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ABSTRACT
i S ey

‘This dissertation formulates and reports upon‘%he implementation
of a rumerical system for the solution of hydrodynamics and radiation
diffusion as a multi-material problem in one éimension. A parametric
system,igﬂde;eioped iﬂ whi;h'tﬂe program parameters &ay be dynamically
altered and studied as to their worth and effectiveness. The system
is designed specifically for use within an interactive man-machine

environment wherein the user becomes an integral part of the final

solution.
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INTRODUCTION

The largest and fastest computers have always been used for the
solution of purtial differential equations, especially non-linear
equations which are used to describe some physical phenomenon in time
and space. Computer programs for this class of problems are large,
and their creatlon requires a joint effort of many individuals over
long periods of time, most of which is consumed by the debugging
process. Once such a program has been developed, its use requires a
great deal of data to specify the desi‘ed physical system. It also
requires an intimate knowledge of the workings of the program and a
vast amount of intuition and experience into the mechanics of the
physical processes involved. Even without difficulties, such problems
run for hours at a time on the most modern computers in the typical
batch mode. At some time after what may develop into days and weeks
of aborts, restarts, parameter changes, program patches, reconfigura-
tions and the like, the user finally acquires several edge feet of
printed output and perhaps a few computer generated graphs which repre-
sent the solution to his problem. He must then examine, plot and
otherwise become familiar with this output data and make judgments as
td its validity and applicability within the constraints of the system

being designed or simulated.
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With the advent of multiprogramming, time-sharing and real-time
problem solving at a remote console, new hardware and software tools
are being developed to allow the programmer and the user to become an
active part of the checkout and running process of a program. While
this document reports on the development of a medium size program
within the rudiments of such an interactive environment, its primary
emphasis is placed upon the derivation of a numerical system for the
solution of hydrodynamics and radiation diffusion as a multi-material
problem in one dimension. The system is developed parametrically in
a very general form. Thus, the user is able to dynamically configure
the system into a form best suited for his immediate needs through
the program parameters. The technique is not unlike that of adjusting
and tuning a fine piece of complex mechanical equipment. It also
inherits many of the disadvantages of such mechanical systems, primarily
the difficulty of dynamically changing the program. More will be said
on this and the requirements for man-machine systems for these types
of computations in the concluding chapter?

The development of this system has taken place over the period
of some three years. During this time, a number of preliminary computer
programs and interactive graphical display systems have been written
and developed. The work on this system originated at Los Alamos
Scientific Laboratories in New Mexico. It then moved to the University
of Utah and subsequently to Montana State University. Computer programs
of the system are currently operational at Los Alamos and at Montana

State University through remote graphics facilities in connection with

the University of Utal.




Over this period of development, many ideas and techniques have
been explored, tested, accepted and rejected. This is particularly
true with respect to the physics and the subsequent numerical treat-
ment of interface conditions. As program parameters were tested and
as comparative analyses were made with other systems and solutions,
both analytical and empirical, different techniques and features were
incorporated. These changes are the results of several years of
experience and formal education not only in the areas of physics,
mathematics and analysis, but also in computer science.

In chapter 2, the difference approximations to the partial
differential equations are derived and the complete system of solution
is presented. The remaining chapters are used to give the details of
the auxiliary calculations. The volume and mass center calculations
are given in chapter 3, and chapter 4 discusses. the time step selection
procedure and the associate restrictions and control parameters.
Chapter 5 deals with the material properties and the calculational
aspects of the various thermodynamic and opacity coefficients. Chapter
6 discusses the various ways of specifying and’' calculating the source
terms, and chapter 7 is . summary of calculational results. Chapter
8 concludes with some comments on future research areas, particularly
with respect to the man-machine systems alluded to above.

This chapter is concluded with definitions of the symbols and

units cf measure used throughout the remainder of the text.
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1.1 Nomenclature

Symbol Description Unit of Measure
A area ©oocm
b' gas constant | j/Kv-gm
€ internal energy per unit mass j/gm
E internal energy b
m mass gm
) pressure j/ce
r radius cm
s source per unit mass j/gm
S source i
t time sh
u velocity cm/sec .
v specific volume ce/gm
Y volume ce
X space cm
; velocity cm/sh
; acceleration cm/sh2
o density gm/ce
8 temperature Kv
¢ fourth power of temperature Kv4
K opacity cmz/gm
x Rosseland mean of the mean free path cm




1.2 Units of Measure

gm gram

cm centimeter
3 jerk

Kv kilovolt
sh shake

1.3 Physical Constants

a radiation density constant

c velocity of light

1.4 Conversion Factors

1 atmosphere = 10_10j/cm3 = 10—3 kilobars
1= 1016 ergs
1 Kv temperature equivalent = 1.16049 X 10

1l sh = 10_8 seconds

7 ox

.013732 j/cm—-Kv4

299.7925 cm/sh
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2.
SYSTEM OF SOLUTION
FCR

HYDRODYNAMICS AND RADIATION DIFFUSION

A set of difference equations and a system for their solution
is developed for hydrodynamics and radiation diffusion. The momentum
equation 1s differenced in a natural way assuming an average density
at the interface in lieu of the standard area over mass technique.
Thus, an actual pressure gradient 1s computed between pressure points
calculated at centers of mass.

From the beginning, the goal was to difference the energy equa-
tion in terms of the temperature to the fourth power. This approach
was selected because it appeared to be the most. natural and least
complicated in contrast with the more traditional differencing schemes
in terms of the temperature or change in temperature. A fully parameter-
iz ed system was developed in very general terms. This permits
detailed studies into the effects of time differences, interpolation
and extrapolation functions, smoothing functions and the like. 1In
addition, an iterative procedure is employed to. preserve the non-
linearities with respect to the energy derivatives, pressure and mean
free path. '

The complete set of difference equations. together with boundary
conditions are solved in a well defined sequence over an incremental
unit of time. The solution is represented by temperatures, pressures

and densities as functions in time and space.
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2.1 Partial Differential Yquations

The mass, momentum, and ene-gy conservation equations are solved
together in a Lagranglaa system where the motion of fixed mass points
is followed in plane geometry. The substantial derivative forms of

these equations in vector notation (1] are:

-3% = -p (V'u) (2.1)
du

p dt - -Vp, (202)

o &€« p(viu) - 9§ +0 82, 2.3)

where the viscous pressure and gravitational terms have not been

included. The Rosseland radiation diffusion equation (2],

3--%27%. (;‘l‘)

is used for the flux term and the standard conduction term is onitted.
Equations (2.1) and (2.3) are combined to give a system of

equations for hydrodynamics and radiation diffusion.

du

° 3¢ = “'es (2.5)
de dv .8¢ — ds

P aE * PR + v 3 AV + Crrllit (2.6)




2,2 Hydrodynomic Differsnce Equations

Equation (2.5) {s differenced fo describe the motion of interfaces
defining the constant mass zones. Figure 1 illustrates the differencing
scheme where the center of mass of a zone, denoted by the half index
iH4, gives the position of the temperature, pressure and density. The
interfaces delineate the mass zones and are referenced through the
integral indices i and i+l. Note that these interfaces are fictitious
interfaces arbitrarily coustructed to obtain difference equations repre-
sentative of the actual differential equation given by equation (2.5).
Real interfaces between material types are maintainc. and included

within the difference scheme.

Py 4+ Py+1k
%% 8+ 8141y
Py Py Pi41k
Py-y 014y P11y
—WW———tt——t—
X0 *1-1 x, X4 X142 N
Fy T141
Ay Mn
N e —
bxy Axi41

Figure 1




The acculeration, velocity, ond spatial coordinates are calculat
explicicly at each inturface through
n n n n
en Vi Y Vi Pily " Py .
m +m axy (2.7)
1+, 1-Y i

L nHs n-h
X L X074 Wy e 7, (2.8)

n
vhere the suparscript n daenotes the time tet with

(2.10)

Equation (2.7) s the one-di;

which describes the motion of the inLerfaca at xi between the adjacent

mas:. zonus whose centers of masg

are at xi_% and x1+ﬁ. Given the new

+ +
$'ace coordinates »" 1 and x?:i, the new volume V: ; i1s calculated

taking i{n:o a:count the dimensions of the zone 14+,

The program {s capabla of calculating the volume elements in one

of three geuvmetries: plane, cylindrical and spherical. Ip plane

goometry, the radius of the container, of:en referred to as a pipe,

may be constant or change in a linearly continuous or discontinuous

fashion as ghown in figure 2. Thig flexibiliey in Cross section per-

mits actual Physical systems to be modeled more accurately with respe.:t

to volumes and areas, Introducing a twvo-dimensional affect. Note

however, that the PTOgTan Jassumes that the user will proceed with

caution and good physical intuition.

ad

the followtag Sequence of equationsg:

‘ensional difference form of equation (2.5)
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Figure 2

Tie details of these calculations will be presented later in
chapter 3.

Given the new volume, an avaeroca density

on+1 . mi+ﬁ» . |
i+ vn+1 vn+1
14y 1+,

(2.11)

and change in specific volume

vn+1 n

-\
n+; i+ b
Avi-’*’ - _-ﬁ:.i;_.ﬁ. (2.12)

dre calculated for use within tie diffusion equation.

The motion of the boundary interfaces is dependent upon boundary
pressure conditions of the form
P~ a(t), (2.13)
where p(t) ls given by a user supplied subroutine. Thus, at sputial

position 4 ~ O,

n n
e E’i‘_’ﬂ , (2.14)
3 ' (xg - xg)léo
L e s = e ———AEEY ]
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and, likewise at 1 = N,
n n
=n _ on Py p(eD)y | (2.15)
x - v e ot S s et
¥ N~k (x2 - x" /6
N N-Y& N
The velocities and space coordinates are calculated using equations
(2.8) and (2.9). The change in volumes at the boundaries, AV8+H and n
L3
AV2+H ate then calculated over the respective intervals (xg. x8+1) and Lp
(x? ! x§+l) in order to obtain the work dona by the boundary pressures [
upoa the adjacent zones. These energy terms .
v
B
¥y o0 ondy
ASp0 Pt £Vy °, and (2.16)
ASPPM’ - -p(tn)‘, Avr\1'+‘; (2.17)

are simply added to the source terms of the first and last zone, res-

STt . -

pectivaly.

FF

2.3 Radiation Diffusicn Difference Equations

The integration of equation (2.6) over » homogeneous volume element

”“"“Ll
A

[y
and the application of the divergence thuorem yieldy '?F
-_‘_.- g.‘_’...a_f. 3 ... g—':- Ind &
LI ™ g T3 AAV@ NdA +m ic 7.18)
In one dimension
o Fallm N8 .
Ve n JX’ (2019)
therefore,
deds, foe ] ay .ts.c_f-it ds
=TT T Pl av“’]dc 3 A"ax A+ 3 (2.20)
with thy sig~ being determined by the direction of integration.




The time advancement scheme is parameterized so thet the range
from explicit through fully impiicit differencing can be examined.
This generallzed differencing permits a detailed analysis of the
numerical processes including stabilicy questions [3]. Also, direct
comparisons Letween the explicit, implicit and time-ceéntsred schemas
can be made dynarically with the same program on the same physical
problen.

The finitu difference form of equation (2.20) for a typicel
interior zonu {is:

athy
v Y |
14 BY 3 “ k+l -
( ) v (z. I’ *’,““’f "1 Y141 (‘mk °1+*s)
14y
n+l
k. k+l
n
u 2 - & ¥ g.nﬁ k nﬁ
ARG C TS TN Y R n-% 1+& (2.21)
g t
vhere the superscript k denotes the iterative value, and
k k n+l
r u"“s f
i R b B b (2.22)
Ty 14y 1*41
kf&; n+} % P n+l k-1
28 sl (i% (6,¢) + (l-w l (2.23)
1+ 11+ 14y

12




Tl L

nil k 0+l k-1 ntl
(2v\ (%% (0.@)) + (l-uz) ‘%&) - (2.25)
’HJ 2 | 144 1H4
n+5 . n+l n
Poaiy P +p 14y (2.26)
k -1
+1 +1
p;r:ll - ‘_3 k ‘p (e,u)) . + (1“03) P?ﬁ . (2-27)
= intl
™. he /-*% ™ (2.28)
|1
as, .. « P 45C ). (2.29)
1+ 4 r&*ﬁ

The functions F% (5,0), fﬁ (6,0), p(9,0) and the ratio f% are piven in
section 5.1,
The mean free path at a typical interior interface,

k B ntl k-1

. . -n+l
4 i‘(el‘H' L P ymty? Di*ﬁ) + (l-w‘) Ai s, (2.30)

is a velighted average refle.tive of the conditions near the interface,

the details of vhich are given ir section 5.2. The source term consists

of a space-dependent part, Pt' often referred to as the pover factor,

and a time-dependent part, 48(t). Both are discussed in section 2.5.
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The weights, G Gy Way and w, are used as smoothing parameters
to dampen out the discontinuities introduced by linear interpolation
within che Equetion of State and Opacity tables, A typical vaiue for
these weights Is &, although it is to the user's advantage to use a
value of unity it the tabular values are smooth or if a continuous
function is being used in lieu of the tables. This will usually
decrease the number of iteracions required for convergence. Oa the
other hand, more lampening may be required at times in order to get
convergence at all.

The finite diffurence equations for the boundary zones are deiived

assuning that the temperature boundary conditions used zre of the form

»

A

ad 4+ § 3: - (2.31)
with
lal + |&] ¢ 0. (2.32)

In terms of the derivative, equation 2.31 becomes

. o ’\Oh:

i . (2.33)
> &8 - 3 (XB - xo)lso

3 tee = 0O ¢.._

e . B NN (2.34)

5:‘. + ’l:’, (X.‘: - xx_.’)/csx

at each of the boundaries, respuctively, oy making use of the following
first order approximations for ¢ at the boundaries in conjunction with
equation (2.31):

A - A -.ai - -» lt = [ 5
& = % : (XH x0)160 and o = Oy, + %, (xN xu.,’)/éN (2.35)

ox
4 0
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If 6 =1, then it Is not exactly corract to speak of ¢ at the
boundary for it. pesition 4s the same distance from the boundary as is
the adjacent zons temperature, but in the opposite direction. The
technique i often referred to as the introduction of "fictitious mesh
points" about the boundary. The scheme most nearly approximates the
gradient at the boundary as 1if there were an additional zone ertunding
out from the boundary whose temparaturu (flux) and pressure profiles
are those as given by equations (2.31) and (2.13). If § = 1, then the
boundary condition {s said to apply exactly at the boundary.

The user is required to supply a subroutine to calculate a, 8,
and y at each boundary. They are either constants or functions of
time and/or thermodynamic variables of the boundary zones. For example,
ifa=l, 8«0, and y » [0(:)]6. then, the boundary condition will be
4 temperature profile. If § = 1, then this profile is imposed directly
upon the boundary interface. This type of boundary condition implies
that the boundary zone is adjucent to a reservoir of heat that can supply
or absorb encrgy to or from the boundary zore respectively, yet maintain
a pradetermined ‘emperature ragardless of what the boundary zone or any
other zone in the problem does. Thig boundary condition is often used
to facilicate coupling the results of another compuier program to this
prograns.

‘n the same wanner, 1t a = 0, 8 = 1 and v = 0, then no energy will
be allowed to cross the boundary. Thus, a perfect insulator at the
boundary can be easily specified, or a symmetrical problem can be solved

wore efficlently by doing only half of it. 1In other situations, it is
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desirable to specify the flux or the rate of energy into the boundary
zone. This can Le done by setting a = 0, 8 --%5 X and y = F(t) where
F(t) is a flux profile. The mean free path, X, at the boundaries is a
function of the boundary temperature and/or boundary zone temperature,
and the boundary zone density. Again, the details are deferred to
section 5.2.

The derivative expressions given by equatioans (2.33) and (2.34) are
substituted into equation (2.20) to obtain a finite difference approxima-

tion to the energy equation for each of the boundary zones. The complete

system of equations, cne for each zone temperature, forms the tri-diagonal

system:
o BN O feel™  an [l kan ok R

i s (Be), T %0 B T 1y

[ ge |72 T

be n _ - - -] 4t
" M); b+ (1-0) [ (yy uydo, + Uit " %o | Tk

3 | e
k' n+s

_ ek ats _ k ontl | k,.n¥4 nHy

- p)x, vy Sig  * ST+ aspyTt . (2.36)

K

- Gkt k+lén+1 & L SO TS ns + g, k+1¢n+1

4 1-g { 15|80 |, Mi41 1+

n

k n+l k+l n+l a¢ P4
i+

k
Uil $iadl T PLak ('AT
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n e
R A P B PE Dl B =~
k n+s
Ae nts |k, otk
- (= +p av + A8 3 (2.37)
Av 14 i+ i+
k n+l k+l n+l k n+l pe \H abl| K1 otl
= e Onot T foug g Fomy + ou $ =
N-1 N-1}3 N-1 7 Ty-ly ¢]N_;§ N "
k n+ls n , .nHs
Ae n At
Nl {20 ) dvag *Am0) Ly bqy T Qg o) bty 2¢O
k nts  nHs k
-4 k n+l n+ n+s
[ av +p r L\.VN_15 t 9y + ASN_% + ASpN R (2.38)
with
k n+l k n+l k n+l
UO = wo ao ’ (2039)
k n+tl k n+l k ntl
ac ksntl ntl | nty
kot 30 fo
0 k.ntl k n+l ,.n+l _nt+l .
80 - 9 ( - xo )(/IGO (2.41)
k nt+l k n+l k n+l
My Yy ay ; (2.42)
k nt+l k n+l k n+tl
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ac kx!‘ﬁ‘l k n+l Hsg .

o
R 2 &
N k. n+l k n+l , n+l
sN + g (xN

(2.44)
n+l
. xN"lf ) /GN

2.4 Implicit Solution for Radiation Diffusion

The solution of the tri-diagonal system represented by equations
(2.36), (2.37), and (2.38) is an adaptation of the Gaussian elimination
scheme for diagonally dominant systems [3]. Note that when o0=0, that
the ¢'s can be obtained directly, but this fact is not exploited, and
the following scheme is a generalization for all values of g.

Form the terms

k inHs -1
- n+l {ég _ _atl
X {;pl +omy ey ouy (2.45)
L ) %
k n+l
Y, =0 X (2.46)
| k ntk : n', n+s
) iy n At
k(, nHs
5 nts  kontl  k nt -+
& + p ) AvLj o Xyt oAS T+ asp,, X (2.47)
and
k n+s -1
n+l Ae n+l
xi+l opy (l—Yi) + mi'*‘»ﬁ A% + oMy (2.48)
i+
Y I (2.49)
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k’AE s n
i1 = Py t?&'& e bip T 1m0 gty o= Gy Fuga) b
(2.50)
S 2™ Elae , ) Avn% + Kagt™h kf‘*l Z,> X
: 1. 1
i+l Ti+lls AR Av 14 itk 144 i 441
for 1 = 1, 2, 3, ..., N-2. Then calculate
k s
k+1,n+1 ( Ag n
== -C =
N U Ny (B, T R T T L A D
n , nthy k n+
+ Xy ég_wr - (-’?—5 a2 p) Avgfg + ckx“+l kAs +L‘ + ASp n*'%
At_n 3 wy N"Hi
+Hs -1
k o+l o el Sk n+l
* o1 lewc”’ Yy-1? Oy ¢N1+ Hy (2.50)
. -k
and
k+1 K+l .
nt+l n+l
¢i+‘»z. Yi ¢1+11 + zi (2.52)

P

for { = N-2, N-3, ..., 2, 1, O.




Ty

SR S —

20

2.5 Time Advancement Procedure

Figure 3 is a simplified flow chart which 1llustrates the order
in which the combined hydrodynamic and radiation diffusion calculations
are done during one time step. Note that the hydrodynamic calcul:tions
are done first and are based upon the pressures from the previous time
step. The radlation diffusion calculations are then doue using the
new volumes resulting from a change in position and length of the res-

pective mass zones,

o
Initialize | | Calculate , Select Calculate
next S*”f accelerations | minimum - velocities
time step I time step slze & spatial
coordinates
K o
]
!
! Initialize
Update Calculate __ |pressures, energy | Extrapolate
energy sums fixed “lderivatives & | for initial
source terms mean free prths temperatures
. -
yes T }
" | Calculate Up te
temperatures ™, temperature N Calculate |__pressures, energy
CONVErZaEnt - no dependent temperatures derivatives &
3 source terms mean free paths
e
i S
| Y
Figure 3
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The time step size {ig determined by a set of user controlled
stability and accuracy criteria, one of which is dependent upon the
accelerations, Ch.pter 4 1is devoted completely to a discussion of
these time Step restrictions and the Procedure used to determine
the optimum time step increment for the current stability require-
ments and the degree of resolution and accuracy desired,

Subsequent to selecting the time step size and calculating the
New spatial dimencions, an extrapolation scheme ig introduced to
provide initial temperature estimates, Its purpose is to reduce
the number of iterations through a linear Projection of the Previous

temperature change:

0 _n+1 At n n-l\ n
ew5 -\»ZZE:Q ewI - 61+%/ + 61+& (2.53)

The extrapolation parameter v will typically vary between 0 and 1 with
0, % and 1 being the more popular values. Further comments with examples
are given in section 7.1 with respect to itg use,

Given an initfal t.mperature estimate, the quantities

0 n+l 0 n+l

(fg) - (§~g- (0,0) ) (2.56)
i+ 1+4

] n+l 0 n+1

(f’&) 5 (f?s %0 ) (2.55)
14 ' 1+4

0 +1
OPII; E { F(8,0) ):+% | (2.56)
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are then calculated for each zone in the normul ma, ner without any

smoothing paraxeters, Likewise, at the interfaces

0 n+]
0. n+l
0 n+1 g

n+l
A * @, ., 8,..,0 s D for 1=1, ..., N-1, and  (2.38)
i 1=Y" Ti+lgr Praag 0440)

jntl
.x. ﬂ\:...:, QN-")’, . (2059)

4

All initial values, except the Source termy, are now available to
&tart the iterative process fur radiation diffusion. The calculation
for the source terms {g complicated since there are four ways of
introducing energy into the problem. Two have been discussed, the
imposition of boundary temperature (flux) and Pressure ;rofiles. Note
that the boundary temperature or flux profiles do 1ot directly result
in a source tern calculation. 1In this case, the energy transfer is
implicitly included in the energy equation. However, the net flow of
energy across the boundaries due to the imposition of temperature and/or

flux profiles is simply:

’ +Hy
n‘Hj x . - -'n+l _ - n Atn
Asgo v ug®, xO_J + (1-g) u0¢% Xo ::;:; 5 (2.60)
‘ n+l n Atn+k

+ (1-0) Xy = “N‘N-k z:;:g , (2.61)

The other two source term forms are discussed ir, chapter 6.
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The prozess iturates as shown in figure 3 until the temperstures

converge to a stable valuu. That {s until for each zone

ktloatl b ool
L T L LI (2.62)

k5n+l

1+
given some usur specified epsilon. Since convergence in not guaranteed
there is an uppur linit upon the numbir of so called tamperature itera-
tions. Twenty is a uominal naximum number of iterations, but rhe number
wmay be altered by the user to fit his problem. In particulur, the limit
may be sat tu uvaity, riducing the calculations to u# non-iterative pro-
cedure. The user may also recuce the time step size if the number of
iteration: per time step becomes excessive or i/ the temperatures do
rot converge below the specified epsilon of cenvergence. 1n additicn
te the time step size restriction parameters, several of the other
averaging. smoothing and extrapolating parsrmeters discussed above affact
the rata ot convergence and -he number of iterations ruquired for coaver-
gence. The ability to chanpe these parameters dynarically make it pos~
sible to give the user the answers he desires in a most optimum way.
It very often provides the only ‘ eaas of getting past a particularly
difficult part of the problem. It also provides %he means of getting
over particularly stable portions without excessive computer time. Thus,
the program need not run always with these parameters set at worst case

levels.,
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The last step in the tiwe advancement scheme {s the updating of

the energy ter-s. These t:rus are calculated and displayed as a means

of Leeping :rack of energy conservation. Thus, the following total and

par.. .l sums are saintained:

(2.63)

SE™ o3 5 as™E L™, espm 4 a5 MY 4 pg 0t (2.65)
n' l' 1911 0 " eo Ox

For enargy conservation, it should be the case at all times that

1™ 4 g™ L gt (2.66)

This will never be the case, hovever. Just due to normal truncation

and roundoff errors within the computer, these sums are predestined to
not add up correctly. 1t is the relative difference which is import-
ant for the user to meaftor. He can effect control over this difference
primarily through the convergence parameter and the time step restriction
factors as given in chapter 4, The energy conservation and computer
time are very real trade-offs. It has been my experience that tight
energy conservation will not always give significantly different results.
It seess to be important only at certain times within the problem, Many
of these are known a priori with respect to, say, the charanteristics of
the users energy-time profile imposed upon a boundary or a set of zonec.

In the muin however, the user will only tighten-up certain parameters as

the need arisgs.
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3.

AREA, VOLUME AND CENTER OF MASS CALCULATIONS

After the sccelaration, velocity and space terms are advanced in
time, new zone volumes are calculated in order to determine tiie changes
in specific vulume over the s ime time interval. These changes are
indicative of the amuunt of tnergy converted into kinetic energy due
1o pressure gradlents. ludeed, ft iu of great importance to monitor
the amount 0! energy converted and its rate of conversion into or from
kinetic energy. This elergy appears as shocks or shock waves and their
characteristic prussure peaks can be dynamically displayed upon a CRT
terminal. The user i{s then able to wonitor the motion, distribuction
and effects of such shocks in direct relation with concurrent displays
of temperatvre and density tetms. Of special interest are the changes
in volume at the problea boundaries. It is here that external forces,
in the fcrm of boundary pressures, puap kinetic energy i{nto or out of
the problem. Iu addition, the motion of zone boundaries requires that
MoV zone masy conters nmust be calculated from which finite difference
tems can be forzed to describe the transport of energy from one zone
to the next by the diffusion of radiation.

The purpose of this chapter is to g8ive the computational dstslis
used for determining the volume and mass centers for each zone. Each
of the three geomutrics is discussed.

3.1 Plane Geometry
In plane geometry, the space dependent radius adds to the com-

Plexity of the ares, volune and center of mass determinations. First,




let me point out that the cunter of mass we wish to deternmine is not
(in general) wquivalent to the center of gravity. Instead, it is the
point on the ax’s vhich divides the z(ne in half with respict to ics

voluse and connaguently ity mass since it is assumed to have a uniform

density. Secondly, note that equations (2.7) and (5.36) require such a

division.

Unfortunatuly, cime has not alloved an exact division for the
case in which the radii changes linearly with respect to space. Instead,
the center ot gravity was calculated as an approximation for the center
of these secticns. I refer to such sections as truncated frustrums or
trapezoids of revolution.

The user must provide a description of the container. This is
done independently of the initiel spatial description of the =aterial

within in the form of & space profile of radi{ and space pairs

(tpj 1 xpj). B = el .ony Bl (3.1)
such that
x ‘ x . (302)
pj pj*l
and r > 0. (3.3)
P
The volume of a zone delimited oy interfaces at x: and x2+1 at some

time t = t” s chen given by

Vn - 2 Vn 5 (306)
14 kod 0 k

with

Va -9 &’? Eﬁ . (3.5)



62 e x - x for k = §41, ..., 1=l 3.7)
LI R N
n by
bﬁt x‘bl xpg-l 5 (3.8)
4 )
(™ 1 ¢ - r
G ! Pl-r. 7
n,2 n 2
/3 j(r)" +2r,r. + (r ) if r v g (3.9)
1 ipy Py Py-r - Py
(( 2 41
r ) r - ’
g Py-1 Py Py
k1/3[’.‘ )2 +r r + (r )2] if = ¢r
k-1 Py-1 Py Py Pp-1 Py

for k= §+1, ..., =1 and

g = (3.11)

. x g x" < x . X < x" 1 S xp (3.12)

for soma § and ¢, | - Js t 5.
In the special (and most often encountered) case for which

n n
X 4 X 7 X4 < xpj . (3.13)




n n
V“_,’ AL T CJ : (3.14)

wvhere

n .2 n n
(rl) for r Tl °

g - (3.15)
L n .2 a.n il (2 n n )
]-1/3 [frii By, Tt (r1+1) ] for r - Yiel
In borh cawes,
(rp = rp )
fpe o - x ) AT 4 (3.16)
i 1 (R (x - x ) P
sl pj pj'l j-1

If the restrictions given above in equations (3.12) or (3.13) cannot
be satisfied because part ors all of the zone lies outside of the pipe
profile, then the formula above is used equally well to ext-apolate for
the interface rudii. In these cases, either equation (3.4) or (3.14)
apply depending upon whether more than one (the last) pipe section is

]

involved. Care must be taken to iusure that r; *Ofwall dm], ..., W

The zone center is then given by

b | -n
x - k'jfz % V: (3.17)
1"", L 0 ' e
K 12‘ \k
=4, L
with i
B(x  + x) uf r =r ,
o n . Py-1 Ty -
x - L]
d g(z.ﬁj)z [3 e’.? + re o+ 2(r )2]
‘L— pj +x" fr - r
1 P Py’
L 12 v? 4-1 4




for k = j+1, ..., 2=l and
-
W(x™ - x ) 1f - r R
n il /¥ Peey Py
X = - (2.20)
o ¥h Ay [3 3 T TR )2]
=l e 4 +x ifr $r
. 12vy Py Piel Py
or i1f (3.13) applies,
o n | &8 n
- Bl +x) Mrgar,
X < - )2 [;rn)z 2t b )2] (3.21)
x1+5 { Yy Ty41 i+l ] n n
+x, ifr, b ¢ B
e 12v? 1 i7" '1n
2V
i+
1f restriction (3.13) applies.
The area of a typical interface is simply
n n, <
Aj n(ri) . (3.22)
3.2 Cylindrical and Spherical Geometry
The calculations for cylindrical and spherical geometry are much
simpler than that for plane geomatry fo- there is no analog to the flexible

cross section allowed therein.
For cylindrical geometry

AV & 255" h 2

y « 2m (3.23)




where h is the height of the cylinder as supplied by the user.

For sphericali geometry

A;‘ » an(x‘;)z , (3.26)
YT [ R A 3.27)
1+ 3'L“1+1 *4 , 3.
and
"
1/3
n ) n k) n,3

3.3 Change in Volume at the Boundaries

As required in equations (2.16) and (2.17), the change in volume
at each boundary is calculated in a manner not unlike that given above.
Since the boundary volume element is regarded as a change in volume,

the sense or sign of the change is important. Note that the volume at

boundary { = 0 must be calculated over the interval from xg to x8+1.
If xg+1 < xg. then the interval ie thought of as having a negative

nHy

length it order to determine the correct sign of AV0 « The same care

and consideration is given to the other boundary. Note that if

+5

t\\'g‘q1 > 0 and/or AV: < 0, then work is done on the system.



e i il e i e il i :
e - — ' I : e! edndkim?

4.

TIME STEP SIZE DETERMINATION

A number of restrictions are placed upon the time step size for
purposes of stability, resolution and convenience. Each is discussed
in detail with respect to their effect upon. the solution and each is

controlled directly or indirectly through user specified parameters.

4.1 Courant-Friedrichs-Levy Hydrodynamic Stability

Criterion ([3]:

(Axn+l

nHs _ . nHi | nin iHs
= i 1) e (4.1)

Si+!§

This restriction prohibits the shock front moving at a velocity u
from passing completely through any one zone during the time step. Note
that Axn+1 and un+l are not known at the beginning of ' a time step. The

i+Hs s
i+
zone width is an explicit function of Atn+% and the shock velocity is a
function of the resultant pressure and density, the details of which are
given in section 5.1, equation (5.25).
The procedure used to determine the Courant time step, therefore,

is to estimate an initial value
Axn
n+s min i+!
Atc cfac i ——:c-f—usn . 4.2)

with 0 < Cfac < 1, and then check after the initial extrapolation and

each subsequent iteration that

n+1
ats _ n+% _ min Jﬁ its (4.3)
e i Y n+l
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If at any time during the iterative solution it is found that

< Atn+%, then an error message is displayed and the program 1is

kAtn-i—"g

c
put into a waiting mede. The user is then expected to initiate a cor-
rective procedure which will enable the program to continue in a stable
condition.

The corrective procedure may be nothing more than reducing the time

step size directly or indirectly through the parameter C and then

fac
backing-up and restarting the current time step. It can, however, involve
a detailed examiration of the conditions of the offending zone or zones in
order to understand the mechanisms creating the instability. More precise

solutions may'then be directed at the particularly sensitive variables

inVOlved.

4.2 Hydrodynamic Zone Increment Change Restriction

i S
Hfac 3 i 1- n : (4.4)
] Axi+1/2

This is a restriction on the fiactional change in the length of a
zone, with 0 = Hfac < 1. .Its primary purpose is to minimize the discon-
tinuity in the distance between zones and the volumes of each zone frem
one time step to the next. It also prevents a complete collapse of a
zone, and, in particular, the inversion or .crossing of adjacent inter-
faces. In addition, this restriction eliminates most of the problem of
mismatched zones with respect to their mass ratios. The problem arises
during a given time step when a massive zone crushes and collapses a

much less massive zone before the latter is able to build up a resisting

Lo o Y ('S




33

pressure. Ano£her difficuley witﬁ adjacent zones of widely differing

masses occurs when an average opacity is calculated ‘at the interface

between the zones. This problem is discussed in detail in chaptér 5.
A time step increment satisfying the restriction given by (4.4)

can be explicitly calculated once the acceleration terms are known

since

n+l n+l 2n+l

Mg T Xpn Ty

S R
41 T
sn-l e a+s
+ (ﬂi+l i ) At
1
+ (}\n _ ;;n> Atn+5§ (At:n.’wli + Atn /5) (4.5)
Titl i 2 0

using equations (2.8) and (2.9). Thus,. a maximum value of tn+% needs

to be found such that

. 2
lai(Atn+%) + b, Atn+%‘ ¢, (4.6)
where
8y = G- &, 4.7
e 0 -L
by = aat” C 4 (177 - T, (4.8)
Il
€ * Hege Axi+% ’ (4.9)

for i =0, 1, ..., N-1. A solution, At§+%, of the system represented by

(4.6) is in general a quadratic root depending upon the values of the

coefiicients ass bi and cy Since ci >.0, it 1is possible to show that

-



w ' if ai=bi=0
cy/ Iby if a,;=0, b,#0
1 a,>0, b,20
-bi~-r(-u;’:+4aici)ﬁ s :
Zai if ai>0, bi<0’ bi—éaici<0
nts  min < 2
e, F = A \ai<0, bi>0, bi+4aic120 (4.10)

' 2
ai>0, bi<0’ bi~4aicia0

1 . 2
7 ir ai<0, bizO, bi+4aici<0

=

ai<0, biSO

The user can dynamically change the importance of this restriction

through the parameter Hfac » rezoning if necessary when the restriction

is too greatly localized at one zone.

4.3 Temperature Change Restriction

s ns

1
At < At B

6" fac 1 IG

(4.11)
iHs l

This restriction, not unlike the others, is added to reduce the
truncation error and give better resolution and accuracy when desired.
Usually, 0 - Tfac < 1, and the parame;gr-ep is a reference or base
temperature above which the restriction is to be applied. Both parameters

may be set dynamically by the user ¢o best suit his requirements at any

time throughout the solution of his problem,
Specifically, an economic trade-off with computer time consumption
per unit of problem time can be made at. those points when the temperature

and pressure gradients are such that a first order approximation remains

manil
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valid over a mugh'iirger time interval. Note that the three time step
testrictions discussed up to this point will automatically increase or
decrease the time step increment depending upon current conditions
internal to the problem. .The user, however, -has control over the degree

to which these restrictions will be applied.

= 0, (4.12)

meaning that the temperature change occurs -irrespective of the specific

heat of the zoue, then the temperatire change restriction on that zone

is ignored.

4.4 Doubling Restriction

1 1
Atn+% < At3+1 =2 ath 4, (4.13)

This arbitrary restriction pvevents the time .step size from becoming
too large too fast. If the next time .step is quite large with respect
to the previous one, corresponding changesuinnthenderivatiVes, pressure,
opacity, etc., may be too large to -calculate: accurately even in light of
the iterative scheme. A rapldly varying time step from one time step to
another can adversely effect the hydrodynamics through equation (2.8).
Note that there is no restriction upon how small a time step can become

even witii respect to the previous time step size.

e E



4.5 Print Restviction

a4 o At:#‘ -t o (4.14)

At user specified intervals, the program prints out the current
space coordinates, temperatures, pressures, .etc., .o that a permanent
record of the problem solution may be retained for further study at a
later time. The program also makes a.hard copy of the image on the ¥
display and writes out onto a user file the current state of the program d

80 that it may be restarted at that time if so desired at some later

time. This dump feature allows the user to run a problem at several 3
sittings, restarting at or near the point in time at which he stopped 1
previously. It also facilitates his going back in time and trying a
different solution path by changing one or more program parameters or
variables.

The specific print-plot-dump. times .are given during the input

phase of the program in the form of a print. profile. The profile con-

slsts of a sequence (At » Eore ). . The next scheduled print tinme,

3 PrYy

tprt - tpl‘tj + mAtprtj 5 (4.15)

prt

is determined by the j and the m for which

n

(m-l)Atprt <t - tprt < mAtprt (4.16)
h| b | 3

and

t® <t (4.17)

Prtin
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if there ie a next value t « Algo, 1if
PrEyn

t <t + mit : (4.18)
prtJ+1 prtJ prtJ

then tprt is set to tpr‘j+1 » and the index j is advanced by one.

The print profile ie used to obtain print-outs over certain intervale
of interest at 'nice' values of time, ueually factore of two and five.
Both the profile and the next echeduled print time may be altered dynam-
ically.

Since the print times will normally interrupt the running eequence
with a short time.step, the. program attempte to restore the time etep
eize for the next time advancement to the level at which it had been
running. Specifically, the temperature change and doubling restrictions
will use Atn-lh as a guide in lieu of Atn-a + The other reetriction

criterion are used ae stated after a print cycle.

4.6 Maximum Restriction

ae™ ¢ min(Atm : At:s) : (4.19)

Once in a while it ie convenient to set a limit on the size of the
time step. It is particularly helpful when .the user is attempting to
follow a phenomenon which ie not. .being controlled automatically by any
of the other time step.limiting procedures.

A one time only maximum may be set through'At‘. It is automatically
reset to infinity for the next time step. There 1s an automatic back-up
scheme which may occur if the temperatures don't converge. VWhen thie
back-up occurs, Ats ie set to one half the value of Atn+k and the calcula-

tions for that time etep are restarted. An overall maximum At:‘l may be eet

and remains as set until reset.

o L0 g i
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Note that while At® may be altered directly by user, it is not
effective unless he also schedules a .back-up since At“+k is recomputed
at the beginning of the next time step. The back-up procedure does not
restart the time step calculations at rhe beginning of the advancement
procedure as illustrated in Figure 3, but instead, restarts with the

selection of the tiume step size. The accelerations and previously

discussed time step size restrictions remain valid during a back-up.

4.7 Hold Time Restriction

At“+1 < A:n+& -t -t" (4.20)
w w

It is often useful tov set a time t, at which the user wishes to put
the program in a hold or wait condition. This feature insures that he
will be able to put into effect changes at certain specified problem
times crucial to the overall problem solution.

If B s t“. then the restriciion does not hold and the program

automatically sets Atw to the machine .relative infinity.

4.8 Time Step Size Selection

The time step ~ize selected is simply:

s

nHy
At = min {Atc. At:h, At , At,, At:p. Atm. At.. Atw} c (4.21)

] d
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5.

MATERIAL PROPERTIES

Equation of utate and opacity date must.lLe:.provided for each speci-
fied material., These data are evailable in tabular form on a mass storage
device end are automarically read into the program vhen called for by
name during the input phase. The user may also include his own speciel
purpose tables or routines. Sometimes the matsrial properties can be
calculated from a set of parameterized ajuetions. This may be the case
when a problem is run for which there is an analytical solution to check
with.

This chapter will limit its discussion to the standard material
proparty teblss and ths procedures which are used to calculate the

required thermodynamic quantities.

5.1 Equation of State

The gaseous equation of .etate tables are organized by ‘density and
temperature within each muterial type. .For .sach tabular density in the
form lnvj, there ie a sequence of temperaturs, . internal energy and pro-

portionelity triplets, (6, € b')j't » such that:
’

]
pg = 20 (5.1)
lnvl < lnv2 < 4ue < lan , : (5.2)
ej.l < 61’2 € hee < oj.k ! (5.3)

with J, ¥ - 1. Note that there is no requirement that the teblss be the

same size from one material type to another, or thet ej.k . °j+1,k for

any j, k within the table. A typical maximum table size would be J = 20
and K = 30,

= i Wy
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The material internel energy, s'. .includes the kinetic energy of the
free particles; the dissoclation, lonization, and excitation energy; but
not the rediation energy given by
€, = adv. (5.4)
The equation of state tables are generated by other computer programs
(4], and there are many tables in existence for the common elements,
compounds and mixtures.

Givsa some temperature and density, (6,p), the energy derivatives
and proportionality constent. are approximated from these tables through

the following interpoletion formulae:

€ =i & € - €
B¢ (g, = iy & Iy, {‘14-;,14-1 By1,0 85,0 'j,g}

A6 lnvjﬂ - lnvj 65-0-1.!.-0-1 - oj." ej.k+1 = o“‘
Ca = Cg
+ ej“‘tlt_ N Lk, lue3v. (5.5)
Jok+l Jk

ac o | lav - lav, bj'ﬂ 14 " b.'i‘t;&l b'I Kl bi.k
ay (8:0) = 08" |V, @ - -9 =0, . |
jHl 3 j+l, 241 j+l, Joktl Jz
b' - b'
* -,-1'5*—1—_—61'5} + a4, (5.6)
Jok+l 3k
! inv - lwj
{ 7] ! - L t
b \etp) lnvj+1 = lnvj (bj"'l bj) + bJ ] : (507)
where
b! -b!
kt+l k
b'=b' +(06-8,.) = . (5.8)
] Ik ik 05 ,k+l ej.k
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b'

b.
i = i, Y (0= 0 )3

+1,2041 ~ %4+
- »
341,041 ~ %410

assuming that

lnvj < lav g lnvJ+1 with 1.€ J < J, (5.10)
ej.k £0< ej.k+1 with 1 £ k <K, (5.11)
°j+1.i < 0¢ °j+1,l+1 with 1l < ¢ < K. (5.12)

If one or more of the above conditions given by (5.10), (5.11) and
(5:12) do not hold, then squations (5.5), (5.6), (5.7), (5.8) and (5.9)
are used as extrapolation formulae. The evils of this extrapolation
scheme have shown up often upoa the graphics scope in the form of non-
convergence and discontiuuicy ir. successive values. It is hoped that
through the graphics monit.c, » .ew extrapolation scheme or limits upon
the existing scheme can ba established which will aid the user in bring-
ing his problem up to those tempe:atures and densities which are within
the bounds of the tables. The user must often compromise with storage
limitations and put in tables which cover only a particular area of
interest with respect to temperature and Jensity,

Equation (5.5) gives an approxi-atiop for %% » the specific heat.
The tables are constructed for ligear interpolation on 8; therefore,
equation (5.5) in terms of §.is unsatisfactory for an approximation to

%% « An acceptable scheme makes use of the relation

96

s 3¢ ° (5.13)
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wvith
20 48
B0, (5.14)
Therafore,
aHs k nHy k nHy
‘—(e.p)) . {%(m)) (ﬁ-ﬁ-) : (5.15)
14y 14 1+
where
k.n+l n
ﬁ)n#’ keliﬂ‘l eﬁ TR Kt I]Z L .19
n
I Tegng - ’1+k Sy * °1+B) ([ ] [ 1+k]

Note that this approximation avoids problems with loss of significance
between nerrly equal quantities and division by zero (within the
computer's finjce resolution).

Equation (5.6) is derived using the thermodynamic relationship

€ . a 3P _
wo VP (5.17)

in conjunction with equation (5.1). A more direct form would be

c -
8 g Py + 0
Ac - 4t | +
av (9,0 lav, .. - lnv -1_13-_-1 t e (5.18)
f b
wvhere
sQav) 1,
v Ty e (5.19)

[
) q ktl 8k
£ B s RS T

’ (5.290)
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- g
Bi4a, 041 im0
541,041 7 %412

+ (0 = Oj_’_l.’.) L (5021)

€ ¢
8je1  Bya1,e

The two forms give different results and the former was chosen only
because it proved to ba cheaper.
The total pressure is the sum of the gus pressure given by equation

(5.1), the radiation pressure,

-l

and the pseudo-viscous pressure, ¢, which is an artificial aid used to
fit the shock in a smooth manner over several zonss [3]). Two forms of

Pswudo-viscous pressure are provided, the choice of wvhizh 1is an option

provided to the user. The form linear in the velocity gradient is

:n+1 .
atl k-1 n+l §n+k in+k ( i P nHy

" Py Ve M T X (S Vidg < ©

kqn+1 L i+l (5.23)
i
n+Hy

0 for Av1+k 20,

and the quadratic form is
xn+1 a-q 2
atl | .oty .adg[ T4 niy

n, piﬂ [}1-0-1 X, (‘nﬂ.) ] for Av".’ <0,
k atl _ i+l (5.24)

0 for Av1+~ 20,

Both " aad n, may be altered by the user at any time through the keyboard
and are initially set at 0.8 and 1.0 respectively. The parameter a=0,1,2
for plane, cylindricel and spherical geometry respectively. The sonic
veiscity is given b+

k=1, 0%l _ /3 (5.25)
84 .

k-1 ntl o+l )Y
Piﬂ Viﬁ .
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Note that the sonic velocity is a function of the toral pressure and

is, therefore, one iteration behind. In summary, the total pressure

is given by the sum

k nHs k n+s
(p(e.o)) - ‘p s T ’ . (5.26)
1# |8 1+

5.2 Mean Frea Path

Corresponding to a conductivity coefficient in thermal diffusion
programs, a dimensionally equivalent coefficient, %ﬁ X, 18 calculated
for use in the radiation diffusion term of equation (2.6). The mean
free path, X, is a function of both temperature and density as were

the preceding energy and pressure terms. It is calculated using the
relation

1
T e -~ . (5.27)

vwhere «, the opacity, is typically calculated through the interpolation
of tables given in terms of density and temperature. The scheme is
further complicated due to the requirement that we must obtain a value
for A at the interface while the temperature and’ density values are
available only «t the zone wid-points. Many schemes have been tried
and tested (5, 6] in a number of similar-computer programs.

The scheme implemented hers expands upon ideas developed in the
FF program (5]. The central ides is t: try to get a better estimate
of local conditions at the interface and then calculate a mean free
path based upon these conditions.

Of prime importance was an interface temperature eince the density
changes from one time step to the next tend to be overshadowed by much

greater changes in temperature. Also, the opacity tends to be a much

SRS J%:JE

= i e e T
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less sensitive function of density. - Thus, density.uffects were some-
what ignored with emphasis upon arriving at a 'suitable interface
temperature. '

Note that the radiation energy. aquation
£, = a6’y | - (5.28)
implies that ¢ = 64 is a measure of the snergy in a zone (as far as
radiation transport is concerned)..- This assumptionr is valid only if ¢
represents the whole zone... The: temperature point is;therefore, located
at the mass center rather than the spatial‘ centar of the zone. This
also agrees with the hydrodynamic' differencing as-explained in section
2.2 and given by equation (2.7). .

The radiation energy in the .volume betweéen' mass-centers about a

typical interface is simply

Eri - %-[(¢V)i_% + (¢V)1+a] . (5.29)

Also,

2, = a0, | (5.30)

thus,

# = (¢:)i-k : (;VLEE‘ (5.31)
1% 14

This temperature is exact. Its position islunknown though and one
can only say that it is the best. estimate which can be obtained in the
neighborhood of interface. . In the  end, its‘position is unimportant.
W.at is important is that it provides a means of cbtaining the corraect

flux across the interface agreeing with empirical aud analytical results.




"Given the 1nterface.temperatuie,‘an‘bpécity 15 ealculated for each

zone in the neighborhood of. the :interface ‘which is reflective of .che
respective material type, temperature and density. These values are

referred to as k. and K; where

i
+ .
Ky = K(Bi, pi+%) 3 (5.32)
and
K; - K(ei, pi_%) (5.33)

The calculational details of  the opacity function§ are given in the
next .section.

Note thgt the opacity is a measure of .the average -cross sectiomal
area as seeh by a photon. Its units of measure are area per gram of
material. The total opacity is, thefefore, Km, where m is the nass -

of the matarial which has opacity k. Thus in our case

(lcm)i » I (K;.mi-% + K-::.-mi-f-!s (5.34)
and since
then .
v + VvV
Ti = i-;i iﬂ . (5-36)

1P Py,
Since each zone is assumed to be homogeneous in density, the mass
Center is also the volume center. Thus, the volume between Xk and

X, is simply %Vi-% - This fact is also used 'n equation (2.7).
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An everage flux is than given by
||Il'i‘ - N It
L T P (5.37)
i

The spatial position of this flux level is not fixed and is not known.
It beccmes important only when the radii varies between xi__;5 and xi+%.
This flux value is also valid for but a short time. Thus care and
considevation must be given to the Proper selection of A, the area,
and At, the time step size, which are used to give

8Qy = F,A At, (5.38)

the ne£ amount of energy transported from.;ne zone to the next by
radiation. In this case, the area used is the actual area at xi.
It will in general, vary as does ¥y and the details of its calcula-
tion and those of the zone volumes are given in chapter 3. The time
step size, At, depends upon several coastraints as have been discussed
in chapter 4. Not only is it used to control the truncation error in
g%-and consequently %% » but it is also used to. limit the time for
which a calculated flux value must. be used. Note from equation (2.21),
that depending upon the value for 0, the new and old flux levels are
averaged over the time step.

The mean free path at the boundaries 1is calculated in much the
Same manner as any other zone. First a boundary interface temperature
is found upon which an opacity is calculated. In reference to equation

A(2.31), this boundary temperature is

oo = ¢, if By #0 (5.39)




0 .
=8y 3+ (=6 ¢ if 8

0 0

and

Similarly at the other boundary,

¢N"¢1-!; ifsN#O.

y
N Sy Oy 1E B =0, : (5.44)
N

Ky = (BN, pN_;i) ’ (5.45)

and

— VN_

A i (5.46)
N

In the case for which the problem is actually within a pipe, it
1s necessary to consider the effective reduction in the average mean
free path due to the reflection, absorption and re-emission of radiant
energy upon the pipe walls.” A simple harmonic average of the material

and geometric mean free paths is used with a small correction term (7.

(A }‘);5
e S PR Y- U
XA

m

A A+ A
g i g

(5.47)



LY ' e

3

49

or

Ao (1 + Azf?m)

1+ Ag/Am) + 0.14 (Ag/Am)
Here, the geometric mean free path
A = d, (5.49)

the Jiameter of the pipe at .the interface in question and Am is the
S0 called material mean free Path as calculated above in equations

(5.36), (5.42) and (5.46).

5.3 Opacity
The opacity tables ara of the same form as the equation of gtate
tables. For each tabular density in the form lnvj. there is a sequence

of temperature and opacity pairs, (1né, lmc)j i Such that
L]

lnvl < lnv2 < ... < lan, (5.50)

lnej'l < lnej'2 < . s < anJ'K (5.51)

with J, K > 1. These tables are also generated by other programs [8],
and a great number are available corresponding to the equation of state
tables,

The opacity table is interpolated for lnk from which the mean free
path is calculated in equation (5.36). The interpolation formula is

simply

lnv - lnv

lnk(8,p) = (1nk - 1lnk,) + 1lnk,, (5.52)

3+l 3 3

lnv

441 - lav

3




50
where
e s AL ( 1nk - 1nk, ) + lnx (5.53)
j+l ln('):l.k_’_1 - lnej.k §,ktl I3 3,k
Ine - 1nej+l.,‘
lag ™ Tn0y,) ey - I00; 0k gpn,0e1 = 10654 g0 + 1ok, (5.54)

assuming that

lnv'1 € lnv < lnvj.’_l with 1< j < J, (5.55)
lnej,k £lne < lnej,k+1 with 1 < k < K, (5.56)
1nej+l'£ £ 1ln8 < 1“°j+1,£+1 with 1 € £ < K. (5.57)

As was the case with the equation >f state tables, the equations are

also used as extrapolation formulae if the density and temperature

values are outside of the table limits. This does cause some undesir-

able problems especially in the low temperature regions.
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6.

SOURCE TERMS

In addition to the boundary pressura profiles .hich have already
been discussed, the user may impose time dependent temperature or
energy profiles upun any se:t of ;ones within the problem. Both may
not be done simultaneously, but the user may change from one to the
other dynamically as the solution progresses dependent only upon his
problem restraints and needs. He may also modify or otherwise change
the one he is currently using. Both require time and space dependent
profiles. The space dependence is on a zone basis and it is very
easily changed. It has been referred to previously as the set of

,i"O,...,N-l.
1+

power factors Pf

The time dependent temperature or energy profiles are assumed to
be in tabular form, but functional forms are simply provided for by

the user supplying his own subroutines.

6.1 Energy-Time Profile

An energy table of energy-time pairs in the form (Ej,tj) may be
specified by the user when the program is started, or he may enter or
alter the table dynamically during program exccution. He need only
be careful that
ty € ¢, (6.1)

where t" 1is the current problem time, and that

E1 Sty cevnne S ty (6.2)




with J £ 20. The source energy for each zone is then given by
o+ (Ej+1 " Ej) n+s
iHg “Ty+l 3
where
n a+l
tj £t <t < tj+1 : (6.4)

If the tiﬁo step size i8 so lerge as to extend over parts of
more than one table interval, then the source integration is done
Plece-wise in order that the problem will reflect the correct total
energy at all times. If
< tn’ tn+l

t (6.5)

J
then the table is simple¢ extrapolated in a linear fashion using the
last two entries. This of course implies that the table must have a
minimum of two entries. Note that the table need not even be plece-
wise continuous and that multiple entries may be given for the same

time. This facilitates step as well as ramp anergy excursions. For

example, if

typ S e < By " Tiy < " < tig2 o (6.6)
then
I TR [ M= SR S - E)
144 fi+% tj - tj_l 3 §+1 b
"I |
¢ AR atl gl (6.7)

42 T g4

$t..

Care should be taken to insure ti tJ«l J

.
ar
i

32




6.2 Tempersture-Time Profile

The stiicture of a temperature profile is not unlike that which
has been givin for an energy profile. It is a profile of temperature
time pairs v { the form (ej. tj) specified in the same manner as is
the energy profile. The purpose of this profile is to impose a temp-
erature over a set of zones within the problem. These zones thus
act much like a time dependent heat reservolr, be it a sink or a
source. The imposition of the profile over a specific. set of zones

is done through the power factors. If Pf = 1, then this is used
1+

as a flag to indicate that the temperature of this zone is determined

by the profile. Likewise, if Pf = 0, then the temperature of this
1Hy

zone is not dependent directly upon the profile.

Rather than simply "overloading". the specified zones with the
temperature as given by the profile, it is desirable to calculate the
Source term necessary to give this temperature for each zone in ques-
tion. It is then possible for the user to monitor the amount of
energy being 'dumped" into (or. out of) the problem. He is also able
to monitor the overall problem energy balance.

The first step toward calculating this source term is to inter-
polate the profile for the current temperature:

] = 0
6 = ;Jig-:—;i Caalni :j) + 0y, (6.8)
bE2 S

where

t < . ti4p - 6.9)




Then, the extrapolatica procedure depicted in figure 3 and given by

equation (2.53) is modified as follows:

nty
ot n n-l n
n=l iy 1+ 1+ f .
040t At iHg
144 (6.10)
8 if P, 40,
i+

After obtaining an estimate of the zone temperatures as indicated
above, the temperature dependent terms are updated as indicated by

equations (2.54), (2.55), (2.56), (2.57), (2,58) and (2.59). The
n+y

source ternm kdsi+k is then calculated (and recalculated for each iter-

ation) through equations (2.36), (2.37) and (2,38) by replacing each

k. n+l ~4 ‘

01+& by 3 =9 if Pf ¥ 0. Note also, that source terms are cal-

1+

culated only for those zones for which P, #0. In actual practice,

14 k, .oy
Pf is used as a multiplicative factor when solving for Asi+k from
i+

each equation.

If cn+1 > ts then equation (6.8) is used ns an extrapolation

formula.



7.

COMPUTER CALCULATIONS

A number of calculations were done to illustrate the effect and
the worth of various program parameters and to also validate the method
of solution. In addition, F3. a one-dimensional program at Los Alamos
(5], was used to do some of the sama calculatic.s., A three wvay compari-
son was then made with the analytical solutions.

The program developed from the method given ir rnis paper is
referred to as HYRAD1. It has §ecn programmed tu run on the PDP-10
:omputer at the University of Utah via the remote terminal at Montana
State University and also on both the CDC-6600 and CDC-’A00 computers
at los Alamos. The 6600 and 7600 versions are identical, being FORTRAN
program’, but are restricced at this time to planc geometry problems

only.

7.1 Radiation Diffusion Calculations

A series of calculations is presented here which was used to
validate the radiation diffusion calculations and to illustrate the
effect and worth of srveral program parameters. A complete description
of the problem, often referred to as the Marshak Wave Problem, may be

found in [9]. The basic elements are as follows:
2

30 °

2. No energy in the radiation field.

l. Constant specific iieat,

3. Constant density, p.
4. An opacity « = »<opa£i“8
5. Constant driving temperature, 00.
6. Plane geometry.




Thus, for simplicity:

de _ac 2 4
k] 3 ‘0 n+d
p=1
vz = '0
@ (7.1)
as=1
60 = ]

In addition, a unit cross sectional area was assumed. Several
values for 8 were tried in addition to varying length zones, etc.
Corresponding to the tables published in [9), the space and tempera-

tu.e values were normalized as follows:
n

X
Vcﬂ

n n n
1144:-01'“1/ 00' 01‘”’ .

(7.3)

The calculations could then be checkud at any time for which there was
a xi+& which gave rise to a Ei*k that appeared in the published tables.
This was not difficult since tabular values were given inr increments
of 0.05 for £ starting with £ = 0 gnd 7 = S / 8y = 1 out to where
T = 0. No interpolation was necessary nor desired.

The purpose of these calculations is to follow the diffusion of
a radiation wave c‘riven by a constant boundary }enpctaturc. Its
pregress is then checked at various times with respect to its position

and shape. Figures &4 through 10 give the position of the wave at




di/ferent times as a temperature profile. In these display console
pictures, the temperature, pressure and density increase to the
right, and the x coordinate increases in the vertical direction.
The density curve at the right is constant over all time and the

horizontal lines are indicative of the zone boundaries.

37
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Figure 4
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Note that a constant density prohibits any hydrodynamic activity

and that this problem is purely a radiation diffusion calculation. The

first series of problems was done with B = 0 and the zone width Axi; *
+2 cm, Thus, A = ;i-- .1l cm, only half the zone width. The initial
0

temperature distribution, 0?+L§- 10-6, is sufficiently close to zero

and is very near the calculational limit of the PDP-10 for ¢ = 64 = 10-24

% _ 5,5 28 .
and 36 0.2 3 0.274442.

Table 1 below gives the exact solution and corresponding values
for T as calculated by HYRAD1 and F3 at common values of £ for t = 36 sh.
The tabular entries are rounded to five digits, and it is important to
point out that-even in double precision, some significance in the fifth

digit is the most one can expect on the PDP-10 computer. For HYRAD],

o=Y,v=l, =10, T, = -10, and 8t% = 1077 sh. while for F3,

T, = .10 and At® = 1078 an.
fac
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3 T HYRAD1 P
.05 .98803 .98803 98803
.15 .96273 +96272 .26272
.25 .93538 .93537 93537
.35 .90563 .90562 +90562
.45 87304 .87303 .87303
.55 .83699 83697 .83697
+65 .79661 . 79658 .79658.
.15 . 75061 . 15056 . 75056
.85 . 69692 . 69685 . 69685
«95 .63187 .63177 .63177

1,05 54763 54754 .. 54755
1.15 42047 .42008 .42009
'2.25 o . »00638 00637
S.E.(§) 1.5490 .  1.5489 1.5504
I.E.(§) 1.5490 1.5489 1.5489
# time steps 2316 2327
avg. # iterations . 6.1 1
calculation tipe (min) ol

@ 49 sh 7600 : ) , A

PDP-IO 64

Table 1: . HYRAD] and F3 Calculatipns As Compared
= Hith The Analytical Solution Fot x = 10. .
The next thrke mets of tables an& figures illu.craté the difference
cau..d By variaéionb 1n o, V;‘Tfac and € ae_cdlcula:ed by HYRADI. In
table 2 and figure 11 che only chaugch in 1 occur becwcen e g and

.10. For 0 = 0, the caiculatiOns go
2

-5
o= 1 for €= 10 and Tfap

' uns:abxa afcer 6 shakes when At > 1.5 x 10° The results at.ﬁ .hgkcs
are impressiva though, being.much better than those for o -.B. The
severe time scep uize rebcricgion for chis parameter value is less
than deairablq and no further calculatiOnl were tried at thie time
with 0 = 0. The effect of the extrapolation parameter v is to reduce
the number of itarntiona requited for each. tinme step advancementu For

this and most gxoblems it is most effegtive at unicy. For soma broblems,

adjusting v can reduce the number of iterations by as much ak a third.

b
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Runnirg times as given for ;ho PDP-10 are approximate and vary several
minutes depending upon the machine activity (i.e. the number of timee

the program muet be swapped).

Number of Avg. Number of PDP-10 Computer
] v Time Stepe - Iterations © Time (Min)
0 1 (unstable)
9 1 2316 6.1 64
1 1 2304 6.1 64
1 S 2304 7.1 74
1 0 2304 7.3 75

Table 2: Varigtions in the Time Differencing and
Extrapolating Parameters, o and v, at t = 49 gh,
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Fig. 11: Variations in the time differencing and extrapolating parameters

s~ and V at 36 sh,
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Table 3 and figure 12 show the relative dnsansitivity of results
upon the time step size restriction factor T!hb forg=1, ve ]l and
€ = 10-5. This also holds true for g = .. Nota, however, that it

doas dramatically affect the calculation time directly by limiting; the

time step size.

T

.01
.05
.10
.15
«20
25
«30
.35
<40

fac

e et —— -

Number of Avg, Number of

Time Steps Iterations
27993 2.2
5478 4.2
2661 6.1
1720 7.8
1248 9.6

966 . 11.4

774 13.2

641 15.1

540 16.9
- Table 3:

Variatione in tha Temperature Restriction
"Pactor, T!hb' at t = 49 sh.

Avg. At

(sh)

.00175
.00895
.01841
02849

+03926

+03072
06331
07644
.09074

-‘PDP-10 Computer

69

Time (Min)

295
100
70
52
46
42
'3
38
36
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Fig.
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12: Variations in the temperature change restriction factor, T, , at 36 sh,

fac
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Table 4 and figure 13 illustrates the significance of the conver-

§ence parameter with g =» ly, va ]l and Tf“- 0.1. For values of € lasse

than or equal to 10-“. the results are unaffected. This ig expected
since 4-5 digits of eignificance 1s el that can be obtained on the

' PDP-10. What 1g impressive is the reasonably good results for € = 10-1.

e

. :
-~ Take note alsgo of the variance in the avarage number of: iterations per
-y time step and its effect upon the calculat.onal time. E'
€ b 5E% 50 S.E. Number of Average PDP-10 1
. 4) (4 Time Steps Number of Computer a
; Iterations Ti:g (Min) F!
-\ 1077 1.806998  1.80699 2662 8.8 90
_ . 106 1.806998  1.806998 2662 7.4 80 '
1075 1.806998 1.806999 2661 6.1 70 -
10-4 1.806997 1.806999 2661 4.8 58
10°3  1.806966  1.257028 2661 3.2 39
I 10-2  1,806708 1.807243 2662 1.8 28
~ 1071 1.806070  1.807762 2671 1.0 23
- actual 1.807152 1.807152 ﬂ..;l
. s
- Table 4: Variations in the lonvergence Parametsr, €, a¢ ¢t = 49 sh. ;

= Jdrr
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Several other calculations were done with other values of 8.

.
Table 5 gives the results for a calculation at 36 sh. doae with 8 = 3.

3
For this case, C_ = -5‘5- &% . .156825, 1 = 'i"'o" ek, vel, €e107,
. E ON SRS oy 3 - 0, 108
rfao .10 and At 10 * sh., and for F~, chc +10 and At 10 ~ sh.
£ 1 HYRAD1 F3
.05 94296 .99297 .99297
.15 .97792 97793 .97793
25 .96139 ,96141 .96141
.35 .94304 .94307 . 94307
.45 92242 .92246 . 92246
.55 .89887 .89891 .89892
.65 .87136 37141 87142
79 .83820 .83828 .83828
.83 .79616 .79635 . 79634
+91 .73785 .73849 .73845
1.05 63704 .63945 .63933
1.15 0 .00021 .0N01S5
S.E.(3) 50914 .90917 . 90989
1.E.(§) .905)4 .90917 .90887
# time steps 2457 2468
avg. # iterations 5.9 1
calculation time
= 4 2
@ 49 sh. CDC-7600 1 min oA win

PDP-10 68 min
Table 5: HYRADL and F3 Calculations as Comgared with
the Analytical Solution for x = 10/g7.

Another series of problems were run for a variety of zone widths
from 0.1 cn to 200 cm. The difference in the results were significant
and improved with smaller Ax's approaching the mean free path. This
Just confirms one's intuition that the linear space derivative approxi-
mation for %% does not adequately describe the flux terms for coarse

zoning even for materials which exhibit constant or nearly constant

opacities. 8o much concern and work has been directed toward calculating
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a mean free path at the interface between zones, whereas it should
probably be directed at arriying at a batter flux term as a whole.
0f course, this is difficult to do properly, for there is just not
enough information. In most cases, it is usually better to zor;e .
finer. No calculations were done with zone widths less than a mean
- free path. | |
One interesting result obtained from the variable zone width
calculations was the invariance of the results on a time step by
time step basis. More preciscly, if the calculation time is nor-
malized with respect to the squara of the-mu;tiplicgtive difference
in zone widch-.'then the results at comparable normali;ed éimcs are
the same. For oxaﬁpla. the'temperature.pfofile at t =9 sﬁ for
ax ; 0.1 is the a;m. as for t = 36 sh for Ax = 0.2, but the latter %%

calculation includes exactly twice as much energy.

7.2 Hydrodynamic Calculations
In thisrsnction, 4 series of hydrodynamic calculations are pre~

sented. Two different problems were investigated. . The first is & :

shock-tube problem which is described in [10] and [11]. This calcula-

tion follows the ahogk tormed by a high pressure gas expanding into a

' N :.<:

low pressure gas confined in a long amail:radius pipe or tube. The

problem assumes an ideal gas for which .

e = p/p(r-1) ' (7.4)
P = pRO, (7.5)
with

A= cp/cv. (7.6)

g
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R= cp - C,. 1 B (7.7)

For air, A = 1,4 and R = 286.793 mzlsec2 °k assuming 29 grams/mole
of air. |

From equations (7.4) and (7.5),

@
M

-Cv g

[-54
<D

R/A-1,
-%R,

o

716.983 m%/gec? °K, 1 (7.8)

[

%% 1 il R ., (7;9)
For the one region of gas, P= 666.447 kg/m—sec2 and p -‘.0077459716 l
kg/m », and for the other region p= 1 1823 x 107 kg/m--sec2 and
p = 137.413 kg/m>. The initial temperature for both. regions is 300°K.

The first Calculation done was with a constant Ax = ,0254 m,
At = 1 25 x 10 6sec, r = .0254 m and an artificial viscosity factor

= 0.8. The results ofithis.celcplation match the~reselts for the .

KO and PUFL programs as reported in [10]. The néxt.calculation vas
done with n, = 2. Again the overall result was the same. However
when the region at and behind the shock front Was examined in detail,
the quadratic form of artificial viscous pressdre exhibited rather
large oscillations as displayed in the pressure profile given in
figure 14. Notice in contrast the smOoth pressure profile for the
linear form of the viscous pressure term. A,combination was then
tried with n, = 1 and n, = 3 as suggested in [10]. These results,
were identical with the linear caseiexcept rignt at the shock front

which is not as sharp and is extended .over shveral more zones.
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Another series of calculations were dore with a variable At. [or

& this series, the major time step restriction from thoge discussed in

Chapter 4 is the hydrodynamic restriction determined by the parameter

H. . = .05 and .10 and there was
fac c

Two calculations were done with Hfac

little significant difference in the results as shown in figure 15.

However, there was a great difference in the éalculational efficiency

as indicated by table 6.




constant A t
Hfac = .05
Hfac = .10

e i L i L i i L 1 i i
4.67 4.70 4.75 4,80 4, 82
X (meters)

ck front for different time step restrictions att= . 0039 sec.

Fig. 15: Pressure profile at sho




;fﬁafwﬁ 5 5
e o L
79
Constant At Dfac ™ -03 Hege = +10
avg. time step size (sec) 1.25 x J.O-'6 1,915 x 10"6 4.004 x 10"6
total number of time steps 3120 2037 974
avg. number cf iterations ‘ i o
per time step 4.7 3.7 7.5

PDP-10 calculational time (min) 228 151 92
K.E. (§) 2.02030x10 2.01989x10, 2.02013x10;
I.E. (4) =2.02063x10" -2.02033x10" -2,02037x10

Table 6: Relative Calculational Efficiency of Constant vs. Dynamic'Time
Step Sizes at t = .0039 sec.

‘Another calculation done was with a constant At but with Ax = ,0508
meters, double that of the previous calculations. As was the case with
the pure radiation diffusion calculations, the solution was very sensi-
tive to the zone width. Figuge 16 gives.the differencz in the pressure

pfofilesat the time, t = ,.0039 sec.
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Fig. 16: Pressure profile for different zone widths at t = . 0039 sec.
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before. 1In this conie section, the radius increased linearly at the
rate of one inch to évery ten along the axis from an initial one inch
radius. The calculations Started with initia] one inch (.0254 m)

-6

Z<one widths and specified g4 constant At = ],25 x 10 © sec.

~ = center of volume

anrial mid-point

Fig. 17: 2one Mid-Point Definitiong
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The results of the calculat;qns are given in figure 18 at t = ,0005
and .001 seconds in the form of temperature profiles, The temperature
was used here in lieu of the pressure because it did not vary 6ver as
w%de a range of vglues. but‘is directly proportional and }ndicative of
thg‘presspre. In both cases, figure 18 shows that the peak temperatures
in the center of volume problem are greater ard are advanced further
down the tube than those for the axial center problem.

Table 7 gives the program statistics for this set of calculations.
Note that for this geometrical configuratién, the kinet;c energy as
given by equation (2.64) does not match fhe logs in internal energy.

This was not the case for the constant diameter problems as shown in

. table 6. At about .00075 sec, the problem became Courant limited

(see section 4.1) because the shock was encountering larger and more
massive zones as the pipe diameter increased. Thus, the zones tended

to pile up into smaller widths.

-

=T = | -
s -I.-E'Ef:}
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Fig. 18: Temperature profile of volume vs. axial zone center at . 005 and . 01 sec.
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Axial Center Volume Center

time step size (sec.) -6 -6

@ .0005 sec. - 1.25 x 10_7 1.25 x 10_7

@ .001 sec. 6.48 x 10 6.11 x 10
total number of time steps

@ .0005 sec. 401 401

@ .001 s:c. 908 933
avg. number of iterations

@ .0005 =ec. 2.7 2.7

@ nOOl neC. 2-9 2.9
PDP-10 calculational time (min) :

@ .0005 sec. o L 9.9 10

@ .001 sec. 23.3 23.6
K.E. 3 3

@ .0005 sec. 3.23157 x 103 3.19644 x 193

@ .001 sec. 7.22040 x 107  7.11488 x 10
I1.E. : = B

@ .0005 sec. ~3.14898 x 102 -3.11402 x 103

@ .001 sec. -6.82762 x 10 -6.76969 x 10

Table 7: Program Statistics for Axial vs. Volume Zone Centers

The second problem investigated in the hydrodynamic series is
known as the Von Neumann point source proilem (12]. The purpose of
this problem, also known as the blast problem, is to calculate as a
function of ti;e the blast radius propagating from the biast point in
spherical geometry. The Von Neumann solution to the blast problem
is given in [12]) and numerical aolutiong ére given in, [13] an&ifié].
This problem is similar to the shock tﬁ$é problem in that it assumes
an ideal ga; equﬁtion of state (equatioms 7.4 through 7.9), but differs
in that a large am;un£ of energy is released at (near) the center of a
spherical volume. I. |

Eilers and Whitfill at Los Alamos have been using this problem to

~ validate numerical integration techniqueé and to establish parametric

values. In particular, they provided several calculations done with

- R R
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the F3 program for comparison with HYRAD] and the analytical solution
given by [12]. One such solution is given in figure 19 together with
that from HYRAD1 and variations therein. Figure 19 is a plot of the

absolute difference between the actual blast radius and the calculated

blast radius as a function of time. For this series, Axg = 30.5 em,

Yy =1.2, %% =5, %% = 0, R =1 (meaning 6 absorbs the actual value of R),
80, =205, n = .8, T = .10, 6 = .00L & = .01, at® = 2077 ana
1+ L | * “fae s Beimm { Sh@c v

(the energy-in at the blast point) Ein - 41851.

At this‘point, it is important to point out the difference in
the acceleration terms as calculated in Fo (5] with those calculated

by HYRAD1. F3 uses the following difference equation to arrive at a

“numerical solution to the momentum equation:

. lmxi ¢ .
¥ = li(mi_;i ¥‘mi+k) (pi_% - Pi+g) (7.10)
which 1s equivalent to
v Sy -, )
& i i-Y  Tik
¥, - (7.11)
L %m, , + L) Ax,

where
Ax, = x - X
i 1+4 i-%

X li(xi + xi+1) . - b (7.1%)

- i i?
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Fig. 19; Comparison of hydrodynamic differencing schemes,
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Equation (7.11).1is now in the same form as giveﬁ for HYRADL in
equation (2.7). The quantity X4, 88 given in (7.12) is said to be

located at the radial center in contrast to the center of volume as

87

specified for HYRAD1 by equation (3.28). The difficulty with equation .

(7.11) is the location of the volume given by Vi. 'The denominator
term implies that it should include half the ﬁgss of each adjacent
zone 1f a uniform density is assumed as is done in HYRADl. In con-

trast then,

A calculation done with 61 in lieu of vy is given in figure 19 and is

1!
Another differencing scheme was suggested by L. A. Schmittroth,

labeled AVG

and it proceeds as follows from integrating the momentum equation by

parts.

; 2
Vi = dmxjox,, | (7.13)
" which when expanded becomes:
V, = 4n[&(x2 + 2x, , % + :c"Z ) (x - %, )] (7.14)
i 1+ 184" 1~ 1% Y14 i-%
If Vi was considered to be the volume between xi+% and xi-k’ then
0, = 4n[1/3G3,, + %, %, + %2 )@ - %, )] (7.15)
: A EE T TR e '
It i1s not difficult to show that
w 3
Vi - Vi.' 3-(xi+% - #1_%) " (7.16)

ox _ 3% .
Osg , | (7.17)




X X
1+ 14+
ax 2 o p .2
4J o5t X dx AJ o X dx
Xy,

xi_!’ |

LT
(i), = ~4n ((px®y | =2 px dx

xi_;»s xi_!i
| o on o [T
T = -4 { (px") = -ikjf-—4ﬁk ) |’
' 13 1k

-r2w(xf_% - xf+k)(pi_% - pi+%)

2 2
(xi—k + xi¥&)

@y, F B ) (py s = Pyys)

ﬁi = 4y

Similarly, if we let

2 2 «
xi o+ xi_ .
Vi = 4‘" —-ﬁ—z_J (xi"af = .xi—;ﬁ)’

then

vV, - v

3
g Vg m oGy - x40

equation (7.22) uses the average of the areas at the mid-poiﬁt of the

difference equation (7.22) is given in figurs 19 and is labeléd AVG,

- (7.18)

(7.19)

(7.20)

(7.21)

(7:22)

In contrast to equation (7.10) which uses the area at the interface;

4

zones adjacent to the interface. The results of the_calculation using

25

(7.23)

t7.24)

.
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HYRAD1 was”thgn modified to calculate the zone centers and accel- ﬂ

.4‘ L i VA N '
eration terms as given by equatiuns (7.10) and (7.12) for the Fa program, )

The results are aléé‘showﬂ in figure 19.

T

7.3 Combined Radiation Diffusion and Hydrodynamics
The results of a combified radiation diffusion and hydrodynamic p
problem are shown here in figures: 20 through 25. This problem is a

multi-material calculation in which one material is heated and then

b

transfers this energy to the other by radiation. The initial trans-
fer of energy creates a shock in the second material as indicated by .
the formation of a spike in the pPressure ﬁrofile shown in figures
20, 21, and 22. This-infiﬁx of,energy.hauses the 8econd material to
expand o;e zon; at altime back into the first material ané‘also for- %
ward witp the shock causing an &ndreasing nuﬁﬁé} of zones to be com-
pressed at“éné»immediatelj behind the leading edge of the shock ﬁéve.
Note tﬁat frbm figure 23 en; the shock wave has overtaken and is
acceleratingvahEad of the diffusion Wavé. This 18 indicgted by the

formation of the additional step within the temperature profile.
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7.4 Summary

The selection of computer calculations included in this section
is not exhaustive but rather illustrative. A great deal of work
reﬁains to be done, particularly within the arcas of validating the
non-linear approximation techniques, the hyd:odynamic activity for
various geometrical shapes and multi-matervial effects. Detailed
studies also need to be made into the effects of the equation of
state and opacity calculational schemes. For example, figure 26
illustrates a difficult yet convergent time step. Notice the plot
of the relative convergence error at each iteration. The initial
decay is a rather moderate exponential response which changes
abruptly after the eleventh iteration.

The other plots on this figure show the change of several zone
variables over the course of the time interval. The zone plotted ie

that which had the largest relative convergence error at iteration 15,

the last iteration. The values plotted (from top left) are %%3 %%,

P :; 0, the luminosity (flux times the area) into one end of the
sone and out of the other, and a somewhat confusing and uninformative

convergence graph which has since been dropped. The initisl vertical

line on the %% plot (labeled DEDT) ie simply a line drawn from the
baee line to the value of %% as it vas three time etepe ago. The next

twvo time stop values are then plotted with a line between them giving
8 ehort curve which ie representative of the behavior of the derivative
over the previous threo time steps. Another vertical line ie then

dram from the base line up to the first iterative valua of the term
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for the current time step Snd subsequent iterative values are represent-
ed by the curve following. This format is repeated for the %%, p and
X terms (labeled DEDV, P and LAMBDA respectively). The curves for 0
and the luminosity represent only the iterative values for the current
time step and (unfortunately) do not include values for previous time
steps.

Similarly, figure 27 is a picture of a éime step which, while
convergent, displays rather erratic behaviorj Note that it initially

starts to converge, abruptly diverges and then converhes. Notice

the cortesponding graphs of the behavior of various zone quantities.




T 1.875-01
0T 2.338°03 1
NTS 62
1.0 9

f .94

e

L

f

1 -1

|

]

g -0 L))
e

A .0t

f

[ ]

f.o01

20 b )
1TERATION

GO WAIT
BACKUP  REZONE

NAPSHOT  pT/2
ALBRRY aBlA%

e 78T

TRAC  .1008  MOLOTH 1.000.01
WAC 2500 wwOTS | 1000
013 1.500:38  OTMAX 1.008400
urore 10 WYY T2
%’ 95.70-01 OTC 9.27+0% 1
I 9.012-01 oM 617001 4
M 7.018-00 OIT 2.3%09 3
et 3.2

TN 92

\

T -Lun

3.00%%0s5

Figure 27

o'

2.569-10

1.298-03

99




= N PRI S SRS 2D T B TTEI
=St MR A R

100

Figure 28 gives a snzpshot of a time step which doesn't converge

. gi after thirty iteratioms. It also looks as if it will never converge
and appears to oscillate every five iterations. Notice the insensi- . f:
tivity of the mean free path and one of the luminosity terms. The {
ﬁM@J other luminosity term is somewhat affected, and the pressure even less |
affected by the fluctuations. Clearly, it is the behavior of the

energy derivative terms which are causing the problem. A look into

the equation of state tables for the material of this zoéne showed a
discontinuity in these values near this temperature and density. As
it turned out, a small increase in temperature resulted in a huge

change in the derivatives due Primorily to the linear interpolatiénm

scheme. Subsequently, the temperature dropped and again the corrés—
- ponding derivatives changed drastically. Thus, the tempefa;ure (and
corresponding quaﬁtities affected By it) ogciilated béck an& fé?th
Iaboug an entry in the equation of staté tables, ei;her side,ot.which
ga;e widely varying derivative values baséd upon 1ihea¥ interpolation.
Decreasing wy and u, from 0.5 to 0.1 dampened ;ut the oscil}afibns and
the calculétions were able to broceed. AlternaFives dould be to raise

the convergence limit, reduce the time step size, or any combination g

of these.
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CONCLUSION AND AREAS FOR FUTURE RESEARCH

As stated 1in the introduction, the development of this system has

extended over the Past several years, During this period a variety of

techniques have been tried within a number ¢f different programmed
sol#ti&na on four different comfuters. The end product consists of g
highly polished machine language Program whicl congumeg huge amounts
of time on the PDP-10 computer in contrast to the small amounts of
timg consumecd 'y the relatively inefficient and unfinished FORTRAN
version on the CDC-7600.

The PDP-10 version was originally coded in ‘FORTRAN only to find
out that the FORTRAN system on that computer was full of gross errogs
and inefficiencies. To obtain significant results on the fDP—lO, tﬁe
calculations for ¢ = 34 and AV necessitated using doubjle precision.
After quickly de;ermining that the DEC-supplied double bPrecision
routines were overly restrictive on the‘range of operands with which
they could produce significant results (and contained minor errors),
the method was reprogrammed in MACRO-10, the machine language for the
PDP~10. As .alluded to above, this also includgg/a/ﬁﬁﬁgiete package
of library routines for performing double precision arithmet?c
(addition, subtraction, multiplication, and division) In addition to
Some elementary mathematicai functions (square root, natural log and °

exponential). To Sa) the least, it ig 8ad to think that a computer

of this size has 1,5 double word arithmetic capability and that none

of the modern computers have the hardw#re capability to perform the

L B B
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.alementary mathematical functions. It may be of interest at this

f?inq to‘mention that the double precision square root routine within
the ?DP—IO vers 'cn of HYRAD1 consumes over 60X of the total calcula-
tional time.

In addition to the fact that the MACRO-10 version works and the
FORTRAN version didn't, the resultant speed and storage improvement
of'ghe MACRO-10 version over the FORTRAN version on the PDP-10 was
d?amatic. The differences between the PDP-10, CDC-6600 and CDC-~7600
'Qre even more outstanding. A particularly simple problem which ran
for 64 minutes on the PDP-10 in 29k words of core, used but 6 minutes
" om the CDC~6600 and a mere minute on the CDC-7600 in 32k words of
core. Remember that this comparison is between a very efficient
"hand crafted" program on the PDP-10 with a FORTRAN version on the
CDC machines that is well known for its inefficient use of machine
reso#rces. It 1s worth noting that the same probiem consumed .4
minutes using the non-iterative F3 Los Alamos program and that HYRAD1
used an average of 6.1 iterations per time step, both taking nearly
2900 time steps. It is not unusual for & problem to run for several
hours on the CDC-7600 computer.

It is clear that increased hardware functions are naecessary for

numerical calculations of this type. Not fast simple parallel functions

as exhibited by the ILLIAC IV computer, but rather independently func- .
tioning units with increased capability (i.e. square root, exponcntial,'m
etc.). Raw computing power ls not enough though. A better man-machine
interface needs to be developed. The user needs to retain control over
the calculations rather than submittiné to the crude demands of the

mﬁchine.
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As mentioned, this prog.-r was developed under a simple inter-
active (and sometimes grarphical) system. The user was thereby able
to alter parameters, intioduce data changes, direct program control,
and even make crude prograr patches. This was done to get, first of
all, answers which may otherwise be very difficult to obtain under the
traditional "batch" mode of processing. Secondly, through the inter-
active mode of operation, the user was able to get better answers in
the sense that more resolution could be obtained at those times when
it was required. Finally it was possible to get an immediar: and
in depth realization of the solution in moving picture form,

Slowly, but most certainly, tools are being created to provide
such a man-machine interface. However, such tools have traditionally
been improved interface equipment such as display consoles or they
have been huge and rather obtrusive software systems which are pro;rams
to make up for the lack of sufficient and sophisticated hardware.
Very large compilers are continually being developed at great expen::
ﬁb‘provide a more natural langusge interfuce between man and macline.
Hovever, all of them fall short on retaining enough information :6
relate bedk to the original language and to retain an overall view of
what is being done. Thus, grand in*erpretive systems have been and
are buin; developed which have some of thase characterist.’cs at great
expense in both time and space.

[ CIe;rly the developrint of su:h software syatems over the pa,t
several years is causing questions t. be asked, Questions such as:

Why not build machines to work at the ucer level? Why have compilers?
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They generally discard most all of the useful information require’ as !

input anyway. Hardwa.e is getting so fast and cheap, why not build

computere that work in the infix mode directly (essentially) or the
user'e source program which can then be easily changed and debugged
dynamically? Thus, why not build computers which add, multiply, etc.
operands according to their definition at the point of executiocn be
it incegar, real, array, procedure vr whatever?

There ara so many situations which arise at run time that Just
can't be taken care of by the compiler, cr the programmer ahead of I
time. This is true of problems in general despite L.a best planning.

Therefora, why not defer the finecl decigion making until such a time

that it is in contaxt? This tecknique 1s already in popular use for
detarmining tha final operand address. It seeme to be a rather l
natural extension to go one step further ord eay that the add iratruc-
tion, for example, ie defined by the type and kind of operands ypon
vhich it ie to oparate. Thie then aakes "add" a primitiva which has

no complete or dafinitiva meaning by iteelf. Thue, the actual instruc-
tion eet for a computer becomee very small and simpla. Thare are no
longer 2-5 different multiply instruct; .ns Plu~ a host of multiply
subroutinee to handle thin;s like the multiplication of arrays or

complex numbers. Thara is just one aultiply, and it is micro-programmed,
i. you wiah, by its opernnds.

In conclusion, the model deveioped herein and the suvsequent cal-
culations indicata that the numerical methode ara raasonable and are
carable of giving valid rasults. With tha advent of batter compucing

tools, the solution techniques appear even mora palatable. The develop-
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ment of tha struight forward radiation diffusion scheme was an eerly
(5 years ago) revolt ngainst the first order expansiv. techniques as
used by (S]. 1he results seem to bear ou'. the fact that these equations
are ac leest as good as thos. used in the past. Other recent enalysis
and work done, notably by Zurton Wendroff [15), seem to indicate thet
this approech has a grest deal of promise.

The fterative proiadure vas included for two purposes. Firse, it
provides e corrective mechanism which tends */, give better than first
order resolution since it includas some foresight «s vell as hindsight.
Secondly, it provides an easy way of Incorporating non-linear effects.
It is ectually instructive to watch the {terativa proccdure snead up
to the ensver viz the displav console. The anomulins are especielly
interesting as pointed out in section 7.4. Such iterative procedures
have >een successfully used for a iong time Ji thermrl and neutren
diff.sion programs.

Severa) othir fertures of the model are also worth mentioning at
this time. Probebiy next in order of importance is the opacity
avoroging.schc-c at the {nterface as given in section $.2 even though
its worth has not yet betn fully determined. It appears to be the
orly scheme in use thtat has e sound mathematicel and physical basis
and yet still vorks [6]. This has bew.: and conrtinues to be a prime
aree for future work. Coming next in a close, yet, second place s
the zone centering probl.m as exhibited by the point source and frustrum
calculations in aection 7.3. The kinetic energy as epproximated by
(2.64) or the total enargy conservation s incorrect for these problems.

This discrepancy seems to be connected vith the zone cuntering problem.
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It 1s clear that more work nee.s to be dons in tnie ares [16). Even the

13 solution of the suurce problem is in tuspect in light of the shock

tube probles. It seems as though the calculationsl results should leg

behind and achisve an asymptotic solution. Problems with the singular-

itise et the center plus the fact that the source ensrgy is uctually
introducad at tie cenccr of the first zone rather thea actually et the
center of the sphere tend to suggest a much harder look at t'ie problem
and the fdealized solutions given in (12], [13] and (14].

Some of tha other nev and successful feitures include the Hydro-
dynamic Time Step Restriction procedure vhich guarantses that not only
vill sones not cross, but that they vill not expand or comprese too
quickly. The implementation of the extensive eguation of stete end
opacity table lcok-up procedures are not detailed herein, but ers
extensive, efficient and vary fast. The techniqus of introducing
ensrgy into the prodblem by acsns of - remperature profile over ssveral
80068 a8 given ia eection 6.2 is nev in thet it calculdtee the amount
of emergy required to bring the specified zones to that predetermiae’,
temperetura. The fterative procedure pleys a useful corrective rols
here too.

The one important festure not incorporated vithin the modsl s a
dynanic resoaing procedure «ver vhich the user has final control, yot
13 automatic unar certain user specified conditions. The FJ pTOgTAR
aploys & procedars vhich will mot inie’vlly cclculate those exterior
80848 thrie or more aones evay from the rctive sones. This techaique

helps to reduce the calculation time by not including thoee 20nes

= a—
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vhich are not yet active {i.s. those zones vhich have not yat been
affected by radiation or hydrodyaveics). This schese vorks only from
the so called “inner boundary' (lov zone nusbers) outvard and msust
have an “ambient’ boundary condition at the other end. 1f the “outer”
boundary condition i active, if there s 2 pradient near the "outer”
boundary, ot If there are noa-xero source terns near the “outer” bdownd-
ary, thea the progras rust preceed to do the calculation for all mones
regardless of vhat happens #t the “{aner” boundary or interfor to the
prodblem. It s cesirabdle to generalize the techaique vith resoning
into more sonas when nesded, and likevise, recombining sones vhean no

longer nevded.

e N
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