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ABSTRACT 

,.- '^ •    *-\  '    ' ''  ■ ■ ' t-- 

This dissertation formulates and reports upon the implemencation 

of a rutnerical system for the solution of hydrodynamics and radiation 

diffusion as a multi-material problem in one dimension. A parametric 

system U  developed in which the program parameters may be dynamically 

alteved and studied as to their worth and effectiveness. The system 

is designed specifically for use within an interactive man-machine 

environment wherein the user becomes an integral part of the final 

solution. 

vl 



1. 

INTRODUCTION 

The largest and fastest computers have always been used for the 

solution of partial differential equations, especially non-linear 

equations which are used to describe some physical phenomenon in time 

and space.  Computer programs for this class of problems are large, 

and their creation requires a joint effort of many individuals over 

long periods of time, most of which is consumed by the debugging 

process.  Once such a program has been developed, its use requires a 

great deal of data to specify the desi 'ed physical system.  It also 

requires an intimate knowledge of Cht workings of the program and a 

vast amount of intuition and experience into the mechanics of the 

physical processes involved.  Even without difficulties, such problems 

run for hours at a time on the most modern computers in the typical 

batch mode. At some time after what may develop into days and weeks 

of aborts, restarts, parameter changes, program patches, reconfigura- 

tions and the like, the user finally acquires several edge feet of 

printed output and perhaps a few computer generated graphs which repre- 

sent the solution to his problem. He must then examine, plot and 

otherwise become familiar with this output data and make judgments as 

trf its validity and applicability within the constraints of the system 

being designed or simulated. 
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With the advent of multiprogramtaing, time-sharing and real-time 

problem solving at a remote console, new hardware and software tools 

are being developed to allow the programmer and the user f.o become an 

active part of the checkout and running process of a program.  While 

this document reports on the development of a medium size program 

within the rudiments of such an interactive environment, its primary 

emphasis is placed upon the derivation'of a numerical system for the 

solution of hydrodynamics and radiation diffusion as a multi-material 

problem in one dimension. The system is developed parametrically in 

a very general form.  Thus, the user is able to dynamically configure 

the system into a form best suited for his immediate needs through 

the program parameters.  The technique is not unlike that of adjusting 

and tuning a fine piece of complex mechanical equipment.  It also 

inherits many of the disadvantages of such mechanical systems, primarily 

the difficulty of dynamically changing the program. More will be said 

on this and the requirements for man-machine systems for these types 

v 
of computations in the concluding chapter. 

The development of this system has taken place over the period 

of some three years.  During this time, a number of preliminary computer 

programs and interactive graphical display systems have been written 

and developed.  The work on this system originated at Los Alamos 

Scientific Laboratories in New Mexico.  It then moved to the University 

01 Utah and subsequently to Montana State University.  Computer programs 

of the system are currently operational at Los Alamos and at Montana 

State University through remote graphics facilities in connection with 

the University of Utah. I 
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Over this period of development, many ideas and techniques have 

been explored, tested, accepted and rejected. This is particularly 

true with respect to the physics and the subsequent numerical treat- 

ment of interface conditions. As program parameters were tested and 

as comparative analyses were made with other systems and solutions, 

both analytical and empirical, different techniques and features were 

incorporated. These changes are the results of several years of 

experience and formal education not only in the areas of physics, 

mathematics and analysis, but also in computer science. 

In chapter 2, the difference approximations to the partial 

differential equations are derived and the complete system of solution 

is presented. The remaining chapters are used to give the details of 

the auxiliary calculations.  The volume and mass center calculations 

are given In chapter 3, and chapter 4 discusses, the time step selection 

procedure and the associate restrictions and control parameters. 

Chapter 5 deals with the material properties and the calculational 

aspects of the various thermodynamic and opacity coefficients. Chapter 

6 discusses the various ways of specifying and calculating the source 

terms, and chapter 7 Is a summary of calculational results.  Chapter 

8 concludes with some comments on future research areas, particularly 

with respect to the man-machine systems alluded to above. 

This chapter is concluded with definitions of the symbols and 

units cf measure used throughout the remainder of the text. 
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1.1 Nomenclature 

Symbol      Description 

A 

b' 

e 

E 

m 

p 

r 

s 

S 

t 

u 

v 

V 

x 

X 
• • 

X 

p 

9 

X 

area 

gas constant 

internal energy per unit mass 

internal energy 

mass 

pressure 

radius 

source per unit mass 

source 

time 

velocity 

specific volume 

volume 

space 

velocity 

acceleration 

density 

temperature 

fourth power of temperature 

opacity 

Rosseland mean of the mean free path 

Unit of Measure 

cm 

j/Kv-gm 

j/gm 

J 

gm 

j/cc 

cm 

j/gm 

J 

sh 

cm/sec 

cc/gm 

cc 

cm 

cm/sh 

cm/sh 

gm/cc 

Kv 

Kv4 

2, 
cm /gm 

cm 

V 



1.2 Units of Measure 

gm gram 

cm centimeter 

j jerk 

Kv kilovolt 

sh shake 

1.3 Physical Constants 

a 

c 

radiation density constant 

velocity of light 

.013732 j/cm-Kv 

299.7925 cm/sh 

1.4 Conversion Factors 

1 atmosphere - 10":L0j/cm3 = lo"3 kilobars 

1 j = 101    ergs 
7 o. 

1 Kv temperature equivalent ■ 1.16049 X 10      K 

-8 1 sh ■ 10      seconds 



2. 

SYSTEM OF SOLUTION 

FOR 

HYDRODYNAMICS AND RADIATION DIFFUSION 

A set of difference equations and a system for their solution 

Is developed for hydrodynamics and radiation diffusion. The momentum 

equation Is differenced In a natural way assuming an average density 

at the Interface In lieu of the standard area over mass technique. 

Thus, an actual pressure gradient Is computed between pressure points 

calculated at centers of mass. 

From the beginning, the goal was to difference the energy equa- 

tion in terms of the temperature to the fourth power. This approach 

was selected because it appeared to be the most natural and least 

complicated in contrast with the more traditional differencing schemes 

in terms of the temperature or change In temperature. A fully parameter- 

ized system was developed in very general terms. This permits 

detailed studies into the effects of time differences, interpolation 

and extrapolation functions, smoothing functions and the like. In 

addition, an iterative procedure is employed to preserve the non- 

linearities with respect to the energy derivatives, pressure and mean 

free path. 

The complete set of dlfterence equations together with boundary 

conditions are solved in a well defined sequence over an incremental 

unit of time-  The solution is represented by temperatures, pressures 

and densities as functions in time and space. 
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2.1 Partial Differential Hquations 

The mass, momentum, and enu gy conservation equations are solved 

I           together In a Lagrangiaa system where the motion of fixed mass points 

I           is followed in plane geometry.  The substantial derivative forms of 

these . equations in vector notation ;ij are: 

dt -o (7-u) (2.1) 

du 
Pdt - -?P. (2.2; 

de 
pdr 

,    *             ■*           du 
- -p(Vu; - 7-q + p —, (2.3) 

where the viscous pkessuie and gravitational terms have not been 

included.  The Rosseland radiation diffusion equation [Jj, 

♦    ac — ««- 3* rv« C.4) 

is used for the flu.x term and the standard conduction term is o.nicC*-i. 

Equations (2.1) and (2.3) are coabinad Co give a system of 

equations for hydrodynamics anu radiation diffusion. 

dt 
-7p, (2.5) 

dt     dv ^ „ ac «..   ds p di * -ppdr+ VT m + pdT (2.6) 



2.2 Hydrodynamlc Dlf£«ranc« Equations 

Equation (2.5) I* dlffaranced to dascrlbe tha motion of interfaces 

defining the constant mass zones. Figure 1 Illustrates the differencing 

scheme where the center of mass of a zone, denoted by the half index 

i-t-'s, gives the position of the temperature, pressure and density. Tha 

interfaces delineate the mass zones and are referenced through nhe 

integral indices 1 and 1+1. Note that these Interfaces are fictltioua 

interfaces arbitrarily constructed to obtain difference equations repre- 

sentative of the actual differential equation given by equation (2.5). 

Real interfaces between mat«rial types are maintained and included 

within the difference scheme. 

■^ \* ■i+i»j 

•i-* 6^ 8i+i«i 

Pi-4 pi^ pi+m 

"1-4 
1 

Di^ Pl+Hj 

Vi 
xi 

rl 

Al 

i 

xi+i 

ri+i 

Ai+i 

"— 

S 
-^^— 

^i+i 

_• 

l/\—I—• 1—• 1 1 1 \J^ 
Xl+2 *H 

Figure 1 



Th.  .cc.Ur.tlo„.  vlocxty,  ^  spaeul „^„^ are ^^^^ ^ 

•xplicltly M  „.,:„  lntorf„.  „„^ ^ ^^^ 

+  V 

1    "i+S + mi-«, '.x* 

ill 2 

wh.ra th« .up.r-crlpt n danot.s eh« tlm* t-tn with 

cn+1 .  f f    rn^ 

te of equfltions: 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

^«ion «.„ u th0 on..dl_.,nnl „,„„._ ^^ ^ ^^ o w 

*«, ...cru.. t„. .otl„„ of th. lnt.rf.ct K ^ ^^^ ^^ ^ ^ 

■H .on., who., cnt.r. o, ..,. „. „ .   L „., „ ..^ A 

• •ct, courdloat«» >-B*1 «~i .'li'1    .,, . „+i 
••"' «Uj. th. n« vcJu». vj^ 1. Mlcul««) 

"klo. In;,, .;cUu„t th. dl.«,.!».,, of eh. zo[|, ^ 

Th. pto.r.„ ls  c.paku „t  calculatlllg  th# ^^ ^^  ta ^ 

o' tht.. ,.u„trl..:    „,.„,.  .„^^^ ^ >ph€tlc#i       u piiM 

8-.tr),.   th.  r.dlll. of   ,„. „„^^^  o(^ ^^^  ^ M ^ ^ 
«y b. c0„.t«,t or ch.„,. U . U„..rly co„!lllllou. „ UMmtimmm 

'"^ °m ta £1«U" 2-    «- »«""It, ta cro.. .Ktlott p.r. 
-.. «to., ph,.,«, .y,tn, u u ttMt4 ^ ^^^^^ ^ ^^ ^ 

to voa».. .„., „.... .„„„.„.^ . two.dlM11.Ion(il Mmt    ^ 

*-~.  th.t th. pr.grtt „..«. th.t , r wlu ^^^ ^^ 

"JCloo «d good phy.lc.l   Intuttloo, 
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r 

1 
Figur« 2 

T',»« dacalls of chas« calculations will ba prasamad later in 

chapter 3. 

Civan ch« new volume, an average danaity 

r 
n+1 „ "'i-^a a  _JL. 
'i-Mi  vn+1   vn+l 

^•H,   vi^ 

and change in specific volume 

vn+l _ ^i 

(2.11) 

i"^ "i-^ 
(2.12) 

ara calculated for uaa within tiie diffusion aquation. 

The motion of the boundary intarfacaa la dapandant upon boundary 

prassura condition« of tha form 

P • P(0. (2.13) 

where p(c) la given by a user kupplied subroutine. Thus, at spatial 

position i -• 0, 

;,0 
. X'V 
\  7^ s. (2.'.*) 

(S - V^O 

 - 
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and, likewise «c 1 • N, 

N 
N-1.- 

p{cn) 

N-'. 
N (2.15) 

(XN " V^N 

Th« valocltUs and apac« coordlnatea ara calculated ualng equations 

.») (2.b) and (2.9).  The change in volumes at the bounderlee, Av"44* and 

v at« then calculated over the respective intervela (x" x ) and 

^N ' ^ ^ ln ord*r to ohtaln the work done by the boundary pressures 

upon the adjacent cones.  These energy terns 

(2.16) 

(2.17) 

ere simply added to the source terns of the flret ind lest xoae, ree- 

pectively. 

2.3 Radiation Diffusion Difference Equations 

The Integration of aquation (2.6) over '. homogeneous volume element 

and the eppllcetlon of the divergence th«oren yields 

■fc'-"!? f./7'»»-"*-^ • 

In one dimension 

V* '  a 

therefore, 

til  . 
-it * 

with th» sig- being determined by the direction of integretion. 

(MB) 

(2.19) 

(2.20) 
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The tliuu advancemant tchtm« is paramatarlnd so chct ch« range 

from explicit through tuliy im(.xlclt differencing can be examined. 

Ulla ganecalized dit'erencir.g permits a detailed analysis of the 

numerical processes including stability questions [3]. Also, direct 

comparison» between the explicit, implicit and tiae-cer.tared schemee 

can be made dynamically with the same program on the aame physical 

problem. 

The finite difference form of equation (2.20) for a typical 

interior zone is: 

k{|itlHH'fMk| 
I**J 

n+J 

"ifl        ♦i+i«! "  ♦i-Hj 

"i+iri+lli " ♦l+l| V       ♦ (1-oKw 

ui[*i*     h-h] >   7tn-«, *   A81^ 

where the superscript k denotes Ch« iterative value, and 

At 
i^l 

-•i     Ä(ö->       * 
n+1 

m "-/K ■ 

(2.21) 

(2.22) 

(2.23) 
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V «n* 
ÄV 

l+*l 
..< 

k/,  \n-»-l 

ft 14% 

1^- 
-U'"J 

I A \r'+l k-1/.   »n+1 k-1/.   \n+l 

k n+«>     . Jk n+1       nl 
l-^l    ' 

n+i /uH. 
3    \tx 

* I*1» 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

Th« fuactluo« jj (•,-). U (».p). p(e.fl) and ch« ratio ^ «r« glvm la 

■mtaa 5.1. 

Ih« aaan fra« path at a t/pical locarljr intarfaca. 

T«*l m+l k-1 
-n+1 

* i   • % 1 tU4-i,* W piJi' 0iV)    + <1-n>    T ■   (2-30> 

la a w«ig5 i«d avaraga rafla.dva of tha coodldona naar tha Intarfaca. 

tha dacaila e( which ara glvan In «action 5.2. Tha aourca tan conalata 

of a apaca-d«paod«nt part. Pf, oftan rafarrad to aa tha powar factor, 

and a tiM-d«p«nU«nt part. Ä8(t). Both ara dlacuaaad la tactlon 2.5. 
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Tit« wti^hts, w,. MU| w-, and w. «r« used at smooching parametar» 

Co dampen out tha diitcuntinuiciaa Incroducad by linear inrarpoladon 

wlchin cha Equation of Sc«ca and OpaclCy cables. A cypical value for 

Cheee weights la H,  alchough ic la Co Che user's advantag« to usu a 

v»^« of unity it ehe tabular values are smooch or if a condnuous 

function is being used in lieu of ehe cables. This will usually 

decreaae Che uumber of iterationa retired for convergence. On Che 

ocher hand, more dampening may be required ec times in order Co gee 

convergence at all. 

The finite difference equaeions for the boundary tones are daii^ed 

assuming chat ehe Cemperacure boundary conditions used are of ehe form 

♦6|i - , 
•* (2.31) 

wich 

|a| + |6| * 0. (2.32) 

In cenas of ehe derivedve, «quacioa 2.31 becomes 

.1* 
i* 

li . 

'o ' V«, 
(2.33) 

(2.34) 

ac each of the buunderies, resp< edvaly, ey making use of Che following 

flret ordci appro«imaelwns for a ae eha boundaries In conjunccion wich 

aquaeijn (2.31): 

X 



J5 

It  6 >   ',.  then it 1» not «xactly correct to speak of * at the 

boundary Cei ll  pcxitloi Is the aame distance from the boundary as la 

the adjacent «one temperature, but In the opposite direction. The 

technique is often referred to as the introduction of "fictitious mesh 

pointe" about ihe boundary.  The scheme most nearly approximates the 

gradient «t the boundary as ll there ware an additional xone eytjnding 

out from the boundary whose temperatur« (flux) and pressure ptofilea 

are those as given by equations (2.31) and (2.13). If 6 - 1, then the 

boundery condition is said to apply exactly at the boundary. 

The user la required to supply a subroutine to calculate a, 0, 

and > at each boundary. They are either constants or functions of 

tine and/or th.ntMdynamic variables of the boundary tones. For example, 

If a - 1, ß - 0, and , - [0(t)]4, then, the boundary condition will be 

a teaperatura prüflle.  If 6 - 1, then thia profile is imposed directly 

upon the boundary Interface. This type of boundary condition implies 

that the boundary zone la adjacent to a resarvolr of heat that can supply 

or absorb energy to or from the boundary xon* reapactlvely, yet maintain 

a predetermined -.emperatura retardless of what the boundary aone or any 

other «one in the problem doaa. Thia boundary condition is often used 

to facilitate couplinc the roaulta of another comput.er program to this 

program. 

in the same manner, it o - 0. g - 1 and Y - 0, then no energy will 

be allowed to croaa the boundary. Thus, a perfect iiuulator at the 

boundary ran be easily specified, or a eymmecrlcal problem can be sol/ad 

■ore effiolantly by doing only half of It. In other altuationa. It la 
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desirable to specify the flux or the rate of energy into the boundary 

zone.  This can be done by setting a • 0, S " ""f^ A" and y  - F(t) where 

F(t) is a tlux profile.  The mean free path, 7, at the boundaries is a 

function of the bouncary temperature and/or boundary zone temperature, 

and tlia boundary zone density.  Again, the details are deferred to 

section 5.2. 

Ths derivative expressions given by equations (2.33) and (2.3A) are 

substituted int.. equation (2.20) to obtain a finite difference approxima- 

tion to the energy equation for each of the boundary zones.  The complete 

sys^sm of squations, cne for each zone temperature, forms the tri-diagonal 

systatn: 

OP1 
1^** 

^k - au. 
n+1 k+1 

'Ac    n \ mi %+ ^ (u0 - u^ + u^  - X£ 

n+1   k n+1 k+1 n+1 

n+»j 
-i n 

At 

't 
n-4 

_ Nüi    * „i044*  .ua+,i     Jt n+1  .  kACn-Hs .   AC n-Hj 
[to   * I,      ^     " <, X0     +   A\     + &sPo       • (2.36) 

k n+1    k-»-l n+1   . 
0  Ml *1-S + 

ro n+1   .  n      f^f^ 
1 **$ A^ /i44j 

+ au 
n+1 
i+1 

k+1 nJl 

k n+1    k^-l n+1 
0 ui+i -l^iS     Vs 

Uf*    n 
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+ (1-a) hh*" ^i^i-H* ^+ ,ji+i ♦i+m 

-   — + p AVTjj   +   AS.,,   , (2.37) 

k n+1 k+1  n+1 
^  UN-1 *N-lb * 

,   n+1   , Ae 
+ oy 

n+1 
N 

k+1 n+1 

k/     m+^i 
• Ail d)n ,   +  (l-o) MN-1 ♦HW1J, "   ^N-l + ^   ^N-Js + XN 

n Atn44s 

At 
n-^s 

~    T- + ?! AVXT i   + o   X»T      +    AS., i   + ASp..       , Av       ej     ,        N-% AN H-h rN       * (2.38) 

with 

k n+1      k.n+l k n+1 
^0      "    ^0        »0      ' (2.39) 

k n+1      k,n+l k n+1 
»; Yo     ' (2.40) 

k,n+l 
*0 

ac k-n+1   .n+1  .^n+H 
T   lo    Ao    At 

k„n+l      k n+1  ^n+l        n+1 
HZ - -    a (\ '*?"*< (2.41) 

k n+1 k n+1 k n+1 
*N aN 

(2.42) 

k n+1 
XN 

k,n+l k n+1 (2.43) 



ac k-n+l k n+1 h n+h 
3   N   %      at 

k0n+-l , k n+1 / .n+1    n+1 s /x 
N      N    N     N-*s 
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(2.44) 

N 

2.4 Implicit Solution for Radiation Diffusion 

The solution of the tri-diagonal system represented by equations 

(2.36), (2.37), and (2.38) is an adaptation of the Gaussian elimination 

scheme for diagonally dominant systems [3].  Note that when a^O, that 

the (^'s can be obtained directly, but this fact is not exploited, and 

the following scheme is a generalization for all values of a. 

Form the terms 

n+l+ i^ aM, 
n+1 

„ k n+1 _ Y1 = o   u X1 

m   \+ (:L-a) 
<-2 

^Q-^l^h + ^l^üs "  X0 

n' .  n+Jg 
At 

At 
n-Jj 

— + p AVj 
,Av \U 

k n+1 \  k^n-^s  .   ._ n4*sl . 
a X0      +    AS^      + ASp0     } 

and 

(2.45) 

(2.46) 

(2.47) 

xi+i - ^r1 (i-Yi)+^ 

,     ,k n+1 v 
i+1     i+1  i+l 

1«U+o"« 
-1 

(2.48) 

(2.49) 



_ fe- 

ig 

zi+i   Tuh  Ul lm 
\ 

+ (1-a) ^i-h - (ui+ w ^^ 

(2.50) 

+ Ui+1 *1+11| 
_i 

1 
At"   ' \AV i  i-Üi      1-Hs l** * 'l      ' 

for i " 1,  2,  3, N-2.     Then calculate 

k+l.n+1 
f k/A^ 

v^yv^ Iä*; 

n+^ 

^N-I Vm - (;I
N-I 

+ V^J« 

+  X, 
n &tn+k        k 

Ar n-^ ^       PCAV^ + akxS+1 + kAS^+ASp!!+li S

N-Js N 

i r 
^^ivifr^i^-vi^v. 'A^ 

A* 

n-^s 
+ c;V+1 

N 

-1 
(2.51) 

and 

k+1    ,. k+1    ^ 
M m n+1 
^i+hi        i Vi+llj      Äl (2.52) 

j ■-? 

for 1 « N-2,  N-3,   ...,  2,  1,  0. 
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2.5 Time Advancement Procedure 

Figure 3 is a simplified flow chart which illustrates the order 

in which the combined hydrodynamic and radiation diffusion calculations 

are done during one time step. Note that the hydrodynamic calculitions 

are done first and are based upon the pressures from the previous time 

step.  The radiation diffusion calculations are then done using the 

new volumes resulting from a change in position and length of the res- 

pective mass zones. 

Initialize 
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Update 
energy sums 

yes 
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Calcuiate 
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derivatives & 
mean free p-'ths 

Calculate 
velocities 
& spatial 
coordinates 

Extrapolate 
for initial 
temperatures 

Calculate 
temperatures 

up 'ite 
bressureb, energy 
derivatives & 
uean free paths 

Figure 3 
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At 
^n-ll 

Hh (2.53) 

The extrapolation parameter v will tvDlr-ii„ win t/piceUy vary between 0 and 1 with 

0. h  and 1 being the more popular values.  Further 

are glVen ln secCion 7#1 ^ ^^  ^ ^ ^ 

Given an initial r_r 

comments with examples 

Ae 

n+l  0 

S (*"» 

-mperature estimate,  the quantities 

,n+l 

(2.54) 

'At 
A v 

n+l       0 

Imi 

0 n+l 

i n+l 

l-Ms 

0 / ^+1 
| rO.o) ) 1+^ 

(2.55) 

(2.56) 
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«•  then ..alculafi  for ..ch lon.  ln  th. „^^ ^ n.r ^^ ^ 

.»oothlng p.r.«et.r..    Llkawi.., .t th, lnt,rfac< :«■ 

0 

0- 
U90. ^.p^ 

n+l 

in+1 

0 n+1       0/ in+1 

(2.S7) 

0 n*l       0i 

« rVV  «UV "!.■,• "WJ       ««« N-l, .nd      (J.;,,) 

(2.59) 

...rr th. lt.r.tlv. pr.c... fc, t.dUtlon dIffiitloa     ^ calcuaatloii 

«or th. .„„re t.ra. ta c^iic,t« tlmm thtn ir< ^^ ^ ^ 

introduan. .„„.„ lnt0 the probi„.    ^ have ^ ^^^  ^ 

i.po.Xtio0 o{ M^«, t.BpQralur. „^ ^ ^^^^ ^^^^      ^ 

ch« a. ,„»,„3, t^.r.eur. or flux pttflta do ^ tu^ ^^ 

1. • .our« t.t. c.uUl.tlo„.    h thl. c„., the .n.rgy tranir<r ^ 

i-puc«!,, ua^ ta the .„.r8y .^^^   ^^^ th> Mt ^ ^ 

mm* .croS. th. bou„d.rl.. du. t0 th€ ^^^^ of ^^^^^ ^ 

flux profiles 1« »imply: 

AS 
n-Hj 

Ö      u o^ - *( 
n+l 

+ (1-a) 
'0*h - XQ 

eN 

The other  two  source  ten« fo 

|n+l 

:t
n^ 

\t 
n-i 

XN " Vin 
n At 

n^S 

It* 

rms are discuss.d in chapter 6. 

(2.60) 

(2.61) 
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Tho pru'.aas itaratat a« ahown In flgura 3 until tha camparaturaa 

convarga t; a atable valun     Thai la until for aacli zona 

91-H| '    'l^ 
k^n+l (2.62) 

glvan auisa MM spueil lad apallon. Slnca convarganca iu  not guarancaad 

thara la an uppwr Unit upon tha nuab« r of ao called canparatura itara- 

tlooa. Twanty la a uonlnal iiaxlnum nuabar of Itoratlona, but 'he nuabar 

■ay ba alt«r«d by tha uaar to fit hla problaa. In particular, tha Halt 

aay ba a«: i. wtlty, rtduclng tha calculation« to u  non-ltaratlva pro- 

cedure. Tha uaar aay alao rotaca tha tla« acap ■is« If tha nuabar of 

itaratiom per tla« atop bacoaea axcaaalva or 1'. the taaparaturaa do 

rot converge below the apeclfled apallon of convergence.  In addition 

|| the tiae atep size restriction paraaatera, aaveral of tha other 

averaging, taoothlng and extrapolating parrjMtars dlacuaaed above affect 

the rate ot convergence and '.he nuaber of iterationa nqulred for conver- 

gence. The ability to change thea« paraaatera dynamically aaka It poa- 

alble to give the user the anawera he deairet ir a aoat optlaua way. 

It very uitcn provide» the only - eana of getting peat a particularly 

difficult part of tha problaa.  It alao providea '.he aaana of getting 

ever particularly atable portlona without exceaaiva coaputer tiae. Thus, 

tha prograa need not run always with theae paraaatera aet at worst case 

Xevela. 
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Th* UM *t«p In th« MM «dvwcMMnt  «chra« U ch« updating of 

th« «nargy c«r-t.    Th«»« tirma «r« c«lcul«e«d «nd display««! «■ a Mans 

of Uaplng :r«ck of «n«rgy con««rvatlon.    Thua, th« following total and 

psr*.    1 Huaa ar« aalntalnadt 

It n+l 

n 1 HH 1 "**"]Z 
KE n^l 

• f^ [;i * Vi] 
**H 

(2.63) 

(2.64) 

SE0*1 - 7, 7.   ÄSjJ ♦ ÄSp»^ 4 LSpf* « AS »^ . 
n   i 'l^i ♦ iS, (2.65) 

For «nargy c«na«rvatlon, It should b« th« MM at all clmas chat 

1E-WW. 

This will nsvsr b« th« caa«, how.v.r.    JMC du« to normal truncation 

and roundoff arrors within th« cosputar.  thaa« BUM ar« pr«d«stin«d to 

oot «dd up corr«ctly.    It  is th« r«l«tiv« diff«r«nc« which is Uport- 

•nt for th« us«r to »caltor.    H« can affact control ovar this dlff«r«nc« 

prlMrlly through thy conv«rg«nc« paraMtar and tha tlM acap raatricdon 

fsctor. M tiv« in   chapt.r 4.     Th« «Mrgy conaorvation and co^utar 

tiM ar« v«ry r«al trad.-offa.    It has ba.n my axparlanc« th.t tight 

•o«rgy conssrv.tlon will not always give slgnlfic«ntly diff«r«nt r«sults. 

It MM to b« l.port«nt only «c c«rt«in tiM« within th« probl«.    Many 

of  th«ss ar« known a priori with raapact to.  My. tha charar.taristlcs of 

ths «Ml «n.rgy-tiM profll« i«po..d upon s bound.ry or • s«t of «on««. 

In th« Min how.v«rf  th« ussr will only tlghtM-up c«rt«ln p«r«Mt«rs s. 

th« n««d aritas. 



2r 

AREA,  VOLUME AND CEMIEK Of MASS Cä»XULAT10IIS 

Aft.r Ikt «cc.lflr.tloo. v.luclty «od Sp«c« cm« «r« «dvancd In 

tl««. D«W «on« VOIUM« «■ c«lcul«t«d la ord«r to d.c.rmln« tu« ehantM 

In «p-cliu VUIUM ov«c th« %mm Urn* Int.rvnl.    Th««« chwg«. «r« 

Indlcntlv, of th. n^unt of «ntrgy conv.rt.d Into kinotlc «norgy duo 

to proMuto trndlwt..    l«U.d, it l, of irMt i^ort^co to «mitor 

th. Mount oi onnrgy coov.rtnd nod in rat« of convoulon Into or froa 

kin.tU onorgy.    Tbl« on.rgy opp««ra M «bock« or shock W*M and tholr 

chnrnct.rl.tlc prusur« p««kn can ba dyna^cally dlaplayad upon a CW 

tan^aal.    lh. uaar 1« than abla to nonltor tha «otlon. dl.tributlon 

«d affacts of auch ahoeka In diract ralatlon with concurrant dlaplays 

of tanparatura and danalty tama.    Of .pacUl Intarast ara tha changaa 

in VOIUM at th« probla. boundarlaa.    It is hara that axtarnal forcaa. 

U tha fora of boundary praaauraa. puaq> kinatlc anargy Into or out of 

tha probla«.     In addition, tha aotion of tona boundarlaa raqulra« that 

naw tona aaaa eantart cmtt b« calculatad fro« which finlta dlffarrnc« 

IMM can ba foraad to d.acrlba tha tranaport of anargy fro. onr tona 

to tha naxt by tha d'.ffoalon of radiation. 

The purpoaa of thla chaptar la to giv« th« co«putatlonal dstaii« 

uaad for datarainlng tha volima and «aaa cantar« for aach tona.    Each 

of tha thraa gaoaatrlca It dlacuaaad. 

3.1      Plan« GaoMatry 

In plan« gaoaatry. tU apaca dapandant radlua addt to tha COB- 

pi.xlty of th« .r... «olma and cant.r of aaa. datandnatlon«.    Flrtt, 
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1«C M point out chat th« cmerr of Mas w« vlth to dotonaln« 1« not 

(In t«a«r«I) •qulvoiont |t ctw cantor of gravity, laataad, it la tha 

point on tha mtit  which dlvlda« tha gina In half with raapict to Its 

VOIUM and toniiaqoaotly Ita aaaa alnca It la aaauMd to hava a unlfon 

danalty. Sacondly, oota that aquatloaa (2.7) and (5.36) r.qulra such a 

division. 

L'nfortunacaly, tlsa has not allowad an axact division for tha 

caaa In which tha radii changas llnaarly with raapact to spaca. Inatatd, 

tha cantar or gravity waa calculatad aa an approxlaatlon for tha cantar 

of thaaa ssctlon«. 1 rafar to such sactlona aa truacatad fruatruaa or 

trapaioids of ravolutlon. 

Tha usar »uat provida a description of tha contalnar. Thla Is 

dona Indapandantly of tha Initial apatlal dascrlpclon of tha matarlal 

within In tha font of a spaca proflla of radii and spaca pairs 

auch that 

\ ' VJ * (3-2> 

•^ 'pj ' 0- (3.3) 

Tha VOIUM of a sona dsllaltad ay Intarfacaa at xj and K°  at aona 

tlaa t • tn 1« than glvon by 

^'.1. * ■ "*> 
with 



ii n 

A^ " x     - x for k • J*l, .... i~l 

"5'<«■%„ • 

(r?)' 

< 

for k • j ♦ 1 i-i   «od 

4/3^       )2 ♦ r r     ♦ (r   )2 
If r ^ r 

pt-l       »I 

wtiar« 
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(3.«) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

pJ-l    *    PJ    pl-l    M    Pf 

for SOM J and t,  1  *  j &    t    i J. 

la tha ■p«<;ial («nd aoat of ton ancountarad; caaa for which 

Pj-l   i        i*2   Pj 

(3.12) 

(3.13) 

Ch«r. 
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(3.U) 

1+1    ' 

^ 'J*l • 
(3.13) 

la borh cM«s, 

(r      - r        ) 

r;. tf . -    ) ^J—ShL ♦ r    . 
;-1 VA-i     'J-1 (3.16) 

If Che nMtrictloo* glv«» «bov« in «quacioo« (3.12) or (3.13) cannot 

ba satisfied bacauaa part M all of tha ton« liaa outslda of th« pip« 

profil«, th«n th« formula «bov« is usad aqually «fall to axt.'«polata for 

tha intarfac« r«dii.     In thosa caaas, aithar aqoation (3.4) or (3.14) 

apply depending upon wh«th«r aor« than on« {th« last) pips «action is 

involvsd.    Cm «ust b« takan to liisur« that r" > 0 far all I - 1,  .... M. 

Tha ton« c«Pt«r  is thsn givsn by 

1^ 

with 

teCi    ^ ^ 

k-j.i ^ 

(3.17) 

'(V [3 ^ * Vh * 2 V2] 
12 Vj 

(3.18) 

4- a"    if r 
1 PJ-1 r^ 
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pk-l       Pk pk     pk-: 

J    I  k    pk-l 
'     ♦ 2(r    ) ■] 
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(3.19) 

12V° k 

for k - jn »-1 aiuJ 

* *u    it t 
pk-l    pk-l 

■ 
Il(«?^, - «.    )   If t 

(3.20) 

12V .1 
+ XB    if r ' : 

pl     pl-l   pl 

or if  O.n) applies, 

4%' 
w«;i*4> "'ri-^i. 

L 13«« *i   " ri f ri-»-i • 

if rosericcion (3.1.*) «pplioa. 

Th« «ro« of a typical inCarfaca ia alaply 

»n   / o.2 
J * *<ri} (3.22) 

3.2  CyliodrUal *nd Spharical Caomacry 

The calculaciooa for cylindrical and apharical gaomacry ara much 

aiaplcr than chat for plane gaomacry ItC thara ia no analog to tha flexible 

croaa saition allowed therein. 

Fur cylindrical geometry 

AJ - 2.x; h . (3.23) 



"U • • fas* - <'i,J]h • "•24) 

«nd 

- f [(xm)2* (^)2l|,8 (3-25) 

wher« h It ch« height of  ch« cylinder as supplied by the user. 

For spherical geometry 

A° - ».(xj)2    , 0.2t) 

^■"^l(«^'3-<«l,3]    • "•27) 

and 

1/3 
n Ji    l,n    »3j/n "'I} (3.28) 

3.3 Chang« in Volume at the Boundaries 

As required in equations (2.16) and (2.17), the change in volume 

at each boundary is calculated in a manner not unlike that given above. 

Since the boundary volume element is regarded as a change in volume, 

Che sense or sign of the change is important.  Note that the volume at 

boundary i - 0 must be calculated over the interval from x^ to x^ 

If Ä°
+1  x" then the interval 1« thought of as having a negative 

n+l* 
length i: order to determine the correct sign of AVQ  . The same care 

and consideretioa is given to the other boundary. Note that if 

AY044* • 0 and/or aVn+^ « 0, then work is done on the system. 
0 n 
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4. 

TIME STEP SIZE DETERMINATION 

A number of restrictions are placed upon the time step size for 

purposes of stability, resolution and convenience. Each is discussed 

in detail with respect to their effect upon the solution and each is 

controlled directly or indirectly through user specified parameters. 

4.1 Courant-Frledrichs-Levy Hydrodynamic Stability 

Criterion [3j: 

(     n+1 -^ 
A-n+J5 -   yJBt^i      min   .       i*H l At   *  Atc  -    <, -~3 }. (^.1) 

l.u 
ftfl [ • 

s 
This restriction prohibits the shock front moving at a velocity u 

from passing completely through any one zone during the time step. Note 

that Axi+; and us   are not known at the beginning of a time step. The 

n+J< 
zone width is an explicit function of At   and the shock velocity is a 

function of the resultant pressure and density, the details of which are 

given in .ection 5.1, equation (5.25). 

The procedure used to determine the Courant time step, therefore, 

is to estimate an initial value 

tJ*H      .        min    Jj^i+is I Atc  - cfac i ir^r • (4-2) 

with 0 < Cfac s 1, and then ^heck after the initial extrapolation and 

each subsequent iteration :hat 

FA 
n+i "1 

At11^ ^ - rain Kr^r^ ^-3) 
c    i  ; K n+1 ( L Us J 



•£"* 

32 

If at any time during the iterative solution it is found that 

k n+%    n+h 
Atc  < At  ,  then an error message is displayed and the program is 

put into a waiting mode.  The user is then expected to initiate a cor- 

rective procedure which will enable the program to continue in a stable 

condition. 

The corrective procedure may be nothing more than reducing the time 

step size directly or indirectly through the parameter Cr  and then 
fac. 

backing-up and restarting the current time step.  It can, however, Involve 

a detailed examination of the conditions of the offending zone or zones in 

order to understand the mechanisms creating the instability. More precise 

solutions may then be directed at the particularly sensitive variables 

involved. 

4.2 Hydrodynamic Zone Increment Change Restriction 

n+1 

fac   i 

aX 'i& 
Ax 

i+k 
(4.4) 

This is a restriction on the f.actional change in the length of a 

zone, with 0 < Uf^ <  1. Its primary, purpose is to minimize the discon- 

tinuity in the distance between zones and the volumes of each zone from 

one time step to the next.  It also prevents a complete collapse of a 

zone, and, in particular, the inversion or crossing of adjacent inter- 

faces. In addition, this restriction eliminates most of the problem of 

mismatched zones with respect to their mass ratios. The problem arises 

during a given time step when a massive zone crushes and collapses a 

much less massive zone before the latter is able to build up a resisting 
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pressure. Another difficulty with  adjacent zones of widely differing 

masses occurs when an average opacity is calculated at the interface 

between the zones. This problem is discussed in detail in chapter S, 

A time step increment satisfying the restriction given by (4.4) 

can be explicitly calculated once the acceleration terms are known 

since 

. n+1   n+1   n+1 
I-HS    1+1    1 

n    -n 
Xi+i  Xi 

+ (xn^ - xn"S Atn+^ 

+ (xj+1 - xn) ,t^   (At1^ * *£b 
1+1   i 2 (4.5) 

using equations (2,8) and (2.9).  Thus, a maximum value of t""^ needs 

to be found sucn that 

IVArt 2 + bi «^ . Ci , WiH 

where 

, /-n      ■■n       . 

i+1 

n-% 
bi  a^t   + (x.  - xi+1 ). 

c. " Hr  Axn,, , 
i   fac  l+J-ä ' 

(4.7) 

(4.8) 

(4.9) 

n+is 
for i = 0, 1, ..., N-l. A solution, AtJJ"^, of the system represented by 

(4.6) is in general a quadratic root depending upon the values of the 

coefficients a., b. and c^  Since ^ > 0, it is possible to show that 

s. 



At 
n+% 

Vibi, 

2a. 
mm 
i 

-bi-(b^a.ci)^ 

2a. 

if a «b =»0 

if a^O,  b^O 

ai-0,  b^O 

if ^ 

ir 

\ai<0,  b^O 
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a1>0,  bi<0, b^-4aici<0 

a^O,  b^O. hl+^cfO (4.10) 

!/
/ai>0, b1<0, bJ-^a^äO 

ai<0, h^O,  bj+4aic <0 

The user uan dynamically change the importance of this restriction 

through the parameter 11^ , rezoning if necessary when the restriction 

is too greatly localized at one zone. 

4.3 Temperature Change Restriction 

At  a S 
9     fac i 

3i+h +  6 

.n 
'tok ' 8i-^i 

At n-h 
(4.11) 

This restriction, not unlike the others, is added to reduce the 

truncation error and give better resolution and accuracy when desired. 

usually. 0 ■ Tfac ^ 1, and the parameter ep is a reference or base 

temperature above which the restriction is to be applied.  Both parameters 

may be set dynamically by the user :o best suit his requirements at any 

time throughout the solution of his problem. 

Specifically, an economic trade-off with computer time consumption 

per unit of problem time can be made at those points when the temperature 

and pressure gradients are such that a first order approximation remains 
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valid over a much ir.rger time intarval.  Note that the three time step 

restrictions discussed up to this point will automatically increase or 

decrease the time step increment depending upon current conditions 

internal to the problem. The user, however, has control over the degree 

to which these restrictions will be applied. 

If 

(4.12) 
■1+lä 

■ «3 - 0 

meaning that the temperature change occurs irrespective of the specific 

heat of th.? zone,   dien  the temperat are change restriction on that zone 

is ignored. 

4.4 Doubling Restriction 

it   s 4td  = 2 at   . (4^3) 

This arbitrary restriction prevents the time step size from becoming 

too large too fast.  If the next time step is quite large with respect 

to the previous one, corresponding changes in the derivatives, pressure, 

opacity, etc., may be too l^rge to calculate accurately even in light of 

the iterative scheme. A rapidly varying time step from one time step to 

another can adversely effect the hydrodynamics through equation (2.8). 

Note that there is no restriction upon how small a time step can become 

even wltr. respect to the previous time step size. 
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4.5 Print Rastviction 

""^ - "T ■ 'Pre " 'n • ■  «•"> 
At user specified intervals, the program prints out tha currant 

space coordinates, temperat-ures, pressures, etc., so that a permanent 

record of the problem solution may be retained for further study at a 

later time.  The program also makes a hard copy of tha image on tha 

display and writes out onto a user file the current state of the program 

so that it may be restarted at that time if so desired at some later 

time.  This dump feature allows the user to run a problem at several 

sittings, restarting at or near the point in time at which he stopped 

previously.  It also facilitates his going back in time and trying a 

different solution path by changing one or more program parameters or 

variables. 

The specific print-plot-dump times are given during the input 

phase of the program in the form of a print profile.  The profile con- 

sists of a sequence (Atprt  , tprt ).  The next scheduled print time, 

Vt " W + "^prtj ' (4.15) 

is determined by the j and the m for which 

(m-l)At ,. a tn - t    < mät (L M\ prt        prt.    prt Q<».lo; 

and 
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if th«r« is a next value c       Also, if 
prVi 

PrtJ+1        prtj prtj   • (4.18) 

th,n 'prt i• ■•' to S«4+i ' •nd th* indm* J i8 «dv«nced by on«. 

Ih« print profile is used to obtain print-outs over certain intervals 

of interest at "nice" values of time, usually factors of two and five. 

Both ths profile and the next schaduled print time may be altered dynam- 

ically. 

Since the print times will normally interrupt the running sequence 

with a short time step, the program attempts to restore the time step 

size for the next tima advancemp.nt to the level at which it had been 

running. Specifically, the temperature change and doubling restrictions 

will use Atn   as a guide in lieu of At""15 . The other restriction 

criterion are ussd es stated after e print cycle. 

A.6 Maximum Restriction 

Atn"^ *  min^At  , At ) . 
(4.19) 

k 

Once In a while it le convenient to sat a limit on the size of the 

time step. It is particularly helpful when the user Is attempting to 

follow a phenomenon which Is not being controlled automatically by any 

of the other time step limiting procedures. 

A one time only maximum may be set through At . It Is automatically 

reset to infinity for the next time step.  There is an automatic back-up 

scheme which mey occur if the temperatures don't converge. When this 

back-up occurs, Atg is set to one half the value of At"
44* and the calcula- 

tions for that time step ere restarted. An overall maximum At may be sat 
m 

and remains as set until reset. 



NoCfl Chac wliile At   may b« altered dlractly by uaar, It is not 

•ffactlva unleaa ha alao achadulaa a back-up since Atn  is racomputad 

at the beginning of the next time step. The back-up procedure does not 

restart the time step calculations at the  beginning of the advancement 

procedure as illustrated in Figure 3, but Instead, restarts with the 

selection of the time step size. The accelerations and previously 

discussed time step size reetrictlons remain valid during a back-up. 

4.7 Hold Time Restriction 

Atn+1 ^ 4^ - ttf - tn (4.20) 

It is often useful to set e time t at which the user wishes to put 
w r 

the program in a hold or wait condition. This feature insures that ha 

will be able to put into effect changes at certain specified problem 

times crucial to the overall problem solution. 

If t < t , then the restriccion does not hold and the program 

automatically sets At to the machine relative infinity. 

4.8 Time Step Size Selection 

The time step eiM selected Is simply: 

At* - min^Atc, Ath, LtQt  Atd, Atp, AtB, Atgt MyV   •       (4.21) 
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5. 

MATERIAL PROPERTIES 

Equ«clon of «tac« «ad opacity data au«t la provided for «ach spiel- 

fled m«cetl«l. These det« are available In tabular form on a mass etorago 

device and are automatically read Into the program vhen celled for by 

name during the Input phaae. The user may also Include his own special 

purposs tables or routines. Sometimes the material properties can be 

celculated from a set of paramatarlsad -..uatlona. This may be the case 

when a problem Is run for which there Is en analytical solution to check 

with. 

This chepter will limit Its discussion to the standard matsrlal 

property cables and the procedures which are used to calculate the 

required thermodynaalc quantities. 

5.1 Equation of State 

The gaseous equation of state tables are organised b> density and 

temperature within each material type. For each tabular density In the 

form InVj, there le e sequence of temperaturtf Internal energy and pro- 

portionality triplets, (6, c , b'). . , such that: 
g   j i* 

. . b'e 
pg   v • (5.1) 

Invj < Inv. < ... < Inv. , (5.2) 

ej.l * 6j.2 <  •'• K  V ' (5.3) 

with J, K - 1. Note that there le no requirement that the tables bs the 

same size from one material type to enother, or that «^ L ■ 6. . . for 

any J, k within the table. A typical maximum table sisa would be J - 20 

and K - 30. 
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Th« mat.rUl Int.rn«! «n^rgy, »g, InoludM th« klnttlc anargy of th« 

tv  p«rtlcl«i; tha dliJocUtlon, iool««tloo, «ad wcclutlon anargy; but 

not th« radiation «nargy givan by 

.r - .♦v. (5-4) 

Tha aquation of atata tablaa «ra goaaratad by othar amputar progra«a 

[4], and th«r« ara many tablaa In oxlaianca for tha cownon «laMnta. 

compound« and mlxturaa. 

Civan aom« temparatura and daoalty. (8,p), tha anargy darlvatlvaa 

and proportionality constant ar« approxlaatad fro» thaaa tablaa through 

th« following Intarpolatlon foraulaa: 

A» (8
'
P) 

x.!^ Inv - Inv 1+1 

l+l 

c>Hi.i   \.m iiikl 

- c 

^J.lc*-! " 9J.h 

t «'» or 
Inv - Inv 

LlnvJ+1 - Invj 

4ae3v, 

(b^i.t+i " S+i.i 
lej+i, i+i' Vi.t 

(5.5) 

+ •♦, 

,bi.^-bi4 

(5 6. 

Inv - inv. 

^^^'inv^-llv/S+l-^^j' (5.7) 

whara 

b • - K»     + ra - a      i   it164,1   —lA (5.8) 

^ 



bj+x - "i«.. + » 

«■■umlng that 
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(3.9) 

loVj v Inv < luv ^ with 1 < J < J, 

•jH.!* lgiJ4M*,,ltk *#t<fc 

(5.10) 

(5.11) 

(5.12) 

If on« or mort of the abov« conditions glvan by (5.10), (5.11) and 

(5.12) do not hold, chon «quatlona (5.5), (5.6), (5.7), (5.8) and (5.9) 

«• uaod H oxtrapoUtlon foraula«. Tho «vlli of this sxtrspolstlon 

schsM hav« shown up oftan upon tha graphics scopa In the for* of non- 

convarganca and dlacontluult. Ir. auccaaalva valuas. It Is hopad that 

through tha graphics «onlt^r, a mm  «xtrapolatlon achaM or llaies upon 

tha existing achama can ba aatabl^ahad which will aid tha usar In bring- 

ing his ptoblaa up to thosa tampa:«turaa and dansltlas which ara within 

tha bounds of tha tablaa. Tha uaar Bust oftan coapromlg« with storsg« 

limitations and put In tablaa which cover on\y a particular araa of 

intaraat with raspact to taaptratura and anslty. 

Equation (5.5) glvaa an appro«l«atlon for || , tha spsclfic haat. 

l^s tablas ara constructed for lioaar Intarpolatlon on 9; tharafora, 

squatlon (5.5) In tama of ; la unsatisfactory for an approximation to 

H . An acceptabla achaaa makas uaa of tha ralatlon 

(5.13) 
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wich 

Thcrafor«, 

wh«r« 

fc(Mi^  3fcA 

Note  th it  chls Approximation «voids problMS with lost of slgnlflcanca 

bocwoon norrly equal quantities and division by ssro (within cho 

conpucor's flnJca rssoludoo). 

Kqustlon (5.6) Is dsrlvad using ch« Cboraodynsale rslsdonshlp 

in conjunct ion with squsdon (5.1).    A aors dirscc fora would b« 

II (e,p) . Vi    ''J      !i±LHL + ,. ,. iai 

whers 

&(lnv)      1 
"7v     ^V     e' <5 i» 

c, - e. 

gJ        gJ.k J'k    6J,^1      ej.k 
(5.2J) 

J.k+l      'J.k 
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- t 

Vi 
- c -Me - e   ,   )   attUti SttLi 

•J+l.t J+i.t' e J+l,t+l  "J-H.l 
(5.21) 

Th« two forms glv« different ratulcs and the former WM chosen only 

bocaua« ic proved co be cheeper. 

The cotel pressure Is ehe sum of the gus pressure given by equation 

(S.l), the radiation preesure, 

. • Pr - f ♦. (5.22) 

and the peeudo-vlccoue preeeure. q, which is en artificial eid used to 

fit the ehock in e snooth manner over several sonss [3]. Two forms of 
m 

pseudo-viecous preeeure are provided, the choice of whfsh is en option 

provided to the ueer. The form linear in the velocity gradient ia 

k n+1 
qi^ 

nlpi^ 
n+l k-1 n+l 

"•i-Hl 
xi"H " "i  I n+1 

Ci+1 

for AVJ5 < 0. 

(5.23) 

for AvJ^ * 0. 

and the quadratic form is 

n+1 

k n+l 
qi44, 

n. p 
'2 Pi-M, 

_n+l\0n 2 

n-Hi  .n-^/'t  \ 
xi+l "^ xi I n+1 

"i+l/ J 
for AvJ^ < 0. 

for äVJ5 a 0, 

(5.24) 

Both n1 and n2 may be altered by the ueer at any time through the keyboard 

and are initially sat at 0.8 and 1.0 respectively. The peraaeter a-0.1,2 

for plane, cylindrical end ».pt er leal geometry respective) v, rne sonic 

.«.l^city is given b" 

n+1    n+1 1 ^ 
(5.25) 

k-1 n+1 
u 4/3 "k-1 n+1  n+ll"1 Pi^ Vi^J  ' 
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Not« chat MM ionic vtloclty is a function of tha total pres.ure and 

to« tbarofor«. on* itaratlon bohlnd. In summary, th« total praasura 

i« glvan by th« sun 
k/     »n-Hik/ .n+h 

(5.26) 

5.2 Maan Fraj Path 

Corraapondlng to a conductivity coafflclant in thamal diffuaion 

programs, a dimanaionally aquivalant coafflclant, y T,  la calculatad 

for use in tha radiation diffuaion tarn of aquation (2.6). Tha mean 

fraa path, T, la a function of both temperature and density as ware 

tha preceding energy and praaaura terms.  It is calculatad using tha 

relation 

r' ^p (5.27) 

where <, the opacity, la typically calculated through the interpolation 

of tablea glvan in terms of density and temperature. The scheme la 

further complicated due to the requirement that wa must obtain a value 

for A et the interface while the temperature and density values are 

available only at the zone mid-polnta. Many schemes have been tried 

and teatad [5, 6] in a number of similar computer programs. 

The scheme implemented here expands upon ideas developed In the 

FF progrem L5]. Th* central idea la ti  try to gat a batter estimate 

of local conditlona at the Interface and than calculate a mean free 

path baaed upon theae cotHUiona. 

Of prime importance wee an interface temperature since the density 

changes from one time step to the next tend to be overshadowed by much 

greater changes in temperature. Also, the opacity tends to be a much 
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lass sensitive function of density. Thus, density effects were some- 

what ignored with emphasis upon arriving at a suitable Interface 

temperature. 

Note that the radiation energy aquation 

Er - ae
4V (5.28) 

implies that $ - 6 is a measure of the energy in a zone (as far as 

radiation transport is concerned). This assumption Is valid only if ^ 

represents the whole zone. The temperature point is, therefore, located 

at the mass center rather than the spatial center of the zone. This 

also agrees with the hydrodynamlc differencing as explained in section 

2.2 and given by equation (2.7). 

The radiation energy in the volume between mass centers about a 

typical Interface is simply 

Also, 

2r - «(♦V) (5.30) 
1 

thus, 

(♦V). . + («V).^ 

♦i ■ v    + v r1 (5-31) 1      V'i      vi-* 

This temperature is exact.  Its position is.unknown though and one 

can only say that it is the best estimate which can be obtained in the 

neighborhood of Interface. In the end, its'position Is unimportant. 

w:,at is important is that it provides a means of obtaining the correct 

flux across the interface agreeing with empirical <uid analytical results. 

! 
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Given the Interface temperature, an bpafiity is calculated for each 

zone in the neighborhood of the interface which is reflective of ehe 

respective material type, temperature and density. These values are 

referred to as ic . and tc ~ where 

Ki " K(ei» Pi^) 

and 

(5.32) 

Ki" «V h-d (5.33) 

The calculational details of the opacity functions are given in the 

next section. 

Note that the opacity is a measure of the average cross sectional 

area as seen by a photon. Its units of measure are area per gram of 

material.  The total opacity is., therefore. Km, where m is tne ass 

of the mat«rial which has opacity <.    Thus in our case 

(K:m)1 a h 

and since 

*~imi-H + KtmiJ 

Ai- Km 

(5.34) 

(5.35) 

then 

(5.36) 

Since each «one is assumed to be homogeneous in density, the mass 

center is also the volume center. Thus, the volume between x. . and 
i-^ 

xi is simply äjV^ . This fact is also used »n equation (2.7). 
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An average flux is than given by 

Fi^ 3 "MW-^i' (5'37) 

The spatial position of this flux level is not fixed and is not known. 

It becomes important only when the radii varies between x , and x 

This flux value is also valid for but a short time. Thus care and 

considfration must be given to the proper selection of A, the area, 

and At, the time step size, which are used to give 

AQi=FlAiAt' (5.38) 

the net amount of energy transported from one zone to the next by 

radiation. In this case,  the area used is the actual area at x . 

It will in general, vary as does x^ and the details of its calcula- 

tion and those of the zone volumes are given in chapter 3. The time 

step size. At, depends upon several constraints as have been discussed 

in chapter 4. Not only is it used to control the truncation error In 

j£ and consequently ~ , but it is also used to. limit the time for 

which a calculated flux value must be used.  Note from equation (2.21), 

that depending upon the value for o, the new and old flux levels are 

averaged over the time step. 

The mean free path at the boundaries is calculated in much the 

same manner as any other zone. First a boundary interface temperature 

is found upon which an opacity is calculated.  In reference to equation 

(2.31), this boundary temperature is 

*0°°%    "V0 (5.39) 
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else 

*o - 60 ^ + ^V %   if s0 

Then, 

K0 '  ^O' ph*'      and 

r   = -^ 
0  < 

Similarly at the other boundary, 

*N " 6N ^ + ^ " V   ^N| if ßN - 0 • 

^ " (eN' W 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

and 

AN- 
*8 (5.46) 

In the case for which the problem is actually within a pipe, it 

is necessary to consider the effective reduction in the average mean 

free path due to the reflection, absorption and re-emission of radiant 

energy upon the pipe walls. A simple harmonic average of the material 

and geometric mean free paths is used with a small correction term [7]. 

k 

(5.47) 
^J- + J.+ 0.14i^ 
A  A   A 

m   g \    + X 
m   g 
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or 

A  (1 + A /A ) 
A -  8 8 E 

(1 + A /AJ2 + 0.14 (A /A )Js ' (5-48) 

Here, the geometric mean free path 

A  - d, 
8 (5.49) 

the diameter of the pipe at the interface in question and Ara is the 

so called material mean free path as calculated above in equations 

(5.36), (5.42) and (5.46). 

i 

5.3 Opacity 

The opacity tables are of the same form as the equation of state 

tables. For each tabular density in the form In^. there is a sequence 

of temperature and opacity pairs, (InO, ln<). . such that 
J »K 

lnVl<lnV2< •'• <lr"V (5.50) 

lnej.l<ln9j.2<--- <^j|K (551) 

with J. K > 1. These tables are also generated by other programs [8], 

and a great number are available corresponding to the equation of state 

tables. 

The opacity table is interpolated for ln< from which the mean free 

path is calculated in equation (5.36). The interpolation formula is 

simply 

Inv - Inv 
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r. 

where 

lnKi+l " ln6. . . - Ine .  ( ln<j.k+l ■ ^j,^+ ln,cj,k    (5-53) 
m 

ine -lnei.k 

j+1 ine. 
J » k+1 " lneJ.k 

ine 
- lnei+l.£ 

ass-iming that 

Inv s Inv i lnv4+1    
with 1 s j < J, (5.55) 

lnej.k SJn9S lnej,k+l with ! s k < K. (5.56) 

lnej+l,£ S lnö S ln9j+l.£+l   wi,:h !**<*• (5.57) 

As was the case with the equation >f state tables, the aquations ara 

also used as extrapolation formulae If the density and temperature 

values are outside of the table limits.  This does cause some undesir- 

able problems especially in the low temperature regions. 
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6. 

SOURCE TERMS 

In addition Co the boundary pressure orofflts -hich have alrwady 

been discussed, the user may Impose time dependent temperature or 

energy profiles upi n any set of ;ones within the problem.  Both may 

not be done simultaneously, but the user may change from one to the 

other dynamically as rhe solution progresses dependent only upon his 

problem restraints and needs.  Ha may also modify or otherwise change 

the one he Is currently using.  Both require time and space dependent 

profiles.  The space duptiiidence Is on a zone basis and It Is very 

easily changed.  It has been referred to previously as the set of 

power factors P,   , 1 ■■ 0, .. ., N - 1. 

l+^S 

The time dependent temperature or energy profiles are assumed to 

be In tabular form, but functional forms are simply provided for by 

the user supplying his own subroutines. 

6.1 Energy-Time Profile 

An energy table of energy-time pairs in the form (E ,t ) may be 

specified by the user when the program is started, or he may enter or 

alter the table dynamically during program exrcutlon. H« need only 

be careful that 

(6.1) 

where t is the current problem time, and that 

'l* tn' 

tlS '2 
s t (6.2) 
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with J < 20. Th« source energy for each zone is then given by 

&Sn"^ - P 
l+»s   f 

(Ei^ - V 
Mi ''j+i 'J1 

At 
n+S 

(6.3) 

where 

tj . t" < c^1 . tJ+1 . (6.4) 

If the time step size Is so Urge as to extend over parts of 

more than one table Interval, then the source Integration Is done 

piece-wise In order that the problem will reflect the correct total 

energy at all times.  If 

(6.5) 

then the table Is slmplt extrapolated tn a linear fashion using the 

last two entries.  This of course Implies that the table must have a 

minimum of two entries. Note that the table need not even be piece- 

wise continuous and that multiple entries may be given for the sane 

time.  This facilitates step as well as ramp energy excursions. For 

example, if 

n4-1 
(6.6) Vi ^tn < CJ ■ Vi< tn+1 $ V2 • 

then 

< ■ V 
E    -  E 
^   _  J"1   (t,   -  tP)  +  (E4A1   - EJ t.   -  t. Uh    j    uj-i j 

+ V2 ' Vl  (en+l . 

J+l        j' 

(6.7) 

Care ihould be taken to Insure tl   t. . »* t . 
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6.2 T«rapei»tur«-Tima Profil« 

Th« «ci jctur« of a tempuratura profile is not unllka that which 

has baan gl\ .n for an energy profile.  It ia a pioflla of tenperatur« 

time palra fc| th« form (9^, t ) specified in the same manner as ia 

the energy profile.  The purpose of this profilo ia to impose a temp- 

erature over a set of zones within the problem.  These zones thus 

«ct much like a time dependant heat reservoir, be it a sink or a 

source. The imposition of the profile over a specific set of zones 

ia done through the power factors.  If P    - 1, than this is used 

as a flag to indicate that the temperature of this zone is determined 

by the profile.  Likewise, if P    - 0. then the temperature of this 
ri->4j 

zone is not dependent directly upon the profile. 

Rather than simply "overloading" the specified zones with the 

temperature as given by the profile, it is desirable to calculate the 

source term necessary to give this temperature for each zone In ques- 

tion.  It is then possible for the user to monitor the amount of 

energy being "dumped" into (or out of) the problem. He is also able 

to monitor the overall problem energy balance. 

The first step toward calculating this source term ia to inter- 

polate the profile for the currant temperature: 

e, 

where 

t.+1 - t4   
(t     V +V (6.8) 

'i  S tn+1 £ Vl * (6.9) 
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Th«n, ch« •xtrapolatica proc«dur« deplctad In flgur« 3 and given by 

•qu*tlun (2.33) Lm  modified as follows: 

0 n+S 
9i^ 

v ^—r (en  - a0"1 ^ + ftn 17^ Cei^  fli^ ) + 9i^ 

8 if Pf   I« 0. 

if P- 
lHk 

o. 

(6.10) 

Afcar obtaining an esclmac« of th« zone temperatures as indicated 

above, the temperature dependent terms are updated as indicated by 

equations (2.54), (2.55), (2.56), (2.57), (2,58) and (2.59). The 

source term «iS^ is then calculated (and recalculated for each iter- 

ation) through equations (2.36), (2.37) and (2.38) by replacing each 

k n+1   *  *4 
*i+'s by ♦ ■ Ö if Pf   1* 0. Note also, that source terms are cal- 

culated only for those zones for whic>- Pf   ^ 0.  In actual practice, 
i-Mj 

Pf   is used as a multiplicative factor when solving for ASn?? from 

each equation. 

If t  * > tj. then equation (6.8) is used M an extrapolation 

formula. 



SS 

7. 

COKPUTER CALCULATIONS 

A number of calcuUtlon» w«r« don« to Uluntrat« the «ffact and 

th« worth of varloui program parametars and to alao validata tha method 

of tolutlon. In addition. F3. a ona-dlmanslonal program at Lot Alamos 

[5], was usad to do sum« of tha sama calculatlr ..:. A chraa way compari- 

son was than made with tha analytical solutions. 

Tha program developed from the method given 1- nls paper la 

referred to as HYRAD1.  It haa been programmed tu run on the PDP-IO 

computer at the Unlveralty of Utah via the remote terminal at Montana 

State university and also on bjth tha CDC-6600 and CDC-;«»00 computers 

at Los Alamos. The 6600 ind 7600 veralons are lden:lcal, being FORTRAN 

program^, but are restricted at this time to plane geometry problems 

only. 

7.1 Radiation Diffusion Calculations 

A serlea of calculations is presented here which was used to 

validate the radiation diffuaion calculationa and to illustrate the 

effect and worth of several program parameters. A complete description 

of the problem, often referred to as the Marshak Wave Problem, may be 

found in [9]. The basic elements are as follows: 

1. Constant specific I.eat. If . 

2. No energy in the radiation field. 

3. Constant density, p. 

A. An opacity *  ■ tc pae 

5. Constant driving temperature, 6-, 

6. Plane geometry. 



Thus, for «inpllclty: 

de  «c 
ae  3 

2  4 
<0   n+A 

P - 1 

^ ' '0 

a - I 
(7.1) 

e^ ■ 10'6 % 0 

In addltlrin, a unit cros« ■•ccional area waa asauaad. Savaral 

valuaa :or 8 vara triad in addition to varying langth zonet. ate. 

Correaponding to tha tablaa publiahad in [9], tha apaca and tanpara- 

tu.a values ware normalitad aa followa: 

- e?.. / e. o ■ 

(7.2) 

(7.3) Ti4Js " ei^ ' "0 " "i-Mj 

The calculations could then be chackad at any tie« for which there was 

a x1+, which gave rise to a £ . that  appeared in the publiahad tables. 

This waa not difficult since tabular valuaa were given in Increments 

of 0.0S for i  starting with C " 0 and T - 8. / 6. - 1 out to where 

r ■ 0. So  interpolation waa necessary nor desired. 

The purpose of these calculation« ia to follow the diffuaion of 

a radiation wave driven by a constant boundary temperature.  Its 

progress ia then checked at various timea with respect to its position 

and shape.  Figures A through 10 give the position of tha wave at 
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dl'.f«r«nt tin«« «s a c«Bp«racur« prof 11«. In the«« diaplay consol« 

pictures, th« tuipcratui«, prasaur« and danalcy incraaaa to rha 

right, and tha x coordlnata incraaaaa in tha vartical diraction. 

Th« danaity curva at tha right ia constant ovar all time and tha 

horiiontal Unas ara indicative of tha son« boundariaa. 
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Note that a constant density prohibits any hydrodynamic activity 

and that this problem is purely a radiation diffusion calculation. The 

first serids of problems was done with ß ■ 0 and the zone width Ax 
i- 

.2 cm. Thus, A - —- - .1 cm, only half the zone width. The initial 
0 

temperature distribution, 9i+1/ - 10~ , is sufficiently close to zero 

and is very near the calculational limit of the PDP-10 for ^ - e4 -- lo'24 

and ^l =. o.2 ^- - 0.274442. 

Table 1 below gives the exact solution and corresponding values 

for T as calculated by HYRAPl and F at common values of 5 for t = 36 sh. 

The tabular entries are rounded to five digits, and it is important to 

point out that even in double precision, some significance in the fifth 

digit is the most one can expect on the PDP-10 computer. For HYRAD1, 

a - ^, v - 1, c - 10"5, Tfao - .10, and At
0 - lO-7 sh. While for F3, 

Tfac - .10 and At
0 » lo'8 sh. 

i 
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HYRAD1 

.05 .98803 .98803 .98803 

.15 .96273 .96272 .96272 

.25 .93538 .93537 .93537 

.35 .90563 .90562 .90562 
,41 .87304 .87303 .87303 
.55 .83699 .83697 .83697 
.65 .79661 .79658 .79658 
.75 .75061 .75056 .75056 
.85 .69692 .69685 .69685 
.95 .63187 .63177 .63177 

1.05 .54763 .54754 .54755 
1.15 .42047 .42008 .42009 
1.25 0 ; .00638 .00637 

S.E.(J) 1.5490 1.5489 1.5504 
I.E.(j) 1.5490 •   1.5489 1.5489 

1 time steps 2316 2327 
svg. # Iterations 6.1 1 
calculation time (mln) i 

@ 49 sh 7600 
POP-10 

1 
64 

.4 

Table 1: HYRADl and F3 Calculations As Compared 
With Hie Analytical Solution For K ■ 10. 

The next thrfee Bets of tables and figures Illustrate the difference 

caused by variations In o, v, Tfac and € as calculated by HYRAbl. In 

teble 2 and figure 11 the only changes In T occur between o m H  and 

o-l for € ■ 10  and T-  - .10. For o - 0, the calculations go 

-2 ■ unstable after 6 shakes when At > 1.5 * 10   The results at 4 shakes 

are Impressive though, being much better than those for o - *s. The 

severe time step ulse restriction for this psrameter value Is less 

than desirable and no further calculations were tried at this time 

with a - 0. The effect of the extrapolation parameter v Is to reduce 

the number of Iterations required for each tine step advancement. For 

this and most problems It is most effective at unity. For some problems, 

adjusting v can reduce the number of iterations by as much ab a third. 
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Runnlrg tlm«8 as glvan for the PDP-10 are approxlmata and vary savaral 

mlnutaa dapandlng upon tha machine activity (I.e. the number of time* 

the program must be swapped). 

0 
5 
1 
1 
1 

1 
1 
1 
.5 
0 

Number of 
Time Steps 

2316 
2304 
2304 
2304 

Avg. Number of 
Iterations 

(unstable) 
6.1 
6.1 
7.1 
7.3 

PDP-10 Computer 
Time (Min) 

64 
64 
74 
75 

Table 2: Variations in the Time Differencing and 
Extrapolating Parameters, o snd v, at t - 49 sh. 
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•25 -50 g .75 1.00 1.25 

Fit!.   11:   Variations in Iho time diff.-irnc ing and oMrapolafin« parametere 
*" and 0 at  3f) gh. 
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Tabl« 3 «nd flgur« 12 show th« nlatlv« dM«n«ltlvlty of rtiult« 

upon ch« tiM stop •li« roitrlctlon factor Tfac for o - 1, v - 1 «nd 

€   - 10    .    ThiB also holda tru« for o - >|.    Not«. how«v«r. th«e It 

do«a dr«m«tlc«lly «ff«ct th« c«lcul«tlon tlm« dlr«ctly by Halting th« 

tin« s^p «li«. 

4f«c 

.01 

.05 

.10 

.15 

.20 

.25 

.30 

.35 
»40 

Nunb«r of 
Tlaw Stop« 

27993 
5476 
2661 
1720 
1248 
966 
774 
641 
540 

Avg. Number of  Avg. At 
Ittratlons 

2.2 
4.2 
6.1 
7.8 
9.6 

11.4 
13.2 
15.1 
16.9 

(•h) 

.00175 

.00895 

.01841 

.02849 

.03926 

.05072 

.06331 

.07644 

.09074 

PDP-10 Computer 
Tin« (Mil) 

295 
100 
70 
52 
46 
42 
41 
38 
36 

T«bl« 3: V«rUtlOM In th« Tamp«r«tur« R«strlctlon 
Factori Tfac, «c t - 49 «h. 
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1.25 

Fig.   12:    Variations in thr temperature change  restriction factor,  T,        at 36 sh 
fa c' 



mm ^mm -* . . a, ,., .„, ^ ^ ,or ^^ ^ ^ . 
-« « „^ t010-*. th. t.iiilti mim mimtmt m> ^ ^c^ 

     mm    mtymM^m 
•inc. .-5 dlglt. of .l8nlllcancg ig ^ ^ cw ^ ^^^ ^ ^ 

PDP-10. WH« 1. lapr...iv, U m mmmm9 goed ^^^ ^^ € ^ ^ 

M noc. ...o of the varlaiJc. ln tha ^^ ^^ ^ ^^^ ^ 

Ci«. -Cp Ml lti .ff,ct  upon  the C4llcuiat4onal  ^ 

-1 

lO"7 

10-6 

10-5 
10-* 
10-3 

10-2 
io-i 

I.E. 
0) 

1.806998 
1.806998 
1.806998 
1.806997 
1.806966 
1.806708 
1.806070 

S.E. 

(J) 

1.8Ö6998 
1.806998 
1.806999 
1.806999 
1.207028 
J.807243 
i.807762 

Nmnb«r of   Avarag« 
Time Steps  Number of 

PDP-10 
Computer 

Iterations  Ttis« (Min) 

2662 
2662 
2661 
2661 
2661 
2662 
2671 

8.8 
7.A 
6.1 
4.8 
3.2 
1.8 
l.C 

90 
80 
70 
58 
39 
28 
23 

•ctual 1.807152   1.807152 

Table 4:  Var.atlona In *. Convergence Parameter. 6 . at t . ,9 .h< 
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I.2S 

Fig.    13:    VariationF   in ihr COtlVC risnCfl  paramoti" r,   e,  al  l 
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Savaral ochur calculations ware dona with othar valuas of 6. 

Tabia 5 givas cha rasults tor a calculation at 36 ah. dona with 8-3. 
3 

Far thla caaa. Cv - — ^ - .156825, A - |^, o - >|, v - 1, € - lo"5, 

^«u ' "^ •nd At0 " 10'7 ■h•• •nd for F3' Tf,c ' •10 *nd At0 " 10'8 8h< 

.05 

.15 

.25 

.35 

.45 

.55 

.65 

.75 

.83 

.91 
l.CS 
1.15 

S.E.(J) 
I.E.(J) 

.94296 

.97792 

.96139 

.94304 

.92242 

.89887 

.87136 

.83820 

.79616 

.73785 

.63704 
0 

.^914 

.9ü!».T4 

I time scaps 
avg. # iterations 
calculation time 
fl /0 .   CDC-7600 
@ 49 ■h-  PDP-10 

HYRAD1 

.99297 

.97793 

.96141 

.94307 

.92246 

.89891 

.47141 

.83828 

.79635 

.73849 

.63945 

.00021 

.90917 

.90917 

2457 
5.9 

1 min 
68 min 

.99297 

.97793 

.96141 

.94307 

. 92.'>46 

.89892 

.87142 

.83828 

.79634 

.73845 

.63933 

.00015 

.90989 

.90887 

2468 
1 

.4 mli. 

3 
Tabla 5:  HYRADl and F Calculationa as Compared with 

the Analytical Solution for * - IO/9J. 

Another series of problems were run for a variety of zone widths 

from 0.1 cm to 200 cm. The difference in the results were significant 

and improved with smaller Ax's approaching the mean free path.  This 

just confirms one's intuition that the linear space derivative approxi- 

mation for |J does not adequately describe the flux terms for coarse 

zoning even for materials which exhibit constant or nearly constant 

opacities. So much concern and work has been directed toward calculating 
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• maan fr«« path at th« int«rfaca between zones, whereas it should 

probably be directed at arriving at a latter flux term as a whole. 

Of course, this is difficult to do properly, for there is just not 

enough information. In most cases, it-is usually better to zone 

finer. No calculations were done with zone widths less than a mean 

free path. 

One interesting result obtained from the variable zone width 

calculations was the invariance o^ i:he results on a time step by 

time step basis. More precisely, if the calculation time is nor- 

malized with respect to the square of the multiplicative difference 

in zone widths, then the results at comparable normalized times are 

the same. For example, the temperature profile at t - 9 sh for 

Ax - 0.1 la the same as for t - 36 sh for Ax - 0.2, but the latter 

calculation includes exactly twice as much energy. 

7.2 Hydrodynamic Calculations 

In this section, a aeries of hydrodynamic calculations are pre- 

sented. Two different problems were investigated. The first is ä 

shock-tube problem which is described in [10] and [11]. This calcula- 

tion follows the shock termed by a high pressure gas expanding into a 

low pressure gas confined in a long small radius pipe or tube. The 

problem assumes an ideal gas for which 

6 " P/P<A-1) (7.4) 

P - PRO, (7>5) 

with 

A " VV (7.6) 



■■-■   ■ lliMMü—M 

R - C    - C  . 
P        v 

75 

(7.7) 

2,2 oT For alr,  X - 1,4 and R - 286.793 in/setr 0K assuming 29 grams/mole 

of air. 

From equations   (7.4) and (7.5), 

9e. 
36 

R/X-l, 

^R 2    ' 

716.983 m2/8ec2 0K, 

l£- 0 9v 0' 

(7.8) 

(7.9) 

For the one region of gas, p • 666.447 kg/m-sec2 and p - .0077459716 

kg/m , and for the other region p - 1.1823 x IQ7 kg/m-sec2 and 

3 
P - 137.413 kg/m . The initial temperature for both regions is 300oK. 

The first calculation done was with a constant Ax - .0254 m, 

-6   • 
At - 1.25 x 10 sec, r » .0254 m and an artificial viscosity, factor 

na ■ 0.8. The results of this calculation match the results for the 

K0 and PUFL programs as reported in [10]. The next calculation was 

done with n2 - 2. Again the overall result was the same. However, 

when the region at and behind the shock front Was examined in detail, 

the quadratic form of artificial viscous pressure exhibited rather 

large oscillations as displayed in the pressure profile given in 

figure 14. Notice in contrast the smooth pressure profile for the 

linear form of the viscous pressure term. A combination was then 

tried with n1 - 1 and n2 - 3 as suggested in [lb]. These results 

were identical with the linear case except right at the shock front 

which is not as sharp and is extended over several more zones. 

X 
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Another series of calculations were dor a with a variable At. j?or 

this series, the major time step restriction from tho^e discussed in 

chapter 4 is the hydrodyramic restriction determined by the parameter 

rac Two calculations were done with Hfac - .05 and .10 and there was 

little significant difference In the results as shown in figure 15. 

However, there was a great difference In the calculatlonal efficiency 

as indicated by table 6. 
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,, constant & t 

,HfBC = .05 

, Hfac   »   , 10 

4.67 4.70 

Fig.   15:   PreB.ure proMe at «hock front 

  4.82 
4.75 '■'-" 

X (meters) 
for different time step restriction, at t = . 0039 sec. 

%v 



Constant At 

avg. time 8t»ap size (sec)     1.25 x lo-6 

total number of time steps     3120 
avg. number cf iterations 

per time step 4.7 
PDP-10 calculational time (min) 228 

79 

Hfac " -OS    Hfac - .10 

1.915 x io'6 4.004 x io~6 

2037 

5.7 
i5i 

97A 

7.5 
92 

K.E. (j) 
I.E. (j) 

2.02030x10^  2.01989x10*  2.02013x10* 
-2.02063x10^ -2.02033x10* -2,02037x10* 

Table 6: Relative Calculational Efficiency of Constant vs. Dynamic Time 
Step Sizes at t - .0039 sec. 

n, 

Another calculation done was with a constant At but with Ax - .0508 

meters, double that of the previous calculations. As was the case with 

tlie pure radiation diffusion calculations, the solution was very sensi- 

tive to the zone width. Figure 16 gives the difference in the pressure 

profiles at the time, t - .0039 sec. 
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AX0=  .0254 

u 
10 

Ä  10* 

u 
(0 i 
i 

contact surface 

10" 

AXU= .0508 

contact surface 

10' 
3 4 

Distance from initial contact surface (meters) 
Fig.   16:   Pressure profile for different zone widths at t = . 0039 sec. 



with a non-uniform radius tube  Her» 

■- - - - rrr.;- r"—"-" ■■ - every ten along the axis from an Inlt^i 
"dlus.    The calculflM_     . nitlal 0ne lnch 

81 

rfl ., 
0 — QA-ia iro™ an Initial one 

"dlus. The calculations started with lnltial 
^ with Initial one Inch (.0254 m^ 

*one widths and «M»*«^ . _ _6 
 w-.ax une lnch , 

«one widths and soeclf^^ 
specified a constant At - 1.25 * IQ**  8ec> 

The first problem was run in th* 

.« the o.„ter of „,.,. (as appr0][litt 

snown in figure 17  TK» i The latter ls t,ferred  to as 
or zone center. mid-point 

center of volume 

a^lal mid-point 

Fi8. 17: Zone Mid-Point Deflnltl one 
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The results of the calculations are given in figure 18 at t - .0005 

and .001 seconds in the form of temperature profiles. The temperature 

was used here m lieu of the pressure because It did not vary over as 

wide a range of values, but is directly proportional and indicative of 

the pressure. In both cases, figure 18 shows that the peak temperatures 

in the center of volume problem are greater aid are advanced further 

down the tube than those for the axial center problem. 

Table 7 gives the program statistics for this set of calculations. 

Note that tor this geometrical configuration, the kinetic energy as 

given by equation (2.64) does not m&tch the loss in internal energy. 

This was not the case for the constant diameter problems as shown in 

table 6. At about .00075 sec, the problem became Courant limited 

(see section 4.1) because the shock was encountering larger and more 

massive zones as the pipe diameter increased. Thus, the zones tended 

to pile up into smaller widths. 

sP" 
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200 

Center of volume 
9 . 005 sec.    @ . 01 sec 

0 .005 sec.® 

100 xl 
80 

:                    ^\ 

60 ^^v 

40 - 

20 1                           1 
'5 0 X (meters) •* 

Fig.   18: Temperature profile of volume vs.   axial zone   center  at .005 and .01 sec. 
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time step aize  (sec.) 
@ .0005 sec. 
@ .001 sec. 

total number of time steps 
@ .0005 sec. 
@ .001  S.;C. 

avg. number of iterations 
@ .0005 sac. 
@ .001 nee. 

PDP-10 calcuiatlonal time (mln) 
@ .0005 sec. 
@ .001 sec. 

J\>« £• 

I.E. 

@ .0005 sec. 
@ .001 sec. 

@ .0005 sec. 
@ .001 sec. 

Axial Center Volume Center 

1.25 x 10"5 
6.48 x 10"' 

1.25 x 10"5 
6.11 x 10"' 

401 
9D8 

401 
933 

2.7 
2.9 

2.7 
2.9 

9.9 
23.3 

10 
23.6 

3.23157 x 10* 
7.22040 x 10J 

3.19644 x lol 
7.114Ö8 x 3.0J 

3.14898 x lol 
6.82762 x 10* 

-3.11402 x 10* 
-6.76969 x 10J 

Table 7: Program Statistics for Axial vs. Volume Zone Centers 

The second problem Investigated in the hydrodynamic series is 

known as the Von Neumann point source problem [12]. Thte purpose of 

this problem, also known as the blast problem, is to calculate as a 

function of time the blast radius propagating from the blast point in 

spherical geometry. The Von Neumann solution to the blast problem 

is given in [12] and numerical solutions are given in [13] and [14]. 

This problem is similar to the shock tube problem in that it assumes 

an ideal gas equation of state (equations 7.4 through 7.9), but differs 

in that a large amount of energy is released at (near) the center of a 

spherical volume. 

Eilers and Whitfill at Los Alamos have been using this problem to 

validate numerical integration techniques and to establish parametric 

values. In particular, they provided several calculations done with 



85 
3 

the F program for comparison with HYRADl and the analytical solution 

given by [12]. One such solution is given in figure 19 together with 

that from HYRADl and variations therein. Figure 19 is a plot of the 

absolute difference between the actual blast radius and the calculated 

blast radius as a function of time. For this series, Ax? - 30.5 cm, 

Y :   ' a?"5' iv"0' R"1 (meaning 6 absorbs the actual value of R), 

eU * 10'6. \  " -8. Tfac - .10. ep - .001, Hfac - .01, fit0 - lo"7 and 

(the energy-in at the blast point) EJ - Alt5 . 
in     J 

At this point, it ifi important to point out the difference in 

the acceleration terms a« calculated in F3 [5] with those calculated 
3 

by HYRADl. F uses the following difference equation to arrive at a 

(7.10) 

uumencaj . solution to tht 3 momentum equa 

V 
ATTXJ 

(*±-h - P1-MS
) 

^l-h + mi^ 

which is equivalent to 

Xi" 
Vi 

Ax, 

where 

Axi - Xi-Ms " Xi-Ss 

Xi-Ms - h(Xi + xi+1) • 

(7.11) 

(7,1?) 
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R c-alc - R actual 

40 50 
J 
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Fig.   19:   Comparison of hydrodynamic differencing schemes. 



(*-#Jr 

87 

Equation (7.11) is now in the same form as given for HYRADl In 

equation (2.7). The quantity x^ as given in (7.12) is said to be 

located at the radial center in contrast to the center of volume as 

specified for HYRADl by equation (3.28). The difficulty with equation 

(7.11) is the location of the volume given by V.. The denominator 

term implies that it should include half the mass of each adjacent 

zone if a uniform density is assumed as is done in HYRADl. In con- 

trast then, 

V^  - Airx.Ax , (7.13) 

which when expanded becomes: 

If ?j was considered to be the volume between x.^ and x , , then 

^-41rCl/3(x^ + x1^xi_Js + x2_Js)(xi^-x1_Js)] (7.15) 

It is not difficult to show that 

V vi ■ f ^ - «i-^3- (7.16) 

A calculattion dona with V±  in lieu of Vi  is given in figure 19 and is 

labeled AVG., 

Another differencing scheme was suggested by L. A. Schmittroth, 

and It proceeds as follows from integrating the momentum equation by 

parts. 
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4'/ Xi-Js -^ X1-JS 

(7.18) 

(inx)i - -ATT {(px
2) 

Xi^   rX14is 
-2 I    px dx 

Xi-Js  ^ ""i-Js 
(7.19) 

-«ir <(px2) 
^  P^oi. + P. 

X±-h 

. ^i | M c^ 
Ci+Jä 

ll-«i 

(7.12Ö) 

.21r(x
2_Js + x

2
44s)(p1_}ä-p144s) (7.21) 

<x?u + x2 ) 
(7.22) 

In contrast to equation (7.10) which uses the area at the Interface, 

equation (7.22) uses the average of the areas at the mid-point Of the 

aonee adjacent to the interface. The results of the calculation using 

difference equation (7.22) is given in figure 19 and is labeled AVG,. 

Similarly, if we let 

x2  + 2 

(7.23) 

then 

I - i " Vi " ^^i-^ " xi-li>  • b.54) 



89 

HYBAD1 was then modified to calculate the zone centers and accel- 

eration terms as given by equations (7.10) and (7.12) for the F3 program. 

The results are also shown in figure 19. 

7.3 Combined Radiation Diffusion and Hydrjdynamics 

The results of a combined radiation diffusion and hydrodynamic 

problem are shown here in figures 20 through 25. This problem is a 

multi-material calculation In which one material is heated and then 

transfers this energy to the other by radiation. The initial trans- 

far of energy creates a shock in the second material as indicated by 

the formation of a spike in the pressure profile shown in figures 

20, 21, and 22. This influx of energy causes the Second material to 

expand one zone  at a time back Into the first material and also for- 

ward with the shock causing an increasing number of zones to be com- 

pressed at and immediately behind the leading edgfe of the shock wave. 

Note that from figure 23 on, the shock Wave has overtaken and is 

accelerating ahead of the diffusion wave. This is indicated by the 

formation of the additional step Within nhe temperature profile. 
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7.4 Summary 

The selection of computer calculations inc.'uded in this section 

is not exhaustive but rather illustrative. A great deal of work 

remains to be done, particularly within the areas of validating the 

non-linear approximation techniques, the hyd.odynamic activity for 

various geometrical shapes and multi-material effects. Detailed 

studies also need to be made into the effects of the equation of 

state and opacity calculatlonal schemes. For example, figure 26 

illustrates a difficult yet convergent time step. Notice the plot 

of the relative convergence error at each iteration. The Initial 

decay is a rather moderate exponeucial response which changes 

abruptly after the eleventh iteration. 

The other plots on this figure show the change of several zone 

variables over the course of the time interval. The zone plotted 1« 

that which had the largest relative convergence error at iteration 15, 

Che last Iteration.  The values plotted (from top left) are —# f*, 
AO  Av 

p, A, 9, the luminosity (flux times the area) into one end of the 

zone and out of the other, and a somewhat confusing and uninformatlve 

convergence graph -hlch hat since bean dropped. The initial vertical 

line on the ^| plot (labeled DEDT) Is simply a line drawn from the 

base line to the value of j| as it was three time stops ago. The next 

two time step values are then plotted with a line between then giving 

a short curve which is representative of the behavior of the derivative 

over the previous three time steps. Another vertical line la Chen 

drawn fro» the baae line up to the first Itarative velue of the ftm 

\ 
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for the current time step and subsequent iterative values are represent- 

ed by the curve following. This format is repeated for the —, p and 

X" terms (labeled DEDV, P and LAMBDA respectively). The curves for 6 

and the luminosity represent only the iterative values for the current 

time step and (unfortunately) do not include values for previous time 

steps. 

Similarly, figure 27 is a picture of a time step which, while 

convergent, displays rather erratic behavior. Note that it initially 

•tarts to converge, abruptly diverges and then converges.  Notice 

the corresponding graphs of the behavior of various zone quantities. 

X 
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Figure 28 gives a an&pshot of a time step which doesn't converge 

after thirty Iterations.  It also looks as If It will never converge 

and appears to oscillate every five Iterations. Notice the Insensl-. 

tivlty of the mean free path and one of the luminosity terms. The 

other luminosity term is somewh it affected, and the pressure even less 

affected by the fluctuations.  Clearly, It is the behavior of the 

energy derivative terms which are causing the problem. A look into 

the equation of state tables for the material of this zone showed a 

discontinuity in these values near this temperature and density. As 

it turned out, a small increase in temperature resulted in a huge 

change in the derivatives due primarily to the linear interpolation 

scheme.  Subsequently, the temperature dropped and again the corres- 

ponding derivatives changed drastically. Thus, the temperature (and 

corresponding quantities affected by it) oscillated back and forth 

about an entry in the equation of state tables, either side of Which 

gave widely varying derivative values baSSd upon linear interpolation. 

Decreasing ^ and w2 from 0.5 to 0.1 dampened out the oscillations and 

the calculations were able to proceed. Alternatives Would be to raise 

the convergence limit, reduce the time step size, or any combination 

of these. 
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8. 

CONCLnSION AND ASMS FOB Fimiffi RESEMCH 

A. .tat.d i„ tha introductioni   the development ^ ^^ ^^ ^ 

«Chni,.. _ beM trled wlthln , nunber ^ diff6rent ^^ 

«^tl«. „ four Uttmat Mputers.     Ihe end product ^^^^ ^ ^ 

of tiTO =„ tl.e pDP.10 computer ln ^^^^ ^ the Mau ^^ ^ 

ti», ^„e. y the ralatlvely liicf(iclent ^ ^^^ FOSI^ 

version .-»n the CDC-7600. 

Th, PDF-io v,r.to„ „as orl8lnaUy coded ,„ F0MEM ^ ^ . 

out tha. th. ^ sy8tra on that ^^^^ ^ ^ o£ ^ ^^ 

«* inafaciandaa.    Xo obtain sl8nl£lcant ^^ on ^ ^^   - 

calculations for 1 - 34 a„j AW „.        ^ 
♦      3   and 4V nacaaaitatad nslng double pracl.lon. 

«tar qulclay dataralnln8 that tha DEC.8uppaiad ^^ ^^^^ 

routlna. „ar. o„rly raatrlctlve on ^ ^ ^ ^^ ^ ^ 

thay could produce a!*,»!^ rasult8 (and ^^^ ^ arrotB) 

th. TOth0d .aa raprogra„ad In ►■ACRO-IO,  tha «china languag. for rta 

«*•«.    A. alluded to abova. {M. al3o Includai^oipl.« pac^a 

of llbrary routlnaa for parfon.ing douhla pracl.ion arltI.acle 

(addition, subtraction. »uUlpUcatlon. and division) ,n nddltlon to 

«. .laBa„tary M111Matlcal functions  (a^usra root. „atural ^ ., 

of thU alsa has w douMa word arlCatlc cap.Mllty s„d thst nona 

of th. »darn cottar. h.ya the ^^ ^^ ^ ^ ^ 

:\ 
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elementary mathematical functions. It may be of interest at this 

point to mention that the double precision square root routine within 

the PDP-10 vers '.en of HYRAD1 consumes over 60% of the total calcula- 

tlonal time. 

In addition to the fact that the MACRO-10 version works and the 

FORTRAN version didn't» the resultant speed and storage improvement 

of'the MACRO-10 version over the FORTRAN version on the PDP-IO was 

dramatic. The differences between the PDP-10, CDC-6600 and CDC-7600 

ate even more outstanding. A particularly simple problem which ran 

for 6A minutes on the PDP-10 in 29k words of core, used but 6 minutes 

on the CDC-6600 and a mere minute on the CDC-7600 in 32k words of 

core. Remember that this comparison is between a very efficient 

"hand crafted" program on the PDP-10 with a FORTRAN version on the 

CDC machines that is well known for its inefficient use of machine 

resources.  It is worth noting that the same problem consumed .A 

3 
minutes using the non-iterative F Los Alamos program and that HYRADl 

used an average of 6.1 iterations per time step, both taking nearly 

2900 time steps. It is not unusual for a problem to run for several 

hours on the CDC-7600 computer. 

It is clear that increased hardware functions are necessary for 

numerical calculations of this type. Not fast simple parallel functions 

as exhibited by the ILLIAC IV computer, but rather Independently func- 

tioning units with Increased capability (i.e. square root, exponential, 

etc.). Raw computing power 's not enough though. A better man-machine 

interface needs to be developed. The user needs to retain control over 

the calculations rather than submitting to the crude demands of the 

machine. 
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AM mentioned, this prog.'r was developed under a ■impla Inter- 

active (and sometimes graphicalj system.  The user was thereby able 

to alter parameters, Intioduce data changes, direct program control, 

and even make crude prograr patches. This was done to get, first of 

all, answers which may otherwise be very difficult to obtain under the 

traditional "batch" mode of proceesing.  Secondly, through the inter- 

active mode of operation, the user was able to get better answers in 

the sense that more resolution could be obtained at those rimes when 

it was required.  Finally it was posf^ble to get an immediate and 

in depth realization of the solution in moving picture form. 

Slowly, but most certainly, tools are being created to provide 

such a man-machine interface.  However, such tools have traditionally 

been improved Interface equipment such as display consoles or they 

have been huge and rather obtrusive software systems which art program« 

to make up for the lack of sufficlert and sophisticated hardware. 

Very large compilers are continually being de/eloped at great expem • 

to provide a more natural language interffcce between man and macJine. 

However, all of them fall short on retaining enough Information to 

relate beck to the original language and to retain an overall view of 

what is being done. Thus, grand Interpretive systems have bean and 

are being developed which have some of those characteristics at great 

expense In both time and space. 

Clearly the developr ,nt of auh software systems over the past 

several years Is causing questions tt be asked. Questions such aa: 

Why not build machines to work at the u.er level? Why have compilera? 
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Th«y g«n«r«Uy discard most «il of th« usaful Inlonnatlon r«qulr«i a» 

Input anyway. Hard««.« ii gatting no fast and chaap, why not build 

coaputars that work in tha infix mods diractly (asssntially) or. tha 

usar's sourca program which can than ba aasily changad and dabuggrd 

dynanicaliy? Thus, why not build computers which add. multiply, ate. 

operands according to thair dafiniiion at tha point of axacution ba 

it intagar, real, array, procedure or whatever? 

There are so many situations which arise at run time that Juat 

can't be taken care of by the compiler, cr the prograaser ahead of 

time. Thia la true of problema in general deapite Ut beet planning. 

Therefore, why not defer the final decision making until auch a time 

that It is in context? This technique la already In popular use for 

determining the final operand address. It seems tu ba a rather 

natural extension to go one atep further ^d  say that the add inatruc- 

tlon, for example, la defined by the type and kind of operands upon 

which it la to operate. This then aakes "add" a primitive which hes 

no complete or definUive meaning by itaelf. Thua, the actual instruc- 

tion set for a computer becomes very small and simple.  There are no 

longer 2-5 different multiply inatructi .na plu- a host of multiply 

subroutinea to handle thin;.s like the multiplication of arrays or 

complex numbers. There is Just one aultiply, end it la micro-progresaed, 

1« you wish, by ita oper -nds. 

In conclusion, tha model developed herein and the auosequent cal- 

culatlona indicate that the numerical methods are reaaonabla and are 

ce>abla of giving valid reaulta. With tha advent of better comju ing 

toola, the aolution techniques appear even more palatable. The develop- 



106 

■•ist of thA str. ighc forward r«dt«tton diffusion tchoa« was an aarly 

(5 yaars a%o) ravolt igalnac tha first ordar axpanal... taehnlquaa aa 

u*ad by [5]. ih« raaulta «aas to baar ou tha fact that toaaa aquatlona 

ara ac laaat aa good aa thoti uaad In tha paat. Othar racant aoalyalt 

and work dona, notably by Surton Wandroff flSl, aaaa to Indicata that 

ehia approach haa a gran daal of proaiaa. 

Tha itaratlva pro<;^dura uaa Includad for two purpoaaa  Pirat, it 

prov.'dat a corractiva aachanira which canda *',  giva battar than first 

ordar raaolution tinea it iocludaa aoM foraaight «a vail •• hindsight. 

Sacondly. it providas an aaay way of incorporating um-linaar affacts. 

Zt Is actually iaatructlva to watch tha itarativa procadura aoaak up 

to tha anawar via tha dlvlav conaola. Tha aaonollaa ara aapaclally 

intaraat'ng aa pointad out la aacclon 7.4. Such itsratiwa procaduraa 

hava >aan auccaaafully uaad for a long ttaa fa thanvl and nautron 

dlffjaion prograws. 

SavaraJ othtr fa^turaa of tha aodal ara alao worth aantioniag st 

this tiaa. Probabiy naxt in ordar of U^ortanca i%  tha opacity 
* 

avaraglng achsM at tha ictarfaca aa glwan in aactioo 5.2 avaa though 

ita worth haa not yat bain fully dataralnad. It appaars to ba tha 

OT.ly achaaa in uaa that haa a aound nathaaacical and phyaical baaia 

and yat atill works [6]. This haa ba« . aad continuaa to ba a prlaa 

araa for futura work. Coaing naat in a closa. yat, aacond placa is 

tha sona cantaring problia aa ashibitad by tha point aourca and fruatrua 

calculationa in aaction 7.3. Tha kinatic anargy aa approsimtad by 

(2.64) or tha total anargy conaarvation Is incorract for thaaa problaaa. 

Thla diasrapancy aaaaa to bo connactad with tha sons owatariag problaa. 
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It H el«M that  aor« work M«. • to h* dm* in  MÜ im (u). Kv,n ch« 

I* MIUCIOQ of tb« auurc« problaa it  la ia«p«ct la light ol eh« shock 

cub« probl«*. U «««a« a« thoufth ch« saleulatlooal raauita ahould lag 

bahlnd aad achiav« ao aajr^totic aolutloa. Preblaaa trlch ch« alagular- 

ici«« at tha caocar plua tha tact that tha aourca aoargy it actually 

iatrodue«d at t^t cancel of ih« first aoe« ratbar thaa aetoally at tha 

caotar of tha aphora tand to «uttMt a auch bardar look at r ia problaa 

aad cha id«allt«d aolatioaa gtvaa ia [12],  fUj «ad Cl*)- 

SOM of cha othar oav aad auecaaaful fa^turaa iaeluda tha Hydro- 

dyaaaic Tiaa Stap taatricdon procadura which guaraataaa that aot only 

»rill SOOM aot croaa, bat that th«y «nil aot aspaad or coapraaa to« 

quicUy. n%  iapl«aaatatioa of tha astaaaiva aquatioa af atata aad 

opacity tabla look>up procaduraa ar« aot dct^Uad h«r«ia. bat ara 

aataoaiva, afficiaat aad vary faat. lb« t«chalqua af iacroducln« 

aaargy Uto ch« probloa by aaaaa af ,» t«ap«rat«r« prof n« oaar aavaral 

•oaaa aa givao ia ««etioa 6.2 U aaa ia that it calcaKtaa tha aaouat 

of «aargy r«qulr«d to briag tha «.»aciflad «oeaa to cbac pr«d«t«rmiaa 

t«ap«r«tor«. Th« it«raclv» procadura playa a uaaful eorraeti«a rala 

bara too. 

Tha on« laportaat faatura aot iacorporatad vithia tba aod«l ia a 

dyaaaic raaoalag procadura twr vhich th« uaar baa fioal control, yat 

ia autoaat^c utv,t cartaia uaar •puclfl^d oaadltioas. Tba r5 prograa 

okploya a proaadara «bich «nil not Uir' illy ealealata tbaaa aatarlar 

■oata ihr*« or aora aoaa« aaay fraa tha Mttm mm, Ihi« taebaiga« 

balpa t« raduc« th« c«lcttl«tioa tiaa by aot iacladiag tho«« 
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which ar« not ft «ctUt (!.•.  ItaM »OOM ^Ich h«v« ool y«t bMa 

«ffMt«d by r«dUCloo or hydrodrAialc*).    IWi »cv **rk« o^ly fro« 

tlM M CAllod "Inoot bouft4«tyM (l«i lono n—bort) outt»«rt Md Mtt 

hoy« OB "•■bUoi" boundary condltloo oi tho othor oad.    If H»o "ootor" 

boundory cooditloo U ootivo. If tboro ll o trodloat ««of Kb« "«nor" 

bouiMtory. or If thoro oro ooo-ioro ooureo »or» «oof tbo m<mftm bo^d- 

•ry.  cbM tbo »rogro« MOC yrw^od W do tbo eolcoUtUo lor oil ooooo 

r^ardlooo of «bot boppoM ot tbo "immf bouDdory of tot.rtor to tbo 

problM.    U to doolroblo to goMrollio tbo tocbolfoo *ith rotooiot 

lato aero ooooo wboa noodod. ond llbowloo. roooabtotot »oooo oboo oo 
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