
m»

AD-762 010

AN EXPERIMENTAL DISFLAY PROGRAMMING
LANGUAGE FOR THE PDP-10 COMPUTER

William M. Newman

Utah University

Prepared for:

Rome Air Development Center
Advanced Research Projects Agency

July 1970

DISTRIBUTED BY:

mn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

■p ii i »i - .i .wimm^H^f^m^mm mmwmmm<m^m\,mimßM'immmmm.iiii<>m'mmimmK..i- wmmmmmm;,'} MP'm..?IHWIPBHIJimmmmmmimmw."^mi"m.mvimim'fm^'***,. wwwwiffiimpupi

An experimental display programming
language for the PDP-10 computser

if WILUAM M. NEWMAN

UNIVERSITY OF UTAH.

■■--■ ^^---i-- ■■:■*-■' 1.:-^-^ ^—-^.^-- .M^-^tmr^aamMiirirU

AN EXPERIMENTAL

DISPLAY PROGRAMMING LANGUAGE

FOR THE

PDP-10 COMPUTER

by

William M. Newman

July 1970 UTEC-CSc-70-104

This research was supported in part by the University of Utah Computer
Science Division and the Advanced Research Projects Agency of the Department
of Defense, monitored by Rome Air Development Center, Griffiss Air Force
Base, New York 13440, under contract AF30(602)-4277. ARPA Order No. 829.

TABLE OF CONTENTS

At)S tract IV

Display Procedures

Windowing and Scaling

Frames

Declarations

An Example 10

Interaction with Dia] Programs 12

Program States 14

Reserved Variables 17

String Manipulation 19

Comments 20

Linking to Other Program Segments 21

References 22

ii

Appendix I: a detailed description of the Dial Language... 23

Title

Declarations

Procedure definitions

Expressions

Assignment Statements

Conditional Statements

FOR Statements

Blocks

Input Statements

Output Statements

Calling External Subroutines

Comments

Appendix II: use of the nial system 32

Appendix III: file I/O in Dial. 34

Appendix IV: an example of a Dial program 31

m

mm mmammmt

ABSTRACT

An experimental language for display programming, called DIAL,

has been developed for the PDP-10 and the UNIVAC 1559 display. It is

experimental in the sense that it was originally conceived as a means

of testing out some ideas, and the b st way to test them seemed to be

to produce a language that others could USR. The language is a subset

of ALGOL (hence the name: Display Algol), with additional facilities

for graphical input and output. It cannot deal with floating-point

numbers and can only handle strings in a limited fashion. Also, it

lacks any facilities for rotating pictures or for displaying three-

dimensional objects. On the other hand, it does include features which

may make it easier to develop display programs.

The principal distinguishing feature of Dial is the ahrity to

define display procedures. These are identica.1 in almost every respect

to ordinary procedures, but serve the additional purpose of defining

the Structure of the picture on the screen. In this respect they take

the place of the traditional structured display file, which in Dial

does not exist. The only display file created by Dial programs is a

linear list of vectors which is sent to the display.

The chief difference between display procedures and other Dial

procedures lies in the way they are called. A typical display procedure

call might be:

CAPAC AT 100, 200 SIZE 20;

IV

. 1

Display procedures may be defined in terms of basic graphical

primitive (lines, points, etc.) or by means of calls to other display

procedures.

Also included in Dial are statements for defining the interac-

tive processes within the program. Dial docs not permit a very high

degree of graphica] interaction: it is not possible to program opera-

tions like drawing rubber-band lines or dragging objects around the

screen. It is not clear whether this necessarily means that Dial pro-

grams are less efficient interactively; in any case, Dial is designed

to function under a time-sharing environment where it is difficult to

create continuously changing pictures.

v

■ r iJ

DISPLAY PROCEDURES

L

All statements which produce graphical output must occur wittin

display procedures, or within procedure*, called by them.* There are

fl6 —

0 —

+ 16 —

0 +8

four basic graphical output statements: LINE,

LINE TO, MOVE and MOVE TO. LINE and MOVE define

relative movements., visible and invisible respec-

tively, while LINE TO and MOVE TO define move-

ments to absolute position« in the coordinate

system of the display procedure. This is illus-
Figure 1

trated by the following example, which defines the capacitor symbol

shown in Figure 1:

CAPAC <■ «MOVE TO 0, -16; LINE .0 0,-2; MOVE -8,0; LINE 16,0,

MOVE -16,4; LINE 16,0; MOVE -8,0; LINE TO 0,16'

in an example of this sort, either relative or absolute movements could

be used throughout, instead of the mixture of absolute and ^^

employed here for the purpose of illustration. Each type of statement

finds specific uses in more complex procedures.

Text can be displayed by means of the DISPLAY statement:

DISPLAY "ANSWER = ", N AT 100, 200

hi Will display the value of N as a decimal integer, prededed by the

TotoTt?1 OUtPUt StateiTients are instead included in the main
body of the program, they do not constitute syntax errors but
no output will be generated by them errors, but

string "ANSWER = •■. This statement is equivalent to ^ ^^

two statements, which are also permissible in Dial:

MOVE TO 100, 200; DISPLAY "ANSWER = ", N;

Besides including these basic graphical output statements, display

Procedures may also call other display procedures. This is illustra_

ted by the next example, which uses the capacitor symbol and another

symbol of a resistor to create the circuit shown in Figure 2. The

code for this procedure is as follows:

CCT - -CAMC AT 32, 24; RESIS AT 0, 40, RESIS AT 32, 40,

MOVE TO 0, 8; LINE TO 64,8'

When we call CAPAC at the position of 32,24 in the outer procedure,

WNAAAn-vAAAAA,- ^ ^^ ^ l0Cal 0rigin for the ^
procedure. Hence the first MOVE TO 0, -16

I in CAPAC will move to 0, -16 in the local

coordinate system, which is 32, 8 in the

 coordinate system of CCT.

32-

16-

32 64
The CCT procedure could itself

Figure 2I_^ciLProcedure be called from another display proce-

dure, and so on. In this way a hierarchy of procedures can be

created, modeling the structure of the picture in much the same way

as would a conventional structured display file. There are two

fundamental differences, however, between a structure built of display

Procedures and a similarly structured display file. m the first

Place, display files are a form of data structure, whose elements may

be created, modified and destroyed by tne program. Display procedures

are defined prior to compilation, and can never be altered during the

course of execution.

This raises the question of how pictures can be made to change at

all. The answer lies in writing display procedures which make access to

the same data structures as the rest of the program so that when the

display procedure is executed it produces a picture reflecting the latest

state of the data structure. Consider an example of a more elaborate

electrical circuit, containing a number of capacitors. The positions

of these capacitors on the circuit diagram can be stored in two arrays,

CX and CY, which hold the x and y coordinates respectively. Then a pro-

cedure for generating the whole circuit diagram might be written as

follows:

CCT *■ 'FOR K ^ 1 STEP 1 UNTIL NC DO CAPAC AT CS[K] , CY [Y] '

NC is the number of entries in the CS and CY arrays.

Display procedures may have arguments, and this provides another

method of altering the picture which the procedure generates. The

value of the capacitor could be added as an argument, as follows:

CAPAC ■*■ 'NEW V; DISPLAY V, "PF" AT 4,-8;

MOVE TO 0,-16; etc... '

Figure 3

output statements:

100 PP Figure 3 shows the result. Because the

procedure is executed by the computer,

and not by the display processor, it ;i 3

possible to include conditional graphical

CAPAC *■ 'MEW V; IF LABEL=1 THEN DISPLAY V, "PF" AT 4,-8;

MOVE TO 0,-16; •

This procedure will generate the label or omit it according to the value

of LABEL.

WINDOWING MD SCALING

The calling of one display procedure by another may be carried to

many levels. The result is a pattern of procedure calls resembling a

tree structure with cross connections, as shown in Figure 4. As the size

of this structure grows, so does the amount

of material on the screen, and it soon be-

comes desirable to be able to select part

of the total picture for display. This is

_^ ., achieved by means of the WINDOW statement.

-^ \^/ Windowing is applied to the display proce-

Figure 4
 dure which forms the top node in the tree,

using the following syntax:

=D>-
X

4> window
center

WINDOW CCT AT 250, 300 SIZE 200

This statement has the effect of placing a square frame around part of

window size the picture defined by CCT. The center of

this frame is at 250, 300 in Lho coordinate

system of CCT, and it measures 200 units in

each direction from this center. When the

WINDOW statement is executed, all the graphi-

screen cal information which lies outside the 'win-

dow' is omitted from the picture, and the

lines which lie inside are s :aled so that

Figure 5: Windowing the edges of the window coincide with the

edges of the display screen.* Lines which cross the boundary of the win-

*The use of viewports, as proposed by Dr. Ivan Sutherland, is

not currently included in Dial.

5

äo« a„ clipped so «,„ only „,. visible part (J ^^ ^ ^^ ^^^

Figure 5 iUustrates the effect of windowing.

Windowing can be eppUea only to entire pictures, and not to

individual display procedures which ma« up part of a picture. This

-ans that scale changes can be applied only to entire pictures by the

WINDOW atate^ent. Often one wants to be able to change the scale at

which a symbol appears within a picture, this can be done by including

the size in the display procedure cail:

CAPSC ST XI, yi, SIZE 256.

Size is measured in units of the coordinate system of the calling dis-

play Procedure. This method has been chosen rather than using relative

acale, partly because this is often the mst convenient way to specify the

scale of an ob.oct, and partly because the use of relative scales woula

«guire floating-point arithmetic. *, argument against the use of size

Is that it implies that every display procedure must bo defied at a

certain size, and this is in fact the case. The size of each display

procedure is included in the declaration of that procedure, in the

.anner described in the section en declarations, „hen the procedure is

called with an elicit size, as in the last e^ple, it is scaled up in

the ratio of the called size to the declared size, if no size is mentioned

in the calling statement, the declared size is used.

It is generally immaterial at „hat size a display procedure is

declared, as long as all the graphical information in toe procedure is e„-

Closedwithin the definition bcundary, which is assumed to have 0,0 at its

center. It is advantageous, however, to make the declared size contain

the graphical inflation as closely as possible, m this „ay the genera-

6

tion of display files is greatly speeded up.* As an example, the obvious

choice of declared size for the CAPAC symbol would be 16, and 64 for

the CCT of Figure 2. The statement on the previous page would then be

equivalent to scaliu;; up CAPAC sixteen times.

A very useful feature of Dial is the reserved procedure SSIZE

which can be called within any display procedure, and returns the actual

size, in grid units, that the procedure will appear on the screen. Accord-

ing to the value returned by SSIZE, parts of the picture may be included

or]eft out, or a completely different picture may be generated. SSIZE

could, for example, be used instead of LABEL in the last example on

Page 4:

CAPAC <- 'NEW V; IF SSIZE> 64 THEN DISPLAY V, "PF" AT 4, -8;

MOVE TO 0, -16; ...';

Any statements or expressions may be used as the coordinates and

size in a display procedure call or in a WINDOW statement. The scaling

effect of sizes is cumulative when calls are made to more than one level.

*Any display procedure which lies entirely outside the current
window is omitted entirely without examining its contents. This
so-called 'boxing' operation greatly speeds up the clipping process.

■■■■ m MMMHHHII

FRAMES

Whenever a WINDOW statement is executed, a process of display

file generation is begun. The display procedure named in the WINDOW

staiement is called, and every line or character specified in the ensuing

statements is clipped with respect to the window. For each line or

character which appears within the window, the appropriate display com-

mands are added to the display file, in preparation for transmitting the

file to the display buffer. This process continues until the end of

the named display procedure is reached.

Whenever a change is required in the display picture, this pro-

cess must be repeated in order to regenerate the display file. The new

display file must replace the old one in the display buffer. A problem

arises if the buffer contains the results of several WINDOW statements,

since only the appropriate part of it must be overwritten, and the rest

must remain unchanged. To cope with this problem, each separate part

of the display file is treated by Dia] as a separate frame, and the

FRAME statement is included in the language to allow parts of the dis-

play file to be regenerated.

The FRAME statement is in reality just a procedure call, and the

frame procedure which it calls usually contains just one WINDOW statement:

Fl •«• 'WINDOW CCT2 AT XW, YW SIZE 1000';

FRAME Fl;

The FRAME statement carries out two important tasks: it deletes the

appropriate parts n the old display file; and when the execution of the

frame procedure is complete, it sends the new display file to the display

buffer. It is important to realize that only the FRAME statement has

this ability to transmit new display filts to the display. The other

statements we have discussed are merely concerned with creating a dis-

play file in preparation for transmission.

The Dial system keeps a list of all the frames which are currently

being displayed, -xnä can in this way keep track of the parts of the

display buffer which must be „hanged when a FRAME statement is executed.

If the programmer wishes to remove a frame entirely from the display,

he can use the statement:

DELETE Fl;

which also removes this frame's «ntry from the frame list.

Table I illustrates the effect of a typical sequence of FRAME and

DELE 'E stateme'its, beginning with a clear screen.

Statement

FRAME Fl

FRAME F2

FRAME Fl

FRAME F3

DELETE F2

DELETE F2

DELETE Fl

FRAME F3

DELETE F3

Effect

Generate Fl

Generate F2

Regenerate Fl

Generate F3

Remove F2

No effect

Remox a Fl

Regenerate F3

Remove F3

Display File Contents

Fl

Fl, F2

Fl, F2

Fl, F2, F3

Fl, Fo

Fl, F3

F3

F3

Empty

Table I; FRAMa, DELETE Sequence

H

DECLARATIONS

Every Dial program must start with a title, a BEGIN and some

declarations. Included in the declara:ions must be the names of all

the variables and procedures in the program, except for the formal vari-

ables declared at the start of procedures. Variables, arrays, ordinary

procedures and frame procedures are declared in NEW declarations:

NEW XW, YX, CX[100], CYNOO, PR0C3, FRAME1, FRAME2;

Arrays may have any number of dimensions. Each dimension has an implicit

lower bound of 1. Display procedures are declared separately:

DISPLAY PROCEDURE CCT, CCT2, 16: CAPAC, RESIS;

A number like '16:' included in the declaration defines the size of the

following procedures. A default value of 1024 is assumed for any name

not preceded by a size.

Two other types of declaration, INTERNAL and EXTERNAL, are per-

mitted. These will bo discussed more fully in the section on linking to

other programs, but their use is probably obvious to those familiar

with the PDP-10.

10

AN EXAMPLE

All the aspects of Dial which relate to picture generation have

now been covered, and an example is included here to illustrate how

the various Dial statements are used. This example will create the

circuit diagram shown below, with the same window. Note the use of

a FOR statement to define resistor and ground symbols.

TITLE EXAMPLE
BEGIN
NEW VERT,H0RIZ,FR1,K;
DISPLAY PROCEDURE CCT, 32:RESIS,CAPAC, 8:GROUND;

CAP AC + 'NEW HV; IF HV=HORI7J THEN

BEGIN MOVE 16,0J LINE 0,14; MOVE -8,0; LINE 16,j?;
MOVE -16,4; LINE 16,91; MOVE -8,0; LINE 0,14

END ELSE

BEGIN MOVE 0,16; LINE 14,0; MOVE 0,-8; LINE 0,16;
MOVE 4,-16; LINE 0,16; MOVE 0,-8; LINE 14,0

END' ;

RESIS *■ 'NEW HV; IF HV-HORIZ THEN
BEGIN MOVE 0,16; LINE 4,0;

FOR K<-1 STEP 1 UNTIL 3 DO

BSCCN LINE 2,4; LINE 4,-8; LINE 2,4 END;
LINL 4,0

END ELSE

BEGIN MOVE 16,0; LINE 0,4;
FOR K<1 STEP 1 UNTIL 3 DO

BEGIN TINE 4,2; LINE -8,4; LINE 4,2 END;
LINE 0,i

END' ;

GROUND *■ 'MOVE 4,2;

FOR K+-0 STEP 1 UNTIL 4 DO

BEGIN LINE 2*K,0; MOVE -(2*K+1),1 END;
MOVE TO 4,6; LINE 0,2' ;

■ Hill I—

11

CCT +• 'RESISfHORIZ] AT 0,0;
MOVE TO 0,16; LINE 0,32;
CAPACfHORIZ] AT 0,32;
CAPAC[VERT] A'*' 28,48;
RESIS[VERT] AT 28,16;
GROUND AT 36,0, SIZE 16;
RESIS[HORIZ] AT 44,32;
RESIS[HORIZ] AT 76,32;
CAPAC[VERT] AT 60,16;
RESIS[HORIZj AT 12,64;
RE3IS[HORI2l AT 44,64';

MOVE TO 32,16; LINE 0,32; LINE 12,0;

FR1 <- 'WINDOW CCT AT 36,36 SIZE 32';

HORIZ<-0; VERT+-1;
FRAME FR1
END

AA^V—

12

INTERACTION WITH DIAL PROGRAMS

To assist in defining the interactive elements of Dial programs,

an ON statement is provided. This statement, which is reminiscent of

parts of PL/I, has the form:

ON <input> DO <statement>;

The ON statement is generally executed immediately after input has been

received from the Teletype or from the SRI Mouse. If the received input

matches the first part of the ON statement, then the statement which forms

the second part is executed. The various types of input are as follows:

ON CHAR DO . . .

ON CHAP. "0" DO

ON SYM DO ...

ON SYM "XYZ" DO

ON NUM DO .. .

ON SW DO ...

ON SW 2 DO ...

ON HIT 27 DO ...

ON PFLAG 6 DO .

ON PFLAG DO . . ,

any Teletype character

the character Q

any string, terminated by carriage-return

or tab

the string XYZ

any signed decimal integer

any switch on the mouse

switch 2 on the mouse

pointing at part of display procedure call 27

on bhe screen and pressing any switch.

progr TI fl 6 set

any program flag set

The meaning of most of these is fairly obvious. Strings may be of

up to five characters only—this is one of the restrictions on string-mani-

pulations. The mouse switches create inputs only when they are pressed

13

down, and not when they are released.

The "ON HIT..." statement introduces a further feature in Dial

graphical output, the ability to associate names with display piocadure

calls. These names may be any integer, and can be added to both calls

and WINDOW statements, as follows:

RESIS AT CX, CY AS 17;

DPROC[K] AT 200, 500 SIZE 2*K AS K+3;

WINDOW RESIS AT X, Y SIZE S AS N;

These names are used only in pointing operations, where they serve both

to single out part of the picture to be pointed at, and to report back

which part was "hit". For example, suppose a procedure P is called with

name 1, and itselc calls three other display

iX. I p b\ procedures, Q, R and S with names 2, 3 and

4. Then if the user points with the mouse

cursor at any part of the resulting picture

and presses a switch, on execution of an

I 6 I I R I |s ["ON HIT 1 DO..." statement, the name of the

indicated part wil.i be reported back by

Figure 6 means of a reserved variable HITN. This

name will have the value 2, 3 or 4 according to the part chosen. P may

include calls without names, but these parts of the picture cannot gener-

ate a "hit". Only names occurring one level below the name in the

ON HIT statement will be reported back.

14

PROGRAM STATES

While a program is waiting for an input it is in an idle state,

and as soon as an input occurs the program will normally execute a

series of ON statements to determine the type of input and the appro-

priate action to take. The result may be that the program transfers

to the head of a different list of ON statements to await further

input. In this case the program is considered to have changed state.

The concept of program states has been builc into Dial, in

mucl the same fashion as in the FDP-9/rDP-10 Graphics System2. When

the program starts executing it is implicitly in State 1. It can be

made to change state by executing an ENTER statement, for example

ENTER 12;

The tasks that the program is to carry out during a given state are

listed under a DURING statement:

DURING 12 DO

BEGIN ON CHAR "A" DO . . .

ON CHAR "P" DO ...

ON SW DO ...

END;

ON statements should be used only within a DURING statement.

Cc-nversely, DURI IG statements should, in fact, contain a list of one

or more ON statements; any other code included in the DURING statement

but not vithin an ON may cause unexpected results.

Besides the DURING statement, there is an ENTERING statement for

defining the operations to be carried out before transferring to the

15

DURING statement:

ENTERING 12 DO H ^ 0 ;

ENTERING 5 DO BEGIN TYPE "PRESS SWITCH"; K + K+l END;

ENTERING and DURING statements may occur in any order within the pro-

gram. Statements not enclosed within these ENTERING and DURING state-

ments are executed when the program is started. Programs like the one

on Pages 10 and 11 which contain no ENTERING or DURING statements

simply run to completion and return to the monitor.

It is possible for the program to set one of the "program flags,"

and later to test f^r the flag with an "ON" statement. This creates

a method for the program itself to cause branching from a state. For

example:

SET FLAG 6; ENTER 3;

DURING 3 DO

ON PFLAG 6 DO BE^IN.

There are 262,]44 possible flags including Flag 0. "SET FLAG" clears

any other flag currently set. It is not necessary to include a flag

number in the "ON PFLAG" statement:

ON PFLAG DO .

This will branch if any flag is set. The flag number is stored in FLAGNO.

A statement "PAUSE" <STATEMENT> is included in Dial. This causes

program FLAG 0 to be set N 60ths of a second later, where N is the

value of the statement:

16

PAUSE 30 % WILL SET FLÄG 0 aFTER 1/2 SEC %

The "PAUSE" Statement does not halt computation. instead it starts a

time (in the PDP-9) which inputs a special character when the interval

has elapsed. For example, the following statements will cell proce-

dure UPDATE and reconstruct fr. .e P6 every 2 seconds:

SET FLAG 0; ENTER 12; % TO CAUSE 1ST BRANCHI NG

DURING 12 DO

ON PFLAG DO BEGIN PAUSE 120; % 2 SEC INTERVAL %

UPDATE;

FRAME F6

END;

Program Flag 0 can be set from the teletype by typing control + shift +

"PAUSE" statements will work from a non-PDP-9 teletype, but intervals

are rounded to the nearest second, and cause suspension of execution

until the end of the interval.

M.

17

RESERVED VARIABLES

The Dial system usns a number of reserved variables to pass date

to the program during input operations. Four of these deal with input

text information:

INCHAR

INSYM

INTEXT

INVAL

the latest character typed, shifted into

the leftmost 7 bits

the input symbol, excluding the terminating

character (5 characters maximum)

the input string array (may be subscripted)

the signed value of the number typed in

Whenever a switch is pressed on the mouse, its position and the

switch settings are passed to the PDP-10, and are held in the following

locations:

INX

INY

INSW

mouse x-coordinate

mouse y-coordinate

switch number (1, 2 or 3)

As mentioned above, when a hit is detected, the name of the display

procedure call involved is held in HITN. TWo other locations, HITX and

HITY, contain the mouse position converted to the local coordinates of

this display procedure: this helps to determine In which region of a

display procedure the hit occurred.

Two reserved procedures, SCALX and SCALY, are ii.eluded to help

relate the mouse position to scaled pictures. Each has one argument,

which is the name of a call to a display procedure. They return the

18

Position of the mouse in the coordinate system of this display procedure.

For example:

...WINDOW CCT AT XI, Yl SIZE 1000 AS 20;

...X2 ■«■ SCALX[20]; Y2 + SCALY[20]; ...

will deposit in X2, Y2 the mouse position in the coordinate system of

CCT, relative to the origin of CCT.

These routines assume that a procedure call exists in the display

structure with the name given. If there is no such call, the values

they return are indeterminate.

19

STRING MANIPULATION

Apart from strings included in output lists, the longest

string that Dial can handle is five characters in .length. Strings of

up to this length can be treated like ordinary variables:

A[10] ■*• "JOHN"

IF Q3 ■ "DOG" THEN ...

Variables containing text information can be output in charac-

ter form by preceding the variable name with a dollar sign:

Q *■ "ABC" DISPLAY N, "WATCH THIS SPACE", $Q;

The TYPE statement for outputting to the teletype is identical

in most respects to the DISPLAY statement. Both use the reserved

string NEWLINE for carriage control. Displayed text is shown at a

fixed size, which does not change when the scale of the picture changes.

The left-hand margin for displayed text is the left-hand edge of

the display procedure within which it occurs.

Since the compiler will not permit space, tab, carriage return

or rubout to be included as a single character within quct-es, four re-

served variables are included which contain these characters as strings.

These are called:

SPACE

TAB

NL (Carriage return)

RUBOUT

E.g., ON CHAR DO IF INCHAP=RUBOUT THEN A[K]-<-0;

20

COMMENTS

Any text enclosed within percent signs is ignored by the

compiler and may therefore be treated as comments For example:

IF A > B THEN BEGIN

P[K] *■ P[K+1] •

TYPE P[K+2]

END;

% DO THIS IF A GREATER THAN B %

% MOVE P VALT'i DOWN %

21

LINKING TO OTHER PROGRAM SEGMENTS

Dial has been designed to link to other relocatable PDP-10

programs. An INTERNAL declaration must be used for any variable or

array internal to the DIAL program which is addressed by another

program segment. Because of the rather peculiar calling sequence

for Dial procedures, it is difficult for MACRO-10 or FORTRAN programs

to call them. On the other hand, DIAL programs can call MACRO-10 or

FORTRAN subroutines:

CALL DSKOUT; CALL INVERT[A,B,X];

These generate the correct "JSA 16", calling sequence for FORTRAN.

All the accumulators are saved before the call and restored afterwards,

apart from accumulator 1 whose contents are treated as the value of

the sub outine. This provides a means of writing external functions.

22

REFERENCES

1. Wirth, N. and Weber, H., "Eulen a generalization of Algol, and

its formal definition". Corrmunioations of the ACM, Vol. 9 13-

25+ and 89-100 (Jan. and Feb.).

2. Newman, W. M. "A high-level programming system for a remote time-

sh?red graphics terminal". University of Utah, Computer Science,

March, 1969.

3. Sutherland, I.E. "A head-mounted three dimensional display".

AFIPS, Proceedings of the Fall Joint Computer Conferenee, Vol. 33,

part 1, 1968, 757-764.

4. Newman, W. M. "Programming guide to the UNIVAC J559 display".

University of Utah, Information Research Laboratory, October, 1969.

5. Kilgour, A. C. and Brown, M. D. "SPINDLE: a system permitting inter-

active display list editing". University of Edinburgh, Computer-

aided design Project, June, 1969.

23

APPENDIX I; A DETAILED DESCRIPTION OF THE DIAL LANGUAGE

TITLE

The first line of a Dial program must be a title:

TITLE PROG 1

BEGIN

DECLARATIONS

There are three types of declaration: NEW, DISPLAY PROCEDURE,

and INTERNAL. These should be used as follows:

NEW

DISPLAY PROCEDURE

INTERNAL

for all variables, arrays, procedures
and frame procedures which occur in
the program;

for all display procedures;

for all variables and arrays in the
program which are referenced by other
programs. These should also be de-
clared in a NEW declaration.

Declarations must be placed at the start of the program immediately

following the initial BEGIN. Any number of declarations may be

be included, in any order.

Arrays may have any number of dimensions. All such dimensions

have a lower bound of 1. Dial arrays are compatible with FORTRAN arrays,

Display procedure declarations may include size definitions,

denoted by an integer followed by a colon. All procedures whose name

follows such a definition are given that size, up to the next size defi-

nition. Those not preceded by a size are tj^ven a size of 1024

Examples:

10

24

TITLE PROG 2

BEGIN NEW A^naOO], MAX, M .\ FRAME!;
INTERNAL A,B;

DISPLAY PROCEDURE PLAN1,32: 000", WINDOW;

PROCEDURE DEFINITIONS

Procedure definitions may be placed anywhere within the pro-

grut,, but must precede any call to that procedure. The body of the

nrocodure definition, including a list of its formal parameters if

any, is enclosed within single quotes:

MAX ♦■ 'NEW ARG1, ARG2;

IF ARG1 > ARG2 THEN ARG1 ELSE ARG2'

When a procedure is called, each of the arguments is in turn evaluated,

and its value is assigned to one of the formal variables in the NEW

list, starting with the first. There may be more formal parameters

in the list than values passed, in which case the remaining formals

are not given values, and can ir fact be used as local variables by

the procedure. The value returned by a procedure is the value of the

last executed statement. For example, the follow!nq procedure would

return the value 3:

TVPEB <- 'TYPE D; X «- 3'

EXPRESS TONS

Arithmetic expressions may contain any number of primes separ-

ated by the symbol + - * / signifyinq addition, subtraction, multi-

plication and division. When the expression is evaluated, multipli-

cation and division are carried out first.

The following are leqal primes:

25

1. Inteqer constants

2. Variables

3. Single array elements

4. Procedure calls

5. Any statement, enclosed within parentheses

Any alternative form of expression is a stxing of one to five

characters, enclosed within double quotas. This has the value of the

integer containing these characters in 7-Dit ASCII format, left justified.

Examples of permissible expressions are:

123

A6

-A+B-3

(A+B-3)/(16-C)

C+(IF A=0 TURN 12 ELSE 13)

H+J[16]

MAX[B,C]

"JOHN"

In the above, any of the identifiers miaht refer to procedures rather

than to variables or arrays. Any statement can be used as the argument

of a procedure or array call.

ASSIGNMENT STATEMENTS

An expression or statement, preceded by a left arrow pointing to

the name of a variable or of an array element, constitutes an assign-

ment statement:

A •«- B + C

TXT [3] ■>*- "HENRY"

These statements have the value obtained by evaluating the right-hand

side. Tl is value can be multiply assianed:

26

A -f- B «- XY2;[21] +• 0

CONDITIONAL STATEMENTS

Three forms of conrJitional statements are permitted:

IF <loqical expression> THEN <statement>

IF <:loaical exDression> THEN <statement> ELSE <statement>

WHILE <loqica1 expre8«ioa> DO <st5tement>

The basic logical expressions are the following:

E1=E2 true if value of El equals value of E2

E1#E2 true if value of El not equal to value of E2

E1>E2 true if value of El exceeds value of E2

El<E2 true if value of El is less than value of E2

E1>=E2 true if value of El exceeds or equals value
of IS2

El<=E2 true if value of El is less than or equals

value of E2

More complex loaical expressions can be created by means of the operators

OR, AND and NOT.

e.q., IE A>C AMD NOT O-D THEN

NOT is applied first durinq evaluation, then AND, finally OR.

Tp the logical oxpression in an IF statement is founcl to be true,

the statement followinq the THEN is executed? otherwise the ELSE state-

ment, if any, is executed. In a WHILE statement, the statement followina

the DO is executed repeatedly a.c; long as the loaical expression is true.

Example^ : IF A>R THEN P^-O ELSE 0^1

IF A [12] # A [13] THEN A [1 2] ^-A [1 3] ^-0

WHILE K<0 DO R+-K + 1

The expression INCHAR=NL is true if INCHAR contains the single character,

carriage-return.

27

FOR STATEMENT

The followinq are examples of permissible FOR statements:

FOR K «- 1 STEP 1 UNTIL 100 DO A[K] -<- 0

FOR P *■ J+3 STEP B + 100*n UNTIL 7-J/4 DO A[P] * N[P-1]

Any expression may precede the words STEP, UNTIL and DO; any statement

may follow DO. This statement will be executed while the variable pro-

ceeds from a value equal to the first expression to a value not oxceed-

li T the last expression, in steps equal to the middle expression.

BLOCKS

A compound statement can be formed from any number of statements,

separa en by semi-colons, preceded by BEGIN and terminated by END.

e.g., A *• BEGIN TYPE "STRING"; C *■ 0; 3 END

INPUT STATEMENTS

All input to a Dial program must occur within a DURING statement.

This has the foms

Dl RING <stat..;> numbcr> no <statemonf>

and is equivalent to a WHILE statement:

WHILE STATE = <state number> DO

BEGIN INPUT; <statement> END

.s While the program is under the control of the DURIMG statement it i:

waiting for .input from the Teletype or from the Kousc. When it receives

one of these it executes the following statements. These are normally

ON statements:

ON <input> no <atateinent>

mm

28

for which alternativns arc given on Page 12 of the main report.

ON statements are executed in the order in which they are given,

until one is found which matches the input. For this reason it is

important not to program as follows:

ON SYM DO ENTER 3;

ON SYM "ABC" DO k ■*- 3 ;

The second of these statements can never be Satisfied since the first

will always be satisfied before it.

To cause the program to transfer to another state, the ENTER

statement is used:

ENTER 23

The argument of this statement may itself be any statement:

ENTER P+3

ENTER statements take immediate effect, and act rather like GO TO

statements. However, the action is not identical to a GO TO: instead

the current state number is reset, and all the DURIN.' statements in

the program are executed until the appropriate one is found. There

may be no DURING statement bearing the desired state number. In this

case the proaram returns to the monitor.

It may be useful to check for certain inputs during all states.

For this purpose a special DURING statement is provided:

DURING ALL DO ON CflAR "X" DO ENTER 1

The check for inputs listed in the DURING ALL statement is made before

checkinn any inputs listed under the current state.

29

ENTERING statements can be used to cause tasks to be performed every

time a certain state is entered:

ENTERING 3 DO A -<- B ■*- 0

ENTERING and DURING statements may be listed in any order in the body of

the program. When execution starts, all the statements not enclosed in

ENTERING and DURING statements are executed, and the program enters State

,1. This last action can be avoided by including an ENTER statement in

this initialization section.

OUTPUT STATEMENTS

For text output, the TYPE statement is used. Following the word

TYPE is a list of expressions, which are evaluated and typed out.

Strings in a type list may be of any length, but may not include carriage-

returns: these are provided by the reserved NEWLINE string:

TYPE A, "SQUARE FEET", NEWLINE;

Varicbles or array elements whose names are preceded by * dollar sign

are typed out as ASCII strings:

XT *• "ED"; TYPE $XT

The DISPLAY statement has the equivalent effect to the TYPE

statement on the display screen. All characters are displayed at a

standard size, roughly the same as the size of typed characters. The

following two forms are permitted for the DISPLAY statement:

DISPLAY "TEXT", N

DISPLAY "TEXT", N AT X,Y

Other statements for generating displayed pictures are:

LINE Ax, Ay

MOVE Ax, Ay

ZIP Ax, Ay -J

by relative amounts

30

LINE TO x,y -.

M0VE T0 x'y [to absolute positions
ZIP TO x,y -

Any statement may be used for Ax,Ay, x and y. These value are measured

in units of the coordinate system of the display procedure in which the

statements occur. Z", P lines are drawn entirely in zip mode.

There are four forms of display procedure call:

PP AT X,Y

DP AT X,Y SIZE S

DP AT X,Y AS N

DP AT X,Y SIZE S AS N

Here X, Y, S and M are any statement. The cal] DP may <wi-i,„a- xnc i..-iii Di may incluno arauments,

The WINDOW statement takes similar formsr

WINDOW DP /\T y,Y Sl?tE S

WINDOW DP AT X,Y SIZE S AS N

The center of the window ia given by X,Y. The window is always square

with side equal to 2S. Those parts of DP which lie within the window

are mapped across into the visible screen area.

my procedure containing any number of WINDOW statements can be

called as a FRAME procedure:

FRAME PRl

It is wise not to include arguments in frame procedure calls, althc A

these will currently be processed correctly; no guarantee can he made

that this will continue to be the case. Each time a frame procedure

is called in this way, a fresh display file reolaces the previous out-

put of this frame. The statement

31

DELETE FR1

will delete this frame's output, and

DELETE ALL

will clear the screen.

CALLING EXTERNAL SUBRnUTINEo

The followina statements can be used to call external subroutine-

written in rORTRAN IV or MACRO-10.

CALL WTAPK

CALL PAPAB[100, A + 100 * K]

Arguments may be variable or array names, or an./ othei statement,

including another CALL statement. Accumulators are saved before the

call, and restored afterwards. ATI subroutines called in this way must

be declared in EXTERNAL declarations.

COMMENTS

Any text enclosed within percent signs is ignored by the compiler.

■■■■■■niMimiiiiMI Jin

32

APPENDIX II: USE OF THL DIAL SYSTEM

Source files for Dial programs should be prepared in the normal "

fashion, using one of the editors. The procedure for compiling and

running Dial programs is as follows:

.R DIAL

*DSK:PROG. MAC-f-DSK:PROG. SRC

(any file names and any devices,
including TTY, will do)

.LOAD PROG,DIO[],1]

(this loads the proaram, together with
the Dial I/O routines)

.START

The program will now start execution.

Dial programs can be run from any teletype, but will not produce

any displayed output unless run from one of the teletypes on the PDP-9.

To remind users who use other teletypes, the program types "TTY 10 ONLY"

when it starts execution.

To help programmers to debug without a display, a technique for

simulating the mouse from the keyboard is included in Dial. Type control

+ shift + N, followed by up to three integers, separated by commas. The

first number is taken as the x-coordinate of the mouse, the second as

the y-coordinate and the third as the switch number. For example:

't'c256,891,2 is equivalent to moving the mouse to the point

256,891 and pressing the middle button.

Because of the way Dial processes hits, these can be generated at the

teletype in the same way.

33

Those who wish to examine the display files produced by Dial

should do the following:

.DEBUG PROG, DI0[1,1]

DIO$: BP{DBUF)$1B $G

On reaching the breakpoint set in this way, DDT will type out

the first word of the display file it has prepared for transmission,

and ensuing words can be examined by typing line-feed. To resume execu-

tion, type $P {$ = altmode in all cases). Those who use this technique

should familiarize themselves with the instruction set for the

Univac 1559 [4].

34

APPENDIX III: FILE I/O IN DIAL

I. Input

A. Initialization (Opening)

There are two calls to open an input device. Only one input

device can be open at any time. Each open input call closes

the previous input device, if one was open.

1. TXTIN [Open device for character input]

1A. Parameters

This call takes three text string parameters.

The first is the device name, the second is the

file name, and the third is the file name

extension, e.g., CALL TXTIN["Dl16","SCAN","MAC"];

IB. Results

This call opens the device named in the first

parameter, and looks up the file name specified

in the next two parameters.

Code is also set up to access the 36-bit words

from this device in 7-bit character bytes.

2. BININ [Open device for binary input]

2A. Parameters

This call takes three text string parameters.

The first is the device name, the second is the

file name, and the third is the file name exten-

sion, e.g., CALL BININ ["D116","SCAN","MAC"];

2B. Results

This call opens the device named in the first

parameter, and looks up the file name specified

35

in the next two parameters

Code is also set up to access the 36-bit words

from this device in 36-bit binary bytes.

B. Reading

There are two calls provided to read an input device, and one

to check if end of file has been reached.

1. RDTXT [Read characters]

1A. Parameters

This call takes no parameters. It simply leaves

a value on the top of the stack.

E.g., CHARS ■<- CALL RDTXT;

IB. Results

The resulting word will be the next five non-zero

bytes from the input device. If the device was

opened to have 36 bit bytes, then only the seven

low-order bits will be taken from each non-zero

byte.

2. RDBIN [Read binary words]

2A. Parameters

This call takes no parameters. It simply leaves

a value on the top of the stack.

E.g. , WORD ■*• CALL RDBIN;

2B. Results

The resulting word will be the next byte from the

input device. If the device was opened to have

seven bit bytes, then the byte will be right jus-

tified in result word.

3. EOF [Check for end of file]

36

3A. Parameters

This call takes no parameters. It simply leaves

a value on the top of the stack.

E.g., EOFVAL *• CALL EOF;

3B. Results

The value is zero if end of file has not been

reached. The value is set to -1 when end of file

is reached. Note that the binary word returned

when EOF is set is not part of the file, and

always zero. Also the text string is part of

the file, but may be filled out with nulls [0].

C. Termination (Closing)

There is one call to close the current input device which

takes no parameters. Tt is CLOSET.

II. Output

A. Initialization (Opening)

There are two call to open an output device. Only one output de-

vice can be open at any time. Each open output call closes the

previous output device, if one was open.

1. TXTDUT [open device for character output]

1A. Parameters

This call takes three text string parameters. The

first is the device name, the second is the file

name, and the third is the file name extension.

E.g., Call TXTOUT ["0116","SCAN'/'MAC"] ;

IB. Results

This call opens the device named in the first

•parameter, and enters the file name specified in

the next two parameters. Code is also set up to

37

store the 36-bit words sent to this device as

7-bit character bytes.

2. BINOUT [Open device for binary output]

2A. Parameters

This call takes three text string parameters.

The first is the device name, the second is the

file name, and the third is the file name

extension.

E.g., CALL BINOUT f"D116","SCAN","MAC"];

2B. Results

This call opens the device named in the first

parameter, and enters the file name specified

in the next two parameters. Code is also set

up to store the 36-bit words sent to this device

as 36-bit binary bytes.

B. Writing

There are two calls to write on an output device.

1. WRTTXT [Write characters]

1A. Parameters

This call takes one parameter, which is the

data to be written. E.g., CALL WRTTXT[DATA];

IB. Results

This will cause the ..ata word to be divided

into 5 7-bit characters, and each non-zero char-

acter will be written. Note, that if the output

device was opened in binary mode, each character

will be stored right-justified one to a word.

38

2. WRTBIN [Write binary words]

2A. Parameters

This call takes one parameter, which is the

data to be written. E.g., CALL WRTOIMjDATA];

21. Results

This will cause the entire data word to be writ-

ten at once. Note, that if the output device

was opened in character mode, only the seven low

order bits will be written in the next 7-bit

slot in the output file.

C. Termination (Closing)

There is one call to close the current output device, which

takes no parameters. it is CLOSE0,

TIT. Use

Programs should be loaded with DIAL10 as follows:

.LOAD PROG, D10[l,l], DTAL10[1,1]

39

APPENDIX IV: AN EXAMPLE OF A DIAL PROGRAM

The following program allows the user to create and manipulate

rectangles on the screen and illustrates most of the interactive features

of Dial. The functions of the program have been based on an example in

A. C. Kilgour and M. D. Brown's SPINDLE Manual.

Rectangles can bo created, moved, duplicated, and deleted. To

create a rectangle, type "G" and indicate two positions with the mouse.

These become the two opposite corners of the rectangle. Each further

point indicated by the mouse will bo used to reposition the rectangle.

To move a rectangle, typo "M" and point at the rectangle with

the mouse: the rectangle will disappear. Then point somewhere on the

screen, and it will reappear at that position. At each successive

position, the rectangle is repositioned.

Duplication is achieved by typing "S" and pointing at the appro-

priate rectanale. Thereafter the operation is identical to moving, except

that the original rectangle remains on the screen.

To delete a rectangle, type "D" and point, at it. If deleted in

error, a rectangle can be restored by typinq "N", and a fresh choice can

be made.

Throughout operation, typing "X" will return the program to its

base mode, and restore the display to the state it was in when base

mode was left. Typing "P" makes permanent any change effected by creating

moving, duplicating or deleting, and returns the program to base mode.

The program starts with an implicit "G".

40

TITLE RECTS
BEGIN

NEW NR,K,TEMP,NEWX,NEWY,SIZX,SIZY,CREATE;
NEW RSIZ[50,2],RX[50],RY[50],FR1,FR2;
DISPLAY PROCEDUl« NEWR, REGT,LAYOUT;

% REGT IS CALLED BY LAYOUT TO DRAW ALL STORED RECTANGLES %

REGIH-'NEW N; LINE RSIZ [N, 1] ,0; LINE 0, RSIZ[N,2];

LINE -RSIZ[N,1] ,0; LINE 0 ,-RSIZ [N ,2] ' ;

% LAYOUT CREATES DISPLAY OF ALL STORED RECTANGLES, OMITTING
TEMPORARILY DELETED RECTANGLE TEMP %

LAYOUT^-'FOR K*-l STEP 1 UNTIL NR DO

IF K#TEMP THEN RECT[K] AT RX[K],RY[K] AS K';

% NEWR DRAWS HBWLY DEFINED RECTANGLE %

NEWR^-'MOVE TO NEWX,NEWY;

LINE SIZX,0; LINE 0,SIZY; LINE -SIZX,0; LINE 0,-SiZY1;

% FRAME FR1 CREATES ALL STORED RECTANGLES,
ER2 CREATES NEW RECTANGLE %

FR1<-'WIND0W LAYOUT AT 512,512 SIZE 522 AS 51';
FR2«-,WINDOW NEWR AT 512,512 SIZE 512' ;

% THIS CODE EXECUTED AT START %

CRE ATE-'-TE MP<-N R*-0
ENTER 2;

% BASE MODE STATE %

DURING 1 DO

BEGIN ON CHAR "G" DO ENTER 2;
ON CHAR "M" DO ENTER 5;
ON CHAR "S" DO ENTER 6;
ON CHAR "D" DO ENTER 7

END;

DURING 2 DO

ON SW DO BEGIN NEWX^INX;

NEWY^-INY;
ENTER 3

END;

% FIRST CORNER %

DURING 3 DO

ON SW DO BEGIN SIZX IfK-NEWX;

SIZY INY-NEWY;
FRAME FR2;

CREATE 1;
ENTER 4

% SECOND CORNER %

% DISPLAY NEW RECTANGLE %
% IE NEW REGT CREATED %

41

END;

DURING 4 DO
ON SW DO BEGIN NEWX^INX;

NEWY^-INY;
FRAME FR2

END;

% ON EACH NEW POSN, REPOSITION %

% AND DISPLAY IN NEW POSITION %

TEMP = RECTANGLE TO BE MOVED %

DURING 5 DO

ON HIT 51 DO BEGIN TEMP^HITN;

SIZX-f-RSIZ^lITN,!] ;
SIZY^RSIZ[HITN,2];

FRAME FR1; % DISPLAY WITHOUT THIS RECTANGLE
CREATE^-l ;
ENTER 4

END;

DURING 6 DO

ON HIT 51 DO BEGIN SIZX^RSIZ[HITN,1];

SIZY<-RISZ[HITN,2] ;
CREATE +•1;
ENTER 4

END;

DURING 7 DO

ON HIT 51 DO BEGIN TEMP^HITN;

FRAME FRl;
ENTER 8

END;

DURING 8 DO

ON CHAR "N" DO BEGIN TEMP-f-0;

FRAME FRl;
ENTER 7

END;

DUPLICATE THIS ONE %

% DELETE THIS ONE

% N MEANS RESTORE IT %

DURING ALL DO
BEGIN ON CHAR "P" 1X3

BEGIN IF TEMP#0 THEN
BEGIN NR^-NR-l; % TEMI

FOR K+-TEMP STEP 1 (TNTIL MR DO
BEGIN RSTZ[K,1]^RSIZ[K+1,1] ;

RSIZ[K,2]^RSIZ[K+1,2] ;
RX[K]-<-RX[K+l] ;
RY[K]^RY[K+1]

END;
TEMP^0

END;
IF CREÄTE-1 THEN
BEGIN CREATED;

NR^-NR+1;

PSIZ[NR,1]^SIZX;
F5IZ[NR,2HSIZY;
RX[^R]^NEWX;

P MEANS MAKE CHANGE PERMANENT

RECTANGLE TO BE DELETED %

FILL GAP LEFT BY DELETING %

IF NEW RECTANGLE CREATED, ADD IT %
AND INCREMENT NUMBER %

... ummmmmm

RY[NR]-(-NEWY
END;

DELETE FR2;
FPAME FR1;
ENTER 1

END;

ON CHAR "X" DO

BEGIN DELETE FR2;
FRAME FR1;

CREATE-<-TEMP^0;
ENTER 1

END
END

END

42

REMOVE TEMPORARY DISPLAY %

% ON X, RESTORE TO ORIGINAL STATE

