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ABSTRACT 

The Chapman-Kirk technique for obtaining the parameters in a system 
of differential  equations was applied to time, position and orientation 
measurements taken along the trajectories of twelve rounds fired in the 
BRL Transonic Range.    The twelve rounds represent four spin-stabilized 
projectile types:    the M71, the M329A1 with and without extension and 
the M329A1E1.    The rounds were previously reduced at  BRL by standard, 
linear reduction techniques; the Chapman-Kirk reduction was carried out 
by the General Electric Company under contract to BRL.    A comparison 
of the BRL and GE results  shows good agreement in the linear coefficients. 
The Chapman-Kirk technique has the advantage - particularly for large yaw 
rounds, where the linear analysis breaks down - that  it can determine 
from a single trajectory the values of the nonlinear coefficients 
present in the equations of motion. 
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LIST OF SYMBOLS 

vector of the N23 parameters a to be determined 

^    fL-1! i 

Vr1 tL'2J 
y 

A. VA      C0      [L-l] 8 I "i 

a the r.-th unknown constant parameter to be determined 
n (n =  1.  2,   .   .   . N23) 

aR tan"1   (y/xj,  see Fig.   2c 

a  ,& ,a coefficients in an expansion of time as  a cubic in distance. 
eq.   (36) 

B vector from the range system origin in the direction of the 
positive X-axis, see Fig. 2a 

C Coriolis acceleration, eq. (64a,b) 

CA Ai CD Vo [T
1]. eq. (38) 

C drag coefficient, ldraB forcel > eqi (30) 
m A V2 

1 

Cp. coefficient of 63   (j = 0, 2) in the expansion of CL 

Cp. axial drag coefficient, (1 - 52) C- 

CDA. coefficient of 6J   (j = 0, 2) in the expansion of CL. 

CDR BRL range value of CL, eq. (36) 

CD average value of CL, eq. (35) 

C roll damping moment coefficient, ± ll'^l damping moment^ 
p m d2 A V p 

eq. (47) 
9 
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pa 

C. damping moment coefficient, ±  [damping moment]  ^ 
q m d2 A V |e + i iji cos e| 

eq. (51) 

CM        coefficient of 6*   (j = 0, 2) in the expansion of C. 
qj q 

„            ,          rr-   .   Istatic momentl      ,_-« C.        static moment coefficient, ± -1 L  , eq. (51) 
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Cu coefficient of 5^   (j = o. 2, 4)  in the expansion of Cu M M aj a 

(^        Magnus force coefficient, ± ^—^r v0rC6 ' eqs• (59, 66) 

pa j  P 

t,        coefficient of 6^   (j » 0, 2) in the expansion of C, 
paj pa 

C.        normal force coefficient, ± J L > eqS, (59f 66) 
a m A   V2 6 

1 

(I. coefficient of 6^  (j  »0, 2) in the expansion of CL. 
aj a 

t~ centripetal acceleration, eq.   (63),  [LT-2] 

Cy 2 (1^    , the Magnus force coefficient of Reference 14 
pa pa 

0 Nl x N4 matrix of measurements d. lm 

t drag force, eq.   (30),   [MLT"2] 

d reference diameter,   [L] 

d. the measured value of y.   at x = x im '1 m 
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ER sin"1  (z/V), see Fig.  2c 

sum of the aerodynamic forces acting on the projectile, 
[MLT-2] 

Fy.Fy»''? range components of f X* Y'"Z 

F ,F ,F fixed-plane components of P 
12    3 

f.( ) single-valued elementary function 

(£ gravitational  force,  eq.   (21),   [MLT-2] 

g magnitude of the gravitational acceleration,   [LT~2] 

I  ,1 axial and transverse moments of inertia,   [ML2] x   y 

L angular momentum vector,   [ML2!-1] 
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12    3 

M sum of the aerodynamic moments acting on the projectile, 
[ML2!"2] 

M ,M ,M fixed-plane components of M, eq.  (43) 
12    3 

m mass,   [M] 

Nl the number of measured dependent variables in a system of 
equations 

N2 the total number of dependent variables in a system of 
differential equations 

N3 the number of unknown parameters appearing explicitly in 
a system of differential equations 

N4 the number of measurements taken on each of the Nl depen- 
dent variables 

N23 N2 ♦ N3, the number of unknown constants in a system of 
equations 
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LIST OF SYMBOLS  (Continued) 

PE probable error 

a yi 
P. -5  , the influence  (or sensitivity)  coefficients,  eq.   (3) in da n 

p the X -component of the angular velocity of the missile- 

fixed system with respect to the range system, eqs.   (40- 
41),   [rad/sec] 

R position vector of the missile's CG,   [L] 

r arclength along the trajectory of the missile's CG,   [M] 

t time 

t* value of time at x =  x* 

u  ,u  ,u fixed-plane components  of V,   [LT"1] 
12     3 

v velocity vector,   [LT-1] 

V magnitude of ^,   [LT-1] 

X vector of the N4 values x    of the independent variable at 

which measurements  are taken 

XYZ the axes of a range  (earth-fixed)   coordinate systeo»;  the 
X-axis is directed down-range along the intersection 
of a horizontal plane with the vertical plane contain- 
ing the gun;  the Y-axis  lies in this horizontal plane, 
directed to the left of an observer facing downrange; 
the Z-axis is directed upward. 

XXX the axes of a fixed-plane coordinate system; the X -axis 
12  3 r 1 

lies along the missile's   longitudinal axis,  directed 
from the CG (origin)  to the nose; the X -axis is con- 

2 
strained to lie in the horizontal plane, directed to the 
left of an observer facing in the direction of the 
positive X -axis;   the X -axis is directed upward. 

1 3 

X X'X' the axes of the fixed-plane system of References 1 and 2, 
1  2   3 where X'   = - X ,  X7   =  - X  . 

2 2        3 3 
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x the independent variable of a system of equations 

x,y,z range components of R 

•   •   • -t 
x,y,z range components of V 

x the value of the independent variable x at which the m-th 
measurement is taken, m =  1,2,   .   .  . N4 
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y. the dependent variables of a system of equations 

o . the coefficients of the increments A?     in the differential nk u K 
corrections normal  equations,  see eqs.   (6-7) 

ä . the  (n, k)-th element of the inverse of matrix (O-j.) 

ou, the yaw angle, the total angle of attack, measured (in the 
XXX   system) from the velocity vector to the X -axis. 
12 3 1 

ß the terms on the right-hand side of the differential correc- 
tions normal equations,  see eqs.   (6,  8) 

y. a possible replacement  for a . ,  suggested by Marquardt, 

eq.   (15) 

Aa. the increments by which the parameters are changed in the 
differential corrections process 

6 sine of the yaw angle,  eq.   (17) 

e the sum of the squares  of the residuals in a least squares 
fit, eq.   (2) 

6 an Euler angle;  see Fig.   2a 

9 azimuth of the line-of-fire, that is, the angle measured 
clockwise from North to the down-range axis  (192° for 
the BRL Transonic Range) 

0 latitude of the range,  considered positive in the Northern 
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6 the missile's angle of yaw;   see Fig.  2a and eq.   (26) 
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a constant in Marquardt's scheme, eq.   (IS) 

- u /V,   - u /V 
2 3 

air density, considered constant, [ML"3] 

the earth's angular velocity vector, eq. (64a) 

magnitude of t,  0.00007292 rad/sec 
E 

(where S and S can be FP, R or R') angular velocity of 
12 

the S coordinate system with respect to the S coor- 
1 2 

dinate system 

Subscripts: 

(  ) FP 

OR 

OR, 

d^ 

dt2 

components in a fixed-plane  (XXX)  system 
1 2 3 

components in a range (XYZ) system 

components in an intermediate (X'Y'Z') system 

second derivative of R in an inertial syst em 

(  ), initial  condition, taken here to be the value at the first 
data station 
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I.  INTRODUCTION 

In free flight studies, the main task is to determine from obser- 
vations of a missile's motion the values of the aerodynamic coefficients 
appearing in the differential equations describing that motion. For 
normal enclosed-range firing conditions (symmetric shell, nearly hori- 
zontal flight, small yaw, constant or only slowly varying spin, etc.), 
we can approximate the solution to the differential equations quite 
adequately by convenient closed-form expressions. These expressions 
involve certain constants directly related to the aerodynamic coeffi- 
cients. The values of these constants are determined by a least squares 
fit of the observed data to the closed-form expressions. 

For the past two decades, the general technique of fitting observed 
data to convenient closed-form expressions has been the heart of free- 
flight, enclosed-range data reduction1*2*. Highly successful results 
have been obtained for a variety of missile shapes and sizes. Over the 
Xears, the technique has been gradually refined and extended to cov?r 
many types of force and moment nonlinearities. Unfortunately, such 
extension often requires that a number of rounds be fired at different 
Mach numbers, yaw levels, and so on, to obtain a single set of coeffi- 
cients. The process can be costly in dollars and time. Moreover, the 
technique can be stretched only so far; an occasional round has defied 
analysis by conventional procedures. 

It is relatively easy in these troublesome nonlinear situations to 
specify - by experience and by cunning - the sort of nonlinear terms 
that must appear in the differential equations of motion in ordsr to 
produce the observed behavior.  It is much more difficult to find 
convenient pseudo-solutions that Will (1) represent the motion adequately 
and (2) contain constants that can be easily related to the coefficients 
of the differential equations. What we need in these situations is a 
method that doesn't require any knowledge or assumptions on our part 
regarding the form of the solution to the differential equation. 

The problem is essentially one of parameter optimization. We are 
given 

a. the form of a set of differential equations involving unknown 
constant parameters (coefficients and initial conditions); 

b. a set of first estimates for the parameters; 

c. a set of discrete measurements on one or more of the dependent 
variables; 

d. a criterion function of the parameters (say, the sum of the 
squares of the residuals for a given fit). 

tReferenoee ewe lieted on page  59. 
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The problem is to devise a routine for adjusting the parameters  luto- 
matically so as to minimize the criterion function. 

The problem has received much attention, particularly in recent 
years with the proliferation of high-speed computers,  and many ingenious 
schemes for optimizing the parameters have been proposed.    For continuous 
rather than discrete input data, Meissinger3t1* approached the criterion 
function minimum by a path of approximately steepest descent, using an 
analog computer.    On the other hand, the techniques devised by Goodman5"7 

and by the team of Chapman and Kirk° to handle discrete data are better 
suited to the digital  computer.    In this paper, we will be concerned 
primarily with the Chapman-Kirk technique.    The Goodman and Chapman- 
Kirk methods  are quite similar, although Chapman and Kirk were unaware 
of Goodman's work when they presented their own results at the AIM 
Seventh Aerospace Sciences Meeting, New York,  1969.     From the stand- 
point of the aerodynamicist. Chapman and Kirk's contribution was to 
apply the process successfully to representative aerodynamic cases and, 
perhaps more important,  to present their results at  the meeting and 
later in a journal8 where it came to aerodynamicists*  attention.     (It 
is unfortunate but often true that when a pertinent article such as 
Goodman's appears in a mathematical journal, the aerodynamicist either 
overlooks it or fails to recognize its applicability to his work.) 

Applications9-13 of the Chapman-Kirk technique are growing more 
and more sophisticated.    The present report documents one such appli- 
cation carried out by the Armament Depaitment, General Electric Company, 
Burlington, Vermont,  for the U. S. Army Aberdeen Research and Development 
Center (ARDC),  Aberdeen Proving Ground, Maryland, under Government 
Contract No.   DAAD0S-71-C-0265 during the period 4 February to 20 April 
1971.    The results of this work have also been issued as a General 
Electric report1*1. 

The raw data for this study consisted of time, position and orien- 
tation measurements at discrete points along the trajectory for twelve 
rounds fired in the Transonic Free Flight Range15,  Ballistic Research 
Laboratories   (BRLj.    The twelve rounds consisted of four spin-stabilized 
projectile types  (see Table I and Figuve 1).    Each of the rounds had 
been previously reduced11'16 by the usual range technique  (with varying 
deg »es of success)  and each was hand-picked for the present assignment. 

Sotu   ot  the twelve rounds could be fitted by assuming relatively 
simple fcue and moment systems; these rounds were chosen to enable the 
Chapman-Kirk technique to get a foot in the door.    Other rounds of the 
twelve were oddities that had already annoyed and frustrated a team of 
data analysts;  these rounds were chosen to give the Chapman-Kirk tech- 
nique a good work-out.    The primary purpose of the present study was 
to see how well the Chapman-Kirk technique could determine the values 
of the nonlinear coefficients present in the force and moment expres- 
sions. 
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II.    THE CHAPMAN-KIRK TECHNIQUE 

Suppose for the moment that we have a system defined by elementary 
equations*.    Let 

Nl    =    the number of measured dependent variables 

N23 =    the number of unknown constants in the system 

N4    =    the number of measurements taken on each of the Nl dependent 
variables 

where N4 is greater than N23.    (The notation here is not entirely  :apri- 
cious.    An N2 and N3,  lying between Nl and N4, will be introduced later 
and N23 will be the sum of N2 and N3.)    Assume that we can write our 
system of equations  in the fom 

yi    =    ^   (x,  a  , a ,   .   .   .,  a^j),  i =  1,  2,   .   .   ., Nl (1) 

where      y.   is the i-th dependent variable (i =  1,  2,   .   .   . Nl) 

f.   is a single-valued elementary function 

x is riie independent variable 

a    is the n-th unknown constant parameter  (n = 1,  2,  .   .   ., N23) 

We are given a set of measurements, which we represent by the Nl x N4 
matrix D =  (d.   ),  and a vector X =  (x ] 

inr v m 
of the independent variable. That is. 

matrix D = (d. ), and a vector X = (x ) of the corresponding N4 values 
im m 

d.  = the measured value of y. at x 
im 'i    m 

i   = 1. 2. . . ., Nl 

m   = 1, 2, . . ., N4 

For any parameter vector A =  (a ) , we can obtain from (1) the correspond- 

ing solution y. (x )   at each point x  .    The problem is to determine the i      m r m r 

value of A that minimizes e, the sum of the squares of the residuals: 

*By an elementary equation, we mean an equation involving only elementary 
funationa and a finite nwtber of arithmetiaal operations.    Specifioally, 
we are excluding differential equationa. 
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N4   Nl 

■ L a [di». - yi (VJ; (2) 

m=l  i-1 

(For convenience, we omit weighting factors in (2) and the succeeding 
discussion; such factors might be needed, for example, to insure that 
the terms in (2) are dimensionally equal.) Now e will be at a minimum 
only when its partial derivatives with respect to each of the para- 
meters is zero. We introduce a conveniert notation for these partial 
derivatives: 

3 yi 
(3) Fin 3an 

i =  1.  2,   . .   .,  Nl 

n =  1.  2,   . .   ,,  N23 

Because they reflect the influence of each parameter change, the P. 

are sometimes called "influence" (or "sensitivity") coefficients. For 
a minimim E, we must have 

N4   Nl 

—- = - 2 > )    [d.  - y. (x )] P. =0 (4) 
3 a        / . / ,  l im  'i l nrJ  m K J 

n •;—r* 
m=l i=l 

Equations  (4)  constitute a set of N23 equations in the N23 unknown param- 
eters;    the values of the parameters satisfying  (4) are the desired 
optimum values. 

If the functions f.   are linear in the parameters a  : 

fi    '    a1 ♦i,   W ♦ a2 i^  (x) ♦ .  .  . ♦ ^j ^^j (x) 

then 
Pin    "    hn^ 

and set (4) is also linear in the parameters; hence (4) is easily 
solvable (in theory). If the functions f. are nonlinear in the para- 

meters, owever, then solving (4) can be quite difficult. The usual 
way of  5 this difficulty is to approximate the variables y. by their 
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linearly truncated Taylor expansions about a given set of values for 
the parameters: 

y^ 

N23 

(5) 

k=l 

where the circumflex  (")  denotes evaluation at the given parameter 
values and where Aa,   is an indicated change in the given value of a,. 

If (5)  is substituted in  (4), and if the P.     in  (4)   are replaced 

by P.   , we have 

N4        Nl 

m=l      i-l 

N23 

din. * ^i "    ZZ 'ik 
k=l 

Aa, Pin = 0 

or 

N23 

L 
k=l 

JZJ   
ankAalc    =    ßn.  "=  1.   2.   .   .   ..  N23 (6) 

where 

N4 Nl 

ank    -ItZYZ     'in CV  ^ik  **> 
m=l      i=l 

(7) 

N4 Nl INt INI p. 

n    = ZZ ZZ        dim " yi   (xm^ 
m=l      i-l        L J 

P.     (x ) 
in   v mJ (8) 

Equation (6)   represents a set of N23 linear equations in the  ^23 incre- 
ments Aa  .    Hence we can solve  (6)  for the increments: 

N23 

Aa      =   } a n C. I 
k=l 

nk ök' n - L 2. ,  N23 (9) 
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where 

8 . = the (n, k)-th element of the inverse of matrix (a k) 

cofactor of element a . 
_^__^   nk 
determinant of matrix (a .) 

The new value of a is then obtained by adding Aa to the old value, 
n n 

If the initial estimates of the parameters are "close enough" to 
the "true" va.'ues. (5) will be an adequate approximation and the new 
values of the parameters will produce a smaller criterion function e. 
The process can then be repeated as many times as necessary until some 
convergence criterion is satisfied.  The probable error of the fit at 
the end of any iteration is given by 

PE    =    0.6745      __-^__ (10) 0-6745    Un M7 KiTfl Nl x N4 - N23 I 

and an estimate of the probable error in a   is given by 

E  C«n)    •     (ä^  •  PE (11) 

This, in brief, is the well-known process of "differential corrections," 
as applied to elementary equations that are nonlinear in the parameters. 

For a system of ordinary differential equations, the situation is 
naturally more complicated. Assume that the given system of differential 
equations has been reduced to a system of N2 first order, possibly non- 
linear eouations*: 

-^ • fj (x.y^, . . ., yN2, ai,a2 a^) 

yj (xo) = ^3 + j 

j =  1, 2, . . ., N2 

>(12) 

*It ie not neaeeeary when oarrying out the Chapman-Kirk technique to 
reduce the given syetem to firet order equations; this was done here 
merely to aid the exposition. 
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where 

N2 = the total number of dependent variables in the system 

N3 = the number of unknown parameters appearing explicitly 
in the differential equations 

and where Nl and N4 are defined as before. Note that we have juggled 
the notation so that while only N3 parameters appear explicitly in (12), 
there are still N23 (= N2 + N3) parameters to be determined: 

a , a , . . ., a^ (the N3 explicit parameters) 

a^. , a^, 2' • • '' ** 2S  ^t^e N^ un'cnown initial conditions) 

where 

1 < Nl «S N2 < N23 < N4 (13) 

The same differential correction technique that was applied to (1) 
can be applied to (12).  Equations (6-11), which depend only on the 
definition (2) of the criterion function e, are still valid. However, 
a new difficulty arises when the given set of equations are ordinary 
differential equations: how do we evaluate the dependent variables 
and their partial derivatives appearing in (7) and (8)? For the case 
of non-differential equations, this was no problem; we were presumably 
given explicit expressions for each of the variables and could easily 
write down expressions for the required partials.  For a given set of 
differential equations, however, we will not, in general, know the form 
of the solution. Values of the dependent variables can be obtained by 
some numerical integration scheme, but part of the problem remains: how 
do we obtain the required values of the partial derivatives? 

Chapman and Kirk tried various schemes for evaluating these partial 
derivatives and finally settled on the method* of "parametric different- 
iation." This method consists of formally differentiating the given set 
(12) of differential equations with respect to each of the N23 constants 
to be determined. We have 

3 an V dx J 
3 f.  1 
3 a 

n 

*The method ie not neu.    It was used, for example, by  the previously 
cited Meieainger and Goodman  (and apparently by Knalder17, with whose 
work we are unfamiliar but who is referenced in References 10 and 12). 
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or, assuming that the y. are continuous in x and a , so that the order 

of differentiation can be interchanged, 

d P.     3 f. 
-,-& . —i     j . 1, 2 , N2 (14a) 

n 

where 

P.  (x ) = 1 jn v oJ 

j • 1, 2,  . •  • f N2 

n =  1,  2,   . •   • > N23 

(if n - j = N3) 

(otherwise) = 0      (otherwise) (14b) 

The somewhat strange-looking initial conditions (14b) merely reflect the 
fact that P.  is initially 1 if and only if a represents the initial 

value of y..  By (12), this occurs if and only if a « a^. + j; hence 

if and only if n = N3 + j. 

What we have done above is to derive an auxiliary set of N2 x N3 
equations (14) whose solutions are the partials P. , some of which 

(those for j < Nl) are needed in solving (6). For a given set of 
estimates of the parameters and initial conditions, we can integrate by 
some numerical scheme both the original set of equations (12) and the 
auxiliary set (14).  (The original set may or may not be linear; the 
auxiliary set will always be linear.) The numerical integration yields 
the values of the dependent variables and the influence coefficients 
required to solve (6) for the parameter changes. 

Except for this more laborious way of determining y  (x ) and 

P.  (xm)• the procedure for determining the unknown constants of a 

set of differential equations is the same as for non-differential 
equations. 

As a final aside, we note a possible future improvement. In the 
N23-dimensional parameter space, the truncated Taylor series technique 
proceeds from a given point (whose coordinates are the given estimates 
of the N23 constants) in the direction of the vector AA =  (Aa ) ' v n 
obtained by solving (6). The method of steepest descent, on the other 
hand, proceeds from the given point in the direction of the negative 
gradient of e. Marquardt18•19 points out that these two directions 
are nearly perpendicular, while the optimum direction lies somewhere 
in between. To proceed in approximately the optimum direction, he 
suggests replacing a.  in (6) by 
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r 
\n 

(1 + X) a,  for k 

kn 
for k ^ n (15) 

where X is a fudge factor constant whose value should be changed from 
one iteration to the next according to a few simple rules (the rules 
are listed - in slightly different form - in References 18 and 19). 
Using Marquardt's magic X, the Chapman-Kirk process often converges 
for initial guesses far outside the previous region of convergence. 
The Marquard alg rithm was pointed out to us by Chapman himself, who 
has used it (subsequent to the work reported on in Reference 8) with 
great success in hitherto .Intractable cases. The algorithm was not 
used in the investigation covered by this report because we were not 
aware of it at the time. 

III.  INPUT DATA, COORDINATE SYSTEMS AND YAW VARIABLES 

A missile fired in the BRL Transonic Range is observed at twenty- 
five spark-photography stations distributed along a 680-foot portion 
of the trajectory. The observed data at each station consists of 

a. the elapsed time t, reckoned from the instant the spark at the 
first station was triggered by the passing missile. The time error in 
a properly functioning timer is estimated to be no more than one micro- 
second. Only about two-thirds of the stations are instrumented at 
present to furnish timing data. 

b. (x,y,z) :  the position vector of the missile's CG in a range 

(earth-fixed) coordinate system XYZ.  The X-axis is directed down-range 
along the intersection of a horizontal plane with the vertical plane 
containing the gun; the Y-axis lies in this horizontal plane, directed 
to the left of an observer facing downrange; the Z-axis is directed up- 
ward. The error in any position measurement should be no greater than 
0.003 meter. 

c  (0, ? , C )cn:  the yaw vector in a fixed-plane coordinate 2   3 rr  »  
system XXX. The X -axis lies along the missile's longitudinal axis, 

12 3       1 
directed from the CG (the origin of the fixed-plane system) to the nose; 
the X -axis is constrained to lie in the horizontal plane, directed to 

the left of au observer facing in the direction of the positive X -axis; 

the X -axis is directed according to the right-hand rule (that is, up- 

ward) .  If u ,u ,u are the velocity components in the fixed-plane 
12  3 r 

system, then 
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u u 

where V is the magnitude of the velocity vector. The minus signs in 
(16) appear because in range studies the yaw angle is measured from 
the velocity vector to the X -axis*. The magnitude 6 of the yaw is 

given by 

r ML  f"2 + "2 )h 

ä - f^*^]    ^ Z   v = sin a,.   (17) 

where a   is the yaw angle, the so-called total angle of attack.    The 

angular measurements that yield the yaw components are usually accurate 
to within 0.002 radian. 

Although differential equations describing the yawing motion can be 
written in terms of e   and C  , we found it more convenient to work with 

2 3 
the related Euler angles I|I and 6.    These angles appear in the trans- 
formation matrix that converts from range to fixed-plane coordinates. 
To derive this matrix, assume the existence of a vector B extending 
from the range system origin in the direction of the positive X -axis 

(see Figure 2a).    Rotate the range system XYZ about the Z-axis by the 
angle ty so that X'   (the rotated X-axis)  coincides with the projection 
of the vector B on the XY-plane.    The magnitude of i/( is not to exceed 
180°; if this requires a counterclockwise rotation about the 2-axis  (as 
in Figure 2a), i/i is considered positive and if clockwise, then i|i is 
considered negative.    Then we have 

*In References 1 and 2, a fixed-plane aystem X X'X' is uaedj where the 

X'- and X'-axee have oppoeite direations to the X - and X -axee. reepeo- 
^3 2 3 

ttvely. In this X X'X7    ayetem,  the you angle ie measured from the X - 

axie to the velocity vector.    If v «u7 .u' are the velocity aomponenta 
12     3 

and 0,%,' ,$,'  are the yau aomponenta in the X X7 X' ayetem,  then 
2     3 12   3 

u' u 

2 V V S 

and eimilarly,  ?'  « £ .    That ia3  the you components in the tuo fixed- 

plane systems are identical. 
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COS l|) sin i* 0\ /x 
- sin i(i cos i|; 0 y 

0 0 1 z (18) 

Next, rotate the intermediate system X'Y'Z' about the Y7-axis so that X" 
(the rotated X-axis) coincides with vector B. Let 6 denote the angle 
from Z'  to B, where |e| < 90°. If the rotation is counterclockwise 
about the Y'-axis, 6 is considered positive; if the rotation is clock- 
wise (as in Figure 2a), 6 is negative. Then we have 

( 

cos e 0 - sin e\ / *' 
0 1 0 y* 

sin 9 0 cos e / \ z' FP    \ / \  / R' (19) 

This final system X'T'I" has the orientation of the fixed-plane system 
XXX.    Thus the transformation matrix from range to fixed-plane co- 
12   3 

ordinates  is  the product of the 6-matrix and the ip-matrix: 

' cos  9 cos  ty      cos  9 sin ty      - sin 9* 

- sin i</ cos 0 0 

sin 9 cos  iji      sin 9 sin I|I cos  9/  V z/D (20) 
\ /  \  / K 

For an assumed flat, nonrotating earth, the gravitational force G 
has the form 

S =  (0, 0, - mg)R (21a) 

where the gravitational acceleration g is constant for range firings. 
Substituting the right-hand side of  (21a)  in (20), we see that the 
fixed-plane components of G depend on the Euler angle 9: 

5   =     (mg sin 9,  0,   - mg cos 9)pp (21b) 

Note that by the definitions of the two Euler angles, the angular 
velocity of the intermediate R' (X'Y'Z7) system with respect to the 
range system is 

V(R) "     (0' '*'   ^R* 

25 



Substituting this vector in (19), we obtain the angular velocity of the 
fixed-plane system with respect to the range system 

aw,,,    =    (- ij. sin 6,  e.   ^ cos 6)__ (22) UFP(R) v    y Ji" "'   "'   ^ w"  ^FP 

The above discussion gives us the physical interpretation of ^ and 
6, but in ^rder to work with these angles, we needed explicit equations 
relating IJJ and 6 to the given yaw components C    and £  .    By some elemen- 

2 3 
tary but cumbersome vector analysis, it can be shown that the desired 
relations are 

('in*H\ 
sin"1     -^—^       + aD (23) 

/sin^\ 

\cos ^j 9    =    eM - sin'1   [ ^^i | (24) 

where ij».. and eM are the missile's pitch and yaw angles, respectively 

(see Figure 2b): 

*M    =    sin'1   [- v^-J =    sin'1   C«2) C") 

\^l " 'sinl y^j eM    "    tan"1  I  T^l    =     " sin'J    IT^TV 1 (26) 

where aR and ER are the azimuth and elevation angles, respectively, of 

the velocity vector in the range system (see Figure 2c): 

aD    =    tan-1    /  f  1 (27j 

ft) 

(0 ER   -    sin-1    | $ J (28) 

where x,y,z are the velocity components in the range system. 
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For the present analysis of range firings, we made the simpliiying 
assumption that the angles a and E could be ignored. Letting 

a= ED = 0, equations (23) and (24) reduce to 
K    K 

* = iPM (23a) 

e = eM (24a) 

By equations (17), (25) and (26), the magnitude &  of the yaw can be 
expressed in terms of the pitch and yaw angles: 

&    = (sin2 ik. + cos2 ^  sin2 8M)^ (29) 

IV. THE EQUATIONS OF MOTION 

In this section, the working forms of the equations of motion are 
derived (albeit briefly) from the basic expressions for Newton's Second 
Law.  By writing out this derivation, we can point out where and what 
kinds of assumptions and simplifications were made and thus facilitate 
future changes. 

The interdependence of the various equations and of the three 
distinct reductions (drag, yaw and CG) are indicated in Figure 3. 

A. The Drag Equation 

The classic drag equation has the form 

* + (J.    m ^ 
dt2 

[MLT-2] 

I 

(30) 

where 

D ■ drag force 

= - (m A CD V) V 

1 
tr 

7T P d2 

8m [L- l] 

gravitational force 
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R   =   position vector of the missile's CG 

and where the subscript I denotes vector differentiation in an inertial 
system.    For enclosed-range studies, the density p and hence A   are 

known constants.    The drag coefficient C    is in general a function of 

Mach number and o: 62. For each of the twelve Transonic Range rounds 
studied here, however, we could ignore the Mach number variation over 
the observed trajectory and assume a linear* dependence of C^ on <S2: 

S    =    CD    +CD    62 (31) 
O 2 

We seek the X-component of (30)  in the range system.    For the pur- 
pose of performing the drag reduction, we can assume that the range 
system is an inertial system and hence ignore the centripetal and 
Coriolis accelerations that arise in any earth-fixed system.    Then the 
X-component of (30)  can be written as 

A    Cn V x 
1    D 

Al  CDX V2 (32) 

where 

■(l)cD CDX    =   \V jCD    "    CDCOsERCOSaR 

=   down-range drag coefficient 

For the present Transonic Range studies,   (32) has the disadvantage 
that the independent variable t - which should be known exactly at each 
point - is obtained only at about two-thirds of the spark stations  (and 
obtained with sufficient accuracy at a considerably smaller fraction). 
On the other hand,  the down-range coordinate x of the missile's CG is 
usually known very accurately at each station.    Thus a reasonable 
course of action is to convert the independent variable in  (32)  from t 
to x.    We have 

^Provision was made in the coding to hco die C^ as a quadratic in Ö2, 

but the higher-order term woe never needed. 
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dt 
dx 

dx 

1 

X 

- A1 
CD V - A 

"DX J 
(33) 

The presence in (33) of the velocity V is a nuisance for as yet we have 
no equation for generating V. For the nearly horizontal flights en- 
countered in ballistic ranges, the distinction between V and 

x (= V 

can write (33) in the final form: 

cos E cos a ) and between C and Cn5. can be ignored. Thus we 

dt 1 
dx V 

dV 
dx " 

(C»o * \  S2) 
A V 

1 
M34) 

Hie drag reduction - that i 
technique to (34) - is normally 
this stage we know the values of 
(namely, at each spark station), 
tained additional input values 0 
polation. (After the yaw reduct 
reduction could be re-done, usin 
the raw plus interpolated-raw va 
wasn't necessary.) 

s, the application of the Chapman-Kirk 
done before the yaw reduction and so at 
62 only at certain discrete points 
From these scattered valuer, we ob- 

f 62 at selected values of x by inter- 
ion has been performed, the drag 
g the fitted values of 62 rather than 
lues.  For the present study, this 

In addition to the yaw data, the required input for a given round 
consisted of the measured times t, the measured x values and initial 
estimates of the two explicit parameters fc    , C \ and the two initial 

conditions (t , V ), where we defined initial conditions as the con- o  o 
ditions at the first spark station.  The output consisted of 

a. the least squares values of the explicit parameters and initial 
conditions; 

b. appropriate error estimates in the above; 

c. a reliable correlation of time with distance, so that in the 
remaining equations of motion, time could be used as the independent 
variable.  Of course, it was not absolutely necessary to revert to a 
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I • iwnttivw,.., 

time base.    For theoretical work, the arclength r along the trajectory 
0f the missile's CC (or a nondimensional length r/d)  is often a more 
convenient independent variable than either time or down-range distance. 
The equations of motion (in particular, the yaw equations) assume 

simpler forms when r is the independent variable.    Since r = V, our 

approximation x a V is  equivalent to ignoring the distinction between 
x and r.    We could,  then, have written all the equations with respect 
to this convenient  length variable which we measure as x but are free 
to interpret as r.    One reason we didn't is that the present study, 
while interesting in itself,  is also regarded as preliminary, getting- 
our-feet-wet training for more ambitious studies  that will require a 
time-based set of equations.    By working with time-based equations in 
the present study, we could save considerable coding effort.    Compre- 
hensive computer programs,  capable of handling the larger problems, 
were able to handle the current problem as a special  case. 

One additional  bit of information can be gleaned from our reduction: 
a representative Cn value for each round, obtained by replacing 62 in 

(31)  by its mean value: 

CD    =    CD    + CD    F (35) 
O 2 

Although a value for J2  was available for each round from the BRL yaw 

reduction, the quantities a_ = sin'Vy ^Jlisted in Tables II - VI were 

obtained by a slightly different averaging process than used by BRL. 
Thus these listed values differ slightly (by less than 4%) from the 
BRL values. Each representative drag coefficient Cn car. be compared 

with the range value, C   obtained at BRL by fitting time as a cubic 
UK f 

(x - x*)2 + a    (x - x*)3 

3 

in down-range distance x: 

t    = t*  +  a     (x - x*)  + a 

CDR    = 

2  a 
2 

A    a 
1     l 

=    range value of C[)   itftt,  x,  V)     =     (t*,  x*,  1/a J] 

J 

(36) 

where x* is the given mid-range value of x. 

As we will see, the variabie V appears in the yaw and CG equations 
and the question arises: how should we generate it there? We could. 
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of course, store the large number of discrete velocity values available 
when we integrate the drag equation (34) numerically.    This would be 
both tedious and unnecessary.    Instead, we made a reasonable assumption: 
for purposes of performing the yaw reduction* on the given Transonic 
Range rounds, V can be represented adequately over the observed tra- 
jectory by a known quadratic in time: 

V =    V    + V    (t  - t )  + V    (t  -  t )2 (37) 
O i   v 0 2 0 

Values for V and V in (37) can be obtained in various ways. For 
1      2 _ 

example, if we replace CD with CD in the drag equation, the solution 

can be written at once: 

V - V^xp [- A^p (x-xo)] 

where 

V 

'     ! + CA ^ - V 

c = A cn v [r1] A    i  D o L  ' 

(38) 

with the truncated series expansion: 

V = Vo [1 - CA (t - to) ♦ C* (t - to)
2]      (37a) 

B. The Roll Equation 

Consider a missile-fixed coordinate system XXX, where <-he X - 
1 i» 5 1 

axis lies along the missile's longitudinal axis (as in the XXX fixed- 
12 3 

plane system) and where the X and X axes are rigidly attached tu the 

missile in a right-handed system. Then the angular velocity of this 
missile-fi/ed system relative to the fixed-plane system is given by 

^MFfFP) =  (*• 0, 0)Fp (39) 

*The OBBumption is not neaeasary for the CG equations where, as we shall 
see, V can be generated handily. 
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where $  is the roll angle (the angle between the X X axes and the X X 

axes). By (22) and (39), we can write an expression for the angular 
velocity of the missile-fixed system with respect to the range system: 

"Ww " "MFtFP) * "FPW 

= (P, e, i^ cos e) FP (40) 

where 

•   • 
p = $ - ii  sin 6 (41) 

The angular momentum of a missile with rotational symmetry is then 

t 2 (L . l2,  L3)Fp = (Ix p. Iy 6. Iy i>  cos 9)Fp [ML2!"1]      (42) 

The sum of the moments acting on the missile is equal to the time deriv- 
ative of the angular momentum: 

3 5 (M^ M2> M3)Fp = ^ [ML2T"2] 

•      • 
= [C^. L2. L3) * wFp(R) xt]Fp M43) 

where again the range system is considered an inertial system. Hence 
by (22) and (42), 

M I    P x r (44) 

M     =ie+(lp+Iij; sin 6) ty cos 6 
2        y ^        x 

(45) 

I    <ii cos e-(I    p*2I    iji sin 6)   6 y x y (46) 

Equation (44) is the roll equation; (45) and (46) constitute the yaw 
equations. 

The roll equation does not depend on the other two moment equations 
and hence can be solved separately. We define the axial momfnt as 
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Mi - (P ^) (^) W) (^ ) C,  [ML2T-2]        (47) 

where C  is the roli damping moment coefficient*. Tlien the roll equa- 
P 

tion (44) becomes 

A3 p V        [T-
2] (48) 

where 

H) *,  (ft ]  clp  (L--! 

For the present study, A can be considered constant. If we were given 
3 

sufficient spin data (obtained, say, by measuring the position on each 
spark photograph of two distinguishable pins placed in the base of the 
missile), we could obtain the "best" values of p and A by the Chapman- 

Kirk technique or by a fit of the data to the solution of (48): 

p = p0 exp [A3 (x - xo)] (49) 

In the present study, however, such spin data was unavailable. Yet the 
roll rate p was needed in the yaw equations. We resolved this problem 
by assuming that p is a known linear function of time: 

P = po f1 * A3 Vo (t - V1 (50) 

where p = 2 n V /(nd), rad/sec 

n = rifling, cal/rev (see Table I) 

and where A was evaluated by assuming C. = - .013 for all twelve 
P 

rounds. 

*In some texts  (e.g.,  in Referenoee 13 and 14),   the combination pd/(2V) 

P 
is preferred to pd/V and in those texts the C      must be interpreted 

accordingly: 

vpj-     > p 
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C.    The Yaw Equations 

The yaw equations describe the wobbling motion of the missile's 
longitudinal axis A jjbout the tangent to the trajectory, that i^,  about 
the velocity vector V.    Any two variables sufficient to orient V with 
respect to A can serve as the dependent variables.     IT. the usual BRL 
Transonic Range reduction,  the dependent variables are the yaw components 
£;    and 5  ; here we use the Euler angles iji and 9 and the governing equa- 

2 3 
tions   (45) and (46).    We define the cross-moments acting on the missile 
as follows*: 

V'V (^){^)W)-\ ['''i ?cos e> \ 
[ML2T-2] 

(51) 

where** 

C 
^V 

M 

pa 

S 62 + C 
32 

s + c 
pao 

■    C. + c. 
qo 

M 
pa2 

62 

»i 
92 

M 
«it 

+ C M pa!» 

>  (52) 

^Provision was made in the aomputer program to cape with an aeyrmetriaal 
missile  by including some trim terms not shown in  (51)  above.    These 
terrtiS were not used in the present study. 

**Note  that C       in  (61)  is multiplied by the nondimensional spin pd/V, 
Mpa 

so that  the remarks on C      in a previous footnote apply to C,     as well. 
P pa 

That is. 

\ *     2  (C, 
pa 

$ 

M pa 

Likewise,  C,   as defined here is half the CM   of References  12 a,id 14, 
q q 
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Substituting (51) in (45) and (46), we obtain the final form of the yaw 
equations: 

e = A [(V u ) a. ♦ (u p d) a. + (d v e) cM | 
3    a    2       pa qj 

- [(I /I ) p + ♦ sin 8] i(i cos e 
A  7 

(53) 

(V U ) Cj, ♦ (u p d) CM  + (d V t/» cos 6) (^ 
2   a    '      pa q 

♦ [(Ix/Iy) p + 2 * sin 6] 9 ^ /cos 6 '} (54) 

where A is a known constant: 
2 

n p d3 

8 I 
[L-2] 

Equations   (53)  and  (54)   involve four initial  conditions,  the eight aero- 
dynamic parameters indicated in (52) and (possibly)  one physical param- 
eter.   I /I   .        Thus a maximum of thirteen constants  could be determined 

'    x   y 
for each round by an application of the Chapman-Kirk technique to  (53) 
and (54).    However, for any computer run, any one or more of the eight 
aerodynamic constants  in   (52)  could be treated as a known constant 
rather than as a parameter to be determined.     For example,  (L.     was 

fixed at  zero  (that is,  ignored)   in all the present  computer runs. 

Note that in addition to 6,  \p and their derivatives,   (53)   and (54) 
involve five dependent variables: 

V,  p,  62,  u    and u 
2 3 

We have already given equations adequate for simulating V and p as 
functions of time, namely,   (37)   and  (50), respectively.    The squared 
yaw can be obtained by  (17): 

(u2 + u2) /V2 

2 3 
(17a) 

provided we know u    and u  .    Thus the ability to solve   (53)   and  (54) 
2 3 

hinges now on our ability   to generate u    and u  .    We proceed now to 
2 3 

derive the required equations.     Let 
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?    £     ^X'   F2'   F3)FP 

■    the aerodynamic force vector 

and assume that the only forces  acting on the missile are the aerodynamic 
and gravitational forces.    Then the force equation is 

f*t m  dV 
mat 

•        • 
m   [Oy  u2.  u3)   * ^HR)  xVlFp 

or.  by  (21b)  and (22), 

-(55) 

F    + mg sin 6    =    m  (u    - u    i cos  9 + u    9) 
1 12 3 

(56) 

m  (u    + u    it sin 6 + u    ii cos  6) 
2 3 1 

(57) 

F    - mg cos 9    =    m(u    -u    9-u    iji sin 9) 
3 3 12 

(58) 

We assume that the fixed-plane components of the aerodynamic force are 
given by 

m A    Cn V u 
1    D        l 

F    + i F 
2 3 '\{\ V + i CVI     pd    (u    +  i u ) 

pa      /      z 
.(59) 

where for the present purposes,  C.    and C        are considered known N N a pa 
constants*.    Then equations   (57)   ar.d  (58)   can be written as: 

Ms with C    ,  CM     and C. ,  we have 
P       P« w =     2 S 

El 
2V 

pa gd 
v 
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u     =    - A 
2 , [(v v v (M "3' sj 

-  (u    cos 6 + u    sin b)  * (60) 
1 3 

u     =    - A 
3 . [(v v \'(p d ^ v] 

• • 

where 

u 

+ u    6 + u    ifi sin 6 - g cos 8 (61) 
12 

.2^ (V2  - u2   - u2)^    =     (1  - 62)  V 
1 2    3 

Thus we generate u and u by assigning values to C., , C.,  , u  and u 
? 3 NN2O 30 ti a pa      ':u JU 

and then solving (60)  and  (61)   simultaneously with the yaw equations  (53) 
and (54). 

An alternative method for generating u    and u    follows at once from 

assumptions  (23a)  and  (24a)   that 4) = iK. and 6 = 0...    By  (16),   (25)  and 

(26) we have 

u      =    - V sin ii 
2 

u      =    V cos ij/ sin 9 
3 

These expressions eliminate the need for (60)  and  (61).    The only draw- 
back is that the resulting computer program couldn't be used in future 
cases where assumptions   (23a)  and (24a) are invalid. 

While we didn't use this simplification, we did ease the labor of 
computation by modifying the auxiliary set of yaw equations produced 
by parametric differentiation"!    That is, we replaced the functions f. 

in equation  (14) by approximating exprfsions.    The validity of this 
procedure depends, of course, on the adequacy of the approximations. 

One final remark:    a by-product of the yaw reduction is 62 as a 
function of time.    As mentioned in section IV A, a second drag reduc- 
tion could be performed with this computed a2 as input.     If the out- 
put of the second drag reduction differs significantly from the 
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original drag output, a second yaw reduction based on the new drag data 
should then be run.    For the present study, none of this was necessary, 

D.    The CG Equations 

The motion of the missile's CG along the trajectory is defined by 
the force equation: 

1U2   =    m^ 
dt2 

(62) 

We are interested in the range components of (62). Whereas in (30) and 
(55) we could treat the range system as an inertial system, here such 
simplification is not as defensible.  For the range (earth-fixed) 
system, the acceleration is given by 

d^ 

dt2 
[(x,y,z) + t  + tj.^ (63) 

where C is the centripetal acceleration, which we promptly ignore, and 

where C is the Coriolis acceleration, which we retain: 

s = 2:Ex^ 

where 

Up = the earth's angular velocity vector 

= Up (cos 6 cos 6 , cos 6 sin 6 , sin e.)R 

u  = 2 IT radians/sidereal day 

* 0.00007292 rad/sec 

and where 6. and 6. are known constants defined in the List of Symbols. 

If we make the approximation 

^ - U.y.z)R ^ (v, o, o)R 
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then the Coriolis acceleration is given by 

?    =    2 uE V (0,  sin eL,   - cos  eL sin eA)R (64b) 

Defining 

*    =     (Fx. Fr  FZ)R    =     (F^  F2.  F3)Fp 

and using  (21a),   (63)  and  (64b), we can write  (62)  in the form 

x    =    Fx/« 

y    =    FY/m -  (2 Ug sin eL)  V 

z    =    F_/in +  (2 oj    cos  6    sin 6.)   V - g <65) 

To obtain expressions ui  ^  ,  FY and F   , we assume that the fixed-plane 

components of F have the form already indicated in  (59): 

F      =     - m A    €_, V u 
1 1     D 1 

- m A    Cn.  V2 

1     DA 

-mA
1  (S    V+  iCN      Pd)   (U2 1   \      o pa       /       ^ 

F2  + iF3 -»A^C,    V.i^pdjtu^iu^ V(66) 

where 

■ {»- CDA     ^   1/   /   CD V  -52)CD 

axial drag coefficient 

For the yaw  reduction,  CN    and CN      were considered known constants  and 
a pa 

F    wasn't needed; here we assume 
1 
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^A    =    CDAo + CDA2 & 

CN      +CN      62 

aO 02 

:N      =    S        +CN        62 
pa pao paa 

where the six coefficients on the right-hand side are unknown constants 
to be determined by the Chapman-Kirk technique*.    The range components 
of the aerodynamic force are obtained by multiplying the fixed-plane 
components by the transpose of the transformation matrix given in 
equation  (20): 

F„    =    F    cos 9 cos ü/ - F    sin ^ + F    sin 9 cos di 
x 1 2 3 

F„    =    F    cos 9 sin ^ + F    cos ij/ + F    sin 9 sin to Y 1 2 3 

F    sin 9 ♦ F    cos  9 
1 3 

r (67) 

Substituting  (66)  and (67) in (65) we obtain the final form of the CG 
equations: 

A -i 
1 (v2 s*) cos  9 cos ii 

(V u ) CN    -   (pd u )  CN si 
2        a 3        paj 

in i- 

-»•       (V u ) CN    +   (pd u )  C       !   sin 9 cos I|I 

L        3        a 2        paj 
(68) 

'Since CDA =  (1 - 62) ^ - CDo +   (c^  - CDo )   6^ - C^ &\ where CDo 

and Cn    are well-deterrrr^^d from the drag reduction, we could,  as an 
2 

alternative,  consider CDA a knaJn function of 6Z
J  thus reducing to four 

the number of aerodynamic coefficients to be determined by the CG 
equations, 
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A   •< 
1 (v! c») 

. [(V u3,  CNo .   Cpd u;,  CNp J 

cos  6 sin \i) 

COS   Ijl 

sin 6 sin i)) 

(2 wE  sin 9L)  V (69) 

z    =    A sin 9 .IK) 
(V u3)  CN    *   (pd u2)  C^ 
■ 

cos  6 

+   (2 uE   cos  9L sin eA)   V -  g (70) 

The right-hand sides of equations   (68 -  70)  involve six dependent 
variables: 

V, p, u ,  u  ,  9 and i*. 

The first of these can be generated internally: 

V   ■    (x2 + y2 *  z2)*5 

The other five must be brought in from outside.    For the spin p, we 
used the linear expression given in  (50).    The variables u  , u  ,  6 and 

2       3 
i^ were obtained from the yaw reduction,  as described in the previous 
subsection. 

The aerodynamic coefficients and initial conditions of equations 
(68  -  70)  were adjusted by the Chapman-Kirk technique until  the solution 
of the equations was a least squares fit to the measured  (x,y,z)    values 

of the CG. 
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V.     RESULTS 

The results obtained in the present study can be interpreted better 
in the light of a little background on the four shell types. 

A.    Background 

The 90iiun M71 HE shell was designed to be fired from a 1/32 twist 
gun at Mach 2.4;  at lower muzzle velocities, the shell was known to 
perform unsatisfactorily.    The two rounds studied here (round 2-4203 
at 7°  average yaw and round 2-4204 at 5°) were fired at about Mach 0.93. 
At that muzzle velocity and a 1/32 twist, the gyroscopic stability factor 
s    was slightly less than unity at  launch, so that the shell was gyro- 

scopically unstable when it emerged from the tube.    However, the situ- 
ation fiike the shell)  took some turns for the better.    As the shell 
travelled downrange,   (.a) the velocity decay exceeded the spin decay and 
(b)  the static moment coefficient decreased with decreasing Mach number. 
As a result,  s    increased, eventually crossing the value 1.0, so that 

thp shell became and remained gyroscopically stable. 

The M71 rounds were fired and initially reduced in 1956, but the 
values obtained for some of the coefficients were known to be nonsense. 
The photographic plates were reread several times in the next four years 
in a largely unsuccessful attempt to improve the linear theory fit. One 
positive result of all these readings is that the probable errors of the 
fit in the present study are smaller for the two M71 rounds than for any 
of the other rounds. 

Before applying the Chapman-Kirk technique to the two M71 rounds, 
we simulated their motion on an analog computer,  using partial1./ linear- 
ized equations of motion.    This side investigation served two purposes: 
it satisfied our curiosity as to the behavior of a shell flying along 
the borderline of gyroscopic stability - instability ard it provided 
accurate estimates of the initial conditions required by the Chapman- 
Kirk technique.    For the other three shell  types,  however, we were 
satisfied to use a simple digital subprogram to obtain the needed first 
estimates. 

The M329A1  shell without extension was  a 4.2-inch  (107mm)   spin- 
stabilized mortar shell to which a subcaliber cylindrica    after-body - 
a boom - had been attached at the base  (see Figure 1).    This boom, 
about 0.35 caliber in diameter and 0.7 caliber long, was used to carry 
the ignition and propelling charge and to provide needed volume.    The 
boom served no aerodynamic purpose and it was hoped at the time that 
the boom would have negligible aerodynamic effect on the shell's per- 
formance.    Careful  experiments11 proved otherwise. 
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The M329A1 shell with extension carried, as its name might imply, 
an extension to the original boom, bringing the total boom length to 
1.35 calibers   (see Figure 1).    Tests11 comparing the M329A1 with and 
without the extension clearly indicated that the added length affected 
the aerodynamics, decreasing the stability and increasing the drag and 
the shell's tendency to fly erratically now and then. 

The M329A1E1 shell differed from the two previous types in that it 
had a longer ogive,  a shorter body, a boattail rather than a square 
base and a shorter over-all length (see Figure 1).    The boom was about 
0.31 caliber in diameter and 0.75 caliber long. 

B.  Drag Results 

A comparison of the BRL drag results with those of the GE Chapman- 
Kirk approach is given in Table II. The last column lists the BRL 
values of C  and C.  for each of the foui projectile types, obtained 

o     2 

by a least squares fit of the data for each round of the given type to 
the equation 

CDR = CD + CD ^BRL (71) 

o 2 

Although  additional  rounds of each Oi   ehe  four shell types were avail- 
able for fitting  BRL data to equation   ,1),  it was considered a fairer 
comparison to work solely with the twelve given rounds.    As a result, 
the  fits  for the M71  and M329A1E1   -    where there are only two rounds 
each - are exact and unreliable.    To make matters worse, the yaw levels 
of the two M71   rounds are roughly the same,  so that we can expect the 
slope to be poorly determined.     In fact,  only for type M329A1 with 
extension,  where there are five rounds  (albeit only three yaw levels), 
can we iegard the results of the fit with any semblance of confidence. 
In spite of all  this,  the BRL fitted values of C      aid CD    and the GE 

o 2 

Chapman-Kirk values  are not wildly dissimilar  -  they are,  so to speak, 
in the same ball  park - and perhaps that  is all we can expect  from 
such a meager number of rounds. 

One encouraging  feature of the GE   lata is  that the values  of Cn 
o 

and Cn    obtained arc approximately the same for each round of a given 
2 

type.    This seems  a necessary if not sufficient condition for trusting 
the results.    For each round, we can also compare C    (from equation 35) 

with the BRL range value C-    shewn in the next  to last column of Table 

II.     Here we find that the agreement is quite good when the yaw is small 
ana poorer when the yaw is large. 
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C.    Yaw Results 

The yaw results are shown in Tables  III  - VI.    The BRL values of 
Cu , Cu   and Cu     shown for each round are - for the small yaw rounds - 
MM M a        q pa 

the values obtained by the standard BRL epicycle yaw reduction1'2.    For 
the large yaw rounds   (8615,  8618, 8621 and 8721), the BRL reduction 
values were corrected to compensate for the fact that  certain geometrical 
terms in the yaw reduction - terms which are only significant for large 
yr.w angles - are ignored in the BRL reduction. 

Again it should be noted that all the coefficients C.    and C. 
q pa 

shown in these tables, both BRL and GE values, are defined (see equation 
51)  as half the coefficients designated by the same symbols in, for 
example. References 9,  13 and 14.    This disparity is unfortunate but 
necessary if the present paper is to be consistent with other BRL reports. 

For most of the rounds, more than one GE case per round is shown in 
the tables.    These cases differ in the selection of which parameters were 
fixed (indicated by an asterisk)  and which were allowed to seek out their 
optimum values.    As might be expected, the more parameters fitted, the 
smaller (with a few exceptions) was the probable error of the fit.    For 
three rounds   (8713,  8716 and 8981), GE assumed in one case per round 
that all the moment coefficients were constant.    This  affords a direct 
comparison with the BRL values. 

The last row in Tables III - VI lists the four coefficients obtain- 
ed by fitting the BRL data for each round of the given type to the equa- 
tions 

-\ 

URL 
Si     +CM      6e ao a2 

CM        +CM        6e 
pQl'BRL pa0 pci2 

L(72) 

where the constant 62 is an effective squared yaw, obtained as a by- 

product of the BRL yaw reduction.    The previous remarks on the fit to 
Equation  (71)   apply with equal force to Equation (72) :    the results of 
the fit are not too trustworthy but are least suspect  for the M329A1 
with extension  (Table IV). 

Round 8618 and to a lesser extent round 8621  (Table IV)  revealed 
a very strong Magnus moment nonlinearity.     In fact, by a separate 
computer curve fit program, we determined that the expansion 
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po pao pa2 pai« 

+ CM        6* + C,,        68 (73) 
Poe Pas 

was needed in these two rounds to obtain a reasonable fit to the given 
data.    Accordingly,  our main program was modified to allow for the last 
terms in  (73)     -    terms that are missing in equation   (52).    Unfortu- 
nately, we were unable to determine values for the two new coefficients; 
the process diverged on every attempt.    That is,  it was not possible 
with the present technique and/or the available data to determine more 
than three terms of the Magnus moment coefficient expansion. 

This situation should be investigated further.    A first step would 
be to analyze by the present technique the output of a six-degrees-of- 
freedom program that simulates the motion of a projectile with a highly 
nonlinear Magnus moment.     In this way,  the quantity and the quality of 
the experimental data needed to obtain a satisfactory fit for this type 
of noniinearity could be determined. 

D.    CG Results 

The CG equations   (68-70) were applied only to the two M329A1E1 
rounds  (see Table VII).    The values obtained for the normal force 
coefficient are in good agreement with each other and with the BRL 
values.    The Magnus  force coefficient  (which is  less by that ubiquitous 
factor of two than the coefficient labelled C,      in Reference 14)  is 

pa 
not very well determined.    The BRL values of the axial drag coefficient 
shown in Table VII were obtained by the approximation 

(4 :c-L ■ ""p) c™ 
using the C      values   in Table  III. 

UK 

VI.     CONCLUSIONS AND RECOMMENDATIONS 

We have shown that  for twelve problem rounds the Chapman-Kirk 
technique could be applied satisfactorily to free-flight, enclosed- 
range data.    However, before we can safely apply the technique on a 
steady, production basis to high-yaw rounds, additional theoretical 
study is needed.    A systematic investigation should be made, whereby a 
variety of trajectories  are computer-generated, suitable noise is intro- 
duced and the resultant data fed to the Chapman-Kirk system. 
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Some force and moment coefficients are more easily determined than 
others; for example,  those depending mainly on the frequencies of the 
motion are more easily pinpointed than those related to the damping. 
For a given force or moment expansion in 62, the coefficients naturally 
become less reliable as the order of the term increases  and shortly a 
limit is reached; when any term of order higher than this  limit is in- 
cluded in the analysis, the process fails to converge (or, worse yet, 
converges to wrong answers).    This  limit is a function of the number and 
accuracy of the observations,  so that any improvement in these factors 
(up to some point of diminishing return) would be helpful. 

It might be possible to determine hign order terms more accurately 
for a given set of data if the lowest order terms are fixed at good 
values.     In particular,  low yaw rounds  (say,  cü, < 3°)  should establish 

adequate zero-yaw coefficients  for use with the high yaw rounds.     In 
general,  the fewer the number of coefficients to be determined, the 
less  likely that computational  instabilities will  arise. 
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FIG. 2a i IS POSITIVE FOR A COW ROTATION OFTHE XY-PLANE 
ABOUT Z (THUS f AS SHOWN IN THE FIGURE IS POSITIVE} 

9 IS POSITIVE FOR A COW ROTATION OF THE Z'X'-PLANE 
ABOUT Y'(THUS 9 AS SHOWN IN THE FIGURE IS NEGATIVE) 
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