with a completely

.t'.i~ change in the cross-eectional area F.

.hus, for instance, at subsonic flow in a cylindrical tube

with frIction the velocity of the gas increases, and the static

pressure drops. In order that the pressure in the flow Is

constant, the channel must be made divergent, i.e., the geometric

effect dF > 0 must be added to the effect of friction. Since

independently of the shape of' the channel with flow with friction

the total pressure is lowered, then in such an isobaric flow the

gas velocity is decreased.

276

MEM



I

§ 5. On the Propagation of
Detonation and Burning in Gases'

The creator of the theory of the propagation of detonation

in gases is the well-known Russian physicist V. A. Mikhel'son

who devoted in 1889 the work "On the normal ignition speed of

fulminating gas mixtures" to this problem.
2

The outstanding theoretical and experimental studies in the

field of burning and detonation belong to N. N. Semenov, Ya. B.

Zel'dovich, D. A. Frank-Kamenetsiy, K. I. Shchelkin and other

Soviet scientists.s

The propagation of the flame in a combustible gas mixture,

without depending on the mechanism of ignition (by thermal

conductivity with slow burning or by a shock wave with detonation),

is subordinated to the fundamental laws of gas dynamics ana,

therefore, can be described by equations of the conservation of

mass, momentum and energy.

The flame front is a thin layer of gas of virtually constant

cross section, on both sides of which values of the velocity of

motion (relative to the wave front), temperature, pressure and

other parameters are different. In accordance with this, the

flame front can be treated as a surface of nonremovable

discontinuity (thermal shock).

'In this section an expanded presentation of the following
work is given: Abramovich. G. N. and Vulis, L. A., On the
mechanics of the propagatlcn of detonation and burning. Reports
of the Academy of Sciences of the USSR, Vol. 55, Issue 2, 1947.

2Michel'son, V. A., Complete collected works, Vol. 1, M.,
1930.

3See, for example, Zel t dovich, Ya. B., Theory of the burning
and detonation of gases. Futlishing House of the Academy of 4
Sciences of the USSR, 194 4 .
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in LIEe contenporary cor.cept the detonation wave, which is

* inted in the cCmbustible gaseous riedium, is two-layered. Th!

layer is an adIabatic shock wave, with the passage through

,.:hinh th as Is greatly heated. in chemically active gas this

. in i. 'L siff.cjentiy intensive, can cause ignition.

li :onnectIon with the fact that the shock wave thickness is

. gib>e (order cf the mean free path of the molecule), within

s il s process of burning, apparently, is developed not in

-lie state. Therefore, the area in which there occurs burning

a second, more extended, but virtually also very thin layer

:i--n adjoins directly to the shock wave (Fig. 5.18).

Fig. 5.18. Diagram of the
4, ',/ oB. detonation wave: A - fresh
_- mixture, B - products of

/ . combustion; I. shock wave,
pl e e e II. combustion zone.I ,* I

I X

I I J

I I* I-

The heating of the gas with its passage through the shock

wave in detonation burning in essence replaces the preheating

with its thermal conductivity in normal burning.

Let us examine the phenomenon of detonation in conditions of

a one-dimensional problem. In the case for a plane shock wave
according to the known relation (15) of Chapter III, the product

cf the gas velocity relative to the wave front (taken,

respectively, in front of and behind the front) is equal to the

square of the critical velocity:
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The value wI is the velocity of the propagation of the shock

wave (in our case, the detonation wave in a fixed gas). For the

study of the process it is convenient to consider that the gas

flows at a rate of wI to the region of detonation, and the wave

front is fixed. This inverted scheme of the phenomenon is

accepted by us in the subsequent presentation.

Shock wave (pressure shock), as is known, is propagated at
a hypercritical velocity (wI > ap), and therefore the gas

velocity behind the wave front is always lower than the critical

velocity (w2 < aP). In other words, the process of burning

with detcnation, as with slow burning, occurs in the subsonic

part of the gas flow.

At the end of the second layer of the detonation wave, as

a result of the heat feed with burning, the gas velocity is

higher than at first, and the pressure is respectively lower.

Thus, the first layer of the detonation wave is a compression

shock, and the second layer, where burning occurs, is the

expansion shock. The approximate nature of the distribution of

the pressure and gas velocity in the detonation wave is shown

on Fig. 5.1b.

Let us turn to the calculation of the shock wave.

in the calcualtion of the change in the state of the gas

in the first layer of the plane detonation wave, we can use

relations for the normal shock wave.

For the case in question it is important that in the first

layer of the detonation wave (adiabatic shock wave) the stagnation

temperature remains constant T01 = T 0. Consequently, the

critical velocity in the first layer does not change al~p - a2 p,.

whereas in the products of combustion its value is increased

T0 3 > T0 1 and, respectively, a3K p > a I p . This circumstance
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must re zcnsldered sbsequently in the calculation of the velocity

c ceff-1clenti;

From the contlnuity equation p 1 uW P 2 w2 and expression (16) of

Chapter ill, let us find for" a change in density and velocity

the relation

UJ _ A' "

~ (62)

The law of pressure change in the normal shock wave can be

obtained from the mcLentum equation in the form of the known

equalily (21 ) of Chapter III

l--

From (62) and (63) it follows that the change in gas temperature

in the shock wave

For example, at the velocity of propagation of the shock wave

W a. 2000 m/s, the initial temperature of the gas T1 - 4000K,

R - 30 kgm/kg'deg and k a 1.4 we have T0 1 z 2400 0 K, &lKp = 900 m/s,

A z 2.2, X2 z 0.45, to which corresponds T2 z 23000 K.

There are no doubts that in this case the shock wave can

cause the ignition of the combustible gas mixture.

Let us now study the calculation of the combustion zone.

It is natural that all formulas derived in §5 3 and 4 for

the case of -he preheating of gas in a cylindrical tube are also
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suitable for calculating the second (thermal) layer of the

detonation waves since in the derivation of the indicated formulas

the length of the tube was not important (the friction and

thermal conductivity through the side surface were disregarded).

For calculating the state of the gas in the second (subsonic)

layer of the detonation wave - in the region of burning - it is

most simple to resort to the relation (58) between the stagnation

temperature and the velocity coefficient

,.,+ (65)

-, T4(--rIff M 0 +)-U,

whence after the solution of biquadratic equation, we obtain the

following expression:

-- X- ) T, (66)

or ,+ ,,r, 1!,  ,.i ,fE.(67)

Rejected here are the roots which give the supersonic solutions,

since the combustion zone where the relative velocities are

lower than the speed of sound (X2 < 1) is examined; furthermore,

we assume that T01 , T The velocity coefficient X2 - directly

after the shock wave - is usually considerably less than unity;

if in this case the relative temperature increment of braking

in the region of burning is umall (T0 3/T0 1 z 1), then formula (67

can be substantially simplified:

(since under the assumptions made X << 1). Thus,

}t' -M' . (68) :e:

whr-re AT0  Q/c if Q is the quantity of heat which is liberated
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,th t-he cornt-L.sticrn of a unit weight of mixture. From formula

. is evident that with weak heating (ATo/T0 1 Z 0) the

ve ity cocf f1, lent for thr products of combustion is close to

the velocity coefficient after the shock wave.

With the Intensifyitng of the shock wave, i.e., with an
increase in the velocity of propagation of the shock wave, the
stagnation temperature of the initial mixture T01 * T02 sharply
ir.reaes according to the known equality (42) of Chapter I

-- '(69)

In t ci£ ease the temperature in the flow in front of the region

~V Lurn-ng T1 sharply increases. In the limit when M1  and

)i= we have To 2 - T and T2 - . With an increase

nr temperature T 2, in connection with the increasing role of

thermal dissociation,t the absolute difference in the stagnation
temperatures somewhat decreases:

ITr2 T - I-s.

Consequently, with the lntensiCiction of the shock wave both the
relative heating of the gas AT0/T01 r~r* the velocity coefficient

of the combustion products X3 decreases.

This is evident most distinctly if into formula (68), instead
of the variable stagnation temperature we introduce the constant
temperature of the cold gas:

) .- k-I (70)

'The thermal dissociation is the phenomenon of partial
decomposition of the products of burning observed at high
temperatures and also at low pressures; a reaction occurs in
tne opposite direction and is accompanied by an absorption of
heat.
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The burning which occurs behind the front of a very
pcwerful shock wave begins at such a high therrial level that it can

cause only a relatively small increase in stagnation temperature.

Therefore, in the limit

) __To

i.e., the detonation wave approaches with the usual shoc,.k wave.

Let us study the steady-state condition of detonation.

The considerations given make it possible to imagine the
process of the formation of the stationary wave of detonation in

the following form. Usually the detonation wave appears as the
result of local explosion in the combustible mixture. In the
region of the explosion very high pressures are developed and
directed from it is a very powerful shock wave. In transit
through the cold combustible mixture, this wave, as was noted

above, causes considerable heating of the gas and can lead it
up to ignition. Precisely in this case, behind the shock-wave

front there follows the region of burning which forms the wave
detonation in totality with the shock wave. Since near the

explosion center the propagation velocity of the wave and its
intensity are very great, the relative gas velocities at the

beginning of the region of burning and at the end of it are
cloe to each other and substantially lower than the critical

velccity:

X 2 : 3 << i

However, with distance from the blast center the detonation wave
is attenuated, and the propagati.on velocity of it X decreases.

In connection with this there iccurs a reduction in the
stagnation temperature at the beginning of the region of

burning (To2 and an increase in the velocity coefficient of

the gas (X In this case the relative heating of gas

(AT0/T0 1) and the velocity of motion (68) of the combustion

products (X3 ) increase. It is obvious that when the detonation
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1:, attenuated so much that X will be raised up to the
3

rlt2-al value (X34 p = 1), a further deceleration of detonation

,.;A11 prove to be impossiblel).

Consequently, the dktonation process, which began from the

e:.:[ .loAon, ;cntinuously weakens, until the progagation velocity is

]owered to a minimum value which corresponds to the onset of. the

:r. .i.ai region in the combustion zone. From this point

of .- i thL ,ftonation wave acquires a stable

. :wi I i, further acceleration and transition to

c.i ble solely with a change in the

-. 1 s case upon the transition from the

- . - V t. c b.tion zone to its removal, beginning

..7 s,,-..t ion (thermal nozzle). Thus, fie

Kf 2, . . region in the zone of combustion

... mr t o! stationary values X., x2 , and A3.

" a. t;, co-?fflclent of the propagation velocity

, . - .,ic'i., wave, after substituting value

=~ i ]ritc p. <';. In this case

(71)

= u " -C u h. rt=dIcals

T~()iII,, ±~I)(72)

" " + we also obtain

r.,. _'!-m, ( | (73)

.. . , ;pe shock wave, formed as a result of
. '. ... p-gated In the Inert medium, with

! *" V. H L,. t.:t c,:ter completely degenerate.. into an
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( The last two expressions, Just as equation (.65), retain

identical form with the substitution in them of velocity

coefficients X and X2. Thereby a change in the stagnation

temperature is connected here either with the propagation velocity

of detonation (XI ) or with the maximum propagation velocity of the

combustion zone (X2). It is important that the maximum value X2

is retained without depending on the mechanism of ignition, i.e.,

it is related both to the detonation and the steady-state flame

propagat on.

Let us turn to the calculation of the propagation velocity

of the wave.

Let us designate for brevity the thermal characteristic of

the combustible mixture $1:

From formulas (69) and (72) we have

(,

whence the square of the velocity coefficient of the wave

propagation is equal to

1+2

In equation (74) botn signs before the radical corrcspond to

the real values of the velocity coefficient. The positive sign W

'In meaning this value is equal to the ratio of the quantity

of liberated heat to the initial gas enthalpy 4 Q/c T 1 . For

example, for a cold (T z 3000 abc) mixture of gasoline with air
(when z 1)$-: 6.5.
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corresponds to detonation burning (X > 1), i.e., the propagation

velocity of the shock wave. The negative sign corresponds to

the propagation of the slow burning. It should be noted that
formula (74) also with a negative sign is suitable for detonation.

In this case it connects the velocity coefficient directly behind =

the shock front A2 (instead of X) with value $' = AT0 /T2
(instead of $ = /T

In practically interesting cases where 1 1, instead of
expression (74), it is possible with an error of less than 2%

to accept approximately:

a) for the propagation velocity of the stationary wave of

detonation

2+ _. (75)

1 +41 (76)

t) for the maximum propagation velocity of the wave of

burning

1 -+ 1* (76)-

Using the known connection between the velocity coefficient

and the M number, it is possible to obtain also similar

dependences of the M number for es of detonation and burning

on the thermal characteristic of ..,e gas mixture.

Figure 5.19a and 5.19b show graphs of the dependence

).1=f&b) and M1=F(O)

for the gas mixture (when k - 1.4). The upper branches of both

curves (in the supersonic region of motion AI > 1, M1 > 1)

correspond to tle steady minimum propagation velocity of

detonation and the lower branches (in the subsonic region

X < 1, M1 < 1) - the maximum rate of combustion, i.e., the

maximally possible velocity of the normal propagation of the

flame.
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Fig. 5.19a. Fig. 5.19b.

Figure 5.19a. Dependence 01f the extreme value of the coefficient
of the propagation velocity of the wave of burning on the thermal
characteristic of the mixture: 1 - region of unsteady detonation;
2 - steady-state regime of detonation; 3 - maximum rate of
combustion; 4 - region of normal burning.

Figure 5.19b. Dependence of the extreme value of the M number for
the wave propagation of burning on the thermal characteristic of
the mixture: 1 - region of unsteady detonation; 2 - steady-state
regime of detonation; 3 - maximum rate of combustion; 4 - region
of normal burning.

We arrive at the single concept of the propagation velocity of
burning. In this case in the supersonic region (above the curve).

the values which correspond to the nonstationary state of detonation

lie, whereas in the subsonic region (below the curve) there is a !
countless multitude of values which correspond to the stationary
normal propagation of burning at the low speeds of flow of the gas.

Finally, the conditions which correspond to the shaded area

(Figs. 5.19a and 5.19b) cannot be realized in connection with the

phenomenon of' the thermal critical region (i.e., the impossibility -

to transfer to the speed of sound during the heat feed).

By precisely this, apparently, one should explain the fact-

that the transition from slow burning to detonation, as experiments :

in the tubes show, is always achieved intermittently.

2774
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One should note one interesting feature of the cur:es obtained.

As can be seen from the graphs, tne most insignificant thermal
effect suffices in order that the maximum rate of combustion

becomes substantially lower and the detonation velocity

substantially higher than the sonic.

Let us give the calculation of pressures with detonation and

burning.

The calculation of the maximum expansion shock in the flame

front attained with the thermal critical region can be produced

by means of the momentum equation. In the case of XJ M 1

we have1

PL-,,I+k( I aPS

but in these conditions

whence, on the basis of dependence (71), we obtain

WA i- T-- o (77)

Thus, the maximum pressure drop in the gas flow in the region of

burning is equal to

A -(78)

'In order to obtain this expression, let us write the momentum
equation (94) of Chapter I for our case:

Pe -PS prw (W, - iA )
or

P. p u,

but -M = .

8M:
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or on the basis of expression (72)

=. - , t - (7 9 ) "
/'e' --- I F Y7 --I FI 171-"•

In this case the value of the velocity coefficient both in

detonation and in the extreme case of normal burning is taken from

the relation (74).

If we use equality (75), then the following approximation

formula of the pressure drop in the second region of the wave

of detonation (for 4 1) is found:

P + + 1 (80)

Correspondingly, equality (76) leads to the approximation

expression of a drop in pressures for the maximum rate of the

normal burning:

SIL+. (81)

The pressure change in transit through the entire region of

detonation, which consists of an adiabatic shock wave and
combustion zone, will be obtained in the division of equality

(63) into (79):

k+ I
PA pg Po - 1.. k-i 1) (82 )

Very simple dependences are obtained for a density change of
the gas. At the maximum speed of normal burning, on the basis of
the equation of continuity and expressions (77) and (72), we

obtain

t_==o 2 214 ,.
to. 2; MITT I (83)

2i 
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With The steady-state condition of detonation burning, using

,uai tiea (16) of Chapter III and (62), we have

P _ Pa p, 2f . (8 4 )
P1 P A t"I

Let us discuss in more detail some general properties of the

one-dimensional nonadiabatic waves, and let us give, in particular,

the calculating equations for determining the absolute velocity of

propagation of the wave. From the momentum and continuity equations

it followo that in any case of the shock wave (in disregarding

rcrces cf friction) the following relation is correct:

P1 - ( 8 5 )

On the other hand, the equation of enthalpy, taking into account

the equation of state of an ideal gas, gives for the pressure Jump

with any feed (or removal) of heat'

.,"- = ,'.p +- _., (a, a-o, ( 86 )i

'Let us write the equation of enthalpy (25) of Chapter I for
gas before and after the shock wave

or, by replacing from the equation of state T u -P-Rgo

pA- Pr., - AR PW. p,.pRT,, - -R P.

By subtracting from the second equation the first, taking Into
account the equalities

.R k -- I 2k
2- -2- P SR r

and the law of the momenta, we obtain (86).
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From equations (85), (86) and continuity, it is not difficult to

derive the relation between velocities for the arbitrary pressure

jump:

Va (to, - S) ---- a - . (87)

In the particu3ar case when the heat feed is absent and

a Kp - a3Kp, we again obtain the relation (16) of Chapter III for

the adiabatic shock wave.

I.
In the case of interest to us of the steady-s~ate detonation

(or the propagation of burning at the maximum rate), when the

thermal critical region begins, I.e., X3 = 1 and w - a3 Kp,3 3 3P
equation (87) assumes the form

(VI - 4j,? AI',-- 4~p (88)

whereupon for the detonation

( Wo > k,

for the slow burning

W, <2his

Just as In the dimensionless equations given previously, we have

here two solutions:

W1--oh,,+_ V.3.1, -of,. (89)

which correspond to the minimum rate of the propagation o.'

detonation (with the + sign) and the maximum speed of slow

burning (with the - sign).

The obtained general relations are used for any nonadiabatic

pressure jumps without depending on the mechanism of heat

liberation. We saw that in the two cases examined above of the

propagation of the flame front immediately the thermal shock
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(i.e., the combustion zone) represented both with detonation and
with normal burning the expansion shock in the subsonic flow.

it is not difficult to indicate the case of the thermal compression
shock in the supersonic flow. We have in mind the well-known
ccndensation shocks, which are accompanied by the transition from

a higher supersonic velocity to a lower but still supersonic
velocity, And in this case the equations and derivations given

above remain valid.

In conclusion let us investigate the flow of gases behind
the wave front.

Obtained above were the fundamental principles characterizing

the gas flow passing through the region of the shock of detonation

or flae wtth a fixed front, i.e., in a reversed scheme. Let us
examine now which form all relations will acquire, if we pass to
the normal scheme when the gas is fixed, and in it the wave of
detonation or burning at the rate wI is propagated. In this case
behind the shock-wave front there follow the still not ignited

particles of gas with the velocity

OR-' W - V

and moving behind the region of burning are products of burning

with the velocity

where we understand w and wr as aosolute velocities. It is not

difficult to see that in the case of the detonation

wt~ > U-" > mt.

i.e., the flame front and products of burning move in the same
direction as does the shock-wave front, but only the particle

velocity in the flame front is higher than in the products of
burning:

W.,> W',

In the case of normal burning, when
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the value wr is negative, i.e., the directions of motion of the

products of burning and flame front are opposite.

As it was established, with the steady-state condition of

detonation and with the maximum rate of normal burning, there

occurs

rA3 0,por

in consequence of which in these conditions the rate of the motion

of products of burning is equal to

Our

where according to dependence (89) obtained above

#i

U'les. 1 "Up I :t 11P-

Hence we arrive at the following expression for the propagation

velocity of products of burning in cases of stationary detonation

and the maximum state of the normal burning:

-, 4gjsp d~ (90)

The plus sign corresponds to detonation, and the minus sign - to

normal burning.

Let us now find the values of velocity coefficients. For the

shock-wave front we obtain X w/a . For particles following

directly after the shock-wave front, 4M

I, w 'p -- .- -- , (91)

since alKP - a Finally, for products of burning according to

(90) we have

Hence by means of (72) we find

1,(92)A

29-
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Positive values of X are obtained with detonation (X1 > I), and
ne;atlve values are obtained with normal burning (XI < 1). In the

2ase of A, 1 we have -a 0, i.e., with the motion of the wave

at the speed of sound the gas remains fixed, which completely

corresponds to the physical nature of the phenomenon1 .

The greatest value of the rate of products of normal burning

Ar 0 -1 is obtained, naturally, in the fixed mixture of infinite

caloricity [9 - , i.e., X1 0 0, see (76)].

The maximum of the rate of products of detonation is reached

also with infinite caloricity [with (75) ., ,o. , but in
this case, as it is not difficult to see from (92), it is equal to

Thus, the absolute welooity of the motion of the burned

particles is always leas than the speed of sound. This result
is valid both during normal burning and detonation.

Meanwhile as it is not difficult to see from (91), the

velocity of unburned particles (at the beginning of the combustion

zone) in the case of detonation can be more than sonic; this Is

obtained in the state

i.e. , when I-,-I >0.

Solving this inequality, we obtain

)> 1.I t=I;2 and M,>2.

'Above (see (74)] It was shown that X1 a 1 is obtained only
with zero caloricity of the mixture, when the detonation and
burning degenerate into the usual shock waves.
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The maximum value of this velocity, obviously, is obtained In the2 k+l
state M I and X, k, and it is equal to

if k * 1.4, then X * 2.04 and M a 3.4.x maax x max

An interesting result will be obtained if we connect the

absolute gas velocity at the beginning and end of the zone of the

detonation burning:

Hence, by using dependences (91), (92) and (72), we find the

following simple relation:

(93)

i.e., with detonation the partiole speed before the flame front

is alwae twice higher than thc velooity of the burned particles.

The pressures both behind the shock-wave from (p2) and at((P2)
the end of the combustion zone (p ), obviously, are not changed

from the fact that we changed the motion, i.e., they can be
determined by formulas (63) and (79). It is possible, however,

by means of (92) to give to formula (79) the following very

simple form:

Pa

Here the minus sign is taken during normal burning and the plus
sign during detonation. In the limiting cases of normal burning

r f- -1) and detonation (Xr ) we obtain, respectively, for
the maximum rate of normal burning

ka (95)
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and for the minimum rate of detonation

(96)

With the encounter of products of burning with a poorly
streamlined body, there will eccur a pressure increase up to
value p03 ' which for both these states is found from the same
expression, which corresponds to the isentropic process of

compression:

&

" " h-1  ° •(97)

The more considerable increase in pressure occurs with a
cessation of the particles of the still unignited gas moving at

the rate of w . In the state of X X 1 the same Isentropicx x

dependence acts:

, .) (98)

For supersonic conditions (A > 1), when braking begins from the

normal shock wave, which cor;verts the flow to subsonic velocity

X . and the pressure determined by formula (63)SXX

,,ei,= .- r-T ',,( 99 )

we have with the total stagnation

or finally

i"C !
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In the extreme case A e 2 (when k * 1.4), we
obtained the maximum pressure increase with braking

or in comparison with the pressure in products of burning

Po

With the encounter of the gases following directly behind the

detonation, with a sharp-nosed obstruction an oblique shock wave

can arise instead of' a normal wave. In the latter case a

pressure increase with the braking of the gases proves to be less.

§ 6. Calculation of Gas Flows by
Means of Gas-Dynamic Functions

Established above were the numerical relationships between
the pressure, density, temperature and velocity coefficient of

(the gas flow and also the stagnation parameters for some cases of

the gas flows. These equations contain the parameters of the gas,

in particular, the velocity coefficient X, in high and fractional

powers, and therefore their conversion, the obtaining of explicit

dependences between the parameters in general, and the solution

of the numerical problems frequently represent considerable

difficulties. At the same time, in examining the different

equations of gas flow, derived, for example, in § 4 of Chapter I

and § 4 of Chapter V, it is possible to note that the value of

the velocity coefficient X enters into them in the form of several

frequently encountered combinations or expressions which were

called gas-dynamic functiors. Given to these functions are

abbreviated notations, and their values, depending on value X and

the adiabatic index k, are calculated and reduced to tables.

The gas-flow calculation by means of tables of gAs-dynamic

functions received widecoread acceptance and is at present

conventional. Besides tbe reduction in the calculating work, the

advantage of the calculation with the use of gas-dynamic functions
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~JJ'L~ii mrniiication in the conversions In the
hjA' "''undamental equations, which makes it possible

~,the solutions, of ver;- complex problems.

-z !:",Ai basic qualitative laws governing the
w t;1A r" t.wl tween parameters of the gas flow are more -

- .. * . It will be possible to see below, the use of

2 *.. ri~'' akes it possible to conduct the calculation

.~ gu.flowz, taking into account the compressibility
vt' - ~~a>a~.the calculation of flows of an

.4~~ 1.1uL.) Ii conducted.

t.w basic gas-dynamic functions from those

anj:~n d in a number of examples illustrate their

A' different problems.

Th i ,-x Arls grcup of Zan-dynamic functions is

~'r~v''Isiile of simplic'1ty in the recording of

'tw.rthe irameters in th-r flow, the stagnation
-ocity coefficient of the gas. In 5 3 of

l~ ~ 1.U.' c4the transformation of the equation of

r. 1.d I V fuvraula (42)

t&stigration temperature T0with the temperature

t.:.,~ 1.. 7 'l the velocity coefficient X. Let us denote

L-_ ILI(101)
h+I

1~t o xPressions (72) and (73) were obtained for

~r':u~t wd density in the flow to the total pressure

,r~j ~ ~ i lientropically stagnant gas. Let us introduce

g()Pe I 4 (102)
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(.i .(103)

The connection between gas-dynamic functions T(X), n(i) and c(X)

results from the obvious relationship between values p, p and T:

S((104)

It should be noted that equations (101), (102) and (103) connect

the parameters of the gas in the same oo8eee otion of the flow

and are valid independently of the flow pattern and processes
occurring in the gas: the transition from parameters in the flow

to parameters of the stagnated gas by definition occurs on the

ideal adiabatic curve. The nature of the change in tne gas-

dynamic functions T(X), r(X) and E(X), depending on X, is shown

on Fig. 5.20: with an increase in X from zero to the maximum

value ) h1 functions T(X), r(X) and c(X) monotonically
decrease from unity to zero. This completely corresponds to

their physical meaning: at very low velocities (X - 0) the

parameters in the flow virtually do not differ from the parameters

of the completely stagnant gas; with an increase in the velocity
up to the limiting value (M A , - X , the temperature,

max
pressure and density of the gas at the finite value of the

stagnation parameters tend to zero.

Having available graphs or tables in which for each value of

X values of functions i(A), c(X), and T(N) are given, it is

possible to determine rapidly the stagnation parameters according

to parameters in the flow and vice versa. Such tables for values

k = 1.40 and 1.33 are given at the end of the book. Given there

are auxiliary graphs, which can be used, instead of the tables,
if high accuracy of the calculations is not required.

Example 1. In section 1 of the subsonic part of an ideal
Laval nozzle the following are known: pressure in the flow 4

2
= 16 kg/cm2 , stagnation temperature T1 = 4001K, and velocity

201
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coefficient Xi 0.6. It is

, ... orequired to determine the

at- ,,* _ velocity coefficient A2 and

gas pressure in section 2,

at - - where the temperature T2 is

equal to 273 0 K.

0 1Since the stagnation

temperature and total pressure

0-i of the gas in the ideal
nozzle In question are not

Fig. 5.20. Graphs of gas-dynamic changed, T ' T and
fiunctions T(A), e(A), and () 02 01
wher k = 1.4. P0 2 ' P0 1. Using the first

equality and relation (101),

wt write

After substituting the assigned values T2 and T01 , we find

( 2 ) = 0.6825 and from the tables determine (when k a 1.40)

X 2 
= 1.38. Thus, the unknown section Is located in the supersonic

part of the nozzle. We further use the condition of constancy of

the total nozzle pressure. By expressing the total pressure in

terms of the pressure in the flow and function i(X) according

to (102), we obtain

P1 . or p o.)

For X1 = 0.6 and X2 = 1.38 in the tables, we find the values of

functions n(X) and determine

*p, ,6O9 =5.23 kg/cm 2.

Let us find now at the same initial data what the gas temperature

will be in the s(ction 3 of the nozzle, where the gas pressure is

equal to the atmospheric P3 = 1.033 kg/cm Let us write

P. P. or =P.

300



Hence we find

(O)j =, 'Sw O Me ---"00

and then from the tables we determine the value X , 1.85. This
3

value of the velocity coefficient in the table corresponds to

E(X )  0.4296. Further, we easily find the gas temperature in

section 3

r =r,,-: ()1,) = 400.0,42M36 . 171,5?'K

Thus other problems connected with the determination of the

dependence between the gas parameters in different cross sections

of the flow are solved.

Let us examine further the two gas-dynamic functions which

are used in the equation of the ga8 flow rate. Let us substitute

into the expression of the gas flow rate per second, in terms of

the cross section of the area F G = ywF, the relations which
express the specific weight of the gas y and flow velocity vi in

terms of stagnation parameters p. and To and the velocity

coefficient X:

= (l k-I k= P. I- I.

Then we will obtain

t-r 2g .(105)

After multiplying both sides of this equation by k

after cancellations we have

0 ?k ' --" % i.t- p.j. (I h+-(06

This equation expresses the gas flow rate in this cross section in

terms of the total pressure, the critical speed of sound and the
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-ertalnr function of the velocity coefficient

where E(X) is the gas-dynamic function (103) introduced above.

The new gas-dynamic function q(M) is defined as the value
proportional to the product Xe():

I I
-. #i (1i07)

The proportionality factor is selected so that when X , 1 we have

q(A) = 1. Because of this the gas-dynamic function q(M) acquires

thu physical meaning of the dimensionless current density:

9p.)- .-zm-

where (pw) is the maximum value of the current density (with
,p

the assigned stagnation parameters), which corresponds to the

flow at the speed of sound. Actually,

POOh P. Pe~ W7~ =6 III - 't

The graph of function q(A) is given on Fig. 5.21. With an

increase in the velocity coefficient A from zero to unit, the

value q(X) increases from zero to its maximum value q(X) - I and

further is again lowered to zero at value A Ax* Thus, the

current density is maximum when q(X) a 1 and is decreasad both

with a decrease and an increase in the velocity in comparison

with the critical value. The same value of function q(X)

corresponds to two possible values of the velocity coefficient,

one of which is more and the other less than unity.

Substituting function q(X) into expression (106), we have

A."=s - ,-.) ( (108)
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By replacing in (108) quantity a by its value, we obtain theAP

following formula for the calculation of the gas flow rate (see

also § 1 of Chapter IV):

vr, * (109)

where

"I k(i+F N/

In the following table values

-- - -- of N for different values of k are

given:

k 1.67 1.4 1,35 1.33 1,30 1.25 1,10
41--- N 0,725 0.085 0,070 0.673 0,667 0,638 0.628

For air (k - 1.4, R - 29.27 kg-m/

kg-deg) the numerical coefficient

a: -.. in equation (109) m - 0.3965
a [deg 0"5 .s-l]. For exhaust gases

a. as 7 Ui M AZ$ in turbojet engines (k * 1.33,

Fig. 5.21. Graphs of gas- R = 29.4 kg-m/kg.deg) m - 0.389.
dynamic functions q(X), y(M) For powder gases, on the average
when k = 1.4.

it is possible to consider that

m - 0.343. With flow at the speed

of sound q(X) = 1, equation (109) is reduced to expression (8)

obtained in Chapter IV for the calculation of the gas flow rate

through the Laval nozzle according to the parameters of gas in the

nozzle throat area.

In the solution of a number of problems, it is required to

connect the gas flowk rate not with the total but with the static
pressure in the flow. It is easy to obtain such a connection

from expressions (301) or (109) if we replace in their right
-w

sides the value of total pressure
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Then we obtain the relations

(1 2 k ' 2 ,n'i .,0

and

Q =(i11)

where the function

(112)

is the second gas-dynamic function with the aid of which it is

possible to calculate the gas flow rate (see Fig. 5.21). Its

values, Just as the values of function q(X), for different values

of k are given in tables and on auxiliary graphs at the end of

the book. With an inczease in X function y(%) monotonically

increases, whereupon when X-Xmax' y(,) - -. Both formula (109)

and formula (1ll) express the gas flow rate by means of parameters

of its state in the cross section of the flow in question, and

that is why they are valid independently of the nature of the

processes occurring in the flow of gas. Formulas (109) and (111)

are conveniently used in the compilation of equations of

continuity for the gas flow, whereupon for each cross section

there can be selected that formula which corresponds better to

the assigned or unknown values.

Expressions (109), (111) and the equations of continuity

compiled with their aid directly lead to a number ;f dependences

derived earlier by a more complex means and also make it possible

to solve various problems quite simply. Let us give several

examples of the calculation.
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Example 2. Determine the dependence between the area of

any cross section of an ideal Laval nozzle and the velocity

coefficient of the flow in this cross section, i.e., find the

law of a change in the area in the Laval nozzle. Since for any

cross section of an ideal nozzle, the flow rate, total pressure

and stagnation temperature are identical, then from (109) it

follows that Fq(X) - const. Since for critical cross sections
F I

q(X) = 1, then Fq) - F, or =q 1' i.e., the cross-

sectional area of the nozzle varies indirectly proportional to

the value of function q(X). In accordance with the graph of

function q(X), this means that with an increase in the velocity

the area decreases at subsonic velocities and increases at

supersonic velocities, having a minimum when X a 1.

E-xample 3. In the section of the cylindrical tube between

the two cross sections 1 and 2 as a result of hydraulic losses

(frictiDn, local resistances) the total pressure of the moving

4gas is lowered. The losses of total pressure between cross

sections 1 and 2 are estimated by the value of the coefficient

of total pressure < - p0 2/p0 1  1. Determine the nature of the

change in the velocity and static pressure of the gas in the

tube in the absence of heat exchange with the environment. Let

us write, after making use of formula (109), the condition

of the equality of the gas flow rates in cross sections 1 and 2:

Since in this case F1 = F2 and T01w T0 2 , then

Hence according to the assigned values of A, and a, it is

possible with the aid of tables of gas-dynamic functions to

determine X The obtained result is valid both for subsonic

30t,
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and supersonic flow velocities. Since a < 1, then q(X2 ) > q()

From this inequality it follows (see the plotted function

q(A) on Fig. 5.21) that in the presence of flow friction (when

G - const, F = const, T0 u const) the velocity of the subsonic

flow along the length of the tube increases, and the velocity

of the supersonic flow decreases.

in order to determine the change in static pressure, it Is

possible to compare with each other values p, a P01w(AI) and

P2= P0 2w(A2 )
' However, a more clearly unknown result can be

obtained from the condition of the equality of the gas flow

rates if we use in this case expression (111)

Psa~1)P!LF&(X,) or to My4j

Since function y(A) is increasing, then hence we conclude that

in the presence of resistance, in accordance with the change in

the velocity coefficient found above, the static pressure will

decrease if the flow velocity is subsonic and increase if the

velocity is supersonic.

Example 4. Determine the velocity coefficient X2 and static

pressure of the air P 2 at outlet from the diffuser, if it is

known that at the inlet to the diffuser the total pressure

P0 I 3 kg/cm 2 , the velocity coefficient A1  0.85, the area

ratio of the outlet and inlet sections F2/F1 - 2.5 and the

coefficient of total pressure o - P02/P01 a 0.94. To solve

the problem we write the equation of continuity, using formula

(109)

Disregarding the heat exchange through walls of the diffuser, we

have T02 T01 , and therefore, q(A ) - q(Al). According to
2
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tables for X - 0.85 ie find q(Xl) - 0.9729. Then q( 2 ) (X
0.425'0.9729 - 0.413, to which corresponds X2 - 0.27 and

(2) 0.9581. From the relation (102) we have P2  P P0 2 '(X 2 ) a

2
-OP01f(X2) or P2  - 0.9430.9581 - 2.7 kg/cm

Example 5. With the compressor testing, in its outlet cross
2

section, the area of which F - 0.1 m the static pressure p a 4.2
kg/cm2 and the stagnation temperatur- of the air T. N 480 0K are

measured. Determine the total pressure of the air if its flow

rate 0 - 50 kg/s.

From the equation of flow rate (m) we determine the function

y(X) in terms of the known value of the static pressure of the

air:

y () ,- .ritt ± fT °.

From the tables of gas-dynamic functions, we find that the values

X - 0.406 and n(X) = 0.907 correspond to this value y(X). Hence
2the total air pressure pO - p/n(X) - 4.2/0.907 - 4.63 kg/cm

If we do not use gas-dynamic functions, then the similar

calculations which are frequently made in the processing of

experimental data must be carried out by a more complex method,

by means of successive approximation.

Let us examine the gas-dynamic functions which are used in

the equation of the momentum of gas. The sum of the per-second

momentum and force of pressure of the gas in the cross section

of the flow in question can be called the total momentum of

flow I

u-, _' 7 (W +p (113)

1=-0
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if in (113) we substitute the relations

k I-

then we obtain

7w 4pF- ±.R It (114)

After the opening of the brackets and simplifications, we reduce

expression (114) to the form

_Pa = (115)

where

z().) = X + T, (116)

The graph of the gas-dynamic function z(X) is given in Fig. 5.22.
The minimum value of function z(A) m 2 corresponds to the critical

rate of flow (A - 1). Both in subsonic and supersonic flows

z(A) > 2; any real flow conditions do not correspond to values
z(X) < 2. It Is easy to see that with the replacement of value
X by the value opposite to it X' - 1/A the value of function z(X)

does not change. Thus, one value of z(X) can correspond to two

mutually opposite values of tho veooity ooeffio int X - one of

them determines the subsonic and the other the supersonic gas

flow. Let us note also that function z(X), unlike all remaining

gas-dynamic functions, does not depend on the value of the

adiabatic index k.

Expression (115) for the momentum of flow considerably

simplifies recording and transformation of the equation of the
momentum of gas. It proves to be extremely useful in the

solution of a wide range of problems of gas dynamics as, for
example, in the calculation of flows with shock waves, heat feed

Pnd cooling, flows with friction and with a shock during sudden

expansion of the channel, in the calculation of the process of

the mixing of flows, in the determination of forces which act on
t )
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(walls of the channel, in the calculation of reactive thrust, and
so on.

The following two examples

-- make it possible to show visually

- - - - how the solving of problems is

simplified when using relation
(115). In the first of them the
previously solved problems

(Chapter III S 1) of the normal
_k M shock wave is examined, and in

U the second - the problem of the

0 4 i4 a t A flow of the preheated gas in the

Fig. 5.22. Graphs of gas- cylindrical tube.

dynamic functions z(), f(X),
r(X) when k Example 6. Determine the

relationships between the gas

parameters before and after the normal shock wave.

The relationship between the gas parameters in the shock

wave was established above by us on the basis of the fact that

with tranaition through the normal shock the total energy, flow

rate and momentum of flow are maintained constant. Let us write

the same equations with the use of gas-dynamic functions.

The equation of momentum or the momentum of the flow

O ), a ,

taking intc account expression (115), assumes the form
O'd. tIk,L_(7j 1w,(1).,

"I P1
From equations of the conservation of flow rate and total energy,

we have A

(,- (7,; r. 1, or OP, S

309 4

1 . .... ... .... .-.. .- -" ,, l I' I !



Taking this into account and reducing the corresponding values of
flow rate and speed of sound in the momentum equation, we obtain

z(X z( 2).

This equation has two solutions: either 2 ll, which

correspornds to the bhock-free flow with the constant gas parameters,

or

which corresponds to the normal shock. The same expression - the

basic kinematic relation of the theory of shock waves - was

obtained above, see formula (16) in Chapter III.

According to the known value of the velocity coefficient,

with the aid of the equation of continuity, a change in the

totafl and static rressures in the shock wave is easily determined.

Since F2 a F1 and T = T01 , then by using formulas (109) and (111),

it is possible to present the equation of continuity for the

flow of gas before and after the shock in the form

Pe,'I()1 -pol(q,) or pyO,).ap,yj ,.
1

Hence, taking into account that - it follows that

/P q(l p 2 /pl - Y(xl)/Y(f). These relations are

equivalent to equations (24) and (21) of Chapter III but are

obtained by a considerably simpler means.

Example 7. The gas which moves in the cylindrical tube is

heated by means of heat exchange through the walls of the tube.

As a result of the heat feed the stagnation temperature of the gas

is increased from 400K at the inlet into the tube to 8000 K at the

outlet from it. The velocity coefficient of flow at the inlet

into the tube Xl a 0.4. It is required to determine, disregarding

friction, the coefficient of flow velocity after preheating and

also the change in the total and static pressures in the flow.
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The fundamental relation which determines the laws governing

the gas flow in the cylindrical tube with the heat feed will be

obtained from the equation of momentum. In this case it takes the

form of

¥ -, + pip to -+ par

since the heat feed is not connected with the force effect on the

flow, and the forces of pressure in the initial and final cross

section are the only forces which produce a change in the

momentum of the gas. After replacing expressions for the momenta

of the flow of gas according to relation (115) and considering

that the heat capacity of the gas and the adiabatic index with

preheating do not change, we will obtain

or g~)*l~

Since when X a 0.4 we have z(X I) = 2.9, tnen

With the aid of the tables of function z(X) or the direct

calculation from the quadratic equatlon X + '/X 2.05, we

determine the two possible values of the velocity coefficient at

the outlet: X 0.8, X2 - 1/X21 1.25. The real solution will
be only the first solution, since by preheating it is not possible

to transfer the subsonic flow Into supersonic (see § 4)

By knowing the coefficient of flow velocity X2 - 0.8, it is

easy to determine the change In the total and static pressures in

the process of preheating. To do this, Just as in the foregoing

example, it is possible to use the equation of continuity from

which for the given case (G const, F = const) it follows that.

P,. y(,,t li ., l~ll /l]i

((V-N
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t-tt. and static pressures, as a result of the

sdecrease. The obtained value pp 1 =0.6'48

ri-sitr.tiip oj the static pressures of the gas in

-~ I" f'nir~ ci-oss sections of the section of the tube

rsl s be created in order to maintain at this

2..s~ ~tdmagnitude of the velocity coefficient at

- L: u~the conservation of momentum makes it

t~ L1-. rie general laws governing the flow in a

:'~rL2~2 o,.:.Aht preheating or cooling. ThuAs, for instance,

r t -it with an Increase in the ratio T.2 /T 0 1 the

:.'k ,)(when z( 1) const) always decreases.

111. nature of the course of function z(X)

* Li t nuns that with art increase in preheating in

.' he velocity coefficient Increases, while in

"i .,-ereases . In both cases the flow velocity

~* .. ~ c-Itica- value X2 = 1 at which function z(X)

Svalue z(X ) = 2. This causes the value

-sble preheatin~g fox thie assigned initial

z z2(X1.)/4. For the values of the parameters

x, j- L1e the maximum value of the preheating

8L40cK. From the equations of flow rate it

*1e.c>.mine the pressure ratio P2/P1 necessa-y for

.;f )uch conditions while maintaining A1 a const.

TI '' ~ Iii the preheating above the Indicated value,

'ia.i.. n z 2, whicti indicates the physical impossibility

t~v~tr.-it the assiigned rate of flow at the Inlet.

nirl/; to (108) or (110) we obtain the expression

,ri c:- the gas flow in the first case in termo of

t~J .r~gradIn the second case in terms of che static
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( and

w~~!~~pI -. -y.TQW ,I

Let us introduce the notations for the two new functions of the

velocity coefficient X which enter into the right sides of these

expressions:

) 6) Z0.)= (117)
. -__ I - - I  , 1 8

By substituting these notations, we finally obtain

(-

AI J - T (120)

Function r(M) is introduced as the value opposite to the product

y() z(X) in order to facilitate the use of the tables (product

y(X)z(X) rapidly increases with an increase in X, approaching

infinity at X --x; value r(X) changes within the limits ofmax
unity to zero). The graphs of functions f() and r(X) are given

on Fig. 5.22)

Equations (119) and (120) show the number of properties of

the momentum of gas flow. Let us fccus attention on the fact

that on the right side of these equations there are no values of

gas flow rates and :emperature or critical velocity. Hence it

follows that if at the assigned orosa-eectional area F and

velocity coefficient X the total or static pressure in the flow

is constant, then the momentum retaine a constant value

independently of the temperature and gae flow rate.
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The physical meaning of this consists in the fact that witn

a change in temperature (or stagnation temperature) in the gas

wI-.en a const the velocity of flow varies directly proportional

and t-.e flow rate inversely proportional to the square of the

temperature so that the product Gw remains constant. Let us

note that function f(x) in the region of the subsonic and low

super-)nic velocities changes very little (approximately 10%

in the interval = O.55-1.35). Hence, according to (119), it

follows that the momentum of the gas flow at constant total

pressure and cross-sectional area weakly depends on value Xover

a wide range of its change and is determined basically by the

value cf product p F.

Expressions (119) and (120) for the momentum of gas are very

convenient in the solution of problems connected with the

determination of forces which act on the part of the gas on walls

of the channel, which is necessary, in particular, in the

calculation of the reactive thrust of different engine

installat ions.

For the reactive thrust of rocket engine, above (§ 8 of

Chapter I) we obtain the expression

p(p.-pj4.

This formula determines the thrust of a Jet engine of any type

when operating at the place when the initial momentum of the air

which enters into the engine is equal to zero. We convert this

formula with the aid of the relations obtained above, for which
on its right side we replace the expression of the momentum of Las

in the nozzle exit section according to formulas (119) and (120).

In the first case we obtain

P=-'4,1:2 -pFP. or P- :, L] V - I:. (121)

where H0  p oa/PH is the available pressure ratio in the nozzle.
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In exactly the same manner it is possible to obtain the second

expression

P--p,,F,, .~r -- or P==p.P r-.-i], (122)

where n = a/p is the so-called off-design ratio of the noasse,

i.e., the ratio of the static pressure of the gas in the nozzle

edge to the atmospheric pressure.

Formula (121) is very convenient for the calculation of

reactive thrust and is widely applied in the calculation of

engines. The velocity coefficient Xa Js determined by the type
a

of the jet nozzle and by the available pressure ratio. If the

nozzle is made nonexpanding and the pressure ratio exceeds the

critical value, then X - 1; for a supersonic nozzle X = X
a a pac4

at all values of H 0 greater than the computed value and in the

considerable part of the range R1 < 11 Hence it follows that0 pac-4'
over a wide range of conditions of contemporary engines X. a const,

and by formula (121) the linear dependence of the reactive thrust

on the value of the available pressure ratio H0 is defined, since0
f(X ) const. Let us recall that also when Xa # const thea a
value of function f(X) is very little affected in the considerable

region of the subsonic and supersonic velocities.

Formula (122) is convenient for the calculation of thrust in

conditions when the static pressure in the nozzle edge is equal

to the atmospheric pressure and n = 1. Such conditions exist, in

particular, at the subsonic speed of the outflow of gas from the

nozzle, and also in the operation of supersonic nozzles in

design conditions.

Let us note that for the calculation of reactive thrust,

according to (121) and (122) it is not required to know the gas

flow rate and Its temperature. The temperature change, as can be

seen from (121) and (122), when p. = const, po = corot and

F = conat does not at alZ affect the thrust level, which is

315...
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I4
connected with the mutually inverse dependence of the discharge
velocity and gas flow rate on temperature.

Expressions (121) and (122) can be used also for the

calculation of the thrust of Jet engines in flight; in this case

on the right side it is necessary to subtract the so-called tnput.

momentum of the airflow G w /g, where G is the rate of air flow

and w - the flight velocity (see § 8 of Chapter I).

Let us examine the examples of the use of given expressions

uf reactive thrust.

Example 8. Determine how the value of reactive thrust depends

on.'. velocity coefficient of the gas at nozzle exit when

= const.

From formula (121) it directly follows that if F a consta
and 1 0 = const, then the dependence of the thrust on the velocity

coefficient Xa is determined by a change in function f(M). Under

these conditions, however, with a change in A, the gas flow

rate changes.

Thcre is great practical interest In another case of the

change in the velocity coefficient Aa' when the flow rate per

second and the initial parameters of the gas are maintained

constant. This condition can be realized if in the constant

throat area of the supersonic nozzle F p we c iange the discharge

area F . The nature of the dependence of thrust on value a Ina a
this case will make it possible to determine the rational expansion

ratio of' the nozzle for an engine with the assigned parameters

and gas flow rate. Equations (120) and (121) are not completely

convenient for such a calculation, since they include the two

variables a and F . Therefore, let us transform the equation Fa

by mieans of the equation of the flow rate

316 aq 04) _--0 "
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Taking into account the relationship between functions f0.), q(x)

and z(X), we obtain

I2\~

]II.q(A,)]

In the design conditions of the outflow of gas, i.e., with

expansion up to atmospheric pressure, the velocity coefficient is

determined from the relation

In terms of this value X the design expansion ratio of the nozzlea
F FP = I/q(X a ) and the value of reactive thrust in design
conditions are sought. In this calculat4 on the losses in

total pressure between cross sections Fp and Fa are not considered.

Let us assume that k - 1.33 and B. = 25; then in the design

operating mode of the nozzle

r(Ad) 26 0.04. ~1.97. q Q ) 0^29

The discharge area of such a nozzle is equal to F /q(Xa)iKP a
- 58FP, and the thrust P = 1.417Pa F.P The values of P

at other values of Aa' i.e., other values of Fa, are determined

with the aid of tables. Results of such calculations are given

on Fig. 5.23. Shown there are values F /F for each value of Xaa Kp a
From the graph it is evident that the greatest thrust value is

obtained with the total nozzle expansion, I.e., with the design

conditions of the outflow. However, the nature of the functional

dependence of thrust on the velocity coefficient is such that

even with a noticeable reduction in the value A and F /F ina a HP

comparison with their values in design conditions, the magnitude

of the thrust decreases insignificantly. This makes it possible -

in certain cases to use nozzles with an incomplete expansion of
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_P the gas and with the low super-

critical pressure rations p0 p, to

use even the simple nonexpanding

I nozzles in which X 1.0. If one
a

*0 $ considers that in a nozzle with

41 4 I incomplete expansion there will be

$ F, less losses of friction, then the

reduction in thrust in comparison
"I with the design conditions will

.- be even less.

1Z o4 if 20 Z 4
At the same time, as can be

Fig. 5.23. Change in a>
thrust with the assigned seen from Fig. 5.23, when a aC
initial parameters and the thrust sharply decreases, i.e.,
gas flow rate depending it is inexpedient to use the
on the velocity
coefficient at the nozzle nozzle with the overexpansions of
exit (Example 8). the gas, even if one does not

consider the increased losses of

friction in It and the possibility of the formation of shock waves.

With the outflow of gas into a vacuum (pH = 0) the thrust

value varies in proportion to the value of the function z(X), i.e.,

monotonically increases with an increase in Xa > 1. Actually,

in this case the design conditions are

A.~~ ~ = ;1 X=.!'

Since the nozzle of the outlet area cannot be made infinite,

such design conditions cannot be realized. At any final value

F aF P the thrust of the engine, which operates In a vacuum, will

be less than a theoretically possible value. However, from graphs

of functions z(X) and q(X) it is evident that with a considerable

decrease in Va /F the reduction in the thrust is not very large.

Thus, if instead of Fa IF p - ' we take (when k - 1.33) FaF p 10,

q(a ) = 0.1, a a 2.208, then the thrust value with respect to
the maximum theoretical value (when Aa a Xmax - 2.657) will be
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P s().J, 2.661
Fa/F- 018;

when F -F * 20, i.e., when q( ) 0.05 and X. 2 313, P/P
a pa a max

* 2.745/3.033 - 0.905.

Examined in the following example is the problem of the flow

of compressible gas with the sudden expansion of the channel,

which is encountered In a number of practical problems. Above

(1 5 of Chapter I) we solved this problem for flow at low

velocities, when it was possible to disregard the density change

of the gas.

Example 9. For the measurement of the rate of air flow in
the pipeline, installed on its straight section is a metering

nozzle with the flow passage cross-sectional area F2 equal to

0.45 of the area of the pipeline F1 I F3 (Fig. 5.24). It is

required to determine the losses of total pressure which appear
in the flow behind the nozzle as a result of a sudden expansion

of the channel and also the velocity coefficient X3 after the

alignment of the velocity field, if according to results of

pressure measurements p1 and Ap the velocity coefficient of the

flow In the nozzle ,2 0.52 is known. Determine alao the

reduction In staL..c pressure in pipeline caused by the installation

of nozzle.

Let us write the equation of

4p the momentum for the section of
the flow between cross sections

and 3, disregarding the wall

friction and taking into account

that at the subsonic velocities of

" -' - the air in the nozzle the static

pressure Is constant in the whole
Fig. 5.24. Diagram of the :

installation of the nozzle cross section 2:
for the measurement of the 17 ) -p,P,pI
gas flow rate (Example 9).
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Let us now replace the expressions of momenta according to

(115), and let us express the static pressure p by means of the

equation of the flow rate (110). The equation of the momentum

takes the form

After cancellation we obtain

From this equation according to values 12 and F3/F2 the velocity
coefficient X3 after the expansion of the tube is determined.

Let us note that the result does not depend on values of the

pressure and gas temperature and is changed little depending on

the adiabatic index k. After substituting into the latter

equation the assigned values X2 ' 0.52, z(A2 ) 2.44, y(A2) u 0.859,
F 21
F = 0.45, we obtain z(X3) - 2.44 + 1.577 1.22 - 4.68;

hence, according to tables we find A • 0.225, CA 3) - 0.3475,
3 ( 3)

y(X3) - 0.358.

The losses of total pressure of the air between cross sections

2 and 3 is determined from the equation of continuity

pVr q 0,W . P.

With the help of tables, hence we find

e.. P' .,F 0.')  0.45..?Y ^ OXp., . (~a~ f. 307
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In order to determine the change in the static pressure, it is

necessary preliminarily to find the value of the velocity

coefficient of the flow in the tube in front of the nozzle. Let

us write the equation of the equality of the rate of air flow
in cross sections 1 and 2, whereupon, taking into account that

the length of section 1-2 is small, the contours of the nozzle

are smooth and the flow f! A with acceleration, we consider the

total pressure of the air in cross sections 1 and 2 to be

identical. In this case the equation of continuity takes the

form F~q(X I ) * F2q(X2 ). Hence we find q(X,) = 0.45.0.7309 a 0.329,

X1 a 0.213, y(Xl) - 0.338. It is easy to see that similarly
there can be obtained the result if between cross sections I and

2 there are losses of total pressure, being evaluated by the

coefficient a a P 0 2 /Pol, the value of which is known. In this

case we obtain

q 0,)-

A change in the static pressure on the entire section between

cross sections 1 and 3 can be determined from the equation of
continuity

p F~y 0. , = pF.y 0 ,)
I T1  ,

Since T T0 3 and P1  F3 , we have p 3 /P1 = y(Xl)/y(A 3 ) =
a 0.338/0.358 - 0.944.

Such a result can be obtained also from the relation

A. Pot V

Since X3 > XIO i.e., n(x 3 ) < r(A1) , hence it is apparent that as
a result of an increase in :-he flow velocity in the tube a

reduction in the static pressure here, as in other local
resistances when X < I and F3 - FI, is somewhat larger than a

reduction in the total pressure. In this case, in view of the
smallness of the velocity coefficients in the tube X1 and X 3 9 this
distinction is small.
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in the following example we will again return to the

examination of the flow of the gaz being preheated in the

cylindrical channel. Unlike the analysis carrisa out in § 3 of

Chapter V and in Example 7 of this section, we will examine the

case where a drcp in pressures in the fZow is aeeigned. This

determines a number of features of the flows which could not be

revealed above, when it was assumed to be that a drop in the

pressures is always sufficient for the maintaining of the

assigned velocity coefficients at the beginning and end of the

tube.

Example 10. The afterburner of a turbojet engine

is a cylindrical tube installed after the turbine with a nozzle

of variable area at the outlet (5.25). In the chamber there

ccur.r the burning of the additionally injected fuel, in

consequence of which the gas temperature is increased. Let the

flow parameters of the gas at the inlet into the chamber be

p01 = 1.98 2, T0 1 * 880K, and A1 a 0.4. These values

should be maintained constant independently of the value of

preheating of the gas, otherwise the operating mode of the

turbine and compressor will be changed.

Let us determine a maximally

L" i4 possible increase In gas

temperature and the magnitude of

losses of total pressure in the

-, chamber in these conditions.

Fig. 5.25. Diagram of an
afterburner of a turbojet The assigned initial flow
engine: a- initial
position of the nozzle, parameters determine the gas flow
b - opened nozzle rate. As can be seen from the
(Example 10). expression of the flow rate (109),

the more the stagnation temperature at chamber outlet, the larger,

other conditions being equal, the cross-sectional area of the

nozzle should be. Therefore, maximally prissible preheating of

the gas corresponds to the total opening of the nozzle.

3 2
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Let u- allow that the nozzle is made in such a way that with

f:.ll expansion the area of its outlet section is equal to the

area of the chamber, i.e., F., a F2 a F1 (position b on Fig. 5.25).
The ratio of the total pressure at the inlet into the chamber to A

atmospheric pressure at the earth H0 -P1/P * 1.98/1.033 a 1.92.

This value somewhat exceeds the critical value (when k a 1.33), A

k-l = 1.85. Therefore, if the total pressure of the flow
with preheating of the gas was maintained constant, then in the

outlet section the rate of flow was equal to the speed of sound

and X a 1. However, as we saw above (see Example 7), with the
3

heat feed to the flow its total pressure is lowered, and there-

fore in this case it can be found that p03/pH < 1.85, and the

discharge velocity will be subsonic.

In order to explain this, let us write the equation of the

momentum of flow, expressing the momentum in c-oss section 1

in terms of the known total pressure pOI according to formula

((119) and in cross section 3 - in terms of the static pressure

P3 (120), whereupon for the present we assume that the pressure

P 3 Is equal to the atmospheric pressure pH, i.e., conditions of'

the outflow are subsonic. The wall friction and change in the

adiabatic index are disregarded:

P,.f 4J') ) Pp

Hence (when k - 1.33) we find

and, further, according to the tables X3 3 0.91, i.e., (X2 )

= 0.6048, f(X3) - 1.2525, z(x3) = 2.01

Conditions of the outflow of gaa will actually be subsonic,

no matter how great the preheating in the chamber was: the

assigned total pressure of the gas which is being lowered in

the process of the heat feed is insufficient for the producing

3 2 3
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of sonic velocity of outflow into the atmosphere, If the total
2pressure p0 1 was high, for example, p0 1 - 2.4 kg/cm , then from

the latter formula it would follow that r(X 3 ) - 0.398; thts value
is less than the critical, since r(l) a 0.429. Consequently, at
such a pressure the outflow conditions would be critical and

2 -- 1.0.

The value found of the velocity coefficient of flow at
nozzle outlet (A2 < 1 or A3 a 1) makes it possible to find all
the flow parameters. For determining the gas temperature it is

convenient to use, for example, the momentum equation (115),
from which it follows that

I .S) 2.1T", - I, &-t ",~;"i, K.

This is the limiting value of the atagnation temperature at the

nozzle outlet. If we increase the preheating of the gas above
this value, then the flow velocity at the inlet into the chamber
will be lowered.

In order to determine the total pressure of the gas in the

outlet section, in this case, it is possible to use the relation

= PH /ir(A3 ) - 1.033/0.6048 a 1.71 kg/cm 2 , which is correct

when A2 < 1, i.e., when p3 a p, By knowing P03, we compute
the coefficient of total pressure a - P0 3/pOl - 1.71/1.98 - 0.865.

To determine the changes in the total and static pressures
in the process of preheating, it is possible to obtain simple
relations, if we write the equality of the momenta of gas in the
initial and final cross section in the form of

p,Af0,)=p.,f1 /, 8 and p,F, P, ,

Hence we obtain

. f,;,) P, P f',)
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These relations are valid in any flow conditions of the gas.

Specifically, for conditions in this example we determine

- 1.0822/1.2525 a 0.865.

The expressions obtained for o and P3Pl are convenient for

the analysis of the nature of pressure change, determination of

the maximum losses oe total pressure and for obtaining certain

other results found by a more complex means in § 3 of Chapter V.

Thus, for instance, from the equation for determining a it

follows that the preheating of the gas leads to a reduction in

the total pressure both in subsonic and supersonic flows.

Actually, since with preheating the value of the velocity

coefficient always apprcaches unity (it increases when X t 1 and

decreases when X > 1), then according to Fig. 5.22 the value
of function f(X) in the process of preheating aiways increases,

f(X3 ) > f(Al) and a < 1. Since in the region of subsonic

velocities the limits of the change in value f(X) are small

(25%), then the coefficient of total pressure a when X < 1

cannot be lower than the certain limiting value

t ,0)f(0i 1.00

In supersonic flow, according to Fig. 5.22, any values of the

coefficient of total pressure (0 < 0 < 1) are possible.

On the other hand, with respect to a change in function

value r(X), it is possible to establish the nature of a change in

the static pressure in the flow of the preheated gas. At the

subsonic velocity, when the velocity coefficient with the

preheating of the gas increases, we have (see Fig. 5.22) r(X3) <

< r(x1 ) or P3 
< p l ' i.e., the static pressure in the flow decrtv.: .

A maximum change in the static pressure, obviously, is equal to- 4
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-- on.ic flow, when 3 < X we have r(X 3) > r(A) or

, -, "nA preheating of the supersonic fl*. .e of

, in total pressure, the static pressure increases as

, ,,, a rease in the velocity coefficient of the flow.

zjv.. t J'I -!(-,ur, if while maintaining the assigned pressure

, , i c.,w.ncase Lhe gas temperature above the value

.- , a *ve' a 18350, i.e., Increase the preheating?

-ed from the examiration of the acting drop in

. . , bas-_s of the foraula derived in Example 7, it

.i'tAt- to arrive at tt.e conclusion that since I < 1

Z_. tier with an increase In the preheating the velocity

-" k- v ill increase, approaching X = 1. However, this

. -.', since when using this formula always it Is

-.'p in mind that the results obtained from it are

"Piuicj* the condition of the aufficiency of the preseure

., - ._, the flow; the more the preheating, the greater

,: , ,- .'a.1O p 0 1 /P should be. This was repeatedly indicated

ab.v .;:0.vl- the problems.

.2aiL~>ty, .n this case when P 0 1 - const with an increase in

!.: .- ' h 2e losses of total pressure of gas increase and the

t., ;., -.- je )f the gas in the outlet section of the tube is

co.equence of which there is a decrease in the

.:- ,,e' Vlent A3 , which depends only on the ratio of the

[ c- - ;t.c pressurL; in the flow:

con.st, then with an increase in the preheating,

ii lowered, the value of the velocity coefficient -.t

- . e) outlet does not Increase but decreases. The

.-.ffclent of the flow at the inlet into the tube

. .,: decreases.
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In order to determine the actual values of the velocity

coefficients at the inlet and outlet with the assigned magnitudes

of preheating To3 /ToI and drop in pressires between the inlet and

output section, it is necessary to find the joint soZutions cf

the equation (see Example 7)

-' ! *.

from one of the following equations wlich express the constancy of

the assigned drop in pressures, foi- example:

,, .- i * or ' " J' r ,

if the ratio of total pressures is assigned;

P, i a or P*Jfi.) r. C.; 4

if the ratio of static pressures is assigned;

- -, --7 - - ,,.t or P Ye A*-- fl €,,,,P., PS 0),i T.4,

if the ratio of the total pressure at the inlet to the static

pressure at the outlet from the tube (available pressure ratio)

is assigned. The latter case is encountered most frequently. The

joint solution of the equations is most conveniently conducted

by the graphic method with the aid of tables of gas-dynamic

functions.

Common in the examples examined above of the gas flow was the

fact that the flow velocity was directed along the axis of the

channel.

In a number of problems of applied gas dynamics it is

necessary to calculate such flows in which the vector of absolute

gas velocity comprises a certain angle with the axis of the flow.

Besides the axial velocity wa, which determines the gas flow rate ,4

(
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and momentum along the axis of the flow, here there are velocity

components in the plane perpendicular to the axis - radial w or
r

circular w velocity of the particles of gas. Serving as an

example can be the flow of twisted gas in the annular channel,

which is encountered in different vortex apparatuses (clicular

component), or the expansion of the supersonic gas Jet escaping

into the atmosphere with a large excess pressure (radial component).

if the gas parameters in the flow cross section can be

a3sumed to be constant, then for calculating such flows methods

and formulas given in this section can be used.

At first glance it can be shown that for this it suffices in

all the derived relations to take only the axial component of

velocity into consideration. This, however, is not so, since

at the assigned stagnation conditions the value of the temperature,

static pressure, and gas density will also depend on the value

of the circular (radial) velocity component; changes in the latter

will affect the rate of discharge and momentum of flow. The

fact is that according to the equation of energy and the

relations (101), (102) and (103) obtained from it, the connection

between the parameters in the flow .nd stagnation parameters is

determined by a change in the absolute velocity (or the velocity

coefficient calculated according to the absclute velocity and

total stagnation temperature), independently of the angle being

composed by the velocity vector with the axis.

Let us show hou to generalize the relations obtained above

for the case of motion from the tangential (radial) velocity

component. Let us examine the one-dimensional flow of gas with

the stagnation parameters p 0 and T and the absolute velocity w

making up the angle a with the axis of the flow. The gas flow

rate per second through the cross section of area F, perpendicular

to the axis, is equal to

1FW. = 7PW Coss. 1
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where wa is the axial component of the gas velocity. In the same

way as in the derivation of formula (109), hence it is possible

to obtain

o- Ma;. Co 2-+= in) ,ai Co 1o

where

The latter relation can be rewritten in the form

SP. ._F1 (123)

where

q(k i) = q (1) cos a (124)

is the gas-dynamic function q(A), generalized for the case of the

flow of gas with the velocity component in the plane perpendicular

to the axis. In exactly the same manner it Is possible to obtain

the formula similar to (ill)

p._ (125)

where

y( ,2) ) cos s. (126)

Thus, if angle a is assigned, then for the calculation of the gas

flow rate and compilation of the equations of continuity, the

same formulas as when a - 0 are used, since the generalized

functions q(X, a) and y( , a) are determined from angle a and

from values q(X) and y(X) for the velocity coefficient in the

absolute flow of the gas.

The momentum of the flow of gas in the direction of the axis

Q G-

, PF W Cos , I I II
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By converting this expression similar to the way In which this

was done in the solution of formula (115), we have

Q&Za, Cos 2[,.a.,,Cos+ +
9i

or after the simplifications

*k+lO Z (127)

where
2A Cos t'*I : t -- k 1'X.. 1 . ( 128 )

Expression (127) Is similar to the expression obtained when a - 0
but contains instead of z(X) the generalized function z(X, a),
the graph of which is given on Fig. 5.26. When a - 0 function
z(X, a) is reduced to z(A) = A + 1/X; the minimum value of it
z(X) - 2 corresponds X = 1. When a 7 0 the minimum values of
function z(X, a) are less than two, whereupon with an increase
in angle a the minimums of the curves are displaced into the
region of supersonic velocity.

For the conducting of numerical calculations, it is possible
to compile tables of function z(X, a) or a grid of curves more
detailed than on Fig. 5.26, at different values of a (see the
graph in the appendix).

'1 Fig. 5.26. Graph function' € • .z(X, cx).

* 41
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Forrulas (123) and (127) make it possible to establish the

nature of a density change of the current, cross-sectional area,
specific impulse and other values which characterize the gas flow,

depending on the velocity coefficient A and angle a between the

velocity vector and the axis. However, here we will not discuss

this. 4

When using generalized functions q(, a), y(X, a), z(X, a)

and their combinations, all the equations obtained in this section

can be used for calculating flows with a circular or radial

component of velocity.

Example 11. The twisted flow of gas moves in the annular

channel between two cylindrical surfaces (Fig. 5.27). The

velocity coefficient of the flow at the channel inlet X I 0.85,

and the direction of absolute velocity is assigned by angle

I  300 to the axis of the channel. With channel flow the

stagnation temperature of the gas is reduced from 9000 to 7000 K

as a result of the thermal conductivity through the walls into

the environment. Disregarding the friction and also a change in

the parameters on the radius of the channel, determine the

parameters of the gas at outlet from the channel. The adiabatic

index k = 1.40.

As above, in the examination

rTwW, of flow in the cylindrical channel

.., with the heat feed, we obtain the

fundamental equation from the

-------------- condition of the constancy of the

2 momentum of gas in cross sections

Fig. 5.27. Twisted gas of the channel. In this case
flow in the annular this conCition takes the form
channel (Example 11).

orror * Q," "*) =Q "I ") r
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By substituting the assigned values of the stagnation temperatures

and the value of function z(, al) 2.055 (see Fig. 5.26), we

obtain

8( ,, 0 ,) 3 -A

This value of the function can correspond, generally speaking,

to different combinations of values X2 and a2, and therefore for

determining these values we use the condition of the constancy
of the moment of momentum (see § 6 of Chapter 1). Since the

mean radius of the channel does not change and there are no
moments of applied forces, then in the flow, independently of the
occurring processes, the circular velocity component should be

constant. Therefore,

o, . or ) s in as 6l .

Hence we determine

.sin as 1 , si 8, If "- .3 ' .8

The joint solution of the two obtained equations is most conveniently

carried out. graphically. Being given a number of values of angle
aL, we find the values of the velocity coefficient X2 a 0.482/sin a 2
corresponding to them; substituting these values a2 and A2 into

z(X, a), we plot the graph of this function. The point of curve

where z(A, a) - 2.33 corresponds to values of parameters in the

outlet section of the channel, and in this case we find X2 = 0.72,

a2 i 420. In the calculations it is possible also to use an

auxiliary graph or tables of function z(A, a).

The condition of the retention of the gas flow rate in cross
sections 1 and 2, when using expression (123), makes it possible
to determine the ratio of total pressures of the gas - the

coefficient of total pressure:

Pei q(01,)c sz, ¥T, NO, Mi. ,74 *I0
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(cooling of the flow is accompanied by an increase in the total

pressure).

A enange in the static pressure is easy to determine from
the relation

A e i 01~

or from thv equation of the equality of the flow rates recorded
in form (125).

In conclusion let us list the introduced gas-dynamic functions

and the relationships between them:

1. The simplest functions which express the relationship

between the gas parameters in the flow and stagnation parameters:

(.

in this case

.( I. .:(.). { )

2. The functions which make it possible to express the gas

flow rate by the total pressure

'7 P-) =C X~ 4 M~

or by the static pressure

By means of these functions we obtain the two expressions for

the gas flow rate

333L -- -0,
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3. The function

W 4T,
with he aid of which the momentum of the gas flow can be

represented in the form of the product of the stagnation temperature

(critical speed of sound) by the ga5 flow rate

1 p 9-to+-i' a. ft

4. Functions f(), r(A), with the aid of which the momentum

of the gas flow is expressed in terms of the total or static

pressure:

M -- Q() M z .,). rQ.)= C
," .--- 0.) 0

Correspondlingly we obtain two expressions for the momentum of

the gas flow:

I = ,f A.),

The constant which enters into the expressions for functions q(X),
y(X), f(X), and r(A)

t I I l +I r_1

Is equal to 1.577 for k - 1.4 and 1.588 for k - 1.33.

5. Functions q(., a), y(A, a) and z(X, a), which make it

possible to propagate the methods examined above and design

formulas for the case of gas flow from the circular or radial

component velocity.

6. In the solution of some problems derivatives of different

gas-dynamic functions are also used. By means of differentiation

and simple transformations, it is possible to obtain their

expressions in terms of initial functions.
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For example,

dr 2 'F-

0') 1 ( ) T - , and so on.

4

What is the meaning of simplifications being obtained in the

recording of fundamental equations with the aid of gas-dynamic

functions?

As can be seen from the examples given above, the major

advantage of the expressions obtained here is that they contain

e8ah flow parametere the nature of change in which can ba eaeil

aatablished from oonditions of the problem, for example, the
constancy of stagnation temperature T0 in adiabatic flows and

an increase in T with the heat feed, the retention of total

pre3sure PO in the isentropic flow and a drop pO in the presence

of losses, and so on. By the selection of the corresponding

expression for the flow rate or momentum, it is possible to

reduce to a minimzum a number of unknown parameters in the funda-

mental equations. In this case it is frequently possible to find

the unknown values directly from the initial equations, avoiding

the bulky transformations.

Let us note some general rules which are useful in the

solution of equations in general form and calculations with the

aid of tables of gas-dynamic functions.

In all cases when the general or numerical expression of the

value of the velocity coefficient X or any one of its functions

are obtained, it is possible to consider that all the gas-dynamic

functions and coefficient X (from the tables or graphs) are known.

This is the basic condition in the simplification of the -

calculations, since it eliminates the need for obtaining in

explicit form the dependences between X and its functions. In the

numerical calculations one should consider that functions T(X),

C| 335 =
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(A) and e(M) in the region of low velocities and function q(X),

z(X) and f(A) at sonic speeds are changed very little with a change

in value A, Therefore, in the indicated regions an insignificant

error in the value of the functions, can lead to a great error in

the calculation of the velocity coefficient X. Such calculations

should be avoided, and as far as possible, in these cases, other
equations which include, for example, functions, y(X) and r(X)

should be used. If this for any reason is impossible, then it is

necessary to conduct all preliminary calculations with a high

degree of accuracy. It is understandable that in these regions

it is not recommended to determine X according to the indicated

functions by means of graphs. In particular, this is related to
function z(X), which over wide limits of the change in X (from
0.65 to 1.55) varies in value by a total of 10%. Therefore, for

the determination of A in terms of the value of function z(X) in

the region of sonic speeds, it is possible to calculate the

possible values of X directly from the equation

whence

2 z o) Va'(lh -

In order to avoid the error connected with the subtraction of

close values, the supersonic solution J3 located by the first and

the subsonic solution by the second of these expressions.

From the examples examined in this section, it is possible

to see the efficiency of the method of calculation with the use

of gas-dynamic functions in the solution of sufficiently complex

problems which are of practical use.
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§ 7. Gas Flow with Friction in
the Cylindrical Tube with the
Assigned Magnitude of the Ratio
of Pressures at Inlet and
Outlet

Using the relations derived in the foregoing section let

additionally explain some laws governing' the one-dimensional gas
flow in a cylindrical tube with friction. In § § 1 and 2 it

was established that the friction leads to an increase in the

velocity of subsonic flow and a decrease in the velocity of

supersonic flow, whereupon in both cases the maximum conditions

correspond to the critical velocity in the outlet section of the

tube.

The results obtained in § 2 are valid, however, only when

the velocity coefficient at the inlet into the tube X1 is

maintained constant, which requires the creation of a quite

definite drop in the pressures in the flow for each mode and

(each value of the normalized length of the tube. In actuality,

most frequently it i3 the opposite: the assigned value is the

drop in pressures between the inlet and outlet sections of the

tube, and values of the velocity, flow rate and other flow para-

meters are determined by the acting d: op in pressures and by the

resistance in the section of the tube in question. For flow

in the inlet of te tube the most characteristic value,

which is usually known or can be easily determined, is the total

pressure p01 ; for the characteristic of flow at the outlet from

the tuoe, it is important to know the static pressure in the

environment or reservoir where the gas escapes from the tube p

If the flow velocity in the outlet section is less than the speed

of sound, then static pressure of the flow, as is known, is

equal to the external pressure, I.e., P 2 = PH If X2 1, then

in the outlet section of the tube p 2 > PH" Finally, when j2  1

also conditions when p 2 
< p are possible.

Let us call the value R0 =Po01/PH the available pressure ratio.

( The flow parameters in the cylindrical tube defined basically by
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the value of the available pressure ratio R0 the process is
actually as though it were an outflow of gas from the vesseZ with

piessure p into a medium with pressure pH through the channel

wi.h the assigned resistance. Therefore, in the examination of

the law governing flow with friction, it is necessary to consider

the value of the available pressure ratio in the flow; without
this the obtained results can prove to be unreal.

Let us assume, for example, that at subsonic velocity at the

inlet into the tube the available pressure ratio Hl0 is less than

the cri.ical pressure ratio

I k/ -I M~

. - (,"i-'.;
for air fl4 1.893. Due to friction the total pressure of the

flow along the length of the tube is decreased, and therefore in

the outlet section of the tube p021P < P01/PH < 1.893. This
means that the flow escapes from the tube under the action of the
subcritical pressure ratio, and, consequently, the velocity of

such a flow will always be subsonic. No matter how much it is
possible to increase the normalized length of the tube it is
impossible to obtain value X2 - 1: the drop in the pressures
acting in the flow is insufficient for producing the sonic speed

of outflow at the outlet from the tube.

Thus, the conclusion obtained previously that with an increase
in the normalized length of the tube up to the maximum (critical)
value, the flow velocity at outlet from the tube reaches the speed

of sound and is valid only in such a case when a sufficient
(depending on values X and X) pressure ratio H 0 is provided.

Let us show how the calculation of flow parameters with flow

in the tube with friction Is produced if A1 < 1 and the value of

the available pressure ratio is assigned.
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( Let us write the equation of continuity for flow in tie . ,

whereupon flow rate in the inlet section is expressed with tLt.-

aid of formula (109) in terms of the total pressure, aid tn ,'L.w

rate in the exit section is expressed by the static pressorz '

the aid of formula (ill)

p.r, 1 gY 6o1

Since for the adiabatic flow in a cylindrical tube T - and

F2 = Fl, then hence it follows that

If 2 < 1, then, as %%as noted, P 2 = p. or

J, 0)-0- = 11 9) 0 1 (29 1

Equation (129), which mutually connects ,, -:'Riuly

coefficients in the inlet and outlet sec* Ion. of '.'. t...t-

assigned value R0 and X1 < 1, ia correct wltao'2 - ig.

the flow pattern and ltngth c' the tube. -i, thuJI&,.

change in parameters Df the gas in the tute i .s_-'r.'o:, . "

value of the coefficient of friction and b,., th-e "'

tube. Earlier in § 2 the formula descrlblig t . i. ,

flow parameters as a result of the frict 1.. was c btarlnu:

2k r
where . is the normalized length r! 'h, t.. rif! t

(130) establishes the dependence betwo,:n t ", vt)-'t.( ,

X1 and X2 of the azsigned value x. E..at ,

can be considered as the system of twu with tw,.
the roots of which determine val:ie- , j,' ,

the assigned values Rl0 and ×. By t,: ', .

coefficients is determined the r'va- '''.' ,, ' .

through the tube with thu ass igruc ..... . ', .. i-e

under the action of the availablt. -z-I



Let us examine some of the following properties of the flow

;1r. subsonic speed of the flow at the inlet into the tube. In

tne first place let us compare the one-dimensional subsonic gas
flow in the tube in the presence of friction with an ideal flow

with the identical availabe pressure ratio H0  A change in the

gas parameters along the length of the tube is connected with

fri:tion, and therefore in an ideal flow, when p 0 2 0 Poll the

gas parameters are constant in all the cross sections of the tube.

Tht. velocity coefficient in the outlet section X2 1 < 1, which

in an ideal case is determined by the value of the available

;ressure ratio ,(X 2 ) = I/R0 is more than that during flow with

friction, ,hen p0, < poll and ;r(X2) 1/oH0 . The more the

normalized length of the tube, the larger will be the total losses

of pressure and the less will be the flow velocity at the outlet

2,om the tube as compared with the velocity in the ideal case of

the flow. Thus, it is necessary to keep in mind that, although

with flow in the tube with friction the velocity of the flow

along the length of the tube increases, its greatest value, the

outlet velocity, always remains less than that with the same

pressure ratio H0 in -he ease of the flow without friction (for

example, a very short tub!, when X z 0). The more the normalized

length of' the tube, the les- (at given R0 )1 the flow velocity both

at the outlet and inlet.

It is interesting to note that If R0 ;nst, then when

X2 
< 1 the change in the normalized length of the tubeX always

leads to a change in the inlet velocly of the tube, independently

of the larger or smaller value X of its critical value for the

given X1 < 1. The retention of X1 
= const with a change in the

normalized length of the tube and A2 < 1 requires a corresponding

change in value in the available pressure ratio: the longer the

tube, the larger the value 10 necessary for maintaining the assigned

conditions at the inlet, i.e., the retention of the gas flow

rate.
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On the other hand, if at the assigned length of the tube

(x - const) we increase the pressure ratio no, then the velocities

at both the inlet and at outlet will increase until the value X2

reaches the critical value X2 = 1. A further increase in n

changes neither X1  nor A2 ; however, in the outlet section of the

tube a surplus pressure in comparison with the environment

(reservoir) will be established. For these conditions equation VI

(129) is incorrect, since with its derivation it was assumed that

= PH; the relation between the flow parameters is determined

only by equation (130). From the continuity condition it is

possible only to find the minimum required value H0 at which the0i

mode with X2 = 1 and assigned value X1 is established, since

acco 'ing to equation (129)

,,., 1- k- ( ) I ..*

Since q(Xl) < 1, from the latter relation it is evident that with

flow in the tube with friction the critical outlet velocity is

established with the pressure ratio of n0 > U p, where the n1

is the pressure ratio necessary for obtaining X = 1 during flow

without friction. The conditions X2 = 1 for this value XI begins1I
with an increase in the normalized length X up to the value

Y. Xp= ?( -- . (131)

and in this case condition H0 > O mn should be observed.

4: 1- .-j- ,-1 f a0 0I

Fig. 5.28. Relationship
6 - --r between parameters of

subsonic flow at the inlet Z

I J 'and outlet sections of the
./ . .cylindrical tube in the

" presence of friction.

42 2 44 4
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Figure 5.28 gives results of the calculations of subionic

flow in the tube with friction. The graph illustrates the basic

regularities of the flow given above and, in particular, shows

that <I

a) when X1 = const with an increase in the normalized length

X value X2 increases, whereupon always Xl < A2 < 1;

b) at a constant available pressure ratio f0, with an

increase In x, value A 1 is always decreased; X2 is decreased

also, if X2 < 1;

c) for each value of the normalized lengthx there is a

completely defined value of the pressure ratio p0 1 /p = lOP which

corresponds to the assigned flow velocity at the outlet and

inlet into tube, respectively;

d) the limiting value Xl, which corresponds to X2 = 1, for

each value X is established with the defined value, which is

increased with an increase in X of the value of the pressure

ratio and does not increase with a further increase in 11.

Let us now examine the features of flow with friction with

supersonic velocity at the inlet into the tube. From formula

(130) it follows that if the normalized length of the tube is

less than the critical value, determined for the given value of

XI > 1 by formula (131), then along the length of the tube the

flow velocity will decrease, remaining supersonic. At the outlet

from the tube with continuous braking of the flow, X2 
> 1 will be

obtained. At a certain value of the normalized length of the

tube, called the critical from equation (130), it follows that

00 2 ) = 1, i.e., A2 - 1. This length corresponds to the maximally

possible flow conditions with a continuous change in velocity from

the assigned value A > 1 to 12 0 i. If X > X p, then the

continuous braking of flow in the tube is impossible. In this

case equation (130), which describes the flow with a continuous
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velocity change, does not have solutions for X2, since from it

00\2 ) < I follows. In actuality, here in the initial section of

the tube the supersonic flow is braked to a certain value

>1, and then in the tube there appears a shock wave, behind

which subsonijc flow is established with an increase in t ie

velocity along the length of the tube from value X" (after the

shock) to X2  1 1, as was noted above.

The location of the shock and relative length of the

supersonic and subsonic sections of the flow, depending on the

assigned parameters, can be determined in the following manner.

Let us designate the normalized length of the tube from its

beginning up to the shock wave (supersonic section of the flow)

Let us write equation (130) for sections with a continuous velocity

change, i.e., separately for the supersonic and subsonic sections:

0,1- .)- Y, (132)

V) - P J, - Z,. (133)

Let us make a term-by-term summation of equations (132) and (133),

assuming in this case that the shock wave is normal, and therefore

the relation X" - 1/X' is correct. As a result we obtain

Let us denote

Then the latter equation can be written in the form

(135)

Figure 5.29 gives auxiliary graph for determining the function

€(X) from value X. Relation (135) establishes the relationship
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between the parameters of flow, which moves with friction in the

tube with normalized length X when in the tube a normal shock wave

appears.

ON ;$)

Fig. 5.29. Auxiliary graphs of
functions €(X) and O(X) in the

region of supersonic flow
velocities

4.!

o.) =2 9''_ I' _! :4

Entering into formula (135), besides the known values of X
and 1, is also the thus far unknown value of the velocity

coefficient at the outlet from the tube X Since after the

shock the flow is subsonic, then fbr determining A2 let us use

the equation of continuity

Y PJ -IT, I (-o

which is correct both when A1 < 1 and when XI > 1. If from this

equation It follows that y(A2 ) > y(l), then A2 = 1 at y(A 2 ) < y(l)

and X2 < 1. Substituting value A2 < 1 thus found into equation
(135), let us determine O(X'). Further according to the graph

(Fig. 5.29) we find values V' and *(X'), and, after using

equation (132), we compute the value X, - the normalized length

of the tube necessary for the shock-free supersonic flow from X1
to '. The value X, determines the location of the shock along
the length of the tube, since when - const we have xl/x = XI/X.

With the critical flow conditions at the outlet from the tube,

when X2  1, the result of the calculation, as it is easy to see,
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does not depend on R0: a shock appears in the definite cross

section of the tube independently of the value of the available

:ressure ratio. The calculation according to formulas (129),

'132) and (135) shows that when X2 < 1 the shock wave with a
decrease in 1 0 will be moved from its end position, which
corresponds to 12  1, to the inlet section of the tube. The

minimum value of the available pressure ratio, at which the flow

with the assigned initial velocity coefficient X1 > 1 is possible,

is determined by the fact that the shock wave, in moving upstream,

will approach directly to the inlet section.

Let us give an example of the calculation of flow with a

shock wave within the tube. Let us assume that the velocity

coefficient at the inlet Into the tube X = 1.8 and the total1
normalized length of the tube x - 0.6 are assigned (at standard

values of the coefficient of friction this corresponds approximately

to 30 calibers of the tube). The available ratio of total pressure

of the flow at the inlet into the tube to the static pressure in

the reservoir, where the gas escapes from the tube, is 10 = 3.0.

The critical value of the normalized length of the tb.ze fcor

the assigned value X is determined;

'hP. , --j I A.Vs1, .",

(we find value (XI ) from the auxiliary graph of Fig. 5.29). Since

the assigned normalized length of the tube X - 0.6 is more than

the critical value, then, as was noted, the continuous braking of

the flow is impossible, and a shock wave appears in the tube.

Let us determine the velocity coefficient of the flow at

the outlet from the tube with the aid of equation (129):

yOj .- ,llq(, 1 -1 .l.f5 I. d2 or )Z-, 7 1.

Further we substitute the obtained values of X2 and the assigned,

values of A1 and X into equation (135),which determines the velccjIt :
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ccefficient of the flow in front of the shock I(A') * 0.6 + 1.25 -

- . 0.365. From the graph on Fig. 5.29 we find that this

value ¢(XV) corresponds to X' - 1.66 and O(X') = 1.375. We

determine the normalized length of the supersonic section of flow

according to formula (132)

Z, = ')-- . M 5 3- 1.37-5 0,11

and find the distance from the inlet into the tube in front of

the cross section where the shock wave appears (when c = const):

X1  1a 0,! !

Thus, at a length of approximately

;"1 18% of the total length of the
*tube, the supersonic flow under

the action of friction is slowed

down from X1 = 1.8 to x' = 1.66,'I and then in the shock the velocity

(A, falls to A"l = 0.6; in the remain-

/0 ~.~-~- ing part of the tube the subsonic

flow is accelerated to X2 = 0.71

and escapes from the tube, having
a static pressure equal to the

424 - ----- - pressure in the reservoir p

Fig. 5.30. The possible
conditions of supersonic At other values of the
flow in a cylindrical available pressure ratio, the
tube with friction with
the length of the tube position of the shock will be
greater than the critical different. Figure 5.30 givesv~lue, Al a 1.8; - 0. 6  dfeet iue53 ie
(eleXa1.8; -o results of the calculation(example of the

calculation) according to the given method at
different values of no, The

maximally possible conditions are determined, on one hand, by the

achievement of critical ielocity at the outlet from the tube

(during the calculation we assume that X2 
= 1 and find the most

remote shock-wave position) from the inlet, and on the other hand,
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by the emergence of a shock wave directly behind the inlet section

of the tube. In this case (Xa 1.8, X - 0.6) the critical flow

conditions at the outlet is obtained when n 0 - Y(1)/q(xl)

1 1.893/0.4075 = 4.64.

According to formulas (135) and (132), by means of the

graph on Fig. 5.29, we find $(X') - 0.6 + I - 1.485 - 0.115,

X' = 1.41, and 4(X') - 1.185. We further have X, - 1.485 -

- 1.185 = 0.3, and, therefore, X/X = 0.3/0.6 - 0.5.

The minimum value of flO at which supersonic flow at the

inlet into the tube is possible, corresponds to -1to),ay)l-=

* 2.1-o04, 1.47 or X2 = 0.66. Therefore,we have

.v (,) 1.117
410.)P

For determining the total and static pressure from the value of the

velocity coefficients at the inlet and outletit is sufficient to

write conditions of the equality of flow rates of gas in the

inlet and outlet sections, having used expressions (109) or (111).

It was indicated above that if the normalized length of the

tube is less than the critical for this value Xl, then the laws

governing the flow with fr'ction allow the existence of the flow

with a continuous change "Ilition) in the supersonic velocity

on the entire length. It sible to show, however, that

together with the complete] jersonic flow, here the shocked

flow within the tube and the subsonic speed at outlet is also

possible. Such flow conditions in the case X < X can exist

only in the defined interval of values Pol/PH - which is found

from the condition that in the exit section of the tube the

static pressure of subsonic flow should be equal to the pressure

of the environment.
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i 1

. . The AveraginC of Parameters
of' Jonui;form Flow

:j-Acractice it is frequently necessary to calculate gas flows

with parameters variable in cross section. In a number of cases,

however, these flows can be considered as one-dimensional, with

some mean values of the parameters in each cross section. In

this case the problem of the averaging of gas parameters in the

cross section of the nonuniform flow appears.

Sometimes as the mean values of the parameters we take the

mean values in area, velocity, pressure, temperature, and so on.

it "s possible to szw however, that such simple averaging is,

generally speaking, incorrect and can lead to erroneous results:

the ratio cf the mean values of total and static pressures will

not correspond to the mean value of the velocity coefficient,

and the gas flow rate calculated according to the mean parameters

will be more or less real and so on. If the initial nonuniformity

of flow is small, then quantitatively these errors are insignificant;

with great nonuniformity of the parameters the error can be

significant. Therefore, the solution of the stated mission In

general will be approached by other means.

The assigned nonuniform flow is characterized by a number

of total (integral) values, that is, by the gas flow rate, energy,

momentum, enthalpy, entropy, and so on. Replacing this flow by

the one-dimensional flow - the averaged - one should try to

maintain the total characteristics (properties) of the flow

constant. Since the state of the or.e-dimensional gas flow is
determined by three independent parameters (for example, the

total pressure p,, stagnation tem.,erature T0 and velocity

coefficient T), then in averaging, it is simultaneously possible

to maintain only the three total physical characteristics of the

initial flow constant.
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The most widespread is the method of the determination of

mean values of parameters Pot TO and X while maintaining

i : ii, ;tial and averaged flowe valZea of the flow rate of th

9a8 ;,jtaZ energy E and momentum I idenjical. Conditions G -

ccnst, E - const and I a- const give the three equations with

three uknrowns necessary for the solution of the problem. Let

us assume that in the cross section of the initial nonuniform

flow the temperature field and full and static pressure fields

are known (assigned or measured). Then it is possible to consider

at each point of the cross section the values of total pressure

pO, s' agnation temperature To and velocity coefficient X are

known. According to value X, for each point of the cross section

gas-dynamic functions q(X), z(X), etc., can be found. For the

flow, as a whole, the values of flow rate, momentum and energy

are determined by means of integration of the corresponding

elementary expressions over the entire cross section. Thus, for

instance, the gas flow rate is equal to

( Q= \dl O= ',,-742  (136)*~ , A I ;

if' the velocity field is assigned in the form of a graph or table,

the gas flow rate can be calculated according to methods of

graphic or numerical integration.

The total values of energy E and momentum I are determined

simiilarly.

Let us turn to the solution of the problem of the averaging

of parameters P0 T O and X. Let us equate the values of total

energy of the gas calculated in one case according to the true

and in another case according to the mean values of the gas

parameters:

(St

3 ( ..
• 'A q



'W *, -'sldcr the heat capacity of gas c to be constant over the
entr c:.'oss sc.tion. Let us substitute into this equation the
ex> - rsi¢ for t-ne elementary gas flow rate and the expression

_.rtten atove for the total g u flow rate in the flow. Hence we

obtain T*he f rnt un'h:nown value - the meian stagnation temperature

of the ga :
.. ,, i..F

.d" -. (138)

Fro:- formula (138) it is evident that T0 is the averaged-mass

value of the stagnation temperature. Let us use the obta'ned
average value of the stagnation temperature for calculation of
the :,.ean value of the critical speed of sound

Let us find the mean value of the velocity coefficient of flow 7
from the condition of the equality of thc effective momentum of
flow and the momentum calculated according to the mean values

of Lhe paranieters. For the sake of simplicity of the calculation,
let us express the total momentum by means of formula (115) in

terms of function z(X), and let us present the elementary momentum

according to formula (119) in terms of the total pressure and
function (X). As a result we will obtain

whence

A11-I ?R . J~)$ (139)

in accordance with the assigned flow conditions of the gas from
two values of the velocity coefficient X determined by function

z( ), we select the real value X > 1 or X < 1. The reason for
the ambiguity of solving the problem In this case is quite obvious:
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the assigned condition of the retention of flow rate, momentum

and total energy will not be disturbed, if in the averaged flow

the shock wave arises; the velocity coefficient in this case

acquires a new value opposite in magnitude so that function z( )

will be a constant value (see § 6, Example 6).

After determining the stagnation temperature and the velocity

coefficient in the averaged flow, we find the average value of

total pressure p0 from the expression for the gas flow rate:

Qve.
,-s (140)

An interesting relation can be obtained if we use the momentum

equation for determining the average total pressure:

4~fQ) =~pj ().) dP.

Hence we have
!, , pf (,) dF

jP * = - , '

Value f('T) is the value of function f(X) for the value of the

velocity coefficient X averaged over the cross section found above.

On the basis of the theorem of the mean known from integral

calculus, the latter relation can be presented in the form

I o ( '. F

f (0.) F

Here f(X) is the value of function f(X) at a certain pcint of

the range of integration, i.e., at a certain point of the cross

section F. As has already been indicated, the value of function

f(X) changes very little over wide limits of the change in X

(at subsonic and small supersonic velocities). Therefore, the

two values of function f(.k) in the given cross section of the

flow f(X) and ?(X) will be close in value. Hence, it follows that
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?KC ,L-'ained relat'on means that the value of total pressure p0

difrs little from the total pre88urv averagea n area value.

Calculations show that if the velocity coefficient X on the cross

section changes within limits of 0.4-1.0 or 1-1.4, then the error

01' the calculation p0 in the formula (141) usually does not

exceed 2-35.

From f nd values To$ X and F. all the remaining parameters of

the averagE i flow, speed w, density - and so on, are unambiguously

det,.rmlned. Let us note that the mean values of the paramter's,

whih satisfy the conditions stated In the problem, are obtaineJ

quite definite independently nf the method and order of the

solution of the fundamental equations, although in this 2ase

expressions different in appearance can be obtained.

Let us discuss the physical meaning of the obtained averaged

flow parameters. It is easy to see that values of parameters T0

p0 and A and others are equal to the appropriate parameters of

such a gas flow which can be formed during the alignment (for

example, because of turbulent mixing) of the initial nonuniform

flow in the heat-insulated tube of constant cross section with-

out friction against the walls; in this case the flow rate,

momentum and total energy of the gas will also maintain constant

values. In other words, the found equivalent (averaged) flow

can be actually obtained during the flow of the initial gas

without external actions. If we calculate and compare the

entropy of the gas in the nonuniform and averaged flow, then

it will appear that the averaged parameters correspond to

the larger value of entropy. This is explained by the fact that

with the mixing of the gas particles at different velocities

losses to shock appear, the total kinetic energy decreases, and

the thermal energy ircreases.
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in connection with this , ITIC17 f.l'-, <'hod oL' averaFg ni- 1i~

certain cases can prove *.o b" ick QZa-C 7tils, .for ins~tha,

if according to the mean 1a....'~:~Iitn r1

section of the compress,;i' ' wti

ei'f'Lciency, then the vz.iu le . real w'-1 i - ootalilc,

to the real losses ('t~i ~ to~~~o

compression of gas wi .1 rttjiisc i

appear as a result of th i*xc-it rcJ La

fl ow parameters by I ~ it? :.. '%'; f *When an-'Y-:!)g to

the meaning of theT rv-)t '.'zn i r .jArd to evlat ne work

capac ity of the !~ n1 .L's ad vt'o age*-is , a s

LI. Sedov and -'. L'i 0:~ci*L carry out averaginf

in order to maintit',ht qrR :.tity or the entropy of gas

canstant

For determining th- three parameters of the averaged flow,

besides the condit ion of the retention of entropy, we also use

equations of the constancy of flow rate and total energy.

The mean values of the parameters we compute by the folloving

,way. From equation (136) we find the total gas flow rate. Further,

as above, from the equation of energy (138) we determine the

stagnation temperature T 0 * The condition of the constancy of

entropy (see § 7, Chapter 1) in the averaged and real flow is

written in the form

CAR lit =-AR In( TO)dQ

This equation includes only one unknown parameter - the average

total pressure po. For det ermining FO) for dO we substitute its

value obtained above and then convert the equation to the form

'Sedov, L. I., Chernyy, G. G., on the averaging of nonun~form4
flows of gas in cihannels. Theoretical hydromcchanics,
Collection of articles,11o. 12, -ssue ~.Oborongiz, 1954.
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-- -- I Pin.l (142)
j--17 .-T T.

reu :.:. the stagnatic;- temperature T O can be considered

identical in all points f the cross section, i.e., we assume

- ..... this case equation (142) takes the formU

In P# In peld (143)

Consec "., the average value of total pressure is found by the

|a'erar4:- _f the logarithm of total pressure in the initial flow

* wi:th respect to the flow rate. The integrals of the right side

Cf 'eqJuations (142) and (143) are calculated usually by means of

gra!r.h.c or numerical integration. If the velocity in the initial

is variable over the cross section, then values of p0

calcilated according to formulas (142) and (143) will always be

:,,ore than values of p0 determined for the 3ame conditiuns

according to formula (140) (when I = const).

We find the velocity coefficient of flow from the equation

of the flow rate

.e r(144)

rn connection with the indicated increase in total pressure pop

this value of q(T) proves to be less in value than that found

earlier. This rr ass that the average velocity in the subsonic

flow will be less and in supersonic larger than the corresponding

value.- ootained with the first methid of averaging. In both

cases this moans that the momentum of flow averaged over entropy,

!:'oportional to the value of function z(A), will bc greater than

Lhe total momentum of the init!.ai nonuniform flow.

Cther methods or the averaging of parameters of nonuniform

',* ̂ art: possible. However, it is obvious that with any method
_" ~ ~~ '!-!. e:agg of parameters of' nonunifor,. flow, only part of

!'j tota. character!..tics is retained, and some pruperties of flowz
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are unavoidably lost. We saw that in the first case with averaging

the entropy and in the second case the momentum of flow were changed.

it is possible to indicate other conditionalities connected with

the process of the averaging of parameters. So, let us assume

that in the initial flow the static pressure p is equal over he

entire cross section. After the replacement of the real parameters

by average ones, the static pressure p calculated according to

PO and X will prove to be different than that in the initial flow.

The same is possible in the relation to the value of the velocity

coefficient, total pressure, etc., if they a* e constant on the

cross section of the initial flow. Hence it follows that in each

real case it is necessary to select such a method of averaging

which would most fully reflect the features of the assigned

problem. Thus, for instance, in the calculation of losses of

efficiency it is rational to use the averaging of the flow

parameters with which the condition of the retention of entropy

is satisfied. With the averaging of the parameters of flow which

escape from the Jet nozzle, such a method will be unacceptable,

since in this case the most significant is the retention of the

real value of the momentum of flow, which characterizes the

reactive thrust.

Let us note further one feature of the determination of the

average parameters of gas in the supersonic flow.

Let us assume that at all points of the cross section of the

supersonic flow the value of the stagnation temperature T0 is

constant. Let us determine the mean values of the parameters

in such a flow, using the second of the methods of the averaging

examined above with which in the averaged flow the actual values

of total energy, entropy and flow rate of the gas are retained. From

the equation of energy w3 obtain the obvious result of T = T0 '

From equation (143) we find the value p0" The third parameter -

the mean velocity coefficient . - is found from the equatf-mn of

the flow rate

""'

q 1
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hence when O = 0 we have

7 P F(145)

The total momentum of the initial nonuniform flow, according to

(119), is equal to

,t pJQ)dF.

In order that the averaged flow at the value of total

:.r e i3re found abcve would have the same momentum, the velocity

coefficient in it should satisfy the relation A

f ( -L " "pJ) dF. (146)

.

rn general the value X will differ from \. Actually, the

condition of the conservation of momentum is given by the fourth

equation for determining the three unknown values; such a system

of equations will be inconsistent. Howeve', in the given case of

averaging there are some features. Let us replace in expression

(146) the value of function f(X) in terms of (117) and, after

using the theorem of the mean, carry out beyond the integral

sign a certain mean value of function 2-(X). As a result we will

obtain

F~~~~~g z(7 q0 (AA )~ dF

or
q (% )dF.

By,, "cmparing this expression with equation (145), we note that

they differ only by the factor on the right side, and therefore

2-!L) q(147)
: (.)
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in the region of supersonic velocity function z( ) (Fig. 5.22)

changes very little: with an increase in the velocity from sonic

to the maximum (from X = 1 to X - Xa) the value zM) increases
max

a total by ,,40% (k = 1.4 0), and in this case the value of the

pressure ratio p/po drops from 0.528 to zero. If we examine the

degree of irregularity of flows really being encountered, then

value z(X) within the limits of the cross section usually changes

by not more than 15-20%. Therefore, the two mean values of the

function in this interval z(M) and z(A) will differ little from

each other.

The calculations carried out for supersonic flows of different

laws of the change in the velocity coefficient in the cross

section snow, that even with a very great nonuniformity of flow -

for example, during a change in the total pressure p0 of 5-10

times when p = const - the factor of the right side of equation

(147) differs from unity by a total of 0.5-1.5%. Therefore, it

is pOssiLe t consider that q(X) * q(A), i.e., the results of

the determirtiot. of the mean velocity coefficient from the

equation of the flow rate and momentum equation virtually coinciae.

The accurac:' of this approximate relationship is higher, th.- more

values of X in the flow; however, also at moderate supersonic

velocities (X > 1.2-1.3) the distinction between values X and A

ccnsists of fractions of a percent'.

Thus, with averaging by the indicated method of flow

parameters at high su~eracnic velocities and stagnation temperature

constant in cross section, 8amutaneously with a high degree oP

aorciray four i:tegrczl relati.'o,ship8 arc satisfied, and these

exress the equality of total energy, flow rate, momentum and

entrouy in the initial a.d nveraged flow. The condition T, = corist

ee Cherkez, A. Ya., On certain features of the averagr~r
ci pa.;meters In supersornic gas flow. izvestlya of the Academy

.f c of the USSR, CT!, ao. 4, 19-2.
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is In this case very significant, since otherwise the value q(X),

oittlr.ed from the equation of flow rate, will depend on the

distribution law of the stagnation temperature and can differ as

as possible from value q(X), found from the momentum

equation, which does not include the value T O. The physical

meaning of the obtained result consists in the fact that at high

zuper oric speed and To = const, substantial changes in the

pressures, densities and other flow parameters insignificantly

change the velocity magnitude. Changed even less, in proportion

to the value of function z(M), is the value of the momentum of

the gas :1ith its assigned flow rate: an increase in the momentum

to a considerable degree is compensated by a reduction in the

static pressure so that

ah

The indicated property of supersonic flows means the possibility

" f a one-dimensional examination and the use of methods given

in this chapter for calculating flows with very great nonuniformity.

Thus, for instance, shown in Chapter VII is the high accuracy

of such a calculation in connection with the flow in cross

section of which the static pressure changes 10-20 times (initial

section of the supersonic Jet).
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CHAPTER VI

BOUNDARY LAYER THEORY

§ 1. Basic Concepts of a Boundary
Layer

The widely developed theory of motion of an ideal fluid

usually gives a completely satisfactory picture of real flows,

with the exception of the areas in immediate proximity to the

surface of a streamlined body. In these areas, the forces of

internal friction or viscosity forces which are decisive in the

emergence of resistance of bodies during motion in liquid acquire

vital importance. Disregard of these forces leads to the fact

that the resistance of a body, uniformly moving in unlimited space

turns out to be equal to zero, which contradicts experimental

data.

The amount of friction force acting on a unit of area, i.e.,

the stress of friction is designated usually as T. The stress

of friction in the boundary layer according to Newton's hypothesis

is proportional to the velocity gradient in a direction normal

to the body surface (§ 4 Chapter II), i.e.,

da

the proportionality factor u characterizes the viscoujs properties

of the liquid and is called the ; ti-ie, .t of dynamie li-c8-ty.



Theoretical interpretation of Newton's law (1) can be

<,b'tained for gases on the basis of the kinetic theory. According

to the assumption lying as the basis of the kinetic theory,

oleoules of gas are found in continuous but random movement, so

that gas as a whole remains stationary. The kinetic energy of

this random movement of molecules represents the thermal energy

of the gas. Let us assume now that along with the random move-

ment of molecules there is regulated movement of finite (very

large in comparison with the separate molecules) masses of the

gas parallel to a certain plane SO , whereby the speed of this

motion u is proportional to distance y from the plane in question

(SiR. 6.1). At arbitrary distance yl let us conduct plane S1
parallel to So, and let us examine the transfer of momentum

t,cause of the random movement of the molecules through this

plane. The molecules which pass through the plane from the

bottom upwards possess less momentum in the direction of velocity

u than the molecules which pass downward, and because of this the

velocity of a layer of gas lying higher than plane S 1 will

decrease, while the velocity of a layer of gas lying lower than

plane S1 , - will increase. To obtain the quantitative char-

acteristic of this interaction, let us perform the following

simplified calculations. Let us assume that in a unit of volume

on the average there are found N molecules which have an average

velocity of random movement c. In the direction perpendiralar

to plane S 1 it moves N/3 molecules, whereby, of them, N/6 move

from the top downward and Just as many move from the bottom upward.

During time dt through area dS on plane S1 in each direction

there pass l/6NcdSdt molecules. Let us introduce yet another

concept of the mean !'ree path. Under mean free path Z is implied
that average distance which the molecules cover between collisions

with each other. The molecule which was found at a distance

& lower than plane S1 possessed momentum

f O
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(m - the mass of the molecules, u I - the velocity of the regulated

motion in plane S1) Since on the mean free path the momentum

Is retained, then the molecules moving from the bottom upwards

transfer a momentum equal to

-- Ma

U1

I -- - ---. -I

Fig. 6.1. Interpre-
tation of Newton's law
on the basis of kinetic
theory.

Correspondingly, the e is transfe.rred downward the momentum

WcMi (1 + 1) dS A

This transfer of momentum gives rise to the appearance of tan-

gential stress x along plane SI. Since the change in momentum

is equal to the impulse of the acting force

.dSdt =-An 'a, + 1- S -- Mi ! it, -I' dS A

6 dc d

then for the tangential stress we obtain the expression

I dl u -.:

T jy-(2)

-!n,:-h is nzthI',; L. :..on's law, whereby, , = 1/30cZ.
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The more precise calculations made by Enskog and Chapman,

nctisiderinF the effect of velocity u on the velocity distribution

molecules give a somewhat different numerical factor

in accordance with kinetic theory, the coefficient of

dynamic viscosity of gases should not depend on pressure - its

value should vary in proportion to the square root from absolute

temperature (since p - p/T, c /T, Z - T/p). The first conclu-

sion is approximately validated by experiment within sufficiently

'.ide limits. As concerns the increase in values of ii with an

increase In the temperature, Jt occurs more rapidly than follows

?rcm the kinetic theory. A more precise calculation, taking

'nto account the molecular attracting and repulsion forces, leads

to formula which satisfactorily agrees with the experimental

data

- T\'1227.I -fC
T+-) T-C' (3)

where T is expressed in OK.

Values of D0 and C for various gases are given in Table 1.

Table 1.

Gas CO 0 106  Gas CO W0106

gf-s kgf's
28 0m m

r122 1.75 Hydrogen 83 0.85

;it rogen 107 1.70 Helium 8o 1.88

x ygVe 1- 138 1. 96 Ammonia 626 0.96
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In practical calculations, however, it is more convenient

to use the exponential dependence of v on temperature

(z4)

The results of calculating th4 coefficient of viscosity of

air in formulas (3) and (4) (where w - 0.75) in the range of

temperatures from 100 to 1000 0K are given in Fig. 6.2. The solid

curve corresponds to Sutherland's formula, while the broken

line corresponds to the exponential formula. In this figure,

the experimental values of u are shown by the dots.

23 4 s 800 r 1

Fig. 6.2. Dependence of the coefficient of
dynamic viscosity of air on temperature.

The coefficient cf dynamic viscosity for liquid bodies

depends very slightly on pressure and decreases rather rapidly

with an increase in temperature. Since in a liquid body the

mean free path of a molecule is commensurable with the molecular

dimension, the kinetic theory in this case is unsuitable. T.e
cohesive forces of the molecules under these conditions acquire

great significance. In view of the complexity of the inter-

action of separate molecules in a liquid body at present there

is no complete liquid theory, and therefore, thcre is no

viscosity theory.
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fet us consider the laminar layer motion of a viscous

! uId near a solid :all. Under the action of viscosity forces,

l'Q<trS of liquid in proportion to their proximity to the wall are

gradually slowed down and, at the wall itself adhere to it.

Thl zone oI' flow of a viscous liquid located about a streamlined

bcav is called the iqundary layer. Outside the boundary layer

the effect of viscosity is usually exhibited weakly and the

picture of flow is close to that which the ideal fluid theory

gi-,.'s. Thus for an analytical investigation of the flow of

'~scojs fluids, the whole field of flow can be broken into two

area: into the area of the boundary layer near the wall, where

it is necessary to consider the forces of friction, and into the

of 'low outside the boundary layer in which it is possible

to disregard the forces of friction and therefore to apply the

laws governing the theory of an ideal fluid. Consequently, the

boundary layer is that zone of flow of a viscous liquid in which

the values of the forces of friction and inertia have an identical

order. On the basis of this, it is possible to estimate the

boundary layer thickness.

For simplicity, lit us examine the flow of a liquid along

a flat plate. The x-ax:.s is directed along the plate, the

y-axis - at right angles to it. For the motion which proceeds

basically in the direction of the x-axis, the force of inertia

pertaining to the elementary volume dxdydz is equal to

oP-dxdydz, where u is the velocity of motion of the liquid in

the direction of the x-axis. For steady motiun

J J U _ J x __ u
,if - J. a - Jx

conseque ntly, the force of inertia is equal to puA xdydz.

ex
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The resultant force of friction parallel to the direction

of motion, as can easily be seen from Fig. 6.3, is equal to

-. dy dxd.-dxrd:.:- ,dx'dydz.

Fuating the force of inertia to the force of friction, we obtain

the relationship

Ou d:

or, utilizing Newton's law (1),

Ou d'u(5

'UO d

--

r *'

Fig. 6.3. Forces of
friction applied to
an elementary volume.

For a plate of length Z, the value of u/ax is proportional to

Uo/- , where u0 is the velocity of external flow. Consequently,

the force of inertia has a value on the order of pu2 /I. The0

velocity gradient in the direction perpendicular to wall, i.e.,

the value of Ou/y is on the order of u0/6, w:here 6 is the

boundary layer thickness. Thus the force of friction is pro-
2portional to Pu0/62. Substituting these values of forces in

relationship (5 , we obtain for the boundary layer thickness

the expression

(

J -
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The dlIrensioness pui !/P R the Reynolds number

calculated along the length of the plate.

Analogously, it is possible to estimate the amount of

friction stress atl the wall Oic). Utilizing the values

t'~1~i, obtained above, we find the expression for
tne armount of' friction stress:

~2
Dividing the stress of~ friction Trw by 2uSw 2 oti h onc

tion between the dimensionless quantity TW /P u0 and the Reynolds

nurnter

put nvI (7)

RelationshipEs (6) and (7) show that Reynolds number is the funda-

mental characteristic of a laminar boundary layer. Both the

boundary layer thickness, i.e., the dimn,nsions of the area where

the forces of friction have an essential ef'fect and also the

value itself of these forces of friction are determined basically

by the value of the Reynolds number. A similar result can also
be obtained from the dimensional theory.

For gases, the coefficients of dynamic viscosity are low

(Fig. 6.2), therefore the Reynoids numbers will be rather large

even at relatively low values of the rate of flow. As follows

from relationship (6), the thiCKness of the boundary layer

because of this is low in relation to the length of the plate,
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i.e., all the effect of viscosity is concentrated in a thin layer

close to the streamlined surface. This conclusion is in good

agreement with the results of experiments in the study of low-

viscous flows.

Let us explain these qualitative considerations by a

numerical example. Let us estimate the order of thickness of

the boundary-layer at the end of the plate as a length of

I = 0.1 m, the air flowing past at a temperature of T a 300 0K

at a rate of u0 a 15 m/s. The air density at this temperature

and atmospheric pressure equal o a 0.120 kgfs2/m . while the

coefficient of viscosity i = 1.85,10-6 kgf's/m 2 (Fig. 6.2).

To these parameters there corresponds a Reynolds number
R, = u0oZ/P z 10

5. According to formula (6), the relatie

thickness of the boundary-layer is on the order of

6/1 - 1/300.

The Reynolds number is the deter.mdnirg parameter nut only

for the quantitative characteristics of tho boundary layer, but

also for the character of flow itself. With small E~ynolds

numbers, the motion of the gas particles has a regulated laminar

nature, such a flow is called Zaminazr. With large Reynold-s

numbers the motion of the gas particles becomes irregvlar,

uneven velocity pulsations appear, such a flow iL callid

tu'rbulent. The transition of laminar flow into turbulent occurs

at a specified value of the Reynolds number called thc critical.

The critical Reynolds number is not constant and depezAs to a

very great degree on the value of the initial dII*urLoaicei, i.e.,

on the intensity of turbulence of the incident flow.

Experimental studies of the transition of a laminar boundary

layer to a turbulent on a flat plate showed that the critical

value of the Reynolds number

I
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Rp u, p iO'-0 10.

(Here x is the distance from the leading edge of the plate).

The most characteristic sign of such transition on the plate

is a sharp increase in the boundary layer thickness and in the

stress of friction on t'. wall. One of the features of the

boundary layer on the piate is the fact that near leading edge

it is always laminar and only at a certain distance x does

the transition to turbulent flow conditions begin. In view of

the complexity of motion in the transition region and its small

extent, usually the finite dimensions of this area are disregarded

i.e., it is considered that the transition of the laminar

boundary layer to turbulent occurs abruptly with x = xKp"

Studies of flows in a circular tube with sharp edges of the

entrance section showed that the critical value of the Reynolds

number

t Y, .- (8)

(Here u is the average velocity, d is the diameter of thecp
tube). This value is the lower limit of the critical Reynolds

number. At smaller values of R the turbulent flow cannot exist

even during strong initial disturbances. If we insure entry

of liquid into the tube with low initial disturbances, then

the critical Reynolds number can exceed a value of 100,000.

The liquid decelerated in the boundary layer in certain

cases does not lie close over the entire streamlined surface

of the body in the form of a fine layer. Such a special case

is the motion of a viscous liquid along the wall against growing

pressure in external flow (flow in a diffuser). As the results

of numerous experiments and theoretical evaluation show (§ 2),
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the pressure remains constant across the boundary layer, there-

fore, the longitudinal pressure gradient which is present in

the external flow, affects the entire boundary layer. If the

positive pressure gradient is sufficiently great, then the layers

of liquid directly adjacent to the surface of the body and

possessing insignificant momentum can stop and even begin to vi

move in the opposite direction. This phenomenon, which is

called boundary layer separation, is schematically represented

on Fig. 6.4. In th3 zone of flow with breakaway, the basic

boundary layer concepts do not hold true.

Fig. 6.4. Diagram of the
formation of boundary-layer
separation.

§ 2. Laminar Boundary Layer

There are two methods of calculating the parameters of a
liquid in a boundary layer. The first method consists in the

solution of a system of differential equations in partial

derivatives which describe boundary layer flow and which were

first obtained by Prandtl. Such an approach is connected with

very great mathematical difficulties even with the use of'

computers. It is also necessary to bear in mind that in this

case the results are obtained in the form of tables, and there-

fore their generalization is difficult. The second method

consists of finding methods of approximate computation which

would make it possible to rapidly determine the necessary
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parameters. Such simple approximatiin methods can be obtained

if ,.:e forego the determination of solutions which satisfy the

differential equations for each pap.icle, and instead of this

restrict ourselves to the search for solutions which satisfy

certain basic equations for the entire boundary layer and certain

most important boundary conditions on the wall and on the edge

of the boundary layer. The fundamental equations which are

usually utilized in these methods are the equations of the

momentum and energy for the entire boundary layer. In this case,

however, it is still necessary to be given the velocity and

temperature profiles. On how successfully the form of these shapes

13 selectedto a considerable degree, depends on the accuracy
of the results obtained. Thus recently there has been wide

acceptance of the methods of calculation of the parameters of

a boundary layer in which to obtain the form of the velocity

and temperature the differential Prandtl equations or their

particular solutions are utilized; further calculation is performed

with the aid of an integral equation of momentum.

Let us derive the differential equations for a laminar

boundary layer during a steady plane-parallel flow of a viscous

compressible ideal gas. In this case of a Navier-Stokes equa-

tion, the equation of energy and the equation of continuity

take the form (§S 5 and 6 Chapter II):

fu d, r 4du ?dv * o r tdu do' (9)
6, ~~ ~ d axJ5 Y

- v o- a 4rdu 2.a j. (10)

dx OV* ox Ox. Oj , (11)
+ i ' d u, - 2 'da OV

0 - = o. (12)
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where the axis x is directed along the aerodynamic body and axis

y - at right angles to it; u, v are projections of the velocity

vector on axes x and y; T, p, p are temperature, density, and

pressure; 11, , Cp are the coefficients of viscosity and thermal

conductivity and specific heat under constant pressure, A - the

thermal equivalent of work.

Simplification of these equations is based on the use of

the previously noted fact that for low-viscosity liquids (with

the large Reynolds numbers) the effect of viscosity and thermal

conductivity is concentrated in a thin layer close to the stream-

lined surface, i.e.,

where I is the characteristic length of the streamlined surface,

5 is the thickness of the dynamic boundary layer, 6 is the6T

thickness of thermal boundary layer.

Let us reduce equations (9)-(12) to dimensionless form,

introducing dimensionless quantities in the following manner:

If* UO To'g~r~
* P - p - r 3

Here the values with subscript 0 are the flow parameters outside

the boundary layer. Then we obtain

- 4 n 2 do \ O, 0 O'

C + FPaj- j-ya.

1E , ( 'On +20 (do~ + da. q A. [J (oy 1 3 a-
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+'
Apu o [5 ' -d",., t

The dimensionless quantities

A, Apo -

dc not depend on the Reynolds number, whereas the others are

inversely proportional to Reynolds number R0

,_'O__ Ps An! ( - Io M1

Here k is the ratio of heat capacities; M is Mach number

of the external flow; Pr is the Prandtl number calculated from

the parameters outside the boundary layer.

Let us now approach an evaluation of the separate terms of

the equations. Values u, . p, T, , ), cp are on the order

of unity. With a change of x from 0 to 1, the values of u, ,

can change to a value on the order of unity, therefore the

derivatives Ou/dx, Op/07, OT/01 are also on the order of unity.

From the equation of continuity it follows that, since the value

of Du/Dx is on the order of unity., the value of 67/y has that

same order. Since with y * 0, v - 0, then 7 will be on the

order of . The value of Ov/Ox has that same order of . With

= 0, u = 0, while with 1 = , - 1, consequently 07/#y

Then
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Since in the boundary layer the terms which depend on the

viscosity have an identical order with the inertia terms, then

from the first equation of motion it follows that

R'1, or (13)

This evaluation of the thickness of the boundary layer confirms

the rougher calculation made in 9 1. Retaining in the first

equation of motion only the terms which are on the order of

unity we obtain

.~ kMWd .9 ', . (14i)

In the second equation of motion, the terms which depend on the

viscosity and inertia terms are on the order of -, therefore,

O/F -[. The total change in pressure for the extent of the

boundary layer thickness normal to the wall can be calculated

by means of integration of this relationship and is on the order

of 2 i.e., it Is very small. Thus it is possible to consider

that the pressure in the cross section of the boundary layer

remains virtually constant and equal to the pressure in the

external flow. Thus, the second equation of motion can be

w:'itten in the form

=o. (15)

Let us make a similar evaluation for the separate terms of

the equation of energy. Since the Prandtl number for gases is

close to unity, and for true liquids is on the order if 10-10CO, -
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,hen the factor l/PrR0 which stands before the members and which

depend on thermal conductivity will be low with large Reynolds
riumbers. Consequently, the terms which depend on thermal

conductivity will have an identical order with the terms which

depend on the heat convection only in that case when the tempera-

ture gradient *T/y is great, i.e., near the streamlined

surface is a thin layer of liquid in which an abrupt change occurs

in the temperature in the direction perpendicular to the wall.

Let the thickness of this thermal boundary layer be T, then

-T

In order that the heat transfer as a result of thermal

conductivity would be of the same order as the heat transfer

as a result of convection, the thickness of thermal boundary

layer should satisfy the relationship

| or _ - (16)

Taking into account the evaluation for T (13), we obtain the
relationship

i ;'p (17)

which shows that with Pr 1, i.e., for gases, the thickness of
the dynamic boundary layer will be of the same order as the

thickness of thermal boundary layer. Since

./, -' 1 , '6u. ," [/d'

_V -- O.-

/ , ,, 2. ._ .. . ' ., I
,e T,
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leaving in the equation of energy the terms on the order of

unity, we obtain

dy

Returning in equations (14), (15), and (18) to dimensional

variables and connecting the equation of continuity (12), we

obtain the differential equations of a laminar boundary layer

for a steady plane-parallel flow of a compressible ideal gas:

O du ap 6 ( Ou (19)-:- ,, .t :=- -t ,),
Y o, (20)

dy'dy , ' yj

ex dy (22)

In order to close this system, to equations (19)-(22) it

is necessary to connect the equation of state

p.gfiRT. (23)

and also to determine the dependence of the coefficients of
viscosity and thermal conductivity on temperature.

It is still necessary to formulate the boundary conditions.

For an impenetrable wall, the velocity should satisfy the

condition u a v = 0 with y - 0.

For a penetrable wall, during the supplying of gas normal

to the surface with velocity vw, boundary conditions are

written in the form u = 0, v a vw with y - 0. The temperature

can satisfy a condition of absence of thermal conductivity on
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the wall (flow around a heat insulated surface) - this case

&T/y - 0 with y w 0; in another case the wall temperature Tw
can be assigned. Other boundary conditions are possible for

example, there can be assigned heat flow on the wall.

With y - there are assigned values u a u0 , T a To, where

u and T are the velocity and the temperature of external flow,

and also conditions of smooth transition from boundary layer to

external flow Ou/#y - 0, #T/ey - 0.

Since the thickness of the boundary layer is low, even at

a short distance from the streamlined surface, the flow parameters

virtually coincide with the parameters when y - . Thus boundary

conditions can be assigned not with y - -, but with y a 6, where

6 is the boundary layer thickness, i.e., such a distance from

wall at which, for example, the velocity differs from the velocity

with y - by less than 1%.

The equation of energy (21) with cp - const. can be

conveniently converted by introducing, instead of temperature
2T, the stagnation temperature T* - T + Au /2gcp. To do this,

p,
let us multiply the equation of motion (19) by Au and add with

equation (21):

N J,. (24)

Adding and deducting in the right side of this relationship

the term gcP o/y(pfT/ey) and dividing both parts of the equality

by gcp, we obtain

where Pr - the Prandtl number which characterizes the relation-

ship of the heat which is isolated because of friction to the

heat being transferred because of thermal conductivity. The

Prandtl number for gases usually differs insignificantly
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from one. Thus, with T * 300 0K for helium Pr * 0.68, for argon

Pr - 0,66, for air Pr a 0.70, for carbon dioxide Pr - 0.77, and

fcr hydrogen Pr u 0.69. Temperature and pressure weakly affect

the value of the Prandtl number. Therefore very frequently in

constructing the method of calculation of the parameters of a

boundary layer it is assumed that Pr - 1. This leads to simpli-

fication in the equation of energy, since the first term in the

right side disappears.

Let us examine longitudinal flow around a fZat heat-inteuated

pZate of a compressible gas with Pr - 1. In this case,

Op/#x 0 and the equations for the boundary layer can be written

in the following form:

Ouu"  0/ Iduti

+ .(27)

Boundary conditions for the problem in question:

1= .-.=O with yO,

(28)

utis TznT, with Y-

Comparing equations (25) and (26), we see that the equation of

energy has a solution of the form

T= a. -b,-7

whereby the unknown coefficients a and b can be determined from

the boundary conditions. With y - 0

aT_ dT#u.7E*-3d- 6j da _ l1 6,IT ) ),.-

3 7 7

=4.



1

i.e., a-0. With y

7=b = To A T&6.

C nsequently, the stagnation temperature in this case remains

constant in the cross section of the boundary layer

7,m T + A 2--T-., ( 29)

and the wall temperature Tw is equal to the stagnation tempera-

ture of the external flow

where M0 is the Mach number of the external flow.

For determining the velocity profile and stress of friction

on the wall it is necessary to solve equations (25) and (27)

together relative to u and v, utilizing for the temperature

expres!: .n (29), and for the density - the equation of state (23).

The sitrpiebt method of solving these equations is that proposed

by A. ,. Do:-odnitsyn. By means of special substitution the

obtainec Istem of equations is reduced to a form similar to that

which takes place in an incompressible liquid. Dorodnitsyn's

substitution consists of the introduction, instead of coordinate

y, of a new variable n

to (31)

and instead of coordinate x - the value & - x. Since

jY to + Jix

then equation (25) now takes the form

P(q + 1 + pL .37oP. I
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Dividing both parts of this relationship by p, utilizing

the exponential law for the coefficient of viscosity (4) and

the equation of state (23) under the condition p - p., we obtain

~j+ v m , T, f'~ (32)

M oreover, here there is introduced the designation

Vm4+L (33)

We now convert the equation of continuity (27), for which we

present it first in the form

-Ty-( 3J4 )

We differentiate relationship (31), first with respect to x (with

constant value of y)

and then with respect to n

Substituting the obtained expression for ao/ax in relationship

(34) and converting to the new variable t, n, we find

P 0 , -+ P Y, a ir + , . -TI ' , -t -d i

After dividing by o we obtain the equation of continuity

-F -- (35)

where V corresponos to the introduced designation (33).
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Boundary conditions (28) in Dorodnitsyn's variables take

the following form:

1=0, V-O with 1=0}

"1U* with 'I"' o. (36)

For the classical case of an incompressible liquid with

constant coefficient of viscosity, equationb %25) and (27) take

the form

OU au .

x - =(38)

boundary conditions for lohgitudinal flow about the plate will be

u=v=0 with Y=0, (39
U = Its with Y' (39)

Thus, in Dorodnitsyn's variables the equations which describe

flow in the boundary layer of a compressible gas differ from the

equations which take place for an incompressible liquid only

by the presence of the factor (T/T ) W-1 in relationship (32).0
If we take w = 1, then this distinction disappears.

Therefore, for the solution of the system of equations (32)

and (35) with boundary conditions (36) it is possible to utilize

the method proposed by Blasius for the boundary layer of an

incompressible liquid.

Let us introduce in accordance with the equalities
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the flow function t which satisfies equation of continuity (35).
Equation of motion (32) in this case assumes the form

and boundary conditions (36)

,'-o. -=O with q=o.

=u, with -,=ocL

Let us introduce the dimensionless flow function

and a new dimensionless coordinate

whereby we will assume that f depends only on L. Then for the flow

derivatives we have

12% r 2i1 q

~=I/~Ir4~=V vplf.e-' -no. t- (41) i

u I

Substituting these values in the equation of motion, we

obtain

-' T T I_
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or after simplification

+ 2 ]-o.(142)

From relationship (29) the temperature can be expressed as the
velocity

S I, + M.,- ,, (1(43)

Substituting (43) in (42), we obtain the usual differential
equation of the third order

11" +, : ([, + M (I -i -' /1. ,

with boundary conditions

'=O, f= with C=O,

/'=I with C==

The solution of this equation can be obtained only by
nun "al methods. After the dependence of f on C is found
it i .*ossible to determine the velocity profile in Dorodnitsyn's

variables

a ='

and consequently, the distribution of temperatures (43) and
the density distribution

p T. I

38)
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Transition to the physical coordinate system is made from the

fir'mula

Let us find the stress or friction on the wall

"= " = . ' " 4 ([. ,

Since r = i = * 1. then

Then for the coefficient of friction c we have

-ff2 PN- L-k'- j'(o)- 2 .(TV)" roW-.i--- I -.- .C IR. To (46a)

(

Expressing the temperature ratio T /T with the aid of relation-
wO0

ship (30), we finally obtain

9--- +I -- M1) .,0 (6b'

For an incompressible liquid (M0 M 0) the solution of

equation (44) was first found by Blasius. In this case

f''(0) = 0.332, and therefore the coefficient of friction in an

Incompressible liquid cf H is equal to

(46c)'

The resistance of a plate with a width of b and length of M

about which an incompressible gas flows only on one side,

is equal to

W=h tdx. A
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Expressing Tw in terms of the coefficient of friction (46c) and

integrating, we obtain

Consequently, the drag coefficient of such a plate will be equal

to
"ir 1.3-13

* W (47)

For a compressib.le gas the value of f"(0) depends on M Calcu-
0'

lation of the prto'1ies of velocity and temperature, and also

the stress frictions cn the wall for a compressible gas with

w = 0.76 were performed by KarmAn and Tsien. The results of

this calculation are represented in Figs. 6.5, 6.6 and in Fig.

6.7 (solid line).

Fig. 6.5. Velocity distribution in laminar
boundary layer on heat-insulated plate with
Pr a , 0.76, k " . .

4 1

4' - ]

0 4 4 / ZI 27 Z4 2o J1 _y__

Fig. 6.6. Distribution of temperatures in
laminar boundary layer on heat-nsulated
plae with Pr z 0.76, k -1.4.
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Fig. 6.7. Coefficient of friction
for a laminar boundary layer on
a heat-insulated plate with
Pr a 1, w - 0.76, k a 1.4.

Let us now examine the laminar boundary layer of a compress-

ible gas on a flat plate in the presence of thermal conductivity.

As before, we will be restricted to the case of Pr - 1. Equations

(25), (26) and (27) and boundary conditions (28) in this case are

retained, with the exception of the condition for temperature on
( the surface of the plate, which in this case should be written

in the form
I

T=T. with y=-O.

Just as earlier, the equation of energy has a solution of

the form

7'= au-4b.

With y a 0 we have TO - b a T . For determining the unknownw
coefficient a we utilize the condition To M au0 + T with y =

00
Hence we obtain a - (TO - Tw)/ Ou . Consequently, the distribution

of the stagnation temperature in this case is descrbe4 by the

formula

(148)
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and instead of equation (4h) we obtain a new equation

6- To]'' - hi ~(L49)

The boundary conditions for equation (44) in this case also

remain valid for (491,

Calculation of the velocity and temperature profile accordl:-

to equation (49) for different numbers of M 0 with w - 0.76

and T w/T 0  0.2. was also performed by KArmAn and Tsien.

The results of the calculation are shown in Pigs. 6.8 ard 6.9.

/41
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Pig. 6.8. Veloc.lty distribution
in laminar boundary layer on
a plate in the presence of
thermal conductivity (Tw/T0 0 0.25),

Pr i, t - 0.76, k - 1.4.

The coefficient or fricticr can be calculated according

to formula (46a), whereby the value of f"(0) will be in th.z

case, as noted, the function of two parameters M0 and T W/T 0
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tN At M ?

Fig. 6.9. Distribution of tem-
peratures in a laminar boundary

layer on a plate in the presence
of thermal conductivity(T w/T 0  a 0.25), Pr a 1, w - 0.76,

k a 1.4.

For determining specific heat flow qw (i.e., the heat flow
in a unit of time through a unit of surface of the plate) we

utilize relationship (29) from which it follows that

Since with y - 0, u - 0, when (OT/sy) - (#T*/#y) w . But from

equation (48) we have

therefore,
)... .r " -- (" _ _ _ I , e.r

.1y e .'O- ,u. * W (50)

Introducing the dimensionless heat-transfer coefficient (Stanton

number) and replacing T in (46a) we obtain

4a,
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Here it is taken into account that-. -"  Pr. Thus, if

the coefficient of friction cf is found, then the Stanton
number is easily determined.

With number Pr # 1 calculations were also performed for

a laminar boundary layer of a compressible liquid (Brainerd and

Emmons, Crocco, Kop and Hartree). In this case it turned out
that the temperature of the heat-insulated surface Two was not

equal to the stagnation temperature of the external flow, but
is determined from the relationship

T..iT.(1 1~.Mir.(2

The results of calculating the stress of friction on a

flat plate in general (Pr # 1, w # 1) are well described by

Yang's approximation formula.

=,664j0.45-F3" +- 0 :O09(k - ) M" ,pr'. (53)

A formula for the Stanton number was obtained which is a

generalization of relationship (51) with Pr # 1:

-tPr9 (54)

The methods described for the solution of the differential

equations of a laminar boundary layer pertain to the simplest

case of flow along a plate. With a more intricate shape of

aerodynamic surface, i.e., in the presence of a pressure gradient

in the external flow, the task of determining the parameters

of the boundary layer becomes immeasurably more difficult.

Therefore attempts were made to create a method of calculation

based on the solution of integral equations composed for the

entire boundary layer. Let us now pass tc the derivation of

these equations and an examination of the inethods of their solution.
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Let us compose the Integral equation of impulses durinm

steady-state flow in the boundary layer of a compressible

liquid. Applying the equation of momentum to the element of the

boundary layer with length dx and unit width, we obtain
(§ 5 Chapter 1)

where A(Emu) is the change in projection on axis x of the momentum

of a liquid which flows for a unit of time through the surface

which limits the volume in question (Fig. 6.10), and P - the

projection on axis x of the resultant of all forces applied to

the selected volume. First let as calculate the change in

momentum. Through the element of area dy in cross section 1 there

flows in a unit of time a mass of liquid ou dy which transfers

the momentum pu2 dy. Thus the momentum being transferred by the

liquid which flows through cross section 1 is equal to

a(ii~~ ~~ (X ri)= pudy.

Fig. 6.10. Forces applied to
an element of a boundary
layer.

Jd'

The momentum of the liquid flowing through cross section 2:

(1 mt), = pil dy + ( PU dy) dx.

The mass or the liquid flowing through the boundary of the -

boundary layer in Section 1-2 is equal to the difference in the

flow rates through cross sections 2 and 1, i.e.,
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dx

fince the velocity on the L undary of' boundary layer is

equal to the velocity of external flow u0 , then the momentum

te'nc introduced by this mass of liquid into the vulume in

questi!n will be

(I m,1- Ito pit d) dx.

V

Cor.;equently, a change in projection on axis x of the momentum

i equal to

a ( itin) (= ( ma4 - n tl), - (l rn.,)_,

-- ii'td - ,;, F P' Y) dx. _

Let us now find the resultant of all forces applied to the

volume in question. In this case, the mass forces can be dis-

regarded. The forces of friction in cross sections 1 and 2

do not give a component to axis x. The force of friction on

the boundary of boundary layer is equal to zero, since

au/Dy - 0 with y - 5. The force of friction acting on the side
of the wall for the volume in question is equal to P -twdx.

The projections of the forces of pressure on axis x are

equal to: in cross section 1,Pxl p0
6 , in cross section 2,

Px2 -pA-!.---±'--ax on the boundary of the toundary layer

PA,,=p4!d.. The sum of the projections of the forces of pressure

P., + P.,+ P., pea - ~ -dd

Then the projection of the resultant of all forces applied to

the selected volume will be
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Substituting the found values of &(Emu) and P in the equationX
of momentum, we obtain the integral relationship of impulses

in the boundary layer

d P1' dYt. p d\ y 4 -e (55)1. .,:

In this equation u0 and pO are known functions of x and are

determined during the calculation of external flow. If external

flow is isentropic, then from the equation of motion it follows

that

After also writing the obvious equality

let us substitute these expressions in relationship (55). As a

result we have

d pit (us- )+ dy + J ,- pit) dy - , (t6)

This equation can also be obtained directly from the

differential equations of a boundary layer. To do this it is

necessary to add term-by-term the equation of' motion (19) with

the equation of continuity (22), multiplied by (u - U 0 ), and

then to add and to deduct pu Ou0 /Ox in the right side of the

obtained relationshipi =  . t,( ,, # ._! . 0, d
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' gmtew1iMn 1i Mit U Q.-xiir laye~r fro:i. ,

-i In v')' r now t e I.troard(inr the Ji plCr.
I-d Jr; ,'!O i.J C t l ie CT w tS 'f , V 1- 1:,1ar .,'tl t ri-.I n

re 1cctI.'cly by fol."'.n, ,p'e 7, 1 Ers:

fp"n'- p) dy

'&.ly L ? a\),

I[?,.s. v~iues .;a'.c a- spe 21f' p1! yI oa I.rsgo, The ,isclace-

thl ',ness Is the dl;tance to whiich the flow 'ines of external.

flow are mn'ved aside from the body as a result of' a duerea-,e

in the velocity and a change in density in the boindary layer.

Tie io.:-ntum thl ckness is the thiciness of the ras I ayer .:ith
constant parameters and momentum equal to the difference in the

moirnntp of the flow nf gfs with non,.niform cP'rent, density b.i

with cunstant velocity u0 an! flcw wITh variable values of

velocity and density.

Utilizing the introduced values a and 6**, the integral

relationship of momentuam (56) can he presE:l'ed in the :or:-,

or

d . 9  f._ (. .),] . it dxl --_.,,,

•. dx i- -  s * V at

'..miere Ii = I/4"*.. f wc assirn the ve]ocity laws )f dtstr' ,ut',r

and temperature, then stress of friction will be expressed as

tho rmomentum thlcl.:ness 4"*. Then relatlonship (59) whIch Is
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the ordinary differential equation can be used for deter',riat.,nr:

o' the distribution of the value of 6** along the strearTitirw

surface.

As shown above, the differential equations of thIe tm-d'".

layer of a compressible gas in Dorodnitsyn's variables a

very nearly the same form as for the boundary layer of an

incompressible liquid. Therefore, it should be expecttd "I ,"

the boundary layer velocity profile of a compressible ;%1L 4.-

Dorodnitsyn's variables will be close to the veloctt, r"

in an incompressible liquid. The results of precise cVa :.:

confirm this assumption.

For the laminar bouniary layer of art incoinpresslle

the distribution of velocities is usually assigned in th, 7r:

a polynomial

whereby the values o' coefficients Ak are determine ..

conditions on the wall and on the boundary of the bc,..ndir",

Usually in the solution they are limited to polynom,'.:.'.

third or fourth degree. For the boundary layer of i eo-'- c''

gas the velocity profile, therefore, can be assignel Ir: t;,,

whereby n is the Dorodnitsyr variable (31'/.

Let us examine the flow of a cump"ressiole van

flat plate. I
S
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The integral equation of impulses (59) In the absence of a

pressure gradient in external flow assumes the form

A99 -(61)

We approximate the velocity profile for an incompressible

1iquid by a polynomial of the third degree. For a search of

coefficients Ak we utilize the following boundary conditions:

Ouu 0 with y 0; u Ii Ty 0 with y .

The second condition on the wall can be obtained from the

differential equation of motion (25) which for an incompressible

liquid assumes the form

Pd n + e d'esaxj- 0; 4.

since 1i = v 0 with y = 0, then from this equation we have

S2u/Oy 2  .0

By definition (31), pdy - p0 dn , therefore in Doroenitsyn's

variables these boundary conditions will be written in the form

R 0, with ~o

It-It, -==0 with 1qz2

Utilizing these conditions from (60) we obtain the system

of equations
A,=O, A,=O, A.+Aj+A-+A 3 =,l

Al + 2A# + 3A, = 0.

Hence A0 = 0, A, A = 0, - = -1/2, and therefore, for the

veloc'ty profile we obtain
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U (62)

Utilizinvg (62) and (31), we f'ind the stress of friction on the

and the momentum thickness

a~S "Or, P.11 S( U,) lie I

Here I. v

a., at

The ottained expressions make it possible to establish the

( conn, ction between Tand 6**:

Substituting the expression for T from (63) in the inte~ral
relaticmship of momentum (61) and integrati-ng, we obtain the
distribution of the momentum thickcness along, the plate

01' N j, .=I/ 2AjNPV 's

where

R. -~~

Replaci'ng In relationship (63) th,- value of 6** according to

expression (64) we obtalln the formula for the coefficient nf, 7
the friction4



P I F. (65)

Substituting numerical values of coefficients A1 and N and

utilizing a power law for the viscosity-temperature dependence -

(4), we finally obtain

C - vI r;~ ) "(66)

7::r determining the velocity profile in physical coordinates x,

y, and the calculation of the boundary layer thickness 6 and a

displacement thickness 6* it is necessary to know the distri-

bution of temperatures. If we are restricted to the case

Pr = 1, then the stagnation temperature according to (48) will

be proportional to the velocity. Then

r k; -- I M: +r'.-"T - M.-- -
'i k* M 1-T.) ,'To 2 a.I= M-r -TV 3 " 1 (IS]

T. )-2 TM

and therefore - ,

. M.b __
:, ~ ~ ~ T. 4, A); '"

-"-
dJ"

& 'I JJ

M.J A)'- "'Laj - '

Since y 6 with n A A, then

T, b . A -y- "I i

Now it is easy to find the connection between y/6 and n/A
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a.4 \ -- ) + (67)

To + 5-(1 + 81 h- I T17 k-I; f--- l (8

Relationships (62) and (67) give in parametrical form the velocity

distribution in the boundary layer on a flat plate.

Since L = 6**/N and 6** is connected with the Reynolds .

number by formula (66), for the boundary layer thickness we

obtain the expression

Vt T.o +I-2 "o -is,

Performing simple calculations, let us find for the displacem~ent

(" thickness

or after the substitution of values L/ and 6/x

I ' 1 . i -: T -!T io. (69)
X ~~ FRT0T( T

In the absence of thermal conductivity Tw  +

as follows from the equation of energy (30). Then

- ( + ~j-M +( +--M) (71)

M M)- - .  (72)
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For an incompressible liquid (M0 . 0) the approximate value of

the coefficient of friction

tin---- (73) +1

is close to the value found during integration of the differential

equations of the boundary layer (46c).

Values of the boundary layer thickness 6, the displacement

thickness 6* and the momentum thickness 6** for an incompressible

liquid also can be found from relationships (70), (71), (72):

1 4.64 &0 1.74 40 _ 0.647

Figure 6.11 shows the boundary layer velocity profiles

on a flat plate with M0 - 10, k & 1.4, w - 0.76, calculated

according to formulas (62) and (67) for two values of the ratios

of temperatures TW/T0 = 0.25, Tw/T0 I 21 (dotted curve). Thus

are given the velocity distributions obtained by KArmAn and

Tsien by integration of the boundary layer equations (unbroken

curve). The results of calculating the coefficient of friction

on a heat-insulated plate for a compressible gas in formula (70)

with w a 0.76 are shown in Fig. 6.7 by dotted lines. The solid

line corresponds to precise values.

, __ - 1 1 1 1 1

0 0 I? 1M S0 24 totoX 2~

Fig. 6.11. Velocity distribution in a boundary layer
on a flat plate; according to the approximation
formula (dotted curve), precise values (unbroken curve)
(M 0 -10, w *0.76, k 1 .L4).
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Thus, the simple method of calculation based on the solution

of the integral equation of momentum when using a velocity

profile in the form of a polynomial makes it possible to

determine the parameters of the boundary layer with sufficient
practical accuracy.

I *

0 I I J IS 6 7 S g Fo

Fig. 6.12. Dependence of thickness of
boundary layer displacement thickness,
and thickness of pulse loss on a flat
insulated plate on M0 (Pr - 1, w - 0.76,
k = 1.4).

As an example, Fig. 6.12 gives the values of the boundary

layer thickness, displacement thickness, and momentum thicknecs

on a flat heat-insulated plate for different M0 numbers with
w 0.76, k = 1.4. Values 6 6 and 600 are characteristic

thicknesses in an incompressible liquid calculated with the same

Reynolds number as for a compressible gas. The value of the

number M0 substantially affects the characteristic boundary

layer thicknesses; so, with M0  10 the boundary layer thickness0
increases 8 times, and the displacement thickness increases

20 times in comparison with their values in an incompressible

liquid.
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§ 3. Transfer from Laminar to 7
Turbulent Flow Conditions in a
Boundary Layer

Laminar flow, as experiment shows, is stable only under z

certain conditions determined by the value of the critical Reynolds

number. With Reynolds numbers of large critical value, laminar

flow becomes unstable and converts to turbulent. This transi-

tion is connected with the emergence in the flow of undamped

disturbances. If the velocity and pressure disturbances forming

as a result of any external reasons in the course of time

attenuate, then the main stream is considered stable, but if In

the course of time they build up, then this testifies to the

InStability of the main stream and possible transition of laminar

conditions to turbulent. On the strength of such an assumption

about the nature of the transition it is possible to attempt

to determine the value of the critical Reynolds number with the

aid of the stability theory.

Let us examine the plane-parallel flow of an incompressible

liquid, whereby we will for simplicity consider that the velocity

component U depends only on coordinate y, while the velocity

component V is everywhere equal to zero. The pressure of the

liquid P in the basic motion is a function of coordinates x and

y. Boundary layer flow can be approximately considered precisely

such a flow, since the change in longitudinal component U in

the direction of coordinate x is considerably weaker than in

the direction of coordinate y, and transverse component V is low

in comparison with the value of U.

Let us apply on this main stream a two-dimensional

perturbation motion, the velocities and the pressure in 'th

depend on time t:

u(x, y, ). (x. i x,
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Then the pressure and the velocities of the resulting motion

will be equal to

pP~ . nmJ+w, (74) A

The basic laminar flow should satisfy a Navier-Stokes equation.

We will assume that the resulting motion also satisfies a

Navier-Stokes equation, while the applied disturbances are

small so that it is possible to disregard the squares of the

perturbation velocities. Depending on whether the perturbation

motion attenuates or builds up in the course of time, the main

stream will be either stable or unstable. Substituting the

values in (74) in the Navier-Stokes equations and rejecting

the squares of low values, we obtain

du' d, td I Pi _ I Op' ,__ Id' onL'" d's"

dV 4 .,"I 4I9'NOle A-,U I aP . V ,_,(75)
d.~a' +o, . I

Taking into account that the basic motion is subordinated to

the Navier-Stokes equations which for the case in question

take the form
I dip d'U I dip

Ip d 0- (76)

we obtain for the perturbation motion the following system of

equations:

an.,w{;U -ax- k A-- *, (W (77)

. .- 0.

Differentiating the first equation of system (77) for v, an]

the second equation - for x and eliminating from the thus
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-t,3.ned relationships the value a2p'/Oxoy, i.e., pressure, we -,

-'.'Jl obtain the equation which connects the velocity component

Lf the perturbation motion u' and v'. This equation of motion,

together with the equation of continuity serves for determining
u' and v'. The boundary conditions for boundary layer flow

consist of the fact that the velocities of the perturbation

motion ut and v' should be equal to zero at the wall and at a

great distance from wall, i.e.,

a' - v1 - 0 with y a 0; u' - v' - 0 with y - -. (78)

Let us assume that on the laminar flow there is applied a

cisturtance which consists of separate vibrations, each of

which is a wave which is propagated in direction x. Let us
introduce a stream function for separate vibration in the form

of the following complex expression:

0. -)m "''" .  (79)

where 4 r + t9i is the complex amplitude, a - the actual

value connected with the wavelength of the disturbance with

relationship ), - 2r/a. The complex quantity c w cr + ic,, whereby

c r is a velocity of propagation of the waves in direction x, and
ci is the coefficient of build-up, on the sign of which depends

whether the vibrations build up or attenuate. If ci < 0, then

the vibrations attenuate and the laminar flow is stable, but if

ci > 0, then the vibrations build up and the laminar flow is not
stable.

There is a physical sense, of course, only to the real part

of the stream function, i.e., the value

Re @) = e", I (, Cos {. - 1) - , ,i n (.V - C

Composing derivatives of the stream function, let us find for

velocity components of the perturbation motion the values

402 ' >
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(80)

The equation of continuity in this case will be satisfied, and

the equation of motion which is obtained after elimination of

pressure assumes the form

Let us pass over in this equation to dimensionless quantities,
for which let us divide all velocities by the velocity outside

the boundary layer uo, and all the lengths - by the momentum

thickness 6**

(..

Then we obtain

1 -,1lot 2%-D =. ", _ ' -e) (81)

where R - U6S*/y the Reynolds number for the basic laminar flow,

and differentiation is made in terms of the variable (y/6m*).

Equation (81) is called the differential equation of

perturbation motion. The stability analysis of the solution

of this equation is a problem of the eigenvalues of differential

equation (81) under boundary conditions (78). Let us assume

that the main stream is assigned, i.e,, the velocity distribution

in the laminar boundary layer U(y) is known. Then equation

(81) will contain four parameters: R, d ,r' ri. For each

selected paired R and M it is possible to find the eigen
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f'unction O and the complex eigenvalue ' * + i~, whereby,

here !r is the dimensionless velocity of propagation of pertur-

bations, and U is the dimensionless coefficient of the build-upz

With -i < 0, the motion in question is stable with respect to

the perturbations of the wavelength in question, and with

7i > 0 - is unstable.

The case Fi * 0 corresponds to neutral vibrations the curve

(3, R) a 0 in plane 3, R separates the unstable region of the

laminar boundary layer from the stability region. This curve is

called neutral. The smallest Reynolds number on the neutral curve

is the critical Reynolds number for this flow. With Reynolds

numbers less than critical, the perturbations of any wavelength

attenuate. With Reynolds numbers greater than critical there

are perturbations with a determined wavelength which build up.

The calculation of the neutral curve for the case of flow

around a flat heat-insulated plate by an incompressible flow

was performed by V. Tollmien and verified by K. K. Lin. In the

calculations it was accepted that the velocity distribution in

laminar boundary layer is described by Blasius's law.

A similar method of small disturbances was used by K. K. Lin

and P. Lis during the stability analysis of laminar boundary

layer on a flat plate flowed past with a flow of a compressible

gas. In this case, the neutral curve equation can be written

in the form

c 4 (sR. ~(82)

The results of calculating neutral curves are represented in

Figs. 6.13 and 6.14.
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Fig. 6.13. Neutral curves Fig. 6.14. Neutral curves for
for a flow around a flat the flow around a flat plate
heat-insulated plate. by a flow of gas, M0 - 0.7.

These calculations showed that the critical Reynolds number.

decreases with an increase in the M number of external flow in

the absence of thermal conductivity from the plate. Cooling of

the plate leads to an increase in critical Reynolds n~imber at a
constant value of M0 number, i.e., it has an effect on the

boundary layer.

Thus, with the aid of the method of slight disturbances '

is possible to obtain the value of the critical Reynolds numter.

Beginning from that place on the plate where the Reynolds nuh.,o.
reaches its critical value, begin to build up disturbances wi-h

a determined wavelength. Further downstream disturbances with
other wavelengths also become unstable. Finally, at a certain
distance from the beginning of the loss of stability, the

laminar flow changes to turbulent. The critical Reynolds nurm cr

determined by experimental method from observation of the trani-

tion of the laminar flow conditions to turbulent corresponds t,

that place on the plate where the flow turbulence leads to

rearrangement of the entire flow. Critical Reynolds numbers

thus found from experiments usually exceed in value their

theore ,ical values.
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4hus, the mnl.hod of slight disturbances makes it possible

o determine only the lower boundary of values of critical

Reynolds numbers, i.e., it gives those values of Reynolds numbers
less than k with which the laminar flow always is stable. .,

Furthermore, with the aid of this method it is possible to explain
the effect on the stability of the laminar ooundary layer cf

suc' parameters as M and Tw/T*.

The second important problem connected with the transition
of laminar boundary layer to turbulent is the calculation of

the basic flow parameters In the transition region. At present

there is no strict theory of transition region by virtue of the

' omplexity of the processes taking place, therefore, in conducting

quantitatlie estimates in the transition region it is necessary

to ut~lze dlfeert empirical and semi-empirical methods.

Let us examine one semi-empirical approach to parameter

determIning in tranzition region proposed recently by L. A. Vulis.

This method is based on the following diagram of the transient
process. With an increase in the characteristic coordinate of
the state - the Reynolds number - and the achievement of critical

vaLue, the laminar f'low becomes unstable. With a further

increase in the Reynolds number there occurs a gradual transition

into the new steady state which corresponds to stable turbulent

flow. The reading of the Reynolds number as the coordinates of

state in the transition region should be made from its critical

value, i.e., a coordinate of state X will be equal to

I Z -R- R  8.

Let L(X) - a certain characteristic of flow which unambig-

uously depends on the Reynolds number whereby L (X) - a function

of the R number for a laminar condition, L 2 (X) for turbulent,

L(X) - for the transition region. Then the measure of the

disorder of the turbulent system should be the name given to

the relatlon
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which is a relation principally possible, but still not r'ealied
with a given x of value of change in L and to Itc foLl change
with the final rearrangement of the flow conditions. ?or latrinar

flow w 1, since L(X) " LI(X) , while for turbulent L(X' a L2(y)

and w 0.

The basic assumption made by L. A. Vulis ocnralmt. of the

fact that 6he relative change in the measuro of disorder Is

proportional to the increases of the coordinter,

at e (P5)

Actually, the greater the value of disordem.t, th ere

intensively should ordering occur, i.e., ths groater ahould ,)e
the derivative dw/dx. Such a quantitative expression Ia t.ypc&l

for the different processes of establishment ard tP:".

Integrating relationship (85) under the iritial cindtlon
X - 0, u - 1, we obtain

or, substituting for w expression (84):

It should be noted that L(X) - L2 (X) with X I " I.e., w Ith an

increase In Reynolds number, the flow parameters apprnanh the

pararneters of a turbulent condition whereby tli s approach occurs

rather rapidLy (exponentially). It is still ,ecessery to
explain tne nature of joining curve L(X) with curves L,(XI

and L2 (X).
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Differentiating relationship (86) with respect to X, we

have

dl. ')= -'iL'-Z - ldZ --) d._ 1 e f 'L " (I-.+) - L ()j e- 'N
= Tdj LdX di

whence with X = 0 (at the point of Jolning with the curve for

a laminar condition)

-"d L - L dX h- "' [L O - L ( ]

and therefore, in general

[4Li 1A I.
With X -

i.e., there occurs a smooth transitio" to the developed turbule:-

system.

As an example, let us examine the resistance of' a flat

plate flowed around by a flow of an incompressible liquid. As

shown above, during laminar flow the drag coefficient is

equal to (47)

During turbulent flow conditions, as will be shown further,

the drag coefficient is expressed by the following formula:

= 0,073
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Accepting that R = 5-10, O2  10-6, we obtain the expres-
sicn for the drag coefficient of the plate in the traisition

region
.. 0,0731 1007/3 113K \ -2 4 .1-re

' - RU ) / (87)

Values of CW, calculated from this formula are given in

Fig. 6.15 (curve 2). This figure shows values of C for laminar

flow conditions in the boundary layer (curve 1), for turbulent A

(curve 3) and experimental data obtained for a transition

region by Hebers.

4.l,,- l l -i

- .Fig. 6.15. Drag coefficient of
4- a flat plate in the transition

* region.

W 4 i dZ 4 S M' Z 4 SIR

In this case it is necessary to keep in mind that the value
of 2  Just as R p , depends on the initial turbulance of theof a

main flow and can be determined at present only experimentally.

§ 4. Turbulent Boundary Layer

The equations of motion, energy, and continuity for a
turbulent boundary layer can be obtained by means of averaging

over time the initial boundary layer equations (19) - (22). For 7i

simplicity, let us examine first an incompressible liquid. Let

us break down the turbulent flow into averaged motion and pulsa-
ting motion. After designating the averaged over time value of
the velocity component u as U, and the pulsating velocity - as

u', etc., we obtain the following equations for the velocity

components, for the pressure and for the temperature:

09



,,- -f--, ut -- , p -'.-/, T= f+r. (88)

Jnder the mean value here and throughout we have in mind the -
mean values over time at a fixed point of space, for example:

5-i. ~U dL(89)

For averaging, it is necessary to take such a large time
interval t so that the averaged value would not depend on time.

Then the averaged over time values of pulsating quantities will
be equal to zero:

Ir = ifoQ

From determination (89) there ensue the following rules of
averaging:

a) "+ V=+WI (90)

Actually

uV (t1 + v) d-

b)----' =(91)

Actually

since, by definition, u does not depend on time.

c) a- ap. (92)
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Actually,

rig dime " si
a; Ta

since the limits of integration do not depend on x.

Let us now pass to the derivation of the equations of a

turbulent boundary layer. For the case of an incompressible

liquid with constant physical properties, equations (19), (20),

(22), and (24) take the form

" ' --0,(95)

+," ," as/ (96)
as (97)
+, +-o.

Let us multiply both parts of the equation of continuity (97)
by pu and let us add it term by term with the equation of motion
( 94)

Multiplying both parts of the equation of continuity by gcT* and7i

adding it up term by term with the equation of energy, we

have- "
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Let us substitute in equations (95), (97), (98). and (99)
instead of u, v, p, T, their values from (88) and produce

averaging over time. Utilizing the rule of averaging (93), from

(95) we obtain

-'0. (100)

Utilizing the rules of averaging (90) and (93), we convert the

equation of continuity (97) to the form

0m.+(101)

Let us pass to averaging of the converted equation of

motion (98). On the basis of the rules of averaging (90) and

(93) we obtain

ix OP+-o

therefore the equation of motion (98) after averaging assumes

the form

Deducting term by term from this relationship the equation

of continuity (101), multiplied by p0i, and disregarding the

derivative in terms of x of the pulsating components in comparison

with the derivative in terms of y, as is done during the deriva-

tion of the boundary layer equations, we finally obtain the

differential equation of motion for a turbulent boundary layer
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Let us make similar conversions with the equation of energy -

(99). Since

+~

then the equation of energy (99) after term-by-term subtraction

of relationship (101), multiplied by gcpfT, assumes the form

(103)

whereby

Comparing the equations for a turbulent boundary layer

(100)-(103) with equations for a laminar boundary layer (94)-(97)

it is possible to note the following. The equation of continuity

and the second equation of motion take identical form. The

first equation of motion and the equation of energy for the

averaged parameters of the turbulent boundary layer differ from

the corresponding equations for a laminar boundary layer by the

presence of supplementary tangential stresses and supplementary

heat flows.

A simple interpretation of these supplementary terms was

given by Prandtl. For a presentation of Prandtl's idea, let

us examine a plane-parallel flow whose velocity coincides in

direction with axis x, while the value of the velocity depends

only on coordinate y. Consequently, 0 * i(y), " * 0, whereupon

let " >U.
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The mechanism of turbulent flow can be presented in the

following simplified manner. In the process of turbulent flow

there appear liquid volumes, each of which at a certain distance

moves in any direction as a whole at a determined velocity. Let

us assume that such a liquid volume which arose in a layer with

coordinate yl - 1 and which possesses velocity U(yl - 1) moves a

distance I as a whole in the direction of axis y. When this

liquid volume enters a layer with coordinate yI, then the

velocity in this layer will be changed by the value

which is its pulsating component. In this case v' > 0. Analo-

gously, the liquid volume which enters layer y1 from layer

YI + I has a higher velocity than its surrounding medium. Conse-

quently, pulsating component u' will be equal to

a" --= i(Y, + D)- O(.y) = : ) /

in this case v' < 0.

The mixing length Z, to known degree, is similar to the

length of the mean free path of molecules in the kinetic theory
of gases, the only difference being that there occur microscopic

motions of the molecules, and here - macroscopic motions of

turbulent volumes. In general, the length of mixing depends on

time and can take positive or negative values. Thus, the

pulsating component also depends on time

dal

The emergence of pulsations of velocity in transverse
direction can be presented in the following. In a layer with

41



coordinate Y, for some reason there occurs an increase in the

velocity, i.e., there appears a positive pulsating component

u' > 0. The liquid volume which has this velocity +(y,) + u'

contends with the volume located in front which has velocity

U(y, ) and therefore a transverse motion appears directed to

both sides from layer yl. If in the layer with coordinate y,

a decrease occurs in the velocity (u' < 0), then the liquid

volume which has this velocity lags behind the volume which has

velocity U(yl) and a transverse motion directed from both sides

to layer yl appears. On the basis of these considerations it

is possible to draw the conclusion that the value of transverse

pulsating velocity v' has the same order as the value of the

longitudinal pulsating velocity u'. As shown above, the volume

of liquid coming into layer yl with positive value of v' usually

produces the negative pulsating velocity u'. The volume of

liquid coming into layer yl with negative value of v'

usually produces the positive pulsating velocity u', I.e.,

(. ,--',e (105)

where k is the proportionality factor which is on the order of

unity.

Then the product of u'v' will usually be negative, and

therefore the averaged over time value urv will be different

from zero and negative.

In view of a certain uncertainty of the mixing length, it

is possible to include coefficient k in this value. Then we

obtain

where I-i1. (106)
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It should be noted that all the considerations carried out

above applied to the case of a positive value of the derivative

du/dy. Similar considerations for dT/dy < 0 show that in this

case the product of utvt is usually positive. Then

(107)

Formulas (106) and (107) can, therefore, be presented in

one formula

d lId (108)

It is also entirely possible to derive a formula for the

averaged value of the product v'T', if one assumes that the

mechanism of heat transfer is similar to the mechanism of the

transfer of momentum. In this case, T' - Z'dT/dy, and therefore

77=-01 aI~ Jr6 (109)

Expressions (108) and (109) are obtained for the special

case of flow when 5" = 7(y); however, they can also be applied

in the general case of velocity distribution in a boundary

layer.

Utilizing relationships (108) and (109), the equation of

motion (102), and the equation of energy (103), we convert to

the form

1W- [V :P)a (110)

dr, 6T , f[ -- ( l,4 '* di' u ~ON --r -,1 ---A (I
£tFU or. SCR~' o= An d + d "I+ +A A(1,+:r~ 11

where .)PP(,,)is a coefficient of eddy viscosity, X T

rI' 0 ) - the coefficient of eddy conductivity. Here and

throughout, the line above the averaged parameters is omitted.
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Prandtl's hypothesis about the mixing length turned out to

be very fruitful, since it opened up real possibilities for

calculating turbulent flow. Although the mixing length is not a
physical constant for each liquid unlike the molecular coefficients

of viscosity and thermal conductivity, however, as experimental

data show, it does not depend on the flow parameters. The

mixing length basically is a function of coordinate y. Since

during flow along a smooth wall in immediate proximity to its

surface, the velocity pulsations are equal to zero, then I w 0

with y - 0. Accepting the simplest hypothesis that near the wall

the mixing length is proportional to the distance from the wall

l--. , (112)

it Is possible to obtain, following Prandtl, the velocity profile

in a turbulent boundary layer during the flow of an incompressible

liquid along a flat plate (ep/Ox a 0). In this case, from

( equation (110) it follows that with y - 0, when u * v a 0,

+ 0.

Differentiating equation (110) with respect to y and taking into

account the equation of continuity (101), we obtain p 0

with y - 0, i.e., near the wall the stress of friction remains

constant

'-'. (113)

Disregarding the coefficient of molecular viscosity p in compari-

son with the coefficient of eddy viscosity vT and substituting

for v T its expression in terms of the path length of mixing, we

obtain the relationship
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which during the replacement of value Z by expression (112)

assumes the form

After integrating this equation, taking into account equality

(113), we obtain

u=i- jiIU,+C (114)

This relationship can be written in the following dimensionless

form:

U I" (115)

where ,," Vt./p "--/

The value of k, according to the results of measurements,

is a universal constant of turbulent flow and is equal to 0.4.

The second constant C1 depends on the properties of the surface

being flowed around. The universal velocity distribution law

(115) derived for flow along a flat wall turns out to be valid

also during the flow of a liquid in a circular tube. Figure 6.16

provides a comparison of the results of calculation according

to formula (115) with CI a 5.5 with the experimental data for
tubes obtained by Nikuradze with different Reynolds numbers.

4i18
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Fg. 6.6 V c - - a

,D - ,------------ -

Fig. 6.16. Velocity distribution in a

smooth pipe. Curve 1 corresponds to
universal logarithmic law.

It should be noted that the universal velocity distribution

law is derived on the assumption that in the major portion of

(1 the turbulent boundary layer the coefficient of molecular vis-

cosity is low in comparison with the turbulent coefficient of

viscosity. Such an assumption is justified only with the very

large Reynolds numbers, therefore the universal velocity distri-
bution law should be considered as an asymptotic law for very

large Reynolds numbers. Experiments carried out during the flow

of an incompressible flow about a flat plate show that with

moderate Reynolds numbers the velocity distribution is described

well by the power law

* (116)

whereby the value of n depends slightly on the Reynolds number.16_108 :,
With Rx a 10 10it is possible to take n - 7.

Thne equations of motion, energy, and continuity for a

turbulent boundary layer of a compressible gas can also be

419 V ,
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obtained by means of averaging over time in the initial boundary

layer equations (19)-(23). For the averaged parameters these

equations take the form (with constant heat capacity)

pOX n dry)~j (117)
Fo (118)

ar dr r(;. ++ .
la

ex "0 (120)

Here P T and XT are coefficients of eddy viscosity and eddy con-

ductivity which characterize the transfer of momentum and heat

because of transverae pulsations of velocity.

Boundary conditions in this mystem of equations take the

same form as for a laminar boundary layer:

u= 0.mO, TiT, with YVO,
aui, To=To with ym& (121)

For the solution of equations (117)-(120), besides the

equation of state and deperdences of coefficients P and X on

temperature, it is necessary to know the value of the coefficients

of turbulent transfer P and XT. In view of the absence at the

present time of a final theory of turbulence, the determining of

these coefficients bear3 a semi-empirical nature and is based

on a number of hypotheses.

Therefore, during the calculation of a turbulent boundary

layer they usually utilize the approximation method based on

the solution of the integral equation of momentum (59). in this

420
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case, it is necessary to assign the velocity dlstrlbuton and

temperatures in the boundary layer.

Let us examine the case of flow about a fLat plate with

Prandtl number equal to one. We first corvert the equation uf
energy. Multiplying (117) by Au, adding with (1191 and introduc-

ing the stagnation temperature:

S 7t T+A -.

we obtain

-0 A I - I I&,#

Value Pr * (.&,)i, is the Prandtl num:)er for the turbulent

parameters. According to data available -it present, the nurber
Pr T is close to one. Therefore,, subxequ-ntly we will take
Pr T a 1. With Pr - PrT - I, relatlonshi. (Iel) *S 3iplifie4
and assumes the form

Since during the longitudinal flow about '. rlat plate

ap/Ox - 0, then from equation (117) we obraiii

As a result of the similarity of eq, atio,-i ; and

(123), the solution of the equation of energy (I22b*. %n te

presented in the form

7' -- m + b,.

where the unknown coefficients a and b ar' det:-,.'id pro. Lor.da.?

conditlons (121):
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=0, T= T.=b-. z= To 7-u,-- T., a(T:- T,). i

Consequently,

(l2~)

Before going over to finding the velocity profile, it is

necessary to note the following fact. Near the streamlined body

the Reynolds number determined from the local parameters of the

liquid can be arbitrarily small. Therefore, in this area there

should exist laminar flow where the friction and the heat

exchange are determined by molecular transfer, i.e., v >> v

X >> X T' This part of the boundary layer Is called the Zaminar

jublayer. In the remaining, basic part of the boundary layer,

the determining role is played by transfer, by means of turbulent

pulsations, i.e., ii << v X) << X We will consider that the

Reynolds number on the boundary of the laminar sublayer does not

depend on the Mach number M 0 and the intensity of the heat

exchange

t,= ,==,;(125)

according to experimental data, the coefficient a a 12.5.

The velocity distribution in the laminar sublayer can be

considered linear

a Y
(126)

The velocity distribution law in the major portion of the

turbulent boundary layer can be obtained on the basis of

analysis of the experimental data.

The results of' experimental research of velocity profiles

in the major portion of the turbulent boundary layer of a
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compressible gas on a plate are represented in Fig. 6.17. It

turns out that the Mach number M4 and the temperature factor

w a T w/T8 have little effect on the form of the velocity dis-

tribution. Therefore, we will consider power law (116) valid

also for a compressible gas.

44

44 I

41 44 41 48 Y/

Fig. 6.17. Velocity profile in a turbulent
boundary layer of compressible gas on a flat
plate.

Let us find the expression for the stress of friction on

the wall, utilizing (126):

is (127)

Since, on the boundary of the lrAminar sublayer, the values

of the velocity cai.ulated acco,-lng to formulas (126) and

(116) should coincide. u /u0  (Sr/A)I/n. Taking for the

dependence of the c(a'ficient of liscosity on temperature, power

law (1), we obtain

Ut, ( \ • (128)

Here R6 - p0u06/ 0 - the Reynolds number calculated according

to the boundary layer thickness, while the value u /u should be

determined from condition (125).
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Solving relationship (125) relative to 6., we obtain

On the other hand, 5 /6 ( (un/u0)n, therefore
j no

Utilizing the connection between the stagnation temperature

and velocity (124), let us find the following algebraic equation

for determining relative speed on the boundary of the laminar

sublayer:

X 1, + (i._,, (' + )(I- !VS.)
"' k 1M 1-(ml _/"!!a (129)

This equation must be solved by the method of successive approxi-

mations, i.e., to assign arbitrarily the value u /u0 , to substi-

tute this value in the right side of relationship (129), to find

a new value of u ,/u0 , etc. Since the value of uA/u 0 is usually

equal to 0.3-0.7, then as a first approximation let us take

un/u0 - 0.5. Then in the second approximation we obtain

W(+ V 1)"[ 1+073 T'MI

The value standing in brackets changes slightly during a
change in number MO. So, with Tw a 0.5, it changes from 0.750

to 0.672 during a change in the Mach number from 0 to 10. Limiting

ourselves to the first two approximations, we firally obtain
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us (W& o.' M '" r# (130)

Then the expression for the stress of friction (128) with

n 7, w - 0.75 assumes the form

0.0M(()Mir

F Y+ J)' (131)

Before turning to the integration of the equation of

momentum (59), which in the case of a plate appears thus:

A-_ (132)

it is still necessary to find the connection between 6"* and 6.

Utilizing velocity profile (116) and temperature profile (124),

we obtain

- " I+ -jM:)I(- .a,+r.l- I~i'
+-

The results of calculating the values of 6*/6 and 6*/6 for

n - 7, k - 1.4 are given in Figs. 6.18 and 6.19.

g I 1 ' I • S I 4
Fig. 6.18. Relative displace- Fig. 6.19. Relative momentum A
ment thickness for a turbulent thickness for a turbulent
boundary layer. boundary layer.4
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For an incompressible liquid (with M0, - 1)

Integrating relationship (132) with the initial condition 6 * 0

with x n 0, we obtain the dietribution of the boundary layer

thickness along the plate

* |.7: . -* t a. t

(133)

Substituting the found value of 6 from (133) in (131), we obtain

the expression for the coefficient of friction

C.v( ).. (,+(,T" ., (134)1_+0.75- ,

After the boundary layer thickness is found, the displace-

ment thickness and the momentum thickness are found according to

known ratios 6'/6 and 60*16.

The drag coefficient of a plate of length I and width b

is equal to

After substitution of the value T from relationship (134)

and after integration, we obtain

• /'| .k-- I \.
.. ,1161.- *, "1 M, 2 \.

(135)
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The results of calculating the drag coefficient in formula

(135) for the case Iw- 1 (absence of thermal conductivity) are

represented in Fig. 6.20.

~ :U

4M4-

IZ 4Sd1t01 JhIf$A? 41SON

Fig. 6.20. Drag coefficient of the
plate with Tw a 1.

For an incompressible liquid at M 0, i~-1, the value
of' 6**/6 -7/72, and therefore

S ,? 0.0% O 0,73

For determining heat flow let us make use of integral (124)

of the equation of energy

This expression coincides with formula (50) for a laminar

boundary layer. Therefore, for a dimensionless heat flow we4
have (with PrW 1)

St= 9
LC~p.,(14,) P(136)
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Relationship (136) is the consequence of the assumption

regarding the presence of analogy between the processes of the
transfer of momentum and heat with Pr * Pr 1 (Reynolds'T
analogy).

60 R.4,Vi Fig. 6.21. Relative velocity
41 on the boundary of a laminar
45 (/,-. t sublayer.

44 054 47 40 49 ?

The method presented for calculation of a turbulent boundary
layer of a compressible gas is confirmed by the results of

experimental research. Figure 6.21 gives the computed values of
relative velocity on the boundary of a laminar sublayer (according

to formula (130)) and the experimental values of Lobb, Winckler

and Perch. A comparison of the experimental and calculated

coefficients of friction for a flat plate is shown in Fig. 6.22.

The unbroken curve is the calculated ratio cf/cf N calculated

with identical Reynolds numbers referred to the momentum thick-

ness. The black dots designate experimental values of this

ratio. The dotted curve corresponds to the ratio cf/cf H calcu-

lated with identical R . Experimental values for this case are

shown by the open dots.

4

0 1 2 3 4 5 S 7 8 Y e

Fig. 6.22. Coefficient of friction for a
turbulent boundary layer of a compressible
gas.

428



1 5. Boundary-Layer Separation

In the presence of a pressure gradient in external flow the

boundary-layer flow becomes more complex than during flow about

a flat plate. Since pressure remains constant across the boundary

layer, the effect of the pressure gradient in external flow

extends to the entire boundary layer. This effect basically is

reduced to a change of the boundary layer velocity profile.

The reason for such a change of the velocity profile can be

understood if we examine the following simplified diagram of

flow. Let there be in a certain cross section of a boundary

layer the velocity profile u(y), where on the edge of the

boundary u(6) - uO. At a certain small distance Ax from this

cross section the pressure in the external flow, and, consequently,

throughout the boundary layer, will change by Ap. Disregarding

the forces of friction and considering that flow occurs parallel

to the wall, for every stream of liquid it is possible to write

(the Bernoulli equation

An
or =

Consequently, in the section lying a distance Ax from the initial

section, the velocity uI will be equal to J

u,=tt,, =a.u(1 +)=. uI- .

Respectively in the external flow

Then we finally have W

P-A

, u

4 29
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If flew occurs against buildIng pressure, then Ap > 0, and when

< ,A- the term In arentheses will be less than unity. Con-

sej. c'r;iy, tne velocity profile in this case becomes less full.

If rr ssure along the flow decreases, then Ap < 0, and when

u < u. the term in parentheses will be more than unity, In this

case the velocity profile becomes fuller. The results of

experimental study of a boundary layer In the presence of pressure

gradient in the external flow qualitatively confirm the obtained

conclusions. Figure 6.23 gives the velocity profile in the

turbulent boundar. layer of a noncompressible liquid when both

a positive and negative pressure gradient are present. Experi-

ments .,,ere carried out in narrowing flat ducts (flow with

acelerating pressure gradient) and in expanding ducts (flow

w:ith negative pressure gradient). Half the expansion angle a

characterized the amount of pressure gradient.

44 --

W M1 .90 I2N ISU

Fig. 6.23. Fig. 6.24

Fig. 6.23. Velocity profile when pressure gradient is present,
(according to exceriments of Nikuradze).

Fig. 6.24. Pressure distribution on a circular cylinder.

With a sufficiently large positive pressure gradient in the

external flow the layers of liquid near the wall can ston and

even begin to move In the cpposite direction, i.E., boundary-

layer separation occurs (Fig. 6.4). The cross section of the
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boundary layer beginning with which back flow of liquid occurs

is called the point of boundary layer separation. At this point

the following relationship holds:

( )=o. i~e.) • ,mO (137)

The boundary-layer separation is always connected with the

formation of vortices which penetrate the external flow and

substantially distort the picture of flow obtained from the ideal

fluid theory, even far from the body. For an explanation let us

give some information about the flow of noncompressible liquid

about a circular cylinder. Figure 6.24 shows two curves of

pressure distributions along the circumference of a cylinder;

the dotted curve follows the ideal fluid theory, and the unbroken

curve was obtained experimentally by Flaksbart with Reynolds

number

R 6.7 • 10',

i.e., with turbulent boundary layer. The subscript here designates

the parameters in undisturbed flow. On the front side of the

cylinder the measured pressure distribution more or less coincides

with theoretical distribution for ideal fluid. On the rear side

of the cylinder measured values of pressure differ significantly

from the theoretical. This is explained by the fact that at

* - 1250 boundary-layer separation occurs. As a result of

distinction in the distribution of pressure from the theoretical,

pressure drag appears. A similar pattern is observed during flow

about wing profiles. Thus, the boundary-layer separation exerts

a substantial influence on the flow pattern of different bodies

and, consequently also on such fundamental characteristics as

resistance and lift. In connection with this the need for knowing

how to calculate the position of the separation point of a boundary

layer becomes obvious. In the most general form the conditions

of boundary-layer separation were obtained by G. M. Bam-Zelikovich

on the basis of the dimensional theory.
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Flow in an arb.tra cr- s section of a boundary layer will

L dtermined, f w'e assi ,-

a) velocity prof'Jle In a certain initial cross section of

the bcundary layer;

b) cressure distributlon on the edge of the boundary layer;

c) the value of velocity u0 and density po of external

flow at any one point;

d) characteristic linear dimensions which correspond to the

zross section in question (for example, distance x of this cross

section from the initial).

Pressure distribution on the edge of a boundary layer can

be assigned by the value of pressure itself p0 and all its

derivatives (p , p", etc) in the cross section in question.

The basic assumption on which are based all further conclusions

is the following: for flow in a certain cross section of a

boundary layer the essential effect comes from external flow

only in the close vicinity of this cross section.

This assumption is confirmed by the following experimental

facts. First, the boundary- layer velocity profile on the walls

of the straight portions of cylindrical pipes Is the same as

the vicinity profile on a flat plate regardless of whatever flow

(accelerated or slowed) preceded flow about the straight portion

of the tube. In the second place, the velocity profile above

the separation point in the turbulent boundary layer of non-

compressible liquid does not depend on the flow oarameters in

external flow before the separation point. The universality of
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the separation profile with a different flow pattern before

the section of breakaway also testifies to fact that it is

possible to disregard the effect of external flow outside the

small vicinity of the considered section. Finally, experiments

in the study of the interaction of a shock wave on a boundary

layer directly show that the noticeable changes in the boundary

layer occur only at a distance equal to several boundary layer

thicknesses. Consequently, even very strong pressure change in

external flow caused by a shock wave affects the flow pattern

in the boundary layer in front of the shock wave only in a small

neighborhood.

Thus, experiments show that flow in a certain cross section

of a boundary layer is affected only by the parameters of external

flow near this cross section. Hence it follows that the effect

of the velocity profile in the initial cross section can be

disregarded. Because of this for characteristic linear dimensions

it is advantageous to use not distance x from the initial cross

section, but any linear characteristic z of the boundary layer

in the cross section in question (for example the displacement

thickness 6* or the depth of loss of momentum 6**). From the

basic assumption it follows also that if in external flow all

pressure derivatives pO in x at a particular point are finite, then

in the expansion of pressure pO in x it is possible to be

restricted to the first derivative of pO.

Under these assumptions we obtain the following perameter

system, determining flow in an arbitrary cross section of a

laminar or turbulent boundary layer:

u0 - velozity, p0 - density, p. - pressure of external flow

in the section in question, pl - first derivative of pressure in

x, z - iharacteristic dimension of boundary layer, u0 - coefficient

of dynamic viscosity, X0 - coefficient of thermal conductivity, 1

k - ratio of heat capacities.
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Acording to the fundamental theory of the dimensional

tneo:'y any dimensionless complex is a function only of dimension-

less co mbinations of the determining parameters.

Then, for example, for the dimensionless stress of friction

ci the wall we have

,a (138)

w Vhere are the Mach numbers of the external flow.

Function ¢I should obviously depend even on Pr and k numbers,

tut these arguments are omitted, since for this gas they can be

considered as constants.

At the separation point of boundary layer Tw = 0. Solving

equation (138) relative to (plz)/(p u2 ) and expanding in series
0 0

in powers of w 0/(p 0 uoz), we obtain

,A 'f(Mj+'(Mj(139)

Let us complete now in equality (139) the same passage to

the limit which is made during the derivation of the boundary

layer equations, i.e., let us assume that viscosity vanishes

(IJ0 - 0).

In laminar boundary layer when the coefficient of viscosity

vanishes (Reynolds number R - m) the characteristic dimension

of the boundary layer also vanishes (t/ts-,IVR-.O. where I is

the characteristic dimension of the streamlined body). Consequently,

(PZ6)/(PUo) vanishes as 1111W
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Furthermore, we have

tom, W T y 7'

We find, hence, that WO/(pou0 z) v, nichvt (when uO 0.

just as I/J/R. Because of this in formuia (..;.) he t , -

portional to (Wo/pou 0z)n(n , 0), vanish an 41,Vf ,V" .3tr

does not vanish (at j0 - 0), for a larlnar I Il'_ *O'

should be identically zero. Multiplyl-ig Lcth ,'. (r

by (pou 0 z)/pO, and passing to the limit &s P m wr, r'nd 'Ont

at the separation point of the lamina tur;:; . -e ;'

ing relationship is valid:

In the case of a turbulent boundary laye, the characteristic

dimension of the boundary layer at PO * 0 does not vanish, since

the boundary layer thickness is determined by turbulent mixing., 2
Consequently poz/P 0 U0  does not vanish. In this case O0 (M0) # 0,

all the remaining terms in (139) vanish at O -4 0. Thus, for

a turbulent boundary layer at the separation point the following

relationship should be made:

To .(Mo (141)

Function 0,(M0 )and ol(Mo) can be determined theoretically and

experimentally. Their values, of course, depend on which of

the parameters is accepted as the characteristic dimension of the

boundary layer z. For a turbulent boundary layer in non-

compressible liquid (M0 = 0) the quantity 0(0) is equal

approximately to 0.015, if as the characteristic dimension z

we take the displacement thickness 6*. If for characteristic

dimension we take the depth of momentum loss 6**, then 0 )=

0.005.
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For a turbulent boundary layer at M0  0 quantity O((I0)

can be determined as follows. We will search for the stress

distribution of friction across a boundary layer at the separation

toint In the form of a polynomial from y/6

"- a t  (142)

where for determination of coefficients a0 , a,, a2 , a3 we utilize

the following conditions:

y - 0, Tw = 0 (at the separation point),

y=O. -- (follows from the equation of motion (117)

y =6, T 0 0 (on the limit of the boundary layer).

One additional necessary condition can be obtained by differentia-

ting with respect to y the equation of motion (117):

JY'" -, J." I d0 Ox d'. d, 0. d d d?1 "Dyd r O0yl P O0 + 'o('Dr±-P.'0 g2

Hence at y - 0 we have (u = v = 0, Bu/3y - 0) a2t/ y2 * 0. Then,

for the coefficients of the polynomial (142) we obtain

a--=a=O, a, -a-

and relationship (142) assumes the form
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The stress of friction in the turbulent boundary layer can

be represented in the form of the sun

A

where TM wau/ay stress of friction caused by molecular A

transfer and TT is the tangential stress caused by turbulent

pulsations.

In accordance with the hypothesis of Prandtl

where I - mixing path length. Thus, relationship (143) can be

rewritten in the form

Far from the separation point the stress of viscous friction

is negligibly small in comparison with the stress of eddy viscosity

for all distances from wall which exceed a certain determined

value, which is called the thickness of the laminar sublayer.

Within this sublayer the stress of viscous friction reaches large

values, since au/ay is great here. However, at the separation

point (au/ay)w = 0 (at y - 0) and the stress of viscous friction

will be low even at the wall. Thus viscous friction can be

disregarded throughout the cross section. Then from (144) we

will obtain

This equation can serve for determining the velocity profile '

in the separation point.
41 *
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Since beginning with the separation point flow behaves

approximately as a free turbulent jet, it is possible to assume

that the mixing length in the breakaway section is constant and

equal in magnitude to the mixing length for free turbulent jets.

As is known, from the theory of jets (§ 1 Chapter VII) the ratio

of mixing length to the width of the Jet, which in our case is

equivalent to boundary thickness 6, is a constant value, i.e.,

Z = Z/6 = const. Introducing the dimensionless quantities

P = /P = u/u 0  y/6, from relationship (145) we will

obtain

d U W (146)

In the case of zero heat transfer and Pr -1 the stagnation

temperature is constant, and therefore

I - M I -- 1)-

Integrating equation (146) over the boundary layer from y = 0

to y, we will obtain

d

MI- -J-- dX --- d

i -Y M + i1M~

or

Ir -T- (147)-isn _ -Z T' :,; YI -d s

When y - 1 ' 1, therefore from relationship (147) it follows

that

,dp, 2 /1 I
- .3 (148)
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Substituting (148) into (147), we will obtain finally for the 4
velocity distribution at the separation point

= I -- 1 + si-n-, -- M---.l, d (14 9 )

From (141) and (148) it follows that if for the characteristic

dimension we take the displacement thickness 6*, then

-,M, I M . aresin -2-T__[

(
For a noncompressible liquid (M - 0) we have

0

Eliminating from these two relationships the unknown T,
we will finally obtain

p, (M*) --- (O| ,i . p1)(rcsha (150) :
-- I (1 0

The ratio 6*/6 is defined by expression (57), since the velocity

profile and temperature profile in the boundary layer are

known.
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The change in O0 (M0 ) depending on MO, calculated according
to formula (150), is shown on Fig. 6.25 by the unbroken curve.

The results of the experiments are plotted there. The open
circles correspond to nonseparable flow, and the solid circles

correspond to flow with boundary-layer separation.

~ 6 F[1114 IFig. 6.25. Parameter
Yt i -iI -- of breakaway of turbu-

41 'L Ilent boundary layer as
M fA) a function of Mach

i ,Ift4 number M0 .

Thus, boundary-layer separation appears when the parameter

p,"| dx

reaches a certain critical value which depends on M0 and is

determined by formula (150). Thus to provide for nonseparable

flow during the slowing of a flow of gas (dpo/dx > 0) it is
necessary to achieve the slowing in such a way that parameter

nowhere reaches its critical value.

For determining parameter distribution & along the stream-

lined surface, besides the parameters of external flow, it is
necessary to know the characteristic dimension of the boundary

layer (for example, the displacement thickness). The boundary-
layer calculation in the presence of pressure gradient in

external flow is a rather complex problem, since in this case
the velocity profile (and temperature profile) will depend on
the pressure gradient and change from one cross section to the

next.

44 "



For a laminar boundary layer of both noncomoressible liquid

arid compressible gas at variable pressure in the external flow
there are different methods of calculation. The most precise

methods are based on numerical integration of differential

equations and require the use of a computer. For a turbulent - 1
boundary layer of noncompressible liquid approximate, semi-

empirical methods of calculation have been developed. In the

case of small pressure gradient in the external flow the turbulent

boundary layer of compressible liquid can be calculated when the

effect of the pressure gradient is considered only in the integral

relationship of momentum (59). In this case it is considered that

the velocity profile and temperature profile, and also the

dependence of the stress of friction on the characteristic

boundary layer thickness take the same form as in the case of

flow about a flat plate.

§ 6. Interaction of a Boundary Layer
(with Shock Waves

The build-up of a boundary layer on a streamlined surface

always affects the external flow. In the absence of shock waves

this effect is reduced to the following. The boundary layer

growth in the direction of flow is connected with an increase

in the displacement thickness 6P, which leads to deviation in

the flow lines of the external flow. Thus, flow in the external
flow will be the same as during flow about a fictitious outline

displaced wich respect to the real one by the displacement thick-

ness. Consequently, during the calculation of flow it is necessary

to apply the method of successive approximations: first calculated

is the flow about a body by an ideal fluid, then according to

the found pressure distribution along the body surface are found

the parameters of the boundary layer (including displacement __

thickness); the flow about the fictitious body whose contour is i
shifted by 6' is further calculated, etc. However, usually the
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displacement thickness is low in comparison with the dimensions

cf the body and therefore it is possible to be restricted to

the first approximation.

When shock waves are present, the boundary layer usually

has a stronger effect on external flow, in certain cases sub-

stantially changing the picture of the entire flow. The fact

is that the shock wave changes in the velocity and temperature

in the direction normal to the front of the wave, which usually
differs little from the flow direction, are great in comparison

with changes in these values along the wave. In the boundary

layer changes in the velocity and the temperatures in the flow

direction are usually insignificant, while the changes of these
values across the boundary layer are great. Consequently, in

ti-e interaction region of the shock wave with the boundary layer

the velocity and the temperature substantially change both

lengthwise and across the flow. Consequently, the basic assump-

tions of the boundary-layer theory and theory of shock waves in

this case cease to be valid. Thus, theoretical study of the
interaction region shock waves with a boundary layer should

represent an extremely complex problem. Experimental study of

this zone of flow is also not a simple matter. However, available

data make it possible to present the picture of interaction as

the following. The presence of a shock wave leads to a sharp

increase in pressure on the wall. The pressure increase is

transferred towards the flow in the subsonic part of boundary

layer, which produces a thickening or even a boundary-layer

separation. In this place the flow line in the external flow

differs from wall, which affects the form and shock-wave intensity.

The picture of interaction depends substantially on the flow

conditions in the boundary layer.

Let us examine the Interaction of the shock wave with a

laminar boundary laye.r. Basic data on this question have been
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obtained during flow about wing profiles at high subsonic speed.

In the forming local supersonic zones appear normal shock waves,

If the Mach number M0 in the supersonic zone only a little exceeds

unity (i.e., the drop in pressure in the shock is low), then the

boundary layer either does not separate at all or after the

separation adheres again to the wall, remaining laminar or

changing to turbulent (Fig. 6.26). Immediately after the shock

wave appear rarefaction waves as during flow about an external

obtuse angle. At the place of attachment the flow is at a

certain angle to the wall; therefore a new shock wave appears

which can cause a new boundary-layer separation. Thus, several

constructive shock waves can appear, which is observed in practice.

With an increase in MO, i.e., with an increase in the shock-wave

intensity, considerable boundary layer growth occurs, and pro-

nounced boundary-layer separation appears (Fig. 6.27). At the

place of boundary-layer thickening are formed compressible waves

as during flow about a concave wall. At a certain distance

from the wall the compressive waves become one or several oblique

f shocks. Figure 6.28 gives pressure distributions in the inter-

action region of the shock wave with the laminar boundary layer

at different distances from the wall and at M0 - 1.225 (according

to experiments of Ackeret, Feldman and Rotta). These data show

that near the wall the pressure increases gradually, and not

abruptly. Considerable pressure change across the boundary layer

is observed also. Thus, the zone of interaction is characterized

by the presence of longitudinal and transverse gradients of

pressure. Consequently, the shock wave and boundary layer lose

some distinguishing features, which it is necessary to consider

during practical problems.

Fig. 6.26. Schlieren photograph of
flow about a profile with M - 0.843,

R = 8.45.105 (Lipman).
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Fig. 6.27. Fig. 6.28.

. 6g. .27. Schleren photograph of flow about a profile with

= .895, R = 8.77.105 (Lipman).

?g. 28. Pressu. . distribution in the interaction region of
ock;.ave with laminar boundary layer.

S-imilar features of flow are observed during the interaction

of a boundary layer w,Ith an oblique shock wave falling from

outside or with a shock formed during flow about an internal

obtuse angle. "

One of the basic auantitative characteristics of such

interaction !s the pressure ratio on the wall at the separation

point p, to Pressure in undisturbed flow po. According to

Guesde's theory this value does not depend on the type of inter-

action and shock-wave intensity in the external flow, but Is

determined by M0 and by the Reynolds number

P. I(M - IR, 3 '9' (151)

Me > 1,2.

This ratio Is called the critical drop.
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The values of pl/p 0 with M0  2, calculated from formula 0

(151) (unbroken curve) and obtained experimentally by different

authors during study of flow about an internal obtuse angle and

during study of the reflection of an oblique shock from a flat

wall, are given on Fig. 6.29.

P, Fig. 6.29. Dependence of critical
pressure drop as the ratio of oblique
shock to Reynolds number wi-th a laminar

I r "boundary layer.

Taking into account the complexity of the measurements,

and therefore, their low accuracy, one ought to consider the

agreement of the calculated and experimental results as satis-

factory. As follows from formula (151), pressure ratio pl/p0

increases with a decrease in Rx or increase in M0. Physically

this means that the less R is, the more the viscosity forcex
" preventing separation near the wall. An increase in M0 leads to

an increase in the momentum of the mass of gas in the boundary

layer, which also impedes separation. Knowing M0 and the drop

in pressures on the first oblique shock, it is possible to
determine the angle of inclination of this shock relative to the

incident flow.

For the full construction of the picture of flow it is
necessary to know how to determine the distance b by which the

oblique shock wave will move away towards the flow. According

to experimental data available at present, this distance is

proportional to the displacement thickness of the undisturbed

boundary layer and increases with an increase in the shock-wave

intensity in the external flow. The values of b found by

0. I. Petrov and his colleagues during study of flow about the

internal blunt angle with M0  2.0, depending on the intensity 4

of the basic shock are given on Fig. 6.30. The small open circles
correspond to = 3.5.10 5 , and the solid to R x - 5.3.10 5.
c to 3505 1
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L.. :Fig. 6.30. Separation of oblique
"-: - - shock depending on intensity of thebasic shock with laminar boundary

layer.

The amiount of exTerimental research devoted to study of the

interaction of the shock wave with turbulent boundary layer is

considerably larger. This is explained by the fact that the

theoretical examination of this question is extremely difficult
as a result of the complexity of the phenomenon and absence of

a final theory of turbulence; at the same time in practice this

case is encountered very frequently. As an example let us

examine the interaction of an oblique shock wave falling from

outside with a turbulent boundary layer on a flat plate. With

low intensity of the falling shock the picture of flow differs

little from the picture given by the ideal fluid theory (Fig.

6.31a). The difference is in the small bending of the falling

and the reflected shock waves, and a certain increase in the

boundary layer thickness. With larger intensity of the falling

shock wave occurs boundary-layer separation and a system of

shocks appears (Fig. 6.31b). With further increase of the

intensity of the shock at the point of intersection of the falling

and the first oblique shocks a normal shock wave is formed

(Fig. 6.31c). A similar pattern of interaction takes place during

flow about an internal obtuse angle, with the emergence of

shock waves in the local supersonic zone, during flow about

winged profiles during off-design outflow from the nozzle.

Figure 6.32 depicts the photograph of flow about a winged profile

with M, - 0.843, R1 - 1.69.10 . The boundary layer before the

shock is turbulent; the intensity of the shock is small and

treakaway does not occur. With m. a 0.895, R , 1.75.106. The
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shocK-wave intensity increases and the boundary layer separates

from the wall (Fig. 6.33). The cause of the reflected oblique

shock is the same as during the interaction of the shock wave

with a laminar boundary layer: the transfer of pressure increase

towards the flow and the boundary layer growth. Figure 6.34

gives pressure distributions in the interaction region of a shock

wave with a turbulent boundary layer on winged profile. The

broken line shows change in the displacement thickness. These

data show that in the interaction region there are considerable

longitudinal and transverse gradients of pressure, as with a

laminar boundary layer. The quantitative characteristics of the

Interacticn of shock waves with a laminar and with a turbulent

boundary layer, however, are different, since the fullness of

the velocity profile is not Identical.

a) b) c)

Fig. 6.31. Diagrams of interaction of shock
wave with turbulent boundary layer on flat
plate.

Fig. 6.32. Schlieren photo-
graphs of flow about a
profile with % 0.843,

=1.69.10 6 (Lipmarn).
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Fig. 6,33. Schlieren photographs
of flow about a profile with

1/ a 0.895, PZ - 1.75.106

(Lipman).
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Fig. .63I. Pressure dis-
tribution in the inter-
action region of shock
wave with turbulent
boundary layer.

The experimental data show that the pressure ratio in the

first oblique shock (critical drop) does not depend on the method

of realization and intensity of the basic shock wave or on the

Reynolds number (i.e., the parameters of the boundary layer),

but is determined by the value M0 of the external flow. Figure

6.35 gives the results of study of the pressure ratio pl/pO in

the first oblique shock, obtained by I. P. Nekrasov with different

Reynolds numbers and M0 a 2.0. Figure 6.36 shows the values of

pl/p0 depending on NO at different cases of interaction, indicated

in the figure. This figure plots the computed value of this

ratio, calculated according to an empirical formula of I. F.

Nekrasov
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I -, (152)

(solid curve) and according to Guesde's formula

P, 14. 0.2Mg.% (153)

(broken curve).

- Fig. 6.35. Dependence of a critical drop
4_L_t< in pressure in detached oblique shock on

Reynolds number with turbulent boundary
layer.

4/P0  - f -i i 1 ! i [ 1

Fig 6.36. Deedec of critical

drop in pressures in a detached
oblique shock on the number M

' 4- during the interaction of the
I- shock wave with a turbulent

2.0 r boundary layer.
" ,"h"= - T-r-r- t -.

The amount, of separation of the oblique shock from the point

of intersection of the falling shock with the wall depends on

the intensity of the falling shock on M0 and on the local param-

eters of the boundary layer. Figure 6.37 gives the results of

experimental determination of this linear dimension . The quantity

6* is the displacement thickness of the boundary layer in the

absence of a shock wave in the external flow.
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It is necessary to keep in mind that the presence of shock

-.es in the external f'lcw affects the velocity distribution and

rressL-e In the boundary layer. With low intensity of the falling

zncck ;1-3 effect leads to a certain boundary layer growth;

the velocity profile in this case is affected little. With high
'ntenzitv cf the falRIng shock wave boundary-layer separation

aepears and a vortex zone i formed. Downstream from the

secaration c.int begins the mixing of the detached stream and the

build-uc of a new wall boundary layer. Because of the oressure

transfer along the ,subsonic part of the boundar layer upstream

the pressure ceases to be constant across the boundary layer,

I.e., 3p/y # 0. Thus, all methods of calculation developed under

tlie assumption of constant static pressure in the cross section

cf the boundary layer can be used only a sufficient distance

:ror tne !,lace of interaction. Comoarison of the above data

shows that the breakaway of the laminar boundary layer appears

i.th small shock-wave intensity, while during turbulent flow

conditions the amount of the critical drop is considerably more

*.oreover, at M0 < 1.3 value of the critical drop for a turbulent

toundary layer is more than the pressure ratio in the normal shock

wave. Consequently, at M0 < 1.3 the breakaway of the turbulent

boundary layer cannot occur. This is explained by the fact that

the velocity profile during turbulent flow conditions in the

boundary layer is considerably more full than with laminar condi-

tions, i.e., corresponds to larger momentum. Thus, separation of

the turbulent boundary layer requires a more intense shuck wave

than for separation of a laminar layer. For this reason the

pressure increase near the wall caused by a shock wave of identical

intensity shafts towards the flow in the turbulent boundary layer

a shorter 3istance than in a laminar boundary layer. Because of

this the value of the separation of the first oblique shock wave

In turbulent flow conditions is lese than with laminar conditions
C : -.30, 6 .37).

450

i-

_ _



-1':- Fig. 6.37. Separation of oblique
10 L -shock during interaction of shock-. iwave with turbulent boundary layer.

§ 7. Flow of Pluid in Tubes

The flow of a fluid in channels of different cross section

is very frequently encountered in practice. In this case usually

the speed of motion in the channel is considerably less than

the speed of sound, and therefore the fluid can be considered

incompressible. Let us examine first a steady laminar axi-
4symmetric flow in a circular cylinder pipe. Assume that the

liquid flows into the tube at a constant speed. On walls is

formed a boundary layer whose thickness increases along the tube.

Since the density and flow rate through every cross section

remain constant, an average speed is maintained. Thus the decrease

in velocity near the wall caused by the presence of friction leads

to an increase in the velocity outside the boundary layer (in

the flow core). This zone of flow is called the initial section.

At a certain distance from the entry the boundary layer thick-

ness becomes equal to the radius of the tube, i.e., boundary

layer s meet. This zone of flow is called the principal scation

and is characterized by an invariable velocity profile. The

length of the initial section can be determined approximately

by tt,- formula

/. = O.Vd R, (154 ) .
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which .as obtained theoretically by Shiller. So, at R 1 1000

and R = 5000 the quantity Z is 30 and 150 tube diameters
H

respectively. Subsequently we will examine only flow in the

.rinc.pal section. The x-axis Is directed along the axis of the

tube, and the y coordinate is read from the axis of the tube. iA
Considering that the flow in all cross sections is identical

the (velocity component in the axial direction does not depend

on x), from the equation of continuity in cylindrical coordinates

,.e will obtain

d~yo) 0 or yv=con-*t
dy

where v is the velocity component In the radial direction.

Since v = 0, at y = r, consequently, v - 0 throughout the flow.

Then the equation of Navier-.Stokes in cylindrical coordinates

assumes the form

I dri , du _ ip o (155)

whereupon the boundary condition is u - 0 at y - r. Integrating

equation (155), we will obtain the velocity distribution in

the cross section of the tube

I dpt
+A dx- (156)

Maximum velocity is reached on the axis of the tube at y = 0

UM .' (157)

The amount of pressure gradient dp/dx is connected with the fluid

flow rate through the tube. Actually,

Q~ \ (158)
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4 whence the average rate of flow will be

Ott (159)

In technical computations it is accepted to introduce resistance

coefficient

(160)

where d is the diameter of the tube. Substituting into relation- =

ship (160) the value of dp/dx from equality (159), we will obtain

, - . (161)

If we introduce Reynolds number then the law of

resistance in a circular tube during laminar flow will take the

form

64

c~--r.(162)

This law is well confirmed by the results of experimental research

(Fig. 6.38). The solid curve is computed according to formula

(162), and the points correspond to the experimental data obtained

by Gagen.

O.Z Fig. 6.38. Resistance coef-Ificient for smooth circular
--- - tubes during laminar flow.

4,7
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Laminar flow conditions occur only with Reynolds numbers

less than its critical value. According to experiments in tubes,

the critical Reynolds number is approximately equal to R 2300.
KP

However, it is necessary to have in mind that value R largely

depends on conditions in the f]ow, in the first place on the

initial turbulence of the moving flow. In special experiments,

where the turbulence of the external flow was insignificant,

it was possible to keep the laminar flow conditions at signif-

icantly greater values than the critical value of the Reynolds

numbEr.

In general at R > R the turbulent flow conditions develop

if the boundary layer, whereupon Just as during laminar conditions,

flow in the tube car, be subdivided into the initial entrance

section and the principa: section. The len~th_.qf the. inijI&

section, according to measurements of Kirsten, comprises from 50

to 100 tube diameters, and according to experiments of Nikuradze

comprises from 25 to 40 diameters.

Let us examine flow in the principal section of a cylindrical

circular tube. Let us isolate in the fluid a cylinder which has

length I and radius y. In the principal section of the tube

the velocity distributions in different cross sections are

identical, therefore forces of inertia are absent and the cylinder

will be in equilibrium under the tangential stresses on its

lateral surface and the pressure difference p1 - P2 on Its bases,

i.e.

(163)

According to this formula the tangential stress is proportional

to the distance from the axis of the tube and reaches its greatest

value on the wall

'- g-71 (164)
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The resistance coefficient C, determined by relationship (160),

upon replacement of the pressure gradient by its value from

formula (164), will be

Pal (165)

Unlike laminar flow, for which the connection between

resistance coefficient (or pressure drop) and fluid flow rate

is determined theoretically from the solution of the equations

of Navier-Stokes, in a turbulent system such a connection can

be found only when the velocity profile is known from experiment.

As has already been indicated in § 4., the boundary layer velocity

profile on a flat plate at Rx a 10'.- 0 (R6 - 2.10 -10 ) is

weal described by. the exponential formula with exponent 1/7,
which in the selected coordinate system takes the form

The expression for the resistance coefficient C can be

immediately obtained from relationship 131) at Tw 1, MO - 0

and by replacing R6 by R (Pucpd/u) (considering 6 - r), and

u0 by Ucp:

Then according to (165) we have

-:-W 20 ,- (166)

j4 5 5
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This formula is close to the Blasius formula

obtained on the basis of vast experimental material for R -

4 4.10 3-105.

For large Reynolds numbers the experimental values of

coefficient ; prove to be higher than those calculated from the

Biasius formula or according to formula (166).

To eliminate this disagreement we use (during the calculation

of the resistance coefficient) the logarithmic velocity pr'. flle,
which is asymptotic as R * =, since during the derivation of
this profile, molecular viscosity is disregarded as compared with
turbulent (S 4). For the selected coord.ante syste- the

logarithmic velocity distribution law (15) takes toe forn.

and is well confirmed by experimental ditta of NiIrad~e fo.
large Reynolds numbers (Fig. 6.16). On the k:fls of t-e tube

y = 0, therefore from (167) we have

t= .nM- + :i.& (168)

Knowing the velocity profile (167), It is ea.iy to find th . nean

rate of flow over the cross section of the tbe

2 lot -- -+ .73. 16 9 )
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We express C through vo and u cp substituting into equality

(165) the value T Ov2 (acoording to determination (115)):

or (170)

Furthermore, we transform the quantity vor/v:

Then relatiorr..hlp (169) can be written In the form

cr

Th!s formula qualitatively describes well the change in

r-esistance coerficient for smooth pipes with large Roynolda

nunmbers. Best quantitative agree -rnt is obtained, however,

if we change somewhat the theoretical numerital fa.ctors and

accept

TC - 21901(1472*

Figure 6.39 compares the values of C calculated according

to Blasius's formula (solid curve) and according to formula

(172) (broken curve), with experimental values of the resistance

coefficient of tubes as ontatned by differtnt authors. As we

see, for determining the resistance coefficiert of siooth circular

tubes at R w .10 -A0 it is possible to utilize formula (166),
and whlen H > 105S formula (1712).
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Pig. 6.40. Resistance coef-

circular cross section.

"'O ,g e gsJ' u gj,' , seg

Introducing the dimensionless coefficients of friction cf

and thermal conductivity St into the last two equations, and

taking into account that pu - const, as follows from the equation

of continuity (173), we will obtain

(174)

S'1= o U& s - ro (175)

while Cf and St depend on the flow conditions (laminar or

turbulent) and on the following dimensionless parameters:

(176)

8t84(. Pr ~..(177)

where X is the velocity coefficient, which is the ratio of the
rate of flow to the critical speed of sound.

At small rates of flow (X << 1) the quantity X is not the
determining parameter. In this case the heat-transfer coefficient
will change only because of a change in the gas temperature
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along the channel. Then the equation of energy (175) is integrated

and the distribution of the stagnation temperature along the
channel is determined. The velocity distribution is found from

the equation of momentum (174). Precisely such an approach is

usually utilized In the examination of the motion of a noncom-

pressible fluid in a channel of constant cross section. During

study of the motion of compressible gas, separate integration of

the equations of energy and momentum is impossible, since the

heat-transfer coefficient in this case depends on the gas velocity.
Introducing gas-dynamic functions and the dimensionless stagnation

temperature e = T*/Tw, we will obtain

.* S1 )  (178)

.- 1 # /,!xl (179)

fe* If- , -. .St( - I ( 180 )

Dividing (179) term-by-term by (180), we eliminate the variable x

. ,l ! W 6

Differentiating in the left side, we will obtain a differen-

tial first-order equation connecting dimensionless stagnation

temperature e and the velocity coefficient X:

( I)d) el 2k k

-vT).(181)

For simplicity of further computations we assume chat a

Reynold's analogy holds both during laminar and during turbulent

flow conditions, i.e., c. = 2St. Then equation (181) takes the

form
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(182)

The integral curves of this equation are shown on Fig. 6.41 for

k - 1.4. To determine the direction of the process during gas

flow in the channel we utilize the equation of energy (180).

If the channel is entered by a gas whose stagnation temperature

is lower than the wall temperature (8 < 1), then the gas will be

heated (dO/dx > 0) and e - 1. If the channel is entered by gas

whose stagnation temperature is higher than the wall temperature

(e > 1), then the gas will be cooled (de/dx < 0) and 6 - 1.

Consequently, to the gas flow in the channel corresponds motion

along integral curves to e - i. In the area G < 1 both effects

(heat supply and friction) act in one direction: during subsonic

flow (X < 1) occurs flow acceleration, and at supersonic flow

a slowing down occurs. In the area e > 1 the joint effect of
heat removal and friction is more complicated, since friction

exerts an accelerating action, and heat removal a slowing action.

A 

1" Fig. 6.41. Integral curves of

the differential equation
describing a flow of compressible

5I L____ gas In a channel of constant cross
section with friction and heatexchange at k a 1.4. The broken

line is dX/de - 0.

Let us first examine subsonic flow (X < 1). With large

differences in the gas and wall temperatures (large e) and low

speeds (low X) the effect of heat exchange turns out to be more

essential and a slowing of the flow occurs (dX/de > 0). With

large X and low e the friction effect predominates and flow

is accelerated (dX/de < 0). Along the line of the transition

from slowing to acceleration dX/dO - 0. Then from equation (182)

we will obtain the equation of this line in the following form:
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This curve is shown on Fig. 6.41 by broken lines. During

supersonic flow of heated gas (e > 1, X > 1) the predominant

effect comes from f riction and flow is slowed.

After the dependence of X on e is found, it is possible to
determine the remaining flow parameters. From the equation of

continuity (178) follows

e_ 1/T1 --

the subscript "H" designates parameters in the beginning of the

channel.

Utilizing fundamental relationships between the stagnation

conditions and static parameters, we will obtain

I - I

V . -i-I

Since u aX,

Finally, integrating relationship (180), we find the connection

between x and 0
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s'nce the deperndence of X on e is already known, therefore,

dependence of St on e is known.
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CHAPTER VII

TURBULENT JETS

§ 1. General Properties of Jets

In many instances of the motion of liquid and gas in the

flow appear so-called surfaces of tangential discontinuity; the

flows of liquid on both sides of such a surface are called

jet streams. Depending on the relative direction of motion of

the Jets they can be cocurrent or counter. The characteristic

feature of Jet streams is the fact that the tangential discon-

tinuity on the interface undergo such quantities, for example, as

rate of flow, temperature, admixture concentration, whereas the

static pressure distribution turns out to be continuous.

On the surface of tangential discontinuity (in connection

with its instability) appear the vortices, which in disordered

fashion move along and across the flow; because of this between

adjacent Jets occurs an exchange of finite masses (moles) of

substance, i.e., transverse transfer of momentum, heat and

admixtures. As a result on the boundary of two Jets is formed

an area of finite thickness with continuous velocity and tem-

perature distribution and admixture concentration; this area

is called the jet turbuZent boundary Zayer. At very low values

of the Reynolds number the jet boundary layer can be laminar,

but we will not deal with this comparatively rare flow event.
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The simplest case of a jet boundary layer occurs during
the discharge of a fluid with regular initial velocity field

( 0 ) Into a substance moving at constant velocity (u.), since

in this case in the initial jet cross-sectional area the boundary

layer thickness is equal to zero. The thickening of the jet

boundary layer, which consists of increased particles of the

surrounding substance and stagnation particles of the jet itself

leads, on one hand, to an increase in the cross section, and on

the other hand, to the gradual "eating" of the potential nucleus

of the jet - an area lying between the internal boundaries of

the boundary layer. The schematic diagram of such a jet stream

is depicted on Fig. 7.1. The part of the jet in which there

is a potential flow nucleus is called the initial section.

Ttaeoition prinoipal section
Initial section sto lon

S I S

Fig. 7.1. The diagram of flow in a jet.

As numerous experiments show, one of the basic properties of

such a jet is the constancy of static pressure in the entire flow

zone as a consequence of which the speed In the potential care A

'In certain cases (during the interaction of a jet with any 71.
obstruction) the condition of pressure constancy can be disturbed,
but these special cases will be dealt with separately.
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of the jet remains constant. Washout of the jet behind the

lmits of the initial section is expressed not only by its

thickening, but also a change of velocity along its axis.

At a certain distance from the end of the initial section

the jet stream acquires the same form as a flow of fluid from

a source of infinitesimal thickness (in the axisymmetric case

the source is a point, and the plane-parallel case it is a

straight line perpendicular to the plane of spreading out of

the jet): the corresponding section of the jet is called the

principaZ eection. Between the principaZ and initial sections

of the jet is the so-called transition section.

Frequently a simplified diagram of a jet is used, and the

length of the transition section is assumed to be zero; in

this case the cross section in which the prinoipaZ and initial

sections meet is called transition jet cross-sectional area.

If calculations consider the transition section, then the transi-

tion cross section is considered as coinciding with the beginning

of the principal section.

The most studied form of a turbulent jet stream is the

jet which spreads in a quiescent medium; such a jet is called

aubmarged.

In the described diagram of a jet it is assumed that the

boundary layer has finite thickness; some theories of the

submerged jet accept a boundary layer of infinite thickness with

asymptotic profiles of velocity, temperature and other quantities.

Both these representations of a boundary layer are virtually

possiblh to reconcile between one another, since an asymptotic
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bcuudary layer can be always approximately replaced with a layer

of IInite thickness.'

The characteristic feature of turbulent jet, as shown by

theory and numerous experiments, is the smallness of the transverse

comconents of velocity in any jet cross-sectional area in com-

parison with the longitudinal velocity. Consequently, if the

X-axis is combined with the axis of symmetry of the jet, the

velocity components along the y-axis will turn out to be so low

that in engineering applications of jet theory they can be

disregarded.

Exneriments show that profiles of excess values of velocity,

temperature and admixture concentration both in a submerged

turbulent jet and in a jet spreading in cocurrent flow have an

identical universal form. Figure 7.2 gives the universal velocity

profile obtained in the experiments of Forstal and Shapiro 2

in the principal section of an axisymmetric air .jet moving into

(an air flow of the same direction and same temperature, while

the dimensionless excess values of velocity Lu/Aum are constructed

as a function of dimensionless ordinates Y/Y

AU UU ,us . (

'In this case the "boundaries" of an asymptotic layer are
considered to be the surfaces on which the values of velocity
(or, for example, temperature) differ from the boundary values
by a certain preassigned low value, for examole by 1%.

2Almost all literature sources utilized in this chapter are
contained In the bibliography to the monograph of the author
(G. N. Abramovich, Teoriya turbulentnykh struy. Fizmatgiz, M.,
1960). References only to later sources are given.
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Here u - velocity at a distance y from the axis of the jet, u -

velocity on the axis of the jet, u. - velocity of cocurrent flow,

YC - distance from axis of jet to place in which excess velocity
is half its maximum value: u. - u M - 0.5 (um - U H).

m4m

4-- "Fig. 7.2. Dimensionless excess
MAO WM velocity profile in principal

(I) section of an axisymmetric air
4$ Jet spreading in a cocurrent

4 airflow.
___ KEY: (1) According to experi-

ments of Forstal and Shapiro.

0 45 11 45 40

These experiments were carried out with different ratios of

the speed of cocurrent flow to the discharge velocity: m =

-H /u0 u 0.2; 0.25; 0.46. Figure 7.2 depicts also the velocity

profile in the submerged jet (dotted line), taken from experimentsof

Tryupel'; the universal velocity profile with and without cocurrent

flow turned out to be virtually identical.

According to the experiments of Weinstein, Osterle and

Forstal, and also Fertman dimensionless excess velocity profiles

in flat cocurrent and submerged jets are described by the same

universal relationship as in axially symmetrical Jets.

Investigated in the works of B. A. Zhestkov, V. V. Glazkov

and M. D. Gusev, velocity fields in the mixing zone of two plane-

parallel turbulent jets of one direction with different velocities

relationships (m - 0, 0.23, 0.43, 0.64) are represented on

Fig. 7.3 in the following dimensionless coordinates:

1" (2)

468

4



|

here au u - u excess velocity in jet, Auo u - uN - initial

difference in the jet velocities, Ay. a y - Y0 - transverse

distance from measurement point to point at which velocity

Au c V 0.5 au0 - Ayb o y0.9 - y 0 .1 - distance between the points

at which excess values of velocity are equal respectively to

Au 1 0.9 Auo and Au2 - 0.1 Au0 .

AN
- -----I--

W

------ 4-

_-., ."  4' -~ ---

-WD -40 -4 -04 -41 04 44 41 41

Fig. 7.3. Dimensionless excess velocity
profile in the boundary layer of two flat
plane cocurrent air jets (initial section).
KEY: (1) According to experiments of
B. A. Zhestkov, et al.; (2) According to
experiments of Albertson, et al.

The same figure graphs the velocity curve in the boundary

layer of the initial section of a submerged flat jet, obtained in

experiments of Albertson, et al. In this case also the velocity

profile is universal, but differs somewhat from the same for

the principal section.

Measurements made by the author in conjunction with F. M.

Vafin in the initial zone of flow astern of a poorly streamlined

body located on the axis of a channel of constant cross section

(in the flat and axisymmetric cases) showed that, in spite of

the existence of a zone of return currents. The dimensionless

velocity profiles (2), in the construction of which it was talen
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into consideration that the velocity of the return current

(uH < 0) changes with distance from the stern of the body,

turned out to be the same as in the boundary layer of an ordinary

jet.

Similar results are obtained in the combustion chamber of

a gas-turbine engine. In the beginning of the chamber a large

area of return currents is usually created, meeting on the axis

of symmetry. Typical profiles of the axial components of velocity

in the different cross sections of such a chamber, obtained

during "cold blow-through" (without combustion) in A. I. Milhaylov's

work, are plotted on Fig. 7.4. These profiles, but in dimension-

less coordinates of type (2), coincide with those given on Fig. 7.3.

Fig. 7.4. Velocity profile in the com-
bustion chamber of a turbojet engine (cold
blow-through)according to experimental
data of A. I. Mikhaylov.

The experiments of L. A. Vulis, Ye. V. Ivanov and other

researchers show that the profiles of dimensionless excess

values of velocity in a jet held by a counterflow are also universal

and close to the same for a submerged jet.

Approximate analytical dependences can be selected to

describe a universal velocity profile.
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Subsequently for a description of the velocity profile in

the principal section of a jet of any form we will use function

f(n), which was first theoretically obtained by Schlichting:

au--u. ->

Here n y/b - distance from point with velocity u to axis of

jet, expressed in fractions of half-thickness (or radius) of a

given jet cross-sectional area.

The relative distance to the point at which the excess
velocity is half that on the axis of the jet (-:"w. o,'
is easily determined from (3): I - )

0.441. (4)

The velocity profiles calculated from formula (3) agree well

with the experimental velocity profile.

In the initial section of the Jet (um  u the curve of

the universal velocity

matches well with experimental data (Fig. 7.3), where dimensionless

ordinate n is read from the external jet boundary (Fig. 7.5):

Curve (5) as a result of a change in the beginning of the

reading differs from curve (3). The coordinates of points
Y0 5' YO.9 1 y0 .1, which we used for comparison of the calculated

curve with experimental data, were found from (5) with the

determination of (6).
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Fig. 7.5, Diagram of boundary
layer of submerged jet,

The described results were obtained at moderate jet velocities

0 << 1) and slightly different density values of the substance

of the Jet po and the surrounding medium p., i.e., at n a po/pO

% 1. Experiments, however, show that the universality of the

velocity profile Is not disturbed even with a considerable chanve

in the density ratio (0.25 < n < 4).

If the parameter of compressibility n differs from unity by

not more than a factor of 4, the temperature profiles in the jets

are also universal, while for the initial section it is possible

to use the linear dependence

ror,.-r (7)

where n H is determined in accordance with (6), and the indices

on the values of temperature are the same as in (5) on the values

of velocity. Dependence (7) is comparable with the experimental

data on Fig. 7.6.

In the cross sections of the principal section the following

dependence of excess temperature on the excess velocity is valid:
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Here Pr is Prandtl's "turbulent" number, proportional to the
ratio of heat emitted as a result of eddy viscosity to heat
removed by turbulent mixing.

O. .. ..) ..

43 --

Pig. 7.6. Temperature profile
in boundary layer of Jet.
KEY: (1) According to author's
experiments; (2) Aooording to
experiments of Yakovlevskiy;
(3) Line.

Experiments carried out for n - 0.03-300 show that for
axially symmetrical Jets it is possible to take Pr, * 0.8, and
for flat Jets PrT * 0.5.

Comparison of the temperature profile (8) in the principal
section with the experimental data Is demonstrated on Fig. 7.7.

Ar
SJ# Fig. 7.7. Profile of excess

-V temperature in the principal
f -7 section of a flat Jet (Pr - 0.5).

ad KEY: (1) According to Reichardt's

-- 1 experiments.
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According to the experimental data of B. A. Zhestkov,

M. M. Maximov, et al. dependences (7) and (8) are valid also for

.lets with high initial discharge velocity (M0 > 1). However,

in this case instead of the thermodynamic temperatures these

dependences should include the stagnation temperatures.

The distribution of admixture in the cross sections of a

turbulent jet, if the admixture concentration is not too great,

in order to influence substantially the density field obeys the

same law as the distribution of temperature:

1-6 r- r.

(8a)

Here '-;I*-, is the weight concentration of admixture, which

Is the ratio of the weight of admixture to the weight of the

entire mixture in the same volume.

The va'J;ity of equality (8a) is confirmed by numerous

experimental lata

Let us examine the expansion of the boundaries of a turbulent

jet. Let us assume that the rate of buildup of the boundary

layer thickness is proportional to the pulsation component of the

transverse velocity

which in turn, is proportional to the transverse gradient of the

longitudinal (main) flow velocity:

Here Z is the turbulent mixing path.

In view of the similarity of the velocity profiles In different
sections of the boundary layer, the transverse gradient of
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longitudinal velocity Is proportional to the difference in the

velocities on the boundaries

Because of this we have

From the similarity of profiles it follows also that the ratio

of characteristic linear dimensions is a constant value

T am

therefore the pulsation component of transverse velocity is
proportional to the difference in the velocities on the boundaries

of the layer

Since, by hypothesis,

Ad dx dt'dx

the law governing build-up of boundary layer thickness along the

length of tho jet can be presented in the following form:

(9)i

The quantity c a Jv't/IuI, called the turbulence level of a flow,
is always positive, since it is calculated from the mean

absolute values of transverse pulsation velocity Iv'J and the

longitudinal flow velocity lul, which means that in all cases

db/dx > 0. It remains to explain which value of forward velocity

should be substituted into the denominator of expression (9).
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The characteristic value of average speed can be determined
by different methods. Averaging, however, should be over the
depth (and not the cross-sectional area) of the Jet; this follows
from the exnerimental fact that the laws governing build-up of
thickness in flat and axially symmetrical Jets are approximately

identical. Judging from the experimental data, it is advantageous
to use the value of mean mass flow rate:

IL

'= -__ (10)

which in the case of a noncompressibie fluid is close to the
arithmetic mean' of its absolute values on Che boundaries of the

layer:
I

"l=-j---''sO. I "t 1-i- t o! (11)

In that case we will obtain the following law governing
increase in boundary layer thickness:

db ,-N-.I (12)
d Tc In,I+ IJ"

Expression (12) leads to interesting conclusions. In the boundary
layer which appears on the edge of two boundless Jets (u1 a const,

u2 - const) the thickness is proportional to the distance from
the beginning of the displacement

d# 4oast* or b--Const.x,

'For velocity profile (3).
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where

Const~c € l.dt ,UI (13)

The value of the coefficient c should be determined exper-

imentally, for example by the results of study of a jet spreading

in a motionless medium (u2 - 0), when the following equality

holds:

b.mcx. (14)

In general (u2  0 0) the boundary layer thickness is found

on the basis of (12), (13) and (14):

-- , -(15)

In the particular case of cocurrent motion of two boundless

jets the velocities on the boundaries of the layer have identical

signs, as a consequence of which the angle of the boundary layer

growth decreases with an increase of the speed of cocurrent

flow u 2 :

b U -. (16)

whereupon the minus sign is taken with u2 < uI.

During the spreading of a jet in a counterflow the speeds

on the boundaries of the layer have different signs, i.e., the

geometric difference in the speeds is equal to the sum of their

absolute values, therefore

b, ~ (17)
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In other words, during the counter movement of the jets (u2 < 0)

the angle of the boundary layer growth does not depend on the

relationship of velocities on the boundaries, i.e., the same as

with the spreading of a jet in a motionless medium is obtained

in all cases. i

Figure 7.8 depicts the calculated curve which corresponds

to formula (15) for the intervals of m from -1 to 0 and from 0
to +1:

I, d#

Idb
' =1[....'''' when mi O

I db
cdx -u
Td#, T4 when m;,uO.

In view of the complexity of determining from experiments the

true value of b, the distance byb between points with values of
excess velocity AuI = 0.9Au0 and Au2 - 0.1Au0 was used here as

the boundary layer thickness. With a universal velocity profile

the quantity ayb is in all cases just the very same fraction of

the boundary layer thickness

:Its

where b3 - boundary layer thickness of submerged jet, b  - value

Ayb for the submerged jet.

For comparison Fig. 7.8 gives the experimental points which

at the same value of the experimental constant (c - c3 ) lie

close to the calculated curve in the range -0.4 < m < 0.4 but
move away from it when m > 0.5. This result, observed also in

shadow photographs of a jet, can be explained by the following.
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Fig. 7.8. Dependence of boundary layer
thickness of a Jet of noncompressible
fluid on the speed of the external flow.
KEY: (1) According to 0. V. Yakovlevskiy's
experiments; (2) According to the experi-
ments of B. A. Zhestkov, et al.; (3)
According to the experiments of 0. N.
Abramovich and F. M. Vafin; (4) Theory.

During the derivation of formula (12), we assumed that turbulence

in the boundary layer gives rise to only a difference in the

velocities on the boundaries, and outside the boundaries is

completely absent, i.e., v' - 0 when m * 1. In actuality even

in the "undisturbed" flow there is a certain initial turbulence,

therefore when u 1 and u2 are close to each other, i.e., the

intensity of turbulence arising in the Jet is less than the initial

intensity of turbulence of undisturbed flow, the effect of the
first ceases and the mixing is determined by the turbulence of

undisturbed flow, which does not depend on the value of m. It
is natural that in this area the angle of the boundary layer

growth is barely connected with the relationship of velocities

on the boundaries of the layer.

The results obtained for the zone of mixing of two boundless

Jets are valid also for the initial section of a Jet of finite

thickness spreading in cocurrent or counterflow, since in the

initial section on both boundaries of the mixing zone the

velocities remain constant.
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The contours of the principal section of a jet of finite

thickness during counter movement to the fluid encircling the

jet, in view of the fact that the velocity of the counter move-

ment does not affect the angle of thickening of mixing zone,

remain approximately the same as in the submerged jet.

A more complex problem is determining the contours of the

principal section of a jet in a cocurrent flow of fluid. In

this case formula (12) acquires the following form

Eb= . (18)

where ur - velocity on the axis of the principal section of the

jet, u - speed of cocurrent flow (minus sign is taken when

u H ). In connection with the fact that u changes on the

axis of the jet, i.e., um u m(x), the jet boundary in cocurrent

flow should be curvilinear

To determine it, it is necessary to know the form of dependence

U(W), which can be obtained from the condition of conservation

of momentum; the solution to this problem is given below.

In formulas (12)-(18) expression (11) is used for average

speed, valid in the case of a noncompressible fluid. For values

of n - pM/P 0 differing significantly from unity it is necessary

to consider the compressibility effect, for which in the

denominators of formulas (12)-(18) the sum (um + u ) is replaced

by 21ul, which can be determined from dependence (10). Then (18)

takes the following form:

±dX 21#1 2 xd
u-u. (19)
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The excess speed (Au * um - uM) and the excess temperature

(ATm = Tm - TH) along the length of the principal section of a

Jet rapidly change, in connection with which the strong compress-

ibility effect of gas on the form of the jet boundary is exhibited

only In the transition section and the initial part of the

principal section of the jet.

On almost the entire length of the principal section, as

shown by experiments on supersonic and strongly heated subsonic

jets, the jet boundary is weakly bent, and therefore instead of

complex dependence (10) for average speed it is possible to

utilize the simplified expression

Pta + Pu.M

In this case instead of (19) we have

No+. us

:1 C d, 2 _ (20)

With the aid of the equation of state the density ratio in

an isobaric Jet is replaced by the temperature ratio

(21)

Based on numerous experiments we take values of coefficient

c in (19) for the initial section c a 0.27 and for the principal

section c = 0.22.

§ 2. Change in the Parameters Along
the Length of a Jet

In seeking laws governing a change in velocity, temperature

and admixture concentration along the length of a turbulent gas
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jet or, a liquid Jet, and also for determining the jet boundaries

it is possible to use the conditions of conservation of momentum,

enthalpy and mass of admixture, and also the law governing build-

up of thickness of the jet (20), which we write in the following

form:

X 2. I
(22)

where

alu Hm - -TlAVL 0~ so , ?m -0,;I.~

while U0m , T Om are the values of velocity and temperature on the

axis of the initial jet cross-sectional area.

From comparison of the first and second terms in the right

side of equation (22) it follows that when m # 0 the first term

increasing without limit with a decrease In the axial velocity,

usually exceeds in value the second term (which in this case

approaches unity), and thus it is determining. Consequently,

also for the case of a nonisothermal jet in cocurrent flow it

is possible in the first approximation to use the same law

governing increase of jet thickness, or as it is occasionally

referred to as, the equation of propagation, which also holds

for an isothermal jet, namely:

. I(22a)A I -a W.-*

The most relieving effect of parameter e on the characteristics

of a Jet is exhibited in the case of a submerged nonisothermal

Jet (u - 0), for which the equation of propagation will be

written as (the second term of the right side of equality is

retained (22)):

ds 2 _____ _

i 2 + - -+ -_' (22b)
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This equation is correct both for a plane and for an axially

symmetrical jet; In the latter case it is necessary only to

replace half-thickness b by the radius of the jet r.

To establish from equation (22) the form of function b(x)
it is necessary to know the law of velocity change along the axis

of the jet Au m(x), which can be found with the equation of

conservation of momentum. For an isobaric jet this equation

takes the following form:

MI Me

(u ng, dA t . -16= ''M (23)

Here M - mass flow per second of gas (or liquid), flowing through
an arbitrary transverse jet cross-sectional area; M - same in
the initial jet cross-sectional area, dM - pudF - mass flow

per second of a stream filament in an arbitrary cross section.

From equation (23) we obtain

( --. "' p Ad u dE

I. 1!±,.8.\I Pon"$* Ufa tosU* dP.

Utilizing the above designations

application of which is convenient with a uniform velocity field

of external flow and nonuniform initial velocity field in the

Jet (here uom is the velocity on the axis of the Jet in the

initial cross section, AuOm = uom - u ), and also the values -

=83



VI I

S p.A, d( _ p d

(26)

we come to the following equation, which expresses the law of

conservation of momentum in the jet:

i--m "(27)

We will hence obtain the dependence of the velocity on the axis

of the principal section of the jet on the relative cross-
sectional area

ra.'A, + 4 A, A('b. - un,., -#iA,

As (il -"g A,

or

An -- m+ A,

where the parameter

P,- -4
,'AI '(29)

With uniform velocity and density fields in the initial jet

cross-sectional area (u0 - UOm c const, pO = o0 m - const)

nlu . 0, n2u = 1, in connection with which the right side of
expression (27) is substantially simplified.
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Let us compose now the equation of conservation of excess

enthalpy for nonuniform velocity and temperature fields in the

initial jet cross-sectional area

1 ,(T TaJ Of c," (To-TdM (30)

. O

or in dimensionless form

'p. ,. I.- dP f* '.7T 1 ,'

Intrvoducln' the diesignations

81 = p

A . T. (31)

-111)J 7! "1i -L a ATPd

n.O-.o Pon (it)

(32)

we bring the equation of conservation of excess enthalpy to the

following form:

31,,. 176,B,0 - n)-- i1.1 ,,,, = Pon, (35)

If gas jets are mixed with uniform velocity, density and tem-

perature fields in the initial cross section, then nT a 1. After

dividing the left and right sides of equation (27) by the

corresponding parts of equation (35), it is possible to establish
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-he connection between dimensionless excess values of teriperature

and velocity on the axis of the principal section of the jet:

47 --- k, a , (36)

where

,(I-mI 0-mA(! ) + A on

In the case of a submerged Jet (Aum  U m, m - 0) with uniform

initial velocity and temperature fields (nl n2u nr  1)

k$. , A t =. Con". (38)

where

(39)

In the case of mixing of jets of identical velocity (m = 1)

with the uniform initial fields

A1,- (<4 0 )
k"=,'=Const. (0

During the mixing of jets of different gases (or liquids)

the density distribution depends also on the field of concentra-

tions of each of the gases (or liquids) composing the mixture. The

field of dimensionless excess concentration of any of the cases

in the transverse jet cross-sectional area is subordinated to

dependence (8a). The distribution of excess admixture concen-

tration along the axis of the Jet is established with the aid of

the equation of conservation of excess admixture in the jet
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- ~ (141)

which, after bringing to dimensionless form, can be presented

thus:

. m,,, h= Pm uq j (142)

+in Pa dP
P~u1 '.m m own

Let us designate

D : -, (41

((44

,, . v , (45)

4%. 1 ' (46)

Then the equation of conservation of excess impurity content will

be written thus:

ails-11,alt 0 - A ,D m(147)

After divi ing the left and right sides of equation (27) by the

corresponding parts of equation (47), we establish the connection

between the admixture concentration and the velocity on the axis

of the jet:

.An(148) -
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where

k , m -,, ,A, (I-n) N 4- Alm

In the case of a submerged Jet (m - 0) with uniform initial
velocity fields and admixture concentration (n2u = 1 )

A, (50)
Const(50)

in the case of the mixing of jets of identical velocity (m a 1)

with uniform initial fields, we have

.A
DA, ( cons (51)

Solving jointly equations (20), (27), (35) and (47), it is possible

to find the dependences of change in thickness of jet, and also

the velocity, temperature and admixture concentration along the

axis of the principal section of the jet. To calculate the

coefficients of initial nonuniformity nlu, n2u, nT, nx it is

necessary to know the fields of velocity density, temperature

and other parameters of liould (or gas) in the initial Jet cross-

sectional area. Utilizing the fields of velocity (3), temperature
(8) and admixture concentration (8a) in the cross sections of the

principal section, it is possible to calculate the definite

integrals Al, A2, B1 , B2, D1 and D2 which are the coefficients of

equations (27), (35) and (37).

For the uniform velocity, temperature and admixture concen-

tration fields, in the initial jet cross-sectional area the family

of curves which describe change in relative excess velocity

AUm (and also temperature ATm and concentration Aim ) in the

dimensionless length of the Jet' 7 - (x/bo), has a parameter

lb0 - half-width of the initial cross :,.,.-tior, of flat jet

(or the initial radius of an axially symmetrical jet).
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I
the quantity m uH/u 0 at n H / - const or n at m - const.
With a decrease in m and increase of n the "attenuation" of the

Jet Is accelerated.

The initial flow nonuniformity substantially distorts the
effect of parameter m on the dependence Om(_x). With considerable

initial nonuniformity (for example, during discharge from a
long cylindrical pipe) the effect of m ceases to be detected.

This can be judged from the experimental data for a subsonic jet

(Fig. 7.9) and for a supersonic jet with M0 - 3 (FIg. 7.10).

The degree of preheating of jets 0 in these experiments' was

approximately identical (respectively e a 1.85 and e = 2).

"I- ,, *

47 . E c-- - - - - - - - - - - - - -

V'rnMal

Ri? ON *V M oo I

Fig. 7.9. Excess axial velocity in non-
isothermal (e a 1.85) axisymmetric gas Jet
spreading in cocurrent flow (m - var); experi-
mental data of 0. V. YakovlevskLy and V. K.
Pechenkin.

'For supersonic Jets e is understood as ratio of stagnation
temperatures in the initial Jet cross-sectional area and in the
surrounding medium.
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-I &" ,

' F
I 2d 40 60 80 0 128 1/0 160 IN Xf

Fi,;. 7.10. Excess axial velocity in
zupersonic axisymmetric gas jet (M0 = 3)

spreading in cocurrent flow (m m var);
?xperimental data of B. A. Zhestkov,
et al.

2aiculations and experiments show that conversion factors

;,,; ,: , detexrmined by equalities (37) and (49), barely change

i4. .- ;L.. length of the jet and do not depend on the parameter
o. T. ressibility ni

Thu5, if dependence AU (i) is established, then it is easy

;a;_ from It with the aid of (36), (37), (48) and (49) to

'rtiencz AT (_X) and Am (X); for this it is necessary to know,J- m
., the ".,iatiLn factors in the initial jet cross-sectional

,- n t, n T  n,; n .

Al In (37) we disregard the effect of Aum in comparison
w t:- :', then for the case of uniform initial fields (nu= n2u =

n - 1) we will obtain the following approximate dependences:

fcr fiat jet

k, =-- k, -- 0,86 + "Am(52)

ard for axially symmetrical jet

k,= k = 0.74 1 + 2,86"53)
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More detailed presentation of the theory of a jet in a flow

can be found in the author's monograph, references to which are

given above.

1 3. Subsonic Nonisothermal Jet
of Simple Gas

Let us examine a subsonic jet of gas which is spreading in

quiescent gas of the same composition. In this case (r - 0)

the equation of momentum (27) is simplified and assumeh che

form

FA( 5 4)

Here um 2 Um /u - ratio of velocity on the axis in current Jet

cross-sectional area to velocity on the axis of the initial cross

section, F - area of current cross section, F0 area of the initial

cross section.

The coefficients A2 and n2u are determined from (24) and

(25) with the aid of dependences (3), (8), (21) and (36). To

calculate A2 it is possible also to make use of the following

approximate dependences, which when 0.2 < 0 < 5 and Pr,. 0.5

give an error of not more than 3%:

in the case of a flat jet:

At (55)

in the case of at. axially symmetrical jet

A, + 0,1. 1, 1 (56)
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Fro:, (54) on the bas s of (55) and (56) we have for a flat

submerged jet (ni 0)

n,.l -I,1 ( 5 7)

where according to (37)

k, = 0,S6 -'L (58)

and for the axially symmetrical jet
O.lt;,lu S "A

,'h ere

k, = 0.745 "-'. (60)

In these formula- for the ratios of the instantaneous value of

half-thickness b or radius r of a jet to their values in the

initial cross section (bo, r ) we Introdune the designation

- b r

Expressions similar to equalities (55)-(60) are obtained also

for the case of very great preheating (E ) co), but we will not

deal with this here.

Let us find now the velocity change along the length of the

jet. Dividing variables in equatin (22b) and integrating by

parts (taking Into account boundary condition _X= xn , b =

um 1 1), we have

I-I

X- relative distance from the beginning of jet to the

beginning of the principal section.
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Substituting here 5 and k7 from equation (57) and (58), after i
integration we will obtain for a flat nonisothermal jet

C(X.,.)U 1  , _ .,P(r.,)J (61)

where

P(z= I ,28 - ,720 -o.280 I 1.. (62)

The graph of the P(z) dependence is depicted on Fig. 7.11. As

a result of the fact that P(z) - 1, fcrmula (61) at 0 = 1 passes

to the relationship for an isothermal submerged jet

c c(9 Xj cm3,r.IFs -. (63)

After determining u X) from (61), it is not difficult tom
find from (36) the 6T (x) dependence for change in axial tern-m
perature, and from (57) the thickness of the jet in an arbitrary

cross section.

The results of calculations of the axial velocity and

thickness of a jet according to formulas (61) and (57) with the

different values of the parameter 0 and uniform velocity and

temperature profile in the initial Jet cross-sectional area

(n2u a nT a 1) are represented on Figs. 7.12 and 7.13. From

examination cf these figures it follows that the characteristicE

of propagation of nonisothermal and isothermal jets are sub-

stantially different. The heated jet washes out considerably
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-~?JI 4 cJ v i i v J Fig. 7.11. Auxiliary
• .. un-1 1 ction P(z).

.. .t - --z.. ...L, - '

-~

_-.r than the cooled: at a fixed distance from the nozzle it

iS thLCKer, but the veli,,itv ' orn its axis is less. It Is

Interesting to note that bending of the jet boundaries at e = 1

is noticeable only at close distances from nozzle; in the

examination of distant -ectionc of a let flow its boundaries

can be considered vrtually rctillnear, and the flare angle

of the jet (or the coefficient of angular expansion) as weakly

depending or. the value of parameter 0. Figures 7.12 and 7.13

give the change of ax×al velocity and thickness of the jet

depending on coordinate x., calculated from the nozzle edge, f 'om

which the jet discharges, whlle in the above formulas the

reference point coincides with the transition section of the jet

X- ). The quantity x is determined by the configuration of

the Initial section cf' the jet, which is considered below.

45 V Fig. 7.12. Change of
q_ -- -axial velocity in

I 'submerged nonisothermal

Z --- plane-parallel gas jets
(effect of parameter

0 10 40 S) .e W 110 e 180 Y
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Fig. 7.13. Build-up of thickness in
submerged nonisothermal plane-parallelgas Jet (effect of parameter e).

Integrating equations (22b) as applied to the case of at,

axially symmetrical jet, we obtain, taking into account boundary

condition x = X ' I - - 1:
(

After substituting here for r its expression in ur' according tco

formula (59) and after replacing k on the basis of (60), after

Integration let us find in implicit form the law of change in

the axial velocity along the length of an axisymmetric non-

isothermic jet

Here

.k ,V')= 1,i 140)z- O,73zjrctg 11,47 + 1.40)-",)
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Auxiliary function R(z) is depicted on Fig. 7.14. Let us note

that formula (6b) at 0 - 1 passes to the corresponding relation-

shi' for an isothermal axially symmetrical jet

c( - .)=

2,73 (66)

Knowing um(x), it is possible to determine by formulas (36) and

(19) the temperature on the axis of the Jet and the radius of

the jet in an arbitrary cross section.

IV' I.:,n'

i i

Fig. 7.14. Auxiliary func-
tion R(z).

To illustrate the obtained results Figs. 7.15 and 7.16

depict the curve of axial velocity change, relative radius of an

axially symmetrical jet with uniform initial velocity and tem-

perature profile (n2u = nT = 1) at different values of parameter

e. As in the case of' a flat jet, the velocity on the axis of

a heated axially symmetrical jet (e > 1) attenuates faster than

in an isothermal jet, but a cooled jet (e < 1) possesses con-

siderably greater range' than an isothermal jet. Let us note

'By the range of a jet is meant the distance from the nozzle
on which the axial. velocity of the jet drops to a determined given
value, for example Um 0.5.
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that the bending of boundaries of a nonisothermal jet is noticeable

only at close distances from the transition section, and appears

more strongly the more e differs from unity. With an increase

in the distance from the nozzle of the jet the boundaries become - '

virtually rectilinear, and the angle of inclination of the

boundaries to the axis of the jet at 0 - var approaches a constant

value, equal to the slope angle for a jet of noncompressible

fluid.

4g - - -

Iwo

Fig. 7.15. Change of axial velocityIn a nonisothermal axisyrmmetric sub-

merged gas jet (effect of parameter 6).

Fig. 7.16. Build-up of thickness of -

submerged nonisothermal axisymmetric
gas Jet (effect of parameter 6).

9i AI
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Build-up of thickness of both flat and axisymmetric non-

isothermal jet when 8 k 1 and m - 0 occurs according to linear

law:

- .3 - (1-- (67)

C V (68)

It has already been mentioned that the abscissa of the

transition cross section in which the principal section of the

Jet begins depends on the configuration of the initial section.

The change of the density ratio in the initial jet cross-

sectional area and the surrounding medium (po/pm ) leads to a

change in the length of the initial section in comparison with

the isothermal case; during the propagation of a jet in a more

solid medium the core of constant velocity (Fig. 7.1) Is shortened,

and in a less dense medium it is lengthened. This property of

the initial section is explained by the following. Let, for

example, a plane parallel air jet with density pO escape at a

velocity of u0 into a motionless air medium with density pH

(Fig. 7.17). Then in the zone of turbulent mixing a certain

velocity, temperature and density distribution is established,

which is described by dependences (5), (8) and (21).

Fig. 7.17. Diagram of
--- boundary layer of non-

JAI isothermal jet.
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" In view of the pressure constancy the per-second momenta at

the entrance and exit from the contour, depicted on Fig. 7.17,

are identical:

W,u pu'dy. (69)

Mass is not introduced through dotted line a-l, since the

velocity vector u0 is parallel to this line; through the outer

edge of the submerged jet 0-2 air streams flow at right angles

to the direction of propagation of the jet, therefore their

momentum in projection onto the jet direction is ecual to zero.

From (69), taking into account (5), (6), (7) and (21),

we have

After integration we have

SI n, 4e4 unT (71)

or, approximately,

Ils O.4(
11 ---- -- V Oli -1, (72)

In view of the straightness of edges of the mixing zone in the

initial section of the jet the quantity yl/b is constant and

depends only on e. At the end of the initial section (x = x

the internal edges of the mixing zone meet (yl bo), therefore

the relative length of the initial section (TH - x /b ) can be
H H L
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obtained with the aid of (70) from the condition of similarity of

triangles formed by rays 0-1 and 0-2 and by the cross sections

parallel to line 1-2:

N (73)

According to (20) the relative thickness of the mixing zone in

the initial section of submerged Jet

," -+(74)

The length of the initial section of the Jet as a function

of 8, calculated from formulas (71), (73) and (74), is graphed

on Fig. 7.18.

Fig. 7.18. Length of initial
"I - - -- - isection of nonisothermal gas Jet

• sOAPwOM1W as a function of parameter 0.
1 IN,1L. KEY: (1) Theory; (2) According

N -I' 1(2) to experiments of 0. V. Yakovlevskiy
and V. K. Pechenkin.

The abscissa of transition section can be found from (74),

if we substitute for b the initial half-thickness of the principal

section bn, which is determined from (67) at x = x.. Figure

7.19 depicts the results of calculations of in for flat and

axially symmetrical Jets.

Fig. 7.19. Effect of degree of
preheating 0 on abscissa of
transition section for axisym-
metric (1) and flat (2) Jets.
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(These values of 3F were used in plotting the curves of

U,(7) and U(X) or F(7) on Figs. 7.12, 7.13, 7.15 and 7.16.

§ 4. Supersonic Isobaric Jet

Let us explain the basic properties of a supersonic jet

escaping into a quiescent gas of the same composition, considering

pressure in the Jet and the surrounding medium to be identical.

Let us use for this, as for a subsonic jet, the equation of

momentum (54) and the equation of jet propagation (22b).

According to the experimental data of B. A. Zhestkov, et al.,

in a supersonic jet velocity profiles (3) and (5) are valid and

also temperature profiles (7) and (8), if in them instead of

stream temperature T we substitute the stagnation temperature

T*. Consequently, in the initial section of a submerged super-

sonic jet we have

AT" S -T:

U.

in the principal section correspondingly

AT' T-T- ' ?T(77)

U (78)

where

V(--- V! - ' ( 79 )

In the initial section the ordinate n. y/b is read from the

external boundary, and In the principal section n * (y/b) is MS

read from the axis of the jet.
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Subsequently we take, as in a nonisothermal let, PrT 0.5.

The density ratio is expressed through the stagnation temperatures;

f A rT - (80)

b 13

It is here taken into account that in the quiescent gas surrounding
the jet the static temperature is equal to the stagnation tem-

perature (T. a T:). Taking into account the equality AR

- c p-c and introducing the designations

we present (80) in the following form:

Sr +(81)

In the particular case for the initial section (ATM* AT8,
Um U 1 )

(82)

For an axisymmetric supersonic jet when e6*- 1 we have

ft-I-a (83)

Fe r(83a)

Substituting equality (83) into (24), It Is possible to find the

value of the coefficient A2 as a function of the velocity

coefficient A0. Since the obtained expression is unwieldly,

it Is more convenient to use the approximation formula

At o, 134 (1-- a 1 + 02 4484) 0.11 (84)
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After substituting expression (83) into the equation of Jet

propagation (22b), we will obtain

C if -(85)

or for the initial section (' 1)

Cdx 2CaI I-al (86)

From the Joint solution of equations (85), (5 4) and (84)

we establish the connection between axial velocity and distance

for the principal section of a supersonic Jet

The following designations are introduced

and

I-i' 1)17 4'
I(88)

-i,o7,z In 4- +  "8,

Function F(z), calculated from equation (88), is depicted on

Pig. 7.20.

As * 0 we have z - 0 and F(z) 1 1, therefore formula

(87) passes to relationship (66), obtained for a Jet of non-

compressible fluid. It should be noted that the compressibility

effect of gas on velocity change along the axis of an axially

symmetrical Jet is determined mainly by the first factor in the

right side of equation (87).
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4Fig. 7.20. Auxiliary
function F(z).

4- -4- It

Th. curve of axial velocity change and build-up of depth

Jet alcong its length, calculated respectively in equations

,n, (85) for c - 0.22 and n2u =1 at several values of the
2

,.r~meter aA0 , are represented on Figs. 7.21 and 7.22. From

, -:;iy~i3 of these curves it follows that if the initial jet

v :,-citj exceeds the speed of sound, then the drop in velocity

alarg tie axis of the jet becomes less sharp than in the case of

6 -soed jet; in this case with an increase in the velocity

,.f,'icenAt 0 this distinction is more and more noticeable.

AE concerns the boundaries of a supersonic jet, generally

-aklng, they are curvilinear. In practice, however, this

c.rv'linearity can be (Fig. 7.22) disregarded, and the jet

c,.ur.dar!ies can be approximated at a certain distance from the

tranition section by straight lines inclined toward the axis

ul, the let at the same angle as in a noncompressible fluid.

Th, qua;,tity xn (abscisto, of transition section), is determined

f!,., tne same procedure as in the case of a nonisothermal jet

'urec of *;quation (83a) for the density ratio). Dependence

, \ ) is depicted on Fig. 7.23.
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X1 1
4E4 - -I

Fig. 7.21. Change of axial velocity
in submerged axisymmetric supersonic

2gas jet (effect of parameter a

(0
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Fig. 7.22. Build-up of depth of submerged
axisyrnmetric supersonic gas jet (effect of
parameter aX 2
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F ,"3 Effect of dtsc;,arre
eI c cIty (a, ) on abscissa of

transition sectlcri in an axialiy

0 ?25 45 7 U aA

Concluding the examination of the properties of, submerged

supersonlc jets, let us note tnat if theIr curvilinear bV;,ndar':,.._

are approximated by stralaht lines, then the slope angles toward

the x-axis of these lines turn out to be Independent of the
2parameter of compressibility aX0, arid the point of Intersection
0of these ztraight jine-s with the x-axis (pole of Jet) L:harecs

its position relative to the nozzle edge depending on thie value

of aX The effect parameter on polar ditance X

shown on Fig. 7.24. The quantity T0 = X0
"/b characterizes the

range of the jet; the results presented in Fig. 7.24 indicate

a considerable increase in range with an increase of parameter
aX2
a0 *

Fig. 7 .2". Effe;ct of discharge
- _ velouity ('MO) and degree of pre--H heating e on the position of the

pole of an axially symmetrical Jet
9 according to experimental data of

B. A. Zhestkov, 14% Maximo, et al.
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The simultaneous effect of preheating and initial velocity

on the jet characteristics is connected with specific calculation

difficulties. Let us say, however, that the heated supersonic

jet washes out considerably faster than an isothermal jet at
2the same value of a)0, while the effect of preheating is amplified
2

with an increase in a 0

§ 5. Discharge of Supersonic Gas Jet
From Nozzle in Off-Design Conditions

In the work of jet engines, different jet apparatusea, for

example, ejectors, and in some other procedurally important

cases, the discharge of the supersonic jet from a nozzle occurs

in off-design conditions, when the pressure in the flow of gas

at the nozzle exit differs from the pressure in the medium into
which the jet is discharging. In this case both insufficient

expansions of gas in nozzle (pa > PH )' and overexpansion are

possible (Pa < P H). Because of this in the section of Jet

adjacent to the nozzle a system of expansion and compression waves

appears, and also shock waves, because of which a gradual pressure
equalization in the jet is achieved with the pressure predominating

in the surrounding medium.

At a certain distance from the nozzle the pressure in the

jet becomes equal to the pressure in the surrounding medium,

and jet differs in no way from the ordinary calculated jet,

which we examined above.

Conditions in the off-design discharge of a supersonic

jet are characterized by the degree of off-design, which is the

ratio of the real stagnation pressure in receiver p0 to the -

lit
calculated' pressure p00, which can be approximately replaced

'The pressure which corresponds to the calculated Mach
number of the discharge, determined by the assigned area ratio
of the critical and nozzle exit sections, is called the design
pressure.
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by the pressure ratio at the nozzle exit to the pressure in the

surrounding medium:

Poe Pe

Let us pause at some experimental data relating to supersonic

jets during off-design discharge from nozzles. In Fig. 7.25

below the solid lines show the change in total pressure pox

referred to prvssure in the receiver, along the axis of a super-

sonic (Ma - 1.5) off-design (n - 5) jet, and the dotted line

shows maximum total pressure in the jet; the upper part of

Fig. 7.25 shows the results of experimental research on the

picture of flow in a supersonic jet during off-design conditions

of discharge: the total-pressure profile in the transition jet

cross-sections and the area of subsonic (shaded) and supersonic

speed. As we see, in the initial section of the Jet the maximum

value of pressure does not occur on the axis of the jet. Experi-

ments show that a certain distance from that cross section where

the jet becomes isobaric ("isobaric cross section"), maximum

speed is observed on the axis of the jet (beginning where the

solid and dotted lines meet in the lower part of Fig. 7.25).

Utilizing conditions of momentum conservation between the

nozzle-exit plane (subscript "a") and the "isobaric cross

section" (subscript "c"), we have

S(8)

where G. and Oc - weight discharges of air in the jet in cross

section3 a and c; ua, uc - mean values of velocity in these

cross sections; Fa - area of nozzle in cross section a.

a0
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Fig. 7,25. Picture of flow and distribution of total pressure in
( supersonic off-design gas Jet (Ma a 1.5; n = 5) according to

the experiments of B. A. Zhestkov, M. M. Maximov, et al.

Passing to dimensionless quantities

from (89) we obtain (at constant value of critical speed)

- "t)BI.) •(90)

The area of the isobaric Jet cross-sectional area Fc is calculated

with the aid of the equations of discharge and state1 :

'More detailed analysis of change in the parameters of gas - 4
along the length of the initial section of off-design supersonic
Jet in one-dimensional formulation is given in § 6.
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':Ixing leads to an increase in the flow mass and a sharp
increase in the nonuniformity velocity profile, which in an

isobaric cross section bears a typically jet nature. Because the

jet draws substance from the surrounding medium, the quantity

X always should be somewhat lower than in the case of Ga f a
In this case with an increase of the parameter n the noted effect

is exhibited more weakly.

Nonuniformity of the velocity profile in an isobaric jet

cross sectional area leads to a considerable increase in the

axial velocity (Acm) as compared with its mean value Acm > Ac"

The above factors always act simultaneously, and, as we
saw, have an effect on the value Acm. Figure 7.26 gives the

curve calculated with the aid of (90) assuming the absence of
mixing (0a n G.) for Aa 0 1.37 and k - 1.4. The experimental

data taken from the experiments of B. A. Zhestkov, et al. (at

Aa 1.37) show that with the large degrees of off-design
(n > 3) neglect of the suction action of the jet leads to

oversized calculated values of velocity in the isobaric cross
section. When n A 10 the effect of suction and nonuniformity

on A cm is mutually balanced, and the velocity on the axis of

the jet in isobaric cross section becomes very close to Aa .

Velocity on the flow axis after the jet becomes isobaric

can be calculated on the basis of the momentum equation (taking

into account inequality of nozzle pressure in surrounding medium)

and the equation of jet propagation (85). In the case of an

axially symmetrical jet we have

J p 2rrdr p ,#rOpv + (--p -p,) cr$ (92)
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Fig. 7. 26. Effect of degree of V
0 off-design n on relative axial

---- -- velocity in an isobaric cross
IS - section according to experiments- of B. A. Zhestkov, M. M. Maximov,

45et al. (10 1 1.5).

4 ' ------ ##ra

The parameters of gas flow at the nozzle exit (designated in
equation (92) by the subscript "a") can be defined by known gas

parameters in the receiver and the geometric dimensions of the
nozzle assuming that at any value n > 1 in the nozzle the same

relative drop in pressures occurs as with design conditions of

discharge.

Let us bring equation (92) to dimensionless form by dividing

both sides by l'pr-1. After certain transformations we obtal.n

s4Ai~',[A~JI*1 X" (93)

where r - rra, a - (k - 1)/k + 1), r - radius of jet. Comparinga

(93) with expression (54), we see that the momentum equation for

an off-design jet differs from the corresponding expression in

the case of calculated discharge by the factor

N = - -i -I+ (94)

which depends only on the conditions in the initial jet cross-

sectional area and does not change in terms of the x coordinate.
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This fact makes it possible to utilize as a solution systems

of equations (85) and (93), obtained above solution (87) for

a supersonic gas jet in design conditions of discharge. The
final formula for determining the axial velocity of an off-

design Jet takes the form

0. 1 ( I ----. )D L'' a-,

whereupon function F(z) is determined by formula (88). The

build-up of jet thickness in this case is determined from

equations (93) and (95).

From formula (95), and also equality (94) it follows that

an off-design jet with n > 1 possesses considerably larger

range than the corresponding (at the same values a ) isobaric
supersonic jet; in this case the range of the jet, defined, for

example, as the distance from the nozzle at which the axial

velocity is half the initial, increases approximately as 1Ig

or, at large aX2, as F Prom expression (9 4) it follows,
furthermore, when the discharge velocity insignificantly differs

from the sonic (parameter aA2 is low), then even small off-designa
of a jet can lead to a noticeable increase in its range. For

2example, at aX - 0.2 (Ma a 1.11) and n a 1.2 the value of
N is 1.36, i.e., the range of the off-design jet proves to be

17% more than calculated.

In order to search for the value of the abscissa of the

transition cross section 'n, necessary for calculating the jet,

it is necessary to know the characteristics of the turbulent

expansion of the jet in its initial section. In view of the

complexity of the theory of the initial section of an off-design

jet, we usually utilize either the dependences obtained for the

512



corresponding calculated jet or experimental data. Dependence
x a 2
(a , n), determined assuming the validity of relationships

for the initial section of the calculated jet and in the case of

off-design discharge, is depicted on Fig. 7.27.

Fig. 7.27. Dependence of
abscissa of transition section
of supersonic off-design jets

on parameters aX0 and n.

4 55 t4 47S

The comparison of values of axial velocity calculated

according to formula (95) with the results of velocity measure-

ments in supersonic off-design gas jets is presented on Figs.

7.28 and 7.29. The experimental data given on Fig. 7.28 are

obtained for a nozzle design for Ma = 1.5 (Aa = 1.37) at the

following values of off-design parameter n:0.8; 1; 2; 5; 10.

Experimental values of velocity on Fig. 7.29 correspond to

discharge from a nozzle designed for M = 3 with n 3 1 and
a

n - 2. From examination of these figures it follows that the

theoretical results in the first approximation satisfactorily

agree with the experimental data, although sometimes a noticeable

quantitative disagreement between them is observed. The noted

nonconfirmity can be the consequence of using in the initial

section of the off-design jet dependence for a jet with the

design discharge.
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Fig. 7.28. Comparison of calculated and experimental values of
axial velocity in a supersonic axisymmetric gas jet CM a 1.5)

in calculated (n a 1) and off-design (n - var) systems of dis-
charge according to the experiments of B. A. Zhestkov, M. M.
Maximov, et al.
KEY: (1) According to formula.

,L0,aIjt
N WW )&PW

Fig. 7.29. Comparison of calcu.lated and experimental values of
axial velocity In a supersonic axisymmetric gas Jet (Ma a 3

in calculated (n a 1) and off-design (n a 2) systems of discharge
according to the experiments of B. t. Zheatkov, M. M. Maximov,
et al.
KEY: (1) According to experiments; (2) According to formula.
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Similar conclusions follow from analysis of Figs. 7.30 and

7.31, which represent experimental data on the arrangement of -A

lines of half-velocity in supersonic Jets at different values - -

of the calculated Mach number Ma and off-design parameter n,

and also results of the corresponding calculations according to

formulas (93)-(95). As can be seen from examination of Figs.

7.30 and 7.31, the lines of half-velocity (and the corresponding

boundaries) in supersonic off-design Jets generally sneaking

Pre cxrvlinear, especially near the transition cross section,

but the curvature of the boundaries is low, and therefore in the

first approximation they can be replaced by straight lines. The

angle of inclination of these lines does not depend on parameters

aXa and n (the tangent of this angle, as in a Jet of noncom-

pressible fluid, is 0.22), and the position of the points of

intersection with the x-axis relative to the nozzle edge (polar
- 2distance X0 ) changes depending on the values of ala and n.

The experimental dependence of value x0 on n for two values of
2

M (or parameter aX ) is given on Fig. 7.32.
a a

4

Fig. 7.30. Comparison of calculated and experimiental values of
"half radius" Fc in supersonic W a = 1.5) gas jets during design =
and off-design conditions according to the experiments of B. A. .

Zhestkov, M. M. Maximov, et al.
KEY: (1) Calculation. .
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Fig. 7.31. Fig. 7.32.

Fig. 7.31. Comparison of calculated and experimental values of
"half radius" Fc in supersonic (Ma - 3) gas jets during design

and off-design conditions according to the experiments of
B. A. Zhestkov, M. M. Maximov, et al.
KEY: (1) Calculation.

Fig. 7.32. Effect of the degree of off-design on position of
the pole of a supersonic gas Jet according to the experiments of
B. A. Zhestkov, M. M. Maximov, et al.

As we see, with an increase both in the off-design parameter

n and the value of aX the pole of the Jet shifts downstream.

If we utilize the concept of the pole of a jet, assuming the

boundaries of the principal section of the Jet to be rectilinear,

the formula for determining the axial velocity and thickness

of an axially symmetrical Jet assumes the form

( -+ - -(96)

.C (9 -t) 17 _ - -. # r+e

r -(x - , (97)

The axial velocity attenuation curves, calculated from equation

(96) for two values of parameter n (1.0 and 2.0 at Ma - 3) are
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calculated from formula (,}.
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gas-dynamic section of a jet : w:

-'A
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ne-Dimensicnal Theory of
"as:-Dynamic") Section

; ' ' 3Supersunic Jet

A -:a),acterlstic feature of an off-design supersonic jet is
. -A .lal_ nonuniformity of thp flow: the parameters of the

-. considerably both foi .p-th of the jet and for the
I he transverse cross Lor calculating such a

i

ti, :,.thod of characteristic- ally applied which makes

.u- . u_ to fInd for the initial values of the parameters on

, edge the parameters of the gas in the entire supersonic

," -f ,-r;- flow which adjoins the nozzle. In a numbpr of cases,

..,l is necessary to know only some total flow character-

, f,-r -xample total pulse, the total pressure losses, the

::r<:-:c-onal area, and the determination of the internal jet

r*.-::e z not required. For the solution of such tasks,

".. .-.........cF the bulky and laborious method of characteristics It

, : i;rable to use simpler calculation methods.

.7,.t fc;rthi below is one such method that is based on the

aV'2cr-7Z;1 ef the parameters of the jet in the transverse cross

c. - ,ad Its approximate consideration as a one-dimensional

L.: explain, first of all, how admissible it is to use the

av,'a3Iviing "f the parameters in the flow of such a large nonuni-

1>r-tl ; a n off-design supersonic jet where, for example, static

k! t .an decrease from the periphery to the axis 10-20 times

, accordance with this, the rate of flow changes.

j; t:., calculation of a jet the equations of energy, continuity,

sri] ~s:,.t;n, are utilized. Therefore, it is necessary that the

- , A. Ya., On the One-Dimensional Theory of the Off-
.- : . e'[son!c Gas Jet. News of AN USSR, Department of Technical

..5, 1962

,)
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Values of total energy, consumption and pulse of gas in the
transverse cross section calculated according to the mean values

of the parameters be equal to their real value in an initial

-nonuniform flow. Furthermore, for calculating it is important

correctly to estimate the entropy of the flow: this makes it

possible to utilize the condition of the retention of the value of

total pressure in sections where there are no losses, and also to

determine the real value of the total losses with respect to a - -

change in the mean total pressure.

As is known (Chapter V), with the averaging of a nonuniform

flow in general only three of its total characteristics can be

maintained constant. However, for a supersonic flow with a

constant stagnation temperature over the cross section, which is

the initial section of an off-design jet of ideal gas in the

absence of mixing, it is possible to find such mean values of

parameters in the cross section upon transition to which the

amounts of flow rate, total energy, pulse and entropy are retained

simultaneously with the high degree of accuracy with an invariable

cross-sectional area. We will also introduce these mean values of

the parameters of a gas in the transverse cross sections of the

initial section of the jet into the equations of continuity,

energy, and pulses. The joint solutions of these equations

therefore will also pertain to the mean values of the parameters,

and the cross-sectional area hence determined will be equal to

the real area of the corresponding cross sections of the jet.

Almost all the basic properties of a flow in such a one-dimensional

consideration do not change and are estimated correctly. Only one

intrinsic property of the flow is lost, namely the equality of the

static pressure on the jet boundaries and in the external environ-
ment; therefore, it is necessary to arbitrarily assume that in

every transverse flow cross section there exists some constant

mean static pressure p, in general distinct from the pressure of 

the external environment p .
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Let us dwell on the case of a supersonic jet which escapes

f'rom an underexpanded nozzle, i.e., having overpressure pa > p

at tne nozzle edge (Fig. 7.33). The schematic picture of such a J

flow Js described in § 2, Chapter IV.

Ci

15 .

Fig. 7.33. Diagram of a jet which
escapes from a nozzle with static
overpressure in a stationary gas:
1 - nozzle; 2 - jet boundaries; 3 -
shock waves.

We assume the gas ideal, we consider the parameters of the

gas on the edge of the nozzle constant over the cross section, and

the velocity vectors of gas on the nozzle edge - parallel to the

nozzle axis. We disregard the mixing of the gas in the initial

section with gas of the surrounding fixed environment.

Let us write the basic equations which connect the parameters

of the gas in a free jet with the parameters in the outlet section

of the nozzle. First, as a characteristic cross section of the

initial section of the jet we select the maximum cross section of

the first "barrel" (Fig. 7.33).

We record the equation of the equality of flow rates in the

form

0=o (98)

or, utilizing the known expression of flow rate through the stag-

nation parameters p* and T* and the velocity coefficient X:

p-Fg(A) PP.q q.) (99)
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where subscript a pertains to the parameters in the nozzle outlet

section. Values p* and X are the mean values of the total pressure

and velocity coefficient in the cross section of a free jet in

quest on.

According to the equation of the conservation of energy

Oc,T O 0, (00) 00)

with G = G and c = C the stagnation temperature in a jet
a p'

remains constant. Therefore, the equation of continuity (99)

assumes the form

(101)

Here f = (F'Fa ), and a p*/p _ is the coefficient of total pressureaa
which estimates the total losses of total pressure on the section

between the initial and considered cross-sections of the jet. In

order to obtain the relation between the relative cross-sectional

area f and the velocity coefficient X in this cross section from

equation (101), it is necessary to estimate the value of the

coefficient of total pressure o. For the first "barrel" of the

underexpanded jet the total pressure losses can be disregarded

since in a slot jet between the initial and maximum cross section

shocks are absent, and in the axisymmetric underexpanded jet the

intensity of curvilinear shock (envelope of lines of compression)

near the nozzle is small. We will consider that also in an axially

symmetrical jet for the first "barrel" a v 1.

Let us write the equation of momentum for the section of the M

jet in question in the form

. g pP.F -P V. (P-j (102)

(lO
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.,here the last term cf the rlght side 13 the axial comporient of

tr.e forc e of external pressure p, on the lateral surface of the

Let us replace the expressions of' the gas pulse in both cross

sections in question according to fcrmula (115) in Chapter V,

taking into account In this case the fact that G = a and

a a As a result we obtainKp mp a-

h-±-I 0
~-2 k"[z (x) -zjl=pMF. ), (103)

'W.e express In (103) the product Ga according to formulasHp

(108) and (11,3) in 2'r, apter V

I I

a 0 p*Fq 1) Y (-X)pFyQ)

through the parameters of gas ..n the nozzle outlet section. As a

result we obtain

__+1 - (1014)P (.) + ),)-- / '

or

k+ __ - (105)

where the n0 , p i/p i i the avaliable pressure ratio in the jet,

n = pa /p. - the degree of the off-design of the jet q(X) and y(A) -

the known gas-dynamic functions.

We note that accordlng to equation (102) or to equations (104)

and (105) the gas pulse in the jet does not remain corhstant but

Increases in proportion to the increase in the area of the Jet

because of the action ef the force of external pressure.
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Thus, %-,e obtained two equations (101) and (104) containing

two unknown values: the relative cross-sectional area f and the

mean value of the velocity coefficient in this cross secticn X.
The joint solution of the equations and also the qualitative study

of the laws governing the flow is most conveniently carried out
graphically. The obtained graph is called the phase diagram of an

off-design jet. Constructed on Fig. 7.34 for the initial parameters

of the jet Ma 1.5 O a 1.365) and n = 6.8 (n O - 25) is theothJeM a  1.0

relation X = X(f) according to the equation of flow rate (101) with

a a 1 (curve 1) and the same relation according to the equation of

momentum (104) (curve 2). The intersection of obtained curves 1

and 2 gives two pairs of values of variables of f and X thatA

satisfy both equations. The first point of intersection f = 1

and X a X a corresponds to the initial parameters of the gas at the

nozzle edge and is of no interest. The second point of intersec-

tion, as shown below, gives values r and X in the maximum crossm m
section of the first "barrel." Both points of intersection corre-

spond to the supersonic flow velocity. From the value of functions

q(X) and z(X), determined from equations (101) and (104), it is

also possible to find the second, subsonic values of the veloc.ty
coefficient X. However, these equations do not have joint solutions

in the subsonic region.

Fig. 7.34. The phase diagram of an underex-
panded (n > 1) supersonic jet: 1 - equation
of continuity (101); 2 - equation of momentum
(104); 3 - equation of continuity (109); a -
nozzle outlet cross section; m - maximum cross
section of the first "barrel"; d - outlet cross
section of an ideal calculated nozzle; c - is-
baric cross section.
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Let u.- examine in mcrt deta.l t ,F neaning of the obtained

UlCut .. A' fI ','t ,Fht it appt'a,- :otrange that tie eoIidl''on

of cor;.ta, D, of t fh' flow ratt- and he, euatlion of m, nmentiArn -are

.3imultaneou;ly -atisfied only In two cross sections of the Initial
etjon 6" th Jet, nherea- these ,oondltions should be sati-,:fled

fc an., cro: section of flow. Ho'.: ever, one ogjht to con'IJer
that :n equatlion (l01) and (101i) withl the expre.ssion of the flow
rate and mo'mentu. of the gas through the stagnation parameters
and the velocLt uoeffloent it was assumed that the velocity
corrc pondlng to the ,xpan sion from total pressure n* to static
presure p in tih, c-.ss .e ;n : directed along the axl, of

tht j0et So that the gas flow rate ard Its momentum in an axial
d'rection are deter!,ner by the ah.-colute gas velocity. The

,.,aeutloinc of the flo.. r'te and morr ntum (101) and (104) are valid

onl:j for thooe cross ecotions of the flow in which the gas velocity
can be assumed axial. .-uch a cross sectlon, apart from the nozzle

outlet section, In part of the jet in question is the maximum
cross :ection of the first "barrel." Therefore, from the Joint

solution we obtain f = fm and ,X = Xm. In all the remaining

intermediate cross sections of the divergent part of the first
"barrel" there are radial component velocities, in consequence of

which the equations of a one-dimensional flow (101) and (I0U),

as can be seen from Fig. 7.34, are nct satisfied simultaneously

here.

This means that no flow exIsts with the axial direction of

the velocity which, with given initial parameters at the nozzle

edge and p* a const (a = I), cosid have a crors-sectional area

equal to the area of any interriedt.ite cross section of the f-Irst
"barrel. "

For determining the paraimeters of the gas in these intermediate

cross sections, the expressions of flow rate and momentum should

be written taking into account tie radial velocity component.
IUsing, as above, the mean values of the parameters of the gas in
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each cross section, let us assume that the mean value of the

radial velocity is such that the vector of the mean absolute

velocity comprises some angle a with the axis of flow.

Above, in § 6 of" Chapter V expressions for flow rate (123)

and (125) and gas pulse (127) in a one-dimensional flow having

th.e velocity component in a plane perpendicular to the axis were

obtained.

With the aid of these expressions for the flow rate and

momentum, it is possible to compose the equations of continuity

arid momentum for any cross sections of the initial section of the

4et. These equations take the form

q(Q. 2)= q VA. (106)

For each selected cross-section of a jet with a relative area of
f = F/Fa with given initial flow parameters and value a (spe-

cifically, for the first "barrel" with a = 1) the obtained equations

contain two unknown values X and a. The joint solution of the

equations is carried out graphically with tie use of tables of gas-

dynamic functions and a graph of the function z(X, a) (see § 6,

Chapter V), where k is the coefficient of absolute velocity.

Figure 7.35 gives the results of such a calculation. As can

be seen, in all intermediate cross zections some actual value of

angle a is determined which seemingly compensates for the incom-

patitility of the eqaations of a one-dimensional parallel flow

(101) and (104) for the intermediate cross sections of the barrels.

It is natural that in cross sections f f 1 and f =m for which

equations (101) and (104) are satisfied simultaneously, we have

a 0 and X aX sin a 0.r
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Fig. 7.35. The parameters of a gas in the
Intermediate cross sections of the first
"barrels" of an off-design Jet: 1 - the
equation of momentum (104), 2, 3 - the equa-
tions of continuity (101) and (109), the
dotted line is the coefficient of absolute
velocity according to equations (106) and (107)
(Ma a 1.0; n0 = 46.5; n - 24.6).

Let us note that the absolute velocity or the velocity

coefficient X in the intermediate cross sections (see dotted curve

on the graph of Fig. 7.35) and, consequently, also the value of

the static pressure p - p*'(X), obtained during the calculation,

taking into account the radial components of the velocity, are

very close to the corresponding values obtained from the usual

equation of flow rate (101) (unbroken curve) without correction

for angle a.

If we attempt to determine the value of angle a, taking the

area of cross sections more than F, or less than Fa, then it will

turn out that cos a > 1, and the radial component of the velocity
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is an imaginary value. This indicates the physical impossibilit,v

of such a flow and, therefore, the fact that in the initial section

of the underexpanded Jet the cross-sectional area cannot become less

tnan the nozzle outlet cross section F or larger than the area Fa in
found from the Joint solution of equations (101) and (104); the

value of fm' therefore, is really the maximum relative area of the

first "barrels" of the Jet.

For determining the parameters of a Jet in the cross sections

following the maximum cross section of the first "barrel," it is

possible to make use of the same equations which were derived above

for the first "barrels" with the difference that value a - the
coefficient of total pressure - in equations (101) or (106) can

no longer be assumed equal to unity. The losses in total pressure

in the shock waves during the deceleration of a gas after over-

expansion lead to the fact that at the end of the tapering portion

of the first "barrels" and in all subsequent cross sections
p* < p* and a < 1. Figure 7.36 presents the family of curves

( X(f) obtained from the equation of continuity with a < 1. The
intersection of these curves with curve 2, calculated from the

equation of momentum (104), gives the possible parameters of q gas

in the maximum and minimum cross sections of the subsequent

"barrels" of the initial section of the Jet. From the phase

diagram it is obvious that in each subsequent "barrel" maximum

values of the area and velocity coefficient are less, but the

minimum values are greater than in preceding one; a reduction in

the total pressure leads to a decreaze in the range of a change

of the parameters of the gas in the "barrels." With a certain

value of a nin =a n  F is obtained; this shows that in amnmin max
flow, if we do not consider mixing with the external environment,
constant values of the parameters which correspond to point c of

the phase diagram are established. This ic also the limiting

state of the gas attained in the initial section of an off-design

Jet, if we do not consider mixing with tno external environment.

2 7

4 :J



Fig. 7.36. The phase diagram of an off-design
supersonic jet taking into account the total
pressure losses: 1 - the equation of con-
tinuity (101); 2 - the equation of momentum;
3 - the equation of continuity (109).

It is possible to show that the static pressure in this cross

section, called isobaric, is equal to the external pressure, in

consequence of which a further change in the flow parameters also

ceases. For Jetermining the parameters of a gas in an isobaric

cross section, let us write the condition of constancy of the flow

rate, expressing the gas flow rate by the static pressure (p. a PH)

. . re rq 0 )
(108)

or

Y 1,i 04(10V)

The joint solution of this equation with the equation of momentum

in the form of (104) makes it possible to find values X andc

fc W Fc/Fa"

Let us note that in all cases X > 1 is obtained from theC
calculation, i.e., with G - const. The jet at the end of the

initial section always remains supersonic; the transition through

the speed of sound becomes possible only as a result of mixing

with the external environment which is not considered here.
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(According to the value X., it is easy to determine total

pressure p* - p, /T(X) and to calculate the value of the total

losses of the total pressure of a gas in the initial section

= .(110) -

Thus, the value of the total losses of total pressure in all

"barrels" of the initial section can be determined without a

detailed examination of the processes which proceed in the Jet.

The calculations show that these losses are very great and are

determined mainly by the degree of off-design n (Fig. 7.37).

, 7 1 1 I

* -' _ . ..I I

S . 5 4C 2 '3 .5 dd-,
Fig. 7.37. The velocity coefficient of a gas
in an isobaric cross section and the total
losses of total pressure in the initial sec-
tion of an off-design supersonic Jet, k 1.4.

On the phase diagram (Figs. 7.34, 7.36) curve 3, constructed

according to equation (109), indicates possible states of gas f'l.w

(with given iritial parameters) with which the mean static prea sure

is equal to p ; above this curve p < p below p > p . It is easy:,

to see that the point of intersection d cf curve 3 with curve I

(p* : p,) indicates thc parameters of the gas with ideal expanslor.

Pafrom to PH in a Laval nozzle; pcint c gives the parameters of a
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free jet in an isobaric cross section. The phase diagram directly

shows the qualitative relationships between the parameters of the

gas at points c, m, d and a. Specifically, let us note that the

area of the maximum and isobaric cross sections of a free jet with

n > 1 i always obtained larger than the area of the outlet cross

section of a design Laval nozzle. The smaller the section of free

ex. sicn of the gas, the closer to each other the parameters of

the gas in states c, d, m and a.

The effect of the degree of off-design of a nozzle can be

connected with a change in the external power effect on the jet.

In fact, with an increase in the expansion ratio of the nozzle

(decrease in n) part of the free flow is replaced by a supplementary

part of the nozzle. Instead of external pressure pH variable

pressure p > p now acts on the jet boundaries, since n > I. An

increase in the force which acts on the jet in the direction of

motion

P, d@-.,F.(Ii

is equal to the force o: excess pressure on the walls of the

supplementary part of the nozzle. Value P will enter the right

side of the equation of momentum (102) recorded for the section of

flow from the initial output area of the nozzle to an arbitrary

jet cross-section as a supplementary term; because of this, the

pulse of the gas in e cross section with an area of F increases.

Equation (104) for this case takes the form

0) N @) +

+ T) *~I-KP. (112)

where

5
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The equation of continuity doe.; n .ir .:,i t. K' Mj.1:h

of force R With the aid of the phuane Qrk n . ;.. i. :

easy to establish the qualitative irfl- c.!" t.~ fo.n Vc :

the jet. The parameters of the Fas in t r. xie. , i atZ,.1 t::o~ .u-'e

cross sections are determined by the pol:'!: f ' .- ,,ctt.n ofti,

invariable curves 1 and 3 with curve 2' , . J -r, 1-qu:it V,.

(112). ,-lith P > 0, curve 2' alwayc ] ,. : !-sn t;w ii.ttz.:'

curve 2. Therefore, the areas of the max ,wun ' u -

sections are obtained smaller than in a fi' i -. c .-. vt

coefficient Xm in the maximum cross section dc., ::, , th

velocity coefficient X, in the Isobaric cr-" ton

Thus, an increase in the force which act -

of motion (or an increase in the reaction oi ti-- r":,.'_ w'- jw :

leads to a decrease in the overexpansioi cif t.,- " 2'

and to a decrease in the total lonses ,.f t(. .. -

in the initial section of the jet. The r',su'. : t w

aid of the phase diagram is not obvious. ;c un l ._A::r: 'h

fact that supplementary force P acts alcn- t,,

the g-as in , 'ie maximum cross-section of t!:.-

aj the joint solution of the equations of LuI..- - -:.,.

sho'-,s, does not increase, but decreases, wh !-: ':, - :< d "

a reduction in the area of this cross sectlon.

The indicated method of the analysis 2f th, 'ct

a Jet alo turns cut to be useful in the examri, . :c, .

cases of gas flow. Being given the dlfferent 1, _. -

of the Jet, according to the aforementioned ."..

possible to determine the dependence of thc par' .. - f -

in characteristic Jet cross sections on the de.re,- c -.:-<: ...

and M number on the nozzle edge (Firs. 7.39, 7 .-4
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FIF,. 7.38. Change in the parameters of a gas
in the maximum (m) and Isobaric (c) cross
sections of the initial section depending on
the magnitude of the force which acts on the
let boundaries: 1 - the equation of continu-
ity (101); 2 - the equation of momentum with
P = 0; 2' - equation (112) with P > 0; 3 -
the equation of continuity (109). Ma  1.5;
n =6.8.a

O-

11

1 Z S I V J?

Fig. 7.39. The parameters of a gas in a maxi-
ium jet croess-section depending on the degree

of off-desgn n 1a0/p H k 15;
a3

6.3.
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calculated and measured cross-sectional area simultaneously means

that the mean values of the velocity in this cross section (see

cquation (104) and the value of the total pressure - coefficient a

(see equation (101)) also coincide.

From an examination of the phase diagram it is possible to

obtain the qualitative results for a number of limiting conditions

in the outflow. Specifically, during the outflow of gas into a

void through a nozzle of finite dimensions (pH = 0, no =w,

q(X ) # 0) in the equation of momentum (104) the second term of
a

the right side disappears, in consequence of which it assumes the

form

zO-=z(,,)or

Curve 2 on the phase diagram (see Fig. 7. 34) in this case

is converted to a straight line parallel to the abscissa, and the

point of its intersection with the invariable curve 1 which

expresses the equation of continuity departs into infinity (fr 0

A 1 -. k + 1/k - 1). This means that the let which escapes into a

void does not form "barrels," but it increases boundlessly In

cross section, retaining the radial velocity component everywhere.

If the shaping of the nozzle does not assure obtaining a

parallel uniform flow of gas in the outlet cross section as was

accepted above, then in equations (101) and (104) one ought to

consider the presence of a radial velocity component in cross

-ection a. For this, as was done during the derivation of equations

(106) and (107), one ought to replace functions q(X) and z(Xa),
a a

with the generalized functions q(X a ) and z(l, a ), where a-
a' a a' a a

is the mean value of the anrle between the vector of the absolute

gas velocity at tine nozzle outlet and the nozzle axis. For a

conical nozzle, it is easy to obtain the following expression for

the mean value of aniI a.

2 A~.

COS 1 -P
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accuracy by t:-,e I'or!P,[a

Here 0 is the .,,l_ N .: .. '. ts. *n, c-,r' and the

axis.

The solution W' tne evy' o -q.-ot!cns after 2cuhstltution

oF thez values; Q N. 9 Q 0 aK M , 1 1 n t1h -- I Lt -*. " C (.
and (104) is al o aarr,,r . -.i'te c = '.). Calcul]utIons

show that with an ir' :.. oK tr'ipe ' tW area

of the maximun jot . - -. . , . -e the ovr',-xpanE]on

of the ga; in thvz , m,; the tot& W;nes rA' total
pressurew i", th ;niven o:: f' ;I.: e ,i. an'. ),_ -,r'ow.

in the sc-1it ana" a i=4 r or kI ,.,icrms, it i: necessary to

know the configuration cP t Ih t cr o the Jot and the

distance between the nouze anid AI. -xriun, crr:: sectlun of the

first "barrels." A -- ,exa-,natlon cf" gas f)o .s does

not usually make it .c:,i le Eo Lbt.n1!: :; ..[r .., th!.n, t.'pe. Here,

however, It is po:ssi;1 Wt. i,  t- r.,, od whih m;akees it

possible to approxi;autel, 1-V,-rrme ",o cutline of the cxpandl sg

initial part of the jet nn ti,- bp: 2 Af lt ,e~elt- obtained from

the one-dimensional ,alcilat

In the definition f t -. of t.,,e Pas ir, the inter-

mediate cross sectl.n f" t i z ,. for i.: " " sr. :

section with an a'ea " P < e". '. ! i, n .'uatlonn 106) and

(107), as noted abc'..'- - . YIo: ,' <f A,, angiv a can be found

characterizing the vaue of t, MR co;;porlnt3 of the gas

velocity in this ci'cc_ al : i.:l , ., ,? 10 ecrTr-1ned by the

vector of the absolute mIoo-mi - "'" pi:nO' t.7 ar.1 uxls Of tNe

jet. In a real ncnu.i f..,:. ";: :.., i . e. " de'flect cn of the

velocity vectors fror . .,:- an- .. er;t oInts
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o!' the cross section and increase from the axis to the periphery;

therefore, the value of angle a found above will be some mean.

However, taking into account that the major portion of the gas flow

rate passes through the peripheral zone of the cross sections both

due to its larger area and due to the low flow density in the

central overexpanded part of the jet, it is possible to assume

that this mean value of the angle will be close to the values of

the divergence angle ar at the jet boundary. Arbitrarily assuming

that ar - a, we obtain the possibility for the approximate con-

struction of the jet boundaries.

The initial angle of deflection of the jet boundary at the

nozzle edge where, due to the presence of a nucleus of undisturbed

flow the indicated considerations are unacceptable, is determined

analogous to the angle of the rotation of a supersonic flow which

flows around an obtuse angle (see § 4 Chapter IV), from the formula

(115)

Here 8 is the angle between the tangent to the nozzle generatrix

in the outlet section and the axis, and 6 is the angle of rotation

of the flow from the initial direction which is found fror. tables

(see appendix) for given values of M number at the nozzle edge and

ratio of pressures P*/P or pa/PH • Instead of the tables, for

determination of 6 with k = 1.40 the approximate formula can be

recommended (for X < 2.3)

1- 7,6 (4- 1(16)

where 0 (n 0 ) is the velocity coefficient on the jet boundary

(i.e., with the full expansion of the gas up to external pressure).

According to the size of the initia2 angle a 0 and values of

angle aL found from equations (106) and (107) for several (5-6) values

of the relative cross-sectional area f < f it is pccslble to
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construct the approximate outlines of the expanding portion of the

first "barrels." For this, added consecutively to the straight

line drawn through the edge of nozzle at an angle of a., at points

corresponding to radii of selected intermediate cross sections

II, r, r3 , etc., are segments at- angles al, OL a etc., up to

the Intersection with the straight line r = rm; the obtained

broken line is rounded off.

In spite of the arbitrariness of the given construction,

the outline thus obtained closely corresponds to the form of jet

visible in the photograph and also to the result of the calculation

according to the method of characteristic if the degree of off-

design of the jet does not exceed values n 100-150 (Fig. 7.43).

0 I -741."F

Fig. 7.43. Outline of the expanding portion of
the first "barrels" of a supersonic jet.
Curves - according to a shadow photograph of
the jet, dots - the calculation for 6 cross
sections: 1 - M = 2.5, n = 6.43 B = 50; 2 -
Ma 1.0, n = 24.6, S = 0, k i.4.

All the results presented above are obtained under the

assumption that in the initial section of the jet there is no mixing

with the environment. This is meaningful to the extent that it

makes it possible to reveal the regular laws inherent in the jet

itself and to determine the losses which appear in the process of

the stabilization of the parameters of an off-design jet. With

the large degree of off design, when the initial section is limited

by one or two "barrels," the indicated assumption does not produce
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considerable error. With a large length of section an increase

in the flow mass can become noticeable, which will change the flo,

parameters in the isobaric cross section. The real mean values of

the parameters can be obtained from a calculation similar to the

one given above if, during the derivation of the fundamental

equations, we consider the difference in the gas flow rate in the

Initial and final cross sections. In this, value AG or G/Ga should

be given or determined from an examination of the turbulent mixing

of the Jet with the environment.

The presented design procedure according to mean values or the

parameters in the basic sections of an off-design Jet can also be

extended to the case of outflow with overexpansion (n < 1).

In conclusion, let us recall that the presented one-dimensional

theory does not permit obtaining data on the internal structure of

a Jet and distribution of parameters over its cross section; for

this purpose it is necessary to use more complex methods, for

example, the method of characteristics. At the same time, some of

the results obtained above, for example the values of the parameters

in an isobaric cross section, cannot be found by the method of

characteristics without additional assumptions.
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CHAPTER VIII

GAS FLOWS IN NOZZLES AND DIFFUSERS

§ 1. The Resistan .. of a Nozzle

The total pressure losses in a nozzle are usually reduced to

friction losses. In the ideal case, in the absence of losses the

rate of outflow from a nozzle is connected with the ratio of the

static pressure in outlet cross section pa to the total pressure

in the nozzle POc by the known equality

In the presence of losses the actual exhaust velocity is less than

the ideal:

where 0 is the velocity coefficient; its value usually equals

0 = 0.97-0.99. Introducing the pressure coefficient which considers

the total pressu -e losses in the nozzle a . Poa/Poc we obtain

a
-P;~ ~ ~~ --- -.- = I -- * -T

from which the dependence of the pressure coefficient on the

velocity coefficient of the nozzle is established:
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-- - .(2)

For example with X 1 1 and 0 a 0.98 we obtain .- 0.975. ja MA

The relation cc f( ) with different values of M number in
the outlet cross section is presented in Fig. 8.1; the curves are
designed according to formula (2) with the use of expression (46)
from Chapter I. Figure 8.1 shows that with discharge velocities
which considerably exceed the speed of sound (M > 1.5), large total
pressure losses correspond even to the moderate velocity losses

> 0.97).

4, , 1 0

t 41Z ew IN 4M

Fig. 8.1. The dependence of the
coefficient of the total pressure on
the velocity coefficient.

For the calculation of the gas flow rate through a nozzle

taking losses into account, in formula (8) in Chapter IV cne ought
to substitute the value p0  cp 0 c •
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In those cases when the field of total pressures in the nozzle

entry cross section is uniform and the outlines or the nczzle are

;o smooth that there are no vertical regions and shock waves in it,

the resistance of the nozzle is reduced to friction drag In the

boundary layer. In view of the fact that the length of the nozzle

usually is not greater than several nozzle diameters, the thickness

of the boundary layer comprises a small fraction of the nozzle

radius, i.e., the major part of the cross section of the nozzle is

filled by the flow core which consists of jets of constant total

pressure in which the parameters of the gas change according to

the laws of an ideal adiabatic curve. In that case the total

pressures in the flow core in the outlet and entrance cross sections

of a nozzle are identical, but due to the existence of a boundary

layer a precise value of the discharge velocity cannot be determined

directly by formulas (2) and (3) or (4) of Chapter IV. However,

it is possible to make use of these formulas if we introduce a

correction into the value of the transverse cross-sectional area

of the nozzle, applying the concept about the thickness of displace-

ment of the boundary layer (see § 2, Chapter VI).

As is known, the displacement of a wall from its true position

away from the nozzle axis by a distance equal to the displacement

thickness (Fig. 8.2) leads to the fact that the distribution of

static pressure and velocity over the deflected wall with its flow-

around b3 a viscous liquid turns out to be the same as over a true

wall flowed around by an ideal fluid. In other words, by the

appropriate increase in the transverse cross sections of the nozzle

it is possible to compensate for the boundary layer effect on the

distribution of velocity and pressure along the axis of the nozzle.

Conversely, if we replace the given nozzle by a fictitious one

whose outline in each cross section is shifted toward the nozzle

axis by a distance equal to the displacement thickness 6*, then

the velocity distribution along the length of the fictitious nozzle

can be determined according to isentropic formulas (2), (3) or (4)

of Chapter IV, whereupon it turns out to be the same as in the

given nozzle.
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Fig. 8.2. Diagram of a
-. -change in the displace-

ment thickness 6' along
the length of a nozzle.

In a plane-parallel nozzle the area of the fictitious cross

section F is found from the condition

where b is the width of the transverse cross section of the given

nozzle.

In an axisymmetric nozzle

here R is the radius of the given nozzle.

Then the discharge velocity from the given nozzle Is determined
from the formula

Tw - t -= "U(5)

In this formula F - the discharge cross section of a fictitious

nozzle, F HP - the throat area of the fictitious nozzle.

In the core of the constant total pressure which fills the

major part of the transverse cross section of a given nozzle, the

gas velocity is determined by equation (5). In accordance with this

value of velocity, using known formula (72) in Chapter I which

corresponds to the ideal adiabatic process in a gas flow, it is
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possible to find the static pressure in the corresponding trans-
verse cross section of the given nozzle:

here P0 is the total pressure on the axis of the nozzle whose value

in all cross sections i identical.

The consideration of the boundary layer effect by means of

the replacement of the true nozzle outline by a fictitious outline

leads to the narrowing of the nozzle; therefore, in a subsonic

flow the boundary layer causes an Increase, and in a supersonic

flow - a decrease in velocity (as compared with the case of the

flow of a nonviscous gas in a nozzle of true outline).

Thus, in spite of the retention of the total pressure in the

core of the flow, the velocity in the core in a subsonic nozzle

proves to be more than in the ideal case: Xa >a andina

supersonic nozzle - less than in the ideal case: Xa - X " In

accordance with this, the static pressure in any cross section of

a true nozzle with subsonic flow is reduced, and with supersonic

flow is increased in comparison with the pressure in the same

cross section of an ideal nozzle.

In view of the smallness of the corrections which consider

the boundary layer effect on the velocity and the pressure, their

value can be obtained by means of the expansion of formula (5)

into a number. Omitting the indices in (5), we have

2 \'
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If a change in the transverse cross-sectional area , -r',

value of LF causes a change in the velocity also by a sr4.,Iv ,

of ALX, then with k = const

F-7
k-I

After expansion into a binomial series and rejection of a.....

with factors on the order of AX3 and above as a result or t,-

smallness we obtain

Arat" ILIk - I Wj ( ' 3 - P,)-- 7- - -1 (7)

In all cases except X z ], this fnrmula can b ,,

after also rejecting the term with factor Lx 2 . Then .

AP/ Aix k.a I

In the case of X = 1, i. e., in the vicinity of the super.;un c

nozzle throat, formula (7) acquires a very simple form:

7(k+

Hence, it follows that an insignificant change in the crocs.-

sectional area of the nozzle near the throat causes a noticeable

velocity change. For example, a change in the area of the rc.zzl--

near the throat by 151 (.F/F = 0.01) gives a vtlocity chanrce cf

(AX = 0.09).

Formula (8) establishes the connection between a:tl1 dvou"r

In the cross-sectionai area and the correspcndlnR smal i.r'-
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tn ga. flow rate. Upon consicuratlon of the boundary layer effect

or t,.e flow rate it is possible to introduce the displacement
t:;,!cj<ness lnste ad of a change in the cross-sectional area; for

an axio''mmtric nozzle according to (4) we have

Hence the connection between the displacement thickness and velocity

change ac tres the following form (with X # 1):

•,, I .1k )' -- I - r. 0

For example, a change in the velocity coefficient by 3% with

k = 1.4 and X 1.5 (M = 1.73) is achieved because of the displace-

ment thickness 6*, which comprises ^,3% of the radius of the nozzle.

The small pressure changes caused by small velocity changes

can also be calculated according to the formula obtained by means

of the expansion of equality (72) of Chapter I Into a binomial

series and the rejection of all terms with the factors on the order
A2of AX and above. In fact,

hence

F h-I

and, further,

2k
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For the example examined above (AX -- 0.03, X 1.5), from

(11) we obtain Ap/p 0.12. In the case of X = 1, for the

dependence of the pressure increase on the velocity increase we

obtain the following simple formula:

(12)
p

i.e., in the vicinity of the throat the pressure change is

proportional to the velocity change.

In view of the presence of a boundary layer, the mean gas

velocity in the transverse cross section is less than the velocity

in the core of the flow: XCP Xa . For the calculation of the

mean velocity for the mass of the gas

it is possible to utilize the concept of the momentum thickness In

the boundary layer 6** (see Chapter VI). This value shows by what

distance 6** it is necessary to displace the nozzle outline

(toward its axis) so that a uniform flow in the fictitious nozzle

with the same velocity as in the flow core of a true nozzle would

have the same per-second momentum as in a true nozzle. Then

Hence, the velocity coefficient which considers the boundary layer

effect is equal to

where 4
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Let us note that the value 0 in formula (13) expresses the

ratio of the mean velocity for the mass of the gas to the velocity

in the flow core and not to the velocity in an ideal nozzle. The

transition to the value

la,

can be realized in the following way:

where according to (10)

The experiments of Keenan and Nauman' make it possible to estimate

the ratio of' the fictitious diameter of the nozzle outlet DD to
the true diameter of the outlet (Da ) with different values of Rand " a
anid , numbers. The results of these experiments are reduced to a

table.

N b". 1, M. R. Uo..

I 0,,412" 0,945" 2.06 3UV • Io' 2,55 0.79
2 0IF6" 0,498" 3,14 3.9 •14P Z56 O2
3 0.175" 0434 -- 36 I0S - -
4 0.107" 0,4E" 3A7 . . t06 4.60 0.67
3. 0,IA:" 0,40b" 2A4 0.27. 10 U  S 0.71

Diameters of the critical D and outlet D cross sectionsMp a
are given in this table in inches and Ra numbers are calculated

according to the outlet diameter of the nozzle. As we see, true

'Keenan I., Nauman 1. Journal of Applied Mechanics, No. 2,
Vol. 13, June 1946.
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values of the Ma number in the outlet cross section are lower

than the calculated one (M < M ) and the fictitious diameter
a a H

of the outlet aperture is less than the true by 18-33%, i.e., t!.e

dimensionless displacement thickness

P 0, 18 -2 0.33.

.;hereupon the smaller values of the displacement thickness corre-

-;pond to the higher values of R number.a

The presence of large pressure gradients extremely complicates

t!,e t.undary-layer calculation in nozzles, especially at supersonic

speeds. The approximate design procedure of a turbulent boundary

layer in a Laval nozzle developed by Bartz' is based on the follow-

ing assumptions: the velocity profile and excess temperature in

all cross sections of the nozzle are subordinated to "law 1/7,"

the local values of the friction coefficient on the wall and the

boundary layer thicknesses are connected by the same relation as

in the case of a plate, the Nusselt layer is calculated as one-

dimensional (without consideration of the boundary layer effect).

The results of such a calculation for the nozzle depicted o' , Fig.

8.3 are given on Fig. 8.4, where along the ordinate the thicknesses

of the dynamic boundary layer 6 are laid off (in inches), and

along the abscissa the dJstance from the beginning of the nozzle

to the current cross section is laid off, expressed in fractions

of the reduced length of the nozzle xn (in this example xn = 8.02")

The calculation is performed for two cases when in the beeinninF,

of the nozzle the boundary layer thickness 6 = 0.185" and wL.en
0

50 = 0. The most important result of this calculation, confirmed

by experimer:tal data, consists in the fact that the boundary layer

thickness In the throat Is very small (6 0.02p; 6*p = 0.0'D)

and virtually does not depend on the boundary layer thJckneOsZ In

'Bartz D. R., An Aprroxlmate Solutl--n o!" Cor.rp':ibl Tur u-
lent Poundary Laer P.*uve~upm.,mt, A"i1: Pper N 5 _-A-i%,iW.
Trans. ASE, V. 77, l);5 , 1955, p l?3"-l2".
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Fig. 8.3. Fig. 8.4.

Fig. 8.3. Laval nozzle (from the work of Bartz).

Fig. 8.4. Change in the boundary layer thickness 6 along
the length of a conical Laval nozzle (see Fig. 8.3): 1 -

thickness of layer In the initial cross section
60 = 0.188"; 2 - the same with 60 0 0; 3 - thickness of

layer in the throAt 6 = 0.

the initial cross section of the nozzle. This means that the

boundary layer thickness in the outlet cross section of a Laval

nczzle can be approximately determined on the assumption that in

the throat it is equal to zero (S Z 0). This case is shown onup

Fig. 8.4 by the dotted curve.

The values of total pressure (taking into account the boundary

layer) in the outlet section of a conical supersonic nozzle can be

estimated approximately according to the following formula:'

(k+ 1"= (14)

here p. Is the mean total pressure on the cross section at the

outlet, p - the same in the nozzle throat, M - the computed

value of the Mach number, a - the half angle of aperture of the

nozzle, Cf - the value of the coefficient of friction. The curves

calculated from formula (14) with k - 1.4 are depicted on FIg. 8..

1Evvard J., Diffusers and Nozzles - in the collection High
Speed Aerodynamics and Jet Propulsion, v. VII, 1957, p. 638-654.
Russkiy perevod Izd. inostr. lit., 1959.
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Fig. 8.5. Change in total pressure along the
length of the nozzle, presented depending on
the local value of the Mach number.

For calculating the value of the friction coefficient in a

nozzle it is possible to use the approximate relation i which is

in good agreement with the data of Chapter VI:

besides the friction drag, the losses connected with the nonuni-

formity of flow In the zone of the throat and the deviation of the

flow from the axial direction at the nozzle exit are important.

The complete velocity coefficient of a nozzle 0 can be

presented in the form of the product of three coefficients which

consider friction looses (f), losses from the nonunifovmity of

flow in the throat of the nozzle (4p), and loss as a result of
p

the deviation of the flow in the outlet section from the axial

direction (4.):

"P -' /Pv',.( 16) -

Value Is calcul4ted with the aid of the methods of

boundary-layer thoor; of a compres:ible gas (see Chapter VI).

1 Ahlberg .. , liam1l r . f,*!'d',T 4 . , 1 son E. TrunCate:
Perfect Nozzles in Opt ,.zz - Pes>.r, , AHS J , "' 5, l til
p 61.1-620



Value in conical nozzles depends mainly on the relative
r~vAus of curvature of the nozzle wall in the area of the throat;

t Le corresponding experimental data of Rao' are approximated well

ty the exponential formula

here k is the adiabatic index (in experiments k = 1.23 and 1.L),

R is the radius of the critical cross section (throat), and r isHP
the radius of curvature of the nozzle wall in the area of the

throat. In Rao's experiments relation R /r changed from 0 to 1.

The coefficient C for a uniform conical flow at the nozzle

edge is determined from the mean value of the projection of the

velocity vector to the nozzle axis

I CosI.,--- -- --. (18)

Here a is the half-angle of aperture of the nozzle.

If there are losses, then the maximum thrust is reached not

with the design nozzle configuration, but with a certain under-

expansion of the gas since a small contraction in the output pulse

in this case is more than compensated for by a gain

because of a decrease in losses.

The following analytical dependence of the optimuam Iegree o.

expansion of the nozzle on the velocity coefficient is in good

agreement with the experimental data:
2

'Rao G. V., Evaluation of Conical Nozzle Thrust Coefficient.
ARS J., N 8, 1959, p. 606-607.

2Durham F. P., Thrust Characteristics of Underexpanded N'ozzles,
Jet Prop., N 12, 1955, p. 696-700.
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4 A---- 4-i . .. . . _-% ,I :il , (]9)-

where Fa' P P are the areas of output and critical cross sections,

Pa - pressure on the nozzle edge, p0 - the total pressure at the

outlet in the nozzle, e - velocity coefficient of the nozzle, 0 -

velocity coefficient taking into account losses only in the

tapering portion of the nozzle. With 0 = a 1 formula (19)

is identical with formula (4) in Chapter IV obtained for an Ideal

nozzle of which it is possible to be convinced after substituting

relation ('1S) in (19).

Under conditions of outflow from a nozzle with large over-

expansion, when a bridge-type shock is established on the nozzle

edge (Fig. 8.6), the ratio of pressures on the edge pH/pa can

prove to be higher than the critical one for the boundary layer of

the nozzle with its interaction with the oblique shock wave ab.

In this case the boundary-layer separation from the wall appears and

the system of shocks displaces inside nozzle to cross section a',

where the velocity is less (X' < X a ) and the pressure before the

shocks is hi.gher (pi > Pa) than in cross section a; with the

proper decrease in the ratio of pressures in the oblique shock

P Pe

The system is stabilized and the outflow proceeds with separation

from the wall at a supersonic speed less than in the design

condlons. Beyond the locus of separation the pressure on the

wall v.ithlin the nozzle Is equal to atmospheric pressure, in

connection with 'llch higher thrust Is obtained than under the

conditions of full overexpansion when in the outlet section of the

nozzle rarefaction predominates (see § 2, Chapter IV). The cal-

culation of the flow separatlon in the nozzles is a difficult

f
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Fig. 8.6. Outflow from a Laval nozzle with
strong overexpansion: abc - bridge-type shock
on the edge, a' - s3hock within the nozzle
caused by separation of flow.

tasX. Experimental study of this phenomenon made it possible to

obtain the following generalized relation:'

.r, p. p' " (20)

Here pO orp is the total pressure at which separation occurs,

pac - the total pressu~re in the design mode. Another empirical

relation is applied:
2

&.;., (. ),,," (21)

Only with the displacement of the system of shocks to the zone with

Mach number M < 1.3 (see § 8, Chapter VI) does the boundary-layer

separation cease and the system degenerates into a shock close to

a straight line behind which a subsonic diffuser flow is established

right up to the nozzle edge. The regions of the unstable gas flow;

in the nozzles are depicted on Fig. 8.7.

'Ashwood P. F., Higgins D. G., The Influence of Design
Pressure Ratio and Divergence Angle on the Thrust of Convergent-
Divergent Propelling Nozzles. ARC CP N 325, 1957.

2Fra.er H. P., Eisenklam. P., Wilke D., Investigation of
Supersonic Flow Separation in Nozzles, J. of Mech. Eng. Science,
Vol. 1, N 3, 1959, pp. 267-279.
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Fig. 8.7. Regions of
14 unstable flow in LavalF (uII a . ,,*t [ nozzles.

0 - -- KEY: (a) Stable; (b)
Unstable; (c) Subsonic
flow in throat.

S-..2. The Zorms of Nozzles . .

Figure 8.3 shows a Laval nozzle composed of two cones connected

by a neck which is described by a circular arc. Such nozzles are

applied with not very large supersonic speeds of outflow (M < 3).

It is recommended that the lateral angles of the tapering portion

of the nozzle be taken within the limits of 15-300, and of the

expanding portion - within limits of 5-8', and the radius of

curvature of the wall of the neck should be not less than the

throat diameter. Under these conditions such a conical nozzle

provides (according to experimental data) a decrease in the pulse

in comparison with the nozzles of special shape of not more than

1-2%.

For obtaining a uniform parallel flow (in connection with

supersonic wind tunnels and the jet apparatuses with a very high

velocity of outflows) nozzles are used with special]., shaped walls

for the construction of which methods of characteristics or

functional series are employed.'

'Katskova 0. N., Naumova I. N., Shmyglevskly Yu. D.,
Shulishin N. P., The Experience of the calculation of p2ane and
axisymmetric supersonic gas flows by the method of character.Ist i s.
The data processing center cf the A. S. of the USSR, 1961.
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L. t us present a simple geometric method for the calculation

cf a nozzle) which provides outlines very close to optimum. The

neck of such a nozzle is descried by two clrcle,.: subsonic par, -

,.'ith a radius of 1.5 R and the supersontc part - with a radiusAp

of 0 4 . where R 1s, the radius of the throat (Fi. 8.8).• Hp' H

Drawn to the segrnent of the arc of a radius of 0.4 R at a .Iven

angle e to the nozzle axis Is tangent NQ up to the intersectionN
with segment Qa which passes through the nozzle edge and is

inclined toward the axis at a given angle Ea  (in the case of a

wind tunnel 6a = 0). Segments NQ and Qa are divided into an equal

number of sections, in which regard the dividing points of line

Qa are connected with the like-named dividtng points of line NQ;

thc envelope of the obtained grid of straight lines forms the

sought -,ozzle contour.

i.__ .,,_ I. 4 -

Fig. 6.8. Diagram of the construction of a
nozzle outline.

Figure 8.9 presents graphs for determining the slope angles

e (solid lines) and 0a (dotted line) for given values of relative
Na

length of a nozzle I/RP and the relative radius of outlet crosslip
section R a/Hp. The quality of the described geometric method ce'

the construction of nozzles can be Judged from this example: the

maximum linear deflection of the outline from the optimum,

'Rao G., Approximation of Optlmum Thrust Nozzle Contour.
A. .9. S. J,, 6, 1960, p. 561.
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calculated with respect to a precise procedure, for nozzle

Ra  p Z = 12R is 0.03 R H.
a' "p p

The outline of the shortest possible nozzle is determined by

the displacement of point N (Fig. 8.8) to the critical cross

section ("angular nozzle"); angle 6 is selected so that an

increase in the Mach number in a Prandtl-Meyer flow (near point N)

would occur up to the value of the Mach number on the nozzle edge.

There is great practical interest in a nozzle with an inner

body, a schematic diagram of which is given on Fig. 8.10. In

such a nozzle the gas flows along an annular channel (between the

inner body and the cowling); the critical cross section can be

regulated either by the longitudinal travel of the inner body or

by the rotation of flaps on the cowling. Figure 8.11 depicts two

types ' nozzle with an inner body: a) with partial internal and

b) w-.th purely external expansion of the gas. In the first case,

from the critical cross section to cross section A the supersonic

jet is expanded in the channel, and beginning from point A the

outer edge of the expanding jet is free. If point of inflectic.I

O of the supersonic part of the nozzle is placed in the critical

cross section, then the characteristics exiting from it in the

form of a beam (first family) are reflected from the cowling and

the reflected characteristics (second family) fall on the walls

of the inner body.

, - Fig. 8.9. The dependence
_ . [ z of angles eN (solid lines)

and 6 (dotted line) on6 -
the relative values of
length and radius on the
nozzle edge.

A1 /1 V/ 14 13 f 17 It 11 X4-
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The expansion of a gas In this case is one-way, and the threat

is inclined toward the axis by the angle 6 equal to the angle of

rotation of the gas flow near point A upor acceleration from

critical velocity (M = 1) to the computed value of the Mach number

(M ) for this pressure ratio. The overall length of the part ofa

the inner body protruding beyond the cowling (afterbody) is

determined by the point of intersection of the last characteristic

AB with the axis. Experiments show, however, that the afterbody

of the inner body can be shortened by 30-50% without a noticeable

reduction in the thrust.

In a nozzle throat made in accordance with the second scheme

(Fig. 9.11b) the cowling should be parallel to the wall of the

inner body; this leads to additional drag in connection with the

losses to the external flow about the convergent section of the

cowling.

With not very large design values (,f Mach number (M< 2)
a

the inner body can be made conical.

Nozzles with an inner body are obtained ccnsiderabl:y shorter

than the usual Laval nozzles and unlike the lVtter give very small

reductions in relative pulse at press. z.es conzIderably lower than

designed (due to the absence of wallt in the supersonic part the

overexpansion of gas does not oc.

FIgure 8.12 presents the expertmenta, dzLta of Pearson' on a

change in the relative value of outpot pulse I with deviatIcn fr >rr

the design conditions (Poa/P- = 8) for the Laval nozzle and nczzl,

with an inner body (dotted line).

1Krase W. H. Performance analysis of plug nozzles for
turbojet and rocket exhausts, Paper A. S. M. E., .1 58, A. 24F,
1958.
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a)

b)

.- A.

c' b

Fig. 8.13. Fig. 8.14.

Fig. 8.13. Flow conditions in a nozzle with the
central insert: a) at the ground; b) at the
medium altitudes; c) at high altitudes.

Fig. 8.14. Diagrams of ejector nozzles: a)
with the shaped cowling; b) with cylindrical
cowling.

products of the engine escape through the simple narrowing nozzle

placed inside an external cowling coaxial with it which has a

special shape (Fig. 8.14a) or the form of a cylindrical ring

(Fig. 8.14b). The critical velocity is established on the edge

of the internal nozzle and if pressure here is higher than the

surrounding pressure, then the central jet within the ejector is

expanded, narrowing the flow cross sections of the airflow being

ejected by it which enters an annular channel from the intermediate

compressor stage or from the atmosphere.

The velocity of the ejected flow is usually less than the

speed of sound; therefore, in the outlet section of the ejector

it is accelerated. In some cross section 2-2 (Fig. 8.15) the

pressures of two flows are equalized; the more the excess pressure

in it, the further this cross section is located from the edge of

the internal nozzle. The transverse dimension of the internal

561 4 .4



a) 

b

c) d)
Fig. 8.15. Diagrams of flow in an ejector
nozzle in off-design conditions: a) pressure
on the edge of an internal nozzle equal to
atmospheric; b) small pressure excess on the
edge of an internal nozzle; c) critical mode
of ejector; d) cutoff mode of the ejector.

Jet increazes, and of the ejected jet - decreases with an increase

in the excess pressure in the internal nozzle. The configurations

of two flows with different values of excess pressure are shown

on Fig. 8.15. The operating mode of the ejector in which the

secondary flow is accelerated (in cross section 2-2) to the speed

of sound is called cri.*icaa (Fig. 8.15c); if the central jet is

expanded so much that it fills the entire outlet cross section of

the ejector (Fig. 8.15d), then the cutoff condition begins where

the flow rate of the ejected gas is equal to zero.

For the regulation of an ejector nozzle it is possible to

install rotary flaps both on the internal nozzle and on the

external cowling (Fig. 8.16).

If the parameters of the ejector nozzle are selected in such

a way that In cross section 2-2 (Fig. 8.15) atmospheric pressure

is obtained, then the expansion of the ejection gas will be

complete; in this case, the thrust of the ejector nozzle is
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(.w Fig. 8.16. Ejector
r nozzle with controllable

cross sections of neck
and edge.

-=i

greater than that of a simple tapered nozzle since the pressure

on the part of the ejected gas on the wall of the internal nozzle

Is higher than atmospheric. The cross section of the cowling of

an ejector nozzle should be such that in the design mode the

flow rate of the ejected gas would decrease to the minimum

necessary for the purposes of cooling the wall.

A reduction in the pressure excess in an ejector nozzle leads

to a decrease in the velocity of the internal jet in cross section

2-2, which averts the possibility of the overexpansion of the gas

and corresponding thrust loss (in comparison with a Laval nozzle).

A typical characteristic of an ejector nozzle of a TRD, i.e.,

the relation between the coefficient of ejection k3M - (G3/G H)

and the ratio of the total pressure of the internal jet to atmos-

pheric pressure is depicted on Fig. 8.17. In order for the

ejector nozzle to operate under the most advantageous conditicns,

it is necessary to regulate the flow rate of secondary air (with

low flying speeds Irireasing the coefficient of ejection to

values on the order of k = 0.1 and reducing It with high speeds

to a minimum on the order of k - 0.01-0.02). The ratios of the

total pressure of the ejected air in the nozzle to the total

pressure In the inlet duct of the engine (p0 3 /p 0 ) which can

be recommended for obtaining the optimum modes for operation of

the ejector nozzle at different flying speeds (or M0 ) are given

on Fig. 8.18.
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Fig. 8.17. The characteristic of an
ejector nozzle.

Fig. 8.18. The ratio of
OW - the total pressure of

- secondary air to the
total pressure in the

4-s - inlet duct of an engine
for optimum conditions
in the ejector nozzle.

d a--- ?a f 4J

The optimum relative length of an ejector nozzle which

prcvides the smallest thrust losses in the design mode,
1

where Z is the distance from the edge of the internal nozzle to

the edge of the cowling, RT is the radius of the critical (outlet)

cross section of the internal nozzle.

The thrust of an ejector nozzle is equal to the total pulse

of two jets on the edge of the cowling. The parameters of jets

with cylindrical cowling are determined from conditions for the

maintenance of flow rate and pulse (not considering friction)

between cross sections 1 and 2 of the edges of the internal nozzle

'Person H., Holliday J., Smith S., A Theory of the Cylindrical
Ejector Supersonic Propelling Nozzle, R. A. S. v. 62, NN 573,
574, 1958.
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and the ccwling (see the calculation of a gas ejector in Chapter

IX) under the assumption of the absence of mixing of the jets.

-is task has two solutions from which they select the one In

whIch the internal jet in cross section 2 is supersonic and the

jet heing ejected is subsonic or sonic. The extent to which data

of such a caliulation correspond to experimental data can be

judged from Fig. 8.19 where along the ordinate the relation of the

total pressures of two flows is laid off, and along the abscissa -

the ratio of the total pressure of the interna? jet to atmospheric

pressure. The data presented pertain to the case where the ratio

of the areas on the edge of the cowling Fa and the internal nozzle

FP is 1.73. Serving as the variable parameter for the curves is

the product k V(T 0 a , where T O 1 and T O a are the stagnation

temperatures of external and internal jets. The horizontal

sections of curves correspond to the critical modes of the nozzle.

p o -- -

L7J

565----

- a fit'.
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Fig.8.19 Chrceitc of. an ejcornz

a~ aP
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Losses in an ejector nozzle reach the minimum when the

relation of the velocities of two jets on the edge of the internal

n :zzle is equal to the relation of their total enthalpies.1

The typical nature of the dependences of the thrust of a TRD

cn the coefficient of ejection with different values of M number

of flight is shown on Fig. 8.20. The dashed line connects the

modes of the maximums of thrust. In view of the flatness of curves

P(k ) it is possible to select the values of the coefficients of

ejection considerably lower than optimum, which makes it possible

to decrease the flow rate of secondary air.

Fig. 8.20. For determining the
optimum values of the coefficient of
ejection.

S 3. The Resistance of a Subsonic

Diffuser

Let us examine the diffuser of an engine Installed in a

moving aircraft. Let the velocity of the aircraft be w H, and the

speed of sound which corresponds to the temperature of the

'Knox R., The Optimized Ejector Nozzle Thrust Augmenter JASS,

~ 'I
N~~ ~ ~ 4, 192 p 4041

566

Fig. 8.0.,Fordetermiing th



i

atmo pr,-ere a Let us introduce the designations: F is the
• H

transverse cross-sectional area of a jet at infinity in frcnt 'f

the engine, y is the specific gravity of the air far in front of

the engine, pH - the pressure in the atmosphere. Let us designate

the values of area, velocity, and pressure in the inlet of the +11

diffuser Fe Wel Pe' The values of the same quantities at the

end of the diffuser F,, w , pA.

The operation of a diffuser depends on the ratio of the flying

speed to the velocity in its inlet. Let us first examine system
H < a , i.e., subsonic flight. The rate of air flow through the

H

engine, and therefore, through the diffuser G9 kgf/s.

It is possible to visualize the case where a jet enters a

diffuser without a change in its configuration. The transverse
cross-sectional area of a jet at infinity in front of the engine

F in this case is equal to the area of the inlet of the diffuser
H

F:e

Generally, the form of the jet at the engine inlet is determined
by the relation FH /F.. In the case given above FH a F., corse-

quently there is no transformation of the velocity and pressure

in front of the diffuser (Fig. 8.21b):

w,=w, and P,-P.

If the rate of air flow through the diffuser increases, then
the Jet will change its form as shown in Fig. 8 .21c. A change

in the form of the jet Is accompanied by the transformation of thE,
velocity and pressure: 7
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b)

Fig. 8.21. Possible configurations
of a jet in front of a diffuser.

With a decrease in the rate of air flow, the jet seemingly

forms a diffuser even in the atmosphere (in front of the engine)

in connection with a decrease in the velocity and a pressure

increase (Fig. 8.21a).

With a constant air flow rate the form of the jet in front of

the engine depends on the size of the inlet of the diffuser.

Changing the dimensions of the difruser, we can obtain any of

three presented operating modes. Favorable for the operating

conditions of the engine is the case where the flow decelerates

somewhat even in front of the diffuser since the deceleration of

the jet in front of the diffuser proceeds without any losses and

the internal resistance of the diffuser decreases as a result of

reduction of velocity at the entry. It is necessary, however, to

note that besides internal losses one should also consider the

external engine drag which increases with the shortening of the

diffuser. This is explained by the fact that with the spreading

of the flow in front of the nose of the engine the jets will

approach its surface at large angles of attack and separation can

be formed on the external surface of the nose (Fig. 8.22). For
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Fig, 8.22. Separation of Jets with
large diffuser inlet.

satisfact-lon of these contradictory requirements it is necessary

to find optimum conditions for the operation of the inlet section

of the engine.

Teets show that for. a aubeonic jet engine the optin;. m ties
cZooe to the mode

W. ft 0.5 w..

If losses were absent in the diffuser, gas in any of its

cross sections would have the very same total pressure equal (at

the subsonic speeds of flight) to the total pressure in the lnncm-ln

air'Jet. The presence of losses disturbs this equality, and the

total pressure at the end of the diffuser is always lower than in

the beginning:

~P"i:<P""".

Static pressure along the diffuser, on the contrary, increases

because of a decrease in velocity.

The value of hydraulic losses in the diffuser is conveniently

expressed in fractions of velocity head in its broad cross secticn;
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Here C is the coefficient of hydraulic resistance of the diffuser.

UL'ually diffuser losses are relatively small: APo A'/Po H

Therefore, the density of the stagnated gas in a diffuser can be

considered virtually constant o 00 A 0. Consequently, it is

possible to accept

Let us reduce this formula to the dimensionless form:

j -- -1, ;

ts V

here

After the appropriate conversions we have

We note that w A/a - aX is the velocity coefficient at the end of

the diffuser. As a result, we obtain the following expression

for the coefficient of the total pressure in the diffuser:

a,= I "- > -1 "" (22)

The resistance of the diffuser is composed of losses to

friction and to vortex formations. Vortical losses are caused by

the boundary-layer separation from the walls of the diffuser whose

reasons are explained in Chapter VI: they depend on the diffuser

cone angle and play the main role. With small diffuser cone

angles hydraulic losses are small, but they Increase in proportion

to the increase in the angle. With an increase of cone angle the

vortex zone moves from the end of the diffuser to its beginning and

at wide angles the entire wall is covered with a vortical region.
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";imerous experiments lead to the conclusion that vortex dif'-

1C.er losse3 can te estimated as softened shock resistance (in

emparison with the sudden exoansion of the channel)

where the *hock loss i.,

4Ap&P a~~

Here p is the Chock coefficient (W < 1). The experiments showedl1

that the shock coefficiont 1 is a function of the diffuser cone

ancle a alone.

The corresponding relation for a rectilinear diffuser with

circular cross section is given on Fig. 8.23. Corresponding to

large cone angles (a > 400) is i > 1, ..e., there Is no softening

<of the shock. At angle a - 0 we have i = 0, i.e., there is nro

chock. The maximum value of the shock coefficient (i = 1.2) Js

reached at angle a a 600. In this case losses are even greater

than with the sudden expansion of the channel, when 1 = 1. 7-is

is explained by the fact that the vortex zone in a right angle 13

stable, while with an inclined wall (a : 600) the vortex zone i,

periodical.ly carried away by the flow. Thus, added losses at such

angles are caused by the expenditures of energy on the renewal of

the vortex zone.

Usually diffusers are used with angles a * 6-10'. Corrcszrcnl-

Ing to such values of cone angles are the values ' u 0.15-0.20.

In this region the visible separation of the Jet from the wall of

the diffuser is not observed.

'Abramovich G. t1. The Aerodynamict of the Local ! esitanceF.
Transactions of TsAGI, Issue 211, 1935.

571



g M =I rA ~rArA 9o

Fig. 8.23. The dependence of the shock cnef-
ficient on the diffuser cone angle of round
cross-section.

If we disregard the change in air density within the limits

of the diffuser, then we have

substituting this equality in (23a), we obtain

WAR R-i$9-') . (2 3b)

As an example let us compute the loss factor for a diffuser
with the relationship of transverse cross sections F A/F e  3 with

cone angle a - 80. It is possible to accept (taking into account

friction) 4 - 0.2 for this case. Then A * 0.2.4 - 0.8,

1 0.44 X The velocity coefficient at the end of the
diffuser of a subsonic Jet engine is usually on the order of

A 0.2-0.4. Then

- 0,98 - 0,94.

We will not dwell on the calculation of friction drag since it is

illuminated in sufficient detail in Chapter VI.
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(:<xPerlments show that in diffusers with curvilinear side

wall-, ,..ith large expansion angles the hydraulic losses can be

substantially less' than in diffusers with rectilinear walls.

The results of the experimental determination of losses

(including friction) in plane diffusers of one and the same length 4

w.itlh a constant mean expansion angle a = 38140' but with the

different outlines of the lateral walls are given below. Figure

-.24 depicts the outlines of the tested diffusers. The first

outline - a straight line, the second - a circular arc, the third

corresponds to a constant pressure gradient along the length of

the diffuser dp/dx = const, the fourth - to a constant velocity

grad'ent dw/dx = const, and the fifth is constructed according to

the formula

d [d (I - .o ] = cost > .O

(.whpre p is the dimensionless pressure determined from the

relat ionship

TLe smallest value of the drag coefficient C = 0.24 is

obtained for diffusers 3 and 4 with constant pressure gradient and

constant velocity gradient. For diffuser 5 ; ; 0.26, for diffuser

2 with the walls made along a circular arc the drag coefficient

= 0.27 is obtained, and for diffuser 1 with straight walls

0.32.

'Idel'chik I. Ye., The Aerodynamics of Flow and Loss of Head X
in Diffusers. Collection of articles on industrial aerodynamics
under the editorchin of X. A. Ushakov, M!., 194".
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Fig. 8.24. The outlines of tested
diffusers.
KEY: (1) Straight line; (2) Are
of circle.

Thus, in diffusers with constant pressure or velocity

gradients a reduction in losses of approximately 25% is achieved
in comparison with a straight diffuser.

Figure 8.25 depicts graphs of the dependence of the loss

factor on length (i.e., on angle a) for diffusers of types 1 and 3.
With sufficiently long (close to optimum) diffusers of t ypes

the difference in losses becomes small.

C, A

tts

r

Fig. 8.25. The dependence of the loss
factor on the length of the diffuser.
KEY: (1) Straight wall.
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We examined the resistance of a diffuser under those conditions

whero it is possible to disregard the compressibility effect of

the air which, as the experiments show, begins to show up in the

value of the loss factor only in the case where the velocity in

the diffuser inlet is close to the speed of sound (N > 0.1).
e

Figure 8.26 presents graphs of the experimental dependences A I
of the relation of the total pressures at the end and the beginning

of a diffuser a a = p0  / e on number in a diffuser inlet'

(with central expansion angles a - 4, 6, 8, 100, diameter of

entrance cross section 100 mm and the exit cross section diameter

222 mm). The sharp drop in the values of o, which set in with

values Qf 1'. number of approximately 0.9 is explained by the fact

that in these modes in the initial part of the diffuser a zone of

supersonic velocity develops which is closed by the shock wave

which introduced large wave drag. This can be Judged from the

curve on Pig. 8.27 which depicts the dependence of the M' number
e

directly at the entry to the diffuser on the Me i~uber at a

distance of one caliber in front of the entry to the diffuser.

A drawing of one of the diffusers (with a = 60), tested by

K. S. Stsillard, is presented on Fig. 8.28; the remaining diffusers

of this series differed from that depicted on this figure only by

the angle and accordingly by the length of the conical section.

To evaluate the effect of the R numher on the resistance of

the diffuser, K. S. Stsillard also tested geometrically similar

diffusers of smaller size (with inlet diameter 18 mm). The results

of tests of diffusers of increased and small sizes turned out to

be cloe, which testifies to the weak effect of the R number on

losses in a diffuser.

'Stsillard K. S., TEh Investigatln of Diffusers at I1.1rh
Velocities. Technical ;otes of TsAGI, 1938. 4
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Fig. 8.26. The dependence of' the total
pressure coef'ficient in a dif'fuser on Me
number in f'ront of a diffuser withe
expansion angles a~ = 4, 6, 8 and 100
(according to K. S. Stsillard's experi-
ments).

Fig. 8.27. The connection between
- - the values of' M number in the

beginning (M ) and the end (M') of
V the cylindrical entrance section

- - -- - -of' a diffuser (according to K. S.__ _ -1 Stsillard's experiments).

41 42 4249414404 45 41

Fig. 8.28. Diagram of one of' the diff'users
tested by K. S. Stsillard.
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.. elat~or- a, f (N e does not give a graphic representation of'

effct fcompresiblity on cirar since value a changes with

vtoloclty evjen with a constant value of the loss factor. A
ncm-verient characteristic of losses during the flow of a compress-

fiir as ir a diffuser' i, the coefficient

L 1 (24)

er~th ~u~: 1,; I ttue adiabatic w~ork which must be expended in

crdter to z-13e the total pre , suz'C in an ideal compressor at the

of tho-.- diffuser to the value of the total pressure in the

teginniniz-i the diffuser, and the denominator expresses the

kinetlc energy of a gas jet in the inlet of the diffuser.

!Relaticns C M f ( , e) for four of EK. Z. Stsillard's .iffusers,

r--caiiulated for the c'urves on Fig. 8.26, are depicted on Fig. 8.29.
;.::esee, ttite effect of compressibility or' a pas on thr, value of

th':- los:s factor be~rins to be felt only at tranuu. nic velcitles3

(M, > '-.7). So);L- dreop in tlne curves r,, f(r.) In the r' I

1-e< ',.3, iuethen compressibilit.,, effect Is knowirnply urthink tble,

can be explai ned or!-: Lx' the effect of the R number which 1Increasez

Wi:t!; an Inc rcease In Mtrinurmhell

V~. 464f o 4 o "

difusr n -' : -r it ti. rtry wth excrrt-.!-.n aw

an 1 (a~corlinr to. i. S. St-111Vriz-

experlmIi



A

Let us; now exami e the operiation of the diffuser of a VRD

(jet e,.ine) which ha a usual ("suhsonic") form with a supersonic

flow velo.'ity at tne entry. A .hnne: wave s formed In front of the

entry to such a diffrucr with a curvllinear front (Mig. 8.30).

in the renter sectir, i.e., in th 3fne which intersects the

working air jet which goes in;ilau the engirc, the shock should be

a Ytraight line. The latter ensues from the fact that the working

jet retains its initial direction after the shock. Thus, the

velocity In the working jet after the shock is subsonic.

-. /

Fig. 8.30. The shadow photograph of a
supersonic flow in front of a simple dif-
fuser.

Depending on the value of the inlet of the diffuser (Ae ), one

or other relationship occurs between the values of velocity after

the shock (w1 ) and at the entry to the diffuser (w e ). Two cases

are fundamentally possible:

a) w1 > We, i.e., the flow between the frcnt of the shock and

the inlet to the diffuser is decelerated;

b) wI - We, i.e., the velocity after the shock and the

velocity at the inlet to the diffuser are identical.

574



Also possible .s the case w.here the working Jet enters the

diffuier at supersonic velocity then the shock wave is obtained

not in front of the diffuser, but within it. Mode w1 < W, i.e.,,

the acceleratior of the flow between the front of the shock and

the entry t the dlff'user, is not realized in practice.

Tnus, in an enine with simple diffuser the deceleration of

the entering jet at the supersonic initial velocity begins with a

-traight -,cck w.ave. The losses in shock and the flow parameters

after the shock are determined from the formulas given in Chapter
M!T.

S;nce the I'Icw in a Amrle dIffuser is subsonic even with
FUPetOi2i'e - ,X 1 < 2, hydraulic losses in thesupe -?.o:. -:~ [ Iue < I,

duct of such a dIffuser ca. he calculated from formulas (22) and

(23) of this chapter.

Tf for the case of subsonic speed of flight the total pressure

( 1*ss.e ;,It the decelcration of a working jet were determined

only by the internal drag of the diffuser c., then for the case of

supersonic speed these losses also include external wave drag ant

I.e., are determined by the pr<, duct of pressure coefficients in

a straIght s3hock and in the diffuser (o a
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5 4. Superonlc D'fusers

!y applying diffusers sI-a'' '.rr it Is possible to

achieve a stepped slowi n, down of sup-,,rsonic flow by means of

different syst_,ms f blicqno h,-, ,..''. Since in a usual step

oblique shock the speed reicvl5n 3:i :. , then for the complete

slowing down of flow it is neroonry x ,lace behind the last oblique

shock a normal shock or a spectal (trong") oblique shock which

gives a transition to the subsonic speed of flow. In Fig. 3.12

the strong oblique shocks snswerto ih' err arms of curves Oa f(w),

lying higher than the maxl uzm, Wh~teJL ufl the front of a strong

oblique shock is locatel wth resp :,-t t,. the incident flow at an

angle of no less than 600. Only unler this condition (a > 600)

is it possible to obtain behIJ !.I th<'rt Ltf an oblique shock a

subsonic speed of flow (M < 1).
1

The different combinations of shocks are investigated in the

work of G. I. Petrov and Ye. P. UJkhev. ' Let us examine the problem

concerning a supersonic diffuser b5 ,cGlizing the results of this

work. We will turn first to the Slr'plest layout of a supersonic

diffuser in which the sragnation of i-low Is achieved by means of

two shocks: an oblique and noria, Tn an oblique shock decrease

in supersonic speed occurs, while in a normal shock - the lowered

supersonic speed is transferred into subsonic.

Let us designate the veiccit ,  coefflcient of the undisturbed

flow by X., the velocity coefficient behind the oblique shock by

Xf. and the velocity coefficij,- buhind the normal shock by

Ak = (1/X1 ). As it was establ., d bLove, an oblique shock wave

is a normal shock in relation to t'. velocity components normal

to its front. Thus the calculation of irhe first oblique shock of

1G. I. Petrov and Ye. r. Ukhcv, Calculation of the Restoration
Qf Pressure upon Transition from Supersonic Flow to Subsonic in
Different Systems of Step Shock V,,aves, M., 1947.
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a system can be carried out according to the formulas for a ncirral

shock. Formulas (38), (40), and (43) of Chapter III make it

possible to calculate the change in the total pressure in an oblique

shock wave.

Now, using expressions (21) and (24) of Chapter III, it is not

difficult to determine the change in static and total pressures A-
in a normal shock arranged behind an oblique shock. For this it

is necessary only to consider that the velocity coefficient

before the normal shock is XI . then

E.,+=E- (25)-l-,- -__i

The overall change in the total pressure in a supersonic diffuser,

which contains oblique and normal shocks, is determined by the

product of the pressure coefficients

co p (26)

With a change in the angle a between the front of an cbiique shook

and the direction of undisturbed flow the relations of the values

of total and static pressures behind and before the system of

shocks change.

Figure 8.31 depicts the charts of the dependence of the

relations of the total pressures behind and before the system of

shocks on the angle of the oblique shock at different values of

velocity of undisturbed flow (i.e., at different values M or X ),. H H

calculated for a diffuser with two shocks: oblique and following

behind it a normal. For every value of M number (Fig. 8.31)

there is a certain angle of oblique shock (a ), at which the
on T

restoration of the total pressure In the diffuser reaches a

maximum; the less the flow velocity, the closer the optimum angle

to a straight line. The dotted line A connects the points

(a - a 0 ), in which the oblique shock degenerates into a weak wave;

in this case the system consists of one normal shock. The dotted

C 581
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1V1line B connects the points, to the

right of which the velocity behind
Jv the oblique shock Is subsonic. In

-* -. other words, the branch of each

curve lying to the right of line
B answers to a strong oblique

- Ishock, behind which there is no

normal shock. With a - 900 the
5 t o, 7 a V. strong oblique shock converts to

a normal shock. By virture of whatFig. 8.31. The dependence was given on each of the curves
of the relation of the
total pressures behind the pressure coefficients a on
and before a system of with K 900 and c cia (angle of
two shocks (oblique +
normal) on the angle weak disturbance)obtained are
of the oblique shock. identical.

Figure 8.31 shows that the superiority of the system - oblique
shock with a subsequent normal shock over one normal shock - becomes
significant only at M a 1.5. In the case M. 0 2 the optimum

rebtoration of total pressure in a system of two shocks comprises

aKa n * 0.91 (with monT - 500), whereas one normal shock gives 0.72,

i.e., 27% less. With M H 3 we have respectively for a system of
two shocks axa n a 0.58 (ionT - 430) and for one normal shock
a - 0.33 (a - 900), i.e., two shocks give a gain in total pressure

of approximately 70%. With a further increase in the velocity
of incident flow the advantage of two shocks becomes even more
considerable.

We examined in detail a system of two shocks. Applying the

complex systems, which consist of three, four, and a greater

number of shocks, it is possible to obtain better results than

in a two-shock system. The calculation of any system of step

shock waves is conducted with the help of formulas (38)-(52) of
Chapter III and formulas (25), (26). It is possible to find the

optimum modes for a complex system of shocks by means of consecutive
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calculation. Let us indicate first how a system of three shocks

(two oblique and a terminal normal) is calculated, In this case

first the velocity coefficient (or Mach number) and the pressure

behind the first oblique shock at different angles of slant of its

front is determined, and on the basis of the already available

data for every value of the velocity coefficient behind the first

shock the optimum system from the remaining two shocks (oblique

with a subsequent normal) is selected. As a result curves

a  f(a) are obtained which are similar to those given in Fig.

8.31; on them are established the optimum relationships for a

system of three shocks. Further it is possible to find the optimum

relationships for a system of four shocks (three oblique with a

subsequent normal). For this it is necessary to conduct the

calculation at different positions of the first oblique shock,

selecting for every position of it (in terms of the value of

velocity behind the first shock) the optimum system of three shocks.

By the same consecutive calculation it is possible to determine

the optimum modes for any assigned number of shocks.

Figure 8.32 gives the curves of the optimum values a - the

ratios of the total pressure behind a system of shocks to the total

pressure before it depending on M number before the diffuser for

the cases:

1) ncrmal shock,

2) oblique shock with a subsequent normal shock,

3) two oblique shocks with a subsequent normal shock,

4) three oblique shocks with a subsequent normal shock.

The optimum modes are obtained in the described manner and

correspond to the maximum restoration of total pressure. Figure

8.32 shows that the complex systems of shocks can give a large

effect only at a very high velocity. So, with M < 1.5 good

results are given by one normal shock, and more complex systems in

this velocity range are not required. With M 1 1.5 it is advan-

tageous to apply a two-shock system (oblique with a subsequent

normal). The advantages of a four-rhock syste:n (three oblique with

a subsequent normal, beccone signigicant cnly at MI 2 3.

583



Fig. 8.32, The dependence of'
the optimum coefficient of

At,. total pressure in different
systems of shock waves on

. .-. Mach number in the incident
flow.

Above we examined the different shock systems without

depending on the configuration of the diffuser, which was necessary

in order to realize the necessary system. The results obtained

are applicable directly to plane diffusers and with insignificant

changes to axisymmetric diffusers.

The schematic layout of a plane diffuser with two shock waves

is d-picted in Fig. 8.33. In order to obtain the first oblique

shock with the necessary angle of slope ot, one ought to install

a wedge-shaped projection, deviating the flow by the angle w,

which for the assigned value of M is selected according to Fig. -.

3.12. The presence of a weage does not disturb the external flow

around the diffuser, if the distance OC is selected from the

condition of encounter of the shock front OA with the edge of the

inlet. The ara of the inlet of the diffuser should be designed

so that the flow velocity in it would be equal to the velocity

behind the normal shock. In this case the normal shock is placed

in plane CA and does not influence the external flow around the

diffuser.

F'ig. 8.33. Arrangement of a
plane diffuser with two shocks:
OA - first oblique shock, CA -
normal shock, AB - oblique shock
of external flow.
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Figure .34 depicts the schematic diagram of th- Ji,-

with three shock waves. In this case the surfa,,e or hci - ,

should have a fracture. The angle of deflection of urnii:turok.t

flow Wi and the angle of secondary deviation w2 are s-lect' f

before on the curves of Fig. 3.12 in accordance witr, ' h.

slop.e.angles of the first (aI ) and the second (a2) ob lqu, -hcCKe

also taking Into account the velocities before the f1: (M I a-

before the second (MI) shocks. The area of the inlet C.

selected based on the velocity behind the normal shoc (M,

Distances OD and DC are calculated from the condition '? t

intersection cf ah,,cks CA and DA un the edge of the in.. .t k1

these condi:Ions through a system of three shocks pas -.?s " ' r

which cnte:rs !nside the diffuser: external flow Is no a-

by this system of shocks.

Fig. 6,3,. Arrangernen" '
plane dii'fuser with th:..
shccks: OA - the firs ' -'

-" t shock, DA - the second
-. , shock, CA - no rmal 3hc.

-. . a--'" AB - oblique shocK ef
flow.

The schematic diagram of an axisymmetric supersonic d'

does not differ from the diagram of a plane diffuser.

The stacs of the gas behind corpiex systems cf axi :-

and step shocks (with ecual slope angles of shocks with

ordinal rumbers) s .o" d bc clcse tu each other. It ic

to be ccnvinced of this 's Fig. 8.35, in which are pres

the relations of the val-es of the total pressures behin. r ,

before systems of two shocks (oblique with a subsequer r:-.

at the optimum slcpe aniales of oblique shock dependirnl? M

number cf Incident flow, . ei"tVi curves of Fig. .
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corresponds to axisymmetric, the
other (dotted line) - to a plane

. . flow. During the calculation of a
, '- " terminal normal shock in the axisym-

S .... metric case the velocity before it

(X was determined from formula (53)

S -in Chapter III. In a complex

, ... axyisymmetric diffuser all shocks,

except the first, can be considered

virtually plane in view of the fact
that they are situated in relatively
narrow annular channels.

Fig. 8.35. The restor-
ation of the total pres- The analytical investigations
sure behind a system of
two shocks (oblique + carried out by G. I. Petrov and Ye.
normal) at optimum angles P. Ukhov,1 and also by K. Oswatisch,2

of oblique shock depending
on the flow velocity for showed that the maximum relation of
axisymmetric end plane total pressures (minimum of losses)
(dottc line) flows.

in a system of several step oblique

shock waves and a terminal normal

shock equal to

( 1)rna *aa a. . (27)

is obtained when the oblique shocks have the identical intensity:

,=,, ,, .. '.(28)

With this condition from (27) we have

(0aag , = -'.f (291

'See footnote on page 580.
2 swatisch K., Der Druckruckgewinn bei Geshossen mit

Rueckstossantrieb bei hohen Ueberschall ischwindigkeiten.
Forschungen und Entwicklungen des Heers iffenamtes. Bericht N 2.
1005, G6ttingen, January 1944.

Herman R. Supersonic inlet diffusers. Fizimatgiv, 1960.
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Here m - the total number of shocks, (m-l) - the number of oblique

shocks, a - the relation of the total pressures behind and before

a single oblique shock, a, - the same for a normal shock.

From formula (40) in Chapter III it follows th" with equal

losses of' total cressure (c z Idem) the coefficien- of the normal

components of velocity befc'e the shock should be identical

M n-- n  " = idem, i.e., M . MIn . idem or

sin a, M 1 sin a I = = idem); because of this the relation

of the static pressures, densities, and other parameters in all

oblique shocks are the same idem,
ro r, .. . -_

.- .,-.-idv, " .. ,idrn) and the increases of entropy in

them are equal (s - s = 2 - s idem). Analytical

investigation shows that all the parameters of a terminal normal

shock in an optimum system differ only a little from the parameters

of the single oblique shock of this system. So, in the ra,.e of

values of Mach number of incident undisturbed flow 1.5 M S 5H

the relative value of the Mach number before the normal shock is

virtually constant and equal to

,.. = o.94 M.si. (30)

Knowing value Mmil it is possible to calculate the velocity
coefficient A before the normal shock, the relation of the total

m- 1
and static pressures, and also all the other parameters behind

and before the jump.

For the approximate precomputations it is possible to determine

the Mach number before the normal shock based on the normal A

velocity component before the single oblique shock ,M,,-M. si1,1
Then the optimum reltion of tht, total pressures in the system of

shocks is eqial to

('A=ji ,.t- (31) iX
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This expression gives a better approximation to the exact

expression (29), the greater the number of shocks m in the system.

Wher using the multishock system the intensity of every shock is

relatively small, and this means that the velocity of subsonic
-A

flow behind the terminal normal shock is close to the speed of ,

sound (M QI)l But in this case a small Jet contration, which

usually proceeds before the inlet of diffuser, is sufficient in I-

order that in this opening the critical speed (M.=I1) would be

established. Experiments show that this condition is realized
in practice under basic conditions of operation of a multiple-

shock diffuser in the system of an engine.

In that case the rate of air flow through the diffuser is

determined from formula (8a) in Chapter IV:

an~.,0"" kgf/s. (32)

Here p,, = aPOH - the total pressure in the entrance section of

the diffuser (behind the system of shocks); TO, = T - the

stagnation temperature in the entrance section of the diffuser,

equal to the stagnation temperature in the incoming undisturbed

flowF = F - the entrance section area of the diffuser.

The rate of flow in the channels of an engine (specifically

before the compressor and before the combustion chamber) usually

should be considerably lower than the speed of sound, as a result

of which the internal duct of the supersonic diffuser, where air

arrives from the inlet, is made expanding. But if in the inlet

the velocity is equal to critical, then 3uch a channel can also

work as the divergent section of the Laval nozzle with the formation

of the supersonic flow being completed by an additional shock wave.

It is attempted to select the form of the internal duct and

working conditions of the diffuser that the losses in supplementary

shock, at least in the basic (calculated) system were as little

as possible, and this is achieved by the maximally possible con-

traction in the supplementary supersonic zone of flow. 2
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With a smooth form and small expansion angles of the initial

part (neck) of the internal duct of the diffuser it is possible to

avoid the boundary-layer separation in the shock (with M<
terminating the supplementary supersonic zone, and to reduce the

-losses of total pressure in the internal duct down to 3-5%

(Oee4 = 0.97-0-95).

The supersonic diffusers described above, in which the basic

shock system is arranged before the inlet (before the cowling)

are related to the category of diffusers with external compression

(in spite of the presence of supplementary compression in the

internal diact). If in such a diffuser allthe shocks intersect

at edge A of the cowling (Fig. 8.34 ), then, as already mentioned,

the system cf shocks does not disturb the external flow around
the cowling. However, the internal wall of the cowling should be

oriented on the direction of flow in a terminal normal shock, which

the stronger it is deflected from the direction of the incoming

undisturbed flow, the greater the oblique shocks on the central

body of the diffuser.

In turn the external wall of the cowling makes up with the

interior an angle of Aw - 3-5o, therefore the angle of incidence

of the face of the cowling with the incoming undisturbed flow is

equal to

? %. . %] a .+ , (33)

where wk the deviation of the flow in a single oblique shock,
:k-

ad =Ew- the total deviation of the flow in a system of oblique 2

shocks. •I
In a multiple-shock diffuser with external compression the

angle wH' is great and shock AS on the face of the cowling (Fig.

8.34) turns out to be Intense. Su h cases are possible where

angle w' is greater than the critical angle of rotation of flow
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As Fig. 8.32 shows, an increase in the number of shocks

leads to a decrease in the total losses of total pressure in the

system. With an increase in the number of shocks to infinity

the losses in the system should drop to zero (a * 1), i.e., a
A

transfer to isentropic stagnation is achieved. The form of the

central body of a plane "isentropic" supersonic diffuser with

external compression is depicted in Fig. 8.38.

Fig. 8.38. Isentropic
external compression in

___ a supersonic diffuser.

The full angle of rotation of flow about such a central body

is calculated from formulas and the tables of Prandtl-Mayer flow

(see § 3 Chapter IV), since isentropic compression is reversed

isentropic expansion.

in other words the angle of rotation of flow in a plane
isentropic central body during stagnation from the value of M

H

number to M = 1 is equal to the angle of rotation in a Prandtl-

Mayer Clow with expansion from M m 1 to M - M (W a 6 ). Curve

6 (M) for k - 1.4 is given in Fig. 8.37 (m n ca). If the beam
H

of characteristics of the isentropic flow of compression converged

on the edge of the diffuser cowling, then the jet entering into

the diffuser would not disturb the external flow around the cowling.

In actuality the total isentropic stagnation of the flow of

gas cannot be realized, since on the surface of the central body

there is an increase in pressure which causes the deformation of

the boundary layer velocity profile which leads to the breakaway

of the latter. At the separation point of the boundary layer a

3tr%.g disturbance of supersonic flow appears, as a result of which

a -hock wave is formed (Fig. 8.38) which converts to a shock wavie

of external flow arouno the cowling.
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All the same the selection of the corresponding form of

central body, especially with the realization of the boundary-
layer bleed, makes it possible to partially utilize isentropic

stagnation of flow in a diffuser of external compression and to

obtain the recovery of pressure somewhat higher than in a three-

or four-shock diffuser.

If the point of intersection of shocks (or the Mach waves
in an isentropic diffuser) does not coincide with the edge of the

cowling, then from this point to the side of external flow the
shock wave, the intensity of which Is determined by two conditions

will move away. These conditions are:

1) the agreement of the direction of external flow and

internal jet;

2) the equality of pressure on both sides of the surface which

separates the external flow from the internal Jet.

The curve of the values of angle of rotation of flow *.,,.

determined by these conditions, is given in Fig. 8.37 (for isen-

tropic compression). If the angle of rotation of streams in a

shock proves to be more than the maximum possible at this velocity

of incoming flow, then the shock is converted into a curvilinear

shock wave which penetrates the internal flow and pulls itself to

the wall of the central body (Fig. 8.36). Behind the curvilinear

wave the sunersonic flow is broken down both near the external

and internal walls of the cowling.

For a decrease in the external drag diffusers with incomplete

(partial) external compression are used (Fig. 8.39). In such a

diffuser the cowling comprises with the direction of undisturbed

flow a smaller angle than the last face of the central body.

Thus flow encounters the internal surface of the cowling at a

certain angle and is forced to be deflected with the formation of

an oblique shock AC, which goes from the edge of the cowling to
that part of the central body which is arranged in the internal

duct of the diffuser; the terminal normal shock EF Is disposed
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- -- ------ Fig. 8.39. Supersonic dif-
fuser with partial external
compression.

near the narrow cross section of the internal duct. The diffuser

cowling with partial external compression can have a low external

drag. If the cowling is directed parallel to the velocity vector

of undisturbed flow, then its external wave resistance is close to

zero.

A supersonic diffuser with total internal compression can be

realized without a central body (Fig. 8.40), In such a diffuser

the oblique shock will move away from the edge of cowling A and

intersects at point 0 on the axis of the diffuser with the shock

which goes from the opposite edge. The flow of gas in shock AO

deviates from the initial direction and becomes parallel to wall

AC. At point 0 the lines of flow are forced to return t- the

initial direction, in connection with which the reflected shock

OD appears. At point D the flow again deviates from the axial

direction and becomes parallel to the wall of the diffuser; this

causes a new shock which is reflected from the axis of the diffuser,

forming the following shock, etc. Since in the shock waves the

flow is decelerated, then the maximum angle of rotation in every

subsequent jump is less than in the preceding. The described

process is continued until the required deviation of flow angle

turns out to be greater than maximum (w w max); with the advent

of this mode instead nf the next step shock a curvilinear shock

wave EF is formed!, behind which the flow becomes subsonic. Further

flow in the -.onverging channel occurs with an increase in velocity,

whereupon In the narrow cross secticn the velocity should te tel-w

cr eoua to critical; in the latter case behind the narrow cross

section a supplementary supersonic zone terminated by the shock

wave GH can arise.

_

I _



Fig. 8.40. Supersonic

diffuser with internal
compression.

At a very low slope angle of the side wall of the diffuser
with total internal compression (w < 10) partial isentropic

stagnation is possible; it is attained up to the place of the
boundary-layer separation which causes the shock wave.

A supersonic diffuser with total internal compression is

utilized in wind tunnels. As a result of partial isentropic
compression in a diffuser of narrow angle it is possible to cut

the losses in half in comparison with the same in a normal shock

(calculated according to the Mach number before the diffuser).

The boundary layer influences the work of the diffuser not
only in the case of isentropic compression. In diffusers of other

layouts the boundary layer effect is also very perceptible; it

does not influence only the first shock, which is established in
the case of encounter of undisturbed flow with the leading edge

of the central body or cowling.

All the subsequent shocks appear or are reflected in places

of interaction of the boundary layer with the shock (in the case of

a drop in pressures on the shock above "critical," see § 6, Chapter

VI). As a result of this interaction the losses of pressure

increase, and the shock waves are transformed and displaced. If
the latter fact is not taken into account when selecting the form

of the central body of a diffuser with external compression, then
the intersection of all shocks on the edge of the cowling will not

be ensured, (Fig. 8.41), due to which the external flow around the
diffuser will be disturbed. One ought to keep in mind also the

viscosity effect when selecting the transverse dimensions of the
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Fig. 8.41. The distortion of
the system of shocks during
their Interaction with the

OW boundary layer. Dotted line 
shocks in an ideal gas, solid
lines - shocks in a viscous
gas.
KEY: (1) Boundary layer.

channel of the diffuser (by means of an increase in the flow
areas in accordance with the build-up, along tie length of the

channel, of the displacement thickness of the boundary layer as
this was shown in the example of a nozzle in § 1 of this Chapter).

Up to now we examined supersonic diffusers working on the
basic, calculated value of the incoming flow velocity. During a

deviation from the design conditions the form of the system of

shocks changes, in connection with which some of the assigned
conditions are disrupted. Specifically in an uncontrolled
diffuser with external compression with a decrease in the 7a^h

number of incident flow the shock waves become steeper (Fig. 8.42);
due to this the extreme flow line of the internal jet (getting
intc the diffuser) passes through points abA, being diverted in
every shock of the system. But then the jet cross-section F
which is enclosed by the diffuser, proves to be less than under
calculated conditions, for which it is equal. to total cross section
FOA (from edge A of the cowling to the axis of the diffuser, see

for example Fig. 8.39).

Fig. 8.42. The form of th,
" -jet which enters the diffuser

, at a flight velocity lower
than calculated.

4
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The relation

.s called the flow coefficient. Losses in the internal Jet, as

can be seen from Fig. 8.J4 2, should not depend on whether or not

the shocks on edge A of the cowling intersect; the external

resistance of the diffuser under the action of the shifted shocks

increases, since part of the flow which flows aruund the diffuser

is forced to cross these shocks up to encounter with the cowling.

The nature of the dependence of the coefficient of total

pressure a and the flow coefficient on the Mach number in a three-

shonk diffuser of permanent form (with external compression) is

sho>wn in Fig. 8.43 (calculated value M. a 3). Here are plotted
the curves onT (M H ) and onT(MH ) for an optimum diffuser (dotted

line), the geometric form of which with a change in value M, should
change (ideally regulated diffuser). Under all conditions, except
calculated, a non-variable diffuser has a value a lower than

optimum; values 0 < 1 are obtained only in the range of values MHH

lower than calculated.

Fig. 8.43. Dependence on
flight velocity of the
coefficients of total
pressure and flow for a
three-shock supersonic
diffuser with external
compression which has the
optimum characteristics
with M * 3.

Np

The calculation of curves in Fig. 8.43 is done in the following

manner. According to Fig. 8.32 the value (cA)Max  0.73 is taken

for the optimum system of three shocks with M H a 3 and multiplied

by the total pressure recovery coefficient of the internal part of

'Shocks in Fig. 8.42 are constructed without allowing for the
boundary layer effects.
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the diffuser (we accept a - 0.95); the product of these coef-

ficients characterizes total losses within the diffuser under

design conditions (a - 0.7) for which the flow coefficient is

,lose to unity 0 - 0.98-1. The approximate value c for a single

oblique shock of an optimum three-shock system according to (31)

- iT - 0.89. Answering to this value a on the basis of (25)

is the coefficient of normal velocity component (with k a 1.4)

-r 1.43 and Mach number calculated on the normal velocity

component of incoming flow:

M. =] I ,i=Mislni=,6"
M. I- M1 .; , sin 2

Hence the angle of inclination of the first shock , - arc sin

1,6/3 = 320. On the curves in Fig. 3.12 of Chapter III we find

the angle of the first wedge of the central body (with M H 3 and

- 320) wI - 150 and in Fig. 3.19 of Chapter III - the Mach

number behind the first shock M 2.3.

The value of the Mach number for a normal velocity component

Oefore the second shock in an optimum system should be the same as

before the first shock MN n I M sin 1.6. Hence the

angle of inclination of the second shock io the flow direction

behind the first shock

at arcsin 440,

to which corresponds the flow angle of deviation on the second

step of the wedge '2 = 180. The total angle of rotation of flow

in the optimum system of shocks in question (wI + w2 ) - 330 , and

the Mach number behind the second shock M a 1.6. The refined

value of the Mach number before the terminal normal shock according

to (30) M , 0.94 M H 1.5.

Now it is possible to refine the calculation of the system

of shocks, for which one ought to determine the value a n a

normal shock with M - 1.5, value a' in each of two identical

oblique shocks
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the velocity coefficient and Mach number for normal component
velocity in oblique shocks X' and Mn the slope angles of

oblique shocks a' and a, and the angles of steps on the central

body of the diffuser w, W. After thip it is possible to refine

the values of the Mach number Hm before the terminal normalrn-1
shock. In view of the fact that the refined values differ little

from those obtained In the first approximation, we will not give

them.

For the facilitation of the calculations it is possible to

make use of Fig. 8.44, in which are Civen the curves M H sin a 1

- f(M ), which correspond to the data of an optimum diffuser with

systems of two, three, and four shocks. Figure 8.45a, b, and c
depict the chartb of the angles of deflection of flow in oblique

shocks w(M H ) for the same three systems, in Fig. 8 .46a, b - the

values of the Mach numbers behind oblique shocks, while in Fig.

8,47a, b, c - the value of the slope angles of shocks in these

systems,

; . , -Fig. 8.44. Normal component

M sin a depending on M for

- .!Am 2.'J an optimum system of m jumps.

plane ~ suesncdfue ihetra opeso ando an oups.mu

FII /.'< pI I-

The described procedure is related to the calculation of a

plane supersonic diffuser with external compression and an optimum

shock system under design conditions, during which all the shocks

Irtersect at the edge of the cowling.
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Fig. 8.A6. The dependence of the Math
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At a f yl..g speed lower than: calculated and a fixed sL,:'

of diffuser, as has already been said, the shec! -w.ave anj-.s

will become greater. For example, If M = 2.5, then r.

described dii fuser we c:ill obtain the a::.'le of s . , .

shock a, 360 (with wl = t5°), the ".acnt ;ber r, the n.:-
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tNach number before the terminal normal shock Mm_ , 1.2, the

- 2l

coefficient of total pressure in tihe normal shock an = 0.993, and

the total values of this coefficient

a -- 0.82.

iftghe angle of rotation of flow in the second oblique shock

3roves to ben maximally possible (w2 > 
="max

) with '4I

value obtained, then instead of a three-shock system a twc-shock

is realzed (a 2 z 1); the approximate value of the pressure

coefficient in this case is equal to
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whereupon o is calculated from the value of the Mach number behind

the first shock.

The flow coefficient * = F /F at a velocity equal to or

O A
greater than calculated, is close to a unit. At low values of

M the dependence O(M ) for a diffuser with external compression
H

is determined from the condition of equality of rate of flow in *

the intake (critical) cross section and before the system of shocks

Here (op ) - the air density in the critical cross section,

calculated taking into account the lasses of total pressure in the

system of shocks (not allowing for losses in the internal part of

the diffuser: a' = G /a). Hence, utilizing expression (109) of

Chapter V, we have

Under design conditions the jet cross-sectional area covered by

the diffuser is equal to the tctal cross section of the latter

in the intake plane (F%= FA) , therefore

F-P

where X is the calculated velocity coefficient of incident flow.

After dividing (3 4 ) and (35) termwise we obtain the expression

for the flow coefficient of the diffuser

• 9~~~~ = = "% c '"
A AP ~(36)

For any diffuser we have

lipand when ),,=X.

;A I. qO.J)-= I and - w.en . .en

q 0=. ) --s--0 and ?~co wy.,n 0~4 .
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For I < X < X in terms of' the rated value X we find with
H Hp H

the help of the table of gas-dynamic functions the value q(X)

and calculate the coefficient of total pressure in the system of

shocks a , which is obtained on the central body of a diffuser of

assigned form. For example, for an optimum diffuser with external

compressicn under design conditions X a 1.97 (H 3), o = 0.73
was obtained above; for the same diffuser with MH = 2.5 (XN a 1.825,

q( ) 0.38, 'a = 0.825 was found to which according to (36)

corresponds 0 = 0.76. Curves ¢(M H ) and A (MH ) calculated from

such a method are given in Fig. 8.43. Steps on the curve o (M )

correspond to transfers from a three-shock system to two-shock

and from the latter to one normal shock.

By the dotted line, as noted earlier, the curves were plotted

which corresponded to the ideally adjustable three-shock diffuser,

in which the forms of the central body and cowling, and also the

flow area of the throat change according to such a law, that for

every value of velocity an optimum system of three shocks which

intersect on the edge of cowling is established.

At values of velocity higher than calculated ( M > MH) it is
H HP

possible to assume 0 = 1 and a' < a' The first of these
A AOHTconditions is connected with the fact that the shocks in this

system are not focused on the edge of the cowling, but are

enveloped inside the diffuser (Fig. 8.48), as a result of which

in the inlet of the diffuser the jet of undisturbed flow arrives,

the cross section of which is equal to the cross section of the

diffuser.

Fig. 8.48. Flow at the entry
to the diffuser at a flying

S. .speed greater than calculated.
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The second condition (a' < 'O ) is predetermined by the

fact that with M > M the gas density in the critical cross
H HP

section is higher than under design conditions (in spite of the

increase of losses, the total pressure behind the system of shocks

with an increase in velocity increases). Due to this the throat

(D) of an uncontrolled diffuser with M > M turns out to be
H Hp

overexpanded and the velocity obtained in it is higher than

critical. But then after the throat occ-urs a further acceleration

c.' supersonic flow, which leads to the enhanced intensity of

normal shock EF, terminating the supersonic zone ( -alue a

decreases as a res,lt of the increase of the value of Mach number
M before the normal shock).

When the inlet diffuser is operating at a velocity lower than

calculated, when into the diffuser a Jet of incomplete cross

section (€ < 1) is trapped, there appears (as has already been

indicated during the discussion of the diagram of flow dep!cted

in Fig. 8.42) a force of supplementary external drag, equal to

projection on the direction of flow of the force of the excess

pressure acting on surface abA:

A*,.,,--', - '.)I1 s , ('-pi -p.) 4 I n tu,. (37)

Here - the lengths of segments ab, bA; w,, - the sioc- e

angles of these segments which are parallel to the corresponding

sections of the central body; pI, p2 - pressures behind the first

and second oblique Jumps. After dividing force X by the dynamicAon

head of incident flow and the area of the frontal cross section

of the c..wling FA, we will obtain the coefficient of supplementary

resistance of a "liquid outline" abA:

iii--(38)

The greatest value of coefficient c takes place ir. the case of

formation before the diffuser of a curvilinear ,.hock wave. (Fig.

8.49), when on the boundary of the lrt'rnal Jet aA the pressure

is approximately the same as behind the normal sh.-k wave
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Vzo6&% a Xiat (pa -p)(FA Fe) (39)3m3 )

Here p n - pressure behind the normal shock at a velocity which

corresponds to the Each number M ; F - the cross-sectional area

of the Jet in point a, FA - the cross-sectional area of the

diffuser In the plane of the inlet opening.

Substituting in (39) expression (45) from Chapter III for

pressure behind a norinal shock, we will obtain

4 M9 -I

With M " 1 supplementary resistance disappears in connection with

the absence of shock waves.

Figure 8.50 depicts the results of
calculating dependences *(M ) and c (M H

H x4
for supersonic diffusers with a single-

Fig. 8.L9. Flow stage and two-stage central body, which
around a diffuser has the different total angles of rotation
with a crvilinear of flow W - w + w As we see, at just
wave before it. H 1 2 A

one value of total angle of rotation of

flow the curves *(M ) and cx M(M ) for two-stage and single-stage

wedges differ little.

The operation of the diffuser Is influenced by the angle of

attack y (angle between the axis of the diffuser and the direction

of incident flow), with an increase in which the coefficients of

total pressure o and the rate of flow 0 decrease and additional

drag c increases. The nature of dependences o(y), s(y) and

C X(y) for the different types of air intakes is dissimilar.

Up to now we cited data on the operation of plane supersonic

diffusers. The basic dependences for axisymmetric, and also
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a) b)

Fig. 8.50. Comparison of values and cfor one- and two-stage wedges.

KEY: (1) Two-stage wedge; (2) Singl e-stage
wedge.

lateral' and other types of diffusers have the same nature, but

their calculation presents great difficulties.

~In the examination of diffusers it was assumed that In the

throat of a diffuser the velocity was equal to critical, and behind

the throat there is a small supersoni- zone terminated by a

supplementary shock wave. In that case the system of shocks and

the rate of air flow at the entry to the diffuser do not depend

on the engine power rating.

~However, with deep throttling of the erigjne (considerable

~change in the number of revolutions or nozzle area, etc.) the
indicated operating mode of the diffuser - air Intake is disturttd.

So, with a decrease in the volume flow rate throu-h the engine

the counterpressure behind the diffuser increases, in conniection

with which the supplementary supersonic zone is reduced and losses

'Lateral diffusers are those attached to the fuselage or the
wing surface of a. flight vehicle, i.e., having a cor.D;n w%1[I %.itt,
any part of the latter. Cv
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in the supplementary shock drop (a increases). Under certain

thrcttling conditlons the supplementary supersonic zone in the

diffuser disappears. A further decrease in the rate of flow leads

to the fact that in the throat of the diffuser a subsonic velocity

is established whereupon the throttling begins to affect the

intensity of the terminal shock wave of the intake system: due

to a decrease in the rate of flow the velocity behind the shock

decreases, which makes it necessary to displace it into the area

of larger values of the velocity before it, but in this case the

,;ystem of shocks will not be focused on the edge of th. cowling.

Beginning from this system an increase is observed in the

losses of total pressure and the external drag and a reduction of

the flow coefficient in the diffuser. An increase in the intensity

of the terminal shock wave can lead to the fact that a drop in

the pressures on it will become higher than critical for the

boundary layer and a breakaway of the latter will arise, whereupon
vortex formations will cause the fluctuations of the rate of air

flow and the location of the system of shocks.

At the moment of the greatest decrease in the rate of flow

the system of shocks is converted into a curvilinear shock wave,

ejected forward beyond the limits of the central body. This leads

to the elimination of the boundary-layer separation and an

increase in the rate of air flow, as a result of which the system

of shocks is restored, and its terminating shock will approach

that place, where again the boundary-layer separation occurs, etc.

Under these conditions a strong vibration ("surging") of the

engine is observed - low-frequency pulsations of pressure connected

with the fluctuation in the rate of air flow. In view of the

possible failure of the engine it cannot operate under the condi-

tions of surging.

With an increase in the volumetric rate of air flow in the

engine (higher than calculated) the supplementary supersonic zone 4
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(behini the throat of the diffuser) is expanded and the supple-

mentary shock is displaced into the area of greater velocities,

due to which the losses of total pressure in it increase and the
air density before the engine drops (this provides the increase

of volume flow rate with a constant rate of flow through the

diffuser).

With a certain increase in the volume flow rate the supple-

mentary shock becomes so intense that it causes the boundary-

layer separation (in the internal duct behind the throat of the

diffuser). Characteristic for this system are the high-frequency

pulsations of pressure accompanied by a high unpleasant sound -

"buzzing." Surging and "buzzing" limit the throttle operating
mode of ani engine equipped with a diffuser.

The source of strong pulsations can also be the surface of

the tangential rupture of velocity (from the point of intersection

of shocks), if it enters inside the diffuser. The typical curves

of dependence of values a and ex  on the relative volumetric

rate of air flow V/V (ratio of real flow rate V to calculatei V')
at different values of Mach number M are given in Fig. 8.5i.

They apply also for the throttle characteristics of diff'isers In

the form of dependence a () and cx  W with M. const (FIg.

8.52).

For the expansion of the operating range of throttle systems

and Improvement of the diffuser characteristics at off-design

flying speeds different methods for the control of diffusers are

resorted to (change in the flow area of the throat and relative

position of the central body and cowling, the discharge of air

throughopenings in the wall cf the diffuser, the control by

suction or bleeding of the boundary-layer on the central body c

on the cowling, etc.). These are described in specialized liter-

ature.' The regulation of rate of flow of air through the throat
AN

'See the books by R. Herman and Yu. N. Nechae:7 which are given

£in the bibliography.
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Fig. 8.51. Fig. 8.52.

Fig. 8.51. The characteristics of an uncontrolled
intake supersonic diffuser with M - 2.2.Hp

KEY: (1) Line of critical conditions; (2) Surge
line; (3) Boundary of "buzzing."

Fig. 8.52. The throttle characteristic of an
uncontrolled supersonic diffuser.

cf a supersonic diffuser is also necessary for placing the latter

in operational conditions ("starting"). The fact is that the

calculated flow velocity is established not suddenly, but by means

of transfer from the rest position to motion at a gradually

increasing velocity. Let us examine this process in an example

of the operation of a wind tunnel diffuser (Fig. 8.53). The

acceleration of the air flow in a wind tunnel takes place in the

following manner. First - with the starting of the tunel - the

velocity in its channel everywhere is lower than sonic and has the

greatest value in the narrowest place - the throat of the nozzle

(g.s). Gradually increasing the flow rate of air leads to

conditions in which the velocity in the throat of the nozzle becomes

critical, tit in all remaining cross sections remains subsonic.
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Fig. 8.53. The different flow
conditions of gas in a wind

g.s. g.d. tunnel: a) shock is located in
the Laval nozzle (innufficient
evacuation before the exhauster),
b) flow in the tLst section of
the tube supersonic (system
after "starting"), c) opera-

g.s. g.d. tional conditions (with ab) narrowed diffuser throat),

KEY: (1) p.s. u r.ch. - test
section.

g.s. c)g.d.

A further increase in the volume flow rate at the exit from

the tube (in the exhauster) is not accompanied by an increase of

weight rate in the throat of the nozzle, however, it leads to

the appearance of a supersonic zone behind the throat of the

nozzle which is terminated by a shock wave (Fig. 8.53a); in the

latter the total pressure and density cf the stagnation gas

decrease, producing a relative increase in the volume flow rate

in the diffuser of the tube, the throat (g.d.) of which therefore

must have an area greater than the throat of the nozzle:

F > F Under certain operating conditions of the exhauster

the density of the decelerated air because of losses in shock can

decrease so much that the velocity in the throat of the diffuser

will become critical. At the identical values of stagnation

temperature (TO - const) an identical critical velocity is

established both in the throat of the nozzle and the diffuser

(a = idem). Then from the equation of continuity we have

N1f .J. e~g

Gas density in the critical cross section with T - const is

proportional to the total pressure
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which changes because of losses in shock. Thus the areas of twc

throats during critical conditions in them are connected by the

'elationship

-' (42)C. AI€

In order that in the wind-tunnel test section the necessary

supersonic speed (M ) would be obtained, the shock wave should be
H

located at the end of the test section. After the shock (in the

tapering channel of the diffuser) the subsonic flow is accelerated

and only in the throat of diffuser the velocity again becomes

critical. Behind the throat of the diffuser a supplementary

supersonic zone is formed which is terminated by a shock whose

intensity is greater, the stronger the evacuation which is created

by the exhauster of the tube.

Thus the value a(M), on which according to (42) depends the

relative size of the "critical" throat of diffuser, in turn is

determined by the intensity of the shock, which corresponds to the

Mach number in the test section. If we consider that a normal

shock appears, then according to formula (24) in Chapter IIII

h+
where X - the velocity coefficient in the test section of the

tube. Converting to gas-dynamic functions from Chapter V we find

From (42) and (43) It follows that for the output of a wind tunnel

on the rated value of supersonic speed the relative cross section

of the thrcat of the diffuser should be no less than the following

value:
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f we make the relative cross section of the throat of the diffuser

somewhat larger than according to formula (44), then it is possible
to "extend" the shock wave from the test section into the divergent

section of the diffuser (Fig. 8.53c), then in the narrowing

section of the diffuser will be established a decelerating (after

the test section) supersonic gas flow, whereupon in the throat
of the diffuser the velocity coefficient X > 1; according to

formula (4 ) in Chapter IV we have

or

(L45

After the shock passed into the expanding part of the diffuser

it is possible, by smoothly narrowing (regulating) the throat of

the diffuser, to gradually decrease the velocity in it down to tue

critical value, and then, weakening the evacuation of the exhauzter,

to bring the shock wave in the divergent section of the diffuser

almost tc its throat (dotted line in Fig. 8.53c). Under such

operational conditions the throat of the diffuser should be only

somewhat larger than the throat of the nozzle (because of the

displacement thickness of the boundary layer, i.e., only in

connection with fricition losses), and the loss of total pressure

in the diffuser (in the shock) becomes considerably less than under

the conditions of starting.

The ratio of the cross section area of the throat of the

diffuser tr the cross-sectional area of the Jet of undisturbed

flow F (the tLst section of the tube) according to (42), (44),
H

and (45)

(611
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The v£ules .V the relative throat area of the diffuser F,(M H

rocessary fcr the starting of the latter, and relative throat area
V (M ., ,e

at k a 1.4 are given in Fig. 8.54. It is
H

interesting to note that the Mach number in the throat of the

diffuser M necessary for the
1"overshoot" through it of a normal

Shock wave (before the contraction of

the throat of the diffuser), Is approx-

_S imately 0.875 from the value of the

Mach number in incident flow M (for

HH

features of the starting of a wind

O 0 , tunnel diffuser are related also to

the starting of the inlet diffuser

Fig. 8 . The relative of an engine. In order to realize the

values of the areas of calculated system of shocks by con-
the throat of the dif-
fuser (during "starting") verting from low flying speeds to
and the wind-tunnel rated speed, one ought at low speeds
rozzle. to expand the throat of the diffuser

(or to let the excess part of the air

before the throat pass outside), and based on the output on the

rated speed to narrow the throat (to the calculated dimension)

or to discontinue air bleeding (to cover the opening for bypass).

Without this the starting of a supersonic diffuser under design

conditions is impossible.

'As was noted, after the outlet of the diffuser under design
conditions the cross section of the throat of the diffuser is
only a little (by the displacement thickness of the boundary layer)
larger than the cross section of the throat of an ideal nozzle.
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CHAPTER X

THE ELEME1NTS OF GAS DYNAMICS OF THE
AIRFOIL AND RECTILINEAR AIRFOIL
CASCADE

§ 1. The Bas~c Geometric Parameters
of the Airfoi.1 and Rectilinear
Airfoil Cascade

The rounded forward section (leading edge) and the pointed

trailing edge (Fig. 10.1.) are characteristic for the usual subsonic

airfoil. The supersonic profile, unlike the subsonic, has a shai-,

(tapered) leading edge. In a number of cases the contour of such

a profile is composed of rectilinear stctlons (Fig. 10.2)

X.1( -__.--_______

Fig. 10.1. Geometric parameters of
subsonic airfoil.
KEY: (1) Internal airfoil 7hord. (2)
Externl airfoil hord.

a) Fig. 10.2. Supersonic
i ofiles : a) lent'cular,
b) doutle-wedze.
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F" tn' average l1ne or the arc ksmall arc) ot' tihe prof.. le we

rean thr Zocei~ at the centers insri'bed in the outlin c C' irolt,-

A',..es. After determining th line of the given pr ofile,

It is t.osstLe to construct a netrtcal section (with

a straight center line) which ha- -- nates equal to the

corresponding distances of the profile's points from the axial

arc. If we now bend the symmetrical section so that its axis of

ay:-,nrLry w d pass to the center line and tht ordinates, of syrnn.t.-

rical points would lie on the same normal to it, then we obtain

tMns profile. Thus, any shape can be obtained by bending a certain

symmetr-cal shape.

For determining the position of the profile with respect to

the flow, and also as a characteristic dimension, we introduce the

c rncept. of airfoil chord. The internal airfoil chord is the line

sejment connecting the two most distant pointe of the axial profiZe

arc. Pcr the slightly bent profiles the chord determined in this

,.,ay is virtually coincidental with the straight line section

connecting the two most distant points of the profile. The cocrdl-

nares of the profile points are usually given In fractions of the

chord length, which Is assumed to be the horizontal axis.

The profile configuration is determined by a series of

geometric parameters. Let us give the principal one. The relative

profile thickness c is the quotient of th& division of the maximum

profile thickness u (Fig. 10.1) by the chord length b: c c/b

The center-line camber ? or the relative camber, is the ratio of the

Maximum bending de 'lection of axial arc f to the chord length:

f/b. The positions of the maximum profile thickness and

maximum bending deflection of the axial arc are important parameters

and are determined respectively by the values of relative aLsoissae

Se'X./b and t-x/b"
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The profile camber can also be characterized by the angle of

bending of center line e, i.e., by the angle between the tangents

to the axial arc at the nose and the rear point, called the leading

and rear tangents of the profile respectively (Fig. 10.1). For a

circular small arc, angle e is equal to its central angle. In this

-case

After selecting a certain form for the axial small arc and

the shape uf the initial symmetrical profile, It is possible to 2

obtain a family (series) of profiles with a continuous change in

the center-line cambers and thicknesses.

A rectilinear airfoil cascade is the name applied to a combina-

tion of an Infinite number of equally arranged identical airfoils

which are equidistant from one another. The line which connects

the corresponding profile points in the cascade is called the

cascade front and the normal to it- the axis of the caecade

(Fig. 10.3).

The problem of the flow around a rectilinear casi:ade is

encountered in axial-flow compressors and tirtines in the study

of flow through the fixed and rotating vane rings with cylindrlcal

stream surfaces. In this case the elementary rim, i.e., the varne

ring limited by two close stream surfaces can be converted to a

rectilinear cascade by developing it into planes; in order for the

flow around all airfoils to be identical (as in the vane ring), the

cascade should consist of infinite number of airfoils.

The relative position of airfoils in a rectilinear cascade is

unambiguously determined by two parameters; d'stance between the

adjacent airfoils called cascade pitch t, and the angle betw'een

the airfoil chord and the front, which is called setting angle 3.

instead of setting angle 3, .iometimes the concept of stagger is

used, which Implies the distance a between the normals tc the.

chords of two adjacent profiles, drawn at similar Points. _
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d: drawing, a/t - a = -cos a and, .:U.

: ;:.:arca . a er ccrresgords t3 values 4 > ./2, while tr- ac! -

i;aru stagger - to values 4 < r/2. The position of this airfoil in

11e cac car alsc be characterized by one of the angles ci or 2

frmea Ly the front and rear tangents of f fil-

tr,.- f-:n: cf thL cascade, respectively. The differenze Cf

trhese angles determines the bending of the profile E = - t. -- i"

4' .'..-.

t .) \.... . . .. ..

411
'r14

Fig. 1C.3. Rectilinear cascade.
?;EY: (1) Tangent to the center profile line.
(2) Direction of noncirculatory flow. (3)
Tangent to the center line at the rear point
of a profile.

The cascade pitch value referred to the chord lengtih of the

trofile is called relative cascade pitch t = t/b; the reciprccal

value is called the caascade solidity = b/t. Thus, a rectilinear

cascade_ can be u:.ambigu- .usly determinod by the form of a profile,

Ly solidity ar'd value of the setting angle.

.W
616 i



The position of tlih profile and airfoil cascade with respect

to the incident flow is cnaracterized by the angle of attack; Ir,

the case of a unitary profile - it is angle a between the direction

of the speed at infinity and the chord (Fig. 10.1); in the case of J I

the airfoil cascade - it is angle i between velocity wI and the

foreward tangent to the profile arc. The angle between w 2 and

the rear tangent is called the flow angZe of tag 6 (Fig. 10.3).

Angle a1 between the direction of inlet velocity wI and the cascade

front is called the angle of entry; accordingly, angle 62 between
the outlet velocity w 2 and the cascade front is called the angle

of" departure. The difference in these angles LB = 8 - 81 -

6 + 1 determines the rotation of flow in the cascade.

In aerodynamics a distinction is made between the direct and

inverse problems of flow around a unitary profile or the airfoil

cascade.

By direct problem for a unitary profile we usually mean the

determination of pressure distribution along the surface of this

profile at a given velocity field for ahead of the profile. The

determination of the geometry of a profile, which provides ctrtaln

pressure distribution along its surface, is called the inverse

prob en.

In aerodynamics of the airfoil cascade both these problems

are usually examined as applied to the total parameters of the

cascade. Mere, by direct problem we mean the determination of

aerodynamic forces and the angle of departure of the flow at a

given velocity field ahead of the cascade of certain configuratiLn.4

In the case of flow of a viscous fluid or gas, there is also a

need for determining the total pressure losses.

Accordingly, by the inverse problem we mean the determination

of configuration of the cascade which turns a given flow to angle -

Aa, forming angle 61 with the front cf .he cascade. in such a

617
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scttIrg there usually is no unique solution for the inverse

r0b Im. "Pherv is an infinite number of cascades which differ from

C:.. knodze in tneii' geometric parameters and profile shape6,
which satisfy the posed conditions. The problem becomes unique

with the imposition of additional conditions. In the case of a

.otentlal I'low these conditions are usually imposed on the geometry

of the cascade or on the pressure distribution along the profile

or, finally, on the combination of the indicated factors. in the

case of a viscous flow, the optimum cascade (with mininal losses)

is found from the whole multitude of cascades which achieve the

given angle of rotation.

2. Zhukovskciy's (Joukowski's)
Tineorem on the Power Effect of a
Pictential Flow on the Airfoil in
the Cascade

Let us examine the flow around a rectilinear infinite cascade

of airfoils by the steady flow of gas. We will assume that the .

airfoils which form the cascade have an infinite span and the flow

is plane-parallel.

Let us determine the force with which the flow affects the

airfoil surface of unit length. Let us draw sections 1-1 and 2-2

which are parallel to the cascade front (Fig. 10.4) and are so

distant from it that it is possible to assume that the speed and

pressure in each of these sections are constant. Let us select any

flow line A1 A2 and draw another flow line B B at a distance of
121 B2 a itneo

one pitch from the first flow line. It is obvious that these flow

lines are congruent, i.e., they coincide when superimposed.

Applying t04 equation of momentum to the volume of fluid limited

by sections of straight lines aI bI and a2 b2 and by sections of

flow lines a1 a 2 and bI b2 , we will obtain (see § 5 Chapter 1)
the following expressions for the projections, on the front and

the axis of the cascade, of the resultant of all forces applied

to the fluid volume.
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P, (2)

where 1 I fluid mass passing through the section, which is equal

to one cascade pitch,' in unit time and which is determined by
the equation of continuity

Al P~eitpiW.*.(3)

On the other hand, the forces can be determine by adding the pro-
jections of all forces which act on volume a1 b1 b a, i.e., the

411

forces of pressure along contour a 1 b I b 2 a 2 and the reactions
from the force applied to the airfoil surface (we disregard the

gravitational forces). Designating the components of forces applied

to tihe airfoil In terms of Ru and Ra and noting that the resultant

U. a

forces of pressure applied to the sections of flow lines a a

and b1 b 2 are equal and are directed to opposite sides, we have

p, and

Substituting the last equalities Into expressions (1) and (2)) we

obtain

11, ('4)

Let us determine the value of circulation F along contour

a. bs, b a2. By bypassing the contour in forward direction,

I.e., clockwise, we have the following values of circulation for

the frontal sections of the contour:

r lb, w E1 COS s t wir1  rb1d, IWACOS Pt hr",.

'Here and subsequently the thickness of the jet in the direct cn
of the perpendicular to the plane of the drawing is equal ta unlty.
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Fig. 10.4. The derivation 14. Ye. Zhukovskiy's
theorem on the resultant forces applied to the
airfoil in the cascade.
KEY: (1) Triangle of current densities. (2)
Triangle of velocities. (3) Bypass direction
of the contour.

Since the sections of flow lines a,, a2 and bl, b2 are equal and

have the same velocity distribution, then, by virtue of different

directions, with their bypass

Thus, the total amount of circulation along contour a1 b I b2 a2

is

r.5 = rli A- I+ , - r,., + r..o, = (-) (6)

and, therefore, according to (4)

R . .,!l l. l~o(7)

Formulas (4), (5) or (4), (7) make it possible for one to

determine the total power effect of any fluid and gas flow on an

arbitrary airfoil cascade, i.e., to determine the magnitude and

direction of all resultant forces applied to the airfoil in the

cas cade.
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Subsequently, we will limit ourselves to the examination of a

potential flow. As was proven in § 11 Chapter II, in the case a

,o.entlal (Vortex-free) flow circulation F r along certain contour

a b b a is equal to circulation F in any contour enveloping

the airfoil including also the surface of the airfoil itself, i.e.,

F~ ~ C, and, consequently, in the potential flow

R. At 71-" (8)

In the incompressible flow we have

101. oe = L.a M"

In the absence of losses we also have

According to (4) and (8), for the potential flow of the incompress-

iblefluid we obtain

Based on the velocity triangle on Fig. 10.3, it follows that

(10)

Here, w is understood to be the geometric mean velocity

W-'-1 opt

The direction of the geometric mean velocity is determined from

the obvious expression

tg I - . ( 1 62
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In accordance with (6), (9) and (10), we have

(12)

From these expressions for the force components of pressure

it follows that in a potential flow of an incompressible fluid the

value of all resultant aerodynamic forces applied to the cascade

airfoil is equal to the product of the fluid density times the

value of the geometric half-sum of velocities and the vlaue of

circulation around the airfoil

R =-- P.r. (14)

Force R is directed at right angles to the geometric half-sum of

velocities. in order to obtain the direction of this force, it

is necessary to turn the geometric half-sum to an angle of r/2 to

the direction opposiLe to that of circulation. This theorem for

the airfoil cascade was first obtained by N. Ye. Joukowski in 1912.

At subsonic speeds of an isentropic gas flow it is possible

to use the equation of the resultant in form (14), determining

only density value p = pm according to the formula

In this case the Joukowski theorem for the cascade in an

isentropic flow of compressible gas is fulfilled precisely if we

replace the true curve of the isentropic process by the straight

line tangent to it at point (po0 l/p0 )' In this case the direction

'E. M. Berzon, on the Force Acting on Airfoil in a Cascade.
The transactions of the Leningrad Military Engineering Air Acadcmy,
iss. 27, 1949; Loytsyanskiy L. G., the generalization of Joukowski's
formula in the case when the cascade airfoil is streamlined by
compressible gas at subsonic speeds. Appl. math. and mech., No. 2,
tn. XIII, 1949; Loytsyanskiy L. G., Fluid and gas mechanics.
Tekhteoretizdat, 1950; Bloch E. L., Balter A. Ye. and Dovzhik S. A.,
Il.Ye. Joukowski's Theorem on the airfoil's lift force in a cascade,
streamlined by compressible gas. In coll. "Industrial Aerodynamics,"
Iss. 4. 1953. 2
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of the resultant at not very high subsonic speeds turns out to oe

very close to the normal to the geometric half-sum of curreit

dn3ities

Pa=...+ PI'~ aW.m I
JI V

In the general case of gas flow the resultant can be presented as

the sum of two components, i.e., of the Joukowski force, equal

in magnitude (ow)mF and directed along the normal to the geometric

half-sum of current densities and certain additional force

directed along the axis.'

Let us determine the power effect of a potential flow of the

incompressible fluid on a unitary airfoil. For this we will

direct cascade pitch t toward infinity. We will obtain the unitary

ali-foil within the limit. It is obvious that if we consider the

flow parameters ahead of the cascade to be fixed, then when

t . we have

win ., P1., 0.w

and, therefore, according to (14)

R=p1V. (15)

Here F - still the circulation of velocity, taken for any contour

enveloping this unitary airfoil. Thus, we can formulate the

foll.owing theorem: during the potential flow around a unitary

airfoil, the resultant of force applied to the airfoil is equal

to the product of the density and velocity of the incident flow

times circulation the value r around the airfoil. To find the

direction of the resultant which, in this case, is the lift force

1Sedov L. I. , Hydroaerodynamic forces during the flow of a 15-
compressible fluid around airfoils. Proceedings of the Academy
of Sciences USSR, Nlo. 6 tn. I XIII, 1948 (see also G. Yu. Stepanov's
article in the survey bulletin "Aircraft Engine Production" Jo. ,

(1949).
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'c- nave to swing the velocity vector through an angle of ,/2 in

tic direction opposite to that of circulation.

iThIs important theorem was first obtained by H. Ye. JouKowski

in 1906. Subsequently, in 1934 M. V. Keldysh and F. I. Frankl'

verified this theorem for the gas flow, limiting themselves to

relatively low Mach numbers. The derivation of the Joukowski

theorem for a gaz was made by L. I. Sedov in 1948 by passing to

tho limit.

§ 3. Effect of Viscosity on the
Power :nfluence of Flow

The flow of viscous fluid around the cascade produces a wake,
an area of reduced total pressure, where in fact all losses whicn

appear in the boundary layer are concentrated.

Let us examine a volume of fluid limited by two adjacent

congruent stream surfaces, by section 1-1, located far ahead of

the cascade and by certain section z-4 behind it (Fig. 10.5). As

shown by the experiments, the equalization of the flow velocities

with respect to direction, connected with the equalization of

static pressure is achieved in the immediate proximity behind the

cascade (at a distance of fractions of the airfoil chord from

the edge of the cascade).

Fig. 10.5. Streamlining of
(1) the airfoil cascade by the[N viscous fluid.

.. ' KEY: (1) Edge of the cascade.
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Applying the theorem of momentum to the selected volume o.

flulds,we have

ii
Ra =1 :p, -Pj) +p gtI

-Spw~da. 16)

--

- c p'.,17t

Let us assume approximately that with a continuous flow arouii

tne cascade the direction of velocities in section z-z is ideiit'cal

for- the viscous and potential flows, i.e., let us assume t.iat

In this case the effect of viscosity will be apparent only in the
uneven distribution of velocities at the exit from the cascade.

Assuming that in expressions (16) and (17) the velocities

behind the cascade are constant, we obtain the follow~ng fcrmulas

for the axial and tangential components of forces which act on
the cascade streamlined by the potential flow of incompressiblo

fluid:

By deducting expressions (16) and (17) term by term from (18) aio *

(19), we obtain

R. R,. . I,, ,, -- R. = ', - , (+1)

where z = z/t.

(
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Incre are no losses in the core of the flow

(22)

!c,~ t fcllows that

Pe t 1,0 (We oa 0111

A cordr g tc the equation of continuity

1. wd = tw.0. (23)

2a -ng into account the two last expressions, formulas (21) and

.2) assume tlhe form

. ;R 1  - ,,o -! ",,o, -H ~~- (Svd,." (2t)

R = 1p - (, .d ) ctg ,. (25)

Since w z nOT W and for any function w(z) the following
Z -O z m ax

inequality is valid:

2(t)d > (jw(z), (26)

then value AR is the sum of two components of opposite signs.
a

in the general case this does not make it possible for us to make

a conclusion toncerning the sign of the viscosity effect on the

axial component value of the resultant force.

The sign of addition to another component, ARu , according tc

(25), Is determined ty the angle of departure of flow Bz . With

a, 1 //2, i.e., with the axial departure of flow from the cascade,

AR 0, and, consequently, in this case, the viscosity effect isU

generally ausent; the circumferential component of the resultant

force is determined only by spiral, by the relative value of the

circunferential velocity component.
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For the cascades in which 6z > value R in the potentia.

flow is always positive according to (19).1 Therefore in suce-,
cascades, when Bz < 1/2, the presence of viscosity leads to a

decrease, and with 8z > i/2 it leads to an increase in the circur-

ferential component of the resultant force.

In cascades with angles z < al, value Ru in the potential

flow is negative and therefore, here, in accordance with (25),

the presence of viscosity always leads to an increase in the

absolute value circumferential force.

Usually, cascades are differentiated depending on the calculated

ratio of velocities at the entrance and the exit.

A convergent cascade is one which has pz < p1 . The flow

passing through such a cascade increases its speed; during this,

the static pressure in it drops. At of the same angles 81 the

convergent cascades can be of two types: with angle 3z > 21 and

with ang.e az > V - 61.

The cascade in which a stagnation of flow occurs (pz > li

called the diffuser cascade. The stagnation of flow is naturally.

accompanied by an increase in static pressure. The diffuser

cascades encompass the area of angles

Tne cascade in which the change is only in the direction of

velocity, while its value remains constant (pz P ),is called

an active cascade. In this cascade az = - 81.

1 Withc. disturbing generality, we will always assume 2.
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rezlts cttained above can now be formulated in the -

_2IInw6r~ manner. in the convergen, and active cascades the

Lresence of viscosity always leads to an increase in the circum-
ferertlai force as compared with its value in the potential flow.
The viscosity also has the same effect in the diffuser cascades

which tarn the flow to angle a > r/2. In the diffuser cascadesz
11 1 t. h < ,/2 the viscosity effect is inverse - it leads to a

decrease in the circumferential component of the resultant force.

During the viscous fluid flow in the space behind the cascade,

as a result of mixing, there is a gradual equalization of the

velocity fields. As a result, beginning with a certain section

- sufficiently removed from the cascade, there is already a

uniform flow whose parameters can be determined with the aid of

the equations of continuity and momentum. Thus, for instance,
in the case of the incompressible fluid the axial velocity of
the equalized flow is equal to the axial velocity of the incoming
flow, and the static pressure and circumferential velocity are
deitermined from the following equations which represent projections
of the momentum on axes a and u,respectively.

p

o 1(27)
0 1

Replacing in the last expression

ar.d taking into account that according to the equation of continuity

ue obtain
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I. (28)

wherc z = z/t.

The condition of compressibility somewhat complicates the

determination of the equilized gas flow parameters. ' Replacing
in the expression for the projection of momenta on axis u

w, cos , dM-= Mwcos

the value of elementary mass according to formula (111) in Chapter V

gR y sin P

we will obtain the following expression for the coefficient of

the circumferential velocity component of the equilized flow:

W , , (1, ) d i :

To determine angle 62, we write the theorem of momentum in

the projection in the direction of the equilized flow

.Uw0-i w,cosQ,-Pj dAf=(p,-PJ sIn A

'Ginsburg S. I., Total Power Effect of the Stationary Plane AF;
Flow on the Rectilinear Airfoil Cascade. In coll. "Bladed machines
and Jet Apparatuses," iss. 3, "Mechanical Lngineering," 1968.
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-,':, .aklrg into account (126) and (127; in Chapter V, ,e rewrite
in h- followine dimensionless form:

Ii

sin ty ().j) di

Hcnce, after elementary transformation we obtain

a - bzt'?,-j l s,2, =0. (29)

where

th-I I h-2

a =t712

.2 illPi jy j dl

Equation (29) can be transformed into the form

D - in'?4-i' I -=0. (29a)
.iere

aal

After determining flow direction (82), from (29a), we compute
the velocity

and from the equation of continuity written for sections z-z and2-2,

p. -.111 ;y(J-0),.1 ==PO'qQ ) sin P.

depending on static pressure p directly behind the cascade, we
find the total pressure p., of the equilized flow, total losses A,
in total p:ressure
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and the coefficient of total hydraulic losses

'i'his coefficient takes into account the losses both strictly in

the cascade (in its vane channels) and those due to the equilizatio!1
of the flow in the space behind the cascade.

Let us now find the losses strictly in the cascade. For this

we carry out on isentropic averaging of the flow in section z-z,

i.e., we find a steady flow with the same entropy as that in a

nonuniform flow. ' At a constant static pressure we have 2

1
iqi" )dt

After obtaining the mean isentropic total pressure Paz 03 in cross

section z-z from the last expression using the known static pressure

and the specified distribution of velocities, we find the loss in

the cascade itself

Ap.%- =P~i -1

and the losses caused by the equalization of the flow velocities

behind it:

1Sedov L. I., Chernyy G. G., The Averaging of Nonuniform Gas
in the Channels. Collection of articles under the editorship of
i.. I. Sedov, No. 12, iss. 4. Oborongiz, 1954.

zKorostelev Yu. A., Klimovskiy K. K., The Averaging of Parameters
Cf the Nonuniform Airflow as applied to the axial-flow compressor.
Co_1'ction cfarti-1es under the editorship of L. I. Sedov, 1o. 1 ,
Iss. 5. Oborcngiz, 1954 .
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'fhe icsses in the cascade during its continuous streamlining by

a sutsonic flow can also be expressed directly in term of tne

coundary layer parameters on the trailing edges of its airfoils.

iaving determined the power losses in the wake behind the

cascade, which consists of boundary layers having converged from

the upper (convex) and lower (concave) profile surfaces, and

bearing in mind that in the remaining section the flow is isentropic,

we obtain the following expression for the loss factor in the

cascade :

2=P. , . z iI -l. ,

Here p - value of density on the boundary layer border

___+___ b'r i%* +

i sn~a sn

where 6* 6* - displacement thicknesses on the trailing edge
K 13 KH

for the boundary layer on the upper and lower profile surface
respectively, 6* **6 - energy loss thicknesses in the boundary

IB M
layer on the trailing edge (see Chapter VI). For the incom-

pressible fluid p1 = p z and the loss factor

Further, we will limit ourselves to an examination of incom-

r.ressible fluid flow. In this case the following inequality 2

follows from expression (28) and condition (26)

,ctg Ps igP (30)

'Ginevzkiy A. S., Dovzhik S. A., Gas viscosity effect on the
cascade characteristics. In coll. "Industrial Aerodynamics,"
Iss. 11. Oborongiz, 1958.

2This relationship was obtained by Yu. A. Korostelev in 1953.
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Thus, the direction of the equalized flow is always closer to th-e

direction of the cascade front than the direction of the initial

nonuniform flow. This means that in the convergent and active

cascades, it appears that the viscosity effect leads to an

increase In the deflection of the flow by the cascade, i.e., to

a decrease in the iinitial angle of lag and, sometimes, even to the

development of the advance angle of the flow.

The influence of viscosity has the same effect in the diffuser

cascades which have B > r/2. In the diffuser cascades which

have B < 7/2, the viscosity effect is inverse, i.e., it leads to
z

a decrease in the effective deflection of the flow by the ca.scade,

i.e., to the appearance of seemingly complementary angle of lag.

These conclusions are in complete agreement with the results

obtained above on the visosity effect on the circumferential

component value of the resultant.

Using the known parameters of the equalized flow the power

effect on the cascade can be determined directly by formulas (4),

(5) obtained for a uniform flow.

For the viscous incompressible fluid flow we have

and according to (5)

R.. + (31)

Here h are the total losses of total pressure, referred to 1 m-w

of fluid flowing from cross section 1-1 to cross section 2-2.

The total losses include both the losses which arise during a

direct flow around tne cascade and losses connected with a complet.

equalization of the flow in the space behind the cascade.

The circumferential component force is found from fcrmula (71

R, (32i
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The last two expressions make it possible for one to generalize
the Icukowski theorem as follows, the resultant of all forces

applied to the cascade profile as it is being streamlined by a

flow of viscous incompressible fluid is equal to the vector sum

J t_ Joukcwsk1 circulation force G = pw F directed along the

normal to the geometric half-sum of velocities and certain

additional force F = h t , always directed along the axis of thea w
cascade.

The projection of the resultant on the direction of the normal

to the geometric mean velocity wm is called airfoil lift force R

In the cascade. During a potential flow around the cascade the

lift is equal to the Joukowski circulation force R a.Y

The other resultant projection on the direction of mean

geometric velocity Rx we will call the viscous force, thereby

characterizing the reason for its development, because in a

potential flow of incompressible fluid It is equal to zero.

Comparing the streamlining of this cascade by the viscous and

potential flows of incompressible fluid at the same (with respect

to magnitude and direction) geometric mean velocity Wm, we note

that the viscosity effect is twofold: it leads both to the change

in the Joukowski circulation force G and to the appearance of

additional axial force F . As a result viscous force (resistance)a
R is developed which is equal to the projection of force Fa onxa
the direction of the geometric mean velocity, and also there is

a cihange in the value of lift R . This change is determined by

the relationship between the corresponding projection of the

additional axial force and the change in the Joukowski circulation

force

AR ?A-0 -cos l
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f in the vane channels of a dense cascade a complete equllizatiorn

of the velocity fields is achieved as a result of turbulent mixing
the flow on the edge of the cascade is uniform,' then the viscosity

effect is Limited only by the development of axial force Fa,

JoukowsKi force remains the same, since the value of circulation

F does not change. In this particular case

AR, y F. cos ht cos p

and, therefore, in the viscous flow the airfoil lift in the con-
vergent cascade is greater, while in the diffuser cascade it is

less, than the Joukowski circulation force (Fig. 10.6). In an

active cascade, just as in the potential flow, the lift is equal

to that of circulation.

The resultant projection on the direction normal to the incident

flow is called lift R of the unitary profile. Another projection
y

of the resultant force normal to it is called the profile resisting

force Rx .

In the potential flow the profile is affected only by the

forces of pressure, whose resultant, according to the Joukowski

theorem, is equal to airfoil lift R = R. The resistance is
y

absent when Rx = 0. The effect of viscosity is evident in both

the appearance of the tangential forces, forces of friction, on

the profile surface and the redistribution of pressure forces. As

a result, in a viscous flow there is a change in the lift and
the appearance of the profile drag force which consists of

pressure resistance Rxn and friction drag Rxf' These total force
components of the profile drag

'Strictly speaking, such a case is hypothetical. Actually,
with a sufficient length of the channel a certain distribution
of velocities is established, which does not change any further
(see Chapter VI).
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ar6 ua tc the~ projiection on the direction of mcution of tir~c
rcsultno ~rmal and t angential forces respectively, which act Con

t.-e prcfle surface.

(MOM4VI

a)

b)

Fig. 10.6. The effect of viscosity on the
power effect of the incompressible flow on
the dense cascade (complete equalization in
tlie vane channels): a) Diffuser cascade;
b) Convergent cascade.

The ratio o:' airfoil lift to its resistance is called the

quality of the profile
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Tii, reci-rocal value is the inverse quality of the profile

..ere c is the angle between the direction of lift and the resultant

fcrce. in the potential flow E * 0.

5 4. Aerodynamic Coefficients

For the convenience of the analysis and the use of experimental

data, we introduce the dimensionless coefficients of the character- -

istic forces, dividing their value necessary per unit lengt, of

the span by the product of airfoil chord times the dynamic head

of incident flow.

The dimensionless force coefficients of the profile or airfoil

cascade of given geometry depend on the angle of attack and on

the similarity criteria, Mach number, Reynolds, numbers, etc.

For the unitary profile, characteristic forces are lift R

and frontal or profile drag R . The dimensionless coefficients

of these forces,

(34)

(35)

are called the lift coefficient and the coefficient of profile

drag, respectively. According to (33) the coefficient of pi.mfile

drag can be presented as the sum of the pressure drag coefficient

cxn and the coefficient of friction drag cxf:

= .T
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Hcre, unlike the friction coefficient of plate of, the fri'+tIorn

urah- cefficient of the profile is designated In terms of cXf.
Lc,-,et imes the concept of the shape's resistance is introduced. 'he

drag coefficient of shape is understood to be the difference
bct'eIn ie coefficient of profile drag and the friction coefficient

,f a fiat plate which has the same surface as this airfoil:

f*. 4 ,P - % -.,P - - 2 r j t-t e , . (, ! - 0

For the airfoil cascade the frontal and axial forces are char-

acteristic. The frontal component H of the resultant force

determInes the energy effect of the compressor impeller or turbine.

Rotor and axial component R characterizes that force which sholiJa
Le absorbed by the bearings or special devices.

The dimensionless coefficients of these components are deter-

mined by the known parameters the flow at infinity ahead of the

cascade

Rd

S Sp, 2

Accr.rding to (3), (4) and (5), for a profile of unit length (U 1)
in the cascade we have

S -R -- 2 Aw. $in ,, (36)

Ie AP Is i !

P12

The dimensionless pressure differential

---- Pawi. I = r- ('-

'Factor 2 with cf takes into account the friction on both

sides of the plate.
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can e presented using the gas-dynamic functions (1 6 Chapter V,

In the fcllcwing form:

L+I tQIA [it0 iWO38:

:n ths case it is assumed that all losses are concentrated

in" space between cross sections 1-1 and 2-2 and can be taken

into account by the value of the conservation coefficient of total

pressure c - P2 0 /Pl,. In the absence of heat exchange with the

external medium

T14 = I"a~ta. (9

and, consequently,

_---. $ -a W , sin sin sin s- n t(

After substituting (38), (40) and (41) into formulas (36) and -

we ootain

Cos t --os'P sin ?I, and (42,
,~ ~ ~1 +k__ 2,, sin sin s,+/,i,n ,,(43)

respectively.

From the equation of state with T const, we have

Pei Pei Ppa

Thus, the equation of continuity

sin =sa.3 Sin ,
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takr.& lr;to account condition (39)o can be written in the followIng
dimrenionless form:

q1)sin ~1 aq (4) sin ~,( 44)

or

gg- 69".

Here q.is the relative flow rate by which it is understood tc

be the ratio

i~n accordance with (144), expression (38) for the dimensionless

1-ressure differential wewritein the following form:

1~ 0.)-l I)q 0 ( , ) 'S:l1.i t 01 (146)

or according to the determination of gas-dynamic functions (see

Chapter V).

AP k+ I IA I,*-' Lf $II
wfA -' moLT~~j (147)

Thus, from (143) we have

+ji. I 2( sin . sin sill lt;] (148)

where

k+ 1 (149)

In the case of an incompressible fluid the expression for
coefficients (36) and (37) assume the following form
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'a inb lni, + t- I),(1
where

C..p _P(52)

in a number of cases during the streamlining of airfoil

cascades ty an incompressible fluid flow the lift - the force

directed along the normal to the geometric mean velocity w - andm
the force caused by the presence of viscosity and directed along

w m are assumed to be the quality characteristic. In this case,

for the formation of dimensionless coefficients we divide the

corresponding components of the resultant by the dynamic head cal-

culated by the geometric mean velocity. Thus, we have

y P, C (53)

2

The aerodynamic forces which act on the profile in the cascade

cannot be as large as desired. With the aid of the expresslons

obtained above it is possible to show that in air isentropic flow

the circumferential force necessary per unit area of the cascade

achieves the maximum value

when '=. and In incompressible fluid

(Ru/t)max 2po (see the reference on page 527).

§ 5. Profile in a Plane Flow of
Incompressible Fluid

Let us first examine the potential flow of incompressitle

fluid. In this case the problem of the flow around a cdy of
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a given, form is reduced to finding a function of velocity potential
¢'~(, s' ).

Kfnowing the velocity potential, it is possible to find its

corresponding flow. This problem consists of determining strca.-

-function P(x, y) by the known function of potential 1(x, y).

Accor : g to (95a) and (97) Chapter II, tetween these two functions

there are the following differential relationships:

(55)

rntegrating both sides of (55) with respect to y, we have

=Sdy +C(.v (57

now, differentiating both sides of the last expression with respect

to x, we otain the following equation for determining the arbitrary

function of C(x), taking into account (56):

d + - , dC.-- 0  (58)

if, for example,

then the calculations carried out In accordance with (57) and

(5) yield

in order to find the equation of the flow line, let us equate the

stream function Lo the constant

64 2 tist -.

642



Assuming C 0, we obtain the zero flow line which is comrosed

of axis x and the circumference of a unit radius w-th the center

at the origin of the coordinates (Fig. 10.7a).

a)

b ) "

Fig. 10.7. Streamlining
of a circle by the potential
flow of an incompressible
fluid: a) without circula-
tion at the zero angle of

ar attack (a = 0), b) without
circulation with a # 0
c) streamlining with circula-

c) r tion.

For the velocity components we have the following expressons:

11 -- -- " -y  .. 'i' '--dx-"w c vt 9 '' " = -- , i ,

Proceeding to the polar coordinates with the origin at the centcr

of the circle, we obtain

From this it is apparent that at an infinite distance from the

circle the flow is uniform and proceeds at velocity wl, directei

along axis x.

(6A
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According to (60) the velocity projections on the radial and

,raI_ directions to the flow line are equal to

to, it-cu sin i w, v cos)c+osin

res .t ively.

In this case the value of circ-ilation relative to the cii'cumfertunce

is
In this case Sh value (11 +iclto seaive to 0 h == 0.er

Yhu:', expession (59) is the velocity potential of noncirculatary

flow around the circle of a unit radius by a uniform flow which

has velocity wl, directed along axis x.

Since on the circumference itself (r = 1) the radial velocity

component is equal to zero, then w = ws = 2w I sin e. Hence, it

follows that the maximum streamline velocity which is observed

when 6 a r./2 and 8 = 3n/2 is equal to the doubled velocity of the

incident flow. At 6 = 0 and e = 7 the velocities are equal to

zero and the corresponding points are critical. The latter,

evidently is because it is the result of the symmetry of thc flew.

During the flow around the circle at a certain angle a to axis x

the critical points will shift along the circumference by the

same angle value (Fig. 10.7b).

For obtaining a circulation flow around the circle let us

impose on thce flow examined above a purely circulational flow from

a single vortex, after placing it at the origin of the coordinates,

i.e., in the center of the circle. The velocity induced by

point vortex with circulation F is equal to F/2Tr in magnitude

and is always diructed along the normal to the radius-vctor.
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. <~nE-" these velocities with those of the noncirculatory flo,.:

arcund the circle, we obtain the unknown expression for the velocity

it.tr~ uci-n. along the circumference during its circulatory str,-am-

"he last expression allows for an easy determination of the

r.-cessary circulation at which one of the critical points, for

examcie B, retains an invariable position during a change in

the direction of an incoming flow on the circumference. For

example, let us assume that the circle is streamlined by a non-

clrculatory flow at a zero angle of attack (which we will cond.-

ticnally reckon from diameter AB). In this case, one of the

critical points will be point B. In order for this point to
r-.main critical and at a certain angle of attack a = -9 when the

circle is streamlined, it is necessary, as this follows from (61),

-s apply circulation I- = 27w I sin a.

nrowing the flow around a circle with a unitary radius, also

It is pcssible, with the aid of the conformal mapping of the area

external to this profile onto the area external to the circle, t(o

construct a flow around an arbitrary profile. In this case,

the property of the invariability of circulation is used during

the conformal transformation.' However, in this case, thc fr.,lem

31' streamlining a profile by a flow with known velocity and It3

direction at infinity has a countless number of solutions ,.iicn

o.opend on the selection of circulation F. An additional condition

13 necessary which determines the value of circulation. Suci. a

conditlon was indicated by S. A. Chaplygln in 1909; prior tc this

•.xrk here .,:as no effective mathematical method for solving

.. oytsyans,:iy, Fluid and Gas r.eciianic., TekhteoretiZ' - , .1.,
.6, 49:0.

I "1
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:,rot 1.%; of flow around a profile, i.e., there was virtually no

theoreticai airfoil aerodynamics.

Fo: the purpose of clarification of this condition, let us -A

=xamn? the flow of an incompressible fluid around the srefile

which has a sharp trailing edge whose presence is characteristic

*:f the contemporary aerodynamic airfoils. First, let us assum-

that the velocity circulation is absent (r = 0), i.e., there 1.

zro lift. In this hypothetical case, the obtained picture of

the aoo-called noncirculatary streamlining of a profile can be

constructed by %.,ell-i<nown methods of theoretical hydrodynamics.

The picture of noncirculatory flow around a profile has the

ilowing basic features. Incident flow is divided at the profilie

into two parts which flow around its upper and lower surfaces,

respectively (Fig. 10.8a). Point A in which the jets separate

and the flow has zero velocity is called the Zeading criticaZ

psint or the point of stream separation. Point C where the Jets

converge again is called the convergence point of the stream or

the rear critical point.

A change in the angle of attack leads to a change in the

positions of leading and rear critical points. For example, in

the case depicted on Fig. 10.8, with an increase in the angle

of attack the leading critical point moves along the lower, 6urface,

approaching the trailing edge of the profile, and the rear

critical point moving over the upper surface approaches the

frontal part of the profile; a decrease in the angle of attack

leads to the displacement of the point, at which the jets branch

out, to the side of the snout, and the point at which the jets

ccnverge - toward the tail section of the profile.

In the general case due to the fact that the sharp traIling 4

edge cannot Le streamlined, such a flow is accompanied by t.e
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( znr. ation of the flow from the profile surface. Only at a cer-.-n

-articular angle of attack (usually negative) the point of conver-

ccnc*- of jets coincides with the tailing edge of the profile, i.e.,

ccr.inuous noncirculatory flow is obtained; the corresponding

angleo of attack a0 Is called the angle of aero lift.

(3) (4)

((2)

- - ------------ V-

fl~k~ ',7,rJ 1r11Rr#

a) (5) ( ) b)

Fig. 10.8. Streamlining of the profile by a
potential flow of incompressible fluid: a) without
circulation, b) with circulation.
KEY: (1) Point of jet separation. (2) Convergence
point of jets. (3) Point of jet separation
(leadingcritical point). (4) Upper profile .urface.
(5) Rear point of the profile. (6) Lower profile
surface. (7) Point of jet convergence (rear
critical point).

iHow, let us examine another limiting case of the flow around

a profiles purely circulatory streamlining. By the purely circula-

tory flow we will understand it to be the flow caused only ty the

presence of circulation around the airfoil in the absence of

incident flow, when w = 0, F X 0. An example of the purely
H

circulatory flow is the circulatory flow examined in Chapter II,

whose velocity field is caused by a single vortex. In the case of

a purely circulatory flow, the leading and rear critical points

are absent and the flow lines represent closed curves enveloping

the profile. Such a flow independently of the circulation re-

quires the presence of an infinite velocity at the point lvIng

on the trailing edge of the profile and, therefore, Just as the

noncirculatory flow cannot be realized without the discontinuity

of the flow.
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:ne general z:ase of a plane-parallel flow around a przfie can

Sobtained by the superposition of these two limiting cases3 cif

:'lo.w, noncirculatory and purely circulatory. One can be convirced

Crom t he construction of a picture of streamlining that, as~ a

rosuit of the superposition of the purely circulatory flow on

Snoncirculatory flow the rear critical point, during a forward

clrc~ilation (F > 0), is displaced toward the tail section, andA

during a backward circulation (F <0) - toward the frontal profile

section.

By specifying value F, we unambiguously determine the positioni

of the rear critical point at a given direction of the noncircula-

t~yflow, i.e., at a specified direction of the velocity far

C. om the profile.

Is obvious that at a certain well-defined value of circula-

rin around the profile, the rear critical point will coincide

with the rear sharp edge of the profile (Fig. 10.8). In this

solitary case the circulation flow can be physically realized

by a continuous flow. For all other values of circulation, the

streamlining of the trailing edge is requir'ed which, as was

indicated, is impossible without the discontinuation of the flow.

This condition was first expressed by S. A. Chaplygin, called

the Chaplygina-Joukowski postulate, and it cn I- formulated as

fI-D d1 ., aL ; durfnu.b aflow a p rofile,

deveic-a ar--urn it cf siucl magni' ud. al whi h the

tY , _- t .. . (, st r ear-, uun' r rn i -/g r. -J

*.~~~, C-. -4. USr -r. .

j ~ ~ ~ I a' oras



Let us examine a physical system of the flow around a profile

In which a lift is developed, i.e., the force of fluid pressure

,n the profile, directed at a right angle to the velocity of an

undisturbed flow. As we have observed, in the flow around the

urofile there arises a circulation as a result of the superposition

1" '.nlch on the Incident flow the velocities over the profile

Zeccme greater, while under the profile they become less than that

of the undisturbed flow. Because of this the pressure over tae

profile is reduced, while under the profile it is increased,

which leads to the appearance of a lift. The development of fluid

circulation around the profile, in turn, is explained by the

following. At the initial moment, the flow around the profile

is noncirculatory but, in this case, in the area between the

-cint of stream convergence (on the upper profile surface) and

the rear sharp edge of the profile there develops a stagnation

zone of the flow. The fluid interface surface (boundary between

the stagnation zone and the steam which flows from the trailing

edge), as shown by observations, is twisted into a vortex which

is entailed by the flow. However, the vorticity did not occur in

the incident flow; consequently, the circulation along the contour

enveloping the profile and the vortex was equal to zero. Hc.wver,

if this contour were divided by a lin. which separates the profile

from the vortex, then in each of the two new contours the clrcula-

Lijn Uoes not equal to zero. It lo obvious that tnese clrculaticns

.- i.:,al in magnitude, but oponsite in direction.

'-'. :, t :- - . gbr. .. ;crt' .x -b ch Ltr". J: . -.: . frcn , the . l .n

_<'~~~~~~~~~~. .. ; ... , ......'; . , ., ....... ' '... ' .. . .

-_2-

a:,)

~ a- u: - ~ -~2.:; :.
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Fig. 10.9. A photograph of the
starting vortex.

S uch a continuous noncirculatory flojw (with F =0) is tthe

oniy possible case when the norncirculatcry flow is actuality,

realized; otherwise it is only a conceptual component of the true

flow which also includes the circulatory flow.

NJow, let us assume that during the conformal transformation

of certain arbitrary profile on the circle of' a unit; radius Lhe

trailing edge of airfoil B1 passes to point B of the circle

(Fig. 10.10). This means that tne noncirculat.ory direction c'f

the flow around the circle, which corresponds to the noncirculatcry

flow around the profile, is parallel to the diameter of the circle,

passing through point B. Now, if the profile and the circle,

respectively, are streamlined at an angle of (a-a ) to this non-

circulatory direction, thern in order for points B1I and B to remain

coincidental with the point of stream convergence, it is necessar,

In accordance with what has been said atove, to apply the circula-

tion

where m 1 is the proportionality factor which depends only on the

airfoil shape, a zero-lift angle, i.-. , of a continuous no-n-

ciculatory f low.
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Fig. 10,10. The conformal mapping of the
profile exterior on the exterior of the
circle of a unit radius.

The lift coefficient, according to (15), (34) and (62),

comprises

S2r
--- -= 2 ,,sin (x -is).

Hence we have

(dr .  
-2Y.

Since the angles of attack generally used are small, then it i

possible to assume that sin (z-,) --.. Using this approximatior.,

we have

c m = 2m -(--).

Introducing the so-called arodynamic angle of attack

i.e., the angle between the direction of velocity at infinity and

the zero-lift direction, we obtain

c, == 2M.2A.

In sym.metrical profiles the chord coincides with the axis of

symmetry, as a result of which, zero-lift angle a = 0. For tn;e

small arc of the circle the direction of' the noncirculatory

streamlining corresponds to the straight line passing throu.gh

the trailing edge and the center of the profile.
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Using data of the Joukowski prof Ile, It is [,ossiLle to obta r.

ti.e fo] low;.ing approxitration formula for determining value dcy 'dC
-f ar. arbitrary profile:

_2. 11±07 1 f1

in this formula, one of the factors takes into account the camber

and another - its thickness.

In the conventional airfoils the value of(f/2)2 is negligible

and, therefore, for them it is assumed that

.,- =.(1 1- 0,7 7e).

Assuming that in the last expression = , for a flat plate

we obtain

2*,doy

and, therefore,

ey 21n2.

:n the potential flow the tangential forces are absent and,

therefore, it would seem that the resultant of all pressure forces

applied to the plate should be directed along the normal to it

and not at a right angle to the incident flow velocity, as this

follows from the Joukowski theorem. This apparent paradox is

explained by the fact that, beslde3 the normal forces whici act

on the upper and lower plate surfaces, at tne plates leading edge

a pull directed along the plate is developed of such magnitude

at which the resultant turns out to be directed along the normal

'See "Aerodynamics," V. Ii, unde" the editorship of V. F.

Dyurend. Oborongiz, ..-L., 1939.

652



tc th .1n ident flow velocity. The development of this Fu1 1

rcnnected with the appearance of the infinitely high negative

pres3ure, at the leading edge theoretically permissible in the

,thematical model of ideal fluid.

Let us note that, as has already been indicated (Chapteir IT;,

due to the unreality of such a pressure the continuous streamli-ing

beccme impossible, and the separation of stream from the leading

sharp edge of the plate occurs.

Thus, the use of the mathematical methods described above

for determining the flow around the plate or other profiles with

sharp leading and trailing edges by an inviscld flow, strictly

speaking, bears a somewhat conditional nature.

The only exception is the case of airfoil streamlining under

such an angle of attack at which the branch point of streams

ocincides with the sharp leading edge.' At this case, both sharp

edges, leading and trailing, lie on the interface of streams which

flow around the upper and lower side of the profile, and Jets

of fluid smoothly enter and depart from it.

Up to this point we examined the flow around a profile by an

ideal fluid. Let us present some concepts concerning the effect

of viscosity. Fluid viscosity brings about charges into the

picture of flow and results in a difference between the derivations

of the theory of the potential flow around a profile and the

experimental data. The effect of viscosity in the case of well-

streamlined bodies is evident only in the fine boundary layer

outside of which the motion can be considered to be potential,

i.e., vortex-free.

'Sometimes, this angle is called the angle of attack of The
shock-free streamline flow.
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'i 3.l] Comparison of the
exurImental and theoretical pressure
curves for a symmetrical Joukowskl
profle with a relative thickness

c = 0.1506 at a zero angle of inuidenc,..
curve - calculation, exes - experi-

-n C.arter VI a detailed txaminaticn Is madc of the str.;nr..2

ow with friction of a flat plate placed iin parallel to ti-,e

-: re ion, of the flv.;; in -,his case, the pressure in tne i'_o,

i.z vlrtually unchanged. Fowever, during the flow. of a viscs&&,.

fcuid around the pr3f'le the pressure near it iu,,face is cha!,g.. i

substantially. aase.2 on this the entire flow near tne profile

snould be ivided into two principal sections: convergent -c'

in which the v-ilccity increases and the pressure drons acco:'d-rgiy,

I.e., the Lressure gradient is negative (dp/dx < 0', and t! .

diffuser sectlor, in which the velocity decreases while the press.re

Increases, i.e., the pressure gradient is positive (!>O)

The lower surface and the forward section of the upper surf1 e

f he prcfile 'up to the pa int of minimum. pressures n r

to tni convergent section. The rear sectic,, of thc u.

'fro.- the ,-.-4nt of miJnimum i-ressl, re to t!ie trailrng e.. e

-o thu diffuser section. in the convergent sec ion ti.e fie.

I-roceeds toward the side of pressure drop and, theref're,

s - danger of the ' u-ndary-layer searation fron ;.
:urface. "rn one i: , f aser veeticn the motion' is direct -... ,.

•ho sd n  of iressur, Incrase, which, -is n 1-ci n C.

.- ' {' gradle:,s of ::r-. ure leads .D t- ros-' - . "
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Th ese suppositions are confirmed by numerous exrerlmen-s

n cr. diffusers, convergent channels and airfoils.

F'Iu'r: 10.11 snows a comparison of curves of the dimensionless

cuanoltle s of pressure a (p - p)/O.5pw2 along the surface,
from an exceriment with the data of the theory c-f tihe octnt i "

flo_'th the zero angle of attack for a symmetrical JoukowSki

As we see, the difference between the theoretical and experi-

.ental data on pressure distribution is only in the profile's

aftertciy. This result is valid not only with a zero angl-., but

also . rt unall angles of attack.

Tc illustrate the relationship between the pressure drug

the friction drag, Fig. 10.12 shows the results of experimental

studies during t.he zero angle of attack of a series cf seven

sym metrical Jou:owskl profiles with a relative thickness - u.;

0.100.1.15; 0.21; 0.27; 0. -3; 0.40.

Fig. 10.12. The relat-on-
t0pdmd6AHu4_ ship between the friction

drt ag and the pressure drag
depending on the relative
airfoil thickness Z for a
symmetrical Jcukowski profile,

0.- accordlng to the data of
pur .ng at a zero angle c;

/ KEY: (1) Pressure drair.
a: .a Fhi ticn drag.

As we see, in ne thin airfoils the over.helming por .

the rrof.le drag Is composed of the frictIon drag; for exa:.-.,
In the case 0. = .1 the fraction constitutes up to :,u-:t:.-_
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profile drag. With an increase in the relative thickness due to

the pressure gradient increase in the diffuser section of the

profile, there is an increase in the total profile drag and a

decrease in the friction drag portior with Z > 0.25 the

pressure drag predominates over the friction drag; with C 0.4

the former constitutes -70% of the total profile drag.

Fig. 20.13. Experimental
curved c y(a) and c x(a) for

44 +a unitary profile.
t KEY: (1) Lift. (2)

Theoretica] coefficient.

Let us proceed to the problem concerning the effect of

viscosity on the lift. A typical experimental curve c y(a) for

an aerodynamic profile is depicted on Fig. 10.13. First, the

experimental curve of c y(a) has a significant rectilinear segment,
as this follows from the theory of a potential flow; however,

experimental values (f:,,2), ., prove to be less than the theoretical.

Increasing the angle of attack intensifies the diffusivity of'

a flow on the upper surface, which increases the divergence

between the experiment and the theory. With a critical value of

the angle of' attack a the lift coefficient reaches a maximum

(C y), whereupon there is a drop in value cy with any ymax
Increase In the angle of attack. The sharp deviation of depeildence

c (a) from the linear with large angles of attack is caused by
ythe boundary-layer separation, which propagates to an ever larger
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portion of the upper profile surface with an increased angle of

attack and leads to rapid increase in the frontal drag coefficient
cx simultaneously.

§ 6. Streamlining of a Profile by
a Subsonic Gas Flow

At low Mach number values of gas flow (M < 0.3-0.5) the
velocity value does not affect the nature of pressure distribution

along the contour of the streamlined profile. At higher Mach
number values (M < M p) an increase in the velocity of the incident

flow leads to a change the pressure curve; however, the general

nature of the pressure curve remains the same.

An increase in the rarefaction corresponds to an increase

in the local velocities on the profile; at the point of minimum

pressure p min the velocity reaches a maximum value. At a certain
Mach number value of the incident flow the minimum pressure

becomes critical:'

where pO is the total pressure of the Incident flow; at pcint pp

the flow velocity is equal to the local speed of sound M = 1.

Mach number M - M of the incident flow at which a sonic speed
is developec. any place on the profile is called critical. With

a further increase in the Mach number of the incident flow, i.e.,

when 1H 1 > M p, we have an area of the flow, developed near the
profile surface, with supersonic speeds, as a result of which the
flow acquires new qualities. Value M p Is the boundary of the

'Value Pmin can be obtained from formula (68), Chapter I,
assuming that M = 1.
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two principal streamlining conditions of profile at a subsonic

sceei of the incident flow, subcritical (M1 < MKP) and super-

critical (L.1  > M ).

K-

Let us consider in more detail the streamlining of a certain

profile by a subsonic, isentropic, uniform gas flow at velocity

w directed along axis x, pressure p1 the (speedof sound a,).

in the general case the gas-dynamic parameters of any point

of tho flow can be expressed thus:

,,= eJ ,', ,,=it 1, 1, I' . % :, iP' "":" I '.(63)

here ut, v, pt, p' and a' are values which char-Loterize the

perturbation of a uniforn flow by this profile.

Further, we will limit ourselves to the examination of only

the thin and slightly bent profiles streamlined at such small

angles of attack at which the perturbations are so low that the

squares and products u' v' p' a' and of their derivatives

with respect to the coordinates can be disregardea. Under this

assumption equation (100), Chapter II, which we rewrite beforehand

as:

assumes the following form:

or

Introducing potential 4t of the perturbations
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we represent velocity potential * as the sum of the potential of
the uniform flow *o * Wlx and the potential of the perturbations

=--wx ± .(65)

Differentiating both sides of this expression

after the substitution in (64), we obtain

From the equation of continuity

J411i

it follows that by analogy with an incompressible fluid flow

(see Chapter Ii) there is stream function 0 which corresponds tc.

the condition

*p u I= " I = p _ __ ,J$.67
- __ _(67)

This stream function € we will divide into the stream function

a uniform flow OAH = w y and the stream function of perturbaticns

0' which corresponds to the deviaticri of the real flow from the

uniform flow

Substituting values (63) into (67) and taking into account the

last relationship, we obtain

OJA

With an accuracy to the small second order terms, from this we

have

U,, , I---"-.
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"rim the equation of enthalpy for an isentropic flow (see 3.

Chapter I)

i- +W-it r (P, • -"

under the same assumptions, we have

and correspondingly

I ai4

and (69)

a ad I '' I c%

------ -- . - - - .- (-9

Substituting these expressions into the condition of non-

L vorticity of the flow

L. we obtain

or (00)
j7j j-

Thus, the gas streamlining of the thin slightly bent profils at

small angles of' attack is described approximately by linear

equations in partial derivatives (66) and (70). These equations

are the linzarized equations of a plane vortex-free motion of

compressible gas.
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[ )When M I these equations pertain to an elliptical type of

equations in the partial derivatives, when M1 > 1 - to a hyperbolic.

Here, limiting ourselves only to subsonic speeds (M1 < 1), we

introduce the following new independent variables In place of

x and y:

X,-=, X , T--- T-Mr !

Suostituting into (66) the derivative values of the velocity

potential

- * a-j 
0 Y 1 Y 4

after reducing by (1 - M2), we obtain the Laplace equation for an

incompressible fluid

This equation defines a certain potential motion of incompressible

fluid in plane xl, YI, which corresponds to a given motion of

compressible gaF in initlal plane x, y. In this motion of the

velocity of incompressible fluid is

L t

Hence it follows that the tangents of the slope angles to axis x,

which are tangential to the flow lines, equal to v/u, in an in-

compressible flow they will be (1 - F1) - 1/z times greater than in

tne initial flow of compressJble gas. Thus, any thin profile
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streamlined by subsonic gas flow corresponds to the following ..)

thickened profile in an compressible fluid (Fig. 10.14):

which is streamlined by a flow which is at a greater angle of

attack than the initial

The deformation of the profile turns out to be so insigniflc-int

tnat for determining the lift coefficient cy it suffices to conitIder

only the change in the dng.t of attack. In this case it is assumed

that both angles of' attacl c- and a' are sufficiently small; the

reckoning of these angles is accomplished from the zero-lift

direction. It is obvious that the zero-lift angle in the symmetri-

cal airfoil is always equal to zero, i.e., it does not depend on

the M1 number of the incident flow; with sufficient practical

accuracy it is possible to assume that the value of the zero-lilft

angle in the slightly bent aviation profiles is also independent

of the MI number value. In the gas and equivalent flows of in-

compressible fluid (under the condition that M1 < M P) the lift

coefficient values must be identical cy = c'. Since when reckoning
y y

the angle of attack from the zero-lift direction we have

then

Hence, it follows that with the same angles of attack the following

relationship should be valid in the gas and incompressible fluid:

, I
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Consequently, for obtaining value cy with the given values M

number of the incident flow and the angle of attack a, it is

sufficient that the lift coefficient taken from the purging of

the profile at low speeds and the same angle of attack be multiplied

by value Values c thus obtained coincide well with the
yi

experimental data right up to the critical Mach number value, the

thinner the pivofile the greater the value. With a further increase

in the Mach number the streamline flow becomes supercritical and

a sharp decrease in value cy Is observed. Thus, to calculate the

total effect of compressibility on the airfoil lift in the sub-

critical area it is possible, with a sufficient practical accuracy,

to use the formulas of the Prandtl-Glauert approximation theory

presented here. According to this theory the effect of compressi-

bility leads to the proportional change in pressure at all points

of this profile

-- P l (71)

' (1)

Fig. 10.14. Diagram of the transitionfrom the profile in a compressible
gas flow to the equivalent profile in

an incompressible fluid.
KEY: (1) Compressible fluid. (2)
Incompressible fluid.

The comparison of this formula with tue experiment results' (Fig.

10.15) shows that its accuracy decreases wich an increase in the

'Stack 0, Lindsey W. F. and Littel R. E., Report ACA, No 646,
1938.
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Mach nuniber. There is less disagreement between the experimental

data when the calculations are carried out according to Sedov'

and iarmana-Tsien. 2 It should be noted that the Karman-Txien forma la

at low Mach numbers converts to the Prandtl-Glauert formula (71'.

flid - exeiet 2- - codn

Frnty4Ga t 4-acringt

"/. .... ,F-

-,¢,,• _,.7/

Fig. i0.15. A comparison of different
methods for an approximate determination
of pressure coefficients for compressible
fluid: 1 - experiment, 2 - according
to Karman-Tsien, 3 - according toPrandtlyu-Glauert, 4 - according to
Sedov.

For determining the compressibility effect on the velocity

and pressure distribution at subscritical velocities along the
profile, it is possible to use also another approximation theory
based on the hypothesis of "solidification" of' the flow lines

'Sedov L. I., Two-dimensional proulems of hydrodynamics and
aerodynamics. Gostekhteoretizdat, r4.-L., 1950.

2 Karmani T and Tslen, J. of Aeronautical Sciences, L112, 1939.

in this work the approximate methcd indicated by Chaplygil
for replacing the real isentrope by the straight line tangent to
it.
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\_ ) during the streamlining of a given body by potential flows of

incompressible fluid and compressible gas.'

According to the equation of continuity, for an elementary

flow stream adjacent to the profile in an isentropic flow of

gas the following relationship is valid:

4P tow V frF*

Here index "I" designates the parameters of an elementary stream

far ahead of the profile.

'ince in the incompressible fluid

then from the foregoing expression it follows that under tbe con-

diticn of invariability of the flow lines the following equality

is valid in the flows of the incompressible and compressible fluids:4

., q0) (72)

If in an incompressible flow the velocity at a certain point

on the profile reaches a maximum value, then the critical value

of the velocity coefficient of incident flow A is determinedKp

from (72) under the condition that at this point X 1 1. Then

we have

IS. R. iuzhnin showed ("The theory of gas flow around bodies
at high subsonic speeds.") Applied Math. and Mech., Vol. 10, Iss.
5-6, 1945), that the problem of continuous streamlining of a
given body by an irrotational flow of compressible fluid can be
reduced to the problem of vortex flow around a given body by an
incompressible fluid. In this case it turns out that the flow lines
in both flows will remain constant. Disregarding the vorticiy
we arrivt- at the confirmation of the hypothesis of solidification
of the flow lines.
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The dependence of critical Mach number calculated according to

this formula on the minimum pressure on a profile in the incom-

pressible flow is given in Fig. 10.16 (dashed line). The same

figure shows the dependence calculated by The S. A. Khristianovlch

method.1 The hypothesis of solidification gives lower M values,

moreover, the difference is somewhat increased with an increase

in the rarefaction on the proile, i.e., with an increase in the
profile thickness at a fixed angle of attack.

-- 1g. 10.16. The dependence
4" - of critical Mach number M

__ .- on minimum pressure PmIn

__ .i~Ithe profile.
KEY: (1) Acccording to Sr A.

dKhristianovich. (2) Accordin

itsolidification."

Value , and, consequently, also M depend on the same

factors as value Pmll, i.e., on the configuration of the profile

and angle of attack.

The thin and slightly bent profiles correspond to the greater

MHp values. As established on the basis of experimentation with

the ordinary aviation airfoils, a decrease in the profile thickness

of 5% leads to an increase in M b a value from 0.03 to 0.05,

while a decrease in camber f = f/b from 5% down to 0 leads to an

increase in M approximately by value from 0.1 to 0.12. To
;4p

'Khristianovich S. A., Streamlining of bodies by gas at high
subsonic speeds. Works of TsAGI, Iss. 481, 1940.

666



imiI

increase the M it is advantageous to situate the points of

greatest camber and profile thickness at a distance equal to

0.4-0.5 of The chord from the leading edge of the profile. The

nose shape of the profile also has a significant effect on the

M value.
xp

An increase in the angle of attack leads to an increase in

the rarefaction on the upper profile surface, and therefore,

to a decrease in value M

K.~

Fig. 10.17. A shadow photograph of
transonic streamlining of a unitary
profile.

With M > M , as has already been indicated, the zone ofsupersonic speed is formed which ends in shock waves. This is

quite evident on Fig. 10.17 which shows a photograph of the

corresponding pautern of streamlining of the aviation profile

obtained by V. S. Tatarenchikov. behind the system of shocks

'Levinson Ya. I. Aerodynamics of high-speeds. Oborongiz,

1950.
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the breakaway of flow from the profile is v1sIble. The nresence' . 2f

shom¢s and separation leads to an increase in the frontal airf'-

drag, a decrease In lift convergence and a sharp change in the
nature of pressure distribution on tli~e profile.

Let us note that the Mach number at which a sharri !n-rease

in cx begins and the Mach number which corresponds to the

beginning of a decrease in cy are dissJmilar; this Is exrl',inc

ty the different nature of effect the shock waves have on dr' ,

and lift, It is .,bvi-ous that both these numbers are greate:'

than the critical. With an increase in :,umber , the supcr.3ocr

zone is expanded in the incident flow (in the area wher r

and the system of shock waves moves toward the tra'linr cde of

the profile. In this case there is a sharp increase in tn'=

profile drag. With M 1 > 1 a supersonic streamlining of rproJ.itc

is formed, which we shall consider below.

9 7. Supersonic Streamlining of -

Airfoil

Usually, when M 1 > 1, special supersonic airfoilo wilh a

sharp leading edge are used. This edge significantly decrcases

the drag at supersonic speed as compared with an ordinary subson~c

airfoil with a rounded leading edge. As an example of tne

simplest supersonic profile we will examinu a flat flxca .;latc

onto which plane steady gas flow advances.

Let the plate be tilted at angle I toward the dlrection (f

the incident flow (Fig. 10.18). 'ihe flow c - nd such a plate

can be fully calculated using the t:leory of o 1 Jque snock '.:avev.

and the theory of streamlining of the external obtuse anj l].

In tnis case one assumes that the flow behinJ the plate again

assurres til, direction of an incider,t flow. Let uo dJosignate ',h:

velocity coefficient of the flow advancing towarcc the plate in
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terms of XI and the pressure in this flow - by pl. The velocity

coefficient of the flow along the upper side of the plate we

de3ignate by X and the pressure in this flow - by p For
the flow which runs off from the upper side of the plate, these

parameters we designate by A2 and p2. For the stream which flows

along the lower side of the plate, the corresponding parameters

we designate by XH, P and A3, P3

H ' P3-

_____

-- I ':5

Fig. 10.18. A diagram of supersonic
flow around a plate.

During the flow around the upper side of the plate, at the

leading edge the flow is deflected at angle i and becomes parallel

to the direction of the plate, i.e., a pattern is developed

which is similar to the flow around the external obtuse angle.

Values A and p can be determined by the formulas given § 3
B a

Chapter IV. For the calculation it is convenient to use the

table of appendix I at the end of the book. At the trailing edge

of the plate the flow should again be deflected at angle i in

opposite direction, i.e., an oblique shock wave is developed

because we have a picture similar to the flow around a wedge with

angle i at the top. Values k and p. are determined by the
2

formulas for an oblique shock wave, given in Chapter III. The

following inequalities are obvious:

, PII>P.. and P,> , P<,P
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1 aring the flow around the lower side of the plate an otliqle

Sio.CCK wave is formed at the leading edge in passing tihroufi, which

the flow is deflected at angle i. Values A and p can be found
H

by the formulas for the oblique shock wave. At the trailing edge

the f].ow will be defl.cted at angle i in opposite direction.

Values X and are determined by the formulas for the stream-

lIning of tne external obtuse angle. Here A < A,, p > p, and
> 1 H I P 3 4 P m

The pressure in the flow w,,ich runs oft from the upp,..r, sid2

of the plate should be equal to the pressure in the flow .hich

r';.ni -.ff from the lower side p 2 = p3' The velocities of m.-s-

two flows can be different in value, but their airection is tne

same. Thus, 2 may not equal to A..

Force R, which acts on plate is equal to (p - )P t.:;ere

? - bi - the plate area. Thus, the lift of a flat plate 1-.jr unit

length of the span is determined by the formula

R, = (p - p.) b Cos .

and the frontal drag uy formula

R, = (p, -p.)b in L
Consequently,

more thorough investigation shows that the direction oI'
the f'low which runs off from the plate does rnot coincide with th,'
direction of the Incident flow. Tiiis direct ion Is deter'ned
from the coidl t~ori of equality uf przesuru ;ird the srjeness o1f
the *:e].ocl ty direction in tl ,: fl ows wh cii run off from the upper

) and lower sides of tihe plate. However the deflectIon of the fi:;w
; ~by the plate is ver'y sw I1 and with iI <3 does not exceed i°

thus, the scheme pv'e~e,.tod here can be used for practical t i1u~a-.
tions.
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[ i Using the equation of state

and expressing the flow velocity in terms of the Mach number 5

WA - Mng= M5 1 kgrT.

we reduce the formulas for cy and C to the formi n

The composed scheme for calculating the streamlining of a

flat plate becomes unsuitable for the following two cases.

First, if angle of attack i > inp for the given number M

of the incident flow; in this case, during the flow around the

upper side of the plate there is flow separation. This case is

of low practical significance, because when M < 10 the maximun

* angles of attack i > 250.
ri

Second, if angle of attack i exceeds the maximum angle of

* deflection of the flow in the oblique shock wave wrla x for the

given number M of the incident flow (see Fig. 3.12); when i > w,.,ax

*a separated shock wave with curvilinear front is formed ahead

of the lower side of the plate. The calculation of such a flow

is a very complex problem. The case when i > wri can occur with

very small M1 numbers (for example for' M1 - 1.5, angle i - 12°).

It is important to ncte that when M < 6.14, W,,a is always

less than i and, consequently, the reason for the inapplicability
rip

of this calculation scheme is the formation of the separated

curvilinear shock wave ahead of the plate. With very large ;Il

numbers it is the opposite, I < a and the reason for ,he
rip * aX
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inap!:, icability of the calculation scheme S the flow se*raratin.during the flow around the upper sidQ of the Plate.

Figure 10. 19 shows thephotographs 
of supersoac.

stream-Ining of the double-
wedge air-foils of varied
thickness in a wind runnel at
zero-angle of attack. Uach
of these photographs shows
distinctly the shock waves at
the leading edge of -i,, !.<rL !,
cluste!%3 Of characterist~c,;
at tire upper, aiud lower convcx
augles of pr ofiles and
characteristies resultlng fr um
the unevenriesses on theQ wal--s
of the wind tunnel by whose
slope the flow velocity in
tI, tunnel can be Judged.

The theory of oblique

shock waveu and the theory ofFig. 10,19. Shado. nhctcgraphs the flow around the externalof supersonic flow arOUnd a
double-wedge airfoil at Lhe zero oLtuse angle make it possibleangle of attack with I, I. , for one to calculate the flowSemiapex angle of the rhorb: around any profile whose

t 140. ) -1 °,c' 
contoir Is composed of recttlln..-ear Zee o' . '

ZSe, for exai'j:Le, Ch'apter V21! of the p)roc,2n-Aj r:ubj 'cationof this buoo. ote:ht,etzdat I., i 3a
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'U2 To construct a flow with small angles of attack around the

thin and slightly bent profiles of any configuration, we can use

S-equations (66) and (70) obtained for the case.

Introducing the designation

.'=M- I,

we rewrite (70) with M > 1 thus:

0. (73)

As anyone can easily check by substitution, this equation,

called the wave equation, has the following general solution:

(X~ ~~~ -Y (

here fl and f2 are the symbols of arbitrary functions. Let us

examine the two partial solutions of equation (73)

X - Wy - ConIt, X + Wy = Co,t,

representing two families of straight lines

Y=-X+C, y-- x+cg,

forming the following angles with axis x and, consequently, also

with the direction of the incident flow respectively:

1= arcig arcsin 7 = "vctg -arcsin

.-h'ch are equal to the Mach angles of uniform flow a, i.e., to

the angles between the velocity direction of the incident flow

and the Mach waves. Along these straight lines which are the

characteristics of the examined wave equation (73), values *, u,

v' assume constant values '(c), u'(c) etc., specifically equal to

the values of these quantities on the very surface of the profile.

Tile streamlining pattern of such a profile, formed of two curves
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..x) and Yh,(4

is given in Fig. 10.20.

0/

Fig. 10.20. Streamlining the
profile by a supersonic flow.

The Mach wave.'. AA1 and AA2 , drawn through leading edge A

respectively and waves BB 1 and BB2 drawn through trailing edge B

respectively separate the area of disturbed plane-parallel flow

from that of undisturbed.

Between these boundary lines of perturbation we find the flow

disturbed by the profile surface. Along each of the lines between
the two infinitely close characteristics, i.e., Mach waves,the

flow is identical to flow in the immediate proximity of the

corresponding surface element of the profile. In accordance with

this, all flow lines above the upper surface are equidistant

to curve h (x), while the flow lines above the lower surface are

equidistant to another curve h2 (x).

The soluti- of the problem is reduced to determining

function ip cons.ant on every flow line. Let us assume that on the

profile surface the stream function is equal to zero, i.e., ip 0

when y = h(x). According to (68) this is equivalent to condition

- -Wh(x) when y - h(x).

Taking into consideration that the profile is thin, we will

require a precise fulfillment of the boundary condition not on

674



I °.
tne profile surface itself but approximately on axis OX. In thi3
case the boundary conditions will be written as:

Y.aO0, #-0 then y=O, 'i= -t',h(.4 (7.4)

For the upper surface, where there are characteristics of the

first family, we will seek the solution in the form

=a Ah (X wy;

where A - arbitrary value determined from boundary condition (74).

Since p' Ah(x) - -wh(x) when y 0, then A -w1 .

Consequently, we finally have

According to (69), for the upper surface we obtain

J4,',e, dh.=dy Wj-7 dX (75)

Similarly, for the lower surface where there are characteristics

of the second family

U'111 (. +YW

and accordingly

J~Fd~rdx'(76)
= ,dh

Presenting to ti-e bernoulli equation for the isentropic flow (6 4,

Chapter 1)

-5
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the expression for the flow parameters in form (63) and disregardin)
the squares of small values, we have

I • p.p--p. , p _24

flow, accoraing to (75) and (76) we obtain the following expressions

for a dimensionless pressure on the upper and lower profile

surfaces:

_ 2,; (x) h x

V (77)

Let us find the drag and lift coefficients. For the surface

element

dR,=pdS sin _=v---- =pV(xdx.
dR, .-pdS cos 0 = -pdx.

and according to (77), after summation we obtain for both surfaces

C, 2
2 {l-h (x)l ' -- 1h; x)j') dx.

yPWJhV A- (78)

R, 4 AD J3 A

Here and y. are the c ordinates of points B and A. For a thin

profile the following approximatc equality is valid

8A' YOAYA

Then from (78), we nave

41

" -" z -4-' (79)
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Thus, the lift coefficient of a thin profile does not depend on

its shape, but is determined only by the angle of attack and the

M I.ach number of the incident flow.

The coefficient of wave drag cx, as compared with lift

coefficient cy, represents a small value of the second order.

Thus, for instance, for the plate

and according to (78)

410, = -(80)

This formula for the drag coefficient can also be obtained

directly from the life coefficient (79), taking into account

that the resultant of the forces applied to a flat plate in

supersonic inviscid flow is always directed along the normal to

it and, therefore,

With the angles of attack i < 150 the calculation of coef-

ficients cy and cx for a flat plate, using approximation formulas

(79) and (80), yields a satisfactcry agreement with the precise

calculation presented above in this paragraph.

The plate, as compared with other thin profiles with 'he

same angle of attack, has the smallest wave-drag coefficient.

I Thus, for instance, in a.cordance with (78), for the profile

formed from two arcs of the circle with an identical radius (lens)

The additional component to the wave-drag coefficient of the plate
depends on the relative thickness z'atie of the profile E c/b.

677i



8. Streamlining of Airfoil Cascade
by the Flow of an Incompressible
Fluid

Let us examine the streamlining by a potential flow of incom-

pressible fluid of a rectilinear cascade composed of profiles

which have a sharp trailing edge. Just as for the case of a

unitary profile, it is possible to find the direction of a non-

circulatory flow at which the sharp edge is the point of stream

convergence; the corresponding angle between the direction of ai

noncirculatory flow and the front of the cascade we designate as 80.

The circulation value for the profile located in the cascade

and streanlined by an ideal incompressible fluid is determined

from the same expression, as for the unitary profile except

instead of the incident flow velocity, as this was done in the

case of the isolated airfoil, one should, in accordance with

if. Ye. Joukowski's theorem, substitute the value of the geometric

half-sum of velocities wm ahead of and behind the cascade. Angle
of attack s is defined as the angle between the a'.rfoil chord

and the direction of velocity wm.

Thus, we can write

where m - proportionality factor depending on the profile shape

and the cascade parameters, a is the angle between the zero-

lift direction and the airfoil chord.

Substituting this value of circulation into (14), we obtain

the following in accordance with (53):

rY = 21,,1 in (2, - )

or

s d i( 8 2 )
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where 80 is the angle between the zero-lift direction and the

front of the cascade.

For the angles generally used in practice it is possible to

assume that

Then from (82) we have

-fe
do -- Gg) j Ap

where

GAp ,SM - p.

Let us note that if for the isolated profile value dc /da

y
and zero-lift angle c0 depend only on the profile shape, then

in the case of a cascade, in addition, these values depend also

on the cascade parameters: denseness T - b/t and setting angle .

Eidently when the cascade pitch approaches infinity (T - 0)

value of dc y/da and aOp tend toward their values respectivelyiy

for the isolated profile.

Based on (11) and (82), after elementary transformations,

we come to the following relationship between the angles of

entry and departure:'

, ~ ~~~ctg ,=A ctg ,--B. 3)

where A and B - constants for a given airfoil cascade with the

value

'For a detailed derivation, see Chapter VIII of the previous

publication of this book.
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With an increase In denseness coefficient A decreases, there-

fore, beginning with certain denseness T the first term in the
right side of expression (83) can be disregarded. Consequently,

with large values T the angle of departure ceases to depend on

the angle of entry, becoming the following constant value for

these cascade parameters:

Ctg 8 --= Const.

In this case the flow at the outlet is determined only by the

output part of the vane channel, i.e., it does not depend on thie

conditions of entry. If the condition of constancy of the angle

of departure a2 = const is cbserved, then the flow direction at

the output coincides with the zero-lift direction 82 0 60'

because in this case a P 2' i.e., the flow in the cascadie is

not deflected. In the general case, the expression for angle 30%

is found from formula (83), written for the noncirculatory mode

of cascade streamlining in the form

B

Figures 10.21 and 10.22 show the charts of functions A and

B for the cascade of flat plates' depending on denseness T, at

the various setting angles $. Based on the examination of these

graphs, when T > 1 value A becones on thie order of A < 0.1;

however, value B asymptotically approaches ctg $ and when

1 5 1.2 it can be assumed to be constant.

'The problem of flow around a cascade of flat plates ,:a;
solved for the first time by S. A. Chaplygin in 1912; then a
simpler solution was obtained by N. Ye. Joukowski In 1915.
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Fig. 10.21. Coefficient A for the casuade
of plates.

45 M

Fig. 10.22. Coefficient B for
the cascade of plates.

Using values A and B the values so-called "angle of lag" 6

are calculated and plotted in Fig. 10.23 as an example, i.e.,

the angle between the flow direction ac the output and the

direction of plates: 6 = - 2. As we see, with an increase

In denseness the angle of lag rapidly decreases; for example,

in the case 61 - 300 the angle of lag for denseness T = 0.5

comprises 6 1 10*, whereas with T = 1 we have 6 = 20.

In the general case the problem of streamlining of the

airfoi.. cascade by a potential flow of incompressible fluid is

usually solved either by the method of conformal mapping or by

the vortex method.
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a ~ ~ Fg cascade weueaTacdhoices ependecase ofoas-ls

tote.Frtewt the aidl of some sipl onppn futti

dhraetenlwt enspect t o this cascade is cofomal

covre n o ane teo ofacranaroi acd hs

ill

configuratin d etod onth form ofFei tapping f10.23.oThd eednc

cascade of the simplest bodies is known. As an example of such
a cascade we use a cascade of crcles or a cascade of ovals close'

to the. Further, with the aid of some simple mapping fu wtion,
the area external with respect to this cascade is conformally

converted into an exterior of a certain arfo l cascade whose
configuration depends .on the form of The mapping function. The ;

cascade thus obtained in which the flow is already determined iz
usually called the cascade of theoretical or analytical profiles.

A considerably more complex for this method is the sol.ution

of a direct problem - a construction of flow around certain

airfoil cascade. In this case, a more effective method of solu-

tion, especially, bearing in mind the use of contemporary

electronic computers, is the seconc method, the orte7 method.

Tnis method as applied to the cascade composed thin airrji). -

sma.l arcs of given shape - consists of the fo,lowing. Fach

Zee, for example, loch E.L. , , Study of a Twu-DiTenscor-a1
Cscade Composed of TheoretA.ca! FrofM-1s of Finite ThiJkness.
The works of TsAGI Issue 611, 1917.
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profile is replaced by a vortical layer with intensity y(S), where

S is the arc length reckoned from the leading edge of the profile

-.1 AFig. 10.24). The intensity of vortical layer y(S) is sele'-qd
from the condition of the normal vector component of veloci,|

vanishing at any point of the profile, which is equal to the

vector sum of the velocity of a uniform incident flow and the

velocities induced at this point from the entire infinite system

of vortices.

IVI

4 4. 1

Fig. 10.24. A scheme for
replacing the small arcs
by vortical layers.

In this case it is necessary to bear in nind that the

velocity induced far ahead of the cascade as an infinite chain

of vortices with intensity F, unlike the unitary vortex, does

not vanish but is equal to F/2t and in directd at a right an.zle

to the front of the cascade.' Thus, even though the direct

replacement of the small arcs by the corresponding vortical

'See, for example, Chapter I of the book by G. N. Abramovich
"Applied Gas Dynamics," Publication 2, 7,tkhteoretizdat, 1953.
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layers in the cascade, satisfies the boundary conditions cn the

-profile surfaces (conditions of impenetrability, wn  0), it

results, however, in the disturbance of the boundary conditions

far ahead and behind the cascade.

To account for this fact, instead of the flow around this

cascade of physical profiles by a given flow at infinity, we

neef to examine the flow around the cascade with corresponr.nr

vrtlical layers by the flow having the velocity equal to the

-geometric mean velocity wm - 1/2(w1 + w2 ). However, to determIne;

the :-agnitude and direction of this velocity according to the-
given velocity w,, it is necessary to know circulation r around
the profile, the value of which is to be determined.

Usually, 'This is done in the following manner. The cascade

c-f physical profiles is replaced by the cascade of vortical

layers and its forward motion is examined at a given velocity v
in a static fluid. In the reverse motion the cascade is static

and is streamlined by a flow with velocity wI so that half of

the geometric sur of this velocity and the velocity w2 behind

the cascade is equal !9 -v.

According to the N. Ye. Joukowski theorem (see 6 2), the

resultant of the aerodynamic forces which act on the ttati.

cascadt is directed along the normal to the geometric mean

velocity, i.e., in our case it is along the normal to velocity v.

Thus, during the motion of a caucade of vortical layezb in a

static fluid the resultant is directed along the normal to the

direction of motion, i.e., there i8 no resistance. Another

case; the same forward motion of a cascade of physical profiles

in a 5tati, fluid. Here there is no disturbance of flow at an

infinity rihead of the cascade. Thus, with the reversal cf

rot.an we arrive at a static cascade streamlined by a flow with

veczity w, 0 -v. Sinc.e the projecti ,)n of the resultant ,;!' forc,"
on the direction of' the flow advancing onto. the cascade, a-cord.'1np
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I
K) to the Joukowaki theorem, is always different from zero, then,

depending on the slgn of this component, the motion of a cascade
of physical profiles in a static fluid always occurs either in

the presence of the resisting forces or under the action of the

pull directed along the motion.'

Turning again to the forward motion of the cascade of
vortical layers and designating the disturbed velocity of the

previously static fluid in terms of vi , we write the condition
of the absence of flow separation during the flow around the

profiles in the form

+, -+ 1,-. (84)

Adding all the velocities induced by an infinite system of

vortices at the fixed point of a profile, we obtain 2

V,.-- J (.S) n. s I, (85)

Here

8f'+sh in, ~+ch'I

where e Is the angle between the tangent to the profile contnur

at a particular point and the profile chord; E, n, &,, and n0
are the coordinates of the flowing and fixed points of the

'It is not difficult to show that durinr the motion of a
dif'.aier cascade, we have the resisting force and, correspondingly
during the motion of a convergent cascade - pulling force. In
an active cascade the resultant is directed along the normal
to the motion.

IBelotserkovskiy S. M., Oinevokiy A. S., Polonekiy Ya. Ye.,
The Power, and Moment Aerodynamic Charaotvristics of the Thin
Airfoil Cascades. In the Coll. of "Industrial Aerodynamics,"
No. 22, Oborongiz, M., 1962.
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-examined cascade profile, respectively. The normal velocity

. iomponent at a particular profile point during the forward cascade I
motion at velocity v will be

vA I sin (0 - Pj cos 5 cos (0- p) sin (86)

The substitution of (85) and (86) into (84) leads to the following

integral equation for determining y(S):

7 (S) ?. 0, 1 1, %)dS= %in(0- .)cos 9-c1 s(--c)o i .In

Peplaclng the continuous vortical layer by discrete vortices, we

reduce the solution of integral equation to the solution of a

system of linear algeoraic equations.

Thus, with the aid of an electronic computer, we made a

thorough calculation of coefficients A and B for the thin

airfoil cascades over a wide range of a change in the geometric

parameters of the cascade and profile.' Using these materials,
one can easily sclve the direct and inverse problems of the
airfoil cascade aerodynamics in a potential flow of incompressible

fluid.

As the denseness of the cascade is decreased, the velocity

induced on this small arc by the vortices located on the other

small arcs decreases and disappears in the extreme case of a

unitary small arc, when the induced velocity is determined only

by the vortices located on the small arc itself. Now, assuminp

that the vortices are not on the unitary small arc but on its

chord, we obtain the following expression for the velocity

'See footnote 2 on preceding page.
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induced by the entire system of vortices at point xl of the

--chord:

(x) AX

Limiting ourselves only to the slightly bent small arcs, we

assume this velocity calculated on the airfoil chord to be equal

to the induced velocity at the corresponding point xI on the

small arc surface. If, furthermore, we limit ourselves also to

the small angles of attack, then the condition when the normal

velocity component on the profile is equal to zero, which

expresses the condition of its continuous streamlining is writter

as:

Here, on the right nide, is the derivative of the small arc

coordinate along axis x, which coincides with the airfoil chord.

As a result of the solution of an integral equation with respect

to y(x) with the aid of trigonometric series, we obtain the

following expression for the lift coefficient of the slightly

bent thin profile:'

2r=2-(At + iv).

where A0 and A are coefficients of the Fourier series

A. ( '--_. 1,I A, ady- cos I dl;,

'See Glauert N., The Alrfoil and Prop Theory. Gostekhlzdat,
1931.
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tI
and 9 is a new Independant variable determined by the equality

-= ( Cos

For a flat plate we have

fl== and ej,-2x.

This expression coincides with the formula given In the

preceding paragraph.

Knowing the values of coefficients A and B for this cascade,

according to (50), (51) and (83), we find'

c. - 2( - A)ctg ,-- J sin,. ,,
c.= -[(I -A ctg' , + 2AP ctg q,- MJ sin' Pp

and consequently

For the dense diffuser cascade of thin strongly bent pro-

files Fig. 10.25 shows the dependences of the coefficients of'

the resultant of forces on the angle of attack

R R:.- ,~ , i c,=-y.

With a fixed velocity value w. of the incident flow the

value of coefficient cR and, consequently, also the resultant

of the aerodynamic forces applied to the cascade profile at a

certain relatively small angle of attack reaches a maximum value.

'Since the flow is potential, we assume that F, - 0.

688



It has been indicated earlier that for a unitary profile

the presence of'a maximum of the resultant always presupposes

---the development of intense flow separation from the upper profile

surface. This is why such critical angle of attack of the

isolated profile is frequently called the separation angle of I
attack. A different case is in the cascade. Here, as we see,

achieving a maximum by the resultant is not necessarily connected

with the flow separation, but occurs also during a continuous

potential flow around the airfoil cascade.

This is explained by the fact that the cascades composed of

airfoils with large camber operate at very large aerodynamic

angles of attack reckoned from the direction of a noncirculatory

flow.

Thus, for instance, in the case given in Fig. 10.25 the

direction of a noncirculatory flow (Fig. 10.3) forms the angle

and with zero angle of attack (i - 0) the aerodynamic angle of

attack is equal to 450 . The resultant force reaches a maximum

value when i - 70, which corresponds to the atrodynamic angle

of attack a  520. The possibility of a continuous flow around

the profiles at such angles of uttack is connected with a

specific nature of the flow in a very dense cascade.

Fig. 10.25. The dependence
of dimensionl-:' coefficients
c and c on the angle of

attack for a dense cascade of
thin small arcs; s 650 41--50'.

1 -- 9 "ii -11117 ,
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it should be noted that the use of lift coefficient c impedes

the determination of the ciitical angle of attack; in this case

the value of the raesultant is referred to the dynamic head calcu-

lated by the geometric mean velocity pT, which does not remain

constant with a change in the angle of attack and fixed value w1.

Let us now examine certain problems which pertain to the

streamlining of airfoil cascades by a flow of viscous Incompress-

ible fluid, in the case of the diffuser cascades. The latter

is connected with the fact that in the decelerating flow

characteristic for a diffuser cascade, conditions are created

which contribute to earlier boundary-layer separation. In fact,

these situations lead to larger total pressure losses in the

diffuser cascades An comparison with the convergent in which the

ac'!elerating flow prevents the boundary-layer separation.

The first experimental study of the flow around cascades by

an air stream at low velocities was done by N. Ye. Joukowski Tn

1902 at the laboratory of Moscow University. The tested cascade

of plates was connected to the aerodynamic balances which were

instrumental in determining the lift coefficient of a plate in

the cascade.

At ti present there are many experimental data obtained as
a result of a systematic study of the diffuser cascades,

which make it posstble for us to solve successfully both the

direct and inverse problems of cascade aerodynamics. In tnese

'Howell A. R., The Hydrodynamics of the Axial-Flow Compressor.
In Coll. of "Development of Gas Turbines," under the editorship
of V. L. Aleksandrov. B. N. Vol., MAP, 1947.

2Bunimovich A. I., Svyatogorov A. A., Generalization of
Results of the Study of Two-Dimensional Compressor Cascades at
a Subsonic Speed. In Coll. of "Bladed Machines and Jet
Apparatuses," las. 2, "Mechanical Engineering," M. 1967.

'Komarov A. P., Study of Two-Dimensional Compressor Cascades.
In Coll. of "Bladed Machines and Jet Apparatuses," Iss. 2,
"Mechanical Engineering," M., 1967.
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experiments, one usually measured the velocities and angles

ahead of and behind the cascade respectively and a direct measure-

ment was made of the difterence in total pressures. In a number

of cases, pressure distribution along the profile surface was

also determined.

We should bear in mind that .n these experiments, just as

in the majority of others, the flow direction behind the ascade

was determined in the immediate vicinity of its edge, where it

is still nonuniform. Therefore, for determining the effective

deflection of flow by the cascade, using the measured velocity

distribution one should find the direction of the equalized flow

according to (28). In the case of the continuous angles of
attack this direction can be determined by the parameters of the
boundary layer on the trailing edges of profiles.'

Figure 10.26 shows the experimentdl dependences obtained by

A. P. Komarov for losses ; and angle of turn A8 of the flow in

the cascade on the angle of attack. It is evident that at first
the dependence of the angle of turn of the flow on the angle

of attack is linear. Then, at a certain value of the angle of

attack, usually called the angle of separation, the value of

the angle of flow deflection by the cascade reaches a maximum
value. An intense flow separation from the upper profile surface

starts at this angle of attack and the losses increase con-
siderably. A further increase in the angle of attack leads to

a decrease in the angle of deflection, accompanied by an intense

increase in losses.

Another characteristic angle of attack is that at which

the total pressure losses in the cascade become minimal. In

10inevskiy A. S., Study of the Aerodynamic Characteristics
of Airfoil Cascades of the Axial-Flow Compressor. Author's
dissertation abstract, 1956.
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this case the flow direction far ahcad of the cascade is close

to that shock-free, i.e., to a direction at which the branch point

of streams during the flow around a profile coincides with the

point of its maximum camber.

I I 1

Fig. 10.26. Dependence of the loss factor, angle
of flow deflection and quality on the angle of'
attack for the airfoil cascade with c - 10;
b/t - 1.0 and 4 - 500, i1 - angle of attack with

minimum losses, 12 - angle of attack with a

maximum cascade quality, 13 - angle of attack

during a maximum flow deflection by the cascade

(separation angle of attauk).

To evaluate the aerodynamic perfection of the airfoil cascade

one can usel the concept of quality K of the cascade (not to

confuse with the quality of profile in the cascade)

Here Ru is that useful frontal force in order to obtain which

one uses this cascade, and Fa is the axial force whose appearance

is connected only with the irreversible total pressure losses

1S. I. Ginsburg, Elements of Gas Dynamics of the Axial-Flow
Compressors and Turbines. Chapter IX in the first publication
of this book. The Gostekhteoretizdat, M. - L., 1951.
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I
in the cascade. The greater the value of K, the more perfect is

the cascade. In an inviscid flow the losses are absent, axial

. .. additional force disappears and K

In certain instances it is convenient to use the value

called the inverse quality of a cascade:

I _ P4

The quality of the cascade predetermines the efficiency of

the elementary cross section of the rotor of the axial stage

in which this cascade is being used. The cascade quality

maximum corresponds to the maximum of the efficiency.

According to (4) and (32), the quality of the cascade

and, correspondingly, inverse quality of the cascade is expressed

in terms of the drag coefficient value and the angles f entrance

and departure values

At a certain value of the angle of attack i =i the quality 4

value of a given cascade reaches a maximum. Such a system of

flow around the cascade is called optimal. In the general case,

the system of minimum losses and the optimal system do not

coincide with one another.

An increase in the optimum angle of attack i2 observed in

Fig. 10.26 as compared with the angle of attack i of the minimum
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losses, is due to the relatively flat nature of dependence (i).

Because of this, the increase in the angle of attack, which leads

to an increase in Lwu and, consequently, also an increase in

circumferential force Ru , will have a slight effect on the

increase in losses, hence, also on the additional axial force P

As a result, the numerator cf the expression for v will, up to a

certain angle of attack, increase faster than the denominator,

and, correspondingly, the point of the maximum quality value

of the cascade will shift to the side of large angle of attack

values.

With an increase in profile camber the dependence of the

loss factor on the angle of attack becomes steeper and, as a

result, there is a convergence of both extreme points. Beginning

with the angle of profile camber e 600, the angle of attack

which corresponds to the minimum of losses is virtually

coincidental with the optimum angle of attack.

The degree of deceleration of the flow in a two-dimensional
diffuser cascade and the corresponding pressure gradient value

or, in other words, the aerodynamic load factor of the cascade
can be compared with those in equivalent two-dimensional diffuser

(Fig. 10.27) whose lateral sides are equal to the length of the

axial profile arc and the areas of inlet and outlet cross sections

are equal to the corresponding areas of the examined cascade

at a given direction, the flow advancing onto it. The central

angle a of such equivalent diffuser of a two-dimensional

cascade is determined from the relationship

si P.s -- jlt

where S is the length. of the axial profile arc.
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Fig. 10.27. A diagram of transition
from the vane diffuser channel to the
equivalent two-dimensional diffuser.

For the slightly bent profiles It is possible to assume

that S =b. Under this condition we have

qii * - sin P. sii A,

The diffuser angles used In practice are small, therefore,

it is possible to assume that

-2 I . ~I~ (87/

:t is important to note that an equivalent two-dimensional

diffuser is determined not only by the angle of expan~sion but

also by the length or value of ratio n /n. This fact is con-

firmTed' by tne data of experimental determination of the expansion

'Polsin I. , Stromungsunters an e:irnem ebenen Diffuscr,
Ingenie' - Archiv, H-eft 5, 1940.



angles of a two-dimensional diffuser, at which a flow separation

occurs, depending on ratio n2/n.

The relative length of channels with constant cross section

is usually characterized by the ratio of channel length I to its
width n. For the channels with variable cross section, the

characteristic value is the average value of its width

n 1 (nI + n2).

Accordingly, for the vane channel we obtain

and, therefore, its relative length can be found from the following

expression:

S=-- = ! 7 (sin ,+ sn

The angle of an equivalent two-dimensional diffuser and its
relative length determine the maximum aerodynamic load factor of

a two-dimensional diffuser cascade, which is achieved at the so-

called "separation or critical' angle of attack when the angle

of turn of the flow in the cascade reaches a maximum value.

This Is evident from the examination of Fig. 10.28, where the

results of the calculatior; carried out by Ye. A. Lokshtanov are

plotted for dependence a (T) on the boundary of a continuous
K PIflow around the cascades according to the experimental data of

Howell' and also shown are the experimental results of blowing

of the two-dimensional straight diffusers, reconstructed in the

same manner.

'Howell A. R., Hydrodynamics of Axial-Flow Compressor.
Col. of "Development of Gas Turbines," under the editorship of
V. L. Aleksandrov. B. i. Vol., MAP, 1947.
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Fig. 10.28. A comparison
of dependences a a f(T)

for two-dimensional dif-
fusers (1) and for diffuser
cascades (2).

The comparison of curve, cn Fi . 10.2E shows that the

dependence q c (7) obtainei for critical di tion of the fl : in

diffuser cascades is virtually completely coincidental ",Ith

the curve corresponding to the onset of stqble flow separatIng
in a two-dimensional diffuser.

It is known that with a known valuc- of the area ratio th'.':

is an optimui expansion angle in a zitrai <,' diffusEor at wvlich
the total losses co:m.pos-d of the lz.e, d, to frieti..n arc -,'ortex

formati on achiev*'e a rIni;u:' value. "ienc-c;, i s r!. ossible to

assume that according to expresslon o'r ,v the optlmurr cascade

density value should depeand only or; anf, ler 32 and S,. Actually,

the results of the (Aerir, e:,U vV.'dy cf .ascades Inlicat', the
existence of su,,h a . . .S ,.. .Le sene5s .r, creascs i.

comparison wIth its o -m ,'.'a vac, thc: nceae In losses due 'c

friction exceeCs the deerea'..en lr. os : L., thr- flow
s ep ara t "1. ''i, ?- .;;i Je:., s- r.rn -' t-.. on p(. z ite is ot s e rve

Qualitatively, the v'r',- phf:nomena .- :' a.z) in a twu-drensi!orn,)

diffuser when Its >rh ohanr-es in The inlet Cr;" out let cros

sections of the giecr, t .' E ,

change in the expa ,r " .Y,:i, qualitat'., 'ie



dependence cf optimum denseness on angles 82 and B is found i.

accordance with the existence of an optimum expansion angle in

a two-dimonsional diffuser; however, the corresponding value

does not prove to be constant for different cascades. This

indicates that the losses in an equivalent two-dimensional diffuser

differ from losses in the cascade. The latter is connected with

the fact that the examined equivalent dimensional diffuser

determined by the flow parameters ahead of and behind the cascade

does not permit one to make a sufficiently complete consideration

of the peculiarities of fluid flow in the vane channel. With

small angles, especially in cascades with thick profiles, the f'.w

is first accelerated, reaches maximum velocity Wmax in the nar-
rowest cross section of the vane channel (in the throat) and

only then the deceleration of the flow begins. In this case
the diffuser effect of a cascade should be characterized by the

angle of expansion and the length of an equivalent rectilinear
two-dimensional chtr,&le which corresponds to the second diffuzcr

vane channel section. The expansion angle cf this part of the

channel is

Here Fr - width of the narrowest section in the vane channel,
while Sr - arc length of the center line of Its diffuser sectlor:.
Assuming approximately for cascades with large settInF ai;gIe

,-b F,-tsinp,-c.j

where r - anxle or slope in the center line in the throat of
the vane channel, and c - maximum profile thickness, we obtain

M oo " Wn '+ T

With sinall separation-free angles of attack the losses in

the cascade arise primarily on a convex, proftlij surface havinp,

698



the highest diffuser factor, which has a relatively thicker
boundary lhyer. In accordance with this, one of the most

effective parameters which characterize the losses in the ind!.ca-
ted flow conditions is the coefficient of diffusivity

which estimates the degree if deceluration of the flow from a

maximum velocity wrax n on a convex profile wall to flow

velocity w, at the ,xit from the cascade.

Fig. 10.29. Dependence of theIll relative v;alue of the rsenturmi
-I - -- losn in the wake behind the

pro~fi 1' tn the ,asc, .:. an
- - (Z'.T,'s:- . ,' .I.e of' htt c on

l l f u: .... cou ffi, .',ent D,

'I g2. f I/ /,# g/ distribution of prezsure alonw

o the piro'f le) ,

In a number of cases th-j diffuo'vlt:y o!' cascades Is als:

char'iet.:'ized ty cf;' I J'.1 ent I D ca I C, t h ota I d f ff':si v Iy

cupf!1 ;'-nL:,,:mil if 09.' 
. n :

fin 1 b ",

Fl tu r,' ]02. 9 n),",.' t:) ,::'..,"il:'n,. ' '-v.l ',n"'e of t:~e rel a . wl

th' c-.n'~ s c1 tf, c,.r'.:,.,; 'j.: s r, t! e waI,' berI.:,id t e c a ,),;,

(t - Vt , . , r"." t he i u z' i r, I .t a 1 1) l .'ss u re -r,

the i ff..'",'v , tc r V' i'- p,.sur

L ,I ( .A 1 ' ., I I'nj.'cr , ;. n: I lc'I , i , s,., ril 'Th i:n
Fa c l o Y z, F:. 'r; . rr, i , I..:; s a:.i I d .1', :. r, n: 5 a.i|, 'ai- r'o1, rb In
hxil -, ITlow-cornpi' ::;,i h1 :io V. ,!,.: . :;A"A R:. 5 D9 , 175 ,:

•~ ~ ~~~~a-o 1 , i : :: .. :i- I i r
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K-) j
distribution on the upper profile surface. These data are obtained

on the basis of the results of the experimental study of cascades

3 composed of the NACA profiles over a wide range of change in the

* denseness, angle of curvature and angle of entry.' It is evident

* that there is a universal relationship between the relative

thickness of the momentum loss and the coefficient of diffusivity.
.. .. --

With an increase in the diffusivity coefficient we observed an

increase in losses - at first a very gradual, and then more

intense. With high diffu.ivity coefficient values (more than 0.5)

the boundary-layer separation on the convex surface causes a
rapid increase in the relative momentum loss thickness. 11ith

zero value of the diffusivity coefficient the momentum loss

thickness does not equal to zero. This is due to presence of

losses due to friction and, to a lesser degree, also to the
effect of the finite thickness of the trailing edge.

The results of the experiments carried out on cascades

composed of a different kind of profiles, also indicate the

presence of a universal relationship between the losses at the

optimum angle of attack and the value of the total diffusivity

coefficient D.

§ 9. Streamlining of Airfoil
Cascade by a Subsonic Flow
of Gas

A suosonic streamlining of a cascade composed of subsonic

profiles, Just as the subsonic streamlining of a unitary profile

examined above, is subdivided into two types - subcritical and

supercritical. it is obvious that value MIK p which corresponds
to the critical incident flow velocity at which, somewhere on the

1Herrig L. Y., Emery, J. C. and Erwin J. F. Systematic
Two - Dimensional Cascade Teats of HACA 65 - Series Compressor
Blades at Low Speeds, NACA RML 51031, 1951.
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profile, a velocity equal to the speed of sound arises, which

ultimately depends on the value of highest rarefaction on the

profile (usually, M is found from condition d /dM1  0.1).

The experimental dependence curve of MI1 p on angle of attack I
is represented in Fig. 10.30 for a typical diffuser cascade.

t. It should be noted that for a profile in the cascade the

effect of boundary lawyer on value M is exhibited to a con-

siderably larger degree than for a unitary profile. This Is due

to the limitedness of the flow during a flow around a profile

in the c-ascade.

The scecia! features of the flow are exhibited most promi-

nantly at supercritical velocities. When > r-11 a supersonic

zone is formed in the cascade vane channels which increases in

proportion to the increase in number 1I.; and which is consu.mated

by a muc", more cop,. system of shz cko!x tharn that of a uni tary

profiil as a resu]t of their reflection fro-n the adJt-cent surfaces.

Unlike the unitary profile for -hic! the incideni,. flow

velocity can )-? as high as desircd, the !" ...: avounA a eascai.

is ilited by a certain maximumr vach n i!.Ter

[<

The onset of. critical ccondition, earlit ,r ,.. t .at of maximun

flow a. .. . , t ' of low

parameters aioni: the ics! r;eeti-r; :, t , .ane ch:.nnel.

constant ve -1ct.: ni tn-ale reesu-,e I ri the n;Jrw cross s oticr.

of th' chrnnel both th~e codit!ors hA-l1 tc r simultae, .

t.:.e s .r, n2n:. . , :,. uS i,-_' Fir. ii:id: t!-r 1

suppoitI n. this c w , we :i 11. o:u:,e *.hat In the n arro
cross secti',n.,"throat," the 1'1ow i, Uni r-" " i t

does not dcoer! c r the :,n-e of ttt-.1 .ov "r,:- t.)a .. . t

of ccntinulty, .e L- ,"e

I-

-
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]

.-.ere '% = pOr/P1 - pressure coefficient defining losses in i
total pressure in the inlet cross section up to the critical

cross se _ticn whose width is fr' and Ir is the flow velocity

coefficlent. Assuming that X 1, from the equation of continuity
r

.1e obtain the following expression for determirnri the maximum

flow velocity ahead of the cascade:

For a. sentropic flow (a., 1), we have

From the last expression it is evident that when

ircsin -~or rF,= in N11 %,

the velocity of a subsonic incident flow is unlimited, and for

the examined case of subsonic flows M * 1. The limitation'Imax
on number M1 in the absence of losses develops at large angles

3, when the stream area F1 which enters the vane channel exceeds
the area of its critical cross section fr' In this case an
increase in angle B1, i.e., a decrease in the angle of attack,

should lead to a decr'ease in number r1'max' The results of the

experim-ent, given in Fig. 10.30, confirm this fact. The 2 onslder-
able limitation on number 1imax observed in the experiments, with
large angles of attack when the area of the entering stream is

less than that of the critical cross section of the vane channel

Is due, first of all, to the effect of losses.
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Fig. ~ 10 -30 xermnaldpndne
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i-,e ~ ~ ~ an c on angle of th prxmt ehd o siatki to

effz ct of compressiility during a subcritical flow Is based

on the hyp'thesis of "solidification" of the flow lines menti.-ned

* earlier, i.e. , under the assAMPtiOn that the flo,.: 2 ~ in a

compressible ga-. flow coincide with the *'low. 11nes o.1 lrcornpre -

"Yzr ',he airfoil .,ts-iadt this, in pam.mareariF that

at fixed aneI.P the flo-.i direction behl1 nd the ca--sca± shou1.i

nidn~don [number M'1 <l LIE otherL v.,ori UpenJ1i!fl

re~~ n t~ smeas with a flo o inc. .preszible fl"A-

ar -undi thl.s :,ascade.

L~>r z,.T ~suo the eff' u- c G re?5 s s iy o r t.o

v a Iu c ~r Y ea mpe, f the -, 1r ctum fer e. 1a I -r'c.r Is :',.nnectedI ~ ~ rily i;tK- n tnt, a.-. al ga-* '!elocll' / cz:mponen-' behind tho.
C a71 ., .1 >%poii - ,r II rv- t'or .f flow thro-ugh t;IF-e cas-,.ado

thE- axla! .'t-?~yLhlrnd it either ir i'eacr's (Cor Uiei',ent

cascade) .c'i r-trfue ca.scade). 1r ac-cOrdanoe..P

th~ t h -~ :1 r, .thcpf . i~ value boehlndi

~'it : ,~it ,:i fixci o ;wc va~l-ue ai-iazl

-or' th a t'u nir' 'i:arge !:; vall.i, i , :-~ h i ,
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At subcritical velocities it is possible, just as in the

case of a unitary profile, to replace the gas flow around the

cascade with the flow of incompressible fluid around a certain
equivalent cascade. Two methods of construction of an equivalent

cascade are possible which are based on the analysis of the

equations of gas dynamics.' In view of the simplicity of

physical substantiation of these methods, let us describe them
without resorting to one analysis of the equations. Let us first

* consider the simplest case - a cascade of symmetrical profiles

with zero stagger and zero angle of attack. Treating each profile

in the cascade as an isolated profile, i.e., increasing Its

transverse dimensions by I//T"T, times we obtain an equivalent
cascade of the same pitch t, but composed of profiles having a

*larger relative thickness:

eg=

The same effect can be obtained by proceeding to a more close-

spaced cascade without deforming the profiles, for which it is

necessary to change the distance between the profiles, calculated

in the direction of the normal to the incident flow, by V17 .

In the case of symmetrical profiles with zero stagger and

zero angle of attack, the same result is obtained by a correspon-

ding change in the cascade pitch:

Both Indicated methods for constructing an equivalent cascade

are entirely 'Pqual in this case when the profile thickness is

small in comparison with the cascade pitch. Let us note that the

'Sedov L,. I., Two-Dimensional Problems of Hydrodyna..ics arid
Aerodynamics. Oostekhizdat, 1950.
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(-9 second method is more suitable for the analysis and calculations,

because in it the profile itself remains unchanged. Let us now

consider the streamlining of the cascad . with asymmetric profiles

and values of stagger and angle of attack which are different

from zero, however, limiting ourselves to the case of thin

profiles and small angles of attack. Let us introduce a new

concept - aerodynamic casaade pitch h which is equal to the

distance between two straight lines drawn through the correspon-

ding points of the adj$acent profiles parallel to the geometric

half-sum (w ) of the entrance and exit velocities. Applying the
in

second method of construction, we obtain an equivalent cascade

(Fig. I0.3l) conststine of the same profiles but with a smaller

aerodynamic pitch:

here value M is most simply calculated from the known transfer

formula

2

/ -

where

A chanro in the a'erdynamic pitch leads to a change in the

geovietric parameters of the cascade. Designating all parame'ers

which pertain to the equivalent cAscade in the flow of inconoress-

ible fluid by dashed lines, we Vind the following from
triari~les b01"l D  a..d 5Bi D 'Fig. 1031)

- D 1', t) hi

from which

7o



and, consequently
-At ( --, ) -- I -- -W'i Ig ( 0 -,

oiVo

' "

Fir. i0.31. The original airfoil cascade in gas and
its equivalent cascade in an incompressible fluid.

Here Bm is the angle between the direction of velocity w. and the
front of the cas-ade. After determining from the last expressicn

setting angle $1 of the equivalent cascade, we find its pitch

t' :'rom the folloing obvious formula:

ho LI, (S - g)

after dividing both sides of this expression by the airfoil

chord, which according to the condition of construction

is unchanged, we obtain the denseness of the equivalent

cascade:

7 0C



[._) Knowing the geometric parameters of the equivalent cascade,

we determine the angle of attack when it is streamlined by an

incompressible fluid, at which the lift coefficient has the

same value as in the original cascade, for which we use the

relationship given above for the isolated profile:

Based on linear dependence between the angle of attack and the

lift coefficient, it is possible, just as in tne case of a

unitary profile, instead of calculating the change in the angle

of attack when c = const to determine the change in c when

a const.

Let us now examine some results of the systematic experimental

studies carried out by A. I. Bunimovich and A. A. Svyatogorovl

on subsonic cascades over a wide range of change in numbers MI

and the angles of attack.

With an increase in number MI the losses increase and the

nonuniformity of flow behind the cascade increases accordingly.

Therefore, when using the results of the experimental studies

of cascades at large subsonic speeds one should consider even

to a greater extent than with low speeds, the supplementary rota-

tion of flow during its equalization, which leads to an increase

in the angle of lag in the diffuser cascade when z < r/2, i.e.,

to a decrease in the effective angle of deflection of flow by

the cascade.

'Bunimovich and Svyatogorov A. A. , The Aerodynar ic
Characteristics of Two-Dimensional Compressor Cascades at igh
Subsonic Speed. In Coll. of "Bladed Uachiries and Jet AoparatuFes,"
Iss, 2 "Mechanical Engineering," 1967.
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Fig. 10.32. Velocity distribution in the
vane channels of' the cascade with
b/t =1.3, $= 62.60 and e = 27.60 with
the angle of attack I = 0 and different

numbers M 1 of the incident flow.

In the general case this supplementary rotation of flow can
be found from equation (29), using the measured velocity distri-

bution on the edge of the cascade; for the separation-free

angles of' attack it suff'ices to know the parameters cf the

boundary layer on the trailing edges of profiles.'

Figure 10.32 shows the results of' meanured velociti~es In

the cascade vane channel with a zero angle oC attack. c- s e da a
are presented in the form of curves of constanc V' numbers.

'Refer to references on pages 690 and 691.
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When 1.1 - 0.412 the flow is essentially subsonic. Maximum

value M - 0.55 occurs in a small zone on the upper profile
surface near its leading edge. With an increase in the velocity

up to MI a 0.614 the flow everywhere still remains subsonic;
maximum flach number in the zone of increased velocities does

not exceed 0.9. A further increase in the velocity (M1 - 0.787) A

leads to the appearance of a relatively noticeable area of suner- i

sonic speeds. Thus, for the examined cascade critical number

ri. at this angle of attack is between the values of' numbers

M1 = 0.614 and 11 = 0.787. It is interesting to note that in
the whole speed range examined the location of the lines of

constant velocity values and, in particular, the location of the

area of increased M numbers changes slightly despite the appear-

ance of supersonic speeds with M1 = 0.787.

The picture changes sharply when number r, of the incident

flow becomes equal to 0.82. In this case the sonic line (i = 1.0)

intersects the entire vane channel, settling in the inlet section.

Thi-s means that the choking of cascade has occurred and n,.:rer

0.82 is the maximum Mach numbei of this cascade at the

zero angle of attack; behind line t! = 1 the flow is ac(,eleraed

to values t,! = 1.2-1.25, then decelerates and, before it leaves

the channel becomes subsonic. As a result, there is a subsonic

flow with essentially uneven distribution of velocities behind

the cascade, which, as this was already indicated above, leads

to an increase in the angle of lag, i.e., to a decrease in the

effective angle of deflection of the flow by the cascade.

With the chocking of the cascade the Mach number reaches a 2,

maximrum vabue and rio longer determines unambiguously the magnit-ude

of losses - the cascade characteristic becomes verticd!

(dC/d;.! 1 = -); also, the angle of deflection of the flow by the

cascade is decreased (Fig. 10.33).
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- The dependence of

67 /ZJ.--. loss .actor and the angle of
' deflection 6B of the flow on

"7 . number M at different angles

CVJ 4 of attack for a diffuser cascade
-c = 150, b/t = 1.3, s- 62.60):

-i -2.5; 2 - 1 00;
3 z +2.-5; 4 +50;

- -- 5 -- = * -

For this flow the pressure ratio behind the cascade to its

value ahead of it p 2 /PI becomes the determining parameter.

As the counterpressure decreases the acceleration of super-

sonic flo; increases and, consequently, also the intensity of

its deceleration, as a result of which, there is an increase

in losses. The opposite phenomenon is observed with increased

counterpressure.

The dependence of the loss factor in the cascade on the

angle of attack at different M1 numbers Js constructed in

Fig. 10.3 4 . The angle-of-attack range in which the loss factor
changes slightly depends on the M1 number and decreases with an

increase in the latter. With large M1 numbers the cuArves of

the loss factor dependence on the angle of attack are characterized

by the presence of a clear minimum which corresponds to the

maximum value of critical nujt.ber M p. As shown by the analysis

of the experimental data, at th.s angle of attack the strc m

area ahead of the cascade, necessae.y for one vane channel, is

equal to that of the narrowest cross section of the vane

char nel.

710



- 7 Fig. i0.3 , The dependence of -
loss factor on the angle of

- attack at various M, numbers

for a diffuser cascade (c u 27.60
- - - - - b/t 1 1.3; *- 62.60).

¢-7

We examined the results of the experimental study of the

diffuser cascades used mainly in the axial-flow compressors.

As shown by the experiments, the convergent flow pattern in

the cascades of axial-flow turbines permits one with a proper

selection of the profile and cascade parameters to ina'Are a

continuous flow in a certain angle-of-attack range and, as a

result, to obtain a smooth acceleration of the flow up to the
speed of sound at the exit from the cascade.)

§ 10. Streamlining of a Supersonic
Airfoil Cascade by a Gas Flow
with Supersonic Axial Velocity e s

Component '

During a supersonic streamlining of cascades composed of

ordinary subsonic profile with rounded leading edges, a curvi-

behn wichds faxialnflo subnc permis. Howner wrthpoer

linear shock wave is formed ahead of every profile (Fip. 10.35),

result, whio otin a smontho aceleraoniostees lowe ptoutheth !

0s eed aga iinncreases s that supersonic speeds are obtained

o See for example, Chapter Vi I in the preceding publiatI n

of this book. Gostekhte,;retizdat, M. 1953.
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FiP,,10,35, Diagram of a super-
soni fow around the airroll
cascade with a blunt leading.
edge.

almost everywhere on the profile surface, In a dense cascade

the individual shock waves forned before every profile can mrve

into one shock wave of periodic nature. Lhock waves lead to :or-

siderable losses. To avoid this, the cascadau for supersor|ic

flows are compo6ed of supersonic profiles with a sharp leadinp

edge which does not ca'ne a curvilinear wave in the d'sivr,ed

conditions of flow (rip. 19.36).

In analyzing a supersonic stremlinirn of cascades, a dint'i. -

tion is made between the cases when the axial velocity corponer'.

of incidonL flow w la Io gre&,,,er and !cu than the speed of scunrd.

When w,, I a, the characteristics aro drrctfid inslw., the

cascade, i.e,, there is no Interfc:'-ncn between the ccLical'4 ani

incident Flow (Fis. 10.Th) and, 'therefore, it i. r'uff c!en1; tO

examine only the flow In the vane c}ianrelm arid in the im.diat-

vicinity behind the cascade's edpe.
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Mach waves

Fig. 10.36. Flow "bout a profile
cascade with acute leading edge
with supersonic axial velocity
component.

These flows are defined not only by the parameters of the

incident flow - by the 1 number and by angle of attack i as

tnis occurs, for example, during a subsonic streamlininp of the

casct es,' but also by the counterpressure, i.e., by pressure

value p2 in a cross section far beycnc' the cascade. The, dirnensi .n-

les vulue of pressure ratio c = p2 /pl ahead of and behind the

caacade hus a certain range of possible values, which depends

for this cascade, on the parameters of the flow adv&ncing onto

1,1rrnum value c is determined by that minimum value of

vounterpres~ure p.m, rt which the disturbancea begin to affect

the f'2ow Ir. thr, cutl ".'. c.r of the cascade's vane channels

if this value is exceeded,

'.×x(luding their chA.vni, corditlorns
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-,he maximum counterpressure (0_max) is deterrined by the

;; chevement of that P2max at which a further oressure increase

leads to the disruption of the flow at an infinity ahead of

the cascade.

Let us first examine the streamlining of cascades at sinail

angles of attack, which are composed of slightly bent s,personic

profiles.' In this case, as this has already been indicated in

a sinmilar statement of the problem in S 7, the d.turbances

introduced into the supersonic flow by the profile are wea:, and

therefore propagate only in the area limited by the character-

Istics - Mach waves from sharp leading edge (Fig. 10.20). ;n

accordance with this the interference between the cascade pro-

files will be determine! by its density. When the cascade

density is less than or equal to critical density_ _ t

defined from the condition that the Mach wave leaving the leading-

edge of a given profile passes through the trailing edre of

the adjacent profile (rig, 10.37a), interference between profiles

is absent - they are streamlined as though one. In this case

interference between Mach waves from every profile begins only

after the edge of the casca,e (Fig. 10.37b). As a result of t1-,is

interference the velocity field after the cascade up to i±fin y

turns out to be periodic, not only along the front of the

cascade, but also along the flow.

'Keldysh V. V., Airfoil Cascades in ! upersonc Flow. In
the Collection of Theoretical Works on Aerodynamics.
Oborongiz, 1957.
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Fig. 10.37.- Flo%, about Fig. 10.38. Flow abou.t cascade3
cascades of thin weakly bent of thin weakly bent profiles
profiles ,..ith small angles of at small angles of attack with
attack: a) in determining density greater than critical:
critical density; b) flow a) sections of profile in cascade
when b/t < (bit) .outside zone of oerturbaticn o

P adjacent profiles; b) reflection
of Mach w;ave v;ithin orofile
cascade.

Thus, t'ne velocity field after the cascade will be period-',-

in two ways.

When density exceeds critical density, only the sections

of the profile (Fig. 10.38a)

C =Z sill 3 [cig (I + ctJZ 01

A Og

adjacent to its Iead~lng edge are out~s' hezn I f prLrat

of adjacent profiles. In these sections the pressire will te

the same as on an iE-1ated profile, a nd therefore can *,e fs, nd

from -,e formulas pi-.en in S6. Pressure dlsFtrbutx~r in the

remaining part of the profile will d--e.rend on the nature of the
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:onsecut!ve reflections of Mach waves ir the surfaces of two

adjacent profiles (Pig. 10.38b). If one assumes that the

reflection of [,ach waves within the cascarde proceeds not from

the contour of the profile, but from its chord, then the nxnber

of refiectioris will be a certain equal to Integer n, related to --
chord length and the quantities c and d by the condition.

0 -- '& --4
b t-:(c ldOn---..

o .-, -:c -I- d (99)

or in dimensionless form

o0 J d. (90)

If A = 0, all Mach waves incident. on a profile from undisturbed

flow will reflect within the cascade 2n times (Pig. 10.38b); if

0 < A < c + d, the number of reflections of the different 'Mach

waves within the cascade will change from 2n to 2(n + 1). The

quantity A can be expressed also in the form (Fig. 10.39)

. Z--d . ia --c -4A- 8d

Utilizing relationships for linearized flow given in §§ 6 and 7,

and after determining with the aid of the Va-h waves nressure

distribution over the profile, ... '. 'eldysh used a series of'
simplifying transformations to obtain the followinig, expression

for the profile lift coefficient:

4.1
i-i :-T ' ( 91 )

where the Poeffi.rt A, depending on A, has the following

values:

. A =., = 3 s- I (
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-J(&.jd-.~A As~X+ -.~(S/d -5 jd 9

2he integrals S and S are taken respectively over intervals c

and d. The index "i" indicates the order of the interval,

assuming that the profile chord is broken (beginning from the

trailing edge) into intervals whose lengths are in turn c and d,

while for the upper contour the length of the first interval is

equal to d, and for the lower c (Fig. 10.39).

/j

Fig. 10.39. Used in constructing the
reflections of Mach waves.

From the Above formulas it may be concluded that, unlike an

isolated profile, the profile lift coefficient in the cascade

depends on its form. The effect of the cascade weaken! in

proportion to the decrease in density, i.e., In proportion to

the decrease in the number of reflections.

When n = 0, according to (92) %.e have A - i,, an!! '.hcr'ore,

the expression for cy no longer depends on the forin of the
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profile and completely coincides with formula (79), obtained in
§ 7 for an isolated profile. This agrees also with the fact that
when n - 0 profile chord b < d, i.e., the cascade density proves.

to be less than critical, and therefore there is no interaction

of profiles in the cascade - they are streamlined as isolated
(Fig. 10.37b).

For a plate y' x 0 and accordinE to (92), (93) and (94) for

cascades of plates

Thus, at a given number M1 and angle of attack i the interference

of plates in the cascade always leadAs to a decrease in the lift
coefficient in comparison with its value for an iso~ated plate
(79). A similar conclusion can bf made also .or the drug±
coefficient, since for a plate (see page 677) j

e, C tg .
I

The power effect of the prol'I]v cascade on the flow Is

determined by the size of tho product c b/t. For a cascade of
y

plates in accoriance with (95) we have

witn A d Gb'' ' =

with d rkt1 tc (96;

with, ctr.mc1 +-d ck'-L -d -- T.-

Here, unlike the usual derne Ub.sonic cascades, the valile
of the product c yb/ alr.,ady remalns criistant, and is strictly
a periodic function of density wi;A. pcriol T a c + J. in this
case in accordance with (88) the r;axlmuum value of the product
c b/t composes
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Similar values for cascades composed of rhombs and isosceles

triangles are respectively equal to

I'M(i ° T - '  -c

In these formulas the quantity c, as before, is the relative

thickness of the profile. According to (96) the minimum value

of c b/t for a cascade of plates is zero when A - 0, i.e., when
y

b - n(c + d). In this case (see Fig. 10.39) as a result of the

mutual interference of plates there is no overall power effect

of flow on the cascade.

Let us recall that all the above conclusions are obtained

by means of linearization of the equations of flow, and therefore

are valid only with slight disturbances.

The application of a known graphoanalytical method' mares

it possible to forego the aforementioned assumptions of smallness

of the perturbations, and to solve the problem of flow about

3n arbitrary cascade of supersonic profiles (with 11la >3) for

any angles by means of consecutive construction of flow in vane

channels and in the space after the edge of the cascade. In this

case the flow in vane channels and, consequently, also the

profile pressure distribution are determined not only by the

parameters of the incident flow, but also by the assigned level

of counter pressure. Thus, for this cascade we can obtain the

dependence of resultant on P2/p, at different fixed values of

M1 and angle of attack i. However, such a method is generally

vei'y bulky, and impedes obtaining general conclusions.

'Kochin N, Ye., Kibel' I. A. and Rose N. V., Theoretical
Hydromechanics, Ft. II. OGIZ, P., 19NP.
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Let us show possible systems of flow about cascaaes in the

--presence of strong perturbations in the example of cascades

composed of the sirplest supersonic profiles - flat plates. Let

us pause first at flow about such a cascade at zero angle o

attack.

If the axial component of the velocity of flow incident on

a cascade of plates at zero angle of a-tack Is more than or

equal to the speed of sound, then with a decrease in the pressure

after the cascade, in comparis..n with its value befcre it,

there is no power effect of flow 'on the plate. This is connected

with the fact that when M = M sin $ >_ 1.0, tho characteristic

at the exit either coincides with the front (when V la 1.0) or

gces beyond the limits of the cascade (when l> 1.0), ard
la

therefore any decrease in pressure pp in comparison with p, ha6

no effect on pressure distribution over the plate.

With a pressure increase after the cascade to a certain

value of P2min' the power effect is also absent. The corresponding

values of P2mn and Ein are deterrned from the condition of

formation of an oblique shock wave on the edge of the cascade

(Fig. 10.40a). In this case the angle of lag is positive and

equal to the angle of rotation of flow in the oblique shock.

With a further increase ir the pressure, i.e., P 2 > P2mTn

or £ > cmin' the front of the uuliq;ie shock passes above the

front of the cascade, and this le-1ds t- redistribution of

pressure in section CB of the iowr.r surface, :;hich adjoins the

trailing edge of the p)ate (Fig. C.onso. Conseently, in this

case there is a power effect of flow on the plate. The resultant

of pressure forces is directed toward the positive direction of

the n-axis. In proportion to the thrott1lin, i.e., in proportion

to the increase in pressure p2 ' p,'tint C moves upstream and the

power effect increases; annie of lar , and angle of rotat!on of
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flow in the oblique shock decrease and the oblique shock becomes

close to a forward shock.

1-
a)

Sb) -1-7 ". C

I

. ' _

J, A 8AI

Fig. 10,4 0 , Flow around cascade of
plates by a flow with supersonic axial
velocity component at zero angle of
attack and different values of pressure

P2 after the cascade: a) at pressure

P2 equal to pressure after oblique

shock; b) at large pressure; c) at
maximum pressure p 2 equal to pressure

after normal shock.
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At ~ ~ - 2 eti alea . the shock becomes -a fo-rward
. :;,;ax

stcand directly after the cuscade ,here is a uniform subsonic
flow (Ftv. 3. ~Oc, drectct verthopite ,.0 . ,with zero)

ang-le of' lag; a f!;rthc.r -Ycra,, In IF (r

co-coar! sonl t1M t hc noc;ima I Ci' £8 U.to be irpstle e.,

the flAow oeccrnes unsltac i.C an'd *e.( nrrnal m3ockr, moigupstream,

makes the, t2iveni flow% impssib-le at Infinity before the_ cascade.
Thus , the valu e oa i. h I o h o , P. j' to al noral s h ock- Is

mra xtally p os s ib c u crrespc'!,''' fn p: c) ofA ma I r; tnr ot hn g

o f a cascade With t:prai nd1ritm:bor.

AtposItive an7Th:; '-;I' at !tie tO;pei surI'acer near the

leadi ng point, of profi.E: A appears a rod iMyer flow, in which

p art -)f the flow w.hich encount. era t';'r p oannel is turned

through an angle equal t-o the angle of at-cack 10.4.~G1a).

The dlcctco thev -e - nr-1at ± i x changen hou

tho same angle In the oblique s hock, going fromg the leadirsr edge

In the lower. o-utface of the d-ade.

The correspondingp pi cture i3 obs, erved wihnergatlve angles

of attack,. (Fit . 81) . In bth cae h lwabove b~roken

line A'C'A", corocosel of a set *s o th-e fro-nt of' the oblique

shock and a se ction of thei chiatrst fInc~dent flaw,

remains :indisturbed anci -ntiorn7 Thi- nwn Is not reta~ ned,

however, at all angles of attackZ.

If hn , !posititvc, ancg-le Q t: tO $52acctot it

exceeds the muixlrnunr.3fi-fr eal T I t~ shoclk

wave,: for a giver;M hnb Pr h acd toipears a curvilinear

'Rerertber that th~ls exa' lihat' on s 1S, aridctwt

the simplifying assumptio. r!:- 's "is, t'y f'orces. in real
flo w as a re Dl f Interactl'r1 i'e' srnek c a .,.,all c--undary
layer of' the vane ohA-.%.nc (w-t ciOrf7sszure 1increase
in shock) separatior de velcpe -nd .after the cascade becomes
nonuni form.



aa

a

ic

i !0.

Fig. lOAl. Flow around a cascade
. of plates by a flow with supersonic
~axial velocity component at different
~angles of attack: a) positive angles:of attack; b) negative angles of

attack; c) negative angles of attack;front of oblique shock coincides with 2
the front of a cascade.

With an increase in negative angle of attack characteristics age

A"C' recede from the front of the cascade, the plane of the

oblique shock approaches it, and at a certain angle of attack
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frnt- the ot.lique shock coincides w-ith thwi frort t~
sc(Fig. 10. Llc) . In this case at the entry To, vane Q, ia n.

U~Ix s steady. The absolute value of angle o' attack ik at

whi'cn :L the assignied values of M and set cascade ancle 5

an olocsckdevelops, which ccin~ides w.ith thc 7 m

-h-- . asoad.e, is deter.ned from the follo wing f i u rlx n

.. . . .. .s th angle tbet,:een the plane of the cllquiE z";rCl..kn

Z:,e d0 t-_-tton of flow onto) a plane wedge with vert.ex a~i

Tt is known that when 11 = cornst, the r,-ependence )(y'1.

mc,,s .however, only the fir7,t val ue is usual-ily Y--ci 7-d.
,,:hi- cor:----sponjs t'-. a smaller increase in *th-~&ipez'

I, thc shk Th this case in almo.st all the range of sh* .int ,ss Pi
-aluies, the v~eiolty after the shock turns out: to be suo.erzonU

(Fig- .. ") Only in the area of large a.gleis of !srtting
'..'eloc.:ity after an oblique shock subsonic. This Is ar: x;l

of rea' ;ion of the second trancl. of the v ]y) d1),: n -Ie n -
w.hich coc'responds ca larger increase in the statlo :'z:.?
it is intereztlng tco not ,'-hat when M> 2 In tie snal1 ar, A of
thp anics of set t irn- c>*., to i I rdn*ard with~" ,~.~*

L *. ve arE two values or the anirle of at!.acs, arx3 pr'cs.- re ir,.r
a't ic he pla~ne of the obli.zue Sn ccC, .21jP w.1,11 :~; w'r

' he ae

The atcove casez of flow ao a cascaucc7 he a- o

a rni~- , D attack occur at nmu coatrrs r
w'~ tn Ting- v.m nrls and1 In th'e spaco- a "Wr Te a;'
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0--

~~~ai 4 1 5 5 O 6 1

Fg 0.12 lwprmtr e'r n fe

cAscad offlt--aes--a----i f h
angl of; tigwe nolqesckaie

destroge 1042 anae Flsbo~ paaetr bppeai an prterur
distribtio caoer thf fa ec plate a fu cingeo ,hiha~e
the value lo th f retutint wh'e an ohb l'ie. Withc ariises m

beyond n the front of the cascade. t ute rerueic'ae

althoughcture ish exbeaert ofarrar:vae' c hnelo eri5tel

before the front u, the fcscae ith v furer~ prtillur :ir:se

alho gh th re is su se .;ntrs rr j;,-1;rj, f he11ec l
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und Is"rbed. Finally, at certain pressure pi disturbances b.F'rj L
-to propagate throughout the entire flow area. This is the

ja~i~i~'pr !,esaure Lt whIch the assigned supersonic flow at irinij y

before th cascade !3 still possiblo.

Let ' u now move on directly to determining the power rfecc-

of ou.erzonic flow on u cascRde.

if '.,e are limited only to searching for the mapnitudt: of

thc r-..ultant, then sunh a problem for Cascades of plat.,s w.4 ,-n
hzs a simple sclut :n in any parvTwhters of inciden t tlc,:

rI asvilpned counterpressure. 'To solve this raoblen it in
sufFicient to determine' the parameters of vLoeady flow far Do./tjn

the cascade in terme of known values of . i and c - pi,/p,.

in this case it is assumed thet the viscosity offer. "

flow aL, ut the cascal- proper i. nogligibly bmali, Ano

friction on the plates can be taken au zero. The vIncosil.,y

effect begins to to pronounced only after the cascade, where

turbulent mixing makes the flow cumpletely balancor, The

balancing of the flow leads to added losses (in compari.s;n W1i),
the losses appearini, during flow about cascade by an invincid flow

of gas); however, it dues not affect the flow about the cascadre

itself and, consequently also the power eff'ect of the flow. nhc-
presence of added losses affects only the value of the static

prieceu-re of the balanced flow -.,, In th ,? cross soction far heyorrI
the ca3cade. The vulue of t.e reaul'. ant. f'rc(. appllod tc the

profl in in this case will not char,;,

-, ( L Ion(:.'.fl. ,
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The zero friction on plate is identical to zero tangential

comporient or the resultant force

R, o= R. sin - R. cos b =O,

which, taking into account expressions (42) and (48) can be

written in the form

._]2 cos1, Cos On to
h 2 i(

,,,m [tsin OS--) (197) ..

This expresson is a supplementary equation, which makes

it possible P.s will be shown later, to close the system of

equations for a cascade of plates, to determine the parameters

of the balanced flow far beyond it and, In the !act analysis,

to find the value of the resultant rorce on the profile.

Using the gas-dynamic functions (see Chapter V), .:e have

Pt p Pis Ps ria

The continuity condition (44) gives

(r) -sin ) (9)

or

y sin (-_) (9 ?
y .)sin D - Z

After nub&tituting 1r, (99) tl */c r for y') 2 ) -1:e

will obtain

) sill (& .- 7t)-d=O, (100'

"+ .



in -a :crdance with this the condition of zero tanvential

'.~.~s written as flos

1,-: e desi;gnates the rigzht side of Ixprossion (12.:hil:--

,.- c-: d termrined by assigned quantitiea ) , i, and

E-liminating X. from (10?) and (1~03), we otta.'n a quadratic

Eqaiation relative to the tangent of the an)71e ofl lag

ig'a-2btgt~c==O. 2O

He re

LCI~ k +± 1 8 - .+ I I
(k 1) j.* ct eFA-t

in the case of zero anglo, of' atac'Z

?I4. ly n:) (

CT 2b -I-I 41y (),)I
zipJ k--I fl'1 yQ.-., 5-Ij

I!', lurttierrr..ore, we assume 2, , ther,
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b 2k a clgo

and equation (104) matches the equation obtained previously

by G. Yu. Stepanov.

This, the dependence of the power effect of a flow with super-

sonic axial velocity component on the pressure drop can be

determined, if for each series of arbitrarily assigned values of

C we use (104) and (100) to find the appropriate values of the

angle of lag 6 and the velocity coefficient of the flow X2 far

beyond the cascade. Since the resultant of forces on the plate is

directed along the normal to it

(105)

and, according to (42), the coefficient of the resu.tant force

is written thus:

-b 2C - Rb;t - s [no(6 1)C--s- (0

The problem of determining the range of the possible values

of pressure drop at which the flow in question can be realized

is vo.'y important. The minimum value of c Is determined from the

condition that the axial flow velocity after the cascade reaches

the speed of sound, i.e., M 2a 1. With a further decrease cf e

flow is impossible, since it requires the formation of expansion

shocks.' In accordance with this c , is characterized by

minimum value of losses (i.e., da/dE = 0).

One feature is the case of zero angle of attack. In this

case the value cmln is determined from the condlti in that the

'Stepanov G. Yu., The }iydrodynar ,Icf of Turbomachinfs.
Fizmatgiz, 1962.
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Cz JnterDressure reaches a level at which in a sectlr. of the

'cn-ade an oblique shock develops, directed alona the front
o" the cascade.

The greatest difficulties appear during the determingi7 of

maximally possible counterpressure. As has already been indicated,

in the case of zero angle of attack the maximum value of c

corresponds to such pressure after the cascade at which a normal

sh. ck appears in its vane channels. in this case the losses

become greatest, which means that in this limit case dc/dE_ = 0.

A further pressure increase is impossible: the shock moves

upstrearr and disrupts flow at infinity.

The value a in the general case of flow is determined bymax

analogy ;ith zero arle of attack from the condition of minimum

value of the coefficient a(da/de = 0). As calculations show,

such limit conditions of counterpressure when i # C correspond

to zero angle of lag and to the presence of a normal shock in

the exit section of the cascade vane channel.

Thus, the range of possible values of c for this cascade

of plates at fixed values of M1 and angle of attack i, can be

defined as the interval between the two extrema of the u(c)

dependence.

As an example Fig. 10-h3 7ives the dependence of the
coefficients cf the resultant force and flow parameters after a

cascade of plates on E with supersonic streamlining under positive
angle of attack. Here the limit v aues oi' the resultant were

determined at the points of the extreme value of the total

pressure loss. Mlnimum losses correspond to axial velocity

after cascade being equal to the speed of sound, and the maximum

losses correspond to the presence of a normal shock within

the vane channel.

7 ,
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Fig. 10.43. Coefficient of resultant
force and flow parameters after a
cascade of plates as a function of

P2 /p when S 4 J5', 1 90 and

M = 2.0.

All the above cases of a flow around a cascade of plates

with Supersonic axial velocity compo~nent are possib2e only

beginning with a specific critical density. For example, flow

at zero angle of attack with a normal shock (Fig. lo.40c) is

possible only when b/t > COS 6 7 n this case the critical

density does not depend on 1) ancJ i~z numerically equal to cos $
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1.t positive angle of attack the critical density, as has

already been indicated above, is determined by the intersection

of the Mach wave from the leading edge with the adjacent profile

(.i. 10.37a). Analogously, at negative angles of attack the

zritlcal density is determined by tne point of intersection with

the ad.lacent profile front of an oblique shock.

When density is less than critical (widely-spaced cascade),

the interference of the flow between profiles disappears, and

they are streamlined as a unit. In accordance with this the

coefficient of the resultant force on a plate in widely-spaced

?asaae with angles of attack i < 150 according to (79) and I

(%) is determined by the expression

ufI "

Interference between the Mach waves and shock waves appears in

this case only after the cascade (Fig. 10.4LL), The velocity

coefficient X2 and the angle of lag 6 can be found from the

Joint solution of equations (97) and (106). The total pressure

after the cascade will be determined from the equation of contini-

ity, and the static pressure will be determined from the

Bernoulli equation.'

11. Flow Around a Cascade of
Supersonic Profiles by an Inviscid
Flow of Gas with Subsonic Axial
Velocity Component

Let us first deal with a supersonic flow about cascades with

subsonic axial vel.i>ty component. Tf at fixed Miwe o'case
the axial componenL of the approach stream velocity, thc

'In certain cases it can seem that no solution ',xsts.
This means that such c< ndltions of flow about cascades of plates
of subcritical density are unrealizable under the cordtion of
total balancing of the flow after them.
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Fig. 10.44. The case Of super-
sonic flow about a cascade of

0-plates (M1 - 2.6; 1 - 100), when

inteferncebetween the waves
from each profile begins after
the cascade edge. The dotted/ lines are the Mach waves and
the solid lines are shocks.

I

characteristic direction will approach the direction of the

front of the cascade and when Mla I 1 both directions will

coincide. When Wla , a,, the characteristics are directed above

the front of the cascade, and in this case, just as during

subsonic flow around a cascade, there is interference between

the incoming supersonic flow and the cascade. The disturbances

from the leading edges of plates and the disturbances created A

after cascade propagate upstream. Pressure after the cascade

no longer can be an assif;ned parameter: it unambiguously

depends on the number MI and the incidence of the flow incoming

to the cascade. Thus, in zplte of the supersonic speed at infinity,

such flow about a cascade in a sense is analogously subsonic.

An exception is the case of flow about the cascades of

plates at zero angle of attack, in which the flow direction

coincides with the direction of the plates. In this case distur-

bances before a cascade of infinitely thin plates are absent,

and in the intake part of the vane channels is a uniform supersonic

flow)which prevents (independently of the amount of axial velocity),

the spread of disturbances after a cascade to the flow region

before it.

Note that the examined property of flow about cascades of

thin plates at zero angle of attack extends also to the case of

cascades of infinitely thin bent profiles composed of a recti-

linear section of sufficient length I and coupled small arc
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(.- 1O i4 ."-he m~nimum length of rectilinear section 's deter-

r:.nied by the requirement that the Mach wave which propagates from

th.e czupling point does not go beyond the front of the cascade.

,] . nonobservance of this condition the weak disturbances

caused by flow around the coupled arc will disturb the unif.rmty

of the flow before the cascade.

a) b) c) 9

Fig. 10.45. In determining minimum length
of a rectilinear section of an infinitely thin
cascade profile in which there are no dis-
turbances before it (i = 0).

In further examination we are restricted only to a cascade

of plates.' In accordance with what has been said above, the

flow about such a cascade at zero angle of attack becomes

ambiguous, and is also determined by (besides the number M of the

incident flow) the quantity C = p2/Pl, i.e., by the pressure

ratio at infinity before the cascade and after it. In the case

of equal pressures (E = 1.0) the flow passes through a cascade

of plates undisturbed, and the power effect on the cascade

naturally is absent.

When the axial component of the approach stream velocity is

less than the speed of sound (Mia < 1), any breakdown o" the

condition E - 1 leads to a power effer:t of flow on the cascade

'See Ginsburg S. I., Total Power Effect of a Flow of (as or,
a Cascade of Plates. In Coll. "Strength and Dynamics of
Aircraft Engines," "o. 3, "Mechanical Fneineerinz," 9, ]9'6.
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of plates. If c < 1, i.e., if pressure after the cascade is

less than before it, then at the exit from the vane channel

flow is formed with expansion near the trailing edge B of the

plate (Fig. 10.46), i.e., flow accelerates with simultaneous

rotation toward greater angles. As a result, the angle of lag

of flow far beyond the cascade becomes negative.

#Al .... . ,

,. t .......-.... .. .. .

Fig. 10.46. Flow about a cascade of plates
by supersonic flow with subsonic axial com-
ponent velocity component at zero angle of
attack and P2 

< P1.

In the entire area of flow above the characteristic B'C'

inclined toward the plate at an angle al -- arc sin l/M1 the

flow remains undisturbed. This means that over the entire

upper surface of the plate and cver part of its lo-:.er surface

A"C', the pressure is the same as in incident flow p,. A change

in pressare distribution will be observed only in the section

of plate C'B", where there is reflection of characteristics.

On this section rarefaction dominates and therefore the

resultant is always directed opposite to the positive direction

of axis n. The value of the resultant depends on I, the len;th

of section C'B" and the degree of rarefaction c. It iu obvious
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that with fixed vaILes of the first two quantities the resultarz-
inureases with a decrease of-E. -At-a certain value of c-the .. . ..

axial .elo(2ily far beyond the cascade reaches the speed of sound,
and characteristic becomes parallel to the front of the casc-,ade.

.In this case the disturbances at infinity after the cascade--

*do not spread upsrr.am. With an increase of pressure after the

* cascade (F- > 1) in the outlet part of the vane channel a system

of shocks is formed, which leads to a pressure increase on the

lower sur'face and the development of a force which acts in th

positive direction of the n-axis. With an increase o 2 ti 1
for-ce increases, and the angle of lag decreases. At a certain

!alue of p, - pma and respectively e =ema in the vane cnanoiel

a normal shock is formed, and at the exit from the cazeade aj

subsonic flow with zero angle of lag is established (Fig. 10.J40).

A~s an example Fi.g. 10.47 gives the dependence of cnb/t or,
c with different !Aach numbers of the supersonic, flow on a cascade

of' plates ($=30') at zero angle of attack.

1 i~ K l~fl Fig. 10.47. Dependence of t~ie
V coefficient of resultant force

1 ~1b~ttfor a cascade of plates on1e 1 = ,2l (1 3Q0, )

4441

At 14 < 2 .0 the quantity M 1a 1 and respectively the power

effect of the flow exists both wIth an increase and a decrease

after the cascade. When M1  2.0, the axial componentu'. of the
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approach stream velocity becomes equal to the speed of sc!_nrd,

and I.n accordance with this the power effect of the flow when.-A

S2.0 appears only with a pressure increase after the cascbade.

The limit values of the resultant force with this Mnumber

were determined respectively either from the condition of forma-

tion of a normal shock, or from the condition of axial velocity

after the nascade being equal to the speed of sound.

s 1 i nvles of attack before a casnade, as indicated

by 0. 1. '"aganov and experimentally confirmed by L. A. Suslenn--kov

(see 12,a syst, _ r" dIn,_ornected shock w-.aves is formed

(Fig. 10.48). Near the leading edge of every plate appears

Frandt1-!Meyer flow, in which the flowa is accelerated from the

speed of sDwird to a certain supersonic speed which exc-eeds the

velocity at infinity before the rzascade. Rarefaction waves from

the leading 2,ct are Incident on adjacent zo:waves, and

weaken them; however, near a plate shock waves retain considerable

intensitY.

' :cyer

' O

Pi e 8>

R--

r. C '.-. axtn

Fig. !048 Diagram arcfi 'd a den~se cas-:Ie
of flat plat'-s b. a suers :- flow with s-'Thsorni2a
axial velocity cor"ponen!t k/-



From tableB for Prandtl-Mever flow it is possible t" .in:]

:h. necessary value of the angle of rotation of the flow t.D

accerate it from . = 1.0 to the value of M at. infinity before

thc cas:ade. This angle determines the directic,. of flo-: at

s:r..,. zpeed around the leading edges of the plates. The n axIrun

scecd to %-,nich flow is accelerated is determined in t!his case

by the angle of its rotation with assigned direction at infinity
te.:ro the directlion of the plates. This angle is equal to the -.

cf attack.

Thus, supersonic flow before hitting the vane chpn.:e!

-- .-rouzh ar. infinite system of shock waves ",with Fra<:ally

in,.reasing intensity; in the area between adJac.ant shock waves

the flc,: accelerates to ever higher speeds (with approach to

the front of the cascade). before the section of sh-cck :e at

tho ,,'. to the 1fane channel flow mores forward "I, .ach

nu!.ber, equal to Ma In this section there is the ms'st Intense

d~eie-ati.rn of -he flo;. as a result of which at the var c.'-;na.;

ex.t aubsoni: flvw develops Tr. this case the amount of tD?t

pressure losses in the differert elementary streams t.-hich casse /

through the system of shock waves will be different, since- the

intensity of waves drops off from left to r'ight. Con sequen 1:'_..,, In

the examined strearllning of a cascade b; an idealrlcld '.."ow

in the vane channel section sufflci-dntly removeJ .rom hc . n l -e-,

static pressure, and, therefore, als- the direction '"

tn's v'-c,3iy are already constant ajong its i-dth, the '-itv

.i'il remain variala e. 'or thr- p,.irpos. . of sim lirt. c.- of

th- problem we will ,,sume tha , a r'c -',t f a t'bu-2:

ex .: .ze between streams, the fi .: ,.thin, the var. channel,- 1!:

comr-Letly e-qu teed and ir, ac.ordi:cc with this "

respc.ct to .tch, flcw .4ith constant static and total .re "..

is stabilized behind the cascade; :r~oreover, the dl rect". of

thIr5 f'w coincides "Ith the alrect, on of the plates (a:-.rbe

of la,- Is elual to zero). It is ,p...ant to otc ,, th.
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assumption about the equalization of the flow in the vane

hannels made here differs signif.cantly from that made in the

preceding paragraph concerning the equalization of the flow in

-the cross section far beyond the cascade. In this last case we

only somewhat overstate the losses in comparison with those

t*.nich occur in an inviscid gas flow, leaving the flow as Invariable

• n the cascade itself, arid, consequently, the power effect of
flow on it also as invariable. We have another matter when

equalizing the flow in the bladE channels, where as a result of

the flow change in the cascade itself, there is not only an

increase in losses but also a change in the value of the

resultant as compared with its value in an ideal, inviscid gas

flow, Of course, It Is posO...e to assume that the flow equal:-a-

tion occurs also beyond the cascade. However, nevertheless, this

would not make it possible for one to solve the problem comrplete:ly

since the angle of lag value arising during such equalization

itself Is determined by the velocity distribution iL te .:utlet

cross section of the vane channel.

1Taking into account the aforesaid, from the crndition

the tangential force coefficient e.ualin ' zero (97), we obta,"r

following e/pression for the velocity coefficient r!' flo..;

beyond the cascade.
2k I,,! ,0,

Replacing in (107)

=? T1 - . Z ) ).If



S I
w: )ttain the following expression derived by G, 1. Tavariv I

in 1952:

ZO) 190.0- 2k At+2Qr h.-l n, 2 +i; m(,- %

The total pressure beyond the cascade and the loss factor are

found from the equation of continuity

The calculations show thqt the relative percentage of losses du,:

t.. the equalization of the flow in vane channels i& very 1D,

therefore, with a sufficinet practical accuracy it is possible

to ascribe the total losses determined according tc (107) only

to the losses in a system of shoc) wav.s. The statlc pre't:&.rc

is deterrined with the aid of the corresponding gas-dynamic

flncti on

P, =p.,i 0.e).

When cetermining ). from (107) it i6 neceszary to bear in mind

that gas-dynamic Vunction z(A) whose value

z ----' i "r +-7 ,

is ambiguous: one root of th. eqiation

cor'esporids to subsonic ()2 1), w;hile another ccrr arjon(J5 to
;upersoric speed (1 < 1). These speed,; are conrnectell ',, one

'Tagailov, G. I., Total I'ressure Losses in a System f
Curvilinear Shuck Waves Ahead of' the Cawcado ',nmpcsed uf Flat
I"ater, C fl'Lectiotu of Ti e on 'ticai ' e" s or AerodyiarrIA.
Oboroniz, 1957.
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another by the relationship

For a cascade with 4- 480 when 1 90 the dependence o(M1 ),

obtained for both root values of equation (107) is given in

Fig. i0.49. It is evident that with axial incident flow

velocity component being less than the speed of sound, condition

a < 1 is observed only at subsonic speed beyond the cascade.

This means that only such a flow is possible. The generality of

this conclusion is confirmed by the fact that only at subsonic

speed and in the absence of critical cross section in the vane

channel do the disturbances beyond the cascade propagate into

the zone of flow ahead of it.

Fig. 10,49. Dependence of the
total pressure coefficient in a
dense cas'ade of flat plates

F with 8 = 48* and i = 90 on the
.L. H number of incident flow for

subsonic (W') and supersonic
, iiL. l'H ('(") roots of equation (107).

'5 4

Figure 10.50 shows the dependence of relative total pr-essure

losses on the angle of attack for a dense cascade of plates

with the different values of the setting angles but with the

same !iT.zident flow velocity. With zero angle of attack the

loS::'- 'Jo nc,!. depend on angle $ and are equal in nainitude t,.i

the loss in a normal shock. An increase in the angle of attack

leads to the difference in losses. The larger the setting

angle, the rsmaller the losos in a systeiT of shock waves. !.;ith

I - 2.00 the losses in the cascade with 4 - 70" are two times

greater than with - 700. On this fij'tre the lonses in .i

normal shock with Mach number 14 M '1a: are plott t:d Li tho

r, a;

dasI'.cd line. The InI I tliis n1riner Ir Ir,!.
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on the Settirig angle of the plates, but depend only on the an,71Th

cr, atta,1r. WI-th large angles of setting these losses are

grater than the true losses in a syste!:, of shock waves.

Fig. 10.50. The dependence of

.9 i~z 0relative total pressure lossesj!: e r. aon the angle of attack in dense

-. cascades of flat plates with
different settingy angles ...hen

42 1.5.

U-sing the known value ~.the coefficient of th resultant

fc-ct- ran bp found from eqLoation (106), which In the case

6 -0 ;,.,'!. be written thus:

c, 2 si 0-1 o i -M (109)

Let us now consider the streamlining of a cascade of plates
by a subsonic, in%'lscid, therefore, !sr.-ntropic gras flow.

The streamlining of any cascade of suipersonic profiles by a

subsonic flow is always accompanieli by a separation of the

streams from~ sharp leading ed,-us,. Sepjratl.on flow~ arcurind a

-ascade of plates, by the pctentlal subsonic flow is schematically

.,ho'.,,n in rig. l0.rll. The separat~orn of strearr:s co--curs frr the

leading and trailing edge6. The- speed.- aril cjjs.e~o tjj-

streamn i.-cndariez are constant. ';he flow line whi Th pass r,

alo)ng the plate, at a point or zei-, velocity, Jis divideJi into

lines goinqg upstream (tc,) and downstream (bc,). At an Inflnrity

beyond the cascade there is a periodic series of parallel streams

of' widith h a". constant velocity w 2 . With high cascade density

the direct~ on of these' Strearns can t-e co.nsidered as; ccir'iii ental1
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with th'e direction of plates, i.e., 8 2 f . Then from the theorem

of momentum for volume a b b a2 we have in projections onto

axus n and *T

A rl- wi cos 1)=(p, --pit sin 0,
(110)

Fig. 10.51. Diagram of separation
flow around a cascade of plates
by an isentropic flow at sub-

-7 critical speeds.

Transforming equality (110) with the aid of the equations nf

continuity and Bernoulli, we obtain when p = const (see referenc~e

on page 629 )

One of the roots of this quadratic equationi can be disregrarded,
since according to the condition hh/t < 1. Then from

equation (112, Wien i *> 0, lee have

and from the t-quation r.f flo-w. rater

fe (- 1)

Vi'crn equality (1113) it f-2low3 that whan increase Jr. the

angle of attae the flowi velocity t-ey~nd the cascade, ;,
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= c~utfrst Inoreases,, reaches a maxirurn irhen i V /2, ani

thon jtecvr'ases. OWs is dup to- the two opposite t1-endencies which

aris-- .,ith at' lncred-ie in the amirle of attack arid tht- fixed

velocity --)f the ttlew a-3vancir. ontc the c2ascade. On one hand,

accDr-ding-t (114), relative.; wirdth .1 of the ;trea n the .,ane

channel decreases morotonically, and this should lead to an,

-4icroazse- In velocltv w2;on the ctiier hand, with an increa:se in

the anz:-Ie of attack ter is- a n-incntonic decease in the mass ras

flow rate through the cascade which in turn lead.- to a decrease

in the 'P- locity at thne exvjt from). II A.fter the ltransforriation

rof .;a~j'(1 , we obtain the '!Wllov.n' exrson for the

2rocfficient of the resultanit fe rne in the flow of icncomprF-ssible
f' I

C(4 1(115)

F'romr (115) it fol~~that with the anrle of at Lack 3 $/2

v.alue of the re.- ,)Ltant force reaches a maximum. For the flow of

compresitle i-as, 1.by vi-rtue :--) the izentrzplcity of' the fo

(cl = 1.0) accordinr to (39), we havp

P-.Pt : k + I -.

'JsInF this relaticjihip, vf; 171 ro,!o. em~os(110) and (1ll)

to the formn

A~

c~b,1 2 bin ws Ct4Vu 0 *- j 7

.ornzidering au~ ~ andml ; ~w, i-. is p-7ssibie~ to

graphicaliy solvye eq!,at r,ri(n K)wt resr)fect t. qr.rl then,

with the aid cf the cquat ion of cr~ .uI yto firv! the relativr-

width of' the stre-an;
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0 )) d Vn 0 -

The dependences of 12 and h on the angle of attack with values

M- 0.75 and $ 700 are given in Fig. 10.52. They are similar

to the analogous dependences for an incompressible fluid flow

(see the reference on page 734).
I[

6? /6 j24 39 40 al e#

Pig. 10.52.. Dependence
of 12 and h on the angle

of attack when N1 -0.75
and - 70-

As an example, dependence cnb/t =f(i), calculated from
equation (117) is given on Fig. 10.53. The same figure shows

the calculation results of' a similar dependence for the case of

a continuous flow around the same cascade. The comparison of

these dependences shows that the flow separation from the leading

edge leads to a very sharp decrease in the value of the resultant.

Simultaneously, theire is also a substantial decrease in the

critical angle of attack characterized by the maximum value of

the resultant. Bearing in mind that X2 is the maximum value of

the velocity coefficient in the entire area of flow, with the

aid of equation (116) it is possible to determine the maximum

value X 1 1 at which the flow Is still subcritical.

1 l4p
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For this, in expre X'<rn (11f) (cne should assume that 2

ani 1 solve the obtained equation with respect to X at the
'c,,r angles of attai-: and setting angles.

The calculation results given in Fi1. 10.54 agree with thc.

natire of the dependence of X, on i in Fig. 10.52.

'4

Fig. 10-53. Dependence of c u/t on then

angle --.. . f"r the cascade of
plaittes when $ = .'180 with M.. = 0.75:

.

1 - a continuous ]sentropic flow; 2 -
flow with streaw separation without
mixln in t e vane channels; 3 -
with u ccmip",:te equalizaton of the
f lows ri t-htb vane .h.rine.

Jig I*

Vn 4} r;.[: ,; tt

- llA..

~1Or, the 1r i al t>f
~orI.9 adonne &as;:.iuie .,

piatc-. ;trei,] ned by an

I3tea- e a-t,



§ 12. The Effect of Viscosity on Flow
Around Supersonic Airfoil Cascades. A
Solid Cascade of Plates'

Let us first examine the effect of viscosity on an example

of cascades of plates with zero incidence.

In the case of inviscid flow of a liquid and subsonic gas

flow the power effect of the flow on a cascade of plates with

I = 0 is absent. In accordance with this, the cascade does not

divert the flow from its initial direction, and the angle of

deviation will be equal to zero independently of denseness and

setting angle. The presence of forces of friction during the flow

of a viscous flow about the cascade leads to the formation of

tangential force R and correspondingly to a deviation of flow by

the cascade which is the greater, the greater this force is. At

the same time, the formation of a boundary layer causes acceleration

of external flow and, consequently, also to the appearance of a

pressure gradient along the plate. The resultant force of the

pressure in general ceases to be equal to zero - there appears

normal force Rn . Limiting ourselves to an examination only of

cascades of low solidity for which it is possible to disregard

the mentioned effect of the acceleration of external flow, i.e.,

assuming that Rn e 0, we have

R. =R.co

or
C. = C, Cos k

In the case of an incompressible fluid according to (50) we

obtain the following dependence between the angle of flow exit

82 and the coefficient of tangential force:

g ctg ( I -- )

'See references on pages 629 and 734.
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f thP flili is invis:Id, c 0, and therefore, I .e.,

the flow which flows through a cascade of plates at zero Incidence

dO;c not 2hange the InItial dlrection. In the case of a viscous

* flui 0 i.e., the angle of deviation is negative

The greater the drag coefficient and the greater the cascade

solidity, the more considerable Is the deviation of the flo)w.

With an increase .n the setting angle a decrease in 6 is -oserved.

'th - independently of the value of c b/t we have 6 = 0.

This is also easy tc conc-lude f;.o. the condition of symmet.ry Of

Crret to the ass5rmptions, rntoe abcve, the value of c, ca

to taken as eoual to tht doubled drag coefficlent of the plate

c. Utilizing the data regarding the valu this c0effic ent

%,ith varicus Reynolds numbers given In Chapte' VI, it is possible

to obtain the dependence of the angle cf deviation on the Reynolds

n:umber. Thus, for instance, with R = 106 in the case of laminar

conditions over entire length of the blade cf- 0.0015, w;'hile in

the case of a turbulent conditicn, cf = 0.005. The lead angles

of flew in a cascade with 0=0 and t/t = 1.0 will conlpri~e

respectively 0 41 and 0 "'

The relatively low values :" the c,,!'en of friction and

the respectively insignif' cant r E 1ties of deviation .ake it pesS It-

to disregard the forces of fr.cti r n the plates in deter:mlnin.

pitct losses and total power aLffect cof a viscous fl.w of iqui

and gas on a cascade of such alif,.ils. This 's all the more

correct since with an increase in %'A >.ach number of the flow"

incident to the olate the cceffci l : u of friction ,.ic-a de-veasea
(see Chapter VI).

At angles of Incidence differer:;t from zero, the nature of the

viscosity effect depends on whether the flow that encounters the
cascade is subsonic o r supurson.c.
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In a subsonic flow the specific effect of viscosity is

ezpressed, in the first place, in the fact that during the sepa-

ration of jets from the sharp leading edges of supersonic airfoils

an eddy is formed which seemingly rounds off the knife edges. As

a result, the visccus flow no longer flows around the sharp

leading edge of the airfoil, but about this eddy; however, with

small angles of incidence the flow on departure differs little from

nonseparable (Fig. 10.55). In the second place, the effect of

viscosity is expressed in the fact that, when at sufficiently

great angles of incidence stalled flow appears, as a result of

turbulent mixing it will gradually be eroded, and with a

sufficiently large extent of the vane channel, i.e., with a

sufficiently solid cascade, the area of separation closes and on
departure from the cascade the flow will evenly fill the whole
cross section of the channel (Fig. 10.56).

4'

Fig. 10.55. Diagram of flow around
a cascade of plates by a viscous sub-
sonic flow with the formation of an
eddy at sharp leading edges.

Both aforementioned factors give rise to the formation of

pitot losses and to the equalizing a" velocities in the exit

sections of the vane channels. As a result of equalizing, the

resultant is increased in comparison with its value during the
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PIE. 1C..56. D ia r a f s 1 d
f., with fu1l1 mixing c
flow in the vane channelo of
a solid grid of plates.

--r

_71 S

flow Df an isentrop c f ow about th s caccade with separaton .f

Jets fr-m the leading edges.

Thus, during subsonic flow around the cascade, the vi-ccsty-

independently of the mechanismrr of its effect, gives rise to the

fornation of losses cnd an increase in the resultant. It is a

diferent matter with the effect of viscosity durir.g the flow c'

a supersonic flow about the cascades. In this case, in an

Irvlscid fiou of gas there is a:hieved a rnonseparated flow around

al.r-ils with a sharp leading edge. Tn the presence of vi scosit.y

there appears a b... ... .a .e.r whose interactiorn with a slock

wave of suf Ci nt int'nsiry faii ng on it gives rise tc the

formati-on at tht* sirface oif _hr- airfoil of \-shaped shuck, after

wnIhcn ' .c,,iar,-a.er separat*:*r; occurs (see Chapter V'r..3

resuLt, the cnunlformity tJn veqItv distributicn over the

cascade pitcn increases, ant cns,>q,ientiy, the angle of deviation

of flow increases ?.nG &he result;.'_ force F.ppiled to the airfoil

in the "-scade decreases corresc n-IIng., in so doing, the pitot

losses may even decr'easc.



Let us illustrate the considerations expressed here in an

example of a cascade of plates. Let us examine first the flow of

a subsonic flow about such a cascade. We will consider that the

cascade solidity is so great that as a result of intense turbulent

mixing on departure from the cascade there is a flow uniform in

pitch, parallel to the plates.

Determining with the aid of expressions (50) and (51) the

coefficient of tangential component resultant c and equating

it to zero, we obtain the following expression for the loss

coefficient of the flow of a viscous incompressible fluid:

The same expression for the loss coefficient can be obtainediI

according to Borda's formula if one assumes that a sudden expansion

of uniform jet occurs with an area of F 1  h sin $ to area F2 - t

sin 0 (Fig. 10.56).

From equation (50) we have j.=O-I. 1,0)

b

Comparing this expression with (115) we conclude that in a solid

cascade the viscoAity effect leads to an inc,ease in the coeft'icient

of resultant of (l, i once. With ,r increase in the angle of

incidence, the viscosity effect on the power effect of the flow

decreases and becomes zero with ,=-j. Th T.tter is connected

with the fact that according to (50, ' jien S.2, the whirl

constituent of the resultant, and consequ;r-ntZ, in the case in

question, the resultant itself no longer depend on the velocities

on dep;arture {r : 'W cascade and are determined only by the value

of the velocity - -nlet to it.

For determining the resultant during flow around a solid

cascade of plates of a viscous flow of a compressible gas at

subsonic velocities equations (107) and (109) should be used.
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it iz natural that in so doing in (107) only the subsonic value

c" Is selected. Altnough the indicated equation was utilized

,r- er fJ? determining losses during flow around cascades of

P~ate if a suoersonic flow, however, the generality of the

rsr rI n s maje durin r the derivation of this equation makes it

essItie to empooy 't (if we disregard the forces of frictior

cn the rpaties) alsc in the case in question. Moreover, If as

has already been indicated above, equation (107) makes it possible

tc only approximately determine losses in an infinite system or

shock waves, then this equation accurately determines losses to

the equaizInirg cf flow in the vane channels of' a solid cascade of

plates flowed around with a subsonic flow. This is also ccnfirmed

':. the fact that the losses to equalizing thus determined, just

as in an incompressible fluid, completely coincide with losses

acording to Borda calculated for a compressible gas according t-3

the previously found values of h and k2 in a potential flow.

Tht dependence of c nb/t(i) with M 1 = 0.75 is given in Pig.

10.53. There, similar dependences are also plotted during the flow

of an isentropic flow about a solid cascade without separation

and with separation of Jets. As already indicated earlier, the

separation of Jets from the leading edge while maintaining the

potential flow pattern leads to a sharp decrease in the resultant

force. At small angles of incidence, the equalizing of flow in

the vane channels as a result of turbulent mixing, to a considerable

degree, compensates for this sharp drop in the force. In pro-

portion to the increase in the angles of incidence, this compensa-

tion as a result of the intense increase of losses decreases

substantially. 2

During flow around a cascade of plates of a supersonic flow

with a subsonic axial component of velocity, the viscosity effect

is basically exhibited in the interaction between the boundary

layer on the plate and the shock wave falling on it.
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In Chapter VI it was indicated that in this case, with a

"critical" ratio of static pressures in the shock, near the wall

there appears a X-shaped shock after which boundary-layer separation

occurs. The presence of separation leads to an essential re-

-distribution of pressure. The change in the total losses and

value of the resultant depends, to a considerable degree, on the -

solidity of the cascade. If the solidity of the cascade is so
great that the separated flow within the vane channel is completely -
equalized (Fig. 10.57a), then according to the theorem of flow -A

impulses (disregarding, as before, the forces of friction applied

to the plate) the total quantity of losses remains the same as for

the case examined above where the viscosity effect was not con-

sidered, there will occur only a redistribution of the losses

between the zone of shock waves and the area of equalizing the

flow. An increase in the losses to equalization is completely

compensated for by a decrease in the losses in the shock waves

connected with the formation of a system of oblique shocks. In

the case of complete equalization of flow in the vane channels of

a solid cascade there are no reasons for the emergence of an

angle of deviation. With zero angle of deviation and the retention

of the same value of a the resultant of all forces of pressure

remains constant in spite of their essential redistribution along

the chord.

a) b

wt

/r

Fig. 10.57. Diagram of flow around a cascade of
plates of a supersonic flow of a viscous gas with
subsonic axial component of a velocity (Mla 1.0)

and with a supercritical drop in the pressure in
the shock wave: a) solid cascade, b) widely spaced
cascade.
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In a widely spaced cascade the equalizing of flow occurs

man!l. after the cascade (Fig. 10.57b), and therefore is :cnnep od

zas shnr earlier, with the appearance of the angle of devi't In,

which cat- be very considerable; the flow separation after the -

shared shcck In this case can lead to a decrease in the resultant

force applied to the plate. With a given number M 1 at an infinity

4k number before the latter, the shock wave is the greater, the

greater the angle of incidence. Consequently, with an increase

in the angle of incidence there is an increase in the intensity

of flow breakaway in a X-shaped shock. Hence, it may be concluded

that the effect of viscosity on the value of the resultant foroc

should increase with an increase in the angle of incidence.

1etermin;tion of the viscosity effect actually is reduced to

determining the effect of the angle of deviation of flow after

Lhe cascade on the magnitude of losses and the value of the

resultant. Similar results of calculations (Fig. 10.58) show that

the total losses decrease with an

increase in the angle of deviation.

Such a decrease in losses at subsonic

speeds is explained by the fact that

the equalizing of the flow in space

after the cascade occurs with less

losses than in the vane channels. This

circumstance explains the fact that

the decrease in wave losses in a system

-- - -of oblique shocks (with X-shaped shock)

which remains the same as in a solid

cascade, overlaps the increase in the

ilosses connected with the turbulent

mixing c-f the flow detached from the

Fig. 10.58. Dependence plate in a widely spaced cascade. The
of a on the angle of de- resultant force with an increase of the
viation 6 for various j

values of M1 during flow angle of deviation also decreases

aound a cascade of plates (Fig. 10.59) whereby the relative irop
(- 30°, i - 6°). in the coefficient of resultant force

cn is weakened with an increase of the
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number MI , Such nature of the effect

O''with 65 0 i
by the fact that with an increase in

number M1 an ever greater portion of
" 'the composite force which acts on the

-' - {~ plate is connected with a change in

I ii- the momentum in the system of shock

Lwaves In the intake part of the vane

.IJ.'I - channel and, to a lesser degree, depends

o / z 3 -~ on the angle of deviation. Thus its

value basically is determined only by
Fig. 10.59. Dependence angle of incidence and by the number
of the value of c nb/t

nM
referred to its value M"
with 6 = 0, on the
angle of deviation
6($ = 300, 1 = 60). The analysis carried out above on

the different cases of flow around a

cascade of plates of a viscous gas shows that if we restrict

ourselves to the examination only of such solid cascades of plates

for which on outlet from the vane channels the flow is always

uniform, then in the entire possiole range of change in M1 numbers

and angles of incidence the value of the velocity coefficient after

the cascade X2 is determined by one universal equation (107).

If in this case, the axial velocity of the flow incoming to

tne cascade ls less than the speed of sound (Mla " 1), then of the

two roots of equation (107) only the subsonic values of X2 have

a physical sense. But if Mla Z 1, then both roots of the equation

have a physical sense whereby realization of one of the two systems

connected with condition X," 2 1.0, is determined by the value

of static pressure P2 after the cascade. At less pressure P2 =

- P2min' the flow after the cascade will be supersonic ( 2 q > 1),

while at greater pressure P 2 2 P2rax - subsonic (A2 - 1 ).
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These values of P 2 differ from one another by the vaLie of

the increase in static pressure in the normal shock.

.r~o'.1e e of value of .-, makes it possible according to (109)

to de~ern:ine the power characteristic of this cascade, i.e., the

dE ,pendence of n (i) with different M 1 numbers.

Figure 10.60 gives the power characteristic of a solid

cascade of plates in a viscous flow of gas over a wide range of

. numbers at positive angles of incidence. In those cases when

the power effect is ambiguous (i = 0 or M > 1), the value of

c. Jff'icient of the resultant of c was taker Which corr ;.ponded

It- '-he maximum possible pressure after the cascade. A.t zero

e f ncience and at supersonic velocity t)16s system is

r=u.,...a with the emergence of a normal sh,-,cK In;the vane channels

of the cascade.

- - Fig. 10.60. Dependence of
N, fI[-4 - c n b/t on the angle ofI incidence for a solid cas-

cade of plates during flow
of turbulent flow around

,,, . - .-~'--,/ 1it of a gas (, 30°).

1- LTL II I IIN

With an increase in the angle of incidence to 4i the resultant

force first increases from zero value to tne maximum, and then

mnotonically decreases. With an increase in the M 1 number the

point of maximum of force is shifted in the direction of the

lesser angles of incidence with simultaneous increase in the value 4
ofi the force coeff4 .cient; at a certain value of the number M>1

the value cf i p reaches zero value.
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In an example of a solid cascade of plates let us examine

the question concerning the range of possible values of the

parameters of incident flow: the M number and the angle of

incidence i.

'f the flow velocity in the exit section of the vane channels

of the cascade of plates reaches the speed of sound ( - ),

the the so-called cutoff condition begins which limits the area

of possible values of the angles of incidence i and M1 numbers

during flow about the cascade.

Independently of the value of the Mach number and the angle

of incidence, if choking of the cascade begins, then the flow

after it becomes ambiguous and is determined by the relation of

the static pressures e a p2/pl.

Dependence of the parameters of equalized flow in cross

section 2-2 far beyond the cascade on E can be obtained with the

aid of expressions (100) and (104).

The maximum possible pressure P2 is equal to the pressiAre

in the exit section of the vane channel. In this case, directly

at the edge of the cascade there is a steady flow and correspond-

Ingly the angle of deviation is equal to zero, and the velocity

far beyond the cascade is equal to the flow velocity in the exit

section of the vane channel X 2k

The minimum value of P2 is determined by the condition of

achievement of axial velocity after the cascade o' the speed of

sound (M2a = 1.0). With non-stalling isentropic flow (a - 1.0)

choking of a solid cascade of plates is possible only at negative

angles of incidence. The value of the velocity coefficient at

which the choking condition of a cascade of plates begins (with __

the given angle of incidence), in this case Is found directly

from the equatiun of continuity
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'in 4

the .:; condition of the cascade is notc. b,' t.hc

As an be seen from the last expression, for eahn

fixed ':±iue cf nc ati've angle of Incidence (i < 0) there a re to,.i
v.'alues veloc tes, one subsonic (. < 1), and another

i3 .,a

superscnic (1. > 1), at which choking of the cascade oc.crs.

C:rves ,(i) limit the area of velocities and angles of
13

incidenoe in which even isentropic flows are impossibli . s :.,.
exam nle, Fig. !0.61 gives the dependences of X13(I) for .3

at negative angles of incidence.

Fig. 10.61. Dependence of theAza1T -- velocity coefficient of incident
-flow on the angle of incl.denoe

i < 0 with choking of a solid
cascade of plates ($ 30'):
I - In isentropic flow, 2-
taking losses into account.

.7 v -..;7 V -.:

For determining the velocity coefficient with which choking

of a cascade of plates begins, taking into account the actual

losses in the turbulent flow of a gas, let us make use of relation-

ship (107). Assuming that in this expression A2 = 1,0, we obtain

the following equation of relatively unknown value 12:

- 2b), 1 - - 0.  (1!8,

where
jk.- h sin 0l-4i

4

The presence of losses (Fig. 10.61) leads to a marked decrease

in the range of values (Al. I), in which flow is possible. The

effect of losses increases with an increase in the absolute values
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of the angles cf incidence and with an increase in the setting

angle of the cascade. At supersonic velocities the effect of

losses on zontraction of the area of possible parameters of

inclient flow is expressed more strongly than with subsonic,

which, probably, is caused by large losses at supersonic velocities,

Choking of the cascade at positive angles of incidence is

connected only with the appearance of losses. With a fixed

number . the losses grow with an increase in the angle of
incidence, but simultaneously the gas flow rate through the cascade

decreases as a result of reduction of the cross section of jeto

before it. As a result, it turns out that choking of a solid

cascade zf plates appears only at sufficiently high angles of

inoidences.' At less positive angles of incidence the cascade

is not choked. Complex values of the roots of equation (118)

correspond to this case.

S 13. Construction of Purely
Supersonic Cascades

Let us examine the reverse problem - the construction cf a

supersonic cascade which turns flow at a given angle.

Depending on the calculated values of M numbers on entry and

exit we distinguish cascades which are purely supersonic

(M > 1, 12 > .) and cascades with the mixed flow: convergent1M

. i, ''2 > !) and divergent (M1 > 1, M2  1 1). Each of these

types of cascade differs in the method of profiling.

2Detailed analysis of possible systems of flow about a solid
cascade of plates is given in the work: Ludewig M., Uber das
verhalten kompressibler Medium bei der Str6mung durch gerade
Schaufelgitter, Forsch. Ing., Wes. 22, N 6, 1956. See alsoz
reference on page 740.
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f trst acquaint ourselves with the w-ethods op con-

.'; sutersonlc isentroplc cascades. The foir rarc:'.-

: ' and which determine the flow before an

czscade are not independent but are connected by the

.......... -..f :-.ntinuity. Thus, in the construction c:' a cascade

it Is uc-ssible to assign only three arbitrary ara.et.rs, I.e.,

Isentroplo cascades in general are three-parameter cascades. But

If r: t'he construction of a cascade we make use, for example, of

t he laws ioverning supersonic flow around an obtuse angle (Cnantr

P.', 4i\i: an alditional dependence between the deflection of the

io;; anJ the values cf numbers , and M., then the rnumber of

pndepundent parameters will be reduced to two.

s n example let us examine a supersonic two-parameter

con':.rgent cascade.I By assigning two parameters - the deflection

and the number M1 in the incident flow it is possible to find

muuter ['% after deflection and change of pressure p 2 /pl. Ac.crding

c -1he n-.bers ;%i and M 2 we construct (Fig. 10.62a) the approprlate

characteristics and conduct at a distance r0 two flow lines, each

cf which consiots of two segments of straight lines and a curvi-

linear section determined from equation (29) in Chapter IV. Let

us continue the rectilinear segments 1-1 and 2-2 which are tan.ents

to the curvilinear secticn of the flow line before their intersection

at point 0'. As a result of construction we obtain a certain

airfoil (with infinitely thin leading and trailing edges) which

causes no disturbances in the flow.

Repeating a similar procedure of construction in connection

with point 0', we obtain a second airfoil section cf the cascade

identical to the first, and then all remaining alrfoils. Such a

cascade does net have wave drag, and therefore the flow in it,

If we disregard friction, is isentropic.

1F. Straus, Schaufelgitter fir Uberschallgeschwindigkeit ohne

Wellenwiderstana. Technische Berichte ZWB, Berlin Adlershof,
1944, Bd. 11, Heft 10.
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c)

b)

Fig. 10.62. Two-parameter supersonic cascades without wave draw,
constructed with the use of laws governing flow around an obtuse
angle: a) convergent cascade; b) divergent cascade (obtained by
reversal of flow in a convergent cascade); c) an active cascade
of broken airfoils; d) an active cascade of curvilinear airfoils.

Turning flow, it is not difficult to convert the constructed

convergent cascade into a divergent (Fig. 10.62b); however, in

the latter case the area of flow where compression of gas occurs,

can prove to be the site of formation of shock waves and wave

losses.

Utilizing a flow with compression about an obtuse angle (turned

flow with expansion), let us construct a certain section of

curvilinear channel with a smooth decrease in the pressure down to

certain value of p. If we now add a symmetrical second section

in which the flow of expansion from pressure p to initial pressure
pl is achieved, then we will obtain a curvilinear active channel,

and therefore we will be able to construct an active airfoil

cascade (Fig. 10.62c).' In this case it is assizmed that the flow IN

'Stodola A., Dampf- und Gasturbinen. Ver. Springer, 924.

7 A ,
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of c, ~P'ression occurs without losses, although in actlty this
is fl'hly improbable, Analogously, it is possible to ccrst:'uc'

a each atrfcil of which is formed by any two flow iin

for t f. f: w about a right angle; in this case the surface of the

airt'oil has -a urvillnear, but not a broken form (Fig. 10.62d). -i

Let us proceed to the construction of an arbitrary supersonic
th:ee-paaram:ter cancade. The simple method of' constructing such

ca :ades inuicated by S. I. Ginsburg in 1950 is based on the use

of two Prandtl-Meyer flows with different angles of turn on the
flows,

Let us assume that the parameters of the unknown grid X1, Bil

a-.. are given. From the equations of continuity we find the

fourth parameter X,. Let us examine now two cases of flow (Fig.

10.63) about the angle: flow with compression and a decrease in

velocity from X1 to a certain velue Xc less than X, and X2, and

a tlrn if flow through angle 001, (Fig. l0.63a); and flow with

expinsio: and an increase in velocity from Xc to X2 and a turn of

flow thrcugh angle 802 (Fig. 10.63b).

Connecting both flows consecutively, we will obtain the

channel depicted in Fig. 10.63c. In this channel at first there

is a divergent section BA 1 0, further in the area of the isosceles

triangle OA1 A2 we have a uniform progressive flow with velocity

coefficient Xc , then follows the convergent section OA2 B?. At

points B1 and B2 let us conduct tangents to curves B1A1 and

B2A 2 to their intersection at point O1 (Fig. 10.63d).

Thus, we will obtain a certain airfoil section B101 B2.

By consecutively shifting this airfoil along straight line 0 0

a distance BIBi it is possible to construct a cascade from these

airfoils with pitch t a BIBi. The flow which encounters this grid

at angle B1 with velocity coefficient X l will be turned through

an angle
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A0 Fig. 10.63. To construct a
Ithree-parameter purely super-
sonic cascade without waveS .A. . drag.

d)

If we continue the straight line segment A1A2 before intersection

with straight lines B,01 and B201 , then it will turn out that the

airfoil which forms the cascade consists of three parts: 1)

triangle 0 1C1C 2; 2) the airfoil of the two-parameter divergent
cascade B1C1AIBI; 3) the airfoil of the two-parameter convergent

cascade A.C2B2A2. As already indicated above, the divergent

section of the vane channel of the cascade should be constructed

in such a way that the characteristic curves do not intersect.

This can easily be done by rounding off the angle.

Thus, if three arbitrary flow parameters Xi, $I and 82 are

givei, then for the construction of a cascade which satisfies

these conditions, it is only necessary to determine the value of

c

Figure 10.64 gives the graphs to permit finding X, for the

given values of 81 and 82 at the fixed value of Xi - 1.5. The

area of possible values of angles 81 and 82, obtained from a

conaition of isentropicity of flow is delimited by the shaded

curves. The values of the angles of the cascade being designed

naturally should lie in this area. However, since in the method

of construction of the cascade in question we should satisfy the
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I HFig. 10.64. Graphs of X. (0i$
12) for a three-parameter

isentropic cascade with = 1.5.

12I

additional condition X c z 1, the area of possible values of angles

1 and 2 is additionally limited by curves X. = 1.

Limitations on the possible values of the parameters of

supersonic cascades appearing in their construction with the aid
of Prandtl-Mleyer flows can be completely removed with the use of

a more general method ofconstruction proposed by A. M. Domasheriko

in 1951 and based on "gluing" any supersonic flow for which there

is an exact solution to the Prandtl-Meyer flows. This method
makes it possible, by utilizing an exact solution for a potential

vortex to construct a supersonic isentropic cascade for almost

any parameters.'

The methods given above for the construction of supersonic

Isentropic cascades possess that common disadvantage, that, in
the first place, the leading and trailing edges of the vanes are
made infinitely thin (they have a zero angle of taper) and, in the

'The method of constructing an almost arbitrary supersonic
cascade with the use of a flow from a potential vortex is also
examined in a later work: Oswatitsch K., Potential-Gitter fUr
Uberschallgeschwindigkeiten, Zeitschrift I'Ur' Flugwiss. 4, N 1-2,
1956.
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second place, there is assumed to be isentropic deceleration of

flow in the diffuser part of the vane channel.

The presence of thin intake and outlet edges hinders the

manufacture of such vanes, creates the danger of the emergence

of vibrations, and hinders their use at high temperatures. The

realization of isentropic deceleration over a wide range of values

of velocity coefficients X is impossible without boundary layer

control. In actuality, instead of the smooth process of

isentropic deceleration a certain system of shock waves appears,

losses of pressure increase sharply and the design diagram of

flow is disturbed.

The indicated deficiencies can be eliminated if we organize

the deceleration of flow in a system of oblique shocks. Such

deceleration, as shown by experiments with flat and axisymmetric

models, can be realized whereby the airfoil in this case has a

leading edge with a finite angle of taper.

Given the velocity coefficient of incident flow Xl' the

number of oblique shocks m, and the value of the velocity

coefficient X to which the flow should be decelerated (1 s X<

it is possible to find the total value of the angle of turn and

the total value of the total pressure drop in the diffuser part

of vane channel. Losses can be reduced to a minimum if we utilize

the optimum system of shocks for the assigned values of X., Xm and

number of shocks m.

Let us examine the method of constructing "shock" cascades

in a concrete example. Let us assume that it is required to

construat a cascade, the vane channel of which has a divergent part

where the velocity decreases from a value of X I 2 to a value

of Ac a 1.2, and a convergent part in which the flow is accelerated

from the value of velocity coefficient Xc M 1.2 to a value of

X2 * 1.8. Let us assume that this requires the number of shocks

m - 3. With the aid of the graphs given in Chapter III, we find
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that during the dec.le'ation of flow In an optimum system of
C!shocks from X- 2 to A = 1.2 the values of the velocity coef-1 0

_ficients after each of the shocks oomprise

1,84 ) l,60, X-= 1,20,

and the oorresponding values o' the angles of turn

,= 1 10 30'. " ,= 1430. , 3 =17030..

In this case, the values of the angles between direction of the

free stream and the front of the corresp-nding shock comprise

Using the indicated values, we const-uc-' (Fig. 10.65) line

ABCD consisting of straight segments AB, BC, CD, parallel with

respect to the flow directions after each of the shocks. Let

us select the lengths -of segments A5, BC in such a way that all

shocks intersects at point 0 through which let us conduct straight

line ON at an angle a02 equal to the value of the necessary angle

of turn of the flow for isentropic expansion from Ac to A2 . In

our case, we have Ac = 1.20, X2 = 1.8. Then, from tables for

00Prandtl-?4eyer flow (see Appendix I) we find 802 = 32o24'.

Fig. 10.65. To construct a
three-shock purely supersonic

" i' v .-I casade.

If now for the given value of hc (Fig. 10.65) we outline the

flow line of the flow about the angle, then straight line CD will

be tangent to it at point K of the intersection of the flow

quantity after the last shock with direction CD. Tangent FL to

the flow line at point F will te paral.el to line ON.

i
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( Conducting through point A a straight line parallel to the

direction of the flow incoming to the cascade before intersection

with tangent FL at point 0', we obtain a certain closed outline-

_-shape of the cascade.

The axis of this cascade will be straight line 00'; its

pitch is equal to the length of segment 0'.

Let us note that the process of deceleration in oblique shocks

can be applied not to the entire length of the divergent section,

but only to part of it. As an example, Fig. 10.66a depicts a

cascade in which the process of deceleration in oblique shocks is

achieved only in parts of the divergent section from X 2 to

X 1.6. In the remaining section, provision is made for isentropic

deceleration from X = 1.6 to X - 1.2.op

~441

a) b)

Fig. 10.66. Examples of combined shock 4
supersonic cascades: a) a single.-shock
cascade with partial deceleration of
flow by an oblique shock; b) a three-
shock cascade with finite thickness of
the trailing edge.

It is also possible to construct vanes with finite thickness
of the trailing edge (see Fig. 10.66b). In this case, added

losses appear connected with the formation of pressure Jumps at

the exit edges and further equalizing of the flow. By analogy

with the subsonic flow, here it is possible to speak about a _

Borda-Carnot "oblique" shock.
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It is also possible to visualize a supersonic cascade in the

vane channels of which is a convergent section absent, and the

Ccc. nession o' gas occurs onlin shock waves. For the construction

--- of such a divergent cascade we utll17e airfoils in the form of

d directing fLowAlth a ri' number parallel to the

side of triangle A'O' (Fit. 0.67r); the angle of triangle at

point A' Is selected as less than the critical angle for an

oblique shock with this value of i/1.

N~ N "~Pie. !.67. 'Purely shock super-
-- ----- sonic cascade possessing wave

I drag: a) a cascade of triangles;
. . b) a caccade of trapezoids.

a)

b)

In the area A'O"B' lower than tne shock wave Ato" there is

achieved a uniform flow of gas parallel to wall A'B', with

velocity , < A and pressL>re r, > o,. Af e . noint B' the

particles of gas enter thz high-pressure area (P2 
> Pcp), in

connection with which a second shock wave appears in which the

flow again changes its direction. Tho apex of the following

airfoil of the cascade is placed at the point of intersection

of shocks 0", and the boundaries 0"3" and O'B' are conducted

parallel to the direction of fle': ai-tr th2 second shock. Thus,

the triangular aLrfoils A'E'C' a:;d A"iV'O" ar arranged in

parallel.

Continuing the process of construct~on of these airfoils,

we obtain an infinite rectilinear cascade of triangles.1

1E. Straus, Schaufelgitter fuir Uberschallgeschwindigkeit ohne
Wellenwiderstand. Technische Berlchte ZWB, Berlin - Adlershof,
1944, Bd. 11, Heft 20.
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This cascade possesses wave drag determined according to known

formulas for pitot losses in a system of two oblique shocks.

Let us note that in a similar manner it is possible to obtain

a cascade which consists of trapezoids (Fig. 10.67b) which has

--a higher solidity than the corresponding cascade of triangles.

§ i4. Construction of Supersonic
Cascades with Mixed Flow

Let us move on now to the construction of supersonic cascades

in which transition through the speed of sound occurs.

Let us first examine a convergent cascade of such type

(X i, X2 > 1) which is employed in the nozzle (directing)

cascades of turbines. Flow enters such a cascade at low subsonic

velocity at an angle l n v/2, and at exit from it becomes super-

sonic, directed under a given angle a2 to the front of the cascade.
2

Let us examine one of the methods of the construction of such

supersonic cascades lacking wave drag.' Flow in the vane channel

is divided into two consecutive parts. First in the straight

part, which is the usual Laval nozzle, flow is accelerated from

the assigned subsonic velocity (XI < 1) to a certain supersonic

speed Xc < X . The turning of the flow through angle A$ is

achieved in th? flow with expansion about the obtuse angle at

which further acceleration ol" flow to X2 occurs. For this purpose,

the lower wall of the nozzle (Fig. 10.68) is continued straight

at angle A8 to the nozzle axis, the upper wall is first continued

parallel to the axis to point A of intersection with the character-

istic in the nozzle exit section OK, and then alcng the flow

line of the flow about apex 0 of an obtuse angle.

'This method was proposed by author of the present Chapter
in 1950.
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'ig, "Lu. . LDia.,ra'n o:" )I:tI'UctIl --

c.f' intake ruide as .1-dn with transition
through t h: spec i 32 .-ol, a without !

wave ,r --r d W : . ,.: . iCtly of
the su'J.e" .:n: -' ':

I' LV., 'at .oi.t .~-, I UC ar - l ine OB' to

n . te.se;:tiOtr wi ,l . ,' to tt,'. . zic".:ls carried cut

._o~ ~tr),t 0 arid again 12o:ist .Act tho -ut 1r1' Cf the straight

nozzle so' that its end point coincides w~th point 0', we then

.btaln a Qertain airf.'il. Continuing -, is orocess of construction
w"th.;tlimit, we for. - talon .>-.scl.o- deflcti- ng the flow to the

given angie ant Im titn r h tm flu uZ. V -lC.It y

The shape of this cascade 1,;l1 11nslsr of three parts:

I) symmetrical ai,.fo~i DICK I wose out for, a straight

nozzle; 2) vectllineai trIangle C0<2; )arfil -IABC of a twor

parameter convergent cascade.

Cascades thus constructoo , tbainlng good uniformity

of flow with pitch; their main disavantar-e is the limitation

on the size of the possible anE7l. cif t;urr of the flow.

.or an increase In the total o:,,le of turn .f the flow, it

should be achieved riot only in the sc'rssnic, but in the subsonic

part of the vane channel (Fig. 10.69). With such grids, however,

great nonuniformity of flow is createa as a result of' the diffi-

culty of obtaining unifor. velocity distribution in the throat

to a Laval nozzle with a crvillne r axs. Nonuniformity increases,

when, as so often is the c s In pri:Ctc&, the- entire assigned
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Fig. 10.69. Diagram of construction of intake guide
cascades with transition through the speed of sound
and with turning of flow in the subsonic and super-
sonic parts of the vane channel: a) with angular
rlint; b) with smooth profiling; c) with finite thick-
ness of trailing edge.

turn of the flow of the nozzle cascade is accomplished in the

subsonic part of the vane channels. In this case, in the super-

sonic part of the vane channel consirting of half the usual flat

symmetrical Laval nozzle, there occurs only acceleration of flow

from the speed of sound to the assigned value of velocity on

outlet from the grid (Fig. 10.70).(
Flow in the oblique section

7of a supersonic nozzle cascade (Fig.

10.68) under off-design conditions is

the same as in a cascade of plates with
()" setting angle 4 = 82r, being stream-

lined by a flow at zero angle of
Fig. 10.70. Intake incidence with velocity coefficient
guide cascade with
transition through 1 M X This makes it possible with
the speed of sound the aid of expressions (79) and (81)
and with turn of flow ti
only in the subsonic to determine the value and direction AN

part of the vane of the velocity in cross section 3-3
channel. o
KEY: (1) Recti- after the cascade (where the flow
linear Laval nozzle• after mixing can already be considered

uniform). The pitot losses in the

oblique section and with the subsequent equalizing of the flow are

found from the equation of flow
(~it~ =~~) sin P, i
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With pressure after the cascade P2 less than calculated, there
is established flow with expansion in the oblioue exit with which
the beam of characteristics converges on the trailing edge of

7 --the airfoil. Unlike the isentropic outflow from a separate nozzle _-A
with oblique exit examined in Chapter IV, in the case of a nozzle

cascade in the oblique exit the pitot losses appear in a certain
shock wave system. These shocks are obtained as a result of

interference between the nozzles which leads to overexpansion
and subsequent compression of flow on exit from the cascade.

With sufficiently great counterpressure, the flow everywhere

becomes subsonic; the presence in this case of an angular point on

the airfoil causes local turbulence of flow, and connected with

this, added losses and distortion of the velocity field at the

edge of the cascade. To eliminate this deficiency, it is possible

as with the profiling of purely supersonic cascades, to replace

the broken line with a smooth line, for example, by the circular

arc, or one of the flow lines of the flow about the angle (Flg.

lo.69b).

Another, structural deficiency in the airfoils in question

is connected with the presence of a thin trailing edge. It can

be easily overcome by construction of an airfoil with finite

thickness of trailing edge A with a corresponding increase in

pitch t and a decrease in velocity on entry (Fig. 10.69c). In

this case one ought, however, to consider that as a result of

equalizing of the velocity field after the cascade there will

arise losses and turning of flow which can no longer be unambg-N

uously defined from a Bernoulli equation, equations of momentum

and flow in tne same way as was done above for cascades with

infinitely thin trailing edges. This is connected with the fact

that in the momentum equation a new value will enter - static

pressure on the airfoil edges p , which at supersonic flow

velocity at the edge of the cascade requires special determining.
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consists of a rectilinear segment of length Z 1 t Cos

and combined with it a curvilinear small arc (Fig. 10.72). Given

the angle of an equivalent plane diffuser a., it is possible to

determine the necessary extent of the subsonic part of the channel.
-uApproximately replacing the curvilinear axis of channel by the

circular arc R anddisregarding the angle of deviation, we obtain
A

tg j--
or

The value of a can be approximately selected from the data of

blowing through plane diffusers with a velocity coefficient eaual

to its value AA on entry to the subsonic part of the channel

(Chapter VIII).

Fig. 10.72. Supersonic divergent
.. cascade of infinitely thin air-

foils with transition throuvh

C the speed of sound in a normal
( .shock.

The cascades of plates described above with normal shock on

entry require, strictly speaking, infinitely thin leading edges.

This condition in actuality can never be fulfilled, in consequence

of which the design diagram of flow cannot be realized, since the

basic property of a normal shock is disturbed - tne equality of

the transverse cross-section of the jet.

As a result, before the cascade a system of disconnected shock A
waves appears, similar to that which appears during flow at a

positive angle of incidence (X1 > , < 1) of cascades of
I~ la
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rIn,',tely thin plates (Fig. 10.48), but with a specific picture
cf :'Th in the zorie c" flow around the leading edge.

'.';th large values of number M1 the losses in a normal shock
iii ,rease substantially, and for the purpose of reducing them, Just
as in a supersonic diffuser, it is advantageous to achieve

transition through the speed of sound in a system of oblique

shocks with a terminal normal shock. Figure 10.73 depicts such
a cascade with the simplest system of shocks (one oblique + a

normal) calculated for number M1 a 2.0. The intensity of the first
oblique shock determined by the angle of turn at the leading edge

of the airfoil is selected froir the condition of minimum total

l:ss in the system of shocks. Thus, the turn of the flow in the
2ascade is here achieved only in an oblique shock. Deceleration
cf subsonic flow in the vane channel is absent. It occurs In the
process of turbulent mixing after the cascade and is accompanied

by a change in the direction of flow, which reduces the total

turn of flow in the cascade. The intensity of the losses and the

additional turn which depend on the thickness of' the trailing

edges and Mach number after the normal shock can be determined

on the basis of the condition of conservation of momentum in the
space beyond the edge and with the aid of continuity and Bernoulli
equations. For this, it is sufficie.nt to use the expressions

given in § 3, having first determined the values of the integrals

entering there. In the case of the velocity distribution in

question we have

dY Qi 1u),gy oj. iy Q 6 hy ()a

and also

ji

Correspondingly, the coefficients of quadratic equation (29a)

relative to sin a., can be presented in the form
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Jisre7rdez4 . In the case of an incompressible fluid we have

SWa = W2 a(l - 6), where L - n/t sin 4, and

i e., -ne ;reater the thickness of trailing edges, the greater the

ingle zf deviation. Thus, for instance, with 4- 450, value of

the angle of deviation 6 with A - 0.1 is 30 and increases to

,01 wit-h L = 0.2.

From the equation of the momentum in projection in an axial

direct1,n

follows that

Thus, in the free space beyond the cascade

.NO.=P' + -P.m (JTU -W.l

The pitot losses during sudder. expansion of the area of a

rectilinear channel with (t - h) sin 4 to t sin 4 corrprise (see

Chapter I)

Since
*U' ,(1 -

then

From a comparison with the foregoing formula for pitot losses we

have

4P,

As we see, losses with the equa- zing of flow in the free space

beyond the cascade decrease in comparison with the losses by Borda

shock in a corresponding rect'linear channel with a decrease in

71
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angle 4. ',1th large values of angle 4, the difference bet,,een

these losses drops and becomes zero with 4 - 900. The latter

result is the obvious consequence of the symmetry of flow in the

free space beyond the cascade at such an angle of setting.
2

To reduce the angle of deviation, and therefore, to increase . - - -

the effective angle of turn of the flow by t ,; eascade, it is

necessary to reduce the thickness of the trailing edges of the

airfoils, additionally retarding the flow (after passave through

the syster of shocks) in a rectilinear subsonic diffuser (Fig.

i0.73b). In so doing there will be a simultaneous decrease also -.......

in the losses by equalizing the flow in the space beyond the

cascade.

At first, this reduction in losses will exceed the increase

in the losses in the subsonic part of the vane channel and thus

the total losses in the cascade will decrease. Subsequently,

in proportion to the refining of the trailing edge of the airfoil

and a corresponding increase in the expansion angle of diffuser

it may prove that the increase in losses in the subsonic part

of the vane channel will no longer be compensated for by a decrease

in the losses by the equalizing of the flow after the cascade. In

other words, with a certain optimum thickness of the trailing edges,

the total losses in the cascade can become minimum. This is

confirmed by experiments on rectilinear diffusers which show that

in a number of cases the optimum is a staged diffuser in which

deceleration of air is achieved first in the diffuser with less than

initial, by the expansion angle, and then during sudden expansion.

The aforementioned considerations beccre even more essential

in connection with subsonic divergent cascades where the relative

percentage of intake losses is many times less. On the strength im

of these considerations, K. A. Ushakov proposed a subscnic 7M.W,
divergent cascade composed of winged airfoils with blunt trailing,

edge. A decrease in the anglo of turn _.;' flow in such a cascade

in comparison with a cascade of the usual shapes v;ith sharp
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trailing edge is compensated for by the large angle of bending of
the center line of its airfoils. In general, the necessary turn

of flow A8 by a supersonic cascade is achieved as a result of

deflection of the supersonic flow in an oblique shock A8c a V

and the deolection of the subsonic flow 48 in the curvilinear

S subsonic part of the vane channel (Fig. 10.73c) ..

it is important to note that in a supersonic divergent

cascade the presence of the angle of deviation has substantially
less effect on the relative change in the value of AWu, and,

consequently also circumferential force Ru proportional to it

-than in an incompressible flow. This is illustrated by the

velocity triangles given in Fig. 10.74 constructed for a super-

sonic flow and an incompressible flow at one and the same entrance

angles and equs angles of deviation.

a) b)

Fig. 10.74. Effect of angle of devi-
ation on value of Awu: a) incompressible

flow; b) supersonic flow before the
cascade and deceleration in it to sub-
sonic velocity.

The advantage in the type of cascades in question with oblique

shock in comparison with cascades calculated for one normal shock

consists not only of the fact that the flow through these

cascades, especially with high M I numbers, occurs with less
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losses,' but also in the fact that their airfoils have a finite

thickness unlike the Infinitely thin airfoils of which, strictly

speaking, a cascade with normal shock on entry should consist.

Among the deficiencies in the cascades in question one should

include the difficulty of bringing them to a condition of flow

corresponding to the design Mach number.

Figure 10,75 gives diagrams of flow both with design and with

off-design M1 numbers; the angle of incidence in all these cases

is taken as design: i = 0. With an increase in the flow velocity

in comparison with its design value the front of an oblique

shock passes more slopinr-, and as a result, there appears inter-

action between this shock and flow with rarefaction which becomes

complicated in proportion to the reflection of the shocks and

characteristics from the walls ef the vane channel (Fig. 10.75b).

With a decrease in M1 number, the front of the oblique Jump

passes more steeply, in consequence of which, flow with rarefaction

interacts only with reflected shocks (Fig. !0.75c). Such a

picture of flow is possible, however, only up to a specific 1,

nu.-ber equal to the maximum N1 number for flow around a wedge.

It is known that with Mach numbers less than maximum, the

flow about a wedge with formation of an oblique shock becomes

impossible, and at a certain distance from the apex of the wedge

a disconnected shock wave is established. however if the flow -

about a unit wedge with a boundlese decrease in M number is
nevertheless possible (only the picture of flow changes), then

the possibility of flow about cascades composed of wedge-shaped

airfoils is limited to a condition of flow choking In the narrow

cross section of the vane channels.

'In this case, they have in view only losses which appear in
shocks (without allowing for the effect of viscosity). In an
actual flow, the interaction of the falling shock with the
boundary layer on the airfoil complicates the flow and does not
make such an obvious gain in losses. A normal shock, although of
greater intensity interacts with a thinner boundary layer than an
oblique shock which passes within the :hannel.
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a) b) c)

Fig. 10.75. Flow around a supersonic
cascade of wedge-shaped airfoils: a)
M1 M b) M c) M<

On going to design conditions, i.e., during "starting" of

the cascade there occurs a monotonic increase in M number of

incident flow from M- 1 up to the design M1 number. The limita-

tion in minimum M1 number makes it impossible to start the cascade
without special adjustment similar to that which is employed in

starting a wind tunnel with a supersonic diffuser.

Such adjustment in the cascade is simpler than in the wind

tunnel, since it is possible to carry it out not only by reducing

the area of the throat section of vane channels, but also by a
corresponding reduction of area of the entering jet by means of an
increase in the angle of incidence. Figure 10.76 for the cascade

of wedges designed for number Mlp a 1.5 gives the dependences of
the minimum angle of incidence Imin' necessary for "starting"

this cascade. One of the curves is constructed under assumption
of isentropicity of flow, the other - taking into Rccount losses
in the shock waves computed according to (107). These dependences

show that the presence of losses shows up noticeably in an
increase in the minimum value of the angle of incidence. So,

with M- 1.0, the value of the minimum angle of incidence is

equal to .41 for an isentropic flow and increases to 100 in the

presence of losses.
I

Let us examine now some results of the experimental research

on supersonic divergent cascades calculated for deceleration of
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Fig. 10.76. Dependence of minimum angle of# ..... J-|--incidence on M1 number for a two-shock

divergent cascade with angle of' wedge w - 100
(8- 30', Mlp a 1.5): 1 - under the

.. --- assumption of isentropicity of flow; 2 -
taking into account the losses determined

, - approximately according to formula (107) -A
I ... r, for a solid cascade of plates.

a supersonic flow with a subsonic axial component of velocity.
Let us dwell on the experiments with an isolated vane channel

carried cut by S. I. Ginsburg and by L. A. Suslennikov. With a --

subsonic axial component of velocity such a replacement of an

Infinite cascade by a single channel having the same leading

edges as for the cascade airfoil is valid only at zero angle of

incidence and when length 11 of the straight portion of convex

surface is such that the characteristic which goes from the end of

this segment does not emerge beyond the front of the cascade

(Fig. 10.45).

Figure 10.77 depicts a cascade, the vane channel of which

was tested at z--o angle of incidence, with several values of

M numbers and various counterpressures. The cascade is designed

for M = 1.5 and has an angle of taper of leading edge w = 60. The

convex surface of the airfoil consists of a straight segment and

combined with it a circular arc. The results of experiment are

given in Fig. 10.78 which shows the distribution by section after

the channel of the coefficient a I p 0 2 /po I of the valueu of number

"1 = 1.36; 1.5; 1.65. These data pertain to the design position

of the terminal shock located directly after the first shock.

Figure 10.78 shows that at all velocities of the incident flow

the pitot losses in the flow core are comparatively small and

close to the losses in the calculated system of shocks. With

approach tc the convex wall, the losses increase sharply, which

is explained by the boundary-layer separation after the X-shaped
part of the terminal shock and the further development of separation _-
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Fig. 10.77. Fig. 10.78.

Fig. 10.77. Supersonic cascade of wedge-shaped airfoils, the vane
channel of which was tested under isolated conditions.
KEY: (1) Mach wave.

Fig. 10.78. Distribution of the relative total pressure a ' P0 2/po1
according to pitch after the vane channel during design position
of the terminal shock and various Mach numbers of incident flow:
1 - oblique shock; 2 - terminal normal shock; 3 - X-shaped shock;
4 - zone of flow separation.

in the subsonic diffuser part of the channel. The latter circum-

stance is confirmed by the fact that during testing of another

channel with the same supersonic part but with substantially less

diffusivity of the subsonic section (a. a 1.50 instead of a a 70)

the drop in the total pressure begins considerably nearer to the

convex wall and occurs considerably weaker than for the initial

channel (Fig. 1.0.79). Averaging of the experimental data given

in Fig. 10.78 gives the following mean values of the loss

coefficient:

M1. 11 , O5 , .

Ap.,, o.,1o.1651o28

The increase in the pitot losses with an incr -e in the

velocity of the incident flow is caused by by the incr-se 1 the

losses in the center section of the flow (connected d'-,, t'.y with

losses in the system of shocks) and by the increase of the intensity

of the boundary-layer separation as a result of an increase in
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Fig. 10.79. Distribution of total
pressure according to pitch after the
vane channels of two supersonic cascades
which differ only by the angle of the T

41 equivalent plane diffuser for the sub-
4 - sonic part of the vane channels with

- ..- - M1 a 1.5, i - 0 and maximum counter-

- -pressure: 1 - initial channel; 2 # 41 V 1 A# 0 0 0 0 V Of channel with the reduced diffusivity

of the subsonic part.

velocity before the terminal jump and its displacement downstream

together with the point of fall in the oblique shock. The latter

is characterized by displacement to the convex side of the channel

of the point of steep drop in the distribution curve of total

pressure for pitch after the channel (Fig. 10.78).

The results of investigation of another channel close in

configuration with the same design number M1 = 1.5, but with

different positions of the terminal shock are given in Fig. 10.80.

The smallest losses, as the graphs show, are observed in the

( design pcsition of the shocks, when on entry to the varne charnel

one oblique shock and directly following it a normal terminal

shock are used (curve 1). With a decrease in pressure in com-

parlson with the designed, the shock moves downstream and losses

begin to increase (curve 2) at first unessentially, and then very

sharply and reach a value of Ap0 c - 0.24 in the extreme position

of the terminal shock (curve 3) instead of = 0.10 at its

calculated position. Such an increase of losses is connected with

the increasing inteneity of separation during movement of the shock

in t'e diffuser channel. In this case, the separation appearing

and developing at the convex wall of the channel leads to acceler-

ation of flow at the opposite - the concave wall, and as a conse-

quence of this, to a decrease in the losses in this zone of flop.

(curve 3). At the certain increased counterpressure on inlet to

the channel there appears one normal shock instead of calculated

system of two shocks. The replacement cf two shocks by one shock

of greater intensity produces an increase in the losses also in
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the central and in the near-wall parts of the flow (curve 4, Fig.

10.80). The latter circumstance is the result of the interaction
of the shock of greater intensity with the boundary layer.

Fig. 10.80. Distribution of
4 relative total pressure P0 2/p 

i I according to pitch after the-, ------ f-- channel with M1 - 1.5 and various

S* i _...- - positions of the terminal shock
(symbols and numerals on the curves
show the approximate location of

-. -" the terminal shock).

1 41 42 a? O , 45 44' W. ti 117

Experimental research on the initial supersonic cascade

(Fig. 10.77) with angles of incidence Z # 0 was carried out by
L. A. Suslennikovl on a rotor with cylindrical form of blading

and with the height of the blades composing a total of 0.1 part

of the diameter. For such vanes a change in the flow parameters

on a radius is so insignificant that it can be disregarded and

to consider the rotor as revolving cascade with the constant

flow parameters on a radius.

Instantaneous photographs of cascade flow obtained on a

Toepler-Foucalt instrument with the aid of cylindrical optics are

given in Fig. 10.81.

From these photographs it is distinctly evident that before

the cascade there isaperiodic system of shock waves. Before the

leading edge of each vane a curvilinear shock wave is established,

1L. A. Suslennikov, The use of optical methods for studying
flow in the blading rings of an axial-flow compressor. In a
collection "Rotodynamic machines and jet apparatuses," issue I.
"Mechanical Engineering," M., 1966.
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Fig. 10.81. instantaneous Schlieren
photogi-aphs of flow about a rotating
wheel with wedge-shaped blades (rotating(•
supersonic cascade) by a supersonic flow.
KEY: (1) Wheel is stationary; (2) No flow.

one t- the branches of which departs forward, agitating the fro,:

before the cascade, .and the other branch drops or, the airfoil of

the adJacent varie. The form and the pcsition of the shock waves

depend on the angle of incidence.

With small an!,lr f of incidence the shock wa.'e consists of

two branches - one .s located before the cascade and the second

enters into the vane channel and represents essentia±ly an oblique

shock. As the a:f.e of incidence, increases the shock wave is

straightEned, s,-.u1tnecusly rving uptre'. At the greatest

angle of incidence, the shock wave is close to the normal shock

located at a noticeable distance from the leading edge of the -

airfoil.
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§ 15. Certain Findings Regarding Spatial
Flow Around a Single Airfoil and a
Oascaae of Airfoils

In the foregoing paragraphs we examined the flow of a plane-

parallel fluid flow around an airfoil. Such a flow can be realized

only on an infinite-span airfoil.

Let us now dwell on the basic questions of the theory of an

airfoil of finite span. An infinite airfoil affects its circumfluent

fluid flow as an infinite vortex filament. In other words, it

may be considered that into the airfoil, as it were, a so-called

bound vortex is placed. As is known from hydrodynamics, the

vortex can terminate only on the boundaries of the flow or be

closed. Therefore, a bound vortex cannot suddenly terminate on

the tips of a finite-span airfoil (Fig. 10.82); its free ends,

called vortex curls go beyond the limits of span Z and being caught

up by the general flow of the liquid, are extended over the flow

lines into infinity.

Fig. 10.82. Aerodynamic configuration
of a finite-span airfoil with a horse-
shoe vortex of constant circulation.

If circulation around the airfoil is constant, then such a

finite-span airfoil can be replaced by a horseshoe vortex. In

actuality, the circulation over a finite-span airfoil usually

changes, and in general, the airfoil can be replaced by a system

of an infinite number of horseshoe vortices forming a continuous

vortex sheet (Fig. 10.83) which, as studies show, is unstable and

after the airfoil is turned into two vortex curls (Fig. i0.e4).

With an airfoil of rectangular form, the vortex curls run off

mainly from the tips, therefore such an airfoil can be replaced

approximately by one horseshoe vortex with constant circulation.
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Fig. 10,83. Fig. 10.84.

Fig. 10.83. Diagram of horseshoe vortices for an air-
foil with variable circulation spanwise.

rig. 10.84. Diagram of turning of a vortex sheet
after an airfoil into two vortex curls.

Experiments confirm well the described hydrcdynamic diagram

cf -n ainfoll of finite span. Taking into account the action of

those vortices disappearing from the tips of the airfoil, it is

possible to establish the effect of the span of the airf'oil on

its aerodynamic properties.

For this, the average induced velocity over the span of the

airfoil being caused by vortex curls and usially called the down-

wash velocity w is determined. It can be shown thaty 0 '
e,. CY

here the value X i/b designates relative span, or aspect ratio.

Correspondingly, for the angle of downwash of flow 6a we have

the following important formula of the theory of an airfoil of

finite span' :

If the airfoil stands in a flow at an angle of attack a, then the

true (aerodynamic) angle of attack comprises (Fig. 10.85)

'See the more detailed presentation o" the theory of an air-
foil cif finite span in B. N. Yur'yev's b.ou: "Experimental
Aerodynamics," part II. Dbo on F., :93.
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Fig. 10.85. Downwash after
an airfoi! of finite span.

KEY: (1) Chord.

For an infinite-span airfoil (A - a) the angle of downwash

is equal to zero (At 0), i.e., the true angle of attack is equal
to apparent (a). The smaller the relative span of the airfoil ),

the greater the downwash angle, and therefore, the smaller the
true angle of attack.

In connection with the downwash the lift vector or' the airfoil
is turned to the same angle ba, since its direction is always at
right angles to t ,e true direction of flow (Fig. 10.85). The
projection of the lift of an airfoil of finite span' on the free-
stream direction constitutes the force of so-called "induced drag":

Conver tng to dimensionless quantities and taking into account

the smallness of the downwash angle (sin Aa z La), we obtain the
formula for determining the so-called" "coefficient of induced

drag" of an airfoil of finite span
Cad = = C04

Thus, the effect of the finite span of the airfoil is expressed
in the appearance of a special kind of (induced) drag even in the

case of flow of an iteal fluid around an airfoil.

In view of the fact that the lift coefficient is proporticnal
to the aerodynamic argle of attack, the expression for the

'In view of the fact that the angles of downwash are small,
lift with downwash barely changes (c ,).
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are out so that the dasturbanve coines going out from the 1l.adlrfr

fedges of" t L , !r, o 4 ".: (. 1,:1 -1 r t , n' -, ,, within themnselves tet r.'r2
of the airfoil. iti tio t;' t ~iperacmrl:c flight speej. all

wing sections ~:~ ~flon' arn.ind 19,unt a n InfrIritf.-aran

airfoil.

Earlier In the exqluatcr, uf~n lritlnite-bpsr. *If~I!.w

assumed that the ",.w an.s-~me~r. rd thli~d. the i'ett

( of' the appro~ach :a vi'~ trght erigies to thf:, lehd r,

edge of the airfoiil. Ltf!t. u!! fx~~re now an ~.i~-pr
being~ blown at ant angl.e to- ie1d~z edtre. cr an airfoll equivaler..

to it which is mcving In al- vtI c(!r :alr side slip claracterlzo

by angle 8 (Fig. 10.t'. In th:! cks.e, s before, we wi-l --;n.cXer

that the airfoil chor-1 air-1 a.j'l rp ':v.,rtart along the -tr-

We shall break t no tno . fiow vt!,),,c t v . jown Ilac ti-,< c-r.-

ponients: parallel t.- tl.o 'eadriv eo&'cz and'. ;d7 right angles to !t.

a ti, the t.rar, -%r the aulrf .i th

I cz'2't. h;1s no eftfec on tf.e p t-

~ ~i. .. ~ :r.-ver thi- ir'"i 1wiz

d---termnenl unly 7ts the* no.rmal velcit:-

Fig. 10.86. Oblcu 11 nqw.s
flow aoout a winF-



7Thus, the side slip of an infinite-span airfoil does not

1.ffect pressure distribution over its surface. Consequently, the

M-ach numb, r which determines the nature of flow about the airfo. l

.Ls no longer the number 74 w /a 1  but the effective Mach number

- M, sin

Thus, by givng the wing a swept-back form, it Is possible,

for example, to delay the moment of emergence of shock stall for
a wing with this shape to high M numbers. This method of reducing

1I

drag has fnd wide applination in the practice of modern aircraft

construction.

The presence of a velocity component along the span of a

swept-back wing causes displacement of the boundary layer in this

direction. This leads to a deterioration in the flow and to a
decrease in the angle of stall at the tip profiles. In practice,

for the elimination of this harmful effect of vlts osity use is

made of "combs" - projections along chord and preventing overflowing

0 of the boundary layer.

Let us now examine certain questions of three-dimensional flow

of a liquid in rotodynamic machines.

In those rotodynamic machines whose rims operate in virtually

unrestricted fl-%w (air and water propellers, windmills), from the
tips of their blades, plust as in a single aircoi of finite

elongation, bound vortices run off. As a result, an aditional

induced drag appears the calculationi of which, by co-mparison

with a single airfoil, Is complicated by the presence of mutual
interference between the vortex curls running from sne tip of

each blade.'

f N. E. Joukowski, Vortex theory of a screw rropeller.
Tekhteoretizdat, 1950.
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Vortex curls of this type cannot arise in the turbomachines

of other types (axial-flow compressors and fans, axial-flow

turbines) which differ by the fact that their blades are limited

---at the ends by the surface of an annular channel.' As a result of

this, the induced drag either does not appear at all or it has

a secondary value.

The three-dimensional character of flow in the rotodynamic

machines of the type in question is basically expressed in those

limitations on possible distribution of flow parameters over the

span of the blades which are imposed, for example, by one or another

form of surface current adopted. 2  Friction on the walls of an

annular channel, especially in the area of the vane channels,

leads to amplifying the effect of viscosity on the character of

three-dimensional flow.

As the simplest example having a direct relation to the

phenomena which occur during flow by a flow of a viscous liquid

about fixed vane channels, let us examine the flow about a cascade
of straight airfoils of constant profile limited by two parallel=

planes normal to the generating lines of the airfoils (Fig. 10.87).

Fig. 10.87. Flow of a potential
S/cflow about a cascade of airfoils

of finite aspect ratio located
between two parallel planes.

In the case of an ideal Inviscid fluid the flow in question

is two-dimensional. This means that over the entire span of the

'The very small radial clearances between the surface of the
annular channel and the ends of the rotor wheel blades - rotating
vane rings - can be disregarded.

2For greater detail see, for example, S. I. Ginsburg, Elements
of gas dynamics of compressors and turbines, Chapter IX in the

( earlier edition of this book.
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blade, including on the planes which limit the cascade, there is

the same two-dimensional flow regardless of the amount of aspect

ratio X - 1/b constituting this cascade.

With the usual angles of incidence the pressure on the convex
wall of the airfoil is always less than on the concave. As a

result, in the vane channel the forces of pressure increase in

direction from the convex to the concave surfaces of the airfoils.

In a flow of inviscid liquid and gas this pressure gradient is

completely balanced by the centrifugal force which appears during

the motion of particles along curved paths (Fig. 10.38)

we

Here R - the radius of curvature of the flow line at the given

point. Taking into account the fact that Am = pAnAF, we have

As has already been indicated, during non-separating flow the

viscosity effect is limited to a thin surface layer. Outside

this layer the flow differs little from the flow of an ideal

fluid. Hence it follows that the viscosity effect barely shows

up in the flow in the middle sections - it remains virtually

undisturbed.

Fig. 10.88. Flow in a plane
curvilinear vane channel.
KEY: (1) Flow line.

The greatest disturbances of flow will occur in the boundary

layer of flat walls which limit flow. A decrease in the velocity

in this layer leads to the fact that the pressure gradient, which

in the boundary layer remains the same as in the core of the flow,

will no longer be balanced by centrifugal force. Because of this,
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in the boundary layer overflowing of fluid will begin in the

direction of the pressure gradient - from concave wall to convex.

The intensity of this overflowing will increase in proportion to

proximity to the wall. Falling on the convex surface of the airfoi,

part of this fluid will be taken away by the main flow. As a

result, at the upper and lower surface there will arise two vortices

of identical intensity, but with counterrotation (Fig. 10.89).

Such a vortex system is called a paired vortex. The expenditure

of energy on vortex formation leads to pitot losses, i.e., to

the emergence of additional, so-called "secondary losses."

( Figure 10.90 shows the distribution of

the loss coefficient over the span of
4' the vane for impulse and convergent

cascades.' In the middle part of the

vane the losses are connected only with

the flow about the airfoil and there-

Fig. 10.89. Formation fore are constant over the span. They
of a paired vortex are called profile losses. The losses
during flow of a
viscous flow about a connected with vortex formation and
lcade of airfoils flow at the walls have a local characterlocated between two
parallel planes. and down to a certain minimum value of

aspect ratio do not depend on it. In

S other words, the relative percentage

of tip losses decrbases linearly with an increase in aspect ratio.

In proportion to the decrease in the aspect ratio, the vortex

regions come together and with a certain Xmin only one area of

increased losses is detected, located in the middle sections of

the vane. Figure 10.91 gives the dependence' of Xmin or the value

IM. Ye. Deutsch, T. S. Samoylovich, Fundamentals of aerodynamics
of axial turbomachines. M., Mashgiz, 1959.

795

- '- ... A7



£I

:]:

aC) Al b) 1 t

Fig. 10.90. Distribution of losses over
the span of an airfoil in a cascade: a)
impulse cascade with X = 2.25; b) con-
vergent cascade with X - 1.2; z - dis-
tance from the mid-span section.

A .- f 1) Fig. 10.91. Dependence of minimum
. (2) aspect ratio of the airfoils of a

(3) cascade X ith which Joining

of secondary flows occurs from*'P HH|IIP2
KEY: (1) Cascades of intake guide
device; (2) Convergent cascades;

-2 (3) Impulse cascades.
-,41 1 4 # 0 V o./Aj ,

The graph in Fig. 10.91 shows that with an increase in Ap2

a drop in Ami n occurs which indirectly testifies to a decrease

in the intensity of vortex formation. This is connected with the

increase in the convergent effect, i.e., with a general acceleration

of flow which leads to a decrease in the boundary layer thickness

and thus to weakening of the viscosity effect. With a decrease

in 6p2 , especially when this value becomes negative and flow

becomes divergent, the reverse effect is observed.

In a direct diffuser cascade, as during any flow with deceler-

ation, a considerable portion of the losses is usually caused by

the emergence of flow separations. In the same way as for

evaluating the degree of total diffusivity of a two-dimensional

cascade in § 3 the concept of an equivalent two-dimensional

rectilinear diffuser was introduced here, in the presence of a

7796
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three-dimensional character of flow, as one of the estimates, in
a number of cases the representation of an equivalent circular~ll

diffuser is employed which was first introduced in connection with A

S rotodynamic machines by K. A. Ushakov. The equivalent circular

diffuser (Fig. 10.92) has an extent equal to the length of the

center line of the vane channel and its sections FI and F2 are

equivalent to the corresponding flow areas before the cascade

and after it

4 (120)
F, t 11 , , -4_1

The expansion angle of the equivalent circular diffuser is

determined from the obvious relationsh~p

Taking iT.to account that a is small for not very curved channels

S b, according to (120) we have

Thus, the angle of the equivalent diffuser is proportional to the

root from the aspect ratio of the airfoils and inversely propor-

tional to the root from the solidity of the cascade.

In a limited range of change in the cascade parameters, the

application of the concept about an equivalent circular diffuser

turned out to be sufficiently effective. Specifically, with the

aid of this concept it was possible to explain the fact observed

in practice of the increase of losses in a diffuser circular grid

with an increase in the aspect ratio of the vanes. However, the

use of angle a as the parameter of diffusivity over a wide range

of change in the geometry of the cascade and airfoil encounters

serious difficulties. Thus, for instance, from expression (121)

it follows that with an increase in aspect ratio, the angle a
K~

monotonically increases. Meanwhile, from general considerations

it ia clear that with an increase in aspect ratio the effect of
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Fig. 10.92. Circular diffiser
equivalent to the vane chanrtl
o :' a divergent cascade of airfoils

,- t ".7Y of finite aspect ratio. I

end effects decreases and with the tendency cf elong~ation of vanes

t,, infinity, the flow becomes two-dimensional, arid therefore, the

exvression for the parameter of diffusivity should convert to

excression (87) for the equivalent planie diffuser of a cascade

o! airfoils. Such nonconformity is the result of the replacement

of this channel by an equivalent channel of different configuration.

If, in the same way as was done for a foil cascade, the equivalent

channel is constructed by means of straightening this vane channel

(Fig. 10.93) and its diffusivity, following Ye. A. Lokshtanov,

we characterize by a certain average in swept area F the value of

the angle

-the angle between the element of area and axis of the Channel),

then with a mnonotonic increase In aspect ratio will approachcp
a certain finite quantity equal to value of for a foil cascadecp
of airfoils.

If angles (p are small thern (Fig. 10.93)

Here~$I S istedegt f i (123)

"~~ NZ°- 7

Hre efes thesest af wthe channel, U - Its average perimeter.
Cp

Substituting in (123) the values

In esew swsd 21+ (sIn sin u)
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Cand assuming that S b, we obtain

I 'b [2 + (n - ,In&)

This expression, taking into account

(87), can be written thus:

S2+ 1(n t+% + n7

W~th an increase in aspect ratio

Fig. 10.93. Tetrahedral monotonically increases with X,
rectilinear symnetrica) approachin. infinity, it approaches
channel equivalent to
the vane channel of a its maximum value - the lateral angle
diffuser cascade of of the eauivalent plane diffuser
airfoils of finite a
aspect ratio. for this airfoil cascade. For an

incompressible fluid we have

and correspondingly

• ")

The numerator here characterizes the degree of deceleration of

flow, and the denominator determines by itself the relative

extent of the channel. Thus, the value ¢ determines the average

velocity gradient, and therefore, the static pressure. Therefore

*Cp can be considered the measure of the aerodynamic load state

of a divergent cascade of airfoils. With an increase in aspect

ratio the aerodynamic load state grows, and consequently,

separation losses increase. In this case it is necessary to bear

in mind, as has already been Indicated above, an increase in

aspect ratio leads to a relative decrease in the secondary losses

connected with the formation or a paired vortex. Hence, it follows

that with a certain optimum aspect ratio anT the value of the
total losses becomes minimum.1 Wit n• an increase in

'As experimental studies showi, in a number of cases the M

optimum aspect ratio of divergent cn.cacdes is close to one.

7' 99



el a. ra I : e ids to a decrease In t, tal ls;es, since here Lhe 

-",stas "'ortex for:i,,atIor. will be d- term Ir * ',th k

-,h f roill losses be!come dCtermi!',g a:d, ccrre'spordinglv, an

increase 4n the total pitot losses.

is another matter in a conergent grid, Here, as a rule,

flow is nonseparable and the total losses are determined only by

friction lasses and by losses to the formation of" the paired

vortex. Therefore, an increase in the aspect ratio wings

z:nstltut.lng a convergent cascade leads tc a monotonic decrease

In t-otal losses.

Such a distinction in the nature of the effect of aspect

ratio on the total losses in divergent and convergent grids is

confirmed both by results of experimental research on them and

also by the practice of comprEssor and turbine construotion.
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CHAPTER XI

HYPERSONIC GAS FLOWS

1l. Change in the Parameters )f a
clas in an Iz;w-itropflc Hypersonic Flow

Gas flows at a velocity which considerably exceeds the speed

rf sound, sometimes called hypersonic flows, possess a series of

distinctive features.

(Let us expreos in an explicit form the influence of a chanrg-

in the rate of flow on the basic parameters of a gas.

In a urilt stream of gas in the absence of losses and exterr'I'

work according to the equation of Bernoulli (52) of Chapter' I w .e

have

dp==-pwd.

Hence with the help of the known expression for the speed of soun'i

(314) of Chapter 1 we obtain the relationship which connects

presoure change w'th the velocity change

dp Mdw.

The equation of conservation of enthalpy of a stream durlnr

adiabatic flow can be presented in the form A
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After ::inple c~n': rv. iSn fro, 'ere follows

d-r. ,2 da-- -(k -- i)Nldw

D4. f:''renvat i- "he e.uat-on of state of an 1deal gaz arni

ut lirin,T relitlonships (1) anI (2), we obtain a _zIrtilar deperilene -

d_dp d? M'dI

-p r

1..! Ffereritiating L!)e equality w = Ma and expressinr, the spee.n

cf .3uund through the ga3 teriperature, we fInd ththe help of

(2) the relationship

M r I 
,

4)

Relationships (1)-(4) show that at subsonic spteds (%I < 1) an

insignificant change of pressure, density, and temperature of the.

gas occurs with a change In velocity, but the Mach number drtends

on velocity linearly. On the contrary, at hypersonli speeds

( >> I) even a small change in the rate of flow leads to a

noticeable change in the state :f t!-e ra, and Mach num-,ber.

Wit). ,i >> 1 in the right side of expression (4) it Is

possible to disregard unity, then ;*...e have

eM h-Ima
M W -

Eliminating from (1) and (5) the factor dw/w and carrying out

integration, we obtain the characters stic, for hypersonic fi>,.z,

dtpendence of pressure on Mach numLer
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From (2) and (5) in a similar manner the dependence of

::r7,;.ratur. on the Mach number is derived

T IMA'
r. \MJ' (7)

from which follow the corresponding expressions for the speed of

ound

ii' (8) -

and the gas density

<(9)

Integrating expression (5), we establish the connection

between the flow velocity and the Mach number

+ (10)

During the derivation of equation (10) the function in w/wT
HHas expanded in a series by degrees (w/w -a) whereupo in vie-,.;

HHof the proximity of relation w/w H to unity all the nonlinear ter::

of this series were rejected.

In expressions (6)-(10) the values without indices correspond

to the current values of the parameters of the gas, and the values

with the index "H"1 - to their initial values.

§ 2. Hypersonic Flow Around a
Convex Obtuse Angle

Let us examine the features of flow at a very high speed

arotinu a convex obtuse angle - the hypersonic Prandtl-Mayer flo..

(Fig. 11.1). The mass flow per second of the gas between the

arbitrary flow line and the pole of flow 0 is constant and can be
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Fig. 11.1. Diagram of a flow around
a convex angle.

calculated b,.' the velocity component normal to the characteristic,

;..ici, L equa. tc the ,,peed of sound

par Q= conSiL

Hence after differentiation we have

+ 0, (i

The 1ach angle (between the flow line and the characterlstc)

in the case of hypersonic speed (M >> 1) is determined by the

following approximatc dependence:

I
am-m lclin - .( 12 )

If 6 is the angle of deflection of flow from the initial direction,

and 0 i the angle tetween the assigned characteristic and the

Initial flow direction, then obviously

Here it is taken into consideration that the reference directions

of angles a and 6 are opposite (a > 0, 6 < 0, since reading is

counterclockwise).

Figure 11.1 shcws that

I dr ct,
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since v;ith M~ >) :111~~

Substituting J; i, (1-,) wit. h&ve ..

from which on th: 1z:, -..f ", , n ) we ct.t !n

Integrating ti[,r" , %t on ind, takln lnto uacount z-dht1..L:.

(I.) and (13) when t t n , tIlal v,i'- -t - z an iwe -,
obtain for hyper:.,,,w -.. I'lut, thi fol low.i N' eoti'vC' *,J i:( tev en a: !

number and the ar..,le of a dev la t :,n ,f the r).':

here M and M at ti , ,.'j,.7t t,;r lnivIal X,142'i,, <'f ,,, i,.t i.
H

Solving equation (1-5) ,-.&i~ ve to, .r,. :,ornoi t vaJu ,X' : !,.

number

and Substituting 'h " vlhi :. Inr, tc. A.I ' or,2 , . - .

obtain formulas f,>r .a. 1.h', iurrent , .

densitY, temperat.,r', -rew-1 It' n.iLYic, :r.d r!,v v,?..> ;. v ,' r ,

hypersonic flow aruuii': V i'-nvtx o r vcr a; ngli:

Specifically for ,e '

-,0,

(£
t, , ,3



fi~ calculations show that all the formulas obtained thusl

ar., accurate with PA >

2he maximum ani 1o. of flow 6 corresponds to ti.e
expansion of gas to tot iuln (p,- 0). Then from (16) we have '1

2 I

Let us recall that during a clockwise deviation in the flow

tne angle is considered negative (6 <.0).

Au we see, the product of the angle of deviation of flow by

the initial value of the Mach number MH 6, which enters into all

the design equations as the combined value, is the basic parameter

which determines this flow.

If' we are restricted to the case of a low deviation in the i

flow around a convex obtuse angle and present a change In the

full speed as a disturbance which is characterized by the appearance

cf two supplementary velocity components u and v, then as it

follows from Fig. 11.2,

W.+a= W, os = , (18)

At small angles of deflection of flow

Cosa a 4.

ti-.erefore

i t -- -(1 9 )

Hence with the help of (10) and (15a) we obtain

4: 1)

8o620)

806 j



( Fig. 11.2. Diagram of the 5
vectors of velocity and

0 disturbances during a devia-
tion of flow around a convex
angle. 4

In the first of these expressions as a result of smallness
the terms with factors 8 and 6 are rejected, in the second -

23with factors 6 and 63

As we see, in hypersonic flow near a convex angle the trans-

verse disturbance of flow velocity exceeds by at least an order

the longitudinal disturbance (v >> u). This means that during the
flow there was a seemingly particle displacement along the normal
to the direction of undisturbed flow and the value of the longi-

tudinal velocity virtually does not change.

§ 3. Plane Shock Wave in a
Hypersonic Flow

Let us pause now on the relationships which characterize a

plane shock wave which appears during flow around a concave obtuse
angle at hypersonic speed. In a plane oblique shock wave a density
the change according to (47) of Chapter III will be

4

h +1

+2 1 (21)

Here a is the angle of inclination of the shock front to the
velocity vector w.

Pressure change in such a wave according to (45) of Chapter
III

or (22)

or
sin I a -
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The dependence of the angle of deflection of flow in a shc:

y:.ve on the slope of front a is determined from (50) of Chapter

W=-P l -I (I ++W+ 2+- =-+ . zg8' ----i(a +r1-Mc- f+at, (23) 1
++

.riere 8 i the angle between vectors of velocity behind the shock ,

,av,. and the front of the latter.

From here we obtain after the elementary conversions

- I

tg =Ctg 1 , _ (24)

From (21) and (22) with the help of the equation of state it is
posible to derive the appropriate dependences for the relation

of temperatures and values of the speed of sound in a shock wave.

The velocity disturbances in a shock wave (u, v) we find from

the obvious relationships

U=IV coS ,-., V=W sinl,, (25)

whereupon in accordance with the deflection circuit of velocities

in a shock wave (Fig. 11.3) we have

S- V= W.- sin w. (26)

Replacing cos 8 = cos (a - w), after elementary conversions i.we

obtain

VWO2 cg InI3t\,)
(27)

01
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( , ~Fig. 11.3. The deflec-
tion diagram of flow in
a shock wave.

Frum relationship (24) it follows that at hypersonic speeds

(M > 5) the angle of inclination of the shock front a is close to

the angle of deviation of the flow in the shock w, in connection

with which the layer of the condensed gas found between the shock

front and the body surface turns out to be very fine.

In sufficiently intensive shock waves (P/P >> 10) there is

always the inequality

sin 4> (28)

At any arbitrary small fixed value of the angle of deflection J

of flow w it is possible to achieve such a value of the Mach
number at which condition (28) will be executed. Consequently
in relationships (21)-(27) it is possible to disregard terms 2/M 2

and then it will turn out that the dimensionless values of the
velocity disturbances U/WH, V/WH, dimensionless density P/PH) and

the angle of inclination of the shock front a do not depend on MH,
but the dimensionless values of pressure p/p, (and temperature

T/T . are proportional to value M :

H H

gi2 v_ 2 Sinscos.+ --F- . Wi' .--- i' T7 sm

-or , M si. (29)

2

7 -I- i n #ls .

Thus at high hypersonic speeds in the area behind intensive

shock waves a certain limiting condition of the gas flow is
observed. During this its characteristic dimensionless parameters
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anj the aercdynamic coefficients do not depend on the value of the 2

i nutmL -. ',.'e observed similar features of gas flow at very low i

s-speeds (M 0 0), when the properties of flow also do not .
H

d.oend :r.n value M (incompressible liquid).
H

Experiments show that the indicated limiting condition of ra ---

flow (with M * a*) is reached virtually at comparatively moderate
H

values of ,M number.

Testifying to this, for example, are the experimental depend-

ences cf the resistance coefficients cx(M ) of a sphere and cylinder

with a conical nose section as depicted in Fig. 11.4; as we see,

already. with M = 3-4 the values cx are very close to asymptotic,

cnrresponding to M -0 W; the stability of the values of aerodynamicH

coefficients testifies to the invariability of the entire picture

cf ias flow near a body.

-j-

1 1 4 1 #A,
Fig. 11.4. The dependence of the drag coeffi-
cients of s sphere and 2ylinder wiht a conical
forward section on the Mach number.
KEY: (a) Sphere; (b) Cylinder with conical
nose section.

A general strict proof of the indicated self-similarity of

flows at high supersonic speed was given for the first time by

S. V. Valander in 1949. 1

'See Cher'nyy, G. G. Gas flows at high supersonic speed. IFizmatgiz, 1960. -
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I' the shock wave is insufficiently intensive, i.e., the - _ _

anc~le of deviation of flow w in It is small, then at hypersonic

speed angle a is also small; carrying out the substitutions

and designating aM = Ka ,M - K., we will obtain from (24) I

Ii

-t g'- "(30)

from which with a << 1

Correspondingly from equality (21) we obtain

h-, 4 . 3 >:

from equality (22)

+'t- .-1 - ) (33)

from equalities (27)

a 2 ~ an' d (34)

Nov: we find the Mach number behind the shock wave

---. 2-, _ g.(35)



it follows from (34), in the case of hypersonic flow the

r:.,atlve ars velocnity on a shock at a narrow angle of the latter

- ,chanriges (w z H). Then from (35) with the help of (32) and
( 3 . a: Lt alnh~

, 2' . - -IJL - .' ( 36 )

in tne extreme case, when M we have

MiM _ A+I .1 -4
• I,' 

j - I i-I

With 1'1' according to (31) a = w(k + 1)/2, therefore.4

M- - (37)

In other words, in the caze M H = at low slope angles ofH

shock a the Mach number oehing the shock will be large. If the
shock Is of low intensity, then the Mach numbers before and behind
the shock at hypersonic speed have a value of the same order.

In the examination of Prandtl-Mayer flow (§ 2) we represented
all the parameters in the function of the angle of deflection of

flow, whereas for flow behind a shock wave we found the dependences

containing the angle of the shock wave itself.

Using expression (31), we obtain

M --1 I -- M.2)AM.=

-- .I k+

=Mq + J .iM.'-- (38)

or for strong disturbances (M W >> 1)

M, %'- 1 2-fk'.L-
k4-1 +'

'{ - -M ," W ( 3 9 )

812

• = , i i - - ... . i . . ..-.. . . . . . . . .



P-,

Sucstituting (39) into formulas ( 3 1 )-( 3 4 ), it is possible to

present: thc, changes In pressure and density in a shock wave, and

-Ico th, values of the velocity disturbances in the function of the

an 1e r' deflection of flow (angle of Incidence of flow with the

irdy .'-,face).

arem ti,ese dependences it follows that at hypersonic speeds

4!n a tep otlique shock wave the change of the parameters is

determined (as during Prandtl-Mayer flow) by one criterion

K,= 1. - by the product of the Mach number by the angle of

deviation of flow.

4. HWpersonic Flow Around a
Flat Plate at a Small Angle of
Incidence

The expressions obtained in O§ 2 and 3 make it possible to

derive simple formulas for the coefficients of lift and resistance

of a plate flown around by a gas flow at a high supersonic speed

with a small angle of incidence.

The coefficient of the total aerodynamic force directed at

right angles to the plate is equal to

p-p" p \ 2 (40)

Here the minuend is the dimensionless pressure on the lower side

of the plate (behind the shock), according to (33) equal to

The subtrahend in the right side of equality (40) represents
the dimensionless pressure from the upper side of the plate (as

during the flow around a convex obtuse angle), which on the bask

cf (16) with 6 = -w takes the form
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.Cor.verting equality (40) with the help of the expressions obtained

aI d u t i I !1 ( 38) we obtain

-kI ±ZM.w'lln' (41)

,B \ -- -'- J 1,

If the angle of incidence of the plate w is equal to or greater

than the critical angle of rotation of flow during Prandtl-Mayer

flow, which is determined by (17), then on the upper side of the

plate a total vacuum Is established. In this case the value which

ztardo. in the brackets of expression (41) is equal to zerc.

At small angles of incidence the coefficients of lift c Y and

resistance c are connected with the coefficient of total aero-

dynamic force in the following manner:

c,=c roswoc, c --c sin WAWCOF"CY. (42)

With MH - we have

C,=(h+ i)' ,(+ kI).

As we see, the aerodynamic coefficients at very large values of M

HH

and at small angles or incidence are very low and, furthermore,

they depend on value M ; in general these coefficients depend on

the criterion K .

§ 5. Concerning the Hypersonic
Flow Around Narrow Ogival Bodies

The results obtained in §§ 2-4 can be applied directly to the

calculation of hypersonic flow around a narrow ogival body, since

the flow at the surface of such a bcdy is either a flow behind an

814
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oblizue shock wave (at a positive angle of deflection of flow) or

Prandtl-Mayer flow (at a negative angle of deflection of flow).

As it was already shown above, in such cases at small angles

of tapering of a body and small angles of incidence the basic -A

similarity criterion are the products of the Mach number of

Incident flow MN by a certain characteristic angle T. By T can be

implied the angle of' deflection of flow T - w (angle of inclination I

of the body surface to incident flow) or the relative thickness of

the body T = d/1 (ratio of the maximum transverse dimension to the

length of the body), since in the case of a narrow body these

values are proportional. The fine pointed bodies in which the

criterion K = MHT - idem we will subsequently call affine-similar.

It is clear that the retention of affine-similar flow around a

body during a change in the angle of incidence 6 is achieved in

such a case when the latter is proportional to the characteristic

angle of the body, i.e., under the condition 6/T f idem. Thus the

relative values of velocities, the coefficients of aerodynamic

(forces, and other factors which characterize the hypersonic flow

around a narrow body retain their values if the values MT and 6/T

do not change.

This is confirmed by the experimental data given in Fig. 11.5,

in which are depicted the curves of dimensionless values of excess

pressure on the surface of a cylinder with an ogival nose section,

obtained at different values of Mach number and for different

values of relative thickness of the ogive section (at zero angle

of incidence). As we see, the curves of pressure distribution are

universal with M = var and "T - var, if the condition affine

similarity - MT = idem - is maintained.

In G. G. Chernyy's monograph it is shown that the area of

action of the law of similarity for a hypersonic flow around a

narrow ogival body is determined approximately by the following

boundaries: M+2. = ,O=
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Fig. 11.5. Pressure distribution
during flow around affine-similar
bodies at high supersonic speed.

Let us note that the area of applicability of the law of
similarity is conside~bly expanded, if instead of value M T we

HH

above that during hypersonic flow around a narrow body the longi-
tudinal disturbance of velocity is negligible Iu << wl , and the
transverse speed is proportional to the angle of the surface slope
of the body

V TW
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In other words, a narrow body separates the layers of a

circumfluent sras as if in every layer (independent of adjacent

layers) the displacement of gas by an impenetrable mobile piston
occ'irL in a direction perpendicular to the direction of motion of

the body. If the entire area of flow is broken down by planes
perpendicular to the velocity of incoming stream into many layers,

then in each of them an unsteady motion directed only parallel to

these planes will be observed.

This feature of hypersonic flows was called the law of plane
cross sectionc, with the help of which it is not difficult to

determine the resistance of a body, equal to the work of expansion

of the corresponding form of an equivalent piston, being accomplished
on a gas in a layer during the time of passage of the body through

this layer. The outline of the piston at every point in time and

the normal velocity of its points are determined by the form of

the body, and the pressure on its surface is found from the solution

of the corresponding problem of the unsteady flow of gas.'

5 6. The Newton Law of Resistance

Considerable accumulated experience shows that for calculating

the resistance of a body during hypersonic flow it is possible to

utilize the law of resistance of Newton, who assumed that the

driving fluid consists of identical particles which fill the space

evenly and which do not interact with each other; during collision

with a body the particles lose the momentum component normal to
the body surface (inelastic impact), as a result of which the

force of pressure of flow on the body appears. The excess pressure

of the fluid on the sections of body located behind its greatest

cross section, i.e., in the aerodynamic shadow (Fig. 11.6), Newton

considered equal to zero.

'For more detail about the application of the law of plane
cross sections see G. G. Chernyy's monograph.
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Fig. 11 6. " . a, ound a
body which corre ponds to
Newton's model.

If the surface element of a body with area dF is tilted

t-":ard the Incident flew at an angle w, then the mass of rau; in

h-ich the loss of mumontum occurc i equal to pw sin udF, and the
normal ("lost") velocity component is w sin w, therefore the

nc-vmal component of the force of pressure according to the law of

Newton

dP =- P sin ' wdF, (43)

and the value of' the local increase in gas pressure

dP -,

P -- P.Zd,90 sin'tw. (44)

In a general case of flow around a body Newton's supposition,

it goes without saying, is not justified in connection with the

fact that the disturbance caused by the body in the flow Is

propagated to a great distance from the body and with distance

frcm the body is gradually attenuated, i.e., the adjacent streams

of gas have different directions and velocities. However, during

the flow around a body at high supersonic speed Newton's law

becomes Valid, since in this case the shock wave is located close

to the body surface and all the streams up to the shock wave have

identical direction and velocity (undisturbed flow), but behind

the shock wave they move in a thin layer between it and the body'

and acquire almost identical velocities parallel to the body

surface. The higher the Mach number and narrower the bod-., the

nearer to reality is Newton's theory. At the same time it should

8184
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T e ftablit of Newton's formula for calculating pres-ure

• a Lod,, ,-:hicri attests to the fact that the local flow pattern

i. Jetirmined by the local "angle of impact" of the body surface

w.. an unisturbed flow, led to the thought about the possibility

ot' , 1]culating hypercorice flow around a pointed body ty the method

_of tanFential wedges (for an axisymmetrical body - tangential

ccn) . Ir this method, proposed by S. V. Valander in 1949, it s

a _umed tLat the local pressure at any point on the surface of an

arbitrary body is the same as on a wedge (cone), tangent to the

surface at this point.

'lhe method of tangential '-edges (cones) Is less convenient

than Ne.ton's formula, since in general the dependence of pressure

on the .edge on its angle is represented In an implicit form, and

un a cone it is determined only by numerical methods.

However, in hypersonic approximation these dependences, as it

was shown in S 3, can be obtained in an explicit analytical form.

It was noticed that it is possible to attain considerably

better agreement of calculated and experimental data, if in the

following manner we modify Newton's formula:

hi.' ( 46)

here o* - t limensionless pressure at the tip of the body, which

it is easy to calculate according to the theory of supersonic

flows of an ideal gas with assigned w* - the angle between the

tangent to the outline of body at this point and the direction of

the incoming flow; w - similar angle in an arbitrary point of the

outline.

Figure 11.8 gives the pressure distribution over the surface

of symmetrical longitudinal-streamlined cylinders of different

length witn an ellipsoid nose section at T4 = ' the solid line,
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calculated from a refined Newton's formula (46), passes close to

the experimental points.

.1/4

4.4

Fig. 11.8. Pressure distribution
over the surface of cylinders,
streamlined in a longitudinal direc-
tion, with a nose section in the
form of ellipsoids of rotation.

Figure 11.9 depicts the picture of pressure distribution along

the length of a cone with a spherical nose section of radius R

(central expansion angle of cone 2w = 801) at values of Mach

number M = 5.6-5.8; the curve calculated by formula (46) passes

close to the experimental points.

0 I 0 - 4 :A

Fig. 11.9. Pressure distribu-
tion on the surface of a cone
with a spherical nose section.
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Let u3 note that calculations according to Newton's formula

p-ivoe rood results for bodies of a convex form; in the case of

Lcci w. it! a concave form the computed values obtained for the

f!Yrces of pressure are understated. This is explained by the fact

that ir, actuality the layer of gas included between the shock wave

and the body surface is not infinitely fine, therefore with a

curvilinear form of this layer a pressure gradient according to its A

thickness appears; the difference of pressure on the body surfaces

and the shock wave is induced by centrifugal force. When this is

considered it is possible to obtain a correction to Newton's
formula, ..;hich was introduced for the first time by Busemann.

With the help of Newton's formula it is possible to solve

tr problem concerning the form of the body of the least resistance
at certain assigned conditions (with assigned volume and length of
body or with assigned areas of the greatest cross section and

length, etc.).

For the solution of such a problem it is necessary first of
all to compose expressions for the forces which act on the body.

The projection of the elementary force of pressure on the

direction of motion - frontal resistance - according to (43)

dI ,= dI' sin 4iI'pv.. r "I.' wdP,

from which the total resisting force

P.
P5 ==p L" s it, dP 1p. 1#' (4 7)

0 0

where F - the body surface, F - its projection on a plane normal
y

to the direction of motion.

The transverse component of elementary force of pressure -

lift
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,lP3 = -- *III' s C, os - dr. I
4t

rcr ere the total value of lift

p A

PY w-sin ucos (sdr=- P.20.sin w cos idF. _(48)

Being oiven one form or another of the dependence of the

slope angle of the surface on length, it is possible to Integrate

' 7) and (148) and oLtain analytical dependences, which then are

usea, in particular, for finding the optimum values of the geometric

c.arameters of the body under any assigned conditions by means of

the solution of a problem on the minimum of value P .

tit i the help of Newton's formula it is not difficult, for

example, to show that during hypersonic flow a blunt-nosed cone

with a smaller lateral angle can have less resistance than a

rointed cone with a larger angle (Fig. 11.10).

Fig. 11.10. Truncated and
full cones of equal length
with identical midsection
cross sections.

If the "area" in the nose of a blunt-nosed cone has a radius

r and its lateral angle w2 ' but at the "pointed" cone of same

length and u:ame inaxlmum radius R the lateral angle wI' then

according to (47) the relation of the forces of resistance of

these bodies comprises

= 1P,. r- + -,P ' - r sin' w.
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,where a* '* ' . *.

sin i uJ { -rl - " sinlItol ' =

SuLstituting these expressions and introducing the dimensionless
designations x a x/R, r = r/R, we finally obtain

A

/=(] ~ ~ _ , t- P), + ?,V'
II-ti'+x'"

Eauating tc zero the first-order derivative of function f, we find
the optimum value of radius r to which corresponds the minimum

on)T
cf the value of this function, i.e., the minimum of resistance i

to,, -I -. ' O.)A, -- x:- .2 j.

For example, with x 1 we have ronT 0.38 and fmin = 0.76, i.e.,
the resistance of the optimum truncated cone proves to be 24%
less than for a standard cone of the same length.

Solving this problem for a wedge by the same method, It is
possible to be convinced of the fact that according to the calcu-
lation an "optimum" truncated wedge is obtained only with x < 1

> 450), i.e., at such a large central expansion angle that

apparently the practical significance of the solution is lost.

Let us pause now on the correction of Busemann to Newton's

formula mentioned above for the case of flow around a curvilinear
surface. In view of the fact that the layer of gas, which consists

of particles included between the body surface and the shock wave,
is not infinitely fine, the pressure directly behind the wave in
the case of a curvilinear trajectory of particles is not equal to
the pressure on the surface; the difference in these pressures is
caused by the action of centrifugal force.
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in ar. elementary layer with a thic.kness d6 th! s pressure

fference e.idently is equal to

. -:, - the radius of curvature of the layer, p, w- the values I
e tof the Cas and velocity of motion in the layer

a.lnr_. te flow line).

From the continuity condition we have

re ZI - the width of a layer on 3 normal to the plane of drawing,

F- the oross-sectional area of a body with a plane normal to the

direction of incident flow. Substituting the value d6 from this

ecualltv into the preceding one, we have

After integration we obtain the pressure rhange across the

layer due to centrifugal force

PIu e wdl*,

4.;e velocity component, tangent to the surface of the body, in

the case uf encounter of particles with the body does not change,

therefore, w = w cos w. Since the radius of curvature of the

.urface

d-s

w:here a is the length measured on the contour of the body, then

the nressure difference on the wall and on the boundary of the

layer 9

825
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?h cre ,l.e on the boundary of' the layer is determined from
,i Jtcn'- formula ('46), therefore excess pressure on the Viall taing

irno acc~;urt centrifugal force is equal to

PW - Ps i Ia  + ' si 3 , - co .f... (-49)

"his dependence was obtained for the first time by Busemann

and called the Newton-Busemann formula. For bodies of convex
form calculation to the initial Newton law (44) gives results which

are closer to experimental data than the calculation according to

refined formula (49). This is explained by the fact that according

to Newton's formula the pressure obtained is lower than true (since

the angle of encounter of flow with the shock wave a is greater

than the angle of encounter with the body w, which figures in

Newton's formula), and for a convex body the correction for

centrifugal force additionally decreases the pressure. On the

contrary, in the case of a concave body the correction for centrif-

ugal force is positive, i.e., it compensates for the understated

pressure which is given by Newton's law. The comparison of the

calculations with experimental data shows that for a concave body

formula (49) gives better results than formula (44).

§ 7. The Influence of Minor
Blunting of the Front End of a
Narrow Body on Flow Around It at
Hypersonic Speeds

During hypersonic flow around a narrow body with a blunted

nose section a detached shock wave is formed. In its forward

section the pressure increases so strongly that even with small

dimensions of blunting the aerodynamic drag can Increase substan-

tially. This fact cannot be bypassed in connection with the fact

that real bodies (wings, fuselages, missile bodies) are always A
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I blunted. To carry out flight with an ideally pointed bcd:, is

irrcczsible if on],y because at high velocities of fligh-t the heating

of air atout the nose of the body is so considerable that the

pcInted end would unavoidably be fused.

Let us assume in the first approximation that the resistance

of a blunted narrow body is equal to the sum of the resistance of 4

Llurtirng Px and the resistance of the remaining part of the body

P P the pressure on which is determined from the theory of hyper-

son, ic flow around a pointed body (1 5). The relation of these

resistances according to (29), (33), and (39):

P, F,,

(50)

Here w - the angle between the lateral surface of the body and the

direction of incident flow, Fy1 , Fy2 - projections on the plane

perpendicular to the direction of incident flow, surfaces with

respect to the blunted part, and the entire remaining body.

Hence it is apparent that the additional resistance caused

by the blunting of a narrow body is comparable with the resistance

of the initial pointed body with a very low relative area of

blunting

(51)

For example at an angle of deflection of flow w -° 0.087 rad

the resistance of a blunted body with a relative area of blunting

Fyl/Fy2  0.0075 is approximately doubled. Let us replace the

area ratio by the ratio of linear dimensions

YS (52)i
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HeQre -i the transverse dimension of the blunted part, D = L-

; ...]-e~ dlmen iorns of the maximur, cross section of the tody,
L - hlength of t .e bodyt V - the exponent, equal to a unit for

-iane .odies and to two for axially symmetrical bodies.

:. , :e have ftr a wedge

p, d

and for a cone

4ml(d)

The relative linear dimensions of the blunted part of a

narro,.: hod.y, in which the resistance during hypersonic flow is t;:o

times greatt: than for the same pointed body is connected i.:ith the

angle of deviation in the flow by the relationship

d or

In the example examined above (w = 0.087 radians) the relative

dimensicns of blunting in a wedge (WID) ̂  w 0.0075, in a cone

(d/D) % 0.087.

A detailed examination of the problem of hypersonic flow

around a narrow body shows that blunting of the nose section of

the body causes a significant distortion in the picture of pressure

distribution on a considerable part of the lateral surface of the

-.ody. Figure 11.1 shows the dimensionless distribution of exce. s

pressure along the length of a plite with wede-shaped and semi-

circular leading edges. The expansion angle of the leading wedge I

was selected for each value of Mach number in incident flow

(M = 5.00; 6.86; 9.50) so that the velocity behind a front-

connected shock was equal to the speed of sound (M1 = 1), and the

plate with a semicircular edge was tested with M - 14.
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Fig. 11.11. Pressure distribution on

a plate with wedge-shaped (1) and
rounded (2) edges.
KEY: (a) Values AP/P at the point

of break in contour.

The dimensionless curves

;4Ii move away from a certain universal dependence only near the

treaking point of the outline; value c for the nose of a wedge-

shaped body was determined according to the theory of an oblique

shock wave, and for a semicircular form - according to the refined

Hewton formula (cx  2/3p*). The calculated dependence (solid

line)

agrees satisfactorily with experimental data.

This approximate dependence is obtained with the help of the

theory of point burst and the hypothesis of plane cross sections,

,:hereupon the force which acts on the blunted nose of a bod.' is -"
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considered as an additional concentrated force. Without d:el1~n "

in ore detail on the theory of hypersonic flow around blunted

narrtw.! bodies, let u, refer those who are interested in this

equation to special monographs.

Let us note in conclusion only one interesting feature of the

flo': around a narrow blunt-nosed cone, discovered by both theoretical

and experimental means, which consists of the fact that the excess

tressure (Fig. 11.12) on part of the surface of a blunt-nosed cone

turns out to be lower than for a pointed cone. In other words,

the effect of' the flow around a blunted nose on the adjacent areas

of flo.,: can lead to the fact that with a certain "degree of blunt-

ness" of a cone its resistance will prove to be lower than for a

sharp-nosed cone (in Fig. 11.12 the unbroken curve is calculated;

nere fcr a comparison is given the curve of pressure distributior.

according to the generatrix of a sharp-nosed cone (dotted line)).

S

lip -~ r- 4

Fig. 11.12. Pressure on the sur-
face of a blunt-nosed cone.

§ 8. The Viscosity Effect in

Hypersonic Flows

The viscosity effect in hypersonic flows, on which we did not

dwell in the foregoing paragraph's of the chapter, is a complex

problem.

1Chernyy, G. G. Gas flow at high supersonic speed. Fizmat iz,
1969; Kheyz U. D. and Probstin R. F. The theory of hypcrsonic
flows. Publishing house of foreign literature, 1962.
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.;hen the boundary layer is considerably narrower than the

,hock layer (zone between the shock wave and the body surface)

the calculation of the stresses of friction and heat exchange is

dcne Ly the usual methods developed in the boundary-layer theory

(Char ter ).

True, at hyperoonic speeds the gas temperature as a result of

the stagnation of flow in the shock waves and the boundar;y layer

can turn out to be very high, and then it is necessary to consider

not only the compressibility of the gas, but also dissociation,

and at temperatures above 5000 the ionization of gas. Furthermore,

in a hypersonic boundary layer during flow around a sharp-nosed

narrow body (or even a flat plate placed along the flow) a long!-

tudinal pressure gradient appears, since, as is known, the boundary

layer affects the external flow the same as the thickening of the

body (by the magnitude of the displacement thickness of the

boundary layer), causing the formation .of shock waves (FIg. ii.l?).

in other words, the boundary layer can create in the external flow

cn a sharp-nosed body "its own" shock layer, which begins from the

leadIng edge of the body; during flow around a body with a b]unted

nose usually this is not observed, in connection with the fat that

in the boundary layer behind the detached shock ,w.ave the vc.....tl.s

are s'-bsonic or temporarily exceed the speed of sound.

(2 ) A , I~

Fig. 11.13. Diagram of the boundary layer and
the shock layer Induced by it.
KEY: (1) Shcok; (2) Flow line; (3) Boundary
layer outer edge. -%

The theoretical and experimental investigations of the hyper-

sonic boundary layer, which causes on a plate and on a narrow body

(wedge, cone) the appearance of a shock layer with a longitudinal -m
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res:re gradient, were carried out in the works of Becker, Leez

a:.' 1robstin, Bertrani, Kendall, etc. (see the monograph of Khe-z

a:%i rc st ni ).

The essence of the theoretical approach to tie solution of

t:is rroblem consists of the following. The pressure in each

cress section of the boundary layer is considered corstant and

dependent on the total angle of rotation of flow

here w - the local angle of deflection of the body surface frr-m

the direction of undisturbed flow, Aw = d6*/dx - the additional

deviation of flow which corresponds to the displacement thlcknes3

6* cf the boundary layer (in view of the smallness of angles we

consider the tangent of the angle equal to the angle itself measured

in radians). Value 6* can be determined approximately, utilizing

the known methods of calculation of the boundary layer without the

pressure gradient; during calculation of 6* the pressure is

accepted in the first approximation as the same as in a flow without

a boundary layer; the viscosity-temperature dependence is approxi-

mated by the linear function

where the index "w" is related to values on the wall, and index

"0" is related to the boundary of the layer.

In turn the change of pressure caused by a deviation in tie

external flow under the effect of a body of increased thicknesz,

as a result of the build-up of the boundary layer, can be calcu-

lated with the !l.,lp of a refined Newton formula (44) or according

to the method o* tangential wedges or cones.
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-it; sumaticn, fc.' examplt,, fox' a flat plate the followvrnir

..: ma,.on, formula is obtained for dimensionless pressure in a

-'.-i-a hcurdary layier (with k a Ia and Pr 0,725):

I -L 0O,3 11-+O,5', (53)

.rer~:-ne interact!on factor rf the layer with the flow

,.Kr t,'e index = corresponds to the parameters of undisturted flow,

w.",:x/v, - Reynolds number.

corioarison of calculation data with the em.rvlmental dat'.

of Bertram and Kendall, given in Fig. 11.14, gives -ctIsfactory

re sults with X < 4; Reynolds numbers, calculated acc- :'.!m to

t: e thl-ckness of the leading edge of the plate, were

rfc-pectlvely in Bertram's experiments to approximate!. n, in

Kendall's experiments to approximately 100.

'/4

45- - S

40

- - .. i... ..L .. -.

0~ . ... d .. . . . . .. . .

F',7. 11.4. Pressue on a heat-
insulated plate durf np weak and
stroni- (dotted line, Interactions.

(
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Figure 11.15 depicts the picture of flow in a heat-insulated

,Ate, calculated and determined experimentally in Kendall's .Iork;

tie fioure gives the boundary layer outer edge and the shock wave

cau!.ed Lj 't, and also the flow lines and Mach waves. The experi-

rental and calculation data of Kendall virtually coincide in the

e'nti e ., ne of flcw.

'II

;22
1

0 1 2 3 4 . 5 7

Fig. 11.15. The field of flow near a heat-
irsulated plate (according to Kendall).
KEY: (1) Mach waves; (2) Shock wave; (3) Flow
lines; (4) y, millimeters; (5) Limit of
boundary layer; (6) x, centimeters.

Let us note that the longitudinal pressure gradient shows up

in the stress level of friction on the wall, but it affects heat

exchange weakly, of which It is possible to be convinced by

calculating the boundary-layer in the second approximation taking

into account the previously determined pressure gradient.

It is accepted to call the examined type of interaction of

bound ry layer with an external hypersonic flow a weak interact, r,,

since in this case the disturbance of only part of the shock layer

by the hypersonic bouidary layer is observed.

We are dealing with a ,eak interaction when the intensit:. cf

the build-up of the displacement thickness of the boundary layer

low in comparison .;Ith the angle of encounter of flow with the

:ody surface
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c' under the condition

Rut if

'a.

or K)'. 

then we are speaking about a strong interaction, during which the

entire area of the shock layer, including the viscous boundary

layer, should be considered in the theoretical solution as a unit.

The approximate computation, based on the use of the method of

tangential wedges, gives for pressure in a shock laytr: during a

strong interaction the linear dependence

( 4 - . 9 (514)P.

depicted in Fig. 11.14 by the dot-dash line, which passes compara-

tively close to the experimental points at values x > 4. The

details of' the theoretical calculation of a strong interaction

can be found In the cited book by Kheyz and Probstin.

One ought to emphasize that the picture of the interaction

of a boundary layer with an incoming steady flow examir,ed by us

was restricted to the case of a body with a pointed leading

section. The blunti-ng of the nose of the body, and also the non-

iuniformity of external flow (for example, with a strongly bent

head shock wave) introduce additional changes into pressure

distribution. These forms of interaction are examined in the

monograph of Kheyz and Probstin.
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CHAPTER XII

FLOWS OF RAREFIED GAS

Different Types of the Flows
cP Rarefield Gases

Up till now we examined gas flows in which the gas was a

ccntinuui; this is correct when the length of the mean free path

cf molecules of the gas I is very low in comparison with the

characteristic dimension of the gas flow of L.

In some problems of gas dynamics the characteristic dimension

is the boundary-layer thickness and in another - the thickness or

the length of the streamlined body. The dimensionless relation

which determines the nature of the medium, is called the Knudsen

number.

Atnormal pressure the value of the mean free path of the

molecules consists of millions of a centimeter. With the lowering

of the gas density the mean free path of the molecules Increases

inversely proportional to the density, and if it becomes cOnmen-

surable with the characteristic dimensions of the flow, then the

discrete structure of the gas begins to affect the laws of gas

dynamics arid heat exchange.
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Knudsen's number can be expressed by the known similarity -

criteria - the Mach M and Reynolds R numbers, for this one should

use Chapman's formula from the kinetic theory of gases, which

connects the kinematic viscosity with the mean free path and the

-average velocity -of the motion of the molecules F:

V 0.991 0%0 le.(2)

The average velocity of the molecules is expressed as the speed

of sound a

C=411 !, w';here k-. (3)
C,

Then from (2) and (3) we have

I= 1,26 -Zk. (4)

Substituting (4) into (1), we obtain the dependence of the Knudsen's

number on the ratio of the Mach number to the Reynolds number

K 1 .2 0=,:, -, . (5) _

Frcm the boundary-layer theory, it follows that at large values

of the Reynolds number (RL - 1) the boundary-layer thickness 6 is

inversely prcportional to the square root of the Reynolds number

where x is the length of the body. Therefore, if the discussion -

is about the fluid friction or heat exchange, when the characteristic

dimension is the boundary-layer thickness (L 6), then when

R 1, according to (5), the Xnudsen number becomes propcrtional
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tc the ratio of the Mach number to the square root of the Reynolds r

number

(6)

At small values of the Reynolds number (R < 1) the boundary-layer

thickness is comparable with the le?,gth of the body (6 x), and

therefore

K,- . " . (7) . ..

The available theoretical and experimental data indicate the fact

that at the very low values of the Knudsen's number (H < 0.01) the

gas behaves aL- a continuum. In the interval of values of the

Knudsen number of 0.01 < K < 0.1 it also is possible to use equations

of gas dynamics of the continuum; however, in this case,as it will

be shown below, in the boundary conditions on the rigid surface

one should correct for the so-called "slip" and "temperature Jump."

At very large values of the Knudsen number (K > 1) the boundary

layer at the body surface is not formed, since the molecules re-

emitted (reflected) by the surface of the body collide with molecules

of the external flow at a distance remote from it, i.e., body does

not introduce distortions into the velocity field of external flow.

For this mode of the "free-molecular flow of gas," which according

to the available data is observed when M/R x > 3, the friction and
heat exchange on the surface of the streamlined body are calculated

from the condition of a single collision of the molecules of gas

with the surface.

The transition region between the mode with slip and free-

molecular mode remains up to now little studied, since in it one

nust consider both the collisions of the molecules between them-

selves and their repeated collisions with the body, and this

creates great theoretical difficulties.
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Plotted on Fig. 12.1 are the boundaries of different flow condi-

tions of the gas in coordinates M - f(Rx ), which include 1) the

lower boundary of the free molecular flow, which corresponds to

value M/R x = 3; 2) the upper limit of the flow with slip which

--corresponds to the value M/R_ a 0.1; 3) the upper limit of flows

for a continuum, where M]/ x a 0.01. Table I depicts the approximate
dependence of the mean free path of molecules on height calculated

from formula (4) for a standard atmosphere.

In "A
p -

( 6 )'' Pd

Fig. 12. 1. Boundaries of different flow
conditions of rarefied gas.
KEY: (1) Free-molecular flow; (2)
Transient condition; (3) Flow with slip;
(4) Mach number; (5) Flow of continuum;
(6) Reynolds number.

Table 1.

-D.l 1 lV Ioma i 2 Wi U
( 2 ) l~ ,,,o , P~..ic s oo . % 0 2-0 - 71- 8. .10 1 i .0e - I s .- , - 2, .1o -

KEY: (1) Height H [km]; (2) Mean free path Z [m].

Comparing data of Fig. 12.1 and Table 1, it is possible to

obtain the concept of the connection between the flight altitude

and the boundaries of different modes. 4
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For a rocket 3 m long the effect of slip begins to be exhibited

at the height of 50 km at M = 1 and 30 km at M - 4. Free -molec-

ular fiow is established at kny flight speed, beginning at the

height of 140 km.

§ 2. Jumps of Velocity and Temperature
at the Wall During Gas Flow with Slip 4

If the mean free path of the molecules I is not negligible in

comparison with the thickness of the boundary layer 6 but is

considerably less than the latter, I < 6, then the velocity profile

of the directed flow of gas at the wall has the form depicted on

Fig. 12.2. The difference in the velocity in layers remote from

each other at a distance of the mean free path, obviously, is

equal to

Consequently, the molecules which are located at distance I

from the wall have a directed velocity relative to it

WR1w .(8)

where w is the velocity jump at the wall, i.e., the velocity value

in the layer of gas which directly adjoins the wall, w0 is the

velocity of the undisturbed flow of gas. In accomplishing the

mean free path Z, the molecules retain their velocity, i.e.,

hit the wall at a final velocity w . As the experiments of
Milliken' and other researchers showeda considerable part of the

'Mi I. iker, . -ti* e i 1 :1;a -a
nerit of !'. cnarge, ar.j ti, cartez:

Rev. xx"I , NO. 4, i., , . . .
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m:olecules with impact against the wall is absorbed by it and then

reemitted (emitted), having lost completely the velocity of the

ordered motion wt. Let us designate a portion of these "diffusely"

-refiected molecules by the letter a; the remaining molecules, the

algebraic number of which is equal to 1 - a, are "mirror" reflected

i.e., after reflection they retain the velocity w2 which they had

prior to the impact against the wall.

Taking that given into account, it

W, is possible to determine the average

directed velocity of the layer of gas

directly at the wall, on the basis of
the fact that this layer consists of

half of the molecules arriving at the

wall and half of those reflczted from

Fig. 12.2. Velocity it.
profile at the wall
during flow with slip.

Thus, the velocity of "slip" of the gas at the wall is equal tc

(9)

The table given below contains values of the coefficient a found

by different experimenters for cases of the interaction of different

gases with surfaces of a different nature.

axe ~carbon 4
Ai doxide 1Hydnoge Hell i-

ras ...... ..... 0i. I -

Old varmish......I - -

14V7~V t.. 0.719 - - I -

"I I pait .. "5 0.2 0.93 Go7



In view of the fact that the portion of diffusely reflected

mcelules is close to unity (a 1 1), we have approximately

I ,IMR~ i ~ I -L )JR (10)

hence it follows that in the dense gas (Z << 6) the slip is virtually

absent (wR - 0), i.e., the molecules "adhere" to the wall, as is

accepted in tne standard gas dynamics; in the greatly rarefied

gas (I > 6) the slip velocity is close to the velocity of the un-

disturbed flow of gas outside the boundary layer w R t w ). In

flaw with slip velocity the velocity at the wall is subordinated

to the condition (9), which is usually replaced by approximate

conaition (10).

It should be noted that the condition of slip (9) is not

completely precise when at the low absolute pressure of the gas

there is a substantial change in temperature along the length of

the wall, since the longitudinal gradient of temperature causes the

"thermal diffusion" directed flow of molecules to the side of the

increasing temperature (see, for example, § 8). Such flow induced

by a difference in temperatures was called "temperature creep."

Kennard' showed that the rate of the temperature creep at

the wall is equal to

3 R rT r (11)

.L..-TzP and -T are gas density and temperature at the wall, - the

,efficlent of viscosity, x - the distance calculated along the

w,,ll. Thus, the refined boundary condition, which characterizes

tie velocity Jump at the wall, should take the following form:

'Kennard J. C., Kinetic Theory of Gases, McGraw-Hill, 1938.
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The second term of the relation (12), which considcvs the temperature

creep, can most frequently be disregarded, since with high longi-

tudinal temperature gradients and very large rarefactions, when this ..

term is especially important, the free molecular gas flow without a

hydrodynamic boundary layer is usually realized, However, in some

special cases (for example, the flow around the nose section of a

rocket during its entry into comparatively dense layers of the

atmosphere) condition (12) is used completely.

Let us discuss now the question concerning the temperature Jump

at the wall during flow conditions with slip.

The capture of the molecules by the wall and the -.absequent

reemission lead to the fact that the reflected molecule6 have a

temperature close to the wall temperature. Let us intriluce the

so-called accommodation coefficient

dF -- dl I (13)

here dE Z and dER are energy flows, respectively, brought by the

molecules which fall on the infinitesimal surface element and

taken away by the re-emitted molecules, dEw is the energy flow

by which the re-emitted molecules would take away if they possessed

Maxwellian velocity distribution at the wall temperature. With

total accommodation (a = 1) dER a dEwin the absence of accommoda-

tion (a = 0) dEI = dER. Experiments show that frequently the value

of coefficient a is close to unity, which can be judged from the

accompanying table of experimental values of a for air found by

Wiedmann.1

'Wiedmann M. L., Trans. Am.Soc. Mech. Eng. v. 68, p. 57,
1946 (Russian translation: Collection "Mekhanika, No. 4, 1951).
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TaLle 3.

Surface a Surface

*.,ilfrr,, varnish Cast steel of
: bronze 0.88-0.89 machine treatment 0.87-0.88

Polish bronze 0.91-0.94 Etched cast steel 0.89-0.96

Eronze of machine
treatment 0.89-0.93 Polished aluminum 0.87-0.95

Etched bronze 0.93-0.95 Aluminum of
machine treatment 0.95-0.97

Polished
cast steel 0.87-0.93 Etched aluminum 0.89-0.97

Fr=n the table it follows that the finish of the metal does not

virtually affect the value of the accommodation coefficient.

Dickir s1 determined the following values of the accommodaticn

coefficients for different gases during their interaction with the

surface of platinum:

Table 4.

Type of gas a Type of gas a

Hydrogen 0.35 Nitrous oxide 0.90

helium 0.51 Air 0.91

Argon 0.88 Carbon monoxide 0.91

Ammonia 0.88 Carbon dioxide 0.92

Nitrogen 0.90 Surfur gas 0.95
Oxygen 0.90

As we see, gases of very low molecular weight (hydrogen and

helium) are weakly accommodated by the wall; all the remaining

gases have an accommodation coefficient of approximately 0.9 and

above.

'Dickins B. G., Proc. Boy. Soc. A 143, p. 517, 1933.

844"



II

If the dissociation effect is unessential, then at subsonic

velocity of the flow of gas, when the kinetic flow energy is

relatively low, the accommodation coefficient can be expressed

-in terms of the appropriate values of temperature

(14 )

Let us determine the value of the temperature jump near the wall

(LT1 M TR - 'rw) in the flow with slip. This problem is somewhat

more complex than the definition of the velocity jump, since for

the temperature change in the direction of the normal to wall

affects not only the molecular thermal conductivity but also the

heat which is released in the process of molecular friction. The

per-second flow through a unit area of side surface of the gas

layer in the direction of the normal to it (Fig. 12.2), according

to the Fourier law, is equal to

Iq

The per-second mass flow rate of molecules through a unit area in

the same direction, according to (71)1 is

0. =Of LPr

A change in the temperature of the molecules for the extent of

the thickness of the layer is equal to the ratio of the inflow of

heat to the inflow of the substance multiplied by the heat capacity

A 45 r

Now"



mter substituting into this equality the expression for the Pranitl

.uroer, which characterizes the ratio of the heat of friction t,-,

the reat removed by thermal conductivity Pr 'gc p/X, we cbtain
pi

inaiJ'.y, In using expression (2) for the molecular viscosity of

gas, we have

11 r 16)

Tihs, calculation of the thermal conductivity and heat of friction

L;;cws that the effective temperature change in the layer, the thick-

ness of which is equal to one mean free path of the molecules, is

(,/Pr) times more than that in the absence of the interaction

between the molecules. By producing now the calculations similar

to those made in determining the velocity Jump, let us find the

t lliperature Jump at the wall in the flow with slip, whereupon the

excess temperature in the layer of gas at the wall will be considered

equal to the arithmetic mean between the excess temperatures of

the moleculeb falling on the wall and re-emitted taking into account

the accommodation coefficient o (14), which for the temperature

plays the same role as that of the diffuse reflection factor for

the velocity'

Hence we obtain for the temperature Jump at the wall

'The portion a of the total number of molecules is reflected

with the temperature equal to the wall temperature, and the re:.iain-
ing part cf the molecules l - a) retains that temperature which it
had prior to cclislon.



.2 ,r gases whose Prandtl number is close to unity with an accuracy

-acI'cent for practical purposes, it is possible to use the simpli-

fied relation

";hen i we have

T r "21 ': (19)

?ormulas ',17)-(19) for the temperature jump at wall are valid

only at moderate flow velocities (M 0 0, T - T*). I:. -he case of

supersonic velocities, it follows to refine them. Forn.-ia (12)

for the velocity jump is valid at high speeds.

As follows fvm Fig. 12.1, the conditions of flow with slip

are oLserved at such modei.ate values of the Reynolds numbers fur

which the real one is the existence of only the laminar boundary

layer, and therefore below laminar flows with slip are examined.

§ 3. Gas Flow with Slip 'r. tii Tbe

To establish the laws governing the laminar gas flow with

slip, in a t ube of roiund ercss section one should, first of all,

compile the balance cf forces 1;,pliec to the cylindrical fluid

element with a moving radi,:s r ind length dx (Fig. 12.3)

-rr'dp =- t2nrdx, (20)

where -r is the stress of friction on the side surface of the

element and dp is the pressure differene on its ends.
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Fig. 12.3. LaAnar gas flow with slip
in a tube.

Here we disregarded the small value of the change in momentum

in the ,irection of the axis of the tube, which is caused by the

density change of the gas, which in turn is caused by the pressure

change. Expressing the stresses of friction according to Newton's

femula, from (20) we have

dp 2 do
(21)

Hence after integration in the boundary conditions, which consider

the slip velocity on the wall (u = R when r = R), we obtain

RI dpi'-r"
U -Up- d

On the axis of the tube (when r = 0) we have

I dp R
p UR

This gives the following final dependence for the dimensionless

velocity profile in a tube with slip:

a-us 1| r
..-- =I --. (22)

The velocity gradient at the wall in such a flow is

I

fit, 2 (u &R )
r (23)
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and the stress of friction on the wall is

2a("- - u)"

__-The average rate of flow in the tube proves to be equal to the ..
arithmetic mean between the velocities on the axis and at the wall

U~.Q (~a 1 ',( -Orrra4(.+mA (25)

Equation (21) leads to the following formula for determining the

pressure drop along the length of the tube:

2TR 4_amo&R
dp= ;Vdx --.=--- dx

or in a dimensionless form, after replacement, D - 2R

dp 6J4a dx am -a
7-- O 'D WM_-+a*(26)_ 0

Let us exclude the slip velocity from the obtained expressions

for which we will use the boundary condition (9) established in

- 2

UR=-CI where c=2-
dJ' w*r= - (9a)

Here taken in front of the derivative a minus sign in order that

the value of velocity on the wall would be positive (uR > 0) at a

negative value (23) of the velocity gradient. Substituting into

(9a) the value of the derivative from (23), we find

(8149
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11-R (27)

Using forilias (L , (27), (22) and (26), we arrive at the following

<<expressions for the maximum velocity: . .

n U o ;(28)
O3+ te I

or the velocity at the wall

(29)

for the current value of the velocity

I + 4t._-4r$
HMV - (30)

013 +40

for the pressure drop along the length of the tube

dp 64 I dx00 f - D- (31)

or, In accordance with the Darcy formula

dp . - x . -) (32)

In (32) the Reynolds number Is determined by the diameter of the

tube and mean flow rate
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F;:m the continuity condition it follows that along the tube of

c nstant cross section the current density is not changed (pU - o Uo ,

= ' nst) if gas temperature is constant, and therefore the Reynolds

number for all the cross sections has the same value. In this case

t},c coefficient of friction along the length of the tube changes

,.,lily as a i'esult of the change in value in the mean free path of

ttit? molecule, which depends on the local value of density Z - 1OPC/0

.-ubscrlpt "0" corresponds to the initial cross section of the

tute). By substituting this value into (31), we obtain when T -

where

R I+s64)

5: the value of the coefficient of friction at the beginning of

the tube. Using the equation of state for an ideal gas, from (33)

we obtain the differential equation

e+ Se-dp=- p,.U1(I ReW)d.

which after integration, taking into account the boundary condition

P Pe when 4=0

851



a:.j some elem.entary conversions, gives (when Ap - p - po )

A :$

Hence it follows that

4 TP*L....j~~c) (34)

where x is the overall length of the tube. In this solution one

root is rejected (with a negative sign) as not corresponding to

the physical conditions of the problem (Ap - -2po when x a 0). If

that being subtracted under the radical is considerably less than

one, then the approximate solution is correct, which makes it

possible to determine the pressure drop in the tube not allowing

for the compressibility of the gas

(35)

Let us substitute in (34) c * (2 - o)/a, and also on the basis of
(5) the value

Having in mind that

we obtain when o = I d
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(I + ti~o1 ik). (36)

wnere

Let us recall that solution (36) is correct only when M << 1. The

dependence of the coefficient of friction C on the Reynolds number

at different values of the Mach number is represented on Fig. 12.4.

T t agrees well with the experimental data of Knudsen and other

researchers.

4W- r p rTrt-1'10g-

C r ** Ill~
Fi'r ~ ~ IL'l 1 jj

IN1jf3 Ij~ir ii~ I1

Fig. 12.4. Dependence of the coefficient of
friction during flow with slip in a tube on the
R number at different values of the Mach number.
KEY: (1) Poiseuille solution (M -0).
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4. External Drag of Bodies in the
Flow or Farefied Gas in the Presence
cf Slip

For the first time the effect of slip on the drag of the body

was detected by Milliken' in 1911 during the study of the velocity

of the drop of small oil drops in air under the action of gravity

and also the lift velocity against the gravity of charged drops

found in a vertically directed electrical field.

These studies of Milliken made it possible to determine the

hydrodynamic effect of slip and also to measure with high precision

the magnitude of the charge of the electron.

The small drops, which move at low speed in the continuum,

have the form of a sphere, the drag force of which at the low values

of the Reynolds number Rd ! I is determined from the Stokes

formula

X- = pau, (37)

where a is the radius of the sphere, W is the viscosity of the air,
and u0 is the velocity of the undisturbed incident flow.

Formula (37) is obtained from the accurate solution of the

Navier-Stokes equation for the slow flow of incompressible fluid,

when the inertia terms which are on the left side of the equation

can be disregarded; the boundary condition is the equality of the

rate of flow on the surface of the sphere to zero.

Yf we consider the slip, i.e., assume according to (9) that

the slip velocity on the wall is proportional to the Knudsen

'Collection "Gas dynamics," page 260. Publishing House of
Foreign Literature, 1950.
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number, then as Basset' showed as long ago as 1888, the modified

law of the drag of the sphere is valid:

I +2A.
(38)

I113A;

where A is the proportionality factor (according to the Milliken

experiments2 A - 1.22, which according to (9) answers to value a -

0.9). Expansion power of the series of the last additional

factor of the parameter Al leads to the following approximation

formula of the drag of the sphere with slip:

X=xlf,(I+A) ( 39)

valid at < 0.5, subsonic velocity and low values of the Reynolds

number.

The dimensionless coefficient of drag of the sphere, according

to Milliken when M < 1

* = A12

R, (1+ 1.2

The experiments of Kane3, carried out in the inverval 2.05 < M <

< 2.81 and 15 < Ra < 786, did not detect the effect of the Mach

number and led to the following empirical formula:

'Basset A. B., A Treatise on Hydrodynamics, V. II, P. 271, 1888.
2Milliken gives the value A - 0.864; however, in the calculation

of mean free path in terms of the value of the coefficient of
viscosity, he used the obsolete dependence of Maxwell w a 0.35 pZ,
whereas at present the most accurate is considered to be Chapman's _

formula p , 0.499 paZ, which also gives A - 1.22.

3Kane, E. D., J. Aeron, Sci. 18, p. 259, 1951. Russian trans-
lation in the collection: Problems of Rocket Technology," No. 2,
pages 5 4-69 , Publishing House Foreign Literature, 1953.
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Kane determined the values of R a according to the velocity and
d, U,: - f-he air after the normal shock. When R a < 80 the

drag nf' the sphere, according to Milliken, is higher than that

according to Kane (at low R a the role of friction is relatively

great, but it is decreased because of the intensification of the

siip with an increase in M); at Re > 80 the drag according to

*Nilliken is less than that according to Kane (at large Ra there

prevails the wave drag, which appears more greatly at large values

cf the Mach number).

The drag of the cylinder with its transverse flow with slip

is examined by Chiang,' who obtained the following theoretical

formula for the drag coefficient of the cylinder referred to the

cross section 2aL (length of the cylinder L, radius a):

X X (42)

where

R .

There are no experimental data on the drag of the cylinder with

slip at the present.

'Collection: "Gas dynamics," page 341, Publishing of Foreign
Literature, 1950.
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1 5. Free Molecular Oas Flows andElements of the Kinetic Theory of

lases

The free molecular flow conditions are observed in the greatly

rare ied gps, when the Knudsen number is considerably greater than -;

one 3
x

Despite the fact that the collision rate of the molecules in

the volume element during this condition is negligible, the number

of molecules per unit volume is great enough in order that it would

be possible to determine the mean macroscopic properties of the

gas. For example, at a height of 150 km, when the mean free path

is I - 18 m, the number of molecules in 1 cm3 is -2.5,10 I11

Let us establish the properties of the gas whi._. are determined

by features of the motion of its molecules. Let us examine for this

the volume element dT a dxdydz filled by a large numbe.r of moving

and rarely colliding molecules ndT, where n is the local molecule

concentration in the physical volume, i.e., the quantity of mole-

cules per unit volume.

The instantaneous values of the projections of velocity u, v, and

w of separate molecules in volume dT are distinguished very greatly.

It is possible to sort out the molecules according to the velocity

of motion, having in mind that the velocities depend on the co-

ordinates x, y, and z and time t. The concept of the distribution

of molecules in volume dT according to velocity of motion gives

the velocity distribution function introduced by Maxwell

which estimates the portion of the total number of molecules (in

volume dT), which possess velocity u, v, and w.
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r. -t: .er words, if all the molecules cf the physical ';>mc dit

rt. "arrargea i: the Rpace of velocities u, v, and w, then I, tn e

e~:. :; ,' regicr of thre velocity space

t-er' 411-1 be concentrated (n f d')dw molecules whose velocity are

inclule" in the indicated intervals; the value which is in the

parent-.t is 1s the concentration of molecules in the velocity

3pace.

-he total number of molecules in the physical volume can be
.btarned by means of integration over the velocity space

.,i t == k) d-k

Since the total number of molecules depends only on the coordinates

and ti-ne, it is possible to bring it out from under the sign of

the integral and reduce i.t

Thus, the velocity cdltriution function should satisfy t!e

following condition

An important role of the velocity distribution function is revealed,

for example, in the determining of the mean value of any value

Q, which depends only on components of velocities of the molecules.

The quantity Q which possess all molecules of the element dr

is equal' to EQ, but the number of molecules in this element is

ndT, and therefore the mean value Q is

'Patterson 0. N., i.'lecular flow of gases. Fizmatgiz, . , 1960.
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J e..iialy . the mean value of the component of the velocity u

a--~m~ufd~s , (J45)

4axwell round the fc,!! wing expression for the velocity distribution

function of the quiescent gas:

(46)

where a and e are constants determined below, and value

is the kinetic energy of the molecule which corresponns to the

instantaneous value of the total velocity of its randy.. motion c.
We will define constant a on the be.sis of condition (43)

Sfdto = 4 :x do 1.

This integral can be represented as the product of three identical

integrals

CX11 (-Qxisep ( du , xp (. )dw-
(-% - -

thus,we have

(117 )
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.ord-r tc letermine the parameter 6, let us compute the mean value

jfthe iqareofeac coponnt f eloityof hemotion of the

)molecule according to method (45)

, , , 41 N, V l.-F 7 ... '

Hence we have

I x (48)

Sw' re .- ,. Is 0-h" ir;terna vov:;.y" oC" the molecule determined in

tt-:rrr :f rte mean value c4' thf %uar: of its total velocity. By

c',.rtitut',g (47' a:,d (181 Intc (46), we will obtain the velocity

u -t: ' f:;t1:<.ri a.e" '3 ..ecules in the final form

(49)

It is somrttimes .'t.ver.tent with 'he c .iculations to turn from the

v"-l,'ity cumponi.nlz L, v, and w to tht total velocity C; for this

trne pr;2ar (sph~erical) co-3'dlnates are Introduced, c , 41, 8,

wnere 0 1z the aigle between the vectors of velocity and the polar

axl': (,z, '.J t is tte angle between pVanes zOc and zOx (Fig. 12.5).

in the spherical coordinates

I"r the ele:ment of the velocity space

eq.Al to

dwmisin.ddOd. (50)

-I -ertIore, the number of the mole-

I _.] i. - -" in the element of volume dr,
I,. ,. . . .~r t he velocities of which lie in the

Ir; the , y B;4,- .tLZ'r,- 1 terval c and c + dc, and the
IeeCtnt;1Ar 1,) z:Jrectiona of motion- in the



. + d and 6, 6 + d6 consists of

ii, 'fAti p dd dc d. ( g i'

t~r& .g this ex~re ssion by and 8 for all possible directicnrF

C , 0 0 < 2n), we will obtain the total number of mole: .ies.4

h ha_,ha velocities in the interval c and c + dc.

n,IfIN %h?d?)a dcd, =4,ncfdcd,. (52)

- !- ta. nL-iver of molecules in the volume element dT for the

ent-'e velocity range (0 < c < ) is determined, obviously, b'y

the fo" lowing:

-eause of this condition (43) in polar coordinates takes the

fc -r.

4 i i ¢c: dc -- (54 )

axi, ~therefore, the mean value of any Q, which depends only or. -,

(cnpo.nents of velocity, is found from the expression

Q = 4 Qc'fd. (55)

Let us write the mean value of the square of the velocity in r:.,
ccrnates

4 . .....
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It is easy to be convinced of the fact that, by substituting into

equations (54) and (56) expression (49)for f, we turn them into

identities; this means that parameters a and e in the Carte.iian

---and spherical. coordinates are identical.
2I

Figure 12.6 depicts the change of function F *f depending on
for two values of parameter -2 As is evident, at a certain

value of velocity c = c function F has a maximum.

Solving the elementary problem for the search of the maximum
2of function (fc2), we find the value of the most probable velocity

of the molecules

(57)

Let us express with the aid of (49) and (1,6) the arithmetic mean

velocity of the molecules by the mean square velocity

C=41 Ocf&c=2VI 0.0221/i. (57a)

Fig. 12.6. Distribution functions for

two values of the mean square velocity
of molecules.
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LY substituting ('7) into 4L9), we obtain a more convenient expres-
sion for the distribution function of Maxwell

.=( ) .exp --c ';) (58)

As can be seen from Fig. 12.6, with an increase in value of the
-2most probable velocity cm (or the mean quadratic C ), the algebraic

number of molecules which have high velocities increases.

The motion of the molecules affects the macroscopic properties

of the gas. The gas pressure on the wall can be defined as the

force which appears as a result of the change in the component

normal to wall of the total momentum of molecules during their

collision with the wall; in this case the molecule atil wall are

considered as being absolutely elastic solids.

Let us position the wall along the normal to the Lrizontal

( axis (Fig. 12.7), and let us determine the quantity of molecules

which will be encountered with the elementary area with dimension

dF per unit time. Let us examine first the molecules with the

velocity of motion c; hitting in one second agains, this area will

be half of the entire quantity of molecules of the given velocity,

which fill the cylinder with the generatrix c and the area of the

base dF (the second half of the molecules of this velocity in view

of the randomness of their motion at this same time interval moves

in the opposite direction, i.e., it is driven away from the wall).

This quantity is

2 nfitdFdi., (59)

wh~ere n Is the total number of molecules per unit volume, f-
value of the function which corresponds to the velocity c, udF -

volume of the elementary cvlinder, and dw du dv dw - elem'ent

of the velocity space.
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The total mass of the molecules which

collide with the area dF for one second is

equal to

Fig. 12.7. Deter-
mining the number where p -nm is the gas density, and m is
of molecules en-
countered with the the mass of one molecule. With elastic
wall per unit time. impact against the wall the normal component

of velocity of the molecule changes to the opposite value, which

corresponds to a change in the corresponding projection of the

momentum for one second by the value

1f-I.2u d dou=pi0fdF d. (60)

In summing up the changes in the momentum of the molecules in the

whole velocity range (0 < c < -), we will obtain the total change

in the normal projection of the momentum for one second equal to

the averaged force of pressure of the molecules on area dF:

dP=rfu'fd]ldP.

here values p and dF, as being independent of the distribution

of molecules according to the velocities, are removed from under

the integral sign.

In converting, as in formulas (50)-(55), to the polar co-

ordinates and referring to the force of pressure to the area, we

obtain the following formula for determining the value of pressure: I

EP i
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r""

wlere u is the mean square velocity of the motion of molecules in

the direction of the normal to the wall equal according to (44) and

(55) to

- Ut.cfdc a Ulf dws.

Since during random motion all directions are equivalent to

then the gas pressure on the wall is equal to

or, in accordance with (57),

Since it was accepted that the momentum of the molecules hitting

against the wall is equal to the momentum of the reflected molecuies,

then the obtained value of pressure is added from two equal parts:

the pressure of the hitting molecules and pressure of the reflected

ino le cu les

P=Pm +%-
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where

I.I

I e !~~

From (61) we obtain the expression for the mean square velocity

of the motion of the molecules

(62)

In comparing (62) with the known expression for the speed of sound

in the gas

we can connect the mean square velocity of the molecules with the

speed of sound

(63)

f 6. Pressure and Stress of Friction
During the Free Molecular Flow Around
a Solid

During the study of the free molecular flow of gas, one should

consider the fact that together with the random motion of the

molecules there is ordered motion of the finite masses of the gas.

In the first works of Epstein' and SmoluchowsKi 2 which are
devoted to the free molecular gas flow around a solid, it was

'Epstein, P. S., on the drag of spheres with motion in gases
In Collection: "Gas dynamics." Publishing House of Foreign Liter-
ature 1950.

Smoluchowski M., Zur kinetische Theorie der Transpiration und
Diffusion verdunnter Gase, Annal. der Physik, V. 33, 1559-70, 1910.
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assumed that the velocity of the ordered motion of gas was low as

compared with the average velocity of the random motion of the

molecules. We will not begin to use this limitaticn, and let us

give the solution to the problem for the arbitrary value of the

---Mach number in the gas flow incident on the body. As Chiang' showed

such a general solution has a sufficiently simple form.

lt is advantageous to examine the streamline flow of a body

by rarefied gases in a rectangular system of coordinates, since

in this case the similar velocity components of the random and

ordered motions are conveniently grouped.

If the gas is greatly rarefied, then the collisions of the

molecules between themselves and with the body surface are so rare

that the molecules reemitted by the surface do not viitually disturb

the undisturbed flow of gas incoming to the body and Jo not disturb

the Maxwellian distribution of the random velocities (LI, v, w) Of'

molecules in this gas. The distribution function of MiL:well accord-

Ing to (58) can be represented in the form

_L3/ e I + U +
exf- UW (64)

If the ordered motion of the gas occurs with the velocity

C= +(65)

then the total velocity of the molecules are respectively equal

to

na UL-, ',=-V+, a,="W+1K (66)

'Chiang, Kh. Sh., Aerodynamics of Rarefied 3ases. In the
Collection: "Gas Dynamics." Publishing House of Foreign Literature,
1950.
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Let us arrange the rectangular coordinate system in such a way

that the x-axis is perpendicular to the surface element of the

body dF (Fig. 12.8), and let us determine the force of pressure

of the m3ving gas on the area dF following the same considerations

as i.' the previous paragraph (in the determining of the pressure

on the wall of stationary gas).

In the stationary coordinate
1W system the number of molecules in

a unit volume, which have velocities

cf random motion in the interval u

V and u + du, v and v + dv, w and w + dw
is equal to nfdw; in one second dF

those molecules which fill cylinder
Fig. 12.8. Determination with the base dr and generatrix
of the pressure force of
gas on the wall with molec- manage to hit against the area.
ular flow.

C1- F " + R. TI 'W1.

Tne volume of this cylinder is equal to u dF. Therefore, the total

number of molecules at a rate of Ul, which transmit momentum to

area dF, is

nfu, dF du dv ,ti == n,, dP dn, tv dvi.

Here assumption about the constancy of the velocity of the directed

motion of the gas is used.

The total number of molecules N which hit against the unit

element of the area will be obtained by means of the integration

of the last expression over the entire range of the change in

velocities of the molecules. Taking (64) into account, we have

Nn dd, .X 3"d 0, 3-'+ °'i. X- ]du, (67)
- , -. I86
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The lower limit in the last integral is equal to zero and not -

since the molecules with the negative values of the normal component
of velocity (u < 0) with the surface of the body will not be en-

-countered,

I is not difficult to show that the triple integral in (67)

-is reduced to the product of the following three integrals,

I --

exp dw,(68b)

is$ exp[ !a Ur~Li.da,

-- . et " (68c)

Used in this recording is a conventional designation for the

( probability Integral:

the values of which are taken from the tables Clet us note that

when t - erf(-) - 1]. Substituting the expressions (68) into

(67)) we obtain the following formula for determining the number

of molecules hitting per unit time against the unit area of the

body's surface:

N= - x -- I +-, - e, (69)

In the particular case of stationary gas (U 0 0) we obtain

(69a)
869
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The per-se.-.nd mass flow of molecules which fall -n the unit area
ftn oo d& ' s surface:

?'cr statiunary gas (U. 0), according to (57) and (57a), we have

Al. P _1-%. PC (71)
T i

in determining the aerodynamic forces which appear on a unit area

f the body during free molecular flow, it is necessary to keep

in mind that the projection of the aerodynamic force is equal to the

difference in the projections on the same axis of the momenta of
the per-second mass of molecules falling on the area and reflected

from it.

The projection on the x-axis of the per-second momentum of

molecules with velocity in the interval u, u + du; v, v + dv; w,
w + dw, which fall on the surface of the unit area, obviously,

is equal to

pful dai doi, du,.

The projection on the normal of the per-second momentur, of all the

molecules comprises, taking into account (64).

i~au(~J-)I dv1 dw, 'a? X

X lp[ (go + 0 + (V -VI+(421 %V ldI. ( 72)

As in the determining of the number of molecules hitting tne
surface (see formulas (67) and (68.), let us replace the triple
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integzal. In (72) by the product of the three integrals. Two of them

wq!'e found earlier than (68a) and (68b)

dtl exp do t.a Y ~

and the third in this case takes the form

Let us note that with integration (73) the following known relation-

ships were taken into consideration:

A -edx c(-e-zdx..-xe*x')I(7)

S xe- '"dxu. (S.e-' ". .,,

By substituting the found values of the integrals into (72), we

determine projection on the normal (x-axis) of the per-second

momentum of the molecules which fall on the unit surface area of

the body:

' '( D
4, := [ i <uxp + .- I + t:I . . ( 75 )

in two limiting cases, U - 0 and U >> cm, expresion (75) is

greatly simplified. When U - 0 (ordered gas flow is absent)

'SAS

,., :. N. (76 )

At U >> cm (the flow velocity is considerably greater than the

probable velocity of the random motion of the molecules)
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since In this case

exp[ 0I 0.o etI()pw.

Let -is now find the component tangential to .he body surface of the

per-second momentum of molecules which fall on the unit area (pro-

Jection on the z-axis).

For the molecules whose velocities lie in the narrow interval

of the value

u, n+drp , -+d w, w-+-do.

the tangential projection of the per-second momentum is equal to

-pfit , dul dvi do. (78)

For all molecules we have, by analogy with (67) or (72),

3, -,( -w -,
xx P (N, - UP 4- (vt V) (w, - idirt. (79)

Let us replace, as before, the triple integral in (79) by the
.rsduct of the three integrals. Values of two of them are already

known (see (68a) and (68c)), and the third is easily determined

by analogy with (68b)

'i ' Xl'[- ('-'* ' lJ'h '  u' " ' ; " (80)
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1T

-ubtiltutlrig (68a), (68c) and (80) into expression (79), we find

the ,mponent tangentlal to the body's surface of the per-second

m,rnentum of the molecules which hit against the surface of the

unit area:

In the case of the quiescent gas (U u W - 0), as one would

expect, the tangential component of the momentum of the molecules

1S equal to zero, since the momenta of the molecules of the

cppcitc direction cancel out.

If the flow velocity of the gas considerably exceeds the

probable velocity of motion of the molecules (U >> c. then, as

has already been indicated, in the derivation of expr.:-,.ion (77),

() 0, ( ) Cri(

and therefore, according to (8l), the tangential component of the

per-second momentum of the molecules hitting against the plate

l, = pU '. (82)

Let us now find the per-second momentum for the molecules re-emitted

(reflected) by the oocy's surface.

If the molecules are mirror reflected, then we deal with the

inverted re-emission, when for the incident and r-eflected molecules

the normal components of the momenta are equal in magnitude but

opposite in sign (normal velocity with reflection reverses the -

sign)

(83
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1 ,.~t; : ~~.pci.~ms f tt momenta before and after the

i.t.: . :,.' &.-J: i: value and direction (the tangential

,. ' .'

* .-2

- 1+it,, aU . eL K . i y the surface in a diffuse manner

,i,, ,t - aui stribution of random motion),

ZA:.: h vl&., tf I bL tA.cr the preferred direction of the mole-

i. :.. i.-!' the mcmentum after reflection

'--I

, = . 0. (85)

' : -i ;er, " " .L[, -se ond momentum with diffuse

.L.:4r, . f w,,t ' a.j of the following considerations.

i': nt .r the diff-.e the molecules of the gas lose

.L .',- rrwa, .zaz v,;1o&,. . 0), then the per-second mass

.:, tte ~ LIri + r.cted oy the unit area of the body's
.+ .... . , etc rr.L Y; b,' (.^w, .... u, (71)

(86)

,I the A-vL.Lbi .UJCty of the molecules at the tempera-

V. w J re-L iM = 5 '.Lt .ij, t. tie temperature of the incident

r':.! ,mr:.:,,:, :" ,- -. r-secund momentum of the molecules

VI2;', sWis ' i ft ted L- t,-, *Q. kwi,-o;. 0 0) Is defined from (76)

(87)
414
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(88)

;---It is not difficult to find the value I on the basis of the
X A

fact that the mass of the molecules reflected from-the wall is

equal to mass of the molecules hitting against It (MXA X

but then, after substituting (70) into (88), we have

Since the velocity of the random motion of the molecules is propor-

tional to the square root of the temperature, then the probable

velocity of the reflected molecules can be expressed in terms of

the probable velocity of the molecules and incident flow, and the

ratio of temperatures

= '~.J/4'.(90)

Here T is the temperature in the undisturbed incident flow, and

T is the temperature of the molecules after reflection from the

wall, which depends on the wall temperature T and the accommoda-
w

tion coefficient a.

Let us assume that the portion of the diffusely reflected

molecules consist of a, then the energy of these molecules is

proportional to the value a'I?, and the energy of the mirror reflect-

ed molecules is proportional to (1 - o)T*. The total energy of the
H

molecules reflected by the surface is proportional to the value "

As was shown in § 2, the accommodation coefficient is called the

ratio of the actual change in the energy of the molecules with

875 4 1

(4



reflection from the wail to its maximally possible ;hange, which

t3Kez w.ith the full accommodation of the molecules when the
temperature of the reflected molecules is equal to thewall tempera-

cure "v'. Therefore, we have
Wt

r: -r. - = 2 "(91)

Using this formula, It is possible from the known values of co-

cfficiernts a and a to find the temperature of the diffusely reflected

inclecules T and then according to formula (90) - the probable i

velocity of the molecules cm The obtained information is

sufficient for determining the aerodynamic forces which appear on

the body under varied conditions of the free molecular flow.

The projection of the force is equal to the change in the

corresponding projection of the per-second momentum of molecules

(with impact and reflection)

P l, 1 1- - l..I P . - l a -- l (9 2 )

If the portion of the diffusely reflected molecules is a, and

the mirror reflected molecules (1 - a), then

p, = ",, - I-d1, + 01- )I,

or on the basis of (83) and (84)

P, = (2 -1., +I- A, P,@I,,. (9 )

I

By using expressions (94), (75) and (90), we obtain the final

expression for the pressure, which exerts the free molecular gas
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m-*.

flow on the surface element oriented along the normal to the i -

velocity component of the undisturbed flow of gas:

- I , f2-1) .U -- I

P, [ IL --qexp

(2-) +4 " ~Vri[I elYD. (5

Similarly, from (94), (80), (85) and (90), we derive the general

formula for the stress of friction on the surface element during

the free molecular flow

In the particular case of the undisturbed flow perpendiL.ular to
the body surface (C -U, V 0, W 0), the tangential stres

(friction) is equal to zero

(q

(97)

In the particular case of the flow parallel to the body's surface

(C W, w3 U 0, V a0), the pressure

P= 4P'ml ( k 1A(98)

and the stress of friction

.1 C= FC.C.(99)

2 I.

With the completely diffuse reflection of the molecules from the

wall ody 1) we have
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In ::ria:3 95) and (96) the approach stream velocity Is

~oi~ieedto be positive If vector U Is directed toward the

ztreamlinei surface and negative if this vector is directed from 4
the surface. In other words, in the calculation of forces which

appvar on the front side of the body (turned toward the incident

flow), 't is necessary to consider the velocity positive (U > 0),

an. i, the rear side of the body - negative (U < 0).

2lnce here understood by U is the absolute value of the

v, iocity, then for the front part of the body (U > 0) formulas ..

(95) and (96) are suitable without changes (p n z ps In = 
) ;

fcr. the rear side of the body (U < 0) formulas (95) and (96)

must be written in the following form:

+[(2- 's -- V o(101)

For the facilitation of the calculations according to formulas

(95), (96), (101) and (102), Table 5 gives values of functions

and -cand eU for different s= . According to these data,

curves on Fig. 12.9 are also plotted.

8
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Table 5.

t. 0~. .a 0.f

0.1 0.16 I f).K,1t 0,4214

0.6 0~16 0.0s)"1 F 0.(I9
* 0,7 *0149 j oiw 0,8776

n0$4 1 0v24 0,7-121
J 0.81 0 .1149 0.7V11

0.36790.9127

1.2 f .2:003 I M903

1. m0.1419 0,023

1.3 , I ON'j7 0,971
', .;, 0.,0&i6097i

2X 4A5 019&A131 1
3 0,0183 M

*Fig. 12.9. Auxiliary functions:

elp ( ')and r(!

414
47
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;w A

Calculation of Aerodynamic Forces
wltli Fret M olecuiar Flow Arciund Solids

Shown in the preceding paragraph are methods of the determining

cf thc normal and tangential stresses which appear on the surface

ee.erit of the body's surface with free molecular flow.

Let us find the aerodynamic forces which act on body as a

who] e.

Let u. assume that the velocity vector of the undisturbed flow

C consists of angle 8 with the surface element of the body (local

angle of attack), then the angle € between vector C and normal

t.- the surface (Fig. 12.10)

Consequently, the projections of the velocity on the normal and

tangent to the surface are, respectively,

(/= Ccos ?=C.in
W= CsIn? C co o. (103)

Let us determine the forces which act on the plate. The aero-

dynamic force component normal to plate is equal to the product

of the area of the plate by the difference In pressure applied to

its front and rear sides

Ps= ,s -PI) F. (104)

The tangential force is equal to the product of the area of the

plate by the sum of the stresses of friction which appear on its

both sides:

P, +, F. (105)
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V Fig. 12.10. On the determining of
aerodynamic forces on the plate
with a free-molecule flow of gas.

Substituting (103), (95) and (101) into (1O4 ) and taking for

simplicity o 1 1, Tn * T - T , let us find the value of the

normal force

A

P. I- 2F can) , -

+ 1 2r , - - I (,,C "P). ' ltall, to

Cr, the basis of (103), (96) and (102), we will obtain .,icm (105)

tile value of the tangential force

IPC2 C 6gina;)1 (107)

Now it is not difficult to determine the total aerodynamic force

directed perpendicular to the approach stream velocity, i.e.,

the lift on the plate

P, . Cos P, sin =

FP eLCGJd 1 (108)

and the total aerodynamic force directed along the approach stream

velocity, i.e., the drag force of the plate

881
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Let us finid ITOm f(i0b) and (109) the aerodynamic coefficients

of the plate with free molecular streamline flow

Pipl

nuinteP, if wiht ado (? n 6)e I rbbevlct

,/ C . s-n + + 2) _r .C ( 1_

nuer, I with theo ~ ad of(51) and (6)er poabl ve city -+

of the random wotion of moleculr c is replaced by the speed of

sound. In accordance with this we have

M~ (112)

Dependences cy (M), and c (M) for several values of the angle of

attack of the plate are presented on Fig. 12.11 and Fig. 12.12.

Aerodynamic forces with free molecular streamline flow can

be calculated for bodies of a more complex shape than can flat

plates, but in this case It is advantageous to make the calculation

for the front and rear sides of the body separately, using the

corresponding expressions (95) and (96) or (101) and (102) for

the normal and tangential stresses.

The calculation of aerodyn~amic forces with free molecular

transverse streamline flow around a circular cylinder of infinite

length is feasible.
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Fig. 12.11. Fig. 12.12.

Fig. 12.11. Dependence of the lift coefficient of the plate on

the Mach number with free-molecule flow of the gas.

Fig. 12.12. Dependence of tne drag coefficient of the plate on A

the Mach number with the molecular flow of the gas.

The projection of the aerodynamic for _e applied to the surface

element dF onto the free-stream direction (drag), in accordance

with Fig. 12.13, is equal to

dP,.=(pslnP+cosP)dF, dPl=(-psIn g+cos)dF. (113)

The projection of the same force onto the perpendicular to the

free-stream direction

After integrating these expressions within limits of 81 (th- lower

edge of the body's surface) to 82 (upper edge), we obtain the

v~lues of the drag PX and lift P,,, whi_;h act on the assigned sectionJ

of the body's surface. In the particu Lr case of' the cylinder

(Fig. 12.13) there Is no lift (Py W 0), and drag can be obtained

from (113) by means of (95) and (96) for the front side of the At

cylinder (unit length)
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0A

wnere dF * - Rd - Rd3. In a similar manner, with the aid of (101)

and (102) for the rear side of the cylinder, we obtain

2i

I CS 'C sin~ __i e $n-. ,, --- )sI e \ ; (116)

The drag coefficient of the cylinder

By using relations (115) and (116) and introducing notation ,=u€"

we have')

* #

"~ ~ ~ ~ ~ ~ ~~sn, fi,,' (117)": . +)I'"*"":"II II

,1

*It is obvious (see Fig. 12.1.3) that the expression for cx

can be obtained (as for the plate) f"cn formula

I

I (P r -- P . n,. -j- 1 t, "I" L' .. 1 d",

~C t ~k

-- .-



Vaiues of the intergals which enter into expressions (117) will te

. eulSIGIPd~-

F-

Herne the values

six
I'.

4.0

F-a I

- ..

W=" sin' ."? .q Av e

C

Fig. 12.13. The determining f projections
of forces of pressure and friction on the
flow direction with transverse streamline
flow around the cylinder.
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S -. ,y 3ubs' Ituting values
dliand P. into equation (117), we

.. +

J -- - -
- 

-'

Figure 12.15 depi.cts the de-

pendence calculated in formula (117)

of" the drag coefficient o1i the

cyllnuur on the number s x c/cm withm
its free-molecular streamline flow

J. . of helium. For a comparison on this

graph the experimental points obtained

i by Stalder, Goodwin and Creager
1  in

a wind tunnel.
Fig. 12.14. The modified
Bessel functions of the
zeroth and first order. In the search of aerodynamic

forces which appear with the free-

molecular flow about the plate and cylinder, it was assumed that

the surface temperature of the body was equal to the temperature

of the undisturbed incident flow. The determining of the actual

temperature of the body in free-molecular flow is an independent

problem,2 which we will not discuss here.

'Stalder J. R., Goodwin G., Creager M. 0., NACA Reprt 1037,
1951.

2Patterson, G. N., Molecular Flow of' Gases. Fizmatgiz, L.,,
1960.
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es ~Fig. 12. 15. Dependence~ of' Tho (dvuIr
c- - oefficient on tile s number ial*;
transverse streamline flow av, V IJ

14 "the cylinder.

* '*~KEY: (1) Theory; (2) !i

2) of Stalder, Goodwin anu Crcger_

2 4.4 .. U I's .4i- 4
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i1 a ILZ1g tube is understood to be

- i -t w.,h th e maii 1'ree path of the molecules I is 4
*.-. * '.! , , - tile tube d. In this case it is

. ' r., th- C.- r- of the molecules with the

"W . 'i. fat ! 
1 . sb-'- :. -3 r.-a~ colli:ions of the molecules

,.,. t ~r;:.,, artd tl ie Maxwellian velocity dis-

_,'r Lhu ran ,,r , ol* the molecules, which is established

- . , l . " e w'. - wIt. h.r, the tube, is not disturbed.

S..-. crI.i = ~ias6 which passes per unit time

1 k. 1. , t!iou (Fig. 12.16). For this

. .t ,.. . t ,,: r. : lement dF in cross section 2

f e t., an- '. .ti ,t-iu , tn' number of molecules reflected

r., %A t:,, h . cro3 this area.

z$

ii rat t S, ., with molecular flow.

Lvt: : .. ., . ta' r~h';aur'ac lement of tne tube reflecting

: t.. , Ii U'U. ,, Wl' .t.  -A!: urt' - U'V J6 arid length of cx, is located in
, , ,1 :,a s.ance of X, from cross section 2,

) i'.ol h t ! v c ,t ': ;i.] t-e t areas dF and U6, has
,." . ..; .. T d 'ilth the axis of the tube.

(~1,raeS. '~~'.ewihnulclr0lw

.A1 ... ' iC-W. t..~ h;~r~c.e ~l~rret f'tr~ tberefecin



The per-second molecular mass, reflected by area d6 in the

direction of the normal to the wall, according to (71) is equal

to

A-

-where p, is the gas density in cross section 1 (in the vicinity of

area d6), and F - the average speed of the molecules. The projection

of the area d6 onto the plane normal to the radius vector r is

co. :S where p is the angle between the radius vector r and the

normal to the area d6 (i.e., the direction of the radius of the

tube), The flow rate per second of the molecules which fall from

area d6 onto area dF is thus determined by expression

d,41, i e . (118)

hev'e J is the solid angle at which the area dF is visible from×X
the center of area d6, and the ratio d /r is equal to the portionX
of the total number of molecules, which are reflected by the

area d6 into the whol internal hemisphere covering it, which falls

onto the area dF.

By definition, the solid angle dx, which covers the area dF,

is equal to the ratio of the projection of this area onto the plane

normal to the radius vector r to the square of the value of the

radius vector

Let us designate by 0 the angle between the segment of the straight 4
line connecting the center of the area dF with the point of inter-

section of the generatrix of the tube drawn from the center of the

area d6 with the plane of cross section 2, and let us drop a

perpendicular t from the center of area dF onto the normal to the

889 1
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wall of the tube n. From a comparison (Fig. 12.16) of the two
right triangles BCD and ACD with triangle ABD, which has common

sides with themit follows that &ABD is a right triangle, therefore

we have the equalities

Scos y q cos , r cos O=x. (120)

Substituting (119) and (120) into (118), we arrive at the following

expression for the elementary molecular mass being reflected by the

surface element of the tube dS (in cross section 1) onto element

dF of cross section 2:

d~f,i1= pjt cosy cos0d&--dF= pe dI'q cos'.xdLdx, (121)

Here the elementary arc of the perimeter of the tube

AL re dj~

whereupon do is the angle being subtended by the elementary arc

dL, and r0 is the radius of the tube. Since r 2  x 2  q2 , from

(121) we have

I a Px dx
d~~ =4% ( qjipcos f dL.

It is natural that from the element dF of cross section 2

there proceeds the flow of molecules to the surface element of the

tube d6 located in cross section 1; this "reverse" flow differs

from the flow examined above by sign, and also by the fact that the

gas density in cross section 2 has another value; thus, the mass

flow per second of the "reverse" flow consists of

d~t d,- P p,xd4x *

8
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here the average velocity c is taken as the same as that for dM A

in view of the temperature constancy.

The resultant flow of molecules in the direction of the drop

-in density has the mass flow per second .. .*- . -

d.%1 = d,1I,1 + d., ..
neFlp, - p,)xdx--- ,' " + ) ' cos dL. ( 122) -

Let us examine the case of the flow in which the density gradient

along the length of the tube is small, and therefore it is possible

to take

dx' (123)

By substituting (123) into (122), we arrive at the final form of

the expression for the resultant per-second molecular 1,a... which

arrives from the surface element of the tube d6 to the element cf

the cross section dF:

d11 +' (!24)

Let us draw in cross section 2 through point A - the center of the

area dF - an arbitrary reference line MN (Fig. 12.17), which forms

with segment AK - q angle y. Since the element of the perimeter

of the tube dL in the vicinity of point K is evident from dF at

angle dy, then the projection of arc dL on the normal to segment

qd=cosdL. (125)
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If we substitute the relation (12") lto
#I (124) and integrate the obtained (xjr.-siondf within limits of - x< x , 0 , y < 2n,

.. O , E i.e., solve the problem for an infinitely

t long circular tube, then the following

expression for the per-second mass ga,:

flow rate through the unit area of the

cross section will be obtained:

Fig. 12.17. The deter- (., -pp d7" (126)1,r 4a daj9mining of the gas flow
through the surface
element cf the cross
section of the tube with The density gradient of the gas alongmolecular flow. the length of the tube is taken in (126)

as being constant in connection with the fact t;hat the mass gas flow
rate from the condition of the stationarity of the flow should be
constant.

by calculating preliminarily the integral

ve xdx I~d' sta Wx (127)"-j -m a c g- I- m "ir" (127)

and substituting the value (127) into (126), we have

W- T -- q dj 9 (128)

and, further,

A= 4 qdy. (129)

dii
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For a tube of round cross section this double integral can be con-
verted in the following way (since the integral value qdl for a

circle does not depend on the initial position of the ray q):

d d+ jd=*qP (130)

In the rectangular coordinate system, if we select for q the direc-
tion of y-axis (Fig. 12.17), we will obtain

qdF= (131)

By substituting (131) into (130) and then Into (125), we obtain the

following expression for the per-second mass gas flow rate along

the long circular tube:

d" "(132)

At a constant density gradient and constant temperature from the

equation of state, we have

Ix gk~dx IM I

where Z Is the length of the tube along which the pressure changes

from p1 to p2.

The final formula for the gas flow rate per second with free
molecular flow along the long circular tube takes the following

form:

Af=l.-- " e " r- l I/ I ts
I  

l'33.
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Hence the average velocity in the arbitrary cross section of the

t Ube

U= M 2(134)

the average velocity in the initial cross section of the tube

an' in the final cross section of the tube

2.--- r - -, ' (136)

The value : is the average velocity of the random motion of the

molecules according to (57a)

With a very large pressure drop in the tube (P2 << Pl ) we have,

respectively

U=- T T-S (137)

From expressions (134)-(137) it is evident that the value of the

average flow rate of the gas during free-molecular conditions does

not depend on the density (or pressure) of the gas.

Relation (133) makes it possible to find the time necessary

for the assigned lowering of pressure in the vessel, which is found

under much rarefaction. For example, Kennard' calculated that in a

'Kennard E. H., Kinetic theory of gases, McGraw-Hill B. C.,
New York-London, 1938.

894



flask 1 1 in volume with the initial pressure of 0.01 mm Hg, wit!.

it : connection with high vacuum (p 2 /pl 0) by means of a tube

wios, length is 30 cm and whose diameter is 2 mm, the pressure is

lcwered twice after 3 min. - .

As we see, the evacuation of gas from the vessel at great

rarefaction is a very slow process.

However, if the flow in the tube in the indicated example of

r ennard occurred according to the law of Poiseuille (as for the

continuous medium), then for a reduction of pressure in the flask

cf two times, not 3 minutes but two hours would be required.

Above we determined the gas flow rate in the long tube with

the completely diffuse reflection of molecules by tlit. walls; if

part of the molecules c is reflected diffusely, and t-e remaining

molecules are mirror reflected, then the flow rate of the gas along

the tube increases (the velocity of motion along the tL, e of the

mirror reflected molecules after impacts against the wall does not

change). Smoluchowskil showed that an increase in the gas flow

rate in this case occurs in the ratio

Al • (138)

where M is the flow rate per second with the completely diffuse

reflection, which Is determined from formula (133).

Knudsen's experim:nts,2 in which different gases (hydrogen,

oxygen ana carbon dioxide) were drawn through a glass capillary

1Snoluchowski M., Zur kinetischen Theorie der Transpiration %nd -_
Diffusion verdUnnter Gase, Annalen der Physik, V. 33, P. 1559, 1910.

'Knudsen M., a) Die Gesetze der Molekularstrmung und der innere
Eeibungsstr~mung der Gase durch Rohren, Annalen der Physik, bd. 28,
s., 19 08; b) Moel 1arsT.'m-., des Wasserstoffs durch Ronren. A

Annalen der Physik, bd. 35, S. 3c9, i911.
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tube .th a length -f 12 cm and with an inside diameter of apprixi-

:. 'L .3 -u, confirm the formulas given above (fur a - i) 3aie 1

who ater, and more thoroughly made similar experiments with hydrogen . __

a:.; iit;%gen (suction was conducted with the aid of a glass tube ap-

proximately 0.2 mm in diameter), also confirmed cesign equation ULAt

revealed that at a pressure above 0.01 mm HE the experimental va]-e

Sf the gas flow rate becomes several percent lower than that of the

theoretical (when a 1) j

i.eviyen and others studied the molecular flow of dry air along

a metallic tube whose length is 80 cm and diameter is 4 cm; in tr.e

experiments the gas flow rate and values of pressure at distances of

1,-, 30, 50 and 70 cm from the end of the tube were measured; as a

result the following facts were confirmed: the constancy of the

pressure gradient along the length of the tube and the linear

ccnnection between the pressure difference on ends and the gas f-ow !

rate per second; it was found that at the low rates of flow a

upon transition to high velocity the value a was decreased.

§ 9. The Molecular Outflow of Gas Through
the Cpening in the Wall and Through the
Short Tube

Let us examine the free molecular overflow of gas through the

opening of radius r0 in the wall (Fig. 12.18), on both sides of

which the pressures, temperatures and gas densities are dissimilar.

Let us assume that the wall thickness 6 is comparable with the

length of the mean free path of the molecules, in consequence of

which only a single collision of the molecule with the internal

surface bounding the opening is possible.

'Gaede W., Die aussere Relbung der Gase, Annalen der Physik
Bd. 41, S. 289, 1913.
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( The per-second molecular mass which etuiLs
into the opening from zone I into zone 2)

- according to (71), is

Fig. 12.18. The I
calculation of The per-second molecular mass hitting against
molecular outflow the internal surface of the opening is approx-
through the open-
ing In the wall. imately equal to

M, X I{pa2cro.

The latter, expression is not accurate, since states of the gas

within the opening and in zone 1 differ. About half :) mass M6
comes from zone 1 and after reflection from the wall !E. aivided

into two equal parts, one of which is reflected into zore 1; in

summation, flowing from zone 1 into the opening is the ,rass flow

( per second

t

Determined similarly is the mass which escapes into the opening

of zone 2:

The total gas flow rate, which is established in direction to zone 2

in which the value pc has a smaller value, obviously, is equal to

A A Pe) ) (139)
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or or the oasis of the equation of state and relations (3)

We obtained for the free molecular outflow through the opening in
the wall expression (140) of a more general form than that in § 8

for a long tube, since (140) considers not only the pressure

difference, but also the difference in temperatures on both sides

of the wall.

In the case of a very thin wall (6 - 0) the flow rate per

second through the opening is determined by the following formula:

From formulas (140) and (141) it follows that the molecular outflow

is possible even in the direction of higher pressure (if the square

root of the temperature increases more greatly than that of the

pressure); at equal pressures the outflow occurs in the direction

of the higher temperature (thermal diffusion); equilibrium (zero

flow rate) is established under the condition

Formulas, (133) and (140) are not suitable for a short tube if its

length I is considerably greater than the mean free path of the

molecule. For this case the Clausing' obtained the numerical

solution which, with an accuracy of up to 1.5%, is approximated

(when T a const) by formula 2
MI I' Ip rO -pjIf (142) I

20 +E !

'Clausing P., Uber die Stromung sehr verdunnter gases durch
Rohren. Ann. der Physik, Bd. 2, S, 961, 1932.
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CHAPTER XIII 2

ELEMENTS OF MAGNETIC GAS DYNAMICS

§ 1. Introduction

With the motion of an electroconductive fluid in electrical

and magnetic fields there appears an electromagnetic budy force

(e. b. f.), occasionally referred to as the ponderomoive force,

which acts on all particles of the fluid. Furthermor', in the

passage of electrical current through the fluid, Joule heat

is liberated.

In the study of the motion of electroconductive fluid in

electrical and magnetic fields, it is necessary to consider these

two new effects, introducing into the equations of motion and

energy the appropriate additional terms. This circumstance

leads to an increase in the number of variables and to theA

need for a corresponding increase in the number of equations;

such additional equations are Maxwell's equations of electrodynamics.

The combination of the equations of Maxwell, equations of Navier-

Stokes, into which electromagnetic volume forces are introduced,

equation of energy, which includes Joule heat, and the equations

of state is the system of the differential equations of magnetic

hy.rogas dynamics.

899
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At high temperatures on the order of several thousands of
degrees, and also at very low pressures, the gasses are found In
an ionized state and therefore are electroconductive, similar
-to liquid mnetals and some other drop liquid-electrolytes; that
which ,.,as zaid above about the effect of electrical and magnetic
fields on an electroconductive fluid and the account of this

effect is referred also to ionized gas.

The development of magnetic hydrogas dynamics require

astrophysics, aviation and rocket engineering, and also power
engineering.

Astrophysics is the study of the internal structure of the

sun and other stars in which the gas is found in a highly ionized

state under the action of very high temperatures, and also the

study of "cold" intersteller gas ionized and its very low density.

Contemporary aviation and rocket engineering developes

vehicles which fly in the atmosphere at a velocity of the order

of several kilometers per second. The temperature of the air
near the surface of the body which has such a velocity approaches

the temperature of an electrical arc, in consequence of which

the air is noticeably ionized. If we apply electrical and

magnetic fields to such an air flow, then there will arise an

electromagnetic body force, which under specific conditions will

prove to be comparable in value with the aerodynamic forces.

The feature of electromagnetic body forces is the fact that

unlike other body forces (gravity, inertial forces) it cannot be

controlled, affecting the electrical and magnetic fields causing

it. By changing the value of electromagnetic force, it is possible

to affect the intensity and shape of the shock waves, increase

the critical value of the Reynolds number upon the transition of
laminar flow conditions into turbulent, retard or accelerate the

flow of the electroconductive fluid (or gas), and cause the

deformation velocity profile and the boundary-layer separation.
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By using the electroconductive fluid or gas, . •4

to create a generator of electrical current in wt tch t2ii, 1 , rt 4

transition of thermal energy into electrical Is i.ch1.<,ve,);

ragnetic dosing devices, flow meters and pumps ftr' tc punt ,

of mercury and liquid metals find use; other field,.; o"' thtif..

cf magnetic hydrogas dynamics in technology arc known, for

example, in instrument manufacture,

At present two regions of hydromagnetics c o-ar , ,,

in the first it is considered that the medium p.l . .: .--

conductivity (astrophysics), and in the second :he mecli-i M

finite conductivity (magnetic gas dynamics of d'" .

apparatuses) is dealt with.

In one of the paragraphs of this chapi er ..

magnetic gas-dynamic waves which are possibL, try ........ [,

ccnducting medium are examined; in the remainig iC w:-: .

are speaking only about the media of the finlt.: co... , .

§ 2. Elements of Electrostatics
and Electrodynamics

The interaction between two point e ,

q 2 ) which are located at a distance r from ea-r, oth}r, T
descrited by Coulomb's law

re

Here f is measured in dynes, r - in centimete-z, -, - t. .

the charge of the CGSE. In technology another ur. -

= 3109 CGSZ units of a charge - is accepted.

From Coulomb's law (1) it follows that ,

electrical charge a force field called eZ.t , ' ,

formed. Placing the positive charge q2 !ntc tr,. , :, ?.,t-

field of charge ql and measuring the force : I "
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* .... .. r> lfel intensity at its point

5.I

- -; ~ . .~:':. jirten its

. - ~ sur. of the l 1 nities of the

a line, ir. all points of which

* .. i,...p~f1.tto it, then we will obtain the

- . , ,.o the flow line in the

t.r driAhr usually so that through a

~ ~. to it there would pass a number

~.. ~- f Jie local Intensity of th~e

Sthrough the arbitrarilil1y located

irr~ty onto the normal to the area.

* ~ -.- ~-Gauss theorem, the flow of

z is equa I to product of 47T

-4 4 c.-nta ined by it

iF, *;~ - -. . . ~ 1.5~ called the pot ent ial of

v 17



po"l -. dfference at tw'o coirA.s of the field measures

r k of the movement of a single positive charge of one point intG

rV r A"

The Eotential of the poini of the field is equal to the ,or',

Sof the movement of - single positive charge from this point to

infinity C : -).

From (2) and (6) it follows that between the work of the

r-,o:erent of charge A and the intenstty of the field Ep
there is the following connection:

A =.r: Ecr 01 ., dr Vi j - V, 1-

'With movement of a charge over a ciosed circuit (%- ' the

;:ork is equal to zero

SE, dr0=(0.

As is known from the :'ield theory, the left side of e.i_

(8) is the circulation of vector E on the closed circuit. TP,-nP
equ-alitv of the circulation to zero indicates that the electrr-

stat c field is the potential.

The family of equlpoentr.ial surfaces is orthogonal to the

family of the lines of intensity.

5%, differentiating the second of expressions (7) along the

lineo of intensity, we have

903
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Thus, the electrical intensity is numerically equal to the

potential gradient along the normal to the equipotential surface.

In the three-dimensional electrostatic field

.V pOV (0)= p. : -- , '=--O

or in vector form

E=--grad V. (10a)

in the CGSE system the unit of potential difference is the

erg (dyne x centimeter); in technology a value 300 times less

is used: volt = (1/300) of a CGCE uynit of potential difference.

If charge q is not concentrated at the point but is

distriouted evenly over surface S or volume v, then usually used

are ,oncepts about the surface or bulk density of the charge

P$ .

From expression (3) and the Ostrogradskiy-Gauss theorem ( )
there follows the relation which connects the total flow of the

electrical intensity on the surface with the density of charges

in the volume v covered by this surface

E,$dS =4zp..do (12)

(here n is the external normal to surface S). Let us establish

the connection between the intensity, potential and bulk density

of the charges. For this let us isolate in the rectangular

coordinate system the parallelepiped element with volume dv =

a dxdydz with charge dq = pvdxdydz. A voltage difference on the

opposite sides parallel to the plane yz is equal to
E DE

dx, on the remaining two pairs of s!.des respectively Y dyax ay
8E

and -- dz.
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By means of (3) let us determine the difference in the total

flows of' intensity on opposite sides of the parallelepiped

d.V, = + E,+jr dx E,] d: d. dy d,

d.V, d-- .dy d, d - dx fly dz.

Consequently, a change in the flow of intensity on the

entire surface of the parallelepiped

dYV = dA', + dr±dY + + dx dy di.

From the Ostrogradskiy-Gauss theorem (4), we have

dV=4:dq 4rp, dx dydS

or, by replacing dN,

4 an E, (13)j-" + "- +-" = 4 "

In vector form equation (13) can be written in the for:,

divE=4,.. (13a)

Acccrding to the field theory, this equation results directly

from (12). Components, of the vector of electrical field

intensity E , E and Ez, on the basis of (10), can be replaced by

derivatives of the potential, and then (13) takes the following

form:

0 IV JIV 1)2Vr-I -I r +-= -q4, or AV 4 1t)

Dependences (13) and (14) play in electrostatics the same role a3

the equation of continuity in hydrodynamics. The majority .

the bodies is divided into two classes: into conductors, which

transmit charger (electrification), and dielectrics, which do not -1 -

transmit the charges.
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-n the dielectric, unlike the void where the lines of inten3ity

are extended from some free charges to others, or depart to

infinity, Fart of the lines of intensity should be broken Into

boind charges which appears as a result of polarization.

in order to avoid the discontinuity of the lines of force,

one introduces an additional concept - the vector of the eZectro-

satic induction

(i4(15)

which Is parallel to the vector of intensity (c - permittivity of

the medium). It is not difficult to show that lines of the

vector of induction (unlike the line of intensity) In the direction

of the normal to the uncharged boundary surface of the two media'

are retained, being broken only on free charges, and the tangential

components undergo discontinuity

Din ;, in. N((15a)
*4 £,

Components, of the vector of electrostatic intensity behave in the

opposite manner, and therefore valid for them are the relations

=IA m 1,3Fl,. 8j - Ej,

Let us take the number of flow lines of the vector of induction

which intersect the unit of area of the surface element ASn

perpendicular to the vector of induction, equal to the magnitude

of vector induction

For the arbitrarilily oriented area AS, we will obtain

I1N= DAScm2D&S.

where D is the projection of the vector of induction onto then
normal to the area AS, and a is the angle between the normals to

'We have in mind the surface on which there are no free charges.
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'. reas LS and ASH. The flow vector of induction through the

finite surface is equal to

Relation (13) can be extended to the vector of induction if into

'he right side we substitute the density of the free charges: p

MD , OD. )D,-&- 9 T-& = .,.(17)

or in vector form

div D =3p. (17a)

From the foregoing it follows that the integral relation (8)

can also be extended to the induction flow of the -.cctrostatic

field (16), after substituting into the right side thc density

cf the free charges:

Tht- force )f electrical current is measure-- by the quantity of

electricity transferred through this area per unit time:

At=

In the CGSE system unit of the force of current corresponds to

the transfer in one second of one CGSE unit of a quantity of

electricity. In practice as the unit of the force of current

we take

1 mere = 1 coulomb 310 CGSE units of the force of current.I second

According to the Ohm's law established experimentally, we have

have _a

(20)
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where i- j2 is the potential difference on ends of the conductor,
R - the resistance of the conductor.

For a conductor of constant section S and length Z the

resistance is equal to

R v (21)

where v is the resistivity of the material. In a practical system

the resistance is measured in ohms, whereupon

1 = 1 = I- CGSE units of resistance.
IA

9-1

The unit of resistivity in a practical system is usually taken
from the resistance of a conductor 1 m long having a cross

2
section of 1 mm

0.01 cm2 =1-4 .m
I tech. unit of resistence = 1 2 00 cm 2= 10 4 cm.

Used also is specific conductivity (or electrical conductivity)

1 .v. !

Values of resistivity and electrical conductivity of some
substances when t - OC are given in the table.

Conductor R Scm a mho

Aluminum 2.53-10 - ' 39.50.104
Graphite 39.20.10 - 6 2.55.10"
Pure iron 8.69'10 - 6 11.48-104
Pure copper 1.55.106 64.50104

Mercury 9 4 3 0 .1 0
- 6 1.06 104

Pure water 0.5010' 210-
7

Saline water (saturated
at 250 C) 2.5'10-

'Unit of conductivity [mho] [om 1 ].
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Data on the conductivity of thermally ionized pure air cm.

1c borro-wed from works of Lin, Sears, and also Chinitz, Eisen

and Grass , who measured it behind a shock wave in a shock wind i

tunnel; the initial pressure before the shock wave was 1 mm Hg,

;l in ial temperature of the air was close to 300 0K, the

,emprerature after shock wave was determined according to values

,AO the Nach number. Figure 13.1 gives curves of the conductivit5Y

of pure air and air which contains as an impurity 0.1% by weight

of potassium, vapors and 0.01 and 0.001% of cesium vapors. The

.alcJlated curves of the dependence of the conductivity of air

On temoErature at different pressures are given on Fig. 13.2.

The current strength Is a

iv mho/ -air',-. scalar valve. For determining not

S. i only the quantity o' the electricity

L being transferred L.-t also the
directions of the tra-.sfer, we use

Sair the vector of the cur. nt density
/! _

N. - - --.- - whose value is

z ; r Y F - 5-a (22)

area oriented along the normal tc
the direction of flow Al, whereupon

2 - the current of positive charges is

S Iconsidered positive; in expression

(22) value a is the angle between
Fi.13.. Electrical" 13.1. Eletrithe normal to the area AS and the

conductivity of pure
air and air with vector of the current density.
additives of potassium
and cesium at

p 03 (abs). The current flows in the

direction of the drop in potential,

'Lin, S. C., Electrical conductivity of thermally ionized air
producted in a shock tube, AVCO Res. Note 26, 1957. Sears, W . ,

ARS J. No. 6, V. 29, 1959. Chinitz, L., Eisen C., Grass R., ARS,

J., No. 8, V. 29, 1959.
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P rho/cm i.e., the vector of the current

density is parallel to the vector

of intensity E. In connection ;'t

this, the formula of Ohm's law can

be modified, having presented it

- in vector form.

--. ,-In fact,

.tl --R- --'R is, V.

s G whence

Fig. 13.2. Electrical AS- .R -

conductivity of air at Since E, then according to
different pressures.

(9) and (22)

i = ,e-  
(23)

if the current flows through the closed surface AS, then the

positive direction of the current corresponds to the external

normals to this surface. The losses of charges within the closed

surface AS, designated by Aq, is equal to the sum of the elementary

currents which flow through this surface:

I~f ,J 4.j.&ai.= -Aq

or
Jad0. ~ (24.)

The distribution of electric current can be represented with

the aid of flow lines; at each point of the field the direction

of the vector of current density is tangential to the flow line.

If the charge within the closed surface does not change,

then all the flow lines intersect this surface or are closed with-

in it. The flow lines are broken only at those places where

there is a loss (or an accumulation) of the charges.
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-i.

Let us formulate the equation of the conservation of the

charge in differential form, In a parallelepiped element with

sides dx, dy and dz at the bulk density of the chdrges p during

time dt there occurs a change in the charge by the value

dq Pj d .vdyd&

This change is caused by the difference in current strengths on

opposite faces

(f, + d J,.) dyd.d - d d d,, .

?.J?-,+3,- d. (25)

+r in the vector form

. j (25a)

If in the circuit V1 > V2 , then current always flows from

one V1 to V2; in order that the circuit would be closed, the

current within the electrical battery - current source - should

flow in the opposite direction, i.e., from a negative electrode

to a positive one. This is achieved because so-called electromotive

force 9 (emf), which balances the potential difference in external

circuit and the drop in potenLial on internal resistance R of

the battery:

V,- V, + I. (26)

The sources of emf can be chemical reactions (in a batterzy),

electromagnetic induction (in a generator), and so on.
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Let us discuss the heating effect of the electrical current.

The quantity of electricity transferred from one end of the

conductor tc the other during time t equal to It produces work

proportional to the potential difference

A c It (V, -V,). (27)

Hence, on the oasis of the Ohm's law, we have

A M PRl. (27a)

WorK proceeds for the heating of the conductor. At the current

strength 1 1 A during time t 1 s, the quantity of electricity

q = 1 coulomb = 3-109 CGSE units is transferred. With a

potential difference of 1 volt, in this case the work accomplished
is

1 C x I V = 300 erg - 107 erg a 1 J

The ratio of heat power A/t to the volume of the conductor Si

is called the denaEty of the heat power

A

Hence, on the basis (22), (27a) and (21), we have

w -! 1 (28)
aR cm3 s

or, taking into account (23),

s =o'=JL (28a)

With superconductivity (OR - Go), according to (28), the density

of the heat releaze tends to zero.

The total power released in the circuit consists of powers

cf external and internal parts of the circuit: W.--. i.e., total
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>c;i;er 13 uqal to the product of the current strength by the

electromotive force.

Around the conductor, along which the electric current flows,

there appears a magnetic field being characterized by lines of

the m.gnetic field strength; tangent at any point of such a line

,ccincides .ith the direction of' the vector of intensity H of the

magnetIc field.

Around the long straight conductor lines of the magnetic

field strength have the form of concentric circles: their

ilrectic. is determined by the so-called right-hand rule: if

the fcr.;'~ard motion of the gimlet coincides with the direction of

the flow. then the direction of rotation of its grip coincides

with tih" Jlrection of the magnetic lines of intcnn''..

The magnetic field of a solenoid, i.e., a syste,. jf Identical

circular currents (turns) with a common rectilinear .,- s, is

presented on Fig. 13.3. In the middle part of the int.+:,nal

cavity of the solenoid, the magnetic lines are parallel to the axis

of solenoid; at the ends of the solenoid the magnetic lines are

Lent and emerge outside, being closed outsilde the solenoid,

where the field becomes very weak.

Conducted through a unit of

surface AS , normal to lines of

the magnetic field strength, as

is accepted in the field theory, is

the number of lines equal uo the

intensity value. If the nomal

S "to the area AS is located t

Fig. 13.3. Magnetic angle a to the lines of Intensity, _

field of P. solenoid. then we nave AS n  1\S Cos C,n
whence the total number of lire-s

.1.V r3 iCuult.
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.lnce H cos a- H is a projection of the vector of intensiy or,

he - r.. I t 3 .he ar 't, v hen,

The direction of the external normal is usually considered posit'.ve.

Thilie the lines of the eluctrostatLc intensity, which are

broken on the charges, the lnes of the magnetic field strength are

always closed, since magnetic charges in nature there do not exist.

qherefore, the total flux of the magnetic field strength through the

closed :urface C is always equal to zero

. dS O. (30)

.he cont nuity condition of the maE:,etic field can, by analogy

',..th the hydrodynamic cu nditAon,be written thus:

X+ +

or

div H=. (31)

The magnetic field strength H at the given point is determined by

the action of all the individual sections of the wire. According

to the law of Laplace and Bio-Savart based on the experiment, the

circuit element L1, along which the current flows by force I,

creates at point A of the space (Fig. 13.4), which is found at

distance r from the element LZ, the magnetic field with intensity

%i sin
a.,, r (32)

where a is the angle between 01 and r (the direction of flow i

is considered positive).

In vector form the magnetic field strength at point A

1= -l1 x (3 a)
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Ih e ii r

br

~~~~~hei'c L - ;'"i' t.<-,to p - ;:.

0. '. '' .

AAthe t low a i,0 a; J'.l \. ,o: i -.

* the dtlcl',j i V - -

Fig. 13- Determination of ,
the field of magnetc field
strength around a conductor .,i'.-e , ..

with cirrent. If-'%.

which is formed by the Intensities ' ,h, m • ' ' ,

e.enents Qf the circuit (condic';r)

In the case of a rectilinear tcr~A': - i" . "

intensltles from all of its sectIow, '- . '2 -, ,i

consequence of vwhich

!311 or _W A

where r, is sncrtvo-.t distance fio, t -t .I...
U

basis of (32) and (33) for an Infir, <3 , 2 . "

we have

I . .l , 2

F.-on -h:.s for: - ;t '

th:it at a distanc,. ' . 'r.
k 4 '*II fron', th... inf'InV:2 ..... aIdu

alornE which 'l>ws a c41vren. ,,

I = ICGSL un:'_ts of currcnt, i'.,

the magnetic field H~ !CGSE urnl z;
INA

of intensity appears. Th,

Fig. 13.5. Determination
of the mag etic " 'feId of
a rectlinea' conductor
with current

(-9
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.... ". - ..: -toi ,if inen ity (32a) on the axis of the

I (M1yr, - l4ry)

I ( !lIrt - .511r-)

11 - - (i4)
All, I

and lier, the subscripts denote the projections of vectors "Z and

r on the appropriate coordinate axes. Similar relations determine

in hydrodynamics the velocIty field induced by the vortex

filament.

The experiments of Faraday and Ampere showed that acting on

any conductor with current put into the magnetic field is an

electromagnetic force. Ampere established that this force

Af = --j- I .= ell III-it sin... (35)

The direction Af is perpendicular to the plane of vectors AZ and

H and is deterrined by the left-hand rule: If the palm of left hand

is arranged so tL t the component of intensity Hn perpendicular

to AZ is direc. to the palm, and the four elongated fingers

are directed along the current I, then the thumb set aside will

indicate the direction o' forcc

In vector form the Ampere law takes the form

• Af =.i, - IM -i XH. (36)

where the direction L! coi;,cidc. ,'.tI: the direct,,'.. n of flow.

After placing into fuvirwla ( ) the proportionality factor,

equal to unity, it is pcs Uble tc construct the electromagnetic

system of CGSM units. In this system of units the Ampere law

will be written in the form

,- 916 $111 4 (37



It is not difficult to notice that in the new system (CGSM) the

unit of the force of current is c times more than that in the
10

CGSE system. Since c = 310 cm/s, then

ICGSM unit of current force = 3.1010 CGSE units = 10 A.

A unit of a quantity of electricity Q = It and a unit of magnetic

field strength in the CQSM system are also c times more than those

in the CGSE system, 1COSM unit of a quantity of electricity =

- 3.1010 CGSE units of a quantity of electricity = 10 coulombs;

1CGSM unit of intensity = 3.1010 CGSE units of intensity ; 1

oersted.

The force Af in both systems of units is measured in dynes.

Subsequently, we will use the combined system o' units of

Gauss, in which the electric intensity is measured in CGSE units,

and the magnetic field strength is measured in CGSM uz.its.

Let us formulate the expression for circulation of a vector

of magnetic field strength along a closed loop Z. If the

conductor !s arranged from the circuit element at a distance r

(Fig. 13.6), then the length of the circuit element can be

expressed by the angle at which it is visible from the line of

the electrical current: dZ =rdo. The product of' the length of

the circuit element by the component of vector of intensity

tangential to it in mixed units is

dj? 21d9.

The value of the circulation of the vector H along the closed

loop Z is equal therefore to

91-
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hus, unlike the electrostatic

field, which according to (8) is

tne potential field, the magnetic

fiela proves to b'- the vortex
field (circulation of the vector

H along the closed loop is not

rg. 13.6. Deterninat ion equal to zero).
of the? circulation of the
vector ,, *: magneti: field
strength along the closed The given information,
ci-cuit Z. strictly speaking, is valid only

in the case of the formation of the ingrietic field In a void.

The exreriment shows that Lroperties of the medium, in which

th: conductors with current are placed, affect the intensity of

the fields.

If we place the conductor with the current into a medium

which is magnetized (magnetics), then there appears the additional

magnetic field strength H' which is totaled with the intensity

of the external field IfO: the resulting intensity B is called

the vector of magnetic induction

0 = p lif , -- H + I f , ( 3 9 )

where iB is the magnetic permeability of the medium. The value

B in the CGSM system of units is measured in gauss (numerically

the gauss is equal to the oersted). If in a void the Ampere

force, according to (35), is determined by the intensity of the

external field H0 (in the Gaucslan tcystem of units)f0

A/1. '1 sin a,

then in magnetics it depends on the total intensity, i.e., on the

vector of magnetic induction B = H0 + H':

(140)C 9
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( where Av = AS is the volume or the section AL of' the conductor

which hab cross section S. In vector form the Ampere force in

mixed units

A = U X DlAV. (40a)

The projections of the Ampere force on the axis of the rectangular

coordinate system are

w- B .v J , -jB,).
C

%f, a,, jBx, -]JB,). ( 41 )

For gases and plasma (ionized gas) the electrical and magnetic

permeability has virtually the same value as that in a void

(E - 1, uB  1 ), and therefore in equations of ma,-.. t'c gas

dynamics it is possible to manage without the vectr- cf

electrostatic and magnetic induction, i.e., It is po:-;ible not

to consider the phenomena of the polarization and mat. etization

of the medium.

In a way similar to the lines of intensity which charactcrize

the magnetic field In a void it is possible to construct lines cf

magnetic induction. Drawn throu6h a unit of surface normal bo

the induction lines is a number of lines equal to the local value

of the vector of induction; the total number of Induction lines

which intersect the surface element AS normal to themn
comprises the elementary flow of the magnetic induction.

.1(v S=8AS (42)

The induction lines ,coming our from the volume limited by

this 6urface give a positive flow and those entering into thio

volume - a negative flow; the lines of ,m-agnetic Induction are

always closed, and therefore, for the;A there should be fulfillej

the continuity condition
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dv B +

1he tc:tal fiow: of i n-iuct ion t hroUL! SilrfaCe S

For 1,t closeci surf~ace we always ii ave 4, 0. In the CGSM. syster

the flow% -f irduc' Io:n is i..easured in Vl raxwelJls: 1 Maxwell-

Igauss x I cm

It is -> ssiblK- t- isho- that twith the intersection of the

boutidavy ojf two r,,edla .-ith different values of permeability W

and t122 the normal component of' :ragnetic induction is retained

(if' on the boundary titere are nio s-,urface currents), and tangentlil

comronerit undergoes discuritinuliy

hon=144- _q_, =A L. 
4 5 )

Ps i.,

The components of the ,...-netic field .-trength behave in an

opposite manner:

In other words, in the flow of Induction directed along the

norma. to the bounda~ry surface of th-e mragretics anid in the

absence Of Surface currcnto, the vector of induction is n~ot

changed, and the vector of Jirtn:3ity undergoes a jump. The

magnetic flow, in certain ca js asses over wholly from one

medium to another (seriet-i -un~t 3,and other cases it

branches out intc separat parts, which then, merge (connection

in parallel).

Electric current is a flow of' ch1-arged particles: electrons

and ions. Therefore th, airpe-re forcv which acts on the conductor

is composed of forcez; appliod to theirvlng charges.
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if the charged part -cles move within the solid or liquid

body, then because of th ir collisions with the molecuies or

atoms of the body the Amr ?re force is transferred to the body.

For example, if side walls of a circular vessel filled with a

conducting fluid are electrodes to which the current is conducted,

and the bottom is an insulator installed on the pole of a

forward magnet, then the current flows along radii, and the vector

of the magnetic field strength is parallel to the walls. In this

case the fluid in the vessel arrives into circular motion (the

Ampere force acts in the same direction on positive and negative

charges, since they move in opposite directions).

The current strength I is equal to the total charge

transferred per unit time in t'he cross section cf the cond-ctor:

! . S p,& (47 )

Here e is the value of the separate charge, n 0 - the :.anber of

the moving charges per unit volume, W - the velocity "*f their

motion, S - the cross-sectional area of the conductor.

Substituting this expression into (37), we obtain the ampere

force applied to the total charge on the section with lengtn AZ:

- en. IV A/sil &n i

The number of charges which move along the section of

conductor AZ:

nt' =. n*S. .11,

and tnerefore the force which acts on one moving charge:

n = ( 43)

Here the charge is measured in CGSE units and the intensity in

oersteds. The force Af', called the L'_rentz force, is

perpendicular to the plane at which vectors W and H lie: for a _

'p



ru.slt~vr c'iar,-e Gt is ,eu..rrl.-d uy tue left-iand rule. ' W !,

o : the fo1ce hac a grat s t v ue (sin a 1), If W Hj H, ther

tht. I'fcV- Is oquL l t. zero (uin 2K U

A f -! I IIV x Ill. (49)
C

and in rroJ ect boris o. r.ct r!-,ular coorinate of the axis in the

Mix 2a units)

Af -(VlI, - oll>.,
£

-i, (fill, -. v.J

u, v and w are conr-onent; i f Ilhi. vel.o.:city vector W. if

actln - ofi the chari-es is :ilso the electrical field, then added -o

the Lorentz force wIll be the Coulomb force, which according to (2)

Is equal tc eE. The total eiectromagnetic force which acts on

the charge will in '-his case be

. 5 A e { + - I V H I } . ( 5 1 )Ife + W xH

The clectromagnetic force applid to a single charge '-s very

low, but it is necessary to keep in rind that with usual currents

a very large number of charges is transferred, in consequence of

which the force applied to conduct'o body can Drove to be

considerable.

If the electrical and rragmnt.c fields are mutually

perpendicular (E I H), then unje 'Lre condition

... 1~ x 111

the Coulomb and Lorentz forcos are ul.nced, i.e., the resulting

electromagnetic force is equal to z'oro (Af 0). In this case

the charge moves along the inertia at c .onstant velocity, which

9 2: r



( is calied the drift velocity and is equal in magnitude to

(52)

When E = H H and -f 0, we have w W . A comparison
e Ey A

of (51) with (2) leads to the conclusion that the presence of

the electromagnetic force 6f, which acts on the moving charge,

Is equivalent to existence in the fixed coordinate system of an

electrical field with the intensity

E + WIWX HI. (53)

This expression is correct for the moving conducting fluid. By

substituting (53) into the right side (23), we obtain the

expression which is called the generalized Ohm'a law for the flow

of the isotropic condtcting fluid (in mixed units)

J=maIf+-I (54)

Here W is the velocity vector of the fluid flow (and !Iot the

speed of motion of the charges in it).

In (54) component E corresponds to the conduction current in

the fixed coordinate system and term E' = 1 [W x H] - to thec

additional current induced by magnetic field in the moving fluId.

If the charges move not in a void but in magnetics (B # H), thcr

the generalized Ohm's law in mixed units takes the following fo.nm

J R + I LW X BI)5

The projections of the vector of the current density (55)

on the axis of the rectangular coordinate system comprise (in

mixed units)

IAM

J ='R g*-t-T vBxl)] I(E e Va',r-uB:)

R[L', + -,.
J. ~~ ~ ~ (6 ==J r "(LO, .

(+
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In 1z31 Faraday discovered the phenomenon of electromaanetid

L':*.L.,t' o which conoists in the fact that with a change in the

of i.duction through any closed circuit in it there appears

an eiectrical current caused by the electromotive force of

ind cI-on: this inductive current appears with the approach of

the marnet or conductor -ith current toward the closed conductor,

with the rotation of the closed conductor in a magnetostatic

field, ani so ocn.

The direction and force of the inductive current are such

that the intrinsic flow of magnetic induction being created by it

comr.ensat.-s for that change in the external flow of induction

which causes it; as a result there appear forces which counter-

act the relative movement of these two flows of magnetic induction.

On the basis of the law of the conservation of energy,

Faraday established the relationship between the electromotive

force of induction Z, and the rate of the change in the inductior,

flow through the circuit ;/at

(57)

The relation (57), called the law of electromagnetic induction of

Faraday, establishes the value and direction of the emf of

induct ion.

In the CGSM system emf of induction is measured in maxweZIels/

Smaxwell 1 10 COSE units of emf = 10- 8 V.
313j

In technology the emf of induction is measured in the webers

I weber - 108 maxwells.

In this case relation (57) gives
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S (VOlt) = weber
at s -

In the mixed system of units, when t if measured in CSM units,

and I- in CGSE units, we have

' -(57a)

If conductor is stationary, and the value of magnetic

induction changes, then for the explanation of electromagnetic

induction it is necessary to assume that in this case at each

point of space an electrical force appears. This hypothesis,

confirmed by experiments, was assumed by Maxwell as a basis of

the theory of the electrical field.

The electrical field changing with time gives -'-;e to a

magnetic field; for with an evenly changing electrical field( =const a magnetostatic field is obtained.

If placed into an alternating magnetic field is a fixed

conductor, then the flow of magnetic induction through the cross

section of the circuit included by the conductor changes, in

connection with which In the conductor according to the Faraday

law there appears an emf of induction

and along it current flows. Thus, the alternating magnetic

field gives rise to an electrical field.

Both alternating field- - electrical and magnetic - co.-,nectud 4

with each other, form an electromagnetic field.Ma

The electrical field, generated by the alternating magnreti:

field, has a vortex nature, i.e., diff. .rs significantly frcm the

potential electrostatic field of fixed changes.
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The v.rtex nature of the magnetic field results from

relation (38).

Taking (22) into account, from (38) we obtain for direct

current 
!  

. - -.......

HI dI - a jd& (8

A similar relation can also be obtained for an electrical

vorticity field. According to (57a) the emf of induction

where the flow of magnetic induction

0 -1 d&

Thus, we have

On the basis of (7) and (26) the emf is expressed in ternis of

the intensity of the electric field (when R0 = 0)

= 4§ Ej dt,

and, therefore,

§dtd.

The electrical field is vortex (electromagnetic) if the

right side of expression (59) is different from zero, and it

becomes potential if the right side is equal to zero

0 ), i.e., if the magnetic field is constant or absent.

'Below we will be limited to an examination of direct current.
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3. lectromagnetic Fields

in the preceding paragraph It it shown that the electro-

magnetic fields are described in general by the following syster.

of 1.;hx;ell's integral relations:

1. Relation (58) which connects the circulation of the

vector of the magnetic field stren~t H over a closed circuit

v:Ith the tota. force of the direct cirrent which flows through the

area S included bY this circuit:

2. Relation (18), which connects the total flow oP the

electrostatic Induction through the closed surfUc. L, area S with

the total free charge in the volume v ncluded by t:,'!i area:

I DdS =- 4 ,ado.

3. Relation (59) which connects the circulation cf the

vecr:or of alcctrical intensity E over the closed circuit . ":!'h

the rate of change in time of the vector of macnetic Ir.du-t.-on

through the area included by this circuit:

4. Relation (44), which is indicative of the flow contt,

of magnetic induction B through the closed surface:

BIdS = 0.
S

It is necessary to add expressic-s (15) and (39) to these

integral relations, by means of -hih I' is possicle to pa- 4
from the vectors cf intensity of the Aez' ... .. .I.1d." t&

the vectors of induction

D cE. a=~~U
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and the generalized Ohm's law (55)

ioRIE+TIw\BI1.

in these formulas the electrical values are measured in CGSE

units (J, E, Do Pv0 ) , magnetic values - In CGSM units (H, B),

forces - in dynes, velocity - in cm/s. Of course, it is possible

with the aid of the corresponding coefficients to turn to any

other system of units.

Let, us now derive the Maxwell equations in differential
form, and let us divide them into two systems. We will obtain

the first system for the magnetic field of direct cui-rent.

.,ince the lines of magnetic field strength lie in a plane

perpendicular to the direction of the flow, the projection of

the current density jz (Fig. 13.7) is connected only with

projections H and Hy of the magnetic field strengths at the same

point of space. The circulation of the vector of intensity along

an infinitesimal circuit abcd consists of the following terms

(the circuit is counterclockwise):

r.,,, d yd X +( H, dx)dy

-(ii: -I- y dy) dx -( -all Yal) dxdy.

On the other hand, according

to (58), the circulation of the

vector H should be equal to the
a -force of current flowing through

Fig. 13.7. The coordinate this area multiplied by 4
7r:

system (on the derivation
of the Maxwell equations). P 4 0, dd

Thus, we have

Olp Oll, I
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k Similarly, for components of the current density along the other

axes, we find

d1I, d"H 0il, 0Ht, I 6 a

Equations (60), recorded in the mixed system )f Gauss units,

connect the current density of conductivity j with the spatial

derivatives of the magnetic field strength H. If to equations

(60) we add equation (17), which connects the vector of the

electrostatic induction D with the density distribution of free

charges in the volume pvo

OD, OI) 00,

- n -- + ---

then we wlfl obtain the first system of Maxwell eqi.- tons, which

in vector form can then be represented as:

rutj 4-. J. div D 4-p. (61

This system is valid for the uniform magnetics wnich ehtirei, fill

the whole field, since in this case the magnetic field stren.3t};

of the currents does not depend on the permeability of the

med 1 un

We will obtain the second system of equations of Maxwell,

utilizing the generalization given by it of the law of induction

of Faraday.

Let us formulate th expression for the circulation of th

intensity of the electrical field E along an infinitesimal r

abed (Fig. 13.7), caused by a change in tire of the vector of
aB

magnetic inducti -- perper.diculav to vector E:

.. I", , / F ,, , ),~ . . ry -
(u. V ~

.Y ' - d v
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The circulation of the vector E along the closed circuit is

equal to the derived flow of magnetic induction through the area

4::cluded by this Qircult, taken with a minus sign

I' -I ,' I g,4d d,

hence we have

By an-lIogy we also have

III*# 41p, 1 fill, J'i, rP, 1 0,1

it -"1, . . . . -- .#.' : - -- - - ( 6 2 a )

Adding to equations (62) the equation of the continuity of the

lines of magnetic induction (43)

,111?, (11v  tollj

;.--"+ - .i -

we obtain the second system of Maxwell equations, which in vector

form takes the form

- I. R (63). It

in the case of an inhomogeneous medium on the boundaries

of its separate sections, in the absence of surface charges and

currents conditions (15a) and (45) should be fulfilled:

t'h l ,,2 _ (1,.

D., - P t

Let us exclude from the differential Maxwell equations the

vectors of current den:.'y J and the electrical field strength

of current E. For this let us use Ohm's law (55), having

converted it into the equation c f vorticity of the field of current

density (in mAxed units):
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Let us replace the equation for the vorticity of the vector

of the magnetic field strength (61) with the aid of (39) with the

equation of vorticity of the vector of magnetic induction

rot B 4 .ij. (65)

As is known from the field theory,

[,Pli olI- ¢)111,u .!D=--a =--\. 22" "" (66 )

From (614), (65) and (66) we find when a = const

R

-- '~ rot E I" , 'totW>. j). (7 )

From equation (63) we have

7 it

Substituting this result into (67), we obtain

"B
eoB =ot r, 1 v X~ sl-- -a. )

This equation, which connects the -rIagnetic field with the

velocity field in the electro conductive fluid, is called the

equatio,; of magnetic induction.

In the case of very great electrical conduictivity of the

medium (aR -) M). the second term of thw right side of equation

(68) can be disregarded, in connectidn with which it acquires

the follo.;*ing form:

-rutIWXB. (I W ) -
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This equation is identical to the equation of vorticity in the

h'yndroayar,ics of an ideal fluid, which means that the lines of

the vortex move together with the fluid. But in this case the

jue.3-.on is of lines of the magnetic field, which prove to be

rigidly connected with the substance - "frozen in," and if the

particles of fluid move, then the lines of magnetic induction

move together with them (the particles cannot cross the

induction lines).

The "freezing in" of the magnetic lines is connected with

the fact that with a change in the vector flux of magnetic

induction through the circuit, in it there appear electrical

C uirents which prevent a change in this flow, and the larger

they are, the higher cR; when aR  ' w a change in the flow of

induction becomes impossible. Motion along the lines of force

does not affect the field; with motion in a transverse direction

the lines of force are completely carried away together with the

substance (if aR _ -)

In the case of a stationary medium (W = 0) the equation of

induction takes the form of the equation of diffusion or non-

stationary thermal conductivity (Fourier equation)

It shows that in a body which is located in a magnetic field of

external sources, the magnetic field disappears not immediately

after their disconnection; the magnetic lines of force gradually

"filter" through the body and are attenuated.

For example, in a copper sphere I m in radius the magnetic

field attenuates in approximately 10 seconds: the higher the

conductivity, the weaker the attenuation of the field.
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The value
Ce

7 - (69)
SFlame~

which is similar to the transfer coefficient in equations of

diffusion and thermal conductivity and having a dimensionality

of kinematic viscosity, was called magnetic viscoeity. The

numerical values of magnetic viscosity are usually considerably

more than the valucs of kinematic viscosity. In general, when

not one of the terms on the right side of the equation of magnetic

induction can be disregarded, the lines of force attempt to move

together with the substance and are simultaneously filtered

through the substance.

Given in Appendix V is a table of fundamental units used

into electrodynamics and in different measuring sys -:.-o, whereupon

each value is compared with the number of units of *J, 2GSE system

corresponding to it. From this table it is evident t'.at a short-

coming in the SI system is the fact that in it the mc : -;tic

pe. eability and electrical induction of the vacuum are dimersional

values different from unity.

§ 4. Equations of Magnetic Gas
Dynamics

The equations of hydrodynamics (and gas dynamics) of an

electroconductive fluid in the presence of electrical and

magnetic fields should, unlike the equations of hydrodynamics of

a noncoriductive fluid, contain an additional term which considers

the electromagnetic body force.

Acting on the element cf the volume of tho conductor (or

conducting fluid) dv, if along it there flows a current with

density J, on the side of magnetic field is the Ampere force (40a)

, tj B1di,.



and cn th,- de of the electrical field - the Coulomb force (3

df, i= Ep. dv.

vhire O IS the density of the charges in the volume dv ( dvdV =

= ,dq)

Thus, the total body electromagnetic force applied to volume

dv (in mixed units):

the force which acts per unit volume

F:= 6( =a+ (71)

An evaiuation of the order of terms in the relation (70) shows

that the Coulomb force can frequently be disregarded'. Then,

'The relative value of the Coulomb force Is estimated in the
following manner:

, p.eI p,..PC'

,where

S -- div D - - 8
4r 4zL

Hence

!r;,E c'Et e1Fjp- -,f i " hJ-fto .4,,L,t

According to (52), cE/B - W is the drift velocity which, as is

known, is the value of the order of the flow velocity, c - the
order of unity, linear dimension L - the order of 10 cm, a. - the

order of rho/cm or in t'h:e gauss system - the order of 9"i0''

Thus, even at flow velocities W of order of 102 kmn/s, the
'eiat 1'.,. value of the Coulomb force is of the order of
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ta:irng into account (65), we obtain for the electromagnetic force

apciied to the unit of volume the expression

IJX~ 2 j= Iot~oX il. (72)

Projections of the vector of the electromagnetic force on the

axis of the rectangular coordinate system are

F15= 7(1,8. - JB,)I:IF,-.-!UB,- a). ( 72a )

or in another form (with replacement according to (65) of the

vector of the current density by the rotor of the vector of

magnetic induction)

t4)l~-- 2g~ I di

2Ox 2 z 2

4":,,rI , a y l n, B, [,y + B, - i 7b

Here B 2  B2 + B2 + B 2 - magnitude of magnetIc induction vector,
x y z

a = rot B. In the derivation of expressions (72b) the contirnu.3y

condition of magnetic lines of force was used also (43).

Adding force F(70) to the right side of equation (28) from

Chapter II, we obtain the equation of motion of the electrical

conductivity of the fluid in electrical and magnet! fields in

vector form (at 1 = const.)

dWp+zW--+ 8 (73)
P --1 a R-(gndpivV/)V X

or dW = R - gr idy-J, Ip-i IV

gr.i~a"V d (div W)-I ".I.- rot B X B1. ( 73a-'. ,
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<P js t &:,ote::: cdi f ferentLa, equations should include the

r1' ' f 7: -4C. ,, In the caso of an electroconductive fluid

is i a ; i-i d electric Lields, the right side or

i D f eerfro 1) fo Chapter I should contain an rdditive

,,_,rm ',2 expr.ess in,- te dersity o: jouie heat release (heat

"A-_T r ji :. Ten the ecuation of energy for the

eltctroccnductive fluid takes on the following form (with X ccnst.,

=~~ =OA~ )
di dpR.di'[= 

4 d,1 -j-h;,.T -p A -jA (1"4

or, taking into account (65),

d dp Ac'.,,/ -- , ;j- r - 2 )AT.....Lf)-[.......Irot B. ( 7L 1 0a)' R 'I '

T ., (73) and (74) we must add the equation of magnetic

induction (68)

doa
-=rot W X Bj -tj - W.

the hydrodynamic equation of continuity

ij- - divpW I =-- (7 :

and then the equation of state

p=/p. 17

which in the case of an ideal ga:. is repiaced by the Clapey;_:i,

equation. The oystem cf equations (73a)-(77) is the tutti syZt.-

of differential equations of magnetic gas dynamics.

If the equation of motion is utilized in the form oC (73",

the system of equations must be augmented by the equation of

Oho's lav. (55), the i4axwell equation (63), and also equDt1.::

(65) and (Q8).
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In these equations we disregard the electrostatic Coulomb

force; if one takes into account the Coulomb force, then the

syst:, of equations of electromagnetic gas dynamics will be

octa-rned,

For an incompressible fluid the system of equations (73)-(77)

's simplified, since the equations of motion are solved independently C

of the equation of energy, the equation of state (77) is no longer

necessary, and the equations of continuity (76) and motion (73)

take on a simpler form.

Thus, the total system of equations of the hydromagnetics of

n incompressible fluid in vector form consists of the equation

of motion

W - =R--g°dpI-LW+ IJX I 81(76)di

oi'

=R-- Utadp + p.W+ I lint ii X ftl  (7"a

V'-U

- . -

"41. ot l' .3 81 . . ... 9

u;'. . .=-,.



i~iO ~ rrQle~c; lon- cwl.o '*i aixis of thie crtloiona

iv.,t*Sst(m ;:, tlin ~cr ecvatior of nnctlor (73

1.. + I

b, + (hit,- -- (I/

p -r u j~ .- I~.~(2

t).% dYw *b

f~ I ~ Ii'

L~~~1 btiir~ cotK f



Let us note that in equations (82) the nonelectromagnetli

forces (gravity, centrifugal force, etc.) are omitted for

The vector equation of induction (80) in the orthogonai

coordinate system also breaks down Into three equations-

dl), ._,_.[oR, 'B, o'B,i. * _. _

+ 1,1, + &B , (Ou + + Ow

dO, - ' I n. , ,i iL. 1. a:n. +
0*- (Ilt ,' / -O"x-/ " T -+ C~u + + 1E

Oa-

in the equation of energy (74) the term which considers

Joule heat can be expressed by magnetic induction. For this x.e

must use trhe Maxwell equation (67). As a result, we will obtain

_ t (rot Br,dl .,tp + )..T± .~ ,~

where, in accordance with field theory, the quantiy

(rot B)- Oat 'OB" 6OB\186-\J+i +V-- 6

The equation of Ohm's law (55) in projections onto the axif:

of the 0oordinates takes the form

:,- R E. (z'l3,

E, +3

(
9}-" •
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no 21t the iivo:rouv raii c, e, --1(t in f coti .nu ity t azes t e

ii dc, -Id- '-1 11 4 av

~fcj ~ e tiv . los T. to-Y, o t he Ir r iht siLd ez a re zero.

nycnre teu rcls LLo-s o f -,t ion and i r.uotln

I.(, cubst;antlally smi±loby neglect'ng these or othe r

erI! cIueiseveral versionzs of the equation Of

nwyfor gas flow. Frt '1 Le oCuttc& of energ-y 12 153

I! . 0civ Inl which entha'in arid * z.otic energy are combne.bI 10t

total_ enth-alpy; such is empat ion. (49) from § 6 of Chapter 11.

.0 oer to a-rive at- thu appropriate form of the equation of! t1he

er ,.erry ofhyrmantls we motpro ject_ tho ditv term of

uric E:cuatlori of moin(loio;antcforce)

onto the axis of' th"e orthogonal coorcinate SystenT and then

multip-ly e,.'0i- proj cottonr of this vect_-_or by the ap propriate

prolection of velocity; after ::urgtuthree obtaIned products,

we findi an additlona& leciu~ Lo itrmt equation, (451 of

Charter IT

w(A BYj ?.)I = IL MZ/, -- 1/0 ;-/1 (UP, - tB,) -

.hls expression enpicyni iX:Lc:SLi~n:.; (72) for the components of

eleotLromacno.tic foc , r, to wordLs, the scalar roduct of

velocity by the electromiag;.etie for-ce vector was presente .d in the4

fo rmr

lVf >, yIIXB.



Sr-m the Oh.js law ('5) follows

I*R

ib6ti'utnrg this result into the foregoing equality, we find

.7

If this additlvo term, cxpressing the work of electromagnetic

force, is added to Joule heat

Q,
,= , (88)

:e will outain resultant expressions for the additive "electro-

magnetic" term of the equation of energy

Q,, -j. E. (89)

This iuancity must '-e added to the right side of ei:%-Aon (49) of

Chapter iI; then the e.uat in cf energc' of gas in .thc presence of

an electromagnetic field is .ritten in the follcwing ,-rlm:

Lit T/ ,x1 ;,I %V ,X V 1,iv W -+ AjE . N 0

Here the coefficient A (heat ejuivalent of mechanical "ork) ]s

added to the last term, because in (89) tlhis term is exressed

in mechanical units.

In a number of cses the work of ele2tromagnetic forces is

represented in another form, which can be obtained if we use (65)

tc rcclacc orrent density in soalar product (89) by magnetic

induction

Q,,=-- -f ot B (7' ,

and use the known fovmula frorm fild theory

div IEX Dl a rot E-ErtB.

1F

4=

i "| ] -l -i ... -I I -V ::=l--i~ .....i T i-: i i :i-....I i -:l- -- -:- --I



7!1~ , a6,. of a stat onary magnttic field ( - 0) from "3)

a'. 'ot i 0, and therefore

Erot B= - d [E X B.

Subs,-tu'.lng this v"esult into (91), ve come to the following

eXpr. siS n ,for the additi"' eiectrcmag~netic term to the equation

of energy:

Q -dlv E X I. (92)

Afttr r lacing in (90) the last term by expression (92), we

obtain otne additional form of the equation of energy of magnetic

gas dynamfcs:

W1

tA.P(WXVIdivW- AtdivE XBi- 93

In the stationary case and in the absence of viscoity and

thermal conduetivi~y the equation of energy (93) assumeo tho form

d Ac

Pg'-i"--== .. . d. iv[E X a.(

§ 5. The Similarity Criteria in
Hydromagnet ics

With the additive term in the equation of motion of an

electroconductive fluid in a magnetic field (82) we must introduce

a new similarity criterion considering the ratio of magnet c

force to the force of inertia. Follow:ing the method given .n, 5 7

of Chapter II, let us bring the last term of the right side of

Bai Shi-yi and, . .c as dynamics and dynamics of p]a:;.a.
";; R, 7 ;, -1. 196 .

9,2



e: c -ion '82) to a d~mensionless form, b,,, dividing by A.

resj.w :l obtain

ier . - raracteristic dimension, p n 1 B,. - vaijes of
:i~~der.,lt, velocity, curreni; density and magnetic induction

at-. -ertain characteristic point of flo-,. If the electromagnetic

forc . witten as in equat ion o 'mcticn ( 8 2a), then in

jimersionless form the corresponding terin of this equatlon can be
pres5.,nzed in the forrm

-he dynamic similarity of floiw about model and full-ccale object

(see 9 7 Chapter II) in an electroconductive fluic ihe presence
nf an external magnetic field obv'_usi' requires that odd ard

nau~have identical values of' the term

Cc taking Into account the fact that according to (

Th is t erm~ c hara-t er i ze s t he r ela t Ion o f nmag: tI -and ki n t c
ere~tsof a unit vo-lumte. The quan!tty- A1 Is, called

>e 1 's :?i ~Ke r. It goes -1 thout .ai* atI. necessary t h-t

-r P -eIn ing hydrol yna:n. c sill iml!-- i,-.r

:*ahand .e. yrolds 17AFnoers) also be respect ±veiy la. nricnl.

Takl'.1 into a ~ccunt_ th~al- .- ith the fInalccn-ut4its
n~ccc'~n~Y o Thr. -a-.. (5 ) the cur:-ent icntyiucdL

maznt Icf~el ~ r,o-!:tJucna1 to rh re.utlion



b|

it Is .. ,ssible to obtain from (95) the criterion of magneto-

hycizud.,amic interaction, which expresses the ratio of magnetic

fcrce frcrm the induced currents to the force of inertia

s -- dem. (97)

The criterion S0 is called the parameter of magnetohydrodynamic

;-i cerac-r in.

Let us bring to dimensionless form the terms of the equation

of Ohm's law (87)

P r I f , wB~I# Iko 0, -- C. %--o -E. , t J"

If Jo is the conduction current at a characteristic point, then

according to (23) JO = Ro E0 ' Hence follows

OR +1 VA, ~. ( .,, ,,n, x

Here the ratio of current induced by the magnetic field to

external electric field current is de~ermined at a. a aR0 by

the din"nsionlcss criterion

. /~, U. LI.

n V. --- (98)

Here W is the drift velocity (52), determined earlier in § 2.

The quantity

-, (99)

characterizing the ratio of electromagnetic force from current

imposed from without to the force of inertia is the criterion

of electrohydrodynamic interaction.

Let us bring to dimensionless form the equation of magnetic

induction (84)
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+ +

On the left side of (100) is an already known dimenslonless

factor - the Strouhal number (SH = Z/U0 t ). In the right side

appears a new dimensionless factor, the reciprocal of which is

called the magnetic Reynoids number

R L uNI.- ,iJU ,
if€- --- - ,- (101)

This criterion characterizes the ratio of the magnetic field from

induned currents to a superimposed external magreti ?teld'.

Sometimes the ratio of magnetic Reynolds number to r.c usual

Reynolds number is used, i.e., Prandtl's magnetic numier

Rf!r'V (102)
P R. I 4.IIR

J

which is the ratio of ordinary viscosity to magnetic %Iscolty.

if w,! multiply the criterion of magnetodydrodyiamic interacuon

(97) by the Reynolds number, we will obtain the ratio of rrgnetic

'The magnetic field from the induced currents is determined

from the known relation

4rp 4r

;herc Po' I is external field intensity. We hence Lv
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force i'rcm a field induced by magnetic current to viscosity force

u.,/-R- -- -

Thc square root of this quantity is called HRrtman's number

ft.1 (103)

:ere - %V is the coefficient of dynamic viscosity. In the

determination of Hartman's number, the characteristic I is the

transverse dimension of the rhannel. Hartman's number is the basic

si ,ilar ty criterion in such magnetohydrodynamic problems in

which a ;Lgnificant role belongs to viscosity forces.

Of the enumerated supplementary criteria of hydromagnetics

only three are mutually independent (for example, the r,

Ha and RH numbers). The remaining parameters S, 3, Pr m ) can be

c:btained from the given relationships as derivatives.

For some values of the separate similarity criteria the

system of equations of hydromagnetics permits simplifications.

So, when Ru,1 I it is possible to disregard magnetic fields from

the induced currents and to consider that flow occurs only under

the action of an external magnetic field. We deal with this

type of flows in magnetic hydrodynamic channels (motion in the

presence of electromagnetic fields of technical plasma or liquid
metal in pipes, channels of magnetic pumps and magnetic gas-

dynamic generators of electric current) and in the case of flows

about a body, when the electrical conductivity of the medium is

not very great.

When R tl the magnetic field turns out to be "frozen"

into the substance and moves together with it; this area of magnetic

gas dynamics is used in astrophysics, where very extended areas

of greatly rarefied interstellar gas of sufficient conductivity

or highly conducting stellar substance heated to millions of

degrees (for example solar prominences) are dealt with.
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During laboratory tests on liquid metals usually R = 0.ii-D.1,

HH

and Hartman's number can reach the order of several hundred; in
Oxper, i.-,ents_ on technical plasma (temperature on the order of 104°K)

a. valae of R H= 1 is possible, whereas the number ncan be both

less than and more than unity.

§ . Flow of Viscous Electroconductive
Fluid Along a Plane Channel in a
TransversE vlagnetic Field

Let us examine the so-called "Hartman' flow - a laminar flov..

of incompressible electroconductive fluid along a plane channel of
bcnstant cross section (Fig. 13.8) in the presence of a permanent

external transverse magnetic field with magnetic induction

2,=

Fig. 13.8. Plane viscous fluid flow
in a transverse magnetic field.

Along the length cf the channel (section of stabilized flow)

cnly pressure changes (3p/9x # 0); the remaining parameters remain

constant ,. dX O). With sufficiently large relative channel

width (a>b) the flow can be considered plane-parallel, during ',hLch

the velocity and the induction do not change in the direction of

tht- z-axis _,f i and the transverse velocities of componerts

are atsent (v = 0, w = 0).

1 Harthmann, Theory of the laminar flow in a homogeneous
magnctic field, Kgl. Danskc Videnskab, Ilath. -fys., ,1eidl,
15, Nc. 6, 1937.

, -I, 1 i "
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*'o;,. the equation of contin~uity of the lines of magnetic

krict~cr (43) we have

divB=O or B 0

its aresult of condition a- o we also have L=0or
7d4 = 0 dy

BY cons'. = B., i.e., magnetic inauction within the channel In

tihe irection of the y-axis does not change

From equation (63) for a magnetostatic field, there follows

rot E = 5. Hence, under the assumption that (-=d-0, we obtain

F,. const, Ex=const. From the condition of the absence of

current in direction x, it is necessary to take Ex 0. Prom the

equaticn dlv j = 0 we have jv = const. Assuming the walls y =I

to be nonconductive, we have J. a 0. Then from Ohm's law it

follows that E.,=TL,/.
I RY

According to the Ohm's law the current density in projection

onto the z-axis is equal to

. + t(1014)

If the side walls z = ±t are also insulators, then the total

current In the direction of the z-axis

I*jidy=oR[4,2b+f- tidyI0.

Since the value

a dy~ an P

Is the average flow velocity, the electric field intensity
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:bstituting (105) into (104), we arrive at the final

xpr.ion for the current density

1,0 _ (. _~,). (106)

nt ,, see, despite the fact that the total current strength

is equal to zero, current in the direction of the z-axis flows,

wr.ere.ron in layers at low velocity (u <u cp) the current density

is negatlve, and in layers of high speed (u > u CP) it is positive

The e]ectromagnetic force - the last term on the right side

of equation (82) - in this case is

A:,( - (107)

From (137) it follows that in the middle part of t. cross section
of the channel the electromagnetic force is negati.c <brakes the

flow) and near the walls is positive (accelerates the flow).

.ntie L = 0 the total electromagnetic force applied to the

entire flow is also equal to zero. In connection with the account
given, the equation of motion (82) along the x-axis is writtcon

o=--P + "-j J'D nl )

ienc-, on the basis of (106) we have

A ='O - PR1= O'u I (1C

Frcm the equation of motion (82a) for the y-axis we have

dj, 9 (P -

.hence it follows that the quantity ap/ x does not depend on y.

The left jide of equation (108a) lepends only on x and right

only on y, and tnerefore A should be constant value (A - const).

(
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.. Aftr reduction tc a dimensionless form we have

Ab'" d'n - Ha'u. (1C 9 )

Here Ha-- -_ - the Hartman numbe", n - dimensionless

coefficient, a= :.2, dimensionless values of velocity and

distance from the axis of the channel.

The integral of this heterogeneous linear equation with

constant coefficients is

"i C, di U Ha) + C, sh (y Ha) - -w.

From the boundary conditions U 0 when y ±1 we determine the

integration constants

Thus, the rate of flow of fluid in the channel

From a determination of the average velocity (for half of a

channel)

there follows

iady=I.
9

Substituting value U from (110) into this integral, we have

or " - HaI= , "a ' Hal O Ha-fi HaI

Substituting this result into (110), we arrive at the final

expression for the flow velocity
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When Ht%-,O we have

,.e., the maximum velocity profile in the channel for a not

electrically conductive liquid, as one would expect, is Poiseuille's

profile (see Chapter II). The maximum value of velocity on the

axis of the channel (when a 0), according to (111), is equal

to

Ha o,'h Ha - 1)

The veloc'ty profile in the cross section of the channel aL

different values of Ha numbers, calculated by means of (111), are

shown on Fig. 13.9. The intensification of the mu'.,e2.c field

leads to the smoothing (flattening) of the velocity .rofile.

When Ha = we have u = = 1. As is evident on Fit'. 13.9, at

large values of the Hartman number, the flow consists of a nucleus

of constant velocity and comparatively thin boundary layer.

The smoothing velocity profile

with an increase in the Hartman

number leads to an increase in the
Avelucity gradient at the wall,

which produces an increase in the

force of friction.

The velocity gradient

according to (ill)

At. __ Ig 
tcp Hal Ph IS Hal

Fig. 13.9. Velocity
profile at different Hence, according to Newton's
values of the formula we find the frictional
Hartman number, stress at the wall (when y b,

i.e., Y = 1) ,

- -- ,(i I9vim



thl\ Ute S Hal slt Ha

or in a dimensionless form

. 2 Hal i Ha- ,; " H a , 0 1 H a - -sh H i * ( 1 1 2 )

Here R---u,,bi is the Reynolds number. When Ha-oc* we have el-6c'

when Ha - 0, from (112) we obtain the well-known Poiseuille

equation

tj" . (ll2a)

Having divided term by term (112) into (112a), let us find the

ratio of the coefficients of friction in the presence and absence

of the magnetic field

S/ III HAh (113)
a -a 7-tw&•

At large values of the Hartman number (Ha > 3) th HaaI. and

therefore in the case of a strong magnetic field, formula (113)

takes the following form:

i, -" H& (113a)

Functions (lla) and (113) are shown graphically on Fig. 13.10.

The experiments of Hartman, Lazarus and Margetroyt' confirm the

validity of the laws found above governing the Hartman flow.

-4 Fig. 13.10. Dependence of theA 4, maximum speed and coefficient of
friction on the Hartman number.

~i

'Harris, L. S., Magr, etohydrodynamic channel flows. Publishing
House of Foreign Literature,. M., 1963,
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The pressure change along the length of the channel can bc

found from equality (108), under condition that on the wall

u )u :

According to (111)

d'U 11p 011l 1 4 Ha ch U Ha)

At tihe -all \.;hen y = I we have

'11. !cp He'

6P p PRa- P10 Ha'

or in a dimensionless form when x - x/b

p 2b ap 2 Ha'th H&
0 pit' iO W H& ha (- 1 H)

Frrm a comparison of (114) with expression (112) we have

(1I1a)

This result can also be obtained on the basis of the fact noted

above that in thE Hartman flow the total electromagnetic force

'as equal to zero, in consequence of which the pressure change is

balanced by the force of friction on the wall

2,0 2 dX, T e,~zm (,
.o x ,Y. s -9

in the presence of the total electromagnetic force condition

i z = 0 is not fulfilled, and equality (l14a) is incorrect.

,,et us discuss now the electromagnetic features of the 11artran

I'l1w. From the Maxwell law (6Ca) and formula (106) we obtain i:..

the projection onto the z-axis

[ ,' i ii I II . Ii



nc,- a c c ordr to condition -- 0,

9 4 4 ,, o ," .b

or in. accordance with (10).)

-- -- -). --

Henc , talking into account (1l), we have

r Ha chHa .CHa) LCRif 'i-":11-Ri';T- -TR" L11 dMR- Sh a +

Considering the boundary conditions Bx - 0 when y 1 and y - 0

(i- the absence of the total current the induced magnetic field

outside the channel is absent), we find that C w 0 is constant.

As a rult wc obtain

0 , R" l s h , ( H M ) - .9 s i H a 1 5

Thus, in the Hartian flow there appears the magnetic induction in

the direction of thc x-axis, the relative value of which is

proportional to the value oi the magnetic Reynolds number.

In connection with the presence of magnetic induction B

the pressure on the cross section of the channel is variable.

The pressure change in a transverse direction can be determined

from the equation of motion (82) in the direction of the y-axis.

Under conditions of this problem (v - 0, w - 0, and also

for all values except pressure) the equation of motion

in the projection onto the y-axis takes the following form
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0-- - A

0ff~~ a 0 1

in a ji,:,j fsiOrless form for p=2p/ptip,, Pmylb and S,, determ.n...

M----8 y(o -4 (i

Tr.us, the pressure gradient: in a transverse direction is

prorortJcnal to the value of the criterion of magnetic gas-

dynamic interaction S0.

Thf calculations carried out according to formui--s (116),

'115) and (ill) show that the transverse pressure gr: ent is

2orn!derdtb.y less than the longitudinal OP<6'.

Fig.ue 13.11 shows curves of the distrbtion of dimnsonles

quantities of the electric current density J*, magnetic irducti.r

(B*) and pressure gradient p* with respect to the height of the(x ,

Thannel, calculated, respectively, according to formulas (106),

(111), (115) and (116), when Ha * 5

S, * V Ha -Y %-11 Ha

Here .

(
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FiC. 13.11. Curves of the density
distributions of current, magnetic
inlductionl and pressure gradient in
the cross section of the channel
vinen Ha 5.



( ~ anetchydrd>:nmlcPumps,

-,e electroma~rnet. force w,.hich is caused by electric and

'c fields applied to a of a conducting liquid car. te

dalong the flow.. or against the flow. In the first case

,:e -ctrcr-.agnetic force can be utilized as a means for a rre-ur-

-4ncrEsae (electromagnetic pump ) cr as means for an increase in -.1.,
rate cf f.:(Jet enolne). in the second case the elect romagnet'lc

fo-rce sosdown the flow (electromagnetic choke).'

-t*he electric current, being induced by a magnetlc 1r.&if

a fldfo:is directed Into an external circuit, then a magneto-

r, iva ..Ic( current generator (MHD gerierator) will tre- obtained.

The dependence of the induced potential dlffoa,,c-s on the

-vera,-e flow,. velocity,, is utilized for tne measuremer' --f thefld

flwrate (mr.agnetohydrodynamic flow mreter).

All1 these methods of using electro-VT effects can Lo xaC-'

-. e cxamp le of a flow of an electra-conductive fluid in a filat

chan.el:hich is placed into an electromagnetic field; nrYc cazo

of -ich a flow is analyzed in the foregolng paragraph (Hartmcn -

in a H-artman flwit was assumed that the wall:; of the channel

are L;utrsand t1he total electric current which appeas In

the ,,;'rec:.-on perpendicilar both to th,-e velocity vector and to thc-

vector cf induct ion of' the superimpo-sed magnetic field is equal to

zser-, as a result of *;lhtotal electromagnetic force is al.so

tequa' tco zerc..

'Sher',lI f D. A. The theory of electromagnet ~c meas-uorencr.t1 of'
flwrate. -hr," > 1965.



if t at'tral ,,,alIs of t.e channe! (z = +a) are electrode.,
-.... ;:kh an extcrnal electric circuit, then the elect ror rot Ive

f.ro maintains t., i.-ental , i ff rence on these electrodes.

,'/!thin te ciarwe (1i- 13.12) the current flows from

electrode i to electrocde 2, in the external circuit - in the

cpposite directicn. 'he average current density in the chnnel

according tL (1,64)

h/ p_, , I /, d dw= - . -'(117)

and thc local current density

- 17a)

For Hartman flow (J = 0) from a comparison of (104) andz cp

(117) we obtain the already known equality (105)

C

If the eiectrodes are short-circuited (external resistance

R = then the electric current strength is equal to zero

(E 0  and the current density

Ihcp-

In this case according to (107) an inhibiting electromagnetic

force is applied to the flow

F.= -
=

In general the expression (117) is convenient to present in

the following form:

958

A



I5

Fig. 13.12. Diagram of a
channel with lateral
V~alI-electrodes.

1wherce thoe ,'ubtrahend W=cE/B3. i 1S the drift velccity..

In orrder that 'The channel w,*jld work under the conditionr: Cf

ar, AND kgenerator Q(j > 0) , it is necessai'y that th 'ir fo.
vel2ocity would be greater than the drift velocity; the case of

operation of the channel under the conditions of a p, or

accelerator (j z<0) tChe average velocity in the chart -1 1.~ le-,I

thant:e dri ft velocity. The sign of current density :2nne

( the direction of electromagnetic force. On the basic c!f (107) *

conclude that in an MH',D generator the electromagnetic fo rce I

directed against the flow (F < 0) , and in a pump and acceli-rator' -
x

along th(- flow (F x> C); the pressure Cradlent along the !enrrt!h

of the channel (not allowing for friction'] in an Mi-iD generator

should he negative ()plax<O, and in a pump or accelerator - positivE,

Inl all apparatuses examined in this paragraph which u~se t).e

raotion of a noncomnpressible fluid along a flat channel of Constant

section the equation Of miotion (108) is usefful; %v-th th(e C)" o

(l0 f) it can be given the following form-

A

A ddc (s

'The indicated inequalities for op'a). are valid Intl. !-'Ise _f

a liquid mjetal; In a ras they cannot Le ful1filled.
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of ' ' o%.t-i:. in tse pre V% ,,u4 wi arrraph In connect n

• . : .: t ,- x> v ty in the ,t'o, t- ct 1  n Uf

ca. a u , e: I ve valu-c ,f t he coef f I l nt of rIC'. in

e.. wu 1 t i,, t,-. (lil) al', (11 ,, f e ieqi v .11 50 -K11) 'es;p'cbv- ve ' .

SbtIt . inc in (iI 9) 1LW valuv A, found in § 6 for vli-rrtman

flow, '., coneto ti,- cxp.'eeion i'cr t.e) pressure gradient "n the

@ = .42c b'c Hal"u]a

y se cr5, In the case of an electremagnetic pump (Op/x>O) the

Inteni t of the electric field should be suffitently great. in

cr1'. that the right sidr (120) would turn cut to be psltive.

in an I.IHD generator (px<O) tl,e electric f-eld Intensit'; stroll

le such that the sian of the right side (120) would be negative.

::r constant electric and magrnetlc fields in all electro-.EID

apparatuses in witc, t e fluid f'lo.;s along a ehanne_,, of constant

section the pressure gradient along the length of the channel

does not change, therefo-'e, a drop in. pressure In a channel w~ti

length x

Ap =x01, x E84 -p Ha' (121)
p -- H -7" o' -1 RA- )

Utilizlno expression:: (-)Y' and (9 ' , we obtain frc,m (121) the

dlmensionles.s marnitude of drop In pressure

I a HaS, (122)b n2$(-  Ha--,IiHa

96C
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"ere

t1, ' ttPC - Ha

in a r cr accelerator ((i < 1) the subtrahend in parenthesis

'e tan the minuend, while in ar. rHD generator ( > 1) - vice

vorSa.

For lartman fi'.;: (.n = 1) taking into account (112) we have

U4p .r

The Entry cf the Flow of
;n F lectro-Conductive Fluid Into
a Magnetic Pield and Dlicharge
from It

Near the electrode tips the electric field Is nc: mifcr-n, In

c....rction with vhich the electric current ,ensty ii hese place;

changed in value and direction.

Let us examine the flow of an electro-conductive flui.: Ir ti..

zone cf entry into a section of channel with a magnetic fleld

(Fig. 13.13). Let us designate the heiihjit of the channel (elec-

trode separation) 2a, and the width of the channel 2h. We .ill

cons! !-r the channel flow two-dimensional, which Is admissible

under the condition b >> a. The bek-inning of the electrndez c

located In plane x = 0; with x < 0 the walls of the channel ar-

not electrically conductive.

'tne magnetlc field in the area x < 0 is ab::ent (P = ,), 0) -,i

I, area x > 0 it i- ccnstant and is oriented along axis .; 1- a

nw -ative darection (;-x = 0, B, - 1y <  G, B, - 0',, i.e., at right

angles to the plane of the drawing in FI,_. 13.13.

(I
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IV

r!ef f- u o

1 cf fre no I d S umite

1ea th-e telt:ctrc-de t !j:. the lines of electric current are

.ieformc-i and cau.c.- ti-,,- ,!J,tcrticn~ of the velocity field

Additional velocitic: (-J -iiurrc? uiw along the axc', x and z

vie consider lo-.*, relat Iv-2 to tI,. r.1t la 1 velccity W, I~e - u' << *

WI<< W.

This problemi can L~ c. >tr.~ imethod of succescive

approximat ions . in the f o.~' .~teeq-iat Icr of.- cA

rn t ion ()alonr rxE x a-,.I z t' ~ fcollowing for-r:

ix 12i L ,

'utton 3. W., Uu: LscAI 1. '1 erf e c ts inI nirvi s Id f 1c-.
a magnet ohydrodynarni .- cLanncl. Jcurral of Fluid Mech, ,v. 11, p.

1,~~ 1231

-- 1 - -6_ _



.he po:r,,ents of electric current density in the first apirox'mra-

tion (with W * const) according to (87) are determined as

Here H =0 aith x < 0, B - const < 0 with x > 0.

If on section x > 0 at a sufficient distance from cross
oction x = 0 the walls (z + 4a) are electrically insulated, then

the transverse component of current at the walls will be equal to

zero

From here we have

OdY I
SE,.=,V OS WB>O

or It', the case B < 0

di

Consequently positive charges are accumulated at the lower

wall (:f the channel, and negative are accumulated on the upper
wall. If the isolated walls are replaced by electrodes, then the
lower electrode will be positive, and the upper - negative. After

connecting the electrodes by an external circuit, we will obtain

in it a, electric current which goes from the positive electrode

to the negative.

In the case of a stationary two-dimensional electric field

according to (25) we have

29 12
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at* xt

1-i'' '-- i-nc t a

)V Ew, (V

+ 0. .

2< -L V

Tic- value o~f potecnti al o;r. ai; e cotv-"de ( ~hhc
conductivity of the latter is vlvtuaL-, Ix onrstant.

In thie zorte of nu1te ti x< 0-) the boCundary conditionis

are w.,ritten) in the fI'rrm

The sc-lot -'on of ie' 7a1P.-cut~ ) ,which satisfIes

t,:)nda,,, c~nit 1,r a,,,,.I.Ipresrnted In the frm

V 2'



far

X, Arsin c C03

[~ 1f~'~t ceosu 1 iA4

plijcc sicii in (13?) corresponis to values ~T > n -r/2, minu!;

c*val-aec r~/2 >n > 0.

1:t pc ;sit le tc, ra uonvinced of the. validit':. -,'f -.-At anc.r

~137 ~: cu~t~uti~ t Int,- the Laplace equTation (128) 'ihn

viran i aen (.133) Is rcdcced to the form

Lct us replace, in exprc-s~ionc (l?2) for t!he '-.'ntc onf'
-- ri.n~t dens! ty t he ccmrpnent s (,f e lect rl fi1 le I e

t!Ye derivatives of electric potential (JVAx, dV\.O,), :ciF; c?

of :xure~ssions (131) anl- (133):

*.;'ithj t*,. selected signs the transverse comrponjent of curren'

con i: 'jca,,iFed tvti electri-cal field, a,- it wa so.'.,1

.11reoc t,-d frcnm the buottom to the top (AV,oz UJ. ThIowt'nal

"cnoi.rtof current dens-lty in th,-e upper part c~the :*no4

channel:- i p>Ive, and I . t he 2lower pa rt flefattve ; on t he- axi s of the

The trans-jerse component of current Uenz~lty jwithin. tht'
ohanrel on the scct l(n with electrode3 Ir, zone x ~'(where <)

directed rcmthne reL-,atlyE- electrodfe to the me-,S 'p! :r; crK

jn:cc here the cu.'cltc-en :1r'1~:c the ma, n-tln 1
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rI- u. rewrite equation (136) in the form
T 4

-- cm6--T (136a)

Let us introduce the designatlons

Ta ir: into account that from the continuity conditi-:n fcllos

',-41

from equation (136a) we have

O.138)

With x < 0 B - 0, tnerefore Pcp on section - < x < 0 alcng thc
length does not change. Let us calculate ap dOx on the 8ect,!.2n ,.
distribution of the electrodes (x > 0).

Utilizing relationships (135) and (132), we find the averaa,.e
cross zectional value of the component of current density j

z CP

d-q +

It is otvious that integral dj is equal to the difference in

the values of function x' in points Tr and 0, i.e.,

~N

967 -
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IS

. -. .ruvera-e ,ectlonal value of the component ,f

,a'.c,;t jI on the soction of d1stritution of electrodes does-p

, Utilln relationshIp (139), from equation (13)

'1.. -s t turns out that the gradient of mean pressure Op~p',x

aIon,' tl-e hength of' the channel (with x > 0) is a constant value.

After de-ignating the mean value of static pressure in oectlon

x a C tfhrourh pO, we finally have with x > 0

Utilizing an electric field of first approximation, it is

poS3ible to determine the velocity field of first approximation,

for which one ought to turn to the equations of motion (124).'

We examined the problem concerning the flow of a fluid in a

section located directly before the inlet to a channel with a

magnetic field.

The problem of the flow discharge of fluid from a magnetic

field Is solved analogously; however, in this case when using the

sarn. equations one should change tc the opposite sign of variatle

'See footnote on; page 962.
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n. Tre Equations of i'agnetic
5a>namics for a Unit Stream

Ti e concept "unit stream" in magnetic hydrogasdynamics does

not have ouch a universal application as in usual pas dynamics,

.ince only In a few -ases is it possible to consider as constant

in the cross .3ection of the stream the values and directions of

the vectors of electrical strength and magnetic induction, an

together wi.th them the vectors of current density and electro-

magnetic force.

Let us give two examples of the magnetogasdynamic flows In which

the idea of a unit stream is strictly valid:

1. A channel of constant section z = +a, formed by two

parallel walls along which in direction x a conducting gas meves;

th.e wailc -. tho channel are opposite electrodes of infinite

(,nductivity, an,. viscosity and thermal conductivity are not

considered.

If on the walls a potential difference is supported, '.en

an electric current Jz appears which induces "its own" magnetic

field, the lines of intensity of which according to the thumb rule

are directed at right angles to the flow plane (along axio y).

Flow in such a channel is equivalent to the flow of a unit

stream which is found in constant lattice-type electromagnetic

fields W(u, 0, 0), E(O, 0, E z), B(Q, By, 0), f(f 0, 0).

2. The uniform flow of the gas before and behind a direct

magnetogasdynamic wave (with lines of magnetic induction perpendicu-

lar to the direction of flow). This case is examined in detail in

10.

Let us write the equations of magnetic gas dynamics for a

unit stream of gas, disregarding the viscosity and the thermal

970



c r_:.-iuctivity of the fluid. We will consider the motion of' the

fiud steady-state, magnetic field - stationary, and the vector

[E Y B], which determines the work of electromagnetic force (see

(j4) , - directed parallel to the velocity vector W. In this case

tI.- vector flux [E x B] is directed along the normal to the crozs

?,e .ion of the stream.

As is known from the field theory,

div JE X BI lim IE X BI. d.

where Av - the volume being included by the closed surface S,

tnrough which passes the vector flux [E - B]n, n - external standard

to surface S. in our case, with a low extent of volume 6v, we have

IX 0 dS I -lEX aB

Here F - the cross-sectional area of the stream tube, 'ndex Z

indicates that the projection of vector [E x B] is tak:en or t'e

fiow line. The volume of the secticn of the stream tube wthj

length dl Is equal to dv = FdZ, therefore

I 1 4,lvl+ X BI ---- ? ILEX Bil).

Substituting this expression into the equation of energy ()4) and

taking into account that W = dZ/dt, we obtain

dli .. d

5'nce the per-second weight rate of the flul.d

,gWl: == Oc = Couist

along the stream tube does not chanFe, then after Inte-ra+cn '.,.

have

971



WgW7"4 -" [E X B, r- coist.

?ror. i,ere .,e obtain the effective value of total enthalpy

,,.4 + - = oust

or

Thus the effective value of total enthalpy i O, which

includes electromagnetic energy, remains constant along the stream

tube If the flow of electromagnetic energy is directed along the

velocity vector.

In the case E = 0 or with parallelism of the vectors of

strengths of electric and magnetic fields (E II H) equation (lL3)
expresses the condition of constancy of total enthalpy for an

energy isolated stream i0 = const. With the help of equations

(55) and (65) it is possible to eliminate vector E from the equation

of energy. In fact,

£--- = (,,,rot B -1W < Bp).

from which

|E- 8 , 1 , a] - it Wr. Bi,<B81)."

In a pr:Jection on the directJon of the flow line we obtain

1E X . v. = I- ,,IIT B X B1. "I ,,ll [ I )),

Here it is assumed that the x-axis is directed alonv the 4
stream (v w = 0). Substituting the latter expression in (113),

97I972



..e sotain the equation of energy for a stream under the coroit-.-

Ej W. 81W

In vieiw. of the fact that in the cross section of the unit s tre arr

all the parameters are accepted as constant (' = a) expression

(14s4) can be zimplified.

In fact, in this case (v =w =Bx =z EX E =0, i.e.,

U, B B E =E )the components of the rotor of magnetic
Y z

induct ion

0, di

and the component of the vector product

dB I dB'
IftBX 8 (rot, D) 8,(ot, B 1, B d' (1)

Substituting this c-xpression into (1414), we come to the f '-o 1 :1n

form of the equatlon ofl energy for a stream which ic located i1

perpendicular (lattice-type) electromagnetic fields

'181 Av,,D 48
__ __* const. (146)

4-Aqp4r1tgprdX

Tf the gas possesses very high conductivit>" (OR f

the last term in equation (1146) can be disregarded, and thenit,

conditions of the retention of effective total enthalpy for a

stream in lattice-type fields will be written as*

973



The equation of magnetic induction (84) as applied to the

unit stream is also substantially simplified.

For transverse electromagnetic fields (Bx = B z = Ex = Ey

V = W .O W - u, B - By, E a Ez, J = J.) in the case in
question in equation (55) only one component of current density is

retained

from the Maxwell equation (68a) for a stationary field (-0 it

follows that

E =LU, =cond.

and from the Maxwell equation (65), as it was already shown, we

have

From here we obtain the equation of induction for a stream in

transverse lattice-type fields

tin, + I co nst, ( 147 )

where

coust = - E,

If the conductivity of the gas is very great (c, -+ ®), then the

equation of magnetic induction for a unit stream which is located

in a transverse magnetic field acquires the very simple form

ul, =ConsL (147a)
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In the case of an inviscid noncompressible fluid (i 0,

= const) it is possible instead of (90) to obtain another form

of the equation of energy for a unit stream. We utilize for this

purpone the equation of motion (83), which in projection on'the

.ilrection of the stream (W = u, v = w = 0) for a transverse

agnetic field (B By$ B - B 0) takes the following form:

Ila a I B "8, A-pit oxx (148)

:ntegrating (148), we obtain

I " = Ost (149)

or

r,.B = = C .,. o,,st. (14 9 a )

Equation (149) is the Bernoulli equation for a s.:c"am of an

( incompresSible electro-conductive fluid which is locatecd in a

transverse magnetic field. The third term of this equation is

called magnetic preseure (pr M B2/8B) " During sunmation of r,

with tctal pressure pO an effective total pressure POc i obtained

which retains in this case a constant value along the length or

the stream.

During the action of a longitudinal magnetic field (B = B,

B = B = 0) on the stream the integration of equation (82a) leads

to a Bernoulli equation or the usual (hydraulic) form

p-p - e =p,,Cons,

since in this case
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Let us compose an equation of momentum for a stream which Is

located in electromagnetic fields. In Chapter I the general form
of the equation of momentum of a unit stream was obtained which

was valid for all cases of motion:
A

The account of the effect of the magnetic field lies in the fact

that the projection of the resultant of all forces Px we divide
into two parts:

P. - P- + P.m

where Pxp - the projection of the resultant of all hydrodynamic

forces ; Pxm - the projection of the electromagnetic volume of the
force applied in the section of stream 1-2.

The projection of the electromagnetic force applied to a unit

of volume according to (72),

Projection on tne xmaxis of the force which acts on volume

eleme-.t comprises

dP,.4 =1dz.

Here F is the cross-sectional area of the stream, dx is the length

of its elementary section (in the direction of the vector of

velocity u).

The projection of the electromagnetic force which act.3 . he.

section of stream 1-2,

P.u j fotXJtBd xr.,
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In the case of a transverse magnetic field thi3 integral c:,

,,e converted with the help of (1L5)

The electromagnetic force applied to the final section of the

elementary -'t:ream of constant secticn for a transverse magnetic

field is eaual to

1*=

(50a

The f. rce cf hydrodynamic presoure in this case comprioes

Thus the equaticn of momentum for an elementary .trea., of

2. nztant section for a transverse magnetic field take. t!.e

i"r.llow!ng form:

P. : :--ere according to the equation of continuity (G/gE pup F

ccN:t ) we have

i ' - ;: "7 q? : ;' '< :" tl= ':; - '';I (151)

',;sertlng into equation (151) the effective pressure equal

r u :u cf the h.,,,iyamic and magnetic preszures

P, P(152)

we reduce the equation of momentum for a unit stream of conztano

Zec' ion for a transverse iagnetic field to the followlnr Zinp tc

form:
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p i 'Ia; 4 - , (153)-

Sometimes it is convenient to present the equation of momentum

for a stream of constant section for a transverse magnetic field

in the following form:

pill' " = co,,it. ( 154 )

The equation of momentum (154) unlike the Bernoulli equation

(149) is useful not only for noncompressible flui.ds, but also for

gases, i.e., for media of variable density.

5 10. Magnetogasdynamic Shock
Waves and Weak Disturbances

If in a space filled with a gas of infinite condiictlilty, a
wave of magnetic induction ab appears (Fig. 13.15), then, as it
will be shown further, the speed of its propagation is higher in

those places where the value of magnetic induction B is greater.

I Fig. 13.15. The forma-T 4 tion of a jump of con-
densation and smooth
rarefaction wave
(dotted line) in the
field of magnetic

J. induction.

Thus zone a at the "peak" of the wave is displaced more

rapidly than zone b, located at the "foot" of the wave. This

leads to the fact that in moving to the side of lesser field

strength (to the right in Fig. 13.15), where this wave is propa-

gated as a wave of condensation, it in the course of time acquires

an ever steeper form, until it is converted into a Jump of magnetic

induction.
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in the case of propagation to the side of greater field
streii:th (to the left in Fig. 13.15) the wave ab is the wave of
"rare fact ion of magnetic field," whereupon as before the speed of'

iAt- advanice in zone a l greater than in zone b, which is why tle

rarefaction wave is gradually smoothed and weakened.

Sw.11 investizate the features of the condensation jump -

th, J.,oc'. wave - of a magnetic field. In view of the complexity
of tie mapnetogasdynamic wave theory we will be restricted to the r

n'mplext example - a normal magnetogasdynamic shock wave.

Let tt e front of the jump of magnetic induction B be arranged

at rlrt't angles to the direction of gas flow (Fig. 13.16).

Fig. 13.16. Magnetoner-
> 0 dynamic normal shocdr

wave.

Let us impart to the undisturbed flow of gas the speed uH,

equal in majnitude to the velocity of propawation of jump t bit

opposite in sign: 3

In t- t b

In tIs case tne sl,-1ck front will be fixed, and the flow cf

tic undisturbed gas wili accumulate on the plane of the front at

a rate of u

Let (Fig. 13.16) the magnetic displacement vector be perpen-

dicular to the direc-ion of flow B = (0, By, 0), i.e., the wave

front is a tangential rupturL of the flow of magnetic induction. -

We w:ii also ccnsider that before and after the jump the values of
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minet~c induction are constant (BH - const, B1 - const). Since
the conductivi.ty of the medium is infinite, then to the stream of
the fluid the depen'dence (1478) found in § 8 is used:

"lBD=NU18A=COng (155)

In other words, an Intermittent increase in magnetic induction
(B1  b) requires an intermittent decrease in the velocity of

tiow Cu1 < UH).

In this case according to the equation of continuity a jump
of gas density ( > will also occur

'-* (156)
fit le

and in accordance with the equation of momentum (151) the ,ump of

effective pressure

P, - i't. ---," " -- UA (157)

Thus according to (155) and (156) induction in the jump should

increase.

Thus the jump of magnetic induction in a gas flow, the secant
of induction, will be necessarily combined witn the shock wave,
i.e., we are dealing with a magnetogasdynamic shock wave.

For the closing of the system of equations (155)-(157) let

us add the condition of retention of effective total enthalpy
(146a), which according to (155) and (156) we write in the form

U2 -I- A InL. Mist, (158)

and the equation of state

pit
PD, ~ ', i

(159)
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;lvinjz together the syatem of five equations (155)-(159), 4t

L p.2ilble based on the assigned values of the velocity of propa-

rati-.n of a normal magnetogasdynamie wave (w. -u1) and the

war uLle3 c-f gas state and the magnetic field before the wave front

' ) to find the values of the relative gas velocity

*U]., and the parameters of the gas and field (i1, pI, T1 1 13)
-,;rd the wave frcnt

If the parameters of state of the undisturbed gas and the

prosure iner.ment in the Jump are known, then it is not difficult

t- ie',errmine the velccity of propagation of a magnetogasdynamric
,,,a we.

Fro:i; -,cuationr (157) and (156) we obtain

P .--)., 0, ,h (no, - Pit) , (160)
t'A

-'rom ".:dih it follow thet the velocity of propagat- c-f shock

;::afretopadynamic wave in a quILscent ga ('.N) or the *.,Iocity of

flow equal to it in magnitude, which stops the counter ",a,' (u)

cc rprl se s

F pit Pl

Frori (160a) it also follows that

.m,,,-= e..T "-!.( 161 )
P. -PI

Formulas (160ka) and (161) differ from the correponding fnr mula-
(r and (10) of Chapter TI1 for a usual shock wave only by thc.-

fact that in them the presoure (p) of the gas ic; replaced ty
effective pressure (p C).

-" C-.
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Let us present on the basis of (83) the effective pressure

in the form of the sum of the hydrodynamic and magnetic pressures

P'/1'

Then formulas (160a) and (161) takc the form

P*• P, -- 8, ,. . - l!g ,,
4 (..1. 62)Pg Pit Pgg '1,15(P " P,) !11 (I62)

811111 = i *: (163)

Magnetic induction behind the wave front is greater than in front

of it (B1 > BH), therefore the magnetogasdynamic wave (162) Is
propagated more rapidly than the usual compression wave of the same

intensity.

From the equations of magnetic induction (155) and continuity

(156) we have

-- -- (164)

Substituting this relation in (162), we come to the following

expression for the velocity of a magnetogasdynamic shock wave:

I # r 'g l *Pg P3  BIg 1P1  P3 1181 P +II l..
; P.. . . ..- .+ ( 1 6 5 )

In the extreme case of a very removable discontinuity

(pi zH' p 1  pfs, B1 z BH) we obtain the speed of its propagation
in the direction perpendicular to the lines of iiagnetic field

strength:

S(166)
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ci T bk. (171)

It I, possible to show that along the lines of force of a

magnetic field the weak magnetogasdynamic waves are propagated

either at the speed of sound a H or with an Alfven speed bH

<I
From magnetogasdynamics It is known that in a general case

the velocities of propagation of weak magnetogasdynamic waves,

which are subdivided into rapid (c) and slow (c'), and also the

velocity of propagation of Alfven wave (b) depend on angle *
between the selected direction and the magnetic Induction vector B

b = hit cos I_

]C;+ +
c--• 1(172)

e/ , r + I -- I r l p - r- --

2 2

Here r = aH/b .

In a particular case, when 6=0 (wave propagation along lines

of force), we have

5=hit. i- c= , c' jc' =b (with rl
b=b.. e c= =b, c'=c' ==o, (with r<l)

In another specia. case 0=,/2 (wave prQpagation In the

direction of a ncrmal to the lines of force) we have

b = 0 =rj, btecL=o (with Z1

Unlike the weak (acoustic) wav,.s which are usual In gas

dynamics, which are isotropic (they are propagated in all directions

at the same velocity), magnetogasdynamic weak waves are anisotropic

and, furthermore, are subdivided into rapid and slow.
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Let us pass to the search for the basic relationships betw-een

th parameters of the gas and the field in a magnetogasdynamic

6!,ock wave.

From (155), (156), (168), and (169) we have

,,_-._ 8, _ b ! A(173)

PH ut HH i31 Ali

If we designate the pressure ratio behind and before the

ohcckwave front

n=- (174)
PH"

then the ratic of temperatures according to the equation of state

can be presented in the form

TI nT.-- (175)

Utilizing known relationships C- c v  AR, c kc

expression (164) and the equation of continuity (156), we convert

the equation of energy (146a) to the form

T --o, k-I (176)
gAR' kgR 4 8

From the equation of state (159) and formula (176) we find

the value of gas pressure

A- A-I B'p=pg --- " "(177)

From (177) we obtain the value of the pressure drop in the

shock wave j

P-i 8  -- (178)
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Here we take into cci.sideration the constancy of the effective

staprnation temperature ('T (-- idem) and the equalities following

from the ematio of Inducton (l164) and th equation of continuity
(156):

-V" " ¢ = u", ( , -- .1

- , (179)

81'~ r + bi il8--B1 ~ -/~ L/Jj," p-

Sulstituting (163) and (173) into (178) and fulfilling the

elementary conversions, we obtain the basic kinematic relationship

fcr a noram! magnetogasdynamic shock wave

2k 2 -k 8I, +I) 18
111111 gR7'Oe - - -(1 0

Here the first term of the right side is the square of the critical

speed which ccrrespond to the effective stagnation temperature:

a~.=! k.i gR Tk. (181)

In this case the distinction of (180) from kinematic relationship

(15) of Chapter III for a usual shock wave amounts to the supple-
mentary term which considers the influence of magnetic field.

Adding up the pressures before aiid behind the shock wave, we

have from (177)

P) -I- = (p, +i P,) gRTk - 111- 1 (-S +h PH) j
-~~~jk- ripu, Ph ~~~

Eliminating from here with the help of (163) the product of
the velocities, we will obtain the basic dynamic relationship for

a natural magnetogasdynamic shock wave
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whi.ch Is dis~inguished from the simi~lar relationship (17) of'
iiapter III (for a simple shok wave) by the additional ("magnetic")

term in the right side.

In the particular case of' removable discontinuity (p, H

,m -1) from (182) we have

_i P + i e *r 'a+ "P
1 H2

which proves the constancy of entropy in a weak magnetogasdynamic

wave. After dividing all the terms of equation (182) by the

viaue p.O and solving it relative to value Pl/PH1 we come to the

equation of the shock magnetogasdynamic adiabatic curve

O15=(M) 0-r (183)

Here we accept the designations

In the absence of a magnetic field (q 0) equation (283)

coincides with equation (18) of Chapter III for a usual shock

adiabatic curve. In the case of a very strong shock wave (p1 -

we obtain from (183) the same extreme value of density

SPH.

as in a simple shokck wave (see expression (19) of Chapter III).

When P, P we have P1 4 PH'
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T2e decree of deviation of the manetogasdynamic sLcck

ailal atic curve frcm a ,Ilmple shock adiatatic curve, is shown in

Flg. 13.17, wicre ar. plotted the curves m(n) with the different

values cf relative margnetic pressure q for k = .67 (monatomic gas).

0 S O v . M

Fig. 13.17. 'i:c fliock adlal:atAc curves of a
magnetogasdynamic wave with the different
values of the magnetic pressure parameter
(k = 5/3).

With the help of (162) and (183) it is possible to express

the Mach number which corresponds to the velocity of propagation

of a magnetodynamic '.ave by the density ratios on Its front

M .= ,_,e + I +? @ +11,,,-P ) 4.,I( 184 )

Dependences MH(m), calculated from formula (18 4 ) with 0 = 4

(k = 1.67), are plotted in Fig. 13.18.

It remains to determine the 'Mach number in a gas flow behind

a magnetogasdynanIc wave, for which we utilize expresslns (156)

and (175)

','I UJIP11 ri MJ (185)o; l f ma

Curves M2 (m) at different values of the parameter of magnetic

pressure q are given in Fig. 13.19.
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nwq

55

0!

Fig. 13.18. The dependence of the velocity of
a magnetogasdynamic shock wave on the compres-
sion ratio of gas with different values of the
magnetic pressure parameter (k - 5/3).

.15 4'- Fig. 13.19. The dc2 dl1-
ence of the velocity
behind a magnetogas-

j dynamic shock wave or
( the compression ratio of

- the gas with different
S..values of the magnetic

pressure parameter
(k - 5/3).

s 7 2 .1 A 4

With the degeneration of the marnetogasdynamic shock wave

into a removable discontinuity (m - 1, n 1 1) the speed of its

propagation, as It was established above, proves to be greater than
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thie speed of sound; in this extreme case frcm (184) anI (I 5) we
C ,tairn

a I- n

M,,. +,29), + Mi- o

In another li.mitlng case - an Infinitely strong magnetcgas-

dynamic wave (m B, n -) - we have from (184), (185), and (183)

b-!

MI,. -00o. Min --

§ 11. The Condition of Inversion
of Effect During Gas Flow in an
Electromagnetic Field

Let us examine a sLationary one-dimensional flow (W(x) - (u,

0, 0)) of an Inviscid and nonheat-conducting gas of finite

conductivity In transverse lattice-type magnetic and electric

fields.

Assuming that it is possible to disregard the induced magnetic

field, let us assign the distribution of the cross-section averages

of the values of electrical strength and magnetic induction along

the length of a variable-area channel E(x) = (0, Ey, 0), B(x) = (0,

0, B ). This rnakes it possible to solve the problem without

drawing in the Maxwell equations.

Having differentiated the equation of flow rate

[,ItF = Coust = -

in the direction of motion, we will obtain

I dp I du I dP (186)

Analogously from the equation of state for an ideal gas we

have
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d4 ~cRp~ (187

The equation of motion (82) for the one-dimensional flow cf
an inviscid and nonheat-conducting gas for transverse electro-
ragnetic fields can be reduced to the form

'Z±?it (158)

The equation of energy of such a one-dimensional flow we
obtain from (90) and (87)

gy - =.8 -Je (189)

Taking into account that io/A a i/A + u2/2g, AR = cp - cv ar.d

Cp- the equation of energy (189) with cp W cor,:- takes the
following form:

i-84 u+pu6'd-B" 1L (189a)

In these equations all parameters depend only on x, whereupon

the velocity u(x) is directed along the axis x, and the strengths

of the magnetic and electric fields are perpendicular to each

other and to the direction of motion Bz U B(.), E = E(x); we will

consider the functions Bz and Ey, and also function F(x), which

describes a change in the cross-sectional area of channel, as

assigned.

The system of equations (186)-(189) in general cannot te
solved in an explicit form, but with its aid it is possible tc
determine how velocity derivatives and the Mach numbers depend cn

the basic parameters of the problem.

Eliminating from (187) and (189a) the gradient of tem.erature.,
we obtain
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._(rd , , d,', + , dig [,-- .. =---[ .. , (190)

Eliminating from (3 8) and (190) the pressure gradient, we

have

Substituting In this expression the gradient of density with the

help of (186), we arrive at the expression

I du IdF hRB' E fEC-I

which shows how the change in the cross-sectional area and the

factor which reflects the nature of electromagnetic field (second

term of the right side) influence the velocity change along the

length of the channel.

If an electromagnetic field is absent, then equation (191)

converts to the known relationship for a Laval nozzle (Chapter

IV, (1)). If we add into the initial equations the terms which

characterize the change in the gas flow rate, the work of friction,

technical work, and heat supply from without, then by means of

elementary conversions it is possible to convert equation (191)

into a condition of inversion of the effect of an even more general

form than condition (49) of Chapter V:

as dL, NeLZc W W, k (192)

The term which considers the electromagnetic influence in

equation (192) differs from all remaining terms of this expression

by the fact that into it enter the values of the acting parameters,

but not their derivatives, and, furthermore, ite value depends on
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the absolute values of velocity and pressure of the gas, and the

sign is determined by the product of two differences, one of wnich

is the difference between the gas velocity u and the drift velocity

W Ec/B, and the other - the difference between the gas velocity
A Ie-

and a certain velocity UI=.Et5  k--

Thus if we reject all effects except electromagnetic, i.e.,

if we examine the one-dimensional motion of an ideal gas in a

heat-insulated channel of constant section in the presence of

lattice-type electromagnetic fields, then the condition of

inversion of effect for a velocity derivative will be written as

(M l =_' i,-- , t,,1-. -- -0.-U,)a-A (193)i- -d I- *-t-

Let us recall that during the flow of gas at a drift velocity (see

§ 5) the induced electric field is equal and oppositely super-

imposed, as a result of which the current does not go through

the gas and there is no magnetohydrodynamic effect. A.: we see,

with an invariable value of electromagnetic effect the ;ign of

the velocicy derivative changes to opposite upon transition from

subsonic flow (M < 1) to supersonic (M > 1) and vice versa.

In the same way as in (193), it is possible to derive the

condition of inversion of effect for the derived Mach number along

the length of the channel. In the case dF/dw # 0 we have an

expression similar to (191)

dM

M t + F M k OB' /E t \/,-. (-94)tNMI

For a channel of constant section (dF/dx - 0) we obtain

I + M

( 993



RE-

where

tIA~ 1kM1 W, '1' + k"u, = u, 2P .g_-7m  i, .

r-1 + *W

Thus in the expression for dM/dx new characteristic velocity

U2 appears, the value of which depends on the Mach number.

With the help of (194) and (195) in Fig. 13.20 a diagram is
constructed for possible systems of a one-dimensional gas flow in

lattice-type electrical and magnetic fields. Along the axis of

ordinates are pl.otted the values of velocity, and along the axis

of aoscissae - the Mach numbers.

& I #

Fig. 13.20. The possible systems of
one-dimensional flow in lattice-type
electromagnetic fields.

Straight lines u =UI, u * WA, M =1 and curve U2 (M) separate

the plane (u; M) into areas

t. M>1 I I. M<l
. AA Wu

D,.u<U, D,.U< U,

Let u and M be known in a certain cross section x. Then
during displacement along the x-axis these parameters change so

that in areas Ai, B2 and there is a displacement to the left
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downwards, in areas A2 , B, D2 - to the right upward as indicated 2

by the arrows, and in areas C and C2 - to the left upward.

From equation (194) it is clear that on lines u - W and

u - U1 a smooth transfer is feasible through value M - 1 in the

first point ot the side of an increase of M, and in the second -

a decrease.

In areas CI and C2 there is acceleration of flow with a

decrease in the Mach number; here the speed of sound grows more

rapidly than the flow velocity.

The results obtained are easy to explain, if we recall that

the effect of an electromagnetic field on a gas flow is reduced to

the mechanical work of the electromagnetic force apri led to a

unit of volume,'

-F. W=-- Wjx

and to the liberation of Joule heat takinv into account of which

the full input energy per unit volume

In the one-dimensional case in questio' the relation of

mechanical work to total energ,

#R:

nz= C a(196)

-The minus sign means that with F > 0 energy is imparted to

the gas; above we always considered the work being accomplished -

by gas as positive.
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If u > W , then the mechanical work of electromagnetic force

exceeds the change in the total reserve of energy of the gas, I.e.,

mechanical energy partially converts to the energy of an electro-

magnetic field in the form of current, which can accomplish work

in the external circuit of an MHD generator. If u < W , then the

energy of the electromagnetic field is transferred to the gas in

the form of echanical work or heat (pump or accelerator).

In the first case the electromagnetic force is directed

against the flow of the gas, and in the second - along the flow.

In the s-econd case with n close to unity the effect of the field
is expressed basically' in the form of the work of electromagnetic

forces, and with I close to zero - basically in the form of heat

supply.

With u = UI, I.e., n - UI/W., the thermal and mechanical

actions of the electromagnetic field are compensated for, as a

result of which the gas velocity does not change (du/dx a 0),
with u : W both effects are equal to zero,) due to which also

du/dx 0. The feature of line u = U2 lies in the fact that at

the points of intersection with it of curves u(M) the change in the

value of the speed of sound is proportional to the change in the

value of the gas velocity, by virtue of which the derivative of

the Mach number along the length of the channel with u - U2 is

always equal to zero. Transfer through line u - U2 is feasible

on the diagram of Fig. 13.20 only vertically (with M = const).

§ 12. The Simplest Solutions of
the Equations of a One-Dimensiona)
Gas Flow in Lattice-Type Fields

The simplest solutions of the equation of one-dimensional flow

of an ideal gas in lattice-type electrical and magneti,, fields is

'Such a system is obtained in the absence of Joule heat, but
this is possible only in the absence of electric current and,
consequently, also electromagnetic force.
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I+ me

He: let u find the velocity change along the length of the

channe. For th-. let us make use of the equation of continuity

pit = Cost = m.

S-'Stituting the value _u In (193), e Ind

= k-- -- (I'--

(M = W( i - -aO

Thi. expression with the help of (200) is reduced to the following

form:

where x x/h, h the height of the channel, calculated along the

normal to x, and S 0 = aORB 2h/inc 2- the parameter of magnetohydro-

dy'namic interaction determined by relationship (97).

Integrating (201), we obtain the law of velocity change along

the length of the channel

d. - ,,, M-rs);4 s t-? (202.)

'here
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As w e ,,ee, u 0 is obtained with x = -in k/S, u -i with x -

For determining integration constant the length is counted off

from the critical cross section, i.e., it is accepted that x = C)

with M = 1, where according to the condition -- U, -r.T

Density change along the length of channel is found from the

equation of continuity and dependence (202)

- p h-I---I-- - (203)

Here p1 is gas density in the critical cross section of the channel.

The pressure gradient along the channel we find with the help

of the equation of motion (188) and expressions (201) and (202)

dp -4-(W du -- , it -- , (204),

Integrating (2u4) we have

u.-',-1 - , 7-i" const.

In the critical cross section (M 1, u = a = U, c = ,

p = pl ) , i.e., with x 0,

p, . + cost.

But, on the other hand, from the formula for the speed of sound

follows

therefore

.11$
Co 9st PlJ.
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Thus, the pressure change along trie length of the channel

p -- +( e- 8i), (205)

With u = 0 (x-= -in k/S I ) we have p = 1.2, with u- 1(x = -)

p = 0.5.

Nrow with the help of (204) and (205) it is not difficult to

find the temperature change along the channel, since from the

equation of state

T p P 1 (206)

The electric current density in an arbitrary cross section

of the channel

Hence for the current density in the critical cross section (x 0)

we have

h -- '

The dimensionlesC value of the current denstiy

I--=e -ir. (207)

The results of the calculation according to formulas (164)

to (207) do not depend on the unit system, since the value
2 2

S = pB h/mc is dimensionless. The curves which show the value
p

chanige of u, p, p, T depending on the dimensionless length x = x/h,

expressed in fractions of the height of the channel h, are given

in Fig. 13.21; during the calculation of these dependences the

following values of parameters were utilized
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a 1 mho/cm = /10 CGSE unit; k = 1.4; c 31010 crn/s;
Ll

T = 20000 K; p1 = 1 atm(abs.); B = 10 G.

To these values correspond the values

-4 2 14 14
1 = 1.67.10 - g/cm ; U1 = a1 = 9.4-10 cm/s; W= 32.1.10 cm/s;

11 2
E= UB/C = 0.032 CGSE unit; Jl z 0.206.101 CGSE unit = 2.23 A/m .1

At channel height h = 10 cm the potential difference on its wals

comprises 6V = Lh = 94 volts, and the universal exponent

S1- 0,075.

Figure 13.21 also gives the curves of the change along the

length of the channel of the Mach number (with k = 1.4)

M = "ud- 2.I 3,5± (208,u , k-Ir 1'7

and the relative value of total pressure

. . '- 0,528(1 +O.2M'9 4p. (209)

It goes without saying that the calculation carried out bears

a conditional nature, since not all the cond'tions accepted during

the solution of formula (202)-(209) can be ",ealized in practice.

Specifically the conductivity of the gas oR depends substantially

on the temperature, which changes along the length of the channel.

With variable values of the basic parameters it is possible to

conduct tne calculation by the numerical or graphic methods

directly based on the differential equations (201) and (204) and

the corresponding relationships for gas density, temperature, and

electric current density.

Another form of a one-dimensional gas flow in lattice-type

electromagnetic fields I.s obtained at a constant temperature, but
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Fig. 13.21. Change off the basic parameters
along the length of a flat channel of constant
section with E = Ey = const; B = B2 = const;

6 = const ; k -= 1.4; , =@ - - i 00 5

a variable cross section of the channel. In this case the

derivation of calculation formulas is-based on the following

initial equiations:

hthe equatinon of continuitystt a=a,---Ot i

I]PF=ast ;

the equation of motion (188) B

picost; du J2  s E

a s t

dcno h



{ the equation of energy (189a) which with T const takes the

form

~u~=E= s [e ~J.(210)

Substituting (210) into the equation of motion (188), we will

obtain

dx sit'(211)

Eliminating from (210) the density, we have

p~ du -

from which

p =gRTE -=,RTEI, (212)

where

~'=dx "

Hence during a constant strength of electric current (E = const)

dp/u - gRTEE'. Substituting this expression in (211), we obtain

gRTE~l j u /a - io Ne and therefore, 8gRTE r=-,(9.'.

Integrating from x = 0(E 0) up to the current value x, we have

oA~IUE~ (my u~Jdx. (213)

Let us assign the exponential velocity distribution along the

length of channel (with E = const and B = B(x))

u=b'. u=bnx"'. (214)

( OO3100
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Substituting (21!) Ain (213) after integration (with n > 1/5), we

wll. ohtain

I in' xM -  (215)

Here it i.- taken into consideration that with x 0, u - 0, u' 0,

Ie., with j 1 , / = 0.

In the case n = 1/5 integral (213) gives a logarithmic function,

which changes the form of all the calculation formulas. In the

example in quectior, the electric current density in the channel

- &--| (216)

and the magnetic field strength

8 -_.b [ g --I)1 (217)

The pressure we find from (212) and (215)

SH IgtRTE)' -a - I (218)

The cross-secticnal area of the channel is found from the

eqAation of continuity

F St'.' "-'( 219 )

The Mach number according to (214) comprises

M -_-- __ --- (220)

In the critical cross section (x: xI ) M = 1, therefore

=-" ___(221)

-10
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Substituting the value b into the formulas obtained, we Lim

finally have

" 1(9) . _, .,,,.,(222) I

,MV (54 -. 1, Ol . -,

47045 PT x" .\/ - I

In the critical cross section (x = xl):

M,= , ,E 43A -1)

E g--Rt-

B, Tt ,r~r[I "-'s(223)

X E', t- - I1)

The value of the abscissa of the critical cross section can

be found from the rated value of pressure p. in the critical cross

section. In a dimensionless form the basic calculation formulas

appear thus:

M - (/ x ,

]- I= I
M~M

B, 1 4- k- - 6a (224)

a - -=ii n- -5n

0I
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From (224) it follow's that w.i th n 1/4 the channel has a

.'ontant section.

Plgure 13.22 depicts the curves (x), J(T), B(x), p(i) and C(i)

for the isotheroal channel flow in question with n = 1/6 and k -1.4,

?'I, c'urve of thE mhange In the total pressure along the length of

the channel was calculated according to formula (209) into which

were substituted the values p, found with the help of (224). Under

the selected law of velocity change along the length of the channel

(n = 1/6) the cross sectional area of the channel does not change

ver,, strongly. At large values n all parameters will change more

noticeably.

22

I=

1S,5 N

I I-
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APPENDICES

Appendix I.

Table for calculating the supersonic gas flows
with a continuous increase in velocity
(k 1.4).

I _____°
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A
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Appendix II. Table of' gas-dynamic functions.
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