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VISIBLE SURFACE ALGORITHMS

FOR QUADRIC PATCHES

ABSTRACT

This paper describes two algorithms which find the visible por-
tions of surfaces in a picture of a cluster of three-dimensional quadric
patches. A quadric patch is a portion of quadric surface defined by
a quadrat’c equation and .y zero, one or several quadratic inequalities.
The picture is cut by parallel planes called scan pPlanes; the visibility
problem is solved in one scan plane at a time by making "a good guess"
as to what is visible accordiang to the visible portions found in the
previous scan plane.

The algorithm for intersecting patches works in a time roughly
proportional to the number of patches involved (and not to the sguare

of this number as with some previous algorithms).
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INTRODUCTION

visible portiong of surfaces when the surfaces were defined as being
planar polygons. Watkins [2] describes One of these algoritlms which
is quite fast anq requires little amount of working storage.

Few successfui Studies have leen made, however, for non-planar
surfaces. BE VISION [1] finds the hidden lines when the surfaces are
defined by quadratic ecvations and by quadratic inequalities. Another
approach was taken at the University of'Utah by Henri Gouraud [3] who
approximates Coong' rational cubic surface patches [4) with twisted
polygons and then uses Watkins' algorithm in order to find the visible
portions of surfaces. 1In Gouraud's method, the shading of a point of
a surface is obtained by 1nterpolat1ng linearly the exact shading value
at the four corners of the Surrounding polygon, thus obtaining a contin-

uous shading function alil over a given surface.

tion lines, ang shading functions. 7o find this, he was forced to limit

his investigations to the same type of quadratic surfaces which were

The nethods described in the pages following are related to the
Watkins ' algorithm [2]. fThey offer two kinds of advantages over tie
algorithm of BE vISION [1]. First, they yield visible surfaces instead

of Systematically eliminating hidden lines. Thus they permit the




generation of shaded pictures with only the further effort of computing
the shadi;g value along the visible portions of the surfaces. Secondly,
they work in an amount of time which is roughly proportional to the
rnumber of surfaces fed into the algorithm, rather than the square of

this number.




DEFINITION OF QUADRIC PATCHES

Quadric patches are defined in the same way as was used by Weiss [1].
A quadric patch is a set of points obtained by setting a quadratic expres-
sion equal to zero and by constraining zero, one or more other quadratic
expressions to be either positive or negative.
A quadratic expression is given by:
A(x,y,2z) = a_x? + a v2 +a z2 4+ a .yz ta zx+a xy+a x+ay
1 2 3 L 5 6 7

+a z+ a
' 9 10

The quadratic inequalities are used, in particular,‘to define the
boundaries of the quadric patches. For example, suppose that we want
to define an infinitely long cylinder in the z direction, cenfered at
(0,0) and of radius 1; its equation would be:

(1) x2 +y2-1=¢

If we were interested in the portion of the cylinder truncated by

the planes z = 1 and z = -1, we would impose the constraints
(2) z+1<o0

(3) z-15>0

If, moreover, we want to bore a hole through this cylinaer, we
may impose the additional constraint:

(49) x2 + 22 - 25 > ¢

Equations (1) to (4) define the resulting patch, shown in Figure 1.




Figure 1:

Cylinder with hole.




) SCAN LINE TECHNIQUES

It is necessary to solve the visible surface pfoblem only to a
certain limit of resolution which is determined either by the resolution
of the human eye, or by the precision of the scope on which the picture
is to be displayed. This leads to the idea of cutting the picture by p
horizontal lines, and computing the shading function at p points on each
line. The time taken by the visible surface algorithm is proportional
to p, while the time taken for shading is proportional to pz. The time
taken for the exact computation of the shading of quadrics is much
larger than for planar polygons: two minutes was typical on PDP-10 for
p = 500. The value of p is usually chosen between 250 and 1000.

We assume that scalings, translations, rotations, and a perspective
transformation have previously been applied to the objects such that the
Observer is looking along the z axis toward smaller values of z (Figure
2). Lines of sight are parallel to z. We consider in particular p
equidistant horizontal planes (parallel to Xx,2) called scan planes, which
intersect the transformed objects. These scan planes are projected onto
the image plane as p equidistant scan lines.

We solve the visible-surface problem for a given scan line by cutting
the object surfaces by the scan plane. The intersections of guadric
patches with this plane are portions of conics. The problem is then
solved in the current scan plane, and the values of the shading function
are computed along the scan line for the visible portions of conics.
This method of computing visibility is made fast because we keep track

of the visible portions in the previous scan plane, thus reducing
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considerably the number of comparisons of portions of conics necessary
in order to determine which one is in front of the others.

We are now going to examine two visible surface algorithms: one
for non-intersecting quadric patches, and another one for possibly
irtersecting quadric pPatches. If patches are known hot to intersect
one another, one can consii erably decrease the computation time for
visible surface detection. We shall examine such an algorithm first,
However, the algorithm for intersecting patches is more interesting and

involves some cleverness in avoiding unnecessary computations.




COMPUTATION OF THE SPECIAL POINTS OF EACH PATCH IN a GIVEN SCAN PIANE

The intersection of a quadric by a scan plane is a conic, perhaps
degenerate. For the observer situated at infinity in the 2 direction,
a conic has two portions: the closest portion and the furthest portion.
If a conic has two different points for the same given x coordinate
value, the one with the greatest z value belongs to the closest portion,
the other one to the furthest portion,

Spceial points of a conic are of two kinds: apparent contour points
(x1 and xh in Figure 3) where the normal is perpendicular to the axis,
and points of intersection of the conic with its boundarijes (x2 and xa).
These points are clipped outside the [0,1] interval (points outside this
interval are eliminated as being off the screen). They are then ordered
according to increasing x values. For each interval [xi, xi+1], the
visible portion of the patch is remembered. For instance in Figure 3

these intervals are:

Interval Visibilitx

lxo =0, xll 0 (not visible)

[xl, le 1 (closest portion)
[xz, x3] 2 (furthest portion)
[xa, xu] 1 (closest portion)
lxu. xs = 1] 0 (no. visible)

In the first phase of the algorithm, an explicic representation of
the conic z = f(x) is also obtained; it will be used o do the depth compu-

tations in the next section and later to obtain the shaling values.
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THE ALGORITHM FOR NON-INTERSECTING PA'TCHES

We have determined, in a scan plane, the visibility of each I atch
for the observer if all other patches were removed. Now w¢ must synthe-
size all this information.

The first step is to merge together the special points of all the
patches into one large list which is ordered by increasing x coordinates.
This list will then be scanned. For each interval [xi, xi+1] we shall
determine which is the visible patch, if any. Of course at that moment
the visibility in the [xi-l' xi] interval has already been determined,
except for i = 0. Thus:

--if 1 =0 or if X is & special point for the patch which was
visible in the [xi-l' xi] interval, we have to compare all patches in
the [xi, xi+1] interval. This is achieved by computing the depth of each

patch (z coordinate) in the interior of the interval, for instance at

Xy + X
2

patch with the greatest =z is declared visible.

the midpoint x = i+l . Those depths are then sorted, and the

-=if x) is a specia. point for patch P where a new portion of patch
P might become visible, and if patch P' w.s found to be visible in the
interval [xi-l’ xi] witk P' ¥ P, ther. P and P' must be compared, but not
to any other patch. Of P and P', the one closest to the observer is
declared visible. If no patch was visible :in the previous interval, then
patch P automatically becomes visible.

This aigorithr can be slightly improved by observing if a patch A
was in frort of another patch A' in an interval [xi-l' xi] and if X; is
not a special point for either of these patches, the patch A will still

cover A' in interval [xi + xi+1]' Thus we can avoid unnecessary depth
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compatations by maintaining depth--ordered lists of some of the patches

while we are scanning (increasing X) . Whenever a special point is found
for a patch, this Patch is deleted from the depth-ordered lists, except

if it is the patch which will be seen in the next x interval, in which
case it is placed in front of all lists. The usefulness of these lists
arises when we arrive at a point X, which is a special point for the patch
which was seen in the [xi=1, xi] interval, thus requiring all patches to
be compared. However, patches which are below the top of any one of our
depth-ordered lists will certainly not be seen because they are at least
hidden by the Fatch which is at the top of that list. Those Patches which
cannot be eliminated in this way will need to be compared ang will be |
depth~sorted into a next list., a depth-ordered list is deleted whenever
it is reduced to only one element. Because a given Patch may exist in
Several of these lists at a time, it is desirable to have all occurrences

of the same patch themselves list linked in order to be able to delete

them rapidly if we arrive at a special point for this patch.
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A VISIBLE SURFACE ALGORITHM FOR INTERSECTING P ATCHES

If patches may intersect, we cannot compare them on an interval by
computing their depths at some arbitrary point in this interval. The

vorrect way to compare two patches on an intervel is:

l. To compute their intersections.

2. 1If there is any intersection in the interval, to
subdivide the interval (creating n + 1 subintervals
if there are n intersections) so that the patches do
not intersect on each interval.

and 3. To compare depths at any arbitrary point within each
interval in which the patches are now known not to

intersect.

If n patches are involved, this method would require about n2 /4
comparisons in order to determine which patch is in front of the others
on an interval. The computation of the intersections of two conics is
an expensive operation which requires around 3 milliseccnds of computa’ion
time on the PDP-10 (on which these algorithms were implemented by the

author). Most of this time is devotea to solving a quartic equation. Thus

it becomes critical to reduce the number of comparisons of quadrics and of
computations of irtersections. This car be done in several ways:

l. When the intersection of two conics has be2en determin ,
they must be stored somewhere in order to avoid havin
to recompute the same intersections on the same scan
line. If the numbers k and k' identify two conics, the
intersections of k and k' are stores in a hashcoded array.
The access function in tris array (or hash function)
H(k,k') has to be symmet i1c: H(k,k') = H(k,k'), because




the intersections of k and k' are identical to the

intersections of k' and k.

2. In order to minimize the number of comparisons, we use
a "guod guess" of which patch wi' . be visible in a
given interval. This guess is obtained by remembering
the "sample points" and the "sample segments" (see also
reference [2]) of the previous scan line. A sample seg-
ment is a segment of the previous scan line which corres-
ponds to a visible portion of a conic. A sample point
is the extremity of a sample segment. We use these
points of the previous scan line in o:der to get sampl.ec
points belonging to the same patches as - and being us
close as possilkle to - sample points of the previous

scan line.

On each sample interval, we have to compare the probably visible
patch with other possibly visible patches on that interval. Thus if
there are n patches and if the visible segments in the previous scan
plane corresponded to v different patches (v < n), then the number of
comparisons will be less than (n -1)v, if the good guesses were right,
which is usually the case. Moreover, if there are on the average g
possibly visible patches behind each of the v probably visible patches,
then the total number of compariscns required is qv. Thus the compute
t‘me of the algorithm is proportional to the "visible complexity" v of
the picture.

Of course, if the good guess is wrong, the sample segment eventually
has to be divided and more comparisons are needed:

3. If A is in front of B and B is in front of C, then A

is in front of C. This might periit us to avoid having

to compute the intersection of A and C in some cases

where the intersections of A and B and of B and C were




already computed previously on the scan line. The
interest of this "trick" comes from the fact that it
is much more expensive to compute the intersections
of two conics than just to compute their depths for

some value of x.

Another improvement which was suggested to the author,
but nc.: implemented i1 his computer program, consists of
using the values of the coordinates of the intersections
of two patches in the previous scan plane, as initial
approximations of their values in the current scan plane,
and to refine the approximation for the new scan plane by

applying a two-dimensional Newton method.

14
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SHADING THE CURVED SURFACES

For an observer looking from a distance d in the z direction, and
if the light source coincides with the observer, an acceptable and pleasing

shading value is given by:

cosza

(d-2)2

At the point of the surface of coordinates (x,¥,2), a is the angle
between the normal to the surface and the direction of the observer (z dir-

ection); we have:

where (nx, ny, nz) are the components of the normal, given by:

nx = 2a1x + a6y + asz

ny = 2a2y + a,z + agx

nz = 2a3z + asx + ay

Depending on the type of quadric, z is computed either by solving
a quadratic equation, or by computing the ratio of the value of a second-
order polynomial to the value of a first-order polynomial. The fact that
the components of the normal ard the value of z have to be computed for
hundreds of thousands of points for each picture makes the cost'of shading

generally much more expensive than the cost of visible surface detection.
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THE DATA STRUCTURE

An interesting by-product of this investigation is a system vwhich
allows one to create and modify patches and pictures interactively.

The picture designer can model a data structure. This structure can
be viewed as an oriented graph without loops, in which appear only the names
of objects and the names of transformations, and not the actual coefficients
of the transformation matrices or of the quadratic equations. The same
name may appear in several places in the structure, and these occurrences
do not have to be changed when the attributes of the name are to be modified.

The nodes of the graph are occupied by the names of three types of

objects:
- subpictures
- patche§
and - quadratic patches

The graph edges are occupied by the names of transformations and,
in some cases, by a special attribute which is greater, less than, or
equil to zero. Tnhis snecial attribute appears only if the vertex joins the
name of a patch to the name of a quadratic equation.

A ianguage has been designed and implemented on the PDP-10 to allow
one to define transformations and quadric patches, and to create or delaste
objects apd father-son relationships. Examples of sentences of this lang-
uageiare:

TRANS total AS PROD ROTX O CENTR .5 .5 .5 TRZ .4 END

which defines the transformation TOTAL as the product of a centered rotation

-and of a translation;
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IN sub INCL obj BY total
creates a father-to-son relationship between the subpicture "sib" (father),
and the object "obj" to which is applied the transformation referenced by
the name "total";

DISP sub BY persp
displays object "sub", transformed by the transformation "persp".

Figure 4 shows the set of commands which were used in order to

define the structure of the rocket displayed in Figure 5. Other examples

of pictures produced by this algorithm are shown in Figures 6 and 7.
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MODE NOINT
QUADR CYL AS rQU 1 @ 1 0 00 0 Q@0 =)
QUADRK CONE AS FQU 1 =1 |
QUADR PLANE AS EQU O O @ 0 O @ 00 O |
TRANS TC1 AS PROD SCALE .1 TRX .5 END
TREANS TC2 AS PROD SCY 2 ROTX 183 TR .5 .7 END
THANS TC2 AS PROD SCALE .35 TRX .5 END
TRANS TC4 AS PROD SCY 2 ROTX 190 TR .5 .8 END
TRANS TLOTT AS ROTX =90
TARANS TCPCl AS TLOTT CENTK @ .5,
TRANS TOPC2 AS TEOTT CENTR @ .6
T*ANS TCPC3 AS TLOTT CENTR 2 .7
TAANS TOPC4 AS ToCTT CENTR 2 .8
PATCH C1 IN C1 INCL CYL BY TCI
INCL PLANE LY TGLOTT POS
INCL PLANE Y TOPC1 NEG
PATCH C2 IN C2 INCL CONE Y TC2
INCL PLANE LY TOPCI POS
INCL PLANE Y TOPCZ NEG
PATCH C3 IN CY INCL CYL &Y TC3
INCL PLANE LY TOPC2 PCS
INCL PLANLD LY TCPC3 MIG
PATCH CA 1IN C4 INCL CONE .Y TCA4
INCL PLANE BY TOPC3 PUS
INCL PLANE LY TOPC4 NEG
TRANS OH1 AS PROD ROTY 92 TRX .5 END
TXANS CH2 AS PROD OHI ROT7Z 225 CENTR .5 «3 LND-
PATCH AX IN A3 INCL PLANE
’ INCL PLANE LY TIOTT PGS
INCL PLANE 2Y OH1 POS
INCL PLANE 'Y QH2 POS
INCL CYL BY TCl POS
T<ANS TAZ AS ROTY =94 CENTR .5
SULP AZ IN A? INCL A3 EY TA2
SUZP Al IN Al INCL A2 Y TAZ2
SU:P A4 IN A INCL Al LY TA2
SULP TCOTAL IN TOTAL INCL Al INCL A2
INCL A2 INCL A4
IsCL C1 InCL €2
INCL C2 INCL C4
SCAN 507
T«ANS TTT AS PRCD ROTX 30 ROTY 49 RGTZ 5¢ END CENTR 5 .5
TPANS TTT AS FROD TTT TR -.1 .1 EN
OO SHACT
SHADE 1 2 1577
S!""P RGTA IXN RCTA INCL TOTAL BY TTT
JISP ROTA
' TTY

Figure 4




Figure 5;

Two intersecting cylinders.
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Figure 6:

"Rocket" made from portions of cylinder cones and planes.
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Cup and Saucer
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CONCLUSION

Algorithms have been bresented which determine the visibkle j.crtions
of quadric patches. The algorithm for patches known not to intersect works
much faster than the other algorithm. In both cases, however, the computa-
tion of the precise shading value at each point of the picture ic in general
the most expensive pbrocess, even though we assumed that the licht source and
the observer were at the same Place.

More complicated classes of surfaces still have to be investigated,
but this will probably require more computational power. It would also be
interesting to have an algorithm which (like Watkins' algorithm) would work
very fast if only planar polygons are involved, but which could also handle

quadric surfaces at the cost of a smooth degradation of performance.
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